Sample records for a7r5 smooth muscle

  1. Kv7.5 Potassium Channel Subunits Are the Primary Targets for PKA-Dependent Enhancement of Vascular Smooth Muscle Kv7 Currents

    PubMed Central

    Mani, Bharath K.; Robakowski, Christina; Brueggemann, Lyubov I.; Cribbs, Leanne L.; Tripathi, Abhishek; Majetschak, Matthias

    2016-01-01

    Kv7 (KCNQ) channels, formed as homo- or heterotetramers of Kv7.4 and Kv7.5 α-subunits, are important regulators of vascular smooth muscle cell (VSMC) membrane voltage. Recent studies demonstrate that direct pharmacological modulation of VSMC Kv7 channel activity can influence blood vessel contractility and diameter. However, the physiologic regulation of Kv7 channel activity is still poorly understood. Here, we study the effect of cAMP/protein kinase A (PKA) activation on whole cell K+ currents through endogenous Kv7.5 channels in A7r5 rat aortic smooth muscle cells or through Kv7.4/Kv7.5 heteromeric channels natively expressed in rat mesenteric artery smooth muscle cells. The contributions of specific α-subunits are further dissected using exogenously expressed human Kv7.4 and Kv7.5 homo- or heterotetrameric channels in A7r5 cells. Stimulation of Gαs-coupled β-adrenergic receptors with isoproterenol induced PKA-dependent activation of endogenous Kv7.5 currents in A7r5 cells. The receptor-mediated enhancement of Kv7.5 currents was mimicked by pharmacological agents that increase [cAMP] (forskolin, rolipram, 3-isobutyl-1-methylxanthine, and papaverine) or mimic cAMP (8-bromo-cAMP); the 2- to 4-fold PKA-dependent enhancement of currents was also observed with exogenously expressed Kv7.5 channels. In contrast, exogenously-expressed heterotetrameric Kv7.4/7.5 channels in A7r5 cells or native mesenteric artery smooth muscle Kv7.4/7.5 channels were only modestly enhanced, and homo-tetrameric Kv7.4 channels were insensitive to this regulatory pathway. Correspondingly, proximity ligation assays indicated that isoproterenol induced PKA-dependent phosphorylation of exogenously expressed Kv7.5 channel subunits, but not of Kv7.4 subunits. These results suggest that signal transduction-mediated responsiveness of vascular smooth muscle Kv7 channel subunits to cAMP/PKA activation follows the order of Kv7.5 >> Kv7.4/Kv7.5 > Kv7.4. PMID:26700561

  2. Kv7.5 Potassium Channel Subunits Are the Primary Targets for PKA-Dependent Enhancement of Vascular Smooth Muscle Kv7 Currents.

    PubMed

    Mani, Bharath K; Robakowski, Christina; Brueggemann, Lyubov I; Cribbs, Leanne L; Tripathi, Abhishek; Majetschak, Matthias; Byron, Kenneth L

    2016-03-01

    Kv7 (KCNQ) channels, formed as homo- or heterotetramers of Kv7.4 and Kv7.5 α-subunits, are important regulators of vascular smooth muscle cell (VSMC) membrane voltage. Recent studies demonstrate that direct pharmacological modulation of VSMC Kv7 channel activity can influence blood vessel contractility and diameter. However, the physiologic regulation of Kv7 channel activity is still poorly understood. Here, we study the effect of cAMP/protein kinase A (PKA) activation on whole cell K(+) currents through endogenous Kv7.5 channels in A7r5 rat aortic smooth muscle cells or through Kv7.4/Kv7.5 heteromeric channels natively expressed in rat mesenteric artery smooth muscle cells. The contributions of specific α-subunits are further dissected using exogenously expressed human Kv7.4 and Kv7.5 homo- or heterotetrameric channels in A7r5 cells. Stimulation of Gαs-coupled β-adrenergic receptors with isoproterenol induced PKA-dependent activation of endogenous Kv7.5 currents in A7r5 cells. The receptor-mediated enhancement of Kv7.5 currents was mimicked by pharmacological agents that increase [cAMP] (forskolin, rolipram, 3-isobutyl-1-methylxanthine, and papaverine) or mimic cAMP (8-bromo-cAMP); the 2- to 4-fold PKA-dependent enhancement of currents was also observed with exogenously expressed Kv7.5 channels. In contrast, exogenously-expressed heterotetrameric Kv7.4/7.5 channels in A7r5 cells or native mesenteric artery smooth muscle Kv7.4/7.5 channels were only modestly enhanced, and homo-tetrameric Kv7.4 channels were insensitive to this regulatory pathway. Correspondingly, proximity ligation assays indicated that isoproterenol induced PKA-dependent phosphorylation of exogenously expressed Kv7.5 channel subunits, but not of Kv7.4 subunits. These results suggest that signal transduction-mediated responsiveness of vascular smooth muscle Kv7 channel subunits to cAMP/PKA activation follows the order of Kv7.5 > Kv7.4/Kv7.5 > Kv7.4. Copyright © 2016 by The American Society for

  3. Differential Activation of Vascular Smooth Muscle Kv7.4, Kv7.5, and Kv7.4/7.5 Channels by ML213 and ICA-069673

    PubMed Central

    Brueggemann, Lyubov I.; Haick, Jennifer M.; Cribbs, Leanne L.

    2014-01-01

    Recent research suggests that smooth muscle cells express Kv7.4 and Kv7.5 voltage-activated potassium channels, which contribute to maintenance of their resting membrane voltage. New pharmacologic activators of Kv7 channels, ML213 (N-mesitybicyclo[2.2.1]heptane-2-carboxamide) and ICA-069673 N-(6-chloropyridin-3-yl)-3,4-difluorobenzamide), have been reported to discriminate among channels formed from different Kv7 subtypes. We compared the effects of ML213 and ICA-069673 on homomeric human Kv7.4, Kv7.5, and heteromeric Kv7.4/7.5 channels exogenously expressed in A7r5 vascular smooth muscle cells. We found that, despite its previous description as a selective activator of Kv7.2 and Kv7.4, ML213 significantly increased the maximum conductance of homomeric Kv7.4 and Kv7.5, as well as heteromeric Kv7.4/7.5 channels, and induced a negative shift of their activation curves. Current deactivation rates decreased in the presence of the ML213 (10 μM) for all three channel combinations. Mutants of Kv7.4 (W242L) and Kv7.5 (W235L), previously found to be insensitive to another Kv7 channel activator, retigabine, were also insensitive to ML213 (10 μM). In contrast to ML213, ICA-069673 robustly activated Kv7.4 channels but was significantly less effective on homomeric Kv7.5 channels. Heteromeric Kv7.4/7.5 channels displayed intermediate responses to ICA-069673. In each case, ICA-069673 induced a negative shift of the activation curves without significantly increasing maximal conductance. Current deactivation rates decreased in the presence of ICA-069673 in a subunit-specific manner. Kv7.4 W242L responded to ICA-069673-like wild-type Kv7.4, but a Kv7.4 F143A mutant was much less sensitive to ICA-069673. Based on these results, ML213 and ICA-069673 likely bind to different sites and are differentially selective among Kv7.4, Kv7.5, and Kv7.4/7.5 channel subtypes. PMID:24944189

  4. Novel treatment strategies for smooth muscle disorders: Targeting Kv7 potassium channels.

    PubMed

    Haick, Jennifer M; Byron, Kenneth L

    2016-09-01

    Smooth muscle cells provide crucial contractile functions in visceral, vascular, and lung tissues. The contractile state of smooth muscle is largely determined by their electrical excitability, which is in turn influenced by the activity of potassium channels. The activity of potassium channels sustains smooth muscle cell membrane hyperpolarization, reducing cellular excitability and thereby promoting smooth muscle relaxation. Research over the past decade has indicated an important role for Kv7 (KCNQ) voltage-gated potassium channels in the regulation of the excitability of smooth muscle cells. Expression of multiple Kv7 channel subtypes has been demonstrated in smooth muscle cells from viscera (gastrointestinal, bladder, myometrial), from the systemic and pulmonary vasculature, and from the airways of the lung, from multiple species, including humans. A number of clinically used drugs, some of which were developed to target Kv7 channels in other tissues, have been found to exert robust effects on smooth muscle Kv7 channels. Functional studies have indicated that Kv7 channel activators and inhibitors have the ability to relax and contact smooth muscle preparations, respectively, suggesting a wide range of novel applications for the pharmacological tool set. This review summarizes recent findings regarding the physiological functions of Kv7 channels in smooth muscle, and highlights potential therapeutic applications based on pharmacological targeting of smooth muscle Kv7 channels throughout the body. Published by Elsevier Inc.

  5. PKC-dependent regulation of Kv7.5 channels by the bronchoconstrictor histamine in human airway smooth muscle cells.

    PubMed

    Haick, Jennifer M; Brueggemann, Lioubov I; Cribbs, Leanne L; Denning, Mitchell F; Schwartz, Jeffrey; Byron, Kenneth L

    2017-06-01

    Kv7 potassium channels have recently been found to be expressed and functionally important for relaxation of airway smooth muscle. Previous research suggests that native Kv7 currents are inhibited following treatment of freshly isolated airway smooth muscle cells with bronchoconstrictor agonists, and in intact airways inhibition of Kv7 channels is sufficient to induce bronchiolar constriction. However, the mechanism by which Kv7 currents are inhibited by bronchoconstrictor agonists has yet to be elucidated. In the present study, native Kv7 currents in cultured human trachealis smooth muscle cells (HTSMCs) were observed to be inhibited upon treatment with histamine; inhibition of Kv7 currents was associated with membrane depolarization and an increase in cytosolic Ca 2+ ([Ca 2+ ] cyt ). The latter response was inhibited by verapamil, a blocker of L-type voltage-sensitive Ca 2+ channels (VSCCs). Protein kinase C (PKC) has been implicated as a mediator of bronchoconstrictor actions, although the targets of PKC are not clearly established. We found that histamine treatment significantly and dose-dependently suppressed currents through overexpressed wild-type human Kv7.5 (hKv7.5) channels in cultured HTSMCs, and this effect was inhibited by the PKC inhibitor Ro-31-8220 (3 µM). The PKC-dependent suppression of hKv7.5 currents corresponded with a PKC-dependent increase in hKv7.5 channel phosphorylation. Knocking down or inhibiting PKCα, or mutating hKv7.5 serine 441 to alanine, abolished the inhibitory effects of histamine on hKv7.5 currents. These findings provide the first evidence linking PKC activation to suppression of Kv7 currents, membrane depolarization, and Ca 2+ influx via L-type VSCCs as a mechanism for histamine-induced bronchoconstriction. Copyright © 2017 the American Physiological Society.

  6. (2R,3S,2”R,3”R)-manniflavanone, a new gastrointestinal smooth muscle L-type calcium channel inhibitor, which underlies the spasmolytic properties of Garcinia buchananii stem bark extract

    PubMed Central

    Balemba, Onesmo B.; Stark, Timo D.; Lösch, Sofie; Patterson, Savannah; McMillan, John S.; Mawe, Gary M.; Hofmann, Thomas

    2014-01-01

    Garcinia buchananii Baker stem bark extract (GBB) is a traditional medication of diarrhea and dysentery in sub-Saharan Africa. It is believed that GBB causes gastrointestinal smooth muscle relaxation. The aim of this study was to determine whether GBB has spasmolytic actions and identify compounds underlying these actions. Calcium (Ca2+) imaging was used to analyze the effect of GBB on Ca2+ flashes and Ca2+ waves in guinea pig gallbladder and distal colon smooth muscle. Intracellular microelectrode recording was used to determine the effect of GBB, six fractions of GBB, M1–5 and M7, and (2R,3S,2”R,3”R)-manniflavanone, a compound isolated from M3 on action potentials in gallbladder smooth muscle. The technique was also used to analyze the effect of GBB, M3, and (2R,3S,2”R,3”R)-manniflavanone on action potentials in the circular muscle of mouse and guinea pig distal colons, and the effect of GBB and (2R,3S,2”R,3”R)-manniflavanone on slow waves in porcine ileum. GBB inhibited Ca2+ flashes and Ca2+ waves. GBB, M3 and (2R,3S,2”R,3”R)-manniflavanone inhibited action potentials. L-type Ca2+ channel activator Bay K 8644 increased the discharge of action potentials in mouse colon but did not trigger or increase action potentials in the presence of GBB and (2R,3S,2”R,3”R)-manniflavanone. GBB and (2R,3S,2”R,3”R)-manniflavanone inhibited action potentials in the presence of Bay K 8644. GBB and (2R,3S,2”R,3”R)-manniflavanone reduced the amplitude but did not alter the frequency of slow waves in the porcine ileum. In conclusion, GBB and (2R,3S,2”R,3”R)-manniflavanone relax smooth muscle by inhibiting L-type Ca2+ channels, thus have potential for use as therapies of gastrointestinal smooth muscle spasms, and arrhythmias. PMID:26081368

  7. A Novel Regulatory Mechanism of Smooth Muscle α-Actin Expression by NRG-1/circACTA2/miR-548f-5p Axis.

    PubMed

    Sun, Yan; Yang, Zhan; Zheng, Bin; Zhang, Xin-Hua; Zhang, Man-Li; Zhao, Xue-Shan; Zhao, Hong-Ye; Suzuki, Toru; Wen, Jin-Kun

    2017-09-01

    Neuregulin-1 (NRG-1) includes an extracellular epidermal growth factor-like domain and an intracellular domain (NRG-1-ICD). In response to transforming growth factor-β1, its cleavage by proteolytic enzymes releases a bioactive fragment, which suppresses the vascular smooth muscle cell (VSMC) proliferation by activating ErbB (erythroblastic leukemia viral oncogene homolog) receptor. However, NRG-1-ICD function in VSMCs remains unknown. Here, we characterize the function of NRG-1-ICD and underlying mechanisms in VSMCs. Immunofluorescence staining, Western blotting, and quantitative real-time polymerase chain reaction showed that NRG-1 was expressed in rat, mouse, and human VSMCs and was upregulated and cleaved in response to transforming growth factor-β1. In the cytoplasm of HASMCs (human aortic smooth muscle cells), the NRG-1-ICD participated in filamentous actin formation by interacting with α-SMA (smooth muscle α-actin). In the nucleus, the Nrg-1-ICD induced circular ACTA2 (alpha-actin-2; circACTA2) formation by recruitment of the zinc-finger transcription factor IKZF1 (IKAROS family zinc finger 1) to the first intron of α-SMA gene. We further confirmed that circACTA2, acting as a sponge binding microRNA (miR)-548f-5p, interacted with miR-548f-5p targeting 3' untranslated region of α-SMA mRNA, which in turn relieves miR-548f-5p repression of the α-SMA expression and thus upregulates α-SMA expression, thereby facilitating stress fiber formation and cell contraction in HASMCs. Accordingly, in vivo studies demonstrated that the localization of the interaction of circACTA2 with miR-548f-5p is significantly decreased in human intimal hyperplastic arteries compared with normal arteries, implicating that dysregulation of circACTA2 and miR-548f-5p expression is involved in intimal hyperplasia. These results suggest that circACTA2 mediates NRG-1-ICD regulation of α-SMA expression in HASMCs via the NRG-1-ICD/circACTA2/miR-548f-5p axis. Our data provide a molecular

  8. Nicotine-Induced Airway Smooth Muscle Cell Proliferation Involves TRPC6-Dependent Calcium Influx Via α7 nAChR.

    PubMed

    Hong, Wei; Peng, Gongyong; Hao, Binwei; Liao, Baoling; Zhao, Zhuxiang; Zhou, Yumin; Peng, Fang; Ye, Xiuqin; Huang, Lingmei; Zheng, Mengning; Pu, Jinding; Liang, Chunxiao; Yi, Erkang; Peng, Huanhuan; Li, Bing; Ran, Pixin

    2017-01-01

    The proliferation of human bronchial smooth muscle cells (HBSMCs) is a key pathophysiological component of airway remodeling in chronic obstructive pulmonary disease (COPD) for which pharmacotherapy is limited, and only slight improvements in survival have been achieved in recent decades. Cigarette smoke is a well-recognized risk factor for COPD; however, the pathogenesis of cigarette smoke-induced COPD remains incompletely understood. This study aimed to investigate the mechanisms by which nicotine affects HBSMC proliferation. Cell viability was assessed with a CCK-8 assay. Proliferation was measured by cell counting and EdU immunostaining. Fluorescence calcium imaging was performed to measure intracellular Ca2+ concentration ([Ca2+]i). The results showed that nicotine promotes HBSMC proliferation, which is accompanied by elevated store-operated calcium entry (SOCE), receptor-operated calcium entry (ROCE) and basal [Ca2+]i in HBSMCs. Moreover, we also confirmed that canonical transient receptor potential protein 6 (TRPC6) and α7 nicotinic acetylcholine receptor (α7 nAChR) are involved in nicotine-induced upregulation of cell proliferation. Furthermore, we verified that activation of the PI3K/Akt signaling pathway plays a pivotal role in nicotine-enhanced proliferation and calcium influx in HBSMCs. Inhibition of α7 nAChR significantly decreased Akt phosphorylation levels, and LY294002 inhibited the protein expression levels of TRPC6. Herein, these data provide compelling evidence that calcium entry via the α7 nAChR-PI3K/Akt-TRPC6 signaling pathway plays an important role in the physiological regulation of airway smooth muscle cell proliferation, representing an important target for augmenting airway remodeling. © 2017 The Author(s). Published by S. Karger AG, Basel.

  9. Smooth muscle sphincteroplasty in colostomy.

    PubMed

    Kostov, Daniel V; Temelkov, Temelko D; Dragnev, Nedyalko A; Kobakov, Georgi L; Ivanov, Krasimir D

    2004-04-01

    The present work elaborated on Schmidt's idea of an effective smooth muscle sphincteroplasty. The aim of the study was to analyze the effects on the patients with a lower quadrant colostomy constructed after abdominoperineal extirpation of a modified smooth muscle sphincteroplasty combined with colon irrigations. Seventy-two rectal cancer patients (39 men and 33 women, median age, 54.5 years) with smooth muscle sphincteroplasty and 20 controls with conventional colostomy using colon irrigations (11 men and 9 women, median age, 63.2 years) were examined. A modified smooth muscle wrap of the colostomy with a free graft of a 4-cm-long colon segment without mucosa was applied. In this precolostomy segment a high intraluminal pressure was achieved. The functional capacity and anatomic integrity of the transplanted smooth muscle graft were examined manometrically, electromyographically, and histomorphologically. The functional activity of the colostomy was assessed by periodic recording of the number of "spontaneous" and "directed" defecations.RESULTS. In the patients with smooth muscle sphincteroplasty, the basal intraluminal pressure of the precolostomy segment two years after operation measured 29.7 mmHg. After dilatation of the transplant, these pressures reached up to 43 mmHg ( P < 0.001). The weekly "spontaneous" stools were 3 to 5 times less frequent than in the controls ( P < 0.001). The modified smooth muscle sphincteroplasty offers operative-technical opportunities for increasing intraluminal pressure in the precolostomy colon segment. Its combination with colonic irrigations facilitates control of the evacuatory rhythm and "spontaneous" stools in colostomy patients, thus improving their quality of life.

  10. Molecular Expression and Pharmacological Evidence for a Functional Role of Kv7 Channel Subtypes in Guinea Pig Urinary Bladder Smooth Muscle

    PubMed Central

    Afeli, Serge A. Y.; Malysz, John; Petkov, Georgi V.

    2013-01-01

    Voltage-gated Kv7 (KCNQ) channels are emerging as essential regulators of smooth muscle excitability and contractility. However, their physiological role in detrusor smooth muscle (DSM) remains to be elucidated. Here, we explored the molecular expression and function of Kv7 channel subtypes in guinea pig DSM by RT-PCR, qRT-PCR, immunohistochemistry, electrophysiology, and isometric tension recordings. In whole DSM tissue, mRNAs for all Kv7 channel subtypes were detected in a rank order: Kv7.1~Kv7.2Kv7.3~Kv7.5Kv7.4. In contrast, freshly-isolated DSM cells showed mRNA expression of: Kv7.1~Kv7.2Kv7.5Kv7.3~Kv7.4. Immunohistochemical confocal microscopy analyses of DSM, conducted by using co-labeling of Kv7 channel subtype-specific antibodies and α-smooth muscle actin, detected protein expression for all Kv7 channel subtypes, except for the Kv7.4, in DSM cells. L-364373 (R-L3), a Kv7.1 channel activator, and retigabine, a Kv7.2-7.5 channel activator, inhibited spontaneous phasic contractions and the 10-Hz electrical field stimulation (EFS)-induced contractions of DSM isolated strips. Linopiridine and XE991, two pan-Kv7 (effective at Kv7.1-Kv7.5 subtypes) channel inhibitors, had opposite effects increasing DSM spontaneous phasic and 10 Hz EFS-induced contractions. EFS-induced DSM contractions generated by a wide range of stimulation frequencies were decreased by L-364373 (10 µM) or retigabine (10 µM), and increased by XE991 (10 µM). Retigabine (10 µM) induced hyperpolarization and inhibited spontaneous action potentials in freshly-isolated DSM cells. In summary, Kv7 channel subtypes are expressed at mRNA and protein levels in guinea pig DSM cells. Their pharmacological modulation can control DSM contractility and excitability; therefore, Kv7 channel subtypes provide potential novel therapeutic targets for urinary bladder dysfunction. PMID:24073284

  11. Molecular expression and pharmacological evidence for a functional role of kv7 channel subtypes in Guinea pig urinary bladder smooth muscle.

    PubMed

    Afeli, Serge A Y; Malysz, John; Petkov, Georgi V

    2013-01-01

    Voltage-gated Kv7 (KCNQ) channels are emerging as essential regulators of smooth muscle excitability and contractility. However, their physiological role in detrusor smooth muscle (DSM) remains to be elucidated. Here, we explored the molecular expression and function of Kv7 channel subtypes in guinea pig DSM by RT-PCR, qRT-PCR, immunohistochemistry, electrophysiology, and isometric tension recordings. In whole DSM tissue, mRNAs for all Kv7 channel subtypes were detected in a rank order: Kv7.1~Kv7.2Kv7.3~Kv7.5Kv7.4. In contrast, freshly-isolated DSM cells showed mRNA expression of: Kv7.1~Kv7.2Kv7.5Kv7.3~Kv7.4. Immunohistochemical confocal microscopy analyses of DSM, conducted by using co-labeling of Kv7 channel subtype-specific antibodies and α-smooth muscle actin, detected protein expression for all Kv7 channel subtypes, except for the Kv7.4, in DSM cells. L-364373 (R-L3), a Kv7.1 channel activator, and retigabine, a Kv7.2-7.5 channel activator, inhibited spontaneous phasic contractions and the 10-Hz electrical field stimulation (EFS)-induced contractions of DSM isolated strips. Linopiridine and XE991, two pan-Kv7 (effective at Kv7.1-Kv7.5 subtypes) channel inhibitors, had opposite effects increasing DSM spontaneous phasic and 10 Hz EFS-induced contractions. EFS-induced DSM contractions generated by a wide range of stimulation frequencies were decreased by L-364373 (10 µM) or retigabine (10 µM), and increased by XE991 (10 µM). Retigabine (10 µM) induced hyperpolarization and inhibited spontaneous action potentials in freshly-isolated DSM cells. In summary, Kv7 channel subtypes are expressed at mRNA and protein levels in guinea pig DSM cells. Their pharmacological modulation can control DSM contractility and excitability; therefore, Kv7 channel subtypes provide potential novel therapeutic targets for urinary bladder dysfunction.

  12. Functional assembly of Kv7.1/Kv7.5 channels with emerging properties on vascular muscle physiology.

    PubMed

    Oliveras, Anna; Roura-Ferrer, Meritxell; Solé, Laura; de la Cruz, Alicia; Prieto, Angela; Etxebarria, Ainhoa; Manils, Joan; Morales-Cano, Daniel; Condom, Enric; Soler, Concepció; Cogolludo, Angel; Valenzuela, Carmen; Villarroel, Alvaro; Comes, Núria; Felipe, Antonio

    2014-07-01

    Voltage-dependent K(+) (Kv) channels from the Kv7 family are expressed in blood vessels and contribute to cardiovascular physiology. Although Kv7 channel blockers trigger muscle contractions, Kv7 activators act as vasorelaxants. Kv7.1 and Kv7.5 are expressed in many vessels. Kv7.1 is under intense investigation because Kv7.1 blockers fail to modulate smooth muscle reactivity. In this study, we analyzed whether Kv7.1 and Kv7.5 may form functional heterotetrameric channels increasing the channel diversity in vascular smooth muscles. Kv7.1 and Kv7.5 currents elicited in arterial myocytes, oocyte, and mammalian expression systems suggest the formation of heterotetrameric complexes. Kv7.1/Kv7.5 heteromers, exhibiting different pharmacological characteristics, participate in the arterial tone. Kv7.1/Kv7.5 associations were confirmed by coimmunoprecipitation, fluorescence resonance energy transfer, and fluorescence recovery after photobleaching experiments. Kv7.1/Kv7.5 heterotetramers were highly retained at the endoplasmic reticulum. Studies in HEK-293 cells, heart, brain, and smooth and skeletal muscles demonstrated that the predominant presence of Kv7.5 stimulates release of Kv7.1/Kv7.5 oligomers out of lipid raft microdomains. Electrophysiological studies supported that KCNE1 and KCNE3 regulatory subunits further increased the channel diversity. Finally, the analysis of rat isolated myocytes and human blood vessels demonstrated that Kv7.1 and Kv7.5 exhibited a differential expression, which may lead to channel diversity. Kv7.1 and Kv7.5 form heterotetrameric channels increasing the diversity of structures which fine-tune blood vessel reactivity. Because the lipid raft localization of ion channels is crucial for cardiovascular physiology, Kv7.1/Kv7.5 heteromers provide efficient spatial and temporal regulation of smooth muscle function. Our results shed light on the debate about the contribution of Kv7 channels to vasoconstriction and hypertension. © 2014 American

  13. Myosin light chain kinase controls voltage-dependent calcium channels in vascular smooth muscle.

    PubMed

    Martinsen, A; Schakman, O; Yerna, X; Dessy, C; Morel, N

    2014-07-01

    The Ca(2+)-dependent kinase myosin light chain kinase (MLCK) is the activator of smooth muscle contraction. In addition, it has been reported to be involved in Ca(2+) channel regulation in cultured cells, and we previously showed that the MLCK inhibitor ML-7 decreases arginine vasopressin (AVP)-induced Ca(2+) influx in rat aorta. This study was designed to investigate whether MLCK is involved in Ca(2+) regulation in resistance artery smooth muscle cell, which plays a major role in the control of blood pressure. As ML compounds were shown to have off-target effects, MLCK was downregulated by transfection with a small interfering RNA targeting MLCK (MLCK-siRNA) in rat small resistance mesenteric artery (RMA) and in the rat embryonic aortic cell line A7r5. Noradrenaline-induced contraction and Ca(2+) signal were significantly depressed in MLCK-siRNA compared to scramble-siRNA-transfected RMA. Contraction and Ca(2+) signal induced by high KCl and voltage-activated Ca(2+) current were also significantly decreased in MLCK-siRNA-transfected RMA, suggesting that MLCK depletion modifies voltage-operated Ca(2+) channels. KCl- and AVP-induced Ca(2+) signals and voltage-activated Ca(2+) current were decreased in MLCK-depleted A7r5 cells. Eventually, real-time quantitative PCR analysis indicated that in A7r5, MLCK controlled mRNA expression of CaV1.2 (L-type) and CaV3.1 (T-type) voltage-dependent Ca(2+) channels. Our results suggest that MLCK controls the transcription of voltage-dependent Ca(2+) channels in vascular smooth muscle cells.

  14. Bidirectional regulation of human colonic smooth muscle contractility by tachykinin NK(2) receptors.

    PubMed

    Nakamura, Akihiro; Tanaka, Takahiro; Imanishi, Akio; Kawamoto, Makiko; Toyoda, Masao; Mizojiri, Gaku; Tsukimi, Yasuhiro

    2011-01-01

    In this study, we attempted to clarify the mechanism of tachykinin-induced motor response in isolated smooth muscle preparations of the human colon. Fresh specimens of normal colon were obtained from patients suffering from colonic cancer. Using mucosa-free smooth muscle strips, smooth muscle tension with circular direction was monitored isometrically. Substance P (SP), neurokinin A (NKA), and neurokinin B (NKB) produced marked contraction. All of these contractions were inhibited by saredutant, a selective NK(2)-R antagonist, but not by CP122721, a selective NK(1)-R antagonist or talnetant, a selective NK(3)-R antagonist. βAla(8)-NKA(4-10) induced concentration-dependent contraction similar to NKA, but Sar(9)-Met(11)-SP and Met-Phe(7)-NKB did not cause marked contraction. Colonic contraction induced by βAla(8)-NKA(4-10) was completely blocked by saredutant, but not by atropine. Tetrodotoxin or N(G)-nitro-L-arginine methyl ester pretreatment significantly enhanced βAla(8)-NKA(4-10)-induced contraction. Immunohistochemical analysis showed that the NK(2)-R was expressed on the smooth muscle layers and myenteric plexus where it was also co-expressed with neuronal nitric oxide synthase in the myenteric plexus. These results suggest that the NK(2)-R is a major contributor to tachykinin-induced smooth muscle contraction in human colon and that the NK(2)-R-mediated response consists of an excitatory component via direct action on the smooth muscle and an inhibitory component possibly via nitric oxide neurons.

  15. R59949, a diacylglycerol kinase inhibitor, inhibits inducible nitric oxide production through decreasing transplasmalemmal L-arginine uptake in vascular smooth muscle cells.

    PubMed

    Shimomura, Tomoko; Nakano, Tomoyuki; Goto, Kaoru; Wakabayashi, Ichiro

    2017-02-01

    Although diacylglycerol kinase (DGK) is known to be expressed in vascular smooth muscle cell, its functional significance remains to be clarified. We hypothesized that DGK is involved in the pathway of cytokine-induced nitric oxide (NO) production in vascular smooth muscle cells. The purpose of this study was to investigate the effects of R59949, a diacylglycerol kinase inhibitor, on inducible nitric oxide production in vascular smooth muscle cell. Cultured rat aortic smooth muscle cells (RASMCs) were used to elucidate the effects of R59949 on basal and interleukin-1β (IL-1β)-induced NO production. The effects of R59949 on protein and mRNA expression of induced nitric oxide synthase (iNOS) and on transplasmalemmal L-arginine uptake were also evaluated using RASMCs. Treatment of RASMCs with R59949 (10 μM) inhibited IL-1β (10 ng/ml)-induced NO production but not basal NO production. Neither protein nor mRNA expression level of iNOS after stimulation with IL-1β was significantly affected by R59949. Estimated enzymatic activities of iNOS in RASMCs were comparable in the absence and presence of R59949. Stimulation of RASMCs with IL-1β caused a marked increase in transplasmalemmal L-arginine uptake into RASMCs. L-Arginine uptake in the presence of IL-1β was markedly inhibited by R59949, while basal L-arginine uptake was not significantly affected by R59949. Both IL-1β-induced NO production and L-arginine uptake were abolished in the presence of cycloheximide (1 μM). The results indicate that R59949 inhibits inducible NO production through decreasing transplasmalemmal L-arginine uptake. DGK is suggested to be involved in cytokine-stimulated L-arginine transport and regulate its intracellular concentration in vascular smooth muscle cell.

  16. Fragmented esophageal smooth muscle contraction segments on high resolution manometry: a marker of esophageal hypomotility.

    PubMed

    Porter, R F; Kumar, N; Drapekin, J E; Gyawali, C P

    2012-08-01

    Esophageal peristalsis consists of a chain of contracting striated and smooth muscle segments on high resolution manometry (HRM). We compared smooth muscle contraction segments in symptomatic subjects with reflux disease to healthy controls. High resolution manometry Clouse plots were analyzed in 110 subjects with reflux disease (50 ± 1.4 years, 51.5% women) and 15 controls (27 ± 2.1 years, 60.0% women). Using the 30 mmHg isobaric contour tool, sequences were designated fragmented if either smooth muscle contraction segment was absent or if the two smooth muscle segments were separated by a pressure trough, and failed if both smooth muscle contraction segments were absent. The discriminative value of contraction segment analysis was assessed. A total of 1115 swallows were analyzed (reflux group: 965, controls: 150). Reflux subjects had lower peak and averaged contraction amplitudes compared with controls (P < 0.0001 for all comparisons). Fragmented sequences followed 18.4% wet swallows in the reflux group, compared with 7.5% in controls (P < 0.0001), and were seen more frequently than failed sequences (7.9% and 2.5%, respectively). Using a threshold of 30% in individual subjects, a composite of failed and/or fragmented sequences was effective in segregating reflux subjects from control subjects (P = 0.04). Evaluation of smooth muscle contraction segments adds value to HRM analysis. Specifically, fragmented smooth muscle contraction segments may be a marker of esophageal hypomotility. © 2012 Blackwell Publishing Ltd.

  17. Smooth muscle cells differentiated from mesenchymal stem cells are regulated by microRNAs and suitable for vascular tissue grafts.

    PubMed

    Gu, Wenduo; Hong, Xuechong; Le Bras, Alexandra; Nowak, Witold N; Issa Bhaloo, Shirin; Deng, Jiacheng; Xie, Yao; Hu, Yanhua; Ruan, Xiong Z; Xu, Qingbo

    2018-05-25

    Tissue-engineered vascular grafts with long-term patency are greatly needed in the clinical settings, and smooth muscle cells (SMCs) are a critical graft component. Human mesenchymal stem cells (MSCs) are used for generating SMCs, and understanding the underlying regulatory mechanisms of the MSC-to-SMC differentiation process could improve SMC generation in the clinic. Here, we found that in response to stimulation of transforming growth factor-β1 (TGFβ1), human umbilical cord-derived MSCs abundantly express the SMC markers α-smooth muscle actin (αSMA), smooth muscle protein 22 (SM22), calponin, and smooth muscle myosin heavy chain (SMMHC) at both gene and protein levels. Functionally, MSC-derived SMCs displayed contracting capacity in vitro and supported vascular structure formation in the Matrigel plug assay in vivo More importantly, SMCs differentiated from human MSCs could migrate into decellularized mouse aorta and give rise to the smooth muscle layer of vascular grafts, indicating the potential of utilizing human MSC-derived SMCs to generate vascular grafts. Of note, microRNA (miR) array analysis and TaqMan microRNA assays identified miR-503 and miR-222-5p as potential regulators of MSC differentiation into SMCs at early time points. Mechanistically, miR-503 promoted SMC differentiation by directly targeting SMAD7, a suppressor of SMAD-related, TGFβ1-mediated signaling pathways. Moreover, miR-503 expression was SMAD4-dependent. SMAD4 was enriched at the miR-503 promoter. Furthermore, miR-222-5p inhibited SMC differentiation by targeting and down-regulating ROCK2 and αSMA. In conclusion, MSC differentiation into SMCs is regulated by miR-503 and miR-222-5p and yields functional SMCs for use in vascular grafts. © 2018 Gu et al.

  18. Cisapride stimulates contraction of idiopathic megacolonic smooth muscle in cats.

    PubMed

    Hasler, A H; Washabau, R J

    1997-01-01

    We have previously shown that cisapride, a substituted piperidinyl benzamide, stimulates contraction of healthy feline colonic smooth muscle. The purpose of the present investigation was to determine the effect of cisapride on feline idiopathic megacolonic smooth muscle function. Longitudinal smooth muscle strips from ascending and descending colon were obtained from cats with idiopathic megacolon, suspended in a 1.5 mM Ca(2+)-HEPES buffer solution (37 degrees C, 100% O2, pH 7.4), attached to isometric force transducers, and stretched to optimal muscle length (Lo). Control responses were obtained at each muscle site with acetylcholine (10(-8) to 10(-4) M), substance P (10(-11) to 10(-7) M), or potassium chloride (10 to 80 mM). Muscles were then stimulated with cumulative (10(-9) to 10(-6) M) doses of cisapride in the absence or presence of tetrodotoxin (10(-6) M) and atropine (10(-6) M), or in a 0 calcium HEPES buffer solution. In cats with idiopathic megacolon, cisapride stimulated contractions of longitudinal smooth muscle from both the ascending and the descending colon. Cisapride-induced contractions were similar in magnitude to those induced by substance P and acetylcholine in the ascending colon, but were less than those observed in the descending colon. Cisapride-induced contractions in megacolonic smooth muscle were only partially inhibited by tetrodotoxin and atropine, but were virtually abolished by removal of extracellular calcium. We concluded that cisapride-induced contractions of feline megacolonic smooth muscle are largely smooth muscle mediated and dependent on influx of extracellular calcium. Cisapride-induced contractions in megacolonic smooth muscle are only partially dependent on enteric cholinergic nerves. Thus, cisapride may be useful in the treatment of cats with idiopathic megacolon.

  19. Cultured smooth muscle cells of the human vesical sphincter are more sensitive to histamine than are detrusor smooth muscle cells.

    PubMed

    Neuhaus, Jochen; Oberbach, Andreas; Schwalenberg, Thilo; Stolzenburg, Jens-Uwe

    2006-05-01

    To compare histamine receptor expression in cultured smooth muscle cells from the human detrusor and internal sphincter using receptor-specific agonists. Smooth muscle cells from the bladder dome and internal sphincter were cultured from 5 male patients undergoing cystectomy for bladder cancer therapy. Calcium transients in cells stimulated with carbachol, histamine, histamine receptor 1 (H1R)-specific heptanecarboxamide (HTMT), dimaprit (H2R), and R-(alpha)-methylhistamine (H3R) were measured by calcium imaging. Histamine receptor proteins were detected by Western blot analysis and immunocytochemistry. H1R, H2R, and H3R expression was found in tissue and cultured cells. Carbachol stimulated equal numbers of detrusor and sphincter cells (60% and 51%, respectively). Histamine stimulated significantly more cells than carbachol in detrusor (100%) and sphincter (99.34%) cells. Calcium responses to carbachol in detrusor and sphincter cells were comparable and did not differ from those to histamine in detrusor cells. However, histamine and specific agonists stimulated more sphincter cells than did carbachol (P <0.001), and the calcium increase was greater in sphincter cells than in detrusor cells. Single cell analysis revealed comparable H2R responses in detrusor and sphincter cells, but H1R and H3R-mediated calcium reactions were significantly greater in sphincter cells. Histamine very effectively induces calcium release in smooth muscle cells. In sphincter cells, histamine is even more effective than carbachol regarding the number of reacting cells and the intracellular calcium increase. Some of the variability in the outcome of antihistaminic interstitial cystitis therapies might be caused by the ineffectiveness of the chosen antihistaminic or unintentional weakening of sphincteric function.

  20. Rotenone-stimulated superoxide release from mitochondrial complex I acutely augments L-type Ca2+ current in A7r5 aortic smooth muscle cells

    PubMed Central

    Dhagia, Vidhi; Lakhkar, Anand; Patel, Dhara; Wolin, Michael S.; Gupte, Sachin A.

    2016-01-01

    Voltage-gated L-type Ca2+ current (ICa,L) induces contraction of arterial smooth muscle cells (ASMCs), and ICa,L is increased by H2O2 in ASMCs. Superoxide released from the mitochondrial respiratory chain (MRC) is dismutated to H2O2. We studied whether superoxide per se acutely modulates ICa,L in ASMCs using cultured A7r5 cells derived from rat aorta. Rotenone is a toxin that inhibits complex I of the MRC and increases mitochondrial superoxide release. The superoxide content of mitochondria was estimated using mitochondrial-specific MitoSOX and HPLC methods, and was shown to be increased by a brief exposure to 10 μM rotenone. ICa,L was recorded with 5 mM BAPTA in the pipette solution. Rotenone administration (10 nM to 10 μM) resulted in a greater ICa,L increase in a dose-dependent manner to a maximum of 22.1% at 10 μM for 1 min, which gradually decreased to 9% after 5 min. The rotenone-induced ICa,L increase was associated with a shift in the current-voltage relationship (I-V) to a hyperpolarizing direction. DTT administration resulted in a 17.9% increase in ICa,L without a negative shift in I–V, and rotenone produced an additional increase with a shift. H2O2 (0.3 mM) inhibited ICa,L by 13%, and additional rotenone induced an increase with a negative shift. Sustained treatment with Tempol (4-hydroxy tempo) led to a significant ICa,L increase but it inhibited the rotenone-induced increase. Staurosporine, a broad-spectrum protein kinase inhibitor, partially inhibited ICa,L and completely suppressed the rotenone-induced increase. Superoxide released from mitochondria affected protein kinases and resulted in stronger ICa,L preceding its dismutation to H2O2. The removal of nitric oxide is a likely mechanism for the increase in ICa,L. PMID:26873970

  1. Segregation of striated and smooth muscle lineages by a Notch-dependent regulatory network

    PubMed Central

    2014-01-01

    Background Lineage segregation from multipotent epithelia is a central theme in development and in adult stem cell plasticity. Previously, we demonstrated that striated and smooth muscle cells share a common progenitor within their epithelium of origin, the lateral domain of the somite-derived dermomyotome. However, what controls the segregation of these muscle subtypes remains unknown. We use this in vivo bifurcation of fates as an experimental model to uncover the underlying mechanisms of lineage diversification from bipotent progenitors. Results Using the strength of spatio-temporally controlled gene missexpression in avian embryos, we report that Notch harbors distinct pro-smooth muscle activities depending on the duration of the signal; short periods prevent striated muscle development and extended periods, through Snail1, promote cell emigration from the dermomyotome towards a smooth muscle fate. Furthermore, we define a Muscle Regulatory Network, consisting of Id2, Id3, FoxC2 and Snail1, which acts in concert to promote smooth muscle by antagonizing the pro-myogenic activities of Myf5 and Pax7, which induce striated muscle fate. Notch and BMP closely regulate the network and reciprocally reinforce each other’s signal. In turn, components of the network strengthen Notch signaling, while Pax7 silences this signaling. These feedbacks augment the robustness and flexibility of the network regulating muscle subtype segregation. Conclusions Our results demarcate the details of the Muscle Regulatory Network, underlying the segregation of muscle sublineages from the lateral dermomyotome, and exhibit how factors within the network promote the smooth muscle at the expense of the striated muscle fate. This network acts as an exemplar demonstrating how lineage segregation occurs within epithelial primordia by integrating inputs from competing factors. PMID:25015411

  2. Selectivity of ROCK inhibitors in the spontaneously tonic smooth muscle.

    PubMed

    Rattan, Satish; Patel, Chirag A

    2008-03-01

    The selectivity of different Rho kinase (ROCK) inhibitors in the spontaneously tonic smooth muscle has not been investigated. We examined this issue using Y-27632 [(R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarbox anecarboxamide, 2HCl], H-1152 [(S)-(+)-(2-methyl-5-isoquinolinyl) sulfonylhomopiperazine, 2HCl], HA-1077 [(5 isoquinolinesulfonyl) homopiperazine, 2HCl], and ROCK inhibitor II [N-(4-pyridyl)-N'-(2,4,6-trichlorophenyl)urea]. We compared these inhibitors in the spontaneously tonic smooth muscle of the internal anal sphincter (IAS). ROCK, protein kinase C (PKC), and myosin light chain kinase (MLCK) activities were determined in the IAS, before and after different ROCK inhibitors. Y-27632 and H-1152 were approximately 30-fold more potent in the IAS (IC(50): 4.4 x 10(-7) and 7.9 x 10(-8) M, respectively) vs. the phasic rectal smooth muscle (RSM) (IC(50): 1.3 x 10(-5) and 2.5 x 10(-6) M, respectively). HA-1077 and ROCK inhibitor II were equipotent in the IAS vs. RSM. In the IAS, H-1152 was the most potent whereas ROCK inhibitor II is the least. Y-27632 and H-1152 caused concentration-dependent decrease in the IAS tone that correlates directly with the decreases in ROCK activity, without significant effect in the PKC and MLCK activities. This specifically selective correlation between ROCK activity and decrease in the IAS tone was absent in the case of HA-1077 and ROCK inhibitor II, which also inhibited PKC and MLCK. We conclude that the IAS tone is critically dependent on ROCK activity, and H-1152 and Y-27632 are the most selective and potent ROCK inhibitors in the IAS.

  3. Endothelium-independent relaxant effect of Rubus coreanus extracts in corpus cavernosum smooth muscle.

    PubMed

    Lee, Jun Ho; Chae, Mee Ree; Sung, Hyun Hwan; Ko, Mikyeong; Kang, Su Jeong; Lee, Sung Won

    2013-07-01

    Rubus coreanus is a perennial shrub native to the southern part of the Korean peninsula. Although it is known that R. coreanus has a dose-dependent relaxation effect on rabbit corpus cavernosum (CC), the exact mechanism of action by which R. coreanus work is not fully known. To elucidate the direct effects of unripe R. coreanus extract (RCE) on CC smooth muscle cells. Dried unripe R. coreanus fruits were pulverized and extracted with 95% ethanol. Isolated rabbit CC strips were mounted in an organ-bath system, and the effects of RCE were evaluated. To estimate [Ca(2+)]i , we used a Fura-2 fluorescent technique. The effects of unripe RCE on ion channels and the intracellular Ca(2+) concentration ([Ca(2+)]i ) of CC. RCE effectively relaxed phenylephrine (PE)-induced tone in rabbit CC, and removal of the endothelium did not completely abolish the relaxation effect of RCE. Tetraethylammonium (1 mM) did not inhibit RCE-induced relaxation in strips precontracted by PE in the organ bath. However, CaCl2 -induced constriction of CC strips, bathed in Ca(2+)-free buffer and primed with PE, was abolished by RCE. In addition, RCE decreased basal [Ca(2+)]i in corporal smooth muscle cells. The increases of [Ca(2+)]i evoked by 60 mM K(+)-containing solution in A7r5 cells were suppressed by RCE, and RCE relaxed KCl-induced tone in endothelium-free CC, which indicated that RCE blocked the voltage-dependent Ca(2+) channels (VDCCs). RCE decreased basal [Ca(2+)]i and the [Arg8]-vasopressin-induced [Ca(2+)]i increases in A7r5 cells, and RCE inhibited the contraction of endothelium-free CC induced by PE in Ca(2+)-free solution, which suggested that RCE might act as a modulator of corporal smooth muscle cell tone by inhibiting Ca(2+) release from sarcoplasmic reticulum. RCE acts through endothelium-independent and endothelium-dependent pathways to relax CC. RCE may inhibit VDCCs and Ca(2+) release from sarcoplasmic reticulum. © 2013 International Society for Sexual Medicine.

  4. Nuclear fusion-independent smooth muscle differentiation of human adipose-derived stem cells induced by a smooth muscle environment.

    PubMed

    Zhang, Rong; Jack, Gregory S; Rao, Nagesh; Zuk, Patricia; Ignarro, Louis J; Wu, Benjamin; Rodríguez, Larissa V

    2012-03-01

    Human adipose-derived stem cells hASC have been isolated and were shown to have multilineage differentiation capacity. Although both plasticity and cell fusion have been suggested as mechanisms for cell differentiation in vivo, the effect of the local in vivo environment on the differentiation of adipose-derived stem cells has not been evaluated. We previously reported the in vitro capacity of smooth muscle differentiation of these cells. In this study, we evaluate the effect of an in vivo smooth muscle environment in the differentiation of hASC. We studied this by two experimental designs: (a) in vivo evaluation of smooth muscle differentiation of hASC injected into a smooth muscle environment and (b) in vitro evaluation of smooth muscle differentiation capacity of hASC exposed to bladder smooth muscle cells. Our results indicate a time-dependent differentiation of hASC into mature smooth muscle cells when these cells are injected into the smooth musculature of the urinary bladder. Similar findings were seen when the cells were cocultured in vitro with primary bladder smooth muscle cells. Chromosomal analysis demonstrated that microenvironment cues rather than nuclear fusion are responsible for this differentiation. We conclude that cell plasticity is present in hASCs, and their differentiation is accomplished in the absence of nuclear fusion. Copyright © 2011 AlphaMed Press.

  5. Interleukin-18 Enhances Vascular Calcification and Osteogenic Differentiation of Vascular Smooth Muscle Cells Through TRPM7 Activation.

    PubMed

    Zhang, Kun; Zhang, Yinyin; Feng, Weijing; Chen, Renhua; Chen, Jie; Touyz, Rhian M; Wang, Jingfeng; Huang, Hui

    2017-10-01

    Vascular calcification (VC) is an important predictor of cardiovascular morbidity and mortality. Osteogenic differentiation of vascular smooth muscle cells (VSMCs) is a key mechanism of VC. Recent studies show that IL-18 (interleukin-18) favors VC while TRPM7 (transient receptor potential melastatin 7) channel upregulation inhibits VC. However, the relationship between IL-18 and TRPM7 is unclear. We questioned whether IL-18 enhances VC and osteogenic differentiation of VSMCs through TRPM7 channel activation. Coronary artery calcification and serum IL-18 were measured in patients by computed tomographic scanning and enzyme-linked immunosorbent assay, respectively. Primary rat VSMCs calcification were induced by high inorganic phosphate and exposed to IL-18. VSMCs were also treated with TRPM7 antagonist 2-aminoethoxy-diphenylborate or TRPM7 small interfering RNA to block TRPM7 channel activity and expression. TRPM7 currents were recorded by patch-clamp. Human studies showed that serum IL-18 levels were positively associated with coronary artery calcium scores ( r =0.91; P <0.001). In VSMCs, IL-18 significantly decreased expression of contractile markers α-smooth muscle actin, smooth muscle 22 α, and increased calcium deposition, alkaline phosphatase activity, and expression of osteogenic differentiation markers bone morphogenetic protein-2, Runx2 (runt-related transcription factor 2), and osteocalcin ( P <0.05). IL-18 increased TRPM7 expression through ERK1/2 (extracellular signal-regulated kinase 1/2) signaling activation, and TRPM7 currents were augmented by IL-18 treatment. Inhibition of TRPM7 channel by 2-aminoethoxy-diphenylborate or TRPM7 small interfering RNA prevented IL-18-enhanced osteogenic differentiation and VSMCs calcification. These findings suggest that coronary artery calcification is associated with increased IL-18 levels. IL-18 enhances VSMCs osteogenic differentiation and subsequent VC induced by β-glycerophosphate via TRPM7 channel activation

  6. Vardenafil inhibiting parasympathetic function of tracheal smooth muscle.

    PubMed

    Lee, Fei-Peng; Chao, Pin-Zhir; Wang, Hsing-Won

    2018-07-01

    Levitra, a phosphodiesterase-5 (PDE5) inhibitor, is the trade name of vardenafil. Nowadays, it is applied to treatment of erectile dysfunction. PDE5 inhibitors are employed to induce dilatation of the vascular smooth muscle. The effect of Levitra on impotency is well known; however, its effect on the tracheal smooth muscle has rarely been explored. When administered for sexual symptoms via oral intake or inhalation, Levitra might affect the trachea. This study assessed the effects of Levitra on isolated rat tracheal smooth muscle by examining its effect on resting tension of tracheal smooth muscle, contraction caused by 10 -6  M methacholine as a parasympathetic mimetic, and electrically induced tracheal smooth muscle contractions. The results showed that adding methacholine to the incubation medium caused the trachea to contract in a dose-dependent manner. Addition of Levitra at doses of 10 -5  M or above elicited a significant relaxation response to 10 -6  M methacholine-induced contraction. Levitra could inhibit electrical field stimulation-induced spike contraction. It alone had minimal effect on the basal tension of the trachea as the concentration increased. High concentrations of Levitra could inhibit parasympathetic function of the trachea. Levitra when administered via oral intake might reduce asthma attacks in impotent patients because it might inhibit parasympathetic function and reduce methacholine-induced contraction of the tracheal smooth muscle. Copyright © 2018. Published by Elsevier Taiwan LLC.

  7. Differential Protein Kinase C-dependent Modulation of Kv7.4 and Kv7.5 Subunits of Vascular Kv7 Channels*

    PubMed Central

    Brueggemann, Lioubov I.; Mackie, Alexander R.; Cribbs, Leanne L.; Freda, Jessica; Tripathi, Abhishek; Majetschak, Matthias; Byron, Kenneth L.

    2014-01-01

    The Kv7 family (Kv7.1–7.5) of voltage-activated potassium channels contributes to the maintenance of resting membrane potential in excitable cells. Previously, we provided pharmacological and electrophysiological evidence that Kv7.4 and Kv7.5 form predominantly heteromeric channels and that Kv7 activity is regulated by protein kinase C (PKC) in response to vasoconstrictors in vascular smooth muscle cells. Direct evidence for Kv7.4/7.5 heteromer formation, however, is lacking. Furthermore, it remains to be determined whether both subunits are regulated by PKC. Utilizing proximity ligation assays to visualize single molecule interactions, we now show that Kv7.4/Kv.7.5 heteromers are endogenously expressed in vascular smooth muscle cells. Introduction of dominant-negative Kv7.4 and Kv7.5 subunits in mesenteric artery myocytes reduced endogenous Kv7 currents by 84 and 76%, respectively. Expression of an inducible protein kinase Cα (PKCα) translocation system revealed that PKCα activation is sufficient to suppress endogenous Kv7 currents in A7r5 rat aortic and mesenteric artery smooth muscle cells. Arginine vasopressin (100 and 500 pm) and the PKC activator phorbol 12-myristate 13-acetate (1 nm) each inhibited human (h) Kv7.5 and hKv7.4/7.5, but not hKv7.4 channels expressed in A7r5 cells. A decrease in hKv7.5 and hKv7.4/7.5 current densities was associated with an increase in PKC-dependent phosphorylation of the channel proteins. These findings provide further evidence for a differential regulation of Kv7.4 and Kv7.5 channel subunits by PKC-dependent phosphorylation and new mechanistic insights into the role of heteromeric subunit assembly for regulation of vascular Kv7 channels. PMID:24297175

  8. Stimulation of aortic smooth muscle cell mitogenesis by serotonin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemecek, G.M.; Coughlin, S.R.; Handley, D.A.

    1986-02-01

    Bovine aortic smooth muscle cells in vitro responded to 1 nM to 10 ..mu..M serotonin with increased incorporation of (/sup 3/H)thymidine into DNA. The mitogenic effect of serotonin was half-maximal at 80 nM and maximal above 1 ..mu..M. At a concentration of 1 ..mu..M, serotonin stimulated smooth muscle cell mitogenesis to the same extent as human platelet-derived growth factor (PDGF) at 12 ng/ml. Tryptamine was approx. = 1/10th as potent as serotonin as a mitogen for smooth muscle cells. Other indoles that are structurally related to serotonin (D- and L-tryptophan, 5-hydroxy-L-tryptophan, N-acetyl-5-hydroxytryptamine, melatonin, 5-hydroxyindoleacetic acid, and 5-hydroxytryptophol) and quipazine weremore » inactive. The stimulatory effect of serotonin on smooth muscle cell DNA synthesis required prolonged (20-24 hr) exposure to the agonist and was attenuated in the presence of serotonin D receptor antagonists. When smooth muscle cells were incubated with submaximal concentrations of serotonin and PDGF, synergistic rather than additive mitogenic responses were observed. These data indicate that serotonin has a significant mitogenic effect on smooth muscle cells in vitro, which appears to be mediated by specific plasma membrane receptors.« less

  9. Leiomodin and tropomodulin in smooth muscle

    NASA Technical Reports Server (NTRS)

    Conley, C. A.

    2001-01-01

    Evidence is accumulating to suggest that actin filament remodeling is critical for smooth muscle contraction, which implicates actin filament ends as important sites for regulation of contraction. Tropomodulin (Tmod) and smooth muscle leiomodin (SM-Lmod) have been found in many tissues containing smooth muscle by protein immunoblot and immunofluorescence microscopy. Both proteins cofractionate with tropomyosin in the Triton-insoluble cytoskeleton of rabbit stomach smooth muscle and are solubilized by high salt. SM-Lmod binds muscle tropomyosin, a biochemical activity characteristic of Tmod proteins. SM-Lmod staining is present along the length of actin filaments in rat intestinal smooth muscle, while Tmod stains in a punctate pattern distinct from that of actin filaments or the dense body marker alpha-actinin. After smooth muscle is hypercontracted by treatment with 10 mM Ca(2+), both SM-Lmod and Tmod are found near alpha-actinin at the periphery of actin-rich contraction bands. These data suggest that SM-Lmod is a novel component of the smooth muscle actin cytoskeleton and, furthermore, that the pointed ends of actin filaments in smooth muscle may be capped by Tmod in localized clusters.

  10. beta. -Adrenoceptors in human tracheal smooth muscle: characteristics of binding and relaxation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Koppen, C.J.; Hermanussen, M.W.; Verrijp, K.N.

    1987-06-29

    Specific binding of (/sup 125/I)-(-)-cyanopindolol to human tracheal smooth muscle membranes was saturable, stereo-selective and of high affinity (K/sub d/ = 5.3 +/- 0.9 pmol/l and R/sub T/ = 78 +/- 7 fmol/g tissue). The ..beta../sub 1/-selective antagonists atenolol and LK 203-030 inhibited specific (/sup 125/I)-(-)-cyanopindolol binding according to a one binding site model with low affinity in nearly all subjects, pointing to a homogeneous BETA/sub 2/-adrenoceptor population. In one subject using LK 203-030 a small ..beta../sub 1/-adrenoceptor subpopulation could be demonstrated. The beta-mimetics isoprenaline, fenoterol, salbutamol and terbutaline recognized high and low affinity agonist binding sites. Isoprenaline's pK/sub H/-more » and pK/sub L/-values for the high and low affinity sites were 8.0 +/- 0.2 and 5.9 +/- 0.3 respectively. In functional experiments isoprenaline relaxed tracheal smooth muscle strips having intrinsic tone with a pD/sub 2/-value of 6.63 +/- 0.19. 32 references, 4 figures, 2 tables.« less

  11. The Dynamic Actin Cytoskeleton in Smooth Muscle.

    PubMed

    Tang, Dale D

    2018-01-01

    Smooth muscle contraction requires both myosin activation and actin cytoskeletal remodeling. Actin cytoskeletal reorganization facilitates smooth muscle contraction by promoting force transmission between the contractile unit and the extracellular matrix (ECM), and by enhancing intercellular mechanical transduction. Myosin may be viewed to serve as an "engine" for smooth muscle contraction whereas the actin cytoskeleton may function as a "transmission system" in smooth muscle. The actin cytoskeleton in smooth muscle also undergoes restructuring upon activation with growth factors or the ECM, which controls smooth muscle cell proliferation and migration. Abnormal smooth muscle contraction, cell proliferation, and motility contribute to the development of vascular and pulmonary diseases. A number of actin-regulatory proteins including protein kinases have been discovered to orchestrate actin dynamics in smooth muscle. In particular, Abelson tyrosine kinase (c-Abl) is an important molecule that controls actin dynamics, contraction, growth, and motility in smooth muscle. Moreover, c-Abl coordinates the regulation of blood pressure and contributes to the pathogenesis of airway hyperresponsiveness and vascular/airway remodeling in vivo. Thus, c-Abl may be a novel pharmacological target for the development of new therapy to treat smooth muscle diseases such as hypertension and asthma. © 2018 Elsevier Inc. All rights reserved.

  12. Neurogenic vasoreactive response of human internal thoracic artery smooth muscle.

    PubMed

    Canver, C C; Cooler, S D; Saban, R

    1997-09-01

    The interaction between primary afferent neurons containing neuropeptides and the vascular smooth muscle is incompletely understood. To explore the function of perivascular afferent neurons and to determine whether they produce local effects on vascular smooth muscle cells, we investigated the effects of acute capsaicin and substance P administration in vitro on human internal thoracic arteries (ITA). Vessels were obtained from patients undergoing coronary bypass or from multiorgan transplant donors. Fourteen ITA segments (5 mm wide) were suspended as rings between two stainless-steel stirrups in water-jacketed (37 degrees C) tissue baths under 2.5 to 3 g of basal tension. The tissue baths contained 10 mL physiological salt solution (PSS) of the following composition (mM): NaCl, 119; KCl, 4.7; NaH2PO4, 1.0; MgCl2, 0.5; CaCl2, 2.5; NaHCO3, 25; and glucose, 11; aerated continuously with 95% O2 and 5% CO2. Peptidase inhibitors (phosphoramidon and captopril) were added to PSS to decrease peptide degradation. Mechanical responses were measured isometrically and recorded on a polygraph via isotonic force transducers. Vessels were preconstricted with submaximal concentrations of norepinephrine. After the tension had stabilized, substance P or capsaicin was added cumulatively to the tissue bath. At the end of the experiments, the viability of ITA was verified by its responses to endothelial-dependent (acetylcholine) and endothelial-independent (sodium nitroprusside) vasodilators. In the endothelium-intact ITA segments, substance P produced relaxation of ITA smooth muscle while it induced slight contraction when the ITA was devoid of its endothelium (P = 0.0585). The addition of capsaicin to human ITA primarily produced contractile effects on the developed smooth muscle force. The capsaicin-induced contraction of the ITA smooth muscle was independent of endothelial cell integrity, although contraction was greater in the endothelium-intact ITA segments (P = 0.0165). The

  13. Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?

    PubMed Central

    Park, Song-Young; Gifford, Jayson R.; Andtbacka, Robert H. I.; Trinity, Joel D.; Hyngstrom, John R.; Garten, Ryan S.; Diakos, Nikolaos A.; Ives, Stephen J.; Dela, Flemming; Larsen, Steen; Drakos, Stavros

    2014-01-01

    Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, skeletal, and smooth muscles were harvested from a total of 22 subjects (53 ± 6 yr), and mitochondrial respiration was assessed in permeabilized fibers. Complex I + II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac to skeletal to smooth muscles (54 ± 1, 39 ± 4, and 15 ± 1 pmol·s−1·mg−1, P < 0.05, respectively). Citrate synthase (CS) activity, an index of mitochondrial density, also fell progressively from cardiac to skeletal to smooth muscles (222 ± 13, 115 ± 2, and 48 ± 2 μmol·g−1·min−1, P < 0.05, respectively). Thus, when respiration rates were normalized by CS (respiration per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, complex I state 2 normalized for CS activity, an index of nonphosphorylating respiration per mitochondrial content, increased progressively from cardiac to skeletal to smooth muscles, such that the respiratory control ratio, state 3/state 2 respiration, fell progressively from cardiac to skeletal to smooth muscles (5.3 ± 0.7, 3.2 ± 0.4, and 1.6 ± 0.3 pmol·s−1·mg−1, P < 0.05, respectively). Thus, although oxidative phosphorylation capacity per mitochondrial content in cardiac, skeletal, and smooth muscles suggest all mitochondria are created equal, the contrasting respiratory control ratio and nonphosphorylating respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation and could potentially alter ROS production. PMID:24906913

  14. Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?

    PubMed

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I; Trinity, Joel D; Hyngstrom, John R; Garten, Ryan S; Diakos, Nikolaos A; Ives, Stephen J; Dela, Flemming; Larsen, Steen; Drakos, Stavros; Richardson, Russell S

    2014-08-01

    Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, skeletal, and smooth muscles were harvested from a total of 22 subjects (53 ± 6 yr), and mitochondrial respiration was assessed in permeabilized fibers. Complex I + II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac to skeletal to smooth muscles (54 ± 1, 39 ± 4, and 15 ± 1 pmol·s(-1)·mg(-1), P < 0.05, respectively). Citrate synthase (CS) activity, an index of mitochondrial density, also fell progressively from cardiac to skeletal to smooth muscles (222 ± 13, 115 ± 2, and 48 ± 2 μmol·g(-1)·min(-1), P < 0.05, respectively). Thus, when respiration rates were normalized by CS (respiration per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, complex I state 2 normalized for CS activity, an index of nonphosphorylating respiration per mitochondrial content, increased progressively from cardiac to skeletal to smooth muscles, such that the respiratory control ratio, state 3/state 2 respiration, fell progressively from cardiac to skeletal to smooth muscles (5.3 ± 0.7, 3.2 ± 0.4, and 1.6 ± 0.3 pmol·s(-1)·mg(-1), P < 0.05, respectively). Thus, although oxidative phosphorylation capacity per mitochondrial content in cardiac, skeletal, and smooth muscles suggest all mitochondria are created equal, the contrasting respiratory control ratio and nonphosphorylating respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation and could potentially alter ROS production.

  15. A-type potassium currents in smooth muscle.

    PubMed

    Amberg, Gregory C; Koh, Sang Don; Imaizumi, Yuji; Ohya, Susumu; Sanders, Kenton M

    2003-03-01

    A-type currents are voltage-gated, calcium-independent potassium (Kv) currents that undergo rapid activation and inactivation. Commonly associated with neuronal and cardiac cell-types, A-type currents have also been identified and characterized in vascular, genitourinary, and gastrointestinal smooth muscle cells. This review examines the molecular identity, biophysical properties, pharmacology, regulation, and physiological function of smooth muscle A-type currents. In general, this review is intended to facilitate the comparison of A-type currents present in different smooth muscles by providing a comprehensive report of the literature to date. This approach should also aid in the identification of areas of research requiring further attention.

  16. EMMPRIN (CD147) Expression in Smooth Muscle Tumors of the Uterus.

    PubMed

    Kefeli, Mehmet; Yildiz, Levent; Gun, Seda; Ozen, Fatma Z; Karagoz, Filiz

    2016-01-01

    Smooth muscle tumors of the uterus are the most common mesenchymal tumors of the gynecologic tract. The vast majority of these are benign leiomyomas that present no diagnostic difficulty. Because some benign smooth muscle tumors may degenerate and uncommon variants exist, the diagnosis can be challenging in some cases. The goal of this research was to investigate EMMPRIN expression in leiomyomas, leiomyoma variants, and leiomyosarcomas (LMS) to determine whether it has a potential role in differential diagnosis. EMMPRIN expression was investigated with immunohistochemistry in 103 uterine smooth muscle tumors, which included 19 usual leiomyomas, 52 leiomyoma variants, and 32 LMS. They were evaluated on the basis of staining extent, intensity, and also their combined score, and the groups were compared. EMMPRIN expression was present in 3 of 19 (15.7%) usual leiomyomas, 23 of 52 (44.3%) leiomyoma variants, and 28 of 32 (87.5%) LMS. There were statistically significant differences in staining extent and intensity, and also for their combined scores, between the LMS and benign groups. Although uterine smooth muscle tumors are usually diagnosed easily with conventional diagnostic criteria, the differentiation of LMS from some variants of leiomyoma can be challenging based soley on morphology. EMMPRIN may be a valuable immunohistochemical marker for differentiating LMS from benign smooth muscle tumors in problematic cases.

  17. Electrodynamic smooth muscle sphincter: development and biomechanical evaluation of a novel porcine artificial smooth muscle sphincter in a new in vitro stoma simulator.

    PubMed

    Schrag, H J; Karwath, D; Grub, C; Fragoza Padilla, F; Noack, T; Hopt, U T

    2005-07-01

    Many authors have suggested that the activity of the enteric inhibitory nerves is important in regulating normal gastrointestinal motility and inducing smooth muscle relaxation. Hitherto, no experimental or clinical models exist that transfer these physiological aspects to creating an autologous artificial sphincter for the treatment of major incontinence. Therefore, this study was performed to determine the contractile and relaxant capacity of gastrointestinal muscle types and to investigate the efficiency of a novel smooth muscle sphincter, based on the non-adrenergic, non-cholinergic (NANC) receptive relaxation under electrical field stimulation (EFS). For the first step, the isometric tension from isolated circular porcine fundus and colon muscle strips was recorded during pharmacological stimulation (TTX, L-NNA and atropine) and EFS. As a result, a continent electrodynamic smooth muscle sphincter (ESMS) was created by wrapping a fundus muscle flap around an isolated segment of porcine distal colon. The EFS of the free nerve fibers of the flap was realized using a circular platinum wire electrode. Parameters such as threshold of continence, intra/preluminal pressure and fluid passage were analyzed in a newly designed in vitro stoma simulator. Electrical field stimulation produced a maximal and voltage-dependent fundus relaxation to --12.4 mN/mm(2) (frequency of 40 Hz, pulse duration, train duration and voltage of 5 ms, 1 s and 60 mA respectively), which were abolished by N-nitro-L -arginine (L-NNA; 10(-4) M) in a dose-dependent manner, confirming that relaxant responses were mediated by NANC nerves. The results of eight ESMS showed that circular electrical stimulation of the muscle flap caused muscle relaxation with a concomitant and effective reduction in the occlusion pressure. The NANC-induced relaxation mechanism of porcine fundus preparations could be transferred to an efficient smooth muscle sphincter with a high threshold of continence and electrically

  18. MiR-133a modulates osteogenic differentiation of vascular smooth muscle cells.

    PubMed

    Liao, Xiao-Bo; Zhang, Zhi-Yuan; Yuan, Ke; Liu, Yuan; Feng, Xiang; Cui, Rong-Rong; Hu, Ye-Rong; Yuan, Zhao-Shun; Gu, Lu; Li, Shi-Jun; Mao, Ding-An; Lu, Qiong; Zhou, Xin-Ming; de Jesus Perez, Vinicio A; Yuan, Ling-Qing

    2013-09-01

    Arterial calcification is a key pathologic component of vascular diseases such as atherosclerosis, coronary artery disease, and peripheral vascular disease. A hallmark of this pathological process is the phenotypic transition of vascular smooth muscle cells (VSMCs) to osteoblast-like cells. Several studies have demonstrated that microRNAs (miRNAs) regulate osteoblast differentiation, but it is unclear whether miRNAs also regulate VSMC-mediated arterial calcification. In the present study, we sought to characterize the role of miR-133a in regulating VSMC-mediated arterial calcification. Northern blotting analysis of VSMCs treated with β-glycerophosphate demonstrated that miR-133a was significantly decreased during osteogenic differentiation. Overexpression of miR-133a inhibited VSMC transdifferentiation into osteoblast-like cells as evidenced by a decrease in alkaline phosphatase activity, osteocalcin secretion, Runx2 expression, and mineralized nodule formation. Conversely, the knockdown of miR-133a using an miR-133a inhibitor promoted osteogenic differentiation of VSMCs by increasing alkaline phosphatase activity, osteocalcin secretion, and Runx2 expression. Runx2 was identified as a direct target of miR-133a by a cotransfection experiment in VSMCs with luciferase reporter plasmids containing wild-type or mutant 3'-untranslated region sequences of Runx2. Furthermore, the pro-osteogenic effects of miR-133a inhibitor were abrogated in Runx2-knockdown cells, and the inhibition of osteogenic differentiation by pre-miR-133a was reversed by overexpression of Runx2, providing functional evidence that the effects of miR-133a in osteogenic differentiation were mediated by targeting Runx2. These results demonstrate that miR-133a is a key negative regulator of the osteogenic differentiation of VSMCs.

  19. Congenital smooth muscle hamartoma of the palpebral conjunctiva.

    PubMed

    Mora, L Evelyn; Rodríguez-Reyes, Abelardo A; Vera, Ana M; Rubio, Rosa Isela; Mayorquín-Ruiz, Mariana; Salcedo, Guillermo

    2012-01-01

    Smooth muscle hamartoma is defined as a disorganized focus or an overgrowth of mature smooth muscle, generally with low capacity of autonomous growth and benign behavior. The implicated tissues are mature and proliferate in a disorganized fashion. A healthy 5-day-old Mexican boy was referred to the authors' hospital in México city for evaluation of a "cystic" lesion of the right eye that had been noted since birth. The pregnancy and delivery were unremarkable. On physical examination, there was a reddish-pink soft lesion with a tender "cystic" appearance, which was probably emerging from the upper eyelid conjunctiva, which measured 2.7 cm in its widest diameter and transilluminated. Ultrasound imaging revealed an anterior "cystic" lesion with normally formed phakic eye. An excisional biopsy was performed, and the lesion was dissected from the upper tarsal subconjunctival space. Subsequent histologic and immunohistochemical findings were consistent with the diagnosis of congenital smooth muscle hamartoma (CSMH) of the tarsal conjunctiva. The authors' research revealed that only one case of CSMH localized in the conjunctiva (Roper GJ, Smith MS, Lueder GT. Congenital smooth muscle hamartoma of the conjunctival fornix. Am J Ophthalmol. 1999;128:643-4) has been reported to date in the literature. To the best of the authors' knowledge, this current case would be the second case reported of CSMH in this anatomic location. Therefore, the authors' recommendation is to include CSMH in the differential diagnosis of a cystic mass that presents in the fornix and palpebral conjunctiva.

  20. Altered Expression of Human Smooth Muscle Myosin Phosphatase Targeting (MYPT) Isovariants with Pregnancy and Labor.

    PubMed

    Lartey, Jon; Taggart, Julie; Robson, Stephen; Taggart, Michael

    2016-01-01

    Myosin light-chain phosphatase is a trimeric protein that hydrolyses phosphorylated myosin II light chains (MYLII) to cause relaxation in smooth muscle cells including those of the uterus. A major component of the phosphatase is the myosin targeting subunit (MYPT), which directs a catalytic subunit to dephosphorylate MYLII. There are 5 main MYPT family members (MYPT1 (PPP1R12A), MYPT2 (PPP1R12B), MYPT3 (PPP1R16A), myosin binding subunit 85 MBS85 (PPP1R12C) and TIMAP (TGF-beta-inhibited membrane-associated protein (PPP1R16B)). Nitric oxide (NO)-mediated smooth muscle relaxation has in part been attributed to activation of the phosphatase by PKG binding to a leucine zipper (LZ) dimerization domain located at the carboxyl-terminus of PPP1R12A. In animal studies, alternative splicing of PPP1R12A can lead to the inclusion of a 31-nucleotide exonic segment that generates a LZ negative (LZ-) isovariant rendering the phosphatase less sensitive to NO vasodilators and alterations in PPP1R12ALZ- and LZ+ expression have been linked to phenotypic changes in smooth muscle function. Moreover, PPP1R12B and PPP1R12C, but not PPP1R16A or PPP1R16B, have the potential for LZ+/LZ- alternative splicing. Yet, by comparison to animal studies, the information on human MYPT genomic sequences/mRNA expressions is scant. As uterine smooth muscle undergoes substantial remodeling during pregnancy we were interested in establishing the patterns of expression of human MYPT isovariants during this process and also following labor onset as this could have important implications for determining successful pregnancy outcome. We used cross-species genome alignment, to infer putative human sequences not available in the public domain, and isovariant-specific quantitative PCR, to analyse the expression of mRNA encoding putative LZ+ and LZ- forms of PPP1R12A, PPP1R12B and PPP1R12C as well as canonical PPP1R16A and PPP1R16B genes in human uterine smooth muscle from non-pregnant, pregnant and in

  1. Prostaglandins, oxygen tension and smooth muscle tone

    PubMed Central

    Eckenfels, A.; Vane, J. R.

    1972-01-01

    1. By using indomethacin to inhibit their intramural synthesis, we have investigated the contribution of prostaglandins to the maintenance of (a) the intrinsic tone of isolated smooth muscle preparations and (b) contractions produced by drugs or high oxygen concentration. 2. When treated with indomethacin, the rat stomach strip and chick rectum preparation slowly relaxed, whether they were bathed in Krebs solution or blood. Although their sensitivity to added prostaglandin was somewhat enhanced, they became insensitive to changes in oxygen or glucose concentration. However, another smooth muscle preparation, the rat colon, was neither relaxed by indomethacin nor contracted by high oxygen concentration. 3. These results support the hypothesis that intramural generation of prostaglandin maintains the tone of some smooth muscle preparations. 4. Contractions of the guinea-pig isolated colon were induced by histamine. These contractions were normally well maintained but in Krebs solution lacking either oxygen or glucose, only the initial spike contraction remained. In the presence of indomethacin the histamine contraction was also poorly sustained, but maintenance was restored by a low concentration of prostaglandin E2. 5. Thus, the effects on smooth muscle of oxygen or glucose lack may also be mediated by reduction in the synthesis or effects of an intramural prostaglandin. Extension of this hypothesis to intestinal and vascular smooth muscle in vivo is discussed. PMID:5072227

  2. Regeneration and Maintenance of Intestinal Smooth Muscle Phenotypes

    NASA Astrophysics Data System (ADS)

    Walthers, Christopher M.

    Tissue engineering is an emerging field of biomedical engineering that involves growing artificial organs to replace those lost to disease or injury. Within tissue engineering, there is a demand for artificial smooth muscle to repair tissues of the digestive tract, bladder, and vascular systems. Attempts to develop engineered smooth muscle tissues capable of contracting with sufficient strength to be clinically relevant have so far proven unsatisfactory. The goal of this research was to develop and sustain mature, contractile smooth muscle. Survival of implanted SMCs is critical to sustain the benefits of engineered smooth muscle. Survival of implanted smooth muscle cells was studied with layered, electrospun polycaprolactone implants with lasercut holes ranging from 0--25% porosity. It was found that greater angiogenesis was associated with increased survival of implanted cells, with a large increase at a threshold between 20% and 25% porosity. Heparan sulfate coatings improved the speed of blood vessel infiltration after 14 days of implantation. With these considerations, thicker engineered tissues may be possible. An improved smooth muscle tissue culture technique was utilized. Contracting smooth muscle was produced in culture by maintaining the native smooth muscle tissue organization, specifically by sustaining intact smooth muscle strips rather than dissociating tissue in to isolated smooth muscle cells. Isolated cells showed a decrease in maturity and contained fewer enteric neural and glial cells. Muscle strips also exhibited periodic contraction and regular fluctuation of intracellular calclium. The muscle strip maturity persisted after implantation in omentum for 14 days on polycaprolactone scaffolds. A low-cost, disposable bioreactor was developed to further improve maturity of cultured smooth muscle cells in an environment of controlled cyclical stress.The bioreactor consistently applied repeated mechanical strain with controllable inputs for strain

  3. Effects of tachykinins on uterine smooth muscle.

    PubMed

    Patak, E N; Pennefather, J N; Story, M E

    2000-11-01

    1. Sensory nerves supplying the mammalian uterus have been shown to contain substance P (SP) and neurokinin (NK)A. This review presents some of the advances that have led to a greater understanding of the effects of tachykinins on uterine smooth muscle. 2. The cell-surface peptidase neprilysin (EC.3 24.11, endopeptidase 24.11, enkephalinase, CALLA, CD10) has been shown to play a major role in regulating the actions of tachykinins on both rat and human myometrium. Because this peptidase is known to be regulated by steroids and pregnancy, its effects may be of physiological relevance. 3. Tachykinins produce contractions of isolated myometrial preparations from non-pregnant rats and mice. The NK2 receptor mediates these effects in rat uterus, while the NK1 receptor may mediate these effects in the mouse uterus. 4. The effects of tachykinins have been examined on myometrial preparations obtained at Caesarean section from near-term pregnant women. In the presence of the peptidase inhibitors (thiorphan, captopril and bestatin), the mammalian tachykinins SP, NKA and NKB produced concentration-dependent uterine contractions. 5. The order of agonist potency NKA > SP = NKB suggested that NK2 receptors mediate uterine contractions in the human. This was confirmed using the stable analogues [Sar9,Met(O2)11]SP, [Lys5MeLeu9Nle10]NKA(4-10) and [N-MePhe7]NKB, which are NK1, NK2 and NK3 receptor selective, respectively. Only [Lys5MeLeu9Nle10]NKA(4-10) produced concentration-related contractions of human uterine smooth muscle. 6. The experimental findings described in the present review, taken together with results published previously in the literature, indicate that tachykinin peptides may play a physiological or pathophysiological role in regulating uterine smooth muscle activity. However, more extensive research will be required to confirm such a role for these peptides.

  4. Disturbance of smooth muscle regulatory function by Eisenia foetida toxin lysenin: insight into the mechanism of smooth muscle contraction.

    PubMed

    Czuryło, Edward A; Kulikova, Natalia; Sobota, Andrzej

    2008-05-01

    Lysenin, a toxin present in the coelomic fluid of the earthworm Eisenia foetida, is known to cause a long-lasting contraction of rat aorta smooth muscle strips. We addressed the mechanisms underlying its action on smooth muscle cells and present the first report demonstrating a completely new property of lysenin unrelated to its basic sphingomyelin-binding ability. Here we report lysenin enhancement effect on smooth muscle actomyosin ATPase activity and the ability of networking the actin filaments. The maximum enhancement of the ATPase activity of actomyosin at 120 mM KCl was observed at a molar ratio of lysenin to actin of about 1:10(5), while at 70 mM KCl at the ratio of about 1:10(6). The effect of lysenin became most pronounced only when both smooth muscle regulatory proteins, tropomyosin and caldesmon, were present. Co-sedimentation experiments indicated that lysenin did not displace neither tropomyosin nor caldesmon from the thin filament. Thus, the lysenin-dependent abolishment of the inhibitory effect of caldesmon on the ATPase activity was related rather to the modification of the filament structure. The ability of the toxin to exert its stimulatory effect at extremely low concentrations (as low as one molecule of lysenin per 10(6) actin molecules) may result from the long-range cooperative transitions in the entire thin filament with an involvement of smooth muscle tropomyosin, while the role of caldesmon may be limited exclusively to the inhibition of ATPase activity.

  5. Effect of 3-substituted 1,4-benzodiazepin-2-ones on bradykinin-induced smooth muscle contraction.

    PubMed

    Virych, P A; Shelyuk, O V; Kabanova, T A; Khalimova, E I; Martynyuk, V S; Pavlovsky, V I; Andronati, S A

    2017-01-01

    Biochemical properties of 3-substituted 1,4-benzodiazepine determined by the characteristics of their chemical structure. Influence of 3-substituted 1,4-benzodiazepin-2-ones on maximal normalized rate and amplitudes of isometric smooth muscle contraction in rats was investigated. Compounds MX-1775 and MX-1828 demonstrated the similar inhibition effect on bradykinin-induced contraction of smooth muscle like competitive inhibitor des-arg9-bradykinin-acetate to bradykinin B2-receptors. MX-1626 demonstrated unidirectional changes of maximal normalized rate and force of smooth muscle that proportionally depended on bradykinin concentration in the range 10-10-10-6 M. MX-1828 has statistically significant decrease of normalized rate of smooth muscle contraction for bradykinin concentrations 10-10 and 10-9 M by 20.7 and 8.6%, respectively, but for agonist concentration 10-6 M, this parameter increased by 10.7% and amplitude was reduced by 29.5%. Compounds MX-2011, MX-1785 and MX-2004 showed no natural effect on bradykinin-induced smooth muscle contraction. Compounds MX-1775, MX-1828, MX-1626 were selected for further research of their influence on kinin-kallikrein system and pain perception.

  6. Mitochondrial motility and vascular smooth muscle proliferation.

    PubMed

    Chalmers, Susan; Saunter, Christopher; Wilson, Calum; Coats, Paul; Girkin, John M; McCarron, John G

    2012-12-01

    Mitochondria are widely described as being highly dynamic and adaptable organelles, and their movement is thought to be vital for cell function. Yet, in various native cells, including those of heart and smooth muscle, mitochondria are stationary and rigidly structured. The significance of the differences in mitochondrial behavior to the physiological function of cells is unclear and was studied in single myocytes and intact resistance-sized cerebral arteries. We hypothesized that mitochondrial dynamics is controlled by the proliferative status of the cells. High-speed fluorescence imaging of mitochondria in live vascular smooth muscle cells shows that the organelle undergoes significant reorganization as cells become proliferative. In nonproliferative cells, mitochondria are individual (≈ 2 μm by 0.5 μm), stationary, randomly dispersed, fixed structures. However, on entering the proliferative state, mitochondria take on a more diverse architecture and become small spheres, short rod-shaped structures, long filamentous entities, and networks. When cells proliferate, mitochondria also continuously move and change shape. In the intact pressurized resistance artery, mitochondria are largely immobile structures, except in a small number of cells in which motility occurred. When proliferation of smooth muscle was encouraged in the intact resistance artery, in organ culture, the majority of mitochondria became motile and the majority of smooth muscle cells contained moving mitochondria. Significantly, restriction of mitochondrial motility using the fission blocker mitochondrial division inhibitor prevented vascular smooth muscle proliferation in both single cells and the intact resistance artery. These results show that mitochondria are adaptable and exist in intact tissue as both stationary and highly dynamic entities. This mitochondrial plasticity is an essential mechanism for the development of smooth muscle proliferation and therefore presents a novel therapeutic

  7. Pharmacological and molecular characterization of muscarinic receptor subtypes in human esophageal smooth muscle.

    PubMed

    Preiksaitis, H G; Krysiak, P S; Chrones, T; Rajgopal, V; Laurier, L G

    2000-12-01

    Esophageal peristalsis is dependent on activation of muscarinic receptors, but little is known about the roles of specific receptor subtypes in the human esophagus. We examined muscarinic receptor expression and function in human esophageal smooth muscle obtained from patients undergoing resection for cancer. [(3)H]Quinuclidinyl benzylate (QNB)-specific binding was similar in longitudinal muscle (B(max) = 106 +/- 22 fmol/mg of protein, K(d) = 68 +/- 9 pM) and circular muscle (B(max) = 81 +/- 16 fmol/mg of protein, K(d) = 79 +/- 15 pM). Subtype-selective antagonists inhibited [(3)H]QNB similarly in muscle from both layers. Further analysis of antagonist inhibition of [(3)H]QNB binding showed a major site (60-70%) with antagonist affinity profile consistent with the M2 subtype and a second site that could not be classified. Reverse transcription-polymerase chain reaction and immunoblotting demonstrated the presence of all five known muscarinic receptor subtypes, and immunocytochemistry on acutely isolated smooth muscle cells confirmed the expression of each subtype on the muscle cells. Subtype-selective antagonists had similar inhibitory effects on carbachol-evoked contractions in longitudinal muscle and circular muscle strips with pA(2) values of 9.5 +/- 0.1 and 9.6 +/- 0.2 for 4-diphenylacetoxy-N-methylpiperidine methiodide, 7.1 +/- 0.1 and 7.0 +/- 0.2 for pirenzepine, and 6.2 +/- 0.2 and 6.4 +/- 0.2 for methoctramine, respectively. We conclude that human esophageal smooth muscle expresses muscarinic receptor subtypes M1 through M5. The antagonist sensitivity profile for muscle contraction is consistent with activation of the M3 subtype.

  8. [The effect of 18beta-glycyrrhetinic acid on gap junction among cerebral arteriolar smooth muscle cells in Wistar rat and spontaneously hypertensive rat].

    PubMed

    Chen, Xin-Yan; Si, Jun-Qiang; Li, Li; Zhao, Lei; Wei, Li-Li; Jiang, Xue-Wei; Ma, Ke-Tao

    2013-05-01

    This study compared Wistar rat with spontaneously hypertensive rat (SHR) on the electrophysiology and coupling force of the smooth muscle cells in the cerebral arteriolar segments and observe the influence of 18beta-glycyrrhetinic acid(18beta-GA) on the gap junctions between the arterial smooth muscle cells. The outer layer's connective tissue of the cerebral arteriolar segments was removed. Whole-cell patch clamp recordings were used to observe the 18beta-GA's impaction on the arteriolar segment membrane's input capacitance (C(input)), input conductance (G(input)) and input resistance (R(input)) of the smooth muscle cells. (1) The C(input) and G(input) of the SHR arteriolar segment smooth muscle cells was much higher than the Wistar rats, there was significant difference (P < 0.05). (2) 18beta-GA concentration-dependently reduced C(input) and G(input) (or increase R(input)) on smooth muscle cells in arteriolar segment. IC50 of 18beta-GA suppression's G(input) of the Wistar rat and SHR were 1.7 and 2.0 micromol/L respectively, there was not significant difference (P > 0.05). After application of 18beta-GA concentration > or = 100 micrmol/L, the C(input), G(input) and R(input) of the single smooth muscle cells was very close. Gap junctional coupling is enhanced in the SHR cerebral arterial smooth muscle cells. 18beta-GA concentration-dependent inhibits Wistar rat's and SHR cerebral arteriolar gap junctions between arterial smooth muscle cells. The inhibitory potency is similar between the two different rats. When 18beta-GA concentration is > or = 100 micromol/L, it can completely block gap junctions between arteriolar smooth muscle cells.

  9. MiR-137 inhibited cell proliferation and migration of vascular smooth muscle cells via targeting IGFBP-5 and modulating the mTOR/STAT3 signaling

    PubMed Central

    Li, Kai; Huang, Wei; Zhang, Xiaoqing

    2017-01-01

    Abnormal proliferation of vascular smooth muscle cells (VSMCs) contributes to the development of cardiovascular diseases. Studies have shown the great impact of microRNAs (miRNAs) on the cell proliferation of VSMCs. This study examined the effects of miR-137 on the cell proliferation and migration of VSMCs and also explored the underlying molecular mechanisms. The mRNA and protein expression levels were determined by qRT-PCR and western blot assays, respectively. The CCK-8 assay, wound healing assay and transwell migration assay were performed to measure cell proliferation and migration of VSMCs. The miR-137-targeted 3’untranslated region of insulin-like growth factor-binding protein-5 (IGFBP-5) was confirmed by luciferase reporter assay. Platelet-derived growth factor-bb (PDGF-bb) treatment enhanced cell proliferation and suppressed the expression of miR-137 in VSMCs. The gain-of-function and loss-of-function assays showed that overexpression of miR-137 suppressed the cell proliferation and migration, and also inhibited the expression of matrix genes of VSMCs; down-regulation of miR-137 had the opposite effects on VSMCs. Bioinformatics analysis and luciferase report assay results showed that IGFBP-5 was a direct target of miR-137, and miR-137 overexpression suppressed the IGFBP-5 expression and down-regulation of miR-137 increased the IGFBP-5 expression in VSMCs. PDGF-bb treatment also increased the IGFBP-5 mRNA expression. In addition, enforced expression of IGFBP-5 reversed the inhibitory effects of miR-137 on cell proliferation and migration of VSMCs. More importantly, overexpression of miR-137 also suppressed the activity of mTOR/STAT3 signaling in VSMCs. Taken together, the results suggest that miR-137 may suppress cell proliferation and migration of VSMCs via targeting IGFBP-5 and modulating mTOR/STAT3 signaling pathway. PMID:29016699

  10. Inhibition of 5-alpha-reductase activity induces stromal remodeling and smooth muscle de-differentiation in adult gerbil ventral prostate.

    PubMed

    Corradi, Lara S; Góes, Rejane M; Carvalho, Hernandes F; Taboga, Sebastião R

    2004-06-01

    Prostatic differentiation during embryogenesis and its further homeostatic state maintenance during adult life depend on androgens. Dihydrotestosterone, which is synthesized from testosterone by 5 alpha-reductase (5 alpha-r), is the active molecule triggering androgen action within the prostate. In the present work, we examined the effects of 5 alpha-reductase inhibition by finasteride in the ventral prostate (VP) of the adult gerbil, employing histochemical and electron microscopy techniques to demonstrate the morphological and organizational changes of the organ. After 10 days of finasteride treatment at a dose of 100 mg/kg/day, the prostatic complex (VP and dorsolateral prostate) absolute weight was reduced to about 18%. The epithelial cells became short and cuboidal, with less secretory blebs and reduced acid phosphatase activity. The luminal sectional area diminished, suggestive of decreased secretory activity. The stromal/epithelial ratio increased, the stroma becoming thicker but less cellular. There was a striking accumulation of collagen fibrils, which was accompanied by an increase in deposits of amorphous granular material adjacent to the basal lamina and in the clefts between smooth muscle cells (SMC). Additionally, the periacinar smooth muscle became loosely packed. Some SMC were atrophic and showed a denser array of the cytoskeleton, whereas other SMC had a highly irregular outline with numerous spine-like projections. The present data indicate that 5 alpha-r inhibition causes epithelial and stromal changes by affecting intra-prostatic hormone levels. These alterations are probably the result of an imbalance of the homeostatic interaction between the epithelium and the underlying stroma.

  11. Mechanotransduction, asthma, and airway smooth muscle

    PubMed Central

    Fabry, Ben; Fredberg, Jeffrey J.

    2008-01-01

    Excessive force generation by airway smooth muscle is the main culprit in excessive airway narrowing during an asthma attack. The maximum force the airway smooth muscle can generate is exquisitely sensitive to muscle length fluctuations during breathing, and is governed by complex mechanotransduction events that can best be studied by a hybrid approach in which the airway wall is modeled in silico so as to set a dynamic muscle load comparable to that experienced in vivo. PMID:18836522

  12. Value of counting positive PHH3 cells in the diagnosis of uterine smooth muscle tumors

    PubMed Central

    Pang, Shu-Jie; Li, Cheng-Cheng; Shen, Yan; Liu, Yian-Zhu; Shi, Yi-Quan; Liu, Yi-Xin

    2015-01-01

    The diagnosis of uterine smooth muscle tumors including leiomyosarcomas (LMS), smooth muscle tumors of uncertain malignant potential (STUMP), bizarre (atypical) leiomyoma (BLM), mitotically active leiomyoma (MAL) and leiomyoma (LM) depends on a combination of microscopic features, such as mitoses, cytologic atypia, and coagulative tumor cell necrosis. However, a small number of these tumors still pose difficult diagnostic challenges. The assessment of accurate mitotic figures (MF) is one of the major parameters in the proper classification of uterine smooth muscle tumors. This assessment can be hampered by the presence of increased number of apoptotic bodies or pyknotic nuclei, which frequently mimic mitoses. Phospho-histone H3 (PHH3) is a recently described immunomarker specific for cells undergoing mitoses. In our study, we collected 132 cases of uterine smooth muscle tumors, including 26 LMSs, 16 STUMPs, 30 BLMs, 30 MALs and 30 LMs. We used mitosis specific marker PHH3 to count mitotic indexes (MI) of uterine smooth muscle tumors and compared with the mitotic indexes of hematoxylin and eosin (H&E). There is a positive correlation with the number of mitotic figures in H&E-stained sections and PHH3-stained sections (r=0.944, P<0.05). The ratio of PHH3-MI to H&E-MI has no statistically significant difference in each group except for LMs (P>0.05). The counting value of PHH3 in LMSs have significantly higher than STUMPs, BLMs, MALs and LMs (P<0.001) and the counting value of PHH3 is 1.5±0.5 times of the number of mitotic indexes in H&E. To conclude, our results show that counting PHH3 is a useful index in the diagnosis of uterine smooth muscle tumors and it can provide a more accurate index instead of the time-honored mitotic figure counts at a certain ratio. PMID:26191133

  13. 8-Bromo-cAMP decreases the Ca2+ sensitivity of airway smooth muscle contraction through a mechanism distinct from inhibition of Rho-kinase.

    PubMed

    Endou, Katsuaki; Iizuka, Kunihiko; Yoshii, Akihiro; Tsukagoshi, Hideo; Ishizuka, Tamotsu; Dobashi, Kunio; Nakazawa, Tsugio; Mori, Masatomo

    2004-10-01

    To clarify whether cyclic AMP (cAMP)/cAMP-dependent protein kinase (PKA) activation and Rho-kinase inhibition share a common mechanism to decrease the Ca2+ sensitivity of airway smooth muscle contraction, we examined the effects of 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP), a stable cAMP analog, and (+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexane carboxamide dihydrochloride, monohydrate (Y-27632), a Rho-kinase inhibitor, on carbachol (CCh)-, guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS)-, 4beta-phorbol 12,13-dibutyrate (PDBu)-, and leukotriene D4 (LTD4)-induced Ca2+ sensitization in alpha-toxin-permeabilized rabbit tracheal and human bronchial smooth muscle. In rabbit trachea, CCh-induced smooth muscle contraction was inhibited by 8-BrcAMP and Y-27632 to a similar extent. However, GTPgammaS-induced smooth muscle contraction was resistant to 8-BrcAMP. In the presence of a saturating concentration of Y-27632, PDBu-induced smooth muscle contraction was completely reversed by 8-BrcAMP. Conversely, PDBu-induced smooth muscle contraction was resistant to Y-27632. In the presence of a saturating concentration of 8-BrcAMP, GTPgammaS-induced Ca2+ sensitization was also reversed by Y-27632. The 8-BrcAMP had no effect on the ATP-triggered contraction of tracheal smooth muscle that had been treated with calyculin A in rigor solutions. The 8-BrcAMP and Y-27632 additively accelerated the relaxation rate of PDBu- and GTPgammaS-treated smooth muscle under myosin light chain kinase-inhibited conditions. In human bronchus, LTD4-induced smooth muscle contraction was inhibited by both 8-BrcAMP and Y-27632. We conclude that cAMP/PKA-induced Ca2+ desensitization contains at least two mechanisms: 1) inhibition of the muscarinic receptor signaling upstream from Rho activation and 2) cAMP/PKA's preferential reversal of PKC-mediated Ca2+ sensitization in airway smooth muscle.

  14. Potential roles for BMP and Pax genes in the development of iris smooth muscle.

    PubMed

    Jensen, Abbie M

    2005-02-01

    The embryonic optic cup generates four types of tissue: neural retina, pigmented epithelium, ciliary epithelium, and iris smooth muscle. Remarkably little attention has focused on the development of the iris smooth muscle since Lewis ([1903] J. Am. Anat. 2:405-416) described its origins from the anterior rim of the optic cup neuroepithelium. As an initial step toward understanding iris smooth muscle development, I first determined the spatial and temporal pattern of the development of the iris smooth muscle in the chick by using the HNK1 antibody, which labels developing iris smooth muscle. HNK1 labeling shows that iris smooth muscle development is correlated in time and space with the development of the ciliary epithelial folds. Second, because neural crest is the only other neural tissue that has been shown to generate smooth muscle (Le Lievre and Le Douarin [1975] J. Embryo. Exp. Morphol. 34:125-154), I sought to determine whether iris smooth muscle development shares similarities with neural crest development. Two members of the BMP superfamily, BMP4 and BMP7, which may regulate neural crest development, are highly expressed by cells at the site of iris smooth muscle generation. Third, because humans and mice that are heterozygous for Pax6 mutations have no irides (Hill et al. [1991] Nature 354:522-525; Hanson et al. [1994] Nat. Genet. 6:168-173), I determined the expression of Pax6. I also examined the expression of Pax3 in the developing anterior optic cup. The developing iris smooth muscle coexpresses Pax6 and Pax3. I suggest that some of the eye defects caused by mutations in Pax6, BMP4, and BMP7 may be due to abnormal iris smooth muscle. Copyright 2004 Wiley-Liss, Inc.

  15. SIRT1 deacetylates RFX5 and antagonizes repression of collagen type I (COL1A2) transcription in smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Jun; Department of Respiratory Medicine, Jiangsu Provincial Hospital of Chinese Traditional Medicine; Wu, Xiaoyan

    Highlights: Black-Right-Pointing-Pointer SIRT1 interacts with and deacetylates RFX5. Black-Right-Pointing-Pointer SIRT1 activation attenuates whereas SIRT1 inhibition enhances collagen repression by RFX5 in vascular smooth muscle cells. Black-Right-Pointing-Pointer SIRT1 promotes cytoplasmic localization and proteasomal degradation of RFX5 and cripples promoter recruitment of RFX5. Black-Right-Pointing-Pointer IFN-{gamma} represses SIRT1 expression in vascular smooth muscle cells. Black-Right-Pointing-Pointer SIRT1 agonist alleviates collagen repression by IFN-{gamma} in vascular smooth muscle cells. -- Abstract: Decreased expression of collagen by vascular smooth muscle cells (SMCs) within the atherosclerotic plaque contributes to the thinning of the fibrous cap and poses a great threat to plaque rupture. Elucidation of the mechanismmore » underlying repressed collagen type I (COL1A2) gene would potentially provide novel solutions that can prevent rupture-induced complications. We have previously shown that regulatory factor for X-box (RFX5) binds to the COL1A2 transcription start site and represses its transcription. Here we report that SIRT1, an NAD-dependent, class III deacetylase, forms a complex with RFX5. Over-expression of SIRT1 or NAMPT, which synthesizes NAD+ to activate SIRT1, or treatment with the SIRT1 agonist resveratrol decreases RFX5 acetylation and disrupts repression of the COL1A2 promoter activity by RFX5. On the contrary, knockdown of SIRT1 or treatment with SIRT1 inhibitors induces RFX5 acetylation and enhances the repression of collagen transcription. SIRT1 antagonizes RFX5 activity by promoting its nuclear expulsion and proteasomal degradation hence dampening its binding to the COL1A2 promoter. The pro-inflammatory cytokine IFN-{gamma} represses COL1A2 transcription by down-regulating SIRT1 expression in SMCs. Therefore, our data have identified as novel pathway whereby SIRT1 maintains collagen synthesis in SMCs by modulating RFX5 activity.« less

  16. [Intrarenal smooth muscle: histology of a complex urodymamic machine].

    PubMed

    Arias, L F; Ortiz-Arango, N

    2013-03-01

    To know better the microscopic arrangement of the bundles of smooth muscle in the human renal parenchyma, their distribution and anatomical relationships, trying to make a reconstruction of this muscular system. Five adult human kidneys and one fetal kidney were processed "in toto" with cross sections every 300μm. In the histological sections we identify the smooth muscle fibers trying to determine its insertion, course and anatomical relationship with other structures of the kidney tissue. There are bundles of smooth muscle fibers of variable thickness parallel to the edges of the medullary pyramids, bundles that surrounding the medulla in a spiral course, and bundles that accompany arcuate vessels, the latter being the most abundant and easy to identify. These groups of muscle fibers do not have a precise or constant insertion site, their periodicity is not homogeneous and they are not a direct extension of the muscle of the renal pelvis, although some bundles are in contact with it. There are also unusual and inconstant small muscle fibers no associated to vessels in the interstitium of the cortex and, exceptionally, in the medulla. There is a complex microscopic system of smooth muscle fibers that partially surround the renal medulla and are related to renal pelvic muscles without a direct continuity with them. Although this small muscular system is under-recognized, could be very important in urodynamics. Copyright © 2012 AEU. Published by Elsevier Espana. All rights reserved.

  17. Enkephalinase inhibitor potentiates substance P- and capsaicin-induced bronchial smooth muscle contractions in humans.

    PubMed

    Honda, I; Kohrogi, H; Yamaguchi, T; Ando, M; Araki, S

    1991-06-01

    To determine the roles of endogenously released tachykinins (substance P, neurokinins A and B) in human bronchial tissues, and to determine the roles of enkephalinase (neutral endopeptidase, E.C. 3.4.24.11) in regulating the effects of the tachykinins, we studied the effects of substance P and capsaicin, which releases tachykinins, on human bronchial smooth muscle contraction in the presence or absence of enkephalinase inhibitor phosphoramidon in vitro. Substance P alone caused human bronchial smooth muscle contraction at 10(-6) M or more. Phosphoramidon (10(-7) to 10(-5) M) potentiated the substance P-induced contraction in a dose-dependent fashion, and phosphoramidon shifted the dose-response curve to lower concentrations. Capsaicin (10(-5) or 10(-4) M) alone caused bronchial smooth muscle contraction in four tissues from nine patients. After the contraction by capsaicin reached a plateau, phosphoramidon (10(-5) M) increased and prolonged the contraction significantly. Furthermore, pretreatment of bronchial tissues with phosphoramidon (10(-5) M) potentiated capsaicin-induced contraction in all tissues from five patients. Phosphoramidon (10(-5) M) shifted the dose-response curve to capsaicin to lower concentrations more than 1 log unit. Captopril did not alter the contractile response to substance P, suggesting that angiotensin-converting enzyme does not regulate the contractile response to substance P in human bronchial smooth muscle in vitro. These results suggest that enkephalinase regulates the contractile effects of exogenous substance P and endogenous substances, probably tachykinins, released by capsaicin in the human bronchus.

  18. Increased IGF-IEc expression and mechano-growth factor production in intestinal muscle of fibrostenotic Crohn's disease and smooth muscle hypertrophy

    PubMed Central

    Li, Chao; Vu, Kent; Hazelgrove, Krystina

    2015-01-01

    The igf1 gene is alternatively spliced as IGF-IEa and IGF-IEc variants in humans. In fibrostenotic Crohn's disease, the fibrogenic cytokine TGF-β1 induces IGF-IEa expression and IGF-I production in intestinal smooth muscle and results in muscle hyperplasia and collagen I production that contribute to stricture formation. Mechano-growth factor (MGF) derived from IGF-IEc induces skeletal and cardiac muscle hypertrophy following stress. We hypothesized that increased IGF-IEc expression and MGF production mediated smooth muscle hypertrophy also characteristic of fibrostenotic Crohn's disease. IGF-IEc transcripts and MGF protein were increased in muscle cells isolated from fibrostenotic intestine under regulation by endogenous TGF-β1. Erk5 and MEF2C were phosphorylated in vivo in fibrostenotic muscle; both were phosphorylated and colocalized to nucleus in response to synthetic MGF in vitro. Smooth muscle-specific protein expression of α-smooth muscle actin, γ-smooth muscle actin, and smoothelin was increased in affected intestine. Erk5 inhibition or MEF2C siRNA blocked smooth muscle-specific gene expression and hypertrophy induced by synthetic MGF. Conditioned media of cultured fibrostenotic muscle induced muscle hypertrophy that was inhibited by immunoneutralization of endogenous MGF or pro-IGF-IEc. The results indicate that TGF-β1-dependent IGF-IEc expression and MGF production in patients with fibrostenotic Crohn's disease regulates smooth muscle cell hypertrophy a critical factor that contributes to intestinal stricture formation. PMID:26428636

  19. Increased IGF-IEc expression and mechano-growth factor production in intestinal muscle of fibrostenotic Crohn's disease and smooth muscle hypertrophy.

    PubMed

    Li, Chao; Vu, Kent; Hazelgrove, Krystina; Kuemmerle, John F

    2015-12-01

    The igf1 gene is alternatively spliced as IGF-IEa and IGF-IEc variants in humans. In fibrostenotic Crohn's disease, the fibrogenic cytokine TGF-β1 induces IGF-IEa expression and IGF-I production in intestinal smooth muscle and results in muscle hyperplasia and collagen I production that contribute to stricture formation. Mechano-growth factor (MGF) derived from IGF-IEc induces skeletal and cardiac muscle hypertrophy following stress. We hypothesized that increased IGF-IEc expression and MGF production mediated smooth muscle hypertrophy also characteristic of fibrostenotic Crohn's disease. IGF-IEc transcripts and MGF protein were increased in muscle cells isolated from fibrostenotic intestine under regulation by endogenous TGF-β1. Erk5 and MEF2C were phosphorylated in vivo in fibrostenotic muscle; both were phosphorylated and colocalized to nucleus in response to synthetic MGF in vitro. Smooth muscle-specific protein expression of α-smooth muscle actin, γ-smooth muscle actin, and smoothelin was increased in affected intestine. Erk5 inhibition or MEF2C siRNA blocked smooth muscle-specific gene expression and hypertrophy induced by synthetic MGF. Conditioned media of cultured fibrostenotic muscle induced muscle hypertrophy that was inhibited by immunoneutralization of endogenous MGF or pro-IGF-IEc. The results indicate that TGF-β1-dependent IGF-IEc expression and MGF production in patients with fibrostenotic Crohn's disease regulates smooth muscle cell hypertrophy a critical factor that contributes to intestinal stricture formation. Copyright © 2015 the American Physiological Society.

  20. Effects of 5-fluorouracil in nuclear and cellular morphology, proliferation, cell cycle, apoptosis, cytoskeletal and caveolar distribution in primary cultures of smooth muscle cells.

    PubMed

    Filgueiras, Marcelo de Carvalho; Morrot, Alexandre; Soares, Pedro Marcos Gomes; Costa, Manoel Luis; Mermelstein, Cláudia

    2013-01-01

    Colon cancer is one of the most prevalent types of cancer in the world and is one of the leading causes of cancer death. The anti-metabolite 5- fluorouracil (5-FU) is widely used in the treatment of patients with colon cancer and other cancer types. 5-FU-based chemotherapy has been shown to be very efficient in the improvement of overall survival of the patients and for the eradication of the disease. Unfortunately, common side effects of 5-FU include severe alterations in the motility of the gastrointestinal tissues. Nevertheless, the molecular and cellular effects of 5-FU in smooth muscle cells are poorly understood. Primary smooth muscle cell cultures are an important tool for studies of the biological consequences of 5-FU at the cellular level. The avian gizzard is one of the most robust organs of smooth muscle cells. Here we studied the molecular and cellular effects of the chemotherapic drug 5-FU in a primary culture of chick gizzard smooth muscle cells. We found that treatment of smooth muscle cells with 5-FU inhibits cell proliferation by the arrest of cells in the G1 phase of cell cycle and induce apoptosis. 5-FU induced a decrease in the percentage of histone H3-positive cells. Treatment of cells with 5-FU induced changes in cellular and nuclear morphology, a decrease in the number of stress fibers and a major decrease in the number of caveolin-3 positive cells. Our results suggest that the disorganization of the actin cytoskeleton and the reduction of caveolin-3 expression could explain the alterations in contractility observed in patients treated with 5-FU. These findings might have an impact in the understanding of the cellular effects of 5-FU in smooth muscle tissues and might help the improvement of new therapeutic protocols for the treatment of colon cancer.

  1. Effects of 5-Fluorouracil in Nuclear and Cellular Morphology, Proliferation, Cell Cycle, Apoptosis, Cytoskeletal and Caveolar Distribution in Primary Cultures of Smooth Muscle Cells

    PubMed Central

    Filgueiras, Marcelo de Carvalho; Morrot, Alexandre; Soares, Pedro Marcos Gomes; Costa, Manoel Luis; Mermelstein, Cláudia

    2013-01-01

    Colon cancer is one of the most prevalent types of cancer in the world and is one of the leading causes of cancer death. The anti-metabolite 5- fluorouracil (5-FU) is widely used in the treatment of patients with colon cancer and other cancer types. 5-FU-based chemotherapy has been shown to be very efficient in the improvement of overall survival of the patients and for the eradication of the disease. Unfortunately, common side effects of 5-FU include severe alterations in the motility of the gastrointestinal tissues. Nevertheless, the molecular and cellular effects of 5-FU in smooth muscle cells are poorly understood. Primary smooth muscle cell cultures are an important tool for studies of the biological consequences of 5-FU at the cellular level. The avian gizzard is one of the most robust organs of smooth muscle cells. Here we studied the molecular and cellular effects of the chemotherapic drug 5-FU in a primary culture of chick gizzard smooth muscle cells. We found that treatment of smooth muscle cells with 5-FU inhibits cell proliferation by the arrest of cells in the G1 phase of cell cycle and induce apoptosis. 5-FU induced a decrease in the percentage of histone H3-positive cells. Treatment of cells with 5-FU induced changes in cellular and nuclear morphology, a decrease in the number of stress fibers and a major decrease in the number of caveolin-3 positive cells. Our results suggest that the disorganization of the actin cytoskeleton and the reduction of caveolin-3 expression could explain the alterations in contractility observed in patients treated with 5-FU. These findings might have an impact in the understanding of the cellular effects of 5-FU in smooth muscle tissues and might help the improvement of new therapeutic protocols for the treatment of colon cancer. PMID:23646193

  2. MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo.

    PubMed

    Torella, Daniele; Iaconetti, Claudio; Catalucci, Daniele; Ellison, Georgina M; Leone, Angelo; Waring, Cheryl D; Bochicchio, Angela; Vicinanza, Carla; Aquila, Iolanda; Curcio, Antonio; Condorelli, Gianluigi; Indolfi, Ciro

    2011-09-30

    MicroRNA (miR)-1 and -133 play a crucial role in skeletal and cardiac muscle biology and pathophysiology. However, their expression and regulation in vascular cell physiology and disease is currently unknown. The aim of the present study was to evaluate the role, if any, of miR-1 and miR-133 in vascular smooth muscle cell (VSMC) phenotypic switch in vitro and in vivo. We demonstrate here that miR-133 is robustly expressed in vascular smooth muscle cells (VSMCs) in vitro and in vivo, whereas miR-1 vascular levels are negligible. miR-133 has a potent inhibitory role on VSMC phenotypic switch in vitro and in vivo, whereas miR-1 does not have any relevant effect per se. miR-133 expression is regulated by extracellular signal-regulated kinase 1/2 activation and is inversely correlated with VSMC growth. Indeed, miR-133 decreases when VSMCs are primed to proliferate in vitro and following vascular injury in vivo, whereas it increases when VSMCs are coaxed back to quiescence in vitro and in vivo. miR-133 loss- and gain-of-function experiments show that miR-133 plays a mechanistic role in VSMC growth. Accordingly, adeno-miR-133 reduces but anti-miR-133 exacerbates VSMC proliferation and migration in vitro and in vivo. miR-133 specifically suppresses the transcription factor Sp-1 expression in vitro and in vivo and through Sp-1 repression regulates smooth muscle gene expression. Our data show that miR-133 is a key regulator of vascular smooth muscle cell phenotypic switch in vitro and in vivo, suggesting its potential therapeutic application for vascular diseases.

  3. Thrombospondin-1, -2 and -5 have differential effects on vascular smooth muscle cell physiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helkin, Alex; Maier, Kristopher G.; Department of Veterans Affairs VA Healthcare Network Upstate New York at Syracuse, Syracuse, NY

    Introduction: The thrombospondins (TSPs) are matricellular proteins that exert multifunctional effects by binding cytokines, cell-surface receptors and other proteins. TSPs play important roles in vascular pathobiology and are all expressed in arterial lesions. The differential effects of TSP-1, -2, and -5 represent a gap in knowledge in vascular smooth muscle cell (VSMC) physiology. Our objective is to determine if structural differences of the TSPs imparted different effects on VSMC functions critical to the formation of neointimal hyperplasia. We hypothesize that TSP-1 and -2 induce similar patterns of migration, proliferation and gene expression, while the effects of TSP-5 are different. Methods:more » Human aortic VSMC chemotaxis was tested for TSP-2 and TSP-5 (1–40 μg/mL), and compared to TSP-1 and serum-free media (SFM) using a modified Boyden chamber. Next, VSMCs were exposed to TSP-1, TSP-2 or TSP-5 (0.2–40 μg/mL). Proliferation was assessed by MTS assay. Finally, VSMCs were exposed to TSP-1, TSP-2, TSP-5 or SFM for 3, 6 or 24 h. Quantitative real-time PCR was performed on 96 genes using a microfluidic card. Statistical analysis was performed by ANOVA or t-test, with p < 0.05 being significant. Results: TSP-1, TSP-2 and TSP-5 at 20 μg/mL all induce chemotaxis 3.1 fold compared to serum-free media. TSP-1 and TSP-2 induced proliferation 53% and 54% respectively, whereas TSP-5 did not. In the gene analysis, overall, cardiovascular system development and function is the canonical pathway most influenced by TSP treatment, and includes multiple growth factors, cytokines and proteases implicated in cellular migration, proliferation, vasculogenesis, apoptosis and inflammation pathways. Conclusions and relevance: The results of this study indicate TSP-1, -2, and -5 play active roles in VSMC physiology and gene expression. Similarly to TSP-1, VSMC chemotaxis to TSP-2 and -5 is dose-dependent. TSP-1 and -2 induces VSMC proliferation, but TSP-5 does not

  4. Matrix Metalloproteinase-1 Activation Contributes to Airway Smooth Muscle Growth and Asthma Severity

    PubMed Central

    Naveed, Shams-un-nisa; Clements, Debbie; Jackson, David J.; Philp, Christopher; Billington, Charlotte K.; Soomro, Irshad; Reynolds, Catherine; Harrison, Timothy W.; Johnston, Sebastian L.; Shaw, Dominick E.

    2017-01-01

    Rationale: Matrix metalloproteinase-1 (MMP-1) and mast cells are present in the airways of people with asthma. Objectives: To investigate whether MMP-1 could be activated by mast cells and increase asthma severity. Methods: Patients with stable asthma and healthy control subjects underwent spirometry, methacholine challenge, and bronchoscopy, and their airway smooth muscle cells were grown in culture. A second asthma group and control subjects had symptom scores, spirometry, and bronchoalveolar lavage before and after rhinovirus-induced asthma exacerbations. Extracellular matrix was prepared from decellularized airway smooth muscle cultures. MMP-1 protein and activity were assessed. Measurements and Main Results: Airway smooth muscle cells generated pro–MMP-1, which was proteolytically activated by mast cell tryptase. Airway smooth muscle treated with activated mast cell supernatants produced extracellular matrix, which enhanced subsequent airway smooth muscle growth by 1.5-fold (P < 0.05), which was dependent on MMP-1 activation. In asthma, airway pro–MMP-1 was 5.4-fold higher than control subjects (P = 0.002). Mast cell numbers were associated with airway smooth muscle proliferation and MMP-1 protein associated with bronchial hyperresponsiveness. During exacerbations, MMP-1 activity increased and was associated with fall in FEV1 and worsening asthma symptoms. Conclusions: MMP-1 is activated by mast cell tryptase resulting in a proproliferative extracellular matrix. In asthma, mast cells are associated with airway smooth muscle growth, MMP-1 levels are associated with bronchial hyperresponsiveness, and MMP-1 activation are associated with exacerbation severity. Our findings suggest that airway smooth muscle/mast cell interactions contribute to asthma severity by transiently increasing MMP activation, airway smooth muscle growth, and airway responsiveness. PMID:27967204

  5. Histochemical characteristics of a tonic smooth muscle.

    PubMed

    Gilloteaux, J; Stalmans-Falys, M

    1979-09-01

    It is suggested that ABRM, smooth muscle of Mytilus edulis L. and Mytilus galloprovincialis Lmk. (Mollusca Pelecypoda), is composed of one histochemical fibre type. The fibres are characterized by a low myofibrillar ATPase activity. Succinic and nicotinamide adenine dinucleotide oxidoreductase activities are distributed in a reverse pattern than that of the ATPase activity. Glycogen phosphorylase is richly represented in ABRM fibres and this detection is in opposition with the negative detection of alkaline phosphatase activity. These preliminary histochemical observations are similar to those found in some vertebrate smooth muscles. Mitochondrial glycerol-3-phosphate, 6-phosphogluconate, lactate and octopine dehydrogenases are not detected in muscle fibres whereas glio-interstitial tissues show weak but distinct reactivity. These last results especially characterize Mytilus catch fibres and are briefly discussed in relationship with previous physiological, biochemical and morphological observations.

  6. GTP requirement for inositol-1,4,5-trisphosphate-induced Ca2+ release from sarcoplasmic reticulum in smooth muscle.

    PubMed

    Saida, K; van Breemen, C

    1987-05-14

    We have examined inositol-1,4,5-trisphosphate (IP3)-induced Ca2+ release from the sarcoplasmic reticulum (SR) in the skinned vascular smooth muscle. The amount of Ca2+ in the SR was estimated indirectly by caffeine-induced contraction of the skinned preparation. The Ca2+ release from the SR by IP3 required GTP. A non-hydrolyzable analogue of GTP, guanosine 5'-(beta gamma-imido) triphosphate (GppNHp) could substitute for GTP in the IP3-induced Ca2+ release. These results suggest an involvement of GTP-binding protein in the mechanism of Ca2+ release from the SR by IP3 in smooth muscle.

  7. Interstitial Cells: Regulators of Smooth Muscle Function

    PubMed Central

    Sanders, Kenton M.; Ward, Sean M.; Koh, Sang Don

    2014-01-01

    Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα+ cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα+ cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues. PMID:24987007

  8. Smooth muscle neurokinin-2 receptors mediate contraction in human saphenous veins.

    PubMed

    Mechiche, Hakima; Grassin-Delyle, Stanislas; Pinto, Francisco M; Buenestado, Amparo; Candenas, Luz; Devillier, Philippe

    2011-05-01

    Substance P (SP) and neurokinin A (NKA) are members of the tachykinin peptides family. SP causes endothelial-dependant relaxation but the contractile response to tachykinins in human vessels remains unknown. The objective was to assess the expression and the contractile effects of tachykinins and their receptors in human saphenous veins (SV). Tachykinin expression was assessed with RT-PCR, tachykinin receptors expression with RT-PCR and immunohistochemistry, and functional studies were performed in organ bath. Transcripts of all tachykinin and tachykinin receptor genes were found in SV. NK(1)-receptors were localized in both endothelial and smooth muscle layers of undistended SV, whereas they were only found in smooth muscle layers of varicose SV. The expression of NK(2)- and NK(3)-receptors was limited to the smooth muscle in both preparations. NKA induced concentration-dependent contractions in about half the varicose SV. Maximum effect reached 27.6±5.5% of 90 mM KCl and the pD(2) value was 7.3±0.2. NKA also induced the contraction of undistended veins from bypass and did not cause the relaxation of these vessels after precontraction. The NK(2)-receptor antagonist SR48968 abolished the contraction induced by NKA, and a rapid desensitization of the NK(2)-receptor was observed. In varicose SV, the agonists specific to NK(1)- or NK(3)-receptors did not cause either contraction or relaxation. The stimulation of smooth muscle NK(2)-receptors can induce the contraction of human SV. As SV is richly innervated, tachykinins may participate in the regulation of the tone in this portion of the low pressure vascular system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Nonmuscle myosin is regulated during smooth muscle contraction.

    PubMed

    Yuen, Samantha L; Ogut, Ozgur; Brozovich, Frank V

    2009-07-01

    The participation of nonmuscle myosin in force maintenance is controversial. Furthermore, its regulation is difficult to examine in a cellular context, as the light chains of smooth muscle and nonmuscle myosin comigrate under native and denaturing electrophoresis techniques. Therefore, the regulatory light chains of smooth muscle myosin (SM-RLC) and nonmuscle myosin (NM-RLC) were purified, and these proteins were resolved by isoelectric focusing. Using this method, intact mouse aortic smooth muscle homogenates demonstrated four distinct RLC isoelectric variants. These spots were identified as phosphorylated NM-RLC (most acidic), nonphosphorylated NM-RLC, phosphorylated SM-RLC, and nonphosphorylated SM-RLC (most basic). During smooth muscle activation, NM-RLC phosphorylation increased. During depolarization, the increase in NM-RLC phosphorylation was unaffected by inhibition of either Rho kinase or PKC. However, inhibition of Rho kinase blocked the angiotensin II-induced increase in NM-RLC phosphorylation. Additionally, force for angiotensin II stimulation of aortic smooth muscle from heterozygous nonmuscle myosin IIB knockout mice was significantly less than that of wild-type littermates, suggesting that, in smooth muscle, activation of nonmuscle myosin is important for force maintenance. The data also demonstrate that, in smooth muscle, the activation of nonmuscle myosin is regulated by Ca(2+)-calmodulin-activated myosin light chain kinase during depolarization and a Rho kinase-dependent pathway during agonist stimulation.

  10. Length adaptation of airway smooth muscle.

    PubMed

    Bossé, Ynuk; Sobieszek, Apolinary; Paré, Peter D; Seow, Chun Y

    2008-01-01

    Many types of smooth muscle, including airway smooth muscle (ASM), are capable of generating maximal force over a large length range due to length adaptation, which is a relatively rapid process in which smooth muscle regains contractility after experiencing a force decrease induced by length fluctuation. Although the underlying mechanism is unclear, it is believed that structural malleability of smooth muscle cells is essential for the adaptation to occur. The process is triggered by strain on the cell cytoskeleton that results in a series of yet undefined biochemical and biophysical events leading to restructuring of the cytoskeleton and contractile apparatus and consequently optimization of the overlap between the myosin and actin filaments. Although length adaptability is an intrinsic property of smooth muscle, maladaptation of ASM could result in excessive constriction of the airways and the inability of deep inspirations to dilate them. In this article, we describe the phenomenon of length adaptation in ASM and some possible underlying mechanisms that involve the myosin filament assembly and disassembly. We discuss a possible role of maladaptation of ASM in the pathogenesis of asthma. We believe that length adaptation in ASM is mediated by specific proteins and their posttranslational regulations involving covalent modifications, such as phosphorylation. The discovery of these molecules and the processes that regulate their activity will greatly enhance our understanding of the basic mechanisms of ASM contraction and will suggest molecular targets to alleviate asthma exacerbation related to excessive constriction of the airways.

  11. The relaxant 5-HT receptor in the dog coronary artery smooth muscle: pharmacological resemblance to the cloned 5-ht7 receptor subtype.

    PubMed Central

    Terrón, J. A.

    1996-01-01

    the above antagonist drugs for the relaxant 5-HT receptor significantly correlated with their reported affinity at the cloned 5-ht7 receptor. 4. Taken together, the above pharmacological data may suggest that the relaxant 5-HT receptor in the smooth muscle of the canine coronary artery is similar to the cloned 5-ht7 receptor subtype. PMID:8832067

  12. Mechanisms of mechanical strain memory in airway smooth muscle.

    PubMed

    Kim, Hak Rim; Hai, Chi-Ming

    2005-10-01

    We evaluated the hypothesis that mechanical deformation of airway smooth muscle induces structural remodeling of airway smooth muscle cells, thereby modulating mechanical performance in subsequent contractions. This hypothesis implied that past experience of mechanical deformation was retained (or "memorized") as structural changes in airway smooth muscle cells, which modulated the cell's subsequent contractile responses. We termed this phenomenon mechanical strain memory. Preshortening has been found to induce attenuation of both force and isotonic shortening velocity in cholinergic receptor-activated airway smooth muscle. Rapid stretching of cholinergic receptor-activated airway smooth muscle from an initial length to a final length resulted in post-stretch force and myosin light chain phosphorylation that correlated significantly with initial length. Thus post-stretch muscle strips appeared to retain memory of the initial length prior to rapid stretch (mechanical strain memory). Cytoskeletal recruitment of actin- and integrin-binding proteins and Erk 1/2 MAPK appeared to be important mechanisms of mechanical strain memory. Sinusoidal length oscillation led to force attenuation during oscillation and in subsequent contractions in intact airway smooth muscle, and p38 MAPK appeared to be an important mechanism. In contrast, application of local mechanical strain to cultured airway smooth muscle cells induced local actin polymerization and cytoskeletal stiffening. It is conceivable that deep inspiration-induced bronchoprotection may be a manifestation of mechanical strain memory such that mechanical deformation from past breathing cycles modulated the mechanical performance of airway smooth muscle in subsequent cycles in a continuous and dynamic manner.

  13. The role of Exo70 in vascular smooth muscle cell migration.

    PubMed

    Ma, Wenqing; Wang, Yu; Yao, Xiaomeng; Xu, Zijian; An, Liguo; Yin, Miao

    2016-01-01

    As a key subunit of the exocyst complex, Exo70 has highly conserved sequence and is widely found in yeast, mammals, and plants. In yeast, Exo70 mediates the process of exocytosis and promotes anchoring and integration of vesicles with the plasma membrane. In mammalian cells, Exo70 is involved in maintaining cell morphology, cell migration, cell connection, mRNA splicing, and other physiological processes, as well as participating in exocytosis. However, Exo70's function in mammalian cells has yet to be fully recognized. In this paper, the expression of Exo70 and its role in cell migration were studied in a rat vascular smooth muscle cell line A7r5. Immunofluorescent analysis the expression of Exo70, α-actin, and tubulin in A7r5 cells showed a co-localization of Exo70 and α-actin, we treated the cells with cytochalasin B to depolymerize α-actin, in order to further confirm the co-localization of Exo70 and α-actin. We analyzed Exo70 co-localization with actin at the edge of migrating cells by wound-healing assay to establish whether Exo70 might play a role in cell migration. Next, we analyzed the migration and invasion ability of A7r5 cells before and after RNAi silencing through the wound healing assay and transwell assay. The mechanism of interaction between Exo70 and cytoskeleton can be clarified by the immunoprecipitation techniques and wound-healing assay. The results showed that Exo70 and α-actin were co-localized at the leading edge of migrating cells. The ability of A7r5 to undergo cell migration was decreased when Exo70 expression was silenced by RNAi. Reducing Exo70 expression in RNAi treated A7r5 cells significantly lowered the invasion and migration ability of these cells compared to the normal cells. These results indicate that Exo70 participates in the process of A7r5 cell migration. This research is importance for the study on the pathological process of vascular intimal hyperplasia, since it provides a new research direction for the treatment of

  14. Design of a muscle cell-specific expression vector utilising human vascular smooth muscle alpha-actin regulatory elements.

    PubMed

    Keogh, M C; Chen, D; Schmitt, J F; Dennehy, U; Kakkar, V V; Lemoine, N R

    1999-04-01

    The facility to direct tissue-specific expression of therapeutic gene constructs is desirable for many gene therapy applications. We describe the creation of a muscle-selective expression vector which supports transcription in vascular smooth muscle, cardiac muscle and skeletal muscle, while it is essentially silent in other cell types such as endothelial cells, hepatocytes and fibroblasts. Specific transcriptional regulatory elements have been identified in the human vascular smooth muscle cell (VSMC) alpha-actin gene, and used to create an expression vector which directs the expression of genes in cis to muscle cells. The vector contains an enhancer element we have identified in the 5' flanking region of the human VSMC alpha-actin gene involved in mediating VSMC expression. Heterologous pairing experiments have shown that the enhancer does not interact with the basal transcription complex recruited at the minimal SV40 early promoter. Such a vector has direct application in the modulation of VSMC proliferation associated with intimal hyperplasia/restenosis.

  15. Angiotensin II Type 1 Receptor Mechanoactivation Involves RGS5 (Regulator of G Protein Signaling 5) in Skeletal Muscle Arteries: Impaired Trafficking of RGS5 in Hypertension.

    PubMed

    Hong, Kwangseok; Li, Min; Nourian, Zahra; Meininger, Gerald A; Hill, Michael A

    2017-12-01

    Studies suggest that arteriolar pressure-induced vasoconstriction can be initiated by GPCRs (G protein-coupled receptors), including the AT 1 R (angiotensin II type 1 receptor). This raises the question, are such mechanisms regulated by negative feedback? The present studies examined whether RGS (regulators of G protein signaling) proteins in vascular smooth muscle cells are colocalized with the AT 1 R when activated by mechanical stress or angiotensin II and whether this modulates AT 1 R-mediated vasoconstriction. To determine whether activation of the AT 1 R recruits RGS5, an in situ proximity ligation assay was performed in primary cultures of cremaster muscle arteriolar vascular smooth muscle cells treated with angiotensin II or hypotonic solution in the absence or presence of candesartan (an AT 1 R blocker). Proximity ligation assay results revealed a concentration-dependent increase in trafficking/translocation of RGS5 toward the activated AT 1 R, which was attenuated by candesartan. In intact arterioles, knockdown of RGS5 enhanced constriction to angiotensin II and augmented myogenic responses to increased intraluminal pressure. Myogenic constriction was attenuated to a higher degree by candesartan in RGS5 siRNA-transfected arterioles, consistent with RGS5 contributing to downregulation of AT 1 R-mediated signaling. Further, translocation of RGS5 was impaired in vascular smooth muscle cells of spontaneously hypertensive rats. This is consistent with dysregulated (RGS5-mediated) AT 1 R signaling that could contribute to excessive vasoconstriction in hypertension. In intact vessels, candesartan reduced myogenic vasoconstriction to a greater extent in spontaneously hypertensive rats compared with controls. Collectively, these findings suggest that AT 1 R activation results in translocation of RGS5 toward the plasma membrane, limiting AT 1 R-mediated vasoconstriction through its role in G q/11 protein-dependent signaling. © 2017 American Heart Association, Inc.

  16. Fibronectin Matrix Polymerization Regulates Smooth Muscle Cell Phenotype through a Rac1 Dependent Mechanism

    PubMed Central

    Shi, Feng; Long, Xiaochun; Hendershot, Allison; Miano, Joseph M.; Sottile, Jane

    2014-01-01

    Smooth muscle cells are maintained in a differentiated state in the vessel wall, but can be modulated to a synthetic phenotype following injury. Smooth muscle phenotypic modulation is thought to play an important role in the pathology of vascular occlusive diseases. Phenotypically modulated smooth muscle cells exhibit increased proliferative and migratory properties that accompany the downregulation of smooth muscle cell marker proteins. Extracellular matrix proteins, including fibronectin, can regulate the smooth muscle phenotype when used as adhesive substrates. However, cells produce and organize a 3-dimensional fibrillar extracellular matrix, which can affect cell behavior in distinct ways from the protomeric 2-dimensional matrix proteins that are used as adhesive substrates. We previously showed that the deposition/polymerization of fibronectin into the extracellular matrix can regulate the deposition and organization of other extracellular matrix molecules in vitro. Further, our published data show that the presence of a fibronectin polymerization inhibitor results in increased expression of smooth muscle cell differentiation proteins and inhibits vascular remodeling in vivo. In this manuscript, we used an in vitro cell culture system to determine the mechanism by which fibronectin polymerization affects smooth muscle phenotypic modulation. Our data show that fibronectin polymerization decreases the mRNA levels of multiple smooth muscle differentiation genes, and downregulates the levels of smooth muscle α-actin and calponin proteins by a Rac1-dependent mechanism. The expression of smooth muscle genes is transcriptionally regulated by fibronectin polymerization, as evidenced by the increased activity of luciferase reporter constructs in the presence of a fibronectin polymerization inhibitor. Fibronectin polymerization also promotes smooth muscle cell growth, and decreases the levels of actin stress fibers. These data define a Rac1-dependent pathway wherein

  17. The role of TRPP2 in agonist-induced gallbladder smooth muscle contraction.

    PubMed

    Zhong, Xingguo; Fu, Jie; Song, Kai; Xue, Nairui; Gong, Renhua; Sun, Dengqun; Luo, Huilai; He, Wenzhu; Pan, Xiang; Shen, Bing; Du, Juan

    2016-04-01

    TRPP2 channel protein belongs to the superfamily of transient receptor potential (TRP) channels and is widely expressed in various tissues, including smooth muscle in digestive gut. Accumulating evidence has demonstrated that TRPP2 can mediate Ca(2+) release from Ca(2+) stores. However, the functional role of TRPP2 in gallbladder smooth muscle contraction still remains unclear. In this study, we used Ca(2+) imaging and tension measurements to test agonist-induced intracellular Ca(2+) concentration increase and smooth muscle contraction of guinea pig gallbladder, respectively. When TRPP2 protein was knocked down in gallbladder muscle strips from guinea pig, carbachol (CCh)-evoked Ca(2+) release and extracellular Ca(2+) influx were reduced significantly, and gallbladder contractions induced by endothelin 1 and cholecystokinin were suppressed markedly as well. CCh-induced gallbladder contraction was markedly suppressed by pretreatment with U73122, which inhibits phospholipase C to terminate inositol 1,4,5-trisphosphate receptor (IP3) production, and 2-aminoethoxydiphenyl borate (2APB), which inhibits IP3 recepor (IP3R) to abolish IP3R-mediated Ca(2+) release. To confirm the role of Ca(2+) release in CCh-induced gallbladder contraction, we used thapsigargin (TG)-to deplete Ca(2+) stores via inhibiting sarco/endoplasmic reticulum Ca(2+)-ATPase and eliminate the role of store-operated Ca(2+) entry on the CCh-induced gallbladder contraction. Preincubation with 2 μmol L(-1) TG significantly decreased the CCh-induced gallbladder contraction. In addition, pretreatments with U73122, 2APB or TG abolished the difference of the CCh-induced gallbladder contraction between TRPP2 knockdown and control groups. We conclude that TRPP2 mediates Ca(2+) release from intracellular Ca(2+) stores, and has an essential role in agonist-induced gallbladder muscle contraction.

  18. Aerobic metabolism on muscle contraction in porcine gastric smooth muscle.

    PubMed

    Kanda, Hidenori; Kaneda, Takeharu; Nagai, Yuta; Urakawa, Norimoto; Shimizu, Kazumasa

    2018-05-18

    Exposure to chronic hypoxic conditions causes various gastric diseases, including gastric ulcers. It has been suggested that gastric smooth muscle contraction is associated with aerobic metabolism. However, there are no reports on the association between gastric smooth muscle contraction and aerobic metabolism, and we have investigated this association in the present study. High K + - and carbachol (CCh)-induced muscle contractions involved increasing O 2 consumption. Aeration with N 2 (hypoxia) and NaCN significantly decreased high K + - and CCh-induced muscle contraction and O 2 consumption. In addition, hypoxia and NaCN significantly decreased creatine phosphate (PCr) contents in the presence of high K + . Moreover, decrease in CCh-induced contraction and O 2 consumption was greater than that of high K + . Our results suggest that hypoxia and NaCN inhibit high K + - and CCh-induced contractions in gastric fundus smooth muscles by decreasing O 2 consumption and intracellular PCr content. However, the inhibition of CCh-induced muscle contraction was greater than that of high K + -induced muscle contraction.

  19. Cross-bridge elasticity in single smooth muscle cells

    PubMed Central

    1983-01-01

    In smooth muscle, a cross-bridge mechanism is believed to be responsible for active force generation and fiber shortening. In the present studies, the viscoelastic and kinetic properties of the cross- bridge were probed by eliciting tension transients in response to small, rapid, step length changes (delta L = 0.3-1.0% Lcell in 2 ms). Tension transients were obtained in a single smooth muscle cell isolated from the toad (Bufo marinus) stomach muscularis, which was tied between a force transducer and a displacement device. To record the transients, which were of extremely small magnitude (0.1 microN), a high-frequency (400 Hz), ultrasensitive force transducer (18 mV/microN) was designed and built. The transients obtained during maximal force generation (Fmax = 2.26 microN) were characterized by a linear elastic response (Emax = 1.26 X 10(4) mN/mm2) coincident with the length step, which was followed by a biphasic tension recovery made up of two exponentials (tau fast = 5-20 ms, tau slow = 50-300 ms). During the development of force upon activation, transients were elicited. The relationship between stiffness and force was linear, which suggests that the transients originate within the cross-bridge and reflect the cross-bridge's viscoelastic and kinetic properties. The observed fiber elasticity suggests that the smooth muscle cross-bridge is considerably more compliant than in fast striated muscle. A thermodynamic model is presented that allows for an analysis of the factors contributing to the increased compliance of the smooth muscle cross-bridge. PMID:6413640

  20. Porcine Stomach Smooth Muscle Force Depends on History-Effects.

    PubMed

    Tomalka, André; Borsdorf, Mischa; Böl, Markus; Siebert, Tobias

    2017-01-01

    The stomach serves as food reservoir, mixing organ and absorption area for certain substances, while continually varying its position and size. Large dimensional changes during ingestion and gastric emptying of the stomach are associated with large changes in smooth muscle length. These length changes might induce history-effects, namely force depression (FD) following active muscle shortening and force enhancement (FE) following active muscle stretch. Both effects have impact on the force generating capacity of the stomach, and thus functional relevance. However, less is known about history-effects and active smooth muscle properties of stomach smooth muscle. Thus, the aim of this study was to investigate biomechanical muscle properties as force-length and force-velocity relations (FVR) of porcine stomach smooth muscle strips, extended by the analysis of history-effects on smooth muscle force. Therefore, in total n = 54 tissue strips were dissected in longitudinal direction from the ventral fundus of porcine stomachs. Different isometric, isotonic, and isokinetic contraction protocols were performed during electrical muscle stimulation. Cross-sectional areas (CSA) of smooth muscles were determined from cryo-histological sections stained with Picrosirius Red. Results revealed that maximum smooth muscle tension was 10.4 ± 2.6 N/cm 2 . Maximum shortening velocity ( V max ) and curvature factor ( curv ) of the FVR were 0.04 ± 0.01 [optimum muscle length/s] and 0.36 ± 0.15, respectively. The findings of the present study demonstrated significant ( P < 0.05) FD [up to 32% maximum muscle force ( F im )] and FE (up to 16% F im ) of gastric muscle tissue, respectively. The FE- and FD-values increased with increasing ramp amplitude. This outstanding muscle behavior is not accounted for in existing models so far and strongly supports the idea of a holistic reflection of distinct stomach structure and function. For the first time this study provides a comprehensive set of

  1. Porcine Stomach Smooth Muscle Force Depends on History-Effects

    PubMed Central

    Tomalka, André; Borsdorf, Mischa; Böl, Markus; Siebert, Tobias

    2017-01-01

    The stomach serves as food reservoir, mixing organ and absorption area for certain substances, while continually varying its position and size. Large dimensional changes during ingestion and gastric emptying of the stomach are associated with large changes in smooth muscle length. These length changes might induce history-effects, namely force depression (FD) following active muscle shortening and force enhancement (FE) following active muscle stretch. Both effects have impact on the force generating capacity of the stomach, and thus functional relevance. However, less is known about history-effects and active smooth muscle properties of stomach smooth muscle. Thus, the aim of this study was to investigate biomechanical muscle properties as force-length and force-velocity relations (FVR) of porcine stomach smooth muscle strips, extended by the analysis of history-effects on smooth muscle force. Therefore, in total n = 54 tissue strips were dissected in longitudinal direction from the ventral fundus of porcine stomachs. Different isometric, isotonic, and isokinetic contraction protocols were performed during electrical muscle stimulation. Cross-sectional areas (CSA) of smooth muscles were determined from cryo-histological sections stained with Picrosirius Red. Results revealed that maximum smooth muscle tension was 10.4 ± 2.6 N/cm2. Maximum shortening velocity (Vmax) and curvature factor (curv) of the FVR were 0.04 ± 0.01 [optimum muscle length/s] and 0.36 ± 0.15, respectively. The findings of the present study demonstrated significant (P < 0.05) FD [up to 32% maximum muscle force (Fim)] and FE (up to 16% Fim) of gastric muscle tissue, respectively. The FE- and FD-values increased with increasing ramp amplitude. This outstanding muscle behavior is not accounted for in existing models so far and strongly supports the idea of a holistic reflection of distinct stomach structure and function. For the first time this study provides a comprehensive set of stomach

  2. Human small bowel as a useful tool to investigate smooth muscle effects of potential therapeutics in organophosphate poisoning.

    PubMed

    Marquart, Katharina; Prokopchuk, Olga; Worek, Franz; Thiermann, Horst; Martignoni, Marc E; Wille, Timo

    2018-09-01

    Isolated organs proofed to be a robust tool to study effects of (potential) therapeutics in organophosphate poisoning. Small bowel samples have been successfully used to reveal smooth muscle relaxing effects. In the present study, the effects of obidoxime, TMB-4, HI-6 and MB 327 were investigated on human small bowel tissue and compared with rat data. Hereby, the substances were tested in at least seven different concentrations in the jejunum or ileum both pre-contracted with carbamoylcholine. Additionally, the cholinesterase activity of native tissue was determined. Human small intestine specimens showed classical dose response-curves, similar to rat tissue, with MB 327 exerting the most potent smooth muscle relaxant effect in both species (human EC 50 =0.7×10 -5 M and rat EC 50 =0.7×10 -5 M). The AChE activity for human and rat samples did not differ significantly (rat jejunum=1351±166 mU/mg wet weight; rat ileum=1078±123 mU/mg wet weight; human jejunum=1030±258 mU/mg wet weight; human ileum=1293±243 mU/mg wet weight). Summarizing, our isolated small bowel setup seems to be a solid tool to investigate the effects of (potential) therapeutics on pre-contracted smooth muscle, with data being transferable between rat and humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Disruption of miR-29 Leads to Aberrant Differentiation of Smooth Muscle Cells Selectively Associated with Distal Lung Vasculature.

    PubMed

    Cushing, Leah; Costinean, Stefan; Xu, Wei; Jiang, Zhihua; Madden, Lindsey; Kuang, Pingping; Huang, Jingshu; Weisman, Alexandra; Hata, Akiko; Croce, Carlo M; Lü, Jining

    2015-05-01

    Differentiation of lung vascular smooth muscle cells (vSMCs) is tightly regulated during development or in response to challenges in a vessel specific manner. Aberrant vSMCs specifically associated with distal pulmonary arteries have been implicated in the pathogenesis of respiratory diseases, such as pulmonary arterial hypertension (PAH), a progressive and fatal disease, with no effective treatment. Therefore, it is highly relevant to understand the underlying mechanisms of lung vSMC differentiation. miRNAs are known to play critical roles in vSMC maturation and function of systemic vessels; however, little is known regarding the role of miRNAs in lung vSMCs. Here, we report that miR-29 family members are the most abundant miRNAs in adult mouse lungs. Moreover, high levels of miR-29 expression are selectively associated with vSMCs of distal vessels in both mouse and human lungs. Furthermore, we have shown that disruption of miR-29 in vivo leads to immature/synthetic vSMC phenotype specifically associated with distal lung vasculature, at least partially due to the derepression of KLF4, components of the PDGF pathway and ECM-related genes associated with synthetic phenotype. Moreover, we found that expression of FBXO32 in vSMCs is significantly upregulated in the distal vasculature of miR-29 null lungs. This indicates a potential important role of miR-29 in smooth muscle cell function by regulating FBXO32 and SMC protein degradation. These results are strongly supported by findings of a cell autonomous role of endogenous miR-29 in promoting SMC differentiation in vitro. Together, our findings suggested a vessel specific role of miR-29 in vSMC differentiation and function by targeting several key negative regulators.

  4. A 310-bp minimal promoter mediates smooth muscle cell-specific expression of telokin.

    PubMed

    Smith, A F; Bigsby, R M; Word, R A; Herring, B P

    1998-05-01

    A cell-specific promoter located in an intron of the smooth muscle myosin light chain kinase gene directs transcription of telokin exclusively in smooth muscle cells. Transgenic mice were generated in which a 310-bp rabbit telokin promoter fragment, extending from -163 to +147, was used to drive expression of simian virus 40 large T antigen. Smooth muscle-specific expression of the T-antigen transgene paralleled that of the endogenous telokin gene in all smooth muscle tissues except uterus. The 310-bp promoter fragment resulted in very low levels of transgene expression in uterus; in contrast, a transgene driven by a 2.4-kb fragment (-2250 to +147) resulted in high levels of transgene expression in uterine smooth muscle. Telokin expression levels correlate with the estrogen status of human myometrial tissues, suggesting that deletion of an estrogen response element (ERE) may account for the low levels of transgene expression driven by the 310-bp rabbit telokin promoter in uterine smooth muscle. Experiments in A10 smooth muscle cells directly showed that reporter gene expression driven by the 2.4-kb, but not 310-bp, promoter fragment could be stimulated two- to threefold by estrogen. This stimulation was mediated through an ERE located between -1447 and -1474. Addition of the ERE to the 310-bp fragment restored estrogen responsiveness in A10 cells. These data demonstrate that in addition to a minimal 310-bp proximal promoter at least one distal cis-acting regulatory element is required for telokin expression in uterine smooth muscle. The distal element may include an ERE between -1447 and -1474.

  5. Mediation of acetylcholine and substance P induced contractions by myosin light chain phosphorylation in feline colonic smooth muscle.

    PubMed

    Washabau, Robert J; Holt, David E; Brockman, Daniel J

    2002-05-01

    To determine the role of myosin light chain phosphorylation in feline colonic smooth muscle contraction. Colonic tissue was obtained from eight 12- to 24-month-old cats. Colonic longitudinal smooth muscle strips were attached to isometric force transducers for measurements of isometric stress. Myosin light chain phosphorylation was determined by isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Stress and phosphorylation were determined following stimulation with ACh or SP, in the absence or presence of a calmodulin antagonist (W-7; 0.1 to 1.0 mM), myosin light chain kinase inhibitor (ML-9; 1 to 10 microM), or extracellular calcium free solutions. Unstimulated longitudinal colonic smooth muscle contained low amounts (6.9+/-3.2%) of phosphorylated myosin light chain. Phosphorylation of the myosin light chains was dose and time dependent with maximal values of 58.5% at 30 seconds of stimulation with 100 microM Ach and 60.2% at 45 seconds of stimulation with 100 nM SP Active isometric stress development closely paralleled phosphorylation of the myosin light chains in ACh- or SP-stimulated muscle. W-7 and ML-9 dose dependently inhibited myosin light chain phosphorylation and isometric stress development associated with ACh or SP stimulation. Removal of extracellular calcium inhibited myosin light chain phosphorylation and isometric stress development in ACh-stimulated smooth muscle. Feline longitudinal colonic smooth muscle contraction is calcium-, calmodulin-, and myosin light chain kinase-dependent. Myosin light chain phosphorylation is necessary for the initiation of contraction in feline longitudinal colonic smooth muscle. These findings may prove useful in determining the biochemical and molecular defects that accompany feline colonic motility disorders.

  6. In vitro smooth muscle contractility before and after relief of experimental obstruction in the rat: application to the surgical management of ileal dilatation.

    PubMed

    Haraux, Elodie; Canarelli, Jean-Pierre; Khorsi, Hafida; Delanaud, Stéphane; Bach, Véronique; Gay-Quéheillard, Jérome

    2014-03-01

    Bowel dilatation occurs proximal to an obstruction and predisposes to intestinal dysmotility. The present study sought to determine whether or not changes in smooth muscle contractility and the thickness of the proximal, dilated bowel wall can be reversed following relief of the obstruction. Three groups of seven male Wistar rats were studied. In 8-week-old animals in a control group and a sham-operated group, a small segment of bowel (designated as R1 for controls and R2 for shams) was resected 5.0 cm from the cecum. In the third (operated) group, a narrow, isoperistaltic intestinal loop was created proximal to an end-to-end anastomosis of the ileum in 4-week-old animals. When these animals were 6 weeks old, the loop was re-anastomosed to the distal small bowel (after resection of the loop's distal portion, referred to as R3). Two weeks later, a small segment of bowel was resected proximal to the anastomosis (R4). We evaluated the thickness of the smooth muscle layers and the in vitro contractile responses of circular smooth muscle ileal strips (R1-R4) to electrical stimulation and pharmacological stimulation (with KCl, acetylcholine (ACh), substance P, N(G)-nitro-l-arginine methyl ester (L-NAME) and histamine). The amplitudes of contraction in response to electrical and Ach-mediated stimulation were higher for R3 than for R4 (P<0.001), R1 and R2 (both P<0.05). Compared with R1 and R2, the smooth muscle layer was three times as thick in R3 (P<0.001) and 2.5 times as thick in R4 (P<0.01). Our study provides evidence of the possible recovery of intestinal motility (in response to neurotransmitters involved in gut function) after the relief of an obstruction. If ileal motility can conceivably return to normal values, conservative surgical procedures in pediatric patients should be preferred (in order to leave a sufficient length of bowel and avoid short bowel syndrome). © 2013 Elsevier Inc. All rights reserved.

  7. Animal model for angiotensin II effects in the internal anal sphincter smooth muscle: mechanism of action.

    PubMed

    Fan, Ya-Ping; Puri, Rajinder N; Rattan, Satish

    2002-03-01

    Effect of ANG II was investigated in in vitro smooth muscle strips and in isolated smooth muscle cells (SMC). Among different species, rat internal and sphincter (IAS) smooth muscle showed significant and reproducible contraction that remained unmodified by different neurohumoral inhibitors. The AT(1) antagonist losartan but not AT(2) antagonist PD-123319 antagonized ANG II-induced contraction of the IAS smooth muscle and SMC. ANG II-induced contraction of rat IAS smooth muscle and SMC was attenuated by tyrosine kinase inhibitors genistein and tyrphostin, protein kinase C (PKC) inhibitor H-7, Ca(2+) channel blocker nicardipine, Rho kinase inhibitor Y-27632 or p(44/42) mitogen-activating protein kinase (MAPK(44/42)) inhibitor PD-98059. Combinations of nicardipine and H-7, Y-27632, and PD-98059 caused further attenuation of the ANG II effects. Western blot analyses revealed the presence of both AT(1) and AT(2) receptors. We conclude that ANG II causes contraction of rat IAS smooth muscle by the activation of AT(1) receptors at the SMC and involves multiple intracellular pathways, influx of Ca(2+), and activation of PKC, Rho kinase, and MAPK(44/42).

  8. The biophysics of asthmatic airway smooth muscle.

    PubMed

    Stephens, Newman L; Li, Weilong; Jiang, He; Unruh, H; Ma, Xuefei

    2003-09-16

    It is clear that significant advances have been made in the understanding of the physiology, biochemistry and molecular biology of airway smooth muscle (ASM) contraction and how the knowledge obtained from these approaches may be used to elucidate the pathogenesis of asthma. Not to belittle other theories of smooth muscle contraction extant in the field, perhaps the most outstanding development has been the formulation of plasticity theory. This may radically alter our understanding of smooth muscle contraction. Its message is that while shortening velocity and capacity are linear functions of length, active force is length independent. These changes are explained by the ability of thick filament protein to depolymerize at short lengths and to increase numbers of contractile units in series at lengths greater than optimal length or L(ref). Other advances are represented by the report that the major part of ASM shortening is complete within the initial first 20% of contraction time, that the nature and history of loading determine the extent of shortening and that these findings can be explained by the finding that the crossbridges are cycling four times faster than in the remaining time. Another unexpected finding is that late in the course of isotonic relaxation the muscle undergoes spontaneous activation which delays relaxation and smoothes it out; speculatively this could minimize turbulence of airflow. On the applied front evidence now shows the shortening ability of bronchial smooth muscle of human subjects of asthma is significantly increased. Measurements also indicate that increased smooth muscle myosin light chain kinase content, via increased actomyosin ATPase activity could be responsible for the changes in contractility.

  9. Effects of polyamines and calcium and sodium ions on smooth muscle cytoskeleton-associated phosphatidylinositol (4)-phosphate 5-kinase.

    PubMed

    Chen, H; Baron, C B; Griffiths, T; Greeley, P; Coburn, R F

    1998-10-01

    In many different cell types, including smooth muscle cells (Baron et al., 1989, Am. J. Physiol., 256: C375-383; Baron et al., J. Pharmacol. Exp. Ther. 266: 8-15), phosphatidylinositol (4)-phosphate 5-kinase plays a critical role in the regulation of membrane concentrations of phosphatidylinositol (4,5)-bisphosphate and formation of inositol (1,4,5)-trisphosphate. In unstimulated porcine trachealis smooth muscle, 70% of total cellular phosphatidylinositol (4)-phosphate 5-kinase activity was associated with cytoskeletal proteins and only trace activity was detectable in isolated sarcolemma. Using two different preparations, we studied cytoskeleton-associated phosphatidyl inositol (4)-phosphate 5-kinase under conditions that attempted to mimic the ionic and thermal cytoplasmic environment of living cells. The cytoskeleton-associated enzyme, studied using phosphatidylinositol (4)-phosphate substrate concentrations that produced phosphatidylinositol 4,5-bisphosphate at about 10% of the maximal rate, was sensitive to free [Mg2+], had an absolute requirement for phosphatidylserine, phosphatidic acid, or phosphatidylinositol, and included type I isoforms. At 0.5 mM free [Mg2+], physiological spermine concentrations, 0.2-0.4 mM, increased phosphatidylinositol (4)-phosphate 5-kinase activity two to four times compared to controls run without spermine. The EC50 for spermine-evoked increases in activity was 0.17 +/- 0.02 mM. Spermine-evoked enzyme activity was a function of both free [Mg2+] and substrate concentration. Cytoskeleton-associated phosphatidylinositol (4)-phosphate 5-kinase was inhibited by free [Ca2+] over a physiological range for cytoplasm--10(-8) to 10(-5) M, an effect independent of the presence of calmodulin. Na+ over the range 20 to 50 mM also inhibited this enzyme activated by 5 mM Mg2+ but had no effect on spermine-activated enzyme. Na+, Ca2+, and spermine appear to be physiological modulators of smooth muscle cytoskeleton-bound phosphatidylinositol (4

  10. The comparative effects of aminoglycoside antibiotics and muscle relaxants on electrical field stimulation response in rat bladder smooth muscle.

    PubMed

    Min, Chang Ho; Min, Young Sil; Lee, Sang Joon; Sohn, Uy Dong

    2016-06-01

    It has been reported that several aminoglycoside antibiotics have a potential of prolonging the action of non-depolarizing muscle relaxants by drug interactions acting pre-synaptically to inhibit acetylcholine release, but antibiotics itself also have a strong effect on relaxing the smooth muscle. In this study, four antibiotics of aminoglycosides such as gentamicin, streptomycin, kanamycin and neomycin were compared with skeletal muscle relaxants baclofen, tubocurarine, pancuronium and succinylcholine, and a smooth muscle relaxant, papaverine. The muscle strips isolated from the rat bladder were stimulated with pulse trains of 40 V in amplitude and 10 s in duration, with pulse duration of 1 ms at the frequency of 1-8 Hz, at 1, 2, 4, 6, 8 Hz respectively. To test the effect of four antibiotics on bladder smooth muscle relaxation, each of them was treated cumulatively from 1 μM to 0.1 mM with an interval of 5 min. Among the four antibiotics, gentamicin and neomycin inhibited the EFS response. The skeletal muscle relaxants (baclofen, tubocurarine, pancuronium and succinylcholine) and inhibitory neurotransmitters (GABA and glycine) did not show any significant effect. However, papaverine, had a significant effect in the relaxation of the smooth muscle. It was suggested that the aminoglycoside antibiotics have inhibitory effect on the bladder smooth muscle.

  11. Inhibitory effects of botulinum toxin on pyloric and antral smooth muscle.

    PubMed

    James, Arlene N; Ryan, James P; Parkman, Henry P

    2003-08-01

    Botulinum toxin injection into the pylorus is reported to improve gastric emptying in gastroparesis. Classically, botulinum toxin inhibits ACh release from cholinergic nerves in skeletal muscle. The aim of this study was to determine the effects of botulinum toxin on pyloric smooth muscle. Guinea pig pyloric muscle strips were studied in vitro. Botulinum toxin type A was added; electric field stimulation (EFS) was performed every 30 min for 6 h. ACh (100 microM)-induced contractile responses were determined before and after 6 h. Botulinum toxin caused a concentration-dependent decrease of pyloric contractions to EFS. At a low concentration (2 U/ml), botulinum toxin decreased pyloric contractions to EFS by 43 +/- 9% without affecting ACh-induced contractions. At higher concentrations (10 U/ml), botulinum toxin decreased pyloric contraction to EFS by 75 +/- 7% and decreased ACh-induced contraction by 79 +/- 9%. In conclusion, botulinum toxin inhibits pyloric smooth muscle contractility. At a low concentration, botulinum toxin decreases EFS-induced contractile responses without affecting ACh-induced contractions suggesting inhibition of ACh release from cholinergic nerves. At higher concentrations, botulinum toxin directly inhibits smooth muscle contractility as evidenced by the decreased contractile response to ACh.

  12. Effects of sodium metabisulphite on guinea pig contractile airway smooth muscle responses in vitro.

    PubMed

    Sun, J; Sakamoto, T; Chung, K F

    1995-08-01

    Sodium metabisulphite (MBS) is known to induce bronchoconstriction in asthmatic patients. The effects of MBS on guinea pig airway smooth muscle and on neurally mediated contraction in vitro have been examined. Tracheal and bronchial airway segments were placed in oxygenated buffer solution and electrical field stimulation was performed in the presence of indomethacin (10(-5) M) and propranolol (10(-6) M) for the measurement of isometric tension. Atropine (10(-6) M) was added to bronchial tissues. Concentrations of MBS up to 10(-3) M had no direct effect on airway smooth muscle contraction and did not alter either tracheal smooth muscle contraction induced by electrical field stimulation at all frequencies or acetylcholine-induced tracheal smooth muscle contraction. There was a similar response in the absence of epithelium, except for potentiation of the response induced by electrical field stimulation at 0.5 Hz (24 (10)% increase). However, MBS (10(-5), 10(-6) and 10(-7) M) augmented neurally-mediated non-adrenergic non-cholinergic contractile responses in the bronchi (13.3 (3.2)%, 23.8 (9.6)%, and 6.4 (1.6)%, respectively). MBS had no effect on the contractile response induced by substance P, but at higher concentrations (10(-3) M and 10(-4) M) it caused a time-dependent attenuation of responses induced by either electrical field stimulation or exogenously applied acetylcholine or substance P. MBS had no direct contractile responses but enhanced bronchoconstriction induced by activation of non-cholinergic neural pathways in the bronchus, probably through increased release of neuropeptides. At high concentrations MBS inhibited contractile responses initiated by receptor or neural stimulation.

  13. Effects of sodium metabisulphite on guinea pig contractile airway smooth muscle responses in vitro.

    PubMed Central

    Sun, J.; Sakamoto, T.; Chung, K. F.

    1995-01-01

    BACKGROUND--Sodium metabisulphite (MBS) is known to induce bronchoconstriction in asthmatic patients. The effects of MBS on guinea pig airway smooth muscle and on neurally mediated contraction in vitro have been examined. METHODS--Tracheal and bronchial airway segments were placed in oxygenated buffer solution and electrical field stimulation was performed in the presence of indomethacin (10(-5) M) and propranolol (10(-6) M) for the measurement of isometric tension. Atropine (10(-6) M) was added to bronchial tissues. RESULTS--Concentrations of MBS up to 10(-3) M had no direct effect on airway smooth muscle contraction and did not alter either tracheal smooth muscle contraction induced by electrical field stimulation at all frequencies or acetylcholine-induced tracheal smooth muscle contraction. There was a similar response in the absence of epithelium, except for potentiation of the response induced by electrical field stimulation at 0.5 Hz (24 (10)% increase). However, MBS (10(-5), 10(-6) and 10(-7) M) augmented neurally-mediated non-adrenergic non-cholinergic contractile responses in the bronchi (13.3 (3.2)%, 23.8 (9.6)%, and 6.4 (1.6)%, respectively). MBS had no effect on the contractile response induced by substance P, but at higher concentrations (10(-3) M and 10(-4) M) it caused a time-dependent attenuation of responses induced by either electrical field stimulation or exogenously applied acetylcholine or substance P. CONCLUSIONS--MBS had no direct contractile responses but enhanced bronchoconstriction induced by activation of non-cholinergic neural pathways in the bronchus, probably through increased release of neuropeptides. At high concentrations MBS inhibited contractile responses initiated by receptor or neural stimulation. Images PMID:7570440

  14. Ureter smooth muscle cell orientation in rat is predominantly longitudinal.

    PubMed

    Spronck, Bart; Merken, Jort J; Reesink, Koen D; Kroon, Wilco; Delhaas, Tammo

    2014-01-01

    In ureter peristalsis, the orientation of the contracting smooth muscle cells is essential, yet current descriptions of orientation and composition of the smooth muscle layer in human as well as in rat ureter are inconsistent. The present study aims to improve quantification of smooth muscle orientation in rat ureters as a basis for mechanistic understanding of peristalsis. A crucial step in our approach is to use two-photon laser scanning microscopy and image analysis providing objective, quantitative data on smooth muscle cell orientation in intact ureters, avoiding the usual sectioning artifacts. In 36 rat ureter segments, originating from a proximal, middle or distal site and from a left or right ureter, we found close to the adventitia a well-defined longitudinal smooth muscle orientation. Towards the lamina propria, the orientation gradually became slightly more disperse, yet the main orientation remained longitudinal. We conclude that smooth muscle cell orientation in rat ureter is predominantly longitudinal, though the orientation gradually becomes more disperse towards the proprial side. These findings do not support identification of separate layers. The observed longitudinal orientation suggests that smooth muscle contraction would rather cause local shortening of the ureter, than cause luminal constriction. However, the net-like connective tissue of the ureter wall may translate local longitudinal shortening into co-local luminal constriction, facilitating peristalsis. Our quantitative, minimally invasive approach is a crucial step towards more mechanistic insight into ureter peristalsis, and may also be used to study smooth muscle cell orientation in other tube-like structures like gut and blood vessels.

  15. Modeling the dispersion effects of contractile fibers in smooth muscles

    NASA Astrophysics Data System (ADS)

    Murtada, Sae-Il; Kroon, Martin; Holzapfel, Gerhard A.

    2010-12-01

    Micro-structurally based models for smooth muscle contraction are crucial for a better understanding of pathological conditions such as atherosclerosis, incontinence and asthma. It is meaningful that models consider the underlying mechanical structure and the biochemical activation. Hence, a simple mechanochemical model is proposed that includes the dispersion of the orientation of smooth muscle myofilaments and that is capable to capture available experimental data on smooth muscle contraction. This allows a refined study of the effects of myofilament dispersion on the smooth muscle contraction. A classical biochemical model is used to describe the cross-bridge interactions with the thin filament in smooth muscles in which calcium-dependent myosin phosphorylation is the only regulatory mechanism. A novel mechanical model considers the dispersion of the contractile fiber orientations in smooth muscle cells by means of a strain-energy function in terms of one dispersion parameter. All model parameters have a biophysical meaning and may be estimated through comparisons with experimental data. The contraction of the middle layer of a carotid artery is studied numerically. Using a tube the relationships between the internal pressure and the stretches are investigated as functions of the dispersion parameter, which implies a strong influence of the orientation of smooth muscle myofilaments on the contraction response. It is straightforward to implement this model in a finite element code to better analyze more complex boundary-value problems.

  16. Nelumbo nucifera leaves extracts inhibit mouse airway smooth muscle contraction.

    PubMed

    Yang, Xiao; Xue, Lu; Zhao, Qingyang; Cai, Congli; Liu, Qing-Hua; Shen, Jinhua

    2017-03-20

    Alkaloids extracted from lotus leaves (AELL) can relax vascular smooth muscle. However, whether AELL has a similar relaxant role on airway smooth muscle (ASM) remains unknown. This study aimed to explore the relaxant property of AELL on ASM and the underlying mechanism. Alkaloids were extracted from dried lotus leaves using the high temperature rotary evaporation extraction method. The effects of AELL on mouse ASM tension were studied using force measuring and patch-clamp techniques. It was found that AELL inhibited the high K + or acetylcholine chloride (ACh)-induced precontraction of mouse tracheal rings by 64.8 ± 2.9%, or 48.8 ± 4.7%, respectively. The inhibition was statistically significant and performed in a dose-dependent manner. Furthermore, AELL-induced smooth muscle relaxation was partially mediated by blocking voltage-dependent Ca 2+ channels (VDCC) and non-selective cation channels (NSCC). AELL, which plays a relaxant role in ASM, might be a new complementary treatment to treat abnormal contractions of the trachea and asthma.

  17. Endothelin ETA receptor expression in human cerebrovascular smooth muscle cells.

    PubMed

    Yu, J C; Pickard, J D; Davenport, A P

    1995-11-01

    1. Endothelin (ET) has been implicated in cerebrovasospasm for example, following subarachnoid haemorrhage, and blocking the interaction of ET with its receptors on cerebral vessels, may be of therapeutic benefit. The aim of our study was to characterize endothelin receptor sub-types on medial smooth muscle cells of human cerebral vessels. Cultures of vascular smooth muscle cells were explanted from human cerebral resistance vessels and characterized as human brain smooth muscle cells (HBSMCs). 2. Over a 48 h incubation period, HBSMC cultures secreted comparable levels of immunoreactive (IR) big endothelin-1 (big ET-1) and IR endothelin (ET): 12.7 +/- 10.3 and 8.3 +/- 5.6 pmol/10(6) cells, respectively (mean +/- s.e. mean from three different individuals), into the culture medium. 3. Total RNA was extracted from cultures of human brain smooth muscle cells. Reverse-transcriptase polymerase chain reaction (RI-PCR) assays and subsequent product separation by agarose gel electrophoresis revealed single bands corresponding to the expected product sizes encoding cDNA for ETA (299 base pairs) and ETB (428 base pairs) (n = 3 different cultures). 4. Autoradiography demonstrated the presence of specific binding sites for [125I]-ET-1 which labels all ET receptors, and [125I]-PD151242, an ETA subtype-selective antagonist which exclusively labels ETA receptors, but no specific-binding was detected using ETB subtype-selective [125I]-BQ3020 (n = 3 different cultures, in duplicate). 5. In saturation binding assays, [123I]-ET-1 bound with high affinity: KD = 0.8 +/- 0.1 nM and Bmax = 690 +/- 108 fmol mg-1. A one-site fit was preferred and Hill slopes were close to unity over the concentration range (10(-12) to 10(-8) M). [125I]-PD151242 also bound with similar affinity: KD = 0.4 +/- 0.1 nM and Bmax = 388 +/- 68 fmol mg-1 (mean +/- s.e. mean, n = 3 different cultures). Again, a one-site fit was preferred and Hill slopes were close to unity over the concentration range. Unlabelled PD

  18. KV7 Channel Pharmacological Activation by the Novel Activator ML213: Role for Heteromeric KV7.4/KV7.5 Channels in Guinea Pig Detrusor Smooth Muscle Function.

    PubMed

    Provence, Aaron; Angoli, Damiano; Petkov, Georgi V

    2018-01-01

    Voltage-gated K V 7 channels (K V 7.1 to K V 7.5) are important regulators of the cell membrane potential in detrusor smooth muscle (DSM) of the urinary bladder. This study sought to further the current knowledge of K V 7 channel function at the molecular, cellular, and tissue levels in combination with pharmacological tools. We used isometric DSM tension recordings, ratiometric fluorescence Ca 2+ imaging, amphotericin-B perforated patch-clamp electrophysiology, and in situ proximity ligation assay (PLA) in combination with the novel compound N -(2,4,6-trimethylphenyl)-bicyclo[2.2.1]heptane-2-carboxamide (ML213), an activator of K V 7.2, K V 7.4, and K V 7.5 channels, to examine their physiologic roles in guinea pig DSM function. ML213 caused a concentration-dependent (0.1-30 µ M) inhibition of spontaneous phasic contractions in DSM isolated strips; effects blocked by the K V 7 channel inhibitor XE991 (10 µ M). ML213 (0.1-30 µ M) also reduced pharmacologically induced and nerve-evoked contractions in DSM strips. Consistently, ML213 (10 µ M) decreased global intracellular Ca 2+ concentrations in Fura-2-loaded DSM isolated strips. Perforated patch-clamp electrophysiology revealed that ML213 (10 µ M) caused an increase in the amplitude of whole-cell K V 7 currents. Further, in current-clamp mode of the perforated patch clamp, ML213 hyperpolarized DSM cell membrane potential in a manner reversible by washout or XE991 (10 µ M), consistent with ML213 activation of K V 7 channel currents. Preapplication of XE991 (10 µ M) not only depolarized the DSM cells, but also blocked ML213-induced hyperpolarization, confirming ML213 selectivity for K V 7 channel subtypes. In situ PLA revealed colocalization and expression of heteromeric K V 7.4/K V 7.5 channels in DSM isolated cells. These combined results suggest that ML213-sensitive K V 7.4- and K V 7.5-containing channels are essential regulators of DSM excitability and contractility. Copyright © 2017 by The American

  19. Importance of contraction history on muscle force of porcine urinary bladder smooth muscle.

    PubMed

    Menzel, Robin; Böl, Markus; Siebert, Tobias

    2017-02-01

    The purpose of this study was to provide a comprehensive dataset of porcine urinary bladder smooth muscle properties. Particularly, the history dependence of force production, namely force depression (FD) following shortening and force enhancement (FE) following stretch, was analysed. During active micturition, the circumference of the urinary bladder changes enormously. Thus, FD might be an important phenomenon during smooth muscle contraction. Electrically stimulated, intact urinary bladder strips from pigs (n = 10) were suspended in an aerated-filled organ bath, and different isometric, isotonic, and isokinetic contraction protocols were performed to determine the force-length and the force-velocity relation. FD and FE were assessed in concentric and eccentric contractions with different ramp lengths and ramp velocities. Bladder smooth muscles exhibit considerable amounts of FD and FE. The amount of FD increased significantly with ramp length, while FE did not change. However, FE and FD were independent of ramp velocity. The results imply that smooth muscle bladder strips exhibit similar muscle properties and history-dependent behaviour compared to striated muscles. The provided dataset of muscle properties is important for bladder modelling as well as for the analyses and interpretation of dynamic bladder filling and voiding.

  20. Aging-associated changes in microRNA expression profile of internal anal sphincter smooth muscle: Role of microRNA-133a

    PubMed Central

    Singh, Jagmohan; Boopathi, Ettickan; Addya, Sankar; Phillips, Benjamin; Rigoutsos, Isidore; Penn, Raymond B.

    2016-01-01

    A comprehensive genomic and proteomic, computational, and physiological approach was employed to examine the (previously unexplored) role of microRNAs (miRNAs) as regulators of internal anal sphincter (IAS) smooth muscle contractile phenotype and basal tone. miRNA profiling, genome-wide expression, validation, and network analyses were employed to assess changes in mRNA and miRNA expression in IAS smooth muscles from young vs. aging rats. Multiple miRNAs, including rno-miR-1, rno-miR-340-5p, rno-miR-185, rno-miR-199a-3p, rno-miR-200c, rno-miR-200b, rno-miR-31, rno-miR-133a, and rno-miR-206, were found to be upregulated in aging IAS. qPCR confirmed the upregulated expression of these miRNAs and downregulation of multiple, predicted targets (Eln, Col3a1, Col1a1, Zeb2, Myocd, Srf, Smad1, Smad2, Rhoa/Rock2, Fn1, Tagln v2, Klf4, and Acta2) involved in regulation of smooth muscle contractility. Subsequent studies demonstrated an aging-associated increase in the expression of miR-133a, corresponding decreases in RhoA, ROCK2, MYOCD, SRF, and SM22α protein expression, RhoA-signaling, and a decrease in basal and agonist [U-46619 (thromboxane A2 analog)]-induced increase in the IAS tone. Moreover, in vitro transfection of miR-133a caused a dose-dependent increase of IAS tone in strips, which was reversed by anti-miR-133a. Last, in vivo perianal injection of anti-miR-133a reversed the loss of IAS tone associated with age. This work establishes the important regulatory effect of miRNA-133a on basal and agonist-stimulated IAS tone. Moreover, reversal of age-associated loss of tone via anti-miR delivery strongly implicates miR dysregulation as a causal factor in the aging-associated decrease in IAS tone and suggests that miR-133a is a feasible therapeutic target in aging-associated rectoanal incontinence. PMID:27634012

  1. Isolation of pulmonary artery smooth muscle cells from neonatal mice.

    PubMed

    Lee, Keng Jin; Czech, Lyubov; Waypa, Gregory B; Farrow, Kathryn N

    2013-10-19

    Pulmonary hypertension is a significant cause of morbidity and mortality in infants. Historically, there has been significant study of the signaling pathways involved in vascular smooth muscle contraction in PASMC from fetal sheep. While sheep make an excellent model of term pulmonary hypertension, they are very expensive and lack the advantage of genetic manipulation found in mice. Conversely, the inability to isolate PASMC from mice was a significant limitation of that system. Here we described the isolation of primary cultures of mouse PASMC from P7, P14, and P21 mice using a variation of the previously described technique of Marshall et al. that was previously used to isolate rat PASMC. These murine PASMC represent a novel tool for the study of signaling pathways in the neonatal period. Briefly, a slurry of 0.5% (w/v) agarose + 0.5% iron particles in M199 media is infused into the pulmonary vascular bed via the right ventricle (RV). The iron particles are 0.2 μM in diameter and cannot pass through the pulmonary capillary bed. Thus, the iron lodges in the small pulmonary arteries (PA). The lungs are inflated with agarose, removed and dissociated. The iron-containing vessels are pulled down with a magnet. After collagenase (80 U/ml) treatment and further dissociation, the vessels are put into a tissue culture dish in M199 media containing 20% fetal bovine serum (FBS), and antibiotics (M199 complete media) to allow cell migration onto the culture dish. This initial plate of cells is a 50-50 mixture of fibroblasts and PASMC. Thus, the pull down procedure is repeated multiple times to achieve a more pure PASMC population and remove any residual iron. Smooth muscle cell identity is confirmed by immunostaining for smooth muscle myosin and desmin.

  2. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders

    PubMed Central

    Brozovich, F.V.; Nicholson, C.J.; Degen, C.V.; Gao, Yuan Z.; Aggarwal, M.

    2016-01-01

    The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function. PMID:27037223

  3. Comparison of angiotensin II (Ang II) effects in the internal anal sphincter (IAS) and lower esophageal sphincter smooth muscles.

    PubMed

    Rattan, Satish; Fan, Ya-Ping; Puri, Rajinder N

    2002-03-22

    Studies were performed to compare the actions of Ang II in the internal anal sphincter (IAS) vs. lower esophageal sphincter (LES) smooth muscles in vitro, in opossum and rabbit. Studies also were carried out in isolated smooth muscle cells. In opossum, Ang II produced no discernible effects in the IAS, but did produce a concentration-dependent contraction in the LES. Conversely, in the rabbit, while Ang II caused a modest response in the LES, it caused a significant contraction in the IAS. The contractile responses of Ang II in the opossum LES were mostly resistant to different neurohumoral antagonists but were antagonized by AT1 antagonist losartan. AT2 antagonist PD 123,319, rather than inhibiting, prolonged the contractile action of Ang II. The contractile actions of Ang II in the opossum LES were not modified by the tyrosine kinase inhibitors (genistein and tyrphostin 1 x 10(-6) M) but were partially attenuated by the PKC inhibitor H-7 (1 x 10(-6) M), Ca2+ channel blocker nicardipine (1 x 10(-5) M), Rho kinase inhibitor HA-1077 (1 x 10(-7) M) or p(44/42) MAP kinase inhibitor PD 98059 (5 x 10(-5) M). The combination of HA-1077 and H-7 did not cause an additive attenuation of Ang II responses. Western blot analyses revealed the presence of both AT1 and AT2 receptors. We conclude that Ang lI-induced contraction of sphincteric smooth muscle occurs primarily by the activation of AT1 receptors at the smooth muscle cells and involves multiple pathways, influx of Ca2+, and PKC, Rho kinase and p(44/42) MAP kinase.

  4. On the thermodynamics of smooth muscle contraction

    NASA Astrophysics Data System (ADS)

    Stålhand, Jonas; McMeeking, Robert M.; Holzapfel, Gerhard A.

    2016-09-01

    Cell function is based on many dynamically complex networks of interacting biochemical reactions. Enzymes may increase the rate of only those reactions that are thermodynamically consistent. In this paper we specifically treat the contraction of smooth muscle cells from the continuum thermodynamics point of view by considering them as an open system where matter passes through the cell membrane. We systematically set up a well-known four-state kinetic model for the cross-bridge interaction of actin and myosin in smooth muscle, where the transition between each state is driven by forward and reverse reactions. Chemical, mechanical and energy balance laws are provided in local forms, while energy balance is also formulated in the more convenient temperature form. We derive the local (non-negative) production of entropy from which we deduce the reduced entropy inequality and the constitutive equations for the first Piola-Kirchhoff stress tensor, the heat flux, the ion and molecular flux and the entropy. One example for smooth muscle contraction is analyzed in more detail in order to provide orientation within the established general thermodynamic framework. In particular the stress evolution, heat generation, muscle shorting rate and a condition for muscle cooling are derived.

  5. Esophageal smooth muscle hypertrophy causing regurgitation in a rabbit

    PubMed Central

    PARKINSON, Lily; KUZMA, Carrie; WUENSCHMANN, Arno; MANS, Christoph

    2017-01-01

    A five-year-old rabbit was evaluated for a 7 to 8 month history of regurgitation, weight loss, and hyporexia. Previously performed whole body radiographs, plasma biochemistry results and complete blood count revealed had no significant abnormalities. A computed tomography (CT) scan revealed a circumferential caudal esophageal thickening. The animal received supportive care until euthanasia was performed 6 weeks later. Caudal esophageal smooth muscle hypertrophy was diagnosed on necropsy. This case indicates that regurgitation can occur in rabbits and advanced imaging can investigate the underlying cause. PMID:28966232

  6. Nonparametric Model of Smooth Muscle Force Production During Electrical Stimulation.

    PubMed

    Cole, Marc; Eikenberry, Steffen; Kato, Takahide; Sandler, Roman A; Yamashiro, Stanley M; Marmarelis, Vasilis Z

    2017-03-01

    A nonparametric model of smooth muscle tension response to electrical stimulation was estimated using the Laguerre expansion technique of nonlinear system kernel estimation. The experimental data consisted of force responses of smooth muscle to energy-matched alternating single pulse and burst current stimuli. The burst stimuli led to at least a 10-fold increase in peak force in smooth muscle from Mytilus edulis, despite the constant energy constraint. A linear model did not fit the data. However, a second-order model fit the data accurately, so the higher-order models were not required to fit the data. Results showed that smooth muscle force response is not linearly related to the stimulation power.

  7. Lovastatin inhibits gap junctional communication in cultured aortic smooth muscle cells.

    PubMed

    Shen, Jing; Wang, Li-Hong; Zheng, Liang-Rong; Zhu, Jian-Hua; Hu, Shen-Jiang

    2010-09-01

    Gap junctions, which serve as intercellular channels that allow the passage of ions and other small molecules between neighboring cells, play an important role in vital functions, including the regulation of cell growth, differentiation, and development. Statins, the 3-hydroxy-3-methylglutaryl-coenzymeA (HMG-CoA) reductase inhibitors, have been shown to inhibit the migration and proliferation of smooth muscle cells (SMCs) leading to an antiproliferative effect. Recent studies have shown that statins can reduce gap junction protein connexin43 (Cx43) expression both in vivo and in vitro. However, little work has been done on the effects of statins on gap junctional intercellular communication (GJIC). We hypothesized in this study that lovastatin inhibits vascular smooth muscle cells (VSMCs) migration through the inhibition of the GJIC. Rat aortic SMCs (RASMCs) were exposed to lovastatin. Vascular smooth muscle cells migration was then assessed with a Transwell migration assay. Gap junctional intercellular communication was determined by using fluorescence recovery after photobleaching (FRAP) analysis, which was performed with a laser-scanning confocal microscope. The migration of the cultured RASMCs were detected by Transwell system. Cell migration was dose-dependently inhibited with lovastatin. Compared with that in the control (110 ± 26), the number of migrated SMCs was significantly reduced to 72 ± 24 (P < .05), 62 ± 18 (P < .01), and 58 ± 19 (P < .01) at the concentration of 0.4, 2, and 10 umol/L, per field. The rate of fluorescence recovery (R) at 5 minutes after photobleaching was adopted as the functional index of GJIC. The R- value of cells exposed to lovastatin 10 umol/L for 48 hours was 24.38% ± 4.84%, whereas the cells in the control group had an R- value of 36.11% ± 10.53%, demonstrating that the GJIC of RASMCs was significantly inhibited by lovastatin (P < .01). Smaller concentrations of lovastatin 0.08 umol/L did not change gap junction coupling

  8. [Biomechanics and bio-energetics of smooth muscle contraction. Relation to bronchial hyperreactivity].

    PubMed

    Coirault, C; Blanc, F X; Chemla, D; Salmeron, S; Lecarpentier, Y

    2000-06-01

    Mechanical studies of isolated muscle and analysis of molecular actomyosin interactions have improved our understanding of the pathophysiology of airway smooth muscle. Mechanical properties of airway smooth muscle are similar to those of other smooth muscles. Airway smooth muscle exhibits spontaneous intrinsic tone and its maximum shortening velocity (Vmax) is 10-30 fold lower than in striated muscle. Smooth muscle myosin generates step size and elementary force per crossbridge interaction approximately similar to those of skeletal muscle myosin. Special slow cycling crossbridges, termed latch-bridges, have been attributed to myosin light chain dephosphorylation. From a mechanical point of view, it has been shown that airway hyperresponsiveness is characterized by an increased Vmax and an increased shortening capacity, with no significant change in the force-generating capacity.

  9. KLF5/BTEB2, a Krüppel-like zinc-finger type transcription factor, mediates both smooth muscle cell activation and cardiac hypertrophy.

    PubMed

    Nagai, Ryozo; Shindo, Takayuki; Manabe, Ichiro; Suzuki, Toru; Kurabayashi, Masahiko

    2003-01-01

    Cardiac and vascular biology need to be approached interactively because they share many common biological features as seen in activation of the local renin-angiotensin system, angiogenesis, and extracellular matrix production. We previously reported KLF5/BTEB2, a Krüppel-like zinc-finger type transcription factor, to activate various gene promoters that are activated in phenotypically modulated smooth muscle cells, such as a nonmuscle type myosin heavy chain gene SMemb, plasminogen activator inhibitor-1 (PAI-1), iNOS, PDGF-A, Egr-1 and VEGF receptors at least in vitro. KLF5/BTEB2 mRNA levels are downregulated with vascular development but upregulated in neointima that is produced in response to vascular injury. Mitogenic stimulation activates KLF5/BTEB2 gene expression through MEK1 and Egr-1. Chromatin immunoprecipitation assay showed KLF5/BTEB2 to be induced and to bind the promoter of the PDGF-A gene in response to angiotensin II stimulation. In order to define the role of KLF5/BTEB2 in cardiovascular remodeling, we targeted the KLF5/BTEB2 gene in mice. Homozygous mice resulted in early embryonic lethality whereas heterozygous mice were apparently normal. However, in response to external stress, arteries of heterozygotes exhibited diminished levels of smooth muscle and adventitial cell activation. Furthermore, cardiac fibrosis and hypertrophy induced by continuous angiotensin II infusion. We also found that RARa binds KLF5/BTEB2, and that Am80, a potent synthetic RAR agonist, inhibits angiotensin II-induced cardiac hypertrophy. These results indicate that KLF5/BTEB2 is an essential transcription factor that causes not only smooth muscle phenotypic modulation but also cardiac hypertrophy and fibrosis.

  10. A Contractile Network of Interstitial Cells of Cajal in the Supratarsal Mueller's Smooth Muscle Fibers With Sparse Sympathetic Innervation

    PubMed Central

    Yuzuriha, Shunsuke; Matsuo, Kiyoshi; Ban, Ryokuya; Yano, Shiharu; Moriizumi, Tetsuji

    2012-01-01

    Background: We previously reported that the supratarsal Mueller's muscle is innervated by both sympathetic efferent fibers and trigeminal proprioceptive afferent fibers, which function as mechanoreceptors-inducing reflexive contractions of both the levator and frontalis muscles. Controversy still persists regarding the role of the mechanoreceptors in Mueller's muscle; therefore, we clinically and histologically investigated Mueller's muscle. Methods: We evaluated the role of phenylephrine administration into the upper fornix in contraction of Mueller's smooth muscle fibers and how intraoperative stretching of Mueller's muscle alters the degree of eyelid retraction in 20 patients with aponeurotic blepharoptosis. In addition, we stained Mueller's muscle in 7 cadavers with antibodies against α-smooth muscle actin, S100, tyrosine hydroxylase, c-kit, and connexin 43. Results: Maximal eyelid retraction occurred approximately 3.8 minutes after administration of phenylephrine and prolonged eyelid retraction for at least 20 minutes after administration. Intraoperative stretching of Mueller's muscle increased eyelid retraction due to its reflexive contraction. The tyrosine hydroxylase antibody sparsely stained postganglionic sympathetic nerve fibers, whereas the S100 and c-kit antibodies densely stained the interstitial cells of Cajal (ICCs) among Mueller's smooth muscle fibers. A connexin 43 antibody failed to stain Mueller's muscle. Conclusions: A contractile network of ICCs may mediate neurotransmission within Mueller's multiunit smooth muscle fibers that are sparsely innervated by postganglionic sympathetic fibers. Interstitial cells of Cajal may also serve as mechanoreceptors that reflexively contract Mueller's smooth muscle fibers, forming intimate associations with intramuscular trigeminal proprioceptive fibers to induce reflexive contraction of the levator and frontalis muscles. PMID:22359687

  11. PM2.5 promotes human bronchial smooth muscle cell migration via the sonic hedgehog signaling pathway.

    PubMed

    Ye, Xiuqin; Hong, Wei; Hao, Binwei; Peng, Gongyong; Huang, Lingmei; Zhao, Zhuxiang; Zhou, Yumin; Zheng, Mengning; Li, Chenglong; Liang, Chunxiao; Yi, Erkang; Pu, Jinding; Li, Bing; Ran, Pixin

    2018-03-02

    The contribution of airway remodeling in chronic obstructive pulmonary disease (COPD) has been well documented, with airway smooth muscle cell proliferation and migration playing a role in the remodeling process. Here, we aimed to verify the effects of fine particulate matter (PM2.5) on human bronchial smooth muscle cell (HBSMC) migration and to explore the underlying signaling pathways. HBSMC apoptosis, proliferation and migration were measured using flow cytometry, cell counting and transwell migration assays, respectively. The role of the hedgehog pathway in cell migration was assessed by western blotting to measure the expression of Sonic hedgehog (Shh), Gli1 and Snail. Furthermore, siRNA was used to knock down Gli1 or Snail expression. PM2.5 induced HBSMC apoptosis in a dose-dependent manner, although certain concentrations of PM2.5 did not induce HBSMC proliferation or apoptosis. Interestingly, cell migration was stimulated by PM2.5 doses far below those that induced apoptosis. Additional experiments revealed that these PM2.5 doses enhanced the expression of Shh, Gli1 and Snail in HBSMCs. Furthermore, PM2.5-induced cell migration and protein expression were enhanced by recombinant Shh and attenuated by cyclopamine. Similar results were obtained by knocking down Gli1 or Snail. These findings suggest that PM2.5, which may exert its effects through the Shh signaling pathway, is necessary for the migration of HBSMCs. These data define a novel role for PM2.5 in airway remodeling in COPD.

  12. {beta}-Catenin regulates airway smooth muscle contraction.

    PubMed

    Jansen, Sepp R; Van Ziel, Anna M; Baarsma, Hoeke A; Gosens, Reinoud

    2010-08-01

    beta-Catenin is an 88-kDa member of the armadillo family of proteins that is associated with the cadherin-catenin complex in the plasma membrane. This complex interacts dynamically with the actin cytoskeleton to stabilize adherens junctions, which play a central role in force transmission by smooth muscle cells. Therefore, in the present study, we hypothesized a role for beta-catenin in the regulation of smooth muscle force production. beta-Catenin colocalized with smooth muscle alpha-actin (sm-alpha-actin) and N-cadherin in plasma membrane fractions and coimmunoprecipitated with sm-alpha-actin and N-cadherin in lysates of bovine tracheal smooth muscle (BTSM) strips. Moreover, immunocytochemistry of cultured BTSM cells revealed clear and specific colocalization of sm-alpha-actin and beta-catenin at the sites of cell-cell contact. Treatment of BTSM strips with the pharmacological beta-catenin/T cell factor-4 (TCF4) inhibitor PKF115-584 (100 nM) reduced beta-catenin expression in BTSM whole tissue lysates and in plasma membrane fractions and reduced maximal KCl- and methacholine-induced force production. These changes in force production were not accompanied by changes in the expression of sm-alpha-actin or sm-myosin heavy chain (MHC). Likewise, small interfering RNA (siRNA) knockdown of beta-catenin in BTSM strips reduced beta-catenin expression and attenuated maximal KCl- and methacholine-induced contractions without affecting sm-alpha-actin or sm-MHC expression. Conversely, pharmacological (SB-216763, LiCl) or insulin-induced inhibition of glycogen synthase kinase-3 (GSK-3) enhanced the expression of beta-catenin and augmented maximal KCl- and methacholine-induced contractions. We conclude that beta-catenin is a plasma membrane-associated protein in airway smooth muscle that regulates active tension development, presumably by stabilizing cell-cell contacts and thereby supporting force transmission between neighboring cells.

  13. The Inhibitory Effect of Botulinum Toxin Type A on Rat Pyloric Smooth Muscle Contractile Response to Substance P In Vitro

    PubMed Central

    Shao, Yu-Feng; Xie, Jun-Fan; Ren, Yin-Xiang; Wang, Can; Kong, Xiang-Pan; Zong, Xiao-Jian; Fan, Lin-Lan; Hou, Yi-Ping

    2015-01-01

    A decrease in pyloric myoelectrical activity and pyloric substance P (SP) content following intrasphincteric injection of botulinum toxin type A (BTX-A) in free move rats have been demonstrated in our previous studies. The aim of the present study was to investigate the inhibitory effect of BTX-A on rat pyloric muscle contractile response to SP in vitro and the distributions of SP and neurokinin 1 receptor (NK1R) immunoreactive (IR) cells and fibers within pylorus. After treatment with atropine, BTX-A (10 U/mL), similar to [D-Arg1, D-Phe5, D-Trp7,9, Leu11]-SP (APTL-SP, 1 μmol/L) which is an NK1R antagonist, decreased electric field stimulation (EFS)-induced contractile tension and frequency, whereas, subsequent administration of APTL-SP did not act on contractility. Incubation with BTX-A at 4 and 10 U/mL for 4 h respectively decreased SP (1 μmol/L)-induced contractions by 26.64% ± 5.12% and 74.92% ± 3.62%. SP-IR fibers and NK1R-IR cells both located within pylorus including mucosa and circular muscle layer. However, fewer SP-fibers were observed in pylorus treated with BTX-A (10 U/mL). In conclusion, BTX-A inhibits SP release from enteric terminals in pylorus and EFS-induced contractile responses when muscarinic cholinergic receptors are blocked by atropine. In addition, BTX-A concentration- and time-dependently directly inhibits SP-induced pyloric smooth muscle contractility. PMID:26501321

  14. Decreased airway narrowing and smooth muscle contraction in hyperresponsive pigs.

    PubMed

    Turner, Debra J; Noble, Peter B; Lucas, Matthew P; Mitchell, Howard W

    2002-10-01

    Increased smooth muscle contractility or reduced smooth muscle mechanical loads could account for the excessive airway narrowing and hyperresponsiveness seen in asthma. These mechanisms were investigated by using an allergen-induced porcine model of airway hyperresponsiveness. Airway narrowing to electric field stimulation was measured in isolated bronchial segments, over a range of transmural pressures (0-20 cmH(2)O). Contractile responses to ACh were measured in bronchial segments and in isolated tracheal smooth muscle strips isolated from control and test (ovalbumin sensitized and challenged) pigs. Test airways narrowed less than controls (P < 0.0001). Test pigs showed reduced contractility to ACh, both in isolated bronchi (P < 0.01) and smooth muscle strips (P < 0.01). Thus isolated airways from pigs exhibiting airway hyperresponsiveness in vivo are hyporesponsive in vitro. The decreased narrowing in bronchi from hyperresponsive pigs may be related to decreased smooth muscle contractility. These data suggest that mechanisms external to the airway wall may be important to the hyperresponsive nature of sensitized lungs.

  15. Endogenous Cardiac Troponin T Modulates Ca2+-Mediated Smooth Muscle Contraction

    PubMed Central

    Kajioka, Shunichi; Takahashi-Yanaga, Fumi; Shahab, Nouval; Onimaru, Mitsuho; Matsuda, Miho; Takahashi, Ryosuke; Asano, Haruhiko; Morita, Hiromitsu; Morimoto, Sachio; Yonemitsu, Yoshikazu; Hayashi, Maya; Seki, Narihito; Sasaguri, Toshiuyki; Hirata, Masato; Nakayama, Shinsuke; Naito, Seiji

    2012-01-01

    Mechanisms linked to actin filaments have long been thought to cooperate in smooth muscle contraction, although key molecules were unclear. We show evidence that cardiac troponin T (cTnT) substantially contributes to Ca2+-mediated contraction in a physiological range of cytosolic Ca2+ concentration ([Ca2+]i). cTnT was detected in various smooth muscles of the aorta, trachea, gut and urinary bladder, including in humans. Also, cTnT was distributed along with tropomyosin in smooth muscle cells, suggesting that these proteins are ready to cause smooth muscle contraction. In chemically permeabilised smooth muscle of cTnT+/− mice in which cTnT reduced to ~50%, the Ca2+-force relationship was shifted toward greater [Ca2+]i, indicating a sizeable contribution of cTnT to smooth muscle contraction at [Ca2+]i < 1 μM. Furthermore, addition of supplemental TnI and TnC reconstructed a troponin system to enhance contraction. The results indicated that a Tn/Tn-like system on actin-filaments cooperates together with the thick-filament pathway. PMID:23248744

  16. Oxytocin receptors expressed and coupled to Ca2+ signalling in a human vascular smooth muscle cell line.

    PubMed

    Yazawa, H; Hirasawa, A; Horie, K; Saita, Y; Iida, E; Honda, K; Tsujimoto, G

    1996-03-01

    1. In a human vascular smooth muscle cell line (HVSMC), binding experiments with [3H]-arginine8-vasopressin (AVP) have shown the existence of a homogeneous population of binding sites with affinity (Kd value) of 0.65 nM and a maximum number of binding sites (Bmax) of 122 fmol mg-1 protein. 2. Nonlabelled compounds compete for [3H]-AVP binding in the HVSMC membrane with an order of potency of oxytocin > lyspressin > or = AVP > Thr4, Gly7-oxytocin > (beta-mercapto-beta-beta-cyclopentamethylenepropionyl-O-Me Tyr2, Arg8) vasopressin > desmopressin > OPC21268 > OPC31260. This order was markedly different from that observed in rat vascular smooth muscle cells (A10), a well-established V1A receptor system. 3. In HVSMC both oxytocin and AVP increased inositol 1,4,5-trisphosphate (IP3) production and [Ca2+]i response, but the efficacy of the responses was greater for oxytocin than AVP. 4. Reverse transcription-polymerase chain reaction (RT-PCR) assay detected only oxytocin receptor but not V1A or V2 receptors in HVSMC, whereas only V1A receptors were found in A10 cells. 5. In conclusion, in HVSMC only oxytocin receptors are expressed among the vasopressin receptor family, and they coupled to phosphatidyl inositol (PI) turnover/Ca2+ signalling. This unexpected observation should provide new insight into the functional role of the oxytocin receptor in a human vascular smooth muscle cell line.

  17. The relationship between bronchial hyperresponsiveness to methacholine and airway smooth muscle structure and reactivity.

    PubMed

    Armour, C L; Black, J L; Berend, N; Woolcock, A J

    1984-11-01

    The airway responsiveness of a group of 25 patients scheduled for lung resection was studied. 10 of 25 patients had a greater than or equal to 20% fall in FEV1 in response to inhaled methacholine (responders), with PD20 FEV1 values ranging from 0.6 to 7.3 mumol. Methacholine did not induce a 20% fall in FEV1 in 15 patients (non-responders). The sensitivity to carbachol and histamine of the bronchial smooth muscle resected from these patients was similar in tissue from responders and non-responders. There was no correlation between in vivo responsiveness to methacholine and in vitro sensitivity to carbachol or histamine. The volume of smooth muscle in some of these airway preparations was quantitated. There was a significant correlation between the maximum tension change in response to histamine and the volume of smooth muscle in each airway. There was no similar correlation for carbachol. The in vivo responsiveness to methacholine and in vitro sensitivity to histamine or carbachol was not related to the degree of inflammation in the airways studied. It is concluded that in vivo responsiveness cannot be explained in terms of smooth muscle sensitivity and that there may be differences between histamine and carbachol in the mechanism of contraction of airway smooth muscle.

  18. Gi-Coupled γ-Aminobutyric Acid–B Receptors Cross-Regulate Phospholipase C and Calcium in Airway Smooth Muscle

    PubMed Central

    Mizuta, Kentaro; Mizuta, Fumiko; Xu, Dingbang; Masaki, Eiji; Panettieri, Reynold A.

    2011-01-01

    γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system, and exerts its actions via both ionotropic (GABAA) and metabotropic (GABAB) receptors. Although the functional expression of GABAB receptors coupled to the Gi protein was reported for airway smooth muscle, the role of GABAB receptors in airway responsiveness remains unclear. We investigated whether Gi-coupled GABAB receptors cross-regulate phospholipase C (PLC), an enzyme classically regulated by Gq-coupled receptors in human airway smooth muscle cells. Both the GABAB-selective agonist baclofen and the endogenous ligand GABA significantly increased the synthesis of inositol phosphate, whereas GABAA receptor agonists, muscimol, and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol exerted no effect. The baclofen-induced synthesis of inositol phosphate and transient increases in [Ca2+]i were blocked by CGP35348 and CGP55845 (selective GABAB antagonists), pertussis toxin (PTX, which inactivates the Gi protein), gallein (a Gβγ signaling inhibitor), U73122 (an inhibitor of PLC-β), and xestospongin C, an inositol 1,4,5-triphosphate receptor blocker. Baclofen also potentiated the bradykinin-induced synthesis of inositol phosphate and transient increases in [Ca2+]i, which were blocked by CGP35348 or PTX. Moreover, baclofen potentiated the substance P–induced contraction of airway smooth muscle in isolated guinea pig tracheal rings. In conclusion, the stimulation of GABAB receptors in human airway smooth muscle cells rapidly mobilizes intracellular Ca2+ stores by the synthesis of inositol phosphate via the activation of PLC-β, which is stimulated by Gβγ protein liberated from Gi proteins coupled to GABAB receptors. Furthermore, crosstalk between GABAB receptors and Gq-coupled receptors potentiates the synthesis of inositol phosphate, transient increases in [Ca2+]i, and smooth muscle contraction through Gi proteins. PMID:21719794

  19. The inhibitory actions of prostaglandins on respiratory smooth muscle

    PubMed Central

    Main, I. H. M.

    1964-01-01

    Prostaglandin E1, in concentrations as low as 1 ng/ml., relaxed isolated tracheal muscle from cat, monkey, rabbit, guinea-pig and ferret. Tracheal muscle from the cat, monkey and rabbit did not exhibit inherent tone and the effect of prostaglandin E1 on these preparations was seen only after a sustained contraction had been produced by a previous dose of acetylcholine or of another agonist. Prostaglandins E2, E3 and F1α also relaxed isolated cat tracheal muscle which had been stimulated by acetylcholine: their activities relative to that of prostaglandin E1 were, respectively, 1.0, 0.2 and 0.002. In the anaesthetized cat prostaglandin E1 increased lung “resistance to inflation” (presumably comparable to bronchial resistance) and the heart rate. In the anaesthetized rabbit and guinea-pig, prostaglandin E1 antagonized the rise in resistance to inflation of the lungs obtained after vagal stimulation or after the intravenous injection of histamine; it sometimes lowered the resistance to inflation in these species. The possibility that prostaglandin may have a local physiological role in the control of bronchial smooth muscle tone is discussed. ImagesFig. 5Fig. 7 PMID:14211681

  20. Vinpocetine Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells

    PubMed Central

    Chen, Xiu-Juan; Wang, Na; Yi, Peng-Fei; Song, Min; Zhang, Bo; Wang, Yu-Zhong; Liang, Qiu-Hua

    2016-01-01

    Vascular calcification is an active process of osteoblastic differentiation of vascular smooth muscle cells; however, its definite mechanism remains unknown. Vinpocetine, a derivative of the alkaloid vincamine, has been demonstrated to inhibit the high glucose-induced proliferation of vascular smooth muscle cells; however, it remains unknown whether vinpocetine can affect the osteoblastic differentiation of vascular smooth muscle cells. We hereby investigated the effect of vinpocetine on vascular calcification using a beta-glycerophosphate-induced cell model. Our results showed that vinpocetine significantly reduced the osteoblast-like phenotypes of vascular smooth muscle cells including ALP activity, osteocalcin, collagen type I, Runx2 and BMP-2 expression as well as the formation of mineralized nodule. Vinpocetine, binding to translocation protein, induced phosphorylation of extracellular signal-related kinase and Akt and thus inhibited the translocation of nuclear factor-kappa B into the nucleus. Silencing of translocator protein significantly attenuated the inhibitory effect of vinpocetine on osteoblastic differentiation of vascular smooth muscle cells. Taken together, vinpocetine may be a promising candidate for the clinical therapy of vascular calcification. PMID:27589055

  1. Vinpocetine Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells.

    PubMed

    Ma, Yun-Yun; Sun, Lin; Chen, Xiu-Juan; Wang, Na; Yi, Peng-Fei; Song, Min; Zhang, Bo; Wang, Yu-Zhong; Liang, Qiu-Hua

    2016-01-01

    Vascular calcification is an active process of osteoblastic differentiation of vascular smooth muscle cells; however, its definite mechanism remains unknown. Vinpocetine, a derivative of the alkaloid vincamine, has been demonstrated to inhibit the high glucose-induced proliferation of vascular smooth muscle cells; however, it remains unknown whether vinpocetine can affect the osteoblastic differentiation of vascular smooth muscle cells. We hereby investigated the effect of vinpocetine on vascular calcification using a beta-glycerophosphate-induced cell model. Our results showed that vinpocetine significantly reduced the osteoblast-like phenotypes of vascular smooth muscle cells including ALP activity, osteocalcin, collagen type I, Runx2 and BMP-2 expression as well as the formation of mineralized nodule. Vinpocetine, binding to translocation protein, induced phosphorylation of extracellular signal-related kinase and Akt and thus inhibited the translocation of nuclear factor-kappa B into the nucleus. Silencing of translocator protein significantly attenuated the inhibitory effect of vinpocetine on osteoblastic differentiation of vascular smooth muscle cells. Taken together, vinpocetine may be a promising candidate for the clinical therapy of vascular calcification.

  2. [Effect of substance P on the potassium and calcium currents of colonic smooth muscle cells].

    PubMed

    Tang, Qincai; Luo, Hesheng; Quan, Xiaojing; Fan, Han; Yu, Guang

    2015-08-11

    To investigate the effect of substance P(SP) on the spontaneous contractile activity of smooth muscle cells,the large-conductance calcium-activated potassium channel currents (IBKCa) and the L-type calcium channel currents (ICaL) in rat smooth muscle cells of the proximal colon. A total of 24 healthy male Wista rats were used in this test. The change of smooth muscle strips spontaneous contraction of rat proximal colon after adding SP was recorded by a physiological signal stystem (RM6240). The IBKCa and ICaL were measured via the whole cell patch-clamp technique. The longitudinal muscle contraction was obviously increased concentration-dependently after adding different concentrations of SP (10(-7)-10(-6) mol/L), so as the circular muscle while adding SP(10(-8)-10(-6) mol/L) (all P<0.05). Compared with the control group, IBKCa was decreased after adding SP(10(-6) mol/L). Under the stimulating voltage of 60 mV, the IBKCa current density was (11.71±1.65) pA/pF, which was significantly lower compared with the control group (14.42±2.89) pA/pF (P<0.05). The ICaL) was apparently increased. Under the stimulating voltage of 0 mV, the ICaL) currents density was (-5.04±0.67) pA/pF, compared with the control group (-4.25±0.46) pA/pF, which was significantly increased (P<0.01). SP can promote the spontaneous contractile activity of colon smooth muscle of rats in vitro.And SP decrease IBKCa representatively while apparently increase ICaL). That is probably one of the mechanism SP regulate the gastrointestinal motility.

  3. Characterization of putative receptors specific for quercetin on bovine aortic smooth-muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, S.C.; Becker, C.G.

    The authors have reported that tobacco glycoprotein (TGP), rutin-bovine serum albumin conjugates (R-BSA), quercetin, and chlorogenic acid are mitogenic for bovine aortic smooth-muscle cells (SMC). To investigate whether there are binding sites or receptors for these polyphenol-containing molecules on SMC, the authors have synthesized /sup 125/I-labeled rutin-bovine serum albumin ((/sup 125/I)R-BSA) of high specific activity (20 Ci/mmol). SMC were isolated from a bovine thoracic aorta and maintained in Eagle's minimum essential medium with 10% calf serum in culture. These SMC at early subpassages were suspended (3-5 x 10/sup 7/ cells/ml) in phosphate-buffered saline and incubated with (/sup 125/I)R-BSA (10 pmol)more » in the presence or absence of 200-fold unlabeled R-BSA, TGP, BSA, rutin, quercetin or related polyphenols, and catecholamines. Binding of (/sup 125/I)R-BSA to SMC was found to be reproducible and the radioligand was displaced by R-BSA, and also by TGP, rutin, quercetin, and chlorogenic acid, but not by BSA, ellagic acid, naringin, hesperetin, dopamine, epinephrine, or isoproterenol. The binding was saturable, reversible, and pH-dependent. These results demonstrate the presence of specific binding sites for quercetinon arterial SMC.« less

  4. The angiotensin II receptor type 1b is the primary sensor of intraluminal pressure in cerebral artery smooth muscle cells.

    PubMed

    Pires, Paulo W; Ko, Eun-A; Pritchard, Harry A T; Rudokas, Michael; Yamasaki, Evan; Earley, Scott

    2017-07-15

    The angiotensin II receptor type 1b (AT 1 R b ) is the primary sensor of intraluminal pressure in cerebral arteries. Pressure or membrane-stretch induced stimulation of AT 1 R b activates the TRPM4 channel and results in inward transient cation currents that depolarize smooth muscle cells, leading to vasoconstriction. Activation of either AT 1 R a or AT 1 R b with angiotensin II stimulates TRPM4 currents in cerebral artery myocytes and vasoconstriction of cerebral arteries. The expression of AT 1 R b mRNA is ∼30-fold higher than AT 1 R a in whole cerebral arteries and ∼45-fold higher in isolated cerebral artery smooth muscle cells. Higher levels of expression are likely to account for the obligatory role of AT 1 R b for pressure-induced vasoconstriction . ABSTRACT: Myogenic vasoconstriction, which reflects the intrinsic ability of smooth muscle cells to contract in response to increases in intraluminal pressure, is critically important for the autoregulation of blood flow. In smooth muscle cells from cerebral arteries, increasing intraluminal pressure engages a signalling cascade that stimulates cation influx through transient receptor potential (TRP) melastatin 4 (TRPM4) channels to cause membrane depolarization and vasoconstriction. Substantial evidence indicates that the angiotensin II receptor type 1 (AT 1 R) is inherently mechanosensitive and initiates this signalling pathway. Rodents express two types of AT 1 R - AT 1 R a and AT 1 R b - and conflicting studies provide support for either isoform as the primary sensor of intraluminal pressure in peripheral arteries. We hypothesized that mechanical activation of AT 1 R a increases TRPM4 currents to induce myogenic constriction of cerebral arteries. However, we found that development of myogenic tone was greater in arteries from AT 1 R a knockout animals compared with controls. In patch-clamp experiments using native cerebral arterial myocytes, membrane stretch-induced cation currents were blocked by the TRPM

  5. 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d] pyrimidin-4-ylamine inhibits the proliferation and migration of vascular smooth muscle cells by suppressing ERK and Akt pathways.

    PubMed

    Seo, Hyang-Hee; Kim, Sang Woo; Lee, Chang Youn; Lim, Kyu Hee; Lee, Jiyun; Lim, Soyeon; Lee, Seahyoung; Hwang, Ki-Chul

    2017-03-05

    Excessive vascular smooth muscle cell (VSMC) proliferation and migration after vascular injury significantly contributes to the development of occlusive vascular disease. Therefore, inhibiting the proliferation and migration of VSMCs is a validated therapeutic modality for occlusive vascular disease such as atherosclerosis and restenosis. In the present study, we screened chemical compounds for their anti-proliferative effects on VSMCs using multiple approaches, such as MTT assays, wound healing assays, and trans-well migration assays. Our data indicate that 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d] pyrimidin-4-ylamine, a lymphocyte-specific protein tyrosine kinase (Lck) inhibitor, significantly inhibited both VSMC proliferation and migration. 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-ylamine suppresses VSMC proliferation and migration via down-regulating the protein kinase B (Akt) and extracellular signal regulated kinase (ERK) pathways, and it significantly decreased the expression of proliferating cell nuclear antigen (PCNA) and cyclin D1 and, the phosphorylation of retinoblastoma protein (pRb). Additionally, 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d] pyrimidin-4-ylamine suppressed the migration of VSMCs from endothelium-removed aortic rings, as well as neointima formation following rat carotid balloon injury. The present study identified 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-ylamine as a potent VSMC proliferation and migration inhibitor and warrants further studies to elucidate its more detailed molecular mechanisms, such as its primary target, and to further validate its in vivo efficacy as a therapeutic agent for pathologic vascular conditions, such as restenosis and atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Prominent expression of phosphodiesterase 5 in striated muscle of the rat urethra and levator ani.

    PubMed

    Lin, Guiting; Huang, Yun-Ching; Wang, Guifang; Lue, Tom F; Lin, Ching-Shwun

    2010-08-01

    We investigated phosphodiesterase 5 distribution and activity in the urethra. Rat tissues were examined for phosphodiesterase 5 and alpha-smooth muscle actin expression. Urethral phosphodiesterase 5 activity was examined by tissue bath in the presence of sildenafil (Pfizer, New York, New York). Anti-alpha-smooth muscle actin antibody (Abcam) stained all known smooth muscles in all tested tissues and revealed a few smooth muscle fibers in the levator ani muscle. Anti-phosphodiesterase 5 antibody (Abcam) stained smooth muscle in the penis and bladder but not striated leg muscle. However, it stained predominantly striated muscle in the urethra and the levator ani muscle. In the urethra the amount of phosphodiesterase 5 in striated muscle was 6 times that in smooth muscle. In urethral striated muscle phosphodiesterase 5 expression was localized to Z-band striations. Smooth and striated muscle intermingling was clearly visible on the inner and outer rims of the circularly arranged striated muscle layer. Relaxation of precontracted urethral tissues by sodium nitroprusside (Sigma-Aldrich) was enhanced by sildenafil, indicating phosphodiesterase 5 activity, which was primarily located in the striated muscle according to phosphodiesterase 5 staining. Despite its presumed smooth muscle specificity phosphodiesterase 5 was predominantly expressed in the striated muscle of the urethra and in the levator ani muscle. Results are consistent with earlier studies in which these striated muscles were developmentally related to smooth muscle. They also suggest that these striated muscles are possibly regulated by phosphodiesterase 5. Copyright (c) 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  7. miR-140-5p regulates hypoxia-mediated human pulmonary artery smooth muscle cell proliferation, apoptosis and differentiation by targeting Dnmt1 and promoting SOD2 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yanwei; Xu, Jing, E-mail: xujingdoc@163.com

    miR-140-5p is down-regulated in patients with pulmonary arterial hypertension (PAH) and experimental models of PAH, and inhibits hypoxia-mediated pulmonary artery smooth muscle cell (PASMC) proliferation in vitro. Delivery of synthetic miR-140-5p prevents and treats established, experimental PAH. DNA methyltransferase 1 (Dnmt1) is up-regulated in PAH associated human PASMCs (HPASMCs), which promotes the development of PAH by hypermethylation of CpG islands within the promoter for superoxide dismutase 2 (SOD2) and down-regulating SOD2 expression. We searched for miR-140-5p targets using TargetScan, PicTar and MiRanda tools, and found that Dnmt1 is a potential target of miR-140-5p. Based on these findings, we speculated that miR-140-5pmore » might target Dnmt1 and regulate SOD2 expression to regulate hypoxia-mediated HPASMC proliferation, apoptosis and differentiation. We detected the expression of miR-140-5p, Dnmt1 and SOD2 by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot assays, respectively, and found down-regulation of miR-140-5p and SOD2 and up-regulation of Dnmt1 exist in PAH tissues and hypoxia-mediated HPASMCs. Cell proliferation, apoptosis and differentiation detection showed that miR-140-5p inhibits proliferation and promotes apoptosis and differentiation of HPASMCs in hypoxia, while the effect of Dnmt1 on hypoxia-mediated HPASMCs is reversed. Luciferase assay confirmed that miR-140-5p targets Dnmt1 directly. An inverse correlation is also found between miR-140-5p and Dnmt1 in HPASMCs. In addition, we further investigated whether miR-140-5p and Dnmt1 regulate HPASMC proliferation, apoptosis and differentiation by regulating SOD2 expression, and the results confirmed our speculation. Taken together, these results indicated that miR-140-5p at least partly targets Dnmt1 and regulates SOD2 expression to inhibit proliferation and promote apoptosis and differentiation of HPASMCs in hypoxia. - Highlights: • miR-140-5p and SOD2

  8. The Inhibitory Effect of Botulinum Toxin Type A on Rat Pyloric Smooth Muscle Contractile Response to Substance P In Vitro.

    PubMed

    Shao, Yu-Feng; Xie, Jun-Fan; Ren, Yin-Xiang; Wang, Can; Kong, Xiang-Pan; Zong, Xiao-Jian; Fan, Lin-Lan; Hou, Yi-Ping

    2015-10-15

    A decrease in pyloric myoelectrical activity and pyloric substance P (SP) content following intrasphincteric injection of botulinum toxin type A (BTX-A) in free move rats have been demonstrated in our previous studies. The aim of the present study was to investigate the inhibitory effect of BTX-A on rat pyloric muscle contractile response to SP in vitro and the distributions of SP and neurokinin 1 receptor (NK1R) immunoreactive (IR) cells and fibers within pylorus. After treatment with atropine, BTX-A (10 U/mL), similar to [D-Arg¹, D-Phe⁵, D-Trp(7,9), Leu(11)]-SP (APTL-SP, 1 μmol/L) which is an NK1R antagonist, decreased electric field stimulation (EFS)-induced contractile tension and frequency, whereas, subsequent administration of APTL-SP did not act on contractility. Incubation with BTX-A at 4 and 10 U/mL for 4 h respectively decreased SP (1 μmol/L)-induced contractions by 26.64% ± 5.12% and 74.92% ± 3.62%. SP-IR fibers and NK1R-IR cells both located within pylorus including mucosa and circular muscle layer. However, fewer SP-fibers were observed in pylorus treated with BTX-A (10 U/mL). In conclusion, BTX-A inhibits SP release from enteric terminals in pylorus and EFS-induced contractile responses when muscarinic cholinergic receptors are blocked by atropine. In addition, BTX-A concentration- and time-dependently directly inhibits SP-induced pyloric smooth muscle contractility.

  9. Activation of G protein-coupled bile acid receptor, TGR5, induces smooth muscle relaxation via both Epac- and PKA-mediated inhibition of RhoA/Rho kinase pathway.

    PubMed

    Rajagopal, Senthilkumar; Kumar, Divya P; Mahavadi, Sunila; Bhattacharya, Sayak; Zhou, Ruizhe; Corvera, Carlos U; Bunnett, Nigel W; Grider, John R; Murthy, Karnam S

    2013-03-01

    The present study characterized the TGR5 expression and the signaling pathways coupled to this receptor that mediates the relaxation of gastric smooth muscle. TGR5 was detected in gastric muscle cells by RT-PCR and Western blotting. Treatment of cells with the TGR5-selective ligand oleanolic acid (OA) activated Gαs, but not Gαq, Gαi1, Gαi2, or Gαi3, and increased cAMP levels. OA did not elicit contraction, but caused relaxation of carbachol-induced contraction of gastric muscle cells from wild-type mice, but not tgr5(-/-) mice. OA, but not a selective exchange protein activated by cAMP (Epac) ligand (8-pCPT-2'-O-Me-cAMP), caused phosphorylation of RhoA and the phosphorylation was blocked by the PKA inhibitor, myristoylated PKI, and by the expression of phosphorylation-deficient mutant RhoA (S188A). Both OA and Epac ligand stimulated Ras-related protein 1 (Rap1) and inhibited carbachol (CCh)-induced Rho kinase activity. Expression of RhoA (S188A) or PKI partly reversed the inhibition of Rho kinase activity by OA but had no effect on inhibition by Epac ligand. However, suppression of Rap1 with siRNA blocked the inhibition of Rho kinase by Epac ligand, and partly reversed the inhibition by OA; the residual inhibition was blocked by PKI. Muscle relaxation in response to OA, but not Epac ligand, was partly reversed by PKI. We conclude that activation of TGR5 causes relaxation of gastric smooth muscle and the relaxation is mediated through inhibition of RhoA/Rho kinase pathway via both cAMP/Epac-dependent stimulation of Rap1 and cAMP/PKA-dependent phosphorylation of RhoA at Ser(188). TGR5 receptor activation on smooth muscle reveals a novel mechanism for the regulation of gut motility by bile acids.

  10. The effects of substance P on smooth muscle cells and on neuro-effector transmission in the guinea-pig ileum

    PubMed Central

    Fujisawa, Kazuaki; Ito, Yushi

    1982-01-01

    1 The effects of substance P (SP) on the membrane and contractile properties of the smooth muscle cell, or on neuro-effector transmission in the guinea-pig ileum were observed by means of microelectrodes, double sucrose gap and tension recording. 2 SP (10-13-10-10M) induced a phasic contraction of longitudinal muscle strips, but did not change the muscle tone of circular muscle strips, in concentrations up to 10-8M. 3 SP (10-10-10-8M) evoked three different membrane responses in longitudinal muscle cells: (i) bursts of spike discharges with no significant change in the membrane potential and input membrane resistance; (ii) bursts of spike discharges with a small but clear depolarization of the membrane and increase in the input membrane resistance; (iii) slow waves with no change in the membrane potential. 4 In the circular muscle cells, low concentrations of SP (<10-8M) did not affect the membrane potential or the spikes, but SP (10-7M) increased the spike discharges with no significant change in the membrane potential. 5 SP (10-10M) reduced the threshold depolarization required for the generation of action potentials with no change in membrane potential of the longitudinal muscle cells. 6 Pretreatment with atropine (5 × 10-6M), tetrodotoxin (TTX 10-6M) or baclofen (4.7 × 10-6M) had no effect on the excitatory actions of SP on the smooth muscle cells of longitudinal and circular muscle strips. 7 Excitatory actions of SP on the membrane potential or spike activities of longitudinal muscle cells were preserved in NaCl but not in Ca-deficient solution. 8 SP (10-10-10-9M) enhanced the amplitude of the excitatory junction potentials (e.j.ps) evoked by electrical field stimulation in longitudinal muscle cells with no change in the membrane potential and input resistance. SP (10-10-10-9M), however, did not change the amplitude of inhibitory junction potentials (i.j.ps) recorded from the circular muscle cells. 9 These results indicate that SP in relatively low

  11. Smooth muscle tumors of soft tissue and non-uterine viscera: biology and prognosis.

    PubMed

    Miettinen, Markku

    2014-01-01

    Smooth muscle tumors are here considered an essentially dichotomous group composed of benign leiomyomas and malignant leiomyosarcomas. Soft tissue smooth muscle tumors with both atypia and mitotic activity are generally diagnosed leiomyosarcomas acknowledging potential for metastasis. However, lesions exist that cannot be comfortably placed in either category, and in such cases the designation 'smooth muscle tumor of uncertain biologic potential' is appropriate. The use of this category is often necessary with limited sampling, such as needle core biopsies. Benign smooth muscle tumors include smooth muscle hamartoma and angioleiomyoma. A specific category of leiomyomas are estrogen-receptor positive ones in women. These are similar to uterine leiomyomas and can occur anywhere in the abdomen and abdominal wall. Leiomyosarcomas can occur at any site, although are more frequent in the retroperitoneum and proximal extremities. They are recognized by likeness to smooth muscle cells but can undergo pleomorphic evolution ('dedifferentiation'). Presence of smooth muscle actin is nearly uniform and desmin-positivity usual. This and the lack of KIT expression separate leiomyosarcoma from GIST, an important problem in abdominal soft tissues. EBV-associated smooth muscle tumors are a specific subcategory occurring in AIDS or post-transplant patients. These tumors can have incomplete smooth muscle differentiation but show nuclear EBER as a diagnostic feature. In contrast to many other soft tissue tumors, genetics of smooth muscle tumors are poorly understood and such diagnostic testing is not yet generally applicable in this histogenetic group. Leiomyosarcomas are known to be genetically complex, often showing 'chaotic' karyotypes including aneuploidy or polyploidy, and no recurrent tumor-specific translocations have been detected.

  12. Smitin, a novel smooth muscle titin-like protein, interacts with myosin filaments in vivo and in vitro.

    PubMed

    Kim, Kyoungtae; Keller, Thomas C S

    2002-01-07

    Smooth muscle cells use an actin-myosin II-based contractile apparatus to produce force for a variety of physiological functions, including blood pressure regulation and gut peristalsis. The organization of the smooth muscle contractile apparatus resembles that of striated skeletal and cardiac muscle, but remains much more poorly understood. We have found that avian vascular and visceral smooth muscles contain a novel, megadalton protein, smitin, that is similar to striated muscle titin in molecular morphology, localization in a contractile apparatus, and ability to interact with myosin filaments. Smitin, like titin, is a long fibrous molecule with a globular domain on one end. Specific reactivities of an anti-smitin polyclonal antibody and an anti-titin monoclonal antibody suggest that smitin and titin are distinct proteins rather than differentially spliced isoforms encoded by the same gene. Smitin immunofluorescently colocalizes with myosin in chicken gizzard smooth muscle, and interacts with two configurations of smooth muscle myosin filaments in vitro. In physiological ionic strength conditions, smitin and smooth muscle myosin coassemble into irregular aggregates containing large sidepolar myosin filaments. In low ionic strength conditions, smitin and smooth muscle myosin form highly ordered structures containing linear and polygonal end-to-end and side-by-side arrays of small bipolar myosin filaments. We have used immunogold localization and sucrose density gradient cosedimentation analyses to confirm association of smitin with both the sidepolar and bipolar smooth muscle myosin filaments. These findings suggest that the titin-like protein smitin may play a central role in organizing myosin filaments in the contractile apparatus and perhaps in other structures in smooth muscle cells.

  13. Myosin Light Chain Kinase Is Necessary for Tonic Airway Smooth Muscle Contraction*

    PubMed Central

    Zhang, Wen-Cheng; Peng, Ya-Jing; Zhang, Gen-Sheng; He, Wei-Qi; Qiao, Yan-Ning; Dong, Ying-Ying; Gao, Yun-Qian; Chen, Chen; Zhang, Cheng-Hai; Li, Wen; Shen, Hua-Hao; Ning, Wen; Kamm, Kristine E.; Stull, James T.; Gao, Xiang; Zhu, Min-Sheng

    2010-01-01

    Different interacting signaling modules involving Ca2+/calmodulin-dependent myosin light chain kinase, Ca2+-independent regulatory light chain phosphorylation, myosin phosphatase inhibition, and actin filament-based proteins are proposed as specific cellular mechanisms involved in the regulation of smooth muscle contraction. However, the relative importance of specific modules is not well defined. By using tamoxifen-activated and smooth muscle-specific knock-out of myosin light chain kinase in mice, we analyzed its role in tonic airway smooth muscle contraction. Knock-out of the kinase in both tracheal and bronchial smooth muscle significantly reduced contraction and myosin phosphorylation responses to K+-depolarization and acetylcholine. Kinase-deficient mice lacked bronchial constrictions in normal and asthmatic airways, whereas the asthmatic inflammation response was not affected. These results indicate that myosin light chain kinase acts as a central participant in the contractile signaling module of tonic smooth muscle. Importantly, contractile airway smooth muscles are necessary for physiological and asthmatic airway resistance. PMID:20018858

  14. A novel bronchial ring bioassay for the evaluation of small airway smooth muscle function in mice.

    PubMed

    Liu, John Q; Yang, Dennis; Folz, Rodney J

    2006-08-01

    Advances in our understanding of murine airway physiology have been hindered by the lack of suitable, ex vivo, small airway bioassay systems. In this study, we introduce a novel small murine airway bioassay system that permits the physiological and pharmacological study of intrapulmonary bronchial smooth muscle via a bronchial ring (BR) preparation utilizing BR segments as small as 200 microm in diameter. Using this ex vivo BR bioassay, we characterized small airway smooth muscle contraction and relaxation in the presence and absence of bronchial epithelium. In control BRs, the application of mechanical stretch is followed by spontaneous bronchial smooth muscle relaxation. BRs pretreated with methacholine (MCh) partially attenuate this stretch-induced relaxation by as much as 42% compared with control. MCh elicited a dose-dependent bronchial constriction with a maximal tension (E(max)) of 8.7 +/- 0.2 mN at an EC(50) of 0.33 +/- 0.02 microM. In the presence of nifedipine, ryanodine, 2-aminoethoxydiphenyl borate, and SKF-96365, E(max) to MCh was significantly reduced. In epithelium-denuded BRs, MCh-induced contraction was significantly enhanced to 11.4 +/- 1.0 mN with an EC(50) of 0.16 +/- 0.04 microM (P < 0.01). Substance P relaxed MCh-precontracted BR by 62.1%; however, this bronchial relaxation effect was completely lost in epithelium-denuded BRs. Papaverine virtually abolished MCh-induced constriction in both epithelium-intact and epithelium-denuded bronchial smooth muscle. In conclusion, this study introduces a novel murine small airway BR bioassay that allows for the physiological study of smooth muscle airway contractile responses that may aid in our understanding of the pathophysiology of asthma.

  15. Neutrophilic infiltration within the airway smooth muscle in patients with COPD

    PubMed Central

    Baraldo, S; Turato, G; Badin, C; Bazzan, E; Beghe, B; Zuin, R; Calabrese, F; Casoni, G; Maestrelli, P; Papi, A; Fabbri, L; Saetta, M

    2004-01-01

    Background: COPD is an inflammatory disorder characterised by chronic airflow limitation, but the extent to which airway inflammation is related to functional abnormalities is still uncertain. The interaction between inflammatory cells and airway smooth muscle may have a crucial role. Methods: To investigate the microlocalisation of inflammatory cells within the airway smooth muscle in COPD, surgical specimens obtained from 26 subjects undergoing thoracotomy (eight smokers with COPD, 10 smokers with normal lung function, and eight non-smoking controls) were examined. Immunohistochemical analysis was used to quantify the number of neutrophils, macrophages, mast cells, CD4+ and CD8+ cells localised within the smooth muscle of peripheral airways. Results: Smokers with COPD had an increased number of neutrophils and CD8+ cells in the airway smooth muscle compared with non-smokers. Smokers with normal lung function also had a neutrophilic infiltration in the airway smooth muscle, but to a lesser extent. When all the subjects were analysed as one group, neutrophilic infiltration was inversely related to forced expiratory volume in 1 second (% predicted). Conclusions: Microlocalisation of neutrophils and CD8+ cells in the airway smooth muscle in smokers with COPD suggests a possible role for these cells in the pathogenesis of smoking induced airflow limitation. PMID:15047950

  16. Effect of TPA on ion fluxes and DNA synthesis in vascular smooth muscle cells

    PubMed Central

    1985-01-01

    Previous reports have suggested that phorbol esters can decrease the affinity of epidermal growth factor (EGF) for its cellular receptors. Investigations of the consequences of the interaction between phorbol esters and EGF, however, have been limited to EGF-stimulated Na/H exchange in A431 cells (Whitely, B., D. Cassel, Y.-X. Zuang, and L. Glaser, 1984, J. Cell Biol., 99:1162-1166). In the present study, the effect of the phorbol ester 12-O-tetradecanoyl phorbol-13-acetate (TPA) on EGF-stimulated ion transport and DNA synthesis was determined in cultured vascular smooth muscle cells (A7r5). It was found that TPA stimulated Na/H exchange when added alone (half-maximal stimulatory concentration, 25 nM). However, when cells were pretreated with TPA and then challenged with EGF, TPA significantly inhibited EGF-stimulated Na/H exchange (78%; half-maximal inhibition [Ki] at 2.5 nM). Subsequently the effects of TPA on Na/K/Cl co-transport were measured. TPA was observed to inhibit Na/K/Cl co-transport (half-maximal inhibitory concentration, 50 nM) and also to inhibit EGF-stimulated Na/K/Cl co-transport (100%; Ki at 5 nM). Finally, the effects of TPA on DNA synthesis were assessed. TPA had a modest stimulatory effect on DNA synthesis (half-maximal stimulatory concentration, 6 nM), but had a significant inhibitory effect on EGF-stimulated DNA synthesis (56%; Ki at 5 nM). These findings suggest that the inhibitory effect of TPA on EGF-receptor functions goes beyond previously reported effects on Na/H exchange in A431 cells and extends to EGF-stimulation of Na/K/Cl co- transport and DNA synthesis in vascular smooth muscle cells. PMID:2410432

  17. Gi-coupled γ-aminobutyric acid-B receptors cross-regulate phospholipase C and calcium in airway smooth muscle.

    PubMed

    Mizuta, Kentaro; Mizuta, Fumiko; Xu, Dingbang; Masaki, Eiji; Panettieri, Reynold A; Emala, Charles W

    2011-12-01

    γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system, and exerts its actions via both ionotropic (GABA(A)) and metabotropic (GABA(B)) receptors. Although the functional expression of GABA(B) receptors coupled to the G(i) protein was reported for airway smooth muscle, the role of GABA(B) receptors in airway responsiveness remains unclear. We investigated whether G(i)-coupled GABA(B) receptors cross-regulate phospholipase C (PLC), an enzyme classically regulated by G(q)-coupled receptors in human airway smooth muscle cells. Both the GABA(B)-selective agonist baclofen and the endogenous ligand GABA significantly increased the synthesis of inositol phosphate, whereas GABA(A) receptor agonists, muscimol, and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol exerted no effect. The baclofen-induced synthesis of inositol phosphate and transient increases in [Ca(2+)](i) were blocked by CGP35348 and CGP55845 (selective GABA(B) antagonists), pertussis toxin (PTX, which inactivates the G(i) protein), gallein (a G(βγ) signaling inhibitor), U73122 (an inhibitor of PLC-β), and xestospongin C, an inositol 1,4,5-triphosphate receptor blocker. Baclofen also potentiated the bradykinin-induced synthesis of inositol phosphate and transient increases in [Ca(2+)](i), which were blocked by CGP35348 or PTX. Moreover, baclofen potentiated the substance P-induced contraction of airway smooth muscle in isolated guinea pig tracheal rings. In conclusion, the stimulation of GABA(B) receptors in human airway smooth muscle cells rapidly mobilizes intracellular Ca(2+) stores by the synthesis of inositol phosphate via the activation of PLC-β, which is stimulated by G(βγ) protein liberated from G(i) proteins coupled to GABA(B) receptors. Furthermore, crosstalk between GABA(B) receptors and G(q)-coupled receptors potentiates the synthesis of inositol phosphate, transient increases in [Ca(2+)](i), and smooth muscle contraction through G

  18. Further investigation into the signal transduction mechanism of the 5-HT4-like receptor in the circular smooth muscle of human colon.

    PubMed Central

    McLean, P. G.; Coupar, I. M.

    1996-01-01

    1. The nature of the receptor coupling mechanism of the 5-hydroxytryptamine4 (5-HT4) receptor in the circular smooth muscle of the human colon has been further investigated. 2. 5-HT stimulated cyclic AMP generation and caused a relaxation in a concentration-dependent fashion, with EC50 values of 175.5 and 274.9 nM respectively. DAU 6236 increased cyclic AMP formation and caused a relaxant effect but was a partial agonist relative to 5-HT. 3. The 5-HT4 receptor antagonist, GR 113808, inhibited cyclic AMP formation and relaxation induced by 5-HT with -log Ki values of 9.1 (cyclic AMP) and 8.9 (relaxation) and apparent pA2 values of 9.2 (cyclic AMP) and 9.5 (relaxation). 4. Ondansetron and methysergide failed to inhibit cyclic AMP formation or the relaxation induced by 5-HT. 5. The phosphodiesterase inhibitor, IBMX, produced a concentration-dependent relaxation (EC50 = 30 microM) and at 1 microM it enhanced the 5-HT-induced relaxation producing a leftward shift of the 5-HT concentration-effect curve with a concentration-ratio of 4.1. Rolipram caused a concentration-dependent relaxation (EC50 = 564.8 nM) and at 200 nm caused a leftward shift of the concentration-effect curve to 5-HT with a concentration-ratio of 5.5. 6. Application of the adenylyl cyclase inhibitor, SQ 22536 (0.1 mM), and the protein kinase inhibitors, H7 (100 nM) and H89 (200 nM), inhibited the relaxant effect of 5-HT inducing a rightward shift of the concentration-effect curve with concentration-ratios of 10.1, 2.7 and 4.2 respectively. 7. Forskolin stimulated cyclic AMP production and caused a relaxation. The maximum relaxant effect of forskolin (6 microM, 13.8 +/- 1.9 cm.s) was not significantly different from the maximum relaxant effect of 5-HT (10 microM, 12.7 +/- 4.9 cm.s). However, the cyclic AMP levels stimulated by forskolin (6 microM, 49.3 +/- 6.6 pmol mg-1) were markedly greater than those stimulated by 5-HT (10 microM, 7.6 +/- 2.0 pmol mg-1). 8. In conclusion, these results indicate that

  19. Further investigation into the signal transduction mechanism of the 5-HT4-like receptor in the circular smooth muscle of human colon.

    PubMed

    McLean, P G; Coupar, I M

    1996-06-01

    1. The nature of the receptor coupling mechanism of the 5-hydroxytryptamine4 (5-HT4) receptor in the circular smooth muscle of the human colon has been further investigated. 2. 5-HT stimulated cyclic AMP generation and caused a relaxation in a concentration-dependent fashion, with EC50 values of 175.5 and 274.9 nM respectively. DAU 6236 increased cyclic AMP formation and caused a relaxant effect but was a partial agonist relative to 5-HT. 3. The 5-HT4 receptor antagonist, GR 113808, inhibited cyclic AMP formation and relaxation induced by 5-HT with -log Ki values of 9.1 (cyclic AMP) and 8.9 (relaxation) and apparent pA2 values of 9.2 (cyclic AMP) and 9.5 (relaxation). 4. Ondansetron and methysergide failed to inhibit cyclic AMP formation or the relaxation induced by 5-HT. 5. The phosphodiesterase inhibitor, IBMX, produced a concentration-dependent relaxation (EC50 = 30 microM) and at 1 microM it enhanced the 5-HT-induced relaxation producing a leftward shift of the 5-HT concentration-effect curve with a concentration-ratio of 4.1. Rolipram caused a concentration-dependent relaxation (EC50 = 564.8 nM) and at 200 nm caused a leftward shift of the concentration-effect curve to 5-HT with a concentration-ratio of 5.5. 6. Application of the adenylyl cyclase inhibitor, SQ 22536 (0.1 mM), and the protein kinase inhibitors, H7 (100 nM) and H89 (200 nM), inhibited the relaxant effect of 5-HT inducing a rightward shift of the concentration-effect curve with concentration-ratios of 10.1, 2.7 and 4.2 respectively. 7. Forskolin stimulated cyclic AMP production and caused a relaxation. The maximum relaxant effect of forskolin (6 microM, 13.8 +/- 1.9 cm.s) was not significantly different from the maximum relaxant effect of 5-HT (10 microM, 12.7 +/- 4.9 cm.s). However, the cyclic AMP levels stimulated by forskolin (6 microM, 49.3 +/- 6.6 pmol mg-1) were markedly greater than those stimulated by 5-HT (10 microM, 7.6 +/- 2.0 pmol mg-1). 8. In conclusion, these results indicate that

  20. The expression and crucial roles of BMP signaling in development of smooth muscle progenitor cells in the mouse embryonic gut.

    PubMed

    Torihashi, Shigeko; Hattori, Takako; Hasegawa, Hirotaka; Kurahashi, Masaaki; Ogaeri, Takunori; Fujimoto, Toyoshi

    2009-03-01

    Bone morphogenetic protein (BMP) signaling is essential for normal development of the gastrointestinal (GI) tract. BMPs also play multiple roles in vascular smooth muscle cells; however, the BMP signaling in the development of the GI musculature remains to be clarified. We investigated the expression of BMPs and their receptors in mouse embryonic GI tracts by immunohistochemistry and in situ hybridization. We demonstrated that BMP2, BMP receptor Ib and BMP receptor II were expressed in the smooth muscle progenitors from E12 to E13 for the first time. BMP signaling on smooth muscle differentiation was examined by implantation of agarose beads soaked with BMPs in the in vitro developmental model that is gut-like structures from mouse embryonic stem (ES) cells. BMP2 rather than BMP4 beads enhanced smooth muscle differentiation, and increased gut-like structures showing spontaneous contractions and expressing intensive alpha-smooth muscle actin immunoreactivity. This increase was confirmed by up-regulation of SM22 mRNA shown by real-time PCR. By addition of noggin beads or noggin to the medium at BMP2 bead implantation, the ratio of contractive gut-like structures decreased. Implantation of BMP2 beads at EB7 (EB--embryoid bodies) (corresponding to E12 or E13 of mouse embryo) showed the highest effects and up-regulation of transcription factors msx-1 after 24h. This increase was blocked by noggin, and msx-1 decreased to almost the control level after 60 h. BMP2 beads at EB7 increased platelet-derived growth factor-A (PDGF-A) in the differentiating smooth muscle cells. We have recently reported that PDGF-A is expressed in the developing inner circular smooth muscle and is crucial for the longitudinal smooth muscle differentiation. Taken together, BMP signaling was expressed for a short window in the smooth muscle progenitors and the signal, especially BMP2, plays an essential role in smooth muscle differentiation in cooperation with PDGF signaling.

  1. microRNA expression profile in human coronary smooth muscle cell-derived microparticles is a source of biomarkers.

    PubMed

    de Gonzalo-Calvo, David; Cenarro, Ana; Civeira, Fernando; Llorente-Cortes, Vicenta

    2016-01-01

    microRNA (miRNA) expression profile of extracellular vesicles is a potential tool for clinical practice. Despite the key role of vascular smooth muscle cells (VSMC) in cardiovascular pathology, there is limited information about the presence of miRNAs in microparticles secreted by this cell type, including human coronary artery smooth muscle cells (HCASMC). Here, we tested whether HCASMC-derived microparticles contain miRNAs and the value of these miRNAs as biomarkers. HCASMC and explants from atherosclerotic or non-atherosclerotic areas were obtained from coronary arteries of patients undergoing heart transplant. Plasma samples were collected from: normocholesterolemic controls (N=12) and familial hypercholesterolemia (FH) patients (N=12). Both groups were strictly matched for age, sex and cardiovascular risk factors. Microparticle (0.1-1μm) isolation and characterization was performed using standard techniques. VSMC-enriched miRNAs expression (miR-21-5p, -143-3p, -145-5p, -221-3p and -222-3p) was analyzed using RT-qPCR. Total RNA isolated from HCASMC-derived microparticles contained small RNAs, including VSMC-enriched miRNAs. Exposition of HCASMC to pathophysiological conditions, such as hypercholesterolemia, induced a decrease in the expression level of miR-143-3p and miR-222-3p in microparticles, not in cells. Expression levels of miR-222-3p were lower in circulating microparticles from FH patients compared to normocholesterolemic controls. Microparticles derived from atherosclerotic plaque areas showed a decreased level of miR-143-3p and miR-222-3p compared to non-atherosclerotic areas. We demonstrated for the first time that microparticles secreted by HCASMC contain microRNAs. Hypercholesterolemia alters the microRNA profile of HCASMC-derived microparticles. The miRNA signature of HCASMC-derived microparticles is a source of cardiovascular biomarkers. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights

  2. Calcium signaling in smooth muscle.

    PubMed

    Hill-Eubanks, David C; Werner, Matthias E; Heppner, Thomas J; Nelson, Mark T

    2011-09-01

    Changes in intracellular Ca(2+) are central to the function of smooth muscle, which lines the walls of all hollow organs. These changes take a variety of forms, from sustained, cell-wide increases to temporally varying, localized changes. The nature of the Ca(2+) signal is a reflection of the source of Ca(2+) (extracellular or intracellular) and the molecular entity responsible for generating it. Depending on the specific channel involved and the detection technology employed, extracellular Ca(2+) entry may be detected optically as graded elevations in intracellular Ca(2+), junctional Ca(2+) transients, Ca(2+) flashes, or Ca(2+) sparklets, whereas release of Ca(2+) from intracellular stores may manifest as Ca(2+) sparks, Ca(2+) puffs, or Ca(2+) waves. These diverse Ca(2+) signals collectively regulate a variety of functions. Some functions, such as contractility, are unique to smooth muscle; others are common to other excitable cells (e.g., modulation of membrane potential) and nonexcitable cells (e.g., regulation of gene expression).

  3. The association of cortactin with profilin-1 is critical for smooth muscle contraction.

    PubMed

    Wang, Ruping; Cleary, Rachel A; Wang, Tao; Li, Jia; Tang, Dale D

    2014-05-16

    Profilin-1 (Pfn-1) is an actin-regulatory protein that has a role in modulating smooth muscle contraction. However, the mechanisms that regulate Pfn-1 in smooth muscle are not fully understood. Here, stimulation with acetylcholine induced an increase in the association of the adapter protein cortactin with Pfn-1 in smooth muscle cells/tissues. Furthermore, disruption of the protein/protein interaction by a cell-permeable peptide (CTTN-I peptide) attenuated actin polymerization and smooth muscle contraction without affecting myosin light chain phosphorylation at Ser-19. Knockdown of cortactin by lentivirus-mediated RNAi also diminished actin polymerization and smooth muscle force development. However, cortactin knockdown did not affect myosin activation. In addition, cortactin phosphorylation has been implicated in nonmuscle cell migration. In this study, acetylcholine stimulation induced cortactin phosphorylation at Tyr-421 in smooth muscle cells. Phenylalanine substitution at this position impaired cortactin/Pfn-1 interaction in response to contractile activation. c-Abl is a tyrosine kinase that is necessary for actin dynamics and contraction in smooth muscle. Here, c-Abl silencing inhibited the agonist-induced cortactin phosphorylation and the association of cortactin with Pfn-1. Finally, treatment with CTTN-I peptide reduced airway resistance and smooth muscle hyperreactivity in a murine model of asthma. These results suggest that the interaction of cortactin with Pfn-1 plays a pivotal role in regulating actin dynamics, smooth muscle contraction, and airway hyperresponsiveness in asthma. The association of cortactin with Pfn-1 is regulated by c-Abl-mediated cortactin phosphorylation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. The Association of Cortactin with Profilin-1 Is Critical for Smooth Muscle Contraction*

    PubMed Central

    Wang, Ruping; Cleary, Rachel A.; Wang, Tao; Li, Jia; Tang, Dale D.

    2014-01-01

    Profilin-1 (Pfn-1) is an actin-regulatory protein that has a role in modulating smooth muscle contraction. However, the mechanisms that regulate Pfn-1 in smooth muscle are not fully understood. Here, stimulation with acetylcholine induced an increase in the association of the adapter protein cortactin with Pfn-1 in smooth muscle cells/tissues. Furthermore, disruption of the protein/protein interaction by a cell-permeable peptide (CTTN-I peptide) attenuated actin polymerization and smooth muscle contraction without affecting myosin light chain phosphorylation at Ser-19. Knockdown of cortactin by lentivirus-mediated RNAi also diminished actin polymerization and smooth muscle force development. However, cortactin knockdown did not affect myosin activation. In addition, cortactin phosphorylation has been implicated in nonmuscle cell migration. In this study, acetylcholine stimulation induced cortactin phosphorylation at Tyr-421 in smooth muscle cells. Phenylalanine substitution at this position impaired cortactin/Pfn-1 interaction in response to contractile activation. c-Abl is a tyrosine kinase that is necessary for actin dynamics and contraction in smooth muscle. Here, c-Abl silencing inhibited the agonist-induced cortactin phosphorylation and the association of cortactin with Pfn-1. Finally, treatment with CTTN-I peptide reduced airway resistance and smooth muscle hyperreactivity in a murine model of asthma. These results suggest that the interaction of cortactin with Pfn-1 plays a pivotal role in regulating actin dynamics, smooth muscle contraction, and airway hyperresponsiveness in asthma. The association of cortactin with Pfn-1 is regulated by c-Abl-mediated cortactin phosphorylation. PMID:24700464

  5. Histone deacetylase 8 regulates cortactin deacetylation and contraction in smooth muscle tissues

    PubMed Central

    Li, Jia; Chen, Shu; Cleary, Rachel A.; Wang, Ruping; Gannon, Olivia J.; Seto, Edward

    2014-01-01

    Histone deacetylases (HDACs) are a family of enzymes that mediate nucleosomal histone deacetylation and gene expression. Some members of the HDAC family have also been implicated in nonhistone protein deacetylation, which modulates cell-cycle control, differentiation, and cell migration. However, the role of HDACs in smooth muscle contraction is largely unknown. Here, HDAC8 was localized both in the cytoplasm and the nucleus of mouse and human smooth muscle cells. Knockdown of HDAC8 by lentivirus-encoding HDAC8 shRNA inhibited force development in response to acetylcholine. Treatment of smooth muscle tissues with HDAC8 inhibitor XXIV (OSU-HDAC-44) induced relaxation of precontracted smooth muscle tissues. In addition, cortactin is an actin-regulatory protein that undergoes deacetylation during migration of NIH 3T3 cells. In this study, acetylcholine stimulation induced cortactin deacetylation in mouse and human smooth muscle tissues, as evidenced by immunoblot analysis using antibody against acetylated lysine. Knockdown of HDAC8 by RNAi or treatment with the inhibitor attenuated cortactin deacetylation and actin polymerization without affecting myosin activation. Furthermore, expression of a charge-neutralizing cortactin mutant inhibited contraction and actin dynamics during contractile activation. These results suggest a novel mechanism for the regulation of smooth muscle contraction. In response to contractile stimulation, HDAC8 may mediate cortactin deacetylation, which subsequently promotes actin filament polymerization and smooth muscle contraction. PMID:24920679

  6. Role of ROCK expression in gallbladder smooth muscle contraction.

    PubMed

    Wang, Bin; Ding, You-Ming; Wang, Chun-Tao; Wang, Wei-Xing

    2015-08-01

    Cholelithiasis is a common medical condition whose incidence rate is increasing yearly, while its pathogenesis has yet to be elucidated. The present study assessed the expression of Rho-kinase (ROCK) in gallbladder smooth muscles and its effect on the contractile function of gallbladder smooth muscles during gallstone formation. Thirty male guinea pigs were randomly divided into three groups: The control group, the gallstone model group and the fasudil interference group. The fasting volume (FV) and bile capacity of the gallbladder (FB) as well as the total cholesterol (TC) and triglyceride (TG) contents of the gallbladder bile were determined. In addition, the gallbladder was dissected to identify whether any gallstones had formed. Part of the gallbladder tissue specimens were used for immunohistochemical analysis of ROCK expression in gallbladder smooth muscles. The results showed that four guinea pigs in the model group and eight in the fasudil group displayed gallstone formation, while there was no gallstone formation in the control group. The FV and FB were significantly increased in the model and fasudil groups. Similarly, the TC and TG contents of gallbladder bile were increased in these groups. The positive expression rate of ROCK in gallbladder smooth muscles in the model and fasudil groups was significantly reduced compared with that in the control group (P<0.05). The results of the present study indicated that the reduction of ROCK expression in guinea pig gallbladder smooth muscles weakened gallbladder contraction and thereby promoted gallstone formation.

  7. Bone Morphogenetic Protein 4 Promotes Vascular Smooth Muscle Contractility by Activating MicroRNA-21 (miR-21), which Down-regulates Expression of Family of Dedicator of Cytokinesis (DOCK) Proteins*

    PubMed Central

    Kang, Hara; Davis-Dusenbery, Brandi N.; Nguyen, Peter H.; Lal, Ashish; Lieberman, Judy; Van Aelst, Linda; Lagna, Giorgio; Hata, Akiko

    2012-01-01

    The bone morphogenetic protein 4 (BMP4) signaling pathway plays a critical role in the promotion and maintenance of the contractile phenotype in vascular smooth muscle cell (vSMC). Misexpression or inactivating mutations of the BMP receptor gene can lead to dedifferentiation of vSMC characterized by increased migration and proliferation that is linked to vascular proliferative disorders. Previously we demonstrated that vSMCs increase microRNA-21 (miR-21) biogenesis upon BMP4 treatment, which induces contractile gene expression by targeting programmed cell death 4 (PDCD4). To identify novel targets of miR-21 that are critical for induction of the contractile phenotype by BMP4, biotinylated miR-21 was expressed in vSMCs followed by an affinity purification of mRNAs associated with miR-21. Nearly all members of the dedicator of cytokinesis (DOCK) 180-related protein superfamily were identified as targets of miR-21. Down-regulation of DOCK4, -5, and -7 by miR-21 inhibited cell migration and promoted cytoskeletal organization by modulating an activity of small GTPase. Thus, this study uncovers a regulatory mechanism of the vSMC phenotype by the BMP4-miR-21 axis through DOCK family proteins. PMID:22158624

  8. MiR-138 promotes smooth muscle cells proliferation and migration in db/db mice through down-regulation of SIRT1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Juan; Li, Li; Yun, Hui-fang

    2015-08-07

    Background: Diabetic vascular smooth muscle cells (VSMCs) exhibit significantly increased rates of proliferation and migration, which was the most common pathological change in atherosclerosis. In addition, the study about the role for miRNAs in the regulation of VSMC proliferation is just beginning to emerge and additional miRNAs involved in VSMC proliferation modulation should be identified. Methods: The expression of miR-138 and SIRT1 were examined in SMCs separated from db/db mice and in SMC lines C-12511 exposed to high glucose with qRT-PCR and western blot. The regulation of miR-138 on the expression of SMCs was detected with luciferase report assay. VSMCsmore » proliferation and migration assays were performed to examine the effect of miR-138 inhibitor on VSMCs proliferation and migration. Results: We discovered that higher mRNA level of miR-138 and reduced expression of SIRT1 were observed in SMCs separated from db/db mice and in SMC lines C-12511. Moreover, luciferase report assay showed that the activity of SIRT1 3′-UTR was highly increased by miR-138 inhibitor and reduced by miR-138 mimic. In addition, we examined that the up-regulation of NF-κB induced by high glucose in SMCs was reversed by resveratrol and miR-138 inhibitor. MTT and migration assays showed that miR-138 inhibitor attenuated the proliferation and migration of smooth muscle cells. Conclusion: In this study, we revealed that miR-138 might promote proliferation and migration of SMC in db/db mice through suppressing the expression of SIRT1. - Highlights: • Higher mRNA level of miR-138 was observed in SMCs from db/db mice. • The mRNA and protein level of SIRT1 in SMCs from db/db mice were greatly reduced. • miR-138 could regulate the expression of SIRT1 in SMCs. • SIRT1 overexpression reversed the up-regulation of acetylized p65 and NF-κB induced by high glucose. • MiR-138 inhibitor reversed VSMCs proliferation and migration induced by high glucose.« less

  9. Dense-body aggregates as plastic structures supporting tension in smooth muscle cells.

    PubMed

    Zhang, Jie; Herrera, Ana M; Paré, Peter D; Seow, Chun Y

    2010-11-01

    The wall of hollow organs of vertebrates is a unique structure able to generate active tension and maintain a nearly constant passive stiffness over a large volume range. These properties are predominantly attributable to the smooth muscle cells that line the organ wall. Although smooth muscle is known to possess plasticity (i.e., the ability to adapt to large changes in cell length through structural remodeling of contractile apparatus and cytoskeleton), the detailed structural basis for the plasticity is largely unknown. Dense bodies, one of the most prominent structures in smooth muscle cells, have been regarded as the anchoring sites for actin filaments, similar to the Z-disks in striated muscle. Here, we show that the dense bodies and intermediate filaments formed cable-like structures inside airway smooth muscle cells and were able to adjust the cable length according to cell length and tension. Stretching the muscle cell bundle in the relaxed state caused the cables to straighten, indicating that these intracellular structures were connected to the extracellular matrix and could support passive tension. These plastic structures may be responsible for the ability of smooth muscle to maintain a nearly constant tensile stiffness over a large length range. The finding suggests that the structural plasticity of hollow organs may originate from the dense-body cables within the smooth muscle cells.

  10. KCl cotransport regulation and protein kinase G in cultured vascular smooth muscle cells.

    PubMed

    Adragna, N C; Zhang, J; Di Fulvio, M; Lincoln, T M; Lauf, P K

    2002-05-15

    K-Cl cotransport is activated by vasodilators in erythrocytes and vascular smooth muscle cells and its regulation involves putative kinase/phosphatase cascades. N-ethylmaleimide (NEM) activates the system presumably by inhibiting a protein kinase. Nitrovasodilators relax smooth muscle via cGMP-dependent activation of protein kinase G (PKG), a regulator of membrane channels and transporters. We investigated whether PKG regulates K-Cl cotransport activity or mRNA expression in normal, PKG-deficient-vector-only-transfected (PKG-) and PKG-catalytic-domain-transfected (PKG+) rat aortic smooth muscle cells. K-Cl cotransport was calculated as the Cl-dependent Rb influx, and mRNA was determined by semiquantitative RT-PCR. Baseline K-Cl cotransport was higher in PKG+ than in PKG- cells (p <0.01). At 0.5 mM, NEM stimulated K-Cl cotransport by 5-fold in PKG- but not in PKG+ cells. However, NEM was more potent although less effective to activate K-Cl cotransport in normal (passage 1-3) and PKG+ than in PKG- cells. In PKG- cells, [(dihydroindenyl) oxy] alkanoic acid (300 mM) but not furosemide (1 mM) inhibited K-Cl cotransport. Furthermore, no difference in K-Cl cotransport mRNA expression was observed between these cells. In conclusion, this study shows that manipulation of PKG expression in vascular smooth muscle cells affects K-Cl cotransport activity and its activation by NEM.

  11. Induction of apoptosis by pyrrolidinedithiocarbamate and N-acetylcysteine in vascular smooth muscle cells.

    PubMed

    Tsai, J C; Jain, M; Hsieh, C M; Lee, W S; Yoshizumi, M; Patterson, C; Perrella, M A; Cooke, C; Wang, H; Haber, E; Schlegel, R; Lee, M E

    1996-02-16

    Pyrrolidinedithiocarbamate (PDTC) and N-acetylcysteine (NAC) have been used as antioxidants to prevent apoptosis in lymphocytes, neurons, and vascular endothelial cells. We report here that PDTC and NAC induce apoptosis in rat and human smooth muscle cells. In rat aortic smooth muscle cells, PDTC induced cell shrinkage, chromatin condensation, and DNA strand breaks consistent with apoptosis. In addition, overexpression of Bcl-2 suppressed vascular smooth muscle cell death caused by PDTC and NAC. The viability of rat aortic smooth muscle cells decreased within 3 h of treatment with PDTC and was reduced to 30% at 12 h. The effect of PDTC and NAC on smooth muscle cells was not species specific because PDTC and NAC both caused dose-dependent reductions in viability in rat and human aortic smooth muscle cells. In contrast, neither PDTC nor NAC reduced viability in human aortic endothelial cells. The use of antioxidants to induce apoptosis in vascular smooth muscle cells may help prevent their proliferation in arteriosclerotic lesions.

  12. mTOR pathway and Ca2+ stores mobilization in aged smooth muscle cells

    PubMed Central

    Martín-Cano, Francisco E; Camello-Almaraz, Cristina; Hernandez, David; Pozo, Maria J; Camello, Pedro J

    2013-01-01

    Aging is considered to be driven by the so called senescence pathways, especially the mTOR route, although there is almost no information on its activity in aged tissues. Aging also induces Ca2+ signal alterations, but information regarding the mechanisms for these changes is almost inexistent. We investigated the possible involvement of the mTOR pathway in the age-dependent changes on Ca2+ stores mobilization in colonic smooth muscle cells of young (4 month old) and aged (24 month old) guinea pigs. mTORC1 activity was enhanced in aged smooth muscle, as revealed by phosphorylation of mTOR and its direct substrates S6K1 and 4E-BP1. Mobilization of intracellular Ca2+ stores through IP3R or RyR channels was impaired in aged cells, and it was facilitated by mTOR and by FKBP12, as indicated by the inhibitory effects of KU0063794 (a direct mTOR inhibitor), rapamycin (a FKBP12-mediated mTOR inhibitor) and FK506 (an FKBP12 binding immunosuppressant). Aging suppressed the facilitation of the Ca2+ mobilization by FKBP12 but not by mTOR, without changing the total expression of FKBP12 protein. In conclusion, or study shows that in smooth muscle aging enhances the constitutive activity of mTORC1 pathway and impairs Ca2+ stores mobilization by suppression of the FKBP12-induced facilitation of Ca2+ release. PMID:23661091

  13. Smooth Muscle-Mediated Connective Tissue Remodeling in Pulmonary Hypertension

    NASA Astrophysics Data System (ADS)

    Mecham, Robert P.; Whitehouse, Loren A.; Wrenn, David S.; Parks, William C.; Griffin, Gail L.; Senior, Robert M.; Crouch, Edmond C.; Stenmark, Kurt R.; Voelkel, Norbert F.

    1987-07-01

    Abnormal accumulation of connective tissue in blood vessels contributes to alterations in vascular physiology associated with disease states such as hypertension and atherosclerosis. Elastin synthesis was studied in blood vessels from newborn calves with severe pulmonary hypertension induced by alveolar hypoxia in order to investigate the cellular stimuli that elicit changes in pulmonary arterial connective tissue production. A two- to fourfold increase in elastin production was observed in pulmonary artery tissue and medial smooth muscle cells from hypertensive calves. This stimulation of elastin production was accompanied by a corresponding increase in elastin messenger RNA consistent with regulation at the transcriptional level. Conditioned serum harvested from cultures of pulmonary artery smooth muscle cells isolated from hypertensive animals contained one or more low molecular weight elastogenic factors that stimulated the production of elastin in both fibroblasts and smooth muscle cells and altered the chemotactic responsiveness of fibroblasts to elastin peptides. These results suggest that connective tissue changes in the pulmonary vasculature in response to pulmonary hypertension are orchestrated by the medial smooth muscle cell through the generation of specific differentiation factors that alter both the secretory phenotype and responsive properties of surrounding cells.

  14. Activation of G protein-coupled bile acid receptor, TGR5, induces smooth muscle relaxation via both Epac- and PKA-mediated inhibition of RhoA/Rho kinase pathway

    PubMed Central

    Rajagopal, Senthilkumar; Kumar, Divya P.; Mahavadi, Sunila; Bhattacharya, Sayak; Zhou, Ruizhe; Corvera, Carlos U.; Bunnett, Nigel W.; Grider, John R.

    2013-01-01

    The present study characterized the TGR5 expression and the signaling pathways coupled to this receptor that mediates the relaxation of gastric smooth muscle. TGR5 was detected in gastric muscle cells by RT-PCR and Western blotting. Treatment of cells with the TGR5-selective ligand oleanolic acid (OA) activated Gαs, but not Gαq, Gαi1, Gαi2, or Gαi3, and increased cAMP levels. OA did not elicit contraction, but caused relaxation of carbachol-induced contraction of gastric muscle cells from wild-type mice, but not tgr5−/− mice. OA, but not a selective exchange protein activated by cAMP (Epac) ligand (8-pCPT-2′-O-Me-cAMP), caused phosphorylation of RhoA and the phosphorylation was blocked by the PKA inhibitor, myristoylated PKI, and by the expression of phosphorylation-deficient mutant RhoA (S188A). Both OA and Epac ligand stimulated Ras-related protein 1 (Rap1) and inhibited carbachol (CCh)-induced Rho kinase activity. Expression of RhoA (S188A) or PKI partly reversed the inhibition of Rho kinase activity by OA but had no effect on inhibition by Epac ligand. However, suppression of Rap1 with siRNA blocked the inhibition of Rho kinase by Epac ligand, and partly reversed the inhibition by OA; the residual inhibition was blocked by PKI. Muscle relaxation in response to OA, but not Epac ligand, was partly reversed by PKI. We conclude that activation of TGR5 causes relaxation of gastric smooth muscle and the relaxation is mediated through inhibition of RhoA/Rho kinase pathway via both cAMP/Epac-dependent stimulation of Rap1 and cAMP/PKA-dependent phosphorylation of RhoA at Ser188. TGR5 receptor activation on smooth muscle reveals a novel mechanism for the regulation of gut motility by bile acids. PMID:23275618

  15. Notch Signaling in Vascular Smooth Muscle Cells

    PubMed Central

    Baeten, J.T.; Lilly, B.

    2018-01-01

    The Notch signaling pathway is a highly conserved pathway involved in cell fate determination in embryonic development and also functions in the regulation of physiological processes in several systems. It plays an especially important role in vascular development and physiology by influencing angiogenesis, vessel patterning, arterial/venous specification, and vascular smooth muscle biology. Aberrant or dysregulated Notch signaling is the cause of or a contributing factor to many vascular disorders, including inherited vascular diseases, such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, associated with degeneration of the smooth muscle layer in cerebral arteries. Like most signaling pathways, the Notch signaling axis is influenced by complex interactions with mediators of other signaling pathways. This complexity is also compounded by different members of the Notch family having both overlapping and unique functions. Thus, it is vital to fully understand the roles and interactions of each Notch family member in order to effectively and specifically target their exact contributions to vascular disease. In this chapter, we will review the Notch signaling pathway in vascular smooth muscle cells as it relates to vascular development and human disease. PMID:28212801

  16. Mechanics of smooth muscle in isolated single microvessels.

    PubMed

    Gore, R W; Davis, M J

    1984-01-01

    In vivo studies on frog mesenteric arterioles (4) indicate that segmental differences in the response of microvessels to physical and chemical stimuli can be explained simply in terms of the length-tension characteristics of vascular smooth muscle at different points along the vascular tree. Studies on single, isolated arterioles in vitro were initiated to examine more closely the validity of this explanation for regional response differences. This paper reports some of the results. First-, second-, and third-order arterioles (18-60 micron i.d.) were dissected from hamster cheek pouches. The vessels were cannulated with a modified Burg microperfusion system, and their mechanical properties studied using the methods described by Duling and Gore. Vessels were activated in four stages with K+ and norepinephrine. During activation, transmural pressures were adjusted to minimize vascular smooth-muscle shortening. Active pressure-diameter curves were recorded while adjusting transmural pressure through the range 5 to 400 cm H20 in 5-25 cm steps. Vessel dimensions were measured with a videomicrometer. Passive curves were obtained after equilibration overnight in Ca2+-free medium. The vessels were then fixed and prepared for histologic sectioning, and measurements of vessel-wall composition were made. The Laplace relationship was used to construct length-tension diagrams, and the histologic data were used to normalize the dimensional data to smooth-muscle lengths. Maximum active tension of second-order arterioles (1,170 dynes/cm) was two times previous values reported by Gore et al. This was due presumably to refinements in techniques and dissection procedures. Maximum active stress averaged 3.9 X 10(+6) dynes/cm2 for second-order arterioles. This number is identical to data obtained from hog carotid strips by Dillon et al.

  17. Role of Telokin in Regulating Murine Gastric Fundus Smooth Muscle Tension

    PubMed Central

    An, Changlong; Bhetwal, Bhupal P.; Sanders, Kenton M.; Somlyo, Avril V.; Perrino, Brian A.

    2015-01-01

    Telokin phosphorylation by cyclic GMP-dependent protein kinase facilitates smooth muscle relaxation. In this study we examined the relaxation of gastric fundus smooth muscles from basal tone, or pre-contracted with KCl or carbachol (CCh), and the phosphorylation of telokin S13, myosin light chain (MLC) S19, MYPT1 T853, T696, and CPI-17 T38 in response to 8-Bromo-cGMP, the NO donor sodium nitroprusside (SNP), or nitrergic neurotransmission. We compared MLC phosphorylation and the contraction and relaxation responses of gastric fundus smooth muscles from telokin-/- mice and their wild-type littermates to KCl or CCh, and 8-Bromo-cGMP, SNP, or nitrergic neurotransmission, respectively. We compared the relaxation responses and telokin phosphorylation of gastric fundus smooth muscles from wild-type mice and W/W V mice which lack ICC-IM, to 8-Bromo-cGMP, SNP, or nitrergic neurotransmission. We found that telokin S13 is basally phosphorylated and that 8-Bromo-cGMP and SNP increased basal telokin phosphorylation. In muscles pre-contracted with KCl or CCh, 8-Bromo-cGMP and SNP had no effect on CPI-17 or MYPT1 phosphorylation, but increased telokin phosphorylation and reduced MLC phosphorylation. In telokin-/- gastric fundus smooth muscles, basal tone and constitutive MLC S19 phosphorylation were increased. Pre-contracted telokin-/- gastric fundus smooth muscles have increased contractile responses to KCl, CCh, or cholinergic neurotransmission and reduced relaxation to 8-Bromo-cGMP, SNP, and nitrergic neurotransmission. However, basal telokin phosphorylation was not increased when muscles were stimulated with lower concentrations of SNP or when the muscles were stimulated by nitrergic neurotransmission. SNP, but not nitrergic neurotransmission, increased telokin Ser13 phosphorylation in both wild-type and W/W V gastric fundus smooth muscles. Our findings indicate that telokin may play a role in attenuating constitutive MLC phosphorylation and provide an additional mechanism

  18. What evidence implicates airway smooth muscle in the cause of BHR?

    PubMed

    Dulin, Nickolai O; Fernandes, Darren J; Dowell, Maria; Bellam, Shashi; McConville, John; Lakser, Oren; Mitchell, Richard; Camoretti-Mercado, Blanca; Kogut, Paul; Solway, Julian

    2003-02-01

    Bronchial hyperresponsiveness (BHR), the occurrence of excessive bronchoconstriction in response to relatively small constrictor stimuli, is a cardinal feature of asthma. Here, we consider the role that airway smooth muscle might play in the generation of BHR. The weight of evidence suggests that smooth muscle isolated from asthmatic tissues exhibits normal sensitivity to constrictor agonists when studied during isometric contraction, but the increased muscle mass within asthmatic airways might generate more total force than the lesser amount of muscle found in normal bronchi. Another salient difference between asthmatic and normal individuals lies in the effect of deep inhalation (DI) on bronchoconstriction. DI often substantially reverses induced bronchoconstriction in normals, while it often has much less effect on spontaneous or induced bronchoconstriction in asthmatics. It has been proposed that abnormal dynamic aspects of airway smooth muscle contraction velocity of contraction or plasticity- elasticity balance might underlie the abnormal DI response in asthma. We suggest a speculative model in which abnormally long actin filaments might account for abnormally increased elasticity of contracted airway smooth muscle.

  19. The sphingosine analog fingolimod (FTY720) enhances tone and contractility of rat gastric fundus smooth muscle.

    PubMed

    Kraft, M; Zettl, U K; Noack, T; Patejdl, R

    2018-05-08

    Sphingosine and its metabolite sphingosine phosphate (S1P) regulate a multitude of biological functions, including the contractile state of smooth. Gastrointestinal side effects have been reported in patients treated with FTY720, a sphingosine analog that is approved for the treatment of multiple sclerosis. The aim of this study was to characterize the effects of FTY720 on rat gastric fundus smooth muscle under basal conditions and during activation induced by high-K + solution. Isometric contractions of isolated circular strips of gastric fundus smooth muscle were recorded using the organ bath method. The effects of FTY720 or vehicle were recorded under control conditions and in the presence of indomethacin, L-NAME, HA-1100, nifedipine, JTE-013, and suramin. Tone and contractions recorded in the presence of FTY720 or vehicle are reported as % of the amplitude of an initial high-K + contraction obtained under control conditions. From a concentration of 10 μmol L -1 onwards, FTY720 increased the tone, reaching 8.9% ± 7.5% at 100 μmol L -1 (P < .05). With indomethacin in the solution, the effects of FTY720 were enhanced (32.1% ± 7.7%; P < .001). The FTY720-induced increase in tone was abolished in the absence of extracellular Ca 2+ and reduced by nifedipine, HA-1100, JTE-013, and suramin. Furthermore, FTY720 increased high-K + contractions in the presence of indomethacin. FTY720 increases tone and contractile responses to depolarization in gastric fundus smooth muscle by triggering calcium entry and calcium sensitization in a S1P receptor-dependent manner. Taken together, the experimental results presented in this work suggest that FTY720 may increase gastric tone and contractility in patients. © 2018 John Wiley & Sons Ltd.

  20. Effects of Gingko biloba extract (EGb 761) on vascular smooth muscle cell calcification induced by β-glycerophosphate.

    PubMed

    Li, En-Gang; Tian, Jun; Xu, Zhong-Hua

    2016-01-01

    To investigate the effects of Gingko biloba extract (EGb 761) on calcification induced by β-glycerophosphate in rat aortic vascular smooth muscle cells. Rat aortic vascular smooth muscle cells were cultured with various concentrations of EGb 761 and β-glycerophosphate for 7 days. Calcium content in the cells, alkaline phosphatase activity, cell protein content, NF-κB activation, and reactive oxygen species production were assayed, respectively. The calcium depositions of vascular smooth muscle cells of the β-glycerophosphate group were significantly higher than those of the control group (p < 0.01), and were inhibited by EGb 761 in a concentration-dependent manner (p < 0.05). Data showed β-glycerophosphate induced the enhanced expression of alkaline phosphatase, up-regulated the NF-κB activity and increased reactive oxygen species production of vascular smooth muscle cells while these decreased when administrated with EGb 761(p < 0.05). EGb 761 significantly reduced deposition of calcium induced by β-glycerophosphate in rat aortic vascular smooth muscle cells. It not only reduced the deposition of calcium, but also inhibited osteogenic transdifferentiation, which may be associated with decreasing expression of alkaline phosphatase, down-regulating the NF-κB activity, and reducing reactive oxygen species production of vascular smooth muscle cells, and may have the potential to serve as a role for vascular calcification in clinical situations.

  1. Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering.

    PubMed

    Björninen, Miina; Gilmore, Kerry; Pelto, Jani; Seppänen-Kaijansinkko, Riitta; Kellomäki, Minna; Miettinen, Susanna; Wallace, Gordon; Grijpma, Dirk; Haimi, Suvi

    2017-04-01

    We investigated the use of polypyrrole (PPy)-coated polymer scaffolds and electrical stimulation (ES) to differentiate adipose stem cells (ASCs) towards smooth muscle cells (SMCs). Since tissue engineering lacks robust and reusable 3D ES devices we developed a device that can deliver ES in a reliable, repeatable, and cost-efficient way in a 3D environment. Long pulse (1 ms) or short pulse (0.25 ms) biphasic electric current at a frequency of 10 Hz was applied to ASCs to study the effects of ES on ASC viability and differentiation towards SMCs on the PPy-coated scaffolds. PPy-coated scaffolds promoted proliferation and induced stronger calponin, myosin heavy chain (MHC) and smooth muscle actin (SMA) expression in ASCs compared to uncoated scaffolds. ES with 1 ms pulse width increased the number of viable cells by day 7 compared to controls and remained at similar levels to controls by day 14, whereas shorter pulses significantly decreased viability compared to the other groups. Both ES protocols supported smooth muscle expression markers. Our results indicate that electrical stimulation on PPy-coated scaffolds applied through the novel 3D ES device is a valid approach for vascular smooth muscle tissue engineering.

  2. Estrogen-Induced Maldevelopment of the Penis Involves Down-Regulation of Myosin Heavy Chain 11 (MYH11) Expression, a Biomarker for Smooth Muscle Cell Differentiation1

    PubMed Central

    Okumu, L.A.; Bruinton, Sequoia; Braden, Tim D.; Simon, Liz; Goyal, Hari O.

    2012-01-01

    ABSTRACT Cavernous smooth muscle cells are essential components in penile erection. In this study, we investigated effects of estrogen exposure on biomarkers for smooth muscle cell differentiation in the penis. Neonatal rats received diethylstilbestrol (DES), with or without the estrogen receptor (ESR) antagonist ICI 182,780 (ICI) or the androgen receptor (AR) agonist dihydrotestosterone (DHT), from Postnatal Days 1 to 6. Tissues were collected at 7, 10, or 21 days of age. The smooth muscle cell biomarker MYH11 was studied in depth because microarray data showed it was significantly down-regulated, along with other biomarkers, in DES treatment. Quantitative real time-PCR and Western blot analyses showed 50%–80% reduction (P ≤ 0.05) in Myh11 expression in DES-treated rats compared to that in controls; and ICI and DHT coadministration mitigated the decrease. Temporally, from 7 to 21 days of age, Myh11 expression was onefold increased (P ≥ 0.05) in DES-treated rats versus threefold increased (P ≤ 0.001) in controls, implying the long-lasting inhibitory effect of DES on smooth muscle cell differentiation. Immunohistochemical localization of smooth muscle alpha actin, another biomarker for smooth muscle cell differentiation, showed fewer cavernous smooth muscle cells in DES-treated animals than in controls. Additionally, DES treatment significantly up-regulated Esr1 mRNA expression and suppressed the neonatal testosterone surge by 90%, which was mitigated by ICI coadministration but not by DHT coadministration. Collectively, results provided evidence that DES treatment in neonatal rats inhibited cavernous smooth muscle cell differentiation, as shown by down-regulation of MYH11 expression at the mRNA and protein levels and by reduced immunohistochemical staining of smooth muscle alpha actin. Both the ESR and the AR pathways probably mediate this effect. PMID:22976277

  3. Acute administration of ivacaftor to people with cystic fibrosis and a G551D-CFTR mutation reveals smooth muscle abnormalities

    PubMed Central

    Adam, Ryan J.; Hisert, Katherine B.; Dodd, Jonathan D.; Grogan, Brenda; Launspach, Janice L.; Barnes, Janel K.; Gallagher, Charles G.; Sieren, Jered P.; Gross, Thomas J.; Fischer, Anthony J.; Cavanaugh, Joseph E.; Hoffman, Eric A.; Singh, Pradeep K.; Welsh, Michael J.; McKone, Edward F.; Stoltz, David A.

    2016-01-01

    BACKGROUND. Airflow obstruction is common in cystic fibrosis (CF), yet the underlying pathogenesis remains incompletely understood. People with CF often exhibit airway hyperresponsiveness, CF transmembrane conductance regulator (CFTR) is present in airway smooth muscle (ASM), and ASM from newborn CF pigs has increased contractile tone, suggesting that loss of CFTR causes a primary defect in ASM function. We hypothesized that restoring CFTR activity would decrease smooth muscle tone in people with CF. METHODS. To increase or potentiate CFTR function, we administered ivacaftor to 12 adults with CF with the G551D-CFTR mutation; ivacaftor stimulates G551D-CFTR function. We studied people before and immediately after initiation of ivacaftor (48 hours) to minimize secondary consequences of CFTR restoration. We tested smooth muscle function by investigating spirometry, airway distensibility, and vascular tone. RESULTS. Ivacaftor rapidly restored CFTR function, indicated by reduced sweat chloride concentration. Airflow obstruction and air trapping also improved. Airway distensibility increased in airways less than 4.5 mm but not in larger-sized airways. To assess smooth muscle function in a tissue outside the lung, we measured vascular pulse wave velocity (PWV) and augmentation index, which both decreased following CFTR potentiation. Finally, change in distensibility of <4.5-mm airways correlated with changes in PWV. CONCLUSIONS. Acute CFTR potentiation provided a unique opportunity to investigate CFTR-dependent mechanisms of CF pathogenesis. The rapid effects of ivacaftor on airway distensibility and vascular tone suggest that CFTR dysfunction may directly cause increased smooth muscle tone in people with CF and that ivacaftor may relax smooth muscle. FUNDING. This work was funded in part from an unrestricted grant from the Vertex Investigator-Initiated Studies Program. PMID:27158673

  4. Tumor necrosis factor regulates NMDA receptor-mediated airway smooth muscle contractile function and airway responsiveness.

    PubMed

    Anaparti, Vidyanand; Pascoe, Christopher D; Jha, Aruni; Mahood, Thomas H; Ilarraza, Ramses; Unruh, Helmut; Moqbel, Redwan; Halayko, Andrew J

    2016-08-01

    We have shown that N-methyl-d-aspartate receptors (NMDA-Rs) are receptor-operated calcium entry channels in human airway smooth muscle (HASM) during contraction. Tumor necrosis factor (TNF) augments smooth muscle contractility by influencing pathways that regulate intracellular calcium flux and can alter NMDA-R expression and activity in cortical neurons and glial cells. We hypothesized that NMDA-R-mediated Ca(2+) and contractile responses of ASM can be altered by inflammatory mediators, including TNF. In cultured HASM cells, we assessed TNF (10 ng/ml, 48 h) effect on NMDA-R subunit abundance by quantitative PCR, confocal imaging, and immunoblotting. We observed dose- and time-dependent changes in NMDA-R composition: increased obligatory NR1 subunit expression and altered regulatory NR2 and inhibitory NR3 subunits. Measuring intracellular Ca(2+) flux in Fura-2-loaded HASM cultures, we observed that TNF exposure enhanced cytosolic Ca(2+) mobilization and changed the temporal pattern of Ca(2+) flux in individual myocytes induced by NMDA, an NMDA-R selective analog of glutamate. We measured airway responses to NMDA in murine thin-cut lung slices (TCLS) from allergen-naive animals and observed significant airway contraction. However, NMDA acted as a bronchodilator in TCLS from house dust mice-challenged mice and in allergen-naive TCLS subjected to TNF exposure. All contractile or bronchodilator responses were blocked by a selective NMDA-R antagonist, (2R)-amino-5-phosphonopentanoate, and bronchodilator responses were prevented by N(G)-nitro-l-arginine methyl ester (nitric oxide synthase inhibitor) or indomethacin (cyclooxygenase inhibitor). Collectively, we show that TNF augments NMDA-R-mediated Ca(2+) mobilization in HASM cells, whereas in multicellular TCLSs allergic inflammation and TNF exposure leads to NMDA-R-mediated bronchodilation. These findings reveal the unique contribution of ionotrophic NMDA-R to airway hyperreactivity. Copyright © 2016 the American

  5. Differentiation of Human Adipose Derived Stem Cells into Smooth Muscle Cells Is Modulated by CaMKIIγ

    PubMed Central

    Aji, Kaisaier; Maimaijiang, Munila; Aimaiti, Abudusaimi; Rexiati, Mulati; Azhati, Baihetiya; Tusong, Hamulati

    2016-01-01

    The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) is known to participate in maintenance and switches of smooth muscle cell (SMC) phenotypes. However, which isoform of CaMKII is involved in differentiation of adult mesenchymal stem cells into contractile SMCs remains unclear. In the present study, we detected γ isoform of CaMKII in differentiation of human adipose derived stem cells (hASCs) into SMCs that resulted from treatment with TGF-β1 and BMP4 in combination for 7 days. The results showed that CaMKIIγ increased gradually during differentiation of hASCs as determined by real-time PCR and western blot analysis. The siRNA-mediated knockdown of CaMKIIγ decreased the protein levels and transcriptional levels of smooth muscle contractile markers (a-SMA, SM22a, calponin, and SM-MHC), while CaMKIIγ overexpression increases the transcriptional and protein levels of smooth muscle contractile markers. These results suggested that γ isoform of CaMKII plays a significant role in smooth muscle differentiation of hASCs. PMID:27493668

  6. Functional expression of KCNQ (Kv7) channels in guinea pig bladder smooth muscle and their contribution to spontaneous activity

    PubMed Central

    Anderson, U A; Carson, C; Johnston, L; Joshi, S; Gurney, A M; McCloskey, K D

    2013-01-01

    Background and Purpose The aim of the study was to determine whether KCNQ channels are functionally expressed in bladder smooth muscle cells (SMC) and to investigate their physiological significance in bladder contractility. Experimental Approach KCNQ channels were examined at the genetic, protein, cellular and tissue level in guinea pig bladder smooth muscle using RT-PCR, immunofluorescence, patch-clamp electrophysiology, calcium imaging, detrusor strip myography, and a panel of KCNQ activators and inhibitors. Key Results KCNQ subtypes 1–5 are expressed in bladder detrusor smooth muscle. Detrusor strips typically displayed TTX-insensitive myogenic spontaneous contractions that were increased in amplitude by the KCNQ channel inhibitors XE991, linopirdine or chromanol 293B. Contractility was inhibited by the KCNQ channel activators flupirtine or meclofenamic acid (MFA). The frequency of Ca2+-oscillations in SMC contained within bladder tissue sheets was increased by XE991. Outward currents in dispersed bladder SMC, recorded under conditions where BK and KATP currents were minimal, were significantly reduced by XE991, linopirdine, or chromanol, and enhanced by flupirtine or MFA. XE991 depolarized the cell membrane and could evoke transient depolarizations in quiescent cells. Flupirtine (20 μM) hyperpolarized the cell membrane with a simultaneous cessation of any spontaneous electrical activity. Conclusions and Implications These novel findings reveal the role of KCNQ currents in the regulation of the resting membrane potential of detrusor SMC and their important physiological function in the control of spontaneous contractility in the guinea pig bladder. PMID:23586426

  7. Different phospholipase-C-coupled receptors differentially regulate capacitative and non-capacitative Ca2+ entry in A7r5 cells

    PubMed Central

    Moneer, Zahid; Pino, Irene; Taylor, Emily J. A.; Broad, Lisa M.; Liu, Yingjie; Tovey, Stephen C.; Staali, Leila; Taylor, Colin W.

    2005-01-01

    Several receptors, including those for AVP (Arg8-vasopressin) and 5-HT (5-hydroxytryptamine), share an ability to stimulate PLC (phospholipase C) and so production of IP3 (inositol 1,4,5-trisphosphate) and DAG (diacylglycerol) in A7r5 vascular smooth muscle cells. Our previous analysis of the effects of AVP on Ca2+ entry [Moneer, Dyer and Taylor (2003) Biochem. J. 370, 439–448] showed that arachidonic acid released from DAG stimulated NO synthase. NO then stimulated an NCCE (non-capacitative Ca2+ entry) pathway, and, via cGMP and protein kinase G, it inhibited CCE (capacitative Ca2+ entry). This reciprocal regulation ensured that, in the presence of AVP, all Ca2+ entry occurred via NCCE to be followed by a transient activation of CCE only when AVP was removed [Moneer and Taylor (2002) Biochem. J. 362, 13–21]. We confirm that, in the presence of AVP, all Ca2+ entry occurs via NCCE, but 5-HT, despite activating PLC and evoking release of Ca2+ from intracellular stores, stimulates Ca2+ entry only via CCE. We conclude that two PLC-coupled receptors differentially regulate CCE and NCCE. We also address evidence that, in some A7r5 cells lines, AVP fails either to stimulate NCCE or inhibit CCE [Brueggemann, Markun, Barakat, Chen and Byron (2005) Biochem. J. 388, 237–244]. Quantitative PCR analysis suggests that these cells predominantly express TRPC1 (transient receptor potential canonical 1), whereas cells in which AVP reciprocally regulates CCE and NCCE express a greater variety of TRPC subtypes (TRPC1=6>2>3). PMID:15918794

  8. Autonomic Modification of Intestinal Smooth Muscle Contractility

    ERIC Educational Resources Information Center

    Montgomery, Laura E. A.; Tansey, Etain A.; Johnson, Chris D.; Roe, Sean M.; Quinn, Joe G.

    2016-01-01

    Intestinal smooth muscle contracts rhythmically in the absence of nerve and hormonal stimulation because of the activity of pacemaker cells between and within the muscle layers. This means that the autonomic nervous system modifies rather than initiates intestinal contractions. The practical described here gives students an opportunity to observe…

  9. Polo-like Kinase 1 Regulates Vimentin Phosphorylation at Ser-56 and Contraction in Smooth Muscle*

    PubMed Central

    Li, Jia; Wang, Ruping; Gannon, Olivia J.; Rezey, Alyssa C.; Jiang, Sixin; Gerlach, Brennan D.; Liao, Guoning

    2016-01-01

    Polo-like kinase 1 (Plk1) is a serine/threonine-protein kinase that has been implicated in mitosis, cytokinesis, and smooth muscle cell proliferation. The role of Plk1 in smooth muscle contraction has not been investigated. Here, stimulation with acetylcholine induced Plk1 phosphorylation at Thr-210 (an indication of Plk1 activation) in smooth muscle. Contractile stimulation also activated Plk1 in live smooth muscle cells as evidenced by changes in fluorescence resonance energy transfer signal of a Plk1 sensor. Moreover, knockdown of Plk1 in smooth muscle attenuated force development. Smooth muscle conditional knock-out of Plk1 also diminished contraction of mouse tracheal rings. Plk1 knockdown inhibited acetylcholine-induced vimentin phosphorylation at Ser-56 without affecting myosin light chain phosphorylation. Expression of T210A Plk1 inhibited the agonist-induced vimentin phosphorylation at Ser-56 and contraction in smooth muscle. However, myosin light chain phosphorylation was not affected by T210A Plk1. Ste20-like kinase (SLK) is a serine/threonine-protein kinase that has been implicated in spindle orientation and microtubule organization during mitosis. In this study knockdown of SLK inhibited Plk1 phosphorylation at Thr-210 and activation. Finally, asthma is characterized by airway hyperresponsiveness, which largely stems from airway smooth muscle hyperreactivity. Here, smooth muscle conditional knock-out of Plk1 attenuated airway resistance and airway smooth muscle hyperreactivity in a murine model of asthma. Taken together, these findings suggest that Plk1 regulates smooth muscle contraction by modulating vimentin phosphorylation at Ser-56. Plk1 activation is regulated by SLK during contractile activation. Plk1 contributes to the pathogenesis of asthma. PMID:27662907

  10. Electrical properties of purinergic transmission in smooth muscle of the guinea-pig prostate.

    PubMed

    Lam, Michelle; Mitsui, Retsu; Hashitani, Hikaru

    2016-01-01

    Prostatic smooth muscle develops spontaneous myogenic tone which is modulated by autonomic neuromuscular transmission. This study aimed to investigate the role of purinergic transmission in regulating electrical activity of prostate smooth muscle and whether its contribution may be altered with age. Intracellular recordings were simultaneously made with isometric tension recordings in smooth muscle preparations of the guinea-pig prostate. Immunostaining for P2X1 receptors on whole mount preparations was also performed. In prostate preparations which generated spontaneous slow waves, electrical field stimulation (EFS)-evoked excitatory junction potentials (EJPs) which were abolished by guanethidine (10 μM), α-β-methylene ATP (10 μM) or pyridoxal phosphate-6-azophenyl-2,4-disulfonic acid (PPADS, 10 μM) but not phentolamine (1 μM). Consistently, immunostaining revealed the expression of P2X1 receptors on prostatic smooth muscle. EJPs themselves did not cause contractions, but EJPs could sum to trigger a slow wave and associated contraction. Yohimbine (1 μM) and 3,7-dimethyl-1-propargylxanthine (DMPX, 10 μM) but not propranolol (1 μM) potentiated EJPs. Although properties of EJPs were not different between young and aging guinea-pig prostates, ectoATPase inhibitor ARL 67156 (100 μM) augmented EJP amplitudes by 64.2 ± 29.6% in aging animals, compared to 22.1 ± 19.9% in young animals. These results suggest that ATP released from sympathetic nerves acts on P2X1 purinoceptors located on prostate smooth muscle to evoke EJPs, while pre-junctional α2-adrenergic and adenosine A2 receptors may play a role in preventing excessive transmitter release. Age-related up-regulation of enzymatic ATP breakdown may be a compensatory mechanism for the enhanced purinergic transmission which would cause hypercontractility arising from increased ATP release in older animals. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Pharmacological identification of β-adrenoceptor subtypes mediating isoprenaline-induced relaxation of guinea pig colonic longitudinal smooth muscle.

    PubMed

    Chino, Daisuke; Sone, Tomoyo; Yamazaki, Kumi; Tsuruoka, Yuri; Yamagishi, Risa; Shiina, Shunsuke; Obara, Keisuke; Yamaki, Fumiko; Higai, Koji; Tanaka, Yoshio

    2018-01-01

    Object We aimed to identify the β-adrenoceptor (β-AR) subtypes involved in isoprenaline-induced relaxation of guinea pig colonic longitudinal smooth muscle using pharmacological and biochemical approaches. Methods Longitudinal smooth muscle was prepared from the male guinea pig ascending colon and contracted with histamine prior to comparing the relaxant responses to three catecholamines (isoprenaline, adrenaline, and noradrenaline). The inhibitory effects of subtype-selective β-AR antagonists on isoprenaline-induced relaxation were then investigated. Results The relaxant potencies of the catecholamines were ranked as: isoprenaline > noradrenaline ≈ adrenaline, whereas the rank order was isoprenaline > noradrenaline > adrenaline in the presence of propranolol (a non-selective β-AR antagonist; 3 × 10 -7 M). Atenolol (a selective β 1 -AR antagonist; 3 × 10 -7 -10 -6  M) acted as a competitive antagonist of isoprenaline-induced relaxation, and the pA 2 value was calculated to be 6.49 (95% confidence interval: 6.34-6.83). The relaxation to isoprenaline was not affected by ICI-118,551 (a selective β 2 -AR antagonist) at 10 -9 -10 -8  M, but was competitively antagonized by 10 -7 -3 × 10 -7  M, with a pA 2 value of 7.41 (95% confidence interval: 7.18-8.02). In the presence of propranolol (3 × 10 -7 M), the relaxant effect of isoprenaline was competitively antagonized by bupranolol (a non-selective β-AR antagonist), with a pA 2 value of 5.90 (95% confidence interval: 5.73-6.35). Conclusion These findings indicated that the β-AR subtypes involved in isoprenaline-induced relaxation of colonic longitudinal guinea pig muscles are β 1 -AR and β 3 -AR.

  12. Inhibition of RhoA/Rho kinase pathway and smooth muscle contraction by hydrogen sulfide.

    PubMed

    Nalli, Ancy D; Wang, Hongxia; Bhattacharya, Sayak; Blakeney, Bryan A; Murthy, Karnam S

    2017-10-01

    Hydrogen sulfide (H 2 S) plays an important role in smooth muscle relaxation. Here, we investigated the expression of enzymes in H 2 S synthesis and the mechanism regulating colonic smooth muscle function by H 2 S. Expression of cystathionine-γ-lyase (CSE), but not cystathionine-β-synthase (CBS), was identified in the colonic smooth muscle of rabbit, mouse, and human. Carbachol (CCh)-induced contraction in rabbit muscle strips and isolated muscle cells was inhibited by l-cysteine (substrate of CSE) and NaHS (an exogenous H 2 S donor) in a concentration-dependent fashion. H 2 S induced S-sulfhydration of RhoA that was associated with inhibition of RhoA activity. CCh-induced Rho kinase activity also was inhibited by l-cysteine and NaHS in a concentration-dependent fashion. Inhibition of CCh-induced contraction by l-cysteine was blocked by the CSE inhibitor, dl-propargylglycine (DL-PPG) in dispersed muscle cells. Inhibition of CCh-induced Rho kinase activity by l-cysteine was blocked by CSE siRNA in cultured cells and DL-PPG in dispersed muscle cells. Stimulation of Rho kinase activity and muscle contraction in response to CCh was also inhibited by l-cysteine or NaHS in colonic muscle cells from mouse and human. Collectively, our studies identified the expression of CSE in colonic smooth muscle and determined that sulfhydration of RhoA by H 2 S leads to inhibition of RhoA and Rho kinase activities and muscle contraction. The mechanism identified may provide novel therapeutic approaches to mitigate gastrointestinal motility disorders. © 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

  13. YFa and analogs: Investigation of opioid receptors in smooth muscle contraction

    PubMed Central

    Kumar, Krishan; Goyal, Ritika; Mudgal, Annu; Mohan, Anita; Pasha, Santosh

    2011-01-01

    AIM: To study the pharmacological profile and inhibition of smooth muscle contraction by YFa and its analogs in conjunction with their receptor selectivity. METHODS: The effects of YFa and its analogs (D-Ala2) YFa, Y (D-Ala2) GFMKKKFMRF amide and Des-Phe-YGGFMKKKFMR amide in guinea pig ileum (GPI) and mouse vas deferens (MVD) motility were studied using an isolated tissue organ bath system, and morphine and DynA (1-13) served as controls. Acetylcholine was used for muscle stimulation. The observations were validated by specific antagonist pretreatment experiments using naloxonazine, naltrindole and norbinaltorphimine norBNI. RESULTS: YFa did not demonstrate significant inhibition of GPI muscle contraction as compared with morphine (15% vs 62%, P = 0.0002), but moderate inhibition of MVD muscle contraction, indicating the role of κ opioid receptors in the contraction. A moderate inhibition of GPI muscles by (Des-Phe) YFa revealed the role of anti-opiate receptors in the smooth muscle contraction. (D-Ala-2) YFa showed significant inhibition of smooth muscle contraction, indicating the involvement of mainly δ receptors in MVD contraction. These results were supported by specific antagonist pretreatment assays. CONCLUSION: YFa revealed its side-effect-free analgesic properties with regard to arrest of gastrointestinal transit. The study provides evidences for the involvement of κ and anti-opioid receptors in smooth muscle contraction. PMID:22110284

  14. YFa and analogs: investigation of opioid receptors in smooth muscle contraction.

    PubMed

    Kumar, Krishan; Goyal, Ritika; Mudgal, Annu; Mohan, Anita; Pasha, Santosh

    2011-10-28

    To study the pharmacological profile and inhibition of smooth muscle contraction by YFa and its analogs in conjunction with their receptor selectivity. The effects of YFa and its analogs (D-Ala2) YFa, Y (D-Ala2) GFMKKKFMRF amide and Des-Phe-YGGFMKKKFMR amide in guinea pig ileum (GPI) and mouse vas deferens (MVD) motility were studied using an isolated tissue organ bath system, and morphine and DynA (1-13) served as controls. Acetylcholine was used for muscle stimulation. The observations were validated by specific antagonist pretreatment experiments using naloxonazine, naltrindole and norbinaltorphimine norBNI. YFa did not demonstrate significant inhibition of GPI muscle contraction as compared with morphine (15% vs 62%, P = 0.0002), but moderate inhibition of MVD muscle contraction, indicating the role of κ opioid receptors in the contraction. A moderate inhibition of GPI muscles by (Des-Phe) YFa revealed the role of anti-opiate receptors in the smooth muscle contraction. (D-Ala-2) YFa showed significant inhibition of smooth muscle contraction, indicating the involvement of mainly δ receptors in MVD contraction. These results were supported by specific antagonist pretreatment assays. YFa revealed its side-effect-free analgesic properties with regard to arrest of gastrointestinal transit. The study provides evidences for the involvement of κ and anti-opioid receptors in smooth muscle contraction.

  15. Effects of One Resistance Exercise Session on Vascular Smooth Muscle of Hypertensive Rats

    PubMed Central

    da Silva, Tharciano Luiz Teixeira Braga; Mota, Marcelo Mendonça; Fontes, Milene Tavares; Araújo, João Eliakim dos Santos; Carvalho, Vitor Oliveira; Bonjardim, Leonardo Rigoldi; Santos, Márcio Roberto Viana

    2015-01-01

    Background Hypertension is a public health problem and increases the incidence of cardiovascular diseases. Objective To evaluate the effects of a resistance exercise session on the contractile and relaxing mechanisms of vascular smooth muscle in mesenteric arteries of NG-nitro L-arginine methyl ester (L-NAME)-induced hypertensive rats. Methods Wistar rats were divided into three groups: control (C), hypertensive (H), and exercised hypertensive (EH). Hypertension was induced by administration of 20 mg/kg of L-NAME for 7 days prior to experimental protocols. The resistance exercise protocol consisted of 10 sets of 10 repetitions and intensity of 40% of one repetition maximum. The reactivity of vascular smooth muscle was evaluated by concentration‑response curves to phenylephrine (PHEN), potassium chloride (KCl) and sodium nitroprusside (SNP). Results Rats treated with L-NAME showed an increase (p < 0.001) in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) compared to the initial period of induction. No difference in PHEN sensitivity was observed between groups H and EH. Acute resistance exercise reduced (p < 0.001) the contractile response induced by KCl at concentrations of 40 and 60 mM in group EH. Greater (p < 0.01) smooth muscle sensitivity to NPS was observed in group EH as compared to group H. Conclusion One resistance exercise session reduces the contractile response induced by KCl in addition to increasing the sensitivity of smooth muscle to NO in mesenteric arteries of hypertensive rats. PMID:26107814

  16. Effects of one resistance exercise session on vascular smooth muscle of hypertensive rats.

    PubMed

    Silva, Tharciano Luiz Teixeira Braga da; Mota, Marcelo Mendonça; Fontes, Milene Tavares; Araújo, João Eliakim Dos Santos; Oliveira Carvalho, Vitor; Bonjardim, Leonardo Rigoldi; Santos, Márcio Roberto Viana

    2015-08-01

    Hypertension is a public health problem and increases the incidence of cardiovascular diseases. To evaluate the effects of a resistance exercise session on the contractile and relaxing mechanisms of vascular smooth muscle in mesenteric arteries of NG-nitro L-arginine methyl ester (L-NAME)-induced hypertensive rats. Wistar rats were divided into three groups: control (C), hypertensive (H), and exercised hypertensive (EH). Hypertension was induced by administration of 20 mg/kg of L-NAME for 7 days prior to experimental protocols. The resistance exercise protocol consisted of 10 sets of 10 repetitions and intensity of 40% of one repetition maximum. The reactivity of vascular smooth muscle was evaluated by concentration‑response curves to phenylephrine (PHEN), potassium chloride (KCl) and sodium nitroprusside (SNP). Rats treated with L-NAME showed an increase (p < 0.001) in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) compared to the initial period of induction. No difference in PHEN sensitivity was observed between groups H and EH. Acute resistance exercise reduced (p < 0.001) the contractile response induced by KCl at concentrations of 40 and 60 mM in group EH. Greater (p < 0.01) smooth muscle sensitivity to NPS was observed in group EH as compared to group H. One resistance exercise session reduces the contractile response induced by KCl in addition to increasing the sensitivity of smooth muscle to NO in mesenteric arteries of hypertensive rats.

  17. Tachykinin receptor expression and function in human esophageal smooth muscle.

    PubMed

    Kovac, Jason R; Chrones, Tom; Preiksaitis, Harold G; Sims, Stephen M

    2006-08-01

    Tachykinins are present in enteric nerves of the gastrointestinal tract and cause contraction of esophageal smooth muscle; however, the mechanisms involved are not understood. Our aim was to characterize tachykinin signaling in human esophageal smooth muscle. We investigated functional effects of tachykinins on human esophageal smooth muscle using tension recordings and isolated cells, receptor expression with reverse transcription (RT)-polymerase chain reaction (PCR) and immunoblotting, intracellular Ca2+ responses using fluorescent indicator dyes, and membrane currents with patch-clamp electrophysiology. The mammalian tachykinins [substance P and neurokinin (NK) A and NKB] elicited concentration-dependent contractions of human esophageal smooth muscle. These responses were not affected by muscarinic receptor or neuronal blockade indicating a direct effect on smooth muscle cells (SMCs). Immunofluorescence and RT-PCR identified tachykinin receptors (NK1, NK2, and NK3) on SMCs. Contraction was mediated through a combination of Ca2+ release from intracellular stores and influx through L-type Ca2+ channels. NK2 receptor blockade inhibited the largest proportion of tachykinin-evoked responses. NKA evoked a nonselective cation current (I(NSC)) with properties similar to that elicited by muscarinic stimulation. The following paradigm is suggested: tachykinin receptor binding to SMCs releases Ca2+ from stores along with activation of I(NSC), which in turn results in membrane depolarization, L-type Ca2+ channel opening, rise of Ca2+ concentration, and contraction. These studies reveal new aspects of tachykinin signaling in human esophageal SMCs. Excitatory tachykinin pathways may represent targets for pharmacological intervention in disorders of esophageal dysmotility.

  18. Identification of a rhythmic firing pattern in the enteric nervous system that generates rhythmic electrical activity in smooth muscle.

    PubMed

    Spencer, Nick J; Hibberd, Timothy J; Travis, Lee; Wiklendt, Lukasz; Costa, Marcello; Hu, Hongzhen; Brookes, Simon J; Wattchow, David A; Dinning, Phil G; Keating, Damien J; Sorensen, Julian

    2018-05-28

    The enteric nervous system (ENS) contains millions of neurons essential for organization of motor behaviour of the intestine. It is well established the large intestine requires ENS activity to drive propulsive motor behaviours. However, the firing pattern of the ENS underlying propagating neurogenic contractions of the large intestine remains unknown. To identify this, we used high resolution neuronal imaging with electrophysiology from neighbouring smooth muscle. Myoelectric activity underlying propagating neurogenic contractions along murine large intestine (referred to as colonic migrating motor complexes, CMMCs) consisted of prolonged bursts of rhythmic depolarizations at a frequency of ∼2 Hz. Temporal coordination of this activity in the smooth muscle over large spatial fields (∼7mm, longitudinally) was dependent on the ENS. During quiescent periods between neurogenic contractions, recordings from large populations of enteric neurons, in mice of either sex, revealed ongoing activity. The onset of neurogenic contractions was characterized by the emergence of temporally synchronized activity across large populations of excitatory and inhibitory neurons. This neuronal firing pattern was rhythmic and temporally synchronized across large numbers of ganglia at ∼2 Hz. ENS activation preceded smooth muscle depolarization, indicating rhythmic depolarizations in smooth muscle were controlled by firing of enteric neurons. The cyclical emergence of temporally coordinated firing of large populations of enteric neurons represents a unique neural motor pattern outside the central nervous system. This is the first direct observation of rhythmic firing in the ENS underlying rhythmic electrical depolarizations in smooth muscle. The pattern of neuronal activity we identified underlies the generation of CMMCs. SIGNIFICANCE STATEMENT How the enteric nervous system (ENS) generates neurogenic contractions of smooth muscle in the gastrointestinal (GI) tract has been a long

  19. Evidence Supports Tradition: The in Vitro Effects of Roman Chamomile on Smooth Muscles.

    PubMed

    Sándor, Zsolt; Mottaghipisheh, Javad; Veres, Katalin; Hohmann, Judit; Bencsik, Tímea; Horváth, Attila; Kelemen, Dezső; Papp, Róbert; Barthó, Loránd; Csupor, Dezső

    2018-01-01

    The dried flowers of Chamaemelum nobile (L.) All. have been used in traditional medicine for different conditions related to the spasm of the gastrointestinal system. However, there have been no experimental studies to support the smooth muscle relaxant effect of this plant. The aim of our research was to assess the effects of the hydroethanolic extract of Roman chamomile, its fractions, four of its flavonoids (apigenin, luteolin, hispidulin, and eupafolin), and its essential oil on smooth muscles. The phytochemical compositions of the extract and its fractions were characterized and quantified by HPLC-DAD, the essential oil was characterized by GC and GC-MS. Neuronally mediated and smooth muscle effects were tested in isolated organ bath experiments on guinea pig, rat, and human smooth muscle preparations. The crude herbal extract induced an immediate, moderate, and transient contraction of guinea pig ileum via the activation of cholinergic neurons of the gut wall. Purinoceptor and serotonin receptor antagonists did not influence this effect. The more sustained relaxant effect of the extract, measured after pre-contraction of the preparations, was remarkable and was not affected by an adrenergic beta receptor antagonist. The smooth muscle-relaxant activity was found to be associated with the flavonoid content of the fractions. The essential oil showed only the relaxant effect, but no contracting activity. The smooth muscle-relaxant effect was also detected on rat gastrointestinal tissues, as well as on strip preparations of human small intestine. These results suggest that Roman chamomile extract has a direct and prolonged smooth muscle-relaxant effect on guinea pig ileum which is related to its flavonoid content. In some preparations, a transient stimulation of enteric cholinergic motoneurons was also detected. The essential oil also had a remarkable smooth muscle relaxant effect in this setting. Similar relaxant effects were also detected on other visceral

  20. Cholesterol is necessary both for the toxic effect of Abeta peptides on vascular smooth muscle cells and for Abeta binding to vascular smooth muscle cell membranes.

    PubMed

    Subasinghe, Supundi; Unabia, Sharon; Barrow, Colin J; Mok, Su San; Aguilar, Marie-Isabel; Small, David H

    2003-02-01

    Accumulation of beta amyloid (Abeta) in the brain is central to the pathogenesis of Alzheimer's disease. Abeta can bind to membrane lipids and this binding may have detrimental effects on cell function. In this study, surface plasmon resonance technology was used to study Abeta binding to membranes. Abeta peptides bound to synthetic lipid mixtures and to an intact plasma membrane preparation isolated from vascular smooth muscle cells. Abeta peptides were also toxic to vascular smooth muscle cells. There was a good correlation between the toxic effect of Abeta peptides and their membrane binding. 'Ageing' the Abeta peptides by incubation for 5 days increased the proportion of oligomeric species, and also increased toxicity and the amount of binding to lipids. The toxicities of various Abeta analogs correlated with their lipid binding. Significantly, binding was influenced by the concentration of cholesterol in the lipid mixture. Reduction of cholesterol in vascular smooth muscle cells not only reduced the binding of Abeta to purified plasma membrane preparations but also reduced Abeta toxicity. The results support the view that Abeta toxicity is a direct consequence of binding to lipids in the membrane. Reduction of membrane cholesterol using cholesterol-lowering drugs may be of therapeutic benefit because it reduces Abeta-membrane binding.

  1. Titanium Dioxide Modulation of the Contractibility of Visceral Smooth Muscles In Vivo

    NASA Astrophysics Data System (ADS)

    Tsymbalyuk, Olga V.; Naumenko, Anna M.; Rohovtsov, Oleksandr O.; Skoryk, Mykola A.; Voiteshenko, Ivan S.; Skryshevsky, Valeriy A.; Davydovska, Tamara L.

    2017-02-01

    Electronic scanning microscopy was used in the work to obtain the image and to identify the sizes of titanium dioxide (TiO2) nanoparticles 21 ± 5 nm. The qualitative and quantitative elemental analysis of the preparations of the caecum, antrum, myometrium, kidneys, and lungs of the rats, burdened with titanium dioxide, was also performed. It was established using the tenzometric method in the isometric mode that the accumulation of titanium dioxide in smooth muscles of the caecum resulted in the considerable, compared to the control, increase in the frequency of their spontaneous contractions, the decrease in the duration of the contraction-relaxation cycle, and the decrease in the indices of muscle functioning efficiency (the index of contractions in Montevideo units (MU) and the index of contractions in Alexandria units (AU)). In the same experimental conditions, there was not the increase, but the decrease in the frequency of spontaneous contractions, the duration of the contraction-relaxation cycle, and the increase in MU and AU indices in the smooth muscles of myometrium (in the group of rats, burdened with TiO2 for 30 days). It was also determined that TiO2 modulates both the mechanisms of the input of extracellular Ca2+ ions and the mechanisms of decreasing the concentration of these cations in smooth muscle cells of the caecum during the generation of the high potassium contraction. In these conditions, there is a considerable increase in the normalized maximal velocity of the contraction phase and the relaxation phase. It was demonstrated in the work that titanium dioxide also changes the cholinergic excitation in these muscles. The impact of titanium dioxide in the group of rats, burdened with TiO2, was accompanied with a considerable impairment of the kinetics of forming the tonic component of the oxytocin-induced contraction of the smooth muscles of myometrium.

  2. miR-22 Is a Novel Mediator of Vascular Smooth Muscle Cell Phenotypic Modulation and Neointima Formation.

    PubMed

    Yang, Feng; Chen, Qishan; He, Shiping; Yang, Mei; Maguire, Eithne Margaret; An, Weiwei; Afzal, Tayyab Adeel; Luong, Le Anh; Zhang, Li; Xiao, Qingzhong

    2018-04-24

    MicroRNA-22 (miR-22) has recently been reported to play a regulatory role during vascular smooth muscle cell (VSMC) differentiation from stem cells, but little is known about its target genes and related pathways in mature VSMC phenotypic modulation or its clinical implication in neointima formation following vascular injury. We applied a wire-injury mouse model, and local delivery of AgomiR-22 or miR-22 inhibitor, as well, to explore the therapeutic potential of miR-22 in vascular diseases. Furthermore, normal and diseased human femoral arteries were harvested, and various in vivo, ex vivo, and in vitro models of VSMC phenotype switching were conducted to examine miR-22 expression during VSMC phenotype switching. Expression of miR-22 was closely regulated during VSMC phenotypic modulation. miR-22 overexpression significantly increased expression of VSMC marker genes and inhibited VSMC proliferation and migration, whereas the opposite effect was observed when endogenous miR-22 was knocked down. As expected, 2 previously reported miR-22 target genes, MECP2 (methyl-CpG binding protein 2) and histone deacetylase 4, exhibited a regulatory role in VSMC phenotypic modulation. A transcriptional regulator and oncoprotein, EVI1 (ecotropic virus integration site 1 protein homolog), has been identified as a novel miR-22 target gene in VSMC phenotypic modulation. It is noteworthy that overexpression of miR-22 in the injured vessels significantly reduced the expression of its target genes, decreased VSMC proliferation, and inhibited neointima formation in wire-injured femoral arteries, whereas the opposite effect was observed with local application of a miR-22 inhibitor to injured arteries. We next examined the clinical relevance of miR-22 expression and its target genes in human femoral arteries. We found that miR-22 expression was significantly reduced, whereas MECP2 and EVI1 expression levels were dramatically increased, in diseased in comparison with healthy femoral human

  3. [Relaxant effects of protopine on smooth muscles].

    PubMed

    Huang, Y H; Zhang, Z Z; Jiang, J X

    1991-01-01

    The relaxant effects of protopine (Pro) on smooth muscles were studied by recording isotonic contraction and radioimmunoassay. Pro relaxed the contraction of rabbit thoracic aorta, mesenteric artery, portal vein and guinea pig ileum and taenia colon induced by high K+ (70 mmol.L-1). Pro also inhibited the contraction of rabbit thoracic aorta, mesenteric artery, portal vein induced by NE (0.3 mumol.L-1) and guinea pig taenia colon induced by BaCl2 (1 mmol.L-1). Pro inhibited the intracellular Ca2+ release, but did not inhibit Ca2+ influx induced by NE. These results suggested that the smooth muscle relaxant mechanism of action of Pro may be the inhibition of intracellular Ca2+ release.

  4. Catecholamines release mediators in the opossum oesophageal circular smooth muscle.

    PubMed Central

    Daniel, E E; Jager, L P; Jury, J

    1987-01-01

    -adrenoreceptor antagonists given alone or in combination. Of the dopamine receptor antagonists tested domperidone was without effect, whereas haloperidol reduced and bulbocapnine blocked the response. The findings suggested that a receptor resembling DA1-type peripheral receptor mediated the effects of dopamine on opossum oesophagus. 5. The catecholamine-induced responses and those to VIP disappeared completely in Cl-(-)free medium (isethionate replacement). 6. Conditioning depolarization of the smooth muscle cells decreased but hyperpolarization increased the amplitude of the hyperpolarization (up to 20 mV). With larger hyperpolarizations the responses decreased and disappeared at around 50 mV hyperpolarization.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:3625558

  5. Smooth muscle contraction: mechanochemical formulation for homogeneous finite strains.

    PubMed

    Stålhand, J; Klarbring, A; Holzapfel, G A

    2008-01-01

    Chemical kinetics of smooth muscle contraction affect mechanical properties of organs that function under finite strains. In an effort to gain further insight into organ physiology, we formulate a mechanochemical finite strain model by considering the interaction between mechanical and biochemical components of cell function during activation. We propose a new constitutive framework and use a mechanochemical device that consists of two parallel elements: (i) spring for the cell stiffness; (ii) contractile element for the sarcomere. We use a multiplicative decomposition of cell elongation into filament contraction and cross-bridge deformation, and suggest that the free energy be a function of stretches, four variables (free unphosphorylated myosin, phosphorylated cross-bridges, phosphorylated and dephosphorylated cross-bridges attached to actin), chemical state variable driven by Ca2+-concentration, and temperature. The derived constitutive laws are thermodynamically consistent. Assuming isothermal conditions, we specialize the mechanical phase such that we recover the linear model of Yang et al. [2003a. The myogenic response in isolated rat cerebrovascular arteries: smooth muscle cell. Med. Eng. Phys. 25, 691-709]. The chemical phase is also specialized so that the linearized chemical evolution law leads to the four-state model of Hai and Murphy [1988. Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am. J. Physiol. 254, C99-C106]. One numerical example shows typical mechanochemical effects and the efficiency of the proposed approach. We discuss related parameter identification, and illustrate the dependence of muscle contraction (Ca2+-concentration) on active stress and related stretch. Mechanochemical models of this kind serve the mathematical basis for analyzing coupled processes such as the dependency of tissue properties on the chemical kinetics of smooth muscle.

  6. Comparison of gel contraction mediated by airway smooth muscle cells from patients with and without asthma.

    PubMed

    Matsumoto, Hisako; Moir, Lyn M; Oliver, Brian G G; Burgess, Janette K; Roth, Michael; Black, Judith L; McParland, Brent E

    2007-10-01

    Exaggerated bronchial constriction is the most significant and life threatening response of patients with asthma to inhaled stimuli. However, few studies have investigated the contractility of airway smooth muscle (ASM) from these patients. The purpose of this study was to establish a method to measure contraction of ASM cells by embedding them into a collagen gel, and to compare the contraction between subjects with and without asthma. Gel contraction to histamine was examined in floating gels containing cultured ASM cells from subjects with and without asthma following overnight incubation while unattached (method 1) or attached (method 2) to casting plates. Smooth muscle myosin light chain kinase protein levels were also examined. Collagen gels containing ASM cells reduced in size when stimulated with histamine in a concentration-dependent manner and reached a maximum at a mean (SE) of 15.7 (1.2) min. This gel contraction was decreased by inhibitors for phospholipase C (U73122), myosin light chain kinase (ML-7) and Rho kinase (Y27632). When comparing the two patient groups, the maximal decreased area of gels containing ASM cells from patients with asthma was 19 (2)% (n = 8) using method 1 and 22 (3)% (n = 6) using method 2, both of which were greater than that of cells from patients without asthma: 13 (2)% (n = 9, p = 0.05) and 10 (4)% (n = 5, p = 0.024), respectively. Smooth muscle myosin light chain kinase levels were not different between the two groups. The increased contraction of asthmatic ASM cells may be responsible for exaggerated bronchial constriction in asthma.

  7. Bronchodilatory and B-adrenergic effects of methanolic and aqueous extracts of Althaea root on isolated tracheobronchial smooth rat muscle.

    PubMed

    Alani, Behrang; Zare, Mohammad; Noureddini, Mahdi

    2015-01-01

    The smooth muscle contractions of the tracheobronchial airways are mediated through the balance of adrenergic, cholinergic and peptidergic nervous mechanisms. This research was designed to determine the bronchodilatory and B-adrenergic effects of methanolic and aqueous extracts of root Althaea on the isolated tracheobronchial smooth muscle of the rat. In this experimental study, 116 tracheobronchial sections (5 mm) from 58 healthy male Sprague-Dawley rats were dissected and divided into 23 groups. The effect of methanolic and aqueous extracts of the root Althaea was assayed at different concentrations (0.2, 0.6, 2.6, 6.6, 14.6 μg/ml) and epinephrine (5 μm) in the presence and absence of propranolol (1 μM) under one g tension based on the isometric method. This assay was recorded in an organ bath containing Krebs-Henseleit solution for tracheobronchial smooth muscle contractions using potassium chloride (KCl) (60 mM) induction. Epinephrine (5 μm) alone and root methanolic and aqueous extract concentrations (0.6-14.6 μg/ml) reduced tracheobronchial smooth muscle contractions induced using KCl (60 mM) in a dose dependent manner. Propranolol inhibited the antispasmodic effect of epinephrine on tracheobronchial smooth muscle contractions, but could not reduce the antispasmodic effect of the root extract concentrations. The methanolic and aqueous extracts of Althaea root inhibited the tracheobronchial smooth muscle contractions of rats in a dose dependent manner, but B-adrenergic receptors do not appear to engage in this process. Understanding the mechanism of this process can be useful in the treatment of pulmonary obstructive diseases like asthma.

  8. Release of the antioxidants ascorbate and urate from a nitrergically-innervated smooth muscle.

    PubMed

    Lilley, E; Gibson, A

    1997-12-01

    1. The main object of the present study was to determine whether ascorbate, an antioxidant which has been shown to protect nitric oxide (NO) from attack by scavenger molecules, might be released from nitrergically-innervated smooth muscle; ascorbate release from the rat anococcygeus was measured by use of h.p.l.c. with electrochemical detection. 2. Incubation of rat anococcygeus muscles in normal physiological salt solution (PSS; 30 min) resulted in release of ascorbate into the bathing medium (7.7 +/- 0.9 nmol g-1 tissue). This release was increased by 96% when muscles were incubated in high K+ (70 mM) PSS. The resting release of ascorbate was unaffected by tetrodotoxin (TTX; 1 microM), omega-conotoxin GVIA (10 nM) or omission of calcium ions from the PSS (with addition of 0.2 mM EGTA), but all three procedures attenuated the increased release observed under depolarizing conditions. Resting release of ascorbate was unaffected by glutamate (100 microM), aspartate (100 microM), gamma-aminobutyric acid (100 microM) or carbachol (50 microM). 3. A second h.p.l.c. peak, which always preceded the ascorbate peak, was identified as urate. Urate release from the anococcygeus, following 30 min incubation in normal PSS, was 64.6 +/- 12.7 nmol g-1 tissue but, unlike ascorbate, urate release was unchanged in high K+ PSS. In functional experiments, urate (100-400 microM) partially protected NO (15 microM)-induced relaxations of the rat anococcygeus from inhibition by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO; 50 microM), but not from inhibition by hydroquinone or duroquinone (both 100 microM). 4. Muscles chemically sympathectomized with 6-hydroxydopamine (6-OHDA, 500 microM; 2 h) still exhibited release of ascorbate (2.5 +/- 0.4 nmol g-1 tissue) and urate (22.2 +/- 2.9 nmol g-1 tissue); in both cases the release was similar to that observed in time-matched control tissues not exposed to 6-OHDA. High K+ PSS produced a TTX-sensitive increase

  9. Differences in time to peak carbachol-induced contractions between circular and longitudinal smooth muscles of mouse ileum.

    PubMed

    Azuma, Yasu-Taka; Samezawa, Nanako; Nishiyama, Kazuhiro; Nakajima, Hidemitsu; Takeuchi, Tadayoshi

    2016-01-01

    The muscular layer in the GI tract consists of an inner circular muscular layer and an outer longitudinal muscular layer. Acetylcholine (ACh) is the representative neurotransmitter that causes contractions in the gastrointestinal tracts of most animal species. There are many reports of muscarinic receptor-mediated contraction of longitudinal muscles, but few studies discuss circular muscles. The present study detailed the contractile response in the circular smooth muscles of the mouse ileum. We used small muscle strips (0.2 mm × 1 mm) and large muscle strips (4 × 4 mm) isolated from the circular and longitudinal muscle layers of the mouse ileum to compare contraction responses in circular and longitudinal smooth muscles. The time to peak contractile responses to carbamylcholine (CCh) were later in the small muscle strips (0.2 × 1 mm) of circular muscle (5.7 min) than longitudinal muscles (0.4 min). The time to peak contractile responses to CCh in the large muscle strips (4 × 4 mm) were also later in the circular muscle (3.1 min) than the longitudinal muscle (1.4 min). Furthermore, a muscarinic M2 receptor antagonist and gap junction inhibitor significantly delayed the time to peak contraction of the large muscle strips (4 × 4 mm) from the circular muscular layer. Our findings indicate that muscarinic M2 receptors in the circular muscular layer of mouse ileum exert a previously undocumented function in gut motility via the regulation of gap junctions.

  10. Voltage-dependent inward currents in smooth muscle cells of skeletal muscle arterioles

    PubMed Central

    Shirokov, Roman E.

    2018-01-01

    Voltage-dependent inward currents responsible for the depolarizing phase of action potentials were characterized in smooth muscle cells of 4th order arterioles in mouse skeletal muscle. Currents through L-type Ca2+ channels were expected to be dominant; however, action potentials were not eliminated in nominally Ca2+-free bathing solution or by addition of L-type Ca2+ channel blocker nifedipine (10 μM). Instead, Na+ channel blocker tetrodotoxin (TTX, 1 μM) reduced the maximal velocity of the upstroke at low, but not at normal (2 mM), Ca2+ in the bath. The magnitude of TTX-sensitive currents recorded with 140 mM Na+ was about 20 pA/pF. TTX-sensitive currents decreased five-fold when Ca2+ increased from 2 to 10 mM. The currents reduced three-fold in the presence of 10 mM caffeine, but remained unaltered by 1 mM of isobutylmethylxanthine (IBMX). In addition to L-type Ca2+ currents (15 pA/pF in 20 mM Ca2+), we also found Ca2+ currents that are resistant to 10 μM nifedipine (5 pA/pF in 20 mM Ca2+). Based on their biophysical properties, these Ca2+ currents are likely to be through voltage-gated T-type Ca2+ channels. Our results suggest that Na+ and at least two types (T- and L-) of Ca2+ voltage-gated channels contribute to depolarization of smooth muscle cells in skeletal muscle arterioles. Voltage-gated Na+ channels appear to be under a tight control by Ca2+ signaling. PMID:29694371

  11. Graded effects of unregulated smooth muscle myosin on intestinal architecture, intestinal motility and vascular function in zebrafish.

    PubMed

    Abrams, Joshua; Einhorn, Zev; Seiler, Christoph; Zong, Alan B; Sweeney, H Lee; Pack, Michael

    2016-05-01

    Smooth muscle contraction is controlled by the regulated activity of the myosin heavy chain ATPase (Myh11). Myh11 mutations have diverse effects in the cardiovascular, digestive and genitourinary systems in humans and animal models. We previously reported a recessive missense mutation, meltdown (mlt), which converts a highly conserved tryptophan to arginine (W512R) in the rigid relay loop of zebrafish Myh11. The mlt mutation disrupts myosin regulation and non-autonomously induces invasive expansion of the intestinal epithelium. Here, we report two newly identified missense mutations in the switch-1 (S237Y) and coil-coiled (L1287M) domains of Myh11 that fail to complement mlt Cell invasion was not detected in either homozygous mutant but could be induced by oxidative stress and activation of oncogenic signaling pathways. The smooth muscle defect imparted by the mlt and S237Y mutations also delayed intestinal transit, and altered vascular function, as measured by blood flow in the dorsal aorta. The cell-invasion phenotype induced by the three myh11 mutants correlated with the degree of myosin deregulation. These findings suggest that the vertebrate intestinal epithelium is tuned to the physical state of the surrounding stroma, which, in turn, governs its response to physiologic and pathologic stimuli. Genetic variants that alter the regulation of smooth muscle myosin might be risk factors for diseases affecting the intestine, vasculature, and other tissues that contain smooth muscle or contractile cells that express smooth muscle proteins, particularly in the setting of redox stress. © 2016. Published by The Company of Biologists Ltd.

  12. Crystal Structure of a Phosphorylated Light Chain Domain of Scallop Smooth-Muscle Myosin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, V.S.; Robinson, H.; O-Neall-Hennessey, E.

    2011-11-02

    We have determined the crystal structure of a phosphorylated smooth-muscle myosin light chain domain (LCD). This reconstituted LCD is of a sea scallop catch muscle myosin with its phosphorylatable regulatory light chain (RLC SmoA). In the crystal structure, Arg{sup 16}, an arginine residue that is present in this isoform but not in vertebrate smooth-muscle RLC, stabilizes the phosphorylation site. This arginine interacts with the carbonyl group of the phosphorylation-site serine in the unphosphorylated LCD (determined previously), and with the phosphate group when the serine is phosphorylated. However, the overall conformation of the LCD is essentially unchanged upon phosphorylation. This resultmore » provides additional evidence that phosphorylation of the RLC is unlikely to act as an on-switch in regulation of scallop catch muscle myosin.« less

  13. IGF-1 Has Plaque-Stabilizing Effects in Atherosclerosis by Altering Vascular Smooth Muscle Cell Phenotype

    PubMed Central

    von der Thüsen, Jan H.; Borensztajn, Keren S.; Moimas, Silvia; van Heiningen, Sandra; Teeling, Peter; van Berkel, Theo J.C.; Biessen, Erik A.L.

    2011-01-01

    Insulin-like growth factor-1 (IGF-1) signaling is important for the maintenance of plaque stability in atherosclerosis due to its effects on vascular smooth muscle cell (vSMC) phenotype. To investigate this hypothesis, we studied the effects of the highly inflammatory milieu of the atherosclerotic plaque on IGF-1 signaling and stability-related phenotypic parameters of murine vSMCs in vitro, and the effects of IGF-1 supplementation on plaque phenotype in an atherosclerotic mouse model. M1-polarized, macrophage-conditioned medium inhibited IGF-1 signaling by ablating IGF-1 and increasing IGF-binding protein 3, increased vSMC apoptosis, and decreased proliferation. Expression of α-actin and col3a1 genes was strongly attenuated by macrophage-conditioned medium, whereas expression of matrix-degrading enzymes was increased. Importantly, all of these effects could be corrected by supplementation with IGF-1. In vivo, treatment with the stable IGF-1 analog Long R3 IGF-1 in apolipoprotein E knockout mice reduced stenosis and core size, and doubled cap/core ratio in early atherosclerosis. In advanced plaques, Long R3 IGF-1 increased the vSMC content of the plaque by more than twofold and significantly reduced the rate of intraplaque hemorrhage. We believe that IGF-1 in atherosclerotic plaques may have a role in preventing plaque instability, not only by modulating smooth muscle cell turnover, but also by altering smooth muscle cell phenotype. PMID:21281823

  14. Rab5a‑mediated autophagy regulates the phenotype and behavior of vascular smooth muscle cells.

    PubMed

    Tan, Jin-Yun; Jia, Luo-Qi; Shi, Wei-Hao; He, Qing; Zhu, Lei; Yu, Bo

    2016-11-01

    Rab5a, a key member of the Rab family of GTPases, was determined to be a regulator of vascular smooth muscle cell (VSMC) proliferation and migration. However, the exact regulatory mechanism remains unclear. As Rab5a has been shown to be associated with autophagy, which is essential for the conversion of VSMCs from a contractile to a synthetic phenotype in order to prevent cell death due to oxidative stress. The present study hypothesized that autophagy may be responsible for the proliferation and migration of VSMCs via the Rab5a protein. The aim of the present study was to evaluate the effect of Rab5a on autophagy in VSMCs. The human aorta vascular smooth muscle cell line, T/G HA‑VSMCs, was treated with small interfering (si)RNA against Rab5a and/or platelet‑derived growth factor (PDGF). Following treatment, the phenotype transition of the VSMCs was evaluated by detecting the mRNA and protien expression levels of VSMC molecular markers using reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. In addition, autophagy in VSMCs was evaluated by western blotting for autophagy‑associated proteins, flow cytometry of acidic vesicular organelles, punctate fluorescence of microtubule associated protein light chain 3 and transmission electron microscopy of typical scattered double‑membrane vacuolar structures. Additionally, the proliferation, migration, cell cycle and apoptotic response of VSMCs were detected by sulforhodamine B assay, transwell assay and flow cytometry, respectively. The results revealed that transfection with siRNA against Rab5a led to a significant decrease in Rab5a protein expression, while the reduced expression trend of Rab5a was rescued by intervention with PDGF. Furthermore, cells transfected with siRNA against Rab5a inhibited the autophagy of VSMCs. Downregulated Rab5a inhibited the phenotype transition of VSMCs. Additionally, downregulated Rab5a led to slowed cell growth, decreased numbers of

  15. Age-related changes in miR-143-3p:Igfbp5 interactions affect muscle regeneration.

    PubMed

    Soriano-Arroquia, Ana; McCormick, Rachel; Molloy, Andrew P; McArdle, Anne; Goljanek-Whysall, Katarzyna

    2016-04-01

    A common characteristic of aging is defective regeneration of skeletal muscle. The molecular pathways underlying age-related decline in muscle regenerative potential remain elusive. microRNAs are novel gene regulators controlling development and homeostasis and the regeneration of most tissues, including skeletal muscle. Here, we use satellite cells and primary myoblasts from mice and humans and an in vitro regeneration model, to show that disrupted expression of microRNA-143-3p and its target gene, Igfbp5, plays an important role in muscle regeneration in vitro. We identified miR-143 as a regulator of the insulin growth factor-binding protein 5 (Igfbp5) in primary myoblasts and show that the expression of miR-143 and its target gene is disrupted in satellite cells from old mice. Moreover, we show that downregulation of miR-143 during aging may act as a compensatory mechanism aiming at improving myogenesis efficiency; however, concomitant upregulation of miR-143 target gene, Igfbp5, is associated with increased cell senescence, thus affecting myogenesis. Our data demonstrate that dysregulation of miR-143-3p:Igfbp5 interactions in satellite cells with age may be responsible for age-related changes in satellite cell function. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  16. Molecular dynamics simulations reveal a disorder-to-order transition on phosphorylation of smooth muscle myosin.

    PubMed

    Espinoza-Fonseca, L Michel; Kast, David; Thomas, David D

    2007-09-15

    We have performed molecular dynamics simulations of the phosphorylated (at S-19) and the unphosphorylated 25-residue N-terminal phosphorylation domain of the regulatory light chain (RLC) of smooth muscle myosin to provide insight into the structural basis of regulation. This domain does not appear in any crystal structure, so these simulations were combined with site-directed spin labeling to define its structure and dynamics. Simulations were carried out in explicit water at 310 K, starting with an ideal alpha-helix. In the absence of phosphorylation, large portions of the domain (residues S-2 to K-11 and R-16 through Y-21) were metastable throughout the simulation, undergoing rapid transitions among alpha-helix, pi-helix, and turn, whereas residues K-12 to Q-15 remained highly disordered, displaying a turn motif from 1 to 22.5 ns and a random coil pattern from 22.5 to 50 ns. Phosphorylation increased alpha-helical order dramatically in residues K-11 to A-17 but caused relatively little change in the immediate vicinity of the phosphorylation site (S-19). Phosphorylation also increased the overall dynamic stability, as evidenced by smaller temporal fluctuations in the root mean-square deviation. These results on the isolated phosphorylation domain, predicting a disorder-to-order transition induced by phosphorylation, are remarkably consistent with published experimental data involving site-directed spin labeling of the intact RLC bound to the two-headed heavy meromyosin. The simulations provide new insight into structural details not revealed by experiment, allowing us to propose a refined model for the mechanism by which phosphorylation affects the N-terminal domain of the RLC of smooth muscle myosin.

  17. Studies of the mechanism of passive anaphylaxis in human airway smooth muscle.

    PubMed

    Davis, C; Jones, T R; Daniel, E E

    1983-07-01

    This investigation was carried out to study allergic contraction of passively sensitized human airway smooth muscle in response to specific antigen challenge. We attempted to determine the role played by histamine, slow reaction substances (SRSs), and cyclooxygenase products in the mediation of this response in tracheal smooth muscle. Tissues were passively sensitized with serum from ragweed-sensitive patients (15 h, 4 degrees C). Subsequent challenge with ragweed antigen produced a slowly developing contraction. The peak contraction to a dose producing a maximal response was 37 +/- 6% of the carbachol maximum. Mepyramine (5 X 10(-6) M) did not alter the contraction. Methylprednisolone (2 X 10(-5) M) attenuated the response to antigen but had no significant effect on the contractile response to arachidonic acid. Indomethacin (5.6-28 X 10(-6) M) enhanced the peak antigen-induced contractions by 25 +/- 11% whereas 5,8,11,14-eicosatetraynoic acid (6.4 X 10(-5) M) selectively attenuated the antigen-induced contraction by 86 +/- 12%. Nordihydroguarietic acid (6-12 X 10(-6) M) attenuated both the antigen plus arachidonate induced responses. FPL-55712 (1-2 X 10(-6) M) antagonized the contractions to antigen. Compound 48/80 and goat antihuman immunoglobulin E produced similar slowly developing contractions in sensitized and in some nonsensitized tissues. These responses, except for an early component of the response to 48/80, were independent of histamine and were reversed by FPL-55712. These findings suggest that arachidonic acid metabolites mediate (slow reacting substances) and modulate (prostaglandins) allergic contraction of human airway smooth muscle while any histamine released contributes little or nothing to the contraction in the larger airways.

  18. Recruitment of β-Catenin to N-Cadherin Is Necessary for Smooth Muscle Contraction*

    PubMed Central

    Wang, Tao; Wang, Ruping; Cleary, Rachel A.; Gannon, Olivia J.; Tang, Dale D.

    2015-01-01

    β-Catenin is a key component that connects transmembrane cadherin with the actin cytoskeleton at the cell-cell interface. However, the role of the β-catenin/cadherin interaction in smooth muscle has not been well characterized. Here stimulation with acetylcholine promoted the recruitment of β-catenin to N-cadherin in smooth muscle cells/tissues. Knockdown of β-catenin by lentivirus-mediated shRNA attenuated smooth muscle contraction. Nevertheless, myosin light chain phosphorylation at Ser-19 and actin polymerization in response to contractile activation were not reduced by β-catenin knockdown. In addition, the expression of the β-catenin armadillo domain disrupted the recruitment of β-catenin to N-cadherin. Force development, but not myosin light chain phosphorylation and actin polymerization, was reduced by the expression of the β-catenin armadillo domain. Furthermore, actin polymerization and microtubules have been implicated in intracellular trafficking. In this study, the treatment with the inhibitor latrunculin A diminished the interaction of β-catenin with N-cadherin in smooth muscle. In contrast, the exposure of smooth muscle to the microtubule depolymerizer nocodazole did not affect the protein-protein interaction. Together, these findings suggest that smooth muscle contraction is mediated by the recruitment of β-catenin to N-cadherin, which may facilitate intercellular mechanotransduction. The association of β-catenin with N-cadherin is regulated by actin polymerization during contractile activation. PMID:25713069

  19. The interaction of IGF-1/IGF-1R and hydrogen sulfide on the proliferation of mouse primary vascular smooth muscle cells.

    PubMed

    Shuang, Tian; Fu, Ming; Yang, Guangdong; Wu, Lingyun; Wang, Rui

    2018-03-01

    Hydrogen sulfide (H 2 S) is mostly produced by cystathionine-gamma-lyase (CSE) in vascular system and it inhibits the proliferation of vascular smooth muscle cells (SMCs). Insulin-like growth factor-1 (IGF-1), via its receptor (IGF-1R), exerts multiple physiological and pathophysiological effects on the vasculature, including stimulating SMC proliferation and migration, and inhibiting SMC apoptosis. Since H 2 S and IGF-1/IGF-1R have opposite effects on SMC proliferation, it becomes imperative to better understand the interaction of these two signaling mechanisms on SMC proliferation. SMCs isolated from small mesenteric arteries of CSE knockout (KO) and wild-type (WT) mice were used in the present study. The effects of IGF-1 and H 2 S on SMC proliferation were evaluated with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and bromodeoxyuridine (BrdU) assays. Protein expression was determined by western blot, and H 2 S-induced protein S-sulfhydration was assessed with a modified biotin switch assay. We found that IGF-1 dose-dependently increased the proliferation of both WT-SMCs and KO-SMCs, and this effect was more significant in KO-SMCs. Supplement of sodium hydrosulfide (NaHS) inhibited IGF-1-induced cell proliferation, while this effect was abolished by blocking IGF-1/IGF-1R signaling with picropodophyllin (PPP) or knocking out of the expression of IGF-1R. H 2 S significantly down-regulates the expression of IGF-1R, stimulates IGF-1R S-sulfhydration, and attenuates the binding of IGF-1 with IGF-1R. This study provides novel insight on the involvement of IGF-1/IGF-1R in H 2 S-inhibited SMC proliferation and suggests H 2 S-based innovative treatment strategies for proliferative cardiovascular diseases such as atherosclerosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Sorcin modulation of Ca2+ sparks in rat vascular smooth muscle cells

    PubMed Central

    Rueda, Angélica; Song, Ming; Toro, Ligia; Stefani, Enrico; Valdivia, Héctor H

    2006-01-01

    Spontaneous, local Ca2+ release events or Ca2+ sparks by ryanodine receptors (RyRs) are important determinants of vascular tone and arteriolar resistance, but the mechanisms that modulate their properties in smooth muscle are poorly understood. Sorcin, a Ca2+-binding protein that associates with cardiac RyRs and quickly stops Ca2+ release in the heart, provides a potential mechanism to modulate Ca2+ sparks in vascular smooth muscle, but little is known about the functional role of sorcin in this tissue. In this work, we characterized the expression and intracellular location of sorcin in aorta and cerebral artery and gained mechanistic insights into its functional role as a modulator of Ca2+ sparks. Sorcin is present in endothelial and smooth muscle cells, as assessed by immunocytochemical and Western blot analyses. Smooth muscle sorcin translocates from cytosolic to membranous compartments in a Ca2+-dependent manner and associates with RyRs, as shown by coimmunoprecipitation and immunostaining experiments. Ca2+ sparks recorded in saponin-permeabilized vascular myocytes have increased frequency, duration and spatial spread but reduced amplitude with respect to Ca2+ sparks in intact cells, suggesting that permeabilization disrupts the normal organization of RyRs and releases diffusible substances that control Ca2+ spark properties. Perfusion of 2 μm sorcin onto permeabilized myocytes reduced the amplitude, duration and spatial spread of Ca2+ sparks, demonstrating that sorcin effectively regulates Ca2+ signalling in vascular smooth muscle. Together with a dense distribution in the perimeter of the cell along a pool of RyRs, these properties make sorcin a viable candidate to modulate vascular tone in smooth muscle. PMID:16931553

  1. Smoking and Female Sex: Independent Predictors of Human Vascular Smooth Muscle Cells Stiffening

    PubMed Central

    Dinardo, Carla Luana; Santos, Hadassa Campos; Vaquero, André Ramos; Martelini, André Ricardo; Dallan, Luis Alberto Oliveira; Alencar, Adriano Mesquita; Krieger, José Eduardo; Pereira, Alexandre Costa

    2015-01-01

    Aims Recent evidence shows the rigidity of vascular smooth muscle cells (VSMC) contributes to vascular mechanics. Arterial rigidity is an independent cardiovascular risk factor whose associated modifications in VSMC viscoelasticity have never been investigated. This study’s objective was to evaluate if the arterial rigidity risk factors aging, African ancestry, female sex, smoking and diabetes mellitus are associated with VMSC stiffening in an experimental model using a human derived vascular smooth muscle primary cell line repository. Methods Eighty patients subjected to coronary artery bypass surgery were enrolled. VSMCs were extracted from internal thoracic artery fragments and mechanically evaluated using Optical Magnetic Twisting Cytometry assay. The obtained mechanical variables were correlated with the clinical variables: age, gender, African ancestry, smoking and diabetes mellitus. Results The mechanical variables Gr, G’r and G”r had a normal distribution, demonstrating an inter-individual variability of VSMC viscoelasticity, which has never been reported before. Female sex and smoking were independently associated with VSMC stiffening: Gr (apparent cell stiffness) p = 0.022 and p = 0.018, R2 0.164; G’r (elastic modulus) p = 0.019 and p = 0.009, R2 0.184 and G”r (dissipative modulus) p = 0.011 and p = 0.66, R2 0.141. Conclusion Female sex and smoking are independent predictors of VSMC stiffening. This pro-rigidity effect represents an important element for understanding the vascular rigidity observed in post-menopausal females and smokers, as well as a potential therapeutic target to be explored in the future. There is a significant inter-individual variation of VSMC viscoelasticity, which is slightly modulated by clinical variables and probably relies on molecular factors. PMID:26661469

  2. Action on ileal smooth muscle of synthetic detergents and pardaxin.

    PubMed

    Primor, N

    1986-01-01

    Pardaxin (PX), a toxic and repellent substance isolated from the Red Sea flatfish, causes a sharp ball-like profile of drop of saline placed on a hydrophobic film to turn into a flattened one. This effect results with a decrease of the contact angle (theta) from 96 degrees to a maximum of 42 degrees at 10(-4) M of PX. The action of sodium dodecyl sulphate (SDS), a synthetic anionic detergent, benzalkonium chloride (BAC) cationic detergent and pardaxin (PX) a toxic protein with detergent properties, were studied in the ileal guinea-pig longitudinal smooth muscle preparation. SDS (4 X 10(-4) M) and PX (5 X 10(-6) M) diminished the muscle contractile response to field stimulation (0.1 Hz, 1 msec) and to acetylcholine (Ach) and to histamine and elicited a prolonged (4-6 min) TTX-insensitive muscle contraction. The dose dependence of muscle contraction to SDS and PX was found to be sigmoidal and occurred over a narrow range of concentrations. The SDS- but not PX-induced muscle contraction could be reduced by diphenhydramine (H1 antihistamine). BAC (10(-5)-10(-4) M) suppressed the muscle's contractile response to electrical stimulation (0.1 Hz, 1 msec), to Ach, histamine and 5-hydroxytryptamine but did not produce muscle contraction. PX at concentrations higher than 5 X 10(-6) M is a potent detergent and at this concentration shares several pharmacological similarities with SDS.

  3. Smooth Muscle-Like Cells Generated from Human Mesenchymal Stromal Cells Display Marker Gene Expression and Electrophysiological Competence Comparable to Bladder Smooth Muscle Cells.

    PubMed

    Brun, Juliane; Lutz, Katrin A; Neumayer, Katharina M H; Klein, Gerd; Seeger, Tanja; Uynuk-Ool, Tatiana; Wörgötter, Katharina; Schmid, Sandra; Kraushaar, Udo; Guenther, Elke; Rolauffs, Bernd; Aicher, Wilhelm K; Hart, Melanie L

    2015-01-01

    The use of mesenchymal stromal cells (MSCs) differentiated toward a smooth muscle cell (SMC) phenotype may provide an alternative for investigators interested in regenerating urinary tract organs such as the bladder where autologous smooth muscle cells cannot be used or are unavailable. In this study we measured the effects of good manufacturing practice (GMP)-compliant expansion followed by myogenic differentiation of human MSCs on the expression of a range of contractile (from early to late) myogenic markers in relation to the electrophysiological parameters to assess the functional role of the differentiated MSCs and found that differentiation of MSCs associated with electrophysiological competence comparable to bladder SMCs. Within 1-2 weeks of myogenic differentiation, differentiating MSCs significantly expressed alpha smooth muscle actin (αSMA; ACTA2), transgelin (TAGLN), calponin (CNN1), and smooth muscle myosin heavy chain (SM-MHC; MYH11) according to qRT-PCR and/or immunofluorescence and Western blot. Voltage-gated Na+ current levels also increased within the same time period following myogenic differentiation. In contrast to undifferentiated MSCs, differentiated MSCs and bladder SMCs exhibited elevated cytosolic Ca2+ transients in response to K+-induced depolarization and contracted in response to K+ indicating functional maturation of differentiated MSCs. Depolarization was suppressed by Cd2+, an inhibitor of voltage-gated Ca2+-channels. The expression of Na+-channels was pharmacologically identified as the Nav1.4 subtype, while the K+ and Ca2+ ion channels were identified by gene expression of KCNMA1, CACNA1C and CACNA1H which encode for the large conductance Ca2+-activated K+ channel BKCa channels, Cav1.2 L-type Ca2+ channels and Cav3.2 T-type Ca2+ channels, respectively. This protocol may be used to differentiate adult MSCs into smooth muscle-like cells with an intermediate-to-late SMC contractile phenotype exhibiting voltage-gated ion channel

  4. Loss of Notch2 and Notch3 in vascular smooth muscle causes patent ductus arteriosus.

    PubMed

    Baeten, Jeremy T; Jackson, Ashley R; McHugh, Kirk M; Lilly, Brenda

    2015-12-01

    The overlapping roles of the predominant Notch receptors in vascular smooth muscle cells, Notch2 and Notch3, have not been clearly defined in vivo. In this study, we use a smooth muscle-specific deletion of Notch2 together with a global Notch3 deletion to produce mice with combinations of mutant and wild-type Notch2/3 alleles in vascular smooth muscle cells. Mice with complete loss of Notch3 and smooth muscle-expressed Notch2 display late embryonic lethality and subcutaneous hemorrhage. Mice without smooth muscle-Notch2 and only one wild-type copy of Notch3 die within one day of birth and present with vascular defects, most notably patent ductus arteriosus (DA) and aortic dilation. These defects were associated with decreased expression of contractile markers in both the DA and aorta. These results demonstrate that Notch2 and Notch3 have overlapping roles in promoting development of vascular smooth muscle cells, and together contribute to functional closure of the DA. © 2015 Wiley Periodicals, Inc.

  5. Numerous eosinophilic globules (skeinoid fibers) in a duodenal stromal tumor: an exceptional case showing smooth muscle differentiation.

    PubMed

    Matsukuma, S; Doi, M; Suzuki, M; Ikegawa, K; Sato, K; Kuwabara, N

    1997-11-01

    A unique case of duodenal stromal tumor in a 51-year-old man is reported. The tumor histologically showed spindle cell proliferation and numerous eosinophilic globules. Most globules were composed of tangled 45 nm thick fibrils, which were ultrastructurally identical to 'skeinoid fibers'. The presence of glycogen granules in the tumor cells and the immunoreactivity for alpha-smooth muscle actin suggested smooth muscle differentiation. Focal ultrastructural findings also supported the smooth muscle nature of this tumor. There were no immunohistochemical and ultrastructural features indicating neural differentiation. In previous studies, the presence of such 'skeinoid fibers' was suggested to be a histological marker for neural differentiation in gastrointestinal stromal tumor. However, the findings in the present case suggest that numerous 'skeinoid fibers' can be identified in duodenal stromal tumor with smooth muscle differentiation, although this condition may be rare.

  6. Key role of microRNA-15a in the KLF4 suppressions of proliferation and angiogenesis in endothelial and vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Xuemei; Li, Aiqin; Zhao, Liang

    Highlights: •This is the first demonstration that miR-15a is a novel target gene of KLF4. •A novel finding that KLF4 increases the expression of miR-15a in ECs and VSMCs. •The novel mechanism is that KLF4 inhibits the proliferation of ECs via miR-15a. •The novel mechanism is that KLF4 inhibits the proliferation of VSMCs via miR-15. •miR-15a mediates the anti-angiogenic activity of KLF4. -- Abstract: While recent insights indicate that the transcription factor Krüppel-like factor 4 (KLF4) is indispensable for vascular homeostasis, its exact role in proliferation and angiogenesis and how it functions remain unresolved. Thus, the aim of the presentmore » study was to evaluate the role of KLF4 in the proliferations of endothelial and vascular smooth muscle cells, as well as the angiogenesis. The overexpression of KLF4 in endothelial cells significantly impaired tube formation. KLF4 inhibited the formation of a vascular network in implanted Matrigel plugs in nude mice. Importantly, we found that KLF4 significantly upregulated the miR-15a expression in endothelial cells and vascular smooth muscle cells, and conversely, KLF4 depletion reduced the amount of miR-15a. Furthermore, KLF4 blocked cell cycle progression and decreased cyclin D1 expression in endothelial cells and vascular smooth muscle cells through the induction of miR-15a. Intriguingly, the delivery of a miR-15a antagomir to nude mice resulted in marked attenuation of the anti-angiogenic effect of KLF4. Collectively, our present study provide the first evidence that miR-15a as a direct transcriptional target of KLF4 that mediates the anti-proliferative and anti-angiogenic actions of KLF4, which indicates that KLF4 upregulation of miR-15a may represent a therapeutic option to suppress proliferative vascular disorders.« less

  7. Emblic Leafflower (Phyllanthus emblica L.) Fruits Ameliorate Vascular Smooth Muscle Cell Dysfunction in Hyperglycemia: An Underlying Mechanism Involved in Ellagitannin Metabolite Urolithin A

    PubMed Central

    Zhou, Junxuan; Zhang, Cong

    2018-01-01

    Ellagitannins in Phyllanthus emblica L. (emblic leafflower fruits) have been thought of as the beneficial constituents for ameliorating endocrinal and metabolic diseases including diabetes. However, the effect of emblic leafflower fruits on diabetic vascular complications involved in ellagitannin-derived urolithin metabolites is still rare. In this study, acetylcholine-induced endothelium-independent relaxation in aortas was facilitated upon emblic leafflower fruit consumption in the single dose streptozotocin-induced hyperglycemic rats. Emblic leafflower fruit consumption also suppressed the phosphorylation of Akt (Thr308) in the hyperglycemic aortas. More importantly, urolithin A (UroA) and its derived phase II metabolites were identified as the metabolites upon emblic leafflower fruit consumption by HPLC-ESI-Q-TOF-MS. Moreover, UroA reduced the protein expressions of phosphor-Akt (Thr308) and β-catenin in a high glucose-induced A7r5 vascular smooth muscle cell proliferation model. Furthermore, accumulation of β-catenin protein and activation of Wnt signaling in LiCl-triggered A7r5 cells were also ameliorated by UroA treatment. In conclusion, our data demonstrate that emblic leafflower fruit consumption facilitates the vascular function in hyperglycemic rats by regulating Akt/β-catenin signaling, and the effects are potentially mediated by the ellagitannin metabolite urolithin A. PMID:29692859

  8. Smooth muscle of telokin-deficient mice exhibits increased sensitivity to Ca2+ and decreased cGMP-induced relaxation.

    PubMed

    Khromov, A S; Wang, H; Choudhury, N; McDuffie, M; Herring, B P; Nakamoto, R; Owens, G K; Somlyo, A P; Somlyo, A V

    2006-02-14

    Cyclic nucleotides can relax smooth muscle without a change in [Ca2+]i, a phenomenon termed Ca2+ desensitization, contributing to vasodilation, gastrointestinal motility, and airway resistance. The physiological importance of telokin, a 17-kDa smooth muscle-specific protein and target for cyclic nucleotide-induced Ca2+ desensitization, was determined in telokin null mice bred to a congenic background. Telokin null ileal smooth muscle homogenates compared to wild type exhibited an approximately 30% decrease in myosin light-chain phosphatase (MLCP) activity, which was reflected in a significant leftward shift (up to 2-fold at pCa 6.3) of the Ca2+ force relationship accompanied by an increase in myosin light-chain phosphorylation. No difference in the Ca2+ force relationship occurred in telokin WT and knockout (KO) aortas, presumably reflecting the normally approximately 5-fold lower telokin content in aorta vs. ileum smooth muscle. Ca2+ desensitization of contractile force by 8-Br-cGMP was attenuated by 50% in telokin KO intestinal smooth muscle. The rate of force relaxation reflecting MLCP activity, in the presence of 50 microM 8-Br-cGMP, was also significantly slowed in telokin KO vs. WT ileum and was rescued by recombinant telokin. Normal thick filaments in telokin KO smooth muscles indicate that telokin is not required for filament formation or stability. Results indicate that a primary role of telokin is to modulate force through increasing MLCP activity and that this effect is further potentiated through phosphorylation by cGMP in telokin-rich smooth tissues.

  9. Activation of endogenous GABAA channels on airway smooth muscle potentiates isoproterenol-mediated relaxation.

    PubMed

    Gallos, George; Gleason, Neil R; Zhang, Yi; Pak, Sang-Woo; Sonett, J R; Yang, Jay; Emala, Charles W

    2008-12-01

    Reactive airway disease predisposes patients to episodes of acute smooth muscle mediated bronchoconstriction. We have for the first time recently demonstrated the expression and function of endogenous ionotropic GABA(A) channels on airway smooth muscle cells. We questioned whether endogenous GABA(A) channels on airway smooth muscle could augment beta-agonist-mediated relaxation. Guinea pig tracheal rings or human bronchial airway smooth muscles were equilibrated in organ baths with continuous digital tension recordings. After pretreatment with or without the selective GABA(A) antagonist gabazine (100 muM), airway muscle was contracted with acetylcholine or beta-ala neurokinin A, followed by relaxation induced by cumulatively increasing concentrations of isoproterenol (1 nM to 1 muM) in the absence or presence of the selective GABA(A) agonist muscimol (10-100 muM). In separate experiments, guinea pig tracheal rings were pretreated with the large conductance K(Ca) channel blocker iberiotoxin (100 nM) after an EC(50) contraction with acetylcholine but before cumulatively increasing concentrations of isoproterenol (1 nM to 1 uM) in the absence or presence of muscimol (100 uM). GABA(A) activation potentiated the relaxant effects of isoproterenol after an acetylcholine or tachykinin-induced contraction in guinea pig tracheal rings or an acetylcholine-induced contraction in human endobronchial smooth muscle. This muscimol-induced potentiation of relaxation was abolished by gabazine pretreatment but persisted after blockade of the maxi K(Ca) channel. Selective activation of endogenous GABA(A) receptors significantly augments beta-agonist-mediated relaxation of guinea pig and human airway smooth muscle, which may have important therapeutic implications for patients in severe bronchospasm.

  10. Cystic Fibrosis Transmembrane Conductance Regulator in Sarcoplasmic Reticulum of Airway Smooth Muscle. Implications for Airway Contractility

    PubMed Central

    Cook, Daniel P.; Rector, Michael V.; Bouzek, Drake C.; Michalski, Andrew S.; Gansemer, Nicholas D.; Reznikov, Leah R.; Li, Xiaopeng; Stroik, Mallory R.; Ostedgaard, Lynda S.; Abou Alaiwa, Mahmoud H.; Thompson, Michael A.; Prakash, Y. S.; Krishnan, Ramaswamy; Meyerholz, David K.; Seow, Chun Y.

    2016-01-01

    Rationale: An asthma-like airway phenotype has been described in people with cystic fibrosis (CF). Whether these findings are directly caused by loss of CF transmembrane conductance regulator (CFTR) function or secondary to chronic airway infection and/or inflammation has been difficult to determine. Objectives: Airway contractility is primarily determined by airway smooth muscle. We tested the hypothesis that CFTR is expressed in airway smooth muscle and directly affects airway smooth muscle contractility. Methods: Newborn pigs, both wild type and with CF (before the onset of airway infection and inflammation), were used in this study. High-resolution immunofluorescence was used to identify the subcellular localization of CFTR in airway smooth muscle. Airway smooth muscle function was determined with tissue myography, intracellular calcium measurements, and regulatory myosin light chain phosphorylation status. Precision-cut lung slices were used to investigate the therapeutic potential of CFTR modulation on airway reactivity. Measurements and Main Results: We found that CFTR localizes to the sarcoplasmic reticulum compartment of airway smooth muscle and regulates airway smooth muscle tone. Loss of CFTR function led to delayed calcium reuptake following cholinergic stimulation and increased myosin light chain phosphorylation. CFTR potentiation with ivacaftor decreased airway reactivity in precision-cut lung slices following cholinergic stimulation. Conclusions: Loss of CFTR alters porcine airway smooth muscle function and may contribute to the airflow obstruction phenotype observed in human CF. Airway smooth muscle CFTR may represent a therapeutic target in CF and other diseases of airway narrowing. PMID:26488271

  11. Voltage dependent potassium channel remodeling in murine intestinal smooth muscle hypertrophy induced by partial obstruction.

    PubMed

    Liu, Dong-Hai; Huang, Xu; Guo, Xin; Meng, Xiang-Min; Wu, Yi-Song; Lu, Hong-Li; Zhang, Chun-Mei; Kim, Young-chul; Xu, Wen-Xie

    2014-01-01

    Partial obstruction of the small intestine causes obvious hypertrophy of smooth muscle cells and motility disorder in the bowel proximate to the obstruction. To identify electric remodeling of hypertrophic smooth muscles in partially obstructed murine small intestine, the patch-clamp and intracellular microelectrode recording methods were used to identify the possible electric remodeling and Western blot, immunofluorescence and immunoprecipitation were utilized to examine the channel protein expression and phosphorylation level changes in this research. After 14 days of obstruction, partial obstruction caused obvious smooth muscle hypertrophy in the proximally located intestine. The slow waves of intestinal smooth muscles in the dilated region were significantly suppressed, their amplitude and frequency were reduced, whilst the resting membrane potentials were depolarized compared with normal and sham animals. The current density of voltage dependent potassium channel (KV) was significantly decreased in the hypertrophic smooth muscle cells and the voltage sensitivity of KV activation was altered. The sensitivity of KV currents (IKV) to TEA, a nonselective potassium channel blocker, increased significantly, but the sensitivity of IKv to 4-AP, a KV blocker, stays the same. The protein levels of KV4.3 and KV2.2 were up-regulated in the hypertrophic smooth muscle cell membrane. The serine and threonine phosphorylation levels of KV4.3 and KV2.2 were significantly increased in the hypertrophic smooth muscle cells. Thus this study represents the first identification of KV channel remodeling in murine small intestinal smooth muscle hypertrophy induced by partial obstruction. The enhanced phosphorylations of KV4.3 and KV2.2 may be involved in this process.

  12. Rho Kinase (ROCK) collaborates with Pak to Regulate Actin Polymerization and Contraction in Airway Smooth Muscle.

    PubMed

    Zhang, Wenwu; Bhetwal, Bhupal P; Gunst, Susan J

    2018-05-10

    The mechanisms by which Rho kinase (ROCK) regulates airway smooth muscle contraction were determined in tracheal smooth muscle tissues. ROCK may mediate smooth muscle contraction by inhibiting myosin regulatory light chain (RLC) phosphatase. ROCK can also regulate F-actin dynamics during cell migration, and actin polymerization is critical for airway smooth muscle contraction. Our results show that ROCK does not regulate airway smooth muscle contraction by inhibiting myosin RLC phosphatase or by stimulating myosin RLC phosphorylation. We find that ROCK regulates airway smooth muscle contraction by activating the serine-threonine kinase Pak, which mediates the activation of Cdc42 and Neuronal-Wiskott-Aldrich Syndrome protein (N-WASp). N-WASP transmits signals from cdc42 to the Arp2/3 complex for the nucleation of actin filaments. These results demonstrate a novel molecular function for ROCK in the regulation of Pak and cdc42 activation that is critical for the processes of actin polymerization and contractility in airway smooth muscle. Rho kinase (ROCK), a RhoA GTPase effector, can regulate the contraction of airway and other smooth muscle tissues. In some tissues, ROCK can inhibit myosin regulatory light chain (RLC) phosphatase, which increases the phosphorylation of myosin RLC and promotes smooth muscle contraction. ROCK can also regulate cell motility and migration by affecting F-actin dynamics. Actin polymerization is stimulated by contractile agonists in airway smooth muscle tissues and is required for contractile tension development in addition to myosin RLC phosphorylation. We investigated the mechanisms by which ROCK regulates the contractility of tracheal smooth muscle tissues by expressing a kinase inactive mutant of ROCK, ROCK-K121G, in the tissues or by treating them with the ROCK inhibitor, H-1152P. Our results show no role for ROCK in the regulation of non-muscle or smooth muscle myosin RLC phosphorylation during contractile stimulation in this tissue

  13. Increased autophagy contributes to impaired smooth muscle function in neurogenic lower urinary tract dysfunction.

    PubMed

    Eberli, Daniel; Horst, Maya; Mortezavi, Ashkan; Andersson, Karl-Erik; Gobet, Rita; Sulser, Tullio; Simon, Hans-Uwe; Salemi, Souzan

    2018-05-24

    To explore whether autophagy plays a role in the remodeling of bladder smooth muscle cells (SMCs) in children with neurogenic lower urinary tract dysfunction (NLUTD), we investigated the effect of autophagy in NLUTD in the paediatric population. Bladder biopsies were taken from children with NLUTD and healthy donors as controls. Samples were labeled with the SMC markers calponin, smoothelin, and the autophagy proteins LC3, ATG5, and Beclin1. The contractile ability of bladder derived SMCs was investigated. ATG5 gene and protein was upregulated in NLUTD muscle tissue compared to normal bladder. NLUTD muscle exhibited a punctated immunostaining pattern for LC3 in a subset of the SMCs, confirming the accumulation of autophagosomes. Pronounced elevation of ATG5 in the SMC in NLUTD tissue was associated with a downregulation of the key contractile proteins smoothelin and calponin. Pharmacological blocking of autophagy completely stopped the cells growth in normal bladder SMCs. Inhibition of autophagy in the NLUTD SMCs, with already elevated levels of ATG5, resulted in a reduction of ATG5 protein expression to the basal level found in normal controls. Our study suggests that autophagy is an important factor affecting the remodeling of SMCs and the alteration of functionality in bladder smooth muscle tissue in the NLUTD. Since autophagy can be influenced by oral medication, this finding might lead to novel strategies preventing the deterioration of NLUTD muscle. © 2018 Wiley Periodicals, Inc.

  14. MicroRNA-124 controls human vascular smooth muscle cell phenotypic switch via Sp1.

    PubMed

    Tang, Yangfeng; Yu, Shangyi; Liu, Yang; Zhang, Jiajun; Han, Lin; Xu, Zhiyun

    2017-09-01

    Phenotypic switch of vascular smooth muscle cells (VSMCs) plays an important role in the pathogenesis of atherosclerosis and aortic dissection. However, the mechanisms of phenotypic modulation are still unclear. MicroRNAs have emerged as important regulators of VSMC function. We recently found that microRNA-124 (miR-124) was downregulated in proliferative vascular diseases that were characterized by a VSMC phenotypic switch. Therefore, we speculated that the aberrant expression of miR-124 might play a critical role in human aortic VSMC phenotypic switch. Using quantitative RT-PCR, we found that miR-124 was dramatically downregulated in the aortic media of clinical specimens of the dissected aorta and correlated with molecular markers of the contractile VSMC phenotype. Overexpression of miR-124 by mimicking transfection significantly attenuated platelet-derived growth factor-BB-induced human aortic VSMC proliferation and phenotypic switch. Furthermore, we identified specificity protein 1 (Sp1) as the downstream target of miR-124. A luciferase reporter assay was used to confirm direct miR-124 targeting of the 3'-untranslated region of the Sp1 gene and repression of Sp1 expression in human aortic VSMCs. Furthermore, constitutively active Sp1 in miR-124-overexpressing VSMCs reversed the antiproliferative effects of miR-124. These results demonstrated a novel mechanism of miR-124 modulation of VSMC phenotypic switch by targeting Sp1 expression. NEW & NOTEWORTHY Previous studies have demonstrated that miR-124 is involved in the proliferation of a variety of cell types. However, miRNAs are expressed in a tissue-specific manner. We first identified miR-124 as a critical regulator in human aortic vascular smooth muscle cell differentiation, proliferation, and phenotype switch by targeting the 3'-untranslated region of specificity protein 1. Copyright © 2017 the American Physiological Society.

  15. Mounier-Kuhn syndrome: a case of tracheal smooth muscle remodeling.

    PubMed

    Cook, Daniel P; Adam, Ryan J; Abou Alaiwa, Mahmoud H; Eberlein, Michael; Klesney-Tait, Julia A; Parekh, Kalpaj R; Meyerholz, David K; Stoltz, David A

    2017-02-01

    Mounier-Kuhn syndrome is a rare clinical disorder characterized by tracheobronchial dilation and recurrent lower respiratory tract infections. While the etiology of the disease remains unknown, histopathological analysis of Mounier-Kuhn airways demonstrates that the disease is, in part, characterized by cellular changes in airway smooth muscle.

  16. Patent ductus arteriosus in mice with smooth muscle-specific Jag1 deletion

    PubMed Central

    Feng, Xuesong; Krebs, Luke T.; Gridley, Thomas

    2010-01-01

    The ductus arteriosus is an arterial vessel that shunts blood flow away from the lungs during fetal life, but normally occludes after birth to establish the adult circulation pattern. Failure of the ductus arteriosus to close after birth is termed patent ductus arteriosus and is one of the most common congenital heart defects. Mice with smooth muscle cell-specific deletion of Jag1, which encodes a Notch ligand, die postnatally from patent ductus arteriosus. These mice exhibit defects in contractile smooth muscle cell differentiation in the vascular wall of the ductus arteriosus and adjacent descending aorta. These defects arise through an inability to propagate the JAG1-Notch signal via lateral induction throughout the width of the vascular wall. Both heterotypic endothelial smooth muscle cell interactions and homotypic vascular smooth muscle cell interactions are required for normal patterning and differentiation of the ductus arteriosus and adjacent descending aorta. This new model for a common congenital heart defect provides novel insights into the genetic programs that underlie ductus arteriosus development and closure. PMID:21068062

  17. MiR-133 modulates TGF-β1-induced bladder smooth muscle cell hypertrophic and fibrotic response: implication for a role of microRNA in bladder wall remodeling caused by bladder outlet obstruction.

    PubMed

    Duan, Liu Jian; Qi, Jun; Kong, Xiang Jie; Huang, Tao; Qian, Xiao Qiang; Xu, Ding; Liang, Jun Hao; Kang, Jian

    2015-02-01

    Bladder outlet obstruction (BOO) evokes urinary bladder wall remodeling significantly, including the phenotype shift of bladder smooth muscle cells (BSMCs) where transforming growth factor-beta1 (TGF-β1) plays a pivotal role given the emerging function of modulating cellular phenotype. miR-133 plays a role in cardiac and muscle remodeling, however, little is known about its roles in TGF-β1-induced BSMC hypertrophic and fibrotic response. Here, we verified BOO induced bladder wall remodeling and TGF-β1 expression mainly located in bladder endothelium. Furthermore, we uncovered miR-133a/b expression profile in BOO rats, and then explored its regulated effects on BSMCs' phenotypic shift. Our study found that miR-133 became down-regulated during rat bladder remodeling. Next, we sought to examine whether the expression of miR-133 was down-regulated in primary BSMCs in response to TGF-β1 stimulation and whether forced overexpression of miR-133 could regulate profibrotic TGF-β signaling. We found that stimulation of BSMCs with exogenous TGF-β1 of increasing concentrations resulted in a dose-dependent decrease of miR-133a/b levels and transfection with miR-133 mimics attenuated TGF-β1-induced α-smooth muscle actin, extracellular matrix subtypes and fibrotic growth factor expression, whereas it upregulated high molecular weight caldesmon expression compared with the negative control. Also, downregulation of p-Smad3, not p-Smad2 by miR-133 was detected. Additionally, miR-133 overexpression suppressed TGF-β1-induced BSMC hypertrophy and proliferation through influencing cell cycle distribution. Bioinformatics analyses predicted that connective tissue growth factor (CTGF) was the potential target of miR-133, and then binding to the 3'-untranslated region of CTGF was validated by luciferase reporter assay. These results reveal a novel regulator for miR-133 to modulate TGF-β1-induced BSMC phenotypic changes by targeting CTGF through the TGF-β-Smad3 signaling pathway

  18. Notch signal reception is required in vascular smooth muscle cells for ductus arteriosus closure

    PubMed Central

    Krebs, Luke T.; Norton, Christine R.; Gridley, Thomas

    2017-01-01

    Summary The ductus arteriosus is an arterial vessel that shunts blood flow away from the lungs during fetal life, but normally occludes after birth to establish the adult circulation pattern. Failure of the ductus arteriosus to close after birth is termed patent ductus arteriosus, and is one of the most common congenital heart defects. Our previous work demonstrated that vascular smooth muscle cell expression of the Jag1 gene, which encodes a ligand for Notch family receptors, is essential for postnatal closure of the ductus arteriosus in mice. However, it was not known what cell population was responsible for receiving the Jag1-mediated signal. Here we show, using smooth muscle cell-specific deletion of the Rbpj gene, which encodes a transcription factor that mediates all canonical Notch signaling, that Notch signal reception in the vascular smooth muscle cell compartment is required for ductus arteriosus closure. These data indicate that homotypic vascular smooth muscle cell interactions are required for proper contractile smooth muscle cell differentiation and postnatal closure of the ductus arteriosus in mice. PMID:26742650

  19. Cysteinyl leukotrienes promote human airway smooth muscle migration.

    PubMed

    Parameswaran, Krishnan; Cox, Gerard; Radford, Katherine; Janssen, Luke J; Sehmi, Roma; O'Byrne, Paul M

    2002-09-01

    Cysteinyl leukotrienes promote airway smooth muscle (ASM) contraction and proliferation. Little is known about their role in ASM migration. We investigated this using cultured human ASMs (between the second and fifth passages) obtained from the large airways of resected nonasthmatic lung. Platelet-derived growth factor-BB (1 ng/ml) promoted significant (3.5-fold) ASM migration of myocytes across collagen-coated 8- micro m polycarbonate membranes in Transwell culture plates. Leukotriene E(4) (10(-7), 10(-8), 10(-9) M) did not demonstrate a chemotactic effect; it did promote chemokinesis. Priming by leukotriene E(4) (10(-7) M) significantly augmented the directional migratory response to platelet-derived growth factor (1.5-fold, p < 0.05). This was blocked by montelukast (10(-6) M), demonstrating the effect to be mediated by the cysteinyl leukotriene receptor. The "priming effect" was also partially attenuated by prostaglandin E(2) (10(-7) M). Whereas both the chemokinetic and the chemotactic "primed" responses were equally attenuated by a p38 mitogen-activated protein kinase inhibitor (SB203580, 25 micro M) and by a Rho-kinase inhibitor (Y27632, 10 micro M), the chemotactic response showed greater inhibition than chemokinesis by a phosphatidylinositol-3 kinase inhibitor (LY294002, 50 micro M). These experiments suggest that cysteinyl leukotrienes play an augmentary role in human ASM migration. The phosphatidylinositol-3 kinase pathway is a key signaling mechanism in the chemotactic migration of ASM cells in response to cysteinyl leukotrienes.

  20. Ca2+ and MgATP2- dependence of shortening in skinned single smooth muscle cells.

    PubMed

    Warshaw, D M; McBride, W J; Hubbard, M S

    1987-04-01

    Most studies of skinned smooth muscle have been performed in whole tissue preparations. In this study, we report the development of a chemically skinned single smooth muscle cell preparation from the toad, Bufo marinus, stomach. Isolated smooth muscle cells were skinned using saponin. The effect of various ionic environments (i.e., changing free Ca2+ and MgATP2-) on skinned cell contractile response was assessed by measuring cell lengths from populations of cells using a computer-assisted length-measuring system. Comparison of cell length histograms were used to determine the extent of cell shortening in response to a given ionic perturbation. Once skinned, the single cells shortened with a sensitivity to free calcium (ED50 = 1.5 microM Ca2+) that was three orders of magnitude lower than potassium depolarized cells (ED50 = 1.5 mM Ca2+). In addition to the calcium sensitivity, the effect of free MgATP2- on the extent of cell shortening was investigated. The extent of cell shortening was dependent on free MgATP2- with the maximum shortening response occurring at MgATP2- greater than 1 mM.

  1. Effects of lubiprostone on human uterine smooth muscle cells.

    PubMed

    Cuppoletti, John; Malinowska, Danuta H; Chakrabarti, Jayati; Ueno, Ryuji

    2008-06-01

    Lubiprostone, a bicyclic fatty acid derivative and member of a new class of compounds called prostones, locally activates ClC-2 Cl(-) channels without activation of prostaglandin receptors. The present study was specifically designed to test and compare lubiprostone and prostaglandin effects at the cellular level using human uterine smooth muscle cells. Effects on [Ca(2+)](i), membrane potential and [cAMP](i) in human uterine smooth muscle cells were measured. 10 nM lubiprostone significantly decreased [Ca(2+)](i) from 188 to 27 nM, which was unaffected by 100 nM SC-51322, a prostaglandin EP receptor antagonist. In contrast 10nM PGE(2) and PGE(1) both increased [Ca(2+)](i) 3-5-fold which was blocked by SC-51322. Similarly, lubiprostone and prostaglandins had opposite/different effects on membrane potential and [cAMP](i). Lubiprostone caused SC-51322-insensitive membrane hyperpolarization and no effect on [cAMP](i). PGE(2) and PGE(1) both caused SC-51322-sensitive membrane depolarization and increased [cAMP](i). Lubiprostone has fundamentally different cellular effects from prostaglandins that are not mediated by EP receptors.

  2. Role of the adapter protein Abi1 in actin-associated signaling and smooth muscle contraction.

    PubMed

    Wang, Tao; Cleary, Rachel A; Wang, Ruping; Tang, Dale D

    2013-07-12

    Actin filament polymerization plays a critical role in the regulation of smooth muscle contraction. However, our knowledge regarding modulation of the actin cytoskeleton in smooth muscle just begins to accumulate. In this study, stimulation with acetylcholine (ACh) induced an increase in the association of the adapter protein c-Abl interactor 1 (Abi1) with neuronal Wiskott-Aldrich syndrome protein (N-WASP) (an actin-regulatory protein) in smooth muscle cells/tissues. Furthermore, contractile stimulation activated N-WASP in live smooth muscle cells as evidenced by changes in fluorescence resonance energy transfer efficiency of an N-WASP sensor. Abi1 knockdown by lentivirus-mediated RNAi inhibited N-WASP activation, actin polymerization, and contraction in smooth muscle. However, Abi1 silencing did not affect myosin regulatory light chain phosphorylation at Ser-19 in smooth muscle. In addition, c-Abl tyrosine kinase and Crk-associated substrate (CAS) have been shown to regulate smooth muscle contraction. The interaction of Abi1 with c-Abl and CAS has not been investigated. Here, contractile activation induced formation of a multiprotein complex including c-Abl, CAS, and Abi1. Knockdown of c-Abl and CAS attenuated the activation of Abi1 during contractile activation. More importantly, Abi1 knockdown inhibited c-Abl phosphorylation at Tyr-412 and the interaction of c-Abl with CAS. These results suggest that Abi1 is an important component of the cellular process that regulates N-WASP activation, actin dynamics, and contraction in smooth muscle. Abi1 is activated by the c-Abl-CAS pathway, and Abi1 reciprocally controls the activation of its upstream regulator c-Abl.

  3. Role of the Adapter Protein Abi1 in Actin-associated Signaling and Smooth Muscle Contraction*

    PubMed Central

    Wang, Tao; Cleary, Rachel A.; Wang, Ruping; Tang, Dale D.

    2013-01-01

    Actin filament polymerization plays a critical role in the regulation of smooth muscle contraction. However, our knowledge regarding modulation of the actin cytoskeleton in smooth muscle just begins to accumulate. In this study, stimulation with acetylcholine (ACh) induced an increase in the association of the adapter protein c-Abl interactor 1 (Abi1) with neuronal Wiskott-Aldrich syndrome protein (N-WASP) (an actin-regulatory protein) in smooth muscle cells/tissues. Furthermore, contractile stimulation activated N-WASP in live smooth muscle cells as evidenced by changes in fluorescence resonance energy transfer efficiency of an N-WASP sensor. Abi1 knockdown by lentivirus-mediated RNAi inhibited N-WASP activation, actin polymerization, and contraction in smooth muscle. However, Abi1 silencing did not affect myosin regulatory light chain phosphorylation at Ser-19 in smooth muscle. In addition, c-Abl tyrosine kinase and Crk-associated substrate (CAS) have been shown to regulate smooth muscle contraction. The interaction of Abi1 with c-Abl and CAS has not been investigated. Here, contractile activation induced formation of a multiprotein complex including c-Abl, CAS, and Abi1. Knockdown of c-Abl and CAS attenuated the activation of Abi1 during contractile activation. More importantly, Abi1 knockdown inhibited c-Abl phosphorylation at Tyr-412 and the interaction of c-Abl with CAS. These results suggest that Abi1 is an important component of the cellular process that regulates N-WASP activation, actin dynamics, and contraction in smooth muscle. Abi1 is activated by the c-Abl-CAS pathway, and Abi1 reciprocally controls the activation of its upstream regulator c-Abl. PMID:23740246

  4. TGFβ Triggers miR-143/145 Transfer From Smooth Muscle Cells to Endothelial Cells, Thereby Modulating Vessel Stabilization.

    PubMed

    Climent, Montserrat; Quintavalle, Manuela; Miragoli, Michele; Chen, Ju; Condorelli, Gianluigi; Elia, Leonardo

    2015-05-22

    The miR-143/145 cluster is highly expressed in smooth muscle cells (SMCs), where it regulates phenotypic switch and vascular homeostasis. Whether it plays a role in neighboring endothelial cells (ECs) is still unknown. To determine whether SMCs control EC functions through passage of miR-143 and miR-145. We used cocultures of SMCs and ECs under different conditions, as well as intact vessels to assess the transfer of miR-143 and miR-145 from one cell type to another. Imaging of cocultured cells transduced with fluorescent miRNAs suggested that miRNA transfer involves membrane protrusions known as tunneling nanotubes. Furthermore, we show that miRNA passage is modulated by the transforming growth factor (TGF) β pathway because both a specific transforming growth factor-β (TGFβ) inhibitor (SB431542) and an shRNA against TGFβRII suppressed the passage of miR-143/145 from SMCs to ECs. Moreover, miR-143 and miR-145 modulated angiogenesis by reducing the proliferation index of ECs and their capacity to form vessel-like structures when cultured on matrigel. We also identified hexokinase II (HKII) and integrin β 8 (ITGβ8)-2 genes essential for the angiogenic potential of ECs-as targets of miR-143 and miR-145, respectively. The inhibition of these genes modulated EC phenotype, similarly to miR-143 and miR-145 overexpression in ECs. These findings were confirmed by ex vivo and in vivo approaches, in which it was shown that TGFβ and vessel stress, respectively, triggered miR-143/145 transfer from SMCs to ECs. Our results demonstrate that miR-143 and miR-145 act as communication molecules between SMCs and ECs to modulate the angiogenic and vessel stabilization properties of ECs. © 2015 American Heart Association, Inc.

  5. Abnormalities in the contractile properties of colonic smooth muscle in idiopathic slow transit constipation.

    PubMed

    Slater, B J; Varma, J S; Gillespie, J I

    1997-02-01

    The underlying pathophysiology of idiopathic slow transit constipation (ISTC) remains unclear. At present, there is little evidence to implicate a smooth muscle myopathy in the aetiology of this condition. This study compared the effect of cisapride on the cholinergic response of colonic muscle strips from patients with this condition with that of control tissue. Isometric tension production was recorded from circular smooth muscle strips taken from five patients undergoing colectomy for ISTC in response to cumulative concentrations of carbachol (100 nmol/1-100 mumol/l) alone and in the presence of cisapride 400 nmol/l. Similar dose-response activity was obtained for a control group consisting of six patients undergoing resection for colorectal carcinoma. In the absence of cisapride, smooth muscle from patients with carcinoma exhibited a significantly lower sensitivity to cholinergic stimulation (agonist concentration required to produce half-maximal activation (EC50) 4.83 mumol/l) than that from patients with ISTC (EC50 1.63 mumol/l, P = 0.036), and also a greater maximal frequency of the oscillatory activity associated with the increase in isometric tension (0.070 versus 0.049 Hz, P = 0.035). Cisapride had no effect on the sensitivity to carbachol of the carcinoma tissue but brought about a significant reduction in the sensitivity of smooth muscle from patients with ISTC (EC50 3.24 mumol/l, P = 0.043). These findings indicate that colonic smooth muscle from patients with ISTC is hypersensitive to cholinergic stimulation and suggest the existence of a smooth muscle myopathy in this condition.

  6. Ryanodine receptors decant internal Ca2+ store in human and bovine airway smooth muscle.

    PubMed

    Tazzeo, T; Zhang, Y; Keshavjee, S; Janssen, L J

    2008-08-01

    Several putative roles for ryanodine receptors (RyR) were investigated in human and bovine airway smooth muscle. Changes in intracellular Ca2+ concentration ([Ca2+]i) and membrane current were investigated in single cells by confocal fluorimetry and patch-clamp electrophysiology, respectively, whereas mechanical activity was monitored in intact strips with force transducers. RyR released Ca2+ from the sarcoplasmic reticulum in a ryanodine- and chloroethyl phenol (CEP)-sensitive fashion. Neither ryanodine nor CEP inhibited responses to KCl, cholinergic agonists or serotonin, indicating no direct role for RyR in contraction; in fact, there was some augmentation of these responses. In tissues pre-contracted with carbachol, the concentration-response relationships for isoproterenol and salmeterol were unaffected by ryanodine; relaxations due to a nitric oxide donor were also largely unaffected. Finally, it was examined whether RyR were involved in regulating [Ca2+]i within the subplasmalemmal space using patch-clamp electrophysiology as well as Ca2+ fluorimetry: isoproterenol increased [Ca2+]i- and Ca2+-dependent K+ current activity in a ryanodine-sensitive fashion. In conclusion, ryanodine receptors in airway smooth muscle are not important in directly mediating contraction or relaxation. The current authors speculate instead that these allow the sarcoplasmic reticulum to release Ca2+ towards the plasmalemma (to unload an overly full Ca2+ store and/or increase the Ca2+-buffering capacity of the sarcoplasmic reticulum) without affecting bronchomotor tone.

  7. miR-379 Inhibits Cell Proliferation, Invasion, and Migration of Vascular Smooth Muscle Cells by Targeting Insulin-Like Factor-1.

    PubMed

    Li, Kai; Wang, Yong; Zhang, Anji; Liu, Baixue; Jia, Li

    2017-01-01

    MicroRNAs are small non-coding RNAs that play important roles in vascular smooth muscle cell (VSMC) function. This study investigated the role of miR-379 on proliferation, invasion, and migration of VSMCs and explored underlying mechanisms thereof. MicroRNA, mRNA, and protein levels were determined by quantitative real-time PCR and western blot. The proliferative, invasive, and migratory abilities of VSMCs were measured by CCK-8, invasion, and wound healing assay, respectively. Luciferase reporter assay was used to confirm the target of miR-379. Platelet-derived growth factor-bb was found to promote cell proliferation and suppress miR-379 expression in VSMCs. Functional assays demonstrated that miR-379 inhibited cell proliferation, cell invasion, and migration. Flow cytometry results further showed that miR-379 induced apoptosis in VSMCs. TargetScan analysis and luciferase report assay confirmed that insulin-like growth factor-1 (IGF-1) 3'UTR is a direct target of miR-379, and mRNA and protein levels of miR-379 and IGF-1 were inversely correlated. Rescue experiments showed that enforced expression of IGF-1 sufficiently overcomes the inhibitory effect of miR-379 on cell proliferation, invasion, and migration in VSMCs. Our results suggest that miR-379 plays an important role in regulating VSMCs proliferation, invasion, and migration by targeting IGF-1.

  8. A Novel Orally Available Asthma Drug Candidate That Reduces Smooth Muscle Constriction and Inflammation by Targeting GABAA Receptors in the Lung.

    PubMed

    Forkuo, Gloria S; Nieman, Amanda N; Kodali, Revathi; Zahn, Nicolas M; Li, Guanguan; Rashid Roni, M S; Stephen, Michael Rajesh; Harris, Ted W; Jahan, Rajwana; Guthrie, Margaret L; Yu, Olivia B; Fisher, Janet L; Yocum, Gene T; Emala, Charles W; Steeber, Douglas A; Stafford, Douglas C; Cook, James M; Arnold, Leggy A

    2018-05-07

    We describe lead compound MIDD0301 for the oral treatment of asthma based on previously developed positive allosteric α 5 β 3 γ 2 selective GABA A receptor (GABA A R) ligands. MIDD0301 relaxed airway smooth muscle at single micromolar concentrations as demonstrated with ex vivo guinea pig tracheal rings. MIDD0301 also attenuated airway hyperresponsiveness (AHR) in an ovalbumin murine model of asthma by oral administration. Reduced numbers of eosinophils and macrophages were observed in mouse bronchoalveolar lavage fluid without changing mucous metaplasia. Importantly, lung cytokine expression of IL-17A, IL-4, and TNF-α were reduced for MIDD0301-treated mice without changing antiinflammatory cytokine IL-10 levels. Automated patch clamp confirmed amplification of GABA induced current mediated by α 1-3,5 β 3 γ 2 GABA A Rs in the presence of MIDD0301. Pharmacodynamically, transmembrane currents of ex vivo CD4 + T cells from asthmatic mice were potentiated by MIDD0301 in the presence of GABA. The number of CD4 + T cells observed in the lung of MIDD0301-treated mice were reduced by an oral treatment of 20 mg/kg b.i.d. for 5 days. A half-life of almost 14 h was demonstrated by pharmacokinetic studies (PK) with no adverse CNS effects when treated mice were subjected to sensorimotor studies using the rotarod. PK studies also confirmed very low brain distribution. In conclusion, MIDD0301 represents a safe and improved oral asthma drug candidate that relaxes airway smooth muscle and attenuates inflammation in the lung leading to a reduction of AHR at a dosage lower than earlier reported GABA A R ligands.

  9. Circulating smooth muscle progenitor cells in atherosclerosis and plaque rupture: current perspective and methods of analysis.

    PubMed

    Bentzon, Jacob F; Falk, Erling

    2010-01-01

    Smooth muscle cells play a critical role in the development of atherosclerosis and its clinical complications. They were long thought to derive entirely from preexisting smooth muscle cells in the arterial wall, but this understanding has been challenged by the claim that circulating bone marrow-derived smooth muscle progenitor cells are an important source of plaque smooth muscle cells in human and experimental atherosclerosis. This theory is today accepted by many cardiovascular researchers and authors of contemporary review articles. Recently, however, we and others have refuted the existence of bone marrow-derived smooth muscle cells in animal models of atherosclerosis and other arterial diseases based on new experiments with high-resolution microscopy and improved techniques for smooth muscle cell identification and tracking. These studies have also pointed to a number of methodological deficiencies in some of the seminal papers in the field. For those unaccustomed with the methods used in this research area, it must be difficult to decide what to believe and why to do so. In this review, we summarize current knowledge about the origin of smooth muscle cells in atherosclerosis and direct the reader's attention to the methodological challenges that have contributed to the confusion in the field. 2009 Elsevier Inc. All rights reserved.

  10. Bladder smooth muscle organ culture preparation maintains the contractile phenotype

    PubMed Central

    Wang, Tanchun; Kendig, Derek M.; Chang, Shaohua; Trappanese, Danielle M.; Chacko, Samuel

    2012-01-01

    Smooth muscle cells, when subjected to culture, modulate from a contractile to a secretory phenotype. This has hampered the use of cell culture for molecular techniques to study the regulation of smooth muscle biology. The goal of this study was to develop a new organ culture model of bladder smooth muscle (BSM) that would maintain the contractile phenotype and aid in the study of BSM biology. Our results showed that strips of BSM subjected to up to 9 days of organ culture maintained their contractile phenotype, including the ability to achieve near-control levels of force with a temporal profile similar to that of noncultured tissues. The technical aspects of our organ culture preparation that were responsible, in part, for the maintenance of the contractile phenotype were a slight longitudinal stretch during culture and subjection of the strips to daily contraction-relaxation. The tissues contained viable cells throughout the cross section of the strips. There was an increase in extracellular collagenous matrix, resulting in a leftward shift in the passive length-tension relationship. There were no significant changes in the content of smooth muscle-specific α-actin, calponin, h-caldesmon, total myosin heavy chain, protein kinase G, Rho kinase-I, or the ratio of SM1 to SM2 myosin isoforms. Moreover the organ cultured tissues maintained functional voltage-gated calcium channels and large-conductance calcium-activated potassium channels. Therefore, we propose that this novel BSM organ culture model maintains the contractile phenotype and will be a valuable tool for the use in cellular/molecular biology studies of bladder myocytes. PMID:22896042

  11. Cutaneous Malignant Melanoma With Rhabdoid Morphology and Smooth Muscle Differentiation: A Challenging Histopathologic Diagnosis.

    PubMed

    Prieto-Torres, Lucía; Alegría-Landa, Victoria; Llanos, Concepción; Córdoba, Alicia; Kutzner, Heinz; Requena, Luis

    2017-05-01

    Divergent differentiation or metaplastic change is a rare feature exhibited occasionally in malignant melanoma (MM), which is characterized by the development of morphologically, immunochemically, and/or ultrastructurally nonmelanocytic cells within the tumor. Smooth muscle differentiation in MM is an exceedingly rare phenomenon reported only in a few cases in the literature. We report the case of a 69-year-old woman who presented with a pure dermal amelanotic MM with smooth muscle cell differentiation and an area of rhabdoid morphology, which made the accurate histopathologic diagnostic of MM challenging.

  12. miR-26b-5p regulates hypoxia-induced phenotypic switching of vascular smooth muscle cells via the TGF-β/Smad4 signaling pathway.

    PubMed

    Ruan, Changwu; Lu, Jide; Wang, Hairong; Ge, Zhiru; Zhang, Chenjun; Xu, Maochun

    2017-06-01

    Hypoxia contributes to the phenotypic switch of vascular smooth muscle cells (VSMCs). Various microRNAs (miRNAs) participate in this process as post‑transcriptional regulators, however the mechanism remains unclear. In the present study, mouse VSMCs (mVSMCs) harvested from aortas were cultured in normoxic and hypoxic conditions, and the mRNA levels of miR-26b-5p, desmin, H‑caldesmon and smoothelin were quantified using reverse transcription‑quantitative polymerase chain reaction. Following treatment with a miR‑26b‑5p antagonist (agomir) or non‑targeting control (scramble), the cell areas of normoxic and hypoxic mVSMCs were analyzed by immunofluorescence staining. In addition, the protein expression levels of collagen Iα, Smad2/phosphorylated (p)‑Smad2, Smad3/p‑Smad3 and Smad4 were determined by western blotting. Potential miRNA26b‑5p binding sequences in the 3'‑untranslated region (UTR) of Smad4 were investigated, and the distribution of Smad4 in mVSMCs was visualized using immunofluorescence methods. Hypoxic mVSMCs exhibited a significant downregulation miR‑26b‑5p, upregulation of hypoxia inducible factor‑1α mRNA and suppression of desmin, H‑caldesmon and smoothelin mRNA levels. Additionally, miR‑26b‑5p agomir reduced the cell area and decreased collagen Iα expression levels in hypoxic mVSMCs compared with normoxic mVSMCs transfected with agomir, and the area was comparable with those of normoxic mVSMCs transfected with agomir or scramble. Furthermore, miR‑26b‑5p suppressed Smad4 expression in hypoxic mVSMCs, but did not change the expression levels of Smad2 and Smad3, p‑Smad2 and p‑Smad3, however p‑Smad2 and p‑Smad3 levels were upregulated in response to hypoxic stimuli. Additionally, the miR‑26b‑5p agomir caused weak immunoreactivity with Smad4 in hypoxic mVSMCs. The binding motif of miR‑26b‑5p in the Smad4 3'‑UTR was identified as UACUUGA at position 978-984. These findings suggest that miR‑26b‑5p

  13. Unregulated smooth-muscle myosin in human intestinal neoplasia.

    PubMed

    Alhopuro, Pia; Phichith, Denis; Tuupanen, Sari; Sammalkorpi, Heli; Nybondas, Miranda; Saharinen, Juha; Robinson, James P; Yang, Zhaohui; Chen, Li-Qiong; Orntoft, Torben; Mecklin, Jukka-Pekka; Järvinen, Heikki; Eng, Charis; Moeslein, Gabriela; Shibata, Darryl; Houlston, Richard S; Lucassen, Anneke; Tomlinson, Ian P M; Launonen, Virpi; Ristimäki, Ari; Arango, Diego; Karhu, Auli; Sweeney, H Lee; Aaltonen, Lauri A

    2008-04-08

    A recent study described a recessive ATPase activating germ-line mutation in smooth-muscle myosin (smmhc/myh11) underlying the zebrafish meltdown (mlt) phenotype. The mlt zebrafish develops intestinal abnormalities reminiscent of human Peutz-Jeghers syndrome (PJS) and juvenile polyposis (JP). To examine the role of MYH11 in human intestinal neoplasia, we searched for MYH11 mutations in patients with colorectal cancer (CRC), PJS and JP. We found somatic protein-elongating frameshift mutations in 55% of CRCs displaying microsatellite instability and in the germ-line of one individual with PJS. Additionally, two somatic missense mutations were found in one microsatellite stable CRC. These two missense mutations, R501L and K1044N, and the frameshift mutations were functionally evaluated. All mutations resulted in unregulated molecules displaying constitutive motor activity, similar to the mutant myosin underlying mlt. Thus, MYH11 mutations appear to contribute also to human intestinal neoplasia. Unregulated MYH11 may affect the cellular energy balance or disturb cell lineage decisions in tumor progenitor cells. These data challenge our view on MYH11 as a passive differentiation marker functioning in muscle contraction and add to our understanding of intestinal neoplasia.

  14. Generalised smooth-muscle disease with defective muscarinic-receptor function.

    PubMed

    Bannister, R; Hoyes, A D

    1981-03-28

    A patient with widespread smooth-muscle disease presented with chronic intestinal pseudo-obstruction but had in addition defects of the bladder, pupils, sweating, and cardiovascular function. There was no evidence of a primary neural lesion, and minor changes in the muscle did not resemble those of a myopathy. In each organ affected muscarinic cholinergic function was at fault, but instead of supersensitivity to cholinergic drugs, which occurs in postganglionic autonomic neuropathies, there was a lack of response to cholinergic drugs and anticholinesterases. It was therefore concluded that the patient had a new type of defect of muscarinic-receptor function. The cause was unknown, but it may have been an autoimmune disease resembling myasthenia, in which there is a postjunctional defect of muscarinic receptors. In similar cases binding of muscarinic agonists and antagonists should be tested. When antibodies to purified human muscarinic receptors become available different patterns of smooth-muscle defect may be identifiable, enabling the lesion to be defined more precisely.

  15. The regulation of smooth muscle contractility by zipper-interacting protein kinase.

    PubMed

    Ihara, Eikichi; MacDonald, Justin A

    2007-01-01

    Smooth muscle contractility is mainly regulated by phosphorylation of the 20 kDa myosin light chains (LC20), a process that is controlled by the opposing activities of myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP). Recently, intensive research has revealed that various protein kinase networks including Rho-kinase, integrin-linked kinase, zipper-interacting protein kinase (ZIPK), and protein kinase C (PKC) are involved in the regulation of LC20 phosphorylation and have important roles in modulating smooth muscle contractile responses to Ca2+ (i.e., Ca2+ sensitization and Ca2+ desensitization). Here, we review the general background and structure of ZIPK and summarize our current understanding of its involvement in a number of cell processes including cell death (apoptosis), cell motility, and smooth muscle contraction. ZIPK has been found to induce the diphosphorylation of LC20 at Ser-19 and Thr-18 in a Ca2+-independent manner and to regulate MLCP activity directly through its phosphorylation of the myosin-targeting subunit of MLCP or indirectly through its phosphorylation of the PKC-potentiated inhibitory protein of MLCP. Future investigations of ZIPK function in smooth muscle will undoubtably focus on determining the mechanisms that regulate its cellular activity, including the identification of upstream signaling pathways, the characterization of autoinhibitory domains and regulatory phosphorylation sites, and the development of specific inhibitor compounds.

  16. Lubiprostone Increases Small Intestinal Smooth Muscle Contractions Through a Prostaglandin E Receptor 1 (EP1)-mediated Pathway.

    PubMed

    Chan, Walter W; Mashimo, Hiroshi

    2013-07-01

    Lubiprostone, a chloride channel type 2 (ClC-2) activator, was thought to treat constipation by enhancing intestinal secretion. It has been associated with increased intestinal transit and delayed gastric emptying. Structurally similar to prostones with up to 54% prostaglandin E2 activity on prostaglandin E receptor 1 (EP1), lubiprostone may also exert EP1-mediated procontractile effect on intestinal smooth muscles. We investigated lubiprostone's effects on intestinal smooth muscle contractions and pyloric sphincter tone. Isolated murine small intestinal (longitudinal and circular) and pyloric tissues were mounted in organ baths with modified Krebs solution for isometric recording. Basal muscle tension and response to electrical field stimulation (EFS; 2 ms pulses/10 V/6 Hz/30 sec train) were measured with lubiprostone (10(-10)-10(-5) M) ± EP1 antagonist. Significance was established using Student t test and P < 0.05. Lubiprostone had no effect on the basal tension or EFS-induced contractions of longitudinal muscles. With circular muscles, lubiprostone caused a dose-dependent increase in EFS-induced contractions (2.11 ± 0.88 to 4.43 ± 1.38 N/g, P = 0.020) that was inhibited by pretreatment with EP1 antagonist (1.69 ± 0.70 vs. 4.43 ± 1.38 N/g, P = 0.030). Lubiprostone had no effect on circular muscle basal tension, but it induced a dose-dependent increase in pyloric basal tone (1.07 ± 0.01 to 1.97 ± 0.86 fold increase, P < 0.05) that was inhibited by EP1 antagonist. In mice, lubiprostone caused a dose-dependent and EP1-mediated increase in contractility of circular but not longitudinal small intestinal smooth muscles, and in basal tone of the pylorus. These findings suggest another mechanism for lubiprostone's observed clinical effects on gastrointestinal motility.

  17. Triptolide inhibits TGF-β1-induced cell proliferation in rat airway smooth muscle cells by suppressing Smad signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ming; Lv, Zhiqiang; Huang, Linjie

    Background: We have reported that triptolide can inhibit airway remodeling in a murine model of asthma via TGF-β1/Smad signaling. In the present study, we aimed to investigate the effect of triptolide on airway smooth muscle cells (ASMCs) proliferation and the possible mechanism. Methods: Rat airway smooth muscle cells were cultured and made synchronized, then pretreated with different concentration of triptolide before stimulated by TGF-β1. Cell proliferation was evaluated by MTT assay. Flow cytometry was used to study the influence of triptolide on cell cycle and apoptosis. Signal proteins (Smad2, Smad3 and Smad7) were detected by western blotting analysis. Results: Triptolidemore » significantly inhibited TGF-β1-induced ASMC proliferation (P<0.05). The cell cycle was blocked at G1/S-interphase by triptolide dose dependently. No pro-apoptotic effects were detected under the concentration of triptolide we used. Western blotting analysis showed TGF-β1 induced Smad2 and Smad3 phosphorylation was inhibited by triptolide pretreatment, and the level of Smad7 was increased by triptolide pretreatment. Conclusions: Triptolide may function as an inhibitor of asthma airway remodeling by suppressing ASMCs proliferation via negative regulation of Smad signaling pathway. - Highlights: • In this study, rat airway smooth muscle cells were cultured and made synchronized. • Triptolide inhibited TGF-β1-induced airway smooth muscle cells proliferation. • Triptolide inhibited ASMCs proliferation via negative regulation of Smad signaling pathway.« less

  18. Retigabine diminishes the effects of acetylcholine, adrenaline and adrenergic agonists on the spontaneous activity of guinea pig smooth muscle strips in vitro.

    PubMed

    Apostolova, Elisaveta; Zagorchev, Plamen; Kokova, Vesela; Peychev, Lyudmil

    2017-03-01

    The aim of this study is to evaluate the effect of retigabine on the smooth muscle response to acetylcholine, adrenaline, α-and β-adrenoceptor agonists. We studied the change in the spontaneous smooth muscle contraction of guinea pig gastric corpus strips before and after 20-min treatment with 2μM retigabine. We also evaluated the effect of retigabine on the smooth muscle response to 10μM acetylcholine, 1 and 10μM adrenaline, 1μM methoxamine, 0.1μM p-iodoclonidine and 10μM isoproterenol. We observed a significant reduction in the effects of all studied mediators and agonists when they were added to organ baths in the presence of retigabine. Retigabine diminished the effect of acetylcholine on the spontaneous smooth muscle activity. The effect was fully antagonized by XE-991 (Kv7 channel blocker), which supports our hypothesis about the role of KCNQ channels in the registered changes. The increase in the contraction force after adding of 1μM adrenaline, methoxamine, and 0.1μM p-iodoclonidine was also significantly smaller in presence of retigabine. However, comparing the effect of 10μM adrenaline on the contractility before and after treatment with retigabine, we observed increased contractility when retigabine was present in the organ baths. A possible explanation for the observed diminished effects of mediators and receptor agonists is that the effect of retigabine on smooth muscle contractility is complex. The membrane hyperpolarization, the interaction between Kv7 channels and adrenoceptors, and the influence on signaling pathways may contribute to the summary smooth muscle response. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Chloride channel blockers promote relaxation of TEA-induced contraction in airway smooth muscle

    PubMed Central

    Yim, Peter D.; Gallos, George; Perez-zoghbi, Jose F.; Trice, Jacquelyn; Zhang, Yi; Siviski, Matthew; Sonett, Joshua; Emala, Charles W.

    2014-01-01

    Enhanced airway smooth muscle (ASM) contraction is an important component in the pathophysiology of asthma. We have shown that ligand gated chloride channels modulate ASM contractile tone during the maintenance phase of an induced contraction, however the role of chloride flux in depolarization-induced contraction remains incompletely understood. To better understand the role of chloride flux under these conditions, muscle force (human ASM, guinea pig ASM), peripheral small airway luminal area (rat ASM) and airway smooth muscle plasma membrane electrical potentials (human cultured ASM) were measured. We found ex vivo guinea pig airway rings, human ASM strips and small peripheral airways in rat lungs slices relaxed in response to niflumic acid following depolarization-induced contraction induced by K+ channel blockade with tetraethylammonium chloride (TEA). In isolated human airway smooth muscle cells TEA induce depolarization as measured by a fluorescent indicator or whole cell patch clamp and this depolarization was reversed by niflumic acid. These findings demonstrate that ASM depolarization induced contraction is dependent on chloride channel activity. Targeting of chloride channels may be a novel approach to relax hypercontractile airway smooth muscle in bronchoconstrictive disorders. PMID:24662476

  20. Chloride channel blockers promote relaxation of TEA-induced contraction in airway smooth muscle.

    PubMed

    Yim, Peter D; Gallos, George; Perez-Zoghbi, Jose F; Trice, Jacquelyn; Zhang, Yi; Siviski, Matthew; Sonett, Joshua; Emala, Charles W

    2013-01-01

    Enhanced airway smooth muscle (ASM) contraction is an important component in the pathophysiology of asthma. We have shown that ligand gated chloride channels modulate ASM contractile tone during the maintenance phase of an induced contraction, however the role of chloride flux in depolarization-induced contraction remains incompletely understood. To better understand the role of chloride flux under these conditions, muscle force (human ASM, guinea pig ASM), peripheral small airway luminal area (rat ASM) and airway smooth muscle plasma membrane electrical potentials (human cultured ASM) were measured. We found ex vivo guinea pig airway rings, human ASM strips and small peripheral airways in rat lungs slices relaxed in response to niflumic acid following depolarization-induced contraction induced by K(+) channel blockade with tetraethylammonium chloride (TEA). In isolated human airway smooth muscle cells TEA induce depolarization as measured by a fluorescent indicator or whole cell patch clamp and this depolarization was reversed by niflumic acid. These findings demonstrate that ASM depolarization induced contraction is dependent on chloride channel activity. Targeting of chloride channels may be a novel approach to relax hypercontractile airway smooth muscle in bronchoconstrictive disorders.

  1. Effects of nifedipine on anorectal smooth muscle in vitro.

    PubMed

    Cook, T A; Brading, A F; Mortensen, N J

    1999-06-01

    Glyceryl trinitrate reduces anal resting pressure and aids the healing of anal fissures. However, some patients develop tachyphylaxis and the fissure fails to heal, suggesting that other agents are needed. This study assesses the effects of nifedipine (a calcium channel antagonist) in modulating resting tone and agonist-induced contractions in human internal anal sphincter (IAS) and rectal circular muscle. Smooth muscle strips from the IAS and rectal circular muscle from ten patients undergoing surgical resection were mounted for isometric tension recording in a superfusion organ bath. The effects of noradrenaline and carbachol were assessed in the presence of various perfusates. LAS strips developed tone and spontaneous activity. Noradrenaline produced dose-dependent contractions. In calcium-free Krebs solution, tone and activity were abolished and no contractions were elicited in response to noradrenaline. Nifedipine also abolished tone and spontaneous activity, but contractions to noradrenaline were only slightly attenuated. In contrast, rectal smooth muscle strips developed spontaneous activity but no resting tone and contracted in response to carbachol. In calcium-free Krebs solution, the spontaneous activity and carbachol contractions were abolished. Addition of nifedipine to the perfusate abolished spontaneous activity and greatly reduced contractions. These data suggest that spontaneous activity and resting tone are dependent on extracellular calcium and flux across the cells. Agonist-induced contraction in the IAS is attributable mainly to the release of calcium from intracellular stores, whereas rectal circular smooth muscle depends principally on extracellular calcium entering the cell for contraction. The attenuation of contractions in both tissues and the abolition of resting tone in the IAS suggest that nifedipine may be useful in the management of patients with anorectal disorders.

  2. Vascular smooth muscle-specific knockdown of the noncardiac form of the L-type calcium channel by microRNA-based short hairpin RNA as a potential antihypertensive therapy.

    PubMed

    Rhee, Sung W; Stimers, Joseph R; Wang, Wenze; Pang, Li

    2009-05-01

    In different rodent models of hypertension, vascular voltage-gated L-type calcium channel (Ca(L)) current and vascular tone is increased because of increased expression of the noncardiac form of the Ca(L) (Ca(v)1.2). The objective of this study was to develop a small interfering RNA (siRNA) expression system against the noncardiac form of Ca(v)1.2 to reduce its expression in vascular smooth muscle cells (VSMCs). siRNAs expressing plasmids and appropriate controls were constructed and first screened in human embryonic kidney (HEK) 293 cells cotransfected with a rat Ca(v)1.2 expression vector. The most effective gene silencing was achieved with a modified mir-30a-based short hairpin RNA (shRNAmir) driven by the cytomegalovirus promoter. In A7r5 cells, a vascular smooth muscle cell line, two copies of shRNAmir driven by a chimeric VSMC-specific enhancer/promoter reduced endogenous Ca(v)1.2 expression by 61% and decreased the Ca(L) current carried by barium by 47%. Moreover, the chimeric vascular smooth muscle-specific enhancer/promoter displayed almost no activity in non-VSMCs (PC-12 and HEK 293). Because the proposed siRNA was designed to only target the noncardiac form of Ca(v)1.2, it did not affect the Ca(L) expression and function in cultured cardiomyocytes, even when driven by a stronger cytomegalovirus promoter. In conclusion, vascular Ca(v)1.2 expression and function were effectively reduced by VSMC-specific delivery of the noncardiac form of Ca(v)1.2 siRNA without similarly affecting cardiac Ca(L) expression and function. When coupled with a viral vector, this molecular intervention in vivo may provide a novel long-term vascular-specific gene therapy for hypertension.

  3. Vascular Smooth Muscle-Specific Knockdown of the Noncardiac Form of the L-Type Calcium Channel by MicroRNA-Based Short Hairpin RNA as a Potential Antihypertensive Therapy

    PubMed Central

    Rhee, Sung W.; Stimers, Joseph R.; Wang, Wenze; Pang, Li

    2009-01-01

    In different rodent models of hypertension, vascular voltage-gated L-type calcium channel (CaL) current and vascular tone is increased because of increased expression of the noncardiac form of the CaL (Cav1.2). The objective of this study was to develop a small interfering RNA (siRNA) expression system against the noncardiac form of Cav1.2 to reduce its expression in vascular smooth muscle cells (VSMCs). siRNAs expressing plasmids and appropriate controls were constructed and first screened in human embryonic kidney (HEK) 293 cells cotransfected with a rat Cav1.2 expression vector. The most effective gene silencing was achieved with a modified mir-30a-based short hairpin RNA (shRNAmir) driven by the cytomegalovirus promoter. In A7r5 cells, a vascular smooth muscle cell line, two copies of shRNAmir driven by a chimeric VSMC-specific enhancer/promoter reduced endogenous Cav1.2 expression by 61% and decreased the CaL current carried by barium by 47%. Moreover, the chimeric vascular smooth muscle-specific enhancer/promoter displayed almost no activity in non-VSMCs (PC-12 and HEK 293). Because the proposed siRNA was designed to only target the noncardiac form of Cav1.2, it did not affect the CaL expression and function in cultured cardiomyocytes, even when driven by a stronger cytomegalovirus promoter. In conclusion, vascular Cav1.2 expression and function were effectively reduced by VSMC-specific delivery of the noncardiac form of Cav1.2 siRNA without similarly affecting cardiac CaL expression and function. When coupled with a viral vector, this molecular intervention in vivo may provide a novel long-term vascular-specific gene therapy for hypertension. PMID:19244098

  4. Effects of serotonin on expression of the LDL receptor family member LR11 and 7-ketocholesterol-induced apoptosis in human vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagayama, Daiji; Ishihara, Noriko; Bujo, Hideaki

    2014-04-18

    Highlights: • The dedifferentiation of VSMCs in arterial intima is involved in atherosclerosis. • 5-HT showed proliferative effect on VSMCs which was abolished by sarpogrelate. • 5-HT enhanced expression of LR11 mRNA in VSMCs which was abolished by sarpogrelate. • 5-HT suppressed 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. • The mechanisms explain the 5-HT-induced remodeling of arterial structure. - Abstract: Serotonin (5-HT) is a known mitogen for vascular smooth muscle cells (VSMCs). The dedifferentiation and proliferation/apoptosis of VSMCs in the arterial intima represent one of the atherosclerotic changes. LR11, a member of low-density lipoprotein receptor family, may contribute tomore » the proliferation of VSMCs in neointimal hyperplasia. We conducted an in vitro study to investigate whether 5-HT is involved in LR11 expression in human VSMCs and apoptosis of VSMCs induced by 7-ketocholesterol (7KCHO), an oxysterol that destabilizes plaque. 5-HT enhanced the proliferation of VSMCs, and this effect was abolished by sarpogrelate, a selective 5-HT2A receptor antagonist. Sarpogrelate also inhibited the 5-HT-enhanced LR11 mRNA expression in VSMCs. Furthermore, 5-HT suppressed the 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. These findings provide new insights on the changes in the differentiation stage of VSMCs mediated by 5-HT.« less

  5. Smooth muscle membrane organization in the normal and dysfunctional human urinary bladder: a structural analysis.

    PubMed

    Burkhard, Fiona C; Monastyrskaya, Katia; Studer, Urs E; Draeger, Annette

    2005-01-01

    The decline in contractile properties is a characteristic feature of the dysfunctional bladder as a result of infravesical outlet obstruction. During clinical progression of the disease, smooth muscle cells undergo structural modifications. Since adaptations to constant changes in length require a high degree of structural organization within the sarcolemma, we have investigated the expression of several proteins, which are involved in smooth muscle membrane organization, in specimens derived from normal and dysfunctional organs. Specimen from patients with urodynamically normal/equivocal (n = 4), obstructed (n = 2), and acontractile (n = 2) bladders were analyzed relative to their structural features and sarcolemmal protein profile. Smooth muscle cells within the normal urinary bladder display a distinct sarcolemmal domain structure, characterized by firm actin-attachment sites, alternating with flexible "hinge" regions. In obstructed bladders, foci of cells displaying degenerative sarcolemmal changes alternate with areas of hypertrophic cells in which the membrane appears unaffected. In acontractile organs, the overall membrane structure remains intact, however annexin 6, a protein belonging to a family of Ca2+-dependent, "membrane-organizers," is downregulated. Degenerative changes in smooth muscle cells, which are chronically working against high resistance, are preferentially located within the actin-attachment sites. In acontractile bladders, the downregulation of annexin 6 might have a bearing on the fine-tuning of the plasma membrane during contraction/relaxation cycles. Copyright 2005 Wiley-Liss, Inc.

  6. Effect of Fructus Psoraleae on motility of gallbladder isolated smooth muscle strips from guinea pigs

    PubMed Central

    Jin, Shan; Li, Mei; Lin, Mei-Ling; Ding, Yong-Hui; Qu, Song-Yi; Li, Wei; Zheng, Tian-Zhen

    2006-01-01

    AIM: To observe the effect of Fructus Psoraleae on motility of isolated gallbladder muscle strips of guinea pigs and its mechanism. METHODS: Guinea pigs were hit to lose consciousness and the whole gallbladder was removed quickly. Two or three smooth muscle strips (8 mm × 3 mm) were cut along a longitudinal direction. The mucosa was gently removed. Every longitudinal muscle strip was suspended in a tissue chamber which was continuously perfused with 5 mL Krebs solution (37°C), pH 7.4, and aerated with 950 mL/L O2 and 50 mL /L CO2. The isometric response was recorded with an ink-writing recorder. After 2 h equilibration under 1 g-load, 50 μL Fructus Psoraleae (10, 20, 70, 200, 700, 1000 g/L) was added cumulatively into the tissue chamber in turn every 2 min to observe their effects on gallbladder muscle strips (cumulating final concentration of Fructus Psoraleae was 0.1, 0.3, 1.0, 3.0, 10.0, 20.0 g/L). The antagonists, including 4-DAMP, benzhydramine, hexamethonium, phentolamine, verapamil and idomethine were given 2 min before Fructus Psoraleae respectively to investigate the mechanisms involved. RESULTS: Fructus Psoraleae dose-dependently increased the resting tension (r = 0.992, P < 0.001), decreased the mean contractile amplitude (r = 0.970, P < 0.001) and meanwhile increased the contractile frequency of the gallbladder muscle strip in vitro (r = 0.965, P < 0.001). The exciting action of Fructus Psoraleae on the resting tension could be partially blocked by 4-DAMP (the resting tension decreased from 1.37 ± 0.41 to 0.70 ± 0.35, P < 0.001), benzhydramine (from 1.37 ± 0.41 to 0.45 ± 0.38, P < 0.001), hexamethonium (from 1.37 ± 0.41 to 0.94 ± 0.23, P < 0.05), phentolamine ( from 1.37 ± 0.41 to 0.89 ± 0.22, P < 0.01) and verapamil (from 1.37 ± 0.41 to 0.94 ± 0.26, P < 0.05). But the above antagonists had no significant effect on the action of Fructus Psoraleae–induced mean contractile amplitude (P > 0.05). Moreover, the increase of the contractile

  7. Smooth muscle architecture within cell-dense vascular tissues influences functional contractility.

    PubMed

    Win, Zaw; Vrla, Geoffrey D; Steucke, Kerianne E; Sevcik, Emily N; Hald, Eric S; Alford, Patrick W

    2014-12-01

    The role of vascular smooth muscle architecture in the function of healthy and dysfunctional vessels is poorly understood. We aimed at determining the relationship between vascular smooth muscle architecture and contractile output using engineered vascular tissues. We utilized microcontact printing and a microfluidic cell seeding technique to provide three different initial seeding conditions, with the aim of influencing the cellular architecture within the tissue. Cells seeded in each condition formed confluent and aligned tissues but within the tissues, the cellular architecture varied. Tissues with a more elongated cellular architecture had significantly elevated basal stress and produced more contractile stress in response to endothelin-1 stimulation. We also found a correlation between the contractile phenotype marker expression and the cellular architecture, contrary to our previous findings in non-confluent tissues. Taken with previous results, these data suggest that within cell-dense vascular tissues, smooth muscle contractility is strongly influenced by cell and tissue architectures.

  8. Expression and coupling of neurokinin receptor subtypes to inositol phosphate and calcium signaling pathways in human airway smooth muscle cells.

    PubMed

    Mizuta, Kentaro; Gallos, George; Zhu, Defen; Mizuta, Fumiko; Goubaeva, Farida; Xu, Dingbang; Panettieri, Reynold A; Yang, Jay; Emala, Charles W

    2008-03-01

    Neuropeptide tachykinins (substance P, neurokinin A, and neurokinin B) are present in peripheral terminals of sensory nerve fibers within the respiratory tract and cause airway contractile responses and hyperresponsiveness in humans and most mammalian species. Three subtypes of neurokinin receptors (NK1R, NK2R, and NK3R) classically couple to Gq protein-mediated inositol 1,4,5-trisphosphate (IP3) synthesis and liberation of intracellular Ca2+, which initiates contraction, but their expression and calcium signaling mechanisms are incompletely understood in airway smooth muscle. All three subtypes were identified in native and cultured human airway smooth muscle (HASM) and were subsequently overexpressed in HASM cells using a human immunodeficiency virus-1-based lentivirus transduction system. Specific NKR agonists {NK1R, [Sar9,Met(O2)11]-substance P; NK2R, [beta-Ala8]-neurokinin A(4-10); NK3R, senktide} stimulated inositol phosphate synthesis and increased intracellular Ca2+ concentration ([Ca2+]i) in native HASM cells and in HASM cells transfected with each NKR subtype. These effects were blocked by NKR-selective antagonists (NK1R, L-732138; NK2R, GR-159897; NK3R, SB-222200). The initial transient and sustained phases of increased [Ca2+]i were predominantly inhibited by the IP3 receptor antagonist 2-aminoethoxydiphenyl borate (2-APB) or the store-operated Ca2+ channel antagonist SKF-96365, respectively. These results show that all three subtypes of NKRs are expressed in native HASM cells and that IP3 levels are the primary mediators of NKR-stimulated initial [Ca2+]i increases, whereas store-operated Ca2+ channels mediate the sustained phase of the [Ca2+]i increase.

  9. Substance P relaxes rat bronchial smooth muscle via epithelial prostanoid synthesis.

    PubMed

    Bodelsson, M; Blomquist, S; Caverius, K; Törnebrandt, K

    1999-01-01

    Substance P is present in bronchial nerve fibres. The physiological actions of substance P are mediated via tachykinin NK(1) receptors. Immunochemical studies have demonstrated tachykinin NK(1) receptors in the rat airway epithelium. To elucidate how epithelial tachykinin NK(1) receptors affect smooth muscle response to substance P. Contractile response of isolated rat bronchial trunk with or without epithelium was recorded. In intact segments precontracted by 5-hydroxytryptamine, relaxation was induced by substance P and the nitric oxide donor, sodium nitroprusside. Removal of the epithelium abolished relaxation induced by substance P but did not affect relaxation induced by sodium nitroprusside. The cyclo-oxygenase inhibitor, indomethacin, but not the nitric oxide synthase inhibitor, L-N(G)-monomethylarginine, reduced the relaxation in response to substance P. Epithelial tachykinin NK(1) receptors mediate substance-P-induced relaxation of rat bronchial smooth muscle via release of prostanoids but not nitric oxide.

  10. Length-dependent modulation of cytoskeletal remodeling and mechanical energetics in airway smooth muscle.

    PubMed

    Kim, Hak Rim; Liu, Katrina; Roberts, Thomas J; Hai, Chi-Ming

    2011-06-01

    Actin cytoskeletal remodeling is an important mechanism of airway smooth muscle (ASM) contraction. We tested the hypothesis that mechanical strain modulates the cholinergic receptor-mediated cytoskeletal recruitment of actin-binding and integrin-binding proteins in intact airway smooth muscle, thereby regulating the mechanical energetics of airway smooth muscle. We found that the carbachol-stimulated cytoskeletal recruitment of actin-related protein-3 (Arp3), metavinculin, and talin were up-regulated at short muscle lengths and down-regulated at long muscle lengths, suggesting that the actin cytoskeleton--integrin complex becomes enriched in cross-linked and branched actin filaments in shortened ASM. The mechanical energy output/input ratio during sinusoidal length oscillation was dependent on muscle length, oscillatory amplitude, and cholinergic activation. The enhancing effect of cholinergic stimulation on mechanical energy output/input ratio at short and long muscle lengths may be explained by the length-dependent modulation of cytoskeletal recruitment and crossbridge cycling, respectively. We postulate that ASM functions as a hybrid biomaterial, capable of switching between operating as a cytoskeleton-based mechanical energy store at short muscle lengths to operating as an actomyosin-powered mechanical energy generator at long muscle lengths. This postulate predicts that targeting the signaling molecules involved in cytoskeletal recruitment may provide a novel approach to dilating collapsed airways in obstructive airway disease.

  11. The specific GTP requirement for inositol 1,4,5-trisphosphate-induced Ca2+ release from skinned vascular smooth muscle.

    PubMed

    Saida, K; Twort, C; van Breemen, C

    1988-01-01

    Exogenous GTP was required for the induction of Ca2+ release from smooth muscle SR by IP3 if endogenous GTP was depleted. NaN3 could function as a partial substitute for GTP as a cofactor for the IP3-induced Ca2+ release from the SR. In contrast to the IP3-induced Ca2+ release, caffeine-induced Ca2+ release from the SR did not require GTP. Pertussis toxin inhibited the IP3-induced Ca2+ release from the SR, whereas it had no effect on caffeine-induced Ca2+ release. These results indicate that in smooth muscle two different Ca2+ release-channels exist in the SR: (a) activated by IP3, and (b) activated by caffeine or Ca2+.

  12. MiR-29-mediated elastin down-regulation contributes to inorganic phosphorus-induced osteoblastic differentiation in vascular smooth muscle cells.

    PubMed

    Sudo, Ryo; Sato, Fumiaki; Azechi, Takuya; Wachi, Hiroshi

    2015-12-01

    Vascular calcification increases the risk of cardiovascular mortality. We previously reported that expression of elastin decreases with progression of inorganic phosphorus (Pi)-induced vascular smooth muscle cell (VSMC) calcification. However, the regulatory mechanisms of elastin mRNA expression during vascular calcification remain unclear. MicroRNA-29 family members (miR-29a, b and c) are reported to mediate elastin mRNA expression. Therefore, we aimed to determine the effect of miR-29 on elastin expression and Pi-induced vascular calcification. Calcification of human VSMCs was induced by Pi and evaluated measuring calcium deposition. Pi stimulation promoted Ca deposition and suppressed elastin expression in VSMCs. Knockdown of elastin expression by shRNA also promoted Pi-induced VSMC calcification. Elastin pre-mRNA measurements indicated that Pi stimulation suppressed elastin expression without changing transcriptional activity. Conversely, Pi stimulation increased miR-29a and miR-29b expression. Inhibition of miR-29 recovered elastin expression and suppressed calcification in Pi-treated VSMCs. Furthermore, over-expression of miR-29b promoted Pi-induced VSMC calcification. RT-qPCR analysis showed knockdown of elastin expression in VSMCs induced expression of osteoblast-related genes, similar to Pi stimulation, and recovery of elastin expression by miR-29 inhibition reduced their expression. Our study shows that miR-29-mediated suppression of elastin expression in VSMCs plays a pivotal role in osteoblastic differentiation leading to vascular calcification. © 2015 The Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  13. Effect of membrane hyperpolarization induced by a K+ channel opener on histamine-induced Ca2+ mobilization in rabbit arterial smooth muscle.

    PubMed

    Watanabe, Y; Suzuki, A; Suzuki, H; Itoh, T

    1996-03-01

    1. The role of membrane hyperpolarization on agonist-induced contraction was investigated in intact and alpha-toxin-skinned smooth muscles of rabbit mesenteric artery by use of the ATP-sensitive K+ channel opener, (-)-(3S,4R)-4-(N-acetyl-N-hydroxyamino)-6-cyano-3,4-dihydro-2,2- dimethyl-2H-1-benzopyran-3-ol (Y-26763), and either histamine (Hist) or noradrenaline (NA). 2. Hist (3 microM) and NA (10 microM) both produced a phasic, followed by a tonic increase in intracellular Ca2+ concentration ([Ca2+]i) and force. Y-26763 (10 microM) potently inhibited the NA-induced phasic and tonic increase in [Ca2+]i and force. In contrast, Y-26763 attenuated the Hist-induced phasic increase in [Ca2+]i and force but had almost no effect on the tonic response. However, ryanodine-treatment of muscles in order to inhibit the function of intracellular Ca2+ storage sites altered the action of Y-26763 which now attenuated the Hist-induced tonic increase in [Ca2+]i and force in a concentration-dependent manner (at concentrations > 1 microM). Glibenclamide (10 microM) attenuated the inhibitory action of Y-26763. 3. Hist (3 microM) depolarized the smooth muscle cells to the same extent as NA (10 microM). In the absence of either agonist, Y-26763 (over 30 nM) hyperpolarized the membrane and glibenclamide inhibited this hyperpolarization. Y-26763 (10 microM) almost abolished the NA-induced membrane depolarization, but only slightly attenuated the Hist-induced membrane depolarization in which the delta (delta) value (the difference before and after application of Hist) was not modified by any concentration of Y-26763. In ryanodine-treated smooth muscle cells, Y-26763 hyperpolarized the membrane and potently inhibited the membrane depolarization induced by Hist. 4. In ryanodine-treated muscle, Y-26763 had no measurable effect on the Hist-induced [Ca2+]i-force relationship. Y-26763 also had no apparent effect on the myofilament Ca(2+)-sensitivity in the presence of Hist in alpha

  14. Unexpected Role of the Copper Transporter ATP7A in PDGF-Induced Vascular Smooth Muscle Cell Migration

    PubMed Central

    Ashino, Takashi; Sudhahar, Varadarajan; Urao, Norifumi; Oshikawa, Jin; Chen, Gin-Fu; Wang, Huan; Huo, Yuqing; Finney, Lydia; Vogt, Stefan; McKinney, Ronald D.; Maryon, Edward B.; Kaplan, Jack H.; Ushio-Fukai, Masuko; Fukai, Tohru

    2010-01-01

    Rationale Copper, an essential nutrient, has been implicated in vascular remodeling and atherosclerosis with unknown mechanism. Bioavailability of intracellular copper is regulated not only by the copper importer CTR1, but also by the copper exporter ATP7A (Menke ATPase) whose function is achieved through copper-dependent translocation from trans-Golgi network (TGN). Platelet-derived growth factor (PDGF) promotes vascular smooth muscle cell (VSMC) migration, a key component of neointimal formation. Objective To determine the role of copper transporter ATP7A in PDGF-induced VSMC migration. Methods and Results Depletion of ATP7A inhibited VSMC migration in response to PDGF or wound scratch in a CTR1/copper-dependent manner. PDGF stimulation promoted ATP7A translocation from the TGN to lipid rafts which localized at the leading edge, where it colocalized with PDGF receptor and Rac1, in migrating VSMCs. Mechanistically, ATP7A siRNA or CTR siRNA prevented PDGF-induced Rac1 translocation to the leading edge, thereby inhibiting lamellipodia formation. In addition, ATP7A depletion prevented a PDGF-induced decrease in copper level and secretory copper enzyme precursor pro-lysyl oxidase (Pro-LOX) in lipid raft fraction as well as PDGF-induced increase in LOX activity. In vivo, ATP7A expression was markedly increased and copper accumulation was observed by synchrotron-based X-ray fluorescence microscopy at neointimal VSMCs in wire injury model. Conclusions These findings suggest that ATP7A plays an important role in copper-dependent PDGF-stimulated VSMC migration via recruiting Rac1 to lipid rafts at the leading edge as well as regulating LOX activity. This may contribute to neointimal formation after vascular injury. Our findings provide insight into ATP7A as a novel therapeutic target for vascular remodeling and atherosclerosis. PMID:20671235

  15. Unexpected role of the copper transporter ATP7A in PDGF-induced vascular smooth muscle cell migration.

    PubMed

    Ashino, Takashi; Sudhahar, Varadarajan; Urao, Norifumi; Oshikawa, Jin; Chen, Gin-Fu; Wang, Huan; Huo, Yuqing; Finney, Lydia; Vogt, Stefan; McKinney, Ronald D; Maryon, Edward B; Kaplan, Jack H; Ushio-Fukai, Masuko; Fukai, Tohru

    2010-09-17

    Copper, an essential nutrient, has been implicated in vascular remodeling and atherosclerosis with unknown mechanism. Bioavailability of intracellular copper is regulated not only by the copper importer CTR1 (copper transporter 1) but also by the copper exporter ATP7A (Menkes ATPase), whose function is achieved through copper-dependent translocation from trans-Golgi network (TGN). Platelet-derived growth factor (PDGF) promotes vascular smooth muscle cell (VSMC) migration, a key component of neointimal formation. To determine the role of copper transporter ATP7A in PDGF-induced VSMC migration. Depletion of ATP7A inhibited VSMC migration in response to PDGF or wound scratch in a CTR1/copper-dependent manner. PDGF stimulation promoted ATP7A translocation from the TGN to lipid rafts, which localized at the leading edge, where it colocalized with PDGF receptor and Rac1, in migrating VSMCs. Mechanistically, ATP7A small interfering RNA or CTR small interfering RNA prevented PDGF-induced Rac1 translocation to the leading edge, thereby inhibiting lamellipodia formation. In addition, ATP7A depletion prevented a PDGF-induced decrease in copper level and secretory copper enzyme precursor prolysyl oxidase (Pro-LOX) in lipid raft fraction, as well as PDGF-induced increase in LOX activity. In vivo, ATP7A expression was markedly increased and copper accumulation was observed by synchrotron-based x-ray fluorescence microscopy at neointimal VSMCs in wire injury model. These findings suggest that ATP7A plays an important role in copper-dependent PDGF-stimulated VSMC migration via recruiting Rac1 to lipid rafts at the leading edge, as well as regulating LOX activity. This may contribute to neointimal formation after vascular injury. Our findings provide insight into ATP7A as a novel therapeutic target for vascular remodeling and atherosclerosis.

  16. Effects of magnesium sulfate on airway smooth muscle contraction in rats.

    PubMed

    Betul Altinisik, Hatice; Kirdemir, Pakize; Altinisik, Ugur; Gokalp, Osman

    2016-08-01

    Aim To investigate the effect of magnesium sulfate (MgSO4) at different doses on isolated tracheal smooth muscle contraction in rats induced by different mechanisms. Methods Twelve rats' tracheas were placed into organ bath. Consecutively, acetylcholine (10-6,10-5,10-4 M), histamine(10-8,10-5,10-3 M) and KCl (30,60 mM) solutions was administered for contractions. MgSO4 from 10-4 to 10-1 M concentrations were subsequently administered after each constrictive agent and relaxation degrees were recorded. Results In the acetylcholine and KCl groups, dose dependent strong contractions were observed, but not in the histamine group and that group was excluded. Significant relaxation occurred with gradually increasing doses of MgSO4. In the high dose KCl group, a slight increase in contractions after the administration of 10-4 and 10-3 M MgSO4 was recorded. Conclusion We suggest that MgSO4 is effective in relaxing airway smooth muscle contractions caused by different factors; however, it must be considered that low doses of MgSO4 may only lead to a slight increase in contractions. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.

  17. The magnetic field of gastrointestinal smooth muscle activity

    NASA Astrophysics Data System (ADS)

    Bradshaw, Alan; Ladipo, Jk; Richards, William; Wikswo, John

    1997-11-01

    The gastrointestinal (GI) tract controls the absorption and transport of ingested materials. Its function is determined largely by the electrical activity of the smooth muscle that lines the GI tract. GI electrical activity consists of an omnipresent slowly oscillating wave known as the basic electrical rhythm (BER) that modulates a higher-frequency spiking activity associated with muscle contraction. The BER has been shown to be a reliable indicator of intestinal viability, and thus, recording of smooth muscle activity may have clinical value. The BER is difficult to measure with cutaneous electrodes because layers of low-conductivity fat between the GI tract and the abdominal surface attenuate the potential. On the other hand, the magnetic field associated with GI electrical activity is mostly unaffected by intervening fat layers. We recorded the magnetic fields from GI activity in 12 volunteers using a multichannel Superconducting QUantum Interference Device (SQUID) magnetometer. Characteristics typical of gastric and intestinal BER were apparent in the data. Channels near the epigastrium recorded gastric BER, and channels in intestinal areas recorded small bowel BER. These results suggest that a single multichannel SQUID magnetometer is able to measure gastrointestinal electrical activity from multiple locations around the abdomen simultaneously.

  18. Mini-titins in striated and smooth molluscan muscles: structure, location and immunological crossreactivity.

    PubMed

    Vibert, P; Edelstein, S M; Castellani, L; Elliott, B W

    1993-12-01

    Invertebrate mini-titins are members of a class of myosin-binding proteins belonging to the immunoglobulin superfamily that may have structural and/or regulatory properties. We have isolated mini-titins from three molluscan sources: the striated and smooth adductor muscles of the scallop, and the smooth catch muscles of the mussel. Electron microscopy reveals flexible rod-like molecules about 0.2 micron long and 30 A wide with a distinctive polarity. Antibodies to scallop mini-titin label the A-band and especially the A/I junction of scallop striated muscle myofibrils by indirect immunofluorescence and immuno-electron microscopy. This antibody crossreacts with mini-titins in scallop smooth and Mytilus catch muscles, as well as with proteins in striated muscles from Limulus, Lethocerus (asynchronous flight muscle), and crayfish. It labels the A/I junction (I-region in Lethocerus) in these striated muscles as well as in chicken skeletal muscle. Antibodies to the repetitive immunoglobulin-like regions and also to the kinase domain of nematode twitchin crossreact with scallop mini-titin and label the A-band of scallop myofibrils. Electron microscopy of single molecules shows that antibodies to twitchin kinase bind to scallop mini-titin near one end of the molecule, suggesting how the scallop structure might be aligned with the sequence of nematode twitchin.

  19. Gender differences in the regulation of MLC20 phosphorylation and smooth muscle contraction in rat stomach

    PubMed Central

    Al-Shboul, Othman A.; Al-Dwairi, Ahmed N.; Alqudah, Mohammad A.; Mustafa, Ayman G.

    2018-01-01

    Evidence of sex-related differences in gastrointestinal (GI) functions has been reported in the literature. In addition, various GI disorders have disproportionate prevalence between the sexes. An essential step in the initiation of smooth muscle contraction is the phosphorylation of the 20-kDa regulatory myosin light chain (MLC20) by the Ca2+/calmodulin-dependent myosin light chain kinase (MLCK). However, whether male stomach smooth muscle inherits different contractile signaling mechanisms for the regulation of MLC20 phosphorylation from that in females has not been established. The present study was designed to investigate sex-associated differences in the regulation of MLC20 phosphorylation and thus muscle contraction in gastric smooth muscle cells (GSMCs). Experiments were performed on GSMCs freshly isolated from male and female rats. Contraction of the GSMCs in response to acetylcholine (ACh), a muscarinic agonist, was measured via scanning micrometry in the presence or absence of the MLCK inhibitor, ML-7. Additionally, the protein levels of MLC20, MLCK and phosphorylated MLC20 were measured by ELISA. The protein levels of MLC20 and MLCK were indifferent between the sexes. ACh induced greater contraction (P<0.05) as well as greater MLC20 phosphorylation (P<0.05) in male GSMCs compared with female. Pretreatment of GSMCs with ML-7 significantly reduced the ACh-induced contraction (P<0.05) and MLC20 phosphorylation (P<0.05) in the male and female cells, and notably, abolished the contractile differences between the sexes. In conclusion, MLC20 phosphorylation and thus muscle contraction may be activated to a greater extent in male rat stomach compared with that in females. PMID:29599980

  20. miR-125b targets DNMT3b and mediates p53 DNA methylation involving in the vascular smooth muscle cells proliferation induced by homocysteine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, ChengJian; Zhang, HuiPing; Zhao, Li

    MicroRNAs (miRNAs) are short non-coding RNA and play crucial roles in a wide array of biological processes, including cell proliferation, differentiation and apoptosis. Our previous studies found that homocysteine(Hcy) can stimulate the proliferation of vascular smooth muscle cells (VSMCs), however, the underlying mechanisms were not fully elucidated. Here, we found proliferation of VSMCs induced by Hcy was of correspondence to the miR-125b expression reduced both in vitro and in the ApoE knockout mice, the hypermethylation of p53, its decreased expression, and DNA (cytosine-5)-methyltransferase 3b (DNMT3b) up-regulated. And, we found DNMT3b is a target of miR-125b, which was verified by themore » Dual-Luciferase reporter assay and western blotting. Besides, the siRNA interference for DNMT3b significantly decreased the methylation level of p53, which unveiled the causative role of DNMT3b in p53 hypermethylation. miR-125b transfection further confirmed its regulative roles on p53 gene methylation status and the VSMCs proliferation. Our data suggested that a miR-125b-DNMT3b-p53 signal pathway may exist in the VSMCs proliferation induced by Hcy.« less

  1. Calcium/calmodulin‐dependent kinase 2 mediates Epac‐induced spontaneous transient outward currents in rat vascular smooth muscle

    PubMed Central

    Humphries, Edward S. A.; Kamishima, Tomoko; Quayle, John M.

    2017-01-01

    Key points The Ca2+ and redox‐sensing enzyme Ca2+/calmodulin‐dependent kinase 2 (CaMKII) is a crucial and well‐established signalling molecule in the heart and brain.In vascular smooth muscle, which controls blood flow by contracting and relaxing in response to complex Ca2+ signals and oxidative stress, surprisingly little is known about the role of CaMKII.The vasodilator‐induced second messenger cAMP can relax vascular smooth muscle via its effector, exchange protein directly activated by cAMP (Epac), by activating spontaneous transient outward currents (STOCs) that hyperpolarize the cell membrane and reduce voltage‐dependent Ca2+ influx. How Epac activates STOCs is unknown.In the present study, we map the pathway by which Epac increases STOC activity in contractile vascular smooth muscle and show that a critical step is the activation of CaMKII.To our knowledge, this is the first report of CaMKII activation triggering cellular activity known to induce vasorelaxation. Abstract Activation of the major cAMP effector, exchange protein directly activated by cAMP (Epac), induces vascular smooth muscle relaxation by increasing the activity of ryanodine (RyR)‐sensitive release channels on the peripheral sarcoplasmic reticulum. Resultant Ca2+ sparks activate plasma membrane Ca2+‐activated K+ (BKCa) channels, evoking spontaneous transient outward currents (STOCs) that hyperpolarize the cell and reduce voltage‐dependent Ca2+ entry. In the present study, we investigate the mechanism by which Epac increases STOC activity. We show that the selective Epac activator 8‐(4‐chloro‐phenylthio)‐2′‐O‐methyladenosine‐3′, 5‐cyclic monophosphate‐AM (8‐pCPT‐AM) induces autophosphorylation (activation) of calcium/calmodulin‐dependent kinase 2 (CaMKII) and also that inhibition of CaMKII abolishes 8‐pCPT‐AM‐induced increases in STOC activity. Epac‐induced CaMKII activation is probably initiated by inositol 1,4,5‐trisphosphate (IP3)

  2. Direct evidence for functional smooth muscle myosin II in the 10S self-inhibited monomeric conformation in airway smooth muscle cells

    PubMed Central

    Milton, Deanna L.; Schneck, Amy N.; Ziech, Dominique A.; Ba, Mariam; Facemyer, Kevin C.; Halayko, Andrew J.; Baker, Jonathan E.; Gerthoffer, William T.; Cremo, Christine R.

    2011-01-01

    The 10S self-inhibited monomeric conformation of myosin II has been characterized extensively in vitro. Based upon its structural and functional characteristics, it has been proposed to be an assembly-competent myosin pool in equilibrium with filaments in cells. It is known that myosin filaments can assemble and disassemble in nonmuscle cells, and in some smooth muscle cells, but whether or not the disassembled pool contains functional 10S myosin has not been determined. Here we address this question using human airway smooth muscle cells (hASMCs). Using two antibodies against different epitopes on smooth muscle myosin II (SMM), two distinct pools of SMM, diffuse, and stress-fiber–associated, were visualized by immunocytochemical staining. The two SMM pools were functional in that they could be interconverted in two ways: (i) by exposure to 10S- versus filament-promoting buffer conditions, and (ii) by exposure to a peptide that shifts the filament-10S equilibrium toward filaments in vitro by a known mechanism that requires the presence of the 10S conformation. The effect of the peptide was not due to a trivial increase in SMM phosphorylation, and its specificity was demonstrated by use of a scrambled peptide, which had no effect. Based upon these data, we conclude that hASMCs contain a significant pool of functional SMM in the 10S conformation that can assemble into filaments upon changing cellular conditions. This study provides unique direct evidence for the presence of a significant pool of functional myosin in the 10S conformation in cells. PMID:21205888

  3. Oesophageal tone and sensation in the transition zone between proximal striated and distal smooth muscle oesophagus.

    PubMed

    Karamanolis, G; Stevens, W; Vos, R; Tack, J; Clave, P; Sifrim, D

    2008-04-01

    Previous studies have shown that the proximal striated muscle oesophagus is less compliant and more sensitive than the distal smooth muscle oesophagus. Conventional and high resolution manometry described a transition zone between striated and smooth muscle oesophagus. We aimed to evaluate oesophageal tone and sensitivity at the transition zone of oesophagus in healthy volunteers. In 18 subjects (seven men, mean age: 28 years) an oesophageal barostat study was performed. Tone and sensitivity were assessed using stepwise isobaric distensions with the balloon located at transition zone and at distal oesophagus in random order. To study the effect induced on transition zone by a previous distension at the distal oesophagus and vice versa, identical protocol was repeated after 7 days with inverted order. Initial distension of a region is referred to as 'naïf' distension and distension of a region following the distension of the other segment as 'primed' distension. Assessment of three oesophageal symptoms (chest pain, heartburn and 'other') was obtained at the end of every distension step. Compliance was significantly higher in the transition zone than in the distal oesophagus (1.47 +/- 0.14 vs 1.09 +/- 0.09 mL mmHg(-1), P = 0.03) after 'naif' distensions. This difference was not observed during 'primed' distensions. Higher sensitivity at transition zone level was found in 11/18 (61%) subjects compared to 6/18 (33%, P < 0.05) at smooth muscle oesophagus. Chest pain and 'other' symptom were more often induced by distention of the transition zone, whereas heartburn was equally triggered by distension of either region. The transition zone is more complaint and more sensitive than smooth muscle oesophagus.

  4. Age-dependent contribution of Rho kinase in carbachol-induced contraction of human detrusor smooth muscle in vitro

    PubMed Central

    Kirschstein, Timo; Protzel, Chris; Porath, Katrin; Sellmann, Tina; Köhling, Rüdiger; Hakenberg, Oliver W

    2014-01-01

    Aim: Activation of muscarinic receptors on the detrusor smooth muscle is followed by contraction, which involves both myosin light chain kinase (MLCK) and Rho kinase (ROCK). The aim of this study was to determine the relative contributions of MLCK and ROCK to carbachol-induced contraction of human detrusor smooth muscle in vitro. Methods: Detrusor smooth muscle strips were prepared from the macroscopically unaffected bladder wall of patients underwent cystectomy. The strips were fixed in an organ bath, and carbachol or KCl-induced isometric contractions were measured by force transducers. Results: Addition of carbachol (0.4-4 μmol/L) into the bath induced concentration-dependent contractions of detrusor specimens, which was completely abolished by atropine (1 μmol/L). Pre-incubation of detrusor specimens with either the MLCK inhibitor ML-9 or the ROCK inhibitors HA1100 and Y-27632 (each at 10 μmol/L) significantly blocked carbachol-induced contractions as compared to the time-control experiments. Moreover, MLCK and ROCK inhibition were equally effective in reducing carbachol-induced contractions. The residual carbachol-induced contractions in the presence of both MLCK and ROCK inhibitors were significantly smaller than the contractions obtained when only one enzyme (either MLCK or ROCK) was inhibited, suggesting an additive effect of the two kinases. Interestingly, ROCK-mediated carbachol-induced contractions were positively correlated to the age of patients (r=o.52, P<0.05). Conclusion: Both MLCK and ROCK contribute to carbachol-induced contractions of human detrusor smooth muscle. ROCK inhibitors may be a new pharmacological approach to modulate human bladder hyperactivity. PMID:24122009

  5. Age-dependent contribution of Rho kinase in carbachol-induced contraction of human detrusor smooth muscle in vitro.

    PubMed

    Kirschstein, Timo; Protzel, Chris; Porath, Katrin; Sellmann, Tina; Köhling, Rüdiger; Hakenberg, Oliver W

    2014-01-01

    Activation of muscarinic receptors on the detrusor smooth muscle is followed by contraction, which involves both myosin light chain kinase (MLCK) and Rho kinase (ROCK). The aim of this study was to determine the relative contributions of MLCK and ROCK to carbachol-induced contraction of human detrusor smooth muscle in vitro. Detrusor smooth muscle strips were prepared from the macroscopically unaffected bladder wall of patients underwent cystectomy. The strips were fixed in an organ bath, and carbachol or KCl-induced isometric contractions were measured by force transducers. Addition of carbachol (0.4-4 μmol/L) into the bath induced concentration-dependent contractions of detrusor specimens, which was completely abolished by atropine (1 μmol/L). Pre-incubation of detrusor specimens with either the MLCK inhibitor ML-9 or the ROCK inhibitors HA1100 and Y-27632 (each at 10 μmol/L) significantly blocked carbachol-induced contractions as compared to the time-control experiments. Moreover, MLCK and ROCK inhibition were equally effective in reducing carbachol-induced contractions. The residual carbachol-induced contractions in the presence of both MLCK and ROCK inhibitors were significantly smaller than the contractions obtained when only one enzyme (either MLCK or ROCK) was inhibited, suggesting an additive effect of the two kinases. Interestingly, ROCK-mediated carbachol-induced contractions were positively correlated to the age of patients (r=o.52, P<0.05). Both MLCK and ROCK contribute to carbachol-induced contractions of human detrusor smooth muscle. ROCK inhibitors may be a new pharmacological approach to modulate human bladder hyperactivity.

  6. Detection of Leishmania spp. and associated inflammation in ocular-associated smooth and striated muscles in dogs with patent leishmaniosis.

    PubMed

    Naranjo, Carolina; Fondevila, Dolors; Leiva, Marta; Roura, Xavier; Peña, Teresa

    2010-05-01

    Canine leishmaniosis is a disease characterized by the wide distribution of the parasite throughout the tissues of the host. The purpose of this study was to describe the presence of Leishmania spp. and associated inflammation in ocular-associated muscles of dogs with patent leishmaniosis. Smooth muscles (iris dilator muscle, iris sphincter muscle, ciliary muscle, Müller muscle, smooth muscle of the periorbita and smooth muscle of the nictitating membrane) and striated muscles (orbicularis oculi muscle, obliquus dorsalis muscle and dorsal rectus muscle) were evaluated. Routine staining with hematoxylin and eosin and immunohistochemistry to detect Leishmania spp. were performed on tissue sections. Granulomatous inflammation was seen surrounding muscular fibers and was composed mainly of macrophages with scattered lymphocytes and plasma cells. This infiltrate could be seen in 52/473 (10.99%) samples of smooth muscle and 36/142 (25.35%) samples of striated muscle. Parasites were detected in 43/473 (9.09%) samples of smooth muscle and in 28/142 (19.71%) samples of striated muscle. To the authors' knowledge, this is the first report assessing the presence of Leishmania spp. and associated infiltrate in intraocular, extraocular and adnexal smooth and striated muscles. The inflammation present in those muscles could contribute to clinical signs already described, such as blepharitis, uveitis, and orbital cellulitis.

  7. Evidence of direct smooth muscle relaxant effects of the fibrate gemfibrozil.

    PubMed

    Phelps, Laura E; Peuler, Jacob D

    2010-01-01

    Fibrates are commonly employed to treat abnormal lipid metabolism via their unique ability to stimulate peroxisome proliferator-activated receptor alpha (PPARalpha). Interestingly, they also decrease systemic arterial pressure, despite recent evidence that PPAR alpha may contribute to expression of renin and related hypertension. Yet, mechanisms responsible for their potential antihypertensive activity remain unresolved. Rapid decreases in arterial pressure following bolus intravenous injections of bezafibrate strongly suggest they may relax arterial smooth muscle directly. But since bezafibrate is highly susceptible to photodegradation in aqueous media, it has never been critically tested for this possibility in vitro with isolated arterial smooth muscle preparations. Accordingly, we tested gemfibrozil which is resistant to photodegradation. We examined it over a therapeutically-relevant range (50-400 microM) for both acute and delayed relaxant effects on contractions of the isolated rat tail artery; contractions induced by either depolarizing its smooth muscle cell membranes with high potassium or stimulating its membrane-bound receptors with norepinephrine and arginine-vasopressin. We also examined these same gemfibrozil levels for effects on spontaneously-occurring phasic rhythmic contractile activity, typically not seen in arteries under in vitro conditions but commonly exhibited by smooth muscle of uterus, duodenum and bladder. We found that gemfibrozil significantly relaxed all induced forms of contraction in the rat tail artery, acutely at the higher test levels and after a delay of a few hours at the lower test levels. The highest test level of gemfibrozil (400 microM) also completely abolished spontaneously-occurring contractile activity of the isolated uterus and duodenum and markedly suppressed it in the bladder. This is the first evidence that a fibrate drug can directly relax smooth muscle contractions, either induced by various contractile agents or

  8. Transglutaminase-dependent RhoA activation and depletion by serotonin in vascular smooth muscle cells.

    PubMed

    Guilluy, Christophe; Rolli-Derkinderen, Malvyne; Tharaux, Pierre-Louis; Melino, Gerry; Pacaud, Pierre; Loirand, Gervaise

    2007-02-02

    The small G protein RhoA plays a major role in several vascular processes and cardiovascular disorders. Here we analyze the mechanisms of RhoA regulation by serotonin (5-HT) in arterial smooth muscle. 5-HT (0.1-10 microM) induced activation of RhoA followed by RhoA depletion at 24-72 h. Inhibition of 5-HT1 receptors reduced the early phase of RhoA activation but had no effect on 5-HT-induced delayed RhoA activation and depletion, which were suppressed by the 5-HT transporter inhibitor fluoxetine and the transglutaminase inhibitor monodansylcadaverin and in type 2 transglutaminase-deficient smooth muscle cells. Coimmunoprecipitations demonstrated that 5-HT associated with RhoA both in vitro and in vivo. This association was calcium-dependent and inhibited by fluoxetine and monodansylcadaverin. 5-HT promotes the association of RhoA with the E3 ubiquitin ligase Smurf1, and 5-HT-induced RhoA depletion was inhibited by the proteasome inhibitor MG132 and the RhoA inhibitor Tat-C3. Simvastatin, the Rho kinase inhibitor Y-27632, small interfering RNA-mediated RhoA gene silencing, and long-term 5-HT stimulation induced Akt activation. In contrast, inhibition of 5-HT-mediated RhoA degradation by MG132 prevented 5-HT-induced Akt activation. Long-term 5-HT stimulation also led to the inhibition of the RhoA/Rho kinase component of arterial contraction. Our data provide evidence that 5-HT, internalized through the 5-HT transporter, is transamidated to RhoA by transglutaminase. Transamidation of RhoA leads to RhoA activation and enhanced proteasomal degradation, which in turn is responsible for Akt activation and contraction inhibition. The observation of transamidation of 5-HT to RhoA in pulmonary artery of hypoxic rats suggests that this process could participate in pulmonary artery remodeling and hypertension.

  9. Local delivery of a collagen-binding FGF-1 chimera to smooth muscle cells in collagen scaffolds for vascular tissue engineering.

    PubMed

    Pang, Yonggang; Wang, Xiaoli; Ucuzian, Areck A; Brey, Eric M; Burgess, Wilson H; Jones, Kathryn J; Alexander, Thomas D; Greisler, Howard P

    2010-02-01

    We investigated the delivery of R136K-CBD (a collagen-binding mutant chimera of fibroblast growth factor-1) with a type I collagen scaffold as the delivery vehicle to smooth muscle cells (SMCs) for vascular tissue engineering. The binding affinity of R136K-CBD to 3-D collagen scaffolds was investigated both in the presence and absence of cells and/or salts. 2-D and 3-D visualization of delivery of R136K-CBD into SMCs were accomplished by combined fluorescent and reflection confocal microscopy. The mitogenic effect of collagen-immobilized R136K-CBD on SMCs in 3-D collagen was studied by Cyquant assay at different time intervals. In the group devoid of salt and cells, no detectable release of R136K-CBD into overlying culture media was found, compared with burst-and-continuous release of R136K and FGF-1 over a 14-day period in all other groups. The release rate of R136K-CBD was 1.7 and 1.6-fold less than R-136K and FGF-1 when media was supplemented with 2m salt (P<0.0001), and 2.6 and 2.5-fold less in cell-populated collagen hydrogels (P<0.0001), respectively. R136K-CBD showed essentially uniform binding to collagen and its distribution was dependent on that of the collagen scaffold. Internalization of R136K-CBD into SMCs was documented by confocal microscopy. 3-D local delivery of collagen-immobilized R136K-CBD increased the proliferation of SMCs in the collagen matrix to significantly greater levels and for a significantly greater duration than R136K or FGF-1, with 2.0 and 2.1-fold more mitogenicity than R136K and FGF-1 respectively (P<0.0001) at day 7. The results suggest that our collagen-binding fusion protein is an effective strategy for growth factor delivery for vascular tissue engineering.

  10. Mechanism of action of substance P in guinea-pig ileum longitudinal smooth muscle: a re-evaluation.

    PubMed Central

    Hall, J M; Morton, I K

    1990-01-01

    1. A proposed mechanism of contractile action of substance P in guinea-pig ileum longitudinal smooth muscle involving a decrease in membrane K+ permeability (PK) has been re-examined. 2. Potentiation of responses to substance P by the K+ channel blocker tetraethylammonium (TEA) was originally proposed as evidence for a mechanism of action of substance P involving a decrease in PK. Potentiation was confirmed; however this was found not to be specific to substance P since a similar potentiation of responses was seen with agonists not thought to act via a decrease in PK. 3. Antagonism of contractile responses to substance P by noradrenaline was similarly confirmed. However, this antagonism was found to represent a non-specific functional interaction through the inhibitory actions of beta-adrenoceptors rather than the proposed specific interaction with an increase in PK by noradrenaline which is normally alpha 1-adrenoceptor mediated. 4. Experiments were made measuring 86Rb efflux, in depolarized guinea-pig ileum longitudinal smooth muscle, to estimate PK. These studies confirmed a reported decrease in PK with TEA, but failed to detect the previously reported decrease with substance P. 5. These results, although not disproving a suggested mechanism of direct contractile action of substance P in guinea-pig ileum longitudinal smooth muscle involving a decrease in PK, do throw doubt on either the evidence, or its interpretation, as proposed by the original authors in support of such a mechanism. PMID:1712846

  11. Enhanced elastin synthesis and maturation in human vascular smooth muscle tissue derived from induced-pluripotent stem cells.

    PubMed

    Eoh, Joon H; Shen, Nian; Burke, Jacqueline A; Hinderer, Svenja; Xia, Zhiyong; Schenke-Layland, Katja; Gerecht, Sharon

    2017-04-01

    Obtaining vascular smooth muscle tissue with mature, functional elastic fibers is a key obstacle in tissue-engineered blood vessels. Poor elastin secretion and organization leads to a loss of specialization in contractile smooth muscle cells, resulting in over proliferation and graft failure. In this study, human induced-pluripotent stem cells (hiPSCs) were differentiated into early smooth muscle cells, seeded onto a hybrid poly(ethylene glycol) dimethacrylate/poly (l-lactide) (PEGdma-PLA) scaffold and cultured in a bioreactor while exposed to pulsatile flow, towards maturation into contractile smooth muscle tissue. We evaluated the effects of pulsatile flow on cellular organization as well as elastin expression and assembly in the engineered tissue compared to a static control through immunohistochemistry, gene expression and functionality assays. We show that culturing under pulsatile flow resulted in organized and functional hiPSC derived smooth muscle tissue. Immunohistochemistry analysis revealed hiPSC-smooth muscle tissue with robust, well-organized cells and elastic fibers and the supporting microfibril proteins necessary for elastic fiber assembly. Through qRT-PCR analysis, we found significantly increased expression of elastin, fibronectin, and collagen I, indicating the synthesis of necessary extracellular matrix components. Functionality assays revealed that hiPSC-smooth muscle tissue cultured in the bioreactor had an increased calcium signaling and contraction in response to a cholinergic agonist, significantly higher mature elastin content and improved mechanical properties in comparison to the static control. The findings presented here detail an effective approach to engineering elastic human vascular smooth muscle tissue with the functionality necessary for tissue engineering and regenerative medicine applications. Obtaining robust, mature elastic fibers is a key obstacle in tissue-engineered blood vessels. Human induced-pluripotent stem cells have

  12. Mechanisms of neurokinin A- and substance P-induced contractions in rat detrusor smooth muscle in vitro.

    PubMed

    Quinn, Teresa; Collins, Colm; Baird, Alan W

    2004-09-01

    To investigate the mechanisms of neurokinin A- and substance P-induced contractions of rat urinary bladder smooth muscle, and to compare them with those of the muscarinic agonist carbachol. Rat urinary bladder strips were suspended under 1 g of tension in a physiological buffer at 37 degrees C, gassed with 95% O(2)/5% CO(2). Mechanical activity was recorded isometrically during exposure to neurokinin A and substance P. Both agents produced concentration-dependent contractions of smooth muscle strips which were unaffected by tetrodotoxin (1 micro mol/L), peptidase inhibitors (captopril, thiorphan and bestatin; 1 micro mol/L each) or piroxicam (10 micro mol/L). The rank order of potency of agonists was neurokinin A > substance P > carbachol. Contractile responses to neurokinin A and substance P, like the contractile responses to carbachol, were abolished in a nominally Ca(2+)-free medium and significantly reduced by nifedipine (1 micro mol/L). SKF-96365 (60 micro mol/L), an inhibitor of receptor-mediated Ca(2+) entry, abolished the nifedipine-resistant response to substance P and carbachol, and significantly attenuated the response to neurokinin A. Depleting intracellular Ca(2+) stores with thapsigargin (1 micro mol/L) significantly attenuated neurokinin A-induced contractions but had no effect on substance P- or carbachol- induced contractions. The Rho-kinase inhibitor, Y-27632 (10 micro mol/L), significantly reduced both phasic and tonic components of the contractile responses to neurokinin A, substance P and carbachol. The contractile responses induced by tachykinins in rat urinary bladder smooth muscle strips involve a direct action on smooth muscle and are not modulated by peptidases or prostanoids. Neurokinin A and substance P, like carbachol-induced contractions, depend on extracellular Ca(2+) influx largely through voltage-operated and partly through receptor-operated Ca(2+) channels. Intracellular Ca(2+) release contributes to the contractile response to

  13. Metabolism of native and naturally occurring multiple modified low density lipoprotein in smooth muscle cells of human aortic intima.

    PubMed

    Tertov, V V; Orekhov, A N

    1997-01-01

    The subfraction of low density lipoprotein (LDL) with low sialic acid content that caused accumulation of cholesterol esters in human aortic smooth muscle cells has been found in the blood of coronary atherosclerosis patients. It was demonstrated that this subfraction consists of LDL with small size, high electronegative charge, reduced lipid content, altered tertiary structure of apolipoprotein B, etc. LDL of this subfraction is naturally occurring multiple-modified LDL (nomLDL). In this study we compared the binding, uptake and proteolytic degradation of native LDL and nomLDL by smooth muscle cells cultured from human grossly normal intima, fatty streaks, and atherosclerotic plaques. Uptake of nomLDL by normal and atherosclerotic cells was 3.5- and 6-fold, respectively, higher than uptake of native LDL. Increased uptake of nomLDL was due to increased binding of this LDL by intimal smooth muscle cells. The enhanced binding is explained by the interaction of nomLDL with cellular receptors other than LDL-receptor. Modified LDL interacted with the scavenger receptor, asialoglycoprotein receptor, and also with cell surface proteoglycans. Rates of degradation of nomLDL were 1.5- and 5-fold lower than degradation of native LDL by normal and atherosclerotic cells, respectively. A low rate of nomLDL degradation was also demonstrated in homogenates of intimal cells. Activities of lysosomal proteinases of atherosclerotic cells were decreased compared with normal cells. Pepstatin A, a cathepsin D inhibitor, completely inhibited lipoprotein degradation, while serine, thiol, or metallo-proteinase inhibitors had partial effect. This fact reveals that cathepsin D is involved in initial stages of apoB degradation by intimal smooth muscle cells. Obtained data show that increased uptake and decreased lysosomal degradation of nomLDL may be the main cause of LDL accumulation in human aortic smooth muscle cells, leading to foam cell formation.

  14. Critical role of actin-associated proteins in smooth muscle contraction, cell proliferation, airway hyperresponsiveness and airway remodeling.

    PubMed

    Tang, Dale D

    2015-10-30

    Asthma is characterized by airway hyperresponsiveness and airway remodeling, which are largely attributed to increased airway smooth muscle contractility and cell proliferation. It is known that both chemical and mechanical stimulation regulates smooth muscle contraction. Recent studies suggest that contractile activation and mechanical stretch induce actin cytoskeletal remodeling in smooth muscle. However, the mechanisms that control actin cytoskeletal reorganization are not completely elucidated. This review summarizes our current understanding regarding how actin-associated proteins may regulate remodeling of the actin cytoskeleton in airway smooth muscle. In particular, there is accumulating evidence to suggest that Abelson tyrosine kinase (Abl) plays a critical role in regulating airway smooth muscle contraction and cell proliferation in vitro, and airway hyperresponsiveness and remodeling in vivo. These studies indicate that Abl may be a novel target for the development of new therapy to treat asthma.

  15. MURC deficiency in smooth muscle attenuates pulmonary hypertension.

    PubMed

    Nakanishi, Naohiko; Ogata, Takehiro; Naito, Daisuke; Miyagawa, Kotaro; Taniguchi, Takuya; Hamaoka, Tetsuro; Maruyama, Naoki; Kasahara, Takeru; Nishi, Masahiro; Matoba, Satoaki; Ueyama, Tomomi

    2016-08-22

    Emerging evidence suggests that caveolin-1 (Cav1) is associated with pulmonary arterial hypertension. MURC (also called Cavin-4) is a member of the cavin family, which regulates caveolar formation and functions together with caveolins. Here, we show that hypoxia increased Murc mRNA expression in the mouse lung, and that Murc-null mice exhibited attenuation of hypoxia-induced pulmonary hypertension (PH) accompanied by reduced ROCK activity in the lung. Conditional knockout mice lacking Murc in smooth muscle also resist hypoxia-induced PH. MURC regulates the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) through Rho/ROCK signalling. Cav1 suppresses RhoA activity in PASMCs, which is reversed by MURC. MURC binds to Cav1 and inhibits the association of Cav1 with the active form of Gα13, resulting in the facilitated association of the active form of Gα13 with p115RhoGEF. These results reveal that MURC has a function in the development of PH through modulating Rho/ROCK signalling.

  16. Differential blockade of agonist- and depolarization-induced sup 45 Ca2+ influx in smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallnoefer, A.C.; Cauvin, C.; Lategan, T.W.

    1989-10-01

    ATP stimulated {sup 45}Ca2+ influx in rat aortic smooth muscle cells in a concentration-dependent manner (EC50 = 3.6 +/- 0.5 X 10(-7) M). ADP and GTP were less effective than ATP in stimulating {sup 45}Ca2+ influx; AMP was weakly active and the adenosine agonist 5'-(N-ethyl-carboxamido)-adenosine (NECA) had no effect. ATP gamma S was about equieffective with ATP, whereas alpha,beta-methylene-ATP (APCPP) did not induce {sup 45}Ca2+ influx. Stimulation of {sup 45}Ca2+ influx by ATP was not abolished by the dihydropyridine Ca2+ channel antagonist darodipine (PY 108-068), which completely blocked depolarization-induced {sup 45}Ca2+ influx. Inorganic cations (La3+, Cd2+, Co2+, Ni2+, Mn2+, andmore » Mg2+) were able to inhibit both agonist- and depolarization-induced {sup 45}Ca2+ influx. Cd2+, however, was approximately 20 times more selective in blocking K+-stimulated than agonist-stimulated {sup 45}Ca2+ influx. These data indicate that ATP-stimulated Ca2+ influx in rat aortic smooth muscle cells is resistant to darodipine but is reduced by La3+, Cd2+, and other inorganic blockers of Ca2+ channels.« less

  17. Effect of endothelin-1 on the serotonin-induced contraction of smooth muscle in the guinea pig trachea.

    PubMed

    Yoshida, M; Aizawa, H; Hara, N

    1999-01-01

    Endothelin (ET), a potent constrictor of smooth muscle including that of the airways, may contribute to the development of airway hyperresponsiveness. To investigate the role of ET-1 on the airway smooth muscle, we examined the effects of ET-1 on the serotonin-induced contraction of guinea pig tracheal smooth muscle. The changes in isometric tension evoked by serotonin were measured before and after the application of a subthreshold dose (a dose which did not induce smooth muscle contraction by itself) of ET-1. Serotonin caused smooth muscle contraction in a dose-dependent manner. The subthreshold doses of ET-1 (1 pM) and sarafotoxin 6c (1 pM), a selective ETB receptor agonist, were found to potentiate significantly the contraction induced by serotonin. A potentiating effect of ET-1 was not altered by indomethacin or calphostin C, a protein kinase C inhibitor. These results suggest that a subthreshold concentration of ET-1 can potentiate serotonin-induced contraction of smooth muscle through the activation of ETB receptor, while in contrast cyclooxygenase and protein kinase C were found not to be involved in this mechanism.

  18. Chronic stimulation of farnesoid X receptor impairs nitric oxide sensitivity of vascular smooth muscle.

    PubMed

    Kida, Taiki; Murata, Takahisa; Hori, Masatoshi; Ozaki, Hiroshi

    2009-01-01

    Farnesoid X receptor (FXR), a member of the nuclear receptor superfamily that is highly expressed in enterohepatic tissue, is implicated in bile acid, lipid, and glucose metabolisms. Although recent studies showed that FXR is also expressed in vascular endothelial cells and smooth muscle cells, its physiological and/or pathological roles in vasculature tissue remain unknown. The aim of this study is to examine the chronic effect of synthetic FXR agonist GW4064 on vascular contraction and endothelium-dependent relaxation using tissue culture procedure. In cultured rabbit mesenteric arteries, the treatment with 0.1-10 microM GW4064 for 7 days did not influence vascular contractility induced by high K(+) (15-65 mM), norepinephrine (0.1-100 microM), and endothelin-1 (0.1-100 nM). However, the chronic treatment with GW4064 (1-10 microM for 7 days) dose dependently impaired endothelium-dependent relaxation induced by substance P (0.1-30 nM). In hematoxylin-eosin cross sectioning and en face immunostaining, GW4064 had no effects on the morphology of endothelial and smooth muscle cells. In endothelium-denuded arteries treated with GW4064 (1-10 microM) for 7 days, 3 nM-100 microM sodium nitroprusside-induced vasorelaxation, but not membrane-permeable cGMP analog 8-bromoguanosine-cGMP (8-Br-cGMP; 1-100 microM)-induced vasorelaxation, was significantly impaired. In these GW4064-treated arteries, 1 muM sodium nitroprusside-induced intracellular cGMP elevations were impaired. In RT-PCR, any changes were detected in mRNA expression level of alpha(1)- and beta(1)-subunit of soluble guanylyl cyclase. These results suggest that chronic stimulation of FXR impairs endothelium-dependent relaxation, which is due to decreased sensitivity of smooth muscle cells to nitric oxide.

  19. Temporal and spatial dynamics underlying capacitative calcium entry in human colonic smooth muscle.

    PubMed

    Kovac, Jason R; Chrones, Tom; Sims, Stephen M

    2008-01-01

    Following smooth muscle excitation and contraction, depletion of intracellular Ca(2+) stores activates capacitative Ca(2+) entry (CCE) to replenish stores and sustain cytoplasmic Ca(2+) (Ca(2+)(i)) elevations. The objectives of the present study were to characterize CCE and the Ca(2+)(i) dynamics underlying human colonic smooth muscle contraction by using tension recordings, fluorescent Ca(2+)-indicator dyes, and patch-clamp electrophysiology. The neurotransmitter acetylcholine (ACh) contracted tissue strips and, in freshly isolated colonic smooth muscle cells (SMCs), caused elevation of Ca(2+)(i) as well as activation of nonselective cation currents. To deplete Ca(2+)(i) stores, the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibitors thapsigargin and cyclopiazonic acid were added to a Ca(2+)-free bathing solution. Under these conditions, addition of extracellular Ca(2+) (3 mM) elicited increased tension that was inhibited by the cation channel blockers SKF-96365 (10 microM) and lanthanum (100 microM), suggestive of CCE. In a separate series of experiments on isolated SMCs, SERCA inhibition generated a gradual and sustained inward current. When combined with high-speed Ca(2+)-imaging techniques, the CCE-evoked rise of Ca(2+)(i) was associated with inward currents carrying Ca(2+) that were inhibited by SKF-96365. Regional specializations in Ca(2+) influx and handling during CCE were observed. Distinct "hotspot" regions of Ca(2+) rise and plateau were evident in 70% of cells, a feature not previously recognized in smooth muscle. We propose that store-operated Ca(2+) entry occurs in hotspots contributing to localized Ca(2+) elevations in human colonic smooth muscle.

  20. Expression and coupling of neurokinin receptor subtypes to inositol phosphate and calcium signaling pathways in human airway smooth muscle cells

    PubMed Central

    Mizuta, Kentaro; Gallos, George; Zhu, Defen; Mizuta, Fumiko; Goubaeva, Farida; Xu, Dingbang; Panettieri, Reynold A.; Yang, Jay; Emala, Charles W.

    2013-01-01

    Neuropeptide tachykinins (substance P, neurokinin A, and neurokinin B) are present in peripheral terminals of sensory nerve fibers within the respiratory tract and cause airway contractile responses and hyperresponsiveness in humans and most mammalian species. Three subtypes of neurokinin receptors (NK1R, NK2R, and NK3R) classically couple to Gq protein-mediated inositol 1,4,5-trisphosphate (IP3) synthesis and liberation of intracellular Ca2+, which initiates contraction, but their expression and calcium signaling mechanisms are incompletely understood in airway smooth muscle. All three subtypes were identified in native and cultured human airway smooth muscle (HASM) and were subsequently overexpressed in HASM cells using a human immunodeficiency virus-1-based lentivirus transduction system. Specific NKR agonists {NK1R, [Sar9,Met(O2)11]-substance P; NK2R, [β-Ala8]-neurokinin A(4–10); NK3R, senktide} stimulated inositol phosphate synthesis and increased intracellular Ca2+ concentration ([Ca2+]i) in native HASM cells and in HASM cells transfected with each NKR subtype. These effects were blocked by NKR-selective antagonists (NK1R, L-732138; NK2R, GR-159897; NK3R, SB-222200). The initial transient and sustained phases of increased [Ca2+]i were predominantly inhibited by the IP3 receptor antagonist 2-aminoethoxydiphenyl borate (2-APB) or the store-operated Ca2+ channel antagonist SKF-96365, respectively. These results show that all three subtypes of NKRs are expressed in native HASM cells and that IP3 levels are the primary mediators of NKR-stimulated initial [Ca2+]i increases, whereas store-operated Ca2+ channels mediate the sustained phase of the [Ca2+]i increase. PMID:18203813

  1. PDGF-BB induces vascular smooth muscle cell expression of high molecular weight FGF-2, which accumulates in the nucleus.

    PubMed

    Pintucci, Giuseppe; Yu, Pey-Jen; Saponara, Fiorella; Kadian-Dodov, Daniella L; Galloway, Aubrey C; Mignatti, Paolo

    2005-08-15

    Basic fibroblast growth factor (FGF-2) and platelet-derived growth factor (PDGF) are implicated in vascular remodeling secondary to injury. Both growth factors control vascular endothelial and smooth muscle cell proliferation, migration, and survival through overlapping intracellular signaling pathways. In vascular smooth muscle cells PDGF-BB induces FGF-2 expression. However, the effect of PDGF on the different forms of FGF-2 has not been elucidated. Here, we report that treatment of vascular aortic smooth muscle cells with PDGF-BB rapidly induces expression of 20.5 and 21 kDa, high molecular weight (HMW) FGF-2 that accumulates in the nucleus and nucleolus. Conversely, PDGF treatment has little or no effect on 18 kDa, low-molecular weight FGF-2 expression. PDGF-BB-induced upregulation of HMW FGF-2 expression is controlled by sustained activation of extracellular signal-regulated kinase (ERK)-1/2 and is abolished by actinomycin D. These data describe a novel interaction between PDGF-BB and FGF-2, and indicate that the nuclear forms of FGF-2 may mediate the effect of PDGF activity on vascular smooth muscle cells.

  2. Effect of the Lippia alba (Mill.) N.E. Brown essential oil and its main constituents, citral and limonene, on the tracheal smooth muscle of rats.

    PubMed

    Carvalho, Poliana M M; Macêdo, Cícero A F; Ribeiro, Tiago F; Silva, Andressa A; Da Silva, Renata E R; de Morais, Luís P; Kerntopf, Marta R; Menezes, Irwin R A; Barbosa, Roseli

    2018-03-01

    The Lippia alba (Mill.) N.E. Brown (Verbenaceae) species, has effects sedative, analgesic and spasmolytic properties. This study had as its main objective to evaluate the essential oil of L. alba (EOLa) effect and that of its main constituents, citral and limonene, over tracheal smooth muscle from Wistar rats. EOLa, citral and limonene promoted relaxation of tracheal smooth muscle in contractions induced by potassium (60 mM K + ), presenting an EC 50 of 148 ± 7 μg/mL for the EOLa, 136 ± 7 μg/mL for citral and 581 ± 7 μg/mL for limonene. In contractions induced by Acetylcholine (Ach; 10 μM) the EC 50 for the EOLa and citral were of 731 ± 5 μg/mL and 795 ± 9 μg/mL, respectively. In preparations pre-incubated with 1000 μg/mL of the EOLa and citral, both agents were found to block the influx of BaCl 2 by VOCCs. This study demonstrated that the EOLa and its main component citral present antispasmodic effect over tracheal smooth muscle of rats.

  3. Dynamic equilibration of airway smooth muscle contraction during physiological loading.

    PubMed

    Latourelle, Jeanne; Fabry, Ben; Fredberg, Jeffrey J

    2002-02-01

    Airway smooth muscle contraction is the central event in acute airway narrowing in asthma. Most studies of isolated muscle have focused on statically equilibrated contractile states that arise from isometric or isotonic contractions. It has recently been established, however, that muscle length is determined by a dynamically equilibrated state of the muscle in which small tidal stretches associated with the ongoing action of breathing act to perturb the binding of myosin to actin. To further investigate this phenomenon, we describe in this report an experimental method for subjecting isolated muscle to a dynamic microenvironment designed to closely approximate that experienced in vivo. Unlike previous methods that used either time-varying length control, force control, or time-invariant auxotonic loads, this method uses transpulmonary pressure as the controlled variable, with both muscle force and muscle length free to adjust as they would in vivo. The method was implemented by using a servo-controlled lever arm to load activated airway smooth muscle strips with transpulmonary pressure fluctuations of increasing amplitude, simulating the action of breathing. The results are not consistent with classical ideas of airway narrowing, which rest on the assumption of a statically equilibrated contractile state; they are consistent, however, with the theory of perturbed equilibria of myosin binding. This experimental method will allow for quantitative experimental evaluation of factors that were previously outside of experimental control, including sensitivity of muscle length to changes of tidal volume, changes of lung volume, shape of the load characteristic, loss of parenchymal support and inflammatory thickening of airway wall compartments.

  4. Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology.

    PubMed

    Hsiao, Amy Y; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji

    2015-01-01

    The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments.

  5. Smooth Muscle-Like Tissue Constructs with Circumferentially Oriented Cells Formed by the Cell Fiber Technology

    PubMed Central

    Hsiao, Amy Y.; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji

    2015-01-01

    The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments. PMID:25734774

  6. Myosin Va Plays a Role in Nitrergic Smooth Muscle Relaxation in Gastric Fundus and Corpora Cavernosa of Penis

    PubMed Central

    Carew, Josephine A.; Goyal, Raj K.; Sullivan, Maryrose P.

    2014-01-01

    The intracellular motor protein myosin Va is involved in nitrergic neurotransmission possibly by trafficking of neuronal nitric oxide synthase (nNOS) within the nerve terminals. In this study, we examined the role of myosin Va in the stomach and penis, proto-typical smooth muscle organs in which nitric oxide (NO) mediated relaxation is critical for function. We used confocal microscopy and co-immunoprecipitation of tissue from the gastric fundus (GF) and penile corpus cavernosum (CCP) to localize myosin Va with nNOS and demonstrate their molecular interaction. We utilized in vitro mechanical studies to test whether smooth muscle relaxations during nitrergic neuromuscular neurotransmission is altered in DBA (dilute, brown, non-agouti) mice which lack functional myosin Va. Myosin Va was localized in nNOS-positive nerve terminals and was co-immunoprecipitated with nNOS in both GF and CCP. In comparison to C57BL/6J wild type (WT) mice, electrical field stimulation (EFS) of precontracted smooth muscles of GF and CCP from DBA animals showed significant impairment of nitrergic relaxation. An NO donor, Sodium nitroprusside (SNP), caused comparable levels of relaxation in smooth muscles of WT and DBA mice. These normal postjunctional responses to SNP in DBA tissues suggest that impairment of smooth muscle relaxation resulted from inhibition of NO synthesis in prejunctional nerve terminals. Our results suggest that normal physiological processes of relaxation of gastric and cavernosal smooth muscles that facilitate food accommodation and penile erection, respectively, may be disrupted under conditions of myosin Va deficiency, resulting in complications like gastroparesis and erectile dysfunction. PMID:24516539

  7. Length oscillation induces force potentiation in infant guinea pig airway smooth muscle.

    PubMed

    Wang, Lu; Chitano, Pasquale; Murphy, Thomas M

    2005-12-01

    Deep inspiration counteracts bronchospasm in normal subjects but triggers further bronchoconstriction in hyperresponsive airways. Although the exact mechanisms for this contrary response by normal and hyperresponsive airways are unclear, it has been suggested that the phenomenon is related to changes in force-generating ability of airway smooth muscle after mechanical oscillation. It is known that healthy immature airways of both humans and animals exhibit hyperresponsiveness. We hypothesize that the profile of active force generation after mechanical oscillation changes with maturation and that this change contributes to the expression of airway hyperresponsiveness in juveniles. We examined the effect of an acute sinusoidal length oscillation on the force-generating ability of tracheal smooth muscle from 1 wk, 3 wk, and 2- to 3-mo-old guinea pigs. We found that the length oscillation produced 15-20% initial reduction in active force equally in all age groups. This was followed by a force recovery profile that displayed striking maturation-specific features. Unique to tracheal strips from 1-wk-old animals, active force potentiated beyond the maximal force generated before oscillation. We also found that actin polymerization was required in force recovery and that prostanoids contributed to the maturation-specific force potentiation in immature airway smooth muscle. Our results suggest a potentiated mechanosensitive contractile property of hyperresponsive airway smooth muscle. This can account for further bronchoconstriction triggered by deep inspiration in hyperresponsive airways.

  8. Use of beta-methylphenylalanine (beta MeF) residues to probe the nature of the interaction of substance P with its receptor: effects of beta MeF-containing substance P analogs on rabbit iris smooth muscle contraction.

    PubMed

    Birney, D M; Cole, D C; Crosson, C E; Kahl, B F; Neff, B W; Reid, T W; Ren, K; Walkup, R D

    1995-06-23

    The effects of substituting (2S,3S)-beta-methylphenylalanine (S-beta MeF) or (2S,3R)-beta-methylphenylalanine (R-beta MeF) for the Phe7 and/or Phe8 residues of the tachykinin substance P (SP, RPKPQQFFGLM-NH2) upon the ability of SP to stimulate contraction of the rabbit iris smooth muscle were investigated. The eight beta MeF-containing SP analogs (four monosubstituted analogs, four disubstituted analogs) 1-8 were synthesized and found to be agonsts of SP in the smooth muscle contraction assay, having EC50 values ranging from 0.15 to 10.0 nM. Three analogs are significantly more active than SP [8R-(beta MeF)SP (4), 7S,8S-(beta MeF)2SP (5), and 7R,8S-(beta MeF)2SP (6)], three analogs are approximately equipotent with SP [7S-(beta MeF)SP (1), 7R-(beta MeF)SP (2), and 7S,8R-(beta MeF)2SP (8)], and two analogs are significantly less active than SP [8S-(beta MeF)SP (3) and 7R,8R-(beta MeF)2SP (7)]. The effects of the beta MeF substitutions upon the activity of SP are not additive and cannot be explained using simple conformational models which focus only on the side chain conformations of the beta MeF residues. It is postulated that the beta MeF residues induce minor distortions in the peptide backbone with resultant consequences upon peptide-receptor binding which are not dictated soley by the side chain conformations. This idea is consistent with 1H-NMR data for the monosubstituted analogs 1-4, which imply that the beta MeF substitutions cause slight distortions in the peptide backbone and that the beta MeF side chains are assuming trans or gauche(-) conformations.

  9. Consequences of metabolic inhibition in smooth muscle isolated from guinea-pig stomach.

    PubMed

    Nakayama, S; Chihara, S; Clark, J F; Huang, S M; Horiuchi, T; Tomita, T

    1997-11-15

    1. In smooth muscle isolated from the guinea-pig stomach, cyanide (CN) and iodoacetic acid (IAA) were applied to block oxidative phosphorylation and glycolysis, respectively. Effects of IAA on generation of spontaneous mechanical and electrical activities were systematically investigated by comparing those of CN. Spontaneous activity ceased in 10-20 min during applications of 1 mM IAA. On the other hand, application of 1 mM CN also reduced the spontaneous activity, but never terminated it. In the presence of CN the negativity of the resting membrane potential was slightly reduced. 2. When spontaneous activity ceased with IAA, the resting membrane potential was not significantly affected. Also, before ceasing, the amplitude and duration of the spontaneous electrical activity were significantly reduced. The amplitude of the electrotonic potential was, however, not changed by IAA. Further, glibenclamide did not prevent the effects of IAA. These results suggest that, unlike cardiac muscle, activation of metabolism-dependent K+ channels in stomach smooth muscle does not seem to play a major role in reducing and terminating spontaneous activity during metabolic inhibition. 3. Carbachol-induced contraction transiently increased, and subsequently decreased gradually during application of IAA. 4. After 50 min application of IAA, when there was no spontaneous activity, the concentrations of phosphocreatine (PCr) and ATP measured with 31P nuclear magnetic resonance decreased to 60 and 80% of the control, respectively, while inorganic phosphate (Pi) concentration paradoxically fell to below detectable levels. During subsequent prolonged application of IAA, high-energy phosphates steadily decreased. On the other hand, after 50 min CN application, [PCr] and [ATP] decreased to approximately 30 and 80% of the control, respectively, while [Pi] increased by 2.6-fold. 5. In the presence of either CN or IAA, spontaneous mechanical and electrical activities were reduced or eliminated

  10. Receptors mediating the effects of substance P and neurokinin A on mucus secretion and smooth muscle tone of the ferret trachea: potentiation by an enkephalinase inhibitor.

    PubMed Central

    Webber, S. E.

    1989-01-01

    1. The effects of substance P (SP) and neurokinin A (NKA) were examined on tracheal smooth muscle tone, mucus volume output, lysozyme output and albumin transport across the ferret in vitro whole trachea in the presence and absence of the enkephalinase inhibitor, thiorphan. 2. SP (0.001-3 microM) and NKA (0.01-10 microM) contracted the tracheal smooth muscle and increased mucus volume, lysozyme and albumin outputs into the tracheal lumen. The EC50 values for SP and NKA for all of the variables measured were significantly reduced, and all of the maximum responses were significantly enhanced by thiorphan (10 microM). 3. In the presence of thiorphan, SP (1 microM) and NKA (10 microM) produced albumin concentrations in the secreted mucus (8.9 and 7.2 micrograms microliters-1) which were greater than those in the submucosal buffer (4.2 micrograms microliters-1). 4. In the presence of thiorphan, NKA was approximately 5 times more potent than SP at contracting the tracheal smooth muscle. Conversely SP was 23, 15 and 22 times more potent than NKA at stimulating mucus volume, lysozyme and albumin outputs respectively. 5. Thus, there is neutral endopeptidase in the ferret trachea in vitro which cleaves exogenously applied SP and NKA, thereby reducing the magnitude and potency of their actions. SP and NKA contract the ferret tracheal muscle probably by an action at NK2 (or NK3)-receptors but stimulate mucus volume output, lysozyme output and albumin transport across the tracheal wall probably by an action on NK1 receptors. PMID:2482101

  11. Receptors mediating the effects of substance P and neurokinin A on mucus secretion and smooth muscle tone of the ferret trachea: potentiation by an enkephalinase inhibitor.

    PubMed

    Webber, S E

    1989-12-01

    1. The effects of substance P (SP) and neurokinin A (NKA) were examined on tracheal smooth muscle tone, mucus volume output, lysozyme output and albumin transport across the ferret in vitro whole trachea in the presence and absence of the enkephalinase inhibitor, thiorphan. 2. SP (0.001-3 microM) and NKA (0.01-10 microM) contracted the tracheal smooth muscle and increased mucus volume, lysozyme and albumin outputs into the tracheal lumen. The EC50 values for SP and NKA for all of the variables measured were significantly reduced, and all of the maximum responses were significantly enhanced by thiorphan (10 microM). 3. In the presence of thiorphan, SP (1 microM) and NKA (10 microM) produced albumin concentrations in the secreted mucus (8.9 and 7.2 micrograms microliters-1) which were greater than those in the submucosal buffer (4.2 micrograms microliters-1). 4. In the presence of thiorphan, NKA was approximately 5 times more potent than SP at contracting the tracheal smooth muscle. Conversely SP was 23, 15 and 22 times more potent than NKA at stimulating mucus volume, lysozyme and albumin outputs respectively. 5. Thus, there is neutral endopeptidase in the ferret trachea in vitro which cleaves exogenously applied SP and NKA, thereby reducing the magnitude and potency of their actions. SP and NKA contract the ferret tracheal muscle probably by an action at NK2 (or NK3)-receptors but stimulate mucus volume output, lysozyme output and albumin transport across the tracheal wall probably by an action on NK1 receptors.

  12. Optimisation of isolation of richly pure and homogeneous primary human colonic smooth muscle cells.

    PubMed

    Tattoli, I; Corleto, V D; Taffuri, M; Campanini, N; Rindi, G; Caprilli, R; Delle Fave, G; Severi, C

    2004-11-01

    Inherent properties of gastrointestinal smooth muscle can be assessed using isolated cell suspensions. Currently available isolation techniques, based on short 2-h enzymatic digestion, however, present the disadvantage of low cellular yield with brief viability. These features are an important limiting factor especially in studies in humans in which tissue may not be available daily and mixing of samples is not recommended. To optimise the isolation procedure of cells from human colon to obtain a richly pure primary smooth muscle cell preparation. Slices of circular muscle layer, obtained from surgical specimens of human colon, were incubated overnight in Dulbecco's modified eagle's medium supplemented with antibiotics, foetal bovine serum, an ATP-regenerating system and collagenase. On the following day, digested muscle strips were suspended in HEPES buffer, and spontaneously dissociated smooth muscle cells were harvested and used either immediately or maintained in suspension for up to 72 h. Cell yield, purity, viability, contractile responses, associated intracellular calcium signals and RNA and protein extraction were evaluated and compared to cell suspensions obtained with the current short digestion protocol. The overnight isolation protocol offers the advantage of obtaining a pure, homogeneous, long-life viable cell suspension that maintains a fully differentiated smooth muscle phenotype unchanged for at least 72 h and that allows multiple functional/biochemical studies and efficient RNA extraction from a single human specimen.

  13. [Forskolin inhibits spontaneous contraction of gastric antral smooth muscle in rats].

    PubMed

    Jiang, Jing-Zhi; Sun, Qian; Xu, Dong-Yuan; Zhang, Mo-Han; Piao, Li-Hua; Cai, Ying-Lan; Jin, Zheng

    2013-04-25

    The aim of the present study was to investigate the effects of cyclic adenosine monophosphate (cAMP) on rat gastric antral circular smooth muscle function. Forskolin, a direct activator of adenylyl cyclase (AC), was used to observe the influences of cAMP. Multi-channel physiological recorder was used to record spontaneous contraction activity of gastric antral circular muscle from Wistar rats. And ELISA method was used to detect the change of cAMP production in perfusate. The results showed that forskolin concentration-dependently suppressed the amplitude and frequency of the spontaneous contraction of the gastric antral muscle, and lowered the baseline of contraction movement significantly. Forskolin concentration-dependently increased the production of cAMP in the perfusate, which showed a significant negative correlation with the contraction amplitude of gastric antral ring muscle. The inhibitory effect of forskolin on spontaneous contraction activity of rat gastric antral circular muscle could be blocked by cAMP-dependent protein kinase (PKA) inhibitor H-89. These results suggest forskolin increases cAMP production and then activates PKA pathway, resulting in the inhibition of the spontaneous contraction activity of rat gastric antral circular smooth muscle.

  14. p21-Activated kinase (Pak) regulates airway smooth muscle contraction by regulating paxillin complexes that mediate actin polymerization.

    PubMed

    Zhang, Wenwu; Huang, Youliang; Gunst, Susan J

    2016-09-01

    In airway smooth muscle, tension development caused by a contractile stimulus requires phosphorylation of the 20 kDa myosin light chain (MLC), which activates crossbridge cycling and the polymerization of a pool of submembraneous actin. The p21-activated kinases (Paks) can regulate the contractility of smooth muscle and non-muscle cells, and there is evidence that this occurs through the regulation of MLC phosphorylation. We show that Pak has no effect on MLC phosphorylation during the contraction of airway smooth muscle, and that it regulates contraction by mediating actin polymerization. We find that Pak phosphorylates the adhesion junction protein, paxillin, on Ser273, which promotes the formation of a signalling complex that activates the small GTPase, cdc42, and the actin polymerization catalyst, neuronal Wiskott-Aldrich syndrome protein (N-WASP). These studies demonstrate a novel role for Pak in regulating the contractility of smooth muscle by regulating actin polymerization. The p21-activated kinases (Pak) can regulate contractility in smooth muscle and other cell and tissue types, but the mechanisms by which Paks regulate cell contractility are unclear. In airway smooth muscle, stimulus-induced contraction requires phosphorylation of the 20 kDa light chain of myosin, which activates crossbridge cycling, as well as the polymerization of a small pool of actin. The role of Pak in airway smooth muscle contraction was evaluated by inhibiting acetylcholine (ACh)-induced Pak activation through the expression of a kinase inactive mutant, Pak1 K299R, or by treating tissues with the Pak inhibitor, IPA3. Pak inhibition suppressed actin polymerization and contraction in response to ACh, but it did not affect myosin light chain phosphorylation. Pak activation induced paxillin phosphorylation on Ser273; the paxillin mutant, paxillin S273A, inhibited paxillin Ser273 phosphorylation and inhibited actin polymerization and contraction. Immunoprecipitation analysis of

  15. Distinct phosphodiesterase 5A-containing compartments allow selective regulation of cGMP-dependent signalling in human arterial smooth muscle cells.

    PubMed

    Wilson, Lindsay S; Guo, Manhong; Umana, M Bibiana; Maurice, Donald H

    2017-08-01

    Cyclic GMP (cGMP) translates and integrates much of the information encoded by nitric oxide (NO · ) and several natriuretic peptides, including the atrial natriuretic peptide (ANP). Previously, we reported that integration of a cGMP-specific cyclic nucleotide phosphodiesterase, namely phosphodiesterase 5A (PDE5A), into a protein kinase G (PKG)- and inositol-1,4,5-trisphosphate receptor (IP 3 R)-containing endoplasmic reticulum (ER) signalosome allows localized control of PDE5A activity and of PKG-dependent inhibition of IP 3 -mediated release of ER Ca 2+ in human platelets. Herein, we report that PDE5A integrates into an analogous signalosome in human arterial smooth muscle cells (HASMC), wherein it regulates muscarinic agonist-dependent Ca 2+ release and is activated selectively by PKG-dependent phosphorylation. In addition, we report that PDE5A also regulates HASMC functions via events independent of PKG, but rather through actions coordinated by competitive cGMP-mediated inhibition of cAMP hydrolysis by the so-called cGMP-inhibited cAMP PDE, namely phosphodiesterase 3A (PDE3A). Indeed, we show that ANP increases both cGMP and cAMP levels in HASMC and promotes phosphorylation of vasodilator-stimulated phospho-protein (VASP) at each the PKG and PKA phospho-acceptor sites. Since selective inhibition of PDE5 decreased DNA synthesis and chemotaxis of HASMC, and that PDE3A knockdown obviated these effects, our findings are consistent with a role for a PDE5A-PDE3A-PKA axis in their regulation. Our findings provide insight into the existence of distinct "pools" of PDE5A in HASMC and support the idea that these discrete compartments regulate distinct cGMP-dependent events. As a corollary, we suggest that it may be possible to target these distinct PDE5A-regulated pools and in so-doing differentially impact selected cGMP-regulated functions in these cells. Copyright © 2017. Published by Elsevier Inc.

  16. Expression Levels and Clinical Significance of miR-21-5p, miR-let-7a, and miR-34c-5p in Laryngeal Squamous Cell Carcinoma

    PubMed Central

    Gioacchini, Federico M.; Çeka, Artan; Rubini, Corrado; Ferrante, Luigi; Procopio, Antonio D.; Olivieri, Fabiola

    2017-01-01

    Objective Altered microRNAs (miRNAs) expression has been found in many cancer types, including laryngeal squamous cell carcinoma (LSCC). The aim of this study was to determine the role and clinical value of three LSCC-related miRs, such as miR-21-5p, miR-let-7a, and miR-34c-5p in a homogeneous cohort of patients with primary LSCC treated by primary surgery. Methods Expression levels of miR-21-5p, miR-let-7a, and miR-34c-5p were detected in 43 pairs of LSCC and adjacent normal tissues by reverse-transcription quantitative PCR. Overall survival and disease-free survival were evaluated using the Kaplan–Meier method, and multivariate analysis was performed using the Cox proportional hazard analysis. Results miR-21-5p is significantly upregulated, while miR-let-7a is significantly downregulated in LSCC tumor tissues compared with the corresponding adjacent normal tissues. The downregulation of miR-34c-5p expression significantly correlated with a shorter disease-free survival and, in the multivariate analysis, low miR-34c-5p expression was associated with an increased risk of recurrence. Conclusions miR-21-5p, miR-let-7a, and miR-34c-5p seem to play a critical role in LSCC carcinogenesis and might have a diagnostic and prognostic clinical value. The miR-let-7a levels could have a predictive role for lymph node metastases and miR-34c-5p might be a promising biomarker of patient outcome. PMID:29082244

  17. The impact of extracellular and intracellular Ca2+ on ethanol-induced smooth muscle contraction.

    PubMed

    Döndaş, Naciye Yaktubay; Kaplan, Mahir; Kaya, Derya; Singirik, Ergin

    2009-10-01

    To evaluate the impact of extracellular and intracellular Ca2+ on contractions induced by ethanol in smooth muscle. Longitudinal smooth muscle strips were prepared from the gastric fundi of mice. The contractions of smooth muscle strips were recorded with an isometric force displacement transducer. Ethanol (164 mmol/L) produced reproducible contractions in isolated gastric fundal strips of mice. Although lidocaine (50 and 100 micromol/L), a local anesthetic agent, and hexamethonium (100 and 500 micromol/L), a ganglionic blocking agent, failed to affect these contractions, verapamil (1-50 micromol/L) and nifedipine (1-50 micromol/L), selective blockers of L-type Ca2+ channels, significantly inhibited the contractile responses of ethanol. Using a Ca(2+)-free medium nearly eliminated these contractions in the same tissue. Ryanodine (1-50 micromol/L) and ruthenium red (10-100 micromol/L), selective blockers of intracellular Ca2+ channels/ryanodine receptors; cyclopiazonic acid (CPA; 1-10 mumol/L), a selective inhibitor of sarcoplasmic reticulum (SR) Ca(2+)-ATPase; and caffeine (0.5-5 mmol/L), a depleting agent of intracellular Ca2+ stores, significantly inhibited the contractile responses induced by ethanol. In addition, the combination of caffeine (5 mmol/L) plus CPA (10 micromol/L), and ryanodine (10 micromol/L) plus CPA (10 micromol/L), caused further inhibition of contractions in response to ethanol. This inhibition was significantly different from those associated with caffeine, ryanodine or CPA. Furthermore the combination of caffeine (5 mmol/L), ryanodine (10 micromol/L) and CPA(10 micromol/L) eliminated the contractions induced by ethanol in isolated gastric fundal strips of mice. Both extracellular and intracellular Ca2+ may have important roles in regulating contractions induced by ethanol in the mouse gastric fundus.

  18. beta. -adrenergic relaxation of smooth muscle: differences between cells and tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheid, C.R.

    1987-09-01

    The present studies were carried out in an attempt to resolve the controversy about the Na/sup +/ dependence of ..beta..-adrenergic relaxation in smooth muscle. Previous studies on isolated smooth muscle cells from the toad stomach had suggested that at least some of the actions of ..beta..-adrenergic agents, including a stimulatory effect on /sup 45/Ca efflux, were dependent on the presence of a normal transmembrane Na/sup +/ gradient. Studies by other investigators using tissues derived from mammalian sources had suggested that the relaxing effect of ..beta..-adrenergic agents was Na/sup +/ independent. Uncertainty remained as to whether these discrepancies reflected differences betweenmore » cells and tissues or differences between species. Thus, in the present studies, the authors utilized both tissues and cells from the same source, the stomach muscle of the toad Bufo marinus, and assessed the Na/sup +/ dependence of ..beta..-adrenergic relaxation. They found that elimination of a normal Na/sup +/ gradient abolished ..beta..-adrenergic relaxation of isolated cells. In tissues, however, similar manipulations had no effect on relaxation. The reasons for this discrepancy are unclear but do not appear to be attributable to changes in smooth muscle function following enzymatic dispersion. Thus the controversy concerning the mechanisms of ..beta..-adrenergic relaxation may reflect inherent differences between tissues and cells.« less

  19. Paradoxical behavior of neuromedin U in isolated smooth muscle cells and intact tissue.

    PubMed

    Brighton, Paul J; Wise, Alan; Dass, Narinder B; Willars, Gary B

    2008-04-01

    Neuromedin U (NmU) is a neuropeptide showing high levels of structural conservation across different species. Since its discovery in 1985, NmU has been implicated in numerous physiological roles, including smooth muscle contraction, energy homeostasis, stress, intestinal ion transport, pronociception, and circadian rhythm. Two G-protein-coupled receptors have been identified for NmU and cloned from humans, rats, and mice. Recombinantly expressed NmU receptors couple to both Galpha(q/11) and Galpha(i) G-proteins, and NmU binds essentially irreversibly, preventing signaling to repetitive applications of NmU. However, it is unclear whether these properties reflect those of endogenously expressed NmU receptors or how these properties influence the functional consequences of NmU receptor signaling. Here, we have explored the signaling by rat NmU receptors expressed endogenously in cultured rat colonic smooth muscle cells and explore the functional consequence of this signaling by investigating the NmU-mediated contraction of ex vivo rat colonic smooth muscle preparations. We demonstrate that endogenous rat NmU receptors couple to both Galpha(q/11) and Galpha(i) G-proteins. Furthermore, we show complex patterns of Ca(2+) signaling, including oscillations, and provide evidence of essentially irreversible binding of NmU to smooth muscle cells. Challenge of either circular or longitudinal rat isolated colonic smooth muscle preparations with NmU resulted in robust contractions. Stimulation was direct, and paradoxically, repetitive applications of NmU mediated repetitive contractions with no evidence of desensitization, highlighting a major discrepancy in the behavior of NmU in single cells and in intact tissues. The reason for this discrepancy is presently unknown.

  20. Brain cytoplasmic RNA 1 suppresses smooth muscle differentiation and vascular development in mice.

    PubMed

    Wang, Yung-Chun; Chuang, Ya-Hui; Shao, Qiang; Chen, Jian-Fu; Chen, Shi-You

    2018-04-13

    The cardiovascular system develops during the early stages of embryogenesis, and differentiation of smooth muscle cells (SMCs) is essential for that process. SMC differentiation is critically regulated by transforming growth factor (TGF)-β/SMAD family member 3 (SMAD3) signaling, but other regulators may also play a role. For example, long noncoding RNAs (lncRNAs) regulate various cellular activities and events, such as proliferation, differentiation, and apoptosis. However, whether long noncoding RNAs also regulate SMC differentiation remains largely unknown. Here, using the murine cell line C3H10T1/2, we found that brain cytoplasmic RNA 1 (BC1) is an important regulator of SMC differentiation. BC1 overexpression suppressed, whereas BC1 knockdown promoted, TGF-β-induced SMC differentiation, as indicated by altered cell morphology and expression of multiple SMC markers, including smooth muscle α-actin (αSMA), calponin, and smooth muscle 22α (SM22α). BC1 appeared to block SMAD3 activity and inhibit SMC marker gene transcription. Mechanistically, BC1 bound to SMAD3 via RNA SMAD-binding elements (rSBEs) and thus impeded TGF-β-induced SMAD3 translocation to the nucleus. This prevented SMAD3 from binding to SBEs in SMC marker gene promoters, an essential event in SMC marker transcription. In vivo , BC1 overexpression in mouse embryos impaired vascular SMC differentiation, leading to structural defects in the artery wall, such as random breaks in the elastic lamina, abnormal collagen deposition on SM fibers, and disorganized extracellular matrix proteins in the media of the neonatal aorta. Our results suggest that BC1 is a suppressor of SMC differentiation during vascular development. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Bulgarian propolis induces analgesic and anti-inflammatory effects in mice and inhibits in vitro contraction of airway smooth muscle.

    PubMed

    Paulino, Niraldo; Dantas, Andreia Pires; Bankova, Vassya; Longhi, Daniela Taggliari; Scremin, Amarilis; de Castro, Solange Lisboa; Calixto, João Batista

    2003-11-01

    Propolis is a bee product, which has long been used in folk medicine for the management of different diseases. In this study we evaluated the analgesic and anti-inflammatory effects of a standard ethanolic extract of Bulgarian propolis (Et-Blg) in mice and its in vitro effect on airway smooth muscle. Et-Blg inhibited acetic acid-induced abdominal contortions with an ID(50) = 7.4 +/- 0.7 mg. kg(-1). In the formalin test, the extract caused a significant reduction in pain in mice treated with 100 mg. kg(-1) Et-Blg during the neurogenic phase and for the inflammatory phase with all doses of the extract, with an ID(50) = 2.5 +/- 0.4 mg. kg(-1). Et-Blg inhibited also the capsaicin-induced ear edema in mice; however, this extract was ineffective when assessed in the tail-flick and hot-plate thermal assays. The analgesic effect of Et-Blg was associated with the inhibition of inflammatory responses and not to a simple irritation of nervous terminals. In vitro, this extract inhibited the contraction of trachea smooth muscle induced by histamine (IC(50) = 50 +/- 5 microg. mL(-1)), capsaicin (IC(50) = 26.8 +/- 3 microg. mL(-1)), 80 mM KCl (IC(50) = 27.8 +/- 3 microg. mL(-1)), and carbachol (IC(50) = 54 +/- 2 microg. mL(-1)).

  2. MURC deficiency in smooth muscle attenuates pulmonary hypertension

    PubMed Central

    Nakanishi, Naohiko; Ogata, Takehiro; Naito, Daisuke; Miyagawa, Kotaro; Taniguchi, Takuya; Hamaoka, Tetsuro; Maruyama, Naoki; Kasahara, Takeru; Nishi, Masahiro; Matoba, Satoaki; Ueyama, Tomomi

    2016-01-01

    Emerging evidence suggests that caveolin-1 (Cav1) is associated with pulmonary arterial hypertension. MURC (also called Cavin-4) is a member of the cavin family, which regulates caveolar formation and functions together with caveolins. Here, we show that hypoxia increased Murc mRNA expression in the mouse lung, and that Murc-null mice exhibited attenuation of hypoxia-induced pulmonary hypertension (PH) accompanied by reduced ROCK activity in the lung. Conditional knockout mice lacking Murc in smooth muscle also resist hypoxia-induced PH. MURC regulates the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) through Rho/ROCK signalling. Cav1 suppresses RhoA activity in PASMCs, which is reversed by MURC. MURC binds to Cav1 and inhibits the association of Cav1 with the active form of Gα13, resulting in the facilitated association of the active form of Gα13 with p115RhoGEF. These results reveal that MURC has a function in the development of PH through modulating Rho/ROCK signalling. PMID:27546070

  3. Fibronectin promotes differentiation of neural crest progenitors endowed with smooth muscle cell potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa-Silva, Bruno; Programa de Pos-graduacao em Neurociencias, Centro de Ciencias Biologicas, Universidade Federal de Santa Catarina, Campus Universitario - Trindade, 88040-900, Florianopolis, S.C.; Coelho da Costa, Meline

    The neural crest (NC) is a model system used to investigate multipotency during vertebrate development. Environmental factors control NC cell fate decisions. Despite the well-known influence of extracellular matrix molecules in NC cell migration, the issue of whether they also influence NC cell differentiation has not been addressed at the single cell level. By analyzing mass and clonal cultures of mouse cephalic and quail trunk NC cells, we show for the first time that fibronectin (FN) promotes differentiation into the smooth muscle cell phenotype without affecting differentiation into glia, neurons, and melanocytes. Time course analysis indicated that the FN-induced effectmore » was not related to massive cell death or proliferation of smooth muscle cells. Finally, by comparing clonal cultures of quail trunk NC cells grown on FN and collagen type IV (CLIV), we found that FN strongly increased both NC cell survival and the proportion of unipotent and oligopotent NC progenitors endowed with smooth muscle potential. In contrast, melanocytic progenitors were prominent in clonogenic NC cells grown on CLIV. Taken together, these results show that FN promotes NC cell differentiation along the smooth muscle lineage, and therefore plays an important role in fate decisions of NC progenitor cells.« less

  4. Atypical Uterine Smooth Muscle Tumors: A Retrospective Evaluation of Clinical and Pathologic Features.

    PubMed

    Maltese, Giuseppa; Fontanella, Caterina; Lepori, Stefano; Scaffa, Cono; Fucà, Giovanni; Bogani, Giorgio; Provenzano, Salvatore; Carcangiu, Maria Luisa; Raspagliesi, Francesco; Lorusso, Domenica

    2018-01-01

    Clinical characteristics combined with new biomarkers help discriminate between atypical uterine smooth muscle tumors (AUSMT) and leiomyosarcomas (LMS). We retrospectively collected a series of leiomyomas (LM), AUSMT, and LMS. Estrogen receptors (ER), progesterone receptors (PR), p16, Ki-67, and p53 expression were assessed by immunohistochemistry. For AUSMT patients, immunohistochemistry evaluations were performed at the time of diagnosis and at recurrences. A total of 27 cases of AUSMT, 22 LM, and 31 LMS were identified. The expression of ER and PR decreased from LM to LMS (ER+: LM 95.5%, AUSMT 88.9%, LMS 41.9%, p < 0.001; PR+: LM 100%, AUSMT 88.9%, LMS 38.2%, p = 0.002). By contrast, p16 and p53 expression increased (p16+: LM 4.5%, AUSMT 40.7%, LMS 45.2%, p = 0.004; p53: LM 9.1%, AUSMT 33.3%, LMS 58.1%, p = 0.001). At a median follow-up of 33.47 months, 40.7% of patients with AUSMT experienced recurrent disease, 6 patients relapsed as AUSMT and 5 as LMS. In univariate analysis was observed that ER status (p = 0.027) and p53 expression (p = 0.015) predicted risk of relapse. Treatment of AUSMT should be centralized in dedicated centers. International collaborations are needed to optimize research strategy, which may lead to the identification of new useful biomarkers and to improvement in the clinical management of this rare disease. © 2017 S. Karger AG, Basel.

  5. [Effects of vitamin K3 on the contractile activity of the colonic smooth muscles of guinea pig through the calcium activated potassium channel].

    PubMed

    Li, Jun; Luo, He-sheng; He, Xiao-gu

    2006-07-25

    To study the mechanism of relaxation of gastrointestinal smooth muscles by vitamin K(3). Stripes of proximal colon were collected from guinea pigs. Suspension of single cells was created from these stripes. TD-112S transducer was used to measure the contraction of the stripes stimulated by vitamin K(3) of the concentrations of 40, 100, 400, and 800 micromol/L respectively. The Ca(2+)-activated K(+) current [IK(Ca)] of the cytomembrane of the colon smooth muscle was recorded with an EPC 10 amplifier under conventional whole cell patterns. The contraction frequencies of the muscle stripes stimulated by vitamin K(3) of the concentrations of 40, 100, 400, and 800 micromol/L were 79% +/- 4%, 58% +/- 5%, 33% +/- 4%, and 12% +/- 3% respectively of that of the control group (all P < 0.01), and the contraction strength was reduced to 77% +/- 10%, 54% +/- 7%, 30% +/- 6%, and 11% +/- 4% respectively (all P < 0.01). The IK((Ca)) of the cytomembrane of the colon smooth muscle at the voltage of +60 mV was increased to 120% +/- 18%, 149% +/- 12%, 197% +/- 19%, and 223% +/- 14% respectively (all P < 0.01). Vitamin K(3) inhibits the contractile activity of the colonic muscle stripes and increases the IK(Ca) of single myocytes concentration-dependently. The mechanism is activation of the Ca(2+)-activated K(+) channel, thus promoting the potassium efflux.

  6. Structural limits on force production and shortening of smooth muscle.

    PubMed

    Siegman, Marion J; Davidheiser, Sandra; Mooers, Susan U; Butler, Thomas M

    2013-02-01

    This study determined the factors that limit force production and shortening in two smooth muscles having very different relationships between active and passive force as a function of muscle length. The rat anococcygeus muscle develops active force over the range of lengths 0.2-2.0× the optimum length for force production (Lo). Passive tension due to extension of the resting muscle occurs only at lengths exceeding Lo. In contrast, the rabbit taenia coli develops force in the range of lengths 0.4-1.1 Lo, and passive force which is detectable at 0.56 Lo, increases to ~0.45 maximum active force at Lo, and increases sharply with further extension. The anococcygeus muscle can shorten to 0.2 Lo and the taenia coli to 0.4 Lo. Dynamic stiffness and energy usage at short muscle lengths suggest that the limit of shortening in the taenia coli, in contrast to the anococcygeus muscle, is not due to a failure of cross bridge interaction. Phosphorylation of the regulatory myosin light chains in intact muscles decreased to a small extent at short lengths compared to the decrease in force production. The differences in force production and the extent of shortening in the two muscles was maintained even when, following permeabilization, the myosin light chains were irreversibly phosphorylated with ATPγS, indicating that differences in activation played little, if any role. Ultrastructural studies on resting and activated muscles show that the taenia coli, which is rich in connective tissue (unlike the anococcygeus muscle) undergoes marked cellular twisting and contractile filament misalignment at short lengths with compression of the extracellular matrix. As a result, force is not transmitted in the longitudinal axis of the muscle, but is dissipated against an internal load provided by the compressed extracellular matrix. These observations on two very different normal smooth muscles reveal how differences in the relative contribution of active and passive structural elements

  7. Inactivation of Smad5 in Endothelial Cells and Smooth Muscle Cells Demonstrates that Smad5 Is Required for Cardiac Homeostasis

    PubMed Central

    Umans, Lieve; Cox, Luk; Tjwa, Marc; Bito, Virginie; Vermeire, Liesbeth; Laperre, Kjell; Sipido, Karin; Moons, Lieve; Huylebroeck, Danny; Zwijsen, An

    2007-01-01

    Smads are intracellular signaling proteins that transduce signals elicited by members of the transforming growth factor (TGF)-β superfamily. Smad5 and Smad1 are highly homologous, and they mediate primarily bone morphogenetic protein (Bmp) signals. We used the Cre-loxP system and Sm22-Cre and Tie-1-Cre mice to study the function of Smad5 in the developing blood vessel wall. Analysis of embryos demonstrated that deletion of Smad5 in endothelial or smooth muscle cells resulted in a normal organization of embryonic and extra-embryonic vasculature. Angiogenic assays performed in adult mice revealed that mutant mice display a comparable angiogenic and vascular remodeling response to control mice. In Sm22-Cre;Smad5fl/− mice, Smad5 is also deleted in cardiomyocytes. Echocardiographic analysis on those 9-month-old female mice demonstrated larger left ventricle internal diameters and decreased fractional shortening compared with control littermates without signs of cardiac hypertrophy. The decreased cardiac contractility was associated with a decreased performance in a treadmill experiment. In isolated cardiomyocytes, fractional shortening was significantly reduced compared with control cells. These data demonstrate that restricted deletion of Smad5 in the blood vessel wall results in viable mice. However, loss of Smad5 in cardiomyocytes leads to a mild heart defect. PMID:17456754

  8. Inactivation of Smad5 in endothelial cells and smooth muscle cells demonstrates that Smad5 is required for cardiac homeostasis.

    PubMed

    Umans, Lieve; Cox, Luk; Tjwa, Marc; Bito, Virginie; Vermeire, Liesbeth; Laperre, Kjell; Sipido, Karin; Moons, Lieve; Huylebroeck, Danny; Zwijsen, An

    2007-05-01

    Smads are intracellular signaling proteins that transduce signals elicited by members of the transforming growth factor (TGF)-beta superfamily. Smad5 and Smad1 are highly homologous, and they mediate primarily bone morphogenetic protein (Bmp) signals. We used the Cre-loxP system and Sm22-Cre and Tie-1-Cre mice to study the function of Smad5 in the developing blood vessel wall. Analysis of embryos demonstrated that deletion of Smad5 in endothelial or smooth muscle cells resulted in a normal organization of embryonic and extra-embryonic vasculature. Angiogenic assays performed in adult mice revealed that mutant mice display a comparable angiogenic and vascular remodeling response to control mice. In Sm22-Cre; Smad5(fl/-) mice, Smad5 is also deleted in cardiomyocytes. Echocardiographic analysis on those 9-month-old female mice demonstrated larger left ventricle internal diameters and decreased fractional shortening compared with control littermates without signs of cardiac hypertrophy. The decreased cardiac contractility was associated with a decreased performance in a treadmill experiment. In isolated cardiomyocytes, fractional shortening was significantly reduced compared with control cells. These data demonstrate that restricted deletion of Smad5 in the blood vessel wall results in viable mice. However, loss of Smad5 in cardiomyocytes leads to a mild heart defect.

  9. Assays for in vitro monitoring of human airway smooth muscle (ASM) and human pulmonary arterial vascular smooth muscle (VSM) cell migration.

    PubMed

    Goncharova, Elena A; Goncharov, Dmitry A; Krymskaya, Vera P

    2006-01-01

    Migration of human pulmonary vascular smooth muscle (VSM) cells contributes to vascular remodeling in pulmonary arterial hypertension and atherosclerosis. Evidence also indicates that, in part, migration of airway smooth muscle (ASM) cells may contribute to airway remodeling associated with asthma. Here we describe migration of VSM and ASM cells in vitro using Transwell or Boyden chamber assays. Because dissecting signaling mechanisms regulating cell migration requires molecular approaches, our protocol also describes how to assess migration of transfected VSM and ASM cells. Transwell or Boyden chamber assays can be completed in approximately 8 h and include plating of serum-deprived VSM or ASM cell suspension on membrane precoated with collagen, migration of cells toward chemotactic gradient and visual (Transwell) or digital (Boyden chamber) analysis of membrane. Although the Transwell assay is easy, the Boyden chamber assay requires hands-on experience; however, both assays are reliable cell-based approaches providing valuable information on how chemotactic and inflammatory factors modulate VSM and ASM migration.

  10. Physiological and structural properties of saponin-skinned single smooth muscle cells

    PubMed Central

    1987-01-01

    The study of the fundamental events underlying the generation and regulation of force in smooth muscle would be greatly facilitated if the permeability of the cell membrane were increased so that the intracellular environment of the contractile apparatus could be manipulated experimentally. To initiate such an analysis, we developed a saponin permeabilization procedure that was used to "skin" isolated smooth muscle cells from the stomach of the toad, Bufo marinus. Suspensions of single cells isolated enzymatically were resuspended in high-K+ rigor solution (0 ATP, 5 mM EGTA) and exposed for 5 min to 25 micrograms/ml saponin. Virtually all the cells in a suspension were made permeable by this procedure and shortened to less than one-third their initial length when ATP and Ca++ were added; they re-extended when free Ca++ was removed. Analysis of the protein content of the skinned cells revealed that, although their total protein was reduced by approximately 30%, they retained most of their myosin and actin. Skinning was accompanied by a rearrangement of actin and myosin filaments within the cells such that a fine fibrillar structure became visible under the light microscope and a tight clustering of acting filaments around myosin filaments was revealed by the electron microscope. Face-on views of saponin-treated cell membranes revealed the presence of 70-80-A-wide pits or holes. The shortening rate of skinned cells was sensitive to [Ca++] between pCa 7 and pCa 5 and was half-maximal at approximately pCa 6.2. Shortening was also dependent on [ATP] but could be increased at low [ATP] by pretreatment with adenosine-5'-O-(3-thiotriphosphate) (ATP gamma S), which suggests that myosin phosphorylation was more sensitive to low substrate concentrations than was cross-bridge cycling. To determine whether a significant limitation to free diffusion existed in the skinned cells, a computer model of the cell and the unstirred layer surrounding it was developed. Simulations

  11. Physiological and structural properties of saponin-skinned single smooth muscle cells.

    PubMed

    Kargacin, G J; Fay, F S

    1987-07-01

    The study of the fundamental events underlying the generation and regulation of force in smooth muscle would be greatly facilitated if the permeability of the cell membrane were increased so that the intracellular environment of the contractile apparatus could be manipulated experimentally. To initiate such an analysis, we developed a saponin permeabilization procedure that was used to "skin" isolated smooth muscle cells from the stomach of the toad, Bufo marinus. Suspensions of single cells isolated enzymatically were resuspended in high-K+ rigor solution (0 ATP, 5 mM EGTA) and exposed for 5 min to 25 micrograms/ml saponin. Virtually all the cells in a suspension were made permeable by this procedure and shortened to less than one-third their initial length when ATP and Ca++ were added; they re-extended when free Ca++ was removed. Analysis of the protein content of the skinned cells revealed that, although their total protein was reduced by approximately 30%, they retained most of their myosin and actin. Skinning was accompanied by a rearrangement of actin and myosin filaments within the cells such that a fine fibrillar structure became visible under the light microscope and a tight clustering of acting filaments around myosin filaments was revealed by the electron microscope. Face-on views of saponin-treated cell membranes revealed the presence of 70-80-A-wide pits or holes. The shortening rate of skinned cells was sensitive to [Ca++] between pCa 7 and pCa 5 and was half-maximal at approximately pCa 6.2. Shortening was also dependent on [ATP] but could be increased at low [ATP] by pretreatment with adenosine-5'-O-(3-thiotriphosphate) (ATP gamma S), which suggests that myosin phosphorylation was more sensitive to low substrate concentrations than was cross-bridge cycling. To determine whether a significant limitation to free diffusion existed in the skinned cells, a computer model of the cell and the unstirred layer surrounding it was developed. Simulations

  12. Contribution of Rho-kinase to membrane excitability of murine colonic smooth muscle.

    PubMed

    Bayguinov, O; Dwyer, L; Kim, H; Marklew, A; Sanders, K M; Koh, S D

    2011-06-01

    The Rho-kinase pathway regulates agonist-induced contractions in several smooth muscles, including the intestine, urinary bladder and uterus, via dynamic changes in the Ca(2+) sensitivity of the contractile apparatus. However, there is evidence that Rho-kinase also modulates other cellular effectors such as ion channels. We examined the regulation of colonic smooth muscle excitability by Rho-kinase using conventional microelectrode recording, isometric force measurements and patch-clamp techniques. The Rho-kinase inhibitors, Y-27632 and H-1152, decreased nerve-evoked on- and off-contractions elicited at a range of frequencies and durations. The Rho-kinase inhibitors decreased the spontaneous contractions and the responses to carbachol and substance P independently of neuronal inputs, suggesting Y-27632 acts directly on smooth muscle. The Rho-kinase inhibitors significantly reduced the depolarization in response to carbachol, an effect that cannot be due to regulation of Ca(2+) sensitization. Patch-clamp experiments showed that Rho-kinase inhibitors reduce GTPγS-activated non-selective cation currents. The Rho-kinase inhibitors decreased contractions evoked by nerve stimulation, carbachol and substance P. These effects were not solely due to inhibition of the Ca(2+) sensitization pathway, as the Rho-kinase inhibitors also inhibited the non-selective cation conductances activated by excitatory transmitters. Thus, Rho-kinase may regulate smooth muscle excitability mechanisms by regulating non-selective cation channels as well as changing the Ca(2+) sensitivity of the contractile apparatus. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  13. Cross-bridge kinetics, cooperativity, and negatively strained cross- bridges in vertebrate smooth muscle. A laser-flash photolysis study

    PubMed Central

    1988-01-01

    The effects of laser-flash photolytic release of ATP from caged ATP [P3- 1(2-nitrophenyl)ethyladenosine-5'-triphosphate] on stiffness and tension transients were studied in permeabilized guinea pig protal vein smooth muscle. During rigor, induced by removing ATP from the relaxed or contracting muscles, stiffness was greater than in relaxed muscle, and electron microscopy showed cross-bridges attached to actin filaments at an approximately 45 degree angle. In the absence of Ca2+, liberation of ATP (0.1-1 mM) into muscles in rigor caused relaxation, with kinetics indicating cooperative reattachment of some cross- bridges. Inorganic phosphate (Pi; 20 mM) accelerated relaxation. A rapid phase of force development, accompanied by a decline in stiffness and unaffected by 20 mM Pi, was observed upon liberation of ATP in muscles that were released by 0.5-1.0% just before the laser pulse. This force increment observed upon detachment suggests that the cross- bridges can bear a negative tension. The second-order rate constant for detachment of rigor cross-bridges by ATP, in the absence of Ca2+, was estimated to be 0.1-2.5 X 10(5) M-1s-1, which indicates that this reaction is too fast to limit the rate of ATP hydrolysis during physiological contractions. In the presence of Ca2+, force development occurred at a rate (0.4 s-1) similar to that of intact, electrically stimulated tissue. The rate of force development was an order of magnitude faster in muscles that had been thiophosphorylated with ATP gamma S before the photochemical liberation of ATP, which indicates that under physiological conditions, in non-thiophosphorylated muscles, light-chain phosphorylation, rather than intrinsic properties of the actomyosin cross-bridges, limits the rate of force development. The release of micromolar ATP or CTP from caged ATP or caged CTP caused force development of up to 40% of maximal active tension in the absence of Ca2+, consistent with cooperative attachment of cross

  14. Differential Effect of Zoledronic Acid on Human Vascular Smooth Muscle Cells

    PubMed Central

    Albadawi, Hassan; Haurani, Mounir J.; Oklu, Rahmi; Trubiano, Jordan P.; Laub, Peter J.; Yoo, Hyung-Jin; Watkins, Michael T.

    2012-01-01

    Introduction The activation of human vascular smooth muscle cell proliferation, adhesion and migration is essential for intimal hyperplasia formation. These experiments were designed to test whether Zoledronic Acid (ZA) would modulate indices of human smooth muscle cell activation, exert differential effects on proliferating vs. quiescent cells and determine whether these effects were dependent on GTPase binding proteins prenylation. ZA was chosen for testing in these experiments because it is clinically used in humans with cancer, and has been shown to modulate rat smooth muscle cell proliferation and migration. Methods Human aortic smooth muscle cells (HASMC) were cultured under either proliferating or growth arrest (quiescent) conditions in the presence or absence of ZA for 48 hours, whereupon the effect of ZA on HASMC proliferation, cellular viability, metabolic activity and membrane integrity were compared. In addition, the effect of ZA on adhesion and migration were assessed in proliferating cells. The effect of increased concentration of ZA on the mevalonate pathway and genomic/cellular stress related poly ADP Ribose polymerase (PARP) enzyme activity were assessed using the relative prenylation of Rap-1A/B protein and the formation of poly ADP- ribosylated proteins (PAR) respectively. Results There was a dose dependent inhibition of cellular proliferation, adhesion and migration following ZA treatment. ZA treatment decreased indices of cellular viability and significantly increased membrane injury in proliferating vs. quiescent cells. This was correlated with the appearance of unprenylated Rap-1A protein and dose dependent down regulation of PARP activity. Conclusions These data suggest that ZA is effective in inhibiting HASMC proliferation, adhesion and migration which coincide with the appearance of unprenylated RAP-1A/B protein, thereby suggesting that the mevalonate pathway may play a role in the inhibition of HASMC activation. PMID:23164362

  15. Smooth muscle relaxing flavonoids and terpenoids from Conyza filaginoides.

    PubMed

    Mata, R; Rojas, A; Acevedo, L; Estrada, S; Calzada, F; Rojas, I; Bye, R; Linares, E

    1997-02-01

    Activity-guided fractionation of the smooth muscle relaxing, chloroform-methanol (1:1) extract of Conyza filaginoides (D.C.) Hieron (Asteraceae) led to the isolation of three flavonoids (quercetin 3-glucoside, rutin, and pinostrobin), one sterol (alpha-spinasterol), a sesquiterpenoid (beta-caryophyllene 4,5-alpha-oxide), and two triterpenoids (erythrodiol and 3-beta-tridecanoyloxy-28-hydroxyolean-12-ene). 3-beta-Tridecanoyloxy-28-hydroxy-olean-12-ene is a new naturally occurring terpenoid. All the isolated compounds induced a concentration-dependent inhibition of the spontaneous contractions of rat ileum. The spasmolytic activity exhibited by the extract and active principles tends to support the traditional use of C filaginoides as an antispasmodic agent.

  16. Fetal human airway smooth muscle cell production of leukocyte chemoattractants is differentially regulated by fluticasone.

    PubMed

    Pearson, Helen; Britt, Rodney D; Pabelick, Christine M; Prakash, Y S; Amrani, Yassine; Pandya, Hitesh C

    2015-12-01

    Adult human airway smooth muscle (ASM) produce cytokines involved in recruitment and survival of leukocytes within airway walls. Cytokine generation by adult ASM is glucocorticoid-sensitive. Whether developing lung ASM produces cytokines in a glucocorticoid-sensitive fashion is unknown. Cultured fetal human ASM cells stimulated with TNF-α (0-20 ng/ml) were incubated with TNF-α receptor-blocking antibodies, fluticasone (1 and 100 nm), or vehicle. Supernatants and cells were assayed for the production of CCL5, CXCL10, and CXCL8 mRNA and protein and glucocorticoid receptor phosphorylation. CCL5, CXCL10, and CXCL8 mRNA and protein production by fetal ASM cell was significantly and dose-dependently following TNF-α treatment. Cytokine mRNA and protein production were effectively blocked by TNF-α R1 and R2 receptor neutralizing antibodies but variably inhibited by fluticasone. TNF-α-induced TNF-R1 and R2 receptor mRNA expression was only partially attenuated by fluticasone. Glucocorticoid receptor phosphorylation at serine (Ser) 211 but not at Ser 226 was enhanced by fluticasone. Production of CCL5, CXCL10, and CXCL8 by fetal ASM appears to involve pathways that are both qualitatively and mechanistically distinct to those described for adult ASM. The findings imply developing ASM has potential to recruit leukocyte into airways and, therefore, of relevance to childhood airway diseases.

  17. THE EFFECT OF SMOOTH MUSCLE ON THE INTERCELLULAR SPACES IN TOAD URINARY BLADDER

    PubMed Central

    DiBona, Donald R.; Civan, Mortimer M.

    1970-01-01

    Phase microscopy of toad urinary bladder has demonstrated that vasopressin can cause an enlargement of the epithelial intercellular spaces under conditions of no net transfer of water or sodium. The suggestion that this phenomenon is linked to the hormone's action as a smooth muscle relaxant has been tested and verified with the use of other agents effecting smooth muscle: atropine and adenine compounds (relaxants), K+ and acetylcholine (contractants). Furthermore, it was possible to reduce the size and number of intercellular spaces, relative to a control, while increasing the rate of osmotic water flow. A method for quantifying these results has been developed and shows that they are, indeed, significant. It is concluded, therefore, that the configuration of intercellular spaces is not a reliable index of water flow across this epithelium and that such a morphologic-physiologic relationship is tenuous in any epithelium supported by a submucosa rich in smooth muscle. PMID:4915450

  18. p21‐Activated kinase (Pak) regulates airway smooth muscle contraction by regulating paxillin complexes that mediate actin polymerization

    PubMed Central

    Zhang, Wenwu; Huang, Youliang

    2016-01-01

    Key points In airway smooth muscle, tension development caused by a contractile stimulus requires phosphorylation of the 20 kDa myosin light chain (MLC), which activates crossbridge cycling and the polymerization of a pool of submembraneous actin.The p21‐activated kinases (Paks) can regulate the contractility of smooth muscle and non‐muscle cells, and there is evidence that this occurs through the regulation of MLC phosphorylation.We show that Pak has no effect on MLC phosphorylation during the contraction of airway smooth muscle, and that it regulates contraction by mediating actin polymerization.We find that Pak phosphorylates the adhesion junction protein, paxillin, on Ser273, which promotes the formation of a signalling complex that activates the small GTPase, cdc42, and the actin polymerization catalyst, neuronal Wiskott–Aldrich syndrome protein (N‐WASP).These studies demonstrate a novel role for Pak in regulating the contractility of smooth muscle by regulating actin polymerization. Abstract The p21‐activated kinases (Pak) can regulate contractility in smooth muscle and other cell and tissue types, but the mechanisms by which Paks regulate cell contractility are unclear. In airway smooth muscle, stimulus‐induced contraction requires phosphorylation of the 20 kDa light chain of myosin, which activates crossbridge cycling, as well as the polymerization of a small pool of actin. The role of Pak in airway smooth muscle contraction was evaluated by inhibiting acetylcholine (ACh)‐induced Pak activation through the expression of a kinase inactive mutant, Pak1 K299R, or by treating tissues with the Pak inhibitor, IPA3. Pak inhibition suppressed actin polymerization and contraction in response to ACh, but it did not affect myosin light chain phosphorylation. Pak activation induced paxillin phosphorylation on Ser273; the paxillin mutant, paxillin S273A, inhibited paxillin Ser273 phosphorylation and inhibited actin polymerization and contraction

  19. Hydroxyapatite and Calcified Elastin Induce Osteoblast-like Differentiation in Rat Aortic Smooth Muscle Cells

    PubMed Central

    Lei, Yang; Sinha, Aditi; Nosoudi, Nasim; Grover, Ankit; Vyavahare, Naren

    2014-01-01

    Vascular calcification can be categorized into two different types. Intimal calcification related to atherosclerosis and elastin-specific medial arterial calcification (MAC). Osteoblast-like differentiation of vascular smooth muscle cells (VSMCs) has been shown in both types; however, how this relates to initiation of vascular calcification is unclear. We hypothesize that the initial deposition of hydroxyapatite-like mineral in MAC occurs on degraded elastin first and that causes osteogenic transformation of VSMCs. To test this, rat aortic smooth muscle cells (RASMCs) were cultured on hydroxyapatite crystals and calcified aortic elastin. Using RT-PCR and specific protein assays, we demonstrate that RASMCs lose their smooth muscle lineage markers like alpha smooth muscle actin (SMA) and myosin heavy chain (MHC) and undergo chondrogenic/osteogenic transformation. This is indicated by an increase in the expression of typical chondrogenic proteins such as aggrecan, collagen type II alpha 1(Col2a1) and bone proteins such as runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP) and osteocalcin (OCN). Furthermore, when calcified conditions are removed, cells return to their original phenotype. Our data supports the hypothesis that elastin degradation and calcification precedes VSMCs' osteoblast-like differentiation. PMID:24447384

  20. Effects of ghrelin and motilin on smooth muscle contractility of the isolated gastrointestinal tract from the bullfrog and Japanese fire belly newt.

    PubMed

    Kitazawa, Takio; Shimazaki, Misato; Kikuta, Ayumi; Yaosaka, Noriko; Teraoka, Hiroki; Kaiya, Hiroyuki

    2016-06-01

    Ghrelin has been identified in some amphibians and is known to stimulate growth hormone release and food intake as seen in mammals. Ghrelin regulates gastrointestinal motility in mammals and birds. The aim of this study was to determine whether ghrelin affects gastrointestinal smooth muscle contractility in bullfrogs (anuran) and Japanese fire belly newts (urodelian) in vitro. Neither bullfrog ghrelin nor rat ghrelin affected longitudinal smooth muscle contractility of gastrointestinal strips from the bullfrog. Expression of growth hormone secretagogue receptor 1a (GHS-R1a) mRNA was confirmed in the bullfrog gastrointestinal tract, and the expression level in the gastric mucosa was lower than that in the intestinal mucosa. In contrast, some gastrointestinal peptides, including substance P, neurotensin and motilin, and the muscarinic receptor agonist carbachol showed marked contraction, indicating normality of the smooth muscle preparations. Similar results were obtained in another amphibian, the Japanese fire belly newt. Newt ghrelin and rat ghrelin did not cause any contraction in gastrointestinal longitudinal muscle, whereas substance P and carbachol were effective causing contraction. In conclusion, ghrelin does not affect contractility of the gastrointestinal smooth muscle in anuran and urodelian amphibians, similar to results for rainbow trout and goldfish (fish) but different from results for rats and chickens. The results suggest diversity of ghrelin actions on the gastrointestinal tract across animals. This study also showed for the first time that motilin induces gastrointestinal contraction in amphibians. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Investigating the role of smooth muscle cells in large elastic arteries: a finite element analysis.

    PubMed

    Murtada, Sae-Il; Holzapfel, Gerhard A

    2014-10-07

    Physiological loading in large elastic arteries is considered to be mainly carried by the passive components of the media but it is not known how much the contraction of the smooth muscle cells is actually involved in the load carrying. Smooth muscle contraction is considered to occur in a relatively slow time domain but the contraction is able to produce significant tension. In the present work the role of smooth muscle contraction in large elastic arteries is investigated by analyzing how changes in the intracellular calcium, and thereby the active tone of smooth muscle cells, influence the deformation and stress behavior; different intracellular calcium functions and medial wall thicknesses with cycling internal pressure are studied. In particular, a recently proposed mechanochemical model (Murtada et al., 2012. J. Theor. Biol. 297, 176-186), which links intracellular calcium with mechanical contraction and an anisotropic model representing the elastin/collagen composite, was implemented into a 3D finite element framework. Details of the implementation procedure are described and a verification of the model implementation is provided by means of the isometric contraction/relaxation analysis of a medial strip at optimal muscle length. In addition, numerically obtained pressure-radius relationships of arterial rings modeled with one and two layers are analyzed with different geometries and at different calcium levels; a comparison with the Laplace equation is provided. Finally, a two-layer arterial ring is loaded with a realistic pressure wave and with various intracellular calcium functions (different amplitudes and mean values) and medial wall thicknesses; residual stresses are considered. The finite element results show that changes in the calcium amplitudes hardly have an influence on the current inner ring radius and the circumferential stress. However, an increase in the mean intracellular calcium value and the medial wall thickness leads to a clear

  2. Laboratory practical to study the differential innervation pathways of urinary tract smooth muscle.

    PubMed

    Rembetski, Benjamin E; Cobine, Caroline A; Drumm, Bernard T

    2018-06-01

    In the mammalian lower urinary tract, there is a reciprocal relationship between the contractile state of the bladder and urethra. As the bladder fills with urine, it remains relaxed to accommodate increases in volume, while the urethra remains contracted to prevent leakage of urine from the bladder to the exterior. Disruptions to the normal contractile state of the bladder and urethra can lead to abnormal micturition patterns and urinary incontinence. While both the bladder and urethra are smooth-muscle organs, they are differentially contracted by input from cholinergic and sympathetic nerves, respectively. The laboratory practical described here provides an experiential approach to understanding the anatomy of the lower urinary tract. Several key factors in urinary tract physiology are outlined, e.g., the bladder is contracted by activation of the parasympathetic pathway via cholinergic stimulation on muscarinic receptors, whereas the urethra is contracted by activation of the sympathetic pathway via adrenergic stimulation on α 1 -adrenoceptors. This is achieved by measuring the force generated by bladder and urethra smooth muscle to demonstrate that acetylcholine contracts the smooth muscle of the bladder, whereas adrenergic agonists contract the urethral smooth muscle. An inhibition of these effects is also demonstrated by application of the muscarinic receptor antagonist atropine and the α 1 -adrenergic receptor blocker phentolamine. A list of suggested techniques and exam questions to evaluate student understanding on this topic is also provided.

  3. Site-directed spin labeling reveals a conformational switch in the phosphorylation domain of smooth muscle myosin.

    PubMed

    Nelson, Wendy D; Blakely, Sarah E; Nesmelov, Yuri E; Thomas, David D

    2005-03-15

    We have used site-directed spin labeling and EPR spectroscopy to detect structural changes within the regulatory light chain (RLC) of smooth muscle myosin upon phosphorylation. Smooth muscle contraction is activated by phosphorylation of S19 on RLC, but the structural basis of this process is unknown. There is no crystal structure containing a phosphorylated RLC, and there is no crystal structure for the N-terminal region of any RLC. Therefore, we have prepared single-Cys mutations throughout RLC, exchanged each mutant onto smooth muscle heavy meromyosin, verified normal regulatory function, and used EPR to determine dynamics and solvent accessibility at each site. A survey of spin-label sites throughout the RLC revealed that only the N-terminal region (first 24 aa) shows a significant change in dynamics upon phosphorylation, with most of the first 17 residues showing an increase in rotational amplitude. Therefore, we focused on this N-terminal region. Additional structural information was obtained from the pattern of oxygen accessibility along the sequence. In the absence of phosphorylation, little or no periodicity was observed, suggesting a lack of secondary structural order in this region. However, phosphorylation induced a strong helical pattern (3.6-residue periodicity) in the first 17 residues, while increasing accessibility throughout the first 24 residues. We have identified a domain within RLC, the N-terminal phosphorylation domain, in which phosphorylation increases helical order, internal dynamics, and accessibility. These results support a model in which this disorder-to-order transition within the phosphorylation domain results in decreased head-head interactions, activating myosin in smooth muscle.

  4. A maturational model for the study of airway smooth muscle adaptation to mechanical oscillation.

    PubMed

    Wang, Lu; Chitano, Pasquale; Murphy, Thomas M

    2005-10-01

    It has been shown that mechanical stretches imposed on airway smooth muscle (ASM) by deep inspiration reduce the subsequent contractile response of the ASM. This passive maneuver of lengthening and retraction of the muscle is beneficial in normal subjects to counteract bronchospasm. However, it is detrimental to hyperresponsive airways because it triggers further bronchoconstriction. Although the exact mechanisms for this contrary response by normal and hyperresponsive airways are unclear, it has been suggested that the phenomenon is related to changes in ASM adaptability to mechanical oscillation. Healthy immature airways of both human and animal exhibit hyperresponsiveness, but whether the adaptative properties of hyperresponsive airway differ from normal is still unknown. In this article, we review the phenomenon of ASM adaptation to mechanical oscillation and its relevance and implication to airway hyperresponsiveness. We demonstrate that the age-specific expression of ASM adaptation is prominent using an established maturational animal model developed in our laboratory. Our data on immature ASM showed potentiated contractile force shortly after a length oscillation compared with the maximum force generated before oscillation. Several potential mechanisms such as myogenic response, changes in actin polymerization, or changes in the quantity of the cytoskeletal regulatory proteins plectin and vimentin, which may underlie this age-specific force potentiation, are discussed. We suggest a working model of the structure of smooth muscle associated with force transmission, which may help to elucidate the mechanisms responsible for the age-specific expression of smooth muscle adaptation. It is important to study the maturational profile of ASM adaptation as it could contribute to juvenile hyperresponsiveness.

  5. Augmented vascular smooth muscle cell stiffness and adhesion when hypertension is superimposed on aging.

    PubMed

    Sehgel, Nancy L; Sun, Zhe; Hong, Zhongkui; Hunter, William C; Hill, Michael A; Vatner, Dorothy E; Vatner, Stephen F; Meininger, Gerald A

    2015-02-01

    Hypertension and aging are both recognized to increase aortic stiffness, but their interactions are not completely understood. Most previous studies have attributed increased aortic stiffness to changes in extracellular matrix proteins that alter the mechanical properties of the vascular wall. Alternatively, we hypothesized that a significant component of increased vascular stiffness in hypertension is due to changes in the mechanical and adhesive properties of vascular smooth muscle cells, and that aging would augment the contribution from vascular smooth muscle cells when compared with the extracellular matrix. Accordingly, we studied aortic stiffness in young (16-week-old) and old (64-week-old) spontaneously hypertensive rats and Wistar-Kyoto wild-type controls. Systolic and pulse pressures were significantly increased in young spontaneously hypertensive rats when compared with young Wistar-Kyoto rats, and these continued to rise in old spontaneously hypertensive rats when compared with age-matched controls. Excised aortic ring segments exhibited significantly greater elastic moduli in both young and old spontaneously hypertensive rats versus Wistar-Kyoto rats. were isolated from the thoracic aorta, and stiffness and adhesion to fibronectin were measured by atomic force microscopy. Hypertension increased both vascular smooth muscle cell stiffness and vascular smooth muscle cell adhesion, and these increases were both augmented with aging. By contrast, hypertension did not affect histological measures of aortic collagen and elastin, which were predominantly changed by aging. These findings support the concept that stiffness and adhesive properties of vascular smooth muscle cells are novel mechanisms contributing to the increased aortic stiffness occurring with hypertension superimposed on aging. © 2014 American Heart Association, Inc.

  6. Role of SM22 in the differential regulation of phasic vs. tonic smooth muscle

    PubMed Central

    Ali, Mehboob

    2015-01-01

    Preliminary proteomics studies between tonic vs. phasic smooth muscles identified three distinct protein spots identified to be those of transgelin (SM22). The latter was found to be distinctly downregulated in the internal anal sphincter (IAS) vs. rectal smooth muscle (RSM) SMC. The major focus of the present studies was to examine the differential molecular control mechanisms by SM22 in the functionality of truly tonic smooth muscle of the IAS vs. the adjoining phasic smooth muscle of the RSM. We monitored SMC lengths before and after incubation with pFLAG-SM22 (for SM22 overexpression), and SM22 small-interfering RNA. pFLAG-SM22 caused concentration-dependent and significantly greater relaxation in the IAS vs. the RSM SMCs. Conversely, temporary silencing of SM22 caused contraction in both types of the SMCs. Further studies revealed a significant reverse relationship between the levels of SM22 phosphorylation and the amount of SM22-actin binding in the IAS and RSM SMC. Data showed higher phospho-SM22 levels and decreased SM22-actin binding in the IAS, and reverse to be the case in the RSM SMCs. Experiments determining the mechanism for SM22 phosphorylation in these smooth muscles revealed that Y-27632 (Rho kinase inhibitor) but not Gö-6850 (protein kinase C inhibitor) caused concentration-dependent decreased phosphorylation of SM22. We speculate that SM22 plays an important role in the regulation of basal tone via Rho kinase-induced phosphorylation of SM22. PMID:25617350

  7. Tracheal smooth muscle responses to substance P and neurokinin A in the piglet.

    PubMed

    Haxhiu-Poskurica, B; Haxhiu, M A; Kumar, G K; Miller, M J; Martin, R J

    1992-03-01

    The tachykinins substance P (SP) and neurokinin A (NKA) have been shown to induce airway smooth muscle contraction in mature animals, and the enzyme neutral endopeptidase (NEP) modulates this effect. We evaluated maturation of SP- and NKA-induced tracheal smooth muscle contraction and modulation of their effects by NEP in anesthetized, paralyzed, and artificially ventilated piglets less than 4 days, 2-3 wk, and 10 wk of age. Tracheal smooth muscle tension was measured in vivo from an open tracheal segment by use of a force transducer. Intravenous SP caused a dose-dependent increase in tracheal tension in all three age groups; however, the response in less than 4-day-old piglets was significantly weaker than in 2- to 3- and 10-wk-old piglets. NKA caused a dose-dependent increase in tracheal tension only in 2- to 3- and 10-wk-old piglets. The response of tracheal tension to NKA was weaker than the response to SP in all age groups. Atropine (2 mg/kg) significantly diminished the responses of tracheal tension to SP and NKA, indicating a cholinergic contribution to these responses at all ages. Intravenous thiorphan, a known NEP inhibitor, potentiated the effects of SP only in 2- to 3- and 10-wk-old piglets and did not affect the response of tracheal tension to NKA at any age. Biochemical analyses demonstrated a significant increase in tracheal NEP activity in comparably aged piglets over the first 10 wk of life.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Role of guanine nucleotide-binding proteins--ras-family or trimeric proteins or both--in Ca2+ sensitization of smooth muscle.

    PubMed Central

    Gong, M C; Iizuka, K; Nixon, G; Browne, J P; Hall, A; Eccleston, J F; Sugai, M; Kobayashi, S; Somlyo, A V; Somlyo, A P

    1996-01-01

    The purpose of this study was to identify guanine nucleotide-binding proteins (G proteins) involved in the agonist- and guanosine 5'-[gamma-thio]triphosphate (GTP[gamma-S])-induced increase in the Ca2+ sensitivity of 20-kDa myosin light chain (MLC20) phosphorylation and contraction in smooth muscle. A constitutively active, recombinant val14p21rhoA.GTP expressed in the baculovirus/Sf9 system, but not the protein expressed without posttranslational modification in Escherichia coli, induced at constant Ca2+ (pCa 6.4) a slow contraction associated with increased MLC20 phosphorylation from 19.8% to 29.5% (P < 0.05) in smooth muscle permeabilized with beta-esein. The effect of val14p21rhoA.GTP was inhibited by ADP-ribosylation of the protein and was absent in smooth muscle extensively permeabilized with Triton X-100. ADP-ribosylation of endogenous p21rho with epidermal cell differentiation inhibitor (EDIN) inhibited Ca2+ sensitization induced by GTP [in rabbit mesenteric artery (RMA) and rabbit ileum smooth muscles], by carbachol (in rabbit ileum), and by endothelin (in RMA), but not by phenylephrine (in RMA), and only slowed the rate without reducing the amplitude of contractions induced in RMA by 1 microM GTP[gamma-S] at constant Ca2+ concentrations. AlF(4-)-induced Ca2+ sensitization was inhibited by both guanosine 5'-[beta-thio]diphosphate (GDP[beta-S]) and by EDIN. EDIN also inhibited, to a lesser extent, contractions induced by Ca2+ alone (pCa 6.4) in both RMA and rabbit ileum. ADP-ribosylation of trimeric G proteins with pertussis toxin did not inhibit Ca2+ sensitization. We conclude that p21rho may play a role in physiological Ca2+ sensitization as a cofactor with other messengers, rather than as a sole direct inhibitor of smooth muscle MLC20 phosphatase. Images Fig. 3 Fig. 4 PMID:8577766

  9. Role of smooth muscle cells on endothelial cell cytosolic free calcium in porcine coronary arteries.

    PubMed

    Budel, S; Schuster, A; Stergiopoulos, N; Meister, J J; Bény, J L

    2001-09-01

    We tested the hypothesis that the cytosolic free calcium concentration in endothelial cells is under the influence of the smooth muscle cells in the coronary circulation. In the left descending branch of porcine coronary arteries, cytosolic free calcium concentration ([Ca(2+)](i)) was estimated by determining the fluorescence ratio of two calcium probes, fluo 4 and fura red, in smooth muscle and endothelial cells using confocal microscopy. Acetylcholine and potassium, which act directly on smooth muscle cells to increase [Ca(2+)](i), were found to indirectly elevate [Ca(2+)](i) in endothelial cells; in primary cultures of endothelial cells, neither stimulus affected [Ca(2+)](i), yet substance P increased the fluorescence ratio twofold. In response to acetylcholine and potassium, isometric tension developed by arterial strips with intact endothelium was attenuated by up to 22% (P < 0.05) compared with strips without endothelium. These findings suggest that stimuli that increase smooth muscle [Ca(2+)](i) can indirectly influence endothelial cell function in porcine coronary arteries. Such a pathway for negative feedback can moderate vasoconstriction and diminish the potential for vasospasm in the coronary circulation.

  10. Impaired arterial smooth muscle cell vasodilatory function in methamphetamine users.

    PubMed

    Nabaei, Ghaemeh; Oveisgharan, Shahram; Ghorbani, Askar; Fatehi, Farzad

    2016-11-15

    Methamphetamine use is a strong risk factor for stroke. This study was designed to evaluate arterial function and structure in methamphetamine users ultrasonographically. In a cross-sectional study, 20 methamphetamine users and 21 controls, aged between 20 and 40years, were enrolled. Common carotid artery intima-media thickness (CCA-IMT) marker of early atherogenesis, flow-mediated dilatation (FMD) determinants of endothelium-dependent vasodilation, and nitroglycerine-mediated dilatation (NMD) independent marker of vasodilation were measured in two groups. There were no significant differences between the two groups regarding demographic and metabolic characteristics. The mean (±SD) CCA-IMT in methamphetamine users was 0.58±0.09mm, versus 0.59±0.07mm in the controls (p=0.84). Likewise, FMD% was not significantly different between the two groups [7.6±6.1% in methamphetamine users vs. 8.2±5.1% in the controls; p=0.72], nor were peak flow and shear rate after hyperemia. However, NMD% was considerably decreased in the methamphetamine users [8.5±7.8% in methamphetamine users vs. 13.4±6.2% in controls; p=0.03]. According to our results, NMD is reduced among otherwise healthy methamphetamine users, which represents smooth muscle dysfunction in this group. This may contribute to the high risk of stroke among methamphetamine users. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Impaired contractile responses and altered expression and phosphorylation of Ca2+ sensitization proteins in gastric antrum smooth muscles from ob/ob mice

    PubMed Central

    Bhetwal, Bhupal P.; An, Changlong; Baker, Salah A.; Lyon, Kristin L.

    2013-01-01

    Diabetic gastroparesis is a common complication of diabetes, adversely affecting quality of life with symptoms of abdominal discomfort, nausea, and vomiting. The pathogenesis of this complex disorder is not well understood, involving abnormalities in the extrinsic and enteric nervous systems, interstitial cells of Cajal (ICCs), smooth muscles and immune cells. The ob/ob mouse model of obesity and diabetes develops delayed gastric emptying, providing an animal model for investigating how gastric smooth muscle dysfunction contributes to the pathophysiology of diabetic gastroparesis. Although ROCK2, MYPT1, and CPI-17 activities are reduced in intestinal motility disorders, their functioning has not been investigated in diabetic gastroparesis. We hypothesized that reduced expression and phosphorylation of the myosin light chain phosphatase (MLCP) inhibitory proteins MYPT1 and CPI-17 in ob/ob gastric antrum smooth muscles could contribute to the impaired antrum smooth muscle function of diabetic gastroparesis. Spontaneous and carbachol- and high K+-evoked contractions of gastric antrum smooth muscles from 7 to 12 week old male ob/ob mice were reduced compared to age- and strain-matched controls. There were no differences in spontaneous and agonist-evoked intracellular Ca2+ transients and myosin light chain kinase expression. The F-actin:G-actin ratios were similar. Rho kinase 2 (ROCK2) expression was decreased at both ages. Basal and agonist-evoked MYPT1 and myosin light chain 20 phosphorylation, but not CPI-17 phosphorylation, was reduced compared to age-matched controls. These findings suggest that reduced MLCP inhibition due to decreased ROCK2 phosphorylation of MYPT1 in gastric antrum smooth muscles contributes to the antral dysmotility of diabetic gastroparesis. PMID:23576331

  12. Mixed endometrial stromal and smooth muscle tumor: report of a case with focal anaplasia and early postoperative lung metastasis.

    PubMed

    Shintaku, Masayuki; Hashimoto, Hiromi

    2013-04-01

    A rare case of a mixed endometrial stromal and smooth muscle tumor arising in the uterus of a 74-year-old woman is reported. The patient underwent hysterectomy for an enlarging uterine mass, and a large intramural tumor, showing marked central hyaline necrosis with calcification, was found. The tumor consisted of an admixture of a low-grade endometrial stromal sarcoma (ESS) and a fascicular proliferation of spindle cells suggesting smooth muscle differentiation, and a characteristic 'star-burst' appearance was found. In the ESS region, there were a few small foci of anaplasia where large polygonal cells with atypical nuclei and abundant eosinophilic cytoplasm proliferated, and the proliferative activity was locally increased in these foci. A small metastatic nodule appeared in the lung nine months after the hysterectomy, and the resected metastatic lesion showed features of anaplastic spindle cell sarcoma which was immunoreactive for CD10 but not for smooth muscle markers. Mixed endometrial stromal and smooth muscle tumors should be regarded as malignant neoplasms with the potential for hematogenous metastasis, particularly when they contain foci of cellular anaplasia. © 2013 The Authors. Pathology International © 2013 Japanese Society of Pathology and Wiley Publishing Asia Pty Ltd.

  13. A Simple, Inexpensive Model to Demonstrate How Contraction of GI Longitudinal Smooth Muscle Promotes Propulsion

    ERIC Educational Resources Information Center

    Lujan, Heidi L.; DiCarlo, Stephen E.

    2015-01-01

    Peristalis is a propulsive activity that involves both circular and longitudinal muscle layers of the esophagus, distal stomach, and small and large intestines. During peristalsis, the circular smooth muscle contracts behind (on the orad side) the bolus and relaxes in front (on the aborad side) of the bolus. At the same time, the longitudinal…

  14. Intercellular ultrafast Ca2+ wave in vascular smooth muscle cells: numerical and experimental study

    NASA Astrophysics Data System (ADS)

    Quijano, J. C.; Raynaud, F.; Nguyen, D.; Piacentini, N.; Meister, J. J.

    2016-08-01

    Vascular smooth muscle cells exhibit intercellular Ca2+ waves in response to local mechanical or KCl stimulation. Recently, a new type of intercellular Ca2+ wave was observed in vitro in a linear arrangement of smooth muscle cells. The intercellular wave was denominated ultrafast Ca2+ wave and it was suggested to be the result of the interplay between membrane potential and Ca2+ dynamics which depended on influx of extracellular Ca2+, cell membrane depolarization and its intercel- lular propagation. In the present study we measured experimentally the conduction velocity of the membrane depolarization and performed simulations of the ultrafast Ca2+ wave along coupled smooth muscle cells. Numerical results reproduced a wide spectrum of experimental observations, including Ca2+ wave velocity, electrotonic membrane depolarization along the network, effects of inhibitors and independence of the Ca2+ wave speed on the intracellular stores. The numerical data also provided new physiological insights suggesting ranges of crucial model parameters that may be altered experimentally and that could significantly affect wave kinetics allowing the modulation of the wave characteristics experimentally. Numerical and experimental results supported the hypothesis that the propagation of membrane depolarization acts as an intercellular messenger mediating intercellular ultrafast Ca2+ waves in smooth muscle cells.

  15. Kir2.1 encodes the inward rectifier potassium channel in rat arterial smooth muscle cells

    PubMed Central

    Bradley, Karri K; Jaggar, Jonathan H; Bonev, Adrian D; Heppner, Thomas J; Flynn, Elaine RM; Nelson, Mark T; Horowitz, Burton

    1999-01-01

    The molecular nature of the strong inward rectifier K+ channel in vascular smooth muscle was explored by using isolated cell RT-PCR, cDNA cloning and expression techniques.RT-PCR of RNA from single smooth muscle cells of rat cerebral (basilar), coronary and mesenteric arteries revealed transcripts for Kir2.1. Transcripts for Kir2.2 and Kir2.3 were not found.Quantitative PCR analysis revealed significant differences in transcript levels of Kir2.1 between the different vascular preparations (n = 3; P < 0.05). A two-fold difference was detected between Kir2.1 mRNA and β-actin mRNA in coronary arteries when compared with relative levels measured in mesenteric and basilar preparations.Kir2.1 was cloned from rat mesenteric vascular smooth muscle cells and expressed in Xenopus oocytes. Currents were strongly inwardly rectifying and selective for K+.The effect of extracellular Ba2+, Ca2+, Mg2+ and Cs2+ ions on cloned Kir2.1 channels expressed in Xenopus oocytes was examined. Ba2+ and Cs+ block were steeply voltage dependent, whereas block by external Ca2+ and Mg2+ exhibited little voltage dependence. The apparent half-block constants and voltage dependences for Ba2+, Cs+, Ca2+ and Mg2+ were very similar for inward rectifier K+ currents from native cells and cloned Kir2.1 channels expressed in oocytes.Molecular studies demonstrate that Kir2.1 is the only member of the Kir2 channel subfamily present in vascular arterial smooth muscle cells. Expression of cloned Kir2.1 in Xenopus oocytes resulted in inward rectifier K+ currents that strongly resemble those that are observed in native vascular arterial smooth muscle cells. We conclude that Kir2.1 encodes for inward rectifier K+ channels in arterial smooth muscle. PMID:10066894

  16. Lysyl oxidase propeptide inhibits smooth muscle cell signaling and proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurtado, Paola A.; Vora, Siddharth; Sume, Siddika Selva

    2008-02-01

    Lysyl oxidase is required for the normal biosynthesis and maturation of collagen and elastin. It is expressed by vascular smooth muscle cells, and its increased expression has been previously found in atherosclerosis and in models of balloon angioplasty. The lysyl oxidase propeptide (LOX-PP) has more recently been found to have biological activity as a tumor suppressor, and it inhibits Erk1/2 Map kinase activation. We reasoned that LOX-PP may have functions in normal non-transformed cells. We, therefore, investigated its effects on smooth muscle cells, focusing on important biological processes mediated by Erk1/2-dependent signaling pathways including proliferation and matrix metalloproteinase-9 (MMP-9) expression.more » In addition, we investigated whether evidence for accumulation of LOX-PP could be found in vivo in a femoral artery injury model. Recombinant LOX-PP was expressed and purified, and was found to inhibit primary rat aorta smooth muscle cell proliferation and DNA synthesis by more than 50%. TNF-{alpha}-stimulated MMP-9 expression and Erk1/2 activation were both significantly inhibited by LOX-PP. Immunohistochemistry studies carried out with affinity purified anti-LOX-PP antibody showed that LOX-PP epitopes were expressed at elevated levels in vascular lesions of injured arteries. These novel data suggest that LOX-PP may provide a feedback control mechanism that serves to inhibit properties associated with the development of vascular pathology.« less

  17. Markers for human brain pericytes and smooth muscle cells.

    PubMed

    Smyth, Leon C D; Rustenhoven, Justin; Scotter, Emma L; Schweder, Patrick; Faull, Richard L M; Park, Thomas I H; Dragunow, Mike

    2018-06-07

    Brain pericytes and vascular smooth muscle cells (vSMCs) are a critical component of the neurovascular unit and are important in regulating cerebral blood flow and blood-brain barrier integrity. Identification of subtypes of mural cells in tissue and in vitro is important to any study of their function, therefore we identified distinct mural cell morphologies in neurologically normal post-mortem human brain. Further, the distribution of mural cell markers platelet-derived growth factor receptor-β (PDGFRβ), α-smooth muscle actin (αSMA), CD13, neural/glial antigen-2 (NG2), CD146 and desmin was examined. We determined that PDGFRβ, NG2, CD13, and CD146 were expressed in capillary-associated pericytes. NG2, and CD13 were also present on vSMCs in large vessels, however abundant CD146 and desmin staining was also detected in vSMCs on large vessels, co-labelling with αSMA. To determine whether cultures recapitulated observations from tissue, primary human brain pericytes derived from neurologically normal autopsies were analysed for the presence of pericyte markers by immunocytochemistry, western blotting and qPCR. The proteins observed in brain pericytes in tissue (PDGFRβ, αSMA, desmin, CD146, CD13, and NG2) were present in vitro, validating a panel of proteins that can be used to label brain pericytes and vSMCs in tissue and in vitro. Finally, we showed that the proteins CD146 and desmin that are expressed on large vessels in situ, are also selective markers of a smooth muscle cell phenotype in vitro. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. S100A8 protein attenuates airway hyperresponsiveness by suppressing the contraction of airway smooth muscle.

    PubMed

    Xu, Yu-Dong; Wang, Yu; Yin, Lei-Miao; Park, Gyoung-Hee; Ulloa, Luis; Yang, Yong-Qing

    2017-02-26

    Airway hyperresponsiveness (AHR) is a major clinical problem in allergic asthma mainly caused by the hypercontractility of airway smooth muscles (ASM). S100A8 is an important member of the S100 calcium-binding protein family with a potential to regulate cell contractility. Here, we analyze the potential of S100A8 to regulate allergen-induced AHR and ASM contraction. Treatment with recombinant S100A8 (rS100A8) diminished airway hyperresponsiveness in OVA-sensitized rats. ASM contraction assays showed that rS100A8 reduced hypercontractility in both isolated tracheal rings and primary ASM cells treated by acetylcholine. rS100A8 markedly rescued the phosphorylation level of myosin light chain induced by acetylcholine in ASM cells. These results show that rS100A8 plays a protective role in regulating AHR in asthma by inhibiting ASM contraction. These results support S100A8 as a novel therapeutic target to control ASM contraction in asthma. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Lidocaine effect on flotillin-2 distribution in detergent-resistant membranes of equine jejunal smooth muscle in vitro.

    PubMed

    Tappenbeck, Karen; Schmidt, Sonja; Feige, Karsten; Naim, Hassan Y; Huber, Korinna

    2014-05-01

    Lidocaine is the most commonly chosen prokinetic for treating postoperative ileus in horses, a motility disorder associated with ischaemia-reperfusion injury of intestinal tissues. Despite the frequent use of lidocaine, the mechanism underlying its prokinetic effects is still unclear. Previous studies suggested that lidocaine altered cell membrane characteristics of smooth muscle cells. Therefore, the present study aimed to elucidate effects of lidocaine administration on characteristics of detergent-resistant membranes in equine jejunal smooth muscle. Lidocaine administration caused significant redistribution of flotillin-2, a protein marker of detergent-resistant membranes, in fractions of sucrose-density-gradients obtained from ischaemia-reperfusion injured smooth muscle solubilised with Triton X-100. It was concluded that lidocaine induced disruption of detergent-resistant membranes which might affect ion channel activity and therefore enhance smooth muscle contractility. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Swine confinement buildings: effects of airborne particles and settled dust on airway smooth muscles.

    PubMed

    Demanche, Annick; Bonlokke, Jakob; Beaulieu, Marie-Josee; Assayag, Evelyne; Cormier, Yvon

    2009-01-01

    Swine confinement workers are exposed to various contaminants. These agents can cause airway inflammation and bronchoconstriction. This study was undertaken to evaluate if the bronchoconstrictive effects of swine barn air and settled dust are mediated by endotoxin, and if these effects are directly mediated on airway smooth muscles. Mouse tracheas where isolated and mounted isometrically in organ baths. Tracheas, with or without epithelium, were attached to a force transducer and tension was recorded. Concentrated swine building air at 68 EU/ml or settled dust extract at 0.01 g/ml were added for 20 minutes and tracheal smooth muscle contraction was measured. Direct role of LPS was assessed by removing it from air concentrates with an endotoxin affinity resin. Swine barn air and settled dust extract caused contraction of tracheal smooth muscle by 26 and 20%, respectively, of the maximal induced by methacholine. Removal of epithelium did not affect the contractile effects. LPS alone and LPS with peptidoglycans did not induce contraction. However, when endotoxin was removed from swine barn air concentrates, it lost 24% of its contractile effect. Concentrated swine barn air and settled dust have direct effects on airway smooth muscles. This effect is partially due to LPS but a synergy with other components of the environment of swine confinement buildings is required.

  1. Rock Tea extract (Jasonia glutinosa) relaxes rat aortic smooth muscle by inhibition of L-type Ca(2+) channels.

    PubMed

    Valero, Marta Sofía; Oliván-Viguera, Aida; Garrido, Irene; Langa, Elisa; Berzosa, César; López, Víctor; Gómez-Rincón, Carlota; Murillo, María Divina; Köhler, Ralf

    2015-12-01

    In traditional herbal medicine, Rock Tea (Jasonia glutinosa) is known for its prophylactic and therapeutic value in various disorders including arterial hypertension. However, the mechanism by which Rock Tea exerts blood pressure-lowering actions has not been elucidated yet. Our aim was to demonstrate vasorelaxing effects of Rock Tea extract and to reveal its possible action mechanism. Isometric myography was conducted on high-K+-precontracted rings from rat thoracic aorta and tested extracts at concentrations of 0.5-5 mg/ml. Whole-cell patch-clamp experiments were performed in rat aortic vascular smooth muscle cells (line A7r5) to determine blocking effects on L-type Ca(2+) channels. Rock Tea extract relaxed the aorta contracted by high [K+] concentration dependently with an EC50 of ≈2.4 mg/ml and produced ≈75 % relaxation at the highest concentration tested. The L-type Ca(2+) channel blocker, verapamil (10(-6) M), had similar effects. Rock Tea extract had no effect in nominally Ca(2+)-free high-K(+) buffer but significantly inhibited contractions to re-addition of Ca(2+). Rock Tea extract inhibited the contractions induced by the L-type Ca(2+) channel activator Bay K 8644 (10(-5) M) and by phenylephrine (10(-6) M). Rock Tea extract and Y-27632 (10(-6) M), Rho-kinase inhibitor, had similar effects and the respective effects were not additive. Patch-clamp experiments demonstrated that Rock Tea extract (2.5 mg/ml) virtually abolished L-type Ca(2+) currents in A7r5. We conclude that Rock Tea extract produced vasorelaxation of rat aorta and that this relaxant effect is mediated by inhibition of L-type Ca(2+) channels. Rock Tea extracts may be of phytomedicinal value for prevention and adjuvant treatment of hypertension and other cardiovascular diseases.

  2. Antimitogenic effect of bitter taste receptor agonists on airway smooth muscle cells

    PubMed Central

    Sharma, Pawan; Panebra, Alfredo; Pera, Tonio; Tiegs, Brian C.; Hershfeld, Alena; Kenyon, Lawrence C.

    2015-01-01

    Airway remodeling is a hallmark feature of asthma and chronic obstructive pulmonary disease. Clinical studies and animal models have demonstrated increased airway smooth muscle (ASM) mass, and ASM thickness is correlated with severity of the disease. Current medications control inflammation and reverse airway obstruction effectively but have limited effect on remodeling. Recently we identified the expression of bitter taste receptors (TAS2R) on ASM cells, and activation with known TAS2R agonists resulted in ASM relaxation and bronchodilation. These studies suggest that TAS2R can be used as new therapeutic targets in the treatment of obstructive lung diseases. To further establish their effectiveness, in this study we aimed to determine the effects of TAS2R agonists on ASM growth and promitogenic signaling. Pretreatment of healthy and asthmatic human ASM cells with TAS2R agonists resulted in a dose-dependent inhibition of ASM proliferation. The antimitogenic effect of TAS2R ligands was not dependent on activation of protein kinase A, protein kinase C, or high/intermediate-conductance calcium-activated K+ channels. Immunoblot analyses revealed that TAS2R agonists inhibit growth factor-activated protein kinase B phosphorylation without affecting the availability of phosphatidylinositol 3,4,5-trisphosphate, suggesting TAS2R agonists block signaling downstream of phosphatidylinositol 3-kinase. Furthermore, the antimitogenic effect of TAS2R agonists involved inhibition of induced transcription factors (activator protein-1, signal transducer and activator of transcription-3, E2 factor, nuclear factor of activated T cells) and inhibition of expression of multiple cell cycle regulatory genes, suggesting a direct inhibition of cell cycle progression. Collectively, these findings establish the antimitogenic effect of TAS2R agonists and identify a novel class of receptors and signaling pathways that can be targeted to reduce or prevent airway remodeling as well as

  3. Biphasic force response to iso-velocity stretch in airway smooth muscle.

    PubMed

    Norris, Brandon A; Lan, Bo; Wang, Lu; Pascoe, Christopher D; Swyngedouw, Nicholas E; Paré, Peter D; Seow, Chun Y

    2015-10-01

    Airway smooth muscle (ASM) in vivo is constantly subjected to oscillatory strain due to tidal breathing and deep inspirations. ASM contractility is known to be adversely affected by strains, especially those of large amplitudes. Based on the cross-bridge model of contraction, it is likely that strain impairs force generation by disrupting actomyosin cross-bridge interaction. There is also evidence that strain modulates muscle stiffness and force through induction of cytoskeletal remodeling. However, the molecular mechanism by which strain alters smooth muscle function is not entirely clear. Here, we examine the response of ASM to iso-velocity stretches to probe the components within the muscle preparation that give rise to different features in the force response. We found in ASM that force response to a ramp stretch showed a biphasic feature, with the initial phase associated with greater muscle stiffness compared with that in the later phase, and that the transition between the phases occurred at a critical strain of ∼3.3%. Only strains with amplitudes greater than the critical strain could lead to reduction in force and stiffness of the muscle in the subsequent stretches. The initial-phase stiffness was found to be linearly related to the degree of muscle activation, suggesting that the stiffness stems mainly from attached cross bridges. Both phases were affected by the degree of muscle activation and by inhibitors of myosin light-chain kinase, PKC, and Rho-kinase. Different responses due to different interventions suggest that cross-bridge and cytoskeletal stiffness is regulated differently by the kinases. Copyright © 2015 the American Physiological Society.

  4. Arterial Smooth Muscle Mitochondria Amplify Hydrogen Peroxide Microdomains Functionally Coupled to L-Type Calcium Channels

    PubMed Central

    Chaplin, Nathan L.; Nieves-Cintrón, Madeline; Fresquez, Adriana M.; Navedo, Manuel F.; Amberg, Gregory C.

    2015-01-01

    Rationale Mitochondria are key integrators of convergent intracellular signaling pathways. Two important second messengers modulated by mitochondria are calcium and reactive oxygen species. To date, coherent mechanisms describing mitochondrial integration of calcium and oxidative signaling in arterial smooth muscle are incomplete. Objective To address and add clarity to this issue we tested the hypothesis that mitochondria regulate subplasmalemmal calcium and hydrogen peroxide microdomain signaling in cerebral arterial smooth muscle. Methods and Results Using an image-based approach we investigated the impact of mitochondrial regulation of L-type calcium channels on subcellular calcium and ROS signaling microdomains in isolated arterial smooth muscle cells. Our single cell observations were then related experimentally to intact arterial segments and to living animals. We found that subplasmalemmal mitochondrial amplification of hydrogen peroxide microdomain signaling stimulates L-type calcium channels and that this mechanism strongly impacts the functional capacity of the vasoconstrictor angiotensin II. Importantly, we also found that disrupting this mitochondrial amplification mechanism in vivo normalized arterial function and attenuated the hypertensive response to systemic endothelial dysfunction. Conclusions From these observations we conclude that mitochondrial amplification of subplasmalemmal calcium and hydrogen peroxide microdomain signaling is a fundamental mechanism regulating arterial smooth muscle function. As the principle components involved are fairly ubiquitous and positioning of mitochondria near the plasma membrane is not restricted to arterial smooth muscle, this mechanism could occur in many cell types and contribute to pathological elevations of intracellular calcium and increased oxidative stress associated with many diseases. PMID:26390880

  5. Alterations in intestinal contractility during inflammation are caused by both smooth muscle damage and specific receptor-mediated mechanisms.

    PubMed

    Tanović, Adnan; Fernández, Ester; Jiménez, Marcel

    2006-04-01

    To evaluate motoric intestinal disturbances during inflammation with Trichinella spiralis in rats as an experimental model. We examined the changes in worm-positive (jejunum) and worm-free (ileum) intestinal segments of rats infected with T. spiralis. To investigate the relationship between structural and functional changes in smooth muscle, we measured the thickness of the muscle layers of rat jejunum and ileum. Mechanical responses to KCl 30 mmol/L, acetylcholine (ACh) 10(-8)-10(-4) mol/L, substance P (SP) 10(-9)-10(-5) mol/L, and to electrical field stimulation of longitudinal muscle strips in the jejunum and ileum were studied in muscle bath as controls (day 0) and on day 2, 6, 14, 23, and 72 after infection. After T. spiralis infestation, an inflammation of the mucosal and submucosal layers of jejunum was observed, whereas in the worm-free ileum there was not any inflammatory infiltrate. Increase in the smooth muscle thickness of both jejunum and ileum were correlated with increased responses to depolarizing agent KCl and to ACh. However, responses to SP were decreased on day 14-23 after infection in jejunum and from day 6-14 after infection in ileum. Electric field stimulation-induced contractions were transiently decreased in the jejunum (day 2 after infection) but in the ileum the contractile responses were decreased until the end of the study period. Alterations in intestinal smooth muscle function do not require the presence of the parasite and the absence of histopathological signs of inflammation do not warrant intact motor function. Changes in motor responses after T. spiralis infection are not only due to smooth muscle damage but also to disturbances in specific receptor-mediated mechanisms.

  6. Potassium and ANO1/TMEM16A chloride channel profiles distinguish atypical and typical smooth muscle cells from interstitial cells in the mouse renal pelvis

    PubMed Central

    Iqbal, Javed; Tonta, Mary A; Mitsui, Retsu; Li, Qun; Kett, Michelle; Li, Jinhua; Parkington, Helena C; Hashitani, Hikaru; Lang, Richard J

    2012-01-01

    BACKGROUND AND PURPOSE Although atypical smooth muscle cells (SMCs) in the proximal renal pelvis are thought to generate the pacemaker signals that drive pyeloureteric peristalsis, their location and electrical properties remain obscure. EXPERIMENTAL APPROACH Standard patch clamp, intracellular microelectrode and immunohistochemistry techniques were used. To unequivocally identify SMCs, transgenic mice with enhanced yellow fluorescent protein (eYFP) expressed in cells containing α-smooth muscle actin (α-SMA) were sometimes used. KEY RESULTS Atypical SMCs were distinguished from typical SMCs by the absence of both a transient 4-aminopyridine-sensitive K+ current (IKA) and spontaneous transient outward currents (STOCs) upon the opening of large-conductance Ca2+-activated K+ (BK) channels. Many typical SMCs displayed a slowly activating, slowly decaying Cl- current blocked by niflumic acid (NFA). Immunostaining for KV4.3 and ANO1/ TMEM16A Cl- channel subunits co-localized with α-SMA immunoreactive product predominately in the distal renal pelvis. Atypical SMCs fired spontaneous inward currents that were either selective for Cl- and blocked by NFA, or cation-selective and blocked by La3+. α-SMA- interstitial cells (ICs) were distinguished by the presence of a Xe991-sensitive KV7 current, BK channel STOCs and Cl- selective, NFA-sensitive spontaneous transient inward currents (STICs). Intense ANO1/ TMEM16A and KV7.5 immunostaining was present in Kit-α-SMA- ICs in the suburothelial and adventitial regions of the renal pelvis. CONCLUSIONS AND IMPLICATIONS We conclude that KV4.3+α-SMA+ SMCs are typical SMCs that facilitate muscle wall contraction, that ANO1/ TMEM16A and KV7.5 immunoreactivity may be selective markers of Kit- ICs and that atypical SMCs which discharge spontaneous inward currents are the pelviureteric pacemakers. PMID:22014103

  7. Relaxant effect of ghrelin on guinea pig isolated tracheal smooth muscle: role of epithelial NO and PGE2.

    PubMed

    Al-Ayed, Mohammed Saeed Zayed

    2018-06-01

    This study aimed at investigating the potential ghrelin relaxing effect on guinea pig isolated tracheal smooth muscle (TSM). Using an in vitro experimental approach, the physiological role of the airway epithelium on smooth muscle relaxation has been investigated by analyzing the dose-response curves for carbachol- or histamine-induced contractions on epithelium intact versus denuded tracheal tissue. The relaxant effect of ghrelin (5-200 μmol/L) then investigated on carbachol-contracted, non-sensitized, and ovalbumin (OVA)-sensitized guinea pig TSM with an intact or denuded epithelium. The isolated TSMs from identical guinea pigs were incubated in Krebs solution aerated with 95% O 2 and 5% CO 2 through an automated tissue organ bath system (n = 6 for each group). The ghrelin relaxation mechanism was assessed by adding L-NAME, indomethacin, and YIL-781 for GHS-R1 into the tissue chamber. The spasmogens carbachol and histamine have shown a significantly higher contracting effect on epithelium-denuded than in epithelium-intact TSM confirmed by the significantly higher mean pEC50 of both agonists on the epithelium-denuded trachea (p < 0.05). Ghrelin has shown a concentration-dependent relaxing effect on carbachol-contracted TSM (r = 0.96, p = 0.00). The effect was more evident in the intact non-sensitized than in epithelium-denuded or OVA-sensitized groups (p < 0.05). Preincubation with nitric oxide (NO) and prostaglandin E 2 (PGE 2 ) inhibitors has significantly reduced the ghrelin-induced relaxation on epithelium-intact TSM suggesting an epithelium-dependant mechanism. However, GHS-R1a antagonist has also succeeded to reduce ghrelin relaxant effect, which needs further clarification. Ghrelin proved to have a potential TSM relaxant effect possibly through epithelium-dependant mechanisms involving NO and PGE 2 .

  8. Ex vivo pharmacology of surgical samples of the uterosacral ligament. Part I: Effects of carbachol and oxytocin on smooth muscle.

    PubMed

    Drews, Ulrich; Renz, Matthias; Busch, Christian; Reisenauer, Christl

    2012-11-01

    In a previous study we observed impaired smooth muscle in the uterosacral ligament (USL) of patients with pelvic organ prolapse. The aims of the study were to describe the method of the novel microperfusion system and to determine normal function and pharmacology of smooth muscle in the USL. Samples from the USL were obtained during hysterectomy for benign reasons. Small stretches of connective tissue were mounted in a perfusion chamber under the stereomicroscope. Isotonic contractions of smooth muscle were monitored by digital time-lapse video and quantified by image processing. Constant perfusion with carbachol elicited tonic and pulse stimulation with carbachol and oxytocin rhythmic contractions of smooth muscle in the ground reticulum. Under constant perfusion with relaxin the tonic contraction after carbachol was abolished. With the novel microperfusion system, isotonic contractions of smooth muscle in the USL can be recorded and quantified in the tissue microenvironment on the microscopic level. The USL smooth muscle is cholinergic, stimulated by oxytocin and modulated by relaxin. Copyright © 2012 Wiley Periodicals, Inc.

  9. Basally activated nonselective cation currents regulate the resting membrane potential in human and monkey colonic smooth muscle

    PubMed Central

    Dwyer, Laura; Rhee, Poong-Lyul; Lowe, Vanessa; Zheng, Haifeng; Peri, Lauren; Ro, Seungil; Sanders, Kenton M.

    2011-01-01

    Resting membrane potential (RMP) plays an important role in determining the basal excitability of gastrointestinal smooth muscle. The RMP in colonic muscles is significantly less negative than the equilibrium potential of K+, suggesting that it is regulated not only by K+ conductances but by inward conductances such as Na+ and/or Ca2+. We investigated the contribution of nonselective cation channels (NSCC) to the RMP in human and monkey colonic smooth muscle cells (SMC) using voltage- and current-clamp techniques. Qualitative reverse transcriptase-polymerase chain reaction was performed to examine potential molecular candidates for these channels among the transient receptor potential (TRP) channel superfamily. Spontaneous transient inward currents and holding currents were recorded in human and monkey SMC. Replacement of extracellular Na+ with equimolar tetraethylammonium or Ca2+ with Mn2+ inhibited basally activated nonselective cation currents. Trivalent cations inhibited these channels. Under current clamp, replacement of extracellular Na+ with N-methyl-d-glucamine or addition of trivalent cations caused hyperpolarization. Three unitary conductances of NSCC were observed in human and monkey colonic SMC. Molecular candidates for basally active NSCC were TRPC1, C3, C4, C7, M2, M4, M6, M7, V1, and V2 in human and monkey SMC. Comparison of the biophysical properties of these TRP channels with basally active NSCC (bINSCC) suggests that TRPM4 and specific TRPC heteromultimer combinations may underlie the three single-channel conductances of bINSCC. In conclusion, these findings suggest that basally activated NSCC contribute to the RMP in human and monkey colonic SMC and therefore may play an important role in determining basal excitability of colonic smooth muscle. PMID:21566016

  10. A role of stretch-activated potassium currents in the regulation of uterine smooth muscle contraction

    PubMed Central

    Buxton, Iain L O; Heyman, Nathanael; Wu, Yi-ying; Barnett, Scott; Ulrich, Craig

    2011-01-01

    Rates of premature birth are alarming and threaten societies and healthcare systems worldwide. Premature labor results in premature birth in over 50% of cases. Preterm birth accounts for three-quarters of infant morbidity and mortality. Children that survive birth before 34 weeks gestation often face life-long disability. Current treatments for preterm labor are wanting. No treatment has been found to be generally effective and none are systematically evaluated beyond 48 h. New approaches to the treatment of preterm labor are desperately needed. Recent studies from our laboratory suggest that the uterine muscle is a unique compartment with regulation of uterine relaxation unlike that of other smooth muscles. Here we discuss recent evidence that the mechanically activated 2-pore potassium channel, TREK-1, may contribute to contraction-relaxation signaling in uterine smooth muscle and that TREK-1 gene variants associated with human labor and preterm labor may lead to a better understanding of preterm labor and its possible prevention. PMID:21642947

  11. Piezo1 in Smooth Muscle Cells Is Involved in Hypertension-Dependent Arterial Remodeling.

    PubMed

    Retailleau, Kevin; Duprat, Fabrice; Arhatte, Malika; Ranade, Sanjeev Sumant; Peyronnet, Rémi; Martins, Joana Raquel; Jodar, Martine; Moro, Céline; Offermanns, Stefan; Feng, Yuanyi; Demolombe, Sophie; Patel, Amanda; Honoré, Eric

    2015-11-10

    The mechanically activated non-selective cation channel Piezo1 is a determinant of vascular architecture during early development. Piezo1-deficient embryos die at midgestation with disorganized blood vessels. However, the role of stretch-activated ion channels (SACs) in arterial smooth muscle cells in the adult remains unknown. Here, we show that Piezo1 is highly expressed in myocytes of small-diameter arteries and that smooth-muscle-specific Piezo1 deletion fully impairs SAC activity. While Piezo1 is dispensable for the arterial myogenic tone, it is involved in the structural remodeling of small arteries. Increased Piezo1 opening has a trophic effect on resistance arteries, influencing both diameter and wall thickness in hypertension. Piezo1 mediates a rise in cytosolic calcium and stimulates activity of transglutaminases, cross-linking enzymes required for the remodeling of small arteries. In conclusion, we have established the connection between an early mechanosensitive process, involving Piezo1 in smooth muscle cells, and a clinically relevant arterial remodeling. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. A mathematical model of airway and pulmonary arteriole smooth muscle.

    PubMed

    Wang, Inga; Politi, Antonio Z; Tania, Nessy; Bai, Yan; Sanderson, Michael J; Sneyd, James

    2008-03-15

    Airway hyperresponsiveness is a major characteristic of asthma and is believed to result from the excessive contraction of airway smooth muscle cells (SMCs). However, the identification of the mechanisms responsible for airway hyperresponsiveness is hindered by our limited understanding of how calcium (Ca2+), myosin light chain kinase (MLCK), and myosin light chain phosphatase (MLCP) interact to regulate airway SMC contraction. In this work, we present a modified Hai-Murphy cross-bridge model of SMC contraction that incorporates Ca2+ regulation of MLCK and MLCP. A comparative fit of the model simulations to experimental data predicts 1), that airway and arteriole SMC contraction is initiated by fast activation by Ca2+ of MLCK; 2), that airway SMC, but not arteriole SMC, is inhibited by a slower activation by Ca2+ of MLCP; and 3), that the presence of a contractile agonist inhibits MLCP to enhance the Ca2+ sensitivity of airway and arteriole SMCs. The implication of these findings is that murine airway SMCs exploit a Ca2+-dependent mechanism to favor a default state of relaxation. The rate of SMC relaxation is determined principally by the rate of release of the latch-bridge state, which is predicted to be faster in airway than in arteriole. In addition, the model also predicts that oscillations in calcium concentration, commonly observed during agonist-induced smooth muscle contraction, cause a significantly greater contraction than an elevated steady calcium concentration.

  13. A Mathematical Model of Airway and Pulmonary Arteriole Smooth Muscle

    PubMed Central

    Wang, Inga; Politi, Antonio Z.; Tania, Nessy; Bai, Yan; Sanderson, Michael J.; Sneyd, James

    2008-01-01

    Airway hyperresponsiveness is a major characteristic of asthma and is believed to result from the excessive contraction of airway smooth muscle cells (SMCs). However, the identification of the mechanisms responsible for airway hyperresponsiveness is hindered by our limited understanding of how calcium (Ca2+), myosin light chain kinase (MLCK), and myosin light chain phosphatase (MLCP) interact to regulate airway SMC contraction. In this work, we present a modified Hai-Murphy cross-bridge model of SMC contraction that incorporates Ca2+ regulation of MLCK and MLCP. A comparative fit of the model simulations to experimental data predicts 1), that airway and arteriole SMC contraction is initiated by fast activation by Ca2+ of MLCK; 2), that airway SMC, but not arteriole SMC, is inhibited by a slower activation by Ca2+ of MLCP; and 3), that the presence of a contractile agonist inhibits MLCP to enhance the Ca2+ sensitivity of airway and arteriole SMCs. The implication of these findings is that murine airway SMCs exploit a Ca2+-dependent mechanism to favor a default state of relaxation. The rate of SMC relaxation is determined principally by the rate of release of the latch-bridge state, which is predicted to be faster in airway than in arteriole. In addition, the model also predicts that oscillations in calcium concentration, commonly observed during agonist-induced smooth muscle contraction, cause a significantly greater contraction than an elevated steady calcium concentration. PMID:18065464

  14. The Novel KV7.2/KV7.3 Channel Opener ICA-069673 Reveals Subtype-Specific Functional Roles in Guinea Pig Detrusor Smooth Muscle Excitability and Contractility

    PubMed Central

    Provence, Aaron; Malysz, John

    2015-01-01

    The physiologic roles of voltage-gated KV7 channel subtypes (KV7.1–KV7.5) in detrusor smooth muscle (DSM) are poorly understood. Here, we sought to elucidate the functional roles of KV7.2/KV7.3 channels in guinea pig DSM excitability and contractility using the novel KV7.2/KV7.3 channel activator ICA-069673 [N-(2-chloro-5-pyrimidinyl)-3,4-difluorobenzamide]. We employed a multilevel experimental approach using Western blot analysis, immunocytochemistry, isometric DSM tension recordings, fluorescence Ca2+ imaging, and perforated whole-cell patch-clamp electrophysiology. Western blot experiments revealed the protein expression of KV7.2 and KV7.3 channel subunits in DSM tissue. In isolated DSM cells, immunocytochemistry with confocal microscopy further confirmed protein expression for KV7.2 and KV7.3 channel subunits, where they localize within the vicinity of the cell membrane. ICA-069673 inhibited spontaneous phasic, pharmacologically induced, and nerve-evoked contractions in DSM isolated strips in a concentration-dependent manner. The inhibitory effects of ICA-069673 on DSM spontaneous phasic and tonic contractions were abolished in the presence of the KV7 channel inhibitor XE991 [10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone dihydrochloride]. Under conditions of elevated extracellular K+ (60 mM), the effects of ICA-069673 on DSM tonic contractions were significantly attenuated. ICA-069673 decreased the global intracellular Ca2+ concentration in DSM cells, an effect blocked by the L-type Ca2+ channel inhibitor nifedipine. ICA-069673 hyperpolarized the membrane potential and inhibited spontaneous action potentials of isolated DSM cells, effects that were blocked in the presence of XE991. In conclusion, using the novel KV7.2/KV7.3 channel activator ICA-069673, this study provides strong evidence for a critical role for the KV7.2- and KV7.3-containing channels in DSM function at both cellular and tissue levels. PMID:26087697

  15. The Novel KV7.2/KV7.3 Channel Opener ICA-069673 Reveals Subtype-Specific Functional Roles in Guinea Pig Detrusor Smooth Muscle Excitability and Contractility.

    PubMed

    Provence, Aaron; Malysz, John; Petkov, Georgi V

    2015-09-01

    The physiologic roles of voltage-gated KV7 channel subtypes (KV7.1-KV7.5) in detrusor smooth muscle (DSM) are poorly understood. Here, we sought to elucidate the functional roles of KV7.2/KV7.3 channels in guinea pig DSM excitability and contractility using the novel KV7.2/KV7.3 channel activator ICA-069673 [N-(2-chloro-5-pyrimidinyl)-3,4-difluorobenzamide]. We employed a multilevel experimental approach using Western blot analysis, immunocytochemistry, isometric DSM tension recordings, fluorescence Ca(2+) imaging, and perforated whole-cell patch-clamp electrophysiology. Western blot experiments revealed the protein expression of KV7.2 and KV7.3 channel subunits in DSM tissue. In isolated DSM cells, immunocytochemistry with confocal microscopy further confirmed protein expression for KV7.2 and KV7.3 channel subunits, where they localize within the vicinity of the cell membrane. ICA-069673 inhibited spontaneous phasic, pharmacologically induced, and nerve-evoked contractions in DSM isolated strips in a concentration-dependent manner. The inhibitory effects of ICA-069673 on DSM spontaneous phasic and tonic contractions were abolished in the presence of the KV7 channel inhibitor XE991 [10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone dihydrochloride]. Under conditions of elevated extracellular K(+) (60 mM), the effects of ICA-069673 on DSM tonic contractions were significantly attenuated. ICA-069673 decreased the global intracellular Ca(2+) concentration in DSM cells, an effect blocked by the L-type Ca(2+) channel inhibitor nifedipine. ICA-069673 hyperpolarized the membrane potential and inhibited spontaneous action potentials of isolated DSM cells, effects that were blocked in the presence of XE991. In conclusion, using the novel KV7.2/KV7.3 channel activator ICA-069673, this study provides strong evidence for a critical role for the KV7.2- and KV7.3-containing channels in DSM function at both cellular and tissue levels. Copyright © 2015 by The American Society for

  16. Immortalization of cat iris sphincter smooth muscle cells by SV40 virus: growth, morphological, biochemical and pharmacological characteristics.

    PubMed

    Ocklind, A; Yousufzai, S Y; Ghosh, S; Coca-Prados, M; St Jernschantz, J; Abdel-Latif, A A

    1995-11-01

    The purpose of this study was to establish immortalized cell cultures of cat iris sphincter smooth muscle cells for a model investigating ocular receptors and their signal transduction pathways. Cultured cat iris sphincter muscle cells were immortalized by viral transformation with SV40 virus and the morphological and immunocytochemical properties of the normal and immortalized cells were investigated. The transformed cell clone, SV-CISM-2, was further characterized biochemically and pharmacologically. The normal muscle cells showed characteristics of smooth muscle cells, as judged by their growth and the presence of smooth muscle alpha-actin and desmin. After seven passages the normal cells ceased to proliferate. In contrast, the immortalized cells retained their proliferative ability for more than 220 population doublings over 55 passages. The transformation phenotype in these cells was confirmed by their expression of the large T-antigen, the incorporation of viral DNA into cellular DNA, growth in agarose and in low-serum medium, and complete loss of contact inhibition. The immortalized cells expressed smooth muscle alpha-actin, desmin and MLC protein. Biochemical and pharmacological studies on the SV-CISM cells revealed the presence of several functional receptors including muscarinic cholinergic, beta-adrenergic, peptidergic (substance P and endothelin). Platelet-activating factor, and prostaglandin (PG). Muscarinic stimulation of these cells resulted in: (a) a dose-dependent increase in the release of arachidonic acid (AA) and (PGs) and enhancement in the production of inositol trisphosphate (IP3); and (b) a substantial increase in MLC phosphorylation (118%), an indicator of smooth muscle contractility. The stimulatory effects of carbachol on these responses were completely blocked by atropine, a muscarinic receptor antagonist. This study constitutes the first successful immortalization of iris sphincter smooth muscle cells. The SV-CISM-2 cells can serve as

  17. Pharmacologic effects of grain weevil extract on isolated guinea pig tracheal smooth muscle.

    PubMed

    Schachter, E Neil; Zuskin, Eugenija; Arumugam, Uma; Goswami, Satindra; Castranova, Vincent; Whitmer, Mike; Chiarelli, Angelo

    2008-01-01

    The grain weevil, an insect (pest) that infects grain, is a frequent contaminant of processed wheat, and its presence may contribute to respiratory abnormalities in grain workers. We studied the in vitro effects of an extract of grain weevil (GWE) on airway smooth muscle. Pharmacologic studies included in vitro challenge of guinea pig trachea with GWE, in parallel organ baths, pretreated with mediator-modifying agents or a control solution. Dose-related contractions of nonsensitized guinea pig trachea (GPT) were demonstrated using this extract. Pharmacologic studies were performed by pretreating guinea pig tracheal tissue with drugs known to modulate smooth muscle contraction: atropine, indomethacin, pyrilamine, acivicin, NDGA, BPB, TMB8, captopril, and capsaicin. Atropine, pyrilamine, BPB, and capsaicin significantly reduced the contractile effects of the extract at most of the challenge doses (p < 0.01 or p < 0.05). Inhibition of GWE-induced contraction by blocking of other mediators was less complete. We suggest that GWE causes dose-related airway smooth muscle constriction of the GPT by nonimmunologic mechanisms involving a variety of airway mediators and possibly cholinergic receptors.

  18. Heterotrimeric G Stimulatory Protein α Subunit Is Required for Intestinal Smooth Muscle Contraction in Mice.

    PubMed

    Qin, Xiaoteng; Liu, Shangming; Lu, Qiulun; Zhang, Meng; Jiang, Xiuxin; Hu, Sanyuan; Li, Jingxin; Zhang, Cheng; Gao, Jiangang; Zhu, Min-Sheng; Feil, Robert; Li, Huashun; Chen, Min; Weinstein, Lee S; Zhang, Yun; Zhang, Wencheng

    2017-04-01

    The α subunit of the heterotrimeric G stimulatory protein (Gsa), encoded by the guanine nucleotide binding protein, α-stimulating gene (Gnas, in mice), is expressed ubiquitously and mediates receptor-stimulated production of cyclic adenosine monophosphate and activation of the protein kinase A signaling pathway. We investigated the roles of Gsa in vivo in smooth muscle cells of mice. We performed studies of mice with Cre recombinase-mediated disruption of Gnas in smooth muscle cells (Gsa SMKO and SM22-CreER T2 , induced in adult mice by tamoxifen). Intestinal tissues were collected for histologic, biochemical, molecular, cell biology, and physiology analyses. Intestinal function was assessed in mice using the whole-gut transit time test. We compared gene expression patterns of intestinal smooth muscle from mice with vs without disruption of Gnas. Biopsy specimens from ileum of patients with chronic intestinal pseudo-obstruction and age-matched control biopsies were analyzed by immunohistochemistry. Disruption of Gnas in smooth muscle of mice reduced intestinal motility and led to death within 4 weeks. Tamoxifen-induced disruption of Gnas in adult mice impaired contraction of intestinal smooth muscle and peristalsis. More than 80% of these died within 3 months of tamoxifen exposure, with features of intestinal pseudo-obstruction characterized by chronic intestinal dilation and dysmotility. Gsa deficiency reduced intestinal levels of cyclic adenosine monophosphate and transcriptional activity of the cyclic adenosine monophosphate response element binding protein 1 (CREB1); this resulted in decreased expression of the forkhead box F1 gene (Foxf1) and protein, and contractile proteins, such as myosin heavy chain 11; actin, α2, smooth muscle, aorta; calponin 1; and myosin light chain kinase. We found decreased levels of Gsa, FOXF1, CREB1, and phosphorylated CREB1 proteins in intestinal muscle layers of patients with chronic intestinal pseudo

  19. Ketamine relaxes airway smooth muscle contracted by endothelin.

    PubMed

    Sato, T; Matsuki, A; Zsigmond, E K; Rabito, S F

    1997-04-01

    Endothelins (ETs) are synthesized not only in vascular endothelial cells but also in airway epithelial cells. Increased ET-1 has been demonstrated in bronchial epithelium of asthmatic patients, and, in severe asthma attacks, ET-1 increases in plasma and bronchoalveolar lavage fluid. In this study, we investigated whether ketamine (KET) relaxes ET-induced tracheal contractions. Female guinea pigs were killed with an overdose of pentobarbital. The trachea was removed and cut spirally into two strips that were mounted in an organ bath filled with Krebs-bicarbonate buffer. The response of each strip to 10(-7) M carbachol was taken as 100% contraction to which the response to ET was referred. The contribution of the epithelium to the relaxant effect of KET was studied in denuded tracheae or in the presence of 5 x 10(-5) M indomethacin. ET-1 (3 x 10(-8) M) induced contractions that were 76 +/- 3% of those induced by carbachol. KET reversed the response to ET-1 in a dose-dependent fashion. Similarly, ET-2 (3 x 10(-8) M) induced contractions that were 74 +/- 5% of those induced by carbachol, and KET also reversed this response in a dose-dependent manner. In epithelium-denuded strips, ET-1 induced contractions that were 104 +/- 3% of those induced by carbachol, and KET still reversed this response. The tonic phase of the response to ET-1 was equal (100 +/- 6%) to the response to carbachol, and KET did not affect it significantly. In the presence of ryanodine, KET reduced the ET-1-induced contraction from 67 +/- 2% to 36 +/- 3.%, P < 0.01. In the presence of nicardipine, KET also inhibited the ET-1-induced contraction. We conclude that KET relaxes the tracheal smooth muscle contracted by ETs via a mechanism that is independent of the tracheal epithelium. The relaxant effect of KET on the ET-induced contraction of the trachealis muscle is not dependent upon blockade of 1) sarcolemma influx of Ca2+ through the dihydropyridine Ca2+ channel or 2) the release of intracellular Ca2

  20. Epigenetic regulation of vascular smooth muscle cell function in atherosclerosis.

    PubMed

    Findeisen, Hannes M; Kahles, Florian K; Bruemmer, Dennis

    2013-04-01

    Epigenetics involve heritable and acquired changes in gene transcription that occur independently of the DNA sequence. Epigenetic mechanisms constitute a hierarchic upper-level of transcriptional control through complex modifications of chromosomal components and nuclear structures. These modifications include, for example, DNA methylation or post-translational modifications of core histones; they are mediated by various chromatin-modifying enzymes; and ultimately they define the accessibility of a transcriptional complex to its target DNA. Integrating epigenetic mechanisms into the pathophysiologic concept of complex and multifactorial diseases such as atherosclerosis may significantly enhance our understanding of related mechanisms and provide promising therapeutic approaches. Although still in its infancy, intriguing scientific progress has begun to elucidate the role of epigenetic mechanisms in vascular biology, particularly in the control of smooth muscle cell phenotypes. In this review, we will summarize epigenetic pathways in smooth muscle cells, focusing on mechanisms involved in the regulation of vascular remodeling.

  1. Epigenetic regulation of vascular smooth muscle cell function in atherosclerosis.

    PubMed

    Findeisen, Hannes M; Kahles, Florian K; Bruemmer, Dennis

    2013-05-01

    Epigenetics involve heritable and acquired changes in gene transcription that occur independently of the DNA sequence. Epigenetic mechanisms constitute a hierarchic upper-level of transcriptional control through complex modifications of chromosomal components and nuclear structures. These modifications include, for example, DNA methylation or post-translational modifications of core histones; they are mediated by various chromatin-modifying enzymes; and ultimately they define the accessibility of a transcriptional complex to its target DNA. Integrating epigenetic mechanisms into the pathophysiologic concept of complex and multifactorial diseases such as atherosclerosis may significantly enhance our understanding of related mechanisms and provide promising therapeutic approaches. Although still in its infancy, intriguing scientific progress has begun to elucidate the role of epigenetic mechanisms in vascular biology, particularly in the control of smooth muscle cell phenotypes. In this review, we will summarize epigenetic pathways in smooth muscle cells, focusing on mechanisms involved in the regulation of vascular remodeling.

  2. Preliminary investigations on the effects of a Strongylus vulgaris larval extract, mononuclear factors and platelet factors on equine smooth muscle cells in vitro.

    PubMed

    Morgan, S J; Storts, R W; Stromberg, P C; Sowa, B A; Lay, J C

    1989-01-01

    Factors involved in the proliferation of equine vascular smooth muscle cells were studied in vitro. The most prominent proliferative responses in cultured vascular smooth muscle cells were induced by Strongylus vulgaris larval antigen extract (LAE) and platelet-derived factors. Less significant proliferative responses were obtained with conditioned media from S. vulgaris LAE stimulated and from unstimulated equine mononuclear leukocytes. Additionally, vascular smooth muscle cells exposed to S. vulgaris LAE developed numerous perinuclear vacuoles and were more spindle-shaped than control or smooth muscle cells exposed to other factors. Equine mononuclear leukocytes exposed to LAE developed prominent morphological changes, including enlargement, clumping and increased numbers of mitotic figures.

  3. The effects of MgADP on cross-bridge kinetics: a laser flash photolysis study of guinea-pig smooth muscle.

    PubMed Central

    Nishiye, E; Somlyo, A V; Török, K; Somlyo, A P

    1993-01-01

    1. The effects of MgADP on cross-bridge kinetics were investigated using laser flash photolysis of caged ATP (P3-1(2-nitrophenyl) ethyladenosine 5'-triphosphate), in guinea-pig portal vein smooth muscle permeabilized with Staphylococcus aureus alpha-toxin. Isometric tension and in-phase stiffness transitions from rigor state were monitored upon photolysis of caged ATP. The estimated concentration of ATP released from caged ATP by high-pressure liquid chromatography (HPLC) was 1.3 mM. 2. The time course of relaxation initiated by photolysis of caged ATP in the absence of Ca2+ was well fitted during the initial 200 ms by two exponential functions with time constants of, respectively, tau 1 = 34 ms and tau 2 = 1.2 s and relative amplitudes of 0.14 and 0.86. Multiple exponential functions were needed to fit longer intervals; the half-time of the overall relaxation was 0.8 s. The second order rate constant for cross-bridge detachment by ATP, estimated from the rate of initial relaxation, was 0.4-2.3 x 10(4) M-1 s-1. 3. MgADP dose dependently reduced both the relative amplitude of the first component and the rate constant of the second component of relaxation. Conversely, treatment of muscles with apyrase, to deplete endogenous ADP, increased the relative amplitude of the first component. In the presence of MgADP, in-phase stiffness decreased during force maintenance, suggesting that the force per cross-bridge increased. The apparent dissociation constant (Kd) of MgADP for the cross-bridge binding site, estimated from its concentration-dependent effect on the relative amplitude of the first component, was 1.3 microM. This affinity is much higher than the previously reported values (50-300 microM for smooth muscle; 18-400 microM for skeletal muscle; 7-10 microM for cardiac muscle). It is possible that the high affinity reflects the properties of a state generated during the co-operative reattachment cycle, rather than that of the rigor bridge. 4. The rate constant of Mg

  4. Fetal human airway smooth muscle cell production of leukocyte chemoattractants is differentially regulated by fluticasone

    PubMed Central

    Pearson, Helen; Britt, Rodney D.; Pabelick, Christine M.; Prakash, Y.S.; Amrani, Yassine; Pandya, Hitesh C.

    2016-01-01

    Background Adult human airway smooth muscle (ASM) produce cytokines involved in recruitment and survival of leukocytes within airway walls. Cytokine generation by adult ASM is glucocorticoid-sensitive. Whether developing lung ASM produces cytokines in a glucocorticoid-sensitive fashion is unknown. Methods Cultured fetal human ASM cells stimulated with TNF-α (0–20 ng/ml) were incubated with TNF-α receptor-blocking antibodies, fluticasone (1 and 100 nm), or vehicle. Supernatants and cells were assayed for the production of CCL5, CXCL10, and CXCL8 mRNA and protein and glucocorticoid receptor phosphorylation. Results CCL5, CXCL10, and CXCL8 mRNA and protein production by fetal ASM cell was significantly and dose-dependently following TNF-α treatment. Cytokine mRNA and protein production were effectively blocked by TNF-α R1 and R2 receptor neutralizing antibodies but variably inhibited by fluticasone. TNF-α-induced TNF-R1 and R2 receptor mRNA expression was only partially attenuated by fluticasone. Glucocorticoid receptor phosphorylation at serine (Ser) 211 but not at Ser 226 was enhanced by fluticasone. Conclusion Production of CCL5, CXCL10, and CXCL8 by fetal ASM appears to involve pathways that are both qualitatively and mechanistically distinct to those described for adult ASM. The findings imply developing ASM has potential to recruit leukocyte into airways and, therefore, of relevance to childhood airway diseases. PMID:26331770

  5. Inositol 1,4,5-trisphosphate-sensitive Ca2+ release in rat fast- and slow-twitch skinned muscle fibres.

    PubMed

    Talon, S; Huchet-Cadiou, C; Léoty, C

    1999-11-01

    Inositol 1,4,5-trisphosphate (InsP3), an intracellular messenger, induces Ca2+ release in various types of cells, particularly smooth muscle cells. Its role in skeletal muscle, however, is controversial. The present study shows that the application of InsP3 to rat slow- and fast-twitch saponin-skinned fibres induced contractile responses that were not related to an effect of InsP3 on the properties of the contractile proteins. The amplitude of the contractures was dependent upon the Ca(2+)-loading period, and was larger in slow- than in fast-twitch muscle. In both types of skeletal muscle, these responses, unlike caffeine contractures, were not inhibited by ryanodine (100 microM), but were abolished by heparin (20 micrograms.ml-1). In soleus muscle, the concentration of heparin required to inhibit the response by 50% (IC50) was 5.7 micrograms.ml-1, a similar value to that obtained previously in smooth muscle. Furthermore, the results show that in slow-twitch muscle, the InsP3 contractures have a "bell-shaped" dependency on the intracellular Ca2+ concentration. These results show that InsP3 receptors should be present in skeletal muscle. Thus, it is possible that InsP3 participates in the regulation of sarcoplasmic reticulum Ca2+ release in skeletal muscle, particularly in slow-twitch fibres.

  6. LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer's amyloid-β.

    PubMed

    Kanekiyo, Takahisa; Liu, Chia-Chen; Shinohara, Mitsuru; Li, Jie; Bu, Guojun

    2012-11-14

    Impaired clearance of amyloid-β (Aβ) is a major pathogenic event for Alzheimer's disease (AD). Aβ depositions in brain parenchyma as senile plaques and along cerebrovasculature as cerebral amyloid angiopathy (CAA) are hallmarks of AD. A major pathway that mediates brain Aβ clearance is the cerebrovascular system where Aβ is eliminated through the blood-brain barrier (BBB) and/or degraded by cerebrovascular cells along the interstitial fluid drainage pathway. An Aβ clearance receptor, the low-density lipoprotein receptor-related protein 1 (LRP1), is abundantly expressed in cerebrovasculature, in particular in vascular smooth muscle cells. Previous studies have indicated a role of LRP1 in endothelial cells in transcytosing Aβ out of the brain across the BBB; however, whether this represents a significant pathway for brain Aβ clearance remains controversial. Here, we demonstrate that Aβ can be cleared locally in the cerebrovasculature by an LRP1-dependent endocytic pathway in smooth muscle cells. The uptake and degradation of both endogenous and exogenous Aβ were significantly reduced in LRP1-suppressed human brain vascular smooth muscle cells. Conditional deletion of Lrp1 in vascular smooth muscle cell in amyloid model APP/PS1 mice accelerated brain Aβ accumulation and exacerbated Aβ deposition as amyloid plaques and CAA without affecting Aβ production. Our results demonstrate that LRP1 is a major Aβ clearance receptor in cerebral vascular smooth muscle cell and a disturbance of this pathway contributes to Aβ accumulation. These studies establish critical functions of the cerebrovasculature system in Aβ metabolism and identify a new pathway involved in the pathogenesis of both AD and CAA.

  7. LRP1 in Brain Vascular Smooth Muscle Cells Mediates Local Clearance of Alzheimer's Amyloid-β

    PubMed Central

    Kanekiyo, Takahisa; Liu, Chia-Chen; Shinohara, Mitsuru; Li, Jie; Bu, Guojun

    2012-01-01

    Impaired clearance of amyloid-β (Aβ) is a major pathogenic event for Alzheimer’s disease (AD). Aβ depositions in brain parenchyma as senile plaques and along cerebrovasculature as cerebral amyloid angiopathy (CAA) are hallmarks of AD. A major pathway that mediates brain Aβ clearance is the cerebrovascular system where Aβ is eliminated through the blood-brain barrier (BBB) and/or degraded by cerebrovascular cells along the interstitial fluid drainage pathway. An Aβ clearance receptor, the low-density lipoprotein receptor-related protein 1 (LRP1), is abundantly expressed in cerebrovasculature, in particular in vascular smooth muscle cells. Previous studies have indicated a role of LRP1 in endothelial cells in transcytosing Aβ out of the brain across the BBB; however, whether this represents a significant pathway for brain Aβ clearance remains controversial. Here, we demonstrate that Aβ can be cleared locally in the cerebrovasculature by an LRP1-dependent endocytic pathway in smooth muscle cells. The uptake and degradation of both endogenous and exogenous Aβ were significantly reduced in LRP1-suppressed human brain vascular smooth muscle cells. Conditional deletion of Lrp1 in vascular smooth muscle cell in amyloid model APP/PS1 mice accelerated brain Aβ accumulation and exacerbated Aβ deposition as amyloid plaques and CAA without affecting Aβ production. Our results demonstrate that LRP1 is a major Aβ clearance receptor in cerebral vascular smooth muscle cell and a disturbance of this pathway contributes to Aβ accumulation. These studies establish critical functions of the cerebrovasculature system in Aβ metabolism and identify a new pathway involved in the pathogenesis of both AD and CAA. PMID:23152628

  8. Involvement of the Tyr kinase/JNK pathway in carbachol-induced bronchial smooth muscle contraction in the rat.

    PubMed

    Sakai, Hiroyasu; Watanabe, Yu; Honda, Mai; Tsuiki, Rika; Ueda, Yusuke; Nagai, Yuki; Narita, Minoru; Misawa, Miwa; Chiba, Yoshihiko

    2013-05-01

    Tyrosine (Tyr) kinases and mitogen-activated protein kinases have been thought to participate in the contractile response in various smooth muscles. The aim of the current study was to investigate the involvement of the Tyr kinase pathway in the contraction of bronchial smooth muscle. Ring preparations of bronchi isolated from rats were suspended in an organ bath. Isometric contraction of circular smooth muscle was measured. Immunoblotting was used to examine the phosphorylation of c-Jun N-terminal kinasess (JNKs) in bronchial smooth muscle. To examine the role of mitogen-activated protein kinase(s) in bronchial smooth muscle contraction, the effects of MPAK inhibitors were investigated in this study. The contraction induced by carbachol (CCh) was significantly inhibited by pretreatment with selective Tyr kinase inhibitors (genistein and ST638, n = 6, respectively), and a JNK inhibitor (SP600125, n = 6). The contractions induced by high K depolarization (n = 4), orthovanadate (a potent Tyr phosphatase inhibitor) and sodium fluoride (a G protein activator; NaF) were also significantly inhibited by selective Tyr kinase inhibitors and a JNK inhibitor (n = 4, respectively). However, the contraction induced by calyculin-A was not affected by SP600125. On the other hand, JNKs were phosphorylated by CCh (2.2 ± 0,4 [mean±SEM] fold increase). The JNK phosphorylation induced by CCh was significantly inhibited by SP600125 (n = 4). These findings suggest that the Tyr kinase/JNK pathway may play a role in bronchial smooth muscle contraction. Strategies to inhibit JNK activation may represent a novel therapeutic approach for diseases involving airway obstruction, such as asthma and chronic obstructive pulmonary disease.

  9. Fluctuations in isometric muscle force can be described by one linear projection of low-frequency components of motor unit discharge rates

    PubMed Central

    Negro, Francesco; Holobar, Aleš; Farina, Dario

    2009-01-01

    The aim of the study was to investigate the relation between linear transformations of motor unit discharge rates and muscle force. Intramuscular (wire electrodes) and high-density surface EMG (13 × 5 electrode grid) were recorded from the abductor digiti minimi muscle of eight healthy men during 60 s contractions at 5%, 7.5% and 10% of the maximal force. Spike trains of a total of 222 motor units were identified from the EMG recordings with decomposition algorithms. Principal component analysis of the smoothed motor unit discharge rates indicated that one component (first common component, FCC) described 44.2 ± 7.5% of the total variability of the smoothed discharge rates when computed over the entire contraction interval and 64.3 ± 10.2% of the variability when computed over 5 s intervals. When the FCC was computed from four or more motor units per contraction, it correlated with the force produced by the muscle (62.7 ± 10.1%) by a greater degree (P < 0.001) than the smoothed discharge rates of individual motor units (41.4 ± 7.8%). The correlation between FCC and the force signal increased up to 71.8 ± 13.1% when the duration and the shape of the smoothing window for discharge rates were similar to the average motor unit twitch force. Moreover, the coefficients of variation (CoV) for the force and for the FCC signal were correlated in all subjects (R2 range = 0.14–0.56; P < 0.05) whereas the CoV for force was correlated to the interspike interval variability in only one subject (R2= 0.12; P < 0.05). Similar results were further obtained from measures on the tibialis anterior muscle of an additional eight subjects during contractions at forces up to 20% of the maximal force (e.g. FCC explained 59.8 ± 11.0% of variability of the smoothed discharge rates). In conclusion, one signal captures most of the underlying variability of the low-frequency components of motor unit discharge rates and explains large part of the fluctuations in the motor output during

  10. Fluctuations in isometric muscle force can be described by one linear projection of low-frequency components of motor unit discharge rates.

    PubMed

    Negro, Francesco; Holobar, Ales; Farina, Dario

    2009-12-15

    The aim of the study was to investigate the relation between linear transformations of motor unit discharge rates and muscle force. Intramuscular (wire electrodes) and high-density surface EMG (13 x 5 electrode grid) were recorded from the abductor digiti minimi muscle of eight healthy men during 60 s contractions at 5%, 7.5% and 10% of the maximal force. Spike trains of a total of 222 motor units were identified from the EMG recordings with decomposition algorithms. Principal component analysis of the smoothed motor unit discharge rates indicated that one component (first common component, FCC) described 44.2 +/- 7.5% of the total variability of the smoothed discharge rates when computed over the entire contraction interval and 64.3 +/- 10.2% of the variability when computed over 5 s intervals. When the FCC was computed from four or more motor units per contraction, it correlated with the force produced by the muscle (62.7 +/- 10.1%) by a greater degree (P < 0.001) than the smoothed discharge rates of individual motor units (41.4 +/- 7.8%). The correlation between FCC and the force signal increased up to 71.8 +/- 13.1% when the duration and the shape of the smoothing window for discharge rates were similar to the average motor unit twitch force. Moreover, the coefficients of variation (CoV) for the force and for the FCC signal were correlated in all subjects (R(2) range = 0.14-0.56; P < 0.05) whereas the CoV for force was correlated to the interspike interval variability in only one subject (R(2) = 0.12; P < 0.05). Similar results were further obtained from measures on the tibialis anterior muscle of an additional eight subjects during contractions at forces up to 20% of the maximal force (e.g. FCC explained 59.8 +/- 11.0% of variability of the smoothed discharge rates). In conclusion, one signal captures most of the underlying variability of the low-frequency components of motor unit discharge rates and explains large part of the fluctuations in the motor output

  11. A Novel Method for Differentiation of Human Mesenchymal Stem Cells into Smooth Muscle-Like Cells on Clinically Deliverable Thermally Induced Phase Separation Microspheres

    PubMed Central

    Parmar, Nina; Ahmadi, Raheleh

    2015-01-01

    Muscle degeneration is a prevalent disease, particularly in aging societies where it has a huge impact on quality of life and incurs colossal health costs. Suitable donor sources of smooth muscle cells are limited and minimally invasive therapeutic approaches are sought that will augment muscle volume by delivering cells to damaged or degenerated areas of muscle. For the first time, we report the use of highly porous microcarriers produced using thermally induced phase separation (TIPS) to expand and differentiate adipose-derived mesenchymal stem cells (AdMSCs) into smooth muscle-like cells in a format that requires minimal manipulation before clinical delivery. AdMSCs readily attached to the surface of TIPS microcarriers and proliferated while maintained in suspension culture for 12 days. Switching the incubation medium to a differentiation medium containing 2 ng/mL transforming growth factor beta-1 resulted in a significant increase in both the mRNA and protein expression of cell contractile apparatus components caldesmon, calponin, and myosin heavy chains, indicative of a smooth muscle cell-like phenotype. Growth of smooth muscle cells on the surface of the microcarriers caused no change to the integrity of the polymer microspheres making them suitable for a cell-delivery vehicle. Our results indicate that TIPS microspheres provide an ideal substrate for the expansion and differentiation of AdMSCs into smooth muscle-like cells as well as a microcarrier delivery vehicle for the attached cells ready for therapeutic applications. PMID:25205072

  12. Characterization of primary cilia in human airway smooth muscle cells.

    PubMed

    Wu, Jun; Du, Hui; Wang, Xiangling; Mei, Changlin; Sieck, Gary C; Qian, Qi

    2009-08-01

    Considerable evidence indicates a key role for primary cilia of mammalian cells in mechanochemical sensing. Dysfunctions of primary cilia have been linked to the pathogenesis of several human diseases. However, cilia-related research has been limited to a few cell and tissue types; to our knowledge, no literature exists on primary cilia in airway smooth muscle (ASM). The aim of this study was to characterize primary cilia in human ASM. Primary cilia of human bronchial smooth muscle cells (HBSMCs) were examined using immunofluorescence confocal microscopy, and scanning and transmission electron microscopy. HBSMC migration and injury repair were examined by scratch-wound and epidermal growth factor (EGF)-induced migration assays. Cross-sectional images of normal human bronchi revealed that primary cilia of HBSMCs within each ASM bundle aggregated at the same horizontal level, forming a "cilium layer." Individual cilia of HBSMCs projected into extracellular matrix and exhibited varying degrees of deflection. Mechanochemical sensing molecules, polycystins, and alpha2-, alpha5-, and beta1-integrins were enriched in cilia, as was EGF receptor, known to activate jointly with integrins during cell migration. Migration assays demonstrated a ciliary contribution to HBSMC migration and wound repair. The primary cilia of ASM cells exert a role in sensing and transducing extracellular mechanochemical signals and in ASM injury repair. Defects in ASM ciliary function could potentially affect airway wall maintenance and/or remodeling, possibly relating to the genesis of bronchiectasis in autosomal dominant polycystic kidney disease, a disease of ciliopathy.

  13. Alterations in Intestinal Contractility during Inflammation Are Caused by Both Smooth Muscle Damage and Specific Receptor-mediated Mechanisms

    PubMed Central

    Tanović, Adnan; Fernández, Ester; Jiménez, Marcel

    2006-01-01

    Aim To evaluate motoric intestinal disturbances during inflammation with Trichinella spiralis in rats as an experimental model. Methods We examined the changes in worm-positive (jejunum) and worm-free (ileum) intestinal segments of rats infected with T. spiralis. To investigate the relationship between structural and functional changes in smooth muscle, we measured the thickness of the muscle layers of rat jejunum and ileum. Mechanical responses to KCl 30 mmol/L, acetylcholine (ACh) 10−8-10−4 mol/L, substance P (SP) 10−9-10−5 mol/L, and to electrical field stimulation of longitudinal muscle strips in the jejunum and ileum were studied in muscle bath as controls (day 0) and on day 2, 6, 14, 23, and 72 after infection. Results After T. spiralis infestation, an inflammation of the mucosal and submucosal layers of jejunum was observed, whereas in the worm-free ileum there was not any inflammatory infiltrate. Increase in the smooth muscle thickness of both jejunum and ileum were correlated with increased responses to depolarizing agent KCl and to ACh. However, responses to SP were decreased on day 14-23 after infection in jejunum and from day 6-14 after infection in ileum. Electric field stimulation-induced contractions were transiently decreased in the jejunum (day 2 after infection) but in the ileum the contractile responses were decreased until the end of the study period. Conclusions Alterations in intestinal smooth muscle function do not require the presence of the parasite and the absence of histopathological signs of inflammation do not warrant intact motor function. Changes in motor responses after T. spiralis infection are not only due to smooth muscle damage but also to disturbances in specific receptor-mediated mechanisms. PMID:16625700

  14. Ca2+-recruitment in tachykinin-induced contractions of gut smooth muscle from African clawed frog, Xenopus laevis and rainbow trout, Oncorhynchus mykiss.

    PubMed

    Johansson, Agot; Holmgren, Susanne

    2003-04-01

    Changes in intracellular Ca(2+) concentration control many essential cellular functions like the contraction of smooth muscle cells. The aim of this study was to investigate if the tachykinin substance P (SP) engages external Ca(2+)-sources, internal Ca(2+)-sources, or both in the contraction of the gastrointestinal smooth muscle of rainbow trout (Oncorhynchus mykiss) and the African clawed frog (Xenopus laevis). Strip preparations made of either longitudinal smooth muscle of proximal intestine or circular smooth muscle of cardiac stomach were mounted in organ baths and the tension was recorded via force transducers. Ca(2+)-free Ringer's solution containing the Ca(2+) chelating agent EGTA (2mM) abolished all spontaneous contractions. Exposure to SP in Ca(2+)-free solution decreased the response. Preparations were also treated with the Ca(2+)-ATPase inhibitor thapsigargin (10 microM) during 30 min. Thapsigargin reduced the effect of SP on intestinal longitudinal smooth muscle in rainbow trout and on stomach circular smooth muscle in the African clawed frog and to a less extent in the intestinal longitudinal smooth muscle. The results show that external Ca(2+) is of great importance, but is not the only source of Ca(2+) recruitment in SP-activation of gastrointestinal smooth muscle in rainbow trout and the African clawed frog.

  15. Isoflavones isolated from red clover (Trifolium pratense) inhibit smooth muscle contraction of the isolated rat prostate gland.

    PubMed

    Brandli, A; Simpson, J S; Ventura, S

    2010-09-01

    This study investigated whether red clover contains any bioactive constituents which may affect contractility of rat prostatic smooth muscle in an attempt to determine whether its medicinal use in the treatment of benign prostatic hyperplasia is supported by pharmacological effects. A commercially available red clover extract was chemically fractionated and various isoflavones (genistein, formononetin and biochanin A) were isolated from these fractions and their effects on contractility were examined on preparations of the isolated rat prostate gland. Contractile effects of the isolated fractions were compared with commercially available isoflavones (genistein, formononetin and biochanin A). Pharmacological tools were used to investigate the mechanism of action modifying smooth muscle contraction. Crude red clover extract (Trinovin) inhibited electrical field stimulation induced contractions of the rat prostate across a range of frequencies with an IC(50) of approximately 68 microg/ml. Contractions of the rat prostate elicited by exogenous administration of acetylcholine, noradrenaline or adenosine 5'-triphosphate (ATP) were also inhibited. Chromatographic separation, and final purification by high performance liquid chromatography (HPLC) permitted the isolation of the isoflavones: daidzein, calycosin, formononetin, prunetin, pratensin, biochanin A and genistein. Genistein, formononetin and biochanin A (100 microM) from either commercial sources or isolated from red clover extract inhibited electrical field stimulation induced contractions of the isolated rat prostate. It is concluded that isoflavones contained in red clover are able to inhibit prostatic smooth muscle contractions in addition to their antiproliferative effects. However, the high concentrations required to observe these smooth muscle relaxant effects mean that a therapeutic benefit from this mechanism is unlikely at doses used clinically. Crown Copyright 2010. Published by Elsevier GmbH. All rights

  16. A monoclonal IgM smooth muscle antibody reactive with fibroblast stress fibres produced by immunization with Treponema pallidum.

    PubMed Central

    Strugnell, R A; Underwood, J R; Clarke, F M; Pedersen, J S; Chalmers, P J; Faine, S; Toh, B H

    1983-01-01

    A monoclonal IgM smooth muscle antibody secreted by a hybrid (MMI-1) of mouse plasmacytoma NS-1 with spleen cells from mouse immunized with Treponema pallidum was detected by indirect immunofluorescence tests on frozen tissue sections and on acetone fixed monolayers of rat and human fibroblasts. The antibody did not react with acetone fixed smears of T. pallidum but reacted with smooth muscle fibres and with striations of skeletal and cardiac muscle. In non-muscle cells, the antibody stained liver in a 'polygonal' pattern, thymus with accentuated staining of the thymic medulla, renal glomeruli and the brush border and peritubular fibrils of renal tubules. In fibroblast monolayers, the antibody stained stress fibres in an interrupted pattern. Immunoblotting with muscle proteins and the antibody showed labelling of a 100K molecule. The cellular distribution of the mouse monoclonal antibody is similar to that obtained with anti-actin antibody suggesting that the corresponding antigen may be an actin binding protein. Images Fig. 3 PMID:6347470

  17. Distinct function of estrogen receptor α in smooth muscle and fibroblast cells in prostate development.

    PubMed

    Vitkus, Spencer; Yeh, Chiuan-Ren; Lin, Hsiu-Hsia; Hsu, Iawen; Yu, Jiangzhou; Chen, Ming; Yeh, Shuyuan

    2013-01-01

    Estrogen signaling, through estrogen receptor (ER)α, has been shown to cause hypertrophy in the prostate. Our recent report has shown that epithelial ERα knockout (KO) will not affect the normal prostate development or homeostasis. However, it remains unclear whether ERα in different types of stromal cells has distinct roles in prostate development. This study proposed to elucidate how KO of ERα in the stromal smooth muscle or fibroblast cells may interrupt cross talk between prostate stromal and epithelial cells. Smooth muscle ERαKO (smERαKO) mice showed decreased glandular infolding with the proximal area exhibiting a significant decrease. Fibroblast ERαKO mouse prostates did not exhibit this phenotype but showed a decrease in the number of ductal tips. Additionally, the amount of collagen observed in the basement membrane was reduced in smERαKO prostates. Interestingly, these phenotypes were found to be mutually exclusive among smERαKO or fibroblast ERαKO mice. Compound KO of ERα in both fibroblast and smooth muscle showed combined phenotypes from each of the single KO. Further mechanistic studies showed that IGF-I and epidermal growth factor were down-regulated in prostate smooth muscle PS-1 cells lacking ERα. Together, our results indicate the distinct functions of fibroblast vs. smERα in prostate development.

  18. Discoidin Domain Receptor-1 Deficiency Attenuates Atherosclerotic Calcification and Smooth Muscle Cell-Mediated Mineralization

    PubMed Central

    Ahmad, Pamela J.; Trcka, Daniel; Xue, Siming; Franco, Christopher; Speer, Mei Y.; Giachelli, Cecilia M.; Bendeck, Michelle P.

    2009-01-01

    Intimal calcification is a feature of advanced atherosclerotic disease that predicts a two- to eightfold increase in the risk of coronary events. Type I collagen promotes vascular smooth muscle cell-mediated calcification, although the mechanism by which this occurs is unknown. The discoidin domain receptor 1 (DDR1) is a collagen receptor that is emerging as a critical mediator of atherosclerosis. To determine whether DDR1 is involved in intimal calcification, we fed male Ddr1−/−;Ldlr−/− and Ddr1+/+;Ldlr−/− mice an atherogenic diet for 6, 12, or 24 weeks. DDR1 deficiency significantly reduced the calcium content of the aortic arch, and microcomputed tomography demonstrated a significant decrease in hydroxyapatite deposition after 24 weeks of atherogenic diet. Reduced calcification was correlated with decreases in macrophage accumulation and tumor necrosis factor α staining, suggesting that the reduction in calcification was in part due to decreased inflammation. The chondrogenic markers type II collagen, type X collagen, and Sox-9 were expressed within the mineralized foci. An in vitro assay performed with vascular smooth muscle cells revealed that DDR1 was required for cell-mediated calcification of the matrix, and Ddr1+/+ smooth muscle cells expressed more alkaline phosphatase activity, whereas Ddr1−/− smooth muscle cells expressed elevated levels of mRNA for nucleotide pyrophosphatase phosphodiesterase 1, an inhibitor of tissue mineralization. Taken together, our results demonstrate that DDR1 mediates an important mechanism for atherosclerotic calcification. PMID:19893047

  19. Discoidin domain receptor-1 deficiency attenuates atherosclerotic calcification and smooth muscle cell-mediated mineralization.

    PubMed

    Ahmad, Pamela J; Trcka, Daniel; Xue, Siming; Franco, Christopher; Speer, Mei Y; Giachelli, Cecilia M; Bendeck, Michelle P

    2009-12-01

    Intimal calcification is a feature of advanced atherosclerotic disease that predicts a two- to eightfold increase in the risk of coronary events. Type I collagen promotes vascular smooth muscle cell-mediated calcification, although the mechanism by which this occurs is unknown. The discoidin domain receptor 1 (DDR1) is a collagen receptor that is emerging as a critical mediator of atherosclerosis. To determine whether DDR1 is involved in intimal calcification, we fed male Ddr1(-/-);Ldlr(-/-) and Ddr1(+/+);Ldlr(-/-) mice an atherogenic diet for 6, 12, or 24 weeks. DDR1 deficiency significantly reduced the calcium content of the aortic arch, and microcomputed tomography demonstrated a significant decrease in hydroxyapatite deposition after 24 weeks of atherogenic diet. Reduced calcification was correlated with decreases in macrophage accumulation and tumor necrosis factor alpha staining, suggesting that the reduction in calcification was in part due to decreased inflammation. The chondrogenic markers type II collagen, type X collagen, and Sox-9 were expressed within the mineralized foci. An in vitro assay performed with vascular smooth muscle cells revealed that DDR1 was required for cell-mediated calcification of the matrix, and Ddr1(+/+) smooth muscle cells expressed more alkaline phosphatase activity, whereas Ddr1(-/-) smooth muscle cells expressed elevated levels of mRNA for nucleotide pyrophosphatase phosphodiesterase 1, an inhibitor of tissue mineralization. Taken together, our results demonstrate that DDR1 mediates an important mechanism for atherosclerotic calcification.

  20. Progression from homologous to heterologous desensitization of contraction in gastric smooth muscle cells.

    PubMed

    Severi, C; Carnicelli, V; di Giulio, A; Romano, G; Bozzi, A; Oratore, A; Strom, R; delle Fave, G

    1999-02-01

    Acute desensitization of contraction and its relative mechanisms have been studied in smooth muscle cells isolated from guinea pig stomach. Desensitization was induced by pre-exposure of the cells to one of the excitatory neuropeptides linked to the phospholipase C intracellular cascade, i.e., cholecystokinin (CCK), gastrin-releasing peptide, and Substance P. Desensitization was homologous after a 30-s pre-exposure and heterologous if pre-exposure lasted for 5 min or longer. Homologous desensitization was studied in a more detailed way after pre-exposure to CCK. Preincubation with increasing concentrations of CCK (10 pM-1 microM) induced a progressive rightward shift of the dose-response curves associated with both a decrease in potency (ED50 4.5 pM-2.2 nM) and a maximum response that were not related to a modification of response kinetics. After brief pre-exposure to 1 nM CCK (Dmax), an inhibition of contraction was observed in response to an identical dose of CCK (45.1 +/- 8.6%), the decreased response being associated with an inhibition of inositol phosphates and [Ca++]i mobilization. Both inositol trisphosphate (InsP3)-induced contraction and [Ca++]i mobilization were inhibited to a lesser extent than CCK-induced responses. Any longer pre-exposure of cells to one of the above-mentioned neuropeptides caused heterologous desensitization, with an observed inhibition of contraction in response to all tested agonists (CCK, 60.3 +/- 5.9%; gastrin-releasing peptide: 56.7 +/- 3. 5%; Substance P, 60.6 +/- 6.5%). A similar decrease was observed in InsP3-induced contractions resulting in a desensitization of the InsP3 response as well. Full recovery of contractile responses appeared within 30 min from the end of preincubation, thus indicating that degradation of membrane receptors did not occur. Although pre-exposure of the cells to protein kinase C inhibitor GF109203X did not modify CCK-induced homologous desensitization, it blocked CCK-induced heterologous

  1. MiR-29b Downregulation Induces Phenotypic Modulation of Vascular Smooth Muscle Cells: Implication for Intracranial Aneurysm Formation and Progression to Rupture.

    PubMed

    Sun, Liqian; Zhao, Manman; Zhang, Jingbo; Lv, Ming; Li, Youxiang; Yang, Xinjian; Liu, Aihua; Wu, Zhongxue

    2017-01-01

    Our previous microarray results identified numerous microRNAs (miRNAs), including miR-29b, that were differentially expressed in the serum of intracranial aneurysm (IA) patients. The current study aimed to investigate whether miR-29b downregulation in IA could promote the phenotypic modulation of vascular smooth muscle cells (VSMCs) involved in the pathogenesis of aneurysm by activating ATG14-mediated autophagy. First, the levels of miR-29b and autophagy related genes (ATGs) between IA patients and normal subjects were compared. Next, we modified the level of miR-29b via lentivirus particles in the VSMCs and examined the effects of miR-29b on proliferation, migration, and phenotypic modulation of VSMCs from a contractile phenotype to a synthetic phenotype, as well as the levels of autophagy. Finally, the binding of miR-29b to the 3'UTR of ATG14 mRNA and its effects on ATG14 expression were analysed by a luciferase reporter assay and Western blot, respectively. The level of miR-29b was decreased, and autophagy markers were increased in the IA patients compared to that of the normal subjects. Knockdown of miR-29b significantly promoted VSMCs proliferation and migration and, more importantly, induced the phenotypic modulation associated with autophagy activation, whereas miR-29b overexpression showed the opposite effects. The luciferase reporter assay demonstrated that ATG14 was a functional target gene of miR-29b. Notably, knockdown of ATG14 by siRNA apparently abrogated miR-29b inhibition-mediated phenotypic modulation. Downregulation of miR-29b induced VSMCs phenotypic modulation by directly activating ATG14-mediated autophagy, which is associated with the formation, growth and rupture of IAs. © 2017 The Author(s) Published by S. Karger AG, Basel.

  2. In-depth evaluation of commercially available human vascular smooth muscle cells phenotype: Implications for vascular tissue engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timraz, Sara B.H., E-mail: sara.timraz@kustar.ac.ae; Farhat, Ilyas A.H., E-mail: ilyas.farhat@outlook.com; Alhussein, Ghada, E-mail: ghada.alhussein@kustar.ac.ae

    In vitro research on vascular tissue engineering has extensively used isolated primary human or animal smooth muscle cells (SMC). Research programs that lack such facilities tend towards commercially available primary cells sources. Here, we aim to evaluate the capacity of commercially available human SMC to maintain their contractile phenotype, and determine if dedifferentiation towards the synthetic phenotype occurs in response to conventional cell culture and passaging without any external biochemical or mechanical stimuli. Lower passage SMC adopted a contractile phenotype marked by a relatively slower proliferation rate, higher expression of proteins of the contractile apparatus and smoothelin, elongated morphology, andmore » reduced deposition of collagen types I and III. As the passage number increased, migratory capacity was enhanced, average cell speed, total distance and net distance travelled increased up to passage 8. Through the various assays, corroborative evidence pinpoints SMC at passage 7 as the transition point between the contractile and synthetic phenotypes, while passage 8 distinctly and consistently exhibited characteristics of synthetic phenotype. This knowledge is particularly useful in selecting SMC of appropriate passage number for the target vascular tissue engineering application, for example, a homeostatic vascular graft for blood vessel replacement versus recreating atherosclerotic blood vessel model in vitro. - Highlights: • Ability of human smooth muscle cells to alter phenotype in culture is evaluated. • Examined the effect of passaging human smooth muscle cells on phenotype. • Phenotype is assessed based on morphology, proliferation, markers, and migration. • Multi-resolution assessment methodology, single-cell and cell-population. • Lower and higher passages than P7 adopted a contractile and synthetic phenotype respectively.« less

  3. Effects of fenoterol on beta-adrenoceptor and muscarinic M2 receptor function in bovine tracheal smooth muscle.

    PubMed

    De Vries, B; Roffel, A F; Kooistra, J M; Meurs, H; Zaagsma, J

    2001-05-11

    Prolonged (18 h) incubation of isolated bovine tracheal smooth muscle with the beta2-adrenoceptor agonist fenoterol (10 microM) induced desensitization of isoprenaline-induced adenylyl cyclase activity in bovine tracheal smooth muscle membranes, characterized by a 25% decrease in maximal effect (Emax) (P < 0.05), while the sensitivity to the agonist (pEC50) was unchanged. The Emax value of isoprenaline-induced smooth muscle relaxation of submaximal methacholine-induced contractile tones was similarly reduced by about 25% (P < 0.001), while the pEC50 value was diminished by 1.0 log unit (P < 0.001). As determined by 30 microM gallamine-induced muscarinic M2 receptor antagonism and pertussis toxin-induced inactivation of G(i alpha), muscarinic M2 receptor-mediated functional antagonism did not play a role in isoprenaline-induced relaxation of bovine tracheal smooth muscle contracted by methacholine, both in control and in 18-h fenoterol-treated tissue. In line with these observations, we found no enhanced muscarinic M2 receptor-mediated inhibition of 1 microM forskolin-stimulated adenylyl cyclase activity after 18-h fenoterol treatment. These data indicate that 18-h fenoterol treatment of bovine tracheal smooth muscle induces beta2-adrenoceptor desensitization and reduced functional antagonism of methacholine-induced contraction by beta-adrenoceptor agonists, without a change of muscarinic M2 receptor function.

  4. A new level of plasticity: Drosophila smooth-like testes muscles compensate failure of myoblast fusion

    PubMed Central

    Kuckwa, Jessica; Fritzen, Katharina; Buttgereit, Detlev; Rothenbusch-Fender, Silke; Renkawitz-Pohl, Renate

    2016-01-01

    The testis of Drosophila resembles an individual testis tubule of mammals. Both are surrounded by a sheath of smooth muscles, which in Drosophila are multinuclear and originate from a pool of myoblasts that are set aside in the embryo and accumulate on the genital disc later in development. These muscle stem cells start to differentiate early during metamorphosis and give rise to all muscles of the inner male reproductive system. Shortly before the genital disc and the developing testes connect, multinuclear nascent myotubes appear on the anterior tips of the seminal vesicles. Here, we show that adhesion molecules are distinctly localized on the seminal vesicles; founder cell (FC)-like myoblasts express Dumbfounded (Duf) and Roughest (Rst), and fusion-competent myoblast (FCM)-like cells mainly express Sticks and stones (Sns). The smooth but multinuclear myotubes of the testes arose by myoblast fusion. RNAi-mediated attenuation of Sns or both Duf and Rst severely reduced the number of nuclei in the testes muscles. Duf and Rst probably act independently in this context. Despite reduced fusion in all of these RNAi-treated animals, myotubes migrated onto the testes, testes were shaped and coiled, muscle filaments were arranged as in the wild type and spermatogenesis proceeded normally. Hence, the testes muscles compensate for fusion defects so that the myofibres encircling the adult testes are indistinguishable from those of the wild type and male fertility is guaranteed. PMID:26657767

  5. Hypotension Due to Kir6.1 Gain‐of‐Function in Vascular Smooth Muscle

    PubMed Central

    Li, Anlong; Knutsen, Russell H.; Zhang, Haixia; Osei‐Owusu, Patrick; Moreno‐Dominguez, Alex; Harter, Theresa M.; Uchida, Keita; Remedi, Maria S.; Dietrich, Hans H.; Bernal‐Mizrachi, Carlos; Blumer, Kendall J.; Mecham, Robert P.; Koster, Joseph C.; Nichols, Colin G.

    2013-01-01

    Background KATP channels, assembled from pore‐forming (Kir6.1 or Kir6.2) and regulatory (SUR1 or SUR2) subunits, link metabolism to excitability. Loss of Kir6.2 results in hypoglycemia and hyperinsulinemia, whereas loss of Kir6.1 causes Prinzmetal angina–like symptoms in mice. Conversely, overactivity of Kir6.2 induces neonatal diabetes in mice and humans, but consequences of Kir6.1 overactivity are unknown. Methods and Results We generated transgenic mice expressing wild‐type (WT), ATP‐insensitive Kir6.1 [Gly343Asp] (GD), and ATP‐insensitive Kir6.1 [Gly343Asp,Gln53Arg] (GD‐QR) subunits, under Cre‐recombinase control. Expression was induced in smooth muscle cells by crossing with smooth muscle myosin heavy chain promoter–driven tamoxifen‐inducible Cre‐recombinase (SMMHC‐Cre‐ER) mice. Three weeks after tamoxifen induction, we assessed blood pressure in anesthetized and conscious animals, as well as contractility of mesenteric artery smooth muscle and KATP currents in isolated mesenteric artery myocytes. Both systolic and diastolic blood pressures were significantly reduced in GD and GD‐QR mice but normal in mice expressing the WT transgene and elevated in Kir6.1 knockout mice as well as in mice expressing dominant‐negative Kir6.1 [AAA] in smooth muscle. Contractile response of isolated GD‐QR mesenteric arteries was blunted relative to WT controls, but nitroprusside relaxation was unaffected. Basal KATP conductance and pinacidil‐activated conductance were elevated in GD but not in WT myocytes. Conclusions KATP overactivity in vascular muscle can lead directly to reduced vascular contractility and lower blood pressure. We predict that gain of vascular KATP function in humans would lead to a chronic vasodilatory phenotype, as indeed has recently been demonstrated in Cantu syndrome. PMID:23974906

  6. Bitter taste receptors in the wrong place: novel airway smooth muscle targets for treating asthma.

    PubMed

    Liggett, Stephen B

    2014-01-01

    There is a need to expand the classes of drugs used to treat obstructive lung diseases to achieve better outcomes. With only one class of direct bronchodilators (β-agonists), we sought to find receptors on human airway smooth muscle (ASM) that act via a unique mechanism to relax the muscle, have a diverse agonist binding profile to enhance the probability of finding new therapeutics, and relax ASM with equal or greater efficacy than β-agonists. We have found that human and mouse ASM express six bitter taste receptor (TAS2R) subtypes, previously thought only to exist in taste buds of the tongue. Agonists acting at TAS2Rs evoke profound bronchodilation via a Ca(2+)-dependent mechanism. TAS2R function is not altered in asthma models, undergoes minimal tachyphylaxis upon repetitive dosing, and relaxes even under extreme desensitization of relaxation by β-agonists. Taken together, TAS2Rs on ASM represent a novel pathway to consider for development of agonists in the treatment of asthma and chronic obstructive lung disease.

  7. Concurrent generation of functional smooth muscle and endothelial cells via a vascular progenitor.

    PubMed

    Marchand, Melanie; Anderson, Erica K; Phadnis, Smruti M; Longaker, Michael T; Cooke, John P; Chen, Bertha; Reijo Pera, Renee A

    2014-01-01

    Smooth muscle cells (SMCs) and endothelial cells (ECs) are typically derived separately, with low efficiencies, from human pluripotent stem cells (hPSCs). The concurrent generation of these cell types might lead to potential applications in regenerative medicine to model, elucidate, and eventually treat vascular diseases. Here we report a robust two-step protocol that can be used to simultaneously generate large numbers of functional SMCs and ECs from a common proliferative vascular progenitor population via a two-dimensional culture system. We show here that coculturing hPSCs with OP9 cells in media supplemented with vascular endothelial growth factor, basic fibroblast growth factor, and bone morphogenetic protein 4 yields a higher percentage of CD31(+)CD34(+) cells on day 8 of differentiation. Upon exposure to endothelial differentiation media and SM differentiation media, these vascular progenitors were able to differentiate and mature into functional endothelial cells and smooth muscle cells, respectively. Furthermore, we were able to expand the intermediate population more than a billion fold to generate sufficient numbers of ECs and SMCs in parallel for potential therapeutic transplantations.

  8. Diffusion of myosin light chain kinase on actin: A mechanism to enhance myosin phosphorylation rates in smooth muscle.

    PubMed

    Hong, Feng; Brizendine, Richard K; Carter, Michael S; Alcala, Diego B; Brown, Avery E; Chattin, Amy M; Haldeman, Brian D; Walsh, Michael P; Facemyer, Kevin C; Baker, Josh E; Cremo, Christine R

    2015-10-01

    Smooth muscle myosin (SMM) light chain kinase (MLCK) phosphorylates SMM, thereby activating the ATPase activity required for muscle contraction. The abundance of active MLCK, which is tightly associated with the contractile apparatus, is low relative to that of SMM. SMM phosphorylation is rapid despite the low ratio of MLCK to SMM, raising the question of how one MLCK rapidly phosphorylates many SMM molecules. We used total internal reflection fluorescence microscopy to monitor single molecules of streptavidin-coated quantum dot-labeled MLCK interacting with purified actin, actin bundles, and stress fibers of smooth muscle cells. Surprisingly, MLCK and the N-terminal 75 residues of MLCK (N75) moved on actin bundles and stress fibers of smooth muscle cell cytoskeletons by a random one-dimensional (1-D) diffusion mechanism. Although diffusion of proteins along microtubules and oligonucleotides has been observed previously, this is the first characterization to our knowledge of a protein diffusing in a sustained manner along actin. By measuring the frequency of motion, we found that MLCK motion is permitted only if acto-myosin and MLCK-myosin interactions are weak. From these data, diffusion coefficients, and other kinetic and geometric considerations relating to the contractile apparatus, we suggest that 1-D diffusion of MLCK along actin (a) ensures that diffusion is not rate limiting for phosphorylation, (b) allows MLCK to locate to areas in which myosin is not yet phosphorylated, and (c) allows MLCK to avoid getting "stuck" on myosins that have already been phosphorylated. Diffusion of MLCK along actin filaments may be an important mechanism for enhancing the rate of SMM phosphorylation in smooth muscle. © 2015 Hong et al.

  9. MicroRNA-20b-5p inhibits platelet-derived growth factor-induced proliferation of human fetal airway smooth muscle cells by targeting signal transducer and activator of transcription 3.

    PubMed

    Tang, Jin; Luo, Lingying

    2018-06-01

    Pediatric asthma is still a health threat to the pediatric population in recent years. The airway remodeling induced by abnormal airway smooth muscle (ASM) cell proliferation is an important cause of asthma. MicroRNAs (miRNAs) are important regulators of ASM cell proliferation. Numerous studies have reported that miR-20b-5p is a critical regulator for cell proliferation. However, whether miR-20b-5p is involved in regulating ASM cell proliferation remains unknown. In this study, we aimed to investigate the potential role of miR-20b-5p in regulating the proliferation of fetal ASM cell induced by platelet-derived growth factor (PDGF). Here, we showed that miR-20b-5p was significantly decreased in fetal ASM cells treated with PDGF. Biological experiments showed that the overexpression of miR-20b-5p inhibited the proliferation while miR-20b-5p inhibition markedly promoted the proliferation of fetal ASM cells. Bioinformatics analysis and luciferase reporter assay showed that miR-20b-5p directly targeted the 3'-UTR of signal transducer and activator of transcription 3 (STAT3). Further data showed that miR-20b-5p negatively regulated the expression of STAT3 in fetal ASM cells. Moreover, miR-20b-5p regulates the transcriptional activity of STAT3 in fetal ASM cells. Overexpression of STAT3 reversed the inhibitory effect of miR-20b-5p overexpression on fetal ASM cell proliferation while the knockdown of STAT3 abrogated the promoted effect of miR-20b-5p inhibition on fetal ASM cell proliferation. Overall, our results show that miR-20b-5p impedes PDGF-induced proliferation of fetal ASM cells through targeting STAT3. Our study suggests that miR-20b-5p may play an important role in airway remodeling during asthma and suggests that miR-20b-5p may serve as a potential therapeutic target for pediatric asthma. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  10. Adenosine A1 receptors link to smooth muscle contraction via CYP4a, PKC-α, and ERK1/2

    PubMed Central

    Kunduri, SS; Mustafa, SJ; Ponnoth, DS; Dick, GM; Nayeem, MA

    2013-01-01

    Adenosine A1 receptor (A1AR) activation contracts smooth muscle, although signaling mechanisms aren’t thoroughly understood. Activation of A1AR leads to metabolism of arachidonic acid, including the production of 20-hydroxyeicosatetraenoic acid (20-HETE) by cytochrome P4504a (CYP4a). 20-HETE can activate protein kinase C-α (PKC-α) which crosstalks with extracellular signal-regulated kinase (ERK1/2) pathway. Both these pathways can regulate smooth muscle contraction, we tested the hypothesis that A1AR contracts smooth muscle through a pathway involving CYP4a, PKC-α, and ERK1/2. Experiments included isometric tension recordings of aortic contraction and Western blots of signaling molecules in wild type (WT) and A1AR knockout (A1KO) mice. Contraction to the A1-selective agonist CCPA was absent in A1KO mice aortae, indicating the contractile role of A1AR. Inhibition of CYP4a (HET0016) abolished CCPA-induced contraction in WT aortae, indicating a critical role for 20-HETE. Both WT and A1KO mice aortae contracted in response to exogenous 20-HETE. Inhibition of PKC-α (Gö6976) or ERK1/2 (PD98059) attenuated 20-HETE-induced contraction equally, suggesting that ERK1/2 is downstream of PKC-α. Contractions to exogenous 20-HETE were significantly less in A1KO mice; reduced protein levels of PKC-α, p-ERK1/2, and total ERK1/2 supported this observation. Our data indicate that A1AR mediates smooth muscle contraction via CYP4a and a PKC-α-ERK1/2 pathway. PMID:23519140

  11. [Urothelium-dependent modulation of urinary bladder smooth muscle contractions by menthol].

    PubMed

    Paduraru, O M; Filippov, I B; Boldyriev, O I; Vladymyrova, I A; Naĭd'onov, V H; Shuba, Ia M

    2011-01-01

    TRPM8 cold receptor/channel is considered amongst the variety of receptors that support and modulate sensory function of urothelium, although the information regarding this is still quite contradictory. Here we have studied the effects of nonspecific TRPM8 activator menthol on the contractions of the smooth muscle strips of the rat bladder with intact and removed urothelium, and assessed the expression in them of TRPM8 mRNA using semi-quantitative RT-PCR. Menthol (100 microM) decreased the basal tone and the amplitude of spontaneous contractions only in the strips with intact urothelium. Irrespective of the presence of urothelium it similarly inhibited (by approximately 45 %) the contractions evoked by high-potassium depolarization. Contractions induced by muscarinic agonist carbachol (1 microM) were inhibited by menthol much stronger (by approximately 63%) if the urothelium was present than without it (by approximately 12%). Expression of TRPM8 mRNA in urothelium was not detected, whilst in detrusor smooth muscle it was found very low. We conclude that modulation of contractile responses by menthol is most likely explained by its blocking action on voltage-gated calcium channels ofdetrusor smooth muscle cells (SMC) and by menthol-stimulated release from urothelium of some factor(s) with relaxant effects on SMCs. Stimulation of the secretion of these factors from urothelial cells most likely involves menthol-induced, TRPM8-independent mobilization of calcium.

  12. Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephson, Matthew P.; Sikkink, Laura A.; Penheiter, Alan R.

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Cardiac myosin regulatory light chain (MYL2) is phosphorylated at S15. Black-Right-Pointing-Pointer Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase. Black-Right-Pointing-Pointer It is a widely believed that MYL2 is a poor substrate for smMLCK. Black-Right-Pointing-Pointer In fact, smMLCK efficiently and rapidly phosphorylates S15 in MYL2. Black-Right-Pointing-Pointer Phosphorylation kinetics measured by novel fluorescence method without radioactivity. -- Abstract: Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca{sup 2+} sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chainmore » kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V{sub max} and K{sub M} for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially

  13. A non-capacitative pathway activated by arachidonic acid is the major Ca2+ entry mechanism in rat A7r5 smooth muscle cells stimulated with low concentrations of vasopressin

    PubMed Central

    Broad, Lisa M; Cannon, Toby R; Taylor, Colin W

    1999-01-01

    Depletion of the Ca2+ stores of A7r5 cells stimulated Ca2+, though not Sr2+, entry. Vasopressin (AVP) or platelet-derived growth factor (PDGF) stimulated Sr2+ entry. The cells therefore express a capacitative pathway activated by empty stores and a non-capacitative pathway stimulated by receptors; only the former is permeable to Mn2+ and only the latter to Sr2+. Neither empty stores nor inositol 1,4,5-trisphosphate (InsP3) binding to its receptors are required for activation of the non-capacitative pathway, because microinjection of cells with heparin prevented PDGF-evoked Ca2+ mobilization but not Sr2+ entry. Low concentrations of Gd3+ irreversibly blocked capacitative Ca2+ entry without affecting AVP-evoked Sr2+ entry. After inhibition of the capacitative pathway with Gd3+, AVP evoked a substantial increase in cytosolic [Ca2+], confirming that the non-capacitative pathway can evoke a significant increase in cytosolic [Ca2+]. Arachidonic acid mimicked the effect of AVP on Sr2+ entry without stimulating Mn2+ entry; the Sr2+ entry was inhibited by 100 μM Gd3+, but not by 1 μM Gd3+ which completely inhibited capacitative Ca2+ entry. The effects of arachidonic acid did not require its metabolism. AVP-evoked Sr2+ entry was unaffected by isotetrandrine, an inhibitor of G protein-coupled phospholipase A2. U73122, an inhibitor of phosphoinositidase C, inhibited AVP-evoked formation of inositol phosphates and Sr2+ entry. The effects of phorbol esters and Ro31-8220 (a protein kinase C inhibitor) established that protein kinase C did not mediate the effects of AVP on the non-capacitative pathway. An inhibitor of diacylglycerol lipase, RHC-80267, inhibited AVP-evoked Sr2+ entry without affecting capacitative Ca2+ entry or release of Ca2+ stores. Selective inhibition of capacitative Ca2+ entry with Gd3+ revealed that the non-capacitative pathway is the major route for the Ca2+ entry evoked by low AVP concentrations. We conclude that in A7r5 cells, the Ca2+ entry evoked by

  14. Microdomains of muscarinic acetylcholine and Ins(1,4,5)P3 receptors create ‘Ins(1,4,5)P3 junctions’ and sites of Ca2+ wave initiation in smooth muscle

    PubMed Central

    Olson, Marnie L.; Sandison, Mairi E.; Chalmers, Susan; McCarron, John G.

    2012-01-01

    Summary Increases in cytosolic Ca2+ concentration ([Ca2+]c) mediated by inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3, hereafter InsP3] regulate activities that include division, contraction and cell death. InsP3-evoked Ca2+ release often begins at a single site, then regeneratively propagates through the cell as a Ca2+ wave. The Ca2+ wave consistently begins at the same site on successive activations. Here, we address the mechanisms that determine the Ca2+ wave initiation site in intestinal smooth muscle cells. Neither an increased sensitivity of InsP3 receptors (InsP3R) to InsP3 nor regional clustering of muscarinic receptors (mAChR3) or InsP3R1 explained the selection of an initiation site. However, examination of the overlap of mAChR3 and InsP3R1 localisation, by centre of mass analysis, revealed that there was a small percentage (∼10%) of sites that showed colocalisation. Indeed, the extent of colocalisation was greatest at the Ca2+ wave initiation site. The initiation site might arise from a selective delivery of InsP3 from mAChR3 activity to particular InsP3Rs to generate faster local [Ca2+]c increases at sites of colocalisation. In support of this hypothesis, a localised subthreshold ‘priming’ InsP3 concentration applied rapidly, but at regions distant from the initiation site, shifted the wave to the site of the priming. Conversely, when the Ca2+ rise at the initiation site was rapidly and selectively attenuated, the Ca2+ wave again shifted and initiated at a new site. These results indicate that Ca2+ waves initiate where there is a structural and functional coupling of mAChR3 and InsP3R1, which generates junctions in which InsP3 acts as a highly localised signal by being rapidly and selectively delivered to InsP3R1. PMID:22946060

  15. Chitosan-based scaffolds for the support of smooth muscle constructs in intestinal tissue engineering

    PubMed Central

    Zakhem, Elie; Raghavan, Shreya; Gilmont, Robert R; Bitar, Khalil N

    2012-01-01

    Intestinal tissue engineering is an emerging field due to a growing demand for intestinal lengthening and replacement procedures secondary to massive resections of the bowel. Here, we demonstrate the potential use of a chitosan/collagen scaffold as a 3D matrix to support the bioengineered circular muscle constructs maintain their physiological functionality. We investigated the biocompatibility of chitosan by growing rabbit colonic circular smooth muscle cells (RCSMCs) on chitosan-coated plates. The cells maintained their spindle-like morphology and preserved their smooth muscle phenotypic markers. We manufactured tubular scaffolds with central openings composed of chitosan and collagen in a 1:1 ratio. Concentrically-aligned 3D circular muscle constructs were bioengineered using fibrin-based hydrogel seeded with RCSMCs. The constructs were placed around the scaffold for 2 weeks, after which they were taken off and tested for their physiological functionality. The muscle constructs contracted in response to Acetylcholine (Ach) and potassium chloride (KCl) and they relaxed in response to vasoactive intestinal peptide (VIP). These results demonstrate that chitosan is a biomaterial possibly suitable for intestinal tissue engineering applications. PMID:22483012

  16. Antimitogenic effect of bitter taste receptor agonists on airway smooth muscle cells.

    PubMed

    Sharma, Pawan; Panebra, Alfredo; Pera, Tonio; Tiegs, Brian C; Hershfeld, Alena; Kenyon, Lawrence C; Deshpande, Deepak A

    2016-02-15

    Airway remodeling is a hallmark feature of asthma and chronic obstructive pulmonary disease. Clinical studies and animal models have demonstrated increased airway smooth muscle (ASM) mass, and ASM thickness is correlated with severity of the disease. Current medications control inflammation and reverse airway obstruction effectively but have limited effect on remodeling. Recently we identified the expression of bitter taste receptors (TAS2R) on ASM cells, and activation with known TAS2R agonists resulted in ASM relaxation and bronchodilation. These studies suggest that TAS2R can be used as new therapeutic targets in the treatment of obstructive lung diseases. To further establish their effectiveness, in this study we aimed to determine the effects of TAS2R agonists on ASM growth and promitogenic signaling. Pretreatment of healthy and asthmatic human ASM cells with TAS2R agonists resulted in a dose-dependent inhibition of ASM proliferation. The antimitogenic effect of TAS2R ligands was not dependent on activation of protein kinase A, protein kinase C, or high/intermediate-conductance calcium-activated K(+) channels. Immunoblot analyses revealed that TAS2R agonists inhibit growth factor-activated protein kinase B phosphorylation without affecting the availability of phosphatidylinositol 3,4,5-trisphosphate, suggesting TAS2R agonists block signaling downstream of phosphatidylinositol 3-kinase. Furthermore, the antimitogenic effect of TAS2R agonists involved inhibition of induced transcription factors (activator protein-1, signal transducer and activator of transcription-3, E2 factor, nuclear factor of activated T cells) and inhibition of expression of multiple cell cycle regulatory genes, suggesting a direct inhibition of cell cycle progression. Collectively, these findings establish the antimitogenic effect of TAS2R agonists and identify a novel class of receptors and signaling pathways that can be targeted to reduce or prevent airway remodeling as well as

  17. Bitter tasting compounds dilate airways by inhibiting airway smooth muscle calcium oscillations and calcium sensitivity

    PubMed Central

    Tan, Xiahui; Sanderson, Michael J

    2014-01-01

    Background and Purpose While selective, bitter tasting, TAS2R agonists can relax agonist-contracted airway smooth muscle (ASM), their mechanism of action is unclear. However, ASM contraction is regulated by Ca2+ signalling and Ca2+ sensitivity. We have therefore investigated how the TAS2R10 agonists chloroquine, quinine and denotonium regulate contractile agonist-induced Ca2+ signalling and sensitivity. Experimental Approach Airways in mouse lung slices were contracted with either methacholine (MCh) or 5HT and bronchodilation assessed using phase-contrast microscopy. Ca2+ signalling was measured with 2-photon fluorescence microscopy of ASM cells loaded with Oregon Green, a Ca2+-sensitive indicator (with or without caged-IP3). Effects on Ca2+ sensitivity were assessed on lung slices treated with caffeine and ryanodine to permeabilize ASM cells to Ca2+. Key Results The TAS2R10 agonists dilated airways constricted by either MCh or 5HT, accompanied by inhibition of agonist-induced Ca2+ oscillations. However, in non-contracted airways, TAS2R10 agonists, at concentrations that maximally dilated constricted airways, did not evoke Ca2+ signals in ASM cells. Ca2+ increases mediated by the photolysis of caged-IP3 were also attenuated by chloroquine, quinine and denotonium. In Ca2+-permeabilized ASM cells, the TAS2R10 agonists dilated MCh- and 5HT-constricted airways. Conclusions and Implications TAS2R10 agonists reversed bronchoconstriction by inhibiting agonist-induced Ca2+ oscillations while simultaneously reducing the Ca2+ sensitivity of ASM cells. Reduction of Ca2+ oscillations may be due to inhibition of Ca2+ release through IP3 receptors. Further characterization of bronchodilatory TAS2R agonists may lead to the development of novel therapies for the treatment of bronchoconstrictive conditions. PMID:24117140

  18. Histamine receptors in human detrusor smooth muscle cells: physiological properties and immunohistochemical representation of subtypes.

    PubMed

    Neuhaus, Jochen; Weimann, Annett; Stolzenburg, Jens-Uwe; Dawood, Waled; Schwalenberg, Thilo; Dorschner, Wolfgang

    2006-06-01

    The potent inflammatory mediator histamine is released from activated mast cells in interstitial cystitis (IC). Here, we report on the histamine receptor subtypes involved in the intracellular calcium response of cultured smooth muscle cells (cSMC). Fura-2 was used to monitor the calcium response in cSMC, cultured from human detrusor biopsies. The distribution of histamine receptor subtypes was addressed by immunocytochemistry in situ and in vitro. Histamine stimulated a maximum of 92% of the cells (n=335), being more effective than carbachol (70%, n=920). HTMT (H1R-agonist), dimaprit (H2R) and MTH (H3R) lead to significant lower numbers of reacting cells (60, 48 and 54%). Histamine receptor immunoreactivity (H1R, H2R, H3R, H4R) was found in situ and in vitro. Histamine-induced calcium increase is mediated by distinct histamine receptors. Thus, pre-therapeutic evaluation of histamine receptor expression in IC patients may help to optimize therapy by using a patient-specific cocktail of subtype-specific histamine receptor antagonists.

  19. Hydrogen sulfide mediates hypoxia-induced relaxation of trout urinary bladder smooth muscle.

    PubMed

    Dombkowski, Ryan A; Doellman, Meredith M; Head, Sally K; Olson, Kenneth R

    2006-08-01

    Hydrogen sulfide (H2S) is a recently identified gasotransmitter that may mediate hypoxic responses in vascular smooth muscle. H2S also appears to be a signaling molecule in mammalian non-vascular smooth muscle, but its existence and function in non-mammalian non-vascular smooth muscle have not been examined. In the present study we examined H2S production and its physiological effects in urinary bladder from steelhead and rainbow trout (Oncorhynchus mykiss) and evaluated the relationship between H2S and hypoxia. H2S was produced by trout bladders, and its production was sensitive to inhibitors of cystathionine beta-synthase and cystathionine gamma-lyase. H2S produced a dose-dependent relaxation in unstimulated and carbachol pre-contracted bladders and inhibited spontaneous contractions. Bladders pre-contracted with 80 mmol l(-1) KCl were less sensitive to H2S than bladders contracted with either 80 mmol l(-1) KC2H3O2 (KAc) or carbachol, suggesting that some of the H2S effects are mediated through an ion channel. However, H2S relaxation of bladders was not affected by the potassium channel inhibitors, apamin, charybdotoxin, 4-aminopyridine, and glybenclamide, or by chloride channel/exchange inhibitors 4,4'-Diisothiocyanatostilbene-2,2'-disulfonic acid disodium salt, tamoxifen and glybenclamide, or by the presence or absence of extracellular HCO3-. Inhibitors of neuronal mechanisms, tetrodotoxin, strychnine and N-vanillylnonanamide were likewise ineffective. Hypoxia (aeration with N2) also relaxed bladders, was competitive with H2S for relaxation, and it was equally sensitive to KCl, and unaffected by neuronal blockade or the presence of extracellular HCO3-. Inhibitors of H2S synthesis also inhibited hypoxic relaxation. These experiments suggest that H2S is a phylogenetically ancient gasotransmitter in non-mammalian non-vascular smooth muscle and that it serves as an oxygen sensor/transducer, mediating the effects of hypoxia.

  20. Comparative studies on troponin, a Ca²⁺-dependent regulator of muscle contraction, in striated and smooth muscles of protochordates.

    PubMed

    Obinata, Takashi; Sato, Naruki

    2012-01-01

    Troponin is well known as a Ca(2+)-dependent regulator of striated muscle contraction and it has been generally accepted that troponin functions as an inhibitor of muscle contraction or actin-myosin interaction at low Ca(2+) concentrations, and Ca(2+) at higher concentrations removes the inhibitory action of troponin. Recently, however, troponin became detectable in non-striated muscles of several invertebrates and in addition, unique troponin that functions as a Ca(2+)-dependent activator of muscle contraction has been detected in protochordate animals, although troponin in vertebrate striated muscle is known as an inhibitor of the contraction in the absence of a Ca(2+). Further studies on troponin in invertebrate muscle, especially in non-striated muscle, would provide new insight into the evolution of regulatory systems for muscle contraction and diverse function of troponin and related proteins. The methodology used for preparation and characterization of functional properties of protochordate striated and smooth muscles will be helpful for further studies of troponin in other invertebrate animals. Copyright © 2011. Published by Elsevier Inc.

  1. Extracellular Cl- regulates electrical slow waves and setting of smooth muscle membrane potential by interstitial cells of Cajal in mouse jejunum.

    PubMed

    Saravanaperumal, Siva Arumugam; Gibbons, Simon J; Malysz, John; Sha, Lei; Linden, David R; Szurszewski, Joseph H; Farrugia, Gianrico

    2018-01-01

    What is the central question of this study? The aim was to investigate the roles of extracellular chloride in electrical slow waves and resting membrane potential of mouse jejunal smooth muscle by replacing chloride with the impermeant anions gluconate and isethionate. What is the main finding and its importance? The main finding was that in smooth muscle cells, the resting Cl - conductance is low, whereas transmembrane Cl - movement in interstitial cells of Cajal (ICCs) is a major contributor to the shape of electrical slow waves. Furthermore, the data confirm that ICCs set the smooth muscle membrane potential and that altering Cl - homeostasis in ICCs can alter the smooth muscle membrane potential. Intracellular Cl - homeostasis is regulated by anion-permeable channels and transporters and contributes to excitability of many cell types, including smooth muscle and interstitial cells of Cajal (ICCs). Our aims were to investigate the effects on electrical activity in mouse jejunal muscle strips of replacing extracellular Cl - (Cl - o ) with the impermeant anions gluconate and isethionate. On reducing Cl - o , effects were observed on electrical slow waves, with small effects on smooth muscle membrane voltage (E m ). Restoration of Cl - hyperpolarized smooth muscle E m proportional to the change in Cl - o concentration. Replacement of 90% of Cl - o with gluconate reversibly abolished slow waves in five of nine preparations. Slow waves were maintained in isethionate. Gluconate and isethionate substitution had similar concentration-dependent effects on peak amplitude, frequency, width at half peak amplitude, rise time and decay time of residual slow waves. Gluconate reduced free ionized Ca 2+ in Krebs solutions to 0.13 mm. In Krebs solutions containing normal Cl - and 0.13 mm free Ca 2+ , slow wave frequency was lower, width at half peak amplitude was smaller, and decay time was faster. The transient hyperpolarization following restoration of Cl - o was not observed

  2. Effects of lipopolysaccharide from Pseudomonas aeruginosa on airway smooth muscle functions in guinea pigs.

    PubMed

    Yamawaki, I; Tamaoki, J; Kanemura, T; Horii, S; Takizawa, T

    1990-01-01

    To elucidate the mechanisms of airway hyperreactivity induced by lipopolysaccharide (LPS), we studied isolated tracheal segments from guinea pigs under isometric conditions in vitro. Guinea pigs were injected intraperitoneally with endotoxin (1 mg/kg; LPS from Pseudomonas aeruginosa, serotype 10) for 4 days, and animals treated with sterile nonpyrogenic saline served as controls. Histological examination of trachea revealed moderate structural damage of epithelial layer in the LPS-treated group. Treatment with LPS potentiated the contractile responses of tracheal smooth muscle to acetylcholine, causing a leftward displacement of dose-response curves so that the EC50 values decreased from 1.1 +/- 3.7 x 10(-5) to 4.4 +/- 3.7 x 10(-7) M (mean +/- SE, p less than 0.01). Likewise, LPS shifted the dose-response curves for histamine and substance P to lower concentrations by approximately 0.5-1.0 log U. Each of these potentiations was not affected by pretreatment of tissues with indomethacin or propranolol. Addition of isoproterenol to tracheal segments precontracted with acetylcholine caused concentration-dependent relaxation, an effect that was significantly greater in controls than in the LPS-treated group. These results suggest that airway hyperreactivity induced by LPS in guinea pigs may be attributed to a decreased ability of respiratory epithelial cells to generate a relaxing factor.

  3. Regional Differences in Rat Vaginal Smooth Muscle Contractility and Morphology

    PubMed Central

    Skoczylas, Laura C.; Jallah, Zegbeh; Sugino, Yoshio; Stein, Suzan E.; Feola, Andrew; Yoshimura, Naoki

    2013-01-01

    The objective of this study was to define the regional differences in rat vaginal smooth muscle contractility and morphology. We evaluated circumferential segments from the proximal, middle, and distal rat vagina (n = 21) in vitro. Contractile responses to carbachol, phenylephrine, potassium chloride, and electrical field stimulation (EFS) were measured. Immunohistochemical analyses were also performed. The dose–response curves for carbachol- and phenylephrine-dependent contractions were different in the distal (P = .05, P = .04) compared to the proximal/middle regions. Adjusted for region-dependent changes in contractility, the distal vagina generated lower force in response to carbachol and higher force in response to phenylephrine. There was less force with increasing EFS frequency in the distal (P = .03), compared to the proximal/middle regions. Cholinergic versus adrenergic nerves were more frequent in the proximal region (P = .03). In summary, the results indicate that functional and morphological differences in smooth muscle and nerve fibers of the distal versus proximal/middle regions of the vagina exist. PMID:23298869

  4. Emerging Role of Angiotensin Type 2 Receptor (AT2R)/Akt/NO Pathway in Vascular Smooth Muscle Cell in the Hyperthyroidism

    PubMed Central

    Carrillo-Sepúlveda, Maria Alícia; Ceravolo, Graziela S.; Furstenau, Cristina R.; Monteiro, Priscilla de Souza; Bruno-Fortes, Zuleica; Carvalho, Maria Helena; Laurindo, Francisco R.; Tostes, Rita C.; Webb, R. Clinton; Barreto-Chaves, Maria Luiza M.

    2013-01-01

    Hyperthyroidism is characterized by increased vascular relaxation and decreased vascular contraction and is associated with augmented levels of triiodothyronine (T3) that contribute to the diminished systemic vascular resistance found in this condition. T3 leads to augmented NO production via PI3K/Akt signaling pathway, which in turn causes vascular smooth muscle cell (VSMC) relaxation; however, the underlying mechanisms involved remain largely unknown. Evidence from human and animal studies demonstrates that the renin-angiotensin system (RAS) plays a crucial role in vascular function and also mediates some of cardiovascular effects found during hyperthyroidism. Thus, in this study, we hypothesized that type 2 angiotensin II receptor (AT2R), a key component of RAS vasodilatory actions, mediates T3 induced-decreased vascular contraction. Marked induction of AT2R expression was observed in aortas from T3-induced hyperthyroid rats (Hyper). These vessels showed decreased protein levels of the contractile apparatus: α-actin, calponin and phosphorylated myosin light chain (p-MLC). Vascular reactivity studies showed that denuded aortic rings from Hyper rats exhibited decreased maximal contractile response to angiotensin II (AngII), which was attenuated in aortic rings pre-incubated with an AT2R blocker. Further study showed that cultured VSMC stimulated with T3 (0.1 µmol/L) for 24 hours had increased AT2R gene and protein expression. Augmented NO levels and decreased p-MLC levels were found in VSMC stimulated with T3, both of which were reversed by a PI3K/Akt inhibitor and AT2R blocker. These findings indicate for the first time that the AT2R/Akt/NO pathway contributes to decreased contractile responses in rat aorta, promoted by T3, and this mechanism is independent from the endothelium. PMID:23637941

  5. Trinitrobenzenesulfonic Acid Colitis Induces Changes in the Contractile Response of Circular Smooth Muscle in the Distal Colon

    DTIC Science & Technology

    1996-03-27

    contractile response of circular smooth muscle in the rat distal colon" Name of Candidate: Jeanette M. Hosseini Doctor of Philosophy Degree 27 March 1996... muscle in the rat distal colon" beyond brief excerpts is with the pennission of the copyright owner, and will save and hold harmless the Unifonned...induces changes in the contractile response of circular smooth muscle 10 the rat colon. Jeanette Marie Hosseini, 1996 Dissertation directed by: Terez

  6. Properties of acetylcholine-induced relaxation of smooth muscle isolated from the proximal colon of the guinea-pig.

    PubMed

    Kodama, Youhei; Iino, Satoshi; Shigemasa, Yuhsuke; Suzuki, Hikaru

    2010-01-01

    The properties of mechanical responses elicited by stimulation with acetylcholine (ACh) were investigated in circular smooth muscle preparations isolated from the proximal colon of guinea-pig. Application of ACh (10(-8)-10(-6) M) for 3-5 min produced a biphasic response, with an initial contraction followed by a relaxation. Atropine inhibited the initial contraction, while N(ω)-nitro-L-arginine (L-NA) inhibited the relaxation, suggesting that the former was produced by activation of muscarinic receptors while the latter was produced by an elevated production of nitric oxide (NO). In the presence of atropine, the ACh-relaxation was attenuated by removal of the mucosa and abolished by removal of both submucosal and mucosal layers. The ACh-induced relaxation was also attenuated by either tetrodotoxin (TTX, 3 × 10(-7) M) or hexamethonium (10(-6) M). In the presence of atropine, transmural nerve stimulation (TNS) elicited a biphasic response, with an initial phasic contraction followed by a relaxation. The amplitude of TNS-induced relaxation was significantly reduced by hexamethonium or L-NA and was abolished by TTX. Both ACh and TNS produced relaxation in preparations isolated from the proximal colon, but not in those from the middle part of colon. Immunohistochemistry for neuronal nitric oxide synthase revealed no difference in the distribution of nitrergic nerves between the proximal and middle part of the colon, with nitrergic nerves in both the mucosal and submucosal layers as well as in the smooth muscle and myenteric layers. These results suggest that ACh induces NO production by excitation of postganglionic nerves distributed mainly in the mucosal and submucosal layers. In circular smooth muscle preparations isolated from the middle part of colon, ACh or TNS produced contractile responses alone, with no associated relaxation, suggesting that the ACh-activated postganglionic nitrergic nerves are distributed in the mucosal and submucosal layers of the proximal

  7. A calcium-driven mechanochemical model for prediction of force generation in smooth muscle.

    PubMed

    Murtada, Sae-Il; Kroon, Martin; Holzapfel, Gerhard A

    2010-12-01

    A new model for the mechanochemical response of smooth muscle is presented. The focus is on the response of the actin-myosin complex and on the related generation of force (or stress). The chemical (kinetic) model describes the cross-bridge interactions with the thin filament in which the calcium-dependent myosin phosphorylation is the only regulatory mechanism. The new mechanical model is based on Hill's three-component model and it includes one internal state variable that describes the contraction/relaxation of the contractile units. It is characterized by a strain-energy function and an evolution law incorporating only a few material parameters with clear physical meaning. The proposed model satisfies the second law of thermodynamics. The results of the combined coupled model are broadly consistent with isometric and isotonic experiments on smooth muscle tissue. The simulations suggest that the matrix in which the actin-myosin complex is embedded does have a viscous property. It is straightforward for implementation into a finite element program in order to solve more complex boundary-value problems such as the control of short-term changes in lumen diameter of arteries due to mechanochemical signals.

  8. The contribution of inositol 1,4,5-trisphosphate and ryanodine receptors to agonist-induced Ca(2+) signaling of airway smooth muscle cells.

    PubMed

    Bai, Yan; Edelmann, Martin; Sanderson, Michael J

    2009-08-01

    The relative contribution of inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)Rs) and ryanodine receptors (RyRs) to agonist-induced Ca(2+) signaling in mouse airway smooth muscle cells (SMCs) was investigated in lung slices with phase-contrast or laser scanning microscopy. At room temperature (RT), methacholine (MCh) or 5-hydroxytryptamine (5-HT) induced Ca(2+) oscillations and an associated contraction in small airway SMCs. The subsequent exposure to an IP(3)R antagonist, 2-aminoethoxydiphenyl borate (2-APB), inhibited the Ca(2+) oscillations and induced airway relaxation in a concentration-dependent manner. 2-APB also inhibited Ca(2+) waves generated by the photolytic release of IP(3). However, the RyR antagonist ryanodine had no significant effect, at any concentration, on airway contraction or agonist- or IP(3)-induced Ca(2+) oscillations or Ca(2+) wave propagation. By contrast, a second RyR antagonist, tetracaine, relaxed agonist-contracted airways and inhibited agonist-induced Ca(2+) oscillations in a concentration-dependent manner. However, tetracaine did not affect IP(3)-induced Ca(2+) release or wave propagation nor the Ca(2+) content of SMC Ca(2+) stores as evaluated by Ca(2+)-release induced by caffeine. Conversely, both ryanodine and tetracaine completely blocked agonist-independent slow Ca(2+) oscillations induced by KCl. The inhibitory effects of 2-APB and absence of an effect of ryanodine on MCh-induced airway contraction or Ca(2+) oscillations of SMCs were also observed at 37 degrees C. In Ca(2+)-permeable SMCs, tetracaine inhibited agonist-induced contraction without affecting intracellular Ca(2+) levels indicating that relaxation also resulted from a reduction in Ca(2+) sensitivity. These results indicate that agonist-induced Ca(2+) oscillations in mouse small airway SMCs are primary mediated via IP(3)Rs and that tetracaine induces relaxation by both decreasing Ca(2+) sensitivity and inhibiting agonist-induced Ca(2+) oscillations via an IP(3

  9. Phosphodiesterases regulate airway smooth muscle function in health and disease.

    PubMed

    Krymskaya, Vera P; Panettieri, Reynold A

    2007-01-01

    On the basis of structure, regulation, and kinetic properties, phosphodiesterases (PDEs) represent a superfamily of enzymes divided into 11 subfamilies that catalyze cytosolic levels of 3',5'-cyclic adenosine monophosphate (cAMP) or 3',5'-cyclic guanosine monophosphate (cGMP) to 5'-AMP or 5'-GMP, respectively. PDE4 represents the major PDE expressed in inflammatory cells as well as airway smooth muscle (ASM), and selective PDE4 inhibitors provide a broad spectrum of anti-inflammatory effects such as abrogating cytokine and chemokine release from inflammatory cells and inhibiting inflammatory cell trafficking. Due to cell- and tissue-specific gene expression and regulation, PDEs modulate unique organ-based functions. New tools or compounds that selectively inhibit PDE subfamilies and genetically engineered mice deficient in selective isoforms have greatly enhanced our understanding of PDE function in airway inflammation and resident cell function. This chapter will focus on recent advances in our understanding of the role of PDE in regulating ASM function.

  10. Disrupting actin-myosin-actin connectivity in airway smooth muscle as a treatment for asthma?

    PubMed

    Lavoie, Tera L; Dowell, Maria L; Lakser, Oren J; Gerthoffer, William T; Fredberg, Jeffrey J; Seow, Chun Y; Mitchell, Richard W; Solway, Julian

    2009-05-01

    Breathing is known to functionally antagonize bronchoconstriction caused by airway muscle contraction. During breathing, tidal lung inflation generates force fluctuations that are transmitted to the contracted airway muscle. In vitro, experimental application of force fluctuations to contracted airway smooth muscle strips causes them to relengthen. Such force fluctuation-induced relengthening (FFIR) likely represents the mechanism by which breathing antagonizes bronchoconstriction. Thus, understanding the mechanisms that regulate FFIR of contracted airway muscle could suggest novel therapeutic interventions to increase FFIR, and so to enhance the beneficial effects of breathing in suppressing bronchoconstriction. Here we propose that the connectivity between actin filaments in contracting airway myocytes is a key determinant of FFIR, and suggest that disrupting actin-myosin-actin connectivity by interfering with actin polymerization or with myosin polymerization merits further evaluation as a potential novel approach for preventing prolonged bronchoconstriction in asthma.

  11. Creatinine metabolite, HMH (5-hydroxy-1-methylhydantoin; NZ-419), modulates bradykinin-induced changes in vascular smooth muscle cells.

    PubMed

    Ienaga, Kazuharu; Sohn, Mimi; Naiki, Mitsuru; Jaffa, Ayad A

    2014-06-01

    A creatinine metabolite, 5-hydroxy-1-methylhydantoin (HMH: NZ-419), a hydroxyl radical scavenger, has previously been shown to confer renoprotection by inhibiting the progression of chronic kidney disease in rats. In the current study, we demonstrate that HMH modulates the effects of glucose and bradykinin (BK) in vascular smooth muscle cell (VSMC). HMH a novel anti-oxidant drug completely suppressed the expression of B2-kinin receptors (B2KR) in response to high glucose (25 mM) stimulation in VSMC and was also shown to attenuate the effects of BK on VSMC remodeling. HMH inhibited the BK-induced increase in MAPK phosphorylation and attenuated the increase in connective tissue growth factor (CTGF) protein levels in VSMC. These findings suggest that HMH may confer vascular protection against high glucose concentrations and BK-stimulation to ameliorate vascular injury and remodeling through its anti-oxidant properties.

  12. Endogenous gamma-aminobutyric acid modulates tonic guinea pig airway tone and propofol-induced airway smooth muscle relaxation.

    PubMed

    Gallos, George; Gleason, Neil R; Virag, Laszlo; Zhang, Yi; Mizuta, Kentaro; Whittington, Robert A; Emala, Charles W

    2009-04-01

    Emerging evidence indicates that an endogenous autocrine/paracrine system involving gamma-aminobutyric acid (GABA) is present in airways. GABAA channels, GABAB receptors, and the enzyme that synthesizes GABA have been identified in airway epithelium and smooth muscle. However, the endogenous ligand itself, GABA, has not been measured in airway tissues. The authors sought to demonstrate that GABA is released in response to contractile agonists and tonically contributes a prorelaxant component to contracted airway smooth muscle. The amount and cellular localization of GABA in upper guinea pig airways under resting and contracted tone was determined by high pressure liquid chromatography and immunohistochemistry, respectively. The contribution that endogenous GABA imparts on the maintenance of airway smooth muscle acetylcholine-induced contraction was assessed in intact guinea pig airway tracheal rings using selective GABAA antagonism (gabazine) under resting or acetylcholine-contracted conditions. The ability of an allosteric agent (propofol) to relax a substance P-induced relaxation in an endogenous GABA-dependent manner was assessed. GABA levels increased and localized to airway smooth muscle after contractile stimuli in guinea pig upper airways. Acetylcholine-contracted guinea pig tracheal rings exhibited an increase in contracted force upon addition of the GABAA antagonist gabazine that was subsequently reversed by the addition of the GABAA agonist muscimol. Propofol dose-dependently relaxed a substance P contraction that was blocked by gabazine. These studies demonstrate that GABA is endogenously present and increases after contractile stimuli in guinea pig upper airways and that endogenous GABA contributes a tonic prorelaxant component in the maintenance of airway smooth muscle tone.

  13. Endogenous γ-aminobutyric Acid Modulates Tonic Guinea Pig Airway Tone and Propofol-induced Airway Smooth Muscle Relaxation

    PubMed Central

    Gallos, George; Gleason, Neil R.; Virag, Laszlo; Zhang, Yi; Mizuta, Kentauro; Whittington, Robert A.; Emala, Charles W.

    2009-01-01

    Background Emerging evidence indicates that an endogenous autocrine/paracrine system involving γ-aminobutyric acid (GABA) is present in airways. GABAA channels, GABAB receptors and the enzyme that synthesizes GABA have been identified in airway epithelium and smooth muscle. However, the endogenous ligand itself, GABA, has not been measured in airway tissues. We sought to demonstrate that GABA is released in response to contractile agonists and tonically contributes a pro-relaxant component to contracted airway smooth muscle. Methods The amount and cellular localization of GABA in upper guinea pig airways under resting and contracted tone was determined by high pressure liquid chromatography and immunohistochemistry, respectively. The contribution that endogenous GABA imparts on the maintenance of airway smooth muscle acetylcholine-induced contraction was assessed in intact guinea pig airway tracheal rings using selective GABAA antagonism (gabazine) under resting or acetylcholine-contracted conditions. The ability of an allosteric agent (propofol) to relax a substance P-induced relaxation in an endogenous GABA-dependent manner was assessed. Results GABA levels increased and localized to airway smooth muscle following contractile stimuli in guinea pig upper airways. Acetylcholine-contracted guinea pig tracheal rings exhibited an increase in contracted force upon addition of the GABAA antagonist gabazine which was subsequently reversed by the addition of the GABAA agonist muscimol. Propofol dose-dependently relaxed a substance P contraction that was blocked by gabazine. Conclusion These studies demonstrate that GABA is endogenously present and increases following contractile stimuli in guinea pig upper airways and that endogenous GABA contributes a tonic pro-relaxant component in the maintenance of airway smooth muscle tone. PMID:19322939

  14. Circular RNA WDR77 target FGF-2 to regulate vascular smooth muscle cells proliferation and migration by sponging miR-124.

    PubMed

    Chen, Junjiang; Cui, Lianqun; Yuan, Jingliang; Zhang, Yuqing; Sang, Hongjun

    2017-12-09

    Increasing evidences have revealed the important role of circular RNAs (circRNAs) in cardiovascular system disease. Whereas, the expression profiles and in-depth regulation of circRNAs on vascular smooth muscle cells (VSMCs) is still undetermined. In present study, our research team performed circRNAs microarray analysis to present the circRNAs expression profiles in high glucose induced VSMCs in vitro. Results showed that total of 983 circRNAs were discovered to be differentially expressed, and of these, 458 were upregulated and 525 were downregulated. Moreover, 31 circRNAs were up-regulated and 22 circRNAs were down-regulated with 2 fold change (P < 0.05). One of an up-regulated circRNA, circWDR77, was identified. In vitro cell assay, circWDR77 silencing significantly inhibited the proliferation and migration. Bioinformatics methods discovered that miR-124 and fibroblast growth factor 2 (FGF-2) were downstream targets of circWDR77. The RNA sequence complementary binding was validated by RNA immunoprecipitation (RIP) and/or luciferase reporter assay. Further function validation experiments revealed that circWDR77 regulated VSMCs proliferation and migration via targeting miR-124/FGF2. Taken together, present study firstly reveals the circRNAs expression profiles in high glucose induced VSMCs and identifies the role of circWDR77-miR-124-FGF2 regulatory pathway in VSMCs proliferation and migration, which might provide a new theoretical basis for diabetes mellitus correlated vasculopathy. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Akt1/PKB upregulation leads to vascular smooth muscle cell hypertrophy and polyploidization

    PubMed Central

    Hixon, Mary L.; Muro-Cacho, Carlos; Wagner, Mark W.; Obejero-Paz, Carlos; Millie, Elise; Fujio, Yasushi; Kureishi, Yasuko; Hassold, Terry; Walsh, Kenneth; Gualberto, Antonio

    2000-01-01

    Vascular smooth muscle cells (VSMCs) at capacitance arteries of hypertensive individuals and animals undergo marked age- and blood pressure–dependent polyploidization and hypertrophy. We show here that VSMCs at capacitance arteries of rat models of hypertension display high levels of Akt1/PKB protein and activity. Gene transfer of Akt1 to VSMCs isolated from a normotensive rat strain was sufficient to abrogate the activity of the mitotic spindle cell–cycle checkpoint, promoting polyploidization and hypertrophy. Furthermore, the hypertrophic agent angiotensin II induced VSMC polyploidization in an Akt1-dependent manner. These results demonstrate that Akt1 regulates ploidy levels in VSMCs and contributes to vascular smooth muscle polyploidization and hypertrophy during hypertension. PMID:11032861

  16. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation.

    PubMed

    Torres, Gloria; Morales, Pablo E; García-Miguel, Marina; Norambuena-Soto, Ignacio; Cartes-Saavedra, Benjamín; Vidal-Peña, Gonzalo; Moncada-Ruff, David; Sanhueza-Olivares, Fernanda; San Martín, Alejandra; Chiong, Mario

    2016-03-15

    Glucagon-like peptide-1 (GLP-1) is a neuroendocrine hormone produced by gastrointestinal tract in response to food ingestion. GLP-1 plays a very important role in the glucose homeostasis by stimulating glucose-dependent insulin secretion, inhibiting glucagon secretion, inhibiting gastric emptying, reducing appetite and food intake. Because of these actions, the GLP-1 peptide-mimetic exenatide is one of the most promising new medicines for the treatment of type 2 diabetes. In vivo treatments with GLP-1 or exenatide prevent neo-intima layer formation in response to endothelial damage and atherosclerotic lesion formation in aortic tissue. Whether GLP-1 modulates vascular smooth muscle cell (VSMC) migration and proliferation by controlling mitochondrial dynamics is unknown. In this report, we showed that GLP-1 increased mitochondrial fusion and activity in a PKA-dependent manner in the VSMC cell line A7r5. GLP-1 induced a Ser-637 phosphorylation in the mitochondrial fission protein Drp1, and decreased Drp1 mitochondrial localization. GLP-1 inhibited PDGF-BB-induced VSMC migration and proliferation, actions inhibited by overexpressing wild type Drp1 and mimicked by the Drp1 inhibitor Mdivi-1 and by overexpressing dominant negative Drp1. These results show that GLP-1 stimulates mitochondrial fusion, increases mitochondrial activity and decreases PDGF-BB-induced VSMC dedifferentiation by a PKA/Drp1 signaling pathway. Our data suggest that GLP-1 inhibits vascular remodeling through a mitochondrial dynamics-dependent mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. In a non-human primate model, aging disrupts the neural control of intestinal smooth muscle contractility in a region-specific manner.

    PubMed

    Tran, L; Greenwood-Van Meerveld, B

    2014-03-01

    Incidences of gastrointestinal (GI) motility disorders increase with age. However, there is a paucity of knowledge about the aging mechanisms leading to GI dysmotility. Motility in the GI tract is a function of smooth muscle contractility, which is modulated in part by the enteric nervous system (ENS). Evidence suggests that aging impairs the ENS, thus we tested the hypothesis that senescence in the GI tract precipitates abnormalities in smooth muscle and neurally mediated contractility in a region-specific manner. Jejunal and colonic circular muscle strips were isolated from young (4-10 years) and old (18+ years) baboons. Myogenic responses were investigated using potassium chloride (KCl) and carbachol (CCh). Neurally mediated contractile responses were evoked by electrical field stimulation (EFS) and were recorded in the absence and presence of atropine (1 μM) or NG-Nitro-l-arginine methyl ester (l-NAME; 100 μM). The myogenic responses to KCl in the jejunum and colon were unaffected by age. In the colon, but not the jejunum, CCh-induced contractile responses were reduced in aged animals. Compared to young baboons, there was enhanced EFS-induced contractility of old baboon jejunal smooth muscle in contrast to the reduced contractility in the colon. The effect of atropine on the EFS response was lower in aged colonic tissue, suggesting reduced participation of acetylcholine. In aged jejunal tissue, higher contractile responses to EFS were found to be due to reduced nitregic inhibition. These findings provide key evidence for the importance of intestinal smooth muscle and ENS senescence in age-associated GI motility disorders. © 2014 The Authors. Neurogastroenterology & Motility published by John Wiley & Sons Ltd.

  18. Role of non-coding RNAs in maintaining primary airway smooth muscle cells

    PubMed Central

    2014-01-01

    Background The airway smooth muscle (ASM) cell maintains its own proliferative rate and contributes to the inflammatory response in the airways, effects that are inhibited by corticosteroids, used in the treatment of airways diseases. Objective We determined the differential expression of mRNAs, microRNAs (miRNAs) and long noncoding RNA species (lncRNAs) in primary ASM cells following treatment with a corticosteroid, dexamethasone, and fetal calf serum (FCS). Methods mRNA, miRNA and lncRNA expression was measured by microarray and quantitative real-time PCR. Results A small number of miRNAs (including miR-150, −371-5p, −718, −940, −1181, −1207-5p, −1915, and −3663-3p) were decreased following exposure to dexamethasone and FCS. The mRNA targets of these miRNAs were increased in expression. The changes in mRNA expression were associated with regulation of ASM actin cytoskeleton. We also observed changes in expression of lncRNAs, including natural antisense, pseudogenes, intronic lncRNAs, and intergenic lncRNAs following dexamethasone and FCS. We confirmed the change in expression of three of these, LINC00882, LINC00883, PVT1, and its transcriptional activator, c-MYC. We propose that four of these lincRNAs (RP11-46A10.4, LINC00883, BCYRN1, and LINC00882) act as miRNA ‘sponges’ for 4 miRNAs (miR-150, −371-5p, −940, −1207-5p). Conclusion This in-vitro model of primary ASM cell phenotype was associated with the regulation of several ncRNAs. Their identification allows for in-vitro functional experimentation to establish causality with the primary ASM phenotype, and in airway diseases such as asthma and chronic obstructive pulmonary disease (COPD). PMID:24886442

  19. Cocaine Exposure Increases Blood Pressure and Aortic Stiffness via the miR-30c-5p-Malic Enzyme 1-Reactive Oxygen Species Pathway.

    PubMed

    Zhu, Wei; Wang, Huilan; Wei, Jianqin; Sartor, Gregory C; Bao, Michelle Meiqi; Pierce, Clay T; Wahlestedt, Claes R; Dykxhoorn, Derek M; Dong, Chunming

    2018-04-01

    Cocaine abuse increases the risk of cardiovascular mortality and morbidity; however, the underlying molecular mechanisms remain elusive. By using a mouse model for cocaine abuse/use, we found that repeated cocaine injection led to increased blood pressure and aortic stiffness in mice associated with elevated levels of reactive oxygen species (ROS) in the aortas, a phenomenon similar to that observed in hypertensive humans. This ROS elevation was correlated with downregulation of Me1 (malic enzyme 1), an important redox molecule that counteracts ROS generation, and upregulation of microRNA (miR)-30c-5p that targets Me1 expression by directly binding to its 3'UTR (untranslated region). Remarkably, lentivirus-mediated overexpression of miR-30c-5p in aortic smooth muscle cells recapitulated the effect of cocaine on Me1 suppression, which in turn led to ROS elevation. Moreover, in vivo silencing of miR-30c-5p in smooth muscle cells resulted in Me1 upregulation, ROS reduction, and significantly suppressed cocaine-induced increases in blood pressure and aortic stiffness-a similar effect to that produced by treatment with the antioxidant N-acetyl cysteine. Discovery of this novel cocaine-↑miR-30c-5p-↓Me1-↑ROS pathway provides a potential new therapeutic avenue for treatment of cocaine abuse-related cardiovascular disease. © 2018 American Heart Association, Inc.

  20. Interleukin-4 upregulates RhoA protein via an activation of STAT6 in cultured human bronchial smooth muscle cells.

    PubMed

    Chiba, Yoshihiko; Todoroki, Michiko; Misawa, Miwa

    2010-02-01

    Interleukin-4 (IL-4) is believed to play a role in allergic bronchial asthma, and has been suggested to cause hyperresponsiveness of airway smooth muscle. In the present study, the effects of IL-4 on the expression of RhoA protein, a monomeric GTP-binding protein that contributes to the contraction of smooth muscle, were determined in cultured human bronchial smooth muscle cells (hBSMCs). Incubation of hBSMCs with IL-4 (100ng/mL) caused a distinct phosphorylation of signal transducer and activator of transcription 6 (STAT6), a major signal transducer activated by IL-4, indicating that IL-4 is capable of activating signal transduction in the hBSMCs directly. IL-4 also caused a significant increase in the expression level of RhoA protein: the peak of the upregulation of RhoA protein was observed at 12-24h after the IL-4 treatment. Both the phosphorylation of STAT6 and the upregulation of RhoA protein induced by IL-4 were inhibited by the co-incubation with AS1517499, a selective inhibitor of STAT6, in a concentration-dependent fashion. These findings suggest that IL-4 is capable of inducing an upregulation of RhoA via an activation of STAT6 in cultured hBSMCs. The RhoA upregulation induced by IL-4, one of the Th2 cytokines upregulated in the airways of allergic bronchial asthmatics, might result in an augmentation of bronchial smooth muscle contractility, that is one of the causes of airway hyperresponsiveness. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Vascular smooth muscle cell phenotypic changes in patients with Marfan syndrome.

    PubMed

    Crosas-Molist, Eva; Meirelles, Thayna; López-Luque, Judit; Serra-Peinado, Carla; Selva, Javier; Caja, Laia; Gorbenko Del Blanco, Darya; Uriarte, Juan José; Bertran, Esther; Mendizábal, Yolanda; Hernández, Vanessa; García-Calero, Carolina; Busnadiego, Oscar; Condom, Enric; Toral, David; Castellà, Manel; Forteza, Alberto; Navajas, Daniel; Sarri, Elisabet; Rodríguez-Pascual, Fernando; Dietz, Harry C; Fabregat, Isabel; Egea, Gustavo

    2015-04-01

    Marfan's syndrome is characterized by the formation of ascending aortic aneurysms resulting from altered assembly of extracellular matrix microfibrils and chronic tissue growth factor (TGF)-β signaling. TGF-β is a potent regulator of the vascular smooth muscle cell (VSMC) phenotype. We hypothesized that as a result of the chronic TGF-β signaling, VSMC would alter their basal differentiation phenotype, which could facilitate the formation of aneurysms. This study explores whether Marfan's syndrome entails phenotypic alterations of VSMC and possible mechanisms at the subcellular level. Immunohistochemical and Western blotting analyses of dilated aortas from Marfan patients showed overexpression of contractile protein markers (α-smooth muscle actin, smoothelin, smooth muscle protein 22 alpha, and calponin-1) and collagen I in comparison with healthy aortas. VSMC explanted from Marfan aortic aneurysms showed increased in vitro expression of these phenotypic markers and also of myocardin, a transcription factor essential for VSMC-specific differentiation. These alterations were generally reduced after pharmacological inhibition of the TGF-β pathway. Marfan VSMC in culture showed more robust actin stress fibers and enhanced RhoA-GTP levels, which was accompanied by increased focal adhesion components and higher nuclear localization of myosin-related transcription factor A. Marfan VSMC and extracellular matrix measured by atomic force microscopy were both stiffer than their respective controls. In Marfan VSMC, both in tissue and in culture, there are variable TGF-β-dependent phenotypic changes affecting contractile proteins and collagen I, leading to greater cellular and extracellular matrix stiffness. Altogether, these alterations may contribute to the known aortic rigidity that precedes or accompanies Marfan's syndrome aneurysm formation. © 2015 American Heart Association, Inc.

  2. LPA1 receptor-mediated thromboxane A2 release is responsible for lysophosphatidic acid-induced vascular smooth muscle contraction.

    PubMed

    Dancs, Péter Tibor; Ruisanchez, Éva; Balogh, Andrea; Panta, Cecília Rita; Miklós, Zsuzsanna; Nüsing, Rolf M; Aoki, Junken; Chun, Jerold; Offermanns, Stefan; Tigyi, Gábor; Benyó, Zoltán

    2017-04-01

    Lysophosphatidic acid (LPA) has been recognized recently as an endothelium-dependent vasodilator, but several lines of evidence indicate that it may also stimulate vascular smooth muscle cells (VSMCs), thereby contributing to vasoregulation and remodeling. In the present study, mRNA expression of all 6 LPA receptor genes was detected in murine aortic VSMCs, with the highest levels of LPA 1 , LPA 2 , LPA 4 , and LPA 6 In endothelium-denuded thoracic aorta (TA) and abdominal aorta (AA) segments, 1-oleoyl-LPA and the LPA 1-3 agonist VPC31143 induced dose-dependent vasoconstriction. VPC31143-induced AA contraction was sensitive to pertussis toxin (PTX), the LPA 1&3 antagonist Ki16425, and genetic deletion of LPA 1 but not that of LPA 2 or inhibition of LPA 3 , by diacylglycerol pyrophosphate. Surprisingly, vasoconstriction was also diminished in vessels lacking cyclooxygenase-1 [COX1 knockout (KO)] or the thromboxane prostanoid (TP) receptor (TP KO). VPC31143 increased thromboxane A 2 (TXA 2 ) release from TA of wild-type, TP-KO, and LPA 2 -KO mice but not from LPA 1 -KO or COX1-KO mice, and PTX blocked this effect. Our findings indicate that LPA causes vasoconstriction in VSMCs, mediated by LPA 1 -, G i -, and COX1-dependent autocrine/paracrine TXA 2 release and consequent TP activation. We propose that this new-found interaction between the LPA/LPA 1 and TXA 2 /TP pathways plays significant roles in vasoregulation, hemostasis, thrombosis, and vascular remodeling.-Dancs, P. T., Ruisanchez, E., Balogh, A., Panta, C. R., Miklós, Z., Nüsing, R. M., Aoki, J., Chun, J., Offermanns, S., Tigyi, G., Benyó, Z. LPA 1 receptor-mediated thromboxane A 2 release is responsible for lysophosphatidic acid-induced vascular smooth muscle contraction. © FASEB.

  3. Airways in smooth muscle α-actin null mice experience a compensatory mechanism that modulates their contractile response.

    PubMed

    Shardonofsky, Felix R; Moore, Joan; Schwartz, Robert J; Boriek, Aladin M

    2012-03-01

    We hypothesized that ablation of smooth muscle α-actin (SM α-A), a contractile-cytoskeletal protein expressed in airway smooth muscle (ASM) cells, abolishes ASM shortening capacity and decreases lung stiffness. In both SM α-A knockout and wild-type (WT) mice, airway resistance (Raw) determined by the forced oscillation technique rose in response to intravenous methacholine (Mch). However, the slope of Raw (cmH(2)O·ml(-1)·s) vs. log(2) Mch dose (μg·kg(-1)·min(-1)) was lower (P = 0.007) in mutant (0.54 ± 0.14) than in WT mice (1.23 ± 0.19). RT-PCR analysis performed on lung tissues confirmed that mutant mice lacked SM α-A mRNA and showed that these mice had robust expressions of both SM γ-A mRNA and skeletal muscle (SKM) α-A mRNA, which were not expressed in WT mice, and an enhanced SM22 mRNA expression relative to that in WT mice. Compared with corresponding spontaneously breathing mice, mechanical ventilation-induced lung mechanical strain increased the expression of SM α-A mRNA in WT lungs; in mutant mice, it augmented the expressions of SM γ-A mRNA and SM22 mRNA and did not alter that of SKM α-A mRNA. In mutant mice, the expression of SM γ-A mRNA in the lung during spontaneous breathing and its enhanced expression following mechanical ventilation are consistent with the likely possibility that in the absence of SM α-A, SM γ-A underwent polymerization and interacted with smooth muscle myosin to produce ASM shortening during cholinergic stimulation. Thus our data are consistent with ASM in mutant mice experiencing compensatory mechanisms that modulated its contractile muscle capacity.

  4. Telocytes in skeletal, cardiac and smooth muscle interstitium: morphological and functional aspects.

    PubMed

    Marini, Mirca; Rosa, Irene; Ibba-Manneschi, Lidia; Manetti, Mirko

    2018-04-25

    Telocytes (TCs) represent a new distinct type of cells found in the stromal compartment of many organs, including the skeletal, cardiac and smooth muscles. TCs are morphologically defined as interstitial cells with a small cellular body from which arise very long (up to hundreds of micrometers) and thin moniliform processes (named telopodes) featuring the alternation of slender segments (called podomers) and small dilated portions (called podoms) accommodating some organelles. Although these stromal cells are mainly characterized by their ultrastructural traits, in the last few years TCs have been increasingly studied for their immunophenotypes, microRNA profiles, and gene expression and proteomic signatures. By their long-distance spreading telopodes, TCs build a three-dimensional network throughout the whole stromal space and communicate with each other and neighboring cells through homocellular and heterocellular junctions, respectively. Moreover, increasing evidence suggests that TCs may exert paracrine functions being able to transfer genetic information and signaling molecules to other cells via the release of different types of extracellular vesicles. A close relationship between TCs and stem/progenitor cell niches has also been described in several organs. However, the specific functions of TCs located in the muscle interstitium remain to be unraveled. Here, we review the morphological and possible functional aspects of TCs in skeletal, cardiac and smooth muscle tissues. The potential involvement of TCs in muscle tissue pathological changes and future possibilities for targeting TCs as a novel promising therapeutic strategy to foster muscle tissue regeneration and repair are also discussed.

  5. Nitric oxide synthesis leads to vascular endothelial growth factor synthesis via the NO/cyclic guanosine 3',5'-monophosphate (cGMP) pathway in human corpus cavernosal smooth muscle cells.

    PubMed

    Komori, Kazuhiko; Tsujimura, Akira; Takao, Tetsuya; Matsuoka, Yasuhiro; Miyagawa, Yasushi; Takada, Shingo; Nonomura, Norio; Okuyama, Akihiko

    2008-07-01

    Vascular smooth muscle cells express endothelial nitric oxide synthase (eNOS) and produce nitric oxide (NO). Recently, increased NO production has been reported to induce the synthesis and secretion of vascular endothelial growth factor (VEGF) via the NO/cyclic guanosine 3',5'-monophosphate (cGMP) pathway. L-arginine (L-arg), the precursor of NO, and selective phosphodiesterase type 5 (PDE-5) inhibitors that increase levels of intracellular cGMP may complementarily enhance VEGF synthesis in corpus cavernosal smooth muscle cells (CCSMCs), and may consequently restore impaired endothelial function. Expression of eNOS in corpus cavernosal smooth muscle has also been reported. However, it is unclear whether CCSMCs can generate NO. To elucidate whether CCSMCs can synthesize NO and whether NO synthesis enhances VEGF synthesis via the NO/cGMP pathway. Corpus cavernosal cells were cultured and characterized by immunocytochemistry and immunoblotting. CCSMCs were treated with L-arg. CCSMCs were also incubated with L-arg and with vardenafil, an inhibitor of PDE-5. Release of NO from cells was confirmed by assay of NO metabolites (NOx). Intracellular cGMP concentration and VEGF concentration in the medium were measured. Isolated cells were determined to be CCSMCs. The expression of eNOS by CCSMCs was also identified. NOx and cGMP levels in the L-arg-treated group were significantly greater than those in the control group. VEGF and cGMP levels in the L-arg-treated group were also significantly greater than those in the control group. VEGF and cGMP levels in the L-arg + vardenafil-treated group were significantly greater than those in the L-arg-treated group and the control group. CCSMCs express eNOS and synthesize NO. NO synthesis leads to enhancement of VEGF synthesis via the NO/cGMP pathway. Combined L-arg and vardenafil treatment, which can enhance VEGF production, may provide a novel therapeutic strategy for the treatment of erectile dysfunction as well as endothelial

  6. The apoptosis induced by HMME-based photodynamic therapy in rabbit vascular smooth muscle cells

    NASA Astrophysics Data System (ADS)

    Yin, Huijuan; Li, Xiaoyuan; Lin, Hong; Liu, Jianzhong; Yu, Hongkui

    2007-02-01

    Objective To study the effects of HMME-based photodynamic therapy on proliferation and apoptosis of rabbit vascular smooth muscle cells(VSMCs). Method The cytotoxic effect of HMME-PDT on rabbit vascular smooth muscle cells was studied by means of Trypan Blue assay, HMME at 10μg/ml concentration and the light dose at 2.4~4.8 J/cm2 were selected in the studies. The morphological character 24h post-PDT was investigated by HE Staining. Annexin V and propidium iodide (PI) binding assays were performed to analyze the characteristics of cell death after HMME-PDT. Furthermore, The intracellular distributions of the HMME were measured by the confocal laser scanning microscope. Result It was showed the photocytotoxity to VSMC cells was dose related by Trypan Blue assay. Histology observing suggests HMME-PDT could induce cell death through apoptosis or necrosis, and the apoptosic rate was up to 50.5% by AnnexinV /PI assay. Moreover, the fluorescence images of HMME intracellular localization demonstrated that the HMME diffused into the mitochondria. Conclusion HMME-PDT could significantly inhibite VSMC proliferation and induce apoptosis.

  7. Differential gene expression profiling of human adipose stem cells differentiating into smooth muscle-like cells by TGFβ1/BMP4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elçin, Ayşe Eser; Parmaksiz, Mahmut; Dogan, Arin

    Regenerative repair of the vascular system is challenging from the perspectives of translational medicine and tissue engineering. There are fundamental hurdles in front of creating bioartificial arteries, which involve recaputilation of the three-layered structure under laboratory settings. Obtaining and maintaining smooth muscle characteristics is an important limitation, as the transdifferentiated cells fail to display mature phenotype. This study aims to shed light on the smooth muscle differentiation of human adipose stem cells (hASCs). To this end, we first acquired hASCs from lipoaspirate samples. Upon characterization, the cells were induced to differentiate into smooth muscle (SM)-like cells using a variety ofmore » inducer combinations. Among all, TGFβ1/BMP4 combination had the highest differentiation efficiency, based on immunohistochemical analyses. hSM-like cell samples were compared to hASCs and to the positive control, human coronary artery-smooth muscle cells (hCA-SMCs) through gene transcription profiling. Microarray findings revealed the activation of gene groups that function in smooth muscle differentiation, signaling pathways, extracellular modeling and cell proliferation. Our results underline the effectiveness of the growth factors and suggest some potential variables for detecting the SM-like cell characteristics. Evidence in transcriptome level was used to evaluate the TGFβ1/BMP4 combination as a previously unexplored effector for the smooth muscle differentiation of adipose stem cells. - Highlights: • Human adipose stem cells (hASCs) were isolated, characterized and cultured. • Growth factor combinations were evaluated for their effectiveness in differentiation using IHC. • hASCs were differentiated into smooth muscle (SM)-like cells using TGF-β1 and BMP4 combination. • Microarray analysis was performed for hASCs, SM-like cells and coronary artery-SMCs. • Microarray data was used to perform hierarchical clustering and

  8. Inhibition of Smooth Muscle Proliferation by Urea-Based Alkanoic Acids via Peroxisome Proliferator-Activated Receptor α–Dependent Repression of Cyclin D1

    PubMed Central

    Ng, Valerie Y.; Morisseau, Christophe; Falck, John R.; Hammock, Bruce D.; Kroetz, Deanna L.

    2007-01-01

    Objective Proliferation of smooth muscle cells is implicated in cardiovascular complications. Previously, a urea-based soluble epoxide hydrolase inhibitor was shown to attenuate smooth muscle cell proliferation. We examined the possibility that urea-based alkanoic acids activate the nuclear receptor peroxisome proliferator-activated receptor α (PPARα) and the role of PPARα in smooth muscle cell proliferation. Methods and Results Alkanoic acids transactivated PPARα, induced binding of PPARα to its response element, and significantly induced the expression of PPARα-responsive genes, showing their function as PPARα agonists. Furthermore, the alkanoic acids attenuated platelet-derived growth factor–induced smooth muscle cell proliferation via repression of cyclin D1 expression. Using small interfering RNA to decrease endogenous PPARα expression, it was determined that PPARα was partially involved in the cyclin D1 repression. The antiproliferative effects of alkanoic acids may also be attributed to their inhibitory effects on soluble epoxide hydrolase, because epoxyeicosatrienoic acids alone inhibited smooth muscle cell proliferation. Conclusions These results show that attenuation of smooth muscle cell proliferation by urea-based alkanoic acids is mediated, in part, by the activation of PPARα. These acids may be useful for designing therapeutics to treat diseases characterized by excessive smooth muscle cell proliferation. PMID:16917105

  9. Investigation of neurogenic excitatory and inhibitory motor responses and their control by 5-HT(4) receptors in circular smooth muscle of pig descending colon.

    PubMed

    Priem, Evelien K V; Lefebvre, Romain A

    2011-09-30

    The aim of this study was to investigate whether the pig colon descendens might be a good model for the responses mediated via the different locations of human colonic 5-HT(4) receptors. The intrinsic excitatory and inhibitory motor neurotransmission in pig colon descendens was therefore first characterized. In circular smooth muscle strips, electrical field stimulation (EFS) at basal tone induced only in the combined presence of the NO synthase inhibitor N(ω)-nitro-L-arginine methyl ester hydrochloride (L-NAME) and the SK channel blocker apamin voltage-dependent on-contractions. These on-contractions were largely reduced by the neuronal conductance blocker tetrodotoxin (TTX) and by the muscarinic receptor antagonist atropine, illustrating activation of cholinergic neurons. The 5-HT(4) receptor agonist prucalopride facilitated submaximal EFS-evoked cholinergic contractions and this effect was prevented by the 5-HT(4) receptor antagonist GR113808, supporting the presence of facilitating 5-HT(4) receptors on the cholinergic nerve endings innervating circular muscle in pig colon descendens. Relaxations were induced by EFS in strips pre-contracted with substance P in the presence of atropine. The responses at lower stimulation voltages were abolished by TTX. L-NAME or apamin alone did not influence or only moderately reduced the relaxations, but L-NAME plus apamin abolished the relaxations at lower stimulation voltages, suggesting that NO and ATP act as inhibitory neurotransmitters in a redundant way. Prucalopride did not influence the EFS-induced relaxations at lower stimulation voltage, nor did it per se relax contracted circular muscle strips. No evidence for relaxing 5-HT(4) receptors, either on inhibitory neurons or on the muscle cells was thus obtained in pig colon descendens circular muscle. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Airway smooth muscle: a potential target for asthma therapy.

    PubMed

    Dowell, Maria L; Lavoie, Tera L; Solway, Julian; Krishnan, Ramaswamy

    2014-01-01

    Asthma is a major public health problem that afflicts nearly one in 20 people worldwide. Despite available treatments, asthma symptoms remain poorly controlled in a significant minority of asthma patients, especially those with severe disease. Accordingly, much ongoing effort has been directed at developing new therapeutic strategies; these efforts are described in detail below. Although mucus hypersecretion is an important component of asthma pathobiology, the primary mechanism of morbidity and mortality in asthma is excessive narrowing of the airway. The key end- effector of excessive airway narrowing is airway smooth muscle (ASM) contraction; overcoming ASM contraction is therefore a prominent therapeutic strategy. Here, we review exciting new advances aimed at ASM relaxation. Exciting advances in ASM biology have identified new therapeutic targets for the prevention or reversal of bronchoconstriction in asthma.

  11. Inhibition of prostate smooth muscle contraction and prostate stromal cell growth by the inhibitors of Rac, NSC23766 and EHT1864.

    PubMed

    Wang, Y; Kunit, T; Ciotkowska, A; Rutz, B; Schreiber, A; Strittmatter, F; Waidelich, R; Liu, C; Stief, C G; Gratzke, C; Hennenberg, M

    2015-06-01

    Medical therapy of lower urinary tract symptoms (LUTS) suggestive of benign prostatic hyperplasia (BPH) targets smooth muscle contraction in the prostate, or prostate growth. However, current therapeutic options are insufficient. Here, we investigated the role of Rac in the control of smooth muscle tone in human prostates and growth of prostate stromal cells. Experiments were performed using human prostate tissues from radical prostatectomy and cultured stromal cells (WPMY-1). Expression of Rac was examined by Western blot and fluorescence staining. Effects of Rac inhibitors (NSC23766 and EHT1864) on contractility were assessed in the organ bath. The effects of Rac inhibitors were assessed by pull-down, cytotoxicity using a cell counting kit, cytoskeletal organization by phalloidin staining and cell growth using an 5-ethynyl-2'-deoxyuridine assay. Expression of Rac1-3 was observed in prostate samples from each patient. Immunoreactivity for Rac1-3 was observed in the stroma, where it colocalized with the smooth muscle marker, calponin. NSC23766 and EHT1864 significantly reduced contractions of prostate strips induced by noradrenaline, phenylephrine or electrical field stimulation. NSC23766 and EHT1864 inhibited Rac activity in WPMY-1 cells. Survival of WPMY-1 cells ranged between 64 and 81% after incubation with NSC23766 (50 or 100 μM) or EHT1864 (25 μM) for 24 h. NSC23766 and EHT1864 induced cytoskeletal disorganization in WPMY-1 cells. Both inhibitors impaired the growth of WPMY-1 cells. Rac may be a link connecting the control of prostate smooth muscle tone with proliferation of smooth muscle cells. Improvements in LUTS suggestive of BPH by Rac inhibitors appears possible. © 2015 The British Pharmacological Society.

  12. A plant Kunitz-type inhibitor mimics bradykinin-induced cytosolic calcium increase and intestinal smooth muscle contraction.

    PubMed

    Andrade, Sheila Siqueira; Smaili, Soraya Soubhi; Monteforte, Priscila Totarelli; Miranda, Antônio; Kouyoumdjian, Maria; Sampaio, Misako Uemura; Lopes, Guiomar Silva; Oliva, Maria Luiza V

    2012-09-01

    BbKI is a kallikrein inhibitor with a reactive site sequence similar to that of kinins, the vasoactive peptides inserted in kininogen moieties. This structural similarity probably contributes to the strong interaction with plasma kallikrein, the enzyme that releases, from high-molecular weight kininogen (HMWK), the proinflammatory peptide bradykinin, which acts on B(2) receptors (B(2)R). BbKI was examined on smooth muscle contraction and Ca(2+) mobilization, in which the kallikrein-kinin system is involved. Contrary to expectations, BbKI (1.8 μm) increased [Ca(2+)](c) and contraction, as observed with BK (2.0 μm). Not blocked by B(1) receptors (B(1)R), the BbKI agonistic effect was blocked by the B(2)R antagonist, HOE-140 (6 μm), and the involvement of B(2)R was confirmed in B(2)R-knockout mice intestine. The same tissue response was obtained using a synthetic peptide derived from the BbKI reactive site structure, more resistant than BK to angiotensin I-converting enzyme (ACE) hydrolysis. Depending on the concentration, BbKI has a dual effect. At a low concentration, BbKI acts as a potent kallikrein inhibitor; however, due to the similarity to BK, in high concentrations, BbKI greatly increases Ca(2+) release from internal storages, as a consequence of its interaction with B(2)R. Therefore, the antagonistic and agonistic effects of BbKI may be considered in conditions of B(2)R involvement.

  13. Functional Constituents of a Local Serotonergic System, Intrinsic to the Human Coronary Artery Smooth Muscle Cells

    PubMed Central

    Baskar, Kannan; Sur, Swastika; Selvaraj, Vithyalakashmi; Agrawal, Devendra K.

    2015-01-01

    Human coronary artery smooth muscle cells (HCASMCs) play an important role in the pathogenesis of coronary atherosclerosis and coronary artery diseases (CAD). Serotonin is a mediator known to produce vascular smooth muscle cell (VSMC) mitogenesis and contribute to coronary atherosclerosis. We hypothesize that the human coronary artery smooth muscle cell possesses certain functional constituents of the serotonergic system such as: tryptophan hydroxylase and serotonin transporter. Our aim was to examine the presence of functional tryptophan hydroxylase-1 (TPH1) and serotonin transporter (SERT) in HCASMCs. The mRNA transcripts by qPCR and protein expression by Western blot of TPH1 and SERT were examined. The specificity and accuracy of the primers were verified using DNA gel electrophoresis and sequencing of qPCR products. The functionality of SERT was examined using a fluorescence dye-based serotonin transporter assay. The enzymatic activity of TPH was evaluated using UPLC. The HCASMCs expressed both mRNA transcripts and protein of SERT and TPH. The qPCR showed a single melt curve peak for both transcripts and in sequence analysis the amplicons were aligned with the respective genes. SERT and TPH enzymatic activity was present in the HCASMCs. Taken together, both TPH and SERT are functionally expressed in HCASMCs. These findings are novel and represent an initial step in examining the clinical relevance of the serotonergic system in HCASMCs and its role in the pathogenesis of coronary atherosclerosis and CAD. PMID:25861735

  14. Heterogeneous gene expression and functional activity of ryanodine receptors in resistance and conduit pulmonary as well as mesenteric artery smooth muscle cells.

    PubMed

    Zheng, Yun-Min; Wang, Qing-Song; Liu, Qing-Hua; Rathore, Rakesh; Yadav, Vishal; Wang, Yong-Xiao

    2008-01-01

    Hypoxia causes heterogeneous contractile responses in resistance and conduit pulmonary as well as systemic (mesenteric) artery smooth muscle cells (RPASMCs, CPASMCs and MASMCs), but the underlying mechanisms are largely unknown. In this study, we aimed to investigate whether the gene expression and functional activity of ryanodine receptors (RyRs) would be different in these 3 cell types. RyR mRNA expression, Ca(2+) sparks and [Ca(2+)](i) were measured by real-time quantitative RT-PCR, laser scanning confocal microscopy and wide-field fluorescence microscopy, respectively. All 3 RyR subtype (RyR1, RyR2 and RyR3) mRNAs are expressed in RPASMCs, CPASMCs and MASMCs, but their expression levels are different. Spontaneous Ca(2+) sparks (functional events of RyRs) show distinct frequency, amplitude, duration, size and kinetics in these 3 cell types. Similarly, activation of RyRs by caffeine, 4-chloro-m-cresol or high K(+) induces differential Ca(2+) release. Moreover, hypoxia-induced increase in [Ca(2+)](i) is largest in MASMCs relative to CPSAMCs and smallest in RPASMCs. This study provides comprehensive evidence that RyRs are heterogeneous in gene expression and functional activity in RPASMCs, CPASMCs and MASMCs, which may contribute to the diversity of excitation-contraction coupling and hypoxic Ca(2+) responses in different vascular smooth muscle cells. Copyright 2008 S. Karger AG, Basel.

  15. Irritable bowel syndrome patients have SCN5A channelopathies that lead to decreased NaV1.5 current and mechanosensitivity.

    PubMed

    Strege, Peter R; Mazzone, Amelia; Bernard, Cheryl E; Neshatian, Leila; Gibbons, Simon J; Saito, Yuri A; Tester, David J; Calvert, Melissa L; Mayer, Emeran A; Chang, Lin; Ackerman, Michael J; Beyder, Arthur; Farrugia, Gianrico

    2018-04-01

    The SCN5A-encoded voltage-gated mechanosensitive Na + channel Na V 1.5 is expressed in human gastrointestinal smooth muscle cells and interstitial cells of Cajal. Na V 1.5 contributes to smooth muscle electrical slow waves and mechanical sensitivity. In predominantly Caucasian irritable bowel syndrome (IBS) patient cohorts, 2-3% of patients have SCN5A missense mutations that alter Na V 1.5 function and may contribute to IBS pathophysiology. In this study we examined a racially and ethnically diverse cohort of IBS patients for SCN5A missense mutations, compared them with IBS-negative controls, and determined the resulting Na V 1.5 voltage-dependent and mechanosensitive properties. All SCN5A exons were sequenced from somatic DNA of 252 Rome III IBS patients with diverse ethnic and racial backgrounds. Missense mutations were introduced into wild-type SCN5A by site-directed mutagenesis and cotransfected with green fluorescent protein into HEK-293 cells. Na V 1.5 voltage-dependent and mechanosensitive functions were studied by whole cell electrophysiology with and without shear force. Five of 252 (2.0%) IBS patients had six rare SCN5A mutations that were absent in 377 IBS-negative controls. Six of six (100%) IBS-associated Na V 1.5 mutations had voltage-dependent gating abnormalities [current density reduction (R225W, R433C, R986Q, and F1293S) and altered voltage dependence (R225W, R433C, R986Q, G1037V, and F1293S)], and at least one kinetic parameter was altered in all mutations. Four of six (67%) IBS-associated SCN5A mutations (R225W, R433C, R986Q, and F1293S) resulted in altered Na V 1.5 mechanosensitivity. In this racially and ethnically diverse cohort of IBS patients, we show that 2% of IBS patients harbor SCN5A mutations that are absent in IBS-negative controls and result in Na V 1.5 channels with abnormal voltage-dependent and mechanosensitive function. NEW & NOTEWORTHY The voltage-gated Na + channel Na V 1.5 contributes to smooth muscle physiology and electrical

  16. Daikenchuto ameliorates muscle hypercontractility in a murine T-cell-mediated persistent gut motor dysfunction model.

    PubMed

    Akiho, Hirotada; Nakamura, Kazuhiko

    2011-01-01

    Low-grade inflammation and immunological alterations are evident in functional gastrointestinal disorders such as irritable bowel syndrome (IBS). We evaluated the effects of daikenchuto (DKT), a pharmaceutical grade Japanese herbal medicine, on the hypercontractility of intestinal smooth muscle persisting after acute inflammation induced by a T-cell-activating anti-CD3 antibody (αCD3). BALB/c mice were injected with αCD3 (12.5 μg, i.p.), and DKT (2.7 g/kg) was administered orally once daily for 1 week. The contraction of isolated small intestinal muscle strips and muscle cells was examined on day 7 after αCD3 injection. The gene and protein expressions in the small intestines were evaluated by real-time PCR and multiplex immunoassays, respectively, on days 1, 3 and 7 after αCD3 injection. αCD3 injection resulted in significant increases in carbachol-evoked contractility in the muscle strips and isolated smooth muscle cells on day 7. DKT ameliorated the αCD3-induced muscle hypercontractility on day 7 in both the muscle strips and smooth muscle cells. αCD3 injection rapidly up- and downregulated the mRNA and protein expressions of pro- and anti-inflammatory cytokines, respectively. Although the influence of DKT on the mRNA expressions was moderate, the protein expressions of IL-13 and IL-17 were significantly decreased. We observed changes in the intestinal muscle contractility in muscle strips and muscle cells following resolution of inflammation in a T-cell-mediated model of enteropathy. The observed modulation of cytokine expression and function by DKT may lead to the development of new pharmacotherapeutic strategies aimed at a wide variety of gut motor dysfunction disorders. Copyright © 2011 S. Karger AG, Basel.

  17. Temperature and nucleotide dependence of calcium release by myo-inositol 1,4,5-trisphosphate in cultured vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, J.B.; Smith, L.; Higgins, B.L.

    1985-11-25

    Inositol 1,4,5-trisphosphate (IP3) rapidly increased UVCaS efflux from a nonmitochondrial organelle in cultured vascular smooth muscle cells that were permeabilized with saponin. A nucleotide, preferably ATP, was essential for IP3-evoked UVCaS release. Two nonhydrolyzable ATP analogues satisfied the nucleotide requirement for IP3-evoked UVCaS release. IP3 strongly stimulated UVCaS efflux at low temperatures (1 to 15 degrees C). Decreasing the temperature from 37 to 4 degrees C inhibited the rate of IP3-stimulated efflux by only about 33%. The failure of such low temperatures to strongly inhibit IP3-induced UVCaS efflux suggests that IP3 activated a CaS channel, rather than a carrier, bymore » a ligand-binding, rather than a metabolic, reaction.« less

  18. Ursolic acid suppresses leptin-induced cell proliferation in rat vascular smooth muscle cells.

    PubMed

    Yu, Ya-Mei; Tsai, Chiang-Chin; Tzeng, Yu-Wen; Chang, Weng-Cheng; Chiang, Su-Yin; Lee, Ming-Fen

    2017-07-01

    Accumulating lines of evidence indicate that high leptin levels are associated with adverse cardiovascular health in obese individuals. Proatherogenic effects of leptin include endothelial cell activation and vascular smooth muscle cell proliferation and migration. Ursolic acid (UA) has been reported to exhibit multiple biological effects including antioxidant and anti-inflammatory properties. In this study, we investigated the effect of UA on leptin-induced biological responses in rat vascular smooth muscle cells (VSMCs). A-10 VSMCs were treated with leptin in the presence or absence of UA. Intracellular reactive oxygen species (ROS) was probed by 2',7'-dichlorofluorescein diacetate. The expression of extracellular signal-regulated kinase (ERK)1/2, phospho-(ERK)1/2, nuclear factor-kappa B (NF-κB) p65 and p50, and matrix metalloproteinase-2 (MMP2) was determined by Western blotting. Immunocytochemistry and confocal laser scanning microscopy were also used for the detection of NF-κB. The secretion of MMP2 was detected by gelatin zymography. UA exhibited antioxidant activities in vitro. In rat VSMCs, UA effectively inhibited cell growth and the activity of MMP2 induced by leptin. These suppressive effects appeared by decreasing the activation of (ERK)1/2, the nuclear expression and translocation of NF-κB, and the production of ROS. UA appeared to inhibit leptin-induced atherosclerosis, which may prevent the development of obesity-induced cardiovascular diseases.

  19. Cross talk between cyclic AMP and the polyphosphoinositide signaling cascade in iris sphincter and other nonvascular smooth muscle.

    PubMed

    Abdel-Latif, A A

    1996-02-01

    Nonvascular smooth muscle, such as the iris sphincter, receives double reciprocal innervation: stimulation of the parasympathetic nervous system (cholinergic muscarinic), which functions through the polyphosphoinositide (PPI) signaling pathway, contracts it, while activation of the sympathetic nervous system (beta-adrenergic), which functions through the cAMP system, relaxes it. Interactions between the two second messenger systems are important in regulation of smooth muscle tone and represent an important focal point for pharmacological manipulation. Here, I have summarized the experimental evidence in support of the hypothesis that the cross talk between cAMP and the PPI cascade could constitute a biochemical correlate for this functional antagonism. Recent studies suggest that cAMP inhibition is on Ca2+ mobilization rather than myosin light chain phosphorylation. Thus, cAMP-elevating agents, which inhibit agonist-induced PPI hydrolysis, are effective relaxants. Furthermore, inositol 1,4,5-trisphosphate (IP3) appears to be involved in both Ca2+ release from the sarcoplasmic reticulum and in Ca2+ influx through the plasma membrane, and since a reduction in intracellular Ca2+ ([Ca2+]i) is the underlying mechanism for cAMP-mediated relaxation, an important target for cAMP inhibition would be either to inhibit IP3 production or to stimulate IP3 inactivation. In the iris sphincter and other nonvascular smooth muscle there is reasonable experimental evidence that shows that cAMP inhibits phospholipase C activation and stimulates IP3 3-kinase activity, both of which can result in: [i) reduction in IP3 concentrations and (ii) reduction in IP3-dependent Ca2+ mobilization, which may lead to muscle relaxation. In addition to IP3-induced Ca2+ mobilization, changes in [Ca2+]i are the result of the interplay of many processes which may also serve as potential sites for cAMP inhibition. A great deal of progress has been made on the cross talk between cAMP and the PPI signaling

  20. 7 CFR 51.768 - Smooth texture.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and size of the fruit. “Thin” means that the skin thickness does not average more than 3/8 inch (9.5 mm), on a central...

  1. 7 CFR 51.768 - Smooth texture.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and size of the fruit. “Thin” means that the skin thickness does not average more than 3/8 inch (9.5 mm), on a central...

  2. Intracellular interactions of umeclidinium and vilanterol in human airway smooth muscle.

    PubMed

    Shaikh, Nooreen; Johnson, Malcolm; Hall, David A; Chung, Kian Fan; Riley, John H; Worsley, Sally; Bhavsar, Pankaj K

    2017-01-01

    Intracellular mechanisms of action of umeclidinium (UMEC), a long-acting muscarinic receptor antagonist, and vilanterol (VI), a long-acting β 2 -adrenoceptor (β 2 R) agonist, were investigated in target cells: human airway smooth-muscle cells (ASMCs). ASMCs from tracheas of healthy lung-transplant donors were treated with VI, UMEC, UMEC and VI combined, or control compounds (salmeterol, propranolol, ICI 118.551, or methacholine [MCh]). Cyclic adenosine monophosphate (cAMP) was measured using an enzyme-linked immunosorbent assay, intracellular free calcium ([Ca 2+ ] i ) using a fluorescence assay, and regulator of G-protein signaling 2 (RGS2) messenger RNA using real-time quantitative polymerase chain reaction. VI and salmeterol (10 -12 -10 -6 M) induced cAMP production from ASMCs in a concentration-dependent manner, which was greater for VI at all concentrations. β 2 R antagonism by propranolol or ICI 118.551 (10 -12 -10 -4 M) resulted in concentration-dependent inhibition of VI-induced cAMP production, and ICI 118.551 was more potent. MCh (5×10 -6 M, 30 minutes) attenuated VI-induced cAMP production ( P <0.05), whereas pretreatment with UMEC (10 -8 M, 1 hour) restored the magnitude of VI-induced cAMP production. ASMC stimulation with MCh (10 -11 -5×10 -6 M) resulted in a concentration-dependent increase in [Ca 2+ ] i , which was attenuated with UMEC pretreatment. Reduction of MCh-induced [Ca 2+ ] i release was greater with UMEC + VI versus UMEC. UMEC enhanced VI-induced RGS2 messenger RNA expression. These data indicate that UMEC reverses cholinergic inhibition of VI-induced cAMP production, and is a more potent muscarinic receptor antagonist when in combination with VI versus either alone.

  3. Intracellular interactions of umeclidinium and vilanterol in human airway smooth muscle

    PubMed Central

    Shaikh, Nooreen; Johnson, Malcolm; Hall, David A; Chung, Kian Fan; Riley, John H; Worsley, Sally; Bhavsar, Pankaj K

    2017-01-01

    Background Intracellular mechanisms of action of umeclidinium (UMEC), a long-acting muscarinic receptor antagonist, and vilanterol (VI), a long-acting β2-adrenoceptor (β2R) agonist, were investigated in target cells: human airway smooth-muscle cells (ASMCs). Materials and methods ASMCs from tracheas of healthy lung-transplant donors were treated with VI, UMEC, UMEC and VI combined, or control compounds (salmeterol, propranolol, ICI 118.551, or methacholine [MCh]). Cyclic adenosine monophosphate (cAMP) was measured using an enzyme-linked immunosorbent assay, intracellular free calcium ([Ca2+]i) using a fluorescence assay, and regulator of G-protein signaling 2 (RGS2) messenger RNA using real-time quantitative polymerase chain reaction. Results VI and salmeterol (10−12–10−6 M) induced cAMP production from ASMCs in a concentration-dependent manner, which was greater for VI at all concentrations. β2R antagonism by propranolol or ICI 118.551 (10−12–10−4 M) resulted in concentration-dependent inhibition of VI-induced cAMP production, and ICI 118.551 was more potent. MCh (5×10−6 M, 30 minutes) attenuated VI-induced cAMP production (P<0.05), whereas pretreatment with UMEC (10−8 M, 1 hour) restored the magnitude of VI-induced cAMP production. ASMC stimulation with MCh (10−11–5×10−6 M) resulted in a concentration-dependent increase in [Ca2+]i, which was attenuated with UMEC pretreatment. Reduction of MCh-induced [Ca2+]i release was greater with UMEC + VI versus UMEC. UMEC enhanced VI-induced RGS2 messenger RNA expression. Conclusion These data indicate that UMEC reverses cholinergic inhibition of VI-induced cAMP production, and is a more potent muscarinic receptor antagonist when in combination with VI versus either alone. PMID:28721035

  4. Endothelial and Smooth Muscle Cell Ion Channels in Pulmonary Vasoconstriction and Vascular Remodeling

    PubMed Central

    Makino, Ayako; Firth, Amy L.; Yuan, Jason X.-J.

    2017-01-01

    The pulmonary circulation is a low resistance and low pressure system. Sustained pulmonary vasoconstriction and excessive vascular remodeling often occur under pathophysiological conditions such as in patients with pulmonary hypertension. Pulmonary vasoconstriction is a consequence of smooth muscle contraction. Many factors released from the endothelium contribute to regulating pulmonary vascular tone, while the extracellular matrix in the adventitia is the major determinant of vascular wall compliance. Pulmonary vascular remodeling is characterized by adventitial and medial hypertrophy due to fibroblast and smooth muscle cell proliferation, neointimal proliferation, intimal, and plexiform lesions that obliterate the lumen, muscularization of precapillary arterioles, and in situ thrombosis. A rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction, while increased release of mitogenic factors, upregulation (or downregulation) of ion channels and transporters, and abnormalities in intracellular signaling cascades are key to the remodeling of the pulmonary vasculature. Changes in the expression, function, and regulation of ion channels in PASMC and pulmonary arterial endothelial cells play an important role in the regulation of vascular tone and development of vascular remodeling. This article will focus on describing the ion channels and transporters that are involved in the regulation of pulmonary vascular function and structure and illustrating the potential pathogenic role of ion channels and transporters in the development of pulmonary vascular disease. PMID:23733654

  5. Kir2.1 regulates rat smooth muscle cell proliferation, migration, and post-injury carotid neointimal formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Yong; Tang, Chengchun, E-mail: tangchengchun@medmail.com.cn; Wang, Qingjie

    Phenotype switching of vascular smooth muscle cells (VSMC) from the contractile type to the synthetic type is a hallmark of vascular disorders such as atherosclerosis and restenosis after angioplasty. Inward rectifier K{sup +} channel 2.1 (Kir2.1) has been identified in VSMC. However, whether it plays a functional role in regulating cellular transformation remains obscure. In this study, we evaluated the role of Kir2.1 on VSMC proliferation, migration, phenotype switching, and post-injury carotid neointimal formation. Kir2.1 knockdown significantly suppressed platelet-derived growth factor BB-stimulated rat vascular smooth muscle cells (rat-VSMC) proliferation and migration. Deficiency in Kir2.1 contributed to the restoration of smoothmore » muscle α-actin, smooth muscle 22α, and calponin and to a reduction in osteopontin expression in rat-VSMC. Moreover, the in vivo study showed that rat-VSMC switched to proliferative phenotypes and that knockdown of Kir2.1 significantly inhibited neointimal formation after rat carotid injury. Kir2.1 may be a potential therapeutic target in the treatment of cardiovascular diseases, such as atherosclerosis and restenosis following percutaneous coronary intervention.« less

  6. Functional expression of the TMEM16 family of calcium-activated chloride channels in airway smooth muscle

    PubMed Central

    Remy, Kenneth E.; Danielsson, Jennifer; Funayama, Hiromi; Fu, Xiao Wen; Chang, Herng-Yu Sucie; Yim, Peter; Xu, Dingbang; Emala, Charles W.

    2013-01-01

    Airway smooth muscle hyperresponsiveness is a key component in the pathophysiology of asthma. Although calcium-activated chloride channel (CaCC) flux has been described in many cell types, including human airway smooth muscle (HASM), the true molecular identity of the channels responsible for this chloride conductance remains controversial. Recently, a new family of proteins thought to represent the true CaCCs was identified as the TMEM16 family. This led us to question whether members of this family are functionally expressed in native and cultured HASM. We further questioned whether expression of these channels contributes to the contractile function of HASM. We identified the mRNA expression of eight members of the TMEM16 family in HASM cells and show immunohistochemical evidence of TMEM16A in both cultured and native HASM. Functionally, we demonstrate that the classic chloride channel inhibitor, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), inhibited halide flux in cultured HASM cells. Moreover, HASM cells displayed classical electrophysiological properties of CaCCs during whole cell electrophysiological recordings, which were blocked by using an antibody selective for TMEM16A. Furthermore, two distinct TMEM16A antagonists (tannic acid and benzbromarone) impaired a substance P-induced contraction in isolated guinea pig tracheal rings. These findings demonstrate that multiple members of this recently described family of CaCCs are expressed in HASM cells, they display classic electrophysiological properties of CaCCs, and they modulate contractile tone in airway smooth muscle. The TMEM16 family may provide a novel therapeutic target for limiting airway constriction in asthma. PMID:23997176

  7. Functional expression of the TMEM16 family of calcium-activated chloride channels in airway smooth muscle.

    PubMed

    Gallos, George; Remy, Kenneth E; Danielsson, Jennifer; Funayama, Hiromi; Fu, Xiao Wen; Chang, Herng-Yu Sucie; Yim, Peter; Xu, Dingbang; Emala, Charles W

    2013-11-01

    Airway smooth muscle hyperresponsiveness is a key component in the pathophysiology of asthma. Although calcium-activated chloride channel (CaCC) flux has been described in many cell types, including human airway smooth muscle (HASM), the true molecular identity of the channels responsible for this chloride conductance remains controversial. Recently, a new family of proteins thought to represent the true CaCCs was identified as the TMEM16 family. This led us to question whether members of this family are functionally expressed in native and cultured HASM. We further questioned whether expression of these channels contributes to the contractile function of HASM. We identified the mRNA expression of eight members of the TMEM16 family in HASM cells and show immunohistochemical evidence of TMEM16A in both cultured and native HASM. Functionally, we demonstrate that the classic chloride channel inhibitor, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), inhibited halide flux in cultured HASM cells. Moreover, HASM cells displayed classical electrophysiological properties of CaCCs during whole cell electrophysiological recordings, which were blocked by using an antibody selective for TMEM16A. Furthermore, two distinct TMEM16A antagonists (tannic acid and benzbromarone) impaired a substance P-induced contraction in isolated guinea pig tracheal rings. These findings demonstrate that multiple members of this recently described family of CaCCs are expressed in HASM cells, they display classic electrophysiological properties of CaCCs, and they modulate contractile tone in airway smooth muscle. The TMEM16 family may provide a novel therapeutic target for limiting airway constriction in asthma.

  8. THE INHIBITORY ACTIONS OF PROSTAGLANDINS ON RESPIRATORY SMOOTH MUSCLE.

    PubMed

    MAIN, I H

    1964-06-01

    Prostaglandin E(1), in concentrations as low as 1 ng/ml., relaxed isolated tracheal muscle from cat, monkey, rabbit, guinea-pig and ferret. Tracheal muscle from the cat, monkey and rabbit did not exhibit inherent tone and the effect of prostaglandin E(1) on these preparations was seen only after a sustained contraction had been produced by a previous dose of acetylcholine or of another agonist. Prostaglandins E(2), E(3) and F(1alpha) also relaxed isolated cat tracheal muscle which had been stimulated by acetylcholine: their activities relative to that of prostaglandin E(1) were, respectively, 1.0, 0.2 and 0.002. In the anaesthetized cat prostaglandin E(1) increased lung "resistance to inflation" (presumably comparable to bronchial resistance) and the heart rate. In the anaesthetized rabbit and guinea-pig, prostaglandin E(1) antagonized the rise in resistance to inflation of the lungs obtained after vagal stimulation or after the intravenous injection of histamine; it sometimes lowered the resistance to inflation in these species. The possibility that prostaglandin may have a local physiological role in the control of bronchial smooth muscle tone is discussed.

  9. Interaction of Vascular Smooth Muscle Cells Under Low Shear Stress

    NASA Technical Reports Server (NTRS)

    Seidel, Charles L.

    1998-01-01

    The blood vessel wall consists of three cellular layers, an outer adventitial, a middle medial and an inner intimal layer. When the blood vessel forms in the embryo it begins as a tube composed of a single cell type called endothelial cells. Over time, other cells are recruited from the surrounding tissue to form additional layers on the outer surface of the endothelial tube. The cells that are recruited are called mesenchymal cells. Mesenchymal cells are responsible for the production of connective tissue that holds the blood vessel together and for developing into vascular smooth muscle cells that are responsible for regulating the diameter of the vessel (1) and therefore, blood flow. In a fully developed blood vessel, the endothelial cells make- up the majority of cells in the intimal layer while the mesenchymal cells make-up the majority of cells in the medial and adventitial layers. Within the medial layer of a mature vessel, cells are organized into multiple circular layers of alternating bands of connective tissue and cells. The cell layer is composed of a mixture of mesenchymal cells that have not developed into smooth muscle cells and fully developed smooth muscle cells (2). The assembly and organization of complex tissues is directed in part by a signaling system composed of proteins on the cell surface called adhesion molecules. Adhesion molecules enable cells to recognize each other as well as the composition of the connective tissue in which they reside (3). It was hypothesized that the different cell types that compose the vascular wall possess different adhesion molecules that enable them to recognize each other and through this recognition system, form the complex layered organization of the vascular wall. In other words, the layered organization is an intrinsic property of the cells. If this hypothesis is correct then the different cells that make up the vessel wall, when mixed together, should organize themselves into a layered structure

  10. Thin-film dielectric elastomer sensors to measure the contraction force of smooth muscle cells

    NASA Astrophysics Data System (ADS)

    Araromi, O.; Poulin, A.; Rosset, S.; Favre, M.; Giazzon, M.; Martin-Olmos, C.; Liley, M.; Shea, H.

    2015-04-01

    The development of thin-film dielectric elastomer strain sensors for the characterization of smooth muscle cell (SMC) contraction is presented here. Smooth muscle disorders are an integral part of diseases such as asthma and emphysema. Analytical tools enabling the characterization of SMC function i.e. contractile force and strain, in a low-cost and highly parallelized manner are necessary for toxicology screening and for the development of new and more effective drugs. The main challenge with the design of such tools is the accurate measurement of the extremely low contractile cell forces expected as a result of SMC monolayer contraction (as low as ~ 100 μN). Our approach utilizes ultrathin (~5 μm) and soft elastomer membranes patterned with elastomer-carbon composite electrodes, onto which the SMCs are cultured. The cell contraction induces an in-plane strain in the elastomer membrane, predicted to be in the order 1 %, which can be measured via the change in the membrane capacitance. The cell force can subsequently be deduced knowing the mechanical properties of the elastomer membrane. We discuss the materials and fabrication methods selected for our system and present preliminary results indicating their biocompatibility. We fabricate functional capacitive senor prototypes with good signal stability over the several hours (~ 0.5% variation). We succeed in measuring in-plane strains of 1 % with our fabricated devices with good repeatability and signal to noise ratio.

  11. Hippo signaling is required for Notch-dependent smooth muscle differentiation of neural crest.

    PubMed

    Manderfield, Lauren J; Aghajanian, Haig; Engleka, Kurt A; Lim, Lillian Y; Liu, Feiyan; Jain, Rajan; Li, Li; Olson, Eric N; Epstein, Jonathan A

    2015-09-01

    Notch signaling has well-defined roles in the assembly of arterial walls and in the development of the endothelium and smooth muscle of the vasculature. Hippo signaling regulates cellular growth in many tissues, and contributes to regulation of organ size, in addition to other functions. Here, we show that the Notch and Hippo pathways converge to regulate smooth muscle differentiation of the neural crest, which is crucial for normal development of the aortic arch arteries and cranial vasculature during embryonic development. Neural crest-specific deletion of the Hippo effectors Yap and Taz produces neural crest precursors that migrate normally, but fail to produce vascular smooth muscle, and Notch target genes such as Jagged1 fail to activate normally. We show that Yap is normally recruited to a tissue-specific Jagged1 enhancer by directly interacting with the Notch intracellular domain (NICD). The Yap-NICD complex is recruited to chromatin by the DNA-binding protein Rbp-J in a Tead-independent fashion. Thus, Hippo signaling can modulate Notch signaling outputs, and components of the Hippo and Notch pathways physically interact. Convergence of Hippo and Notch pathways by the mechanisms described here might be relevant for the function of these signaling cascades in many tissues and in diseases such as cancer. © 2015. Published by The Company of Biologists Ltd.

  12. miR-539-5p inhibits experimental choroidal neovascularization by targeting CXCR7.

    PubMed

    Feng, Yifan; Wang, Jing; Yuan, Yuanzhi; Zhang, Xi; Shen, Minqian; Yuan, Fei

    2018-03-01

    Stromal cell-derived factor-1 (SDF-1) has been previously confirmed to participate in the formation of choroidal neovascularization (CNV) via its receptor, CXC chemokine receptor (CXCR) 4; CXCR7 is a recently identified receptor for SDF-1. The molecular mechanisms and therapeutic value of CXCR7 in CNV remain undefined. In this study, experimental CNV was induced by laser photocoagulation in Brown-Norway pigmented rats, and aberrant CXCR7 overexpression was detected in the retinal pigment epithelial/choroid/sclera tissues of laser-injured eyes. Blockade of CXCR7 activation via CXCR7 knockdown or neutralizing Ab administration inhibited SDF-1-induced cell survival and the tubular formation of human retinal microvascular endothelial cells (HRMECs) in vitro and reduced CNV leakage and lesion size in vivo. By using microRNA array screening and bioinformatic analyses, we identified miR-539-5p as a regulator of CXCR7. Transfection of HRMECs and choroid-retinal endothelial (RF/6A) cells with the miR-539-5p mimic inhibited their survival and tube formation, whereas CXCR7 overexpression rescued the suppressive effect of miR-539-5p. The antiangiogenic activities of the miR-539-5p mimic were additionally demonstrated in vivo by intravitreal injection. ERK1/2 and AKT signaling downstream of CXCR7 is involved in the miR-539-5p regulation of endothelial cell behaviors. These findings suggest that the manipulation of miR-539-5p/CXCR7 levels may have important therapeutic implications in CNV-associated diseases.-Feng, Y., Wang, J., Yuan, Y., Zhang, X., Shen, M., Yuan, F. miR-539-5p inhibits experimental choroidal neovascularization by targeting CXCR7.

  13. Adenosine A1 receptors link to smooth muscle contraction via CYP4a, protein kinase C-α, and ERK1/2.

    PubMed

    Kunduri, Swati S; Mustafa, S Jamal; Ponnoth, Dovenia S; Dick, Gregory M; Nayeem, Mohammed A

    2013-07-01

    Adenosine A1 receptor (A1AR) activation contracts smooth muscle, although signaling mechanisms are not thoroughly understood. Activation of A1AR leads to metabolism of arachidonic acid, including the production of 20-hydroxyeicosatetraenoic acid (20-HETE) by cytochrome P4504a (CYP4a). The 20-HETE can activate protein kinase C-α (PKC-α), which crosstalks with extracellular signal-regulated kinase (ERK1/2) pathway. Both these pathways can regulate smooth muscle contraction, we tested the hypothesis that A1AR contracts smooth muscle through a pathway involving CYP4a, PKC-α, and ERK1/2. Experiments included isometric tension recordings of aortic contraction and Western blots of signaling molecules in wild type (WT) and A1AR knockout (A1KO) mice. Contraction to the A1-selective agonist 2-chloro-N cyclopentyladenosine (CCPA) was absent in A1KO mice aortae, indicating the contractile role of A1AR. Inhibition of CYP4a (HET0016) abolished 2-chloro-N cyclopentyladenosine-induced contraction in WT aortae, indicating a critical role for 20-HETE. Both WT and A1KO mice aortae contracted in response to exogenous 20-HETE. Inhibition of PKC-α (Gö6976) or ERK1/2 (PD98059) attenuated 20-HETE-induced contraction equally, suggesting that ERK1/2 is downstream of PKC-α. Contractions to exogenous 20-HETE were significantly less in A1KO mice; reduced protein levels of PKC-α, p-ERK1/2, and total ERK1/2 supported this observation. Our data indicate that A1AR mediates smooth muscle contraction via CYP4a and a PKC-α-ERK1/2 pathway.

  14. Voltage-Clamp Studies on Uterine Smooth Muscle

    PubMed Central

    Anderson, Nels C.

    1969-01-01

    These studies have developed and tested an experimental approach to the study of membrane ionic conductance mechanisms in strips of uterine smooth muscle. The experimental and theoretical basis for applying the double sucrose-gap technique is described along with the limitations of this system. Nonpropagating membrane action potentials were produced in response to depolarizing current pulses under current-clamp conditions. The stepwise change of membrane potential under voltage-clamp conditions resulted in a family of ionic currents with voltage- and time-dependent characteristics. In sodium-free solution the peak transient current decreased and its equilibrium potential shifted along the voltage axis toward a more negative internal potential. These studies indicate a sodium-dependent, regenerative excitation mechanism. PMID:5796366

  15. Pharmacological action of DA-9701 on the motility of feline stomach circular smooth muscle.

    PubMed

    Nguyen, Thanh Thao; Song, Hyun Ju; Ko, Sung Kwon; Sohn, Uy Dong

    2015-03-01

    DA-9701, a new prokinetic agent for the treatment of functional dyspepsia, is formulated with Pharbitis semen and Corydalis tuber. This study wasconducted to determine the pharmacological action of DA-9701 and to identify the receptors involved in DA-9701 -induced contractile responsesin the feline gastric corporal, fundic and antral circular smooth muscle. Concentration-response curve to DA-9701 was established. The tissue trips were exposed to methylsergide, ketanserin, ondansetron, GR 113808, atropine and dopamine before administration of DA-9701. The contractile force was determined before and after administration of drugs by a polygraph.DA-9701 enhanced the spontaneous contractile amplitude of antrum, corpus and fundus. However, it did not change the spontaneous contractile frequency of antrum and corpus, but concentration-dependently reduced that of fundus. In the fundus, DA-9701 -induced tonic contractions were inhibited by dopamine, methylsergide, ketanserine, ondansetron or GR 113808 respectively, but not by atropine, indicating that the contractile responses are mediated by multiple receptors: 5-HT2, 5-HT3, 5-HT4, and dopamine receptors. In the corpus, DA-9701-induced contractions were blocked by atropine, dopamine or GR 113808, but not by methysergide, ketanserin or ondansetron, indicating that they are involved in receptors on both, smooth muscles and neurons: 5-HT4 and dopamine receptors. However, contractile responses to DA-9701 are mainly mediated by dopamine receptors in the antrum. These results suggest that DA-9701 has important roles in gastric accommodation by enhancing tonic activity of fundus, and in gastric emptying and gastrointestinal transit by phasic contractions of corpus and antrum mediated by multiple receptors.

  16. [Salidroside inhibits hypoxia-induced phenotypic modulation of corpus cavernosum smooth muscle cells in vitro].

    PubMed

    Chen, Gang; Huang, Xiao-Jun; Lü, Bo-Dong; Chen, Shi-Tao; Zhang, Shi-Geng; Yang, Ke-Bing

    2013-08-01

    To explore the effects of salidroside on the phenotypic modulation of corpus cavernosum smooth muscle cells (CCSMC) in hypoxic SD rats. CCSMCs were cultured in vitro and identified by immunohistochemistry. The cells were divided into six groups: normal control (21% O2), hypoxia (1% O2), hypoxia + salidroside 1 mg/L, hypoxia + salidroside 3 mg/L, hypoxia + salidroside 5 mg/L and hypoxia + PGE1 0.4 microg/L, and then cultured for 48 hours. The relative expressions of alpha-actin and osteopontin (OPN) in each group were determined by RT-PCR. The in vitro cultured CCSMCs grew well, with anti-alpha-smooth muscle actin monoclonal antibodies immunohistochemically positive. The relative expression of alpha-actin was markedly decreased while that of OPN remarkably increased in the hypoxia group as compared with the normal control group (P < 0.01). The hypoxia + salidroside 5 mg/L group showed a significantly higher expression of alpha-actin and lower expression of OPN than the hypoxia group (P < 0.01), but exhibited no significant differences from the hypoxia + PGE group (P > 0.05). Hypoxia can reduce the relative expression level of alpha-actin and increase that of OPN in the CCSMCs of SD rats, namely, induce their phenotypic modulation from the contraction to the non-contraction type. Salidroside can restrain hypoxia-induced phenotypic modulation of CCSMCs, and its inhibitory effect at 5 mg/L is similar to that of PGE1.

  17. Airway hyperresponsiveness; smooth muscle as the principal actor

    PubMed Central

    Lauzon, Anne-Marie; Martin, James G.

    2016-01-01

    Airway hyperresponsiveness (AHR) is a defining characteristic of asthma that refers to the capacity of the airways to undergo exaggerated narrowing in response to stimuli that do not result in comparable degrees of airway narrowing in healthy subjects. Airway smooth muscle (ASM) contraction mediates airway narrowing, but it remains uncertain as to whether the smooth muscle is intrinsically altered in asthmatic subjects or is responding abnormally as a result of the milieu in which it sits. ASM in the trachea or major bronchi does not differ in its contractile characteristics in asthmatics, but the more pertinent peripheral airways await complete exploration. The mass of ASM is increased in many but not all asthmatics and therefore cannot be a unifying hypothesis for AHR, although when increased in mass it may contribute to AHR. The inability of a deep breath to reverse or prevent bronchial narrowing in asthma may reflect an intrinsic difference in the mechanisms that lead to softening of contracted ASM when subjected to stretch. Cytokines such as interleukin-13 and tumor necrosis factor-α promote a more contractile ASM phenotype. The composition and increased stiffness of the matrix in which ASM is embedded promotes a more proliferative and pro-inflammatory ASM phenotype, but the expected dedifferentiation and loss of contractility have not been shown. Airway epithelium may drive ASM proliferation and/or molecular remodeling in ways that may lead to AHR. In conclusion, AHR is likely multifactorial in origin, reflecting the plasticity of ASM properties in the inflammatory environment of the asthmatic airway. PMID:26998246

  18. β-Agonist-mediated Relaxation of Airway Smooth Muscle Is Protein Kinase A-dependent*

    PubMed Central

    Morgan, Sarah J.; Deshpande, Deepak A.; Tiegs, Brian C.; Misior, Anna M.; Yan, Huandong; Hershfeld, Alena V.; Rich, Thomas C.; Panettieri, Reynold A.; An, Steven S.; Penn, Raymond B.

    2014-01-01

    Inhaled β-agonists are effective at reversing bronchoconstriction in asthma, but the mechanism by which they exert this effect is unclear and controversial. PKA is the historically accepted effector, although this assumption is made on the basis of associative and not direct evidence. Recent studies have asserted that exchange protein activated by cAMP (Epac), not PKA, mediates the relaxation of airway smooth muscle (ASM) observed with β-agonist treatment. This study aims to clarify the role of PKA in the prorelaxant effects of β-agonists on ASM. Inhibition of PKA activity via expression of the PKI and RevAB peptides results in increased β-agonist-mediated cAMP release, abolishes the inhibitory effect of isoproterenol on histamine-induced intracellular calcium flux, and significantly attenuates histamine-stimulated MLC-20 phosphorylation. Analyses of ASM cell and tissue contraction demonstrate that PKA inhibition eliminates most, if not all, β-agonist-mediated relaxation of contracted smooth muscle. Conversely, Epac knockdown had no effect on the regulation of contraction or procontractile signaling by isoproterenol. These findings suggest that PKA, not Epac, is the predominant and physiologically relevant effector through which β-agonists exert their relaxant effects. PMID:24973219

  19. Low frequency rTMS over posterior parietal cortex impairs smooth pursuit eye tracking.

    PubMed

    Hutton, Samuel B; Weekes, Brendan S

    2007-11-01

    The role of the posterior parietal cortex in smooth pursuit eye movements remains unclear. We used low frequency repetitive transcranial magnetic stimulation (rTMS) to study the cognitive and neural systems involved in the control of smooth pursuit eye movements. Eighteen participants were tested on two separate occasions. On each occasion we measured smooth pursuit eye tracking before and after 6 min of 1 Hz rTMS delivered at 90% of motor threshold. Low frequency rTMS over the posterior parietal cortex led to a significant reduction in smooth pursuit velocity gain, whereas rTMS over the motor cortex had no effect on gain. We conclude that low frequency offline rTMS is a potentially useful tool with which to explore the cortical systems involved in oculomotor control.

  20. Phenotypic modulation of corpus cavernosum smooth muscle cells in a rat model of cavernous neurectomy.

    PubMed

    Yang, Fan; Zhao, Jian F; Shou, Qi Y; Huang, Xiao J; Chen, Gang; Yang, Ke B; Zhang, Shi G; Lv, Bo D; Fu, Hui Y

    2014-01-01

    Patients undergoing radical prostatectomy (RP) are at high risk for erectile dysfunction (ED) due to potential cavernous nerve (CN) damage during surgery. Penile hypoxia after RP is thought to significantly contribute to ED pathogenesis. We previously showed that corpora cavernosum smooth muscle cells (CCSMCs) undergo phenotypic modulation under hypoxic conditions in vitro. Here, we studied such changes in an in vivo post-RP ED model by investigating CCSMCs in bilateral cavernous neurectomy (BCN) rats. Sprague-Dawley rats underwent sham (n = 12) or BCN (n = 12) surgery. After 12 weeks, they were injected with apomorphine to determine erectile function. The penile tissues were harvested and assessed for fibrosis using Masson trichrome staining and for molecular markers of phenotypic modulation using immunohistochemistry and western blotting. CCSMC morphological structure was evaluated by hematoxylin-eosin (H&E) staining and transmission electron microscopy (TEM). Erectile function was significantly lower in BCN rats than in sham rats. BCN increased hypoxia-inducible factor-1α and collagen protein expression in corpora cavernous tissue. H&E staining and TEM showed that CCSMCs in BCN rats underwent hypertrophy and showed rough endoplasmic reticulum formation. The expression of CCSMC phenotypic markers, such as smooth muscle α-actin, smooth muscle myosin heavy chain, and desmin, was markedly lower, whereas vimentin protein expression was significantly higher in BCN rats than in control rats. CCSMCs undergo phenotype modulation in rats with cavernous neurectomy. The results have unveiled physiological transformations that occur at the cellular and molecular levels and have helped characterize CN injury-induced ED.

  1. In vivo roles for myosin phosphatase targeting subunit-1 phosphorylation sites T694 and T852 in bladder smooth muscle contraction

    PubMed Central

    Chen, Cai-Ping; Chen, Xin; Qiao, Yan-Ning; Wang, Pei; He, Wei-Qi; Zhang, Cheng-Hai; Zhao, Wei; Gao, Yun-Qian; Chen, Chen; Tao, Tao; Sun, Jie; Wang, Ye; Gao, Ning; Kamm, Kristine E; Stull, James T; Zhu, Min-Sheng

    2015-01-01

    Force production and maintenance in smooth muscle is largely controlled by different signalling modules that fine tune myosin regulatory light chain (RLC) phosphorylation, which relies on a balance between Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) activities. To investigate the regulation of MLCP activity in vivo, we analysed the role of two phosphorylation sites on MYPT1 (regulatory subunit of MLCP) that biochemically inhibit MLCP activity in vitro. MYPT1 is constitutively phosphorylated at T694 by unidentified kinases in vivo, whereas the T852 site is phosphorylated by RhoA-associated protein kinase (ROCK). We established two mouse lines with alanine substitution of T694 or T852. Isolated bladder smooth muscle from T852A mice displayed no significant changes in RLC phosphorylation or force responses, but force was inhibited with a ROCK inhibitor. In contrast, smooth muscles containing the T694A mutation showed a significant reduction of force along with reduced RLC phosphorylation. The contractile responses of T694A mutant smooth muscle were also independent of ROCK activation. Thus, phosphorylation of MYPT1 T694, but not T852, is a primary mechanism contributing to inhibition of MLCP activity and enhancement of RLC phosphorylation in vivo. The constitutive phosphorylation of MYPT1 T694 may provide a mechanism for regulating force maintenance of smooth muscle. Key points Force production and maintenance in smooth muscle is largely controlled by myosin regulatory light chain (RLC) phosphorylation, which relies on a balance between Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) activities. MYPT1 is the regulatory subunit of MLCP that biochemically inhibits MLCP activity via T694 or T852 phosphorylation in vitro. Here we separately investigated the contribution of these two phosphorylation sites in bladder smooth muscles by establishing two single point

  2. Monocyte activation by smooth muscle cell-derived matrices.

    PubMed

    Kaufmann, J; Jorgensen, R W; Martin, B M; Franzblau, C

    1990-12-01

    Mononuclear phagocytes adhere to and penetrate the vessel wall endothelium and contact the subendothelial space prior to the development of the atherosclerotic plaque. In an attempt to model the early events of plaque development we used an elastin-rich, multicomponent, cell-derived matrix from neonatal rat aortic smooth muscle cells as a substratum for monocytes. Using this model, we show that human monocyte morphology and metabolism are markedly altered by the matrix substratum. When a mixed mononuclear cell population is seeded on matrix or plastic, only monocytes adhere to the matrix surface. In contrast, lymphocytes as well as monocytes adhere to the plastic surface. The matrix-adherent monocytes develop large intracellular granules and form extensive clusters of individual cells. Metabolically, these cells develop sodium fluoride resistant non-specific esterase activity and their media contain more growth factor activity and PGE2. Although total protein synthesis is equivalent in both cultures, the matrix contact induces an increase in specific proteins in the media. We also show that a purified alpha-elastin substratum induces some, but not all, of the monocyte changes seen when using the matrix substratum. Using the alpha-elastin substratum, there is selective adhesion of monocytes and increased growth factor activity, however, the cells are morphologically different from the matrix-adherent cells. Thus, the use of the smooth muscle cell-derived matrix, in conjunction with purified matrix components, serves as a model that can provide insight into the mechanisms of monocyte adhesion and stimulation by the matrix environment that exists in vivo. Such mechanisms may be particularly important in atherogenesis.

  3. Metabolism of substance P and neurokinin A by human vascular endothelium and smooth muscle.

    PubMed

    Wang, L; Sadoun, E; Stephens, R E; Ward, P E

    1994-01-01

    Analysis of SP and NKA metabolism by human vascular endothelium, relative to that in human plasma, identified integrative, multiple pathways for the processing of circulating SP (but not NKA) by angiotensin-converting enzyme (ACE; EC 3.4.15.1), dipeptidyl(amino)peptidase IV (DAP IV; EC 3.4.14.5), and aminopeptidase M (AmM; EC 3.4.11.2). In contrast, SP and NKA, which may diffuse into or be neurally released within the vessel wall, were both metabolized by smooth muscle neutral endopeptidase-24.11 (NEP-24.11; EC 3.4.24.11). Collectively, these studies indicate peptide-specific and site-specific differential processing of SP and NKA by human plasma and vasculature.

  4. Mechanism of Rho-kinase-mediated Ca2+-independent contraction in aganglionic smooth muscle in a rat model of Hirschsprung's disease.

    PubMed

    Akiyoshi, Junko; Ieiri, Satoshi; Nakatsuji, Takanori; Taguchi, Tomoaki

    2009-11-01

    Lack of ganglion cells is the main cause of bowel movement disorder in Hirschsprung's disease. Because smooth muscle is the primary organ, the properties of intestinal smooth muscle need to be investigated. We therefore investigated the reactivity of the contractile system and the mechanism of contraction in aganglionic intestinal smooth muscle. Colonic smooth muscle strips from endothelin-B receptor gene-deficient [EDNRB(-/-)] rats were loaded with the Ca(2+) indicator dye fura-PE3/AM and changes in fluorescence intensity were monitored. The intracellular calcium concentration ([Ca(2+)]i) and force development in the strips were measured simultaneously. The force induced by 10 microM substance P (SP) was higher than that induced by 60 mM K(+) depolarization (control), whereas [Ca(2+)]i elevation induced by 10 microM SP was less than that induced by 60 mM K(+) in all segments. Pretreatment with the Rho-kinase inhibitor Y-27632 inhibited force development more strongly in EDNRB(-/-) aganglionic segments than in EDNRB(+/+) ganglionic segments. However, [Ca(2+)]i was higher in EDNRB(-/-) aganglionic segments than in EDNRB(+/+) ganglionic segments. The Ca(2+)-independent pathway involving Rho-kinase was hyperactivated in EDNRB(-/-) aganglionic segments. This phenomenon is assumed to compensate for Ca(2+) channel downregulation and Ca(2+)-dependent contraction. From a clinical point of view, the motility of aganglionic intestine would be controllable with the control of Ca(2+)-independent contraction before definitive operations in Hirschsprung's disease.

  5. Smooth muscle cells of penis in the rat: noninvasive quantification with shear wave elastography.

    PubMed

    Zhang, Jia-Jie; Qiao, Xiao-Hui; Gao, Feng; Bai, Ming; Li, Fan; Du, Lian-Fang; Xing, Jin-Fang

    2015-01-01

    Smooth muscle cells (SMCs) of cavernosum play an important role in erection. It is of great significance to quantitatively analyze the level of SMCs in penis. In this study, we investigated the feasibility of shear wave elastography (SWE) on evaluating the level of SMCs in penis quantitatively. Twenty healthy male rats were selected. The SWE imaging of penis was carried out and then immunohistochemistry analysis of penis was performed to analyze the expression of alpha smooth muscle actin in penis. The measurement index of SWE examination was tissue stiffness (TS). The measurement index of immunohistochemistry analysis was positive area percentage of alpha smooth muscle actin (AP). Sixty sets of data of TS and AP were obtained. The results showed that TS was significantly correlated with AP and the correlation coefficient was -0.618 (p < 0.001). The result of TS had been plotted against the AP measurements. The relation between the two results has been fitted with quadric curve; the goodness-of-fit index was 0.364 (p < 0.001). The level of SMCs in penis was successfully quantified in vivo with SWE. SWE can be used clinically for evaluating the level of SMCs in penis quantitatively.

  6. Modelling airway smooth muscle passive length adaptation via thick filament length distributions

    PubMed Central

    Donovan, Graham M.

    2013-01-01

    We present a new model of airway smooth muscle (ASM), which surrounds and constricts every airway in the lung and thus plays a central role in the airway constriction associated with asthma. This new model of ASM is based on an extension of sliding filament/crossbridge theory, which explicitly incorporates the length distribution of thick sliding filaments to account for a phenomenon known as dynamic passive length adaptation; the model exhibits good agreement with experimental data for ASM force–length behaviour across multiple scales. Principally these are (nonlinear) force–length loops at short timescales (seconds), parabolic force–length curves at medium timescales (minutes) and length adaptation at longer timescales. This represents a significant improvement on the widely-used cross-bridge models which work so well in or near the isometric regime, and may have significant implications for studies which rely on crossbridge or other dynamic airway smooth muscle models, and thus both airway and lung dynamics. PMID:23721681

  7. Individual sympathetic postganglionic neurons coinnervate myenteric ganglia and smooth muscle layers in the gastrointestinal tract of the rat.

    PubMed

    Walter, Gary C; Phillips, Robert J; McAdams, Jennifer L; Powley, Terry L

    2016-09-01

    A full description of the terminal architecture of sympathetic axons innervating the gastrointestinal (GI) tract has not been available. To label sympathetic fibers projecting to the gut muscle wall, dextran biotin was injected into the celiac and superior mesenteric ganglia (CSMG) of rats. Nine days postinjection, animals were euthanized and stomachs and small intestines were processed as whole mounts (submucosa and mucosa removed) to examine CSMG efferent terminals. Myenteric neurons were counterstained with Cuprolinic Blue; catecholaminergic axons were stained immunohistochemically for tyrosine hydroxylase. Essentially all dextran-labeled axons (135 of 136 sampled) were tyrosine hydroxylase-positive. Complete postganglionic arbors (n = 154) in the muscle wall were digitized and analyzed morphometrically. Individual sympathetic axons formed complex arbors of varicose neurites within myenteric ganglia/primary plexus and, concomitantly, long rectilinear arrays of neurites within circular muscle/secondary plexus or longitudinal muscle/tertiary plexus. Very few CSMG neurons projected exclusively (i.e., ∼100% of an arbor's varicose branches) to myenteric plexus (∼2%) or smooth muscle (∼14%). With less stringent inclusion criteria (i.e., ≥85% of an axon's varicose branches), larger minorities of neurons projected predominantly to either myenteric plexus (∼13%) or smooth muscle (∼27%). The majority (i.e., ∼60%) of all individual CSMG postganglionics formed mixed, heterotypic arbors that coinnervated extensively (>15% of their varicose branches per target) both myenteric ganglia and smooth muscle. The fact that ∼87% of all sympathetics projected either extensively or even predominantly to smooth muscle, while simultaneously contacting myenteric plexus, is consistent with the view that these neurons control GI muscle directly, if not exclusively. J. Comp. Neurol. 524:2577-2603, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Oxygenation decreases elastin secretion from rat ductus arteriosus smooth muscle cells.

    PubMed

    Kawakami, Shoji; Minamisawa, Susumu

    2015-08-01

    The ductus arteriosus (DA), a fetal arterial connection between the main pulmonary artery and the descending aorta, normally closes immediately after birth. The oxygen concentration in the blood rises after birth, and in the DA this increase in oxygen concentration causes functional closure, which is induced by smooth muscle contraction. Previous studies have demonstrated that hypoxia and/or oxygenation affect vascular remodeling of various vessels. Therefore, we hypothesized that the rise in oxygen concentration would affect the vascular structure of the DA due to production of proteins secreted from DA smooth muscle cells (SMC). Liquid chromatography-tandem mass spectrometry was used to comprehensively investigate the secreted proteins in the supernatant of rat DA SMC harvested under hypoxic conditions (1% oxygen) or under normoxic conditions (21% oxygen). We found that the rise in oxygen concentration reduced the secretion of elastin from DA SMC. On reverse transcription-polymerase chain reaction, the expression of elastin mRNA was not significantly changed in DA SMC from hypoxic to normoxic conditions. Given that elastin forms internal elastic lamina and elastic fibers in the vascular muscle layers, and that a rise in oxygen concentration reduced the secretion of elastin, this suggests that the rise in blood oxygen concentration after birth reduces the secretion of elastin, and therefore may play a role in DA structural remodeling after birth. © 2015 Japan Pediatric Society.

  9. A multiscale active structural model of the arterial wall accounting for smooth muscle dynamics.

    PubMed

    Coccarelli, Alberto; Edwards, David Hughes; Aggarwal, Ankush; Nithiarasu, Perumal; Parthimos, Dimitris

    2018-02-01

    Arterial wall dynamics arise from the synergy of passive mechano-elastic properties of the vascular tissue and the active contractile behaviour of smooth muscle cells (SMCs) that form the media layer of vessels. We have developed a computational framework that incorporates both these components to account for vascular responses to mechanical and pharmacological stimuli. To validate the proposed framework and demonstrate its potential for testing hypotheses on the pathogenesis of vascular disease, we have employed a number of pharmacological probes that modulate the arterial wall contractile machinery by selectively inhibiting a range of intracellular signalling pathways. Experimental probes used on ring segments from the rabbit central ear artery are: phenylephrine, a selective α 1-adrenergic receptor agonist that induces vasoconstriction; cyclopiazonic acid (CPA), a specific inhibitor of sarcoplasmic/endoplasmic reticulum Ca 2+ -ATPase; and ryanodine, a diterpenoid that modulates Ca 2+ release from the sarcoplasmic reticulum. These interventions were able to delineate the role of membrane versus intracellular signalling, previously identified as main factors in smooth muscle contraction and the generation of vessel tone. Each SMC was modelled by a system of nonlinear differential equations that account for intracellular ionic signalling, and in particular Ca 2+ dynamics. Cytosolic Ca 2+ concentrations formed the catalytic input to a cross-bridge kinetics model. Contractile output from these cellular components forms the input to the finite-element model of the arterial rings under isometric conditions that reproduces the experimental conditions. The model does not account for the role of the endothelium, as the nitric oxide production was suppressed by the action of L-NAME, and also due to the absence of shear stress on the arterial ring, as the experimental set-up did not involve flow. Simulations generated by the integrated model closely matched experimental

  10. Nogo-B regulates migration and contraction of airway smooth muscle cells by decreasing ARPC 2/3 and increasing MYL-9 expression.

    PubMed

    Xu, Wujian; Hong, Weijun; Shao, Yan; Ning, Yunye; Cai, Zailong; Li, Qiang

    2011-01-21

    Abnormal proliferation, apoptosis, migration and contraction of airway smooth muscle (ASM) cells in airway remodeling in asthma are basically excessive repair responses to a network of inflammatory mediators such as PDGF, but the mechanisms of such responses remain unclear. Nogo-B, a member of the reticulum family 4(RTN4), is known to play a key role in arteriogenesis and tissue repair. Further studies are needed to elucidate the role of Nogo-B in airway smooth muscle abnormalities. A mouse model of chronic asthma was established by repeated OVA inhalation and subjected to Nogo-B expression analysis using immunohistochemistry and Western Blotting. Then, primary human bronchial smooth muscle cells (HBSMCs) were cultured in vitro and a siRNA interference was performed to knockdown the expression of Nogo-B in the cells. The effects of Nogo-B inhibition on PDGF-induced HBSMCs proliferation, migration and contraction were evaluated. Finally, a proteomic analysis was conducted to unveil the underlying mechanisms responsible for the function of Nogo-B. Total Nogo-B expression was approximately 3.08-fold lower in chronic asthmatic mice compared to naïve mice, which was obvious in the smooth muscle layer of the airways. Interference of Nogo-B expression by siRNA resulted nearly 96% reduction in mRNA in cultured HBSMCs. In addition, knockdown of Nogo-B using specific siRNA significantly decreased PDGF-induced migration of HBSMCs by 2.3-fold, and increased the cellular contraction by 16% compared to negative controls, but had limited effects on PDGF-induced proliferation. Furthermore, using proteomic analysis, we demonstrate that the expression of actin related protein 2/3 complex subunit 5 (ARPC 2/3) decreased and, myosin regulatory light chain 9 isoform a (MYL-9) increased after Nogo-B knockdown. These data define a novel role for Nogo-B in airway remodeling in chronic asthma. Endogenous Nogo-B, which may exert its effects through ARPC 2/3 and MYL-9, is necessary for the

  11. Functional coupling between the Na+/Ca2+ exchanger and nonselective cation channels during histamine stimulation in guinea pig tracheal smooth muscle.

    PubMed

    Algara-Suárez, Paola; Romero-Méndez, Catalina; Chrones, Tom; Sánchez-Armass, Sergio; Meza, Ulises; Sims, Stephen M; Espinosa-Tanguma, Ricardo

    2007-07-01

    Airway smooth muscle (ASM) contracts partly due to an increase in cytosolic Ca(2+). In this work, we found that the contraction caused by histamine depends on external Na(+), possibly involving nonselective cationic channels (NSCC) and the Na(+)/Ca(2+) exchanger (NCX). We performed various protocols using isometric force measurement of guinea pig tracheal rings stimulated by histamine. We observed that force reached 53 +/- 1% of control during external Na(+) substitution by N-methyl-D-glucamine(+), whereas substitution by Li(+) led to no significant change (91 +/- 1%). Preincubation with KB-R7943 decreased the maximal force developed (52.3 +/- 5.6%), whereas preincubation with nifedipine did not (89.7 +/- 1.8%). Also, application of the nonspecific NCX blocker KB-R7943 and nifedipine on histamine-precontracted tracheal rings reduced force to 1 +/- 3%, significantly different from nifedipine alone (49 +/- 6%). Moreover, nonspecific NSCC inhibitors SKF-96365 and 2-aminoethyldiphenyl borate reduced force to 1 +/- 1% and 19 +/- 7%, respectively. Intracellular Ca(2+) measurements in isolated ASM cells showed that KB-R7943 and SKF-96365 reduced the peak and sustained response to histamine (0.20 +/- 0.1 and 0.19 +/- 0.09 for KB-R, 0.43 +/- 0.16 and 0.47 +/- 0.18 for SKF, expressed as mean of differences). Moreover, Na(+)-free solution only inhibited the sustained response (0.54 +/- 0.25). These data support an important role for NSCC and NCX during histamine stimulation. We speculate that histamine induces Na(+) influx through NSCC that promotes the Ca(2+) entry mode of NCX and Ca(V)1.2 channel activation, thereby causing contraction.

  12. Cell biology of Smad2/3 linker region phosphorylation in vascular smooth muscle.

    PubMed

    Rezaei, Hossein B; Kamato, Danielle; Ansari, Ghazaleh; Osman, Narin; Little, Peter J

    2012-08-01

    The transforming growth factor (TGF)-β superfamily of ligands regulates a diverse set of cellular functions. Transforming growth factor-β induces its biological effects through Type I and Type II transmembrane receptors that have serine/threonine kinase activities and weak tyrosine kinase activity. In vascular smooth muscle, TGF-β binds to the TGF-β Type II receptor (TβRII) at the cell surface, recruiting the Type I receptor (TβRI) to form a heterocomplex. Consequently, after phosphorylation and activation of TβRI, the transcription factors receptor activated (R-) Smad2 and Smad3 are recruited and activated through phosphorylation of C terminal residues. Overall, Smad2/3 and co-Smad4 have similar structures consisting of three regions an N-terminal MH1 domain, a C-terminal MH2 domain and a central linker region. Phosphorylation of the Smad linker region appears to have an important role in the regulation of Smad activity and function. The mitogen-activated protein kinase (MAPK) family, CDK2, CDK4 and calcium-calmodulin dependent kinase are the main kinases that phosphorylate sites in the linker region. The role of the linker region includes enabling the formation of Smad homo-oligomers and provision of phosphorylation sites for MAPK and other kinases. In some instances, linker region phosphorylation regulates the inhibition of the nuclear translocation of Smads. In the present review, we describe TGF-β signalling through Smad2/3 and the importance of the linker region in the regulation and expression of genes induced by TGF-β superfamily ligands in the context of vascular smooth muscle. © 2011 The Authors. Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd.

  13. Role of rho-kinase (ROCK) in tonic but not phasic contraction in the frog stomach smooth muscle.

    PubMed

    Sahin, Leyla; Cevik, Ozge Selin; Koyuncu, Dilan Deniz; Buyukafsar, Kansu

    2018-04-01

    Rho/Rho-kinase (ROCK) signaling has extensively been shown to take part in mammalian smooth muscle contractions in response to diverse agents yet its role in the contraction of amphibian smooth muscle has not been investigated. Therefore, we aimed to explore any role of this pathway in the contractions of frog stomach smooth. The strips were prepared and suspended in organ baths filled with Ringer solution. Changes in the circular strips of the frog stomach muscle length were recorded isotonically with a force transducer in organ baths. Carbachol (CCh) exerted both phasic and tonic contractions. In contrast, atropin abolished all types of contractions by CCh. The phasic contractions were suppressed by a Ca 2+ channel blocker, nifedipine but not by the ROCK inhibitor, Y-27632. However, the tonic contractions were markedly attenuated by Y-27632. Selective M 1 receptor blocker, pirenzepin, selective M 3 receptor blocker and DAMP had no effects on CCh-elicited contractions. On the other hand, selective M 2 receptor blocker, AF-DX suppressed all types of contractile activity by CCh. These data suggest that M 2 receptor activation could mainly mediate CCh-induced phasic and tonic contractions, and ROCK seems to be involved in the CCh-induced tonic but not phasic contractions of the frog stomach smooth muscle. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Inhibition of prostatic smooth muscle contraction by the inhibitor of G protein-coupled receptor kinase 2/3, CMPD101.

    PubMed

    Yu, Qingfeng; Gratzke, Christian; Wang, Yiming; Herlemann, Annika; Strittmatter, Frank; Rutz, Beata; Stief, Christian G; Hennenberg, Martin

    2018-07-15

    Alpha1-adrenoceptors induce prostate smooth muscle contraction, and hold a prominent role for pathophysiology and therapy of lower urinary tract symptoms in benign prostatic hyperplasia. G protein-coupled receptors are regulated by posttranslational regulation, including phosphorylation by G protein-coupled receptor kinases 2 and 3 (GRK2/3). Although posttranslational adrenoceptor regulation has been recently suggested to occur in the prostate, this is still marginally understood. With the newly developed CMPD101, a small molecule inhibitor with assumed specificity for GRK2/3 is now available. Here, we studied effects of CMPD101 on smooth muscle contraction of human prostate tissue. Electric field stimulation caused frequency-dependent contractions, which were inhibited concentration-dependently by CMPD101 (5 µM, 50 µM). 50 µM of CMPD101 did not affect myosin light chain (MCL) phosphorylation or Rho kinase activity, and did not alter contractions induced by highmolar KCl. Noradrenaline, the α 1 -adrenoceptor agonist phenylephrine, endothelin-1, and the thromboxane A 2 analogue U46619 induced concentration-dependent contractions, which were inhibited by CMPD101 (50 µM). CMPD101 (50 µM) did not change phosphorylation of β 2 -adrenoceptors or β 2 -adrenergic relaxation of prostate strips. Molecular detection by Western blot and peroxidase staining suggested expression of GRK2 and GRK3 in human prostates. Double labeling in fluorescence staining confirmed that immunoreactivity for GRK2 and GRK3 was located to smooth muscle cells in the prostate stroma. In conclusion, CMPD101 inhibits adrenergic, neurogenic, and non-adrenergic smooth muscle contractions in the human prostate. Underlying mechanisms may be independent from GRK inhibition, and from inhibition of MLC kinase and Rho kinase. This may point to unknown properties of CMPD101. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Reserpine has a direct action as a calcium antagonist on mammalian smooth muscle cells.

    PubMed Central

    Casteels, R; Login, I S

    1983-01-01

    The effects of reserpine on excitation-contraction coupling and 45Ca exchange of smooth muscle cells of the rabbit ear artery and the guinea-pig taenia coli have been studied. Reserpine inhibited the spontaneous mechanical activity of the taenia coli and the force development induced by 59 mM-external K or 10(-5) M-carbachol. In the ear artery reserpine blocked the K-induced contraction but its effect on the contraction elicited by noradrenaline was smaller. At 0.2 mM-Ca, the inhibition of the tonic component of the noradrenaline-induced contraction was more pronounced than that of the phasic component. This reserpine action was fully reversible for the noradrenaline stimulus in the ear artery but less so for K-induced contractions. The inhibitory action on contractions induced in taenia coli by K-rich solution and by carbachol was even less reversible. The analysis of the effect of reserpine on the 45Ca exchange in the ear artery has revealed that it inhibits the increase of the fractional loss induced by K depolarization, but that it does not exert a significant effect on the increased fractional loss induced by 10(-5) M-noradrenaline. Reserpine slows down the filling with 45Ca of the agonist-sensitive store without affecting the steady-state amount of Ca taken up by the store. A study of the degree of filling of the store by measuring the force development and the 45Ca release elicited by noradrenaline in Ca-free medium, reveals that the force development after loading in a reserpine-containing medium remains less than the control, although the same amount of Ca is released from the store. It was shown by using tetrabenazine that the inhibitory action of reserpine on the Ca exchange and the force development is not due to an interaction of reserpine with the receptor molecules that are responsible for its depleting action on aminergic granules. These results strongly suggest that reserpine exerts a Ca antagonistic action on smooth muscle whereby it blocks the

  16. Evaluation of pharmacological relaxation effect of the natural product naringin on in vitro cultured airway smooth muscle cells and in vivo ovalbumin-induced asthma Balb/c mice

    PubMed Central

    Wang, Yue; Lu, Yun; Luo, Mingzhi; Shi, Xiaohao; Pan, Yan; Zeng, Huilong; Deng, Linhong

    2016-01-01

    Asthma has become a common chronic respiratory disease worldwide and its prevalence is predicted to continue increasing in the next decade, particularly in developing countries. A key component in asthma therapy is to alleviate the excessive bronchial airway narrowing ultimately due to airway smooth muscle contraction, which is often facilitated by a smooth muscle relaxant, such as the β2-adrenergic agonists. Recently, bitter taste receptor (TAS2R) agonists, including saccharin and chloroquine, have been found to potently relax the airway smooth muscle cells (ASMCs) via intracellular Ca2+ signaling. This inspires a great interest in screening the vast resource of natural bitter substances for potential bronchodilatory drugs. In the present study, the relaxation effect of naringin, a compound extracted from common grapefruit, on ASMCs cultured in vitro or bronchial airways of Balb/c mice in vivo was evaluated. The results demonstrated that, when exposed to increasing doses of naringin (0.125, 0.25, 0.5 and 1.0 mM), the traction force generated by the cultured ASMCs decreased progressively, while the intracellular calcium flux signaling in the ASMCs increased. When inhaled at increasing doses (15, 30 and 60 µg), naringin also dose-dependently reduced the bronchial airway resistance of the normal and ovalbumin-induced asthma Balb/c mice in response to challenge with methacholine. In conclusion, these findings indicate that naringin was able to effectively relax murine ASMCs in vitro and in vivo, thus suggesting that it is a promising drug agent to be further investigated in the development of novel bronchodilators for the treatment of asthma. PMID:28101344

  17. Myocardin Regulates Vascular Smooth Muscle Cell Inflammatory Activation and Disease

    PubMed Central

    Ackers-Johnson, Matthew; Talasila, Amarnath; Sage, Andrew P; Long, Xiaochun; Bot, Ilze; Morrell, Nicholas W; Bennett, Martin R; Miano, Joseph M.; Sinha, Sanjay

    2015-01-01

    Objective Atherosclerosis, the cause of 50% of deaths in westernised societies, is widely regarded as a chronic vascular inflammatory disease. Vascular smooth muscle cell (VSMC) inflammatory activation in response to local pro-inflammatory stimuli contributes to disease progression and is a pervasive feature in developing atherosclerotic plaques. Therefore, it is of considerable therapeutic importance to identify mechanisms that regulate the VSMC inflammatory response. Approach and Results We report that myocardin, a powerful myogenic transcriptional coactivator, negatively regulates VSMC inflammatory activation and vascular disease. Myocardin levels are reduced during atherosclerosis, in association with phenotypic switching of smooth muscle cells. Myocardin deficiency accelerates atherogenesis in hypercholesterolemic ApoE−/− mice. Conversely, increased myocardin expression potently abrogates the induction of an array of inflammatory cytokines, chemokines and adhesion molecules in VSMCs. Expression of myocardin in VSMCs reduces lipid uptake, macrophage interaction, chemotaxis and macrophage-endothelial tethering in vitro, and attenuates monocyte accumulation within developing lesions in vivo. These results demonstrate that endogenous levels of myocardin are a critical regulator of vessel inflammation. Conclusions We propose myocardin as a guardian of the contractile, non-inflammatory VSMC phenotype, with loss of myocardin representing a critical permissive step in the process of phenotypic transition and inflammatory activation, at the onset of vascular disease. PMID:25614278

  18. Smooth muscle length adaptation and actin filament length: a network model of the cytoskeletal dysregulation.

    PubMed

    Silveira, Paulo S P; Fredberg, Jeffrey J

    2005-10-01

    Length adaptation of the airway smooth muscle cell is attributable to cytoskeletal remodeling. It has been proposed that dysregulated actin filaments may become longer in asthma, and that such elongation would prevent a parallel-to-series transition of contractile units, thus precluding the well-known beneficial effects of deep inspirations and tidal breathing. To test the potential effect that actin filament elongation could have in overall muscle mechanics, we present an extremely simple model. The cytoskeleton is represented as a 2-D network of links (contractile filaments) connecting nodes (adhesion plaques). Such a network evolves in discrete time steps by forming and dissolving links in a stochastic fashion. Links are formed by idealized contractile units whose properties are either those from normal or elongated actin filaments. Oscillations were then imposed on the network to evaluate both the effects of breathing and length adaptation. In response to length oscillation, a network with longer actin filaments showed smaller decreases of force, smaller increases in compliance, and higher shortening velocities. Taken together, these changes correspond to a network that is refractory to the effects of breathing and therefore approximates an asthmatic scenario. Thus, an extremely simple model seems to capture some relatively complex mechanics of airway smooth muscle, supporting the idea that dysregulation of actin filament length may contribute to excessive airway narrowing.

  19. In vitro effects of oxytocin, acepromazine, detomidine, xylazine, butorphanol, terbutaline, isoproterenol, and dantrolene on smooth and skeletal muscles of the equine esophagus.

    PubMed

    Wooldridge, Anne A; Eades, Susan C; Hosgood, Giselle L; Moore, Rustin M

    2002-12-01

    To characterize the in vitro effects of oxytocin, acepromazine, xylazine, butorphanol, detomidine, dantrolene, isoproterenol, and terbutaline on skeletal and smooth muscle from the equine esophagus. 14 adult horses without digestive tract disease. Circular and longitudinal strips from the skeletal and smooth muscle of the esophagus were suspended in tissue baths, connected to force-displacement transducers interfaced with a physiograph, and electrical field stimulation was applied. Cumulative concentration-response curves were generated for oxytocin, acepromazine, xylazine, detomidine, butorphanol, isoproterenol, terbutaline, and dantrolene. Mean maximum twitch amplitude for 3 contractions/min was recorded and compared with predrug-vehicle values for the skeletal muscle segments, and area under the curve (AUC) for 3 contractions/min was compared with predrug-vehicle values for the smooth muscle segments. No drugs caused a significant change in skeletal muscle response. In smooth muscle, isoproterenol, terbutaline, and oxytocin significantly reduced AUC in a concentration-dependent manner. Maximum reduction in AUC was 69% at 10(-4) M for isoproterenol, 63% at 10(-6) M for terbutaline, and 64% at 10(-4) M for oxytocin. Isoproterenol, terbutaline, and oxytocin cause relaxation of the smooth muscle portion of the esophagus. The clinical relaxant effects on the proximal portion of the esophagus reported of drugs such as oxytocin, detomidine, and acepromazine may be the result of centrally mediated mechanisms.

  20. FABP4 induces vascular smooth muscle cell proliferation and migration through a MAPK-dependent pathway.

    PubMed

    Girona, Josefa; Rosales, Roser; Plana, Núria; Saavedra, Paula; Masana, Lluís; Vallvé, Joan-Carles

    2013-01-01

    The migration and proliferation of vascular smooth muscle cells play crucial roles in the development of atherosclerotic lesions. This study examined the effects of fatty acid binding protein 4 (FABP4), an adipokine that is associated with cardiovascular risk, endothelial dysfunction and proinflammatory effects, on the migration and proliferation of human coronary artery smooth muscle cells (HCASMCs). A DNA 5-bromo-2'-deoxy-uridine (BrdU) incorporation assay indicated that FABP4 significantly induced the dose-dependent proliferation of HCASMCs with a maximum stimulatory effect at 120 ng/ml (13% vs. unstimulated cells, p<0.05). An anti-FABP4 antibody (40 ng/ml) significantly inhibited the induced cell proliferation, demonstrating the specificity of the FABP4 proliferative effect. FABP4 significantly induced HCASMC migration in a dose-dependent manner with an initial effect at 60 ng/ml (12% vs. unstimulated cells, p<0.05). Time-course studies demonstrated that FABP4 significantly increased cell migration compared with unstimulated cells from 4 h (23%vs. 17%, p<0.05) to 12 h (74%vs. 59%, p<0.05). Pretreatment with LY-294002 (5 µM) and PD98059 (10 µM) blocked the FABP4-induced proliferation and migration of HCASMCs, suggesting the activation of a kinase pathway. On a molecular level, we observed an up-regulation of the MAPK pathway without activation of Akt. We found that FABP4 induced the active forms of the nuclear transcription factors c-jun and c-myc, which are regulated by MAPK cascades, and increased the expression of the downstream genes cyclin D1 and MMP2, CCL2, and fibulin 4 and 5, which are involved in cell cycle regulation and cell migration. These findings indicate a direct effect of FABP4 on the migration and proliferation of HCASMCs, suggesting a role for this adipokine in vascular remodelling. Taken together, these results demonstrate that the FABP4-induced DNA synthesis and cell migration are mediated primarily through a MAPK-dependent pathway that

  1. Phenytoin inhibits contractions of rat gastrointestinal and portal vein smooth muscle by inhibiting calcium entry.

    PubMed

    Patejdl, R; Leroux, A-C; Noack, T

    2015-10-01

    Phenytoin is widely used as a second-line treatment for status epilepticus. Besides its well-known cardiac pro-arrhythmogenicity, side effects on other organ systems have received less attention. This study investigates the effects of phenytoin on gastrointestinal tissue function using an in vitro model of smooth muscle preparations from rats by combining registrations of pharmacological effects on mechanical contractions, electric field potentials, and dynamic intravital fluorescence microscopy. When added to the bathing solution at a concentration of 30 μM, phenytoin reduced the frequency of spontaneous activity significantly in antrum and portal vein preparations to 72.2 ± 36.5% (p = 0.022) and 80.7 ± 24.4% (p = 0.037) of control values, respectively. At a concentration of 100 μM, the height of spontaneous contractions declined to 9.8 ± 19.6% (p = 0.005) (antrum), 15.7 ± 28.2% (p = 0.004) (portal vein), and 31.8 ± 31.3% (p = 0.005) (colon) in comparison to the control conditions before the application of phenytoin. Depolarization triggered increases in calcium dependent fluorescence signals were reduced by 52.8 ± 39.1% (p = 0.012) The inhibition of spontaneous activity caused by phenytoin was reduced in the presence of the L-type calcium channel agonist BAY K8644(-). Phenytoin exerts strong inhibitory effects on the spontaneous and stimulated contractile activity of smooth muscles from both the upper and lower gastrointestinal tract. The mechanism underlying this effect is not related to the sodium channel blocking activity of phenytoin, but is rather caused by an inhibition of calcium entry through voltage dependent L-type calcium channels. The results of this study should raise vigilance to gastrointestinal complications in patients treated with phenytoin. © 2015 John Wiley & Sons Ltd.

  2. Crystal structure and absolute configuration of (3aS,4S,5R,7aR)-2,2,7-trimethyl-3a,4,5,7a-tetra-hydro-1,3-benzodioxole-4,5-diol.

    PubMed

    Macías, Mario A; Suescun, Leopoldo; Pandolfi, Enrique; Schapiro, Valeria; Tibhe, Gaurao D; Mombrú, Álvaro W

    2015-09-01

    The absolute configuration of the title compound, C10H16O4, determined as 3aS,4S,5R,7aR on the basis of the synthetic pathway, was confirmed by X-ray diffraction. The mol-ecule contains a five- and a six-membered ring that adopt twisted and envelope conformations, respectively. The dihedral angle between the mean planes of the rings is 76.80 (11)° as a result of their cis-fusion. In the crystal, mol-ecules are linked by two pairs of O-H⋯O hydrogen bonds, forming chains along [010]. These chains are further connected by weaker C-H⋯O inter-actions along [100], creating (001) sheets that inter-act only by weak van der Waals forces.

  3. Anti-atherosclerotic plants which modulate the phenotype of vascular smooth muscle cells.

    PubMed

    Saleh Al-Shehabi, Tuqa; Iratni, Rabah; Eid, Ali H

    2016-10-15

    Cardiovascular disease (CVD) remains the leading cause of global death, with atherosclerosis being a major contributor to this mortality. Several mechanisms are implicated in the pathogenesis of this disease. A key element in the development and progression of atherosclerotic lesions is the phenotype of vascular smooth muscle cells. Under pathophysiologic conditions such as injury, these cells switch from a contractile to a synthetic phenotype that often possesses high proliferative and migratory capacities. Despite major advances made in the management and treatment of atherosclerosis, mortality associated with this disease remains high. This mandates that other approaches be sought. Herbal medicine, especially for the treatment of CVD, has been gaining more attention in recent years. This is in no small part due to the evidence-based values associated with the consumption of many plants as well as the relatively cheaper prices, easier access and conventional folk medicine "inherited" over generations. Sections: In this review, we provide a brief introduction about the pathogenesis of atherosclerosis then we highlight the role of vascular smooth muscle cells in this disease, especially when a phenotypic switch of these cells arises. We then thoroughly discuss the various plants that show potentially beneficial effects as anti-atherosclerotic, with prime attention given to herbs and plants that inhibit the phenotypic switch of vascular smooth muscle cells. Accumulating evidence provides the justification for the use of botanicals in the treatment or prevention of atherosclerosis. However, further studies, especially clinical ones, are warranted to better define several pharmacological parameters of these herbs, such as toxicity, tolerability, and efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Can microRNAs control vascular smooth muscle phenotypic modulation and the response to injury?

    PubMed Central

    Albinsson, Sebastian

    2011-01-01

    Vascular smooth muscle cell (VSMC) migration and proliferation are critical events in vascular proliferative diseases. Recent studies have established microRNAs (miRNAs) as important mediators for the modulation of VSMC phenotype by targeting transcription factors and the cytoskeleton, which act as molecular switches for VSMC differentiation. The importance of miRNAs for VSMC development, differentiation, and function is evident by the fact that loss of the miRNA processing enzyme Dicer in VSMCs results in embryonic lethality due to severe vascular abnormalities. Similar abnormalities are observed in adult miR-143/145 knockout mice, indicating that these miRNAs are important for VSMC differentiation and function. However, since miR-143/145 knockout is not embryonically lethal, additional miRNA must be required during embryonic development of VSMCs. In addition, specific miRNAs such as miR-145, miR-21, and miR-221 have been found to regulate neointimal hyperplasia following vascular injury, which provides interesting possibilities for future therapeutical targets against vascular disease. Herein, we summarize recent advances regarding the role of miRNAs in VSMC phenotype modulation and response to injury. PMID:20841497

  5. Phenotypic modulation of smooth muscle cells during formation of neointimal thickenings following vascular injury.

    PubMed

    Thyberg, J

    1998-07-01

    Smooth muscle cells build up the media of mammalian arteries and constitute one of the principal cell types in atherosclerotic and restenotic lesions. Accordingly, they show a high degree of plasticity and are able to shift from a differentiated, contractile phenotype to a less differentiated, synthetic phenotype, and then back again. This modulation occurs as a response to vascular injury and includes a prominent structural reorganization with loss of myofilaments and formation of an extensive endoplasmic reticulum and a large Golgi complex. At the same time, the expression of cytoskeletal proteins and other gene products is altered. As a result, the cells lose their contractility and become able to migrate from the media to the intima, proliferate, and secrete extracellular matrix components, thereby contributing to the formation of intimal thickenings. The mechanisms behind this change in morphology and function of the smooth muscle cells are still incompletely understood. A crucial role has been ascribed to basement membrane proteins such as laminin and collagen type IV and adhesive proteins such as fibronectin. A significant role is also played by mitogenic proteins such as platelet-derived growth factor (PDGF) and basic fibroblast growth factor (bFGF). An improved knowledge of the regulation of smooth muscle differentiated properties represents an important part in the search for new methods of prevention and treatment of vascular disease.

  6. Rho-associated kinase plays a role in rabbit urethral smooth muscle contraction, but not via enhanced myosin light chain phosphorylation.

    PubMed

    Walsh, Michael P; Thornbury, Keith; Cole, William C; Sergeant, Gerard; Hollywood, Mark; McHale, Noel

    2011-01-01

    The involvement of Rho-associated kinase (ROK) in activation of rabbit urethral smooth muscle contraction was investigated by examining the effects of two structurally distinct inhibitors of ROK, Y27632 and H1152, on the contractile response to electric field stimulation, membrane depolarization with KCl, and α1-adrenoceptor stimulation with phenylephrine. Both compounds inhibited contractions elicited by all three stimuli. The protein kinase C inhibitor GF109203X, on the other hand, had no effect. Urethral smooth muscle strips were analyzed for phosphorylation of three potential direct or indirect substrates of ROK: 1) myosin regulatory light chains (LC20) at S19, 2) the myosin-targeting subunit of myosin light chain phosphatase (MYPT1) at T697 and T855, and 3) cofilin at S3. The following results were obtained: 1) under resting tension, LC20 was phosphorylated to 0.65±0.02 mol Pi/mol LC20 (n=21) at S19; 2) LC20 phosphorylation did not change in response to KCl or phenylephrine; 3) ROK inhibition had no effect on LC20 phosphorylation in the absence or presence of contractile stimuli; 4) under resting conditions, MYPT1 was partially phosphorylated at T697 and T855 and cofilin at S3; 5) phosphorylation of MYPT1 and cofilin was unaffected by KCl or phenylephrine; and 6) KCl- and phenylephrine-induced contraction-relaxation cycles did not correlate with actin polymerization-depolymerization. We conclude that ROK plays an important role in urethral smooth muscle contraction, but not via inhibition of MLCP or polymerization of actin.

  7. Opiorphin is a master regulator of the hypoxic response in corporal smooth muscle cells

    PubMed Central

    Fu, Shibo; Tar, Moses Tarndie; Melman, Arnold; Davies, Kelvin Paul

    2014-01-01

    Men with sickle cell disease (SCD) risk developing priapism. Recognizing that SCD is a disease of hypoxia, we investigated the effect of hypoxia on gene expression in corporal smooth muscle (CSM) cells. Rat CSM cells in vitro were treated with CoCl2 or low oxygen tension to mimic hypoxia. Hypoxic conditions increased expression of genes previously associated with priapism in animal models. Variable coding sequence a1 (Vcsa1; the rat opiorphin homologue, sialorphin), hypoxia-inducible factor 1a (Hif-1a), and A2B adenosine receptor (a2br) were increased by 10-, 4-, and 6-fold, respectively, by treatment with CoCl2, whereas low oxygen tension caused increases in expression of 3-, 4-, and 1.5-fold, respectively. Sialorphin-treated CSM cells increased expression of Hif-1a and a2br by 4-fold, and vcsa1-siRNA treatment reduced expression by ∼50%. Using a Hif-1a inhibitor, we demonstrated up-regulation of a2br by sialorphin is dependent on Hif-1a, and knockdown of vcsa1 expression with vcsa1-siRNA demonstrated that hypoxic-up-regulation of Hif-1a is dependent on vcsa1. In CSM from a SCD mouse, there was 15-fold up-regulation of opiorphin at a life stage prior to priapism. We conclude that in CSM, opiorphins are master regulators of the hypoxic response. Opiorphin up-regulation in response to SCD-associated hypoxia activates CSM “relaxant” pathways; excessive activation of these pathways results in priapism.—Fu, S., Tar, M. T., Melman, A., Davies, K. P. Opiorphin is a master regulator of the hypoxic response in corporal smooth muscle cells. PMID:24803544

  8. Superoxide from NADPH oxidase upregulates type 5 phosphodiesterase in human vascular smooth muscle cells: inhibition with iloprost and NONOate.

    PubMed

    Muzaffar, S; Shukla, N; Bond, M; Sala-Newby, G B; Newby, A C; Angelini, G D; Jeremy, J Y

    2008-11-01

    To determine whether there is an association between vascular NADPH oxidase (NOX), superoxide, the small GTPase Rac(1) and PDE type 5 (PDE5) in human vascular smooth muscle cell (hVSMCs). hVSMCs were incubated with xanthine-xanthine oxidase (X-XO; a superoxide generating system) or the thromboxane A(2) analogue, U46619 (+/-superoxide dismutase (SOD) or apocynin) for 16 h. The expression of PDE5 and NOX-1 was assessed using Western blotting and superoxide measured. The role of Rac(1) in superoxide generation was assessed by overexpressing either the dominant-negative or constitutively active Rac isoforms. The effects of iloprost, DETA-NONOate and the Rho-kinase inhibitor, Y27632, on PDE5 and NOX-1 expression were also studied. Following 16 h incubation, U46619 and X-XO promoted the expression of PDE5 and NOX-1, an effect blocked by SOD or apocynin when co-incubated over the same time course. X-XO and U46619 both promoted the formation of superoxide. Overexpression of dominant-negative Rac(1) or addition of iloprost, DETA-NONOate or Y27632 completely blocked both superoxide release and PDE5 protein expression and activity. These data demonstrate that superoxide derived from NOX upregulates the expression of PDE5 in human VSMCs. As PDE5 hydrolyses cyclic GMP, this effect may blunt the vasculoprotective actions of NO.

  9. Switching control of an R/C hovercraft: stabilization and smooth switching.

    PubMed

    Tanaka, K; Iwasaki, M; Wang, H O

    2001-01-01

    This paper presents stable switching control of an radio-controlled (R/C) hovercraft that is a nonholonomic (nonlinear) system. To exactly represent its nonlinear dynamics, more importantly, to maintain controllability of the system, we newly propose a switching fuzzy model that has locally Takagi-Sugeno (T-S) fuzzy models and switches them according to states, external variables, and/or time. A switching fuzzy controller is constructed by mirroring the rule structure of the switching fuzzy model of an R/C hovercraft. We derive linear matrix inequality (LMI) conditions for ensuring the stability of the closed-loop system consisting of a switching fuzzy model and controller. Furthermore, to guarantee smooth switching of control input at switching boundaries, we also derive a smooth switching condition represented in terms of LMIs. A stable switching fuzzy controller satisfying the smooth switching condition is designed by simultaneously solving both of the LMIs. The simulation and experimental results for the trajectory control of an R/C hovercraft show the validity of the switching fuzzy model and controller design, particularly, the smooth switching condition.

  10. A critical role of nicotinamide phosphoribosyltransferase in human telomerase reverse transcriptase induction by resveratrol in aortic smooth muscle cells

    PubMed Central

    Huang, Peixin; Riordan, Sean M.; Heruth, Daniel P.; Grigoryev, Dmitry N.; Zhang, Li Qin; Ye, Shui Qing

    2015-01-01

    Aging is the predominant risk factor for cardiovascular diseases and contributes to a considerably more severe outcome in patients with acute myocardial infarction. Resveratrol, a polyphenol found in red wine, is a caloric restriction mimetic with potential anti-aging properties which has emerged as a beneficial nutraceutical for patients with cardiovascular disease. Although resveratrol is widely consumed as a nutritional supplement, its mechanism of action remains to be elucidated fully. Here, we report that resveratrol activates human nicotinamide phosphoribosyltransferase (NAMPT), SIRT4 and telomerase reverse transcriptase (hTERT) in human aortic smooth muscle cells. Similar observations were obtained in resveratrol treated C57BL/6J mouse heart and liver tissues. Resverotrol can also augment telomerase activity in both human pulmonary microvascular endothelial cells and A549 cells. Blocking NAMPT and SIRT4 expression prevents induction of hTERT in human aortic smooth muscle cells while overexpression of NAMPT elevates the telomerase activity induced by resveratrol in A549 cells. Together, these results identify a NAMPT-SIRT4-hTERT axis as a novel mechanism by which resveratrol may affect the anti-aging process in human aortic smooth muscle cells, mouse hearts and other cells. These findings enrich our understanding of the positive effects of resveratrol in human cardiovascular diseases. PMID:25926556

  11. Effect of fenoterol-induced constitutive beta(2)-adrenoceptor activity on contractile receptor function in airway smooth muscle.

    PubMed

    de Vries, B; Roffel, A F; Zaagsma, J; Meurs, H

    2001-11-23

    In the present study, we investigated the effect of fenoterol-induced constitutive beta(2)-adrenoceptor activity on muscarinic receptor agonist- and histamine-induced bovine tracheal smooth muscle contractions. Bovine tracheal smooth muscle strips were incubated with 10 microM fenoterol or vehicle for various periods of time (5, 30 min, 18 h) at 37 degrees C. After extensive washout (3 h, 37 degrees C), isometric contractions were measured to the full muscarinic receptor agonist methacholine, the partial muscarinic receptor agonist 4-(m-chlorophenyl-carbamoyloxy)-2-butynyltrimethylammonium (McN-A-343) and histamine. Fenoterol treatment significantly reduced the sensitivity (pEC(50)) to methacholine in a time-dependent manner, without affecting maximal contraction (E(max)). Fenoterol treatment similarly reduced the pEC(50) of McN-A-343 and histamine; however, E(max) values were also reduced, to approximately 70% of control after 18-h treatment. The inverse agonist timolol, having no effect on control preparations, consistently restored the reduced pEC(50) and E(max) values of the contractile agonists. Remarkably, in the presence of timolol the pEC(50) values of McN-A-343 and histamine in fenoterol-treated airways were significantly enhanced compared to controls. In conclusion, fenoterol-induced constitutive beta(2)-adrenoceptor activity reduces muscarinic receptor agonist- and histamine-induced contractions of bovine tracheal smooth muscle, which can be reversed by the inverse agonist timolol. Moreover, after beta(2)-adrenoceptor agonist treatment, inverse agonism by beta-adrenoceptor antagonists may cause enhanced airway reactivity to contractile mediators.

  12. Transfer of the α5(IV) Collagen Chain Gene to Smooth Muscle Restores in Vivo Expression of the α6(IV) Collagen Chain in a Canine Model of Alport Syndrome

    PubMed Central

    Harvey, Scott J.; Zheng, Keqin; Jefferson, Barbara; Moak, Peter; Sado, Yoshikazu; Naito, Ichiro; Ninomiya, Yoshifumi; Jacobs, Robert; Thorner, Paul S.

    2003-01-01

    X-linked Alport syndrome is a progressive renal disease caused by mutations in the COL4A5 gene, which encodes the α5(IV) collagen chain. As an initial step toward gene therapy for Alport syndrome, we report on the expression of recombinant α5(IV) collagen in vitro and in vivo. A full-length cDNA-encoding canine α5(IV) collagen was cloned and expressed in vitro by transfection of HEK293 cells that synthesize the α1(IV) and α2(IV), but not the α3(IV) to α6(IV) collagen chains. By Northern blotting, an α5(IV) mRNA transcript of 5.2 kb was expressed and the recombinant protein was detected by immunocytochemistry. The chain was secreted into the medium as a 190-kd monomer; no triple helical species were detected. Transfected cells synthesized an extracellular matrix containing the α1(IV) and α2(IV) chains but the recombinant α5(IV) chain was not incorporated. These findings are consistent with the concept that the α5(IV) chain requires one or more of the α3(IV), α4(IV), or α6(IV) chains for triple helical assembly. In vivo studies were performed in dogs with X-linked Alport syndrome. An adenoviral vector containing the α5(IV) transgene was injected into bladder smooth muscle that lacks both the α5(IV) and α6(IV) chains in these animals. At 5 weeks after injection, there was expression of both the α5(IV) and α6(IV) chains by smooth muscle cells at the injection site in a basement membrane distribution. Thus, this recombinant α5(IV) chain is capable of restoring expression of a second α(IV) chain that requires the presence of the α5(IV) chain for incorporation into collagen trimers. This vector will serve as a useful tool to further explore gene therapy for Alport syndrome. PMID:12598321

  13. In vivo roles for myosin phosphatase targeting subunit-1 phosphorylation sites T694 and T852 in bladder smooth muscle contraction.

    PubMed

    Chen, Cai-Ping; Chen, Xin; Qiao, Yan-Ning; Wang, Pei; He, Wei-Qi; Zhang, Cheng-Hai; Zhao, Wei; Gao, Yun-Qian; Chen, Chen; Tao, Tao; Sun, Jie; Wang, Ye; Gao, Ning; Kamm, Kristine E; Stull, James T; Zhu, Min-Sheng

    2015-02-01

    Force production and maintenance in smooth muscle is largely controlled by myosin regulatory light chain (RLC) phosphorylation, which relies on a balance between Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) activities. MYPT1 is the regulatory subunit of MLCP that biochemically inhibits MLCP activity via T694 or T852 phosphorylation in vitro. Here we separately investigated the contribution of these two phosphorylation sites in bladder smooth muscles by establishing two single point mutation mouse lines, T694A and T852A, and found that phosphorylation of MYPT1 T694, but not T852, mediates force maintenance via inhibition of MLCP activity and enhancement of RLC phosphorylation in vivo. Our findings reveal the role of MYPT1 T694/T852 phosphorylation in vivo in regulation of smooth muscle contraction. Force production and maintenance in smooth muscle is largely controlled by different signalling modules that fine tune myosin regulatory light chain (RLC) phosphorylation, which relies on a balance between Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) activities. To investigate the regulation of MLCP activity in vivo, we analysed the role of two phosphorylation sites on MYPT1 (regulatory subunit of MLCP) that biochemically inhibit MLCP activity in vitro. MYPT1 is constitutively phosphorylated at T694 by unidentified kinases in vivo, whereas the T852 site is phosphorylated by RhoA-associated protein kinase (ROCK). We established two mouse lines with alanine substitution of T694 or T852. Isolated bladder smooth muscle from T852A mice displayed no significant changes in RLC phosphorylation or force responses, but force was inhibited with a ROCK inhibitor. In contrast, smooth muscles containing the T694A mutation showed a significant reduction of force along with reduced RLC phosphorylation. The contractile responses of T694A mutant smooth muscle were also

  14. Angiotensin II increases phosphodiesterase 5A expression in vascular smooth muscle cells: A mechanism by which angiotensin II antagonizes cGMP signaling

    PubMed Central

    Kim, Dongsoo; Aizawa, Toru; Wei, Heng; Pi, Xinchun; Rybalkin, Sergei D.; Berk, Bradford C.; Yan, Chen

    2014-01-01

    Angiotensin II (Ang II) and nitric oxide (NO)/natriuretic peptide (NP) signaling pathways mutually regulate each other. Imbalance of Ang II and NO/NP has been implicated in the pathophysiology of many vascular diseases. cGMP functions as a key mediator in the interaction between Ang II and NO/NP. Cyclic nucleotide phosphodiesterase 5A (PDE5A) is important in modulating cGMP signaling by hydrolyzing cGMP in vascular smooth muscle cells (VSMC). Therefore, we examined whether Ang II negatively modulates intracellular cGMP signaling in VSMC by regulating PDE5A. Ang II rapidly and transiently increased PDE5A mRNA levels in rat aortic VSMC. Upregulation of PDE5A mRNA was associated with a time-dependent increase of both PDE5 protein expression and activity. Increased PDE5A mRNA level was transcription-dependent and mediated by the Ang II type 1 receptor. Ang II-mediated activation of extracellular signal-regulated kinases 1/2 (ERK1/2) was essential for Ang II-induced PDE5A upregulation. Pretreatment of VSMC with Ang II inhibited C-type NP (CNP) stimulated cGMP signaling, such as cGMP dependent protein kinase (PKG)-mediated phosphorylation of vasodilator-stimulated-phosphoprotein (VASP). Ang II-mediated inhibition of PKG was blocked when PDE5 activity was decreased by selective PDE5 inhibitors, suggesting that upregulation of PDE5A expression is an important mechanism for Ang II to attenuate cGMP signaling. PDE5A may also play a critical role in the growth promoting effects of Ang II because inhibition of PDE5A activity significantly decreased Ang II-stimulated VSMC growth. These observations establish a new mechanism by which Ang II antagonizes cGMP signaling and stimulates VSMC growth. PMID:15623434

  15. Non-muscle (NM) myosin heavy chain phosphorylation regulates the formation of NM myosin filaments, adhesome assembly and smooth muscle contraction.

    PubMed

    Zhang, Wenwu; Gunst, Susan J

    2017-07-01

    Non-muscle (NM) and smooth muscle (SM) myosin II are both expressed in smooth muscle tissues, however the role of NM myosin in SM contraction is unknown. Contractile stimulation of tracheal smooth muscle tissues stimulates phosphorylation of the NM myosin heavy chain on Ser1943 and causes NM myosin filament assembly at the SM cell cortex. Expression of a non-phosphorylatable NM myosin mutant, NM myosin S1943A, in SM tissues inhibits ACh-induced NM myosin filament assembly and SM contraction, and also inhibits the assembly of membrane adhesome complexes during contractile stimulation. NM myosin regulatory light chain (RLC) phosphorylation but not SM myosin RLC phosphorylation is regulated by RhoA GTPase during ACh stimulation, and NM RLC phosphorylation is required for NM myosin filament assembly and SM contraction. NM myosin II plays a critical role in airway SM contraction that is independent and distinct from the function of SM myosin. The molecular function of non-muscle (NM) isoforms of myosin II in smooth muscle (SM) tissues and their possible role in contraction are largely unknown. We evaluated the function of NM myosin during contractile stimulation of canine tracheal SM tissues. Stimulation with ACh caused NM myosin filament assembly, as assessed by a Triton solubility assay and a proximity ligation assay aiming to measure interactions between NM myosin monomers. ACh stimulated the phosphorylation of NM myosin heavy chain on Ser1943 in tracheal SM tissues, which can regulate NM myosin IIA filament assembly in vitro. Expression of the non-phosphorylatable mutant NM myosin S1943A in SM tissues inhibited ACh-induced endogenous NM myosin Ser1943 phosphorylation, NM myosin filament formation, the assembly of membrane adhesome complexes and tension development. The NM myosin cross-bridge cycling inhibitor blebbistatin suppressed adhesome complex assembly and SM contraction without inhibiting NM myosin Ser1943 phosphorylation or NM myosin filament assembly. RhoA

  16. The Regulation of Catch in Molluscan Muscle

    PubMed Central

    Twarog, Betty M.

    1967-01-01

    Molluscan catch muscles are smooth muscles. As with mammalian smooth muscles, there is no transverse ordering of filaments or dense bodies. In contrast to mammalian smooth muscles, two size ranges of filaments are present. The thick filaments are long as well as large in diameter and contain paramyosin. The thin filaments contain actin and appear to run into and join the dense bodies. Vesicles are present which may be part of a sarcoplasmic reticulum. Neural activation of contraction in Mytilus muscle is similar to that observed in mammalian smooth muscles, and in some respects to frog striated muscle. The relaxing nerves, which reduce catch, are unique to catch muscles. 5-Hydroxytryptamine, which appears to mediate relaxation, specifically blocks catch tension but increases the ability of the muscle to fire spikes. It is speculated that Mytilus muscle actomyosin is activated by a Ca++-releasing mechanism, and that 5-hydroxytryptamine may reduce catch and increase excitability by influencing the rate of removal of intracellular free Ca++. PMID:6050594

  17. β-Agonist-mediated relaxation of airway smooth muscle is protein kinase A-dependent.

    PubMed

    Morgan, Sarah J; Deshpande, Deepak A; Tiegs, Brian C; Misior, Anna M; Yan, Huandong; Hershfeld, Alena V; Rich, Thomas C; Panettieri, Reynold A; An, Steven S; Penn, Raymond B

    2014-08-15

    Inhaled β-agonists are effective at reversing bronchoconstriction in asthma, but the mechanism by which they exert this effect is unclear and controversial. PKA is the historically accepted effector, although this assumption is made on the basis of associative and not direct evidence. Recent studies have asserted that exchange protein activated by cAMP (Epac), not PKA, mediates the relaxation of airway smooth muscle (ASM) observed with β-agonist treatment. This study aims to clarify the role of PKA in the prorelaxant effects of β-agonists on ASM. Inhibition of PKA activity via expression of the PKI and RevAB peptides results in increased β-agonist-mediated cAMP release, abolishes the inhibitory effect of isoproterenol on histamine-induced intracellular calcium flux, and significantly attenuates histamine-stimulated MLC-20 phosphorylation. Analyses of ASM cell and tissue contraction demonstrate that PKA inhibition eliminates most, if not all, β-agonist-mediated relaxation of contracted smooth muscle. Conversely, Epac knockdown had no effect on the regulation of contraction or procontractile signaling by isoproterenol. These findings suggest that PKA, not Epac, is the predominant and physiologically relevant effector through which β-agonists exert their relaxant effects. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. A serum response factor-dependent transcriptional regulatory program identifies distinct smooth muscle cell sublineages.

    PubMed Central

    Kim, S; Ip, H S; Lu, M M; Clendenin, C; Parmacek, M S

    1997-01-01

    The SM22alpha promoter has been used as a model system to define the molecular mechanisms that regulate smooth muscle cell (SMC) specific gene expression during mammalian development. The SM22alpha gene is expressed exclusively in vascular and visceral SMCs during postnatal development and is transiently expressed in the heart and somites during embryogenesis. Analysis of the SM22alpha promoter in transgenic mice revealed that 280 bp of 5' flanking sequence is sufficient to restrict expression of the lacZ reporter gene to arterial SMCs and the myotomal component of the somites. DNase I footprint and electrophoretic mobility shift analyses revealed that the SM22alpha promoter contains six nuclear protein binding sites (designated smooth muscle elements [SMEs] -1 to -6, respectively), two of which bind serum response factor (SRF) (SME-1 and SME-4). Mutational analyses demonstrated that a two-nucleotide substitution that selectively eliminates SRF binding to SME-4 decreases SM22alpha promoter activity in arterial SMCs by approximately 90%. Moreover, mutations that abolish binding of SRF to SME-1 and SME-4 or mutations that eliminate each SME-3 binding activity totally abolished SM22alpha promoter activity in the arterial SMCs and somites of transgenic mice. Finally, we have shown that a multimerized copy of SME-4 (bp -190 to -110) when linked to the minimal SM22alpha promoter (bp -90 to +41) is necessary and sufficient to direct high-level transcription in an SMC lineage-restricted fashion. Taken together, these data demonstrate that distinct transcriptional regulatory programs control SM22alpha gene expression in arterial versus visceral SMCs. Moreover, these data are consistent with a model in which combinatorial interactions between SRF and other transcription factors that bind to SME-4 (and that bind directly to SRF) activate transcription of the SM22alpha gene in arterial SMCs. PMID:9121477

  19. Mechanical properties of asthmatic airway smooth muscle.

    PubMed

    Chin, Leslie Y M; Bossé, Ynuk; Pascoe, Chris; Hackett, Tillie L; Seow, Chun Y; Paré, Peter D

    2012-07-01

    Airway smooth muscle (ASM) is the major effector of excessive airway narrowing in asthma. Changes in some of the mechanical properties of ASM could contribute to excessive narrowing and have not been systematically studied in human ASM from nonasthmatic and asthmatic subjects. Human ASM strips (eight asthmatic and six nonasthmatic) were studied at in situ length and force was normalised to maximal force induced by electric field stimulation (EFS). Measurements included: passive and active force versus length before and after length adaptation, the force-velocity relationship, maximal shortening and force recovery after length oscillation. Force was converted to stress by dividing by cross-sectional area of muscle. The only functional differences were that the asthmatic tissue was stiffer at longer lengths (p<0.05) and oscillatory strain reduced isometric force in response to EFS by 19% as opposed to 36% in nonasthmatics (p<0.01). The mechanical properties of human ASM from asthmatic and nonasthmatic subjects are comparable except for increased passive stiffness and attenuated decline in force generation after an oscillatory perturbation. These data may relate to reduced bronchodilation induced by a deep inspiration in asthmatic subjects.

  20. NG2 Proteoglycan Ablation Reduces Foam Cell Formation and Atherogenesis via Decreased Low-Density Lipoprotein Retention by Synthetic Smooth Muscle Cells.

    PubMed

    She, Zhi-Gang; Chang, Yunchao; Pang, Hong-Bo; Han, Wenlong; Chen, Hou-Zao; Smith, Jeffrey W; Stallcup, William B

    2016-01-01

    Obesity and hyperlipidemia are critical risk factors for atherosclerosis. Because ablation of NG2 proteoglycan in mice leads to hyperlipidemia and obesity, we investigated the impact of NG2 ablation on atherosclerosis in apoE null mice. Immunostaining indicates that NG2 expression in plaque, primarily by synthetic smooth muscle cells, increases during atherogenesis. NG2 ablation unexpectedly results in decreased (30%) plaque development, despite aggravated obesity and hyperlipidemia. Mechanistic studies reveal that NG2-positive plaque synthetic smooth muscle cells in culture can sequester low-density lipoprotein to enhance foam-cell formation, processes in which NG2 itself plays direct roles. In agreement with these observations, low-density lipoprotein retention and lipid accumulation in the NG2/ApoE knockout aorta is 30% less than that seen in the control aorta. These results indicate that synthetic smooth muscle cell-dependent low-density lipoprotein retention and foam cell formation outweigh obesity and hyperlipidemia in promoting mouse atherogenesis. Our study sheds new light on the role of synthetic smooth muscle cells during atherogenesis. Blocking plaque NG2 or altering synthetic smooth muscle cells function may be promising therapeutic strategies for atherosclerosis. © 2015 American Heart Association, Inc.