Sample records for aa lava flows

  1. Pahoehoe and aa in Hawaii: volumetric flow rate controls the lava structure

    NASA Astrophysics Data System (ADS)

    Rowland, Scott K.; Walker, George Pl

    1990-11-01

    The historical records of Kilauea and Mauna Loa volcanoes reveal that the rough-surfaced variety of basalt lava called aa forms when lava flows at a high volumetric rate (>5 10 m3/s), and the smooth-surfaced variety called pahoehoe forms at a low volumetric rate (<5 10 m3/s). This relationship is well illustrated by the 1983 1990 and 1969 1974 eruptions of Kilauea and the recent eruptions of Mauna Loa. It is also illustrated by the eruptions that produced the remarkable paired flows of Mauna Loa, in which aa formed during an initial short period of high discharge rate (associated with high fountaining) and was followed by the eruption of pahoehoe over a sustained period at a low discharge rate (with little or no fountaining). The finest examples of paired lava flows are those of 1859 and 1880 1881. We attribute aa formation to rapid and concentrated flow in open channels. There, rapid heat loss causes an increase in viscosity to a threshold value (that varies depending on the actual flow velocity) at which, when surface crust is torn by differential flow, the underlying lava is unable to move sufficiently fast to heal the tear. We attribute pahoehoe formation to the flowage of lava at a low volumetric rate, commonly in tubes that minimize heat loss. Flow units of pahoehoe are small (usually <1 m thick), move slowly, develop a chilled skin, and become virtually static before the viscosity has risen, to the threshold value. We infer that the high-discharge-rate eruptions that generate aa flows result from the rapid emptying of major or subsidiary magma chambers. Rapid near-surface vesiculation of gas-rich magma leads to eruptions with high discharge rates, high lava fountains, and fast-moving channelized flows. We also infer that long periods of sustained flow at a low discharge rate, which favor pahoehoe, result from the development of a free and unimpeded pathway from the deep plumbing system of the volcano and the separation of gases from the magma before eruption

  2. Dynamics and viscosity of `a'a and pahoehoe lava flows of the 2012-2013 eruption of Tolbachik volcano, Kamchatka (Russia)

    NASA Astrophysics Data System (ADS)

    Belousov, Alexander; Belousova, Marina

    2018-01-01

    The 2012-2013 flank eruption of Tolbachik volcano (Kamchatka) lasted 9 months and produced 0.54 km3 of basaltic trachyandesite lava, thus becoming one of the most voluminous historical lava effusions of basic composition in subduction-related environments globally. From March to July 2013, the volcano monotonously erupted lava of constant composition (SiO2 = 52 wt%) with a nearly stable effusion rate of 18 m3/s. Despite the uniform eruptive and emplacement conditions, the dominant style of lava propagation throughout that time gradually changed from `a'a to pahoehoe. We report results of instrumental field measurements of the `a'a and pahoehoe flow dynamics (documented with time-lapse cameras) as well as the lava viscosity determined by flow rate and shear stress (using penetrometer) methods. Maximal propagation velocities of the `a'a fronts ranged from 2 to 25 mm/s, and those of the pahoehoe from 0.5 to 6 mm/s. The flow front velocities of both lava types experienced short-period fluctuations that were caused by complex flow mechanics of the advancing flow lobes. Minimal viscosities of lava of the `a'a lobes ranged from 1.3 × 105 to 3.3 × 107 Pa s (flow rate method), and those of the pahoehoe from to 5 × 103 to 5 × 104 Pa s (shear stress method). Our data include the first ever measured profiles of viscosity through the entire thickness of actively advancing pahoehoe lava lobes. We have found that both the `a'a and pahoehoe flows were fed by identical parental lava, which then developed contrasting rheological properties, owing to differences in the process of lava transport over the ground surface. The observed transition from the dominant `a'a to the dominant pahoehoe propagation styles occurred due to gradual elongation and branching of the lava tube system throughout the course of the eruption. Such evolution became possible because the growing lava field, composed of semisolidified flows, provided an environment for shallow subsurface intrusions and

  3. Toothpaste lava: Characteristics and origin of a lava structural type transitional between pahoehoe and aa

    NASA Astrophysics Data System (ADS)

    Rowland, Scott K.; Walker, George P. L.

    1987-08-01

    Toothpaste lava, an important basalt structural type which illustrates the transition from pahoehoe to aa, is particularly well displayed on the 1960 Kapoho lava of Kilauea Volcano. Its transitional features stem from a viscosity higher than that of pahoehoe and a rate of flow slower than that of aa. Viscosity can be quantified by the limited settling of olivine phenocrysts and rate of flow by field observations related to the low-angle slope on which the lava flowed. Much can be learned about the viscosity, rheologic condition, and flow velocity of lavas long after solidification by analyses of their structural characteristics, and it is possible to make at least a semiquantitative assessment of the numerical values of these parameters.

  4. Mafic-crystal distributions, viscosities, and lava structures of some Hawaiian lava flows

    NASA Astrophysics Data System (ADS)

    Rowland, Scott K.; Walker, George P. L.

    1988-09-01

    The distribution patterns of mafic phenocrysts in some Hawaiian basalt flows are consistent with simple in situ gravitational settling. We use the patterns to estimate the crystal settling velocity and hence viscosity of the lava, which in turn can be correlated with surface structures. Numerical modeling generates theoretical crystal concentration profiles through lava flow units of different thicknesses for differing settling velocities. By fitting these curves to field data, crystal-settling rates through the lavas can be estimated, from which the viscosities of the flows can be determined using Stokes' Law. Lavas in which the crystal settling velocity was relatively high (on the order of 5 × 10 -4 cm/sec) show great variations in phenocryst content, both from top to bottom of the same flow unit, and from one flow unit to another. Such lava is invariably pahoehoe, flow units of which are usually less than 1 m thick. Lavas in which the crystal-settling velocity was low show a small but measurable variation in phenocryst content. These lavas are part of a progression from a rough pahoehoe to toothpaste lava to a'a. Toothpaste lava is characterized by spiny texture as well as the ability to retain surface grooves during solidification, and flow units are usually thicker than 1 m. In the thickest of Hawaiian a'a flows, those of the distal type, no systematic crystal variations are observed, and high viscosity coupled with a finite yield strength prevented crystal settling. The amount of crystal settling in pahoehoe indicates that the viscosity ranged from 600 to 6000 Pa s. The limited amount of settling in toothpaste lava indicates a viscosity greater than this value, approaching 12,000 Pa s. We infer that distal-type a'a had a higher viscosity still and also possessed a yield strength.

  5. Transition of basaltic lava from pahoehoe to aa, Kilauea Volcano, Hawaii: Field observations and key factors

    USGS Publications Warehouse

    Peterson, Donald W.; Tilling, Robert I.

    1980-01-01

    Nearly all Hawaiian basaltic lava erupts as pahoehoe, and some changes to aa during flowage and cooling; factors governing the transition involve certain critical relations between viscosity and rate of shear strain. If the lava slows, cools, and stops in direct response to concomitant increase in viscosity before these critical relations are reached, it remains pahoehoe. But, if flow mechanics (flow rate, flow dimensions, slope, momentum, etc.) impel the lava to continue to move and deform even after it has become highly viscous, the critical relations may be reached and the lava changes to aa.Typical modes of transition from pahoehoe to aa include: (1) spontaneous formation of relatively stiff clots in parts of the flowing lava where shear rate is highest; these clots grow into discrete, rough, sticky masses to which the remaining fluid lava incrementally adheres; (2) fragmentation and immersion of solid or semi-solid surface crusts of pahoehoe by roiling movements of the flow, forming cores of discrete, tacky masses; (3) sudden renewed movement of lava stored and cooled within surface reservoirs to form clots. The masses, fragments, and clots in these transition modes are characterized by spinose, granulated surfaces; as flow movement continues, the masses and fragments aggregate, fracture, and grind together, completing the transition to aa.Observations show that the critical relation between viscosity and rate of shear strain is inverse: if viscosity is low, a high rate of shear is required to begin the transition to aa; conversely, if viscosity is high, a much lower rate of shear will induce the transition. These relations can be demonstrated qualitatively with simple graphs, which can be used to examine the flow history of any selected finite lava element by tracing the path represented by its changing viscosity and shear rate. A broad, diffuse “transition threshold zone” in these graphs portrays the inverse critical relation between viscosity and shear

  6. The cooling of terrestrial basaltic lava flows and implications for lava flow emplacement on Venus from surface morphology and radar data

    NASA Astrophysics Data System (ADS)

    Hultgrien, Lynn Kerrell

    Basalt is the most common surface rock on the terrestrial planets. Understanding the emplacement mechanisms for basaltic lava flows facilitates study of the geologic history of a planet and in volcanic hazards assessment. Lava flow cooling is examined through two different models, one applicable to aa and the second to pahoehoe. Occurrence of these basaltic flow types is evaluated in an extensive global survey of lava flows on Venus using Magellan data. First, a basic heat balance model is considered for as flow cooling with terms for conduction, radiation, viscous dissipation and entrainment of cooler material. Pahoehoe cooling is modeled through three different analytic solutions to the one-dimensional, time-dependent heat conduction equation, with constant surface temperature, linear heat transfer at the surface, and surface radiation. The models are compared with thermal data from the Hawaiian 1984 Mauna Loa and 1990 Puu Oo-Kupaianaha, Kilauea eruptions, for as and pahoehoe, respectively. Although commonly omitted in other models, heat conduction is found here to be important in the cooling of both aa and pahoehoe. Equally important is entrainment in as flows and both radiation and atmospheric convection for pahoehoe cooling. Morphology measurements and surface properties are determined for ninety individual lava flows from forty-four volcanic features on Venus. Radar backscatter and rms slope values, relative to terrestrial studies, indicate Venusian lavas are predominately pahoehoe. Emissivities and dielectric constants are consistent with basalt as the principal lithology. Effusion rates and flow velocities, determined using Earth-calibrated parametric relationships, and lava flow dimensions are greater than those found on Earth. Modeling lava flows on the terrestrial planets should involve careful consideration of the type of lava flow being studied. This investigation finds that heat conduction is an important limitation in the ability of a basalt flow to

  7. Fracturing as a Quantitative Indicator of Lava Flow Dynamics

    NASA Astrophysics Data System (ADS)

    Kilburn, C. R.; Solana, C.

    2005-12-01

    The traditional classification of lava flows into pahoehoe and aa varieties reflects differences in how a flow can fracture its surface during advance. Both types of lava have a low strength upon eruption and require surface cooling to produce a crust that can fracture. Among pahoehoe lavas, applied stresses are small enough to allow the growth of a continuous crust, which is broken intermittently as the flow advances by propagating a collection of lava tongues. Among aa lavas, in contrast, applied stresses are large enough to maintain persistent crustal failure. The differences in fracturing characteristics has been used to quantify the transition between flow regimes and suggests that shear fracture may dominate tensile failure. Applied to Lanzarote, the model confirms the inference from incomplete eye-witness accounts of the 1730-36 Timanfaya eruption that pahoehoe flows were able to advance about an order of magnitude more quickly than would have been expected by analogy with Hawaiian pahoehoe flow-fields of similar dimensions. Surface texture and morphology, therefore, are insufficient guides for constraining the rate and style of pahoehoe emplacement. Applications include improved hazard assessments during effusive eruptions and new evaluations of the emplacement conditions for very large-volume pahoehoe lava flows.

  8. Morphology of the 1984 open-channel lava flow at Krafla volcano, northern Iceland

    NASA Astrophysics Data System (ADS)

    Rossi, Matti J.

    1997-09-01

    An open-channel lava flow of olivine tholeiite basalt, 9 km long and 1-2 km wide, formed in a volcanic eruption that took place in the Krafla volcano, Iceland, on the 4-18 September 1984. The eruption started with emplacement of a pahoehoe sheet which was fed by a 8.5-km-long fissure. After two days of eruption, lava effusion from the fissure ceased but one crater at the northern end of the fissure continued to release lava for another twelve days. That crater supplied an open-channel flow that moved toward the north along the rift valley. The lava was emplaced on a slope of 1°. The final lava flow is composed of five flow facies: (1) the initial pahoehoe sheet; (2) proximal slab pahoehoe and aa; (3) shelly-type overflows from the channel; (4) distal rubbly aa lava; and (5) secondary outbreaks of toothpaste lava and cauliflower aa. The main lava channel within the flow is 6.4 km long. The mean width of this channel is 189 m (103 m S.D.). An initial lava channel that forms in a Bingham plastic substance is fairly constant in width. This channel, however, varies in width especially in the proximal part indicating channel erosion. Large drifted blocks of channel walls are found throughout the flow front area and on the top of overflow levees. This suggests that the channel erosion was mainly mechanical. The lava flow has a mean height of 6 m above its surroundings, measured at the flow margins. However, a study of the pre-flow topography indicates that the lava filled a considerable topographic depression. Combined surface and pre-flow profiles give an average lava-flow thickness of 11 m; the thickness of the initial sheet-flow is estimated as 2 m. The volume of the lava flow calculated from these figures is 0.11 km 3. The mean effusion rate was 91 m 3/s. When lava flow models are used to deduce the rheological properties of this type of lava flow, the following points must be considered: (1) when a lava flow is emplaced along tectonic lineaments, its depth and

  9. Preliminary analyses of SIB-B radar data for recent Hawaii lava flows

    NASA Technical Reports Server (NTRS)

    Kaupp, V. H.; Derryberry, B. A.; Macdonald, H. C.; Gaddis, L. R.; Mouginis-Mark, P. J.

    1986-01-01

    The Shuttle Imaging Radar (SIR-B) experiment acquired two L-band (23 cm wavelength) radar images (at about 28 and 48 deg incidence angles) over the Kilauea Volcano area of southeastern Hawaii. Geologic analysis of these data indicates that, although aa lava flows and pyroclastic deposits can be discriminated, pahoehoe lava flows are not readily distinguished from surrounding low return materials. Preliminary analysis of data extracted from isolated flows indicates that flow type (i.e., aa or pahoehoe) and relative age can be determined from their basic statistics and illumination angle.

  10. Late Holocene lava flow morphotypes of northern Harrat Rahat, Kingdom of Saudi Arabia: Implications for the description of continental lava fields

    NASA Astrophysics Data System (ADS)

    Murcia, H.; Németh, K.; Moufti, M. R.; Lindsay, J. M.; El-Masry, N.; Cronin, S. J.; Qaddah, A.; Smith, I. E. M.

    2014-04-01

    A "lava morphotype" refers to the recognizable and distinctive characteristics of the surface morphology of a lava flow after solidification, used in a similar way to a sedimentary facies. This classification method is explored on an example volcanic field in the Kingdom of Saudi Arabia, where copious lava outpourings may represent an important transition between monogenetic and flood basalt fields. Here, young and well-preserved mafic lava fields display a wide range of surface morphologies. We focussed on four post-4500 yrs. BP lava flow fields in northern Harrat Rahat (<10 Ma) and propose a framework for describing systematic changes in morphotypes down-flow. The morphotypes give insight into intrinsic and extrinsic parameters of emplacement, rheology and dominant flow behavior, as well as the occurrence and character of other lava structures. The Harrat Rahat lava flow fields studied extend up to 23 km from the source, and vary between 1-2 m and 12 m in thickness. Areas of the lava flow fields are between ˜32 and ˜61 km2, with individual flow field volumes estimated between ˜0.085 and ˜0.29 km3. They exhibit Shelly-, Slabby-, and Rubbly-pahoehoe, Platy-, Cauliflower-, and Rubbly-a'a, and Blocky morphotypes. Morphotypes reflect the intrinsic parameters of: composition, temperature, crystallinity and volatile-content/vesicularity; along with external influences, such as: emission mechanism, effusion rate, topography and slope control of flow velocity. One morphotype can transition to another in individual flow-units or lobes and they may dominate zones. Not all morphotypes were found in a single lava flow field. Pahoehoe morphotypes are related to the simple mechanical disaggregation of the crust, whereas a'a morphotypes are related to the transitional emergence and subsequent transitional disappearance of clinker. Blocky morphotypes result from fracturing and auto-brecciation. A'a morphotypes (i.e. platy-, cauliflower-, rubbly-a'a) dominate the lava flow

  11. The significance of slab-crusted lava flows for understanding controls on flow emplacement at Mount Etna, Sicily

    NASA Astrophysics Data System (ADS)

    Guest, John E.; Stofan, Ellen R.

    2005-04-01

    Slab-crusted flows on Mount Etna, Sicily are defined here as those whose crust has ridden on the flow core without significant disruption or deformation and have a high length to width ratio. They typically erupt from ephemeral boccas as late-stage products on dominantly aa flow fields, such as that of the 1983 eruption on Mount Etna. Slab-crusted flows tend to inflate mainly as they approach and after they reach the maximum length of slab-crust formation, the flow interior acting as a preferential pathway for injecting lava under a stable crust. Coalescence of vesicles under successive crusts causes separation between core and crust giving a new cooling surface within the flow, on which ropy surfaces (and occasionally aa textures) of limited areal extent may develop. Slab-crusted flows tend to form at ephemeral boccas together with other surface textural types including toes, ropy pahoehoe sheets and aa flows. This suggests that, on Etna, slab-crusted flows form from lava of the same rheological properties as both aa and pahoehoe textured flows. They do not represent a transition between aa and pahoehoe as argued for toothpaste flows in Hawaii. We conclude that slab-crusted flows on Etna owe their morphology to a relatively high critical ratio of effusion rate to advance rate, related to vent cross-sectional area and the slope over which the flow forms.

  12. Lava-flow characterization at Pisgah Volcanic Field, California, with multiparameter imaging radar

    USGS Publications Warehouse

    Gaddis, L.R.

    1992-01-01

    Multi-incidence-angle (in the 25?? to 55?? range) radar data aquired by the NASA/JPL Airborne Synthetic Aperture Radar (AIRSAR) at three wavelengths simultaneously and displayed at three polarizations are examined for their utility in characterizing lava flows at Pisgah volcanic field, California. Pisgah lava flows were erupted in three phases; flow textures consist of hummocky pahoehoe, smooth pahoehoe, and aa (with and without thin sedimentary cover). Backscatter data shown as a function of relative age of Pisgah flows indicate that dating of lava flows on the basis of average radar backscatter may yield ambiguous results if primary flow textures and modification processes are not well understood. -from Author

  13. Hawaiian lava flows in the third dimension: Identification and interpretation of pahoehoe and 'a'a distribution in the KP-1 and SOH-4 cores

    NASA Astrophysics Data System (ADS)

    Katz, Melissa G.; Cashman, Katharine V.

    2003-02-01

    Hawaiian lava flows are classified as pahoehoe or 'a'a by their surface morphology. As surface morphology reflects flow emplacement conditions, the surface distribution of morphologic flow types has been used to study the evolution and eruptive history of basaltic volcanoes. We extend this analysis to the third dimension by determining the distribution of flow types in two deep drill cores, the Scientific Observation Hole-4 (SOH-4) core, drilled near Kilauea's East Rift Zone (ERZ), and the pilot hole (Kahi Puka-1 (KP-1)) for the Hawaiian Scientific Drilling Project (HSDP), drilled through distal flows from Mauna Loa and Mauna Kea. Flows are classified using both internal structures and groundmass textures, with the latter useful when identification based on mesoscopic flow features (e.g., surface morphology and vesicle content and distribution) is ambiguous. We then examine the temporal distribution of pahoehoe and 'a'a flows in proximal (SOH-4) and distal (KP-1) settings. Sequence analysis shows that the two flow types are not randomly distributed in either core but instead are strongly clustered. The proximal SOH-4 core is dominated by thin pahoehoe flows (˜60% by volume), consistent with the common occurrence of surface-fed pahoehoe flows in near-vent settings. The distal KP-1 core has a high proportion of 'a'a (˜58% by volume), although the proportion of pahoehoe and 'a'a varies dramatically throughout the Mauna Kea sequence. Thick inflated pahoehoe flows dominate when the drill site was near sea level, consistent with the numerous inflated pahoehoe fields on the current coastal plains of Kilauea and Mauna Loa. 'A'a flows are abundant when the site was far above sea level. As slope increases from the coastal plains to Mauna Kea's flank, this correlation may reflect the combined effect of long transport distances and increased slopes on flow emplacement. These results demonstrate that flow type and thickness variations in cores provide valuable information

  14. The Hawaiian Volcano Observatory's current approach to forecasting lava flow hazards (Invited)

    NASA Astrophysics Data System (ADS)

    Kauahikaua, J. P.

    2013-12-01

    Hawaiian Volcanoes are best known for their frequent basaltic eruptions, which typically start with fast-moving channelized `a`a flows fed by high eruptions rates. If the flows continue, they generally transition into pahoehoe flows, fed by lower eruption rates, after a few days to weeks. Kilauea Volcano's ongoing eruption illustrates this--since 1986, effusion at Kilauea has mostly produced pahoehoe. The current state of lava flow simulation is quite advanced, but the simplicity of the models mean that they are most appropriately used during the first, most vigorous, days to weeks of an eruption - during the effusion of `a`a flows. Colleagues at INGV in Catania have shown decisively that MAGFLOW simulations utilizing satellite-derived eruption rates can be effective at estimating hazards during the initial periods of an eruption crisis. However, the algorithms do not simulate the complexity of pahoehoe flows. Forecasts of lava flow hazards are the most common form of volcanic hazard assessments made in Hawai`i. Communications with emergency managers over the last decade have relied on simple steepest-descent line maps, coupled with empirical lava flow advance rate information, to portray the imminence of lava flow hazard to nearby communities. Lavasheds, calculated as watersheds, are used as a broader context for the future flow paths and to advise on the utility of diversion efforts, should they be contemplated. The key is to communicate the uncertainty of any approach used to formulate a forecast and, if the forecast uses simple tools, these communications can be fairly straightforward. The calculation of steepest-descent paths and lavasheds relies on the accuracy of the digital elevation model (DEM) used, so the choice of DEM is critical. In Hawai`i, the best choice is not the most recent but is a 1980s-vintage 10-m DEM--more recent LIDAR and satellite radar DEM are referenced to the ellipsoid and include vegetation effects. On low-slope terrain, steepest

  15. Similarities in basalt and rhyolite lava flow emplacement processes

    NASA Astrophysics Data System (ADS)

    Magnall, Nathan; James, Mike; Tuffen, Hugh; Vye-Brown, Charlotte

    2016-04-01

    Here we use field observations of rhyolite and basalt lava flows to show similarities in flow processes that span compositionally diverse lava flows. The eruption, and subsequent emplacement, of rhyolite lava flows is currently poorly understood due to the infrequency with which rhyolite eruptions occur. In contrast, the emplacement of basaltic lava flows are much better understood due to very frequent eruptions at locations such as Mt Etna and Hawaii. The 2011-2012 eruption of Cordón Caulle in Chile enabled the first scientific observations of the emplacement of an extensive rhyolite lava flow. The 30 to 100 m thick flow infilled a topographic depression with a negligible slope angle (0 - 7°). The flow split into two main channels; the southern flow advanced 4 km while the northern flow advanced 3 km before stalling. Once the flow stalled the channels inflated and secondary flows or breakouts formed from the flow front and margins. This cooling rather than volume-limited flow behaviour is common in basaltic lava flows but had never been observed in rhyolite lava flows. We draw on fieldwork conducted at Cordón Caulle and at Mt Etna to compare the emplacement of rhyolite and basaltic flows. The fieldwork identified emplacement features that are present in both lavas, such as inflation, breakouts from the flow font and margins, and squeeze-ups on the flow surfaces. In the case of Cordón Caulle, upon extrusion of a breakout it inflates due to a combination of continued lava supply and vesicle growth. This growth leads to fracturing and breakup of the breakout surface, and in some cases a large central fracture tens of metres deep forms. In contrast, breakouts from basaltic lava flows have a greater range of morphologies depending on the properties of the material in the flows core. In the case of Mt Etna, a range of breakout morphologies are observed including: toothpaste breakouts, flows topped with bladed lava as well as breakouts of pahoehoe or a'a lava. This

  16. Lava Flow Dynamics

    NASA Technical Reports Server (NTRS)

    Taylor, G. Jeffrey

    1996-01-01

    This grant originally had four major tasks, all of which were addressed to varying extents during the course of the research: (1) Measure the fractal dimensions of lava flows as a function of topography, substrate, and rheology; (2) The nature of lava tube systems and their relation to flow fields; (3) A quantitative assessment of lava flow dynamics in light of the fractal nature of lava flow margins; and (4) Development and application of a new remote sensing tool based on fractal properties. During the course of the research, the project expanded to include the following projects: (1) A comparison of what we can-learn from remote sensing studies of lava flow morphology and from studies of samples of lava flows; (2) Study of a terrestrial analog of the nakhlites, one of the groups of meteorites from Mars; and (3) Study of the textures of Hawaiian basalts as an aid in understanding the dynamics (flow rates, inflation rates, thermal history) of flow interiors. In addition, during the first year an educational task (development and writing of a teacher's guide and activity set to accompany the lunar sample disk when it is sent to schools) was included.

  17. A local heat transfer analysis of lava cooling in the atmosphere: application to thermal diffusion-dominated lava flows

    NASA Astrophysics Data System (ADS)

    Neri, Augusto

    1998-05-01

    The local cooling process of thermal diffusion-dominated lava flows in the atmosphere was studied by a transient, one-dimensional heat transfer model taking into account the most relevant processes governing its behavior. Thermal diffusion-dominated lava flows include any type of flow in which the conductive-diffusive contribution in the energy equation largely overcomes the convective terms. This type of condition is supposed to be satisfied, during more or less extended periods of time, for a wide range of lava flows characterized by very low flow-rates, such as slabby and toothpaste pahoehoe, spongy pahoehoe, flow at the transition pahoehoe-aa, and flows from ephemeral vents. The analysis can be useful for the understanding of the effect of crust formation on the thermal insulation of the lava interior and, if integrated with adequate flow models, for the explanation of local features and morphologies of lava flows. The study is particularly aimed at a better knowledge of the complex non-linear heat transfer mechanisms that control lava cooling in the atmosphere and at the estimation of the most important parameters affecting the global heat transfer coefficient during the solidification process. The three fundamental heat transfer mechanisms with the atmosphere, that is radiation, natural convection, and forced convection by the wind, were modeled, whereas conduction and heat generation due to crystallization were considered within the lava. The magma was represented as a vesiculated binary melt with a given liquidus and solidus temperature and with the possible presence of a eutectic. The effects of different morphological features of the surface were investigated through a simplified description of their geometry. Model results allow both study of the formation in time of the crust and the thermal mushy layer underlying it, and a description of the behavior of the temperature distribution inside the lava as well as radiative and convective fluxes to the

  18. The Payun-Matru lava field: a source of analogues for Martian long lava flows

    NASA Astrophysics Data System (ADS)

    Giacomini, L.; Pasquarè, G.; Massironi, M.; Frigeri, A.; Bistacchi, A.; Frederico, C.

    2007-08-01

    with the Payun Matru summit caldera development [7]. Finally a new phase of basaltic volcanism developed from Carbonilla Fault and was associated again with pahoehoe lavas and, at the final stage, by very long "aa" lava flows characterized by spectacular channel-levees systems. Hence, the Payun Matru lava field shows a multiplicity of flow surface morphologies linked to different lava types and related emplacement mechanisms, therefore it can represent an outstanding analogue of several Martian flows. In addition, the understanding of propagation processes of Payun Matru exceptionally widespread flows can give important clues in the comprehension of emplacement mechanisms of the long flows on Mars. Remote sensing data used to map and observe the Payun Matru can be compared with data acquired by similar instruments from various scientific missions to Mars. Mars Global Surveyor's Mars Orbiter Camera (MOC) data has been used to observe the morphology of the Martian lava flows with a resolution of about 10 meters per pixel in order to compare them with the Payn Matru lava flows. The Mars Orbiter Laser Altimeter (MOLA) was used to investigate the topographic environment over which flows propagated, whereas HRSC data are needed to possibly determine flow thickness and morphological variability. Arsia Mons lava field that includes the longest flows on Mars [8] shows many analogues of the Payun Matru lava flows since it is mainly characterized by sheet-flows with uniform ridged surface texture locally showing features like lava rises and lava tubes. In particular the extensive flow field in Daedalia Planum, at about 300 km south-west of Arsia Mons, is characterized by lobes reaching several kilometeres in length, although the slope of the region is generally minor of 0,5 degree [9]. Therefore it is very likely that inflation is the main emplacement process of these long flows. The presence of tumuli and lava ridges, detected in several areas of the lava field, seems to support

  19. Gigantic self-confined pahoehoe inflated lava flows in Argentina

    NASA Astrophysics Data System (ADS)

    Pasquare', G.; Bistacchi, A.

    2007-05-01

    The largest lava flows on Earth are pahoehoe basalts emplaced by inflation, a process which can change lava lobes initially a few decimetres thick into large lava sheets several metres thick. Inflation involves the initial formation of a thin, solidified, viscoelastic crust, under which liquid lava is continually added. This thermally efficient endogenous growth process explains the spread of huge volumes of lava over large, almost flat areas, as in the sheet flows which characterise the distal portions of Hawaiian volcanoes or some continental flood basalt provinces. Long, narrow, inflated pahoehoe flows have occasionally been described, either emplaced along pre-existing river channels or confined within topographic barriers. In this contribution we present previously unknown inflated pahoehoe lava flows following very long, narrow pathways over an almost flat surface, with no topographic confinement. Lava, which erupted in Late Quaternary times from the eastern tip of a 60 km long volcanic fissure in Argentina, formed several discrete flows extending as far as 180 km from the source. This fissure was characterized by a long-lasting and complex activity. Alkali-basaltic lava flows were emitted at the two extremities of the fissure system. In the intermediate section of the fissure, the Payun Matru, a great trachitic composite volcano, developed, giving rise to a large caldera which produced large pyroclastic flows. Alkali-basalts predate and postdate the trachitic activity, in fact at the end of the trachitic activity, new basaltic lava flows (mainly aa) were emitted from both ends of the fissure. We studied in details the youngest of the gigantic flows (Pampas Onduladas lava flow), which progressively develops through differing thermally-efficient flow mechanisms. The flow created a large shield volcanic structure at the eastern tip of the E-W fissure and spread to the E forming a very large and thick inflated pahoehoe sheet flow. Leaving the flanks of the

  20. Shatter Complex Formation in the Twin Craters Lava Flow, Zuni-Bandera Field, New Mexico

    NASA Astrophysics Data System (ADS)

    von Meerscheidt, H. C.; Bleacher, J. E.; Brand, B. D.; deWet, A.; Samuels, R.; Hamilton, C.; Garry, W. B.; Bandfield, J. L.

    2013-12-01

    . Prominent ';a';a channels travel around the bluff, leaving a 'wake' of uncovered ground on the downstream side. We interpret this shatter area to have been a branching tube network within an active sheet. The limestone bluff acted as an obstacle that caused a backup of lava within the tubes, driving episodes of shattering. The mounds likely represent earlier solidified sections between active, possibly braided, tube branches, which remained as mounds within the shatter area after the adjacent crust subsided. When lava broke out from the pressurized sheet-like lobe, it formed the ';a';a channels. This section of the flow field is interpreted using inferences from shatter ring formation, but is perhaps better termed a shatter sheet or shatter complex. This study has implications for understanding lava flow dynamics at constriction points, as well as the evolution and morphology of shatter rings.

  1. Exploring Inflated Pahohoe Lava Flow Morphologies and the Effects of Cooling Using a New Simulation Approach

    NASA Technical Reports Server (NTRS)

    Glaze, L. S.; Baloga, S. M.

    2014-01-01

    Pahoehoe lavas are recognized as an important landform on Earth, Mars and Io. Observations of such flows on Earth (e.g., Figure 1) indicate that the emplacement process is dominated by random effects. Existing models for lobate a`a lava flows that assume viscous fluid flow on an inclined plane are not appropriate for dealing with the numerous random factors present in pahoehoe emplacement. Thus, interpretation of emplacement conditions for pahoehoe lava flows on Mars requires fundamentally different models. A new model that implements a simulation approach has recently been developed that allows exploration of a variety of key influences on pahoehoe lobe emplacement (e.g., source shape, confinement, slope). One important factor that has an impact on the final topographic shape and morphology of a pahoehoe lobe is the volumetric flow rate of lava, where cooling of lava on the lobe surface influences the likelihood of subsequent breakouts.

  2. Toothpaste lava from the Barren Island volcano (Andaman Sea)

    NASA Astrophysics Data System (ADS)

    Sheth, Hetu C.; Ray, Jyotiranjan S.; Kumar, Alok; Bhutani, Rajneesh; Awasthi, Neeraj

    2011-04-01

    Toothpaste lava is a basaltic lava flow type transitional between pahoehoe and aa and has been described from Paricutin, Kilauea and Etna volcanoes. Here we describe a spectacular example of toothpaste lava, forming part of a recent (possibly 1994-95) aa flow on the active volcano of Barren Island (Andaman Sea). This flow of subalkalic basalt shows abundant squeeze-ups of viscous toothpasate lava near its entry into the sea. The squeeze-ups are sheets and slabs, up to several meters across and tens of centimeters thick, extruded from boccas. They are often prominently curved, have striated upper surfaces with close-spaced, en echelon linear ridges and grooves, broad wave-like undulations perpendicular to the striations, and sometimes, clefts. Textural, geochemical, and Sr-Nd isotopic data on the squeeze-ups and the exposed aa flow core indicate very crystal-rich, viscous, and isotopically very homogeneous lava. We envisage that a greatly reduced speed of this viscous flow at the coastline, possibly aided by a shallowing of the basal slope, led to lateral spreading of the flow, which caused tension in its upper parts. This, with continued (albeit dwindling) lava supply at the back, led to widespread tearing of the flow surface and extrusion of the squeeze-ups. The larger slabs, while extruding in a plastic condition, curved under their own weight, whereas their surfaces experienced brittle deformation, forming the en echelon grooves. The extruded, detached, and rotated sheets and slabs were carried forward for some distance atop the very slowly advancing aa core, before the flow solidified.

  3. Probabilistically modeling lava flows with MOLASSES

    NASA Astrophysics Data System (ADS)

    Richardson, J. A.; Connor, L.; Connor, C.; Gallant, E.

    2017-12-01

    Modeling lava flows through Cellular Automata methods enables a computationally inexpensive means to quickly forecast lava flow paths and ultimate areal extents. We have developed a lava flow simulator, MOLASSES, that forecasts lava flow inundation over an elevation model from a point source eruption. This modular code can be implemented in a deterministic fashion with given user inputs that will produce a single lava flow simulation. MOLASSES can also be implemented in a probabilistic fashion where given user inputs define parameter distributions that are randomly sampled to create many lava flow simulations. This probabilistic approach enables uncertainty in input data to be expressed in the model results and MOLASSES outputs a probability map of inundation instead of a determined lava flow extent. Since the code is comparatively fast, we use it probabilistically to investigate where potential vents are located that may impact specific sites and areas, as well as the unconditional probability of lava flow inundation of sites or areas from any vent. We have validated the MOLASSES code to community-defined benchmark tests and to the real world lava flows at Tolbachik (2012-2013) and Pico do Fogo (2014-2015). To determine the efficacy of the MOLASSES simulator at accurately and precisely mimicking the inundation area of real flows, we report goodness of fit using both model sensitivity and the Positive Predictive Value, the latter of which is a Bayesian posterior statistic. Model sensitivity is often used in evaluating lava flow simulators, as it describes how much of the lava flow was successfully modeled by the simulation. We argue that the positive predictive value is equally important in determining how good a simulator is, as it describes the percentage of the simulation space that was actually inundated by lava.

  4. Modeling Submarine Lava Flow with ASPECT

    NASA Astrophysics Data System (ADS)

    Storvick, E. R.; Lu, H.; Choi, E.

    2017-12-01

    Submarine lava flow is not easily observed and experimented on due to limited accessibility and challenges posed by the fast solidification of lava and the associated drastic changes in rheology. However, recent advances in numerical modeling techniques might address some of these challenges and provide unprecedented insight into the mechanics of submarine lava flow and conditions determining its wide-ranging morphologies. In this study, we explore the applicability ASPECT, Advanced Solver for Problems in Earth's ConvecTion, to submarine lava flow. ASPECT is a parallel finite element code that solves problems of thermal convection in the Earth's mantle. We will assess ASPECT's capability to model submarine lava flow by observing models of lava flow morphology simulated with GALE, a long-term tectonics finite element analysis code, with models created using comparable settings and parameters in ASPECT. From these observations we will contrast the differing models in order to identify the benefits of each code. While doing so, we anticipate we will learn about the conditions required for end-members of lava flow morphology, for example, pillows and sheet flows. With ASPECT specifically we focus on 1) whether the lava rheology can be implemented; 2) how effective the AMR is in resolving morphologies of the solidified crust; 3) whether and under what conditions the end-members of the lava flow morphologies, pillows and sheets, can be reproduced.

  5. LavaSIM: the effect of heat transfer in 3D on lava flow characteristics (Invited)

    NASA Astrophysics Data System (ADS)

    Fujita, E.

    2013-12-01

    Characteristics of lava flow are governed by many parameters like lava viscosity, effusion rate, ground topography, etc. The accuracy and applicability of lava flow simulation code is evaluated whether the numerical simulation can reproduce these features quantitatively, which is important from both strategic and scientific points of views. Many lava flow simulation codes are so far proposed, and they are classified into two categories, i.e., the deterministic and the probabilistic models. LavaSIM is one of the former category models, and has a disadvantage of time consuming. But LavaSIM can solves the equations of continuity, motion, energy by step and has an advantage in the calculation of three-dimensional analysis with solid-liquid two phase flow, including the heat transfer between lava, solidified crust, air, water and ground, and three-dimensional convection in liquid lava. In other word, we can check the detailed structure of lava flow by LavaSIM. Therefore, this code can produce both channeled and fan-dispersive flows. The margin of the flow is solidified by cooling and these solidified crusts control the behavior of successive lava flow. In case of a channel flow, the solidified margin supports the stable central main flow and elongates the lava flow distance. The cross section of lava flow shows that the liquid lava flows between solidified crusts. As for the lava extrusion flow rate, LavaSIM can include the time function as well as the location of the vents. In some cases, some parts of the solidified wall may be broken by the pressure of successive flow and/or re-melting. These mechanisms could characterize complex features of the observed lava flows at many volcanoes in the world. To apply LavaSIM to the benchmark tests organized by V-hub is important to improve the lava flow evaluation technique.

  6. Inflation Features of the Distal Pahoehoe Portion of the 1859 Mauna Loa Flow, Hawaii; Implications for Evaluating Planetary Lava Flows

    NASA Technical Reports Server (NTRS)

    Zimbelman, J. R.; Garry, W. B.; Bleacher, Jacob E.; Crumpler, L S.

    2011-01-01

    The 1859 eruption of Mauna Loa, Hawaii, resulted in the longest subaerial lava flow on the Big Island. Detailed descriptions were made of the eruption both from ships and following hikes by groups of observers; the first three weeks of the eruption produced an `a`a flow that reached the ocean, and the following 10 months produced a pahoehoe flow that also eventually reached the ocean. The distal portion of the 1859 pahoehoe flow component includes many distinctive features indicative of flow inflation. Field work was conducted on the distal 1859 pahoehoe flow during 2/09 and 3/10, which allowed us to document several inflation features, in or-der evaluate how well inflated landforms might be detected in remote sensing data of lava flows on other planets.

  7. Keck Geology Consortium Lava Project: Undergraduate Research Linking Natural and Experimental Basaltic Lava Flows

    NASA Astrophysics Data System (ADS)

    Karson, J. A.; Hazlett, R. W.; Wysocki, R.; Bromfield, M. E.; Browne, N. C.; Davis, N. C.; Pelland, C. G.; Rowan, W. L.; Warner, K. A.

    2014-12-01

    Undergraduate students in the Keck Geology Consortium Lava Project participated in a month-long investigation of features of basaltic lava flows from two very different perspectives. The first half of the project focused on field relations in basaltic lava flows from the 1984 Krafla Fires eruption in northern Iceland. Students gained valuable experience in the collection of observations and samples in the field leading to hypotheses for the formation of selected features related to lava flow dynamics. Studies focused on a wide range of features including: morphology and heat loss in lava tubes (pyroducts), growth and collapse of lava ponds and overflow deposits, textural changes of lava falls (flow over steep steps), spaced spatter cones from flows over wet ground, and anisotropy of magnetic susceptibility related to flow kinematics. In the second half of the program students designed, helped execute, documented, and analyzed features similar to those they studied in the field with large-scale (50-250 kg) basaltic lava flows created in the Syracuse University Lava Project (http://lavaproject.syr.edu). Data collected included video from multiple perspectives, infrared thermal (FLIR) images, still images, detailed measurements of flow dimensions and rates, and samples for textural and magnetic analyses. Experimental lava flow features provided critical tests of hypotheses generated in the field and a refined understanding of the behavior and final morphology of basaltic lava flows. The linked field and experimental studies formed the basis for year-long independent research projects under the supervision of their faculty mentors, leading to senior theses at the students' respective institutions.

  8. Lava Flows of Daedalia Planum

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    This THEMIS image captures a portion of several lava flows in Daedalia Planum southwest of the Arsia Mons shield volcano. Textures characteristic of the variable surface roughness associated with different lava flows in this region are easily seen. The lobate edges of the flows are distinctive, and permit the discrimination of many overlapping individual flows. The surfaces of some flows look wrinkly and ropy, probably indicating a relatively fluid type of lava flow referred to as pahoehoe. The surface textures of lava flows can thus sometimes be used for comparative purposes to infer lava viscosity and effusion rates. Numerous parallel curved ridges are visible on the upper surfaces of some of the lava flows. These ridges make the flow surface look somewhat ropy, and at smaller scales this flow might be referred to as pahoehoe, however, these features are probably better referred to as pressure ridges. Pressure ridges form on the surface of a lava flow when the upper part of the flow is exposed to air, cooling it, but the insulated much warmer interior of the flow continues to move down slope (and more material is pushed forward from behind), causing the surface to compress and pile up like a rug.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with

  9. Taylor instability in rhyolite lava flows

    NASA Technical Reports Server (NTRS)

    Baum, B. A.; Krantz, W. B.; Fink, J. H.; Dickinson, R. E.

    1989-01-01

    A refined Taylor instability model is developed to describe the surface morphology of rhyolite lava flows. The effect of the downslope flow of the lava on the structures resulting from the Taylor instability mechanism is considered. Squire's (1933) transformation is developed for this flow in order to extend the results to three-dimensional modes. This permits assessing why ridges thought to arise from the Taylor instability mechanism are preferentially oriented transverse to the direction of lava flow. Measured diapir and ridge spacings for the Little and Big Glass Mountain rhyolite flows in northern California are used in conjunction with the model in order to explore the implications of the Taylor instability for flow emplacement. The model suggests additional lava flow features that can be measured in order to test whether the Taylor instability mechanism has influenced the flows surface morphology.

  10. Diverting lava flows in the lab

    USGS Publications Warehouse

    Dietterich, Hannah; Cashman, Katharine V.; Rust, Alison C.; Lev, Einat

    2015-01-01

    Recent volcanic eruptions in Hawai'i, Iceland and Cape Verde highlight the challenges of mitigating hazards when lava flows threaten infrastructure. Diversion barriers are the most common form of intervention, but historical attempts to divert lava flows have met with mixed success and there has been little systematic analysis of optimal barrier design. We examine the interaction of viscous flows of syrup and molten basalt with barriers in the laboratory. We find that flows thicken immediately upslope of an obstacle, forming a localized bow wave that can overtop barriers. Larger bow waves are generated by faster flows and by obstacles oriented at a high angle to the flow direction. The geometry of barriers also influences flow behaviour. Barriers designed to split or dam flows will slow flow advance, but cause the flow to widen, whereas oblique barriers can effectively divert flows, but may also accelerate flow advance. We argue that to be successful, mitigation of lava-flow hazards must incorporate the dynamics of lava flow–obstacle interactions into barrier design. The same generalizations apply to the effect of natural topographic features on flow geometry and advance rates.

  11. Map showing lava inundation zones for Mauna Loa, Hawai'i

    USGS Publications Warehouse

    Trusdell, F.A.; Graves, P.; Tincher, C.R.

    2002-01-01

    The Island of Hawai‘i is composed of five coalesced basaltic volcanoes. Lava flows constitute the greatest volcanic hazard from these volcanoes. This report is concerned with lava flow hazards on Mauna Loa, the largest of the island shield volcanoes. Hilo lies 58 km from the summit of Mauna Loa, the Kona coast 33 km, and the southernmost point of the island 61 km.Hawaiian volcanoes erupt two morphologically distinct types of lava, aa and pahoehoe. The surfaces of pahoehoe flows are rather smooth and undulating. Pahoehoe flows are commonly fed by lava tubes, which are well insulated, lava-filled conduits contained within the flows. The surfaces of aa flows are extremely rough and composed of lava fragments. Aa flows usually form lava channels rather than lava tubes.In Hawai‘i, lava flows are known to reach distances of 50 km or more. The flows usually advance slowly enough that people can escape from their paths. Anything overwhelmed by a flow will be damaged or destroyed by burial, crushing, or ignition. Mauna Loa makes up 51 percent of the surface area of the Island of Hawai‘i. Geologic mapping shows that lava flows have covered more than 40 percent of the surface every 1,000 years. Since written descriptions of its activity began in A.D. 1832, Mauna Loa has erupted 33 times. Some eruptions begin with only brief seismic unrest, whereas others start several months to a year following increased seismic activity. Once underway, the eruptions can produce lava flows that reach the sea in less than 24 hours, severing roads and utilities. For example, the 1950 flows from the southwest rift zone reached the ocean in approximately three hours. The two longest flows of Mauna Loa are pahoehoe flows from the 50-kilometer-long 1859 and the 48-kilometer-long 1880-81 eruptions.Mauna Loa will undoubtedly erupt again. When it does, the first critical question that must be answered is: Which areas are threatened with inundation? Once the threatened areas are established, we

  12. Documenting Chemical Assimilation in a Basaltic Lava Flow

    NASA Technical Reports Server (NTRS)

    Young, K. E.; Bleacher, J. E.; Needham, D. H.; Evans, C.; Whelley, P. L.; Scheidt, S.; Williams, D.; Rogers, A. D.; Glotch, T.

    2017-01-01

    Lava channels are features seen throughout the inner Solar System, including on Earth, the Moon, and Mars. Flow emplacement is therefore a crucial process in the shaping of planetary surfaces. Many studies have investigated the dynamics of lava flow emplacement, both on Earth and on the Moon [1,2,3] but none have focused on how the compositional and structural characteristics of the substrate over which a flow was emplaced influenced its final flow morphology. Within the length of one flow, it is common for flows to change in morphology, a quality linked to lava rheology (a function of multiple factors including viscosity, temperature, composition, etc.). The relationship between rheology and temperature has been well-studied [4,5,6] but less is understood about the relationship between a pre-flow terrain's chemistry and how the interaction between this flow and the new flow might affect lava rheology and therefore emplacement dynamics. Lava erosion. Through visual observations of active terrestrial flows, lava erosion has been well-documented [i.e. 7,8,9,10]. Lava erosion is the process by which flow composition is altered as the active lava melts and assimilates the pre-flow terrain over which it moves. Though this process has been observed, there is only one instance of where it was been geochemically documented.

  13. Laboratory Experiments to Investigate Breakout and Bifurcation of Lava Flows on Mars

    NASA Astrophysics Data System (ADS)

    Miyamoto, H.; Zimbelman, J. R.; Tokunaga, T.; Tosaka, H.

    2001-05-01

    Mars Orbiter Camera (MOC) images show that many lava flows on Mars have morphologies quite similar to aa lava flows. Such flows often have many lobes and branches that overlap each other, making a compound flow unit. These features cannot be explained by any simple flow model because longer effusion duration will simply make the flow longer, although actual lavas often will bifurcate to make additonal flow units. Similarly, formation of a lava tube is difficult to predict by a model that does not contain preset conditions for their formation. Treatment of the surface crust is very important to the flow morphology, especially for effusion over a long duration. To understand the effect of a crust on flow morphology, paraffin wax is especially useful in laboratory experiments. In our experiments, a flow on a constant slope typically progresses with a constant width at first. Then, the flow front cools to form a crust, which inhibits the progress of the flow. At that time, the flow sometimes becomes sinuous or ceases its movement. With a sufficient flux after that, uplift of thickness (inflation) can occur. Uplift sometimes attains a sufficient thickening to produce a breakout at the side of the flow, bifurcating to form a new cooling unit. Bifurcated flows do not always follow the main flow (some branches moved several cm away from the initial flow). The bifurcations continue to develop into a complicated flow field, given a sufficiently long duration of effusion. Although the movement of the flow with a surface crust is difficult to predict, our simple analysis suggests that the maximum thickness attained by the inflation (by fluid continuing to enter a stopped flow) before a breakout can occur is roughly estimated by a balance between the overpressure and the crust tensile strength. The maximum extent of a bifurcated flow after a breakout can probably be constrained, which will be a significant goal for future modeling of compound flows.

  14. A flexible open-source toolkit for lava flow simulations

    NASA Astrophysics Data System (ADS)

    Mossoux, Sophie; Feltz, Adelin; Poppe, Sam; Canters, Frank; Kervyn, Matthieu

    2014-05-01

    Lava flow hazard modeling is a useful tool for scientists and stakeholders confronted with imminent or long term hazard from basaltic volcanoes. It can improve their understanding of the spatial distribution of volcanic hazard, influence their land use decisions and improve the city evacuation during a volcanic crisis. Although a range of empirical, stochastic and physically-based lava flow models exists, these models are rarely available or require a large amount of physical constraints. We present a GIS toolkit which models lava flow propagation from one or multiple eruptive vents, defined interactively on a Digital Elevation Model (DEM). It combines existing probabilistic (VORIS) and deterministic (FLOWGO) models in order to improve the simulation of lava flow spatial spread and terminal length. Not only is this toolkit open-source, running in Python, which allows users to adapt the code to their needs, but it also allows users to combine the models included in different ways. The lava flow paths are determined based on the probabilistic steepest slope (VORIS model - Felpeto et al., 2001) which can be constrained in order to favour concentrated or dispersed flow fields. Moreover, the toolkit allows including a corrective factor in order for the lava to overcome small topographical obstacles or pits. The lava flow terminal length can be constrained using a fixed length value, a Gaussian probability density function or can be calculated based on the thermo-rheological properties of the open-channel lava flow (FLOWGO model - Harris and Rowland, 2001). These slope-constrained properties allow estimating the velocity of the flow and its heat losses. The lava flow stops when its velocity is zero or the lava temperature reaches the solidus. Recent lava flows of Karthala volcano (Comoros islands) are here used to demonstrate the quality of lava flow simulations with the toolkit, using a quantitative assessment of the match of the simulation with the real lava flows. The

  15. Lava-snow interactions at Tolbachik 2012-13 eruption: comparison to recent field observations and experiments

    NASA Astrophysics Data System (ADS)

    Edwards, B. R.; Belousov, A.; Belousova, M.; Izbekov, P. E.; Bindeman, I. N.; Gardeev, E.; Muravyev, Y. D.; Melnikov, D.

    2013-12-01

    More than a dozen volcanic eruptions in the past twenty years have produced lava interaction with snow or ice, some of which have produced damaging floods/lahars. However, the factors controlling melting during lava-snow/ice interactions is not well understood. Recent observations from the presently ongoing eruption at Tolbachik, Kamchatka confirm some general observations from large-scale experiments, and recent eruptions (2010 Fimmvorduhals; Edwards et al, 2012), but also show new types of behavior not before described. The new observations provide further constraints on heat transfer between ice/snow and three different lava morphologies: ';a'a, pahoehoe, and toothpaste. ';A'a flows at Tolbachik commonly were able to travel over seasonal snow cover (up to 4 m thick), especially where the snow was covered by tephra within 1.5 km of the vent area. Locally, heated meltwater discharge events issued from beneath the front of advancing lava, even though snow observation pits dug in front of advancing ';a'a flows also showed that in some areas melting was not as extensive. Once, an ';a'a flow was seen to collapse through snow, generating short-lived phreatomagmatic/phreatic activity. Closer to the vent, pahoehoe flow lobes and sheet flows occasionally spilled over onto snow and were able to rapidly transit snow with few obvious signs of melting/steam generation. Most of these flows did melt through basal snow layers within 24 hours however. We were also able to closely observe ';toothpaste' lava flows ';intruding' into snow in several locations, including snow-pits, and to watch it pushing up through snow forming temporary snow domes. Toothpaste lava caused the most rapid melting and most significant volumes of steam, as the meltwater drained down into the intruding lava. Behaviour seen at Tolbachik is similar to historic (e.g., Hekla 1947; Einarrson, 1949) and recent observations (e.g. Fimmvorduhals), as well as large-scale experiments (Edwards et al., 2013). While

  16. The architecture of tholeiitic lava flows in the Neogene flood basalt piles of eastern Iceland: constraints on the mode of emplacemement

    NASA Astrophysics Data System (ADS)

    Oskarsson, B. V.; Riishuus, M. S.

    2012-12-01

    Tholeiites comprise 50-70% of the Neogene lava piles of eastern Iceland and have been described largely as flood basalts erupted from fissures (Walker, 1958). This study incorporates lava piles found in the Greater Reydarfjördur area and emprises the large-scale architecture of selected flows and flow groups, their internal structure and textures with the intention of assessing their mode of emplacement. A range of lava morphologies have been described and include: simple (tabular) flows with a'a and rubbly flow tops, simple flows with pahoehoe crust and compound pahoehoe flows, with simple flows being most common. Special attention is given here to the still poorly understood simple flows, which are characterized by extensive sheet lobes with individual sheet lengths frequently exceeding 2 km and reaching thicknesses of ~40 m (common aspect ratios <0.01). The sheets in individual flow fields are emplaced side by side with an overlapping contact and are free of tubes. Their internal structure generally constitutes an upper vesicular crust with no or minor occurrences of horizontal vesicle zones, a poorly vesicular core and a thin basal vesicular zone. The normalized core/crust thickness ratios resemble modern compound pahoehoe flows in many instances (0.4-0.7), but with the thicker flows reaching ratios of 0.9. Flow crusts are either pahoehoe, rubbly or scoriaceous with torn and partially welded scoria and clinker. Frequently, any given flow morphology is repeated in sequences of three to four flows with direct contacts. Preliminary assessments suggest that simple flows are the product of high and sustained effusion rates from seemingly short-lived fissures. Simple flows with a'a flow tops may comprise the annealed emplacement mode of sheet flows and channeled a'a, in which the flow propagated as a single unit, whereas the brecciated flow top formed by continuous tearing and brecciation as occurs in channeled lava flowing at high velocity. The absence of a

  17. Emplacement of Basaltic Lava Flows: the Legacy of GPL Walker

    NASA Astrophysics Data System (ADS)

    Cashman, K. V.

    2005-12-01

    Through his early field measurements of lava flow morphology, G.P.L. Walker established a framework for examination of the dynamics of lava flow emplacement that is still in place today. I will examine this legacy as established by three early papers: (1) his 1967 paper, where he defined a relationship between the thickness of recent Etna lava flows and the slope over which they flowed, a relationship that he ascribed to lava viscosity; (2) his 1971 paper, which defined a relationship between lava flux and the formation of simple and compound flow units that he used to infer high effusion rates for the emplacement of some flood basalt lavas; and (3) his often-cited 1973 paper, which related the length of lava flows to their average effusion rate. These three papers, all similar in their basic approach of using field measurements of lava flow morphology to extract fundamental relationships between eruption conditions (magma flux and rheology) and emplacement style (flow length and thickness), firmly established the relationship between flow morphology and emplacement dynamics that has since been widely applied not only to subaerial lava flows, but also to the interpretation of flows in submarine and planetary environments. Important extensions of these concepts have been provided by improved field observation methods, particularly for analysis of flowing lava, by laboratory measurements of lava rheology, by the application of analog experiments to lava flow dynamics, and by steady improvement of numerical techniques to model the flow of lava over complex terrain. The real legacy of G.P.L. Walker's field measurement approach, however, may lie in the future, as new topographic measurement techniques such as LIDAR hold exciting promise for truly quantitative analysis of lava flow morphologies and their relationship to flow dynamics.

  18. Newberry Volcano's youngest lava flows

    USGS Publications Warehouse

    Robinson, Joel E.; Donnelly-Nolan, Julie M.; Jensen, Robert A.

    2015-01-01

    The central caldera is visible in the lower right corner of the center map, outlined by the black dashed line. The caldera collapsed about 75,000 years ago when massive explosions sent volcanic ash as far as the San Francisco Bay area and created a 3,000-ft-deep hole in the center of the volcano. The caldera is now partly refilled by Paulina and East Lakes, and the byproducts from younger eruptions, including Newberry Volcano’s youngest rhyolitic lavas, shown in red and orange. The majority of Newberry Volcano’s many lava flows and cinder cones are blanketed by as much as 5 feet of volcanic ash from the catastrophic eruption of Mount Mazama that created Crater Lake caldera approximately 7,700 years ago. This ash supports abundant tree growth and obscures the youthful appearance of Newberry Volcano. Only the youngest volcanic vents and lava flows are well exposed and unmantled by volcanic ash. More than one hundred of these young volcanic vents and lava flows erupted 7,000 years ago during Newberry Volcano’s northwest rift zone eruption.

  19. Visualizing lava flow interiors with LiDAR

    NASA Astrophysics Data System (ADS)

    Whelley, P.; Garry, W. B.; Young, K.; Kruse, S.; Esmaeili, S.; Bell, E.; Paylor, R.

    2017-12-01

    Lava tube caves provide unprecedented access to the shallow (meters to tens of meters) interiors of lava flows. Surveying tube geometry and morphology can illuminate lava flow thermal history and emplacement mechanics. In an expedition to Lava Beds National Monument, California, our team collected ultra-high-resolution (< 10 cm) topography from the interiors of four lava tubes using a terrestrial laser scanner (TLS). More than 78 GB of point data (latitude, longitude, elevation) of the surface and interiors of Hercules Leg, Skull, Valentine and, Indian Well Caves were collected. For example, our point cloud for 50 m of Valentine Cave contains 748 million points (interior: 478 million, exterior: 270 million) from 28 TLS scans. The tubes visited range in diameter from < 1 m to > 10 m, and from 1 m to < 20 m of overburden. The interior morphology of the tubes remain pristine (i.e., un-eroded) after more than 10,000 years. The TLS data illuminate fresh-looking lava tube flow features (e.g., lava-coils, pillars, benches, and ropes) and post-emplacement deformation features (e.g., fractures, lava-drips, molded ceilings, and drop-blocks). Furthermore, the data provide context for geochemical and geophysical observations made in conjunction with the TLS survey. Lava tube morphology, observable in the TLS data, informs each tube's emplacement history. Skull cave is the largest ( 20 m in diameter) requiring a comparatively high lava discharge rate and suggesting this cave formed by roofing over a lava channel. In contrast, Valentine, Hercules Leg, and Indian Well Caves are narrower, (1 to 4 m) and have many branches, some of which rejoin the "main passage", suggesting they formed by developing a network of pathways within the lava flow. We will showcase video fly-throughs for these lava tubes, plus manipulable point clouds. The interactive eLighning presentation will encourage hands-on exploration of these unique data. We will guide them on a tour of the underground to

  20. Lava Flow at Kilauea, Hawaii

    NASA Image and Video Library

    2007-08-31

    On July 21, 2007, the world most active volcano, Kilauea on Hawaii Big Island, produced a fissure eruption from the Puu Oo vent, which fed an open lava channel and lava flows toward the east. This image is from NASA Terra satellite.

  1. Field Measurements of the 1983 Royal Gardens Lava Flows, Kilauea Volcano, and 1984 Mauna Loa Lava Flow, Hawaii

    NASA Technical Reports Server (NTRS)

    Fink, J.; Zimbelman, J.

    1985-01-01

    Theoretical models used in the remote determination of lava flow rheology and compositions rely on estimates of such geometric and flow parameters as volume flow rates, levee heights, and channel dimensions, as well as morphologic and structural patterns on the flow surfaces. Quantitative measures of these variables are difficult to obtain, even under optimum conditions. Detailed topographic profiles across several Hawaiian lava flows that were carefully monitored by the U.S. Geological Survey during their emplacement in 1983 were surveyed in order to test various flow emplacement models. Twenty two accurate channel cross sections were constructed by combining these profiles with digitized pre-flow topographic measurements. Levee heights, shear zone widths, and flow depths could then be read directly from the cross sections and input into the models. The profiles were also compared with ones constructed for some Martian lava flows.

  2. Fire, Lava Flows, and Human Evolution

    NASA Astrophysics Data System (ADS)

    Medler, M. J.

    2015-12-01

    Richard Wrangham and others argue that cooked food has been obligate for our ancestors since the time of Homo erectus. This hypothesis provides a particularly compelling explanation for the smaller mouths and teeth, shorter intestines, and larger brains that separate us from other hominins. However, natural ignitions are infrequent and it is unclear how earlier hominins may have adapted to cooked food and fire before they developed the necessary intelligence to make or control fire. To address this conundrum, we present cartographical evidence that the massive and long lasting lava flows in the African Rift could have provided our ancestors with episodic access to heat and fire as the front edges of these flows formed ephemeral pockets of heat and ignition and other geothermal features. For the last several million years major lava flows have been infilling the African Rift. After major eruptions there were likely more slowly advancing lava fronts creating small areas with very specific adaptive pressures and opportunities for small isolated groups of hominins. Some of these episodes of isolation may have extended for millennia allowing these groups of early hominins to develop the adaptations Wrangham links to fire and cooked food. To examine the potential veracity of this proposal, we developed a series of maps that overlay the locations of prominent hominin dig sites with contemporaneous lava flows. These maps indicate that many important developments in hominin evolution were occurring in rough spatial and temporal proximity to active lava flows. These maps indicate it is worth considering that over the last several million years small isolated populations of hominins may have experienced unique adaptive conditions while living near the front edges of these slowly advancing lava flows.

  3. Studies of fluid instabilities in flows of lava and debris

    NASA Technical Reports Server (NTRS)

    Fink, Jonathan H.

    1987-01-01

    At least two instabilities have been identified and utilized in lava flow studies: surface folding and gravity instability. Both lead to the development of regularly spaced structures on the surfaces of lava flows. The geometry of surface folds have been used to estimate the rheology of lava flows on other planets. One investigation's analysis assumed that lava flows have a temperature-dependent Newtonian rheology, and that the lava's viscosity decreased exponentially inward from the upper surface. The author reviews studies by other investigators on the analysis of surface folding, the analysis of Taylor instability in lava flows, and the effect of surface folding on debris flows.

  4. Observations on lava, snowpack and their interactions during the 2012-13 Tolbachik eruption, Klyuchevskoy Group, Kamchatka, Russia

    NASA Astrophysics Data System (ADS)

    Edwards, Benjamin R.; Belousov, Alexander; Belousova, Marina; Melnikov, Dmitry

    2015-12-01

    Observations made during January and April 2013 show that interactions between lava flows and snowpack during the 2012-13 Tolbachik fissure eruption in Kamchatka, Russia, were controlled by different styles of emplacement and flow velocities. `A`a lava flows and sheet lava flows generally moved on top of the snowpack with few immediate signs of interaction besides localized steaming. However, lavas melted through underlying snowpack 1-4 m thick within 12 to 24 h, and melt water flowed episodically from the beneath flows. Pahoehoe lava lobes had lower velocities and locally moved beneath/within the snowpack; even there the snow melting was limited. Snowpack responses were physical, including compressional buckling and doming, and thermal, including partial and complete melting. Maximum lava temperatures were up to 1355 K (1082 °C; type K thermal probes), and maximum measured meltwater temperatures were 335 K (62.7 °C). Theoretical estimates for rates of rapid (e.g., radiative) and slower (conductive) snowmelt are consistent with field observations showing that lava advance was fast enough for `a`a and sheet flows to move on top of the snowpack. At least two styles of physical interactions between lava flows and snowpack observed at Tolbachik have not been previously reported: migration of lava flows beneath the snowpack, and localized phreatomagmatic explosions caused by snowpack failure beneath lava. The distinctive morphologies of sub-snowpack lava flows have a high preservation potential and can be used to document snowpack emplacement during eruptions.

  5. Estimating rheological properties of lava flows using high-resolution time lapse imaging

    NASA Astrophysics Data System (ADS)

    James, M. R.; Applegarth, L. J.; Pinkerton, H.; Fryer, T.

    2011-12-01

    During effusive eruptions, property and infrastructure can be threatened by lava flow inundation. In order to maximise the effectiveness of the response to such an event, it is necessary to be able to reliably forecast the area that will be affected. One of the major controls on the advance of a lava flow is its rheology, which is spatially and temporally variable, and depends on many underlying factors. Estimating the rheological properties of a lava flow, and the change in these over space and time is therefore of the utmost importance. Here we report estimates of rheological properties made from geometric and velocity measurements on integrated topographic and image data using the method of Ellis et al. (2004) (Ellis B, Wilson L & Pinkerton H (2004) Estimating the rheology of basaltic lava flows. Lunar & Planetary Science XXXV Abst. 1550). These are then compared to the viscosity predicted from composition and temperature by the GRD model (Giordano D, Russell JK, & Dingwell DB (2008) Viscosity of Magmatic Liquids: A Model. Earth & Planetary Science Letters, 271, 123-134). During the 13 May 2008 - 6 July 2009 eruption of Mt Etna, Sicily, lava flows were emplaced into the Valle del Bove, reaching a maximum length of >6 km. Towards the end of the eruption, multiple channelized aa flows were active simultaneously, reaching tens to hundreds of metres in length. Flow lifetimes were of the order hours to days. In the last month of the eruption, we installed a Canon EOS 450D camera at Pizzi Deneri, on the north side of the Valle del Bove, to collect visible images at 15-minute intervals. On one day, topographic data (using a Riegl LPM-321 terrestrial laser scanner) and thermal images (using a FLIR Thermacam S40) were also collected from this location. The fronts of some of the larger flows were tracked through the time lapse image sequence. Using knowledge of the camera imaging geometry, the pixel tracks were reprojected onto the topographic surface to determine flow

  6. Correlation of the Deccan and Rajahmundry Trap lavas: Are these the longest and largest lava flows on Earth?

    NASA Astrophysics Data System (ADS)

    Self, S.; Jay, A. E.; Widdowson, M.; Keszthelyi, L. P.

    2008-05-01

    We propose that the Rajahmundry Trap lavas, found near the east coast of peninsular India , are remnants of the longest lava flows yet recognized on Earth (˜ 1000 km long). These outlying Deccan-like lavas are shown to belong to the main Deccan Traps. Several previous studies have already suggested this correlation, but have not demonstrated it categorically. The exposed Rajahmundry lavas are interpreted to be the distal parts of two very-large-volume pāhoehoe flow fields, one each from the Ambenali and Mahabaleshwar Formations of the Wai Sub-group in the Deccan Basalt Group. Eruptive conditions required to emplace such long flows are met by plausible values for cooling and eruption rates, and this is shown by applying a model for the formation of inflated pāhoehoe sheet flow lobes. The model predicts flow lobe thicknesses similar to those observed in the Rajahmundry lavas. For the last 400 km of flow, the lava flows were confined to the pre-existing Krishna valley drainage system that existed in the basement beyond the edge of the gradually expanding Deccan lava field, allowing the flows to extend across the subcontinent to the eastern margin where they were emplaced into a littoral and/or shallow marine environment. These lavas and other individual flow fields in the Wai Sub-group may exceed eruptive volumes of 5000 km 3, which would place them amongst the largest magnitude effusive eruptive units yet known. We suggest that the length of flood basalt lava flows on Earth is restricted mainly by the size of land masses and topography. In the case of the Rajahmundry lavas, the flows reached estuaries and the sea, where their advance was perhaps effectively terminated by cooling and/or disruption. However, it is only during large igneous province basaltic volcanism that such huge volumes of lava are erupted in single events, and when the magma supply rate is sufficiently high and maintained to allow the formation of very long lava flows. The Rajahmundry lava

  7. Correlation of the Deccan and Rajahmundry Trap lavas: Are these the longest and largest lava flows on Earth?

    USGS Publications Warehouse

    Self, S.; Jay, A.E.; Widdowson, M.; Keszthelyi, L.P.

    2008-01-01

    We propose that the Rajahmundry Trap lavas, found near the east coast of peninsular India, are remnants of the longest lava flows yet recognized on Earth (??? 1000??km long). These outlying Deccan-like lavas are shown to belong to the main Deccan Traps. Several previous studies have already suggested this correlation, but have not demonstrated it categorically. The exposed Rajahmundry lavas are interpreted to be the distal parts of two very-large-volume pa??hoehoe flow fields, one each from the Ambenali and Mahabaleshwar Formations of the Wai Sub-group in the Deccan Basalt Group. Eruptive conditions required to emplace such long flows are met by plausible values for cooling and eruption rates, and this is shown by applying a model for the formation of inflated pa??hoehoe sheet flow lobes. The model predicts flow lobe thicknesses similar to those observed in the Rajahmundry lavas. For the last 400??km of flow, the lava flows were confined to the pre-existing Krishna valley drainage system that existed in the basement beyond the edge of the gradually expanding Deccan lava field, allowing the flows to extend across the subcontinent to the eastern margin where they were emplaced into a littoral and/or shallow marine environment. These lavas and other individual flow fields in the Wai Sub-group may exceed eruptive volumes of 5000??km3, which would place them amongst the largest magnitude effusive eruptive units yet known. We suggest that the length of flood basalt lava flows on Earth is restricted mainly by the size of land masses and topography. In the case of the Rajahmundry lavas, the flows reached estuaries and the sea, where their advance was perhaps effectively terminated by cooling and/or disruption. However, it is only during large igneous province basaltic volcanism that such huge volumes of lava are erupted in single events, and when the magma supply rate is sufficiently high and maintained to allow the formation of very long lava flows. The Rajahmundry lava

  8. Olympus Mons, Mars: Constraints on Lava Flow Silica Composition

    NASA Astrophysics Data System (ADS)

    Kirshner, M.; Jurdy, D. M.

    2016-12-01

    Olympus Mons, Mars, the largest known volcano in our solar system, contains numerous enigmatic lava flow features. Lava tubes have received attention as their final morphologies may offer habitable zones for both native life and human exploration. Such tubes were formed through mechanisms involving several volatile species with significant silica content. Olympus Mons, a shield volcano, might be expected to have flows with silica content similar to that of terrestrial basaltic flows. However, past investigations have estimated a slightly more andesitic composition. Data pertaining to lava tubes such as flow width and slope are collected from the Mars Reconnaissance Orbiter's Context Camera, Mars Odyssey's THEMIS instrument, and Mars Express' HRSC instrument. Compiling this data in GIS software allows for extensive mapping and analysis of Olympus Mons' seemingly inactive flow features. A rheological analysis performed on 62 mapped lava tubes utilizes geometric parameters inferred from mapping. Lava was modeled as a Bingham fluid on an inclined plane, allowing for the derivation of lava yield stress. Percent silica content was calculated for each of the 62 mapped flows using a relationship derived from observations of terrestrial lava yield strengths and corresponding silica composition. Results indicate that lava tube flows across Olympus Mons were on average basaltic in nature, occasionally reaching into the andesitic classification: percent silica content is 51% on average and ranges between roughly 40% and 57%.

  9. Stochastic modeling of a lava-flow aquifer system

    USGS Publications Warehouse

    Cronkite-Ratcliff, Collin; Phelps, Geoffrey A.

    2014-01-01

    This report describes preliminary three-dimensional geostatistical modeling of a lava-flow aquifer system using a multiple-point geostatistical model. The purpose of this study is to provide a proof-of-concept for this modeling approach. An example of the method is demonstrated using a subset of borehole geologic data and aquifer test data from a portion of the Calico Hills Formation, a lava-flow aquifer system that partially underlies Pahute Mesa, Nevada. Groundwater movement in this aquifer system is assumed to be controlled by the spatial distribution of two geologic units—rhyolite lava flows and zeolitized tuffs. The configuration of subsurface lava flows and tuffs is largely unknown because of limited data. The spatial configuration of the lava flows and tuffs is modeled by using a multiple-point geostatistical simulation algorithm that generates a large number of alternative realizations, each honoring the available geologic data and drawn from a geologic conceptual model of the lava-flow aquifer system as represented by a training image. In order to demonstrate how results from the geostatistical model could be analyzed in terms of available hydrologic data, a numerical simulation of part of an aquifer test was applied to the realizations of the geostatistical model.

  10. Field Detection of Chemical Assimilation in A Basaltic Lava Flow

    NASA Technical Reports Server (NTRS)

    Young, K. E.; Bleacher, J. E.; Needham, D. H.; Evans, C. A.; Whelley, P. L.; Scheidt, S. P.; Williams, D. A.; Rogers, A. D.; Glotch, T.

    2017-01-01

    Lava channels are features seen throughout the inner Solar System, including on Earth, the Moon, and Mars. Flow emplacement is therefore a crucial process in the shaping of planetary surfaces. Many studies, including some completed by members of this team at the December 1974 lava flow, have investigated the dynamics of lava flow emplacement, both on Earth and on the Moon and how pre-flow terrain can impact final channel morphology, but far fewer have focused on how the compositional characteristics of the substrate over which a flow was em-placed influenced its final flow morphology. Within the length of one flow, it is common for flows to change in morphology, a quality linked to rheology (a function of multiple factors including viscosi-ty, temperature, composition, etc.). The relationship between rheology and temperature has been well-studied but less is known about the relationship between an older flow's chemistry and how the interaction between this flow and the new flow might affect lava rheology and therefore emplacement dynamics. Lava erosion. Through visual observations of active terrestrial flows, mechanical erosion by flowing lava has been well-documented. Lava erosion by which flow composition is altered as the active lava melts and assimilates the pre-flow terrain over which it moves is also hypothesized to affect channel formation. However, there is only one previous field study that geochemically documents the process in recent basaltic flow systems.

  11. MrLavaLoba: A new probabilistic model for the simulation of lava flows as a settling process

    NASA Astrophysics Data System (ADS)

    de'Michieli Vitturi, Mattia; Tarquini, Simone

    2018-01-01

    A new code to simulate lava flow spread, MrLavaLoba, is presented. In the code, erupted lava is itemized in parcels having an elliptical shape and prescribed volume. New parcels bud from existing ones according to a probabilistic law influenced by the local steepest slope direction and by tunable input settings. MrLavaLoba must be accounted among the probabilistic codes for the simulation of lava flows, because it is not intended to mimic the actual process of flowing or to provide directly the progression with time of the flow field, but rather to guess the most probable inundated area and final thickness of the lava deposit. The code's flexibility allows it to produce variable lava flow spread and emplacement according to different dynamics (e.g. pahoehoe or channelized-'a'ā). For a given scenario, it is shown that model outputs converge, in probabilistic terms, towards a single solution. The code is applied to real cases in Hawaii and Mt. Etna, and the obtained maps are shown. The model is written in Python and the source code is available at http://demichie.github.io/MrLavaLoba/.

  12. Numerical and Experimental Approaches Toward Understanding Lava Flow Heat Transfer

    NASA Astrophysics Data System (ADS)

    Rumpf, M.; Fagents, S. A.; Hamilton, C.; Crawford, I. A.

    2013-12-01

    We have performed numerical modeling and experimental studies to quantify the heat transfer from a lava flow into an underlying particulate substrate. This project was initially motivated by a desire to understand the transfer of heat from a lava flow into the lunar regolith. Ancient regolith deposits that have been protected by a lava flow may contain ancient solar wind, solar flare, and galactic cosmic ray products that can give insight into the history of our solar system, provided the records were not heated and destroyed by the overlying lava flow. In addition, lava-substrate interaction is an important aspect of lava fluid dynamics that requires consideration in lava emplacement models Our numerical model determines the depth to which the heat pulse will penetrate beneath a lava flow into the underlying substrate. Rigorous treatment of the temperature dependence of lava and substrate thermal conductivity and specific heat capacity, density, and latent heat release are imperative to an accurate model. Experiments were conducted to verify the numerical model. Experimental containers with interior dimensions of 20 x 20 x 25 cm were constructed from 1 inch thick calcium silicate sheeting. For initial experiments, boxes were packed with lunar regolith simulant (GSC-1) to a depth of 15 cm with thermocouples embedded at regular intervals. Basalt collected at Kilauea Volcano, HI, was melted in a gas forge and poured directly onto the simulant. Initial lava temperatures ranged from ~1200 to 1300 °C. The system was allowed to cool while internal temperatures were monitored by a thermocouple array and external temperatures were monitored by a Forward Looking Infrared (FLIR) video camera. Numerical simulations of the experiments elucidate the details of lava latent heat release and constrain the temperature-dependence of the thermal conductivity of the particulate substrate. The temperature-dependence of thermal conductivity of particulate material is not well known

  13. Emplacement and Growth of the August 2014 to February 2015 Nornahraun Lava Flow Field North Iceland

    NASA Astrophysics Data System (ADS)

    Thordarson, T.; Hoskuldsson, A.; Jónsdottir, I.; Pedersen, G.; Gudmundsson, M. T.; Dürig, T.; Riishuus, M. S.; Moreland, W.; Gudnason, J.; Gallagher, C. R.; Askew, R. A.

    2015-12-01

    The 31.08.2014 to 27.02.2015 Nornahraun eruption in North Iceland is the largest eruption in Iceland in 232 years, producing an 85km2 lava flow field with a volume of 1.5-2km3. The eruption began on a 2 km long fissure that cut through the 1797AD Holuhraun vent system, spreading lava onto the flat (slope <0.4°) Dyngjujokull outwash plane. At mean magma discharge of 250 m3 the lava was transported from the vents via a 3.5km long lava channel, feeding a 1-2km wide rubbly pāhoehoe to 'a'a flow front advancing to the NE at rate of 1-2 km/day. This lava flow came to halt on 12 September at a distance of 18km from the vents and for the next 5 days it was subjected to endogenous growth reaching a mean thickness 12m and a volume 0.35km3. Mean magma discharge dropped to 150 m3/s on 18th and the vent activity was reduced to a 500 m long central segment of the fissure. A new lava flow formed, advancing along the southern margins of the first, coming to rest on 22 September at 11.5 km from the vents (vol. 0.09km3). On 23rd the third flow formed, advanced along south and north margins of the flow field, reaching a maximum length of 6.7 km as it came to rest on the 26th (vol. 0.06km3). Increase in magma discharge to about 220 m3/s is observed between 27 September and 8 October forming the 4th lava flow along the south margins of the flow field. This flow surged out to a distance of 15km in 12 days (vol. 0.22km3). Flow 5 formed between 9 to 30 October at mean discharge of 140 m3/s, advancing along the south side of flow 4 and reaching length of 11 km (vol. 0.30km3). Similarly, the sixth flow formed along flow 5 between 1-14 November at mean discharge of 110 m3/s and reaching length of 7.5km (vol. 0.11km3). This signaled the end of this gradual clockwise widening of the flow field, which coincided with partial crusting over of the lava channel and initiation of insulated flows that were emplaced on top of the earlier formed flows for the reminder of the eruption.

  14. Patterns and processes: Subaerial lava flow morphologies: A review

    NASA Astrophysics Data System (ADS)

    Gregg, Tracy K. P.

    2017-08-01

    Most lava flows have been emplaced away from the watchful eyes of volcanologists, so there is a desire to use solidified lava-flow morphologies to reveal important information about the eruption that formed them. Our current understanding of the relationship between solidified basaltic lava morphology and the responsible eruption and emplacement processes is based on decades of fieldwork, laboratory analyses and simulations, and computer models. These studies have vastly improved our understanding of the complex interactions between the solids, liquids, and gases that comprise cooling lava flows. However, the complex interactions (at millimeter and sub-millimeter scales) between the temperature-dependent abundances of the distinct phases that comprise a lava flow and the final morphology remain challenging to model and to predict. Similarly, the complex behavior of an active pahoehoe flow, although almost ubiquitous on Earth, remains difficult to quantitatively model and precisely predict.

  15. Improvement of a 2D numerical model of lava flows

    NASA Astrophysics Data System (ADS)

    Ishimine, Y.

    2013-12-01

    I propose an improved procedure that reduces an improper dependence of lava flow directions on the orientation of Digital Elevation Model (DEM) in two-dimensional simulations based on Ishihara et al. (in Lava Flows and Domes, Fink, JH eds., 1990). The numerical model for lava flow simulations proposed by Ishihara et al. (1990) is based on two-dimensional shallow water model combined with a constitutive equation for a Bingham fluid. It is simple but useful because it properly reproduces distributions of actual lava flows. Thus, it has been regarded as one of pioneer work of numerical simulations of lava flows and it is still now widely used in practical hazard prediction map for civil defense officials in Japan. However, the model include an improper dependence of lava flow directions on the orientation of DEM because the model separately assigns the condition for the lava flow to stop due to yield stress for each of two orthogonal axes of rectangular calculating grid based on DEM. This procedure brings a diamond-shaped distribution as shown in Fig. 1 when calculating a lava flow supplied from a point source on a virtual flat plane although the distribution should be circle-shaped. To improve the drawback, I proposed a modified procedure that uses the absolute value of yield stress derived from both components of two orthogonal directions of the slope steepness to assign the condition for lava flows to stop. This brings a better result as shown in Fig. 2. Fig. 1. (a) Contour plots calculated with the original model of Ishihara et al. (1990). (b) Contour plots calculated with a proposed model.

  16. Lava flow risk maps at Mount Cameroon volcano

    NASA Astrophysics Data System (ADS)

    Favalli, M.; Fornaciai, A.; Papale, P.; Tarquini, S.

    2009-04-01

    Mount Cameroon, in the southwest Cameroon, is one of the most active volcanoes in Africa. Rising 4095 m asl, it has erupted nine times since the beginning of the past century, more recently in 1999 and 2000. Mount Cameroon documented eruptions are represented by moderate explosive and effusive eruptions occurred from both summit and flank vents. A 1922 SW-flank eruption produced a lava flow that reached the Atlantic coast near the village of Biboundi, and a lava flow from a 1999 south-flank eruption stopped only 200 m from the sea, threatening the villages of Bakingili and Dibunscha. More than 450,000 people live or work around the volcano, making the risk from lava flow invasion a great concern. In this work we propose both conventional hazard and risk maps and novel quantitative risk maps which relate vent locations to the expected total damage on existing buildings. These maps are based on lava flow simulations starting from 70,000 different vent locations, a probability distribution of vent opening, a law for the maximum length of lava flows, and a database of buildings. The simulations were run over the SRTM Digital Elevation Model (DEM) using DOWNFLOW, a fast DEM-driven model that is able to compute detailed invasion areas of lava flows from each vent. We present three different types of risk maps (90-m-pixel) for buildings around Mount Cameroon volcano: (1) a conventional risk map that assigns a probability of devastation by lava flows to each pixel representing buildings; (2) a reversed risk map where each pixel expresses the total damage expected as a consequence of vent opening in that pixel (the damage is expressed as the total surface of urbanized areas invaded); (3) maps of the lava catchments of the main towns around the volcano, within every catchment the pixels are classified according to the expected impact they might produce on the relative town in the case of a vent opening in that pixel. Maps of type (1) and (3) are useful for long term planning

  17. Lava Flow at Kilauea, Hawaii

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On July 21, 2007, the world's most active volcano, Kilauea on Hawaii's Big Island, produced a new fissure eruption from the Pu'u O'o vent, which fed an open lava channel and lava flows toward the east. Access to the Kahauale'a Natural Area Reserve was closed due to fire and gas hazards. The two Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) nighttime thermal infrared images were acquired on August 21 and August 30, 2007. The brightest areas are the hottest lava flows from the recent fissure eruption. The large lava field extending down to the ocean is part of the Kupaianaha field. The most recent activity there ceased on June 20, but the lava is still hot and appears bright on the images. Magenta areas are cold lava flows from eruptions that occurred between 1969 and 2006. Clouds are cold (black) and the ocean is a uniform warm temperature, and light gray in color. These images are being used by volcanologists at the U.S. Geological Survey Hawaii Volcano Observatory to help monitor the progress of the lava flows.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud

  18. Hazard Monitoring of Growing Lava Flow Fields Using Seismic Tremor

    NASA Astrophysics Data System (ADS)

    Eibl, E. P. S.; Bean, C. J.; Jónsdottir, I.; Hoskuldsson, A.; Thordarson, T.; Coppola, D.; Witt, T.; Walter, T. R.

    2017-12-01

    An effusive eruption in 2014/15 created a 85 km2 large lava flow field in a remote location in the Icelandic highlands. The lava flows did not threaten any settlements or paved roads but they were nevertheless interdisciplinarily monitored in detail. Images from satellites and aircraft, ground based video monitoring, GPS and seismic recordings allowed the monitoring and reconstruction of a detailed time series of the growing lava flow field. While the use of satellite images and probabilistic modelling of lava flows are quite common tools to monitor the current and forecast the future growth direction, here we show that seismic recordings can be of use too. We installed a cluster of seismometers at 15 km from the vents and recorded the ground vibrations associated with the eruption. This seismic tremor was not only generated below the vents, but also at the edges of the growing lava flow field and indicated the parts of the lava flow field that were most actively growing. Whilst the time resolution is in the range of days for satellites, seismic stations easily sample continuously at 100 Hz and could therefore provide a much better resolution and estimate of the lava flow hazard in real-time.

  19. Construction dynamics of a lava channel

    NASA Astrophysics Data System (ADS)

    Harris, Andrew J. L.; Favalli, Massimiliano; Mazzarini, Francesco; Hamilton, Christopher W.

    2009-05-01

    We use a kinematic GPS and laser range finder survey of a 200 m-long section of the Muliwai a Pele lava channel (Mauna Ulu, Kilauea) to examine the construction processes and flow dynamics responsible for the channel-levee structure. The levees comprise three packages. The basal package comprises an 80-150 m wide 'a'a flow in which a ˜2 m deep and ˜11 m wide channel became centred. This is capped by a second package of thin (<45 cm thick) sheets of pahoehoe extending no more than 50 m from the channel. The upper-most package comprises localised 'a'a overflows. The channel itself contains two blockages located 130 m apart and composed of levee chunks veneered with overflow lava. The channel was emplaced over 50 h, spanning 30 May-2 June, 1974, with the flow front arriving at our section (4.4 km from the vent) 8 h after the eruption began. The basal 'a'a flow thickness yields effusion rates of 35 m3 s-1 for the opening phase, with the initial flow advancing across the mapped section at ˜10 m/min. Short-lived overflows of fluid pahoehoe then built the levee cap, increasing the apparent channel depth to 4.8 m. There were at least six pulses at 90-420 m3 s-1, causing overflow of limited extent lasting no more than 5 min. Brim-full flow conditions were thus extremely short-lived. During a dominant period of below-bank flow, flow depth was ˜2 m with an effusion rate of ˜35 m3 s-1, consistent with the mean output rate (obtained from the total flow bulk volume) of 23-54 m3 s-1. During pulses, levee chunks were plucked and floated down channel to form blockages. In a final low effusion rate phase, lava ponded behind the lower blockage to form a syn-channel pond that fed 'a'a overflow. After the end of the eruption the roofed-over pond continued to drain through the lower blockage, causing the roof to founder. Drainage emplaced inflated flows on the channel floor below the lower blockage for a further ˜10 h. The complex processes involved in levee-channel construction

  20. Remote sensing evidence of lava-ground ice interactions associated with the Lost Jim Lava Flow, Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Marcucci, Emma C.; Hamilton, Christopher W.; Herrick, Robert R.

    2017-12-01

    Thermokarst terrains develop when ice-bearing permafrost melts and causes the overlying surface to subside or collapse. This process occurs widely throughout Arctic regions due to environmental and climatological factors, but can also be induced by localized melting of ground ice by active lava flows. The Lost Jim Lava Flow (LJLF) on the Seward Peninsula of Alaska provides evidence of former lava-ground ice interactions. Associated geomorphic features, on the scale of meters to tens of meters, were identified using satellite orthoimages and stereo-derived digital terrain models. The flow exhibits positive- and mixed-relief features, including tumuli ( N = 26) and shatter rings ( N = 4), as well as negative-relief features, such as lava tube skylights ( N = 100) and irregularly shaped topographic depressions ( N = 1188) that are interpreted to include lava-rise pits and lava-induced thermokarst terrain. Along the margins of the flow, there are also clusters of small peripheral pits that may be the products of meltwater or steam escape. On Mars, we observed morphologically similar pits near lava flow margins in northeastern Elysium Planitia, which suggests a common formation mechanism. Investigating the LJLF may therefore help to elucidate processes of lava-ground ice interaction on both Earth and Mars.

  1. Statistical Distribution of Inflation on Lava Flows: Analysis of Flow Surfaces on Earth and Mars

    NASA Technical Reports Server (NTRS)

    Glazel, L. S.; Anderson, S. W.; Stofan, E. R.; Baloga, S.

    2003-01-01

    The surface morphology of a lava flow results from processes that take place during the emplacement of the flow. Certain types of features, such as tumuli, lava rises and lava rise pits, are indicators of flow inflation or endogenous growth of a lava flow. Tumuli in particular have been identified as possible indicators of tube location, indicating that their distribution on the surface of a lava flow is a junction of the internal pathways of lava present during flow emplacement. However, the distribution of tumuli on lava flows has not been examined in a statistically thorough manner. In order to more rigorously examine the distribution of tumuli on a lava flow, we examined a discrete flow lobe with numerous lava rises and tumuli on the 1969 - 1974 Mauna Ulu flow at Kilauea, Hawaii. The lobe is located in the distal portion of the flow below Holei Pali, which is characterized by hummocky pahoehoe flows emplaced from tubes. We chose this flow due to its discrete nature allowing complete mapping of surface morphologies, well-defined boundaries, well-constrained emplacement parameters, and known flow thicknesses. In addition, tube locations for this Mauna Ulu flow were mapped by Holcomb (1976) during flow emplacement. We also examine the distribution of tumuli on the distal portion of the hummocky Thrainsskjoldur flow field provided by Rossi and Gudmundsson (1996). Analysis of the Mauna Ulu and Thrainsskjoldur flow lobes and the availability of high-resolution MOC images motivated us to look for possible tumuli-dominated flow lobes on the surface of Mars. We identified a MOC image of a lava flow south of Elysium Mons with features morphologically similar to tumuli. The flow is characterized by raised elliptical to circular mounds, some with axial cracks, that are similar in size to the tumuli measured on Earth. One potential avenue of determining whether they are tumuli is to look at the spatial distribution to see if any patterns similar to those of tumuli

  2. Terraced margins of inflated lava flows on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Zimbelman, J. R.; Garry, W. B.; Bleacher, J. E.; Crumpler, L. S.

    2011-12-01

    When fluid basaltic lava flows are emplaced over a shallow regional slope (typically much less than one degree), the lava flows often display impressive characteristics of inflation. Here we describe a distinctive marginal characteristic that is often developed along the margins of endogenously inflated basaltic lava flows; discreet topographic levels of the emplaced lava that are here termed 'terraced margins'. Terraced margins were first noted at the distal end of the Carrizozo lava flow in central New Mexico, where they are particularly well expressed, but terraces have also been observed along some margins of the McCartys lava flow (NM), the distal end of the 1859 Mauna Loa lava flow (HI), and lava flows at Craters of the Moon (ID). Differential Global Positioning System surveys across several terraced margins reveal consistent topographic characteristics: the upper surface of each terrace level is at roughly one half the height of the sheet lobe from which it emerges; when a terrace becomes the source of an additional outbreak, the upper surface of the second terrace is at roughly one half the height of the source terrace; often a subtle topographic depression is present along the contact between a terrace and its source sheet lobe, suggesting that the terrace outflow starts at a level roughly one-third the height of the source lobe; the upper surfaces of both the source sheet lobe and associated terraces are level to within tens of centimeters across length scales of many tens to hundreds of meters, indicative of inflation of all components. The field observations will be used as the constraints for modeling of the inflation and terracing mechanisms, an effort that has only recently started. The multiple imaging data sets now available for Mars have revealed the presence of terraced margins on some lava flows on Mars. Although detailed topographic data are not currently available for the Martian examples identified so far, the presence of terraced margins for

  3. UAV-based remote sensing surveys of lava flow fields: a case study from Etna's 1974 channel-fed lava flows

    NASA Astrophysics Data System (ADS)

    Favalli, Massimiliano; Fornaciai, Alessandro; Nannipieri, Luca; Harris, Andrew; Calvari, Sonia; Lormand, Charline

    2018-03-01

    During an eruption, time scales of topographic change are fast and involve vertical and planimetric evolution of millimeters to meters as the event progresses. Repeat production of high spatial resolution terrain models of lava flow fields over time scales of a few hours is thus a high-value capability in tracking the buildup of the deposit. Among the wide range of terrestrial and aerial methods available to collect such topographic data, the use of an unmanned aerial vehicle (UAV) as an acquisition platform, together with structure from motion (SfM) photogrammetry, has become especially useful. This approach allows high-frequency production of centimeter-scale terrain models over kilometer-scale areas, including dangerous and inaccessible zones, with low cost and minimal hazard to personnel. This study presents the application of such an integrated UAV-SfM method to generate a high spatial resolution digital terrain model and orthomosaic of Mount Etna's January-February 1974 lava flow field. The SfM method, applied to images acquired using a UAV platform, enabled the extraction of a very high spatial resolution (20 cm) digital elevation model and the generation of a 3-cm orthomosaic covering an area of 1.35 km2. This spatial resolution enabled us to analyze the morphology of sub-meter-scale features, such as folds, blocks, and cracks, over kilometer-scale areas. The 3-cm orthomosaic allowed us to further push the analysis to centimeter-scale grain size distribution of the lava surface. Using these data, we define three types of crust structure and relate them to positions within a channel-fed ´áā flow system. These crust structures are (i) flow parallel shear lines, (ii) raft zones, and (iii) folded zones. Flow parallel shear lines are found at the channel edges, and are 2-m-wide and 0.25-m-deep zones running along the levee base and in which cracking is intense. They result from intense shearing between the moving channel lava and the static levee lava. In

  4. Flood lavas on Earth, Io and Mars

    USGS Publications Warehouse

    Keszthelyi, L.; Self, S.; Thordarson, T.

    2006-01-01

    Flood lavas are major geological features on all the major rocky planetary bodies. They provide important insight into the dynamics and chemistry of the interior of these bodies. On the Earth, they appear to be associated with major and mass extinction events. It is therefore not surprising that there has been significant research on flood lavas in recent years. Initial models suggested eruption durations of days and volumetric fluxes of order 107 m3 s-1 with flows moving as turbulent floods. However, our understanding of how lava flows can be emplaced under an insulating crust was revolutionized by the observations of actively inflating pahoehoe flows in Hawaii. These new ideas led to the hypothesis that flood lavas were emplaced over many years with eruption rates of the order of 104 m3 s-1. The field evidence indicates that flood lava flows in the Columbia River Basalts, Deccan Traps, Etendeka lavas, and the Kerguelen Plateau were emplaced as inflated pahoehoe sheet flows. This was reinforced by the observation of active lava flows of ??? 100 km length on Io being formed as tube-fed flow fed by moderate eruption rates (102-103 m3 s-1). More recently it has been found that some flood lavas are also emplaced in a more rapid manner. New high-resolution images from Mars revealed 'platy-ridged' flood lava flows, named after the large rafted plates and ridges formed by compression of the flow top. A search for appropriate terrestrial analogues found an excellent example in Iceland: the 1783-1784 Laki Flow Field. The brecciated Laki flow top consists of pieces of pahoehoe, not aa clinker, leading us to call this 'rubbly pahoehoe'. Similar flows have been found in the Columbia River Basalts and the Kerguelen Plateau. We hypothesize that these flows form with a thick, insulating, but mobile crust, which is disrupted when surges in the erupted flux are too large to maintain the normal pahoehoe mode of emplacement Flood lavas emplaced in this manner could have

  5. The Anatomy of the Blue Dragon: Changes in Lava Flow Morphology and Physical Properties Observed in an Open Channel Lava Flow as a Planetary Analogue

    NASA Astrophysics Data System (ADS)

    Sehlke, A.; Kobs-Nawotniak, S. E.; Hughes, S. S.; Sears, D. W. G.; Downs, M.; Whittington, A. G.; Lim, D. S. S.; Heldmann, J. L.

    2017-12-01

    Lava terrains on other planets and moons exhibit morphologies similar to those found on Earth, such as smooth pāhoehoe transitioning to rough `a`ā terrains based on the viscosity - strain rate relationship of the lava. Therefore, the morphology of lava flows is governed by eruptive conditions such as effusion rate, underlying slope, and the fundamental thermo-physical properties of the lava, including temperature (T), composition (X), viscosity (η), fraction of crystals (φc) and vesicles (φb), as well as bulk density (ρ). These textural and rheological changes were previously studied for Hawaiian lava, where the lava flow started as channelized pāhoehoe and transitioned into `a`ā, demonstrating a systematic trend in T, X, η, φc, φb, and ρ. NASA's FINESSE focuses on Science and Exploration through analogue research. One of the field sites is Craters of the Moon, Idaho. We present field work done at a 3.0 km long lava flow belonging to the Blue Dragon lavas erupted from a chain of spatter cones, which then coalesced into channelized flows. We acquired UAV imagery along the entire length of the flow, and generated a high resolution DTM of 5 cm/pixel, from which we derived height profiles and surface roughness values. Field work included mapping the change in surface morphology and sample collection every 150 meters. In the laboratory, we measured φc, φb, and ρ for all collected samples. Viscosity measurements were carried out by concentric cylinder viscometry at subliquidus temperatures between 1310ºC to 1160ºC to study the rheology of the lava, enabling us to relate changes in flow behavior to T and φc. Our results are consistent with observations made for Hawaiian lava, including increasing bulk density downflow, and porosity changing from connected to isolated pore space. Crystallinity increases downflow, and the transition from pāhoehoe to `a`ā occurs between 1230ºC to 1150ºC, which is prompted by nucleation and growth of plagioclase

  6. Multifractal characterization of Vesuvio lava-flow margins and its implications

    NASA Astrophysics Data System (ADS)

    Luongo, G.; Mazzarella, A.; Di Donna, G.

    2000-09-01

    The digitized lava-flow margins of well-defined extended eruptions occurring at Vesuvio in 1760, 1794, 1861, 1906, 1929 and 1944 are found to follow fractal behaviours inside a scaling region enclosed between 50 and 400 m. Although the invariance region is well respected, the fractal dimension D varies from one lava flow to another: the more irregular the lava-flow margin, the larger the value of D. The ascertained dependence of D on the duration of premonitory activity, preceding the emission of lavas, might provide some insight into the inner volcanic processes before the eruption and into the dynamical processes operating during flow emplacement.

  7. Validating Cellular Automata Lava Flow Emplacement Algorithms with Standard Benchmarks

    NASA Astrophysics Data System (ADS)

    Richardson, J. A.; Connor, L.; Charbonnier, S. J.; Connor, C.; Gallant, E.

    2015-12-01

    A major existing need in assessing lava flow simulators is a common set of validation benchmark tests. We propose three levels of benchmarks which test model output against increasingly complex standards. First, imulated lava flows should be morphologically identical, given changes in parameter space that should be inconsequential, such as slope direction. Second, lava flows simulated in simple parameter spaces can be tested against analytical solutions or empirical relationships seen in Bingham fluids. For instance, a lava flow simulated on a flat surface should produce a circular outline. Third, lava flows simulated over real world topography can be compared to recent real world lava flows, such as those at Tolbachik, Russia, and Fogo, Cape Verde. Success or failure of emplacement algorithms in these validation benchmarks can be determined using a Bayesian approach, which directly tests the ability of an emplacement algorithm to correctly forecast lava inundation. Here we focus on two posterior metrics, P(A|B) and P(¬A|¬B), which describe the positive and negative predictive value of flow algorithms. This is an improvement on less direct statistics such as model sensitivity and the Jaccard fitness coefficient. We have performed these validation benchmarks on a new, modular lava flow emplacement simulator that we have developed. This simulator, which we call MOLASSES, follows a Cellular Automata (CA) method. The code is developed in several interchangeable modules, which enables quick modification of the distribution algorithm from cell locations to their neighbors. By assessing several different distribution schemes with the benchmark tests, we have improved the performance of MOLASSES to correctly match early stages of the 2012-3 Tolbachik Flow, Kamchakta Russia, to 80%. We also can evaluate model performance given uncertain input parameters using a Monte Carlo setup. This illuminates sensitivity to model uncertainty.

  8. Incorporation of seawater into mid-ocean ridge lava flows during emplacement

    USGS Publications Warehouse

    Soule, S.A.; Fornari, D.J.; Perfit, M.R.; Ridley, W.I.; Reed, M.H.; Cann, J.R.

    2006-01-01

    Evidence for the interaction between seawater and lava during emplacement on the deep seafloor can be observed in solidified flows at a variety of scales including rapid quenching of their outer crusts and the formation of lava pillars through the body of the flow. Recently, an additional interaction, incorporation of heated seawater (vapor) into the body of a flow, has been proposed. Large voids and vesicles beneath the surface crusts of mid-ocean ridge crest lobate and sheet lava flows and lava drips found within those cavities have been cited as evidence for this interaction. The voids resulting from this interaction contribute to the high porosity of the shallow ocean crust and play an important role in crustal permeability and hydrothermal circulation at mid-ocean ridges, and thus it is important to understand their origin. We analyze lava samples from the fast-spreading East Pacific Rise and intermediate-spreading Galapagos Spreading Center to characterize this process, identify the source of the vapor, and investigate the implications this would have on submarine lava flow dynamics. We find that lava samples that have interacted with a vapor have a zone of increased vesicularity on the underside of the lava crust and a coating of precipitate minerals (i.e., crystal fringe) that are distinct in form and composition from those crystallized from the melt. We use thermochemical modeling to simulate the reaction between the lava and a vapor and find that only with seawater can we reproduce the phase assemblage we observe within the crystal fringes present in the samples. Model results suggest that large-scale contamination of the lava by mass exchange with the vapor is unlikely, but we observe local enrichment of the lava in Cl resulting from the incorporation of a brine phase separated from the seawater. We suggest that high eruption rates are necessary for seawater incorporation to occur, but the mechanism by which seawater enters the flow has yet to be

  9. Color and Morphology of Lava Flows on Io

    NASA Astrophysics Data System (ADS)

    Piatek, Jennifer L.; McElfresh, Sarah B. Z.; Byrnes, Jeffrey M.; Hale, Amy Snyder; Crown, David A.

    2000-12-01

    Analyses of color and morphologic changes in Voyager images of lava flows on Io were conducted to extend previous flow studies to additional volcanoes in preparation for comparison to Galileo data. Blue and orange filter images of Atar, Daedalus, and Ra Paterae were examined to identify systematic downflow decreases in blue/orange reflectivity suggested in earlier studies as diagnostic of color changes in cooled sulfur flows. Analyses of the color and morphology of 21 lava flows were conducted at these volcanoes, with additional morphologic analysis of lava flows at Agni, Masaaw, Mbali, Shoshu, and Talos Paterae. A total of 66 lava flows of up to 245 km in length were mapped to identify morphologic changes consistent with the rheologic changes expected to occur in sulfur flows. Although downflow color changes are observed, the trends are not consistent, even at the same edifice. Individual flows exhibit a statistically significant increase in blue/orange ratio, decrease in blue/orange ratio, or a lack of progressive downflow color variation. Color changes have similar magnitudes downflow and across flow, and the color ranges observed are similar from volcano to volcano, suggesting that similar processes are controlling color ratios at these edifices. In addition, using flow widening and branching as an indicator of the low viscosity exhibited by sulfur cooling from high temperatures, these flows do not exhibit morphologic changes consistent with the systematic behavior expected from the simple progressive cooling of sulfur.

  10. Observations of obsidian lava flow emplacement at Puyehue-Cordón Caulle, Chile

    NASA Astrophysics Data System (ADS)

    Tuffen, H.; Castro, J. M.; Schipper, C. I.; James, M. R.

    2012-04-01

    The dynamics of obsidian lava flow emplacement remain poorly understood as active obsidian lavas are seldom seen. In contrast with well-documented basaltic lavas, we lack observational data on obsidian flow advance and temporal evolution. The ongoing silicic eruption at Puyehue-Cordón Caulle volcanic complex (PCCVC), southern Chile provides an unprecedented opportunity to witness and study obsidian lava on the move. The eruption, which started explosively on June 4th 2011, has since June 20 generated an active obsidian flow field that remains active at the time of writing (January 2012), with an area of ~6 km2, and estimated volume of ~0.18 km3. We report on observations, imaging and sampling of the north-western lava flow field on January 4th and 10th 2012, when vent activity was characterised by near-continuous ash venting and Vulcanian explosions (Schipper et al, this session) and was simultaneously feeding the advancing obsidian flow (Castro et al, this session). On January 4th the north-western lava flow front was characterised by two dominant facies: predominant rubbly lava approximately 30-40 m thick and mantled by unstable talus aprons, and smoother, thinner lobes of more continuous lava ~50 m in length that extended roughly perpendicular to the overall flow direction, forming lobes that protrude from the flow margin, and lacked talus aprons. The latter lava facies closely resembled squeeze-up structures in basaltic lava flows[1] and appeared to originate from and overlie the talus apron of the rubbly lava. Its upper surface consisted of smooth, gently folded lava domains cut by crevasse-like tension gashes. During ~2 hours of observation the squeeze-up lava lobe was the most frequent location of small-volume rockfalls, which occurred at ~1-10 minute intervals from the flow front and indicated a locus of lava advance. On January 10th the squeeze-up lava lobes had evolved significantly, with disruption and breakage of smooth continuous lava surfaces to form

  11. Lava Flows in the Grand Canyon

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Over vast expanses of time, natural processes like floods and volcanoes deposit layers of rock on the Earth's surface. To delve down through layers of rock is to explore our planet's history. Sometimes rock layers are exposed through human activity, such as drilling or excavation. Other times, rivers carve through the rock. One of the best, and most well-known, examples of a river exposing ancient rocks is Colorado River in Arizona's Grand Canyon. What fewer people know is that the Grand Canyon also has a history of relatively recent (on geologic time scales) volcanism. The evidence--hardened lava--spills down the canyon walls all the way to the river. On June 22, 2003, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the Grand Canyon, near 36.2 degrees north latitude and 113.2 degrees west longitude. ASTER detects light visible to human eyes as well as 'invisible' infrared light. Because different minerals reflect different portions of the light spectrum, ASTER can see varying mineral compositions of the rocks it observes, as well as detecting vegetation. In this three-dimensional visualization, lava fields appear brownish gray, darker than the layers of limestone, sandstone and other rock in the canyon. Vegetation appears green, and sparsely vegetated areas appear mustard. Water in the Colorado River is blue-purple. Geologists estimate that between 1.8 million and 400,000 years ago, lava flows actually dammed the Colorado River more than a dozen times. Some of the lava dams were as high as 600 meters (about 1,969 feet), forming immense reservoirs. Over time, enough water and sediment built up to push the river flow over the tops of these dams and eventually erode them away. Today, remnants of these lava dams remain throughout the area, along with the much older rock layers they cover. Among the most well known examples of these 'frozen' lava cascades is Lava Falls, which spills down to the

  12. A review of mass and energy flow through a lava flow system: insights provided from a non-equilibrium perspective

    NASA Astrophysics Data System (ADS)

    Tarquini, Simone

    2017-08-01

    A simple formula relates lava discharge rate to the heat radiated per unit time from the surface of active lava flows (the "thermal proxy"). Although widely used, the physical basis of this proxy is still debated. In the present contribution, lava flows are approached as open, dissipative systems that, under favorable conditions, can attain a non-equilibrium stationary state. In this system framework, the onset, growth, and demise of lava flow units can be explained as a self-organization phenomenon characterized by a given temporal frequency defined by the average life span of active lava flow units. Here, I review empirical, physical, and experimental models designed to understand and link the flow of mass and energy through a lava flow system, as well as measurements and observations that support a "real-world" view. I set up two systems: active lava flow system (or ALFS) for flowing, fluid lava and a lava deposit system for solidified, cooling lava. The review highlights surprising similarities between lava flows and electric currents, which typically work under stationary conditions. An electric current propagates almost instantaneously through an existing circuit, following the Kirchhoff law (a least dissipation principle). Flowing lavas, in contrast, build up a slow-motion "lava circuit" over days, weeks, or months by following a gravity-driven path down the steepest slopes. Attainment of a steady-state condition is hampered (and the classic thermal proxy does not hold) if the supply stops before completion of the "lava circuit." Although gravity determines initial flow path and extension, the least dissipation principle means that subsequent evolution of mature portions of the active lava flow system is controlled by increasingly insulated conditions.

  13. Relative ages of lava flows at Alba Patera, Mars

    NASA Technical Reports Server (NTRS)

    Schneeberger, Dale M.; Pieri, David C.

    1987-01-01

    Many large lava flows on the flanks of Alba Patera are astonishing in their volume and length. As a suite, these flows suggest tremendously voluminous and sustained eruptions, and provide dimensional boundary conditions typically a factor of 100 larger than terrestrial flows. One of the most striking features associated with Alba Patera is the large, radially oriented lava flows that exhibit a variety of flow morphologies. These include sheet flows, tube fed and tube channel flows, and undifferentiated flows. Three groups of flows were studied; flows on the northwest flank, southeast flank, and the intracaldera region. The lava flows discussed probably were erupted as a group during the same major volcanic episode as suggested by the data presented. Absolute ages are poorly constrained for both the individual flows and shield, due in part to disagreement as to which absolute age curve is representative for Mars. A relative age sequence is implied but lacks precision due to the closeness of the size frequency curves.

  14. Dynamics of lava flow - Thickness growth characteristics of steady two-dimensional flow

    NASA Technical Reports Server (NTRS)

    Park, S.; Iversen, J. D.

    1984-01-01

    The thickness growth characteristics of flowing lava are investigated using a heat balance model and a two-dimensional model for flow of a Bingham plastic fluid down an inclined plane. It is found that yield strength plays a crucial role in the thickening of a lava flow of given flow rate. To illustrate this point, downstream thickness profiles and yield strength distributions were calculated for flows with mass flow rates of 10,000 and 100,000 kg/m-sec. Higher flow rates led to slow cooling rates which resulted in slow rate of increase of yield strength and thus greater flow lengths.

  15. Eruption rate, area, and length relationships for some Hawaiian lava flows

    NASA Technical Reports Server (NTRS)

    Pieri, David C.; Baloga, Stephen M.

    1986-01-01

    The relationships between the morphological parameters of lava flows and the process parameters of lava composition, eruption rate, and eruption temperature were investigated using literature data on Hawaiian lava flows. Two simple models for lava flow heat loss by Stefan-Boltzmann radiation were employed to derive eruption rate versus planimetric area relationship. For the Hawaiian basaltic flows, the eruption rate is highly correlated with the planimetric area. Moreover, this observed correlation is superior to those from other obvious combinations of eruption rate and flow dimensions. The correlations obtained on the basis of the two theoretical models, suggest that the surface of the Hawaiian flows radiates at an effective temperature much less than the inner parts of the flowing lava, which is in agreement with field observations. The data also indicate that the eruption rate versus planimetric area correlations can be markedly degraded when data from different vents, volcanoes, and epochs are combined.

  16. Palæomagnetism of Hawaiian lava flows

    USGS Publications Warehouse

    Doell, Richard R.; Cox, Allan

    1961-01-01

    PALÆOMAGNETIC investigations of volcanic rocks extruded in various parts of the world during the past several million years have generally revealed a younger sequence of lava flows magnetized nearly parallel to the field of a theoretical geocentric axial dipole, underlain by a sequence of older flows with exactly the opposite direction of remanent magnetization. A 180-degree reversal of the geomagnetic field, occurring near the middle of the Pleistocene epoch, has been inferred by many workers from such results1–3. This is a preliminary report of an investigation of 755 oriented samples collected from 152 lava flows on the island of Hawaii, selected to represent as many stratigraphic horizons as possible. (Sampling details are indicated in Table 1.) This work was undertaken because Hawaii's numerous thick sequences of lava flows, previously mapped as Pliocene to Historic by Stearns and Macdonald4, and afterwards assigned ages ranging from later Tertiary to Recent, by Macdonald and Davis5, appeared to offer an ideal opportunity to examine the most recent reversal of Earth's field.

  17. Analogue experiments as benchmarks for models of lava flow emplacement

    NASA Astrophysics Data System (ADS)

    Garel, F.; Kaminski, E. C.; Tait, S.; Limare, A.

    2013-12-01

    During an effusive volcanic eruption, the crisis management is mainly based on the prediction of lava flow advance and its velocity. The spreading of a lava flow, seen as a gravity current, depends on its "effective rheology" and on the effusion rate. Fast-computing models have arisen in the past decade in order to predict in near real time lava flow path and rate of advance. This type of model, crucial to mitigate volcanic hazards and organize potential evacuation, has been mainly compared a posteriori to real cases of emplaced lava flows. The input parameters of such simulations applied to natural eruptions, especially effusion rate and topography, are often not known precisely, and are difficult to evaluate after the eruption. It is therefore not straightforward to identify the causes of discrepancies between model outputs and observed lava emplacement, whereas the comparison of models with controlled laboratory experiments appears easier. The challenge for numerical simulations of lava flow emplacement is to model the simultaneous advance and thermal structure of viscous lava flows. To provide original constraints later to be used in benchmark numerical simulations, we have performed lab-scale experiments investigating the cooling of isoviscous gravity currents. The simplest experimental set-up is as follows: silicone oil, whose viscosity, around 5 Pa.s, varies less than a factor of 2 in the temperature range studied, is injected from a point source onto a horizontal plate and spreads axisymmetrically. The oil is injected hot, and progressively cools down to ambient temperature away from the source. Once the flow is developed, it presents a stationary radial thermal structure whose characteristics depend on the input flow rate. In addition to the experimental observations, we have developed in Garel et al., JGR, 2012 a theoretical model confirming the relationship between supply rate, flow advance and stationary surface thermal structure. We also provide

  18. Table Mountain Shoshonite Porphyry Lava Flows and Their Vents, Golden, Colorado

    USGS Publications Warehouse

    Drewes, Harald

    2008-01-01

    During early Paleocene time shoshonite porphyry lava was extruded from several plugs about 5 km north of Golden, Colo., to form lava flows intercalated in the upper part of the Denver Formation. These flows now form the caps of North and South Table Mountains. Detailed field and petrographic studies provide insights into magma development, linkage between vents and flows, and the history of the lava flows. The magma was derived from a deep (mantle) source, was somewhat turbulent on its way up, paused on its way up in a shallow granite-hosted chamber, and near the surface followed the steep Golden fault and the thick, weak, steeply dipping Upper Cretaceous Pierre Shale. At the surface the lava flowed out of several plug and dike vents in a nonexplosive manner, four times during a span of about 1 m.y. Potassium-rich material acquired in the shallow chamber produced distinctive textures and mineral associations in the igneous rocks. Lava flows 1 (the lowest) and 2 are channel deposits derived from the southeastern group of intrusions, and flow 1 (a composite, multiple-tongued flow) lies about 50 m below the capping flows. Provisionally, the unit termed flow 1 is considered to include older, felty-textured flows that are distinguished from a blocky-textured unit, flow 1a. Flow 2, newly recognized in this study, lies immediately beneath the capping flows. Lava flows 3 and 4, more voluminous than the earlier ones, were derived from a plug vent 1?2 km farther north-northwest and flowed south-southeast across a broad alluvial plain. This plug is a composite body; the rim phase fed flow 3, and the core phase was the source of flow 4. During the time between the effusion of the four flows, the composition of the shoshonite porphyry magma changed subtly; the later flows contain more alkali, as shown by higher proportions of sanidine. On North Table Mountain, lava flows 3 and 4 form an elongate tumulus above a stream channel that carried water at the time of their eruption. On

  19. Mapping lava flow textures using three-dimensional measures of surface roughness

    NASA Astrophysics Data System (ADS)

    Mallonee, H. C.; Kobs-Nawotniak, S. E.; McGregor, M.; Hughes, S. S.; Neish, C.; Downs, M.; Delparte, D.; Lim, D. S. S.; Heldmann, J. L.

    2016-12-01

    Lava flow emplacement conditions are reflected in the surface textures of a lava flow; unravelling these conditions is crucial to understanding the eruptive history and characteristics of basaltic volcanoes. Mapping lava flow textures using visual imagery alone is an inherently subjective process, as these images generally lack the resolution needed to make these determinations. Our team has begun mapping lava flow textures using visual spectrum imagery, which is an inherently subjective process involving the challenge of identifying transitional textures such as rubbly and slabby pāhoehoe, as these textures are similar in appearance and defined qualitatively. This is particularly problematic for interpreting planetary lava flow textures, where we have more limited data. We present a tool to objectively classify lava flow textures based on quantitative measures of roughness, including the 2D Hurst exponent, RMS height, and 2D:3D surface area ratio. We collected aerial images at Craters of the Moon National Monument (COTM) using Unmanned Aerial Vehicles (UAVs) in 2015 and 2016 as part of the FINESSE (Field Investigations to Enable Solar System Science and Exploration) and BASALT (Biologic Analog Science Associated with Lava Terrains) research projects. The aerial images were stitched together to create Digital Terrain Models (DTMs) with resolutions on the order of centimeters. The DTMs were evaluated by the classification tool described above, with output compared against field assessment of the texture. Further, the DTMs were downsampled and reevaluated to assess the efficacy of the classification tool at data resolutions similar to current datasets from other planetary bodies. This tool allows objective classification of lava flow texture, which enables more accurate interpretations of flow characteristics. This work also gives context for interpretations of flows with comparatively low data resolutions, such as those on the Moon and Mars. Textural maps based on

  20. What Is the Emissivity of Active Basaltic Lava Flows?

    NASA Astrophysics Data System (ADS)

    Lee, R.; Ramsey, M. S.

    2016-12-01

    The emissivity of molten lava surfaces has been a topic of study for some time because it directly affects the cooling efficiency of the flow, thermo-rheological models of flow evolution, as well as the accurate interpretation of the bulk composition. Despite past studies, it remains unclear whether the emissivity of molten lava truly is different than that of the cooled surface. Measuring emissivity on flows is complicated with errors arising due to changes in the surface glass content and vesicularity, as well as mixing of multiple temperatures, as the lava cools. We therefore see determination of correct surface emissivity and its change with time to be of great importance to anyone working with thermal infrared (TIR) data or modeling of lava flows. A series of high-resolution melting experiments on basalts has been conducted using a novel micro-furnace and TIR spectrometer, producing high-resolution accurate emissivity measurements at known temperatures transitioning from molten to solid state. These results are compared to data from active analog and natural lava surfaces acquired from a newly-developed field-based multispectral camera system, which is capable of generating lower-resolution emissivity spectra. We present the results of these comparative studies conducted at the Syracuse University Lava Project facility in order to test and calibrate the camera system under controlled conditions. The facility conducts large-scale pours of degassed Palisades Sill basalt, an acceptable analog for natural basalt. In addition, several samples of the analog lava were re-melted in the micro-furnace/spectrometer setup to provide a direct comparison of higher and lower resolution IR spectral data. These results, together with data from the Kilauea lava lake, have allowed us to calibrate and fully test the efficacy of this camera system in a field environment for future deployments as well as provide a means of constraining TIR data from satellite observations.

  1. The Anatomy of the Blue Dragon: Changes in Lava Flow Morphology and Physical Properties Observed in an Open Channel Lava Flow as a Planetary Analogue

    NASA Astrophysics Data System (ADS)

    Sehlke, A.; Kobs Nawotniak, S. E.; Hughes, S. S.; Sears, D. W.; Downs, M. T.; Whittington, A. G.; Lim, D. S. S.; Heldmann, J. L.

    2017-10-01

    We present the relationship of lava flow morphology and the physical properties of the rocks based on terrestrial field work, and how this can be applied to infer physical properties of lunar lava flows.

  2. Morphologic and thermophysical characteristics of lava flows southwest of Arsia Mons, Mars

    NASA Astrophysics Data System (ADS)

    Crown, David A.; Ramsey, Michael S.

    2017-08-01

    The morphologic and thermophysical characteristics of part of the extensive lava flow fields southwest of Arsia Mons (22.5-27.5°S, 120-130°W) have been examined using a combination of orbital VNIR and TIR datasets. THEMIS images provide context for the regional geology and record diurnal temperature variability that is diverse and unusual for flow surfaces in such close proximity. CTX images were used to distinguish dominant flow types and assess local age relationships between individual lava flows. CTX and HiRISE images provide detailed information on flow surface textures and document aeolian effects as they reveal fine-grained deposits in many low-lying areas of the flow surfaces as well as small patches of transverse aeolian ridges. Although this region is generally dust-covered and has a lower overall thermal inertia, the THEMIS data indicate subtle spectral variations within the population of lava flows studied. These variations could be due to compositional differences among the flows or related to mixing of flow and aeolian materials. Specific results regarding flow morphology include: a) Two main lava flow types (bright, rugged and dark, smooth as observed in CTX images) dominate the southwest Arsia Mons/NE Daedalia Planum region; b) the bright, rugged flows have knobby, ridged, and/or platy surface textures, commonly have medial channel/levee systems, and may have broad distal lobes; c) the dark, smooth flows extend from distributary systems that consist of combinations of lava channels, lava tubes, and/or sinuous ridges and plateaus; and d) steep-sided, terraced margins, digitate breakout lobes, and smooth-surfaced plateaus along lava channel/tube systems are interpreted as signatures of flow inflation within the dark, smooth flow type. These flows exhibit smoother upper surfaces, are thinner, and have more numerous, smaller lobes, which, along with their the channel-/tube-fed nature, indicate a lower viscosity lava than for the bright, rugged flows

  3. High-resolution mapping of the 1998 lava flows at Axial Seamount

    NASA Astrophysics Data System (ADS)

    Chadwick, B.; Clague, D. A.; Embley, R. W.; Caress, D. W.; Paduan, J. B.; Sasnett, P.

    2011-12-01

    Axial Seamount (an active hotspot volcano on the Juan de Fuca Ridge) last erupted in 1998 and produced two lava flows (a "northern" and a "southern" flow) along the upper south rift zone separated by a distance of 4 km. Geologic mapping of the 1998 lava flows has been carried out with a combination of visual observations from multiple submersible dives since 1998, and with high-resolution bathymetry, most recently collected with the MBARI mapping AUV (the D. Allan B.) since 2007. The new mapping results revise and update the previous preliminary flow outlines, areas, and volumes. The high-resolution bathymetry (1-m grid cell size) allows eruptive fissures fine-scale morphologic features to be resolved with new and remarkable clarity. The morphology of both lava flows can be interpreted as a consequence of a specific sequence of events during their emplacement. The northern sheet flow is long (4.6 km) and narrow (500 m), and erupted in the SE part of Axial caldera, where it temporarily ponded and inflated on relatively flat terrain before draining out southward toward steeper slopes. The inflation and drain-out of this sheet flow by ~ 3.5 m over 2.5 hours was previously documented by a monitoring instrument that was caught in the lava flow. Our geologic mapping shows that the morphology of the northern sheet flow varies along its length primarily due to gradients in the underlying slope and processes active during flow emplacement. The original morphology of the sheet flow where it ponded is lobate, with pillows near the margins, whereas the central axis of drain-out and collapse is floored with lineated, ropy, and jumbled lava morphologies. The southern lava flow, in contrast, is mostly pillow lava where it cascaded down the steep slope on the east flank of the south rift zone, but also has a major area of collapse where lava ponded temporarily near the rift axis. These results show that submarine lava flows have more subsurface hydraulic connectivity than has

  4. Wax Modeling and Image Analysis for Classroom-Scale Lava Flow Simulations.

    NASA Astrophysics Data System (ADS)

    Rader, E. L.; Clarke, A. B.; Vanderkluysen, L.

    2016-12-01

    The use of polyethylene glycol wax (PEG 600) as an analog for lava allows for a visual representation of the complex physical process occurring in natural lava flows, including cooling, breakouts, and crust and lobe formation. We used a series of cameras positioned around a tank filled with chilled water as a lab bench to observe and quantify lava flow morphology and motion. A peristaltic pump connected to a vent at the base of the tank delivered dyed wax simulating effusive eruptions similar to those of Kilauea in Hawai`i. By varying the eruptive conditions such as wax temperature and eruption rate, students can observe how the crust forms on wax flows, how different textures result, and how a flow field evolves with time. Recorded footage of the same `eruption' can then be quantitatively analyzed using free software like ImageJ and Tracker to quantify time-series of spreading rate, change in height, and appearance of different surface morphologies. Additional dye colors can be added periodically to further illustrate how lava is transported from the vent to the periphery of a flow field (e.g., through a tube system). Data collected from this activity can be compared to active lava flow footage from Hawai`i and with numerical models of lava flow propagation, followed by discussions of the application of these data and concepts to predicting the behavior of lava in hazard management situations and interpreting paleomagnetic, petrologic, and mapping of older eruptions.

  5. The Influence of Slope Breaks on Lava Flow Surface Disruption

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.; Baloga, Stephen M.; Fagents, Sarah A.; Wright, Robert

    2014-01-01

    Changes in the underlying slope of a lava flow impart a significant fraction of rotational energy beyond the slope break. The eddies, circulation and vortices caused by this rotational energy can disrupt the flow surface, having a significant impact on heat loss and thus the distance the flow can travel. A basic mechanics model is used to compute the rotational energy caused by a slope change. The gain in rotational energy is deposited into an eddy of radius R whose energy is dissipated as it travels downstream. A model of eddy friction with the ambient lava is used to compute the time-rate of energy dissipation. The key parameter of the dissipation rate is shown to be rho R(sup 2/)mu, where ? is the lava density and mu is the viscosity, which can vary by orders of magnitude for different flows. The potential spatial disruption of the lava flow surface is investigated by introducing steady-state models for the main flow beyond the steepening slope break. One model applies to slow-moving flows with both gravity and pressure as the driving forces. The other model applies to fast-moving, low-viscosity, turbulent flows. These models provide the flow velocity that establishes the downstream transport distance of disrupting eddies before they dissipate. The potential influence of slope breaks is discussed in connection with field studies of lava flows from the 1801 Hualalai and 1823 Keaiwa Kilauea, Hawaii, and 2004 Etna eruptions.

  6. Lava flow hazards-An impending threat at Miyakejima volcano, Japan

    NASA Astrophysics Data System (ADS)

    Cappello, Annalisa; Geshi, Nobuo; Neri, Marco; Del Negro, Ciro

    2015-12-01

    The majority of the historic eruptions recorded at Miyakejima volcano were fissure eruptions that occurred on the flanks of the volcano. During the last 1100 years, 17 fissure eruptions have been reported with a mean interval of about 76-78 years. In the last century, the mean interval between fissure eruptions decreased to 21-22 years, increasing significantly the threat of lava flow inundations to people and property. Here we quantify the lava flow hazards posed by effusive eruptions in Miyakejima by combining field data, numerical simulations and probability analysis. Our analysis is the first to assess both the spatiotemporal probability of vent opening, which highlights the areas most likely to host a new eruption, and the lava flow hazard, which shows the probabilities of lava-flow inundation in the next 50 years. Future eruptive vents are expected in the vicinity of the Hatchodaira caldera, radiating from the summit of the volcano toward the costs. Areas more likely to be threatened by lava flows are Ako and Kamitsuki villages, as well as Miike port and Miyakejima airport. Thus, our results can be useful for risk evaluation, investment decisions, and emergency response preparation.

  7. The emplacement of long lava flows in Mare Imbrium, the Moon

    NASA Astrophysics Data System (ADS)

    Garry, W. B.

    2012-12-01

    features and margins have been identified in the Phase I flow within the LROC WAC mosaic and in Narrow Angle Camera (NAC) images. These areas have a mottled appearance. LOLA profiles over the more prominent flow lobes in Phase I reveal these margins are less 10 m thick. Phase II and III morphology maps are similar to previous flow maps. Phase III lobes near Euler are 10-12 km wide and 20-30 m thick based on measurements of the LOLA 1024ppd Elevation Digital Terrain Model (DTM) in JMoon. One of the longer Phase III lobes varies between 15 to 50 km wide and 25 to 60 m thick, with the thickest section at the distal end of the lobe. The Phase II lobe is 15 to 25 m thick and up to 35 km wide. The eruptive volume of the Mare Imbrium lava flows has been compared to terrestrial flood basalts. The morphology of the lobes in Phase II and III, which includes levees, thick flow fronts, and lobate margins suggests these could be similar to terrestrial aa-style flows. The Phase I flows might be more representative of sheet flows, pahoehoe-style flows, or inflated flows. Morphologic comparisons will be made with terrestrial flows at Askja volcano in Iceland, a potential analog to compare different styles of emplacement for the flows in Mare Imbrium.

  8. Post-emplacement cooling and contraction of lava flows: InSAR observations and thermal model for lava fields at Hekla volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Wittmann, Werner; Dumont, Stephanie; Lavallee, Yan; Sigmundsson, Freysteinn

    2016-04-01

    Gradual post-emplacement subsidence of lava flows has been observed at various volcanoes, e.g. Okmok volcano in Alaska, Kilauea volcano on Hawaii and Etna volcano on Sicily. In Iceland, this effect has been observed at Krafla volcano and Hekla volcano. The latter was chosen as a case study for investigating subsidence mechanisms, specifically thermal contraction. Effects like gravitational loading, clast repacking or creeping of a hot and liquid core can contribute to subsidence of emplaced lava flows, but thermal contraction is considered being a crucial effect. The extent to which it contributes to lava flow subsidence is investigated by mapping the relative movement of emplaced lava flows and flow substrate, and modeling the observed signal. The slow vegetation in Iceland is advantageous for Interferometric Synthetic Aperture Radar (InSAR) and offers great coherence over long periods after lava emplacement, expanding beyond the outlines of lava flows. Due to this reason, InSAR observations over volcanoes in Iceland have taken place for more than 20 years. By combining InSAR tracks from ERS, Envisat and Cosmo-SkyMed satellites we gain six time series with a total of 99 interferograms. Making use of the high spatial resolution, a temporal trend of vertical lava movements was investigated over a course of over 23 years over the 1991 lava flow of Hekla volcano, Iceland. From these time series, temporal trends of accumulated subsidence and subsidence velocities were determined in line of sight of the satellites. However, the deformation signal of lava fields after emplacement is vertically dominated. Subsidence on this lava field is still ongoing and subsidence rates vary from 14.8 mm/year in 1995 to about 1.0 mm/year in 2014. Fitting a simple exponential function suggests a exponential decay constant of 5.95 years. Additionally, a one-dimensional, semi-analytical model was fitted to these data. While subsidence due to phase change is calculated analytically

  9. Late Holocene lava flow morphotypes of the northern Harrat Rahat, Kingdom of Saudi Arabia: implications for the description of continental lava fields

    NASA Astrophysics Data System (ADS)

    Murcia, H. F.; Nemeth, K.; Moufti, R.; Lindsay, J. M.; El-Masry, N.; Cronin, S. J.; Qaddah, A.; Smith, I. E.

    2013-12-01

    Lava morphotype refers to the surface morphology of a lava flow after solidification. In Saudi Arabia, young and well-preserved mafic lava fields (Harrats) display a wide range of these morphotypes. This study examines those exhibited by four of the post-4500 yrs. BP lava fields in the northern Harrat Rahat (<10 Ma) and describes these lava fields from general characteristics to detailed lava structures. This study also discusses the relationship between rheology and morphotypes, and proposes a preliminary correlation with whole-rock chemical composition. The Harrat Rahat lava fields include one or more lobes that may extend over 20 km from the source, with thicknesses varying between 1-2 m up to 12 m. Each lava flow episode covered areas between ~32 and ~61 km2, with individual volumes estimated between ~0.085 and ~0.29 km3. The whole-rock chemical compositions of these lavas lie between 44.3 to 48.4% SiO2, 9.01-4.28% MgO and 3.13-6.19% NaO+K2O. Seven different morphotypes with several lava structures are documented: Shelly, Slabby, Rubbly-pahoehoe, Platy, Cauliflower, Rubbly-a'a, and Blocky. These may be related to the shear strain and/or apparent viscosity of the lava flows formed from typical pahoehoe (pure or Hawaiian-pahoehoe, or sheet-pahoehoe). The well-preserved lava fields in Harrat Rahat allow the development of a more expanded classification scheme than has been traditionally applied. In addition to the whole-rock composition, these morphotypes may be indicators of other properties such as vesicularity, crystallization, effusion mechanism, as well as significant along-flow variations in topography and lava thickness and temperature that modify the rheology. The linearity of transitions between morphotypes observed in the lava fields suggest that real time forecasting of the evolution of lava flows might be possible.

  10. Formation of perched lava ponds on basaltic volcanoes: Interaction between cooling rate and flow geometry allows estimation of lava effusion rates

    NASA Technical Reports Server (NTRS)

    Wilson, L.; Parfitt, E. A.

    1993-01-01

    Perched lava ponds are infrequent but distinctive topographic features formed during some basaltic eruptions. Two such ponds, each approximately 150 m in diameter, formed during the 1968 eruption at Napau Crater and the 1974 eruption of Mauna Ulu, both on Kilauea Volcano, Hawaii. Each one formed where a channelized, high volume flux lava flow encountered a sharp reduction of slope: the flow spread out radially and stalled, forming a well-defined terminal levee enclosing a nearly circular lava pond. We describe a model of how cooling limits the motion of lava spreading radially into a pond and compare this with the case of a channelized flow. The difference in geometry has a major effect, such that the size of a pond is a good indicator of the volume flux of the lava forming it. Lateral spreading on distal shallow slopes is a major factor limiting the lengths of lava flows.

  11. Magma rheology from 3D geometry of martian lava flows

    NASA Astrophysics Data System (ADS)

    Allemand, P.; Deschamps, A.; Lesaout, M.; Delacourt, C.; Quantin, C.; Clenet, H.

    2012-04-01

    Volcanism is an important geologic agent which has been recently active at the surface of Mars. The composition of individual lava flows is difficult to infer from spectroscopic data because of the absence of crystallized minerals and the possible cover of the flows by dust. The 3D geometry of lava flows provides an interesting alternative to infer the chemical composition of lavas and effusion rates. Indeed, chemical composition exerts a strong control on the viscosity and yield strength of the magma and global geometry of lava flow reflects its emplacement rate. Until recently, these studies where realized from 2D data. The third dimension, which is a key parameter, was deduced or supposed from local shadow measurements on MGS Themis IR images with an uncertainty of more than 500%. Recent CTX data (MRO mission) allow to compute Digital Elevation Model at a resolution of 1 or 2 pixels (5 to 10 m) with the help of Isis and the Ames Stereo Pipeline pipe line. The CTX images are first transformed in format readable by Isis. The external geometric parameters of the CTX camera are computed and added to the image header with Isis. During a correlation phase, the homologous pixels are searched on the pair of stereo images. Finally, the DEM is computed from the position of the homologous pixels and the geometrical parameters of the CTX camera. Twenty DEM have been computed from stereo images showing lava flows of various ages on the region of Cerberus, Elyseum, Daedalia and Amazonis planitia. The 3D parameters of the lava flows have been measured on the DEMs and tested against shadows measurement. These 3D parameters have been inverted to estimate the viscosity and the yield strength of the flow. The effusion rate has also been estimated. These parameters have been compared to those of similar lava flows of the East Pacific rise.

  12. The Dynamics of Rapidly Emplaced Terrestrial Lava Flows and Implications for Planetary Volcanism

    NASA Technical Reports Server (NTRS)

    Baloga, Stephen; Spudis, Paul D.; Guest, John E.

    1995-01-01

    The Kaupulehu 1800-1801 lava flow of Hualalai volcano and the 1823 Keaiwa flow from the Great Crack of the Kilauea southwest rift zone had certain unusual and possibly unique properties for terrestrial basaltic lava flows. Both flows apparently had very low viscosities, high effusion rates, and uncommonly rapid rates of advance. Ultramafic xenolith nodules in the 1801 flow form stacks of cobbles with lava rinds of only millimeter thicknesses. The velocity of the lava stream in the 1801 flow was extremely high, at least 10 m/s (more than 40 km/h). Observations and geological evidence suggest similarly high velocities for the 1823 flow. The unusual eruption conditions that produced these lava flows suggest a floodlike mode of emplacement unlike that of most other present-day flows. Although considerable effort has gone into understanding the viscous fluid dynamics and thermal processes that often occur in basaltic flows, the unusual conditions prevalent for the Kaupulehu and Keaiwa flows necessitate different modeling considerations. We propose an elementary flood model for this type of lava emplacement and show that it produces consistent agreement with the overall dimensions of the flow, channel sizes, and other supporting field evidence. The reconstructed dynamics of these rapidly emplaced terrestrial lava flows provide significant insights about the nature of these eruptions and their analogs in planetary volcanism.

  13. Numerical simulation of lava flows: Applications to the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Zimbelman, James R.; Campbell, Bruce A.; Kousoum, Juliana; Lampkin, Derrick J.

    1993-01-01

    Lava flows are the visible expression of the extrusion of volcanic materials on a variety of planetary surfaces. A computer program described by Ishihara et al. appears to be well suited for application to different environments, and we have undertaken tests to evaluate their approach. Our results are somewhat mixed; the program does reproduce reasonable lava flow behavior in many situations, but we have encountered some conditions common to planetary environments for which the current program is inadequate. Here we present our initial efforts to identify the 'parameter space' for reasonable numerical simulations of lava flows.

  14. Heat-transfer measurements of the 1983 Kilauea lava flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardee, H.C.

    1983-10-07

    Convective heat flow measurements of a basaltic lava flow were made during the 1983 eruption of Kilauea volcano in Hawaii. Eight field measurements of induced natural convection were made, giving heat flux values that ranged from 1.78 to 8.09 kilowatts per square meter at lava temperatures of 1088 and 1128 degrees Celsius, respectively. These field measurements of convective heat flux at subliquidus temperatures agree with previous laboratory measurements in furnace-melted samples of molten lava, and are useful for predicting heat transfer in magma bodies and for estimating heat extraction rates for magma energy.

  15. Heat transfer measurements of the 1983 kilauea lava flow.

    PubMed

    Hardee, H C

    1983-10-07

    Convective heat flow measurements of a basaltic lava flow were made during the 1983 eruption of Kilauea volcano in Hawaii. Eight field measurements of induced natural convection were made, giving heat flux values that ranged from 1.78 to 8.09 kilowatts per square meter at lava temperatures of 1088 and 1128 degrees Celsius, respectively. These field measurements of convective heat flux at subliquidus temperatures agree with previous laboratory measurements in furnace-melted samples of molten lava, and are useful for predicting heat transfer in magma bodies and for estimating heat extraction rates for magma energy.

  16. Observing Lava Flows with Spaceborne Microwave Radiometry

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2017-12-01

    The interpretation of infrared observations of lava flows is well-established, both on Earth and Io, to establish flow areas and temperatures, and thereby constrain eruption rates. However, the detection of such radiation from space requires lava temperatures that are high enough to be incandescent, and a relatively clear atmosphere. The former condition is met only for a short period after eruption as the top millimeters of lava cool quickly. The latter condition may fail due to ash or water clouds on Earth, or the persistent thick clouds on Venus. Microwave radiometry, which in principle probes to depths of centimeters to decimeters, offers the prospect of detecting older flows. It furthermore is minimally sensitive to cloud.The challenge, however, is that spaceborne microwave instruments have relatively large footprints (sometimes 100km) such that the emission from relatively small flows is heavily diluted and therefore difficult to detect. Here we describe models of microwave remote sensing of recent volcanics on Earth, Venus and Titan, and present some preliminary observational studies of terrestrial volcanoes with the SMAP (Soil Moisture Active Passive) radiometer. This spacecraft has a large antenna to yield a relatively narrow observation footprint, and a long wavelength to penetrate into volcanic rock, and thus offers the best prospects yet for volcano surveillance in microwave radiometry.

  17. Lava flow-field morphology: A case study from Mount Etna, Sicily

    NASA Technical Reports Server (NTRS)

    Guest, J. E.; Hughes, J. W.; Duncan, A. M.

    1987-01-01

    The morphology of lava flows is often taken as an indicator of the broad chemical composition of the lava, especially when interpreting extraterrestrial volcanoes using spacecraft images. The historical lavas of the active volcano Mount Etna in Sicily provide an excellent opportunity to examine the controls on flow field morphology. In this study only flow produced by flank eruptions after the middle of the 18th century are examined. The final form of a flow-field may be more indicative of the internal plumbing of the volcano, which may control such factors as the effusion, rate, duration of eruption, volume of available magma, rate of de-gassing, and lava rheology. Different flow morphologies on Etna appear to be a good indicator of differing conditions within the volcanic pile. Thus the spatial distribution of different flow types on an extraterrestrial volcano may provide useful information about the plumbing conditions of that volcano, rather than necessarily providing information on the composition of materials erupted.

  18. RIS4E at Kilauea's December 1974 Flow: Lava Flow Texture LiDAR Signatures

    NASA Astrophysics Data System (ADS)

    Whelley, P.; Garry, W. B.; Scheidt, S. P.; Bleacher, J. E.; Hamilton, C.

    2015-12-01

    High-resolution point clouds and digital terrain models (DTMs) are used to investigate lava textures on the Big Island of Hawaii. Lava texture (e.g., ´áā and pāhoehoe) depends significantly on eruption conditions, and it is therefore instructive, if accurately determined. In places where field investigations are prohibitive (e.g., on other planets and remote regions of Earth) lava texture must be assessed from remote sensing data. A reliable method for doing so remains elusive. The December 1974 flow from Kilauea, in the Kau desert, presents an excellent field site to develop techniques for identifying lava texture. The eruption is young and the textures are well preserved. We present results comparing properties of lava textures observed in Terrestrial Laser Scanning (TLS) data. The authors collected the TLS data during May 2014 and June 2015 field seasons. Scans are a quantitative representation of what a geologist, or robotic system, sees "on the ground" and provides "ground truth" for airborne or orbital remote sensing analysis by enabling key parameters of lava morphology to be quantified. While individual scans have a heterogeneous point density, multiple scans are merged such that sub-cm lava textures can be quantified. Results indicate that TLS-derived surface roughness (i.e., de-trended RMS roughness) is useful for differentiating lava textures and assists volcanologic interpretations. As many lava types are quite rough, it is not simply roughness that is the most advantageous parameter for differentiating lava textures; rather co-occurrence patterns in surface roughness are used. Gradually forming textures (e.g., pāhoehoe) are elevated in statistics that measure smoothness (e.g., homogeneity) while lava with disrupted crusts (e.g., slabby and platy flow) have more random distributions of roughness (i.e., high entropy). A similar technique will be used to analyze high-resolution DTMs of martian lava flows using High Resolution Imaging Science

  19. Owyhee River intracanyon lava flows: does the river give a dam?

    USGS Publications Warehouse

    Ely, Lisa L.; Brossy, Cooper C.; House, P. Kyle; Safran, Elizabeth B.; O'Connor, Jim E.; Champion, Duane E.; Fenton, Cassandra R.; Bondre, Ninad R.; Orem, Caitlin A.; Grant, Gordon E.; Henry, Christopher D.; Turrin, Brent D.

    2013-01-01

    Rivers carved into uplifted plateaus are commonly disrupted by discrete events from the surrounding landscape, such as lava flows or large mass movements. These disruptions are independent of slope, basin area, or channel discharge, and can dominate aspects of valley morphology and channel behavior for many kilometers. We document and assess the effects of one type of disruptive event, lava dams, on river valley morphology and incision rates at a variety of time scales, using examples from the Owyhee River in southeastern Oregon. Six sets of basaltic lava flows entered and dammed the river canyon during two periods in the late Cenozoic ca. 2 Ma–780 ka and 250–70 ka. The dams are strongly asymmetric, with steep, blunt escarpments facing up valley and long, low slopes down valley. None of the dams shows evidence of catastrophic failure; all blocked the river and diverted water over or around the dam crest. The net effect of the dams was therefore to inhibit rather than promote incision. Once incision resumed, most of the intracanyon flows were incised relatively rapidly and therefore did not exert a lasting impact on the river valley profile over time scales >106 yr. The net long-term incision rate from the time of the oldest documented lava dam, the Bogus Rim lava dam (≤1.7 Ma), to present was 0.18 mm/yr, but incision rates through or around individual lava dams were up to an order of magnitude greater. At least three lava dams (Bogus Rim, Saddle Butte, and West Crater) show evidence that incision initiated only after the impounded lakes filled completely with sediment and there was gravel transport across the dams. The most recent lava dam, formed by the West Crater lava flow around 70 ka, persisted for at least 25 k.y. before incision began, and the dam was largely removed within another 35 k.y. The time scale over which the lava dams inhibit incision is therefore directly affected by both the volume of lava forming the dam and the time required for sediment

  20. Calculated viscosity-distance dependence for some actively flowing lavas

    NASA Technical Reports Server (NTRS)

    Pieri, David

    1987-01-01

    The importance of viscosity as a gauge of the various energy and momentum dissipation regimes of lava flows has been realized for a long time. Nevertheless, despite its central role in lava dynamics and kinematics, it remains among the most difficult of flow physical properties to measure in situ during an eruption. Attempts at reconstructing the actual emplacement viscosities of lava flows from their solidified topographic form are difficult. Where data are available on the position of an advancing flow front as a function of time, it is possible to calculate the effective viscosity of the front as a function of distance from the vent, under the assumptions of a steady state regime. As an application and test of an equation given, relevant parameters from five recent flows on Mauna Loa and Kilauea were utilized to infer the dynamic structure of their aggregate flow front viscosity as they advanced, up to cessation. The observed form of the viscosity-distance relation for the five active Hawaiian flows examined appears to be exponential, with a rapid increase just before the flows stopped as one would expect.

  1. The Influence of Crustal Thickness and Slope on the Surface Morphology of Active Lava Flows: an Experimental Approach

    NASA Astrophysics Data System (ADS)

    Applegarth, L. J.; James, M. R.; van Wyk de Vries, B.; Pinkerton, H.

    2007-12-01

    Many of the surface features that develop on `a`a and blocky lava flows relate to internal dynamics during flow emplacement, but it can be difficult to infer the precise relationships between morphology and dynamics from observations of flows either during or after their emplacement. Experiments using PEG have greatly improved our understanding of the behaviour of lavas with relatively thin crusts. Here we describe an alternative approach (similar to that of Lescinsky and Merle (2005), GSA Special Paper 396, p.136) in which the crust plays a significant role in flow development. Our experiments investigated the effect of crustal thickness and slope on the morphological development of channelised distal flows. The materials used were high viscosity (104 Pa s) silicone gel to simulate the still-fluid lava, and a mix of sand and plaster to represent the cohesive brittle crust and the confining levees. Experiments were conducted on an inclined board with a reservoir constructed at one end. Silicone was released from the reservoir through a sliding gate, where it encountered a seed flow consisting of a silicone sheet topped with a crust of known depth and constrained by levees. The models therefore represented the influx of fresh lava into a channel. Sequential digital images taken over the course of each experiment allowed marker points on the flow surface to be tracked, and these data were used to construct surface velocity maps. Several experiments were recorded using stereo imagery, allowing changes in the surface relief to be monitored. The insights from these quantitative techniques, combined with morphological observations, are used to illustrate the effect of the crust on the flow dynamics, and to show the response of the brittle crust to the movement of the viscous flow interior. An overview of the experimental techniques and results will be presented, together with an assessment of how the observed model morphologies can be related to features observed in the

  2. The Cordón Caulle rhyolite lava flow: an exceptional case study

    NASA Astrophysics Data System (ADS)

    Magnall, N.; James, M. R.; Tuffen, H.; Schipper, C. I.; Castro, J. M.; Vye-Brown, C.; Davies, A. G.; Farquharson, J.

    2017-12-01

    Rhyolites comprise the most silica-rich lavas, and rhyolitic lava flows can reach tens of kilometres in length. Interpretations of ancient and historic rhyolite lava flows suggest protracted emplacement due to relatively slow cooling of these massive bodies and have identified late stage events such as the formation of pumice diapirs. However, our understanding of emplacement processes has long remained limited by the lack of observations from an active flow. The 2011-2012 eruption of Puyehue-Cordón Caulle in southern Chile resulted in the first scientifically observed emplacement of an extensive (0.4 km3, 5 km long), crystal-poor rhyolite lava flow and has provided an unparalleled opportunity to further our understanding of flow dynamics. Here, we summarise our work on this lava flow, which has combined satellite and field observations, microstructural characterisation of samples, and numerical modelling. Early observations showed that advance of the 40 m thick flow stalled after 150 days of eruption, due to interactions with topographic barriers and the formation of a retarding surface crust. Following this, numerous breakouts formed from the flow fronts and margins, attaining lengths of ≤2 km. Microstructural characterisation supports the model that the breakouts formed due to continued lava supply to the stalled portions of the flow front along preferential thermal pathways, coupled with late-stage vesiculation of the flow core. This led to pressure increase, inflation, and eventual rupturing of the surface crust. These breakouts have been classified into four morphological types (domed, petaloid, rubbly, and cleft split) that reflect processes of advance and inflation. Some breakouts continued to advance and form after the eruption ended, with numerical modelling and direct observations suggesting mobility of the lava years after the eruption ended. Unlike other rhyolite flows, pumice diapirs were not observed at Cordón Caulle, instead late stage volatile

  3. The Birth and Growth of Kupaianaha Lava Shield, Kilauea Volcano: 1986-1992

    NASA Astrophysics Data System (ADS)

    Hon, K.; Heliker, C.

    2007-12-01

    Kupaianaha began to form on July 20, 1986, 3 km northeast of Pu`u `O`o, which had been the focus of Kilauea¡¦s east-rift-zone eruption for the prior 3.5 years. On July 18, Pu`u `O`o was primed for the 48th episode of high fountaining. Instead, fissures erupted first uprift and then downrift of the cone. This activity, which lasted until mid- morning on July 19, was preceded by an earthquake swarm and accompanied by 17.4 Ýradians of deflation at Kilauea¡¦s summit. On July 20, another small swarm of earthquakes heralded the eruption of the 200-m-long Kupaianaha fissure. Lava flows spread rapidly from the new fissure, advancing about 800 m southeastward during the first 2 days. The nascent shield was 4 m high by July 25, and a lava pond was forming over the vents. On July 26, a major breakout fed a channelized flow with an `a`a terminus that traveled 4.6 km southeast before stagnating on August 3. The upper end of the channel remained active on the shield after August 3 and evolved into the pond neck and the upper section of master tube that would direct most of the lava to the southeast during the next five years. The Kupaianaha shield attained a height of 33 m during August due to pond overflows, and expanded to cover an area of 1 x 1.6 km. By early October 1986, the lava pond had acquired its final shape and the shield was over 40 m high. Growth of the shield via intrusions also began in August and continued throughout the first year. Outpourings of intruded lava built satellitic shields, and extrusions of `a`a emanated from upwarped regions on the flanks of the shield. Intrusions were volumetrically less important than pond overflows, but they had a significant effect on the final shield morphology. The Kupaianaha shield reached a final height of 60 m early in July 1987, when a blockage of the master tube caused the pond to overflow in all directions for the last time. Two days later, the master tube broke open on the east side of the shield, building a

  4. Investigating lava-substrate interactions through flow experiments with syrup, wax, and molten basalt

    NASA Astrophysics Data System (ADS)

    Rumpf, M. E.; Lev, E.

    2015-12-01

    Among the many factors influencing the complex process of lava flow emplacement, the interaction with the substrate onto which flow is emplaced plays a central role. Lava flows are rarely emplaced onto smooth or regular surfaces. For example, at Kīlauea Volcano, Hawai'i, lava flows regularly flow over solid rock, vegetation, basaltic or silica sand, and man-made materials, including asphalt and concrete. In situ studies of lava-substrate interactions are inherently difficult, and often dangerous, to carry-out, requiring the design of controllable laboratory experiments. We investigate the effects of substrate grain size, cohesion, and roughness on flow mobility and morphology through a series of flow experiments using analog materials and molten basalt. We have developed a series of experiments that allow for adjustable substrate parameters and analyze their effects on lava flow emplacement. The first set of experiments are performed at the Fluids Mechanics Laboratory at the Lamont-Doherty Earth Observatory and focus on two analog materials: polyethylene glycol (PEG), a commercially available wax, and corn syrup. The fluids were each extruded onto a series of scaled substrate beds to replicate the emplacement of lava in a natural environment. Preliminary experiments demonstrated that irregular topography, particularly topography with a height amplitude similar to that of the flow itself, can affect flow morphology, width, and velocity by acting as local barriers or culverts to the fluid. This is expected from observations of fluid flow in natural environments. A follow-up set of experiments will be conducted in Fall 2015 at the Syracuse University (SU) Lava Project Lab. In this set, we will pour molten basalt directly onto a series of substrates representing natural environments found on the Earth and other rocky bodies in the Solar System. These experiments will allow for analysis of the effects of basaltic composition and high temperatures on lava-substrate heat

  5. Paleomagnetism of Holocene lava flows from the Reykjanes Peninsula and the Tungnaá lava sequence (Iceland): implications for flow correlation and ages

    NASA Astrophysics Data System (ADS)

    Pinton, Annamaria; Giordano, Guido; Speranza, Fabio; Þórðarson, Þorvaldur

    2018-01-01

    The impact of Holocene eruptive events from hot spots like Iceland may have had significant global implications; thus, dating and knowledge of past eruptions chronology is important. However, at high-latitude volcanic islands, the paucity of soils severely limits 14C dating, while the poor K content of basalts strongly restricts the use of K/Ar and Ar/Ar methods. Even tephrochronology, based on 14C age determinations, refers to layers that rarely lie directly above lava flows to be dated. We report on the paleomagnetic dating of 25 sites from the Reykjanes Peninsula and the Tungnaá lava sequence of Iceland. The gathered paleomagnetic directions were compared with the available reference paleosecular variation curves of the Earth magnetic field to obtain the possible emplacement age intervals. To test the method's validity, we sampled the precisely dated Laki (1783-1784 AD) and Eldgjà (934-938 AD) lavas. The age windows obtained for these events encompass the true flow ages. For sites from the Reykjanes peninsula and the Tugnaá lava sequence, we derived multiple possible eruption events and ages. In the Reykjanes peninsula, we propose an older emplacement age (immediately following the 870 AD Iceland Settlement age) for Ogmundarhraun and Kapelluhraun lava fields. For pre-historical (older than the settlement age) Tugnaá eruptions, the method has a dating precision of 300-400 years which allows an increase of the detail in the chronostratigraphy and distribution of lavas in the Tugnaá sequence.

  6. Emplacement of the Rocche Rosse rhyolite lava flow (Lipari, Aeolian Islands)

    NASA Astrophysics Data System (ADS)

    Bullock, Liam A.; Gertisser, Ralf; O'Driscoll, Brian

    2018-05-01

    The Rocche Rosse lava flow marks the most recent rhyolitic extrusion on Lipari island (Italy), and preserves evidence for a multi-stage emplacement history. Due to the viscous nature of the advancing lava (108 to 1010 Pa s), indicators of complex emplacement processes are preserved in the final flow. This study focuses on structural mapping of the flow to highlight the interplay of cooling, crust formation and underlying slope in the development of rhyolitic lavas. The flow is made up of two prominent lobes, small (< 0.2 m) to large (> 0.2 m) scale folding and a channelled geometry. Foliations dip at 2-4° over the flatter topography close to the vent, and up to 30-50° over steeper mid-flow topography. Brittle faults, tension gashes and conjugate fractures are also evident across flow. Heterogeneous deformation is evident through increasing fold asymmetry from the vent due to downflow cooling and stagnation. A steeper underlying topography mid-flow led to development of a channelled morphology, and compression at topographic breaks resulted in fold superimposition in the channel. We propose an emplacement history that involved the evolution through five stages, each associated with the following flow regimes: (1) initial extrusion, crustal development and small scale folding; (2) extensional strain, stretching lineations and channel development over steeper topography; (3) compression at topographic break, autobrecciation, lobe development and medium scale folding; (4) progressive deformation with stagnation, large-scale folding and re-folding; and (5) brittle deformation following flow termination. The complex array of structural elements observed within the Rocche Rosse lava flow facilitates comparisons to be made with actively deforming rhyolitic lava flows at the Chilean volcanoes of Chaitén and Cordón Caulle, offering a fluid dynamic and structural framework within which to evaluate our data.

  7. The cooling rates of pahoehoe flows: The importance of lava porosity

    NASA Technical Reports Server (NTRS)

    Jones, Alun C.

    1993-01-01

    Many theoretical models have been put forward to account for the cooling history of a lava flow; however, only limited detailed field data exist to validate these models. To accurately model the cooling of lava flows, data are required, not only on the heat loss mechanisms, but also on the surface skin development and the causes of differing cooling rates. This paper argues that the cause of such variations in the cooling rates are attributed, primarily, to the vesicle content and degassing history of the lava.

  8. Erosion by flowing lava: Geochemical evidence in the Cave Basalt, Mount St. Helens, Washington

    USGS Publications Warehouse

    Williams, D.A.; Kadel, S.D.; Greeley, R.; Lesher, C.M.; Clynne, M.A.

    2004-01-01

    We sampled basaltic lava flows and underlying dacitic tuff deposits in or near lava tubes of the Cave Basalt, Mount St. Helens, Washington to determine whether the Cave Basalt lavas contain geochemical evidence of substrate contamination by lava erosion. The samples were analyzed using a combination of wavelength-dispersive X-ray fluorescence spectrometry and inductively-coupled plasma mass spectrometry. The results indicate that the oldest, outer lava tube linings in direct contact with the dacitic substrate are contaminated, whereas the younger, inner lava tube linings are uncontaminated and apparently either more evolved or enriched in residual liquid. The most heavily contaminated lavas occur closer to the vent and in steeper parts of the tube system, and the amount of contamination decreases with increasing distance downstream. These results suggest that erosion by lava and contamination were limited to only the initially emplaced flows and that erosion was localized and enhanced by vigorous laminar flow over steeper slopes. After cooling, the initial Cave Basalt lava flows formed an insulating lining within the tubes that prevented further erosion by later flows. This interpretation is consistent with models of lava erosion that predict higher erosion rates closer to sources and over steeper slopes. A greater abundance of xenoliths and xenocrysts relative to xenomelts in hand samples indicates that mechanical erosion rather than thermal erosion was the dominant erosional process in the Cave Basalt, but further sampling and petrographic analyses must be performed to verify this hypothesis. ?? Springer-Verlag 2003.

  9. LAV@HAZARD: a Web-GIS Framework for Real-Time Forecasting of Lava Flow Hazards

    NASA Astrophysics Data System (ADS)

    Del Negro, C.; Bilotta, G.; Cappello, A.; Ganci, G.; Herault, A.

    2014-12-01

    Crucial to lava flow hazard assessment is the development of tools for real-time prediction of flow paths, flow advance rates, and final flow lengths. Accurate prediction of flow paths and advance rates requires not only rapid assessment of eruption conditions (especially effusion rate) but also improved models of lava flow emplacement. Here we present the LAV@HAZARD web-GIS framework, which combines spaceborne remote sensing techniques and numerical simulations for real-time forecasting of lava flow hazards. By using satellite-derived discharge rates to drive a lava flow emplacement model, LAV@HAZARD allows timely definition of parameters and maps essential for hazard assessment, including the propagation time of lava flows and the maximum run-out distance. We take advantage of the flexibility of the HOTSAT thermal monitoring system to process satellite images coming from sensors with different spatial, temporal and spectral resolutions. HOTSAT was designed to ingest infrared satellite data acquired by the MODIS and SEVIRI sensors to output hot spot location, lava thermal flux and discharge rate. We use LAV@HAZARD to merge this output with the MAGFLOW physics-based model to simulate lava flow paths and to update, in a timely manner, flow simulations. Thus, any significant changes in lava discharge rate are included in the predictions. A significant benefit in terms of computational speed was obtained thanks to the parallel implementation of MAGFLOW on graphic processing units (GPUs). All this useful information has been gathered into the LAV@HAZARD platform which, due to the high degree of interactivity, allows generation of easily readable maps and a fast way to explore alternative scenarios. We will describe and demonstrate the operation of this framework using a variety of case studies pertaining to Mt Etna, Sicily. Although this study was conducted on Mt Etna, the approach used is designed to be applicable to other volcanic areas around the world.

  10. Difficulties in Forecasting Flow Paths During the 2014-2015 Lava Flow Crisis at Kīlauea Volcano (Hawaíi)

    NASA Astrophysics Data System (ADS)

    Patrick, M. R.; Orr, T. R.; Trusdell, F.; Llewellin, E. W.; Kauahikaua, J. P.

    2015-12-01

    Kīlauea's East Rift Zone (ERZ) eruptive activity at Púu ´Ō´ō shifted to a new vent in June 2014, sparking a lava flow crisis that threatened critical infrastructure near the town of Pāhoa in east Hawaíi. The lava flow proved to be challenging to forecast because of the influence of ground cracks on flow direction, frequent fluctuations in lava supply, and the subtle interplay between ground slope and confining topography that prevented the flow from spreading laterally. After its onset, the "June 27th" flow, named informally for its start date, advanced northeast at up to several hundred m/day. The flow's path through heavy forest was forecast using steepest-descent paths derived from a digital elevation model (DEM). Flow path uncertainties were minimized using a multiple-run technique and built-in random DEM errors (modified from Favalli et al., 2005). In mid-August, the flow encountered and entered one of many deep, discontinuous ground cracks along Kīlauea's middle ERZ. The flow continued to advance out of sight in the crack, as inferred from a forward-progressing line of steam. A week later, lava spilled from the crack 1.3 km downslope, advancing along a different flow path than was forecast. By early September, the flow had entered and exited three more cracks sequentially, carrying the flow across slope, thus making flow path forecasts unreliable. Moreover, lava-occupied cracks dilated by up to 3 m. The lava accumulating in the ground cracks forced immense, but apparently mobile, blocks to shift. Thus, while an open crack was required to capture the lava, the lava was able to force its way beyond where the crack closed. In this way, the lava flow acted as an intruding dike. The flow eventually advanced beyond the area of cracks and onto a steepest-descent path that guided the flow toward the town of Pāhoa, where it destroyed one house, reached to within ~155 m of the main street in Pāhoa, and threatened the main highway and shopping center serving

  11. Recovery of datable charcoal beneath young lavas: lessons from Hawaii.

    USGS Publications Warehouse

    Lockwood, J.P.; Lipman, P.W.

    1980-01-01

    Field studies in Hawaii aimed at providing a radiocarbon-based chronology of prehistoric eruptive activity have led to a good understanding of the processes that govern the formation and preservation of charcoal beneath basaltic lava flows. Charcoal formation is a rate-dependent process controlled primarily by temperature and duration of heating, as well as by moisture content, density, and size of original woody material. Charcoal will form wherever wood buried by lava is raised to sufficiently high temperatures, but owing to the availability of oxygen it is commonly burned to ash soon after formation. Wherever oxygen circulation is sufficiently restricted, charcoal will be preserved, but where atmospheric oxygen circulates freely, charcoal will only be preserved at a lower temperature, below that required for charcoal ignition or catalytic oxidation. These factors cause carbonized wood, especially that derived from living roots, to be commonly preserved beneath all parts of pahoehoe flows (where oxygen circulation is restricted), but only under margins of aa. Practical guidelines are given for the recovery of datable charcoal beneath pahoehoe and aa. Although based on Hawaiian basaltic flows, the guidelines should be applicable to other areas. -Authors

  12. Satellite-driven modeling approach for monitoring lava flow hazards during the 2017 Etna eruption

    NASA Astrophysics Data System (ADS)

    Del Negro, C.; Bilotta, G.; Cappello, A.; Ganci, G.; Herault, A.; Zago, V.

    2017-12-01

    The integration of satellite data and modeling represents an efficient strategy that may provide immediate answers to the main issues raised at the onset of a new effusive eruption. Satellite-based thermal remote sensing of hotspots related to effusive activity can effectively provide a variety of products suited to timing, locating, and tracking the radiant character of lava flows. Hotspots show the location and occurrence of eruptive events (vents). Discharge rate estimates may indicate the current intensity (effusion rate) and potential magnitude (volume). High-spatial resolution multispectral satellite data can complement field observations for monitoring the front position (length) and extension of flows (area). Physics-based models driven, or validated, by satellite-derived parameters are now capable of fast and accurate forecast of lava flow inundation scenarios (hazard). Here, we demonstrate the potential of the integrated application of satellite remote-sensing techniques and lava flow models during the 2017 effusive eruption at Mount Etna in Italy. This combined approach provided insights into lava flow field evolution by supplying detailed views of flow field construction (e.g., the opening of ephemeral vents) that were useful for more accurate and reliable forecasts of eruptive activity. Moreover, we gave a detailed chronology of the lava flow activity based on field observations and satellite images, assessed the potential extent of impacted areas, mapped the evolution of lava flow field, and executed hazard projections. The underside of this combination is the high sensitivity of lava flow inundation scenarios to uncertainties in vent location, discharge rate, and other parameters, which can make interpreting hazard forecasts difficult during an effusive crisis. However, such integration at last makes timely forecasts of lava flow hazards during effusive crises possible at the great majority of volcanoes for which no monitoring exists.

  13. Diagnostic Features of Lava Flows in Satellite and Airborne Images (Invited)

    NASA Astrophysics Data System (ADS)

    Rowland, S. K.; Bruno, B. C.; Comeau, D.; Mouginis-Mark, P. J.; Fagents, S. A.; Harris, A. J.

    2013-12-01

    Characteristic surface features on lava flows can be seen in, and measured from, nadir and oblique airborne and space borne images. Some are diagnostic of volumetric flow rate, lava-transport mode, rheology, and composition. These in turn can be used to infer eruption styles, magma chamber stress regimes, volcanic histories, etc. Where independent methods can determine these properties, the image-based methods can be refined and (tentatively) extended to other planets. For example, the planimetric outline of a lava flow is determined by the lava's volumetric flow rate and rheology, the strength of the cooled skin relative to that of the fluid interior, and the extent to which a flow can conform to, or over-run, pre-existing topography. Fluid, skin-strength-dominated lava such as pāhoehoe, has a very convoluted outline; more viscous, interior-strength-dominated lava such as ';a';ā (as well as more silicic compositions) have more linear outlines. This can be quantified by the fractal dimension, which increases with convolution. Spatial resolution and degradation of the flow margin are important caveats. Flow margins are relatively easy to measure with IKONOS and QuickBird (Earth), HiRISE (Mars), and LROC NAC (Moon) data, all of which have spatial resolutions < 1 m. They become more difficult to measure in Landsat (30 m), THEMIS vis. (Mars; 18 m), or Magellan (75 m; Venus) data. Also useful is the ratio between the radius of curvature of the flow front and the flow length, which is small for long narrow (fluid) flows, and large for short stubby (viscous) flows. Even incipient channels display shear zones across which there were sharp velocity gradients, and these are preserved on flow surfaces. Tube-fed flows may display lines of skylights that indicate master tubes. Whether a flow is channel-fed ';a';ā or tube-fed pāhoehoe is determined by the volumetric flow rate, which is almost always directly related to the eruption rate. This may be related to the driving

  14. New Image of Kilauea's Lava Flows taken by NASA Spacecraft

    NASA Image and Video Library

    2018-05-24

    Hawaii's Kilauea's eruption, which began three weeks ago, has produced new lava flows that reached the ocean. The combination of molten lava and sea water produced clouds of noxious gases, such as hydrogen sulfide. In this image from the Advanced Spaceborne Thermal Emission and Reflection (ASTER) radiometer instrument on NASA's Terra satellite, vegetation is displayed in red, clouds are white and the hot lava flows, detected by ASTER's thermal infrared channels, are overlaid in yellow. The image was acquired May 22, 2018, covers an area of 20.3 by 20.9 miles (32.6 by 33.6 kilometers), and is located at 19.6 degrees north, 154.9 degrees west. https://photojournal.jpl.nasa.gov/catalog/PIA22459

  15. Eruption Dynamics and Flow Morphology during the 2005 Sierra Negra Eruption, Galapagos Islands

    NASA Astrophysics Data System (ADS)

    Rader, E.; Harpp, K.; Geist, D.

    2006-12-01

    Sierra Negra volcano began erupting on October 22nd, 2005. The eruption lasted nine days and provided an opportunity to examine emplacement of lava flows and their morphology. During the first two days, fire fountaining produced a broad, unchannelized flow that coated the northern caldera wall and benches directly below the vents as it moved onto the eastern caldera floor. After the first day of the eruption, the caldera floor a'a flow grew primarily by inflation, lateral spreading along linear upwelling regions, and pahoehoe breakouts at the perimeter. Simultaneously, four 4km long rootless flows formed on the northern flanks of the volcano, supplied by spatter from the vents inboard of the caldera rim. Samples from different morphological types of lava from the caldera floor, bench, and outer flanks were collected and examined by BSE imaging. Transitions from pahoehoe to a'a and back to pahoehoe were observed in a low viscosity flow on the caldera bench that cascaded over a steep escarpment. Plagioclase microlite content in the bench flow varies little, with 27% in pahoehoe and 33% in a'a, on average. Consequently, we propose that the transformation was driven by changes in strain rate rather than cooling. As the lava first flowed over the bench edge, the increased strain rate caused it to become a'a. The elevation drop was small enough, however, that the flow remained sufficiently hot to revert to pahoehoe as it pooled on the flat surface at the base of the drop; comparable flows have been described on Kilauea. Similarly, pahoehoe breakouts from the caldera floor a'a flow were driven by pressure from the inflating flow, causing well-insulated lava to emerge from the a'a body as pahoehoe. Quenched lava collected from the incandescent breakouts have higher crystal contents than those collected closer to the vents, indicating that they experienced ~30° cooling during transport within the inflating flow. At the southern tip of the caldera floor flow, several km

  16. Geochemical stratigraphy of lava flows sampled by the Hawaii Scientific Drilling Project

    NASA Astrophysics Data System (ADS)

    Rhodes, J. M.

    1996-05-01

    Geochemical discriminants are used to place the boundary between Mauna Loa flows and underlying Mauna Kea flows at a depth of about 280 m. At a given MgO content the Mauna Kea flows are lower in SiO2 and total iron and higher in total alkali, TiO2, and incompatible elements than the Mauna Loa lavas. The uppermost Mauna Kea lavas (280 to 340 m) contain alkali basalts interlayered with tholeiites and correlate with the postshield Hamakua Volcanics. In addition to total alkalis, the alkali basalts have higher TiO2, P2O5, Sr, Ba, Ce, La, Zr, Nb, Y, and V relative to the tholeiites and lower Zr/Nb and Sr/Nb ratios. Some of the alkali basalts are extensively differentiated. Below 340 m all the flows are tholeiitic, with compositions broadly similar to the few "fresh" subaerial shield-building Mauna Kea tholeiites studied to date. High-MgO lavas are unusually abundant, although there is a wide range (7-28%) in MgO content reflecting olivine control. FeO/MgO relationships are used to infer parental picritic magmas with about 15 wt % MgO. Lavas with more MgO than this have accumulated olivine. The Mauna Loa lavas have compositional trends that are controlled by olivine crystallization and accumulation. They compare closely with trends for historical (1843-1984) flows, tending toward the depleted end of the spectrum. They are, though, much more MgO-rich (9-30%) than is typical for most historical and young (<30 ka) prehistoric lavas. The unusual abundance of high-MgO and picritic lavas is attributed to the likelihood that only large-volume, hot, mobile flows will reach Hilo Bay from the northeast rift zone. FeO/MgO relationships are used to infer parental picritic magmas with about 17 wt % MgO. Again, lavas with more MgO than this have accumulated olivine. Systematic changes in incompatible element ratios are used to argue that the magma supply rate has diminished over time. On the other hand, the relatively constant Zr/Nb and Sr/Nb ratios that compare closely with

  17. A classification scheme for the morphology of lava flow fields

    NASA Technical Reports Server (NTRS)

    Wilson, L.; Pinkerton, H.; Head, James W.; Roberts, K. Magee

    1993-01-01

    Analysis of the processes controlling the advance of lava flows shows that, if no other factors intervene, thermal constraints will act to limit the maximum length of a flow being fed at a given volume or mass effusion rate from a vent. These constraints can be characterized through the Gratz number, which takes on a large value at the vent and decreases down flow. Early application of this principle showed that, despite the many subtleties of modes of heat loss from flows, motion apparently ceases when the Gratz number has decreased to a value close to 300. Recent analyses of flow units from the 1983-86 Pu'u 'O'o eruption of Kilauea and of other, more silicic lava flow units confirm this finding.

  18. Near-Vent, Fissure-Fed Lava Channel Network Morphologies in the Kīlauea December 1974 Flow: Implications for Differentiating Lava Construction From Fluvial Erosion on Planets

    NASA Astrophysics Data System (ADS)

    Bleacher, J. E.

    2015-12-01

    Streamlined islands are often assumed to be the product of erosion by water and are cited as evidence of aqueous flows on Mars. However, lava can build streamlined islands in a manner that is more easily explained by flow thickening followed by partial drainage of preferred lava pathways. Kīlauea's December 1974 (D1974) flow was emplaced as a broad sheet-like flow from a series of en echelon fissures across an older hummocky pāhoehoe tumulus field. The lavas surrounded the tumuli and coalesced to fill a topographic low near the basal scarp of the Koae Fault System. As these obstacles were inundated by the D1974 flow, the lava preferentially cooled around the tumuli to form a higher viscosity zone beneath a smooth crust. Stagnation of these thinner, cooler, and more viscous zones focused the flow into a series of preferred lava pathways located between the stagnant islands. Changes in the local discharge rate disrupted the crust of the flow above the lower viscosity pathways. Older tumuli adjacent to the D1974 flow display the same relief as the flow's islands and uncovered portions of this older flow are exposed at the tops of many islands, supporting an interpretation that islands were anchored by high-standing pre-flow tumuli. As the local lava supply waned, partial drainage of the preferred pathways occurred between the higher-standing surfaces anchored to the older tumuli. The resulting morphology consists of a relatively smooth flow field with thin margins that is dissected by depressed pathways or channels. This morphology resembles an erosional surface incised into a smooth plain, but actually represents an initial constructional process followed by partial drainage within a viscous lava flow. Many other Hawaiian rift zone, fissure-fed flow fields display comparable morphologies in the near vent facies, including islands, terraces, thin flow margins and a lack of well defined topographic levees along channels. Thus, branching channel networks and

  19. Measuring effusion rates of obsidian lava flows by means of satellite thermal data

    NASA Astrophysics Data System (ADS)

    Coppola, D.; Laiolo, M.; Franchi, A.; Massimetti, F.; Cigolini, C.; Lara, L. E.

    2017-11-01

    Space-based thermal data are increasingly used for monitoring effusive eruptions, especially for calculating lava discharge rates and forecasting hazards related to basaltic lava flows. The application of this methodology to silicic, more viscous lava bodies (such as obsidian lava flows) is much less frequent, with only few examples documented in the last decades. The 2011-2012 eruption of Cordón Caulle volcano (Chile) produced a voluminous obsidian lava flow ( 0.6 km3) and offers an exceptional opportunity to analyze the relationship between heat and volumetric flux for such type of viscous lava bodies. Based on a retrospective analysis of MODIS infrared data (MIROVA system), we found that the energy radiated by the active lava flow is robustly correlated with the erupted lava volume, measured independently. We found that after a transient time of about 15 days, the coefficient of proportionality between radiant and volumetric flux becomes almost steady, and stabilizes around a value of 5 × 106 J m- 3. This coefficient (i.e. radiant density) is much lower than those found for basalts ( 1 × 108 J m- 3) and likely reflects the appropriate spreading and cooling properties of the highly-insulated, viscous flows. The effusion rates trend inferred from MODIS data correlates well with the tremor amplitude and with the plume elevation recorded throughout the eruption, thus suggesting a link between the effusive and the coeval explosive activity. Modelling of the eruptive trend indicates that the Cordón Caulle eruption occurred in two stages, either incompletely draining a single magma reservoir or more probably tapping multiple interconnected magmatic compartments.

  20. Magnetic fabric and flow direction in basaltic Pahoehoe lava of Xitle volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Cañón-Tapia, Edgardo; Walker, George P. L.; Herrero-Bervera, Emilio

    1995-05-01

    We sampled five basaltic lava flow-units from Xitle volcano, Mexico City, to study the variation of anisotropy of magnetic susceptibility within their cooling boundaries. We find that the mean maximum susceptibility parallels the geologically-inferred flow direction in the units that were emplaced on a steeper slope, whereas for those on a negligible slope the mean intermediate susceptibility points in the flow direction. We propose, however, that the maximum susceptibility always points in the direction of local movement, and that a change in slope produces a deviation of the local motion from that of the unit as a whole. The axis of susceptibility closest to the geologically-inferred flow direction usually plunges upflow in the basal part of the flow unit, comprising an imbrication which clearly marks the flow azimuth of the lava. Thus, the scenario of emplacement may influence the results in a predictable way. We suggest that the degree of anisotropy could bear a direct relationship to either the viscosity of the lava, the morphology of the flows or both, based on a comparison with lavas from Azufre (Argentina) and Ko'olau (O'ahu) volcanoes. Also, we suggest that the shape of the susceptibility ellipsoid may be related to the degree of internal deformation of the lava flows. We also compare the two methods currently available to calculate regions of confidence around the mean principal susceptibilities.

  1. Extensive young silicic volcanism produces large deep submarine lava flows in the NE Lau Basin

    NASA Astrophysics Data System (ADS)

    Embley, Robert W.; Rubin, Kenneth H.

    2018-04-01

    New field observations reveal that extensive (up to 402 km2) aphyric, glassy dacite lavas were erupted at multiple sites in the recent past in the NE Lau basin, located about 200 km southwest of Samoa. This discovery of volumetrically significant and widespread submarine dacite lava flows extends the domain for siliceous effusive volcanism into the deep seafloor. Although several lava flow fields were discovered on the flank of a large silicic seamount, Niuatahi, two of the largest lava fields and several smaller ones ("northern lava flow fields") were found well north of the seamount. The most distal portion of the northernmost of these fields is 60 km north of the center of Niuatahi caldera. We estimate that lava flow lengths from probable eruptive vents to the distal ends of flows range from a few km to more than 10 km. Camera tows on the shallower, near-vent areas show complex lava morphology that includes anastomosing tube-like pillow flows and ropey surfaces, endogenous domes and/or ridges, some with "crease-like" extrusion ridges, and inflated lobes with extrusion structures. A 2 × 1.5 km, 30-m deep depression could be an eruption center for one of the lava flow fields. The Lau lava flow fields appear to have erupted at presumptive high effusion rates and possibly reduced viscosity induced by presumptive high magmatic water content and/or a high eruption temperature, consistent with both erupted composition ( 66% SiO2) and glassy low crystallinity groundmass textures. The large areal extent (236 km2) and relatively small range of compositional variation ( σ = 0.60 for wt% Si02%) within the northern lava flow fields imply the existence of large, eruptible batches of differentiated melt in the upper mantle or lower crust of the NE Lau basin. At this site, the volcanism could be controlled by deep crustal fractures caused by the long-term extension in this rear-arc region. Submarine dacite flows exhibiting similar morphology have been described in ancient

  2. Controls on Lava Flow Morphology and Propagation: Using Laboratory Analogue Experiments

    NASA Astrophysics Data System (ADS)

    Peters, S.; Clarke, A. B.

    2017-12-01

    The morphology of lava flows is controlled by eruption rate, composition, cooling rate, and topography [Fink and Griffiths, 1990; Gregg and Fink, 2000, 2006]. Lava flows are used to understand how volcanoes, volcanic fields, and igneous provinces formed and evolved [Gregg and Fink., 1996; Sheth, 2006]. This is particularly important for other planets where compositional data is limited and historical context is nonexistent. Numerical modeling of lava flows remains challenging, but has been aided by laboratory analog experiments [Gregg and Keszrthelyi, 2004; Soule and Cashman, 2004]. Experiments using polyethylene glycol (PEG) 600 wax have been performed to understand lava flow emplacement [Fink and Griffiths, 1990, 1992; Gregg and Fink, 2000]. These experiments established psi (hereafter denoted by Ψ), a dimensionless parameter that relates crust formation and advection timescales of a viscous gravity current. Four primary flow morphologies corresponding to discreet Ψ ranges were observed. Gregg and Fink [2000] also investigated flows on slopes and found that steeper slopes increase the effective effusion rate producing predicted morphologies at lower Ψ values. Additional work is needed to constrain the Ψ parameter space, evaluate the predictive capability of Ψ, and determine if the preserved flow morphology can be used to indicate the initial flow conditions. We performed 514 experiments to address the following controls on lava flow morphology: slope (n = 282), unsteadiness/pulsations (n = 58), slope & unsteadiness/pulsations (n = 174), distal processes, and emplacement vs. post-emplacement morphologies. Our slope experiments reveal a similar trend to Gregg and Fink [2000] with the caveat that very high and very low local & source eruption rates can reduce the apparent predictive capability of Ψ. Predicted Ψ morphologies were often produced halfway through the eruption. Our pulse experiments are expected to produce morphologies unique to each eruption rate

  3. Benchmarking computational fluid dynamics models of lava flow simulation for hazard assessment, forecasting, and risk management

    USGS Publications Warehouse

    Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi; Richardson, Jacob A.; Cashman, Katharine V.

    2017-01-01

    Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, designing flow mitigation measures, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics (CFD) models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, COMSOL, and MOLASSES. We model viscous, cooling, and solidifying flows over horizontal planes, sloping surfaces, and into topographic obstacles. We compare model results to physical observations made during well-controlled analogue and molten basalt experiments, and to analytical theory when available. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and OpenFOAM and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We assess the goodness-of-fit of the simulation results and the computational cost. Our results guide the selection of numerical simulation codes for different applications, including inferring emplacement conditions of past lava flows, modeling the temporal evolution of ongoing flows during eruption, and probabilistic assessment of lava flow hazard prior to eruption. Finally, we outline potential experiments and desired key observational data from future flows that would extend existing benchmarking data sets.

  4. On the relationship between age of lava flows and radar backscattering

    NASA Technical Reports Server (NTRS)

    Blom, R. G.; Cooley, P.; Schenck, L. R.

    1986-01-01

    The observation that older lava flows have lower backscatter in radar images is assessed with multiwavelength/polarization scatterometer data with incidence angles from 15 to 50 deg. Backscatter decreases over time because surface roughness decreases due to infilling with dust and mechanical weathering of the rocks. Pahoehoe lavas in the Snake River Plain with ages of 2.1, 7,4, and 12.0 K yr are best separated with 2.25 cm wavelength data. Blocky obsidian flows at Medicine Lake Highland and Newberry Volcano with ages of 0.9, 1.1 and 1.4 K yr are best separated with 6.3 cm wavelength data. Two Pleistocene flows at the Snake River Plain are best separated with 19.0 cm wavelength data. Incidence angles from 20 to 35 deg are best. These data indicate it may be possible to separate lava flows into eruptive periods using calibrated multiwavelength radar backscatter data.

  5. Computational modeling of lava domes using particle dynamics to investigate the effect of conduit flow mechanics on flow patterns

    NASA Astrophysics Data System (ADS)

    Husain, Taha Murtuza

    Large (1--4 x 106 m3) to major (> 4 x 106 m3) dome collapses for andesitic lava domes such as Soufriere Hills Volcano, Montserrat are observed for elevated magma discharge rates (6--13 m3/s). The gas rich magma pulses lead to pressure build up in the lava dome that result in structural failure of the over steepened canyon-like walls which may lead to rockfall or pyroclastic flow. This indicates that dome collapse intimately related to magma extrusion rate. Variation in magma extrusion rate for open-system magma chambers is observed to follow alternating periods of high and low activity. Periodic behavior of magma exhibits a rich diversity in the nature of its eruptive history due to variation in magma chamber size, total crystal content, linear crystal growth rate and magma replenishment rate. Distinguished patterns of growth were observed at different magma flow rates ranging from endogenous to exogenous dome growth for magma with varying strengths. Determining the key parameters that control the transition in flow pattern of the magma during its lava dome building eruption is the main focus. This dissertation examines the mechanical effects on the morphology of the evolving lava dome on the extrusion of magma from a central vent using a 2D particle dynamics model. The particle dynamics model is coupled with a conduit flow model that incorporates the kinetics of crystallization and rheological stiffening to investigate important mechanisms during lava dome building eruptions. Chapter I of this dissertation explores lava dome growth and failure mechanics using a two-dimensional particle-dynamics model. The model follows the evolution of fractured lava, with solidification driven by degassing induced crystallization of magma. The particle-dynamics model emulates the natural development of dome growth and rearrangement of the lava dome which is difficult in mesh-based analyses due to mesh entanglement effects. The deformable talus evolves naturally as a frictional

  6. Tracking the hidden growth of a lava flow field: the 2014-15 eruption of Fogo volcano (Cape Verde)

    NASA Astrophysics Data System (ADS)

    Silva, Sonia; Calvari, Sonia; Hernandez, Pedro; Perez, Nemesio; Ganci, Gaetana; Alfama, Vera; Barrancos, José; Cabral, Jeremias; Cardoso, Nadir; Dionis, Samara; Fernandes, Paulo; Melian, Gladys; Pereira, José; Semedo, Hélio; Padilla, German; Rodriguez, Fatima

    2017-04-01

    Fogo volcano erupted in 2014-15 producing an extensive lava flow field in the summit caldera that destroyed two villages, Portela and Bangaeira. The eruption started with powerful explosive activity, lava fountaining, and a substantial ash column accompanying the opening of an eruptive fissure. Lava flows spreading from the base of the eruptive fissure produced three arterial lava flows, spreading S (Flow 1), N-NW (Flow 2) and W (Flow 3). By a week after the start of the eruption, a master lava tube had already developed within the eruptive fissure and along Flow 2. When Flow 2 front stopped against the N caldera cliff, the whole flow field behind it inflated, and eventually its partial drainage produced a short tube that fed Flow 3, but no lava tube formed within Flow 1. Here we analyze the emplacement processes on the basis of observations carried out directly on the lava flow field and through satellite image, in order to unravel the key factors leading to the development of lava tubes. These tubes were responsible for the rapid expansion of lava for the 7.9 km length of the flow field, as well as the destruction of the Portela and Bangaeira villages. Comparing time-averaged effusion rates (TADR) obtained from satellite and Supply Rate (SR) derived from SO2 flux data, we estimate the amount and timing of the lava flow field endogenous growth, with the aim of developing a tool that could be used for risk mitigation at this and other volcanoes.

  7. Cooling rate of an active Hawaiian lava flow from nighttime spectroradiometer measurements

    NASA Technical Reports Server (NTRS)

    Flynn, Luke P.; Mouginis-Mark, Peter J.

    1992-01-01

    A narrow-band spectroradiometer has been used to make nighttime measurements of the Phase 50 eruption of Pu'u O'o, on the East Rift Zone of Kilauea Volcano, Hawaii. On February 19, 1992, a GER spectroradiometer was used to determine the cooling rate of an active lava flow. This instrument collects 12-bit data between 0.35 to 3.0 microns at a spectral resolution of 1-5 nm. Thirteen spectra of a single area on a pahoehoe flow field were collected over a 59 minute period (21:27-22:26 HST) from which the cooling of the lava surface has been investigated. A two-component thermal mixing model (Flynn, 1992) applied to data for the flow immediately on emplacement gave a best-fit crustal temperature of 768 C, a hot component at 1150 C, and a hot radiating area of 3.6 percent of the total area. Over a 52-minute period (within the time interval between flow resurfacings) the lava flow crust cooled by 358 to 410 C at a rate that was as high as 15 C/min. The observations have significance both for satellite observations of active volcanoes and for numerical models of the cooling of lava flows during their emplacement.

  8. Testing paleointensity determinations on recent lava flows and scorias from Miyakejima, Japan

    NASA Astrophysics Data System (ADS)

    Fukuma, K.

    2013-12-01

    Still no consensus has been reached on paleointensity method. Even the classical Thellier method has not been fully tested on recent lava flows with known geomagnetic field intensity based on a systematic sampling scheme. In this study, Thellier method was applied for 1983, 1962 and 1940 basaltic lava flows and scorias from Miyakejima, Japan. Several vertical lava sections and quenched scorias, which are quite variable in magnetic mineralogy and grain size, provide an unparalleled opportunity to test paleointensity methods. Thellier experiments were conducted on a completely automated three-component spinner magnetometer with thermal demagnetizer 'tspin'. Specimens were heated in air, applied laboratory field was 45 microT, and pTRM checks were performed at every two heating steps. Curie points and hysteresis properties were obtained on small fragments removed from cylindrical specimens. For lava flows sigmoidal curves were commonly observed on the Arai diagrams. Especially the interior part of lava flows always revealed sigmoidal patterns and sometimes resulted in erroneously blurred behaviors. The directions after zero-field heating were not necessarily stable in the course of the Thellier experiments. It was very difficult, for the interior part, to ascertain linear segments on Arai diagrams corresponding to the geomagnetic field intensity at the eruption. Upper and lower clinker samples also generally revealed sigmoidal or upward concave curves on Arai diagrams. Neither lower nor higher temperature portions of the sigmoids or concaves gave the expected geomagnetic field intensities. However, there were two exceptional cases of lava flows giving correct field intensities: upper clinkers with relatively low unblocking temperatures (< 400 deg.C) and lower clinkers with broad unblocking temperature ranges from room temperature to 600 deg.C. A most promising target for paleointensity experiments within the volcanic rocks is scoria. Scoria samples always carry single

  9. Selected caves and lava-tube systems in and near Lava Beds National Monument, California

    USGS Publications Warehouse

    Waters, Aaron Clement; Donnelly-Nolan, Julie M.; Rogers, Bruce W.

    1990-01-01

    Much of the north and south flanks of the Medicine Lake shield were built from molten lava transmitted through lava tubes. These tubes formed beneath the congealing surface of basalt flows in somewhat the same way that a brook may continue to flow beneath a cover of its own winter ice. As molten lava emerges from a vent and flows downslope, congealing lava from the top and sides of the central channel often forms a bridge over the lava stream. The sticking together of bits of lava spatter and fragile lava crusts strengthens the bridge in the manner that thin crusts of floating ice raft together to cover a brook during early stages of a winter freeze. Eruption of basalt lava, however, is a much more violent and spasmodic process than the steady gathering of water that feeds a brook. If liquid lava stops rising from its source deep within the earth, the still-molten lava moving beneath the crusted-over top of a lava flow will continue to drain downhill and may ultimately leave an open lavatube cave-often large enough for people to walk through. It is rare, however, to find such a simple scenario recorded intact among the hundreds of lava-tube caves in the monument. Even before the top and walls of a lava flow have time to cool during a pause in lava supply, a new and violent eruption of lava may refill the open tube, overflow its upper end, and spread a new lava flow beside or on top of the first flow. Even if the original tube is large enough to contain the renewed supply of lava, this tube must deliver the new lava beyond the end of its original flow and thus the lava field extends farther and farther downslope. If the gradient of flow flattens, the tube may subdivide into a number of smaller distributaries, which spread laterally over the more gently sloping ground. 

  10. Emplacement of Xenolith Nodules in the Kaupulehu Lava Flow, Hualalai Volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    Guest, J. E.; Spudis, P. D.; Greeley, R.; Taylor, G. J.; Baloga, S. M.

    1995-01-01

    The basaltic Kaupulehu 1800-1801 lava flow of Hualalai Volcano, Hawaii contains abundant ultramafic xenoliths. Many of these xenoliths occur as bedded layers of semi-rounded nodules, each thinly coated with a veneer (typically 1 mm thick) of lava. The nodule beds are analogous to cobble deposits of fluvial sedimentary systems. Although several mechanisms have been proposed for the formation of the nodule beds, it was found that, at more than one locality, the nodule beds are overbank levee deposits. The geological occurrence of the nodules, certain diagnostic aspects of the flow morphology and consideration of the inferred emplacement process indicate that the Kaupulehu flow had an exceptionally low viscosity on eruption and that the flow of the lava stream was extremely rapid, with flow velocities of at least 10 m/s (more than 40 km/h. This flow is the youngest on Hualalai Volcano and future eruptions of a similar type would pose considerable hazard to life as well as property.

  11. The Origin of Ina: Evidence for Inflated Lava Flows on the Moon

    NASA Technical Reports Server (NTRS)

    Garry, W. B.; Robinson, M. S.; Zimbelman, J. R.; Bleacher, J. E.; Hawke, B. R.; Crumpler, L. S.; Braden, S. E.; Sato, H.

    2012-01-01

    Ina is an enigmatic volcanic feature on the Moon known for its irregularly shaped mounds, the origin of which has been debated since the Apollo Missions. Three main units are observed on the floor of the depression (2.9 km across, < or =64 m deep) located at the summit of a low-shield volcano: irregularly shaped mounds up to 20 m tall, a lower unit 1 to 5 m in relief that surrounds the mounds, and blocky material. Analyses of Lunar Reconnaissance Orbiter Camera images and topography show that features in Ina are morphologically similar to terrestrial inflated lava flows. Comparison of these unusual lunar mounds and possible terrestrial analogs leads us to hypothesize that features in Ina were formed through lava flow inflation processes. While the source of the lava remains unclear, this new model suggests that as the mounds inflated, breakouts along their margins served as sources for surface flows that created the lower morphologic unit. Over time, mass wasting of both morphologic units has exposed fresh surfaces observed in the blocky unit. Ina is different than the terrestrial analogs presented in this study in that the lunar features formed within a depression, no vent sources are observed, and no cracks are observed on the mounds. However, lava flow inflation processes explain many of the morphologic relationships observed in Ina and are proposed to be analogous with inflated lava flows on Earth.

  12. Young Prehistoric Kilauea Lava Flows From Uwekahuna Bluff, Hawaii: Mixed Source or Hybrid Magmas?

    NASA Astrophysics Data System (ADS)

    Marske, J. P.; Pietruszka, A. J.; Garcia, M. O.; Norman, M. D.; Rhodes, J. M.

    2004-12-01

    For the last 350 kyr, nearly the entire known compositional range of subaerial and submarine Kilauea lavas lie within the range defined by the volcano's historical eruptions. In contrast, Rhodes et al. (1989) discovered that some Kilauea lavas have Mauna Loa-like major-and trace-element signatures and concluded that Mauna Loa magmas may periodically invade Kilauea's shallow plumbing system. Here, we present new major- and trace- element data for 25 sequential prehistoric lava flows (0.5 to <2 ka) from the upper 55 m of the north wall of Kilauea caldera at Uwekahuna Bluff (UB). Although historical Kilauea and Mauna Loa lavas have been compositionally distinct for most of the last 230 kyr, our results show that the UB lavas span the geochemical spectrum between these neighboring volcanoes. At a given MgO content, the abundances of major elements (e.g., SiO2, TiO2, or CaO) in the UB lavas typically plot between historical Mauna Loa and Kilauea values, suggesting that these lavas originated from compositionally intermediate parental magmas or from hybridization between historical Kilauea- and Mauna Loa-type magmas. In contrast to the major element abundances, ratios of highly to moderately incompatible elements (e.g., Nb/Y) in the UB lavas are mostly Mauna Loa-like. These incompatible trace element ratios reveal a rapid fluctuation of Kilauea's lava composition since prehistoric times: (1) two lava flows at the base of the suite record a decrease in Nb/Y from historical Kilauea- to historical Mauna Loa-type values, (2) a weathered hiatus near the middle of the flow sequence coincides with a gradual Nb/Y minimum and reversal, and (3) the top three lava flows transition back into historical Kilauea-type Nb/Y values with a smooth temporal connection to the oldest historical lavas from this volcano. The systematic variations of these UB trace-element ratios may result from gradual mixing between Kilauea- and Mauna Loa-type magmas within the summit reservoir and/or varying

  13. Lava-flow hazard on the SE flank of Mt. Etna (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Crisci, G. M.; Iovine, G.; Di Gregorio, S.; Lupiano, V.

    2008-11-01

    A method for mapping lava-flow hazard on the SE flank of Mt. Etna (Sicily, Southern Italy) by applying the Cellular Automata model SCIARA -fv is described, together with employed techniques of calibration and validation through a parallel Genetic Algorithm. The study area is partly urbanised; it has repeatedly been affected by lava flows from flank eruptions in historical time, and shows evidence of a dominant SSE-trending fracture system. Moreover, a dormant deep-seated gravitational deformation, associated with a larger volcano-tectonic phenomenon, affects the whole south-eastern flank of the volcano. The Etnean 2001 Mt. Calcarazzi lava-flow event has been selected for model calibration, while validation has been performed by considering the 2002 Linguaglossa and the 1991-93 Valle del Bove events — suitable data for back analysis being available for these recent eruptions. Quantitative evaluation of the simulations, with respect to the real events, has been performed by means of a couple of fitness functions, which consider either the areas affected by the lava flows, or areas and eruption duration. Sensitivity analyses are in progress for thoroughly evaluating the role of parameters, topographic input data, and mesh geometry on model performance; though, preliminary results have already given encouraging responses on model robustness. In order to evaluate lava-flow hazard in the study area, a regular grid of n.340 possible vents, uniformly covering the study area and located at 500 m intervals, has been hypothesised. For each vent, a statistically-significant number of simulations has been planned, by adopting combinations of durations, lava volumes, and effusion-rate functions, selected by considering available volcanological data. Performed simulations have been stored in a GIS environment for successive analyses and map elaboration. Probabilities of activation, empirically based on past behaviour of the volcano, can be assigned to each vent of the grid, by

  14. A three-dimensional dynamical model for channeled lava flow with nonlinear rheology

    NASA Astrophysics Data System (ADS)

    Filippucci, Marilena; Tallarico, Andrea; Dragoni, Michele

    2010-05-01

    Recent laboratory studies on the rheology of lava samples from different volcanic areas have highlighted that the apparent viscosity depends on a power of the strain rate. Several authors agree in attributing this dependence to the crystal content of the sample and to temperature. Starting from these results, in this paper we studied the effect of a power law rheology on a gravity-driven lava flow. The equation of motion is nonlinear in the diffusion term, and an analytical solution does not seem to be possible. The finite-volume method has been applied to solve numerically the equation governing the fully developed laminar flow of a power law non-Newtonian fluid in an inclined rectangular channel. The convergence, the stability, and the order of approximation were tested for the Newtonian rheology case, comparing the numerical solution with the available analytical solution. Results indicate that the assumption on the rheology, whether linear or nonlinear, strongly affects the velocity and/or the thickness of the lava channel both for channels with fixed geometry and for channels with constant flow rate. Results on channels with fixed geometry are confirmed by some simulations for real lava channels. Finally, the study of the Reynolds number indicates that gravity-driven lava channel flows are always in laminar regime, except for strongly nonlinear pseudoplastic fluids with low fluid consistency and at high slopes.

  15. Emplacement history and inflation evidence of a long basaltic lava flow located in Southern Payenia Volcanic Province, Argentina

    NASA Astrophysics Data System (ADS)

    Bernardi, Mauro I.; Bertotto, Gustavo W.; Jalowitzki, Tiago L. R.; Orihashi, Yuji; Ponce, Alexis D.

    2015-02-01

    The El Corcovo lava flow, from the Huanul shield volcano in the southern Mendoza province (central-western Argentina) traveled a distance of 70 km and covered a minimum area of ~ 415 km2. The flow emplacement was controlled both by extrinsic (e.g., topography) and intrinsic (e.g., lava supply rate, lava physicochemical characteristics) factors. The distal portion of the lava flow reached the Colorado River Valley, in La Pampa Province, where it spread and then was confined by earlier river channels. Cross-sections through the flow surveyed at several localities show two vesicular layers surrounding a dense central section, where vesicles are absent or clustered in sheet-shaped and cylindrical-shaped structures. Lavas of the El Corcovo flow are alkaline basalts with low values of viscosity. The morphological and structural characteristics of the flow and the presence of landforms associated with lava accumulation are the evidence of inflation. This process involved the formation of a tabular sheet flow up to 4 m of thick with a large areal extent in the proximal sectors, while at terminal sectors frontal lobes reached inflation values up to 10 m. The numerous swelling structures present at these portions of the flow suggest the movement of lava in lava tubes. We propose that this aspect and the low viscosity of the lava allowed the flow travel to a great distance on a gentle slope relief.

  16. The morphology and evolution of the Stromboli 2002-2003 lava flow field--An example of a basaltic flow field emplaced on a steep slope

    USGS Publications Warehouse

    Lodato, Luigi; Harris, A.; Spampinato, L.; Calvari, Sonia; Dehn, J.; Patrick, M.

    2007-01-01

    The use of a hand-held thermal camera during the 2002–2003 Stromboli effusive eruption proved essential in tracking the development of flow field structures and in measuring related eruption parameters, such as the number of active vents and flow lengths. The steep underlying slope on which the flow field was emplaced resulted in a characteristic flow field morphology. This comprised a proximal shield, where flow stacking and inflation caused piling up of lava on the relatively flat ground of the vent zone, that fed a medial–distal lava flow field. This zone was characterized by the formation of lava tubes and tumuli forming a complex network of tumuli and flows linked by tubes. Most of the flow field was emplaced on extremely steep slopes and this had two effects. It caused flows to slide, as well as flow, and flow fronts to fail frequently, persistent flow front crumbling resulted in the production of an extensive debris field. Channel-fed flows were also characterized by development of excavated debris levees in this zone (Calvari et al. 2005). Collapse of lava flow fronts and inflation of the upper proximal lava shield made volume calculation very difficult. Comparison of the final field volume with that expecta by integrating the lava effusion rates through time suggests a loss of ~70% erupted lava by flow front crumbling and accumulation as debris flows below sea level. Derived relationships between effusion rate, flow length, and number of active vents showed systematic and correlated variations with time where spreading of volume between numerous flows caused an otherwise good correlation between effusion rate, flow length to break down. Observations collected during this eruption are useful in helping to understand lava flow processes on steep slopes, as well as in interpreting old lava–debris sequences found in other steep-sided volcanoes subject to effusive activity.

  17. Lava Fountaining Discharge Regime driven by Slug-to-Churn Flow Transition. (Invited)

    NASA Astrophysics Data System (ADS)

    Ripepe, M.; Pioli, L.; Marchetti, E.; Ulivieri, G.

    2013-12-01

    Lava fountaining episodes at Etna volcano appear characterized by the transition between Strombolian and Hawaiian end-member eruptive styles. There is no evidence for this transition in the seismic (i.e. seismic tremor) signal. However, infrasonic records provide unprecedented evidence on this flow transition. Each eruptive episode is characterized by distinctive common trend in the amplitude, waveform and frequency content of the infrasonic wavefield, which evidences the shift from discrete, and transient, strombolian to sustained, and oscillatory, lava fountain dynamics. Large scale experiments on the dynamics of two-phase flow of basaltic magmas show how the transition between different regimes mainly depends on gas volume flow, which in turn controls pressure distribution within the conduit and also magma vesicularity. In particular, while regular large bubble bursting is associated with slug flow regime, large amplitude and low frequency column oscillations are associated with churn flow. In large pipes, transition from slug to churn flow regime is independent on conduit diameter and it is reached at high superficial gas velocity. Lava fountaining episodes at Etna can be thus interpreted as induced by the transition from the slug (discrete strombolian) to churn flow (sustained lava fountain) regimes that is reflecting an increase in the gas discharge rate. Based on laboratory experiments, we calculate that transition between these two end-member explosive regimes at Etna occurs when gas superficial velocity is 76 m/s for near-the-vent stagnant magma conditions.

  18. Map showing lava-flow hazard zones, Island of Hawaii

    USGS Publications Warehouse

    Wright, Thomas L.; Chun, Jon Y.F.; Exposo, Jean; Heliker, Christina; Hodge, Jon; Lockwood, John P.; Vogt, Susan M.

    1992-01-01

    This map shows lava-flow hazard zones for the five volcanoes on the Island of Hawaii. Volcano boundaries are shown as heavy, dark bands, reflecting the overlapping of lava flows from adjacent volcanoes along their common boundary. Hazard-zone boundaries are drawn as double lines because of the geologic uncertainty in their placement. Most boundaries are gradational, and the change In the degree of hazard can be found over a distance of a mile or more. The general principles used to place hazard-zone boundaries are discussed by Mullineaux and others (1987) and Heliker (1990). The differences between the boundaries presented here and in Heliker (1990) reflect new data used in the compilation of a geologic map for the Island of Hawaii (E.W. Wolfe and Jean Morris, unpub. data, 1989). The primary source of information for volcano boundaries and generalized ages of lava flows for all five volcanoes on the Island of Hawaii is the geologic map of Hawaii (E.W. Wolfe and Jean Morris, unpub. data, 1989). More detailed information is available for the three active volcanoes. For Hualalai, see Moore and others (1987) and Moore and Clague (1991); for Mauna Loa, see Lockwood and Lipman (1987); and for Kilauea, see Holcomb (1987) and Moore and Trusdell (1991).

  19. The case of the missing vent: lessons in lava flow interpretation from Highway Flow, Craters of the Moon, Idaho

    NASA Astrophysics Data System (ADS)

    Hughes, S. S.; Nawotniak, S. K.; Haberle, C. W.; Downs, M.; Sehlke, A.; Elphic, R. C.; Lim, D. S. S.; Heldmann, J.

    2016-12-01

    Highway Flow, a latite lava flow at the northern edge of Craters of the Moon National Monument and Preserve in Idaho, appears to have been northward flowing on the basis of its footprint and broad morphology. In plan view, the overall morphology suggests a northward flow in a self-defined channel before finishing in a rounded terminus. Comparison with topographic maps clearly demonstrates, however, that this would require significant uphill travel. We hypothesize, based on topography, alteration, and contacts between flow lobes, that the lava flow emerged from a vent under the highest elevation in the central part of the flow. More detailed ground investigation with the Biologic Analog Science Associated with Lava Terrains (BASALT) and Field Investigations to Enable Solar System Science and Exploration (FINESSE) projects, using Highway flow as an analog for planetary lavas, demonstrates that Highway Flow is actually two separate compound flow lobes, one that flowed mostly westward and the other southward. The western lobe has a circular footprint and is extensively broken by radial fractures. The southern lobe is elongate, with sheared margins and interior ribs perpendicular to flow direction; the ribs include crude ogives and extension cracks. The vent for Highway Flow, previously thought to be buried by North Crater or Big Crater flows to the south or transported tephra from Sunset Cone to the east, is identifiable at the approximate center of the seam between the two lobes using new high-resolution DTMs from UAV flights and alteration patterns observed in the field and via multispectral imagery. Contrasting topographic controls surrounding the vent resulted in very different morphologies for the two lobes, despite emplacement under otherwise similar conditions. These results argue in favor of using multiple datasets, rather than simply using visual orbiter imagery, to interpret lava flow emplacement features on other planetary bodies.

  20. Lava flow hazard at the new South-East Crater of Etna volcano

    NASA Astrophysics Data System (ADS)

    Cappello, Annalisa; Ganci, Gaetana; Bilotta, Giuseppe; Hérault, Alexis; Zago, Vito; Del Negro, Ciro

    2017-04-01

    The summit area of Mount Etna has frequently undergone major morphological changes due to its persistent eruptive activity. Since its creation during the 1971 eruption, the Southeast Crater (SEC) has been the most active of the summit craters of Etna. At first, it was a degassing pit located close to the southeast base of the Central Crater cone. During the first 40 years of activity, SEC erupted quite frequently producing almost one hundred of lava flows. Between 2011 and 2016, more than 50 lava fountains occurred, leading to the formation of a new pyroclastic cone (NSEC) on the eastern flank of the SEC. All SEC eruptions are likely to give rise to lava flow, which is the greatest hazard presented to the tourist facilities on the south flank of Etna. For this reason, in 2011 we produced a lava flow hazard map for SEC eruptions using the 2005 DEM as topographic base, where the NSEC was not yet formed. Here we present the new 1-m DEM of Etna updated to 18 December 2015 obtained from high resolution stereo Pléiades images (0.5 m). Processing of Pléiades data was performed by using the DEM Extraction Module of ENVI through three steps: epipolar image creation, image matching, and DEM geocoding. This DEM was used as the new topographic base to produce the first hazard map from lava flow inundation in the NSEC area allowing key at-risk zones to be rapidly and appropriately identified.

  1. Constraining Controls on the Emplacement of Long Lava Flows on Earth and Mars Through Modeling in ArcGIS

    NASA Astrophysics Data System (ADS)

    Golder, K.; Burr, D. M.; Tran, L.

    2017-12-01

    Regional volcanic processes shaped many planetary surfaces in the Solar System, often through the emplacement of long, voluminous lava flows. Terrestrial examples of this type of lava flow have been used as analogues for extensive martian flows, including those within the circum-Cerberus outflow channels. This analogy is based on similarities in morphology, extent, and inferred eruptive style between terrestrial and martian flows, which raises the question of how these lava flows appear comparable in size and morphology on different planets. The parameters that influence the areal extent of silicate lavas during emplacement may be categorized as either inherent or external to the lava. The inherent parameters include the lava yield strength, density, composition, water content, crystallinity, exsolved gas content, pressure, and temperature. Each inherent parameter affects the overall viscosity of the lava, and for this work can be considered a subset of the viscosity parameter. External parameters include the effusion rate, total erupted volume, regional slope, and gravity. To investigate which parameter(s) may control(s) the development of long lava flows on Mars, we are applying a computational numerical-modelling to reproduce the observed lava flow morphologies. Using a matrix of boundary conditions in the model enables us to investigate the possible range of emplacement conditions that can yield the observed morphologies. We have constructed the basic model framework in Model Builder within ArcMap, including all governing equations and parameters that we seek to test, and initial implementation and calibration has been performed. The base model is currently capable of generating a lava flow that propagates along a pathway governed by the local topography. At AGU, the results of model calibration using the Eldgá and Laki lava flows in Iceland will be presented, along with the application of the model to lava flows within the Cerberus plains on Mars. We then

  2. Modeling steam pressure under martian lava flows

    USGS Publications Warehouse

    Dundas, Colin M.; Keszthelyi, Laszlo P.

    2013-01-01

    Rootless cones on Mars are a valuable indicator of past interactions between lava and water. However, the details of the lava–water interactions are not fully understood, limiting the ability to use these features to infer new information about past water on Mars. We have developed a model for the pressurization of a dry layer of porous regolith by melting and boiling ground ice in the shallow subsurface. This model builds on previous models of lava cooling and melting of subsurface ice. We find that for reasonable regolith properties and ice depths of decimeters, explosive pressures can be reached. However, the energy stored within such lags is insufficient to excavate thick flows unless they draw steam from a broader region than the local eruption site. These results indicate that lag pressurization can drive rootless cone formation under favorable circumstances, but in other instances molten fuel–coolant interactions are probably required. We use the model results to consider a range of scenarios for rootless cone formation in Athabasca Valles. Pressure buildup by melting and boiling ice under a desiccated lag is possible in some locations, consistent with the expected distribution of ice implanted from atmospheric water vapor. However, it is uncertain whether such ice has existed in the vicinity of Athabasca Valles in recent history. Plausible alternative sources include surface snow or an aqueous flood shortly before the emplacement of the lava flow.

  3. The role of unsteady effusion rates on inflation in long-lived lava flow fields

    NASA Astrophysics Data System (ADS)

    Rader, E.; Vanderkluysen, L.; Clarke, A.

    2017-11-01

    The emission of volcanic gases and particles can have global and lasting environmental effects, but their timing, tempo, and duration can be problematic to quantify for ancient eruptions where real-time measurements are absent. Lava flows, for example, may be long-lasting, and their impact is controlled by the rate, tempo, and vigor of effusion. These factors are currently difficult to derive from the geologic record but can have large implications for the atmospheric impact of an eruption. We conducted a set of analogue experiments on lava flow inflation aiming at connecting lava morphologies preserved in the rock record to eruption tempo and dynamics through pulsating effusion rates. Inflation, a process where molten material is injected beneath the crust of an active lava flow and lifts it upwards, is a common phenomenon in basaltic volcanic systems. This mechanism requires three components: a) a coherent, insulating crust; b) a wide-spread molten core; and c) pressure built up beneath the crust from a sustained supply of molten material. Inflation can result in a lava flow growing tens of meters thick, even in flow fields that expand hundreds of square kilometers. It has been documented that rapid effusion rates tend to create channels and tubes, isolating the active part of the flow from the stagnant part, while slow effusion rates may cause crust to form quickly and seize up, forcing lava to overtop the crust. However, the conditions that allow for inflation of large flow fields have not previously been evaluated in terms of effusion rate. By using PEG 600 wax and a programmable pump, we observe how, by pulsating effusion rate, inflation occurs even in very low viscosity basaltic eruptions. We show that observations from inflating Hawaiian lava flows correlate well with experimental data and indicate that instantaneous effusion rates may have been 3 times higher than average effusion rates during the emplacement of the 23 January 1988 flow at Kīlauea (Hawai

  4. Radiocarbon dates for lava flows and pyroclastic deposits on Sao Miguel, Azores

    USGS Publications Warehouse

    Moore, R.B.; Rubin, M.

    1991-01-01

    We report 63 new radiocarbon analyses of samples from Sao Miguel, the largest island in the Azores archipelago. The samples are mainly carbonized tree roots and other plant material collected from beneath 20 mafic lava flows and spatter deposits and from within and beneath 42 trachytic pyroclastic flow, pyroclastic surge, mudflow, pumice-fall and lacustrine deposits and lava flows. One calcite date is reported. These dates establish ages for 48 previously undated lava flows and pyroclastic deposits, and revise three ages previously reported. These data are critical to deciphering the Holocene and late Pleistocene eruptive history of Sao Miguel and evaluating its potential volcanic hazards. Average dormant intervals during the past 3000 years are about 400 years for Sete Cidades volcano, 145 years for volcanic Zone 2, 1150 years for Agua de Pau volcano and 320 years for Furnas volcano. No known eruptions have occurred in volcanic Zone 4 during the past 3000 years. -from Authors

  5. Geomagnetic field intensity determination from Pleistocene trachytic lava flows in Jeju Geopark

    NASA Astrophysics Data System (ADS)

    Jeong, Doohee; Yu, Yongjae; Liu, Qingsong; Jiang, Zhaoxia; Koh, Gi Won; Koh, Dong-Chan

    2014-03-01

    A composite of 28 trachytic lava flows were recovered from the Jeju Geopark Drilling Project (JGDP) in Jeju Geopark, one of the new seven wonders of Nature declared by UNESCO in 2011. Each trachytic lava flow has a tendency to increase in magnetic grain size from the rapidly cooled brecciated margin and vesicle streaked zone downward into the massive crystalline flow interiors. The brecciated margin and vesicle streaked zone of individual trachytic lava flow contains exclusively fine-grained magnetite as inclusions in plagioclase. High-fidelity paleointensity determinations were obtained from 26 (out of 224 examined) samples from JGDP cores. Temporal variation of virtual axial dipole moments (VADMs) calculated from the absolute paleointensity estimates follows the trend of sint-800 data for the interval from ˜80 to ˜360 ka. High VADM from flow 21 possibly represents real intensity peak, as previously recognized high VADM in Japan at ˜336 ka, in Trans-Mexican volcanism ˜339, and in Hawaii ˜340-350 ka. Perhaps such a strong magnetic intensity near ˜325-350 ka might be smoothed out in relative paleointensity records.

  6. Sensibility analysis of VORIS lava-flow simulations: application to Nyamulagira volcano, Democratic Republic of Congo

    NASA Astrophysics Data System (ADS)

    Syavulisembo, A. M.; Havenith, H.-B.; Smets, B.; d'Oreye, N.; Marti, J.

    2015-03-01

    Assessment and management of volcanic risk are important scientific, economic, and political issues, especially in densely populated areas threatened by volcanoes. The Virunga area in the Democratic Republic of Congo, with over 1 million inhabitants, has to cope permanently with the threat posed by the active Nyamulagira and Nyiragongo volcanoes. During the past century, Nyamulagira erupted at intervals of 1-4 years - mostly in the form of lava flows - at least 30 times. Its summit and flank eruptions lasted for periods of a few days up to more than two years, and produced lava flows sometimes reaching distances of over 20 km from the volcano, thereby affecting very large areas and having a serious impact on the region of Virunga. In order to identify a useful tool for lava flow hazard assessment at the Goma Volcano Observatory (GVO), we tested VORIS 2.0.1 (Felpeto et al., 2007), a freely available software (http://www.gvb-csic.es) based on a probabilistic model that considers topography as the main parameter controlling lava flow propagation. We tested different Digital Elevation Models (DEM) - SRTM1, SRTM3, and ASTER GDEM - to analyze the sensibility of the input parameters of VORIS 2.0.1 in simulation of recent historical lava-flow for which the pre-eruption topography is known. The results obtained show that VORIS 2.0.1 is a quick, easy-to-use tool for simulating lava-flow eruptions and replicates to a high degree of accuracy the eruptions tested. In practice, these results will be used by GVO to calibrate VORIS model for lava flow path forecasting during new eruptions, hence contributing to a better volcanic crisis management.

  7. Iceland Volcano Puffs Ash as Lava Flow Cuts Through Eyjafjallajökull Icecap

    NASA Image and Video Library

    2010-05-05

    Dramatic changes have been observed at the Eyjafjallajökull volcano in Iceland by NASA's Earth Observing 1 (EO-1) spacecraft. On May 2, 2010, the Hyperion hyperspectral imager on EO-1 imaged Eyjafjallajökull and identified the extent of a lava flow extending northwards from the main eruption vent. This lava flow had been previously reported by volcanologists in Iceland, and is slowly carving its way north through the ice cap. The image on the left (Figure 1) is at visible wavelengths, and shows the persistent dark volcanic plume emanating from the main vent. This plume is still rich in ash, hence its brown coloration. This ash is still causing problems, threatening new airspace closures over parts of Europe. Large cracks at the edge of the crater are an indication of the extent of ice removal from the icecap during the eruption. To the north of this vent is another plume that is very white. This second plume is the result of ice being boiled off, generally non-explosively, by the heat from the silicate lava flow. As a result this plume is probably comprised mostly of water vapour. The black lava shows up clearly against the ice in the left-hand image. The image in the center (Figure 2) is a false-color image in the short-wavelength infrared. In this image, ice appears as blue and hot pixels appear as red. Very hot pixels appear as yellow and white. Red pixels, visible though the plume chart the extent of the lava flow, which has extended some 1.8 kilometers (1.1 miles) northwards from the area of the vent that is emitting the most energy. Total heat loss on May 2 was estimated to be at least 300 megawatts. The image on the right (Figure 3) shows the lava flow on May 4, 2010. The entire lava channel is now exposed, most of the overlying ice having been removed and the white plume has mostly disappeared. Without the plume obscuring heat loss from the lava flow, a better estimate of heat loss can be made. On May 4, the volcano was emitting at least 1,600 megawatts

  8. The Influence of Topography on the Emplacement Dynamics of Martian Lava flows

    NASA Astrophysics Data System (ADS)

    Tremblay, J.; Fitch, E. P.; Fagents, S. A.

    2017-12-01

    Lava flows on the Martian surface exhibit a diverse array of complex morphologies. Previous emplacement models, based on terrestrial flows, do not fully account for these observed complex morphologies. We assert that the topography encountered by the flow can exert substantial control over the thermal, rheological, and morphological evolution of the flow, and that these effects can be better incorporated into flow models to predict Martian flow morphologies. Our development of an updated model can be used to account for these topographical effects and better constrain flow parameters. The model predicts that a slope break or flow meander induces eddy currents within the flow, resulting in the disruption of the flow surface crust. The exposure of the flow core results in accelerated cooling of the flow and a resultant increase in viscosity, leading to slowing of the flow. A constant source lava flux and a stagnated flow channel would then result in observable morphological changes, such as overflowing of channel levees. We have identified five morphological types of Martian flows, representing a range of effusion rates, eruption durations and topographic settings, which are suitable for application of our model. To characterize flow morphology, we used imaging and topographic data sets to collect data on flow dimensions. For eight large (50 to hundreds of km long) channelized flows in the Tharsis region, we used the MOLA 128 ppd DEM and/or individual MOLA shot points to derive flow cross-sectional thickness profiles, from which we calculated the cross-sectional area of the flow margins adjacent to the main channel. We found that the largest flow margin cross sectional areas (excluding the channel) occur in association with a channel bend, typically near the bend apex. Analysis of high-resolution images indicates that these widened flow margins are the result of repeated overflows of the channel levees and emplacement of short flow lobes adjacent to the main flow. In

  9. The Preservation of Organic Matter and its Signatures at Experimental Lava Flow Interfaces: Implications for Mars

    NASA Astrophysics Data System (ADS)

    Junium, C. K.; Karson, J. A.; Kahan, T.

    2015-12-01

    The oxidizing nature of Martian soils suggests that the preservation of organic molecules or any direct evidence for life at the surface may not be possible. Future rover missions will need to focus on a variety localitions including those that provide the best possibility for the preservation of organic matter. Volcanic glass and basalt flow surfaces are favored environments for microbial colonization on Earth and this may have been similar on an early Mars. Trace metals and nutrients from easily weathered surface would have provided nutrients as well as substrates for chemolithoautotrophs. In regions of igneous activity, successive flows could overrun microbial communities, trapping potential organic signatures between flows. Here we present experimental evidence for the preservation of organic matter between lava flows and that flow interfaces may be excellent sites for exploratory efforts in the search for Martian biosignatures. We performed a series of experiments using the infrastructure of the Syracuse Lava Project that allows for natural-scale lava flows of up to several hundred kilograms. We subjected cyanobacterial organic matter to overrun by lava under a variety of conditions. In all cases organic matter was preserved between lava flows as chars on the overrun 'colonized" lava and as thin shiny carbon coatings on the overriding flow. The carbon coatings are likely the result of rapid heating and pyrolysis of organic matter that sears to the underside of the overriding lava. Controls yielded no positive signatures for organic matter. We also tested the degree to which the organic matter could be detected remotely using technologies that are found on the Mars Science Laboratory or planned for future missions. We employed elemental and stable isotopes analysis, and Raman spectroscopy. Elemental analysis demonstrated that organic carbon and nitrogen remain in the charred material and that the carbon and nitrogen isotopes of the chars do not deviate

  10. Structural Analysis of Silicic Lavas Reveals the Importance of Endogenous Flow During Emplacement

    NASA Astrophysics Data System (ADS)

    Andrews, G. D.; Martens, A.; Isom, S.; Maxwell, A.; Brown, S. R.

    2017-12-01

    Recent observations of silicic lava flows in Chile strongly suggest sustained, endogeneous flow beneath an insulating carapace, where the flow advances through breakouts at the flow margin. New mapping of vertical exposures around the margin of Obsidian Dome, California, has identified discreet lobe structures in cross-section, suggesting that flow-front breakouts occured there during emplacement. The flow lobes are identified through structural measurements of flow-banding orientation and the stretching directions of vesicles. Newly acquired lidar of the Inyo Domes, including Obsidian Dome, is being analyzed to better understand the patterns of folding on the upper surface of the lavas, and to test for fold vergence patterns that may distinguish between endogenous and exogenous flow.

  11. Eruption and emplacement dynamics of a thick trachytic lava flow of the Sancy volcano (France)

    NASA Astrophysics Data System (ADS)

    Latutrie, Benjamin; Harris, Andrew; Médard, Etienne; Gurioli, Lucia

    2017-01-01

    A 70-m-thick, 2200-m-long (51 × 106 m3) trachytic lava flow unit underlies the Puy de Cliergue (Mt. Dore, France). Excellent exposure along a 400-m-long and 60- to 85-m-high section allows the flow interior to be accessed on two sides of a glacial valley that cuts through the unit. We completed an integrated morphological, structural, textural, and chemical analysis of the unit to gain insights into eruption and flow processes during emplacement of this thick silicic lava flow, so as to elucidate the chamber and flow dynamic processed that operate during the emplacement of such systems. The unit is characterized by an inverse chemical stratification, where there is primitive lava beneath the evolved lava. The interior is plug dominated with a thin basal shear zone overlying a thick basal breccia, with ramping affecting the entire flow thickness. To understand these characteristics, we propose an eruption model that first involves processes operating in the magma chamber whereby a primitive melt is injected into an evolved magma to create a mixed zone at the chamber base. The eruption triggered by this event first emplaced a trachytic dome, into which banded lava from the chamber base was injected. Subsequent endogenous dome growth led to flow down the shallow slope to the east on which the highly viscous (1012 Pa s) coulée was emplaced. The flow likely moved extremely slowly, being emplaced over a period of 4-10 years in a glacial manner, where a thick (>60-m) plug slid over a thin (5-m-thick) basal shear zone. Excellent exposure means that the Puy de Cliergue complex can be viewed as a case type location for understanding and defining the eruption and emplacement of thick, high-viscosity, silicic lava flow systems.

  12. Mapping and DOWNFLOW simulation of recent lava flow fields at Mount Etna

    NASA Astrophysics Data System (ADS)

    Tarquini, Simone; Favalli, Massimiliano

    2011-07-01

    In recent years, progress in geographic information systems (GIS) and remote sensing techniques have allowed the mapping and studying of lava flows in unprecedented detail. A composite GIS technique is introduced to obtain high resolution boundaries of lava flow fields. This technique is mainly based on the processing of LIDAR-derived maps and digital elevation models (DEMs). The probabilistic code DOWNFLOW is then used to simulate eight large flow fields formed at Mount Etna in the last 25 years. Thanks to the collection of 6 DEMs representing Mount Etna at different times from 1986 to 2007, simulated outputs are obtained by running the DOWNFLOW code over pre-emplacement topographies. Simulation outputs are compared with the boundaries of the actual flow fields obtained here or derived from the existing literature. Although the selected fields formed in accordance with different emplacement mechanisms, flowed on different zones of the volcano over different topographies and were fed by different lava supplies of different durations, DOWNFLOW yields results close to the actual flow fields in all the cases considered. This outcome is noteworthy because DOWNFLOW has been applied by adopting a default calibration, without any specific tuning for the new cases considered here. This extensive testing proves that, if the pre-emplacement topography is available, DOWNFLOW yields a realistic simulation of a future lava flow based solely on a knowledge of the vent position. In comparison with deterministic codes, which require accurate knowledge of a large number of input parameters, DOWNFLOW turns out to be simple, fast and undemanding, proving to be ideal for systematic hazard and risk analyses.

  13. Magnetic versus Crystallographic Fabrics in Basaltic Lava Flows

    NASA Astrophysics Data System (ADS)

    Bascou, J.; Camps, P. C.; Plenier, G.; Dautria, J.

    2003-12-01

    Indicators of flow direction and sense in lava flows are often difficult to observe. To overcome this difficulty, anisotropy of magnetic susceptibility (AMS) can be used. However, a major issue is to know how consistently the axes of magnetic susceptibility (K1, K2 and K3) correlate with the flow direction. We carried out a systematically sampling of the base, the middle part and the top of lava flow for which the flowing directions are well known. These quaternary flows, located in the area of Pézenas (southern France), are pluri - kilometric long, between 2 and 10 m thick, rather narrow (< 500 m) and characterized by a weak slope (<10o). Oriented cores offer an opportunity to investigate the relationships between flow direction, principal susceptibilities and crystallographic preferred orientations (shape and lattice orientations) of rock-forming minerals. In thin-section, the opaque grains observed in reflected light are abundant (about 5 percent) and the largest in size (15-20 μ m) are sub-automorphous. Microsonde analyses and thermomagnetic curves measured in the range 80 - 900 K indicate that titano magnetite (x = 0.6) is the dominant oxide mineral. FORC diagrams reveal that the magnetic grain sizes are both PSD-MD and PSD-SD assemblages. AMS measurements from 180 specimens reveal a tight clustering of the K3 axes close to the vertical and a weaker degree of clustering of K1, K2 axes. A significant enhancing of the magnetic fabric is observed after demagnetization by thermal treatment. Lattice Preferred Orientation (LPO) measurements of titano magnetite and plagioclase were performed using the electron backscattered diffraction (EBSD) technique. The highest fabric strength is observed from plagioclase measurements and the LPO of this mineral are correlated to the flow dynamic. For the samples collected from near the flow base a good correlation is observed between the AMS ellipsoid axes and the LPO of plagioclase: the K1 axis is close to the maximum

  14. A new model for the emplacement of Columbia River basalts as large, inflated pahoehoe lava flow fields

    USGS Publications Warehouse

    Self, S.; Thordarson, Th.; Keszthelyi, L.; Walker, G.P.L.; Hon, K.; Murphy, M.T.; Long, P.; Finnemore, S.

    1996-01-01

    Extensive flows of the Columbia River Basalt (CRB) Group in Washington, Oregon, and Idaho are dominantly inflated compound pahoehoe sheet lavas. Early studies recognized that CRB lavas are compound pahoehoe flows, with textures suggesting low flow velocities, but it was thought that the great thickness and extent of the major flows required very rapid emplacement as turbulent floods of lava over a period of days or weeks. However, small volume ( < 1 km3) compound pahoehoe flows on Kilauea, Hawai'i, demonstrate that such flows can thicken by at least an order of magnitude through gradual inflation and the same mechanism has been proposed for larger (10-20 km3) pahoehoe flows in Iceland. The vertical distribution of vesicles and other morphologic features within CRB lava flows indicate that they grew similarly by inflation. Small pahoehoe lobes at the base and top of many CRB pahoehoe lava flows indicate emplacement in a gradual, piecemeal manner rather than as a single flood. We propose that each thick CRB sheet flow was active for months to years and that each group of flows produced by a single eruption (a flow field) was emplaced slowly over many years. Copyright 1996 by the American Geophysical Union.

  15. Field-based description of rhyolite lava flows of the Calico Hills Formation, Nevada National Security Site, Nevada

    USGS Publications Warehouse

    Sweetkind, Donald S.; Bova, Shiera C.

    2015-01-01

    In the area south of the Rainier Mesa caldera, surface and subsurface geologic data are combined to interpret the overall thickness of the Calico Hills Formation and the proportion of lava flow lithology across the study area. The formation is at least 500 meters (m) thick and contains the greatest proportion of rhyolite lava flow to the northeast of Yucca Mountain in the lower part of Fortymile Canyon. The formation thins to the south and southwest where it is between 50 and 200 m thick beneath Yucca Mountain and contains no rhyolite lavas. Geologic mapping and field-based correlation of individual lava flows allow for the interpretation of the thickness and extent of specific flows and the location of their source areas. The most extensive flows have widths from 2 to 3 kilometers (km) and lengths of at least 5–6 km. Lava flow thickness varies from 150 to 250 m above interpreted source vents to between 30 and 80 m in more distal locations. Rhyolite lavas have length-to-height ratios of 10:1 or greater and, in one instance, a length-to-width ratio of 2:1 or greater, implying a tongue-shaped geometry instead of circular domes or tabular bodies. Although geologic mapping did not identify any physical feature that could be positively identified as a vent, lava flow thickness and the size of clasts in subjacent pyroclastic deposits suggest that primary vent areas for at least some of the flows in the study area are on the east side of Fortymile Canyon, to the northeast of Yucca Mountain.

  16. Channelized lava flows at the East Pacific Rise crest 9°-10°N: the importance of off-axis lava transport in developing the architecture of young oceanic crust

    USGS Publications Warehouse

    Soule, S.A.; Fornari, D.J.; Perfit, M.R.; Tivey, M.A.; Ridley, W.I.; Schouten, Hans

    2005-01-01

     Submarine lava flows are the building blocks of young oceanic crust. Lava erupted at the ridge axis is transported across the ridge crest in a manner dictated by the rheology of the lava, the characteristics of the eruption, and the topography it encounters. The resulting lava flows can vary dramatically in form and consequently in their impact on the physical characteristics of the seafloor and the architecture of the upper 50–500 m of the oceanic crust. We have mapped and measured numerous submarine channelized lava flows at the East Pacific Rise (EPR) crest 9°–10°N that reflect the high-effusion-rate and high-flow-velocity end-member of lava eruption and transport at mid-ocean ridges. Channel systems composed of identifiable segments 50–1000 m in length extend up to 3 km from the axial summit trough (AST) and have widths of 10–50 m and depths of 2–3 m. Samples collected within the channels are N-MORB with Mg# indicating eruption from the AST. We produce detailed maps of lava surface morphology across the channel surface from mosaics of digital images that show lineated or flat sheets at the channel center bounded by brecciated lava at the channel margins. Modeled velocity profiles across the channel surface allow us to determine flux through the channels from 0.4 to 4.7 × 103m3/s, and modeled shear rates help explain the surface morphology variation. We suggest that channelized lava flows are a primary mechanism by which lava accumulates in the off-axis region (1–3 km) and produces the layer 2A thickening that is observed at fast and superfast spreading ridges. In addition, the rapid, high-volume-flux eruptions necessary to produce channelized flows may act as an indicator of the local magma budget along the EPR. We find that high concentrations of channelized lava flows correlate with local, across-axis ridge morphology indicative of an elevated magma budget. Additionally, in locations where channelized flows are located dominantly to the east

  17. The Cellular Automata for modelling of spreading of lava flow on the earth surface

    NASA Astrophysics Data System (ADS)

    Jarna, A.

    2012-12-01

    Volcanic risk assessment is a very important scientific, political and economic issue in densely populated areas close to active volcanoes. Development of effective tools for early prediction of a potential volcanic hazard and management of crises are paramount. However, to this date volcanic hazard maps represent the most appropriate way to illustrate the geographical area that can potentially be affected by a volcanic event. Volcanic hazard maps are usually produced by mapping out old volcanic deposits, however dynamic lava flow simulation gaining popularity and can give crucial information to corroborate other methodologies. The methodology which is used here for the generation of volcanic hazard maps is based on numerical simulation of eruptive processes by the principle of Cellular Automata (CA). The python script is integrated into ArcToolbox in ArcMap (ESRI) and the user can select several input and output parameters which influence surface morphology, size and shape of the flow, flow thickness, flow velocity and length of lava flows. Once the input parameters are selected, the software computes and generates hazard maps on the fly. The results can be exported to Google Maps (.klm format) to visualize the results of the computation. For validation of the simulation code are used data from a real lava flow. Comparison of the simulation results with real lava flows mapped out from satellite images will be presented.

  18. Basaltic lava flows covering active aeolian dunes in the Paraná Basin in southern Brazil: Features and emplacement aspects

    NASA Astrophysics Data System (ADS)

    Waichel, Breno L.; Scherer, Claiton M. S.; Frank, Heinrich T.

    2008-03-01

    Burial of active aeolian dunes by lava flows can preserve the morphology of the dunes and generate diverse features related to interaction between unconsolidated sediments and lavas. In the study area, located in southern Brazil, burial of aeolian deposits by Cretaceous basaltic lava flows completely preserved dunes, and generate sand-deformation features, sand diapirs and peperite-like breccia. The preserved dunes are crescentic and linear at the main contact with basalts, and smaller crescentic where interlayered with lavas. The various feature types formed on sediment surfaces by the advance of the flows reflect the emplacement style of the lavas which are compound pahoehoe type. Four feature types can be recognized: (a) type 1 features are related to the advance of sheet flows in dune-interdune areas with slopes > 5°, (b) type 2 is formed where the lava flows advance in lobes and climb the stoss slope of crescentic dunes (slopes 8-12°), (c) type 3 is generated by toes that descend the face of linear dunes (slopes 17-23°) and (d) type 4 occurs when lava lobes descend the stoss slope of crescentic dunes (slopes 10-15°). The direction of the flows, the disposition and morphology of the dunes and the ground slope are the main factors controlling formation of the features. The injection of unconsolidated sand in lava lobes forms diapirs and peperite-like breccias. Sand diapirs occur at the basal portion of lobes where the lava was more solidified. Peperite-like breccias occur in the inner portion where lava was more plastic, favoring the mingling of the components. The generation of both features is related to a mechanical process: the weight of the lava causes the injection of sand into the lava and the warming of the air in the pores of the sand facilitates this process. The lava-sediment interaction features presented here are consistent with previous reports of basalt lavas with unconsolidated arid sediments, and additional new sand-deformation features

  19. Zn isotope fractionation in the komatiitic and tholeiitic lava flows of Fred's flow and Theo's flow (Ontario, Canada)

    NASA Astrophysics Data System (ADS)

    Mattielli, N. D.; Haenecour, P.; Debaille, V.

    2010-12-01

    Komatiites are subvolcanic or volcanic ultramafic rocks characterized by a high MgO content (>18 wt%) usually but not systematically associated to a spinifex texture. Komatiites are nearly exclusively Archean in age and essentially found in the greenstone belts of the oldest cratons, although some rare Proterozoic and Cretaceous examples are also known. Komatiitic flows are commonly associated with tholeiitic lavas, which have many petrological, textural and geochemical similarities with komatiites. We present new high-precision MC-ICPMS Zinc isotopic data for the komatiitic lavas of Fred’s flow and the associated tholeiitic lavas of Theo’s flow from Munro Township in the 2.7 Ga Abitibi greenstone belt (Ontario, Canada). Zinc isotopes show a significant shift between Fred’s flow (mean δ66Zn = +0.30±0.04‰ (2SD)) and Theo’s flow samples (mean δ66Zn = +0.39±0.03‰ (1)). In addition, the two flows show a systematic shift in δ66Zn between the ultrabasic level at the bottom of the sequence (= +0.51± 0.04‰ and +0.47±0.04‰ for Fred’s Flow and Theo’s Flow, respectively) and the rest of the pile (Δ = 0.21±0.01‰). According to the literature, processes of secondary alteration may cause Zn isotope fractionation. However, petrographic data indicate a slight alteration fingerprint while the geochemical study (whole rock and in-situ) shows no remobilization of HFSE and REE by secondary alteration (low-grade metamorphism and/or hydrothermal alteration). In addition, if similar levels of alteration affected the two lava flows, the alteration process cannot explain the difference of δ66Zn between Fred’s and Theo’s flows. Alternatively, this isotopic difference can be interpreted as reflecting either source effects or mineral fractionation related to spinel crystallization. The correlation between the δ66Zn values and the Cr bulk concentrations may suggest fractionation effects of Zn isotopes by the crystallization of spinel minerals. However, the

  20. Progress of Hawaii Lava Flow Tracked by NASA Spacecraft

    NASA Image and Video Library

    2014-09-24

    On June 27, 2014, a new vent opened on Hawaii Puu Oo vent, on the eastern flank of Kilauea volcano. NASA Terra spacecraft shows the hot lava flow in white, extending about 11 miles 17 kilometers from the vent.

  1. Morphology and emplacement of a long channeled lava flow near Ascraeus Mons Volcano, Mars

    NASA Astrophysics Data System (ADS)

    Garry, W. Brent; Zimbelman, James R.; Gregg, Tracy K. P.

    2007-08-01

    Channeled lava flows, hundreds of kilometers long, are common on the lower flanks of the Tharsis Montes on Mars. Our analysis of a 690-km-long lava flow along the southwest perimeter of Ascraeus Mons shows that it was emplaced on low local slopes (<0.3°), with a deep channel (~20 m), and at high effusion rates (19,000-29,000 m3/s) calculated from the Graetz number. These parameters are similar to conditions needed to yield rapidly emplaced terrestrial flows >100 km in length, but the maximum effusion rates necessary on Earth are essentially the minimum for Martian flows. On the basis of our calculated effusion rates, the eruption duration was 3 to 7 Earth months, assuming a constant effusion rate and continuous eruption. The morphology of the Ascraeus Mons flow shows similarities to terrestrial and simulated channeled flows. Downstream changes in morphology resemble those observed in the 1907 flow, Mauna Loa Volcano, Hawaii and channeled polyethylene glycol (PEG) flows. Braided sections of the channel in the Ascraeus Mons flow contain islands which are hundreds of meters across and resemble features observed in the 1907 and 1984 flows on Mauna Loa Volcano. Crosscutting relationships suggest islands in the proximal section were shaped by thermal and mechanical erosion, whereas islands in the medial section are inferred to be material rafted by surges of lava through the channel. Overall, understanding the morphology of long lava flows on Mars is essential to the interpretation of their emplacement and constraining eruption conditions in the saddle regions of the Tharsis volcanoes.

  2. Analysis of inflated submarine and sub-lacustrine Pahoehoe lava flows using high-resolution bathymetric and lidar data (Invited)

    NASA Astrophysics Data System (ADS)

    Deschamps, A.; Van Vliet-Lanoe, B.; Soule, S. A.; Allemand, P.; Le Saout, M.; Delacourt, C.

    2013-12-01

    The summit of the East Pacific Rise (EPR), 16°N, is investigated based -among others- on high-resolution bathymetry acquired using the AUV Aster-X, and photos and videos collected using the submersible Nautile (Ifremer). HR bathymetry reveals submarine tumuli and inflated smooth lava flows at the summit of the ridge, emplaced on sub-horizontal terrains. They are primarily composed of jumbled and lobate flows with occurrences of sheet flows, and pillows close to the flow margins. They are 5 to 15 meters -high, and their surface ranges 0.2 to 1.5 km2. Their surface is either planar or depressed, likely due to lava topographic downdraining during eruption. At their margins, planar slabs of lava, few meters wide, slope down from the top of the flow, at angles ranging 40 to 80°. A series of cracks, 0,5 to 1.5 m deep, separate the horizontal surface of the flow from their inclined flanks. These cracks parallel the sinuous edges of the flows, suggesting the flow flanks tilted outward. Tumuli are also observed. Some of these smooth flows form 80 to 750 m -long sinuous ridges, suggesting the existence of lava tubes. Their morphology indicates that these flows experienced inflationary emplacement styles, but at a much larger scale than Pahoehoe lavas in Hawaii and La Réunion Islands. In these two islands, indeed, inflation structures are typically less than 2 meters high and only several tens of meters in length at maximum, suggesting that their mechanism of emplacement and inflation is significantly different. Conversely, we observe comparable inflation flows in Iceland and in Idaho and Oregon, also emplaced onto sub-horizontal terrains. We use high-resolution aerial photographs and lidar data to investigate their morphology. In the Eastern Snake River Plain (ESRP), quaternary basaltic plains volcanism produced monogenetic coalescent shields, and phreatomagmatic basaltic eruptions that are directly related to proximity of magmatism to the Snake River or Pleistocene lakes

  3. Eruption Constraints for a Young Channelized Lava Flow, Marte Vallis, Mars

    NASA Technical Reports Server (NTRS)

    Therkelsen, J. P.; Santiago, S. S.; Grosfils, E. B.; Sakimoto, S. E. H.; Mendelson, C. V.; Bleacher, J. E.

    2001-01-01

    This study constrains flow rates for a specific channelized lava flow in Marte Vallis, Mars. We measured slope-gradient, channel width, and channel depth. Our results are similar to other recent studies which suggests similarities to long, terrestrial basaltic flow. Additional information is contained in the original extended abstract.

  4. Reconstruction of the dynamics of the 1800-1801 Hualalai eruption: Implications for planetary lava flows

    NASA Technical Reports Server (NTRS)

    Baloga, Stephen; Spudis, Paul

    1993-01-01

    The 1800-1801 eruption of alkalic basalt from the Hualalai volcano, Hawaii provides a unique opportunity for investigating the dynamics of lava flow emplacement with eruption rates and compositions comparable to those that have been suggested for planetary eruptions. Field observations suggest new considerations must be used to reconstruct the emplacement of these lava flows. These observations are: (1) the flow traversed the 15 km from the vent to the sea so rapidly that no significant crust formed and an observation of the eruption reported that the flow reach the sea from the vent in approximately 1 hour; (2) the drainage of beds of xenolith nodules indicates a highly fluid, low viscosity lava; (3) overspills and other morphologic evidence for a very low viscosity host fluid; (4) no significant longitudinal increase in flow thickness that might be associated with an increase in the rheological properties of the lava; and (5) the relatively large size of channels associated with the flow, up to 80 meters across and several km long. Models for many geologic mass movements and fast moving fluids with various loadings and suspensions are discussed.

  5. The 2014-2015 Pāhoa lava flow crisis at Kīlauea Volcano, Hawai‘i: Disaster avoided and lessons learned

    USGS Publications Warehouse

    Poland, Michael; Orr, Tim R.; Kauahikaua, James P.; Brantley, Steven R.; Babb, Janet L.; Patrick, Matthew R.; Neal, Christina; Anderson, Kyle R.; Antolik, Loren; Burgess, Matthew K.; Elias, Tamar; Fuke, Steven; Fukunaga, Pauline; Johanson, Ingrid; Kagimoto, Marian; Kamibayashi, Kevan P.; Lee, Lopaka; Miklius, Asta; Million, William; Moniz, Cyril J.; Okubo, Paul G.; Sutton, Andrew; Takahashi, T. Jane; Thelen, Weston A.; Tollett, Willam; Trusdell, Frank A.

    2016-01-01

    Lava flow crises are nothing new on the Island of Hawai‘i, where their destructive force has been demonstrated repeatedly over the past several hundred years. The 2014–2015 Pāhoa lava flow crisis, however, was unique in terms of its societal impact and volcanological characteristics. Despite low effusion rates, a long-lived lava flow whose extent reached 20 km (the longest at Kīlauea Volcano in the past several hundred years) was poised for months to impact thousands of people, although direct impacts were ultimately minor (thus far). Careful observation of the flow reaffirmed and expanded knowledge of the processes associated with pāhoehoe emplacement, including the direct correlation between summit pressurization and flow advance, the influence of existing geologic structures on flow pathways, and the possible relationship between effusion rate and flow length. Communicating uncertainty associated with lava flow hazards was a challenge throughout the crisis, but online distribution of information and direct contact with residents proved to be effective strategies for keeping the public informed and educated about flow progress and how lava flows work (including forecasting limitations). Volcanological and sociological lessons will be important for inevitable future lava flow crises in Hawai‘i and, potentially, elsewhere in the world.

  6. Lava Flow Simulation for the Disaster Area of the Volcano Eruption

    NASA Astrophysics Data System (ADS)

    Ishikawa, Tomoya; Muranaka, Noriaki; Ishida, Tkahiro; Hashimoto, Junichi; Tokumaru, Msataka; Imanishi, Shigeru

    Japan is the eminent volcanic country in the world, and Suwanose-jima in Kagoshima and Mt. Asama in Gunma are puffing out smoke vigorously at present. In the past, the large-scale eruptions occurred in Sakura-jima and Unzen-Fugendake, and 10 percent of the energy in the earthquake and the volcano eruption of the whole earth is released in Japan. Therefore the prediction for the flow area of lava is very important. Then, we try to develop the simulation system which predicts the flow area of lava and the people want to use it at their homes. Because of this, our system must be able to use on a PC becoming popular in the present time. Our simulation technique can reduce the computing time using the simple way without considering the viscosity dynamics and so on. Also this system can show the simulation result with the three dimensional image and the animation using OpenGL. The user can view the area of the lava flow from the various angles, and we think that this is useful for the improvement of their conscience for the disaster prevention.

  7. Thermal mapping of a pāhoehoe lava flow, Kīlauea Volcano

    NASA Astrophysics Data System (ADS)

    Patrick, Matthew; Orr, Tim; Fisher, Gary; Trusdell, Frank; Kauahikaua, James

    2017-02-01

    Pāhoehoe lava flows are a major component of Hawaiian eruptive activity, and an important part of basaltic volcanism worldwide. In recent years, pāhoehoe lava has destroyed homes and threatened parts of Hawai'i with inundation and disruption. In this study, we use oblique helicopter-borne thermal images to create high spatial resolution ( 1 m) georeferenced thermal maps of the active pāhoehoe flow on Kīlauea Volcano's East Rift Zone. Thermal maps were created on 27 days during 2014-2016 in the course of operational monitoring, encompassing a phase of activity that threatened the town of Pāhoa. Our results illustrate and reinforce how pāhoehoe flows are multicomponent systems consisting of the vent, master tube, distributary tubes, and surface breakouts. The thermal maps accurately depict the distribution and character of pāhoehoe breakouts through time, and also delineate the subsurface lava tube. Surface breakouts were distributed widely across the pāhoehoe flow, with significant portions concurrently active well upslope of the flow front, often concentrated in clusters of activity that evolved through time. Gradual changes to surface breakout distribution and migration relate to intrinsic processes in the flow, including the slow evolution of the distributary tube system. Abrupt disruptions to this system, and the creation of new breakouts (and associated hazards), were triggered by extrinsic forcing-namely fluctuations in lava supply rate at the vent which disrupted the master lava tube. Although the total area of a pāhoehoe flow has been suggested to relate to effusion rate, our results show that changes in the proportion of expansion vs. overplating can complicate this relationship. By modifying existing techniques, we estimate time-averaged discharge rates for the flow during 2014-2016 generally in the range of 1-2 m3 s- 1 (mean: 1.3 ± 0.4 m3 s- 1)-less than half of Kīlauea's typical eruption rate on the East Rift Zone and suggestive of a weak

  8. Rheology and Ages of Lava Flows on Arsia and Pavonis Mons, Mars

    NASA Astrophysics Data System (ADS)

    Hiesinger, Harald; Bartel, Nicole; Boas, Theresa; Reiss, Dennis; Pasckert, Jan H.; van der Bogert, Carolyn H.

    2015-04-01

    We performed a new study of young lava flows on Arsia and Pavonis Mons. Compared to our previous study of Arsia and Pavonis flows [1], we not only expanded on the number of flows (13 additional new flows at Arsia; six new flows at Pavonis), but we also derived absolute model ages (AMAs) based on crater size-frequency distribution (CSFD) measurements. On the basis of the current study, we find that the yield strengths of the studied lava flows on Arsia Mons vary between ~2.54 x 102 Pa and ~9.63 x 103 Pa. The effusion rates are on average ~563 m3s-1. The calculated eruption durations range from three days to ~142 days with an average of ~32 days. The viscosities of the lava flows on Arsia Mons are on average ~2.54 x 106 Pa-s and vary between ~1.32 x 104 and ~2.88 x 107 Pa-s. The study also revealed an average yield strength of the Pavonis flows of ~3.56 x 103 Pa, ranging from ~2.5 x 102 to ~8.6 x 103 Pa. The effusion rates range from ~ 60 m3s-1 to ~309 m3s-1, with an average value of ~197 m3s-1. The investigated flows are characterized by an eruption duration in the range of ~3 to ~41 days, averaging about 15 days. The viscosities vary between ~2.8 x 104 Pa-s and ~7.6 x 106 Pa-s, with an average value of ~1.77 x 106 Pa-s. The new CSFD measurements for the Arsia flows yielded AMAs between ~36 and ~857 Ma. One unit shows an underlying older age of ~2.50 Ga and evidence for a resurfacing event at ~857 Ma. These ages are similar to those presented by [2-4] for the caldera of Arsia Mons, i.e., ~100-200 Ma. In addition, [4] argued that their ages represent the latest stages of summit and flank eruptions and that earlier episodes stopped at about 500 Ma, 800 Ma, and 2 Ga ago. Previously, we performed the first study that correlated rheologic properties and AMAs of lava flows on Elysium Mons [5]. We reported that the yield strengths of 32 investigated Elysium flows are on the order of ~3.0 x 103 Pa, ranging from ~3.8 x 102 to ~1.5 x 104 Pa. The effusion rates of the flows

  9. The influence of underlying topography on lava channel networks and flow behavior (Invited)

    NASA Astrophysics Data System (ADS)

    Dietterich, H. R.; Cashman, K. V.; Rust, A.

    2013-12-01

    New high resolution mapping of historical lava flows in Hawai';i reveals complex topographically controlled channel networks. Network morphologies range from distributary systems dominated by branching around local obstacles, to tributary systems constricted by topographic confinement. Because channel networks govern the distribution of lava within the flow, they can dramatically alter the effective volumetric flux, which affects both flow length and advance rate. The influence of flow bifurcations is evidenced by (1) channelized flows from Pu';u ';O';o episodes 1-20 at Kilauea Volcano, where flow front velocities decreased by approximately half each time a flow split, and (2) the length of confined flows, such as the Mauna Loa 1859 flow, which traveled twice as far as the distributary Mauna Loa 1984 flow, despite similar effusion rates and durations. To study the underlying controls on flow bifurcations, we have undertaken a series of analogue experiments with golden syrup (a Newtonian fluid) to better understand the physics of obstacle interaction and its influence on flow behavior and morphology. Controlling the effusion rate and surface slope, we extrude flows onto a surface with a cylindrical or V-shaped obstacle of variable angle. When the flow is sufficiently fast, a stationary wave forms upslope of the obstacle; if the stationary wave is sufficiently high, the flow can overtop, rather than split around, the obstacle. The stationary wave height increases with flow velocity and with the effective obstacle width. Evidence for stationary waves in Hawaiian lava flows comes from both photographs of active flows and waveforms frozen into solidified flows. We have also performed a preliminary set of similar experiments with molten basalt to identify the effect of cooling and investigate flow merging. In these experiments, a stationary wave develops upslope of the obstacle, which allows the surface to cool and thicken. After splitting, the syrup experiments show

  10. Testing random forest classification for identifying lava flows and mapping age groups on a single Landsat 8 image

    NASA Astrophysics Data System (ADS)

    Li, Long; Solana, Carmen; Canters, Frank; Kervyn, Matthieu

    2017-10-01

    Mapping lava flows using satellite images is an important application of remote sensing in volcanology. Several volcanoes have been mapped through remote sensing using a wide range of data, from optical to thermal infrared and radar images, using techniques such as manual mapping, supervised/unsupervised classification, and elevation subtraction. So far, spectral-based mapping applications mainly focus on the use of traditional pixel-based classifiers, without much investigation into the added value of object-based approaches and into advantages of using machine learning algorithms. In this study, Nyamuragira, characterized by a series of > 20 overlapping lava flows erupted over the last century, was used as a case study. The random forest classifier was tested to map lava flows based on pixels and objects. Image classification was conducted for the 20 individual flows and for 8 groups of flows of similar age using a Landsat 8 image and a DEM of the volcano, both at 30-meter spatial resolution. Results show that object-based classification produces maps with continuous and homogeneous lava surfaces, in agreement with the physical characteristics of lava flows, while lava flows mapped through the pixel-based classification are heterogeneous and fragmented including much "salt and pepper noise". In terms of accuracy, both pixel-based and object-based classification performs well but the former results in higher accuracies than the latter except for mapping lava flow age groups without using topographic features. It is concluded that despite spectral similarity, lava flows of contrasting age can be well discriminated and mapped by means of image classification. The classification approach demonstrated in this study only requires easily accessible image data and can be applied to other volcanoes as well if there is sufficient information to calibrate the mapping.

  11. Determining the Compositions of Extraterrestrial Lava Flows

    NASA Technical Reports Server (NTRS)

    Fink, Jonathan H.

    2002-01-01

    The primary purpose of this research project has been to develop techniques that allow the emplacement conditions of volcanic landforms on other planets to be related to attributes that can be remotely detected with available instrumentation. The underlying assumption of our work is that the appearance of a volcano, lava flow, debris avalanche, or exhumed magmatic intrusion can provide clues about the conditions operating when that feature was first emplaced. Magma composition, amount of crustal heat flow, state of tectonic stress, and climatic conditions are among the important variables that can be inferred from the morphology and texture of an igneous body.

  12. Tracking lava flow emplacement on the east rift zone of Kilauea, Hawai'i with InSAR coherence

    NASA Astrophysics Data System (ADS)

    Dietterich, H. R.; Schmidt, D. A.; Poland, M. P.; Cashman, K. V.

    2010-12-01

    Remote sensing of lava flows from the Pu`u `O`o-Kupaianaha eruption on the east rift zone of Kilauea serves to document the ongoing eruption, while yielding insights into how lava flow fields develop. InSAR is widely used to measure deformation by detecting minute changes in ground surfaces that stay correlated during repeat observations. The eruption and emplacement of fresh lava on the surface, however, disrupts the coherence of the radar echoes, allowing the area of these flows to be mapped with InSAR coherence images. We use InSAR correlation to visualize surface flow activity from 2003-2010 in order to quantify eruption rates and explore lava flow behavior from emplacement onward. This method for mapping flows does not require daylight, cloudless skies, or access to the active flow fields that is necessary for traditional visual surveys. We produce coherence maps for hundreds of 35 to 105-day periods from twelve tracks of ENVISAT SAR data using the GAMMA software package. By combining these coherence maps we create a unique dataset with which to develop this technique and amass lava flow observations. Where correlation images overlap in time, they are summed and normalized to derive a time series of surface coherence with a spatial resolution of 20 meters and a temporal resolution of as little as a few days. We identify existing stable flows by their high radar coherence, and determine a coherence threshold that is applied to each correlation image. This threshold is calibrated so as to reduce the effects of varying baseline, time duration, and atmospheric effects between images, as well as decorrelation due to vegetation. The final images illustrate lava flow activity that corresponds well with surface flow outlines and tube locations recorded by the USGS mapping effort. The InSAR-derived results serve to enhance these traditional maps by documenting pixel-scale changes over time. When compared with forward looking infrared (FLIR) thermal imagery, pixel

  13. Wind and Lava

    NASA Image and Video Library

    2006-11-27

    In this image wind seems to be the dominant process, but lava flows are still recognizable from the surface texture. It appears that the lava flow top left is relatively thin, and the material below is easily eroded by the wind

  14. Emplacement of subaerial pahoehoe lava sheet flows into water: 1990 Kūpaianaha flow of Kilauea volcano at Kaimū Bay, Hawai`i

    USGS Publications Warehouse

    Umino, Susumu; Nonaka, Miyuki; Kauahikaua, James P.

    2006-01-01

    Episode 48 of the ongoing eruption of Kilauea, Hawai`i, began in July 1986 and continuously extruded lava for the next 5.5 years from a low shield, Kūpaianaha. The flows in March 1990 headed for Kalapana and inundated the entire town under 15–25 m of lava by the end of August. As the flows advanced eastward, they entered into Kaimū Bay, replacing it with a plain of lava that extends 300 m beyond the original shoreline. The focus of our study is the period from August 1 to October 31, 1990, when the lava buried almost 406,820 m2 of the 5-m deep bay. When lava encountered the sea, it flowed along the shoreline as a narrow primary lobe up to 400 m long and 100 m wide, which in turn inflated to a thickness of 5–6 m. The flow direction of the primary lobes was controlled by the submerged delta below the lavas and by damming up lavas fed at low extrusion rates. Breakout flows through circumferential and axial inflation cracks on the inflating primary lobes formed smaller secondary lobes, burying the lows between the primary lobes and hiding their original outlines. Inflated flow lobes eventually ruptured at proximal and/or distal ends as well as mid-points between the two ends, feeding new primary lobes which were emplaced along and on the shore side of the previously inflated lobes. The flow lobes mapped with the aid of aerial photographs were correlated with daily observations of the growing flow field, and 30 primary flow lobes were dated. Excluding the two repose periods that intervened while the bay was filled, enlargement of the flow field took place at a rate of 2,440–22,640 square meters per day in the bay. Lobe thickness was estimated to be up to 11 m on the basis of cross sections of selected lobes measured using optical measurement tools, measuring tape and hand level. The total flow-lobe volume added in the bay during August 1–October 31 was approximately 3.95 million m3, giving an average supply rate of 0.86 m3/s.

  15. Emplacement of subaerial pahoehoe lava sheet flows into water: 1990 Kūpaianaha flow of Kilauea volcano at Kaimū Bay, Hawai`i

    NASA Astrophysics Data System (ADS)

    Umino, Susumu; Nonaka, Miyuki; Kauahikaua, Jim

    2006-09-01

    Episode 48 of the ongoing eruption of Kilauea, Hawai`i, began in July 1986 and continuously extruded lava for the next 5.5 years from a low shield, Kūpaianaha. The flows in March 1990 headed for Kalapana and inundated the entire town under 15-25 m of lava by the end of August. As the flows advanced eastward, they entered into Kaimū Bay, replacing it with a plain of lava that extends 300 m beyond the original shoreline. The focus of our study is the period from August 1 to October 31, 1990, when the lava buried almost 406,820 m2 of the 5-m deep bay. When lava encountered the sea, it flowed along the shoreline as a narrow primary lobe up to 400 m long and 100 m wide, which in turn inflated to a thickness of 5-6 m. The flow direction of the primary lobes was controlled by the submerged delta below the lavas and by damming up lavas fed at low extrusion rates. Breakout flows through circumferential and axial inflation cracks on the inflating primary lobes formed smaller secondary lobes, burying the lows between the primary lobes and hiding their original outlines. Inflated flow lobes eventually ruptured at proximal and/or distal ends as well as mid-points between the two ends, feeding new primary lobes which were emplaced along and on the shore side of the previously inflated lobes. The flow lobes mapped with the aid of aerial photographs were correlated with daily observations of the growing flow field, and 30 primary flow lobes were dated. Excluding the two repose periods that intervened while the bay was filled, enlargement of the flow field took place at a rate of 2,440-22,640 square meters per day in the bay. Lobe thickness was estimated to be up to 11 m on the basis of cross sections of selected lobes measured using optical measurement tools, measuring tape and hand level. The total flow-lobe volume added in the bay during August 1-October 31 was approximately 3.95 million m3, giving an average supply rate of 0.86 m3/s.

  16. Tracking lava flow emplacement on the east rift zone of Kilauea, Hawai’i with synthetic aperture radar (SAR) coherence

    USGS Publications Warehouse

    Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia

    2012-01-01

    Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu‘u ‘Ō‘ō-Kupaianaha eruption at Kīlauea, Hawai‘i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.

  17. Tracking lava flow emplacement on the east rift zone of Kīlauea, Hawai‘i, with synthetic aperture radar coherence

    NASA Astrophysics Data System (ADS)

    Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David A.; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia

    2012-05-01

    Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu`u `Ō`ō-Kupaianaha eruption at Kīlauea, Hawai`i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.

  18. Volcanic eruptions on Io: Heat flow, resurfacing, and lava composition

    NASA Astrophysics Data System (ADS)

    Blaney, Diana L.; Johnson, Torrence V.; Matson, Dennis L.; Veeder, Glenn J.

    1995-01-01

    We model an infrared outburst on Io as being due to a large, erupting lava flow which increased its area at a rate of 1.5 x 105/sq m and cooled from 1225 to 555 K over the 2.583-hr period of observation. The inferred effusion rate of 3 x 105 cu m/sec for this eruption is very high, but is not unprece- dented on the Earth and is similar to the high eruption rates suggested for early lunar volcanism. Eruptions occur approxi- mately 6% of the time on Io. These eruptions provide ample resurfacing to explain Io's lack of impact craters. We suggest that the large total radiometric heat flow, 1014 W, and the size and temperature distribution of the thermal anomalies (McEwen et al. 1992; Veeder et al. 1994) can be accounted for by a series of silicate lava flows in various stages of cooling. We propose that the whole suite of Io's currently observed thermal anomalies was produced by multiple, high-eruptive-rate silicate flows within the past century.

  19. Volcanic eruptions on Io: Heat flow, resurfacing, and lava composition

    NASA Technical Reports Server (NTRS)

    Blaney, Diana L.; Johnson, Torrence V.; Matson, Dennis L.; Veeder, Glenn J.

    1995-01-01

    We model an infrared outburst on Io as being due to a large, erupting lava flow which increased its area at a rate of 1.5 x 10(exp 5)/sq m and cooled from 1225 to 555 K over the 2.583-hr period of observation. The inferred effusion rate of 3 x 10(exp 5) cu m/sec for this eruption is very high, but is not unprece- dented on the Earth and is similar to the high eruption rates suggested for early lunar volcanism. Eruptions occur approxi- mately 6% of the time on Io. These eruptions provide ample resurfacing to explain Io's lack of impact craters. We suggest that the large total radiometric heat flow, 10(exp 14) W, and the size and temperature distribution of the thermal anomalies (McEwen et al. 1992; Veeder et al. 1994) can be accounted for by a series of silicate lava flows in various stages of cooling. We propose that the whole suite of Io's currently observed thermal anomalies was produced by multiple, high-eruptive-rate silicate flows within the past century.

  20. The creation and influence of bifurcations and confluences in Hawaiian lava flows on conditions of flow emplacement

    NASA Astrophysics Data System (ADS)

    Dietterich, H. R.; Cashman, K. V.

    2011-12-01

    Hawaiian lava channels are characterized by numerous bifurcations and confluences that have important implications for flow behavior. The ubiquity of anastomosing flows, and their detailed observation over time, makes Hawai`i an ideal place to investigate the formation of these features and their effect on simple models of lava flow emplacement. Using a combination of high-resolution LiDAR data from the Kilauea December 1974 and Mauna Loa 1984 flows, orthoimagery of the Mauna Loa 1859 flow, and historical and InSAR mapping of the current eruption of Kilauea (1983-present), we quantify the geometry of distributary, anastomosing, and simple channel networks and compare these to flow advance rates and lengths. We use a pre-eruptive DEM of the Mauna Loa 1984 flow created from aerial photographs to investigate the relationship between underlying topography and channel morphology. In the Mauna Loa 1984 flow, the slope of the pre-eruptive surface correlates with the number of parallel channels. Slopes >4° generate up to thirteen parallel channels in contrast to slopes of <4° that produce fewer than eight parallel channels. In the 1983-1986 lava flows erupted from Pu`u `O`o, average effusion rate correlates with the number of bifurcations, each producing a new parallel channel. Flows with a volume flux <60 m3/s only have one bifurcation at most in the entire flow, while flows with a volume flux >60 m3/s contain up to four bifurcations. These data show that the splitting and merging of individual flows is a product of both the underlying ground surface and eruption rate. Important properties of the pre-eruptive topography include both the slope and the scale of surface roughness. We suggest that a crucial control is the height of the flow front in comparison to the scale of local topography and roughness. Greater slopes may create more active channels because the reduced flow thickness allows interaction with local obstacles of a greater size range. Conversely, higher

  1. Deriving Lava Eruption Temperatures on Io Using Lava Tube Skylights

    NASA Astrophysics Data System (ADS)

    Davies, A. G.; Keszthelyi, L. P.; McEwen, A. S.

    2015-12-01

    The eruption temperature of Io's silicate lavas constrains Io's interior state and composition [1] but reliably measuring this temperature remotely is a challenge that has not yet been met. Previously, we established that eruption processes that expose large areas at the highest temperatures, such as roiling lava lakes or lava fountains, are suitable targets for this task [2]. In this study we investigate the thermal emission from lava tube skylights for basaltic and ultramafic composition lavas. Tube-fed lava flows are known on Io so skylights could be common. Unlike the surfaces of lava flows, lava lakes, and lava fountains which all cool very rapidly, skylights have steady thermal emission on a scale of days to months. The thermal emission from such a target, measured at multiple visible and NIR wavelengths, can provide a highly accurate diagnostic of eruption temperature. However, the small size of skylights means that close flybys of Io are necessary, requiring a dedicated Io mission [3]. We have modelled the thermal emission spectrum for different skylight sizes, lava flow stream velocities, end-member lava compositions, and skylight radiation shape factors, determining the flow surface cooling rates. We calculate the resulting thermal emission spectrum as a function of viewing angle. From the resulting 0.7:0.9 μm ratios, we see a clear distinction between basaltic and ultramafic compositions for skylights smaller than 20 m across, even if sub-pixel. If the skylight is not resolved, observations distributed over weeks that show a stationary and steady hot spot allow the presence of a skylight to be confidently inferred. This inference allows subsequent refining of observation design to improve viewing geometry of the target. Our analysis will be further refined as accurate high-temperature short-wavelength emissivity values become available [4]. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, under contract to

  2. The eruption in Holuhraun, NE Iceland 2014-2015: Real-time monitoring and influence of landscape on lava flow

    NASA Astrophysics Data System (ADS)

    Jónsdóttir, Ingibjörg; Höskuldsson, Ármann; Thordarson, Thor; Bartolini, Stefania; Becerril, Laura; Marti Molist, Joan; Þorvaldsson, Skúli; Björnsson, Daði; Höskuldsson, Friðrik

    2016-04-01

    The largest eruption in Iceland since the Laki 1783-84 event began in Holuhraun, NE Iceland, on 31 August 2014, producing a lava flow field which, by the end of the eruption on February 27th 2015, covered 84,5 km2 with volume of 1,44 km3. Throughout the event, various satellite images (NOAA AVHRR, MODIS, SUOMI NPP VIIRS, ASTER, LANDSAT7&8, EO-1 ALI & HYPERION, RADARSAT-2, SENTINEL-1, COSMO SKYMED, TERRASAR X) were analysed to monitor the development of activity, identify active flow fronts and channels, and map the lava extent in close collaboration with the on-site field group. Aerial photographs and radar images from the Icelandic Coast Guard Dash 8 aircraft supported this effort. By the end of 2015, Loftmyndir ehf had produced a detailed 3D model of the lava using aerial photographs from 2013 and 2015. The importance of carrying out real-time monitoring of a volcanic eruption is: i) to locate sites of elevated temperature that may be registering new areas of activity within the lava or opening of vents or fissures. ii) To establish and verify timing of events at the vents and within the lava. iii) To identify potential volcanic hazard that can be caused by lava movements, eruption-induced flash flooding, tephra fallout or gas pollution. iv) to provide up-to-date regional information to field groups concerning safety as well as to locate sites for sampling lava, tephra and polluted water. v) to produce quantitative information on magma discharge and lava flow advance, map the lava extent, document the flow morphology and plume/tephra dispersal. During the eruption, these efforts supported mapping of the extent of the lava every 3-4 days on average underpinning the time series of magma discharge calculations. Digitial elevation models from before and after the event, combined with the real-time data series, supports detailed analysis of how landscape affects lava flow in a flat terrain (<0,4°), and provides important input to further developing lava flow models

  3. Homogeneity of lava flows - Chemical data for historic Mauna Loan eruptions

    NASA Technical Reports Server (NTRS)

    Rhodes, J. M.

    1983-01-01

    Chemical analyses of basalts collected from the major historic eruptions of Mauna Loa volcano show that many of the flow fields are remarkably homogeneous in composition. Despite their large size (lengths 9-85 km), large areal extents (13-114 sq km), and various durations of eruption (1-450 days), many of the flow fields have compositional variability that is within, or close to, the analytical error for most elements. The flow fields that are not homogeneous vary mainly in olivine content in an otherwise homogeneous melt. Some are composite flow fields made up of several, apparently homogeneous subunits erupted at different elevations along the active volcanic rifts. Not all volcanoes produce lavas that are homogeneous like those of Mauna Loa. If studies such as this are to be used to evaluate compositional diversity in lavas where there is a lack of sampling control, such as on other planets, it is necessary to understand why some flow units and flow fields are compositionally homogeneous and others are not, and to develop criteria for distinguishing between them.

  4. Thermal Modeling of Permafrost Melt by Overlying Lava Flows with Applications to Flow-associated Outflow Channel Volumes in the Cerberus Plains, Mars

    NASA Technical Reports Server (NTRS)

    Chase, Z. A. J.; Sakimoto, S. E. H.

    2003-01-01

    The Cerberus region of Mars has numerous geologically recent fluvial and volcanic features superimposed spatially, with some of them using the same flow channels and apparent vent structures. Lava-water interaction landforms such as psuedocraters suggest some interaction of emplacing lava flows with underlying ground ice or water. This study investigates a related interaction type a region where the emplaced lava might have melted underlying ice in the regolith, as there are small outflow channel networks emerging from the flank flows of a lava shield over a portion of the Eastern Cerberus Rupes. Specifically, we use high-resolution Mars Orbiter Laser Altimeter (MOLA) topography to constrain channel and flow dimensions, and thus estimate the thermal pulse from the emplaced lava into the substrate and the resulting melting durations and refreezing intervals. These preliminary thermal models indicate that the observed flows could easily create thermal pulse(s) sufficient to melt enough ground ice to fill the observed fluvial small outflow channels. Depending on flow eruption timing and hydraulic recharge times, this system could easily have produced multiple thermal pulses and fluvial releases. This specific case suggests that regional small water releases from similar cases may be more common than suspected, and that there is a possibility for future fluvial releases if ground ices are currently present and future volcanic eruptions in this young region are possible.

  5. A lava flow simulation model for the development of volcanic hazard maps for Mount Etna (Italy)

    NASA Astrophysics Data System (ADS)

    Damiani, M. L.; Groppelli, G.; Norini, G.; Bertino, E.; Gigliuto, A.; Nucita, A.

    2006-05-01

    Volcanic hazard assessment is of paramount importance for the safeguard of the resources exposed to volcanic hazards. In the paper we present ELFM, a lava flow simulation model for the evaluation of the lava flow hazard on Mount Etna (Sicily, Italy), the most important active volcano in Europe. The major contributions of the paper are: (a) a detailed specification of the lava flow simulation model and the specification of an algorithm implementing it; (b) the definition of a methodological framework for applying the model to the specific volcano. For what concerns the former issue, we propose an extended version of an existing stochastic model that has been applied so far only to the assessment of the volcanic hazard on Lanzarote and Tenerife (Canary Islands). Concerning the methodological framework, we claim model validation is definitely needed for assessing the effectiveness of the lava flow simulation model. To that extent a strategy has been devised for the generation of simulation experiments and evaluation of their outcomes.

  6. Effect of Levee and Channel Structures on Long Lava Flow Emplacement: Martian Examples from THEMIS and MOLA Data

    NASA Technical Reports Server (NTRS)

    Peitersen, M. N.; Zimbelman, J. R.; Christensen, P. R.; Bare, C.

    2003-01-01

    Long lava flows (discrete flow units with lengths exceeding 50 km) are easily identified features found on many planetary surfaces. An ongoing investigation is being conducted into the origin of these flows. Here, we limit our attention to long lava flows which show evidence of channel-like structures.

  7. Lava Flow on Mawson Peak, Heard Island

    NASA Image and Video Library

    2017-12-08

    In October 2012, satellites measured subtle signals that suggested volcanic activity on remote Heard Island. These images, captured several months later, show proof of an eruption on Mawson Peak. By April 7, 2013, Mawson's steep-walled summit crater had filled, and a trickle of lava had spilled down the volcano’s southwestern flank. On April 20, the lava flow remained visible and had even widened slightly just below the summit. These natural-color images were collected by the Advanced Land Imager (ALI) on the Earth Observing-1 (EO-1) satellite. Image Credit: NASA Earth Observatory Read more: earthobservatory.nasa.gov/NaturalHazards/view.php?id=81024 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Kīlauea June 27th Lava Flow Hazard Mapping and Disaster Response with UAS

    NASA Astrophysics Data System (ADS)

    Turner, N.; Perroy, R. L.; Hon, K. A.; Rasgado, V.

    2015-12-01

    In June of 2014, pāhoehoe lava flows from the Púu ´Ō´ō eruption began threatening communities and infrastructure on eastern Hawaii Island. During the subsequent declared state of emergency by Hawaii Civil Defense and temporary flight restriction by the Federal Aviation Administration (FAA), we used a small fixed-wing Unmanned Aircraft System (UAS) to collect high spatial and temporal resolution imagery over the active flow in support of natural hazard assessment by emergency managers. Integration of our UAS into busy airspace, populated by emergency aircraft and tour helicopters, required close operational coordination with the FAA and local operators. We logged >80 hours of UAS flight operations between October 2014 and March 2015, generating a dense time-series of 4-5 cm resolution imagery and derived topographic datasets using structure from motion. These data were used to monitor flow activity, document pre- and post- lava flow damage, identify hazardous areas for first responders, and model lava flow paths in complex topography ahead of the active flow front. Turnaround times for delivered spatial data products improved from 24-48 hours at the beginning of the study to ~2-4 hours by the end. Data from this project are being incorporated into cloud computing applications to shorten delivery time and extract useful analytics regarding lava flow hazards in near real-time. The lessons learned from this event have advanced UAS integration in disaster operations in U.S. airspace and show the high potential UAS hold for natural hazards assessment and real-time emergency management.

  9. The unique radar scattering properties of silicic lava flows and domes

    NASA Technical Reports Server (NTRS)

    Plaut, Jeffrey J.; Stofan, Ellen R.; Anderson, Steven W.; Crown, David A.

    1995-01-01

    Silicic (silica-rich) lava flows, such as rhyolite, rhyodacite, and dacite, possess unique physical properties primarily because of the relatively high viscosity of the molten lava. Silicic flows tend to be thicker than basaltic flows, and the resulting large-scale morphology is typically a steep-sided dome or flow lobe, with aspect ratios (height/length) sometimes approaching unity. The upper surfaces of silicic domes and flows are normally emplaced as relatively cool, brittle slabs that fracture as they are extruded from the central vent areas, and are then rafted away toward the flow margin as a brittle carapace above a more ductile interior layer. This mode of emplacement results in a surface with unique roughness characteristics, which can be well-characterized by multiparameter synthetic aperture radar (SAR) observations. In this paper, we examine the scattering properties of several silicic domes in the Inyo volcanic chain in the Eastern Sierra of California, using AIRSAR and TOPSAR data. Field measurements of intermediate-scale (cm to tens of m) surface topography and block size are used to assess the mechanisms of the scattering process, and to quantify the unique roughness characteristics of the flow surfaces.

  10. Monitoring Inflation and Emplacement During the 2014-2015 Kilauea Lava Flow With an Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Perroy, R. L.; Turner, N.; Hon, K. A.; Rasgado, V.

    2015-12-01

    Unmanned aerial vehicles (UAVs) provide a powerful new tool for collecting high resolution on-demand spatial data over volcanic eruptions and other active geomorphic processes. These data can be used to improve hazard forecasts and emergency response efforts, and also allow users to economically and safely observe and quantify lava flow inflation and emplacement on spatially and temporally useful scales. We used a small fixed-wing UAV with a modified point-and-shoot camera to repeatedly map the active front of the 2014-2015 Kīlauea lava flow over a one-month period in late 2014, at times with a two-hour repeat interval. An additional subsequent flight was added in July, 2015. We used the imagery from these flights to generate a time-series of 5-cm resolution RGB and near-infrared orthoimagery mosaics and associated digital surface models using structure from motion. Survey-grade positional control was provided by ground control points with differential GPS. Two topographic transects were repeatedly surveyed across the flow surface, contemporaneously with UAV flights, to independently confirm topographic changes observed in the UAV-derived surface models. Vertical errors were generally 10 cm. Inside our 50 hectare study site, the flow advanced at a rate of 0.47 hectares/day during the first three weeks of observations before abruptly stalling out <200 m from Pahoa Village road. Over 150,000 m3of lava were added to the study site during our period of observations, with maximum vertical inflation >4 m. New outbreak areas, both on the existing flow surface and along the flow margins, were readily mapped across the study area. We detected sinuous growing inflation ridges within the flow surface that correlated with subsequent outbreaks of new lava, suggesting that repeat UAV flights can provide a means of better predicting pahoehoe lava flow behavior over flat or uneven topography. Our results show that UAVs can generate accurate and

  11. Flow banding in basaltic pillow lavas from the Early Archean Hooggenoeg Formation, Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Robins, Brian; Sandstå, Nils Rune; Furnes, Harald; de Wit, Maarten

    2010-07-01

    Well-preserved pillow lavas in the uppermost part of the Early Archean volcanic sequence of the Hooggenoeg Formation in the Barberton Greenstone Belt exhibit pronounced flow banding. The banding is defined by mm to several cm thick alternations of pale green and a dark green, conspicuously variolitic variety of aphyric metabasalt. Concentrations of relatively immobile TiO2, Al2O3 and Cr in both varieties of lava are basaltic. Compositional differences between bands and variations in the lavas in general have been modified by alteration, but indicate mingling of two different basalts, one richer in TiO2, Al2O3, MgO, FeOt and probably Ni and Cr than the other, as the cause of the banding. The occurrence in certain pillows of blebs of dark metabasalt enclosed in pale green metabasalt, as well as cores of faintly banded or massive dark metabasalt, suggest that breakup into drops and slugs in the feeder channel to the lava flow initiated mingling. The inhomogeneous mixture was subsequently stretched and folded together during laminar shear flow through tubular pillows, while diffusion between bands led to partial homogenisation. The most common internal pattern defined by the flow banding in pillows is concentric. In some pillows the banding defines curious mushroom-like structures, commonly cored by dark, variolitic metabasalt, which we interpret as the result of secondary lateral flow due to counter-rotating, transverse (Dean) vortices induced by the axial flow of lava towards the flow front through bends, generally downward, in the tubular pillows. Other pillows exhibit weakly-banded or massive, dark, variolitic cores that are continuous with wedge-shaped apophyses and veins that intrude the flow banded carapace. These cores represent the flow of hotter and less viscous slugs of the dark lava type into cooled and stiffened pillows.

  12. Influence of conduit flow mechanics on magma rheology and the growth style of lava domes

    NASA Astrophysics Data System (ADS)

    Husain, Taha; Elsworth, Derek; Voight, Barry; Mattioli, Glen; Jansma, Pamela

    2018-06-01

    We develop a 2-D particle-mechanics model to explore different lava-dome growth styles. These range from endogenous lava dome growth comprising expansion of a ductile dome core to the exogenous extrusion of a degassed lava plug resulting in generation of a lava spine. We couple conduit flow dynamics with surface growth of the evolving lava dome, fuelled by an open-system magma chamber undergoing continuous replenishment. The conduit flow model accounts for the variation in rheology of ascending magma that results from degassing-induced crystallization. A period of reduced effusive flow rates promote enhanced degassing-induced crystallization. A degassed lava plug extrudes exogenously for magmas with crystal contents (ϕ) of 78 per cent, yield strength >1.62 MPa, and at flow rates of <0.5 m3 s-1, while endogenous dome growth is predicted at higher flow rates (Qout > 3 m3 s-1) for magma with lower relative yield strengths (<1 MPa). At moderately high flow rates (Qout = 4 m3 s-1), the extrusion of magma with lower crystal content (62 per cent) and low interparticulate yield strength (0.6 MPa) results in the development of endogenous shear lobes. Our simulations model the periodic extrusion history at Mount St. Helens (1980-1983). Endogenous growth initiates in the simulated lava dome with the extrusion of low yield strength magma (ϕ = 0.63 and τp = 0.76 MPa) after the crystallized viscous plug (ϕ = 0.87 and τp = 3 MPa) at the conduit exit is forced out by the high discharge rate pulse (2 < Qout < 12 m3 s-1). The size of the endogenous viscous plug and the occurrence of exogenous growth depend on magma yield strength and the magma chamber volume, which control the periodicity of the effusion. Our simulations generate dome morphologies similar to those observed at Mount St Helens, and demonstrate the degree to which domes can sag and spread during and following extrusion pulses. This process, which has been observed at Mount St. Helens and other

  13. Communicating Science to Officials and People at Risk During a Slow-Motion Lava Flow Crisis

    NASA Astrophysics Data System (ADS)

    Neal, C. A.; Babb, J.; Brantley, S.; Kauahikaua, J. P.

    2015-12-01

    From June 2014 through March 2015, Kīlauea Volcano's Púu ´Ō´ō vent on the East Rift Zone produced a tube-fed pāhoehoe lava flow -the "June 27th flow" - that extended 20 km downslope. Within 2 months of onset, flow trajectory towards populated areas in the Puna District caused much concern. The USGS Hawaiian Volcano Observatory (HVO) issued a news release of increased hazard on August 22 and began participating in public meetings organized by Hawai`i County Mayor and Civil Defense two days later. On September 4, HVO upgraded the volcano alert level to WARNING based on an increased potential for lava to reach homes and infrastructure. Ultimately, direct impacts were modest: lava destroyed one unoccupied home and one utility pole, crossed a rural roadway, and partially inundated a waste transfer station, a cemetery, and agricultural land. Anticipation that lava could reach Pāhoa Village and cross the only major access highway, however, caused significant disruption. HVO scientists employed numerous methods to communicate science and hazard information to officials and the at-risk public: daily (or more frequent) written updates of the lava activity, flow front locations and advance rates; frequent updates of web-hosted maps and images; use of the 'lines of steepest descent' method to indicate likely lava flow paths; consistent participation in well-attended community meetings; bi-weekly briefings to County, State, and Federal officials; correspondence with the public via email and recorded phone messages; participation in press conferences and congressional briefings; and weekly newspaper articles (Volcano Watch). Communication lessons both learned and reinforced include: (1) direct, frequent interaction between scientists and officials and at-risk public builds critical trust and understanding; (2) images, maps, and presentations must be tailored to audience needs; (3) many people are unfamiliar with maps (oblique aerial photographs were more effective); (4

  14. Geomorphic Mapping of Lava Flows on Mars, Earth, and Mercury

    NASA Astrophysics Data System (ADS)

    Golder, K. B.; Burr, D. M.

    2018-06-01

    To advance understanding of flood basalts, we have mapped lava flows on three planets, Mars, Earth, and Mercury, as part of three projects. The common purpose of each project is to investigate potential magma sources and/or emplacement conditions.

  15. Geologic mapping on the deep seafloor: Reconstructing lava flow emplacement and eruptive history at the Galápagos Spreading Center

    NASA Astrophysics Data System (ADS)

    McClinton, J. T.; White, S.; Colman, A.; Sinton, J. M.; Bowles, J. A.

    2012-12-01

    The deep seafloor imposes significant difficulties on data collection that require the integration of multiple data sets and the implementation of unconventional geologic mapping techniques. We combine visual mapping of geological contacts by submersible with lava flow morphology maps and relative and absolute age constraints to create a spatiotemporal framework for examining submarine lava flow emplacement at the intermediate-spreading, hotspot-affected Galápagos Spreading Center (GSC). We mapped 18 lava flow fields, interpreted to be separate eruptive episodes, within two study areas at the GSC using visual observations of superposition, surface preservation and sediment cover from submersible and towed camera surveys, augmented by high-resolution sonar surveys and sample petrology [Colman et al., Effects of variable magma supply on mid-ocean ridge eruptions: Constraints from mapped lava flow fields along the Galápagos Spreading Center; 2012 G3]. We also mapped the lava flow morphology within the majority of these eruptive units using an automated, machine-learning classification method [McClinton et al., Neuro-fuzzy classification of submarine lava flow morphology; 2012 PE&RS]. The method combines detailed geometric, acoustic, and textural attributes derived from high-resolution sonar data with visual observations and a machine-learning algorithm to classify submarine lava flow morphology as pillows, lobates, or sheets. The resulting lava morphology maps are a valuable tool for interpreting patterns in the emplacement of submarine lava flows at a mid-ocean ridge (MOR). Within our study area at 92°W, where the GSC has a relatively high magma supply, high effusion rate sheet and lobate lavas are more abundant in the oldest mapped eruptive units, while the most recent eruptions mostly consist of low effusion rate pillow lavas. The older eruptions (roughly 400yrs BP by paleomagnetic intensity) extend up to 1km off axis via prominent channels and tubes, while the

  16. Assessing the effusion rate of lava flows from their thermal radiated energy: theoretical study and lab-scale experiments

    NASA Astrophysics Data System (ADS)

    Garel, F.; Kaminski, E.; Tait, S.; Limare, A.

    2010-12-01

    A quantitative monitoring of lava flow is required to manage a volcanic crisis, in order to assess where the flow will go, and when will it stop. As the spreading of lava flows is mainly controlled by its rheology and the eruptive mass flux, the key question is how to evaluate them during the eruption (rather than afterwards.) A relationship between the lava flow temperature and the eruption rate is likely to exist, based on the first-order argument that higher eruption rates should correspond to larger energy radiated by a lava flow. The semi-empirical formula developed by Harris and co-workers (e.g. Harris et al., 2007) is used to estimate lava flow rate from satellite observations. However, the complete theoretical bases of this technique, especially its domain of validity, remain to be firmly established. Here we propose a theoretical study of the cooling of a viscous axisymmetric gravity current fed at constant flux rate to investigate whether or not this approach can and/or should be refined and/or modify to better assess flow rates. Our study focuses on the influence of boundary conditions at the surface of the flow, where cooling can occur both by radiation and convection, and at the base of the flow. Dimensionless numbers are introduced to quantify the relative interplay between the model parameters, such as the lava flow rate and the efficiency of the various cooling processes (conduction, convection, radiation.) We obtain that the thermal evolution of the flow can be described as a two-stage evolution. After a transient phase of dynamic cooling, the flow reaches a steady state, characterized by a balance between surface and base cooling and heat advection in the flow, in which the surface temperature structure is constant. The duration of the transient phase and the radiated energy in the steady regime are shown to be a function of the dimensionless numbers. In the case of lava flows, we obtain that the steady state regime is reached after a few days. In

  17. Analysis of Active Lava Flows on Kilauea Volcano, Hawaii, Using SIR-C Radar Correlation Measurements

    NASA Technical Reports Server (NTRS)

    Zebker, H. A.; Rosen, P.; Hensley, S.; Mouginis-Mark, P. J.

    1995-01-01

    Precise eruption rates of active pahoehoe lava flows on Kilauea volcano, Hawaii, have been determined using spaceborne radar data acquired by the Space Shuttle Imaging Radar-C (SIR-C). Measurement of the rate of lava flow advance, and the determination of the volume of new material erupted in a given period of time, are among the most important observations that can be made when studying a volcano.

  18. Real-time satellite monitoring of Nornahraun lava flow NE Iceland

    NASA Astrophysics Data System (ADS)

    Jónsdóttir, Ingibjörg; Þórðarson, Þorvaldur; Höskuldsson, Ármann; Davis, Ashley; Schneider, David; Wright, Robert; Kestay, Laszlo; Hamilton, Christopher; Harris, Andrew; Coppola, Diego; Tumi Guðmundsson, Magnús; Durig, Tobias; Pedersen, Gro; Drouin, Vincent; Höskuldsson, Friðrik; Símonarson, Hreggviður; Örn Arnarson, Gunnar; Örn Einarsson, Magnús; Riishuus, Morten

    2015-04-01

    An effusive eruption started in Holuhraun, NE Iceland, on 31 August 2014, producing the Nornahraun lava flow field which had, by the beginning of 2015, covered over 83 km2. Throughout this event, various satellite images have been analyzed to monitor the development, active areas and map the lava extent in close collaboration with the field group, which involved regular exchange of direct observations and satellite based data for ground truthing and suggesting possible sites for lava sampling. From the beginning, satellite images in low geometric but high temporal resolution (NOAA AVHRR, MODIS) were used to monitor main regions of activity and position new vents to within 1km accuracy. As they became available, multispectral images in higher resolution (LANDSAT 8, LANDSAT 7, ASTER, EO-1 ALI) were used to map the lava channels, study lava structures and classify regions of varying activity. Hyper spectral sensors (EO-1 HYPERION), though with limited area coverage, have given a good indication of vent and lava temperature and effusion rates. All available radar imagery (SENTINEL-1, RADARSAT, COSMO SKYMED, TERRASAR X) have been used for studying lava extent, landscape and roughness. The Icelandic Coast Guard has, on a number of occasions, provided high resolution radar and thermal images from reconnaissance flights. These data sources compliment each other well and have improved analysis of events. Whilst classical TIR channels were utilized to map the temperature history of the lava, SWIR and NIR channels caught regions of highest temperature, allowing an estimate of the most active lava channels and even indicating potential changes in channel structure. Combining thermal images and radar images took this prediction a step further, improving interpretation of both image types and studying the difference between open and closed lava channels. Efforts are underway of comparing different methods of estimating magma discharge and improving the process for use in real

  19. Eruptive history of the Karoo lava flows and their impact on early Jurassic environmental change

    NASA Astrophysics Data System (ADS)

    Moulin, M.; Fluteau, F.; Courtillot, V.; Marsh, J.; Delpech, G.; Quidelleur, X.; Gérard, M.

    2017-02-01

    This paper reports new paleomagnetic and geochronologic data from a 1500 m thick composite section belonging to the Drakensberg group, the thickest remnant of the Karoo lavas in Northern Lesotho. Flow-by-flow analysis of paleomagnetic directions reveals 21 magnetic directional groups, corresponding to single eruptive events, and 16 individual lava flows. The new age determinations of lava flows range from 180.1 ± 1.4 to 182.8 ± 2.6 Ma. These data, combined with previous results, allow us to propose that the main part of the Drakensberg group and the Karoo intrusive complex dated around 181-183 Ma may have been erupted over a period as short as 250 kyr and may have coincided with the two main phases of extinction in the Early Toarcian. This scenario agrees well with the discontinuous rhythm of environmental and biotic perturbations in the Late Pliensbachian-Toarcian interval.

  20. Perception of Lava Flow Hazards and Risk at Mauna Loa and Hualalai Volcanoes, Kona, Hawaii

    NASA Astrophysics Data System (ADS)

    Gregg, C. E.; Houghton, B. F.; Johnston, D. M.; Paton, D.; Swanson, D. A.

    2001-12-01

    The island of Hawaii is composed of five sub-aerially exposed volcanoes, three of which have been active since 1801 (Kilauea, Mauna Loa, Hualalai). Hawaii has the fastest population growth in the state and the local economy in the Kona districts (i.e., western portion of the island) is driven by tourism. Kona is directly vulnerable to future lava flows from Mauna Loa and Hualalai volcanoes, as well as indirectly from the effects of lava flows elsewhere that may sever the few roads that connect Kona to other vital areas on the island. A number of factors such as steep slopes, high volume eruptions, and high effusion rates, combine to mean that lava flows from Hualalai and Mauna Loa can be fast-moving and hence unusually hazardous. The proximity of lifelines and structures to potential eruptive sources exacerbates societies' risk to future lava flows. Approximately \\$2.3 billion has been invested on the flanks of Mauna Loa since its last eruption in 1984 (Trusdell 1995). An equivalent figure has not yet been determined for Hualalai, but an international airport, several large resort complexes, and Kailua-Kona, the second largest town on the island, are down-slope and within 15km of potential eruptive Hualalai vents. Public and perhaps official understanding of specific lava flow hazards and the perceptions of risk from renewed volcanism at each volcano are proportional to the time lapsed since the most recent eruption that impacted Kona, rather than a quantitative assessment of risk that takes into account recent growth patterns. Lava flows from Mauna Loa and Hualalai last directly impacted upon Kona during the notorious 1950 and circa 1801 eruptions, respectively. Various non-profit organizations; local, state and federal government entities; and academic institutions have disseminated natural hazard information in Kona but despite the intuitive appeal that increased hazard understanding and risk perception results in increased hazard adjustment adoption, this

  1. Physical properties of lava flows on the southwest flank of Tyrrhena Patera, Mars

    NASA Technical Reports Server (NTRS)

    Crown, David A.; Porter, Tracy K.; Greeley, Ronald

    1991-01-01

    Tyrrhena Patera (TP) (22 degrees S, 253.5 degrees W), a large, low-relief volcano located in the ancient southern highlands of Mars, is one of four highland paterae thought to be structurally associated with the Hellas basin. The highland paterae are Hesperian in age and among the oldest central vent volcanoes on Mars. The morphology and distribution of units in the eroded shield of TP are consistent with the emplacement of pyroclastic flows. A large flank unit extending from TP to the SW contains well-defined lava flow lobes and leveed channels. This flank unit is the first definitive evidence of effusive volcanic activity associated with the highland paterae and may include the best preserved lava flows observed in the Southern Hemisphere of Mars. Flank flow unit averages, channelized flow, flow thickness, and yield strength estimates are discussed. Analysis suggests the temporal evolution of Martian magmas.

  2. Rapid fluvial incision of a late Holocene lava flow: Insights from LiDAR, alluvial stratigraphy, and numerical modeling

    USGS Publications Warehouse

    Sweeney, Kristin; Roering, Joshua J.

    2016-01-01

    Volcanic eruptions fundamentally alter landscapes, paving over channels, decimating biota, and emplacing fresh, unweathered material. The fluvial incision of blocky lava flows is a geomorphic puzzle. First, high surface permeability and lack of sediment should preclude geomorphically effective surface runoff and dissection. Furthermore, past work has demonstrated the importance of extreme floods in driving incision via column toppling and plucking in columnar basalt, but it is unclear how incision occurs in systems where surface blocks are readily mobile. We examine rapid fluvial incision of the Collier lava flow, an andesitic Holocene lava flow in the High Cascades of Oregon. Since lava flow emplacement ∼1600 yr ago, White Branch Creek has incised bedrock gorges up to 8 m deep into the coherent core of the lava flow and deposited >0.2 km3 of sediment on the lava flow surface. Field observation points to a bimodal discharge regime in the channel, with evidence for both annual snowmelt runoff and outburst floods from Collier glacier, as well as historical evidence of vigorous glacial meltwater. To determine the range of discharge events capable of incision in White Branch Creek, we used a mechanistic model of fluvial abrasion. We show that the observed incision implies that moderate flows are capable of both initiating channel formation and sustaining incision. Our results have implications for the evolution of volcanic systems worldwide, where glaciation and/or mass wasting may accelerate fluvial processes by providing large amounts of sediment to otherwise porous, sediment-starved landscapes.

  3. A Self-Replication Model for Long Channelized Lava Flows on the Mars Plains

    NASA Technical Reports Server (NTRS)

    Baloga, S. M.; Glaze, L. S.

    2008-01-01

    A model is presented for channelized lava flows emplaced by a self-replicating, levee-building process over long distances on the plains of Mars. Such flows may exhibit morphologic evidence of stagnation, overspills, and upstream breakouts. However, these processes do not inhibit the formation and persistence of a prominent central channel that can often be traced for more than 100 km. The two central assumptions of the self-replication model are (1) the flow advances at the average upstream velocity of the molten core and (2) the fraction of the lava that travels faster than the average upstream velocity forms stationary margins in the advancing distal zone to preserve the self-replication process. For an exemplary 300 km long flow north of Pavonis Mons, the model indicates that 8 m of crust must have formed during emplacement, as determined from the channel and levee dimensions. When combined with independent thermal dynamic estimates for the crustal growth rate, relatively narrow constraints are obtained for the flow rate (2250 m3 s 1), emplacement duration (600 d), and the lava viscosity of the molten interior (106 Pa s). Minor, transient overspills and breakouts increase the emplacement time by only a factor of 2. The primary difference between the prodigious channelized Martian flows and their smaller terrestrial counterparts is that high volumetric flow rates must have persisted for many hundreds of days on Mars, in contrast to a few hours or days on Earth.

  4. The dynamics of a channel-fed lava flow on Pico Partido volcano, Lanzarote

    NASA Astrophysics Data System (ADS)

    Woodcock, Duncan; Harris, Andrew

    2006-09-01

    A short length of channel on Pico Partido volcano, Lanzarote, provides us the opportunity to examine the dynamics of lava flowing in a channel that extends over a sudden break in slope. The 1 2-m-wide, 0.5 2-m-deep channel was built during the 1730 1736 eruptions on Lanzarote and exhibits a sinuous, well-formed channel over a steep (11° slope) 100-m-long proximal section. Over-flow units comprising smooth pahoehoe sheet flow, as well as evidence on the inner channel walls for multiple (at least 11) flow levels, attest to unsteady flow in the channel. In addition, superelevation is apparent at each of the six bends along the proximal channel section. Superelevation results from banking of the lava as it moves around the bend thus causing preferential construction of the outer bank. As a result, the channel profile at each bend is asymmetric with an outer bank that is higher than the inner bank. Analysis of superelevation indicates flow velocities of ~8 m s 1. Our analysis of the superelevation features is based on an inertia-gravity balance, which we show is appropriate, even though the down-channel flow is in laminar flow. We use a viscosity-gravity balance model, together with the velocities calculated from superelevation, to obtain viscosities in the range 25 60 Pa s (assuming that the lava behaved as a Newtonian liquid). Estimated volume fluxes are in the range 7 12 m3 s 1. An apparent down-flow increase in derived volume flux may have resulted from variable supply or bulking up of the flow due to vesiculation. Where the channel moves over a sharp break in slope and onto slopes of ~6°, the channel becomes less well defined and widens considerably. At the break of slope, an elongate ridge extends across the channel. We speculate that this ridge was formed as a result of a reduction in velocity immediately below the break of slope to allow deposition of entrained material or accretion of lava to the channel bed as a result of a change in flow regime or depth.

  5. A new tree-ring date for the "floating island" lava flow, Mount St. Helens, Washington

    USGS Publications Warehouse

    Yamaguchi, D.K.; Hoblitt, R.P.; Lawrence, D.B.

    1990-01-01

    Anomalously narrow and missing rings in trees 12 m from Mount St. Helens' "floating island" lava flow, and synchronous growth increases in trees farther from the flow margin, are evidence that this andesitic flow was extruded between late summer 1799 and spring 1800 a.d., within a few months after the eruption of Mount St. Helens' dacitic layer T tephra. For ease of reference, we assign here an 1800 a.d. date to this flow. The new date shows that the start of Mount St. Helens' Goat Rocks eruptive period (1800-1857 a.d.) resembled the recent (1980-1986) activity in both petrochemical trends and timing. In both cases, an initial explosive eruption of dacite was quickly succeeded by the eruption of more mafic lavas; dacite lavas then reappeared during an extended concluding phase of activity. This behavior is consistent with a recently proposed fluid-dynamic model of magma withdrawal from a compositionally zoned magma chamber. ?? 1990 Springer-Verlag.

  6. Intraflow width variations in Martian and terrestrial lava flows

    NASA Astrophysics Data System (ADS)

    Peitersen, Matthew N.; Crown, David A.

    1997-03-01

    Flow morphology is used to interpret emplacement processes for lava flows on Earth and Mars. Accurate measurements of flow geometry are essential, particularly for planetary flows where neither compositional sampling nor direct observations of active flows may be possible. Width behavior may indicate a flow's response to topography, its emplacement regime, and its physical properties. Variations in width with downflow distance from the vent may therefore provide critical clues to flow emplacement processes. Flow width is also one of the few characteristics that can be readily measured from planetary mission data with accuracy. Recent analyses of individual flows at two terrestrial and four Martian sites show that widths within an individual flow vary by up to an order of magnitude. Width is generally thought to be correlated to topography; however, recent studies show that this relationship is neither straightforward nor easily quantifiable.

  7. Remotely Characterizing the Topographic and Thermal Evolution of Kīlauea's Lava Flow Field

    NASA Astrophysics Data System (ADS)

    Rumpf, M. E.; Vaughan, R. G.; Poland, M. P.

    2017-12-01

    New technologies in satellite data acquisition and the continuous development of analysis software capabilities are greatly improving the ability of scientists to monitor volcanoes in near-real-time. Satellite-based thermal infrared (TIR) data are used to monitor and analyze new and ongoing volcanic activity by identifying and quantifying surface thermal characteristics and lava flow discharge rates. Improved detector sensitivities provide unprecedented spatial detail in visible to shortwave infrared (VSWIR) satellite imagery. The acquisition of stereo and tri-stereo visible imagery, as well as SAR, by an increasing number of satellite systems enables the creation of digital elevation models (DEMs) at higher temporal frequencies and resolutions than in the past. Free, user-friendly software programs, such as NASA's Ames Stereo Pipeline and Google Earth Engine, ease the accessibility and usability of satellite data to users unfamiliar with traditional analysis techniques. An effective and efficient integration of these technologies can be utilized towards volcano monitoring.Here, we use the active lava flows from the East Rift Zone vents of Kīlauea Volcano, Hawai`i as a testing ground for developing new techniques in multi-sensor volcano remote sensing. We use DEMs generated from stereo and tri-stereo images captured by the WorldView3 and Pleiades satellite systems to assess topographic changes over time at the active flow fields. Time-series data of lava flow area, thickness, and discharge rate developed from thermal emission measurements collected by ASTER, Landsat 8, and WorldView3 are compared to satellite-detected topographic changes and to ground observations of flow development to identify behavioral patterns and to monitor flow field evolution. We explore methods of combining these visual and TIR data sets collected by multiple satellite systems with a variety of resolutions and repeat times. Our ultimate goal is to develop integrative tools for near

  8. Mineral resources of the Little Black Peak and Carrizozo Lava Flow wilderness study areas, Lincoln County, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoeser, D.B.; Senterfit, M.K.; Zelten, J.E.

    1989-01-01

    This book discusses the Little Black Peak and Carrizozo Lava Flow Wilderness Study Areas in east-central New Mexico (24,249 acres) which are underlain by Quaternary basaltic lava flows and upper Paleozoic to Mesozoic sedimentary rocks. The only identified resource is lava from the basalt flows, which is used for road metal, construction materials, and decorative stone. The basalt is classed as an inferred subeconomic resource. Both areas have low resource potential for sediment-hosted uranium and copper oil, gas, coal, and geothermal energy and moderate potential for gypsum and salt. The Little Black Peak area also has low potential for uraniummore » associated with Tertiary alkaline intrusive rocks. Two aeromagnetic anomalies occur beneath the northern part of the Carrizozo lava flow area and the southern part of the Little Black Peak area; the resource potential for these rocks is unknown.« less

  9. Operational thermal remote sensing and lava flow monitoring at the Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Patrick, Matthew R.; Kauahikaua, James P.; Orr, Tim R.; Davies, Ashley G.; Ramsey, Michael S.

    2016-01-01

    Hawaiian volcanoes are highly accessible and well monitored by ground instruments. Nevertheless, observational gaps remain and thermal satellite imagery has proven useful in Hawai‘i for providing synoptic views of activity during intervals between field visits. Here we describe the beginning of a thermal remote sensing programme at the US Geological Survey Hawaiian Volcano Observatory (HVO). Whereas expensive receiving stations have been traditionally required to achieve rapid downloading of satellite data, we exploit free, low-latency data sources on the internet for timely access to GOES, MODIS, ASTER and EO-1 ALI imagery. Automated scripts at the observatory download these data and provide a basic display of the images. Satellite data have been extremely useful for monitoring the ongoing lava flow activity on Kīlauea's East Rift Zone at Pu‘u ‘Ō‘ō over the past few years. A recent lava flow, named Kahauale‘a 2, was upslope from residential subdivisions for over a year. Satellite data helped track the slow advance of the flow and contributed to hazard assessments. Ongoing improvement to thermal remote sensing at HVO incorporates automated hotspot detection, effusion rate estimation and lava flow forecasting, as has been done in Italy. These improvements should be useful for monitoring future activity on Mauna Loa.

  10. The Ongoing Lava Flow Eruption of Sinabung Volcano (Sumatra, Indonesia): Observations from Structure-from-Motion and Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Carr, B. B.; Clarke, A. B.; Arrowsmith, R.; Vanderkluysen, L.

    2015-12-01

    Sinabung is a 2460 m high andesitic stratovolcano in North Sumatra, Indonesia. Its ongoing eruption has produced a 2.9 km long lava flow with two active summit lobes and frequent pyroclastic flows (≤ 5 km long) with associated plumes over 5 km high. Large viscous lava flows of this type are common at volcanoes around the world, but are rarely observed while active. This eruption therefore provides a special opportunity to observe and study the mechanisms of emplacement and growth of an active lava flow. In September 2014, we conducted a field campaign to collect ground-based photographs to analyze with Structure-from-Motion photogrammetric techniques. We built multiple 3D models from which we estimate the volume of the lava flow and identify areas where the flow was most active. Thermal infrared and visual satellite images provide information on the effusive eruption from its initiation in December 2013 to the present and allow us to estimate the eruption rate, advance rate and rheological characteristics of the flow. According to our DEMs the flow volume as of September 2014 was 100 Mm3, providing an average flow rate of 4.5 m3/s, while comparison of two DEMs from that month suggests that most growth occurred at the SE nose of the flow. Flow advancement was initially controlled by the yield strength of the flow crust while eruption and flow advance rates were at their highest in January-March 2014. A period of slow front advancement and inflation from March - October 2014 suggests that the flow's interior had cooled and that propagation was limited by the interior yield strength. This interpretation is supported by the simultaneous generation of pyroclastic flows due to collapse of the upper portion of the lava flow and consequent lava breakout and creation of new flow lobes originating from the upper reaches in October 2014 and June 2015. Both lobes remain active as of August 2015 and present a significant hazard for collapse and generation of pyroclastic flows

  11. Kaumana lava tube

    NASA Technical Reports Server (NTRS)

    Greeley, R.

    1974-01-01

    The entrance to Kaumana Lava Tube is in a picnic ground next to Highway 20 (Kaumana Drive) about 6.5 km southwest of Hilo. The area is passed on the way to the Kona Coast via the Saddle Road and is identified by a Hawaii Visitors Bureau sign. Although it is not the largest lava tube in the islands, Kaumana Lava Tube is an interesting geological formation, displaying many of the features typical of lava tube interiors. It is accessible, relatively easy to walk through, and is in an excellent state of preservation. The tube developed in a historic lava flow (1881, from Mauna Loa), and many aspects of lava tube activity are observed.

  12. Determination of eruption temperature of Io's lavas using lava tube skylights

    NASA Astrophysics Data System (ADS)

    Davies, Ashley Gerard; Keszthelyi, Laszlo P.; McEwen, Alfred S.

    2016-11-01

    Determining the eruption temperature of Io's dominant silicate lavas would constrain Io's present interior state and composition. We have examined how eruption temperature can be estimated at lava tube skylights through synthesis of thermal emission from the incandescent lava flowing within the lava tube. Lava tube skylights should be present along Io's long-lived lava flow fields, and are attractive targets because of their temporal stability and the narrow range of near-eruption temperatures revealed through them. We conclude that these skylights are suitable and desirable targets (perhaps the very best targets) for the purposes of constraining eruption temperature, with a 0.9:0.7-μm radiant flux ratio ≤6.3 being diagnostic of ultramafic lava temperatures. Because the target skylights may be small - perhaps only a few m or 10 s of m across - such observations will require a future Io-dedicated mission that will obtain high spatial resolution (< 100 m/pixel), unsaturated observations of Io's surface at multiple wavelengths in the visible and near-infrared, ideally at night. In contrast to observations of lava fountains or roiling lava lakes, where accurate determination of surface temperature distribution requires simultaneous or near-simultaneous (< 0.1 s) observations at different wavelengths, skylight thermal emission data are superior for the purposes of temperature derivation, as emission is stable on much longer time scales (minutes, or longer), so long as viewing geometry does not greatly change during that time.

  13. Remagnetization of lava flows spanning the last geomagnetic reversal

    NASA Astrophysics Data System (ADS)

    Vella, Jérôme; Carlut, Julie; Valet, Jean-Pierre; Goff, Maxime Le; Soler, Vicente; Lopes, Fernando

    2017-08-01

    Large directional changes of remanent magnetization within lava flows that cooled during geomagnetic reversals have been reported in several studies. A geomagnetic scenario implies extremely rapid geomagnetic changes of several degrees per day, thus difficult to reconcile with the rate of the earth's core liquid motions. So far, no complete rock magnetic model provides a clear explanation. We revisited lava flows sandwiched between an underlying reverse and an overlying normal polarity flow marking the last reversal in three distinct volcanic sequences of the La Palma Island (Canary archipelago, Spain) that are characterized by a gradual evolution of the direction of their remanent magnetization from bottom to top. Cleaning efficiency of thermal demagnetization was not improved by very rapid heating and cooling rates as well as by continuous demagnetization using a Triaxe magnetometer. We did not observe partial self-reversals and minor changes in magnetic grain sizes are not related to the within-flow directional changes. Microscopic observations indicate poor exsolution, which suggests post-cooling thermochemical remagnetization processes. This scenario is strongly reinforced by laboratory experiments that show large resistance to thermal demagnetization when thermoremanence was acquired over a long time period. We speculate that in the present situation exsolution was reactivated during in field reheating and yielded formation of new magnetite, yet magnetic domain state rearrangements could also play a role. Initial reheating when the overlying flow took place, albeit moderate (less than 200-300 °C), was enough to produce overlying components with significantly higher unblocking temperatures.

  14. Experimental constraints on the rheology and mechanical properties of lava erupted in the Holuhraun area during the 2014 rifting event at Bárðarbunga, Iceland

    NASA Astrophysics Data System (ADS)

    Lavallee, Yan; Kendrick, Jackie; Wall, Richard; von Aulock, Felix; Kennedy, Ben; Sigmundsson, Freysteinn

    2015-04-01

    A fissure eruption began at Holuhraun on 16 August 2014, following magma drainage from the Bárðarbunga volcanic system (Iceland). Extrusion initiated as fire fountaining along a segment of the fracture and rapidly localised to a series of small, aligned cones containing a lava lake that over spilled at both ends, feeding a large lava field. The lava composition and flow behaviour put some constraints on its rheology and mechanical properties. The lava erupted is a nearly aphyric basalt containing approximately 2-3% plagioclase with traces of olivine and pyroxene in a quenched groundmass composed of glass and 20-25% microlites. The transition from fire fountaining to lava flow leads to lava with variable vesicularities; pyroclasts expelled during fire fountaining reach up to 80% vesicles whilst the lava contain up to 45% vesicles. Textures in the lava vary from a'a to slabby pahoehoe, and flow thicknesses from several meters to few centimetres. Tension gashes, crease structures and shear zones in the upper lava carapace reveal the importance of both compressive and tensional stresses. In addition, occasional frictional marks at the base of the lava flow as well as bulldozing of sediments along the flow hint at the importance of frictional properties of the rocks during lava flow. Flow properties, textures and failure modes are strongly dependent on the material properties as well as the local conditions of stress and temperature. Here we expand our field observation with preliminary high-temperature experimental data on the rheological and mechanical properties of the erupted lava. Dilatometric measurements are used to constrain the thermal expansion coefficient of the lava important to constrain the dynamics of cooling of the flow. Micropenetration is further employed to determine the viscosity of the melt at super-liquidus temperature, which is compared to the temperature-dependence of viscosity as constrained by geochemistry. Lastly, uniaxial compression and

  15. Progress of Icelandic Lava Flows Charted by NASA EO-1 Spacecraft

    NASA Image and Video Library

    2014-09-09

    On the night of Sept. 6, 2014 NASA Earth Observing 1 EO-1 spacecraft observed the ongoing eruption at Holuhraun, Iceland. Partially covered by clouds, this scene shows the extent of the lava flows that have been erupting.

  16. Lava flow field emplacement studies of Manua Ulu (Kilauea Volcano, Hawai'i, United States) and Venus, using field and remote sensing analyses

    NASA Astrophysics Data System (ADS)

    Byrnes, Jeffrey Myer

    2002-04-01

    This work examines lava emplacement processes by characterizing surface units using field and remote sensing analyses in order to understand the development of lava flow fields. Specific study areas are the 1969--1974 Mauna Ulu compound flow field, (Kilauea Volcano, Hawai'i, USA), and five lava flow fields on Venus: Turgmam Fluctus, Zipaltonal Fluctus, the Tuli Mons/Uilata Fluctus flow complex, the Var Mons flow field, and Mylitta Fluctus. Lava surface units have been examined in the field and with visible-, thermal-, and radar-wavelength remote sensing datasets for Mauna Ulu, and with radar data for the Venusian study areas. For the Mauna Ulu flow field, visible characteristics are related to color, glass abundance, and dm- to m-scale surface irregularities, which reflect the lava flow regime, cooling, and modification due to processes such as coalescence and inflation. Thermal characteristics are primarily affected by the abundance of glass and small-scale roughness elements (such as vesicles), and reflect the history of cooling, vesiculation and degassing, and crystallization of the lava. Radar characteristics are primarily affected by unit topography and fracturing, which are related to flow inflation, remobilization, and collapse, and reflect the local supply of lava during and after unit emplacement. Mauna Ulu surface units are correlated with pre-eruption topography, lack a simple relationship to the main feeder lava tubes, and are distributed with respect to their position within compound flow lobes and with distance from the vent. The Venusian lava flow fields appear to have developed through emplacement of numerous, thin, simple and compound flows, presumably over extended periods of time, and show a wider range of radar roughness than is observed at Mauna Ulu. A potential correlation is suggested between flow rheology and surface roughness. Distributary flow morphologies may result from tube-fed flows, and flow inflation is consistent with observed

  17. Magnetic property zonation in a thick lava flow

    NASA Astrophysics Data System (ADS)

    Audunsson, Haraldur; Levi, Shaul; Hodges, Floyd

    1992-04-01

    Intraflow structures and magmatic evolution in an extensive and thick (30-60 m) basaltic lava flow are examined on the basis of grain size and composition-dependent magnetic properties of titanomagnetite materials. Microprobe data indicate that the intraflow oxidation state Fe(3+)/Fe(2+) of the initially precipitated primary titanomagnetites increases with falling equilibrium temperature from the flow margins to a maximum near the center, the position of lowest equilibrium temperature. In contrast, Curie temperature measurements indicate that titanomagnetite oxidation increases with height in the flow. Modification of the initially symmetric equilibrium titanomagnetite compositions was caused by subsolidus high-temperature oxidation possibly due to hydrogen loss produced by dissociation of magmatic water, as well as unknown contributions of circulating air and percolating water from above. The titanomagnetites of the basal layer of the flow remain essentially unaltered.

  18. The significance of late-stage processes in lava flow emplacement: squeeze-ups in the 2001 Etna flow field

    NASA Astrophysics Data System (ADS)

    Applegarth, L. J.; Pinkerton, H.; James, M. R.

    2009-04-01

    The general processes associated with the formation and activity of ephemeral boccas in lava flow fields are well documented (e.g. Pinkerton & Sparks 1976; Polacci & Papale 1997). The importance of studying such behaviour is illustrated by observations of the emplacement of a basaltic andesite flow at Parícutin during the 1940s. Following a pause in advance of one month, this 8 km long flow was reactivated by the resumption of supply from the vent, which forced the rapid drainage of stagnant material in the flow front region. The material extruded during drainage was in a highly plastic state (Krauskopf 1948), and its displacement allowed hot fluid lava from the vent to be transported in a tube to the original flow front, from where it covered an area of 350,000 m2 in one night (Luhr & Simkin 1993). Determining when a flow has stopped advancing, and cannot be drained in such a manner, is therefore highly important in hazard assessment and flow modelling, and our ability to do this may be improved through the examination of relatively small-scale secondary extrusions and boccas. The 2001 flank eruption of Mt. Etna, Sicily, resulted in the emplacement of a 7 km long compound `a`ā flow field over a period of 23 days. During emplacement, many ephemeral boccas were observed in the flow field, which were active for between two and at least nine days. The longer-lived examples initially fed well-established flows that channelled fresh material from the main vent. With time, as activity waned, the nature of the extruded material changed. The latest stages of development of all boccas involved the very slow extrusion of material that was either draining from higher parts of the flow or being forced out of the flow interior as changing local flow conditions pressurised parts of the flow that had been stagnant for some time. Here we describe this late-stage activity of the ephemeral boccas, which resulted in the formation of ‘squeeze-ups' of lava with a markedly different

  19. Modeling mechanical and thermo-mechanical erosion by flowing lava at Raglan, Cape Smith Belt, New Québec, Canada

    NASA Astrophysics Data System (ADS)

    Cataldo, V.; Williams, D. A.; Lesher, C. M.

    2015-12-01

    The 1.5-D Williams et al. model of thermal erosion by turbulent lava was recently applied to the Athabasca Valles lava channel on Mars, in an attempt to establish the importance of thermal erosion in excavating this ~80-100 m deep outflow channel. The modeled erosion depths (0.4-7.5 m) are far less than the depth of the channel which, combined with the short duration of the eruption, suggests that mechanical erosion may have had a greater role. Several studies suggest that mechanical erosion by lava is more important in channel-tube formation than previously thought, under certain circumstances. How would we be able to distinguish between mechanical and thermal erosion? By investigating model results when substrate properties change, as we move from a consolidated, mechanically strong substrate to a partially consolidated or unconsolidated, mechanically weaker substrate. The Proterozoic Raglan komatiitic basalt lava channel of the Cape Smith Belt, New Québec, Canada is a complex erosional environment involving invasive erosion of both sediment and gabbro substrates - which makes it a critical test case. The lava eroded an upper layer of soft sediment, with erosion at the tops, bottoms, and sides of the conduit, through underlying gabbro, and then burrowed laterally into underlying sediment, a scenario requiring a two-dimensional modeling approach. Using the available field data, we will simulate two-dimensional thermomechanical and mechanical erosion interfaces on all sides of a turbulent lava flow by creating a finite-element mesh. The mesh will be defined by the geometry of the lava flow at those lava conduits for which data on lava and substrate composition, lava thickness, slope of the ground, conduit area and volume, and lava flow length are available. Ultimately, this model will be applied to lunar sinuous rilles and martian lava channels for which the use of a two-dimensional approach is needed.

  20. Flow behaviour of megacryst-rich magmas: the case of "cicirara" lavas of Mt. Etna volcano

    NASA Astrophysics Data System (ADS)

    Vona, Alessandro; Di Piazza, Andrea; Nicotra, Eugenio; Romano, Claudia; Viccaro, Marco; Giordano, Guido

    2017-04-01

    Multiphase magma rheological properties play a fundamental role on lava flow transportation, emplacement and morphology. To date, however, the three-phase (melt + crystals + vesicles) rheology of natural magma remains relatively understudied. We present here a series of high-temperature experiments designed to investigate the multiphase rheology of a mugearitic megacryst-bearing lava from Mt. Etna. A peculiar textural feature of this magma is the abundance of cm-size plagioclase crystals (megacrysts) together with smaller size crystals (phenocrysts and microlites), yielding a very wide crystal size distribution. We combined different experimental techniques (rotational and compressional rheometry) to investigate the rheology of this natural lava under different degrees of partial melting at subliquidus conditions. Results indicate that natural megacryst-bearing mugearite magmas from Mt. Etna display a wide range of behaviours as a function of temperature (T = 1000 - 1200 °C) and crystal content (phi = 0.2 - 0.7). In the investigated T range, the deformation mechanism of these magmas varies from mainly brittle (T < 1050 °C) to mainly ductile (T > 1085 °C). At T = 1075 °C, both ductile and brittle behaviour have been observed. In the ductile regime, these magmas behave as non-Newtonian fluids (at least up to T = 1100 °C) showing marked apparent shear thinning behaviour. The observed rheological behaviour is due to a complex response related to a non-homogenous deformation of the natural sample (e.g. viscous and/or brittle shear localization), favoured by the presence of vesicles. Consequently, the obtained flow parameters can be considered as representative of the bulk rheology of natural magmas, commonly characterized by similar non-homogeneous deformation styles. We applied the obtained data to discuss the flow and emplacement conditions of these peculiar lava flows. We demonstrated that at eruptive temperatures, the presence of a pre-eruptive crystal cargo

  1. Classification of volcanoes of the Kane Patera Quadrangle of Io: Proportions of lava flows and pyroclastic flows

    NASA Technical Reports Server (NTRS)

    Elston, W. E.

    1984-01-01

    Voyager 1 images show 14 volcanic centers wholly or partly within the Kane Patera quadrangle of Io, which are divided into four major classes: (1) shield with parallel flows; (2) shield with early radial fan shapd flows; (3) shield with radial fan shaped flows, surfaces of flows textured with longitudinal ridges; and (4) depression surrounded by plateau-forming scarp-bounded, untextured deposits. The interpretation attempted here hinges largely on the ability to distinguish lava flows from pyroclastic flows by remote sensing.

  2. Experimental study of the surface thermal signature of gravity currents: application to the assessment of lava flow effusion rate

    NASA Astrophysics Data System (ADS)

    Garel, F.; Kaminski, E.; Tait, S.; Limare, A.

    2011-12-01

    During an effusive volcanic eruption, the crisis management is mainly based on the prediction of lava flows advance and its velocity. As the spreading of lava flows is mainly controlled by its rheology and the eruptive mass flux, the key question is how to evaluate them during the eruption (rather than afterwards.) A relationship between the heat flux lost by the lava at its surface and the eruption rate is likely to exist, based on the first-order argument that higher eruption rates should correspond to larger power radiated by a lava flow. The semi-empirical formula developed by Harris and co-workers (e.g. Harris et al., Bull. Volc. 2007) is currently used to estimate lava flow rate from satellite surveys yielding the surface temperatures and area of the lava flow field. However, this approach is derived from a static thermal budget of the lava flow and does not explicitly model the time-evolution of the surface thermal signal. Here we propose laboratory experiments and theoretical studies of the cooling of a viscous axisymmetric gravity current fed at constant flux rate. We first consider the isoviscous case, for which the spreading is well-know. The experiments using silicon oil and the theoretical model both reveal the establishment of a steady surface thermal structure after a transient time. The steady state is a balance between surface cooling and heat advection in the flow. The radiated heat flux in the steady regime, a few days for a basaltic lava flow, depends mainly on the effusion rate rather than on the viscosity. In this regime, one thermal survey of the radiated power could provide a consistent estimate of the flow rate if the external cooling conditions (wind) are reasonably well constrained. We continue to investigate the relationship between the thermal radiated heat flux and the effusion rate by using in the experiments fluids with temperature-dependent viscosity (glucose syrup) or undergoing solidification while cooling (PEG wax). We observe a

  3. Channel overflows of the Pōhue Bay flow, Mauna Loa, Hawai'i: examples of the contrast between surface and interior lava

    NASA Astrophysics Data System (ADS)

    Jurado-Chichay, Zinzuni; Rowland, Scott K.

    1995-04-01

    A number of overflows from a large lava channel and tube system on the southwest rift zone of Mauna Loa were studied. Initial overflows were very low viscosity gas-rich pāhoehoe evidenced by flow-unit aspect ratios and vesicle sizes and contents. Calculated volumetric flow-rates in the channel range between 80 and 890 m3/s, and those of the overflows between 35 and 110 m3/s. After traveling tens to hundreds of meters the tops of these sheet-like overflows were disrupted into a surface composed of clinker and pāhoehoe fragments. After these 'a'ā overflows came to rest, lava from the interiors was able to break out on to the surface as pāhoehoe. The surface structure of a lava flow records the interaction between the differential shear rate (usually correlated with the volumetric flow-rate) and viscosity-induced resistance to flow. However, the interior of a flow, being better insulated, may react differently or record a later set of emplacement conditions. Clefts of toothpaste lava occurring within fields of clinker on proximal-type 'a'ā flows also record different shear rates during different times of flow emplacement. The interplay between viscosity and shear rate determines the final morphological lava type, and although no specific portion of lava ever makes a transition from 'a'ā back to pāhoehoe, parts of a flow can appear to do so.

  4. One-, two- and three-phase viscosity treatments for basaltic lava flows

    PubMed Central

    Harris, Andrew J. L.; Allen, John S.

    2009-01-01

    Lava flows comprise three-phase mixtures of melt, crystals, and bubbles. While existing one-phase treatments allow melt phase viscosity to be assessed on the basis of composition, water content, and/or temperature, two-phase treatments constrain the effects of crystallinity or vesicularity on mixture viscosity. However, three-phase treatments, allowing for the effects of coexisting crystallinity and vesicularity, are not well understood. We investigate existing one- and two-phase treatments using lava flow case studies from Mauna Loa (Hawaii) and Mount Etna (Italy) and compare these with a three-phase treatment that has not been applied previously to basaltic mixtures. At Etna, melt viscosities of 425 ± 30 Pa s are expected for well-degassed (0.1 w. % H2O), and 135 ± 10 Pa s for less well-degassed (0.4 wt % H2O), melt at 1080°C. Application of a three-phase model yields mixture viscosities (45% crystals, 25–35% vesicles) in the range 5600–12,500 Pa s. This compares with a measured value for Etnean lava of 9400 ± 1500 Pa s. At Mauna Loa, the three-phase treatment provides a fit with the full range of field measured viscosities, giving three-phase mixture viscosities, upon eruption, of 110–140 Pa s (5% crystals, no bubble effect due to sheared vesicles) to 850–1400 Pa s (25–30% crystals, 40–60% spherical vesicles). The ability of the three-phase treatment to characterize the full range of melt-crystal-bubble mixture viscosities in both settings indicates the potential of this method in characterizing basaltic lava mixture viscosity. PMID:21691456

  5. Observations of the effect of wind on the cooling of active lava flows

    USGS Publications Warehouse

    Keszthelyi, L.; Harris, A.J.L.; Dehn, J.

    2003-01-01

    We present the first direct observations of the cooling of active lava flows by the wind. We confirm that atmospheric convective cooling processes (i.e., the wind) dominate heat loss over the lifetime of a typical pahochoe lava flow. In fact, the heat extracted by convection is greater than predicted, especially at wind speeds less than 5 m/s and surface temperatures less than 400??C. We currently estimate that the atmospheric heat transfer coefficient is about 45-50 W m-2 K-1 for a 10 m/s wind and a surface temperature ???500??C. Further field experiments and theoretical studies should expand these results to a broader range of surface temperatures and wind speeds.

  6. Quenching and disruption of lunar KREEP lava flows by impacts

    NASA Technical Reports Server (NTRS)

    Ryder, Graham

    1988-01-01

    The results of a reexamination of petrography of the Apollo 15 KREEP basalts are reported. Several of the basalts contain yellow residual glasses which cross-cut the crystallized phases; some show more extreme disruption. The features of the glasses appear to be compatible only with impact disruption, ejection, and quenching from actively crystallizing flows, indicating a high impact flux immediately after the impact that formed the Imbrium basin. No other example of impacts into active lava flows is known in the solar system.

  7. XRF Core Scanning of Igneous Rocks: a Case Study of IODP Expeditions 367/368 Lava Flows, South China Sea

    NASA Astrophysics Data System (ADS)

    Höfig, T. W.; LeVay, B.; Stock, J. M.; Sun, Z.; Klaus, A.; Jian, Z.; Larsen, H. C.; Alvarez Zarikian, C. A.

    2017-12-01

    For three decades, X-ray fluorescence core scanning (XRF-CS) has been widely applied to split sediment cores to obtain continuous data sets of element intensities, serving as chemical proxies for paleoceanography and paleoclimate studies. In contrast, there is no record published on igneous rock cores. This study utilizes a remarkably consistent recovery of lava flows from the South China Sea (SCS), intersected during International Ocean Discovery Program (IODP) Expeditions 367/368, to gain preliminary insights into the chemical inventory of a volcanic suite. At IODP Site U1500, a drilled interval of 150 m, starting at 1379.1 meters below seafloor, yielded 115 m of intercalated fine-grained massive, sheet, and pillow lava flows of basaltic modal composition, consisting of aphyric to highly plagioclase-phyric rocks. The pillow lavas feature numerous well-preserved chilled and glassy margins. The whole succession of lavas is overall slightly to moderately altered and notably fresh in parts. The present XRF data, obtained from a third-generation energy dispersive Avaatech® core scanner at a step size of 2 cm, suggest the existence of two chemically distinct lava suites. The bottom six lava flows (in total 40 m thick) show low intensities of both Cr and Ti (e.g., Ti: 7000-8500 counts), while the upper 11 flows reflect higher concentrations of Cr and Ti (e.g., Ti: 8200-9500 counts). A massive flow, which marks the chemical transition, represents the top of the low-Cr and -Ti lava suite. The compositional change from low-Cr-Ti to high-Cr-Ti lavas reflects a clear temporal magmatic evolution of this submarine SCS volcanism, which is characterized by generally constant Fe/Mn ratios. Thus, this trend may be explained by a change to less fractionated and/or less contaminated lavas over time. On a smaller scale, the XRF-CS also enabled mapping of the compositional variations of crosscutting veins with depth as well as the transition from glassy margins to the micro- to

  8. Deflections in Lava Flow Directions Relative to Topography in the Tharsis Region: Indicators of Post-Flow Tectonic Motion

    NASA Technical Reports Server (NTRS)

    Chadwick, D. J.; Hughes, S. S.; Sakimoto, S. E. H.

    2004-01-01

    High-resolution topographic data for Mars from the Mars Orbiter Laser Altimeter (MOLA), and imagery from the Mars Orbiter Camera (MOC) and the Thermal Emission Imaging System (THEMIS) allow for the first accurate assessment of lava flow directions relative to topographic slopes in the Tharsis region. Tharisis has long been recognized as the dominant tectonic and volcanic province on the planet, with a complex geologic history. In this study, lava flow directions on Daedalia Planum, Syria Planum, Tempe Terra, and near the Tharsis Montes are compared with MOLA topographic contours to look for deviations of flow directions from the local slope direction. The topographic deviations identified in this study are likely due to Tharsis tectonic deformation that has modified the regional topography subsequent to the emplacement of the flows, and can be used to model the mechanisms and magnitudes of relatively recent tectonism in the region. A similar approach was used to identify possible postflow tectonic subsidence on the Snake River Plain in Idaho.

  9. Viscous dissipation in a flow with power law, temperature-dependent rheology: Application to channeled lava flows

    NASA Astrophysics Data System (ADS)

    Filippucci, Marilena; Tallarico, Andrea; Dragoni, Michele

    2017-05-01

    The cooling and the dynamics of a lava flowing down an inclined channel under the effect of the gravity force is studied through the finite volume method, taking into account the effect of viscous dissipation in the heat equation. The considered rheology is shear thinning and temperature dependent. The numerical solution is tested in order to verify the independence from the mesh. The dynamic and heat problems are addressed obtaining both the stationary and the transient solution. Results indicate that, considering viscous dissipation in the heat equation, a fluid with temperature-dependent nonlinear viscosity is faster and hotter with respect to the case in which viscous dissipation is neglected. The most important effect of viscous dissipation is on the solid boundaries where the fluid warms up, and the use of a variable Reynolds number allowed us to conclude that areas in which the flow is in the laminar regime and areas in which the flow is in the turbulent regime can coexist inside the fluid. This behavior seems independent of the channel shape and can explain the observed warming back after the initial cooling in the lava flow lobes emplacement on Kilauea Volcano.

  10. A question of scale: how emplacement observations of small, individual lava flows may inform our understanding of large, compound flow fields

    NASA Astrophysics Data System (ADS)

    Applegarth, Jane; James, Mike; Pinkerton, Harry

    2010-05-01

    The early stages of effusive volcanic eruptions, during which lava flows are lengthening, are often closely monitored for hazard management. Processes involved in lengthening are therefore relatively well understood, and lava flow development during this phase can be modelled with some success[1,2]. However, activity may continue after the lavas have reached their maximum length, leading to flow inflation, breakouts and possibly further lengthening of the flow field[3,4]. These processes can be difficult to observe during activity, and may result in highly complex flow morphologies that are not easily interpreted post-eruption. The late-stage development of compound flow fields is therefore important, but is currently an understudied area. The scale of this activity may vary greatly, and probably depends in part on the eruption duration. For example, the largest flow field emplaced during the 2001 eruption of Mt. Etna, Sicily, reached its maximum length of 6 km in 8 days, then was active for a further 2 weeks only. This ‘late-stage' activity involved the initiation of two new channels, a few tens of metres wide, which reached lengths of up to ~2 km. In contrast, the 2008-9 Etna eruption emplaced 6 km long flows within ~6 weeks, then activity continued for a further year. During the last few months of activity, small transient flows were extruded from ephemeral vents, several of which could be active at any given time. Observations of the late-stage activity this flow field as a whole allowed the influence of parameters such as effusion rate and topography on the overall morphology to be studied[5]. Furthermore, the scale of the individual flow units (a few metres wide, a few hundreds of metres long) meant that additional close-range measurements of their short-term development could be carried out, and the results are discussed here. We observed the behaviour of three such flow units, which were fed by a single ephemeral vent, over a 26-hour period within the

  11. The Wind-Scoured Lava Flows of Pavonis Mons

    NASA Image and Video Library

    2016-09-21

    Click on the image for larger version This image shows a circular impact crater and an oval volcanic caldera on the southern flank of a large volcano on Mars called Pavonis Mons. The caldera is also the source of numerous finger-like lava flows and at least one sinuous lava channel. Both the caldera and the crater are degraded by aeolian (wind) erosion. The strong prevailing winds have apparently carved deep grooves into the terrain. When looking at the scene for the first time, the image seems motion blurred. However, upon a closer look, the smaller, young craters are pristine, so the image must be sharp and the "blurriness" is due to the processes acting on the terrain. This suggests that the deflation-produced grooves, along with the crater and the caldera, are old features and deflation is not very active today. Alternatively, perhaps these craters are simply too young to show signs of degradation. This deeply wind-scoured terrain type is unique to Mars. Wind-carved stream-lined landforms on Earth are called "yardangs," but they don't form extensive terrains like this one. The basaltic lavas on the flanks of this volcano have been exposed to wind for such a long time that there are no parallels on Earth. Terrestrial landscapes and terrestrial wind patterns change much more rapidly than on Mars. http://photojournal.jpl.nasa.gov/catalog/PIA21064

  12. Long, paired A'A/Pahoehoe flows of Mauna Loa: Volcanological significance and insights they provide into volcano plumbing systems

    NASA Technical Reports Server (NTRS)

    Rowland, Scott K.; Walker, George P. L.

    1987-01-01

    The long lava flows of Mauna Loa, Hawaii have been cited as Earth's closed analogs to the large Martian flows. It is therefore important to understand the flow mechanics and characteristics of the Mauna Loa flows and to make use of these in an attempt to gain insights into Martian eruptive processes. Two fundamentally different kinds of long lava flows can be distinguished on Hawaiian volcanoes as in Martian flows. The two kinds may have identical initial viscosities, chemical compositions, flow lengths, and flow volumes, but their flow mechanisms and thermal energy budgets are radically different. One travels a distance set by the discharge rate as envisaged by Walker and Wadge, and the other travels a distance set mainly by the eruption duration and ground slope. In the Mauna Loa lavas, yield strength becomes an important flow morphology control only in the distal part of a'a lavas. The occurrence of paired flows on Mauna Loa yields insights into the internal plumbing systems of the volcano, and it is significant that all of the volume of the a'a flow must be stored in a magma chamber before eruption, while none of the volume of the pahoehoe needs to be so stored. Differentiation between the two kinds of flows on images of Martian volcanoes is possible and hence an improved understanding of these huge structures is acquired.

  13. Mineral resources of the Devil's Garden Lava Bed, Squaw Ridge Lava Bed, and Four Craters Lava Bed Wilderness Study Areas, Lake County, Oregon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keith, W.J.; King, H.D.; Gettings, M.E.

    1988-01-01

    The Devel's Garden lava Bed, Squaw Ridge Lava Bed, and Four Craters Lava Bed Wilderness Study Areas include approximately 70,940 acres and are underlain entirely by Pleistocene or Holocene lava flows and associated sediments. There is no evidence of hydrothermal alteration in the study areas. No resources were identified in the study areas, but there is low potential for perlite resources in the southern part of the Devil's Garden Lava Bed and the northern half of the Squaw Ridge Lava Bed areas. All three study areas have low potential for geothermal resources and for oil and gas resources.

  14. The case of the 1981 eruption of Mount Etna: An example of very fast moving lava flows

    NASA Astrophysics Data System (ADS)

    Coltelli, Mauro; Marsella, Maria; Proietti, Cristina; Scifoni, Silvia

    2012-01-01

    Mount Etna despite being an extremely active volcano which, during the last 400 years, has produced many lava flow flank eruptions has rarely threatened or damaged populated areas. The reconstruction of the temporal evolution of potentially hazardous flank eruptions represents a useful contribution to reducing the impact of future eruptions by and analyzing actions to be taken for protecting sensitive areas. In this work, we quantitatively reconstructed the evolution of the 1981 lava flow field of Mt Etna, which threatened the town of Randazzo. This reconstruction was used to evaluate the cumulated volume, the time averaged discharge rate trend and to estimate its maximum value. The analysis was conducted by comparing pre- and post-eruption topographic surfaces, extracted by processing historical photogrammetric data sets and by utilizing the eruption chronology to establish the lava flow front positions at different times. An unusually high discharge rate (for Etna) of 640 m3/s was obtained, which corresponds well with the very fast advance rate observed for the main lava flow. A comparison with other volcanoes, presenting high discharge rate, was proposed for finding a clue to unveil the 1981 Etna eruptive mechanism. A model was presented to explain the high discharge rate, which includes an additional contribution to the lava discharge caused by the interception of a shallow magma reservoir by a dike rising from depth and the subsequent emptying of the reservoir.

  15. Mitigation of lava flow invasion hazard through optimized barrier configuration aided by numerical simulation: The case of the 2001 Etna eruption

    NASA Astrophysics Data System (ADS)

    Scifoni, S.; Coltelli, M.; Marsella, M.; Proietti, C.; Napoleoni, Q.; Vicari, A.; Del Negro, C.

    2010-04-01

    Lava flow spreading along the flanks of Etna volcano often produces damages to the land and proprieties. The impact of these eruptions could be mitigated by building artificial barriers for controlling and slowing down the lava, as recently experienced in 1983, 1991-1993, 2001 and 2002. This study investigates how numerical simulations can be adopted for evaluating the effectiveness of barrier construction and for optimizing their geometry, considering as test case the lava flows emplaced on Etna's south flank during 2001. The flow temporal evolutions were reconstructed deriving the effusion rate trends, together with the pre-eruption topography were adopted as input data of the MAGFLOW simulation code. Three simulations were then conducted to simulate lava flow with and without barriers. The first aimed at verifying the reconstruction of the effusion rate trends, while the others at assessing the performance of the barrier system realized during the eruption in comparison with an alternative solution here proposed. A quantitative analysis carried out on the first simulation confirms the suitability of the selected test case. The comparison of the three simulated thickness distributions showed both the effectiveness of the barriers in slowing down the lava flow and the sensitivity of the MAGFLOW code to the topographical variations represented by the barriers. Finally, for reducing both the time necessary to erect the barrier and the barrier environmental impact, the gabion's barrier construction was analyzed. The implemented and tested procedure enforces the capability of using numerical simulations for designing optimized lava flow barriers aimed at making swifter mitigatory actions upon lava flows and improving the effectiveness of civil protection interventions during emergencies.

  16. Lava Flow Hazard Assessment, as of August 2007, for Kilauea East Rift Zone Eruptions, Hawai`i Island

    USGS Publications Warehouse

    Kauahikaua, Jim

    2007-01-01

    The most recent episode in the ongoing Pu'u 'O'o-Kupaianaha eruption of Kilauea Volcano is currently producing lava flows north of the east rift zone. Although they pose no immediate threat to communities, changes in flow behavior could conceivably cause future flows to advance downrift and impact communities thus far unaffected. This report reviews lava flow hazards in the Puna District and discusses the potential hazards posed by the recent change in activity. Members of the public are advised to increase their general awareness of these hazards and stay up-to-date on current conditions.

  17. Geology of selected lava tubes in the Bend Area, Oregon

    NASA Technical Reports Server (NTRS)

    Greely, R.

    1971-01-01

    Longitudinal profiles representing 5872.5 m of mapped lava tubes and a photogeologic map relating lava tubes to surface geology, regional structure and topography are presented. Three sets of lava tubes were examined: (1) Arnold Lava Tube System (7km long) composed of collapsed and uncollapsed tube segments and lava ponds, (2) Horse Lava Tube System (11 km long) composed of parallel and anastomosing lava tube segments, and (3) miscellaneous lava tubes. Results of this study tend to confirm the layered lava hypothesis of Ollier and Brown (1965) for lava tube formation; however, there are probably several modes of formation for lava tubes in general. Arnold System is a single series of tubes apparently formed in a single basalt flow on a relatively steep gradient. The advancing flow in which the tubes formed was apparently temporarily halted, resulting in the formation of lava ponds which were inflated and later drained by the lava tube system. Horse System probably formed in multiple, interconnected flows. Pre-flow gradient appears to have been less than for Arnold System, and resulted in meandrous, multiple tube networks.

  18. Plateaus and sinuous ridges as the fingerprints of lava flow inflation in the Eastern Tharsis Plains of Mars

    NASA Astrophysics Data System (ADS)

    Bleacher, Jacob E.; Orr, Tim R.; de Wet, Andrew P.; Zimbelman, James R.; Hamilton, Christopher W.; Brent Garry, W.; Crumpler, Larry S.; Williams, David A.

    2017-08-01

    The Tharsis Montes rift aprons are composed of outpourings of lava from chaotic terrains to the northeast and southwest flank of each volcano. Sinuous and branching channel networks that are present on the rift aprons suggest the possibility of fluvial processes in their development, or erosion by rapidly emplaced lavas, but the style of lava flow emplacement throughout rift apron development is not clearly understood. To better characterize the style of lava emplacement and role of fluvial processes in rift apron development, we conducted morphological mapping of the Pavonis Mons southwest rift apron and the eastern Tharsis plains using images from the High Resolution Imaging Science Experiment (HiRISE), Mars Orbiter Camera (MOC), Context Camera (CTX), Thermal Emission Imaging System (THEMIS), and High Resolution Stereo Camera (HRSC) along with the Mars Orbiter Laser Altimeter (MOLA) Precision Experiment Data Records (PEDRs) and gridded data. Our approach was to: (1) search for depositional fans at the slope break between the rift apron and adjacent low slope plains; (2) determine if there is evidence that previously formed deposits might have been buried by plains units; (3) characterize the Tharsis plains morphologies east of Pavonis Mons; and (4) assess their relationship to the rift apron units. We have not identified topographically significant depositional fans, nor did we observe evidence to suggest that plains units have buried older rift apron units. Flow features associated with the rift apron are observed to continue across the slope break onto the plains. In this area, the plains are composed of a variety of small fissures and low shield vents around which broad channel-fed and tube-fed flows have been identified. We also find broad, flat-topped plateaus and sinuous ridges mixed among the channels, tubes and vents. Flat-topped plateaus and sinuous ridges are morphologies that are analogous to those observed on the coastal plain of Hawai'i, where lava

  19. Plateaus and Sinuous Ridges as the Fingerprints of Lava Flow Inflation in the Eastern Tharsis Plains of Mars

    NASA Technical Reports Server (NTRS)

    Bleacher, Jacob E.; Orr, Tim R.; de Wet, Andrew P.; Zimbelman, James R.; Hamilton, Christopher W.; Garry, W. Brent; Crumpler, Larry S.; Williams, David A.

    2017-01-01

    The Tharsis Montes rift aprons are composed of outpourings of lava from chaotic terrains to the northeast and southwest flank of each volcano. Sinuous and branching channel networks that are present on the rift aprons suggest the possibility of fluvial processes in their development, or erosion by rapidly emplaced lavas, but the style of lava flow emplacement throughout rift apron development is not clearly understood. To better characterize the style of lava emplacement and role of fluvial processes in rift apron development, we conducted morphological mapping of the Pavonis Mons southwest rift apron and the eastern Tharsis plains using images from the High Resolution Imaging Science Experiment (HiRISE), Mars Orbiter Camera (MOC), Context Camera (CTX), Thermal Emission Imaging System (THEMIS), and High Resolution Stereo Camera (HRSC) along with the Mars Orbiter Laser Altimeter (MOLA) Precision Experiment Data Records (PEDRs) and gridded data. Our approach was to: (1) search for depositional fans at the slope break between the rift apron and adjacent low slope plains; (2) determine if there is evidence that previously formed deposits might have been buried by plains units; (3) characterize the Tharsis plains morphologies east of Pavonis Mons; and (4) assess their relationship to the rift apron units. We have not identified topographically significant depositional fans, nor did we observe evidence to suggest that plains units have buried older rift apron units. Flow features associated with the rift apron are observed to continue across the slope break onto the plains. In this area, the plains are composed of a variety of small fissures and low shield vents around which broad channel-fed and tube-fed flows have been identified. We also find broad, flat-topped plateaus and sinuous ridges mixed among the channels, tubes and vents. Flat-topped plateaus and sinuous ridges are morphologies that are analogous to those observed on the coastal plain of Hawai'i, where lava

  20. Plateaus and sinuous ridges as the fingerprints of lava flow inflation in the Eastern Tharsis Plains of Mars

    USGS Publications Warehouse

    Bleacher, Jacob E.; Orr, Tim R.; de Wet, Andrew P.; Zimbelman, James R.; Hamilton, Christopher W.; Garry, W. Brent; Crumpler, Larry S.; Williams, David A.

    2017-01-01

    The Tharsis Montes rift aprons are composed of outpourings of lava from chaotic terrains to the northeast and southwest flank of each volcano. Sinuous and branching channel networks that are present on the rift aprons suggest the possibility of fluvial processes in their development, or erosion by rapidly emplaced lavas, but the style of lava flow emplacement throughout rift apron development is not clearly understood. To better characterize the style of lava emplacement and role of fluvial processes in rift apron development, we conducted morphological mapping of the Pavonis Mons southwest rift apron and the eastern Tharsis plains using images from the High Resolution Imaging Science Experiment (HiRISE), Mars Orbiter Camera (MOC), Context Camera (CTX), Thermal Emission Imaging System (THEMIS), and High Resolution Stereo Camera (HRSC) along with the Mars Orbiter Laser Altimeter (MOLA) Precision Experiment Data Records (PEDRs) and gridded data. Our approach was to: (1) search for depositional fans at the slope break between the rift apron and adjacent low slope plains; (2) determine if there is evidence that previously formed deposits might have been buried by plains units; (3) characterize the Tharsis plains morphologies east of Pavonis Mons; and (4) assess their relationship to the rift apron units. We have not identified topographically significant depositional fans, nor did we observe evidence to suggest that plains units have buried older rift apron units. Flow features associated with the rift apron are observed to continue across the slope break onto the plains. In this area, the plains are composed of a variety of small fissures and low shield vents around which broad channel-fed and tube-fed flows have been identified. We also find broad, flat-topped plateaus and sinuous ridges mixed among the channels, tubes and vents. Flat-topped plateaus and sinuous ridges are morphologies that are analogous to those observed on the coastal plain of Hawai‘i, where lava

  1. Using Lava Tube Skylights To Derive Lava Eruption Temperatures on Io

    NASA Astrophysics Data System (ADS)

    Davies, Ashley Gerard; Keszthelyi, Laszlo P.; McEwen, Alfred S.

    2015-11-01

    The eruption temperature of Io’s silicate lavas constrains Io’s interior state and composition [1]. We have examined the theoretical thermal emission from lava tube skylights above basaltic and ultramafic lava channels. Assuming that tube-fed lava flows are common on Io, skylights could also be common. Skylights present steady thermal emission on a scale of days to months. We find that the thermal emission from such a target, measured at multiple visible and NIR wavelengths, can provide a highly accurate diagnostic of eruption temperature. However, the small size of skylights means that close flybys of Io are necessary, requiring a dedicated Io mission [2]. Observations would ideally be at night or in eclipse. We have modelled the thermal emission spectrum for different skylight sizes, lava flow stream velocities, end-member lava compositions, and skylight radiation shape factors, determining the resulting flow surface cooling rates. We calculate the resulting thermal emission spectrum as a function of viewing geometry. From the resulting 0.7:0.9 μm ratios, we see a clear distinction between basaltic and ultramafic compositions for skylights smaller than 20 m across, even if sub-pixel. Our analysis will be further refined as accurate high-temperature short-wavelength emissivity values become available [3]. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA. We thank the NASA OPR Program for support. References: [1] Keszthelyi et al. (2007) Icarus 192, 491-502 [2] McEwen et al. (2015) The Io Volcano Observer (IVO) LPSC-46 abstract 1627 [3] Ramsey and Harris (2015) IAVCEI-2015, Prague, Cz. Rep., abstract IUGG-3519.

  2. Paleointensity results for 0 and 3 ka from Hawaiian lava flows: a new approach to sampling

    NASA Astrophysics Data System (ADS)

    Cromwell, G.; Tauxe, L.; Staudigel, H.; Ron, H.; Trusdell, F.

    2011-12-01

    Paleointensity data are typically generated from core samples drilled out of the massive parts of lava flows. During Thellier-Thellier type experiments, these massive samples suffer from very low success rates (~20%), as shown by failure to meet statistical criteria. Low success generally occurs for two reasons: 1) alteration of the sample during the heating process, and 2) multi-domain behavior of massive material. Moreover, recent studies of historical lava flows show that massive samples may not accurately reflect the intensity of the magnetic field even when they are successful (Valet et al., 2010). Alternatively, submarine basaltic glasses (SBG) produce high success rates (~80%) for Thellier-Thellier type experiments, likely due to near instantaneous cooling rates which produce single-domain magnetic grains. In addition, SBG have been proven to produce accurate records of the magnetic field (e.g., Pick and Tauxe, 1993). In this study we investigate the success of paleointensity experiments on subaerial quenched basalts from Hawaii in the quest for single domain, rapidly cooled subaerial analogs to SBG. We also examine the effects of grain size and cooling rate on the accuracy of paleointensity results. During March 2011, we collected samples from 31 dated lava flows (0-3360 BP), including the [historical] 1950 C.E. and 2010 C.E. flows. Each lava flow was additionally subsampled when unique cooling structures within the unit could be identified. Results from the 1950 and 2010 glasses accurately record the expected geomagnetic field strength. We will present results of a comprehensive data set of Hawaiian paleointensity focused on about the last 3 ka.

  3. Interferometric synthetic aperture radar study of Okmok volcano, Alaska, 1992-2003: Magma supply dynamics and postemplacement lava flow deformation

    USGS Publications Warehouse

    Lu, Z.; Masterlark, Timothy; Dzurisin, Daniel

    2005-01-01

    Okmok volcano, located in the central Aleutian arc, Alaska, is a dominantly basaltic complex topped with a 10-km-wide caldera that formed circa 2.05 ka. Okmok erupted several times during the 20th century, most recently in 1997; eruptions in 1945, 1958, and 1997 produced lava flows within the caldera. We used 80 interferometric synthetic aperture radar (InSAR) images (interferograms) to study transient deformation of the volcano before, during, and after the 1997 eruption. Point source models suggest that a magma reservoir at a depth of 3.2 km below sea level, located beneath the center of the caldera and about 5 km northeast of the 1997 vent, is responsible for observed volcano-wide deformation. The preeruption uplift rate decreased from about 10 cm yr−1 during 1992–1993 to 2 ∼ 3 cm yr−1 during 1993–1995 and then to about −1 ∼ −2 cm yr−1 during 1995–1996. The posteruption inflation rate generally decreased with time during 1997–2001, but increased significantly during 2001–2003. By the summer of 2003, 30 ∼ 60% of the magma volume lost from the reservoir in the 1997 eruption had been replenished. Interferograms for periods before the 1997 eruption indicate consistent subsidence of the surface of the 1958 lava flows, most likely due to thermal contraction. Interferograms for periods after the eruption suggest at least four distinct deformation processes: (1) volcano-wide inflation due to replenishment of the shallow magma reservoir, (2) subsidence of the 1997 lava flows, most likely due to thermal contraction, (3) deformation of the 1958 lava flows due to loading by the 1997 flows, and (4) continuing subsidence of 1958 lava flows buried beneath 1997 flows. Our results provide insights into the postemplacement behavior of lava flows and have cautionary implications for the interpretation of inflation patterns at active volcanoes.

  4. The length of channelized lava flows: Insight from the 1859 eruption of Mauna Loa Volcano, Hawai‘i

    NASA Astrophysics Data System (ADS)

    Riker, Jenny M.; Cashman, Katharine V.; Kauahikaua, James P.; Montierth, Charlene M.

    2009-06-01

    The 1859 eruption of Mauna Loa Volcano, Hawai'i, produced paired 'a'ā and pāhoehoe flows of exceptional length (51 km). The 'a'ā flow field is distinguished by a long (> 36 km) and well-defined pāhoehoe-lined channel, indicating that channelized lava remained fluid to great distances from the vent. The 1859 eruption was further unusual in initiating at a radial vent on the volcano's northwest flank, instead of along the well-defined rift zone that has been the source of most historic activity. As such, it presents an opportunity both to examine controls on the emplacement of long lava channels and to assess hazards posed by future flank eruptions of Mauna Loa. Here we combine evidence from historical chronicles with analysis of bulk compositions, glass geothermometry, and microlite textures of samples collected along the 1859 lava flows to constrain eruption and flow emplacement conditions. The bulk compositions of samples from the 'a'ā and pāhoehoe flow fields are bimodally distributed and indicate tapping of two discrete magma bodies during eruption. Samples from the pāhoehoe flow field have bulk compositions similar to those of historically-erupted lavas (< 8 wt.% MgO); lava that fed the 'a'ā channel is more primitive (> 8 wt.% MgO), nearly aphyric, and was erupted at high temperatures (1194-1216 °C). We suggest that the physical properties of proximal channel-fed lava (i.e., high-temperature, low crystallinity, and low bulk viscosity) promoted both rapid flow advance and development of long pāhoehoe-lined channels. Critical for the latter was the large temperature decrease (~ 50 °C) required to reach the point at which plagioclase and pyroxene started to crystallize; the importance of phase constraints are emphasized by our difficulty in replicating patterns of cooling and crystallization recorded by high-temperature field samples using common models of flow emplacement. Placement of the 1859 eruption within the context of historic activity at Mauna

  5. Investigating lava flows at Quizapu Volcano, on the ground and in the air

    NASA Astrophysics Data System (ADS)

    Lev, E.; Ruprecht, P.; Moon, R. S.

    2017-12-01

    The emplacement of silicic and intermediate lava flows is not often witnessed directly, and thus quantitative assessment of existing flows is a critical step in the interpretation of flow dynamics and eruption conditions. Two key parameters - lava rheology and effusion rate - are both difficult to assess many years after the eruption ended. Yet both are reflected in observables such as flow morphology (including roughness, folding and inflation structures), and micro-texture (including vesicularity, crystallinity, and microlite content). Therefore, it is important to collect data sets of high spatial resolution of both samples and topography of a target flow. We present a case study from Quizapu volcano (Chile), where an 1846 effusive eruption emplaced a suite of large lava flows, spanning composition from silicis andesitic to dacite. We focus on two major flow lobes, which, despite originating from the same eruption, and traversing similar topography, exhibit different large-scale structure: The southern flow (SF) has a uniform, smooth, almost straight geometry, while the northern flow (NF) has undulating boundaries and irregular width and thickness. We collected and utilized two sets of data: 1) thousands of aerial photos collected during 12 UAV flights, and 2) 68 hand samples which covered both the main channels and the levees of both flows in a systematic grid pattern. We present outcomes from analysis of samples for 3D structure, crystallinity, and vesicularity using X-ray microtomography, for micrstructure using thin sections and SEM, and for major and trace element composition using XRF. The aerial photographs were used to construct high-resolution (few cm) digital elevation models (DEMs) of several segments of each flow. From the DEMs we extracted along- and across-flow profiles which reveal morphological differences between NF and SF, with pressure ridges at NF wider and taller than those of SF. However, both flows share a common trend line in the

  6. Inverse steptoes in Las Bombas volcano, as an evidence of explosive volcanism in a solidified lava flow field. Southern Mendoza-Argentina

    NASA Astrophysics Data System (ADS)

    Risso, Corina; Prezzi, Claudia; Orgeira, María Julia; Nullo, Francisco; Margonari, Liliana; Németh, Karoly

    2015-11-01

    Here we describe the unusual genesis of steptoes in Las Bombas volcano- Llancanelo Volcanic Field (LVF) (Pliocene - Quaternary), Mendoza, Argentina. Typically, a steptoe forms when a lava flow envelops a hill, creating a well-defined stratigraphic relationship between the older hill and the younger lava flow. In the Llancanelo Volcanic Field, we find steptoes formed with an apparent normal stratigraphic relationship but an inverse age-relationship. Eroded remnants of scoria cones occur in ;circular depressions; in the lava field. To express the inverse age-relationship between flow fields and depression-filled cones here we define this landforms as inverse steptoes. Magnetometric analysis supports this inverse age relationship, indicating reverse dipolar magnetic anomalies in the lava field and normal dipolar magnetization in the scoria cones (e.g. La Bombas). Negative Bouguer anomalies calculated for Las Bombas further support the interpretation that the scoria cones formed by secondary fracturing on already solidified basaltic lava flows. Advanced erosion and mass movements in the inner edge of the depressions created a perfectly excavated circular depression enhancing the ;crater-like; architecture of the preserved landforms. Given the unusual genesis of the steptoes in LVF, we prefer the term inverse steptoe for these landforms. The term steptoe is a geomorphological name that has genetic implications, indicating an older hill and a younger lava flow. Here the relationship is reversed.

  7. Comparison of SAM and OBIA as Tools for Lava Morphology Classification - A Case Study in Krafla, NE Iceland

    NASA Astrophysics Data System (ADS)

    Aufaristama, Muhammad; Hölbling, Daniel; Höskuldsson, Ármann; Jónsdóttir, Ingibjörg

    2017-04-01

    The Krafla volcanic system is part of the Icelandic North Volcanic Zone (NVZ). During Holocene, two eruptive events occurred in Krafla, 1724-1729 and 1975-1984. The last eruptive episode (1975-1984), known as the "Krafla Fires", resulted in nine volcanic eruption episodes. The total area covered by the lavas from this eruptive episode is 36 km2 and the volume is about 0.25-0.3 km3. Lava morphology is related to the characteristics of the surface morphology of a lava flow after solidification. The typical morphology of lava can be used as primary basis for the classification of lava flows when rheological properties cannot be directly observed during emplacement, and also for better understanding the behavior of lava flow models. Although mapping of lava flows in the field is relatively accurate such traditional methods are time consuming, especially when the lava covers large areas such as it is the case in Krafla. Semi-automatic mapping methods that make use of satellite remote sensing data allow for an efficient and fast mapping of lava morphology. In this study, two semi-automatic methods for lava morphology classification are presented and compared using Landsat 8 (30 m spatial resolution) and SPOT-5 (10 m spatial resolution) satellite images. For assessing the classification accuracy, the results from semi-automatic mapping were compared to the respective results from visual interpretation. On the one hand, the Spectral Angle Mapper (SAM) classification method was used. With this method an image is classified according to the spectral similarity between the image reflectance spectrums and the reference reflectance spectra. SAM successfully produced detailed lava surface morphology maps. However, the pixel-based approach partly leads to a salt-and-pepper effect. On the other hand, we applied the Random Forest (RF) classification method within an object-based image analysis (OBIA) framework. This statistical classifier uses a randomly selected subset of training

  8. Deflections in Lava Flow Directions Relative to Topography in the Tharsis Region of Mars: Indications of Post-Flow Tectonic Motion

    NASA Technical Reports Server (NTRS)

    Chadwick, D. J.; Hughes, S. S.; Sakimoto, S. E. H.

    2004-01-01

    High-resolution topographic data from the Mars Orbiter Laser Altimeter (MOLA), and imagery from the Mars Orbiter Camera (MOC) and the Thermal Emission Imaging System (THEMIS) allow for the first accurate assessment of lava flow directions relative to topographic slopes in the Tharsis region. Tharisis has long been recognized as the dominant tectonic and volcanic province on the planet, with a complex geologic history. In this study, lava flow directions on Daedalia Planum, Syria Planum, Tempe Terra, and near the Tharsis Montes are compared with MOLA topographic contours to look for deviations of flow directions from the local slope direction. The topographic deviations identified in this study are likely due to Tharsis tectonic deformation that has modified the regional topography subsequent to the emplacement of the flows, and can be used to model the mechanisms and magnitudes of relatively recent tectonism in the region. A similar approach was used to identify possible post-flow tectonic subsidence on the Snake River Plain in Idaho.

  9. Radiocarbon studies of latest Pleistocene and Holocene lava flows of the Snake River Plain, Idaho: Data, lessons, interpretations

    USGS Publications Warehouse

    Kuntz, M.A.; Spiker, E. C.; Rubin, M.; Champion, D.E.; Lefebvre, R.H.

    1986-01-01

    Latest Pleistocene-Holocene basaltic lava fields of the Snake River Plain, Idaho, have been dated by the radiocarbon method. Backhoe excavations beneath lava flows typically yielded carbon-bearing, charred eolian sediment. This material provided most of the samples for this study; the sediment typically contains less than 0.2% carbon. Charcoal fragments were obtained from tree molds but only from a few backhoe excavations. Contamination of the charred sediments and charcoal by younger carbon components is extensive; the effects of contamination were mitigated but appropriate pretreatment of samples using acid and alkali leaches. Twenty of the more than 60 lava flows of the Craters of the Moon lava field have been dated; their ages range from about 15,000 to about 2000 yr B.P. The ages permit assignment of the flows to eight distinct eruptive periods with an average recurrence interval of about 2000 yr. The seven other latest Pleistocene-Holocene lava fields were all emplaced in short eruptive bursts. Their 14C ages (yr B.P.) are: Kings Bowl (2222?? 100), Wapi (2270 ?? 50), Hells Half Acre (5200 ?? 150), Shoshone (10,130 ?? 350), North Robbers and South Robbers (11.980 ?? 300), and Cerro Grande (13,380 ?? 350). ?? 1986.

  10. Radiocarbon studies of latest Pleistocene and Holocene lava flows of the Snake River Plain, Idaho: Data, lessons, interpretations

    NASA Astrophysics Data System (ADS)

    Kuntz, Mel A.; Spiker, Elliott C.; Rubin, Meyer; Champion, Duane E.; Lefebvre, Richard H.

    1986-03-01

    Latest Pleistocene-Holocene basaltic lava fields of the Snake River Plain, Idaho, have been dated by the radiocarbon method. Backhoe excavations beneath lava flows typically yielded carbon-bearing, charred eolian sediment. This material provided most of the samples for this study; the sediment typically contains less than 0.2% carbon. Charcoal fragments were obtained from tree molds but only from a few backhoe excavations. Contamination of the charred sediments and charcoal by younger carbon components is extensive; the effects of contamination were mitigated but appropriate pretreatment of samples using acid and alkali leaches. Twenty of the more than 60 lava flows of the Craters of the Moon lava field have been dated; their ages range from about 15,000 to about 2000 yr B.P. The ages permit assignment of the flows to eight distinct eruptive periods with an average recurrence interval of about 2000 yr. The seven other latest Pleistocene-Holocene lava fields were all emplaced in short eruptive bursts. Their 14C ages (yr B.P.) are: Kings Bowl (2222± 100), Wapi (2270 ± 50), Hells Half Acre (5200 ± 150), Shoshone (10,130 ± 350), North Robbers and South Robbers (11.980 ± 300), and Cerro Grande (13,380 ± 350).

  11. Nornahraun lava morphology and mode of emplacement

    NASA Astrophysics Data System (ADS)

    Pedersen, Gro B. M.; Höskuldsson, Armann; Riishuus, Morten S.; Jónsdóttir, Ingibjörg; Gudmundsson, Magnús T.; Sigmundsson, Freysteinn; Óskarsson, Birgir V.; Drouin, Vincent; Gallagher, Catherine; Askew, Rob; Moreland, William M.; Dürig, Tobias; Dumont, Stephanie; Þórdarson, Þór

    2015-04-01

    The ongoing Nornahraun eruption is the largest effusive eruption in Iceland since the Laki eruption in 1783-84, with an estimated lava volume of ~1.15 km3 covering an area of ~83.4 km2 (as of 5 JAN 2015). The eruption provides an unprecedented opportunity to study i) lava morphologies and their emplacement styles, ii) the transition from from open to closed lava pathways and iii) lava pond formation. Tracking of the lava advancement and morphology has been performed by GPS and GoPro cameras installed in 4×4 vehicles as well as video footage. Complimentary observations have been provided from aircraft platforms and by satellite data. Of particular importance for lava morphology observations are 1-12 m/pixel airborne SAR images (x-band). The Nornahraun flow field comprises a continuum of morphologies from pāhoehoe to 'a'ā, which have varied tem-porally and spatially. At the onset of the eruption 31 AUG, lava flows advanced rapidly (400-800 m/hr) from the 1.5 km long fissure as large slabby pāhoehoe [1-3] sheet lobes, 100-500 m wide and 0.3-1 m thick at the flow fronts. By 1 SEPT, the flows began channeling towards the NE constrained by the older Holuhraun I lava field and the to-pography of flood plain itself. A central open channel developed, feeding a 1-2 km wide active 'a'ā frontal lobe that advanced 1-2 km/day. In addition to its own caterpillar motion, the frontal lobe advanced in a series of 30-50 m long breakouts, predominantly slabby and rubbly pāhoehoe [4,5]. These breakouts had initial velocities of 10-30 m/hr and reached their full length within tens of minutes and subsequently inflated over hours. With the continuous advancement of the 'a'ā flow front, the breakouts were incorporated into the 'a'ā flow fronts and seldom preserved. At the margins of the frontal lava lobe, the breakouts were more sporadic, but predominantly rubbly pāhoehoe and slabby pāhoehoe, as at the flow front. The lava flow advanced ENE into Jökulsá á Fjöllum on 7 SEPT

  12. Deviation of paleomagnetic directions on basaltic lava flows determined by rock magnetic fabrics

    NASA Astrophysics Data System (ADS)

    Silva, Pedro; Henry, Bernard; Gallet, Yves; Martins, Sofia; Lopes, Ana; Moreira, Mário; Genevey, Agnès; Mata, João; Nunes, João; Neres, Marta; Meriaux, Anne-Sophie; Madeira, José

    2016-04-01

    Some paleomagnetic works conducted in lava flows retrieve characteristic remanent directions that shows an inclination shallowing relatively to the expected Geocentric Axial Dipole. Contributions of non-dipole components to the resultant Earth magnetic field and/or deficient time covering of the paleosecular variation are the most pointed causes for such shallowing. Another, but often overlooked source of shallowing, is the magnetic anisotropy carried by lava flows. In order to bring more insights about this research topic, four historical basaltic lava flows (corresponding to nine sampled sites) from Azores (Terceira and Pico islands) were studied. Detailed paleomagnetic and magnetic fabric analyses (anisotropy of magnetic susceptibility AMS and of anhysteretic remanence AARM) were complemented by petrographic observations of oriented thin sections. Our study shows that the majority of the analysed sites display a low degree of anisotropy (corrected degrees of anisotropy, Pj, lower than 1.03), sometimes accompanied by exchanges between principal axes of the magnetic susceptibility ellipsoid. For such cases the corresponding paleomagnetic directions are well grouped with a Fisher distribution. The sites, where Pj is higher than 1.03 (reaching 1.15), present a triaxial magnetic susceptibility ellipsoid and the paleomagnetic directions show a lengthened distribution. Spatial distribution of AMS and AARM ellipsoids axes are very similar. Petrographic observations show flow structures that agree with AMS and AARM ellipsoid. Comparing AMS and main paleomagnetic directions retrieved for lava flows with the highest anisotropy, 20° variation in inclination of paleomagnetic directions is observed. This inclination varies almost linearly with the degree of anisotropy through an inverse correlation. A shift of paleomagnetic declinations is also observed, which agrees with changes in the direction of the maximum principal axes of AMS ellipsoid. These results clearly show that

  13. Lateral Variability of Lava flow Morphologies in the Deccan Traps Large Igneous Province (India)

    NASA Astrophysics Data System (ADS)

    Vanderkluysen, L.; Rader, E. L.; Self, S.; Clarke, A. B.; Sheth, H.; Moyer, D. K.

    2016-12-01

    In continental flood basalt provinces (CFBs), lava flow morphologies have traditionally been classified in two distinct groups recognizable in the field, expressing two different modes of lava flow emplacement mechanisms: (a) compound lava flow fields dominated by meter-sized pāhoehoe toes and lobes; and (b) inflated sheet lobes tens to hundreds of meters in width and meters to tens of meters in height. Temporal transitions between these two emplacement styles have been recognized in many mafic large igneous provinces worldwide and seem to be a fundamental feature of CFBs. However, lateral variations in these morphologies remain poorly studied and understood. In the Deccan CFB of India, two principal hypotheses have been proposed to account for possible lateral variations in lava flow facies: that smaller toes and lobes occur in distal regions of flow fields, representing breakouts at the edges of larger inflated lavas; or on the contrary that smaller toes and lobes represent proximal facies. We conducted a field study focusing on two of the Deccan's formations, the Khandala and the Poladpur, located in the middle and upper sections of the province's defined chemostratigraphy. We studied nine sections along a 600 km long E-W transect, with the easternmost sections representing the most distal outcrops, ≥ 500 km away from inferred vents. The Khandala Formation is traditionally described as a sequence of three thick inflated sheet lobes in the well-exposed sections of the western Deccan. However, in the central Deccan, we find the Khandala to be much thicker overall, with half of its thickness dominated by small, meter-sized toes and lobes. Inflated sheet lobes of the Khandala are thinner on average in the central Deccan than further to the east or west. We document this transition as occurring progressively in outcrops only 80 km apart. In the Poladpur, the average thickness of inflated sheet lobes increases in distal outcrops of the eastern Deccan. We interpret

  14. An analogue study of the influence of solidification on the advance and surface thermal signature of lava flows

    NASA Astrophysics Data System (ADS)

    Garel, F.; Kaminski, E.; Tait, S.; Limare, A.

    2014-06-01

    The prediction of lava flow advance and velocity is crucial during an effusive volcanic crisis. The effusion rate is a key control of lava dynamics, and proxies have been developed to estimate it in near real-time. The thermal proxy in predominant use links the satellite-measured thermal radiated power to the effusion rate. It lacks however a robust physical basis to allow time-dependent modeling. We investigate here through analogue experiments the coupling between the spreading of a solidifying flow and its surface thermal signal. We extract a first order behavior from experimental results obtained using polyethylene glycol (PEG) wax, that solidifies abruptly during cooling. We find that the flow advance is discontinuous, with relatively low supply rates yielding long stagnation phases and compound flows. Flows with higher supply rates are less sensitive to solidification and display a spreading behavior closer to that of purely viscous currents. The total power radiated from the upper surface also grows by stages, but the signal radiated by the hottest and liquid part of the flow reaches a quasi-steady state after some time. This plateau value scales around half of the theoretical prediction of a model developed previously for the spreading and cooling of isoviscous gravity currents. The corrected scaling yields satisfying estimates of the effusion rate from the total radiated power measured on a range of basaltic lava flows. We conclude that a gross estimate of the supply rate of solidifying flows can be retrieved from thermal remote-sensing, but the predictions of lava advance as a function of effusion rate appears a more difficult task due to chaotic emplacement of solidifying flows.

  15. Comparative analysis between Payen and Daedalia Planum lava fields

    NASA Astrophysics Data System (ADS)

    Giacomini, Lorenza; Massironi, Matteo; Pasquarè, Giorgio; Carli, Cristian; Martellato, Elena; Frigeri, Alessandro; Cremonese, Gabriele; Bistacchi, Andrea; Federico, Costanzo

    The Payen volcanic complex is a large Quaternary fissural structure belonging to the back-arc extensional area of the Andes in the Mendoza Province (Argentina). From the eastern portion of this volcanic structure huge pahoehoe lava flows were emitted, extending more than 180 km from the feeding vents. These huge flows propagated over the nearly flat surface of the Pampean foreland (ca 0.3° slope). The very low viscosity of the olivine basalt lavas, coupled with the inflation process are the most probable explanation for their considerable length. In an inflation process a thin viscoelastic crust, produced at an early stage, is later inflated by the underlying fluid core, which remains hot and fluid thanks to the thermal-shield effect of the crust. The inflation shows some typical morphological fingerprints like tumuli, lava lobes, lava rises and lava ridges. In order to compare the morphology of the Argentinean Payen flows with lava flows on Mars, MOLA, THEMIS, MOC, MRO/HIRISE, and MEX/OMEGA data have been analysed, providing a multi-scale characterisation of Martian flows. Mars Global Surveyor/MOLA data were used to investigate the topographic environment over which flows propagated on Mars in order to detect very low angle slopes where possibly inflation processes could have developed. Then Mars Odyssey/THEMIS and Mars Global Surveyor's MOC data were used to detect Martian lava flows with inflation "fingerprints", whereas OMEGA data were used to obtain some inferences about their composition. Finally the MRO/HIRISE images recently acquired, can provide further details and constraints on surface morphologies and lava fronts. All these data were used to analyze Daedalia Planum lava field, at about 300 km southwest of Arsia Mons, and clear morphological similarities with the longest flows of the Payen lava fields were found. These striking morphological analogies suggest that inflation process is quite common also for the Daedalia field. This is also supported by

  16. Lava-substrate heat transfer: Laboratory experiments and thermodynamic modeling

    NASA Astrophysics Data System (ADS)

    Rumpf, M.; Fagents, S. A.; Hamilton, C. W.; Wright, R.; Crawford, I.

    2012-12-01

    We have performed laboratory experiments and numerical modeling to investigate the heat transfer from a lava flow into various substrate materials, focusing on the effects of the differing thermophysical properties of substrate materials. Initial motivation for this project developed from the desire to understand the loss of solar wind volatiles embedded in lunar regolith deposits that were subsequently covered by a lava flow. The Moon lacks a significant atmosphere and magnetosphere, leaving the surface regolith exposed to bombardment by solar flare and solar wind particles, and by the cosmogenic products of galactic cosmic rays. Preservation of particle-rich regolith deposits may have occurred by the emplacement of an active lava flow on top of the regolith layer, provided the embedded particles survive heating by the lava. During future expeditions to the lunar surface, ancient regolith deposits could be sampled through surface drilling to extract the extra-lunar particles, revealing a history of the solar activity and galactic events not available on the Earth. This project also has important implications for terrestrial lava flows, particularly in the prediction of lava flow hazards. Lava erupted on Earth may be emplaced on various substrates, including solid lava rock, volcanic tephra, sands, soils, etc. The composition, grain size, consolidation, moisture content, etc. of these materials will vary greatly and have different effects on the cooling of the flow. Accounting for specific properties of the substrate could be an important improvement in lava flow models We have performed laboratory experiments in collaboration with the Department of Art and Art History at the University of Hawaii at Manoa in which ~5-6 kg of basalt, collected at Kilauea Volcano, Hawaii, is melted to ~1200 °C. The lava is poured into a device constructed of calcium silicate sheeting that has been filled with a solid or particulate substrate material and embedded with thermocouples

  17. Paleointensity results for 0 and 4 ka from Hawaiian lava flows: a new approach to sampling

    NASA Astrophysics Data System (ADS)

    Cromwell, G.; Tauxe, L.; Staudigel, H.; Ron, H.; Trusdell, F.

    2012-04-01

    Paleointensity data are typically generated from core samples drilled out of the massive parts of lava flows. During Thellier-Thellier type experiments, these massive samples suffer from very low success rates (~20%), as shown by failure to meet statistical criteria. Low success generally occurs for two reasons: 1) alteration of the sample during the heating process, and 2) multi-domain behavior of massive material. Moreover, recent studies of historical lava flows show that massive samples may not accurately reflect the intensity of the magnetic field even when they are successful (Valet et al., 2010). Alternatively, submarine basaltic glasses (SBG) produce high success rates (~80%) for Thellier-Thellier type experiments, likely due to near instantaneous cooling rates which produce single-domain magnetic grains. In addition, SBG have been proven to produce accurate records of the magnetic field (e.g., Pick and Tauxe, 1993). In this study we investigate the success of paleointensity experiments on subaerial quenched basalts from Hawaii in the quest for single domain, rapidly cooled subaerial analogs to SBG. We also examine the effects of grain size and cooling rate on the accuracy of paleointensity results. During March 2011, we collected samples from 31 dated lava flows (0-3800 BP), including the historical 1950 C.E. and 2010 C.E. flows. Each lava flow was additionally subsampled when unique cooling structures within the unit could be identified. Single-domain, rapidly quenched glasses from the 1950 and 2010 flows are ideally behaved, i.e. straight Arai plots, and accurately record the expected geomagnetic field strength. However, slower cooled specimens from the same flows produce sagged Arai plots and consistently underestimate expected geomagnetic field intensity. Results from ideally behaved glasses over the last 4 ka indicate periods of rapid field change in Hawaii and a possible high intensity field spike around 2.7 ka. We will present new results from our

  18. Quantitative geometric description of fracture systems in an andesite lava flow using terrestrial laser scanner data

    NASA Astrophysics Data System (ADS)

    Massiot, Cécile; Nicol, Andrew; Townend, John; McNamara, David D.; Garcia-Sellés, David; Conway, Chris E.; Archibald, Garth

    2017-07-01

    Permeability hosted in andesitic lava flows is dominantly controlled by fracture systems, with geometries that are often poorly constrained. This paper explores the fracture system geometry of an andesitic lava flow formed during its emplacement and cooling over gentle paleo-topography, on the active Ruapehu volcano, New Zealand. The fracture system comprises column-forming and platy fractures within the blocky interior of the lava flow, bounded by autobreccias partially observed at the base and top of the outcrop. We use a terrestrial laser scanner (TLS) dataset to extract column-forming fractures directly from the point-cloud shape over an outcrop area of ∼3090 m2. Fracture processing is validated using manual scanlines and high-resolution panoramic photographs. Column-forming fractures are either steeply or gently dipping with no preferred strike orientation. Geometric analysis of fractures derived from the TLS, in combination with virtual scanlines and trace maps, reveals that: (1) steeply dipping column-forming fracture lengths follow a scale-dependent exponential or log-normal distribution rather than a scale-independent power-law; (2) fracture intensities (combining density and size) vary throughout the blocky zone but have similar mean values up and along the lava flow; and (3) the areal fracture intensity is higher in the autobreccia than in the blocky zone. The inter-connected fracture network has a connected porosity of ∼0.5 % that promote fluid flow vertically and laterally within the blocky zone, and is partially connected to the autobreccias. Autobreccias may act either as lateral permeability connections or barriers in reservoirs, depending on burial and alteration history. A discrete fracture network model generated from these geometrical parameters yields a highly connected fracture network, consistent with outcrop observations.

  19. Syn-eruptive CO2 Degassing of Submarine Lavas Flows: Constraints on Eruption Dynamics

    NASA Astrophysics Data System (ADS)

    Soule, S. A.; Boulahanis, B.; Fundis, A.; Clague, D. A.; Chadwick, B.

    2013-12-01

    At fast- and intermediate-spreading rate mid-ocean ridges, quenched lava samples are commonly supersaturated in CO2 with concentrations similar to the pressure/depth of shallow crustal melt lenses. This supersaturation is attributed to rapid ascent and decompression rates that exceed the kinetic rates of bubble nucleation and growth. During emplacement, CO2 supersaturated lavas experience nearly isothermal and isobaric conditions over a period of hours. A recent study has demonstrated systematic decreases in CO2 with increasing transport distance (i.e. time) along a single flow pathway within the 2005-06 eruption at the East Pacific Rise (~2500 m.b.s.l.). Based on analysis of vesicle population characteristics and complementary noble gas measurements, it is proposed that diffusion of CO2 into bubbles can be used as a basis to model the gas loss from the melt and thus place constraints on the dynamics of the eruption. We suggest that submarine lava flows represent a natural experiment in degassing that isolates conditions of low to moderate supersaturation and highlights timescales of diffusion and vesiculation processes that are relevant to shallow crustal and conduit processes in subaerial basaltic volcanic systems. Here we report a new suite of volatile concentration analyses and vesicle size distributions from the 2011 eruption of Axial Volcano along the Juan de Fuca Ridge (~1500 m.b.s.l.). The lava flows from this eruption are mapped by differencing of repeat high-resolution bathymetric surveys, so that the geologic context of the samples is known. In addition, in-situ instrument records record the onset of the eruption and place constraints on timing that can be used to verify estimates of eruption dynamics derived from degassing. This sample suite provides a comprehensive view of the variability in volatile concentrations within a submarine eruption and new constraints for evaluating models of degassing and vesiculation. Initial results show systematic

  20. Origin and emplacement of the andesite of Burroughs Mountain, a zoned, large-volume lava flow at Mount Rainier, Washington, USA

    USGS Publications Warehouse

    Stockstill, K.R.; Vogel, T.A.; Sisson, T.W.

    2002-01-01

    Burroughs Mountain, situated at the northeast foot of Mount Rainier, WA, exposes a large-volume (3.4 km3) andesitic lava flow, up to 350 m thick and extending 11 km in length. Two sampling traverses from flow base to eroded top, over vertical sections of 245 and 300 m, show that the flow consists of a felsic lower unit (100 m thick) overlain sharply by a more mafic upper unit. The mafic upper unit is chemically zoned, becoming slightly more evolved upward; the lower unit is heterogeneous and unzoned. The lower unit is also more phenocryst-rich and locally contains inclusions of quenched basaltic andesite magma that are absent from the upper unit. Widespread, vuggy, gabbronorite-to-diorite inclusions may be fragments of shallow cumulates, exhumed from the Mount Rainier magmatic system. Chemically heterogeneous block-and-ash-flow deposits that conformably underlie the lava flow were the earliest products of the eruptive episode. The felsic-mafic-felsic progression in lava composition resulted from partial evacuation of a vertically-zoned magma reservoir, in which either (1) average depth of withdrawal increased, then decreased, during eruption, perhaps due to variations in effusion rate, or (2) magmatic recharge stimulated ascent of a plume that brought less evolved magma to shallow levels at an intermediate stage of the eruption. Pre-eruptive zonation resulted from combined crystallization- differentiation and intrusion(s) of less evolved magma into the partly crystallized resident magma body. The zoned lava flow at Burroughs Mountain shows that, at times, Mount Rainier's magmatic system has developed relatively large, shallow reservoirs that, despite complex recharge events, were capable of developing a felsic-upward compositional zonation similar to that inferred from large ash-flow sheets and other zoned lava flows. ?? 2002 Elsevier Science B.V. All rights reserved.

  1. Endogenic craters on basaltic lava flows - Size frequency distributions

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Gault, D. E.

    1979-01-01

    Circular crater forms, termed collapse depressions, which occur on many basalt flows on the earth have also been detected on the moon and Mars and possibly on Mercury and Io. The admixture of collapse craters with impact craters would affect age determinations of planetary surface units based on impact crater statistics by making them appear anomalously old. In the work described in the present paper, the techniques conventionally used in planetary crater counting were applied to the determination of the size range and size frequency distribution of collapse craters on lava flows in Idaho, California, and New Mexico. Collapse depressions range in size from 3 to 80 m in diameter; their cumulative size distributions are similar to those of small impact craters on the moon.

  2. Late quaternary geomagnetic secular variation from historical and 14C-dated lava flows on Hawaii

    NASA Astrophysics Data System (ADS)

    Hagstrum, Jonathan T.; Champion, Duane E.

    1995-12-01

    A paleomagnetic record of geomagnetic paleosecular variation (PSV) is constructed for the last 4400 years based on 191 sites in historical and 14C-dated lava flows from Mauna Loa, Kilauea, and Hualalai Volcanoes on the island of Hawaii. The features of this new record are similar to those recorded by sediments from Lake Waiau near the summit of Mauna Kea Volcano, but overall mean inclinations for the lava flows (31° to 33°, depending on window size) are nearer the expected dipole-field value (35°) than is that for the sediments (27°). Divergence of the inclination records with increasing age suggests that the Lake Waiau values at depths below 2 m have been affected by compaction-related inclination shallowing, although magnetic terrain effects cannot be ruled out. The rate of PSV indicated by the record presented here is highly variable (<0.5°/century to >20°/century), and a pronounced shift in inclination from 25° to 40° occurred between ~1030 and ~975 years B.P. Paleomagnetic directions from undated materials can be correlated with our calibrated curve, but the resolution is largely dependent on the PSV rate and data densities for both the reference and unknown directions. The upper part of the Puna Basalt (18 lava flows), previously sampled for paleomagnetism along the northern wall of Kilauea's caldera (Uwekahuna Bluff), was likely deposited sometime between 1030 and 750 years B.P., but the lowest two flows beneath the Uwekahuna Ash (~2100 years B.P.) are correlated with an age of ~3034 years B.P. Paleomagnetic data for 54 lava flows of the Ka'u Basalt, exposed in the northwest wall of Mauna Loa's summit caldera (Mokuaweoweo), indicate that they probably accumulated over a relatively short time interval (~200+years) and are assigned to a 1000 to 1199 year B.P. time window. The mean of ages within this window is ~1030 years B.P., but mapping and other 14C dates indicate that these summit overflows are probably closer to ~1200 years B.P. in age.

  3. Is formation segregation melts in basaltic lava flows a viable analogue to melt generation in basaltic systems?

    NASA Astrophysics Data System (ADS)

    Thordarson, Thorvaldur; Sigmarsson, Olgeir; Hartley, Margaret E.; Miller, Jay

    2010-05-01

    Pahoehoe sheet lobes commonly exhibit a three-fold structural division into upper crust, core and lower crust, where the core corresponds to the liquid portion of an active lobe sealed by crust. Segregations are common in pahoehoe lavas and are confined to the core of individual lobes. Field relations and volume considerations indicate that segregation is initiated by generation of volatile-rich melt at or near the lower crust to core boundary via in-situ crystallization. Once buoyant, the segregated melt rises through the core during last stages of flow emplacement and accumulates at the base of the upper crust. The segregated melt is preserved as vesicular and aphyric, material within well-defined vesicle cylinders and horizontal vesicle sheets that make up 1-4% of the total lobe volume. We have undertaken a detailed sampling and chemical analysis of segregations and their host lava from three pahoehoe flow fields; two in Iceland and one in the Columbia River Basalt Group (CRBG). The Icelandic examples are: the olivine-tholeiite Thjorsa lava (24 cubic km) of the Bardarbunga-Veidivotn volcanic system and mildly alkalic Surtsey lavas (1.2 cubic km) of the Vestmannaeyjar volcanic system. The CRBG example is the tholeiitic ‘high-MgO group' Levering lava (>100? cubic km) of the N2 Grande Ronde Basalt. The thicknesses of the sampled lobes ranges from 2.3 to 14 m and each lobe feature well developed network of segregation structures [1,2,3]. Our whole-rock analyses show that the segregated melt is significantly more evolved than the host lava, with enrichment factors of 1.25 (Thjorsa) to 2.25 (Surtsey) for incompatible trace elements (Ba, Zr). Calculations indicate that the segregation melt was formed by 20 to 50% closed-system fractional crystallization of plagioclase (plus minor pyroxene and/or olivine). A more striking feature is the whole-rock composition of the segregations. In the olivine-tholeiite Thjorsa lava the segregations exhibit quartz tholeiite

  4. Lunar Pit Craters Presumed to be the Entrances of Lava Caves by Analogy to the Earth Lava Tube Pits

    NASA Astrophysics Data System (ADS)

    Hong, Ik-Seon; Yi, Yu; Kim, Eojin

    2014-06-01

    Lava caves could be useful as outposts for the human exploration of the Moon. Lava caves or lava tubes are formed when the external surface of the lava flows cools more quickly to make a hardened crust over subsurface lava flows. The lava flow eventually ceases and drains out of the tube, leaving an empty space. The frail part of the ceiling of lava tube could collapse to expose the entrance to the lava tubes which is called a pit crater. Several pit craters with the diameter of around 100 meters have been found by analyzing the data of SELENE and LRO lunar missions. It is hard to use these pit craters for outposts since these are too large in scale. In this study, small scale pit craters which are fit for outposts have been investigated using the NAC image data of LROC. Several topographic patterns which are believed to be lunar caves have been found and the similar pit craters of the Earth were compared and analyzed to identify caves. For this analysis, the image data of satellites and aerial photographs are collected and classified to construct a database. Several pit craters analogous to lunar pit craters were derived and a morphological pit crater model was generated using the 3D printer based on this database.

  5. Electromagnetic Monitoring of Lava Tubes: Numerical Modeling and Instrument Testing

    NASA Astrophysics Data System (ADS)

    Sly, Michael K.

    Currently the only method to measure the flow rates of lava in lava tubes is through the use of a skylight. This means that only a fraction of lava tubes can be measured. It is important to know the flow rate throughout a lava tube to know how much lava is being produced by a volcano at a given time. In order to measure the flow rate without using a skylight we can utilize the electromagnetic properties of flowing lava and the Lorentz force. Theoretical as well as numerical methods have been used to model an expected response using this technique. The experimental results will be compared to these models to discern accuracy. The main difficulty involved in this experiment is the high resistivity of the basalt that surrounds the lava tube. In order to obtain measurements in this environment high impedance electrodes are needed. After months of development and testing, multiple high impedance electrodes are available to be used on any surface including basalt. These electrodes are able to measure electric signals through any highly resistive surface including concrete, asphalt, basalt, and ice. Currently no tests have been done or are planned to measure flowing lava. Instead we will measure flowing sea water in pipes on the SIO campus. These pipes provide a good analog to the lava tubes. These tests have provided useful information about the noise floor for this system, telling us that a response from a full size lava tube could most likely be seen.

  6. NVP melt/magma viscosity: insight on Mercury lava flows

    NASA Astrophysics Data System (ADS)

    Rossi, Stefano; Morgavi, Daniele; Namur, Olivier; Vetere, Francesco; Perugini, Diego; Mancinelli, Paolo; Pauselli, Cristina

    2016-04-01

    After more than four years of orbiting Mercury, NASA's MESSENGER spacecraft came to an end in late April 2015. MESSENGER has provided many new and surprising results. This session will again highlight the latest results on Mercury based on MESSENGER observations or updated modelling. The session will further address instrument calibration and science performance both retrospective on MESSENGER and on the ESA/JAXA BepiColombo mission. Papers covering additional themes related to Mercury are also welcomed. Please be aware that this session will be held as a PICO session. This will allow an intensive exchange of expertise and experience between the individual instruments and mission. NVP melt/magma viscosity: insight on Mercury lava flows S. Rossi1, D. Morgavi1, O. Namur2, D. Perugini1, F.Vetere1, P. Mancinelli1 and C. Pauselli1 1 Dipartimento di Fisica e Geologia, Università di Perugia, piazza Università 1, 06123 Perugia, Italy 2 Uni Hannover Institut für Mineralogie, Leibniz Universität Hannover, Callinstraβe 3, 30167 Hannover, Germany In this contribution we report new measurements of viscosity of synthetic komatitic melts, used the behaviour of silicate melts erupted at the surface of Mercury. Composition of Mercurian surface magmas was calculated using the most recent maps produced from MESSENGER XRS data (Weider et al., 2015). We focused on the northern hemisphere (Northern Volcanic Province, NVP, the largest lava flow on Mercury and possibly in the Solar System) for which the spatial resolution of MESSENGER measurements is high and individual maps of Mg/Si, Ca/Si, Al/Si and S/Si were combined. The experimental starting material contains high Na2O content (≈7 wt.%) that strongly influences viscosity. High temperature viscosity measurements were carried out at 1 atm using a concentric cylinder apparatus equipped with an Anton Paar RheolabQC viscometer head at the Department of Physics and Geology (PVRG_lab) at the University of Perugia (Perugia, Italy

  7. Structural and temporal requirements for geomagnetic field reversal deduced from lava flows.

    PubMed

    Singer, Brad S; Hoffman, Kenneth A; Coe, Robert S; Brown, Laurie L; Jicha, Brian R; Pringle, Malcolm S; Chauvin, Annick

    2005-03-31

    Reversals of the Earth's magnetic field reflect changes in the geodynamo--flow within the outer core--that generates the field. Constraining core processes or mantle properties that induce or modulate reversals requires knowing the timing and morphology of field changes that precede and accompany these reversals. But the short duration of transitional field states and fragmentary nature of even the best palaeomagnetic records make it difficult to provide a timeline for the reversal process. 40Ar/39Ar dating of lavas on Tahiti, long thought to record the primary part of the most recent 'Matuyama-Brunhes' reversal, gives an age of 795 +/- 7 kyr, indistinguishable from that of lavas in Chile and La Palma that record a transition in the Earth's magnetic field, but older than the accepted age for the reversal. Only the 'transitional' lavas on Maui and one from La Palma (dated at 776 +/- 2 kyr), agree with the astronomical age for the reversal. Here we propose that the older lavas record the onset of a geodynamo process, which only on occasion would result in polarity change. This initial instability, associated with the first of two decreases in field intensity, began approximately 18 kyr before the actual polarity switch. These data support the claim that complete reversals require a significant period for magnetic flux to escape from the solid inner core and sufficiently weaken its stabilizing effect.

  8. Microtopographic evolution of lava flows at Cima volcanic field, Mojave Desert, California

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.

    1992-01-01

    Microtopographic profiles were measured and power spectra calculated for dated lava flow surfaces at Cima volcanic field in the eastern Mojave Desert of California in order to quantify changes in centimeter- to meter-scale roughness as a function of age. For lava flows younger than about 0.8 m.y., roughness over all spatial scales decreases with age, with meter-scale roughness decreasing slightly more than centimeter scales. Flows older than about 0.8 m.y. show a reversal of this trend, becoming as rough as young flows at these scales. Modeling indicates that eolian deposition can explain most of the change observed in the offset, or roughness amplitude, of power spectra of flow surface profiles up to 0.8 m.y. Other processes, such as rubbing and stone pavement development, appear to have a minor effect in this age range. Changes in power spectra of surfaces older than about 0.8 m.y. are consistent with roughening due to fluvial dissection. These results agree qualitatively with a process-response model that attributes systematic changes in flow surface morphology to cyclic changes in the rates of eolian, soil formation, and fluvial processes. Identification of active surficial processes and estimation of the extent of their effects, or stage of surficial evolution, through measurement of surface roughness will help put the correlation of surficial units on a quantitative basis. This may form the basis for the use of radar remote sensing data to help in regional correlations of surficial units.

  9. Dielectric properties of lava flows west of Ascraeus Mons, Mars

    USGS Publications Warehouse

    Carter, L.M.; Campbell, B.A.; Holt, J.W.; Phillips, R.J.; Putzig, N.E.; Mattei, S.; Seu, R.; Okubo, C.H.; Egan, A.F.

    2009-01-01

    The SHARAD instrument on the Mars Reconnaissance Orbiter detects subsurface interfaces beneath lava flow fields northwest of Ascraeus Mons. The interfaces occur in two locations; a northern flow that originates south of Alba Patera, and a southern flow that originates at the rift zone between Ascraeus and Pavonis Montes. The northern flow has permittivity values, estimated from the time delay of echoes from the basal interface, between 6.2 and 17.3, with an average of 12.2. The southern flow has permittivity values of 7.0 to 14.0, with an average of 9.8. The average permittivity values for the northern and southern flows imply densities of 3.7 and 3.4 g cm-3, respectively. Loss tangent values for both flows range from 0.01 to 0.03. The measured bulk permittivity and loss tangent values are consistent with those of terrestrial and lunar basalts, and represent the first measurement of these properties for dense rock on Mars. Copyright 2009 by the American Geophysical Union.

  10. Rootless shield and perched lava pond collapses at Kīlauea Volcano, Hawai'i

    USGS Publications Warehouse

    Patrick, Matthew R.; Orr, Tim R.

    2012-01-01

    Effusion rate is a primary measurement used to judge the expected advance rate, length, and hazard potential of lava flows. At basaltic volcanoes, the rapid draining of lava stored in rootless shields and perched ponds can produce lava flows with much higher local effusion rates and advance velocities than would be expected based on the effusion rate at the vent. For several months in 2007–2008, lava stored in a series of perched ponds and rootless shields on Kīlauea Volcano, Hawai'i, was released episodically to produce fast-moving 'a'ā lava flows. Several of these lava flows approached Royal Gardens subdivision and threatened the safety of remaining residents. Using time-lapse image measurements, we show that the initial time-averaged discharge rate for one collapse-triggered lava flow was approximately eight times greater than the effusion rate at the vent. Though short-lived, the collapse-triggered 'a'ā lava flows had average advance rates approximately 45 times greater than that of the pāhoehoe flow field from which they were sourced. The high advance rates of the collapse-triggered lava flows demonstrates that recognition of lava accumulating in ponds and shields, which may be stored in a cryptic manner, is vital for accurately assessing short-term hazards at basaltic volcanoes.

  11. Ridge-like lava tube systems in southeast Tharsis, Mars

    NASA Astrophysics Data System (ADS)

    Zhao, Jiannan; Huang, Jun; Kraft, Michael D.; Xiao, Long; Jiang, Yun

    2017-10-01

    Lava tubes are widely distributed in volcanic fields on a planetary surface and they are important means of lava transportation. We have identified 38 sinuous ridges with a lava-tube origin in southeast Tharsis. The lengths vary between 14 and 740 km, and most of them occur in areas with slopes < 0.3°. We analyzed their geomorphology in detail with CTX (Context Camera) and HiRISE (High Resolution Imaging Science Experiment) images and DTM (digital terrain model) derived from them. We identified three cross-sectional shapes of these sinuous ridges: round-crested, double-ridged, and flat-crested and described features associated with the lava tubes, including branches, axial cracks, collapsed pits, breakout lobes, and tube-fed lava deltas. Age determination results showed that most of the lava tubes formed in Late Hesperian and were active until the Hesperian-Amazonian boundary. We proposed that these lava tubes formed at relatively low local flow rate, low lava viscosity, and sustained magma supply during a long period. Besides, lava flow inflation is also important in the formation of the ridge-like lava tubes and some associated features. These lava tubes provide efficient lateral pathways for magma transportation over the relatively low topographic slopes in southeast Tharsis, and they are important for the formation of long lava flows in this region. The findings of this study provide an alternative formation mechanism for sinuous ridges on the martian surface.

  12. Potential impact of lava flows on regional water supplies: case study of central Oregon Cascades volcanism and the Willamette Valley, USA

    NASA Astrophysics Data System (ADS)

    Deligne, Natalia; Cashman, Katharine; Grant, Gordon; Jefferson, Anne

    2013-04-01

    Lava flows are often considered to be natural hazards with localized bimodal impact - they completely destroy everything in their path, but apart from the occasional forest fire, cause little or no damage outside their immediate footprint. However, in certain settings, lava flows can have surprising far reaching impacts with the potential to cause serious problems in distant urban areas. Here we present results from a study of the interaction between lava flows and surface water in the central Oregon Cascades, USA, where we find that lava flows in the High Cascades have the potential to cause considerable water shortages in Eugene, Oregon (Oregon's second largest metropolitan area) and the greater Willamette Valley (home to ~70% of Oregon's population). The High Cascades host a groundwater dominated hydrological regime with water residence times on the order of years. Due to the steady output of groundwater, rivers sourced in the High Cascades are a critical water resource for Oregon, particularly in August and September when it has not rained for several months. One such river, the McKenzie River, is the sole source of drinking water for Eugene, Oregon, and prior to the installation of dams in the 1960s accounted for ~40% of late summer river flow in the Willamette River in Portland, 445 river km downstream of the source of the McKenzie River. The McKenzie River has been dammed at least twice by lava flows during the Holocene; depending the time of year that these eruptions occurred, we project that available water would have decreased by 20% in present-day Eugene, Oregon, for days to weeks at a time. Given the importance of the McKenzie River and its location on the margin of an active volcanic area, we expect that future volcanic eruptions could likewise impact water supplies in Eugene and the greater Willamette Valley. As such, the urban center of Eugene, Oregon, and also the greater Willamette Valley, is vulnerable to the most benign of volcanic hazards, lava

  13. 40Ar/36Ar analyses of historic lava flows

    USGS Publications Warehouse

    Dalrymple, G.B.

    1969-01-01

    The ratio 40Ar/36Ar was measured for 26 subaerial historic lava flows. Approximately one-third of the samples had 40Ar/36Ar ratios either higher or lower than the atmospheric value of 295.5 at the 95% confidence level. Excess radiogenic 40Ar in five flows ranged from about 1 ?? 10-13 to 1.5 ?? 10-12 mol/g. Possible excess 36Ar in three flows was on the order of 10-16 to 10-15 mol/g. Upper 95% confidence limits for excess 40Ar in samples with normal 40Ar/36Ar ratios are generally less than 3 ?? 10-13 mol/g. The origin of the excess 36Ar is unknown but it may be due either to the incorporation of primitive argon that has been stored in the mantle in very low potassium environments or to enrichment in 36Ar as atmospheric argon diffuses into the rocks after they cool. ?? 1969.

  14. Cooling and crystallization of lava in open channels, and the transition of Pāhoehoe Lava to 'A'ā

    NASA Astrophysics Data System (ADS)

    Cashman, Katharine V.; Thornber, Carl; Kauahikaua, James P.

    Samples collected from a lava channel active at Kīlauea Volcano during May 1997 are used to constrain rates of lava cooling and crystallization during early stages of flow. Lava erupted at near-liquidus temperatures ( 1150 °C) cooled and crystallized rapidly in upper parts of the channel. Glass geothermometry indicates cooling by 12-14 °C over the first 2km of transport. At flow velocities of 1-2m/s, this translates to cooling rates of 22-50 °C/h. Cooling rates this high can be explained by radiative cooling of a well-stirred flow, consistent with observations of non-steady flow in proximal regions of the channel. Crystallization of plagioclase and pyroxene microlites occurred in response to cooling, with crystallization rates of 20-50% per hour. Crystallization proceeded primarily by nucleation of new crystals, and nucleation rates of 104/cm3s are similar to those measured in the 1984 open channel flow from Mauna Loa Volcano. There is no evidence for the large nucleation delays commonly assumed for plagioclase crystallization in basaltic melts, possibly a reflection of enhanced nucleation due to stirring of the flow. The transition of the flow surface morphology from pāhoehoe to 'a'ā occurred at a distance of 1.9km from the vent. At this point, the flow was thermally stratified, with an interior temperature of 1137 °C and crystallinity of 15%, and a flow surface temperature of 1100 °C and crystallinity of 45%. 'A'ā formation initiated along channel margins, where crust was continuously disrupted, and involved tearing and clotting of the flow surface. Both observations suggest that the transition involved crossing of a rheological threshold. We suggest this threshold to be the development of a lava yield strength sufficient to prevent viscous flow of lava at the channel margin. We use this concept to propose that 'a'ā formation in open channels requires both sufficiently high strain rates for continued disruption of surface crusts and sufficient

  15. Misalignment of Lava Flows from Topographic Slope Directions Reveals Late Amazonian Deformation at Arsia Mons, Mars

    NASA Astrophysics Data System (ADS)

    Waring, B. A.; Chadwick, J.; McGovern, P. J., Jr.; Tucker, W.

    2017-12-01

    Arsia Mons is the southernmost of the three large Tharsis Montes near the equator of Mars and one of the largest volcanoes in the solar system. The main edifice of Arsia is about 440 km in diameter, the summit is over 9 km above the surrounding plains and has a pronounced 110 km caldera. Like the other Tharsis volcanoes, Arsia has a large, Late Amazonian glacial deposit on its NW flank. Previous crater retention studies for lava flows on Arsia have shown that the volcano experienced significant volcanic activity in the past 200 Ma. In this study, numerous long (>25 km), thin lava flows on the plains surrounding Arsia were mapped and used as indicators of the topographic slope direction at the time of their emplacement. The azimuthal orientation of each flow was compared with the present-day slope directions on the surrounding plains, derived from Mars Orbiter Laser Altimeter (MOLA) topographic data. The results reveal regions around Arsia where the flows no longer conform to the topography, indicating deformation in the time since the flows where emplaced. In a region of Daedalia Planum to the SE of Arsia, modern slope directions adjacent to 40 long lava flows are consistently misaligned from the paleo-slopes indicated by the lava flow orientations, with an angular offset that averages 7.2° in the clockwise direction. Crater size-frequency measurements for these tilted plains using CraterStats software indicate that the deformation responsible for the misaligned flows took place since 330 ± 10 Ma. Conversely, part of Daedalia Planum to the southwest of Arsia is younger, with a crater retention age of 160 ± 6 Ma, and this area shows no consistent flow-topography misalignments. These observations suggest that extensive regional deformation occurred between the two dates, consistent with other evidence for significant volcanism at Arsia in the Late Amazonian at about 200 Ma. Geophysical modelling using the finite element program COMSOL Multiphysics is planned to

  16. Use of joint-growth directions and rock textures to infer thermal regimes during solidification of basaltic lava flows

    NASA Astrophysics Data System (ADS)

    Degraff, James M.; Long, Philip E.; Aydin, Atilla

    1989-09-01

    Thermal contraction joints form in the upper and lower solidifying crusts of basaltic lava flows and grow toward the interior as the crusts thicken. Lava flows are thus divided by vertical joints that, by changes in joint spacing and form, define horizontal intraflow layers known as tiers. Entablatures are tiers with joint spacings less than about 40 cm, whereas colonnades have larger joint spacings. We use structural and petrographic methods to infer heat-transfer processes and to constrain environmental conditions that produce these contrasting tiers. Joint-surface morphology indicates overall joint-growth direction and thus identifies the level in a flow where the upper and lower crusts met. Rock texture provides information on relative cooling rates in the tiers of a flow. Lava flows without entablature have textures that develop by relatively slow cooling, and two joint sets that usually meet near their middles, which indicate mostly conductive cooling. Entablature-bearing flows have two main joint sets that meet well below their middles, and textures that indicate fast cooling of entablatures and slow cooling of colonnades. Entablatures always occur in the upper joint sets and sometimes alternate several times with colonnades. Solidification times of entablature-bearing flows, constrained by lower joint-set thicknesses, are much less than those predicted by a purely conductive cooling model. These results are best explained by a cooling model based on conductive heat transfer near a flow base and water-steam convection in the upper part of an entablature-bearing flow. Calculated solidification rates in the upper parts of such flows exceed that of the upper crust of Kilauea Iki lava lake, where water-steam convection is documented. Use of the solidification rates in an available model of water-steam convection yields permeability values that agree with measured values for fractured crystalline rock. We conclude, therefore, that an entablature forms when part

  17. Lava Tube Seismicity at Kilauea

    NASA Astrophysics Data System (ADS)

    Hoblitt, R. P.; Battaglia, J.; Kauahikaua, J. P.; Okubo, P. G.

    2002-12-01

    We have begun to collect seismic data on lava tubes at Kilauea volcano in an effort to develop a real-time method for monitoring lava tube flux. Utilizing seismometers whose responses collectively vary from about 1 Hz to 1000 Hz, we find that most tube signals range between about 1 to 150 Hz, though some sites exhibit transient signals that range upward to several hundred Hz or more. Part of the lower frequency band--perhaps 1-10 Hz--may be volcanic tremor from Pu`u `O`o, the source of the lava flowing in the tubes. We attribute the higher frequencies to flowing lava, though wind noise and helicopter noise complicate interpretation. At a given site, both the amplitude and frequency spectrum change with time. We strongly suspect that at least some of the changes are related to changes in lava velocity and/or lava flux. Our strongest evidence that the part of the spectrum greater than 10 Hz contains velocity/flux information is that the signal amplitude of this band decreased by about 90 percent when the independently measured VLF (Very Low Frequency) tube flux decreased from about 300,000 m3/day in early February, 2002 to less than 5,000 m3/day in late August. Qualitative field observations of this tube system are in agreement with the VLF measurements.

  18. Lava tube shatter rings and their correlation with lava flux increases at Kīlauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Orr, T.R.

    2011-01-01

    Shatter rings are circular to elliptical volcanic features, typically tens of meters in diameter, which form over active lava tubes. They are typified by an upraised rim of blocky rubble and a central depression. Prior to this study, shatter rings had not been observed forming, and, thus, were interpreted in many ways. This paper describes the process of formation for shatter rings observed at Kīlauea Volcano during November 2005–July 2006. During this period, tilt data, time-lapse images, and field observations showed that episodic tilt changes at the nearby Pu‘u ‘Ō‘ō cone, the shallow magmatic source reservoir, were directly related to fluctuations in the level of lava in the active lava tube, with periods of deflation at Pu‘u ‘Ō‘ō correlating with increases in the level of the lava stream surface. Increases in lava level are interpreted as increases in lava flux, and were coincident with lava breakouts from shatter rings constructed over the lava tube. The repetitive behavior of the lava flux changes, inferred from the nearly continuous tilt oscillations, suggests that shatter rings form from the repeated rise and fall of a portion of a lava tube roof. The locations of shatter rings along the active lava tube suggest that they form where there is an abrupt decrease in flow velocity through the tube, e.g., large increase in tube width, abrupt decrease in tube slope, and (or) sudden change in tube direction. To conserve volume, this necessitates an abrupt increase in lava stream depth and causes over-pressurization of the tube. More than a hundred shatter rings have been identified on volcanoes on Hawai‘i and Maui, and dozens have been reported from basaltic lava fields in Iceland, Australia, Italy, Samoa, and the mainland United States. A quick study of other basaltic lava fields worldwide, using freely available satellite imagery, suggests that they might be even more common than previously thought. If so, this confirms that episodic

  19. The Puelche volcanic field: Extensive Pleistocene rhyolite lava flows in the Andes of central Chile

    USGS Publications Warehouse

    Hildreth, W.; Fierstein, J.; Godoy, E.; Drake, Robert E.; Singer, B.

    1999-01-01

    A remote volcanic field in the rugged headwaters of the Rio Puelche and Rio Invernada (35.8??S) constitutes the largest cluster of Quaternary rhyolite lava flows yet identified in the Andean Southern Volcanic Zone. The Puelche Volcanic Field belongs to an intra-arc belt of silicic magmatic centers that extends, at least, 140 km north-south and lies well east of the volcanic front but nonetheless considerably west of the intraplate extensional fields of basaltic and alkaline centers of pampean Argentina. The authors' mapping has distinguished one shallow intrusive mass of early Pleistocene biotite rhyodacite (70.5% SiO2), 11 eruptive units of mid-Pleistocene high-K biotite-rhyolite lava (71.3-75.6% SiO2), and 4 eruptive units of basaltic andesite (53.95-4.9% SiO2), the conduits of which cut some of the rhyolites. Basal contacts of the rhyolite lava flows (and subjacent pyroclastic precursors) are generally scree covered, but glacial erosion has exposed internal flow structures and lithologic zonation superbly. Thicknesses of individual rhyolite lava flows range from 75 m to 400 m. Feeders for several units are well exposed. Cliff-draping unconformities and intracanyon relationships among the 11 rhyolite units show that the eruptive sequence spanned at least one glacial episode that accentuated the local relief. Lack of ice-contact features suggests, however, that all or most eruptions took place during non-glacial intervals probably between 400 ka and 100 ka. Post-eruptive glacial erosion reduced the rhyolites to several non-contiguous remnants that altogether cover 83 km2 and represent a surviving volume of about 21 km3. Consideration of slopes, lava thicknesses, and paleotopography suggest that the original area and volume were each about three times greater. Phenocryst content of the rhyolites ranges from 1 to 12%, with plagioclase>>biotite>FeTi oxides in all units and amphibole conspicuous in the least silicic. The chemically varied basaltic andesites range from

  20. Permeability of compacting porous lavas

    NASA Astrophysics Data System (ADS)

    Ashwell, P. A.; Kendrick, J. E.; Lavallée, Y.; Kennedy, B. M.; Hess, K.-U.; von Aulock, F. W.; Wadsworth, F. B.; Vasseur, J.; Dingwell, D. B.

    2015-03-01

    The highly transient nature of outgassing commonly observed at volcanoes is in part controlled by the permeability of lava domes and shallow conduits. Lava domes generally consist of a porous outer carapace surrounding a denser lava core with internal shear zones of variable porosity. Here we examine densification using uniaxial compression experiments on variably crystalline and porous rhyolitic dome lavas from the Taupo Volcanic Zone. Experiments were conducted at 900°C and an applied stress of 3 MPa to 60% strain, while monitoring acoustic emissions to track cracking. The evolution of the porous network was assessed via X-ray computed tomography, He-pycnometry, and relative gas permeability. High starting connected porosities led to low apparent viscosities and high strain rates, initially accompanied by abundant acoustic emissions. As compaction ensued, the lavas evolved; apparent viscosity increased and strain rate decreased due to strain hardening of the suspensions. Permeability fluctuations resulted from the interplay between viscous flow and brittle failure. Where phenocrysts were abundant, cracks had limited spatial extent, and pore closure decreased axial and radial permeability proportionally, maintaining the initial anisotropy. In crystal-poor lavas, axial cracks had a more profound effect, and permeability anisotropy switched to favor axial flow. Irrespective of porosity, both crystalline samples compacted to a threshold minimum porosity of 17-19%, whereas the crystal-poor sample did not achieve its compaction limit. This indicates that unconfined loading of porous dome lavas does not necessarily form an impermeable plug and may be hindered, in part by the presence of crystals.

  1. Radiocarbon dates for lava flows from northeast rift zone of Mauna Loa Volcano, Hilo 7 1/2 minute quadrangle, Island of Hawaii

    USGS Publications Warehouse

    Buchanan-Banks, J. M.; Lockwood, J.P.; Rubin, M.

    1989-01-01

    Twenty-eight 14C analyses are reported for carbonized roots and other plant material collected from beneath 15 prehistoric lava flows erupted from the northeast rift zone (NERZ) of Mauna Loa Volcano (ML). The new 14C dates establish ages for 13 previously undated lava flows, and correct or add to information previously reported. Limiting ages on other flows that lie either above or below the dated flows are also established. These dates help to unravel the eruptive history of ML's NERZ. -from Authors

  2. Arsia Mons Lava Flows at Night

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This nighttime IR image is of lava flows from Arsia Mons. The different tones of brightness in the nighttime IR are indicative of the relative ages of the flows in the images. The small circular features are impact craters.

    Image information: IR instrument. Latitude -5.7, Longitude 243.5 East (116.5 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. Bringing the Volcano to the Students: The Syracuse University LAVA Project

    NASA Astrophysics Data System (ADS)

    Karson, J.; Wysocki, B.; Kissane, M. T.

    2011-12-01

    A collaborative effort between the Department of Earth Sciences and Sculpture Department at Syracuse University has resulted in the facility to make natural-scale lava flows in a laboratory environment for K-university students and the general public. Using a large, gas-fired, furnace with a tilting crucible, basaltic gravel is heated at temperatures of 1100° to 1300°C resulting in up to 800 lbs of homogeneous, basaltic lava. Lava is poured over a variety of surfaces including rock slab, wet or dry sand, ice and dry ice. A ceramic funnel permits pouring into and under water. Differing set-ups provide analogs for a wide range of terrestrial, marine, and extraterrestrial lava flows. Composition is held constant, but varying key parameters such as temperature, pouring (effusion) rate, and slope result in different flow morphologies including ropey to toey pahoehoe, inflated flows, channelized flows with levees, and hyaloclastites. Typical flows are 2-4 m long and < 1 m wide. The cooled flows are dissected to document variations in vesicle and crystal densities. In general, the flows produce massive, glassy basalt with internal structures that mimic flows from natural environments. Byproducts of the process include abundant Pelee's hair and tears. Experiments are underway to quantify the variables associated with different morphologies, but the spectacular lava flows are also being integrated into class experiences. Students and instructors from K-12 classes as well as university classes are spectators and active participants in the lava flow events, commonly proposing experiments before or during flows. Lava flows are incorporated into labs for Earth Science classes and also used for artistic creations in the Sculpture program. Although students have access to still images and video of natural lava flows from active volcanoes, there is no substitute for "being there" and experiencing the spectacle of viscous, incandescent orange, lava flowing over the surface in a

  4. Pahoehoe-a‧a transitions in the lava flow fields of the western Deccan Traps, India-implications for emplacement dynamics, flood basalt architecture and volcanic stratigraphy

    NASA Astrophysics Data System (ADS)

    Duraiswami, Raymond A.; Gadpallu, Purva; Shaikh, Tahira N.; Cardin, Neha

    2014-04-01

    Unlike pahoehoe, documentation of true a‧a lavas from a modern volcanological perspective is a relatively recent phenomenon in the Deccan Trap (e.g. Brown et al., 2011, Bull. Volcanol. 73(6): 737-752) as most lava flows previously considered to be a‧a (e.g. GSI, 1998) have been shown to be transitional (e.g. Rajarao et al., 1978, Geol. Soc. India Mem. 43: 401-414; Duraiswami et al., 2008 J. Volcanol. Geothermal. Res. 177: 822-836). In this paper we demonstrate the co-existence of autobrecciation products such as slabby pahoehoe, rubbly pahoehoe and a‧a in scattered outcrops within the dominantly pahoehoe flow fields. Although volumetrically low in number, the pattern of occurrence of the brecciating lobes alongside intact ones suggests that these might have formed in individual lobes along marginal branches and terminal parts of compound flow fields. Complete transitions from typical pahoehoe to 'a‧a lava flow morphologies are seen on length scales of 100-1000 m within road and sea-cliff sections near Uruli and Rajpuri. We consider the complex interplay between local increase in the lava supply rates due to storage or temporary stoppage, local increase in paleo-slope, rapid cooling and localized increase in the strain rates especially in the middle and terminal parts of the compound flow field responsible for the transitional morphologies. Such transitions are seen in the Thakurwadi-, Bushe- and Poladpur Formation in the western Deccan Traps. These are similar to pahoehoe-a‧a transitions seen in Cenozoic long lava flows (Undara ˜160 km, Toomba ˜120 km, Kinrara ˜55 km) from north Queensland, Australia and Recent (1859) eruption of Mauna Loa, Hawaii (a‧a lava flow ˜51 km) suggesting that flow fields with transitional tendencies cannot travel great lengths despite strong channelisation. If these observations are true, then it arguably limits long distance flow of Deccan Traps lavas to Rajahmundry suggesting polycentric eruptions at ˜65 Ma in

  5. Lava Flow Near the Base of Olympus Mons

    NASA Image and Video Library

    2015-02-18

    This image from NASA Mars Reconnaissance Orbiter shows a lava channel, which lies just to the east of the largest volcano in the solar system: Olympus Mons. The channel appears to be discontinuous, meaning it disappears several times throughout its length, but in fact, it is likely that the channel continues underground as a lava tube. These are relatively common features at terrestrial volcanic centers, such as the Big Island of Hawai'i. The channel appears to have been infilled with dust and sand, so that the entrance to a lava tube cave is no longer visible at this particular location; fortunately this has been observed elsewhere on Mars. http://photojournal.jpl.nasa.gov/catalog/PIA19299

  6. Emplacement and erosive effects of the south Kasei Valles lava on Mars

    USGS Publications Warehouse

    Dundas, Colin M.; Keszthelyi, Laszlo P.

    2014-01-01

    Although it has generally been accepted that the Martian outflow channels were carved by floods of water, observations of large channels on Venus and Mercury demonstrate that lava flows can cause substantial erosion. Recent observations of large lava flows within outflow channels on Mars have revived discussion of the hypothesis that the Martian channels are also produced by lava. An excellent example is found in south Kasei Valles (SKV), where the most recent major event was emplacement of a large lava flow. Calculations using high-resolution Digital Terrain Models (DTMs) demonstrate that this flow was locally turbulent, similar to a previously described flood lava flow in Athabasca Valles. The modeled peak local flux of approximately 106 m3 s−1 was approximately an order of magnitude lower than that in Athabasca, which may be due to distance from the vent. Fluxes close to 107 m3 s−1 are estimated in some reaches but these values are probably records of local surges caused by a dam-breach event within the flow. The SKV lava was locally erosive and likely caused significant (kilometer-scale) headwall retreat at several cataracts with tens to hundreds of meters of relief. However, in other places the net effect of the flow was unambiguously aggradational, and these are more representative of most of the flow. The larger outflow channels have lengths of thousands of kilometers and incision of a kilometer or more. Therefore, lava flows comparable to the SKV flow did not carve the major Martian outflow channels, although the SKV flow was among the largest and highest-flux lava flows known in the Solar System.

  7. A comparative Study of Circulation Patterns at Active Lava Lakes

    NASA Astrophysics Data System (ADS)

    Lev, Einat; Oppenheimer, Clive; Spampinato, Letizia; Hernandez, Pedro; Unglert, Kathi

    2016-04-01

    Lava lakes present a rare opportunity to study magma dynamics in a large scaled-up "crucible" and provide a unique natural laboratory to ground-truth dynamic models of magma circulation. The persistence of lava lakes allows for long-term observations of flow dynamics and of lava properties, especially compared to surface lava flows. There are currently five persistent lava lakes in the world: Halemaumau in Kilauea (Hawaii, USA), Erta Ale (Ethiopia), Nyiragongo (Congo), Erebus (Antarctica), and Villarica (Chile). Marum and Benbow craters of Ambrym volcano (Vanuatu) and Masaya (Nicaragua) have often hosted lava lakes as well. We use visible-light and thermal infrared time-lapse and video footage collected at all above lakes (except Villarica, where the lake is difficult to observe), and compare the circulation patterns recorded. We calculate lake surface motion from the footage using the optical flow method (Lev et al., 2012) to produce 2D velocity fields. We mined both the surface temperature field and the surface velocity field for patterns using machine learning techniques such as "self-organizing maps (SOMs)" and "principle component analysis (PCA)". We use automatic detection technique to study the configuration of crustal plates at the lakes' surface. We find striking differences among the lakes, in flow direction, flow speed, frequency of changes in flow direction and speed, location and consistency of upwelling and downwelling, and crustal plate configuration. We relate the differences to lake size, shallow conduit geometry, lava viscosity, crystal and gas content, and crust integrity.

  8. Morphology, stratigraphy, and surface roughness properties of Venusian lava flow fields

    NASA Astrophysics Data System (ADS)

    Byrnes, Jeffrey M.; Crown, David A.

    2002-10-01

    Morphologic characteristics, flow stratigraphy, and radar backscatter properties of five lava flow fields on Venus (Turgmam Fluctus, Zipaltonal Fluctus, Tuli Mons/Uilata Fluctus, Var Mons, and Mylitta Fluctus) were examined to understand flow field emplacement mechanisms and relationships to other surface processes. These analyses indicate that the flow fields studied developed through emplacement of numerous, thin flow units, presumably over extended periods of time. Although the Venusian fields display flow morphologies similar to those observed within terrestrial flow fields, the Venusian flow units are significantly larger and have a larger range of radar backscatter coefficients. Both simple and compound flow emplacement appear to have occurred within the flow fields. A potential correlation between flow rheology and radar brightness is suggested by differences in planform morphology, apparent flow thickness, and apparent sensitivity to topography between bright and dark flows. Distributary flow morphologies may result from tube-fed flows, and postemplacement modification by processes such as flow inflation and crustal foundering is consistent with discrete zones of increased radar brightness within individual flow lobes. Mapping of these flow fields does not indicate any simple evolutionary trend in eruptive/resurfacing style within the flow fields, or any consistent temporal sequence relative to other tectonic and volcanic features.

  9. The effect of inflation on the morphology-derived rheological parameters of lava flows and its implications for interpreting remote sensing data - A case study on the 2014/2015 eruption at Holuhraun, Iceland

    NASA Astrophysics Data System (ADS)

    Kolzenburg, S.; Jaenicke, J.; Münzer, U.; Dingwell, D. B.

    2018-05-01

    Morphology-derived lava flow rheology is a frequently used tool in volcanology and planetary science to determine rheological parameters and deduce the composition of lavas on terrestrial planets and their moons. These calculations are usually based on physical equations incorporating 1) lava flow driving forces: gravity, slope and flow-rate and 2) morphological data such as lava flow geometry: flow-width, -height or shape of the flow outline. All available methods assume that no geometrical changes occur after emplacement and that the measured flow geometry reflects the lava's apparent viscosity and/or yield strength during emplacement. It is however well-established from terrestrial examples that lava flows may inflate significantly after the cessation of flow advance. This inflation affects, in turn, the width-to-height ratio upon which the rheological estimates are based and thus must result in uncertainties in the determination of flow rheology, as the flow height is one of the key parameters in the morphology-based deduction of flow properties. Previous studies have recognized this issue but, to date, no assessment of the magnitude of this error has been presented. This is likely due to a lack of digital elevation models (DEMs) at sufficiently high spatial and temporal resolution. The 2014/15 Holuhraun eruption in central Iceland represents one of the best monitored large volume (1.5 km3) lava flow fields (85 km2) to date. An abundance of scientific field and remote sensing data were collected during its emplacement. Moreover, inflation plays a key role in the emplacement dynamics of the late stage of the lava field. Here, we use a time series of high resolution DEMs acquired by the TanDEM-X satellite mission prior, during and after the eruption to evaluate the error associated with the most common methods of deriving lava flow rheology from morphological parameters used in planetary science. We can distinguish two dominant processes as sources of error in

  10. Using high-resolution satellite radar to measure lava flow morphology, rheology, effusion rate and subsidence at El Reventador Volcano, Ecuador.

    NASA Astrophysics Data System (ADS)

    Biggs, J.; Arnold, D. W. D.; Mothes, P. A.; Anderson, K. R.; Albino, F.; Wadge, G.; Vallejo Vargas, S.; Ebmeier, S. K.

    2017-12-01

    There are relatively few studies of active lava flows of an andesitic rather than basaltic composition. The flow field at El Reventador volcano, Ecuador is a good example, but observations are hampered by persistent cloud cover. We use high resolution satellite radar from Radarsat-2 and TanDEM-X to map the dimensions of 43 lava flows extruded between 9 Feb 2012 and 24 Aug 2016. Flow height is measured using the width of radar shadow cast by steep sided features, or the difference in radar phase between two sensors separated in space. The cumulative volume of erupted material was 44.8M m3 dense rock equivalent with an average rate of 0.31 ± 0.02 m3s-1, similar to the long term average. The flows were mostly emplaced over durations shorter than the satellite repeat interval of 24 days and ranged in length from 0.3 to 1.7 km. We use the dimensions of the levees to estimate the flow yield strengths and compare measurements of diversions around barriers with observations from laboratory experiments. The rate of effusion, flow length and flow volume all decrease with time, and simple physics-based models can be equally well fit by a closed reservoir depressurising during the eruption with no magma recharge, or an open reservoir with a time-constant magma recharge rate of up to 0.35 ± 0.01 m3s-1. We propose that the conduit acts as magma capacitor and individual flows are volume-limited. Emplaced flows are subsiding at rates proportional to lava thickness that decay with time following a square-root relationship. Radar observations, such as those presented here, could be used to map and measure properties of evolving lava flow fields at other remote or difficult to monitor volcanoes. Physics-based models can be run into the future, but a sudden increase in flow length in 2017 seen by Sentinel illustrates that changes in magma supply can cause rapid changes in behavior, which remain challenging to forecast.

  11. A Mechanism for Stratifying Lava Flows

    NASA Astrophysics Data System (ADS)

    Rice, A.

    2005-12-01

    Relict lava flows (e.g., komatiites) are often reported to be zoned in the vertical, each zone separated by a sharp contact. Such stratifications in igneous flows, both intrusive and extrusive, can be treated as analogues of suspended loads of sediments in rivers and streams, and hence amenable to quantitative treatment derived for the hydraulic environment as long as dynamic similitude is assured. Situations typically encountered in the hydraulic environment are streams carrying a bed load at the bottom of the stream, the bed load separated by a sharp horizon from a sediment load carried above it. This sediment load may be topped by others of decreasing density as one moves to the surface of the flow, with perhaps the uppermost layer clear of any suspended matter. Rules exist for estimating the thickness D of these loads: one of them is given by D ~ 4.4V3/rgcvs where V is the shear velocity or average velocity of the flow, r = (ρs - ρl)/ρl where ρs is the density of the suspended solid matter, ρl the density of the fluid, g the acceleration of gravity, c the concentration of the particulate content and vs the settling velocity. The settling velocity is secured through Stoke's Law and the velocity of the flow is given by V = R2/3S1/2/n where R is the hydraulic radius, S the gradient along which the fluid flows and n is the Manning Coefficient. In the igneous case, the bed load would be composed of primocrysts, i.e., of the first crystals to come out of solution as the flow cools along its run. This would leave the upper portions of the flow more evolved except perhaps for a quenched crust riding atop the flow. As the viscosity of the flow is dependent not only on temperature but on composition and crystal content, the mean velocity of each layer will be different from the layer above and below it. This requires shear at the interface of adjoining stratifications, which brings into play another mechanism: dispersive pressure (the Bagnold effect). Dispersive

  12. Studies of vesicle distribution patterns in Hawaiian lavas

    NASA Technical Reports Server (NTRS)

    Walker, George P. L.

    1987-01-01

    Basaltic lava flows are generally vesicular, and the broader facts relating to vesicle distribution have long been established; few studies have yet been made with a view to determining how and when vesicles form in the cooling history of the lava, explaining vesicle shape and size distribution, and gaining enough understanding to employ vesicles as a geological tool. Various avenues of approach exist by which one may seek to gain a better understanding of these ubiquitous structures and make a start towards developing a general theory, and three such avenues have recently been explored. One avenue involves the study of pipe vesicles; these are a well known feature of lava flows and are narrow pipes which occur near the base of many pahoehoe flow units. Another avenue of approach is that presented by the distinctive spongy pahoehoe facies of lava that is common in distal locations on Hawaiian volcanoes. A third avenue of approach is that of the study of gas blisters in lava. Gas blisters are voids, which can be as much as tens of meters wide, where the lava split along a vesicle-rich layer and the roof up-arched by gas pressure. These three avenues are briefly discussed.

  13. The Summer 1997 Eruption at Pillan Patera on Io: Implications for Ultrabasic Lava Flow Emplacement

    NASA Technical Reports Server (NTRS)

    Williams, David A.; Davies, Ashley G.; Keszthelyi, Laszlo; Greeley, Ronald

    2001-01-01

    Galileo data and numerical modeling were used to investigate the summer 1997 eruption at Pillan Patera on Io. This event, now defined as 'Pillanian' eruption style, included a high-temperature (greater than 1600 C), possibly ultrabasic, 140-km-high plume eruption that deposited dark, orthopyroxene-rich pyroclastic material over greater than 125,000 sq km, followed by emplacement of dark flow-like material over greater than 3100 sq km to the north of the caldera. We estimate that the high-temperature, energetic episode of this eruption had a duration of 52- 167 days between May and September 1997, with peak eruption temperatures around June 28, 1997. Galileo 20 m/pixel images of part of the Pillan flow field show a widespread, rough, pitted surface that is unlike any flow surface we have seen before. We suggest that th.s surface may have resulted from (1) a fractured lava crust formed during rapid, low-viscosity lava surging, perhaps including turbulent flow emplacement; (2) disruption of the lava flow by explosive interaction with a volatile-rich substrate: or (3) a combination of 1 and 2 with or without accumulation of pyroclastic materials on the surface. Well-developed flow lobes are observed, suggesting that this is a relatively distal part of the flow field. Shadow measurements at flow margins indicate a thickness of approx. 8-10 m. We have modeled the emplacement of putative ultrabasic flows from the summer 1997 Pillan eruption using constraints from new Galileo data. Results suggest that either laminar sheet flows or turbulent channelized flows could have traveled 50-150 km on a flat. unobstructed surface, which is consistent with the estimated length of the Pillan flow field (approx. 60 km). Our modeling suggests low thermal erosion rates (less than 0.1 m/d), and that the formation of deep (greater than 20 m) erosion channels was unlikely, especially distal to the source. We calculate a volumetric flow rate of approx. 2-7 x l0(exp 3) cu m/s, which is

  14. The Summer 1997 Eruption at Pillan Patera on Io: Implications for Ultrabasic Lava Flow Emplacement

    NASA Technical Reports Server (NTRS)

    Williams, David A.; Davies, Ashley G.; Keszthelyi, Laszlo P.; Greeley, Ronald

    2001-01-01

    Galileo data and numerical modeling were used to investigate the summer 1977 eruption at Pillan Patera on Io. This event, now defined as "Pillanian" eruption style, included a high-temperature (greater than 1600 C), possible ultrabasic , 140-km-high plume eruption that deposited dark, orthopyroxene-rich pyroclastic material over greater than 125,000 sq km, followed by emplacement of dark flow-like material over greater than 3100 sq km to the north of the caldera. We estimate that the high-temperature, energetic episode of this eruption had a duration of 52 - 167 days between May and September 1997, with peak eruption temperatures around June 28, 1997. Galileo 20 m/pixel images of part of the Pillan flow field show a wide-spread, rough, pitted surface that is unlike any flow surface we have seen before. We suggest that this surface may have resulted from: 1. A fractured lava crust formed during rapid, low-viscosity lava surging, perhaps including turbulent flow emplacement. 2. Disruption of the lava flow by explosive interaction with a volatile-rich substrate. or 3. A combination of 1 and 2 with or without accumulation of pyroclastic material on the surface. Well-developed flow lobes are observed, suggesting that this is a relatively distant part of the flow field.Shadow measurements at flow margins indicate a thickness of-8 - 10 m. We have modeled the emplacement of putative ultrabasic flow from the summer 1997 Pillan eruption using constraints from new Galileo data. Results suggest that either laminar sheet flows or turbulent channelized flows could have traveled 50 - 150 km on a flat, unobstructed surface, which is consistent with the estimated length of the Pillan flow field (approx. 60 km). Our modeling suggests low thermal erosion rates (less than 4.1 m/d), and that the formation of deep (greater than 20 m) erosion channels was unlikely, especially distal to the source. We calculate a volumetric flow rate of approx. 2 - 7 x 10(exp 3)cu m/s, which is greater

  15. Relationships between lava and tephra volumes erupted during the 26 October 2013 lava fountaining episode from the New Southeast Crater of Etna

    NASA Astrophysics Data System (ADS)

    Andronico, Daniele; Behncke, Boris; Cristaldi, Antonio; De Beni, Emanuela; Lo Castro, Maria Deborah; Lopez, Manuela; Scollo, Simona

    2014-05-01

    Determining the volume of the various products of a volcanic eruption can be notoriously difficult, especially if the products encompass lava, distal tephra, and proximal pyroclastics mostly deposited on a growing volcanic cone. We evaluated, for the first time at Etna, the total masses and volumes of both lava flows and pyroclastic material emitted during the 26 October 2013 episode of lava fountaining at Etna's New Southeast Crater (NSEC), correlating them with mass eruption rate and total grain-size of the fallout deposit. The episode was heralded by Strombolian activity starting on early 25 October and gradually intensifying throughout the day, blending into a continuous lava fountain early on 26 October. An eruption column started to rise to ~4 km above Etna's summit before being bent toward WSW by the wind. Lava fountaining up to 500 m high continued until ~10:00 GMT, and then started to diminish significantly; by 13:00 GMT, the episode was over. 'A'¯a lava flows were emitted throughout the phase of lava fountaining, forming a three-lobed lava field toward south and a minor lava flow toward east. After the episode, we carried out field surveys to map both the fallout deposits and the lava flows. Distal tephra was deposited to at least 110 km distance from the vent and possibly beyond the south coast of Sicily. The dispersal area of the tephra deposit was quite narrow on the ground, the load per unit area declining very rapidly away from the main dispersal axis. In the very proximal area (~1.6 km from the NSEC), the fallout deposit formed a 3-cm thick bed of scoriaceous lapilli (peaked at -2 phi) amounting to 22.25 kg/m2. The tephra load dropped up to 0.4 kg/m2 in the town of Adrano (16 km), where we found a continuous, thin layer of medium-sized ash. Finally, the fallout consisted of fine ash (~99 % of clasts

  16. Is the presence of AA amyloidosis associated with impaired coronary flow reserve?

    PubMed

    Bulut, Mustafa; Keles, Nursen; Caliskan, Zuhal; Kostek, Osman; Aksu, Feyza; Ozdil, Kamil; Akcakoyun, Mustafa; Demircioglu, Kenan; Yilmaz, Yusuf; Kanbay, Mehmet; Caliskan, Mustafa

    2016-08-01

    Systemic amyloid A protein (AA) amyloidosis may occur as a complication of many chronic inflammatory disorders. Patients receiving inadequate anti-inflammatory and immunosuppressive therapies have an increased risk of developing systemic AA amyloidosis. Inflammation plays a role in all stages and the thrombotic complications of atherosclerosis. In the absence of epicardial coronary stenosis, coronary flow reserve (CFR) reflects coronary microvascular dysfunction. In the present study, we hypothesized that amyloid advanced subclinical inflammation in chronic inflammatory diseases (CID) patients may further affect coronary microcirculation. Thirty-two patients with biopsy-diagnosed renal AA, 73 patients with non-amyloid CID, and a group of healthy volunteers were included in the study. The measurements of coronary flow velocity were performed by a single investigator with expertise in transthoracic Doppler harmonic echocardiography (TTDE). The AA amyloidosis subgroup had significantly lower CFR values than other non-amyloid CID patients and the control individuals (1.8 (1.5-2.1) vs. 2.1 (2.0-2.4) and 3.0 (2.8-3.2), p < 0.001). Multivariate logistic regression analysis indicated that the presence of AA amyloidosis and elevated hs - CRP independently predict impairment of the CFR (p < 0.05). The presence of AA amyloidosis is related to decreased CFR values and the presence of AA amyloidosis and elevated hs - CRP independently predict impairment of the CFR. Therefore, patients with AA amyloidosis may have an increased risk of developing coronary artery diseases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. LiDAR-Derived Surface Roughness Signatures of Basaltic Lava Types at the Muliwai a Pele Lava Channel, Mauna Ulu, Hawai'i

    NASA Technical Reports Server (NTRS)

    Whelley, Patrick L.; Garry, W. Brent; Hamilton, Christopher W.; Bleacher, Jacob E.

    2017-01-01

    We used light detection and ranging (LiDAR) data to calculate roughness patterns (homogeneity, mean-roughness, and entropy) for five lava types at two different resolutions (1.5 and 0.1 m/pixel). We found that end-member types (a a and pahoehoe) are separable (with 95% confidence) at both scales, indicating that roughness patterns are well suited for analyzing types of lava. Intermediate lavas were also explored, and we found that slabby-pahoehoe is separable from the other end-members using 1.5 m/pixel data, but not in the 0.1 m/pixel analysis. This suggests that the conversion from pahoehoe to slabby-pahoehoe is a meter-scale process, and the finer roughness characteristics of pahoehoe, such as ropes and toes, are not significantly affected. Furthermore, we introduce the ratio ENT/HOM (derived from lava roughness) as a proxy for assessing local lava flow rate from topographic data. High entropy and low homogeneity regions correlate with high flow rate while low entropy and high homogeneity regions correlate with low flow rate.We suggest that this relationship is not directional, rather it is apparent through roughness differences of the associated lava type emplaced at the high and low rates, respectively.

  18. Thermal and Dynamic Properties of Volcanic Lava Inferred from Measurements on its Surface

    NASA Astrophysics Data System (ADS)

    Ismail-Zadeh, A.; Korotkii, A.; Kovtunov, D.; Tsepelev, I.; Melnik, O. E.

    2015-12-01

    Modern remote sensing technologies allow for detecting the absolute temperature at the surface of volcanic lava, and the heat flow could be then inferred from the Stefan-Boltzmann law. Is it possible to use these surface thermal data to constrain the thermal and dynamic conditions inside the lava? We propose a quantitative approach to reconstruct temperature and velocity in the steady-state volcanic lava flow from thermal observations at its surface. This problem is reduced to a combination of the direct and inverse problems of mass- and heat transport. Namely, using known conditions at the lava surface we determine the missing condition at the bottom of lava (the inverse problem) and then search for the physical properties of lava - temperature and flow velocity - inside the lava (the direct problem). Assuming that the lava rheology and the thermal conductivity are temperature-dependent, we determine the flow characteristics in the model domain using an adjoint method. We show that in the case of smooth input data (observations) the lava temperature and the flow velocity can be reconstructed with a high accuracy. The noise imposed on the smooth input data results in a less accurate solution, but still acceptable below some noise level.

  19. Learning to Characterize Submarine Lava Flow Morphology at Seamounts and Spreading Centers using High Definition Video and Photomosaics

    NASA Astrophysics Data System (ADS)

    Fundis, A. T.; Sautter, L. R.; Kelley, D. S.; Delaney, J. R.; Kerr-Riess, M.; Denny, A. R.; Elend, M.

    2010-12-01

    In August, 2010 the UW ENLIGHTEN ’10 expedition provided ~140 hours of seafloor HD video footage at Axial Seamount, the most magmatically robust submarine volcano on the Juan de Fuca Ridge. During this expedition, direct imagery from an Insite Pacific HD camera mounted on the ROV Jason 2 was used to classify broad expanses of seafloor where high power (8 kw) and high bandwidth (10 Gb/s) fiber optic cable will be laid as part of the Regional Scale Nodes (RSN) component of the NSF funded Ocean Observatories Initiative. The cable will provide power and two-way, real-time communication to an array of >20 sensors deployed at the summit of the volcano and at active sites of hydrothermal venting to investigate how active processes within the volcano and at seafloor hot springs within the caldera are connected. In addition to HD imagery, over 10,000 overlapping photographs from a down-looking still camera were merged and co-registered to create high resolution photomosaics of two areas within Axial’s caldera. Thousands of additional images were taken to characterize the seafloor along proposed cable routes, allowing optimal routes to be planned well in advance of deployment. Lowest risk areas included those free of large collapse basins, steep flow fronts and fissures. Characterizing the modes of lava distribution across the seafloor is crucial to understanding the construction history of the upper oceanic crust at mid-ocean ridges. In part, reconstruction of crustal development and eruptive histories can be inferred from surface flow morphologies, which provide insights into lava emplacement dynamics and effusion rates of past eruptions. An online resource is under development that will educate students about lava flow morphologies through the use of HD video and still photographs. The objective of the LavaFlow exercise is to map out a proposed cable route across the Axial Seamount caldera. Students are first trained in appropriate terminology and background content

  20. Extensive lava flow fields on Venus: Preliminary investigation of source elevation and regional slope variations

    NASA Technical Reports Server (NTRS)

    Magee-Roberts, K.; Head, James W., III; Lancaster, M. G.

    1992-01-01

    Large-volume lava flow fields have been identified on Venus, the most areally extensive of which are known as fluctus and have been subdivided into six morphologic types. Sheetlike flow fields (Type 1) lack the numerous, closely spaced, discrete lava flow lobes that characterize digitate flow fields. Transitional flow fields (Type 2) are similar to sheetlike flow fields but contain one or more broad flow lobes. Digitate flow fields are divided further into divergent (Types 3-5) and subparallel (Type 6) classes on the basis of variations in the amount of downstream flow divergence. As a result of our previous analysis of the detailed morphology, stratigraphy, and tectonic associations of Mylitta Fluctus, we have formulated a number of questions to apply to all large flow fields on Venus. In particular, we would like to address the following: (1) eruption conditions and style of flow emplacement (effusion rate, eruption duration), (2) the nature of magma storage zones (presence of neutral buoyancy zones, deep or shallow crustal magma chambers), (3) the origin of melt and possible link to mantle plumes, and (4) the importance of large flow fields in plains evolution. To answer these questions we have begun to examine variations in flow field dimension and morphology; the distribution of large flow fields in terms of elevation above the mean planetary radius; links to regional tectonic or volcanic structures (e.g., associations with large shield edifices, coronae, or rift zones); statigraphic relationships between large flow fields, volcanic plains, shields, and coronae; and various models of flow emplacement in order to estimate eruption parameters. In this particular study, we have examined the proximal elevations and topographic slopes of 16 of the most distinctive flow fields that represent each of the 6 morphologic types.

  1. Morphometric study of pillow-size spectrum among pillow lavas

    NASA Astrophysics Data System (ADS)

    Walker, George P. L.

    1992-08-01

    Measurements of H and V (dimensions in the horizontal and vertical directions of pillows exposed in vertical cross-section) were made on 19 pillow lavas from the Azores, Cyprus, Iceland, New Zealand, Tasmania, the western USA and Wales. The median values of H and V plot on a straight line that defines a spectrum of pillow sizes, having linear dimensions five times greater at one end than at the other, basaltic toward the small-size end and andesitic toward the large-size end. The pillow median size is interpreted to reflect a control exercised by lava viscosity. Pillows erupted on a steep flow-foot slope in lava deltas can, however, have a significantly smaller size than pillows in tabular pillowed flows (inferred to have been erupted on a small depositonal slope), indicating that the slope angle also exercised a control. Pipe vesicles, generally abundant in the tabular pillowed flows and absent from the flow-foot pillows, have potential as a paleoslope indicator. Pillows toward the small-size end of the spectrum are smooth-surfaced and grew mainly by stretching of their skin, whereas disruption of the skin and spreading were important toward the large-size end. Disruption involved increasing skin thicknesses with increasing pillow size, and pillows toward the large-size end are more analogous with toothpaste lava than with pahoehoe and are inferred from their thick multiple selvages to have taken hours to grow. Pseudo-pillow structure is also locally developed. An example of endogenous pillow-lava growth, that formed intrusive pillows between ‘normal’ pillows, is described from Sicily. Isolated pillow-like bodies in certain andesitic breccias described from Iceland were previously interpreted to be pillows but have anomalously small sizes for their compositions; it is now proposed that they may lack an essential attribute of pillows, namely, the development of bulbous forms by the inflation of a chilled skin, and are hence not true pillows. Para-pillow lava is

  2. Dynamics of the Mount Nyiragongo lava lake

    NASA Astrophysics Data System (ADS)

    Burgi, P.-Y.; Darrah, T. H.; Tedesco, D.; Eymold, W. K.

    2014-05-01

    The permanent and presently rising lava lake at Mount Nyiragongo constitutes a major potential geological hazard to the inhabitants of the Virunga volcanic region in the Democratic Republic of Congo (DRC) and Rwanda. Based on two field campaigns in June 2010 and 2011, we estimate the lava lake level from the southeastern crater rim (~400 m diameter) and lava lake area (~46,550 m2), which constrains, respectively, the lava lake volume (~9 × 106 m3) and volume flow rate needed to keep the magma in a molten state (0.6 to 3.5 m3 s-1). A bidirectional magma flow model, which includes the characterization of the conduit diameter and funnel-shaped lava lake geometry, is developed to constrain the amount of magma intruded/emplaced within the magmatic chamber and rift-related structures that extend between Mount Nyiragongo's volcanic center and the city of Goma, DRC, since Mount Nyiragongo's last eruption (17 January 2002). Besides matching field data of the lava lake level covering the period 1977 to 2002, numerical solutions of the model indicate that by 2022, 20 years after the January 2002 eruption, between 300 and 1700 × 106 m3 (0.3 to 1.7 km3) of magma could have intruded/emplaced underneath the edifice, and the lava lake volume could exceed 15 × 106 m3.

  3. Lava inundation zone maps for Mauna Loa, Island of Hawaiʻi, Hawaii

    USGS Publications Warehouse

    Trusdell, Frank A.; Zoeller, Michael H.

    2017-10-12

    Lava flows from Mauna Loa volcano, on the Island of Hawaiʻi, constitute a significant hazard to people and property. This report addresses those lava flow hazards, mapping 18 potential lava inundation zones on the island.

  4. Effusive silicic volcanism in the Paraná Magmatic Province, South Brazil: Evidence for locally-fed lava flows and domes from detailed field work

    NASA Astrophysics Data System (ADS)

    Polo, L. A.; Janasi, V. A.; Giordano, D.; Lima, E. F.; Cañon-Tapia, E.; Roverato, M.

    2018-04-01

    Lava flows and dome complexes of silicic composition were identified in the Lower Cretaceous Paraná Magmatic Province (PMP) at Rio Grande do Sul state, southern Brazil. Detailed mapping and image analysis reveals significant volumes of effusive deposits aligned according to main lineaments, likely representing the fissural systems that fed the three Palmas-type silicic units. Different structures indicative of effusive emplacement (lava domes, lobated flows, sheet flows and autobreccias) are very common in the study area, and are probably also more abundant than previously thought in whole PMP silicic magmatism. In fact, effusive deposits seem predominant in the three distinct silicic units identified in the area, since no remnants of pyroclastic components have been identified. The vitreous dacites that make up the upper flows of the basaltic andesite to dacite Barros Cassal sequence are clearly effusive, as indicated by their occurrence as thin sheet flows. The much thicker early Caxias do Sul dacites occur mostly as lava flow lobes and pancake-like, of low to moderate viscosity, and lava domes. The younger, high SiO2 Santa Maria rhyolite unit shows unequivocal examples of effusive deposits at its lower portion, as lobated flows formed by vesicle-rich obsidian. In spite of higher viscosities relative to the previous units ( 106 Pa·s), it is probable that the very low H2O contents 1 wt% of these rhyolite melts, associated with high discharge rates, resulted in an effusive nature in most to this unit.

  5. AMS analysis and flow source relationship of lava flows and ignimbrites from the eastern Trans-Mexican Volcanic Belt, Mexico

    NASA Astrophysics Data System (ADS)

    Caballero, C. I.; Alva-Valdivia, L. M.; Morales-Barrera, W.; Rodríguez, S. R.

    2013-05-01

    The results of an AMS analysis carried on 36 sites from a late Miocene - Holocene volcanic stratigraphic sequence from the eastern Trans-Mexican Volcanic Belt is presented. 22 sites (450 samples) belong to lava flows, mainly of basaltic composition, from different emission centers from the Xalapa Monogenitc Volcanic Field, (Rodríguez et al 2010, González-Mercado, 2005), "Cofre de Perote Vent Cluster" (CPVC), "Naolinco Volcanic Field" (NVF), (Siebert and Carrasco-Núñez, 2002), and the Chiconquiaco-Palma Sola volcanic complex (López-Infanzón, 1991; Ferrari et al., 2005). 14 sites belong to the widely distributed El Castillo rhyolitic ignimbrite dated 2.44 to 2.21 Ma (Morales-Barrera, 2009) which is a non-welded to welded ignimbrite. AMS measurements were performed with a KLY2 Kappabridge and processed with Anisoft software using Jelinek statistics. Sometimes a density distribution analysis was also performed when magnetic fabric showed more dispersed distribution patterns. AMS ellipsoids from basalt sites show mostly prolate shapes, while those from ignimbrites show mostly oblate shapes, which may partly due to magnetic mineralogy and also to flow dynamics. Flow directions were mostly obtained from the imbrication angle of magnetic foliation (evaluated from kmin axis mean as corresponding to its pole) and considering the symmetry of the axes distribution. Flow direction inferences are discussed in relation with flow source when it is clearly evident from geologic field observations, as it is usually the case with basalt lava flows. While in ignimbrites, flow inferences from petrographic and facies distributions are compared with AMS flow inferences, showing agreement between them in some cases but not in others, may be due to local tilting occurring after ignimbrite emplacement.

  6. The Kilauea 1974 Flow: Quantitative Morphometry of Lava Flows using Low Altitude Aerial Image Data using a Kite-based Platform in the Field

    NASA Astrophysics Data System (ADS)

    Scheidt, S. P.; Whelley, P.; Hamilton, C.; Bleacher, J. E.; Garry, W. B.

    2015-12-01

    The December 31, 1974 lava flow from Kilauea Caldera, Hawaii within the Hawaii Volcanoes National Park was selected for field campaigns as a terrestrial analog for Mars in support of NASA Planetary Geology and Geophysics (PGG) research and the Remote, In Situ and Synchrotron Studies for Science and Exploration (RIS4E) node of the Solar System Exploration Research Virtual Institute (SSERVI) program). The lava flow was a rapidly emplaced unit that was strongly influenced by existing topography, which favored the formation of a tributary lava flow system. The unit includes a diverse range of surface textures (e.g., pāhoehoe, ´áā, and transitional lavas), and structural features (e.g., streamlined islands, pits, and interactions with older tumuli). However, these features are generally below the threshold of visibility within previously acquired airborne and spacecraft data. In this study, we have generated unique, high-resolution digital images using low-altitude Kite Aerial Photography (KAP) system during field campaigns in 2014 and 2015 (National Park Service permit #HAVO-2012-SCI-0025). The kite-based mapping platform (nadir-viewing) and a radio-controlled gimbal (allowing pointing) provided similar data as from an unmanned aerial vehicle (UAV), but with longer flight time, larger total data volumes per sortie, and fewer regulatory challenges and cost. Images acquired from KAP and UAVs are used to create orthomosaics and DEMs using Multi-View Stereo-Photogrammetry (MVSP) software. The 3-Dimensional point clouds are extremely dense, resulting in a grid resolution of < 2 cm. Airborne Light Detection and Ranging (LiDAR) / Terrestrial Laser Scanning (TLS) data have been collected for these areas and provide a basis of comparison or "ground truth" for the photogrammetric data. Our results show a good comparison with LiDAR/TLS data, each offering their own unique advantages and potential for data fusion.

  7. Numerical modelling of erosion and assimilation of sulfur-rich substrate by martian lava flows: Implications for the genesis of massive sulfide mineralization on Mars

    NASA Astrophysics Data System (ADS)

    Baumgartner, Raphael J.; Baratoux, David; Gaillard, Fabrice; Fiorentini, Marco L.

    2017-11-01

    Mantle-derived volcanic rocks on Mars display physical and chemical commonalities with mafic-ultramafic ferropicrite and komatiite volcanism on the Earth. Terrestrial komatiites are common hosts of massive sulfide mineralization enriched in siderophile-chalcophile precious metals (i.e., Ni, Cu, and the platinum-group elements). These deposits correspond to the batch segregation and accumulation of immiscible sulfide liquids as a consequence of mechanical/thermo-mechanical erosion and assimilation of sulfur-rich bedrock during the turbulent flow of high-temperature and low-viscosity komatiite lava flows. This study adopts this mineralization model and presents numerical simulations of erosion and assimilation of sulfide- and sulfate-rich sedimentary substrates during the dynamic emplacement of (channelled) mafic-ultramafic lava flows on Mars. For sedimentary substrates containing adequate sulfide proportions (e.g., 1 wt% S), our simulations suggest that sulfide supersaturation in low-temperature (< 1350 °C) flows could be attained at < 200 km distance, but may be postponed in high-temperature lavas flows (> 1400 °C). The precious-metals tenor in the derived immiscible sulfide liquids may be significantly upgraded as a result of their prolonged equilibration with large volumes of silicate melts along flow conduits. The influence of sulfate assimilation on sulfide supersaturation in martian lava flows is addressed by simulations of melt-gas equilibration in the Csbnd Hsbnd Osbnd S fluid system. However, prolonged sulfide segregation and deposit genesis by means of sulfate assimilation appears to be limited by lava oxidation and the release of sulfur-rich gas. The identification of massive sulfide endowments on Mars is not possible from remote sensing data. Yet the results of this study aid to define regions for the potential occurrence of such mineral systems, which may be the large canyon systems Noctis Labyrinthus and Valles Marineris, or the Hesperian channel

  8. Io's Volcanism: Thermo-Physical Models of Silicate Lava Compared with Observations of Thermal Emission

    NASA Technical Reports Server (NTRS)

    Davies, Ashely G.

    1996-01-01

    Analyses of thermal infrared outbursts from the jovian satellite Io indicate that at least some of these volcanic events are due to silicate lava. Analysis of the January 9, 1990 outburst indicates that this was an active eruption consisting of a large lava flow (with mass eruption rate of order 10(exp 5) cubic m/sec) and a sustained area at silicate liquidus temperatures. This is interpreted as a series of fire fountains along a rift zone. A possible alternative scenario is that of an overflowing lava lake with extensive fire fountaining. The January 9, 1990 event is unique as multispectral observations with respect to time were obtained. In this paper, a model is presented for the thermal energy lost by active and cooling silicate lava flows and lakes on Io. The model thermal emission is compared with Earth-based observations and Voyager IRIS data. The model (a) provides an explanation of the thermal anomalies on Io's surface; (b) provides constraints on flow behavior and extent and infers some flow parameters; and (c) determines flow geometry and change in flow size with time, and the temperature of each part of the flow or lava lake surface as a function of its age. Models of heat output from active lava flows or inactive but recently emplaced lava flows or overturning lava lakes alone are unable to reproduce the observations. If the January 9, 1990 event is the emplacement of a lava flow, the equivalent of 27 such events per year would yield a volume of material sufficient, if uniformly distributed, to resurface all of Io at a rate of 1 cm/year.

  9. Geochronology and geochemistry of lavas from the 1996 North Gorda Ridge eruption

    NASA Astrophysics Data System (ADS)

    Rubin, K. H.; Smith, M. C.; Perfit, M. R.; Christie, D. M.; Sacks, L. F.

    1998-12-01

    Radiometric dating of three North Gorda Ridge lavas by the 210Po- 210Pb method confirms that an eruption occurred during a period of increased seismic activity along the ridge during late February/early March 1996. These lavas were collected following detection of enhanced T-phase seismicity and subsequent ocean bottom photographs documented the existence of a large pillow mound of fresh-appearing lavas. 210Po- 210Pb dating of these lavas indicates that an eruption coinciding with this seismicity did occur (within analytical error) and that followup efforts to sample the recent lava flows were successful. Compositions of the three confirmed young lavas and eleven other samples of this contiguous "new flow" sequence are distinct from older lavas from this area but are variable at a level outside analytical uncertainty. These intraflow variations can not easily be related to a single, common parent magma. Compositional variability within the new flow is compared to that of other recently documented individual flow sequences, and this comparison reveals a strong positive correlation of compositional variance with flow volumes spanning a range of >2 orders of magnitude. The geochemical heterogeneity in the North Gorda new flow probably reflects incomplete mixing of magmas generated from a heterogeneous mantle source or from slightly different melting conditions of a single source. The compositional variability, range in sample ages (up to 6 weeks) and range in active seismicity (4 weeks) imply that this relatively large flow was erupted over an interval of several weeks.

  10. Interaction of sea water and lava during submarine eruptions at mid-ocean ridges

    USGS Publications Warehouse

    Perfit, M.R.; Cann, J.R.; Fornari, D.J.; Engels, J.; Smith, D.K.; Ridley, W.I.; Edwards, M.H.

    2003-01-01

    Lava erupts into cold sea water on the ocean floor at mid-ocean ridges (at depths of 2,500 m and greater), and the resulting flows make up the upper part of the global oceanic crust. Interactions between heated sea water and molten basaltic lava could exert significant control on the dynamics of lava flows and on their chemistry. But it has been thought that heating sea water at pressures of several hundred bars cannot produce significant amounts of vapour and that a thick crust of chilled glass on the exterior of lava flows minimizes the interaction of lava with sea water. Here we present evidence to the contrary, and show that bubbles of vaporized sea water often rise through the base of lava flows and collect beneath the chilled upper crust. These bubbles of steam at magmatic temperatures may interact both chemically and physically with flowing lava, which could influence our understanding of deep-sea volcanic processes and oceanic crustal construction more generally. We infer that vapour formation plays an important role in creating the collapse features that characterize much of the upper oceanic crust and may accordingly contribute to the measured low seismic velocities in this layer.

  11. Endogenous growth in channelized komatiite lava flows: evidence from spinifex-textured sills at Pyke Hill and Serpentine Mountain, Western Abitibi Greenstone Belt, Northeastern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Houlé, Michel G.; Préfontaine, Sonia; Fowler, Anthony D.; Gibson, Harold L.

    2009-10-01

    Spinifex-textured sills (i.e., veins) characterized by komatiitic magmas that have intruded their own volcanic-piles have long been recognized. For instance, in the early 1970s, Pyke and coworkers, in their classic work at Pyke Hill in Munro Township, noted that not all spinifex-bearing ultramafic rocks formed as lava flows, rather some were clearly emplaced as small dikes and sills. Several hypotheses have been proposed to explain spinifex-textured sills: intrusion into a cold host, filter pressing, or drainage of residual liquid. However, these do not satisfactorily explain the phenomenon. Field and petrographic observations at Pyke Hill and Serpentine Mountain demonstrate that spinifex-bearing komatiite sills and dikes were emplaced during channel inflation processes when new magma was intruded into a cooler, semi-consolidated but permeable cumulate material. Komatiitic liquids were intruded into the olivine cumulate rocks near the boundary between the spinifex and the cumulate zones of well-organized to organized komatiite flows. Spinifex-textured sills are generally tabular in morphology, stacked one above another, with curviplanar contacts sub-parallel to stratigraphy. Some sills exhibit complex digitated apophyses. Thinner sills typically have a random olivine spinifex texture similar, though generally composed of coarser crystals, to that of komatiite lava flows. Thicker sills exhibit more complex organization of their constituent crystals characterized by zones of random olivine spinifex, overlying zones of organized coarse spinifex crystals similar to those found in lava flows. They have striking coarse dendritic spinifex zones composed of very large olivine crystals, up to several centimetres long and up to 1 cm wide that are not observed in lava flows. Typically, at the sill margins, the cumulate material of the host flow is composed of euhedral to subhedral olivine crystals that are larger than those distal to the contact. Many of these margin

  12. Community preparedness for lava flows from Mauna Loa and Hualālai volcanoes, Kona, Hawai'i

    USGS Publications Warehouse

    Gregg, Chris E.; Houghton, Bruce F.; Paton, Douglas; Swanson, Donald A.; Johnston, David M.

    2004-01-01

    Lava flows from Mauna Loa and Huala??lai volcanoes are a major volcanic hazard that could impact the western portion of the island of Hawai'i (e.g., Kona). The most recent eruptions of these two volcanoes to affect Kona occurred in A.D. 1950 and ca. 1800, respectively. In contrast, in eastern Hawai'i, eruptions of neighboring Ki??lauea volcano have occurred frequently since 1955, and therefore have been the focus for hazard mitigation. Official preparedness and response measures are therefore modeled on typical eruptions of Ki??lauea. The combinations of short-lived precursory activity (e.g., volcanic tremor) at Mauna Loa, the potential for fast-moving lava flows, and the proximity of Kona communities to potential vents represent significant emergency management concerns in Kona. Less is known about past eruptions of Huala??lai, but similar concerns exist. Future lava flows present an increased threat to personal safety because of the short times that may be available for responding. Mitigation must address not only the specific characteristics of volcanic hazards in Kona, but also the manner in which the hazards relate to the communities likely to be affected. This paper describes the first steps in developing effective mitigation plans: measuring the current state of people's knowledge of eruption parameters and the implications for their safety. We present results of a questionnaire survey administered to 462 high school students and adults in Kona. The rationale for this study was the long lapsed time since the last Kona eruption, and the high population growth and expansion of infrastructure over this time interval. Anticipated future growth in social and economic infrastructure in this area provides additional justification for this work. The residents of Kona have received little or no specific information about how to react to future volcanic eruptions or warnings, and short-term preparedness levels are low. Respondents appear uncertain about how to respond

  13. Drained Lava Tubes and Lobes From Eocretaceous Paraná-Etendeka Province, Brazil

    NASA Astrophysics Data System (ADS)

    Waichel, B. L.; Lima, E. F. D.; Mouro, L. D.; Briske, D. R.; Tratz, E. B.

    2017-12-01

    The identification of lava tubes in continental flood basalt provinces (CFBP) is difficult and reports of preserved drained tubes and lobes are rare. The large extension of CFBP must be related to an efficient transport of lava and tubes are the most efficient mechanism to transport lava in insulated pathways, like observed in modern volcanic fields. Looking for caves in the central portion of Paraná-Etendeka Province, we discovered drained lava tubes (4) and lobes (6) in a volcanic sequence constituted by pahoehoe flows. Lava tubes are: Casa de Pedra, Perau Branco, Dal Pae and Pinhão. The Casa de Pedra tube system is composed of two principal chambers with similar dimensions, reaching up to 10 m long and 4.0 m high connected by a narrow passage. The general form of the chamber is hemispherical, with re-entrances of ellipsoidal shape probably formed by small lava lobes and collapse structures in the roof. The second chamber is connected with three secondary lava tubes. Columns in the cave are formed when the flowing lava separates in two lava channels that join again further down the system, forming and anastomosing tube network. Lateral lava benches and lava drainings at the walls are observed in secondary tubes. The general lava flow is to SW. The Perau Branco system is composed of five tubes with ellipsoidal openings. The main features are the long tubes that emerge from the small flattened chambers. One tube is more than 20 m long, with alternating circular and flattened ellipsoidal sections. The general lava flow is to NE. Pinhão tube is spherical with 3 meters diameter and 15 m long, with lava flow orientation to NW. This tube has a bottleneck shape with linings (up to 3 cm thick), which are observed in the roof and walls. Dal Pae Tube is 10 m long with an ellipsoidal opening, bottleneck shape and orientation to NE. The lava flow directions measured in the tubes is to SW (Casa de Pedra, Pinhão) and NE (Perau Branco, Dal Pae) and this pattern is related to

  14. ´Áā lava flows in the Deccan Volcanic Province, India, and their significance for the nature of continental flood basalt eruptions

    NASA Astrophysics Data System (ADS)

    Brown, Richard J.; Blake, S.; Bondre, N. R.; Phadnis, V. M.; Self, S.

    2011-08-01

    Newly identified ´áā lava flows outcrop intermittently over an area of ~110 km2 in the western Deccan Volcanic Province (DVP), India. They occur in the upper Thakurvadi Formation in the region south of Sangamner. The flows, one of which is compound, are 15-25 m thick, and exhibit well-developed basal and flow-top breccias. The lavas have microcrystalline groundmasses and are porphyritic or glomerocrystic and contain phenocrysts of olivine, clinopyroxene or plagioclase feldspar. They are chemically similar to compound pāhoehoe flows at a similar stratigraphic horizon along the Western Ghats. Petrographic and geochemical differences between ´áā flows at widely spaced outcrops at the same stratigraphic horizon suggest that they are the product of several eruptions, potentially from different sources. Their presence in the DVP could suggest relative proximity to vents. This discovery is significant because ´áā lavas are generally scarce in large continental flood basalt provinces, which typically consist of numerous inflated compound pāhoehoe lobes and sheet lobes. Their scarcity is intriguing, and may relate to either their occurrence only in poorly preserved or exposed proximal areas or to the flat plateau-like topography of flood basalt provinces that may inhibit channelization and ´áā formation, or both. In this context, the ´áā flow fields described here are inferred to be the products of eruptions that produced unusually high-effusion-rate lavas compared to typical flood basalt eruptions. Whether these phases were transitional to lower intensity, sustained eruptions that fed extensive low effusion rate pāhoehoe flow fields remains unclear.

  15. Persistent Axial Dipole Decay for Past 400 Years Deduced from Lava Flows in Japan

    NASA Astrophysics Data System (ADS)

    Fukuma, K.

    2017-12-01

    Temporal variation of the axial dipole moment g10 was deduced from paleointensity data that were obtained from volcanic islands Izu-Oshima and Miyakejima in Japan for the last 400 years, combined with historical field model gufm1. The basaltic lava flows are precisely dated based on ancient documents on the eruptions. Essentially no age error is necessary to be counted. Thellier paleointensity measurements were performed using a fully automated magnetometer-furnace system "tspin" using about 450 specimens, which were mainly collected from clinkers and scorias. Appropriate Thellier temperature steps for each specimen were chosen, based on the thermomagnetic curve that was quite variable depending on the vertical position within a lava flow. The newly obtained paleointensities are much more consistent between sites and provide more reliable paleointensity variation than previous data from lava interiors. I applied the method as Gubbins et al. [2006] to this single spot paleointensity variation from Japan, and obtained persisitent decay of the axial dipole moment over the last 400 years. Contrary to gufm1's assumption that g10 linearly decayed from 1590 to 1840 as extrapolating the post-1840 instrumental records, Gubbins et al. [2006] argued no definite temporal trend on g10 recognizable from the existing archeointensity database. The g10 variation calculated from the previous paleointensity data are seriously discredited by both age and intensity errors resulted from various materials, locations and experimental methods involved. Our single spot and well-dated paleointensity data are free from the problems and support persistent axial dipole decay for past 400 years as assumed in gufm1.

  16. 0-2 Ma Paleomagnetic Field Behavior from Lava Flow Data Sets

    NASA Astrophysics Data System (ADS)

    Johnson, C. L.; Constable, C.; Tauxe, L.; Cromwell, G.

    2010-12-01

    The global time-averaged (TAF) structure of the paleomagnetic field and paleosecular variation (PSV) provide important constraints for numerical geodynamo simulations. Studies of the TAF have sought to characterize the nature of non-geocentric-axial dipole contributions to the field, in particular any such contributions that may be diagnostic of the influence of core-mantle boundary conditions on field generation. Similarly geographical variations in PSV are of interest, in particular the long-standing debate concerning anomalously low VGP (virtual geomagnetic pole) dispersion at Hawaii. Here, we analyze updated global directional data sets from lava flows. We present global models for the time-averaged field for the Brunhes and Matuyama epochs. New TAF models based on lava flow directional data for the Brunhes show longitudinal structure. In particular, high latitude flux lobes are observed, constrained by improved data sets from N. and S. America, Japan, and New Zealand. Anomalous TAF structure is also observed in the region around Hawaii. At Hawaii, previous inferences of the anomalous TAF (large inclination anomaly) and PSV (low VGP dispersion) have been argued to be the result of temporal sampling bias toward young flows. We use resampling techniques to examine possible biases in the TAF and PSV incurred by uneven temporal sampling. Resampling of the paleodirectional data onto a uniform temporal distribution, incorporating site ages and age errors leads to a TAF estimate for the Brunhes that is close to that reported for the actual data set, but an estimate for VGP dispersion that is increased relative to that obtained from the unevenly sampled data. Future investigations will incorporate the temporal resampling procedures into TAF modeling efforts, as well as recent progress in modeling the 0-2 Ma paleomagnetic dipole moment.

  17. Reconstruction of lava fields based on 3D and conventional images. Arenal volcano, Costa Rica.

    NASA Astrophysics Data System (ADS)

    Horvath, S.; Duarte, E.; Fernandez, E.

    2007-05-01

    Conventional air photographs, multi-spectral images and a map scale 1:10 000 were used to upgrade Arenal volcano's lava field. Arenal volcano located in NW Costa Rica has been active for 39 years. Fifty two days after the initial explosive events that opened three craters on the west flank, lava flows were erupted from crater A (1050 m) in September, 1968 and continued flowing until November, 1973. These lavas were the most voluminous of the eruption and the effusion rate of lava was relatively high in this period. In April, 1974 lava flows were erupted from crater C (1460 m) and continue to present time. Younger lava flows extended over uncovered ground to the south and southwest in the 1980s and early 1990s and onto the northern slopes in the 1990s and 2000s. Lava flows are becoming shorter and narrower with time. Therefore, the centre of mass of the whole lava flow-field has migrated closer to the vent. Above crater C a cone has been growing steadily, reaching a height of 1670 m, 36 m higher than the prehistoric Arenal cone by 2004. After 39 years of continuous emission of lava flows, the profile of Arenal volcano consists of a duplet of cones whose summits are separated by less than 500 meters. Most of the build up around the new cone comes from varied lava flows. For near 30 years volcano monitoring staff (from OVSICORI-UNA) has recorded field observations of regular and extraordinary events, in paper. Several drafts maps have been used for teaching, academic presentations and for graphic explanations to specific audiences and to the general public. An upgraded version was needed. The purpose of this work is to present the most recent lava flows giving a visual presentation of them by computer methods. Combined SIG techniques (Arc View 3.3) and ERDAS produced a base map in which layers containing the recorded lava flows from the recent 16 years, were depicted. Each lava flow has its own characteristics: direction, year of origin, width, length, surface texture

  18. The Taylor Creek Rhyolite of New Mexico: a rapidly emplaced field of lava domes and flows

    USGS Publications Warehouse

    Duffield, W.A.; Dalrymple, G.B.

    1990-01-01

    The Tertiary Taylor Creek Rhyolite of southwest New Mexico comprises at least 20 lava domes and flows. Each of the lavas was erupted from its own vent, and the vents are distributed throughout a 20 km by 50 km area. The volume of the rhyolite and genetically associated pyroclastic deposits is at least 100 km3 (denserock equivalent). The rhyolite contains 15%-35% quartz, sanidine, plagioclase, ??biotite, ??hornblende phenocrysts. Quartz and sanidine account for about 98% of the phenocrysts and are present in roughly equal amounts. With rare exceptions, the groundmass consists of intergrowths of fine-grained silica and alkali feldspar. Whole-rock major-element composition varies little, and the rhyolite is metaluminous to weakly peraluminous; mean SiO2 content is about 77.5??0.3%. Similarly, major-element compositions of the two feldsparphenocryst species also are nearly constant. However, whole-rock concentrations of some trace-elements vary as much as several hundred percent. Initial radiometric age determinations, all K-Ar and fission track, suggest that the rhyolite lava field grew during a period of at least 2 m.y. Subsequent 40Ar/39Ar ages indicate that the period of growth was no more than 100 000 years. The time-space-composition relations thus suggest that the Taylor Creek Rhyolite was erupted from a single magma reservoir whose average width was at least 30 km, comparable in size to several penecontemporaneous nearby calderas. However, this rhyolite apparently is not related to a caldera structure. Possibly, the Taylor Creek Phyolite magma body never became sufficiently volatile rich to produce a large-volume pyroclastic eruption and associated caldera collapse, but instead leaked repeatedly to feed many relatively small domes and flows. The new 40Ar/39Ar ages do not resolve preexisting unknown relative-age relations among the domes and flows of the lava field. Nonetheless, the indicated geologically brief period during which Taylor Creek Rhyolite magma was

  19. Proximal lava drainage controls on basaltic fissure eruption dynamics

    NASA Astrophysics Data System (ADS)

    Jones, T. J.; Llewellin, E. W.; Houghton, B. F.; Brown, R. J.; Vye-Brown, C.

    2017-11-01

    Hawaiian basaltic eruptions commonly initiate as a fissure, producing fountains, spattering, and clastogenic lava flows. Most fissures rapidly localize to form a small number of eruptive vents, the location of which may influence the subsequent distribution of lava flows and associated hazards. We present results from a detailed field investigation of the proximal deposits of episode 1 of the 1969 fissure eruption of Mauna Ulu, Kīlauea, Hawai`i. Exceptional preservation of the deposits allows us to reconstruct vent-proximal lava drainage patterns and to assess the role that drainage played in constraining vent localization. Through detailed field mapping, including measurements of the height and internal depth of lava tree moulds, we reconstruct high-resolution topographic maps of the pre-eruption ground surface, the lava high-stand surface and the post-eruption ground surface. We calculate the difference in elevation between pairs of maps to estimate the lava inundation depth and lava drainage depth over the field area and along different segments of fissure. Aerial photographs collected during episode 1 of the eruption allow us to locate those parts of the fissure that are no longer exposed at the surface. By comparing with the inundation and drainage maps, we find that fissure segments that were inundated with lava to greater depths (typically 1-6 m) during the eruption later became foci of lava drainage back into the fissure (internal drain-back). We infer that, in these areas, lava ponding over the fissure suppressed discharge of magma, thereby favouring drain-back and stagnation. By contrast, segments with relatively shallow inundation (typically less than 1 m), such as where the fissure intersects pre-eruptive topographic highs, or where flow away from the vent (outflow) was efficient, are often associated with sub-circular vent geometries in the post-eruption ground surface. We infer that these parts of the fissure became localization points for ongoing

  20. Paleomagnetic correlation of surface and subsurface basaltic lava flows and flow groups in the southern part of the Idaho National Laboratory, Idaho, with paleomagnetic data tables for drill cores

    USGS Publications Warehouse

    Champion, Duane E.; Hodges, Mary K.V.; Davis, Linda C.; Lanphere, Marvin A.

    2011-01-01

    Paleomagnetic inclination and polarity studies have been conducted on thousands of subcore samples from 51 coreholes located at and near the Idaho National Laboratory. These studies are used to paleomagnetically characterize and correlate successive stratigraphic intervals in each corehole to similar depth intervals in adjacent coreholes. Paleomagnetic results from 83 surface paleomagnetic sites, within and near the INL, are used to correlate these buried lava flow groups to basaltic shield volcanoes still exposed on the surface of the eastern Snake River Plain. Sample handling and demagnetization protocols are described as well as the paleomagnetic data averaging process. Paleomagnetic inclination comparisons between coreholes located only kilometers apart show comparable stratigraphic successions of mean inclination values over tens of meters of depth. At greater distance between coreholes, comparable correlation of mean inclination values is less consistent because flow groups may be missing or additional flow groups may be present and found at different depth intervals. Two shallow intersecting cross-sections, A-A- and B-B- (oriented southwest-northeast and northwest-southeast, respectively), drawn through southwest Idaho National Laboratory coreholes show the corehole to corehole or surface to corehole correlations derived from the paleomagnetic inclination data. From stratigraphic top to bottom, key results included the (1) Quaking Aspen Butte flow group, which erupted from Quaking Aspen Butte southwest of the Idaho National Laboratory, flowed northeast, and has been found in the subsurface in corehole USGS 132; (2) Vent 5206 flow group, which erupted near the southwestern border of the Idaho National Laboratory, flowed north and east, and has been found in the subsurface in coreholes USGS 132, USGS 129, USGS 131, USGS 127, USGS 130, USGS 128, and STF-AQ-01; and (3) Mid Butte flow group, which erupted north of U.S. Highway 20, flowed northwest, and has been

  1. Fracture patterns at lava-ice contacts on Kokostick Butte, OR, and Mazama Ridge, Mount Rainier, WA: Implications for flow emplacement and cooling histories

    NASA Astrophysics Data System (ADS)

    Lodge, Robert W. D.; Lescinsky, David T.

    2009-09-01

    Cooling lava commonly develop polygonal joints that form equant hexagonal columns. Such fractures are formed by thermal contraction resulting in an isotropic tensional stress regime. However, certain linear cooling fracture patterns observed at some lava-ice contacts do not appear to fit the model for formation of cooling fractures and columns because of their preferred orientations. These fracture types include sheet-like (ladder-like rectangular fracture pattern), intermediate (pseudo-aligned individual column-bounding fractures), and pseudopillow (straight to arcuate fractures with perpendicular secondary fractures caused by water infiltration) fractures that form the edges of multiple columns along a single linear fracture. Despite the relatively common occurrence of these types of fractures at lava-ice contacts, their significance and mode of formation have not been fully explored. This study investigates the stress regimes responsible for producing these unique fractures and their significance for interpreting cooling histories at lava-ice contacts. Data was collected at Kokostick Butte dacite flow at South Sister, OR, and Mazama Ridge andesite flow at Mount Rainier, WA. Both of these lava flows have been interpreted as being emplaced into contact with ice and linear fracture types have been observed on their ice-contacted margins. Two different mechanisms are proposed for the formation of linear fracture networks. One possible mechanism for the formation of linear fracture patterns is marginal bulging. Melting of confining ice walls will create voids into which flowing lava can deform resulting in margin-parallel tension causing margin-perpendicular fractures. If viewed from the ice-wall, these fractures would be steeply dipping, linear fractures. Another possible mechanism for the formation of linear fracture types is gravitational settling. Pure shear during compression and settling can result in a tensional environment with similar consequences as

  2. Lava flow topographic measurements for radar data interpretation

    NASA Technical Reports Server (NTRS)

    Campbell, Bruce A.; Garvin, James B.

    1993-01-01

    Topographic profiles at 25- and 5-cm horizontal resolution for three sites along a lava flow on Kilauea Volcano are presented, and these data are used to illustrate techniques for surface roughness analysis. Height and slope distributions and the height autocorrelation function are evaluated as a function of varying lowpass filter wavelength for the 25-cm data. Rms slopes are found to increase rapidly with decreasing topographic scale and are typically much higher than those found by modeling of Magellan altimeter data for Venus. A more robust description of the surface roughness appears to be the ratio of rms height to surface height correlation length. For all three sites this parameter falls within the range of values typically found from model fits to Magellan altimeter waveforms. The 5-cm profile data are used to estimate the effect of small-scale roughness on quasi-specular scattering.

  3. Generation of Hummocky Flow Morphology Revealed through Ground-based LiDAR Measurements of Actively Inflating Pahoehoe Lavas

    NASA Astrophysics Data System (ADS)

    Anderson, S. W.; Finnegan, D. C.; Byrnes, J. M.; Nicoll, K.

    2007-12-01

    Although the extrusion of pahoehoe lava flows is one of the most dominant planetary surface-forming processes in the solar system, emplacement models remain controversial, and affect our ability to understand the implications of continental effusive eruptions. To study the detailed growth patterns of an actively inflating hummocky pahoehoe field in Hawaii, we used a Riegl LMSZ420i ground-based light detection and ranging (LiDAR) system that captures topographic data at unprecedented resolutions and speed, and co-registers the x, y and z coordinates with the RGB values of true color high-resolution (12 megapixel) photographs from an externally-mounted camera. Over a 3-day period (February 21-23, 2007) we acquired 4 surveys of surface topography over a ~200 x 200 m area within the Pu'u O'o flow field that contained actively inflating pahoehoe flows emplaced over older, hummocky pahoehoe lavas. Total scan times ranged from 6 to 19 minutes, with topographic points collected at a 0.05-0.08 degree spacing. Each scan obtained between 1.6 and 5.1 million x, y, and z data points. We acquired topographic data at a rate of 12,000 points/second, permitting repeatable digital elevation model (DEM) generation with 5mm accuracy. We differenced successive DEMs generated from our topographic data to determine the magnitude and patterns of growth. We documented uneven rates of inflation over the area, ranging from less than 0.5 m to 3.9 m, with several tumuli forming over the 3-day time period. These results are the first detailed measurements that help us constrain the movement of lava between upper and lower flow crusts.

  4. Pyroclastic flow generated by crater-wall collapse and outpouring of the lava pool of Arenal Volcano, Costa Rica

    NASA Astrophysics Data System (ADS)

    Alvarado, Guillermo E.; Soto, Gerardo J.

    2002-01-01

    The pyroclastic flow that issued from the Arenal summit crater on 28 August 1993 came from the collapse of the crater wall of the cone and the drainage of a lava pool. The 3-km-long pyroclastic flow, 2.2±0.8×106 m3 in volume, was confined to narrow valleys (30-100 m wide). The thickness of the pyroclastic deposit ranged from 1 to 10 m, and its temperature was about 400 °C, although single bombs were up to 1,000 °C. The deposit is clast-supported, has a bimodal grain size distribution, and consists of an intimate mixture of finely pulverized rock ash, lapilli, small blocks, and cauliflower bread-crusted bombs, in which are set meter-size lava fragments and juvenile and non-juvenile angular blocks, and bombs up to 7 m in diameter. Large faceted blocks make up 50% of the total volume of the deposit. The cauliflower bombs have deep and intricate bread-crust texture and post-depositional vesiculation. It is proposed that the juvenile material was produced entirely from a lava pool, whereas faceted non-juvenile blocks come from the crater-wall collapse. The concentration and maximum diameter of cauliflower bread-crusted bombs increases significantly from the base (rockslide + pyroclastic flow) to the top (the pyroclastic flow) of the deposit. An ash cloud deposited accretionary lapilli in the proximal region (outside of the pyroclastic flow deposit), and very fine ash fell in the distal region (between 5 and 30 km). The accretionary lapilli deposit is derived from the fine, elutriated products of the flow as it moved. A turbulent overriding surge blew down the surrounding shrubbery in the flow direction. The pyroclastic flow from August 1993, similar to the flows of June 1975, May 1998, August 2000, and March 2001, slid and rolled rather than being buoyed up by gas. They grooved, scratched, and polished the surfaces over which they swept, similar to a Merapi-type pyroclastic flow. However, the mechanism of the outpouring of a lava pool and the resulting flows

  5. Turbulent Lava Flow in Mars Athabasca Valles

    NASA Image and Video Library

    2010-01-11

    This combination of images, taken by NASA Mars Reconnaissance Orbiter, helped researchers analyze the youngest flood lava on Mars, which is in Athabasca Valles, in the Elysium Planitia region of equatorial Mars.

  6. Numerical modelling of strain in lava tubes

    NASA Astrophysics Data System (ADS)

    Merle, Olivier

    The strain within lava tubes is described in terms of pipe flow. Strain is partitioned into three components: (a) two simple shear components acting from top to bottom and from side to side of a rectangular tube in transverse section; and (b) a pure shear component corresponding to vertical shortening in a deflating flow and horizontal compression in an inflating flow. The sense of shear of the two simple shear components is reversed on either side of a central zone of no shear. Results of numerical simulations of strain within lava tubes reveal a concentric pattern of flattening planes in section normal to the flow direction. The central node is a zone of low strain, which increases toward the lateral borders. Sections parallel to the flow show obliquity of the flattening plane to the flow axis, constituting an imbrication. The strain ellipsoid is generally of plane strain type, but can be of constriction or flattening type if thinning (i.e. deflating flow) or thickening (i.e. inflating flow) is superimposed on the simple shear regime. The strain pattern obtained from numerical simulation is then compared with several patterns recently described in natural lava flows. It is shown that the strain pattern revealed by AMS studies or crystal preferred orientations is remarkably similar to the numerical simulation. However, some departure from the model is found in AMS measurements. This may indicate inherited strain recorded during early stages of the flow or some limitation of the AMS technique.

  7. Predicting the impact of lava flows at Mount Etna by an innovative method based on Cellular Automata: Applications regarding land-use and civil defence planning

    NASA Astrophysics Data System (ADS)

    Crisci, G. M.; Avolio, M. V.; D'Ambrosio, D.; di Gregorio, S.; Lupiano, G. V.; Rongo, R.; Spataro, W.; Benhcke, B.; Neri, M.

    2009-04-01

    Forecasting the time, character and impact of future eruptions is difficult at volcanoes with complex eruptive behaviour, such as Mount Etna, where eruptions occur from the summit and on the flanks, affecting areas distant from each other. Modern efforts for hazard evaluation and contingency planning in volcanic areas draw heavily on hazard maps and numerical simulations. The computational model here applied belongs to the SCIARA family of lava flow simulation models. In the specific case this is the SCIARA-fv release, which is considered to give the most accurate and efficient performance, given the extent (567 km2) of the study area and the great number of simulations to be carried out. The model is based on the Cellular Automata computational paradigm and, specifically, on the Macroscopic Cellular Automata approach for the modelling of spatially extended dynamic systems2. This work addresses the problem of compiling high-detailed susceptibility maps with an elaborate approach in the numerical simulation of Etnean lava flows, based on the results of 39,300 simulations of flows erupted from a grid of 393 hypothetical vents in the eastern sector of Etna. This sector was chosen because it is densely populated and frequently affected by flank eruptions. Besides the definition of general susceptibility maps, the availability of a large number of lava flows of different eruption types, magnitudes and locations simulated for this study allows the instantaneous extraction of various scenarios on demand. For instance, in a Civil Defence oriented application, it is possible to identify all source areas of lava flows capable of affecting a given area of interest, such as a town or a major infrastructure. Indeed, this application is rapidly accomplished by querying the simulation database, by selecting the lava flows that affect the area of interest and by circumscribing their sources. Eventually, a specific category of simulation is dedicated to the assessment of protective

  8. Rheology of arc dacite lavas: experimental determination at low strain rates

    NASA Astrophysics Data System (ADS)

    Avard, Geoffroy; Whittington, Alan G.

    2012-07-01

    Andesitic-dacitic volcanoes exhibit a large variety of eruption styles, including explosive eruptions, endogenous and exogenous dome growth, and kilometer-long lava flows. The rheology of these lavas can be investigated through field observations of flow and dome morphology, but this approach integrates the properties of lava over a wide range of temperatures. Another approach is through laboratory experiments; however, previous studies have used higher shear stresses and strain rates than are appropriate to lava flows. We measured the apparent viscosity of several lavas from Santiaguito and Bezymianny volcanoes by uniaxial compression, between 1,109 and 1,315 K, at low shear stress (0.085 to 0.42 MPa), low strain rate (between 1.1 × 10-8 and 1.9 × 10-5 s-1), and up to 43.7 % total deformation. The results show a strong variability of the apparent viscosity between different samples, which can be ascribed to differences in initial porosity and crystallinity. Deformation occurs primarily by compaction, with some cracking and/or vesicle coalescence. Our experiments yield apparent viscosities more than 1 order of magnitude lower than predicted by models based on experiments at higher strain rates. At lava flow conditions, no evidence of a yield strength is observed, and the apparent viscosity is best approached by a strain rate- and temperature-dependent power law equation. The best fit for Santiaguito lava, for temperatures between 1,164 and 1,226 K and strain rates lower than 1.8 × 10-4 s-1, is log {η_{{app}}} = - 0.738 + 9.24 × {10^3}{/}T(K) - 0.654 \\cdot log dot{\\varepsilon } where η app is apparent viscosity and dot{\\varepsilon } is strain rate. This equation also reproduced 45 data for a sample from Bezymianny with a root mean square deviation of 0.19 log unit Pa s. Applying the rheological model to lava flow conditions at Santiaguito yields calculated apparent viscosities that are in reasonable agreement with field observations and suggests that

  9. Basalt models for the Mars penetrator mission: Geology of the Amboy Lava Field, California

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Bunch, T. E.

    1976-01-01

    Amboy lava field (San Bernardino County, California) is a Holocene basalt flow selected as a test site for potential Mars Penetrators. A discussion is presented of (1) the general relations of basalt flow features and textures to styles of eruptions on earth, (2) the types of basalt flows likely to be encountered on Mars and the rationale for selection of the Amboy lava field as a test site, (3) the general geology of the Amboy lava field, and (4) detailed descriptions of the target sites at Amboy lava field.

  10. Limited role for thermal erosion by turbulent lava in proximal Athabasca Valles, Mars

    PubMed Central

    Cataldo, Vincenzo; Williams, David A.; Dundas, Colin M.; Keszthelyi, Laszlo P.

    2017-01-01

    The Athabasca Valles flood lava is among the most recent (<50 Ma) and best preserved effusive lava flows on Mars and was probably emplaced turbulently. The Williams et al. [2005] model of thermal erosion by lava has been applied to what we term “proximal Athabasca,” the 75 km long upstream portion of Athabasca Valles. For emplacement volumes of 5000 and 7500 km3 and average flow thicknesses of 20 and 30 m, the duration of the eruption varies between ~11 and ~37 days. The erosion of the lava flow substrate is investigated for three eruption temperatures (1270°C, 1260°C, and 1250°C), and volatile contents equivalent to 0–65 vol% bubbles. The largest erosion depths of ~3.8–7.5 m are at the lava source, for 20 m thick and bubble-free flows that erupted at their liquidus temperature (1270°C). A substrate containing 25 vol% ice leads to maximum erosion. A lava temperature 20°C below liquidus reduces erosion depths by a factor of ~2.2. If flow viscosity increases with increasing bubble content in the lava, the presence of 30–50 vol % bubbles leads to erosion depths lower than those relative to bubble-free lava by a factor of ~2.4. The presence of 25 vol % ice in the substrate increases erosion depths by a factor of 1.3. Nevertheless, modeled erosion depths, consistent with the emplacement volume and flow duration constraints, are far less than the depth of the channel (~35–100 m). We conclude that thermal erosion does not appear to have had a major role in excavating Athabasca Valles. PMID:29082120

  11. Lava tubes and aquifer vulnerability in the upper Actopan River basin, Veracruz, México

    NASA Astrophysics Data System (ADS)

    Espinasa-Pereña, R.; Delgado Granados, H.

    2011-12-01

    Rapid infiltration leads to very dry conditions on the surface of some volcanic terrains, with large allogenic streams sometimes sinking underground upon reaching a lava flow. Aquifers in lava flows tend to be heterogeneous and discontinuous, generally unconfined and fissured, and have high transmissivity. Springs associated with basalts may be very large but are typically restricted to lava-flow margins. Concern has been expressed regarding the potential for lava-tube caves to facilitate groundwater contamination similar to that afflicting some karst aquifers (Kempe et al., 2003; Kiernan et al., 2002; Halliday 2003). The upper Actopan River basin is a series of narrow valleys excavated in Tertiary volcanic brechias. Several extensive Holocene basaltic tube-fed lava flows have partially filled these valleys. The youngest and longest flow originates at El Volcancillo, a 780 ybP monogenetic volcano. It is over 50 km long, and was fed through a major master tube, the remains of which form several lava-tube caves (Gassos and Espinasa-Pereña, 2008). Another tube-fed flow initiates at a vent at the bottom of Barranca Huichila and can be followed for 7 km to where it is covered by the Volcancillo flow. The Huichila River is captured by this system of lava tubes and can be followed through several underground sections. In dry weather the stream disappears at a sump in one of these caves, although during hurricanes it overflows the tube, floods the Tengonapa plain, and finally sinks through a series of skylights into the master tube of the Volcancillo flow. Near villages, the cave entrances are used as trash dumps, which are mobilized during floods. These include household garbage, organic materials associated with agriculture and even medical supplies. This is a relatively recent phenomenon, caused by population growth and the building of houses above the lava flows. The water resurges at El Descabezadero, gushing from fractures in the lava above the underlying brechias

  12. Modeling Recent Subsidence of Mars' Olympus Mons Using Lava Flows as Paleo-Slope Indicators

    NASA Astrophysics Data System (ADS)

    Simpson, M.; Reeves, A.; Chadwick, J.; McGovern, P. J.

    2013-12-01

    Olympus Mons is an enormous volcanic edifice on Mars with a basal diameter over 600 km and a height of 23 km. In spite of this size, no indications of subsidence, such as an obvious topographic moat, have previously been detected around the volcano. In this study, we mapped the orientations of long, thin lava flows on the plains to the south and southeast of Olympus Mons using 100m-resolution imagery from the Thermal Emission Imaging System (THEMIS) on Mars Odyssey, and topography using Mars Orbiter Laser Altimeter (MOLA) data from Mars Global Surveyor. The results show that the flows are no longer oriented in a downhill direction, consistently deviating from modern slope vectors in a counterclockwise direction by 21.4 × 10.8 degrees (n = 65). The configuration of this misalignment between modern and paleo-topography is consistent with subsidence centered on the volcano in the time since the flows were emplaced. Our preliminary geophysical modeling used a range of load volumes, load radii, and lithospheric thicknesses to identify the scenario required to best restore modern topography to match the paleo-topography present when the lava flows were emplaced (i.e. 'uplift' Olympus Mons until the lava flows on the surrounding plains are restored to a downhill direction). The results show that lithospheric subsidence of about 1.2 km due to the magmatic addition of 3.8x10^5 km^3 best fits the observed topographic changes. Load center heights of 1 to 8 km were considered, with best fits generally in the 3-5 km range. Best-fit elastic lithosphere thickness (Te) values were generally 100 km or greater, consistent with estimates for Te from loading models [1,2] and gravity-topography relationships [3,4,5]. Our new crater size-density measurements of the plains in the study area show that the observed subsidence occurred within the past 229 × 26 my. Previous crater counts for Olympus Mons calderas and lower flank flows [6] reveal volcanic activity clustered around 100

  13. Pāhoehoe, `a`ā, and block lava: an illustrated history of the nomenclature

    NASA Astrophysics Data System (ADS)

    Harris, Andrew J. L.; Rowland, Scott K.; Villeneuve, Nicolas; Thordarson, Thor

    2017-01-01

    Lava flows occur worldwide, and throughout history, various cultures (and geologists) have described flows based on their surface textures. As a result, surface morphology-based nomenclature schemes have been proposed in most languages to aid in the classification and distinction of lava surface types. One of the first to be published was likely the nine-class, Italian-language description-based classification proposed by Mario Gemmellaro in 1858. By far, the most commonly used terms to describe lava surfaces today are not descriptive but, instead, are merely words, specifically the Hawaiian words `a`ā (rough brecciated basalt lava) and pāhoehoe (smooth glassy basalt lava), plus block lava (thick brecciated lavas that are typically more silicic than basalt). `A`ā and pāhoehoe were introduced into the Western geological vocabulary by American geologists working in Hawai`i during the 1800s. They and other nineteenth century geologists proposed formal lava-type classification schemes for scientific use, and most of them used the Hawaiian words. In 1933, Ruy Finch added the third lava type, block lava, to the classification scheme, with the tripartite system being formalized in 1953 by Gordon Macdonald. More recently, particularly since the 1980s and based largely on studies of lava flow interiors, a number of sub-types and transitional forms of all three major lava types have been defined. This paper reviews the early history of the development of the pāhoehoe, `a`ā, and block lava-naming system and presents a new descriptive classification so as to break out the three parental lava types into their many morphological sub-types.

  14. Miocene Basaltic Lava Flows and Dikes of the Intervening Area Between Picture Gorge and Steens Basalt of the CRBG, Eastern Oregon

    NASA Astrophysics Data System (ADS)

    Cahoon, E. B.; Streck, M. J.

    2016-12-01

    Mid-Miocene basaltic lavas and dikes are exposed in the area between the southern extent of the Picture Gorge Basalt (PGB) and the northern extent of Steens Basalt in a wide corridor of the Malheur National Forest, eastern Oregon. An approximate mid-Miocene age of sampled basaltic units is indicated by stratigraphic relationships to the 16 Ma Dinner Creek Tuff. Lavas provide an opportunity to extend and/or revise distribution areas of either CRBG unit and explore the petrologic transition between them. The PGB and the Steens Basalt largely represent geochemically distinct tholeiitic units of the CRBG; although each unit displays internal complexity. Lavas of PGB are relatively primitive (MgO 5-9 wt.%) while Steens Basalt ranges in MgO from >9 to 3 wt.% but both units are commonly coarsely porphyritic. Conversely, Steens Basalt compositions are on average more enriched in highly incompatible elements (e.g. Rb, Th) and relatively enriched in the lesser incompatible elements (e.g. Y, Yb) compared to the Picture Gorge basalts. These compositional signatures produce inclined and flat patterns on mantle-normalized incompatible trace element plots but with similar troughs and spikes, respectively. New compositional data from our study area indicate basaltic lavas can be assigned as PGB lava flows and dikes, and also to a compositional group chemically distinct between Steens Basalt and PGB. Distribution of lava flows with PGB composition extend this CRBG unit significantly south/southeast closing the exposure gap between PGB and Steens Basalt. We await data that match Steens Basalt compositions but basaltic lavas with petrographic features akin to Steens Basalt have been identified in the study area. Lavas of the transitional unit share characteristics with Upper Steens and Picture Gorge basalt types, but identify a new seemingly unique composition. This composition is slightly more depleted in the lesser incompatible elements (i.e. steeper pattern) on mantle normalized

  15. Time Series Radar Observations of a Growing Lava Dome

    NASA Astrophysics Data System (ADS)

    Wadge, G.; Macfarlane, D. G.; Odbert, H. M.; James, M. R.; Hole, J. K.; Ryan, G.; Bass, V.; de Angelis, S.; Pinkerton, H.; Robertson, D. A.; Loughlin, S. C.

    2007-12-01

    Exogenous growth of Peléean lava domes occurs by addition of lava from a central summit vent and mass wasting on the flanks as rockfalls and pyroclastic flows, forming an apron of talus. We observed this process at the Soufrière Hills Volcano, Montserrat between 30 March and 10 April 2006 using a ground-based imaging mm-wave radar, AVTIS, to measure the shape of the dome surface.From a time series of range and intensity measurements at a distance of six kilometres we measured the topographic evolution of the lava dome. The locus of talus deposition moved to the southeast with time and the talus surface grew upwards on average at about 2 metres per day. The AVTIS measurements show an acceleration in lava extrusion rate on 5 April, with a 2-day lag in the equivalent rockfall seismicity record. We account for the budget of lava addition and dispersal during the eleven days of measurements using: AVTIS range measurements to measure the talus growth (7.2 Mm3, 67%), AVTIS range and intensity measurements to measure the summit lava growth (1.7 Mm3, 16%), and rockfall seismicity and visual observations to measure the pyroclastic flow deposits (1.8 Mm3, 17%). This gives an overall dense rock equivalent extrusion rate of about 9.7 m3s-1. These figures demonstrate how efficient non-explosive lava dome growth can be in generating large volumes of primary clastic deposits, and how this process could also reduce the propensity for large hazardous pyroclastic flows. andrews.ac.uk/~mmwave/mmwave/avtis.shtml

  16. Limited role for thermal erosion by turbulent lava in proximal Athabasca Valles, Mars

    USGS Publications Warehouse

    Cataldo, Vincenzo; Williams, David A.; Dundas, Colin M.; Kestay, Laszlo P.

    2015-01-01

    The Athabasca Valles flood lava is among the most recent (<50 Ma) and best preserved effusive lava flows on Mars and was probably emplaced turbulently. The Williams et al. (2005) model of thermal erosion by lava has been applied to what we term “proximal Athabasca,” the 75 km long upstream portion of Athabasca Valles. For emplacement volumes of 5000 and 7500 km3and average flow thicknesses of 20 and 30 m, the duration of the eruption varies between ~11 and ~37 days. The erosion of the lava flow substrate is investigated for three eruption temperatures (1270°C, 1260°C, and 1250°C), and volatile contents equivalent to 0–65 vol % bubbles. The largest erosion depths of ~3.8–7.5 m are at the lava source, for 20 m thick and bubble-free flows that erupted at their liquidus temperature (1270°C). A substrate containing 25 vol % ice leads to maximum erosion. A lava temperature 20°C below liquidus reduces erosion depths by a factor of ~2.2. If flow viscosity increases with increasing bubble content in the lava, the presence of 30–50 vol % bubbles leads to erosion depths lower than those relative to bubble-free lava by a factor of ~2.4. The presence of 25 vol % ice in the substrate increases erosion depths by a factor of 1.3. Nevertheless, modeled erosion depths, consistent with the emplacement volume and flow duration constraints, are far less than the depth of the channel (~35–100 m). We conclude that thermal erosion does not appear to have had a major role in excavating Athabasca Valles.

  17. Emplacement of Holocene silicic lava flows and domes at Newberry, South Sister, and Medicine Lake volcanoes, California and Oregon

    USGS Publications Warehouse

    Fink, Jonathan H.; Anderson, Steven W.

    2017-07-19

    This field guide for the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Scientific Assembly 2017 focuses on Holocene glassy silicic lava flows and domes on three volcanoes in the Cascade Range in Oregon and California: Newberry, South Sister, and Medicine Lake volcanoes. Although obsidian-rich lava flows have been of interest to geologists, archaeologists, pumice miners, and rock hounds for more than a century, many of their emplacement characteristics had not been scientifically observed until two very recent eruptions in Chile. Even with the new observations, several eruptive processes discussed in this field trip guide can only be inferred from their final products. This makes for lively debates at outcrops, just as there have been in the literature for the past 30 years.Of the three volcanoes discussed in this field guide, one (South Sister) lies along the main axis defined by major peaks of the Cascade Range, whereas the other two lie in extensional tectonic settings east of the axis. These two tectonic environments influence volcano morphology and the magmatic and volcanic processes that form silicic lava flows and domes. The geomorphic and textural features of glass-rich extrusions provide many clues about their emplacement and the magma bodies that fed them.The scope of this field guide does not include a full geologic history or comprehensive explanation of hazards associated with a particular volcano or volcanic field. The geochemistry, petrology, tectonics, and eruption history of Newberry, South Sister, and Medicine Lake volcanic centers have been extensively studied and are discussed on other field excursions. Instead, we seek to explore the structural, textural, and geochemical evolution of well-preserved individual lava flows—the goal is to understand the geologic processes, rather than the development, of a specific volcano.

  18. Raman spectroscopy of volcanic lavas and inclusions of relevance to astrobiological exploration.

    PubMed

    Jorge-Villar, Susana E; Edwards, Howell G M

    2010-07-13

    Volcanic eruptions and lava flows comprise one of the most highly stressed terrestrial environments for the survival of biological organisms; the destruction of botanical and biological colonies by molten lava, pyroclastic flows, lahars, poisonous gas emissions and the deposition of highly toxic materials from fumaroles is the normal expectation from such events. However, the role of lichens and cyanobacteria in the earlier colonization of volcanic lava outcrops has now been recognized. In this paper, we build upon earlier Raman spectroscopic studies on extremophilic colonies in old lava flows to assess the potential of finding evidence of biological colonization in more recent lava deposits that would inform, first, the new colonization of these rocks and also provide evidence for the relict presence of biological colonies that existed before the volcanism occurred and were engulfed by the lava. In this research, samples were collected from a recent expedition to the active volcano at Kilauea, Hawaii, which comprises very recent lava flows, active fumaroles and volcanic rocks that had broken through to the ocean and had engulfed a coral reef. The Raman spectra indicated that biological and geobiological signatures could be identified in the presence of geological matrices, which is encouraging for the planned exploration of Mars, where it is believed that there is evidence of an active volcanism that perhaps could have preserved traces of biological activity that once existed on the planet's surface, especially in sites near the old Martian oceans.

  19. Palaeomagnetic refinement of the eruption ages of Holocene lava flows, and implications for the eruptive history of the Tongariro Volcanic Centre, New Zealand

    NASA Astrophysics Data System (ADS)

    Greve, Annika; Turner, Gillian M.; Conway, Chris E.; Townsend, Dougal B.; Gamble, John A.; Leonard, Graham S.

    2016-11-01

    We present a detailed palaeomagnetic study from 35 sites on Holocene lava flows of the Tongariro Volcanic Centre, central North Island, New Zealand. Prior to the study the eruption ages of these flows were constrained to within a few thousand years by recently published high-precision 40Ar/39Ar geochronological data and tephrostratigraphic controls. Correlation of flow mean palaeomagnetic directions with a recently published continuous sediment record from Lake Mavora, Fiordland, allows us to reduce the age uncertainty to 300-500 yr in some cases. Our refined ages significantly improve the chronology of Holocene effusive eruptions of the volcanoes of the Tongariro Volcanic Centre. For instance, differences in the palaeomagnetic directions recorded by lavas from the voluminous Iwikau and Rangataua members suggest that individual effusive periods lasted up to thousands of years and that these bursts have been irregularly spaced over time. While over the last few millennia the effusive eruptive activity from Mt Ruapehu has been relatively quiet, the very young age (200-500 BP) of a Red Crater sourced flow suggests that effusive activity around Mt Tongariro lasted into the past few centuries. This adds an important hazard context to the historical record, which has otherwise comprised frequent relatively small, tephra producing, explosive eruptions without the production of lava flows.

  20. High-Resolution AUV Mapping Reveals Structural Details of Submarine Inflated Lava Flows

    NASA Astrophysics Data System (ADS)

    Paduan, J.; Clague, D. A.; Caress, D. W.; Thomas, H.; Thompson, D.; Conlin, D.

    2009-12-01

    The MBARI mapping AUV D. Allan B. has now been used to map volcanic terrain at mid-ocean ridges, back-arc spreading centers, and seamounts. These include the summit caldera and upper south rift zone at Axial Volcano, the summit of Davidson Seamount, the Endeavour hydrothermal fields, the Northeast Lau Spreading Center and West Mata Volcano, and, most recently, the CoAxial, North Cleft and North Gorda historic eruption sites on the Juan de Fuca and Gorda Ridges. ROV and submersible dives at most of these sites have provided groundtruth for the textures and features revealed in the roughly 1-m resolution maps. A prominent feature in the maps from four of the sites are inflated flows that did not deflate or drain. These resemble subaerial tumuli but differ in being located on level terrain, apparently atop or very near eruptive vents instead of being in the distal portions of flows. The largest inflated flow at Axial Volcano is on the caldera floor. The main part is 500 by 300 m, and up to 30 m high, with a lobe that extends another 750 m in a sinuous path. It and two nearby, medium-sized inflated flows were first described from sidescan imagery and a submersible dive by Appelgate and Embley (Bull. Volcanol., 54, 447-458, 1992). The AUV maps show clearly the smooth, gently domed relief of the large inflated flow and its sinuous shape on the seafloor, the medium-sized nearby inflated flows, and several additional smaller ones. Particularly striking is a network of 4 to 10 m deep cracks along the crest of each inflation. The cracks occur 30 to 50 m from the margins on all sides of the wider parts of the inflated flows, and become medial cracks along the entire length of the narrow parts, which are nearly triangular in cross-section. An inflation pit 35 m in diameter has a depth equal to the surrounding lava fields. ROV Doc Ricketts dove on these flows in August 2009 and photographed the deeply cracked, uplifted, once flat-lying lineated and ropy sheet flows that form

  1. Experimental Insights on Natural Lava-Ice/Snow Interactions and Their Implications for Glaciovolcanic and Submarine Eruptions

    NASA Astrophysics Data System (ADS)

    Edwards, B. R.; Karson, J.; Wysocki, R.; Lev, E.; Bindeman, I. N.; Kueppers, U.

    2012-12-01

    Lava-ice-snow interactions have recently gained global attention through the eruptions of ice-covered volcanoes, particularly from Eyjafjallajokull in south-central Iceland, with dramatic effects on local communities and global air travel. However, as with most submarine eruptions, direct observations of lava-ice/snow interactions are rare. Only a few hundred potentially active volcanoes are presently ice-covered, these volcanoes are generally in remote places, and their associated hazards make close observation and measurements dangerous. Here we report the results of the first large-scale experiments designed to provide new constraints on natural interactions between lava and ice/snow. The experiments comprised controlled effusion of tens of kilograms of melted basalt on top of ice/snow, and provide insights about observations from natural lava-ice-snow interactions including new constraints for: 1) rapid lava advance along the ice-lava interface; 2) rapid downwards melting of lava flows through ice; 3) lava flow exploitation of pre-existing discontinuities to travel laterally beneath and within ice; and 4) formation of abundant limu o Pele and non-explosive vapor transport from the base to the top of the lava flow with minor O isotope exchange. The experiments are consistent with observations from eruptions showing that lava is more efficient at melting ice when emplaced on top of the ice as opposed to beneath the ice, as well as the efficacy of tephra cover for slowing melting. The experimental extrusion rates are as within the range of those for submarine eruptions as well, and reproduce some features seen in submarine eruptions including voluminous production of gas rich cavities within initially anhydrous lavas and limu on lava surfaces. Our initial results raise questions about the possibility of secondary ingestion of water by submarine and glaciovolcanic lava flows, and the origins of apparent primary gas cavities in those flows. Basaltic melt moving down

  2. s70-56407

    NASA Image and Video Library

    2013-09-11

    S70-56407 (December 1970) --- Astronauts Richard F. Gordon Jr., left, and Harrison H. Schmitt ? backup crew members for the Apollo 15 mission -- get ?feet-on? experience with an a'a' lava flow during geology training in Hawaii. A?a? is the most common appearance type of lava flow that cools down, to form fragmented, often spiny or rough surfaces. Photo credit: NASA

  3. Eruption Recurrence Rates and Compositional Variability of Discrete Lava Flows on the S-EPR from 238U-230Th-226Ra- 210Pb-232Th

    NASA Astrophysics Data System (ADS)

    Rubin, K. H.; Smith, M. C.; Sinton, J. M.; Sacks, L. F.; Bergmanis, E.

    2001-12-01

    Quantification of the absolute ages and geochemistry of individual seafloor lava flows provides important constraints on the magmatic processes responsible for building the oceanic crust. Here we present new 238U-230Th-226Ra-210Pb radioactive disequilibrium age constraints (decadal to millennial time scale) for 3 mid-ocean ridge lava flows at 17° 26'S on the East Pacific Rise (EPR): Aldo-Kihi, Rehu-Marka, and a neighboring unnamed flow. Our continuing study using high-resolution surveys and manned-submersible sampling (NAUDUR, 1993, and STOWA, 1991, expeditions) has previously shown that Aldo-Kihi is compositionally variable, is probably one of the youngest axial lavas in the 17° -19° S region, and was most likely erupted from a series of fissures extending >18 km along the ridge axis (Sinton et al., JGR, in revision). Rehu Marka has a more trace element enriched and evolved composition. The strongest age constraints in our U-series data set are from the 210Pb-226Ra (half-life = 22.3 yrs) and 226Ra-230Th (half life = 1600 yrs) systems. 210Pb-226Ra disequilibrium (as 5-7% Pb deficits) is common in lavas from our S-EPR study area and slightly lower than disequilibria we have measured in lavas erupted in 1991 and 1992 at 9° 50'N EPR. Although we are still developing our understanding of how this disequilibrium arises in MORB (e.g., how the radioactive "clock" is set for this isotope pair) a number of features of our preliminary data support the idea that these lavas are very young and that geologically observed contact relationships in the field separate the products of chronologically distinguishable eruptions. Also, the extent of 226Ra-210Pb disequilibrium in 3 Aldo-Kihi samples compared to that observed at 9° 50'N indicates that the Aldo-Kihi lava probably erupted within the last 10-20 yrs, and the higher but still <1 (210Pb/226Ra) activity ratio in a lava sampled near to but outside the boundaries of Aldo-Kihi indicates it is slightly older, but probably only

  4. Differences in Landsat TM derived lava flow thermal structures during summit and flank eruption at Mount Etna

    NASA Astrophysics Data System (ADS)

    Lombardo, V.; Buongiorno, M. F.; Pieri, D.; Merucci, L.

    2004-06-01

    The simultaneous solution of the Planck equation (the so-called "dual-band" technique) for two shortwave infrared Landsat Thematic Mapper (TM) bands allows an estimate of the fractional area of the hottest part of an active flow and the temperature of the cooler crust. Here, the dual-band method has been applied to a time series of Mount Etna eruptions. The frequency distribution of the fractional area of the hottest component reveals specific differences between summit and flank lava flows. The shape of the density function shows a trend consistent with a Gaussian distribution and suggests a relationship between the moments of the distribution and the emplacement environment. Because flow composition of Etnean lavas generally remains constant during the duration of their emplacement, it appears that the shape of any particular frequency distribution is probably related to fluid mechanical aspects of flow emplacement that affect flow velocity and flow heat loss and thus the rate of formation of the surface crust. These factors include the influence of topographical features such as changes in slope gradient, changes in volume effusion rate, and progressive downflow increases in bulk or effective viscosity. A form of the general theoretical solution for the 'dual-band' system, which illustrates the relationship between radiance in TM bands 5 and 7, corresponding to hot fractional area and crust temperature, is presented. Generally speaking, it appears that for a given flow at any point in time, larger fractional areas of exposed hot material are correlated with higher temperatures and that, while the overall shape of that distribution is common for the flows studied, its amplitude and slope reflect individual flow rheological regimes.

  5. Pyroclastic flows generated by gravitational instability of the 1996-97 lava dome of Soufriere Hills Volcano, Montserrat

    USGS Publications Warehouse

    Cole, P.D.; Calder, E.S.; Druitt, T.H.; Hoblitt, R.; Robertson, R.; Sparks, R.S.J.; Young, S.R.

    1998-01-01

    Numerous pyroclastic flows were produced during 1996-97 by collapse of the growing andesitic lava dome at Soufriere Hills Volcano, Montserrat. Measured deposit volumes from these flows range from 0.2 to 9 ?? 106 m3. Flows range from discrete, single pulse events to sustained large scale dome collapse events. Flows entered the sea on the eastern and southern coasts, depositing large fans of material at the coast. Small runout distance (<1 km) flows had average flow front velocities in the order of 3-10 m/s while flow fronts of the larger runout distance flows (up to 6.5 km) advanced in the order of 15-30 m/s. Many flows were locally highly erosive. Field relations show that development of the fine grained ash cloud surge component was enhanced during the larger sustained events. Periods of elevated pyroclastic flow productivity and sustained dome collapse events are linked to pulses of high magma extrusion rates.Numerous pyroclastic flows were produced during 1996-97 by collapse of the growing andesitic lava dome at Soufriere Hills Volcano, Montserrat. Measured deposit volumes from these flows range from 0.2 to 9??106 m3. Flows range from discrete, single pulse events to sustained large scale dome collapse events. Flows entered the sea on the eastern and southern coasts, depositing large fans of material at the coast. Small runout distance (<1 km) flows had average flow front velocities in the order of 3-10 m/s while flow fronts of the larger runout distance flows (up to 6.5 km) advanced in the order of 15-30 m/s. Many flows were locally highly erosive. Field relations show that development of the fine grained ash cloud surge component was enhanced during the larger sustained events. Periods of elevated dome pyroclastic flow productivity and sustained collapse events are linked to pulses of high magma extrusion rates.

  6. Gas exsolution and bubbles nucleation from the 1669 lava flow of Mount Etna (Italy): evidences from phase-contrast synchrotron X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Lanzafame, Gabriele; Ferlito, Carmelo; Mancini, Lucia

    2017-04-01

    Bubbles are usually present in lavas, often showing an increase in their size and number from bottom to the top of vertical profile of the flows. Their presence is commonly interpreted as the final phase of the degassing processes starting and massively occurring at depth, before the eruption. In this work we present the results of a detailed study of size, shape and volumetric distribution of bubbles in lavas from the 1669 eruption of Mount Etna (Italy), one of the most voluminous and destructive historic events of this volcano. The lava field produced during this event extends up to 18 km from the craters, and the massive presence of bubbles in lavas sampled many kilometres away from the emission point is in contrast with the models predicting their almost total exsolution from the magma before the eruption, at depth of several kilometres beneath the volcano edifice. Sampling of the 1669 lava field has been performed along the longitudinal profile of the field at increasing distance from the vent. Collected rocks have been analysed by X-ray fluorescence and phase-contrast synchrotron X-ray computed microtomography in order to extract three-dimensional (3D) qualitative and quantitative information on the bubbles network. The use of synchrotron light permitted to investigate small portions of the samples at high spatial and contrast resolution and allowed us to obtain the 3D morphology and distribution of the micro-bubbles present in the lava, avoiding the limitations of the traditional two-dimensional analysis on thin sections. Results indicate that bubbles in lavas are present in various abundance, constituting up to 18% of the rocks volume, and are randomly distributed, with no regards for the distance from the vent. Their casual abundance, morphological characteristics and spatial distribution indicate large nucleation from syn- to post-eruptive stage, during the lava flowing and probably after it halted its run. These observations are in contrast with the

  7. Compositional and volumetric development of a monogenetic lava flow field: The historical case of Paricutin (Michoacán, Mexico)

    NASA Astrophysics Data System (ADS)

    Larrea, Patricia; Salinas, Sergio; Widom, Elisabeth; Siebe, Claus; Abbitt, Robbyn J. F.

    2017-12-01

    Paricutin volcano is the youngest and most studied monogenetic volcano in the Michoacán-Guanajuato volcanic field (Mexico), with an excellent historical record of its nine years (February 1943 to March 1952) of eruptive activity. This eruption offered a unique opportunity to observe the birth of a new volcano and document its entire eruption. Geologists surveyed all of the eruptive phases in progress, providing maps depicting the volcano's sequential growth. We have combined all of those previous results and present a new methodological approach, which utilizes state of the art GIS mapping tools to outline and identify the 23 different eruptive phases as originally defined by Luhr and Simkin (1993). Using these detailed lava flow distribution maps, the volume of each of the flows was estimated with the aid of pre- and post-eruption digital elevation models. Our procedure yielded a total lava flow volume ranging between 1.59 and 1.68 km3 DRE, which is larger than previous estimates based on simpler methods. In addition, compositional data allowed us to estimate magma effusion rates and to determine variations in the relative proportions of the different magma compositions issued during the eruption. These results represent the first comprehensive documentation of the combined chemical, temporal, and volumetric evolution of the Paricutin lava field and provide key constraints for petrological interpretations of the nature of the magmatic plumbing system that fed the eruption.

  8. Estimates of Lava Eruption Rates at Alba Patera, Mars

    NASA Technical Reports Server (NTRS)

    Baloga, S. M.; Pieri, D. C.

    1985-01-01

    The Martian volcanic complex Alba Patera exhibits a suite of well-defined, long and relatively narrow lava flows qualitatively resembling those found in Hawaii. Even without any information on the duration of the Martian flows, eruption rates (total volume discharge/duration of the extrusion) estimates are implied by the physical dimensions of the flows and the likely conjecture that Stephan-Boltzmann radiation is the dominating thermal loss mechanism. The ten flows in this analysis emanate radially from the central vent and were recently measured in length, plan areas, and average thicknesses by shadow measurement techniques. The dimensions of interest are shown. Although perhaps morphologically congruent to certain Hawaiian flows, the dramatically expanded physical dimensions of the Martian flows argues for some markedly distinct differences in lava flow composition for eruption characteristics.

  9. Modeling the 2012-2013 lava flows of Tolbachik, Russia using thermal infrared satellite data and PyFLOWGO

    NASA Astrophysics Data System (ADS)

    Ramsey, M. S.; Chevrel, O.; Harris, A. J. L.

    2017-12-01

    Satellite-based thermal infrared (TIR) observations of new volcanic activity and ongoing lava flow emplacement become increasingly more detailed with improved spatial, spectral and/or temporal resolution data. The cooling of the glassy surface is directly imaged by TIR instruments in order to determine temperature, which is then used to initiate thermo-rheological-based models. Higher temporal resolution data (i.e., minutes to hours), are used to detect new eruptions and determine the time-averaged discharge rate (TADR). Calculation of the TADR along with new observations later in time and accurate digital elevation models (DEMs) enable modeling of the advancing flow's down-slope inundation area. Better spectral and spatial resolution data, on the other hand, allow the flow's composition, small-scale morphological changes and real-time DEMs to be determined, in addition to confirming prior model predictions. Combined, these data help improve the accuracy of models such as FLOWGO. A new adaptation of this model in python (PyFLOWGO) has been used to produce the best fit eruptive conditions to the final flow morphology for the 2012-2013 eruption of Tolbachik volcano, Russia. This was the largest and most thermally-intense flow-forming eruption in the past 50 years, producing longer lava flows than that of typical Kilauea or Etna eruptions. The progress of these flows were imaged by a multiple TIR sensors at various spatial, spectral and temporal scales throughout the flow field emplacement. We have refined the model based on the high resolution data to determine the TADR and make improved estimates of cooling, viscosity, velocity and crystallinity with distance. Understanding the cooling and dynamics of basaltic surfaces ultimately produces an improved hazard forecast capability. In addition, the direct connection of the final flow morphology to the specific eruption conditions that produced it allows the eruptive conditions of older flows to be estimated.

  10. Magma ascent and lava flow emplacement rates during the 2011 Axial Seamount eruption based on CO2 degassing

    NASA Astrophysics Data System (ADS)

    Jones, M. R.; Soule, S. A.; Gonnermann, H. M.; Le Roux, V.; Clague, D. A.

    2018-07-01

    Quantitative metrics for eruption rates at mid-ocean ridges (MORs) would improve our understanding of the structure and formation of the uppermost oceanic crust and would provide a means to link volcanic processes with the conditions of the underlying magmatic system. However, these metrics remain elusive because no MOR eruptions have been directly observed. The possibility of disequilibrium degassing in mid-ocean ridge basalts (MORB), due to high eruptive depressurization rates, makes the analysis of volatile concentrations in MORB glass a promising method for evaluating eruption rates. In this study, we estimate magma ascent and lava flow emplacement rates during the 2011 eruption of Axial Seamount based on numerical modeling of diffusion-controlled bubble growth and new measurements of dissolved volatiles, vesicularity, and vesicle size distributions in erupted basalts. This dataset provides a unique view of the variability in magma ascent (∼0.02-1.2 m/s) and lava flow rates (∼0.1-0.7 m/s) during a submarine MOR eruption based on 50 samples collected from a >10 km long fissure system and three individual lava flow lobes. Samples from the 2011 eruption display an unprecedented range in dissolved CO2 concentrations, nearly spanning the full range observed on the global MOR system. The variable vesicularity and dissolved CO2 concentrations in these samples can be explained by differences in the extent of degassing, dictated by flow lengths and velocities during both vertical ascent and horizontal flow along the seafloor. Our results document, for the first time, the variability in magma ascent rates during a submarine eruption (∼0.02-1.2 m/s), which spans the global range previously proposed based on CO2 degassing. The slowest ascent rates are associated with hummocky flows while faster ascent rates produce channelized sheet flows. This study corroborates degassing-based models for eruption rates using comparisons with independent methods and documents the

  11. Applications of MGS MOC and MOLA Data to Lava Flows: Investigations of Rheology, Topographic Influences and Tectonic Effects

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.

    2004-01-01

    Proxemy Research had a grant from NASA to perform scientific research using Mars Global Surveyor (MGS) data to study lava flows on Mars. Here we summarize the scientific progress and accomplishments of this grant. Scientific publications and abstracts of presentations are indicated in the final section.

  12. A Sinuous Tumulus over an Active Lava Tube at Klauea Volcano: Evolution, Analogs, and Hazard Forecasts

    NASA Technical Reports Server (NTRS)

    Orr, Tim R.; Bleacher, Jacob E.; Patrick, Matthew R.; Wooten, Kelly M.

    2015-01-01

    Inflation of narrow tube-fed basaltic lava flows (tens of meters across), such as those confined by topography, can be focused predominantly along the roof of a lava tube. This can lead to the development of an unusually long tumulus, its shape matching the sinuosity of the underlying lava tube. Such a situation occurred during Klauea Volcanos (Hawaii, USA) ongoing East Rift Zone eruption on a lava tube active from July through November 2010. Short-lived breakouts from the tube buried the flanks of the sinuous, ridge-like tumulus, while the tumulus crest, its surface composed of lava formed very early in the flows emplacement history, remained poised above the surrounding younger flows. At least several of these breakouts resulted in irrecoverable uplift of the tube roof. Confined sections of the prehistoric Carrizozo and McCartys flows (New Mexico, USA) display similar sinuous, ridge-like features with comparable surface age relationships. We contend that these distinct features formed in a fashion equivalent to that of the sinuous tumulus that formed at Kilauea in 2010. Moreover, these sinuous tumuli may be analogs for some sinuous ridges evident in orbital images of the Tharsis volcanic province on Mars. The short-lived breakouts from the sinuous tumulus at Kilauea were caused by surges in discharge through the lava tube, in response to cycles of deflation and inflation (DI events) at Kilauea's summit. The correlation between DI events and subsequent breakouts aided in lava flow forecasting. Breakouts from the sinuous tumulus advanced repeatedly toward the sparsely populated Kalapana Gardens subdivision, destroying two homes and threatening others. Hazard assessments, including flow occurrence and advance forecasts, were relayed regularly to the Hawai?i County Civil Defense to aid their lava flow hazard mitigation efforts while this lava tube was active.

  13. Lava effusion rate definition and measurement: a review

    USGS Publications Warehouse

    Calvari, Sonia; Dehn, Jonathan; Harris, A.

    2007-01-01

    Measurement of effusion rate is a primary objective for studies that model lava flow and magma system dynamics, as well as for monitoring efforts during on-going eruptions. However, its exact definition remains a source of confusion, and problems occur when comparing volume flux values that are averaged over different time periods or spatial scales, or measured using different approaches. Thus our aims are to: (1) define effusion rate terminology; and (2) assess the various measurement methods and their results. We first distinguish between instantaneous effusion rate, and time-averaged discharge rate. Eruption rate is next defined as the total volume of lava emplaced since the beginning of the eruption divided by the time since the eruption began. The ultimate extension of this is mean output rate, this being the final volume of erupted lava divided by total eruption duration. Whether these values are total values, i.e. the flux feeding all flow units across the entire flow field, or local, i.e. the flux feeding a single active unit within a flow field across which many units are active, also needs to be specified. No approach is without its problems, and all can have large error (up to ∼50%). However, good agreement between diverse approaches shows that reliable estimates can be made if each approach is applied carefully and takes into account the caveats we detail here. There are three important factors to consider and state when measuring, giving or using an effusion rate. First, the time-period over which the value was averaged; second, whether the measurement applies to the entire active flow field, or a single lava flow within that field; and third, the measurement technique and its accompanying assumptions.

  14. Hawaiian cultural influences on support for lava flow hazard mitigation measures during the January 1960 eruption of Kīlauea volcano, Kapoho, Hawai‘i

    NASA Astrophysics Data System (ADS)

    Gregg, C. E.; Houghton, B. F.; Paton, D.; Swanson, D. A.; Lachman, R.; Bonk, W. J.

    2008-05-01

    In 1960, Kīlauea volcano in Hawaii erupted, destroying most of the village of Kapoho and forcing evacuation of its approximately 300 residents. A large and unprecedented social science survey was undertaken during the eruption to develop an understanding of human behavior, beliefs, and coping strategies among the adult evacuees ( n = 160). Identical studies were also performed in three control towns located at varying distances from the eruption site ( n = 478). During these studies data were collected that characterized ethnic grouping and attitudes toward Hawaiian cultural issues such as belief in Pele and two lava flow mitigation measures—use of barriers and bombs to influence the flow of lava, but the data were never published. Using these forgotten data, we examined the relationship between Hawaiian cultural issues and attitudes toward the use of barriers and bombs as mitigation strategies to protect Kapoho. On average, 72% of respondents favored the construction of earthen barriers to hold back or divert lava and protect Kapoho, but far fewer agreed with the military's use of bombs (14%) to protect Kapoho. In contrast, about one-third of respondents conditionally agreed with the use of bombs. It is suggested that local participation in the bombing strategy may explain the increased conditional acceptance of bombs as a mitigation tool, although this can not be conclusively demonstrated. Belief in Pele and being of Hawaiian ethnicity did not reduce support for the use of barriers, but did reduce support for bombs in both bombing scenarios. The disparity in levels of acceptance of barriers versus bombing and of one bombing strategy versus another suggests that historically public attitudes toward lava flow hazard mitigation strategies were complex. A modern comparative study is needed before the next damaging eruption to inform debates and decisions about whether or not to interfere with the flow of lava. Recent changes in the current eruption of K

  15. Holuhraun 2014-2015 Eruption Site on Iceland: A Flood Lava Analogue for Mars

    NASA Astrophysics Data System (ADS)

    Voigt, J.; Hamilton, C. W.; Scheidt, S. P.; Bonnefoy, L. E.; Jónsdóttir, I.; Höskuldsson, A.; Thordarson, T.

    2017-09-01

    The Holuhraun eruption 2014-2015 is the largest flood lava flow in Iceland since the Laki eruption in 1783-1784. We here present the first facies map of the whole Holuhraun lava flow, which we linked to the chronological emplacement history. Furthermore the facies we identify at Holuhraun are common on the Martian surface, especially at Marte Vallis and Rahway Valles. It therefore provides unique insights into the emplacement of flood lavas on Earth and other planetary bodies.

  16. Mauna Loa lava accumulation rates at the Hilo drill site: Formation of lava deltas during a period of declining overall volcanic growth

    USGS Publications Warehouse

    Lipman, P.W.; Moore, J.G.

    1996-01-01

    Accumulation rates for lava flows erupted from Mauna Loa, as sampled in the uppermost 280 m of the Hilo drill hole, vary widely for short time intervals (several thousand years), but overall are broadly similar to those documented elsewhere on this volcano since 100 ka. Thickness variations and accumulation rates for Mauna Loa lavas at the Hilo drill site have been strongly affected by local paleotopography, including funneling and ponding between Mauna Kea and Kilauea. In addition, gentle submerged slopes of Mauna Kea in Hilo Bay have permitted large shoreline displacements by Mauna Loa flows. Ages of eruptive intervals have been determined from published isotopic data and from eustatic sea level curves modified to include the isostatic subsidence of the island of Hawaii at 2.2-2.6 mm/yr. Prior to 10 ka, rates of Mauna Loa lava accumulation at the drill site varied from 0.6 to 4.3 mm/yr for dateable intervals, with an overall rate of 1.8 mm/yr. Major eruptive pulses at about 1.3 and 10 ka, each probably representing a single long-lived eruption based on lack of weathering between flow units, increase the overall accumulation rate to 2.4 mm/yr. The higher rate since 10 ka reflects construction of thick near-shoreline lava deltas as postglacial sea levels rose rapidly. Large lava deltas form only along coastal segments where initially subaerial slopes have been submerged by the combined effects of eustatic sea level rise, isostatic subsidence, or spreading of volcano flanks. Overall accumulation of 239 m of lava at the drill site since 100-120 ka closely balances submergence of the Hilo area, suggesting that processes of coastal lava deposition have been modulated by rise in sea level. The Hilo accumulation rate is slightly higher than average rates of 1-2 mm/yr determined elsewhere along the Mauna Loa coast, based on rates of shoreline coverage and dated sea cliff and fault scarp exposures. Low rates of coastal lava accumulation since 100 ka, near or below the rate

  17. "The Great Cataract" - Effects of Late Holocene Debris Flows on Lava Falls Rapid, Grand Canyon National National Park, Arizona

    USGS Publications Warehouse

    Webb, Robert H.; Melis, Theodore S.; Wise, Thomas W.; Elliott, John G.

    1996-01-01

    Lava Falls Rapid is the most formidable reach of whitewater on the Colorado River in Grand Canyon and is one of the most famous rapids in the world. Although the rapid was once thought to be controlled by the remnants of lava dams of Pleistocene age, Lava Falls was created and is maintained by frequent debris flows from Prospect Canyon. We used 232 historical photographs, of which 121 were replicated, and 14C and 3He dating methods to reconstruct the ages and, in some cases, the magnitudes of late Holocene debris flows. We quantified the interaction between Prospect Canyon debris flows and the Colorado River using image processing of the historical photographs. The highest and oldest debris-flow deposits on the debris fan yielded a 3He date of 2.9?0.6 ka (950 BC), which indicates predominately late Holocene aggradation of one of the largest debris fans in Grand Canyon. The deposit, which has a 25-m escarpment caused by river reworking, crossed the Colorado River and raised its base level by 30 m for an indeterminate, although probably short, period. We mapped depositional surfaces of 6 debris flows that occurred after 950 BC. The most recent prehistoric debris flow occurred no more than 500 years ago (AD 1434). From April 1872 to July 1939, no debris flows occurred in Prospect Canyon. Debris flows in 1939, 1954, 1955, 1963, 1966, and 1995 constricted the Colorado River between 35 and 80 percent and completely changed the pattern of flow through the rapid. The debris flows had discharges estimated between about 290 and 1,000 m3/s and transported boulders as heavy as 30 Mg. The recurrence interval of these debris flows, calculated from the volume of the aggraded debris fan, ranged from 35 to 200 yrs. The 1939 debris flow in Prospect Canyon appears to have been the largest debris flow in Grand Canyon during the last 125 years. Debris flows in Prospect Canyon are initiated by streamflow pouring over a 325-m waterfall onto unconsolidated colluvium, a process called the

  18. Topographic and Stochastic Influences on Pahoehoe Lava Lobe Emplacement

    NASA Technical Reports Server (NTRS)

    Hamilton, Christopher W.; Glaze, Lori S.; James, Mike R.; Baloga, Stephen M.

    2013-01-01

    A detailed understanding of pahoehoe emplacement is necessary for developing accurate models of flow field development, assessing hazards, and interpreting the significance of lava morphology on Earth and other planetary surfaces. Active pahoehoe lobes on Kilauea Volcano, Hawaii, were examined on 21-26 February 2006 using oblique time-series stereo-photogrammetry and differential global positioning system (DGPS) measurements. During this time, the local discharge rate for peripheral lava lobes was generally constant at 0.0061 +/- 0.0019 m3/s, but the areal coverage rate of the lobes exhibited a periodic increase every 4.13 +/- 0.64 minutes. This periodicity is attributed to the time required for the pressure within the liquid lava core to exceed the cooling induced strength of its margins. The pahoehoe flow advanced through a series of down slope and cross-slope breakouts, which began as approximately 0.2 m-thick units (i.e., toes) that coalesced and inflated to become approximately meter-thick lobes. The lobes were thickest above the lowest points of the initial topography and above shallow to reverse facing slopes, defined relative to the local flow direction. The flow path was typically controlled by high-standing topography, with the zone directly adjacent to the final lobe margin having an average relief that was a few centimeters higher than the lava inundated region. This suggests that toe-scale topography can, at least temporarily, exert strong controls on pahoehoe flow paths by impeding the lateral spreading of the lobe. Observed cycles of enhanced areal spreading and inflated lobe morphology are also explored using a model that considers the statistical likelihood of sequential breakouts from active flow margins and the effects of topographic barriers.

  19. A sinuous tumulus over an active lava tube at Kīlauea Volcano: evolution, analogs, and hazard forecasts

    USGS Publications Warehouse

    Orr, Tim R.; Bleacher, Jacob E.; Patrick, Matthew R.; Wooten, Kelly M.

    2015-01-01

    Inflation of narrow tube-fed basaltic lava flows (tens of meters across), such as those confined by topography, can be focused predominantly along the roof of a lava tube. This can lead to the development of an unusually long tumulus, its shape matching the sinuosity of the underlying lava tube. Such a situation occurred during Kīlauea Volcano's (Hawai'i, USA) ongoing East Rift Zone eruption on a lava tube active from July through November 2010. Short-lived breakouts from the tube buried the flanks of the sinuous, ridge-like tumulus, while the tumulus crest, its surface composed of lava formed very early in the flow's emplacement history, remained poised above the surrounding younger flows. At least several of these breakouts resulted in irrecoverable uplift of the tube roof. Confined sections of the prehistoric Carrizozo and McCartys flows (New Mexico, USA) display similar sinuous, ridge-like features with comparable surface age relationships. We contend that these distinct features formed in a fashion equivalent to that of the sinuous tumulus that formed at Kīlauea in 2010. Moreover, these sinuous tumuli may be analogs for some sinuous ridges evident in orbital images of the Tharsis volcanic province on Mars. The short-lived breakouts from the sinuous tumulus at Kīlauea were caused by surges in discharge through the lava tube, in response to cycles of deflation and inflation (DI events) at Kīlauea's summit. The correlation between DI events and subsequent breakouts aided in lava flow forecasting. Breakouts from the sinuous tumulus advanced repeatedly toward the sparsely populated Kalapana Gardens subdivision, destroying two homes and threatening others. Hazard assessments, including flow occurrence and advance forecasts, were relayed regularly to the Hawai'i County Civil Defense to aid their lava flow hazard mitigation efforts while this lava tube was active.

  20. A sinuous tumulus over an active lava tube at Kīlauea Volcano: Evolution, analogs, and hazard forecasts

    NASA Astrophysics Data System (ADS)

    Orr, Tim R.; Bleacher, Jacob E.; Patrick, Matthew R.; Wooten, Kelly M.

    2015-01-01

    Inflation of narrow tube-fed basaltic lava flows (tens of meters across), such as those confined by topography, can be focused predominantly along the roof of a lava tube. This can lead to the development of an unusually long tumulus, its shape matching the sinuosity of the underlying lava tube. Such a situation occurred during Kīlauea Volcano's (Hawai'i, USA) ongoing East Rift Zone eruption on a lava tube active from July through November 2010. Short-lived breakouts from the tube buried the flanks of the sinuous, ridge-like tumulus, while the tumulus crest, its surface composed of lava formed very early in the flow's emplacement history, remained poised above the surrounding younger flows. At least several of these breakouts resulted in irrecoverable uplift of the tube roof. Confined sections of the prehistoric Carrizozo and McCartys flows (New Mexico, USA) display similar sinuous, ridge-like features with comparable surface age relationships. We contend that these distinct features formed in a fashion equivalent to that of the sinuous tumulus that formed at Kīlauea in 2010. Moreover, these sinuous tumuli may be analogs for some sinuous ridges evident in orbital images of the Tharsis volcanic province on Mars. The short-lived breakouts from the sinuous tumulus at Kīlauea were caused by surges in discharge through the lava tube, in response to cycles of deflation and inflation (DI events) at Kīlauea's summit. The correlation between DI events and subsequent breakouts aided in lava flow forecasting. Breakouts from the sinuous tumulus advanced repeatedly toward the sparsely populated Kalapana Gardens subdivision, destroying two homes and threatening others. Hazard assessments, including flow occurrence and advance forecasts, were relayed regularly to the Hawai'i County Civil Defense to aid their lava flow hazard mitigation efforts while this lava tube was active.

  1. Red Hot: Determining the Physical Properties of Lava Lake Skin

    NASA Astrophysics Data System (ADS)

    Ford, C.; Lev, E.

    2015-12-01

    Lava lakes are the surface expression of conduits that bring magma to the mouth of a volcano from deep within the earth. Time-lapse footage from a thermal imaging camera at Halema'uma'u lake at Kilauea volcano, Hawaii was used to investigate the cooling rate of the lava lake's surface. The data was then combined with an analytical model of lava flow cooling to constrain the porosity of the lava lake skin. The data was processed to account for the influence that the camera's position relative to the lake had on the image geometry and the recorded temperature values. We examined lake cooling in two separate scenarios: First, we calculated the cooling rate of the skin immediately after large gas bubbles burst at the lake's surface. Second, the temperature of the skin was measured as a function of distance from molten spreading centers (cracks) on the surface, and then converted to cooling as a function of the skin's age using the local lake surface velocity. The resulting cooling time-series were compared against cooling curves produced by a model that simulates lava flow cooling based on a myriad of physical factors. We performed quantitative data analysis to determine the approximate porosity of the lava lake skin. Preliminary comparisons reveal that the calculated cooling rates most closely correspond to the cooling curves that were produced with a lava porosity value of at least 80%.

  2. Effects of lava heating on volatile-rich slopes on Io

    USGS Publications Warehouse

    Dundas, Colin M.

    2017-01-01

    The upper crust of Io may be very rich in volatile sulfur and SO2. The surface is also highly volcanically active, and slopes may be warmed by radiant heat from the lava. This is particularly the case in paterae, which commonly host volcanic eruptions and long-lived lava lakes. Paterae slopes are highly variable, but some are greater than 70°. I model the heating of a volatile slope for two end-member cases: instantaneous emplacement of a large sheet flow, and persistent heating by a long-lived lava lake. In general, single flows can briefly raise sulfur to the melting temperature, or drive a modest amount of sublimation of SO2. Persistently lava-covered surfaces will drive much more significant geomorphic effects, with potentially significant sublimation and slope retreat. In addition to the direct effects, heating is likely to weaken slope materials and may trigger mass wasting. Thus, if the upper crust of Io is rich in these volatile species, future missions with high-resolution imaging are likely to observe actively retreating slopes around lava lakes and other locations of frequent eruptions.

  3. The internal structure of lava flows—insights from AMS measurements II: Hawaiian pahoehoe, toothpaste lava and 'a'ā

    NASA Astrophysics Data System (ADS)

    Cañón-Tapia, Edgardo; Walker, George P. L.; Herrero-Bervera, Emilio

    1997-03-01

    We studied the anisotropy of magnetic susceptibility (AMS) of 22 basaltic flow units, including S-type pahoehoe, P-type pahoehoe, toothpaste lava and 'a'ā emplaced over different slopes in two Hawaiian islands. Systematic differences occur in several aspects of AMS (mean susceptibility, degree of anisotropy, magnetic fabric and orientation of the principal susceptibilities) among the morphological types that can be related to different modes of lava emplacement. AMS also detects systematic changes in the rate of shear with position in a unit, allowing us to infer local flow direction and some other aspects of the velocity field of each unit. 'A'ā flows are subject to stronger deformation than pahoehoe, and also their internal parts behave more like a unit. According to AMS, the central part of pahoehoe commonly reveals a different deformation history than the upper and lower extremes, probably resulting from endogenous growth.

  4. Subaqueous rhyolite block lavas in the Miocene Ushikiri Formation, Shimane Peninsula, SW Japan

    NASA Astrophysics Data System (ADS)

    Kano, Kazuhiko; Takeuchi, Keiji; Yamamoto, Takahiro; Hoshizumi, Hideo

    1991-06-01

    A rhyolite mass of the Miocene Ushikiri Formation in the western part of the Shimane Peninsula, SW Japan, is a small subaqueous edifice about 600 m high and 4 km wide, formed at water depths between 200 and 1000 m. It consists mainly of three relatively flat, lava-flow units 50-300 m in maximum thickness, each of which includes lobes and their polyhedral fragments. The lava lobes are poorly to well vesiculated, glassy to microcrystalline and flow-banded and -folded. Compared with mafic pillows, they are large, having thick, quenched and brecciated, glassy crusts because of their high viscosity, surface tension and thermal conductivity. Their surfaces disintegrate into polyhedral fragments and grade into massive volcanic breccia. The massive volcanic breccia composed of the lobe fragments is poorly sorted and covered with stratified volcanic breccia of the same rock type. The rhyolite lavas commonly bifurcate in a manner similar to mafic pillow lavas. However, they are highly silicic with 1-5 vol.% phenocrysts and have elongated vesicles and flow-folds, implying that they were visco-plastic during flowage. Their surface features are similar to those of subaerial block lava. With respect to rheological and morphological features, they are subaqueous equivalents of block lava.

  5. The probability of lava inundation at the proposed and existing Kulani prison sites

    USGS Publications Warehouse

    Kauahikaua, J.P.; Trusdell, F.A.; Heliker, C.C.

    1998-01-01

    The State of Hawai`i has proposed building a 2,300-bed medium-security prison about 10 km downslope from the existing Kulani medium-security correctional facility. The proposed and existing facilities lie on the northeast rift zone of Mauna Loa, which last erupted in 1984 in this same general area. We use the best available geologic mapping and dating with GIS software to estimate the average recurrence interval between lava flows that inundate these sites. Three different methods are used to adjust the number of flows exposed at the surface for those flows that are buried to allow a better representation of the recurrence interval. Probabilities are then computed, based on these recurrence intervals, assuming that the data match a Poisson distribution. The probability of lava inundation for the existing prison site is estimated to be 11- 12% in the next 50 years. The probability of lava inundation for the proposed sites B and C are 2- 3% and 1-2%, respectively, in the same period. The probabilities are based on estimated recurrence intervals for lava flows, which are approximately proportional to the area considered. The probability of having to evacuate the prison is certainly higher than the probability of lava entering the site. Maximum warning times between eruption and lava inundation of a site are estimated to be 24 hours for the existing prison site and 72 hours for proposed sites B and C. Evacuation plans should take these times into consideration.

  6. Episodic soil succession on basaltic lava fields in a cool, dry environment

    USGS Publications Warehouse

    Vaughan, K.L.; McDaniel, P.A.; Phillips, W.M.

    2011-01-01

    Holocene- to late Pleistocene-aged lava flows at Craters of the Moon National Monument and Preserve provide an ideal setting to examine the early stages of soil formation under cool, dry conditions. Transects were used to characterize the amount and nature of soil cover on across basaltic lava flows ranging in age from 2.1 to 18.4 ka. Results indicate that on flows <13 ka, very shallow organic soils (Folists in Soil Taxonomy) are the dominant soil type, providing an areal coverage of up to ∼25%. On flows ≥13.9 ka, deeper mineral soils including Entisols, Aridisols, and Mollisols become dominant and the areal extent increases to ≥95% on flows older than 18.4 ka. These data suggest there are two distinct pedogenic pathways associated with lava flows of the region. The first pathway is illustrated by the younger flows, where Folists dominate. In the absence of a major source of loess, relatively little mineral material accumulates and soils provide only minor coverage of the lava flows. Our results indicate that this pathway of soil development has not changed appreciably over the past ∼10 ka. The second pedogenic pathway is illustrated by the flows older than 13.9 ka. These flows have been subject to deposition of large quantities of loess during and after the last regional glaciation, resulting in almost complete coverage. Subsequent pedogenesis has given rise to Aridisols and Mollisols with calcic and cambic horizons and mollic epipedons. This research highlights the importance of regional climate change on the evolution of Craters of the Moon soilscapes.

  7. Using submarine lava pillars to record mid-ocean ridge eruption dynamics

    USGS Publications Warehouse

    Gregg, Tracy K.P.; Fornari, Daniel J.; Perfit, Michael R.; Ridley, W. Ian; Kurz, Mark D.

    2000-01-01

    Submarine lava pillars are hollow, glass-lined, basaltic cylinders that occur at the axis of the mid-ocean ridge, and within the summit calderas of some seamounts. Typically, pillars are ~1-20 m tall and 0.25-2.0 m in diameter, with subhorizontal to horizontal glassy selvages on their exterior walls. Lava pillars form gradually during a single eruption, and are composed of lava emplaced at the eruption onset as well as the last lava remaining after the lava pond has drained. On the deep sea floor, the surface of a basaltic lava flow quenches to glass within 1 s, thereby preserving information about eruption dynamics, as well as chemical and physical properties of lava within a single eruption. Investigation of different lava pillars collected from a single eruption allows us to distinguish surficial lava-pond or lava-lake geochemical processes from those operating in the magma chamber. Morphologic, major-element, petrographic and helium analyses were performed on portions of three lava pillars formed during the April 1991 eruption near 9°50'N at the axis of the East Pacific Rise. Modeling results indicate that the collected portions of pillars formed in ~2-5 h, suggesting a total eruption duration of ~8-20 h. These values are consistent with observed homogeneity in the glass helium concentrations and helium diffusion rates. Major-element compositions of most pillar glasses are homogeneous and identical to the 1991 flow, but slight chemical variations measured in the outermost portions of some pillars may reflect post-eruptive processes rather than those occurring in subaxial magma bodies. Because lava pillars are common at mid-ocean ridges (MORs), the concepts and techniques we present here may have important application to the study of MOR eruptions, thereby providing a basis for quantitative comparisons of volcanic eruptions in geographically and tectonically diverse settings. More research is needed to thoroughly test the hypotheses presented here. (C) 2000

  8. Thermal infrared data of active lava surfaces using a newly-developed camera system

    NASA Astrophysics Data System (ADS)

    Thompson, J. O.; Ramsey, M. S.

    2017-12-01

    Our ability to acquire accurate data during lava flow emplacement greatly improves models designed to predict their dynamics and down-flow hazard potential. For example, better constraint on the physical property of emissivity as a lava cools improves the accuracy of the derived temperature, a critical parameter for flow models that estimate at-vent eruption rate, flow length, and distribution. Thermal infrared (TIR) data are increasingly used as a tool to determine eruption styles and cooling regimes by measuring temperatures at high temporal resolutions. Factors that control the accurate measurement of surface temperatures include both material properties (e.g., emissivity and surface texture) as well as external factors (e.g., camera geometry and the intervening atmosphere). We present a newly-developed, field-portable miniature multispectral thermal infrared camera (MMT-Cam) to measure both temperature and emissivity of basaltic lava surfaces at up to 7 Hz. The MMT-Cam acquires emitted radiance in six wavelength channels in addition to the broadband temperature. The instrument was laboratory calibrated for systematic errors and fully field tested at the Overlook Crater lava lake (Kilauea, HI) in January 2017. The data show that the major emissivity absorption feature (around 8.5 to 9.0 µm) transitions to higher wavelengths and the depth of the feature decreases as a lava surface cools, forming a progressively thicker crust. This transition occurs over a temperature range of 758 to 518 K. Constraining the relationship between this spectral change and temperature derived from this data will provide more accurate temperatures and therefore, more accurate modeling results. This is the first time that emissivity and its link to temperature has been measured in situ on active lava surfaces, which will improve input parameters of flow propagation models and possibly improve flow forecasting.

  9. Combined use of visible, reflected infrared, and thermal infrared images for mapping Hawaiian lava flows

    NASA Technical Reports Server (NTRS)

    Abrams, Michael; Abbott, Elsa; Kahle, Anne

    1991-01-01

    The weathering of Hawaiian basalts is accompanied by chemical and physical changes of the surfaces. These changes have been mapped using remote sensing data from the visible and reflected infrared and thermal infrared wavelength regions. They are related to the physical breakdown of surface chill coats, the development and erosion of silica coatings, the oxidation of mafic minerals, and the development of vegetation cover. These effects show systematic behavior with age and can be mapped using the image data and related to relative ages of pahoehoe and aa flows. The thermal data are sensitive to silica rind development and fine structure of the scene; the reflectance data show the degree of oxidation and differentiate vegetation from aa and cinders. Together, data from the two wavelength regions show more than either separately. The combined data potentially provide a powerful tool for mapping basalt flows in arid to semiarid volcanic environments.

  10. Flowing Hot or Cold: User-Friendly Computational Models of Terrestrial and Planetary Lava Channels and Lakes

    NASA Astrophysics Data System (ADS)

    Sakimoto, S. E. H.

    2016-12-01

    Planetary volcanism has redefined what is considered volcanism. "Magma" now may be considered to be anything from the molten rock familiar at terrestrial volcanoes to cryovolcanic ammonia-water mixes erupted on an outer solar system moon. However, even with unfamiliar compositions and source mechanisms, we find familiar landforms such as volcanic channels, lakes, flows, and domes and thus a multitude of possibilities for modeling. As on Earth, these landforms lend themselves to analysis for estimating storage, eruption and/or flow rates. This has potential pitfalls, as extension of the simplified analytic models we often use for terrestrial features into unfamiliar parameter space might yield misleading results. Our most commonly used tools for estimating flow and cooling have tended to lag significantly behind state-of-the-art; the easiest methods to use are neither realistic or accurate, but the more realistic and accurate computational methods are not simple to use. Since the latter computational tools tend to be both expensive and require a significant learning curve, there is a need for a user-friendly approach that still takes advantage of their accuracy. One method is use of the computational package for generation of a server-based tool that allows less computationally inclined users to get accurate results over their range of input parameters for a given problem geometry. A second method is to use the computational package for the generation of a polynomial empirical solution for each class of flow geometry that can be fairly easily solved by anyone with a spreadsheet. In this study, we demonstrate both approaches for several channel flow and lava lake geometries with terrestrial and extraterrestrial examples and compare their results. Specifically, we model cooling rectangular channel flow with a yield strength material, with applications to Mauna Loa, Kilauea, Venus, and Mars. This approach also shows promise with model applications to lava lakes, magma

  11. Hawaiian cultural influences on support for lava flow hazard mitigation measures during the January 1960 eruption of Kīlauea volcano, Kapoho, Hawai‘i

    USGS Publications Warehouse

    Gregg, Chris E.; Houghton, Bruce F.; Paton, Douglas; Swanson, D.A.; Lachman, R.; Bonk, W.J.

    2008-01-01

    On average, 72% of respondents favored the construction of earthen barriers to hold back or divert lava and protect Kapoho, but far fewer agreed with the military's use of bombs (14%) to protect Kapoho. In contrast, about one-third of respondents conditionally agreed with the use of bombs. It is suggested that local participation in the bombing strategy may explain the increased conditional acceptance of bombs as a mitigation tool, although this can not be conclusively demonstrated. Belief in Pele and being of Hawaiian ethnicity did not reduce support for the use of barriers, but did reduce support for bombs in both bombing scenarios. The disparity in levels of acceptance of barriers versus bombing and of one bombing strategy versus another suggests that historically public attitudes toward lava flow hazard mitigation strategies were complex. A modern comparative study is needed before the next damaging eruption to inform debates and decisions about whether or not to interfere with the flow of lava. Recent changes in the current eruption of Kīlauea make this a timely topic.

  12. The 'stealth' lavas of Kilauea: the 2014-2015 volcanic crisis in Puna

    NASA Astrophysics Data System (ADS)

    Houghton, B. F.; Gregg, C. E.; Kim, K.

    2015-12-01

    The 1983 onwards eruption of Kīlauea took a complex turn and changed course in June 2014 when activity switched to a new vent northeast of Pu'u 'Ō'ō. New flows were directed into lower Puna, a district which had not experienced lava since 1845. The new flow was the longest seen in Hawaii in 500 years and in October—November 2015 it threatened buildings in Pāhoa town and critical lifelines (roading, electricity) to a larger population of some 10,500 people in lower Puna. The behavior of long-lived slow-moving flows of this type is exceptionally difficult to predict over time and the lava advanced as narrow lobes, typically only a few inches high and feet-wide, guided by small changes in ground slope and local barriers, before widening and thickening over time scales of days. New lobes have then broken out either from the front or margins of the flows, often taking unpredictable paths, and allowing the flows to cover progressively larger areas. The uncertainty as to where the flow would appear next made the human response very challenging. At the same time slow advance gave lots of warning time and has led to both a globally unique set of 'just-in-time' measures to mitigation lava impacts and development of a resilient, strong, articulate community. The lava flow retreated back 'up-slope' in mid-2015 but remains a hidden threat that could return to threaten Pāhoa and neighboring subdivisions.

  13. Development of lava tubes in the light of observations at Mauna Ulu, Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Peterson, D.W.; Holcomb, R.T.; Tilling, R.I.; Christiansen, R.L.

    1994-01-01

    During the 1969-1974 Mauna Ulu eruption on Kilauea's upper east rift zone, lava tubes were observed to develop by four principal processes: (1) flat, rooted crusts grew across streams within confined channels; (2) overflows and spatter accreted to levees to build arched roofs across streams; (3) plates of solidified crust floating downstream coalesced to form a roof; and (4) pahoehoe lobes progressively extended, fed by networks of distributaries beneath a solidified crust. Still another tube-forming process operated when pahoehoe entered the ocean; large waves would abruptly chill a crust across the entire surface of a molten stream crossing through the surf zone. These littoral lava tubes formed abruptly, in contrast to subaerial tubes, which formed gradually. All tube-forming processes were favored by low to moderate volume-rates of flow for sustained periods of time. Tubes thereby became ubiquitous within the pahoehoe flows and distributed a very large proportionof the lava that was produced during this prolonged eruption. Tubes transport lava efficiently. Once formed, the roofs of tubes insulate the active streams within, allowing the lava to retain its fluidity for a longer time than if exposed directly to ambient air temperature. Thus the flows can travel greater distances and spread over wider areas. Even though supply rates during most of 1970-1974 were moderate, ranging from 1 to 5 m3/s, large tube systems conducted lava as far as the coast, 12-13 km distant, where they fed extensive pahoehoe fields on the coastal flats. Some flows entered the sea to build lava deltas and add new land to the island. The largest and most efficient tubes developed during periods of sustained extrusion, when new lava was being supplied at nearly constant rates. Tubes can play a major role in building volcanic edifices with gentle slopes because they can deliver a substantial fraction of lava erupted at low to moderate rates to sites far down the flank of a volcano. We

  14. The viscosity of pāhoehoe lava: In situ syn-eruptive measurements from Kilauea, Hawaii

    NASA Astrophysics Data System (ADS)

    Chevrel, Magdalena Oryaëlle; Harris, Andrew J. L.; James, Mike R.; Calabrò, Laura; Gurioli, Lucia; Pinkerton, Harry

    2018-07-01

    Viscosity is one of the most important physical properties controlling lava flow dynamics. Usually, viscosity is measured in the laboratory where key parameters can be controlled but can never reproduce the natural environment and original state of the lava in terms of crystal and bubble contents, dissolved volatiles, and oxygen fugacity. The most promising approach for quantifying the rheology of molten lava in its natural state is therefore to carry out direct field measurements by inserting a viscometer into the lava while it is flowing. Such in-situ syn-eruptive viscosity measurements are notoriously difficult to perform due to the lack of appropriate instrumentation and the difficulty of working on or near an active lava flow. In the field, rotational viscometer measurements are of particular value as they have the potential to measure the properties of the flow interior rather than an integration of the viscosity of the viscoelastic crust + flow interior. To our knowledge only one field rotational viscometer is available, but logistical constraints have meant that it has not been used for 20 yr. Here, we describe new viscosity measurements made using the refurbished version of this custom-built rotational viscometer, as performed on active pāhoehoe lobes from the 61G lava flow of Kilauea's Pu'u 'Ō'ō eruption in 2016. We successfully measured a viscosity of ∼380 Pa s at strain-rates between 1.6 and 5 s-1 and at 1144 °C. Additionally, synchronous lava sampling allowed us to provide detailed textural and chemical characterization of quenched samples. Application of current physico-chemical models based on this characterization (16 ± 4 vol.% crystals; 50 ± 6 vol.% vesicles), gave viscosity estimates that were approximately compatible with the measured values, highlighting the sensitivity of model-based viscosity estimates on the effect of deformable bubbles. Our measurements also agree on the range of viscosities in comparison to previous field

  15. Phreatic explosions during basaltic fissure eruptions: Kings Bowl lava field, Snake River Plain, USA

    NASA Astrophysics Data System (ADS)

    Hughes, Scott S.; Kobs Nawotniak, Shannon E.; Sears, Derek W. G.; Borg, Christian; Garry, William Brent; Christiansen, Eric H.; Haberle, Christopher W.; Lim, Darlene S. S.; Heldmann, Jennifer L.

    2018-02-01

    Physical and compositional measurements are made at the 7 km-long ( 2200 years B.P.) Kings Bowl basaltic fissure system and surrounding lava field in order to further understand the interaction of fissure-fed lavas with phreatic explosive events. These assessments are intended to elucidate the cause and potential for hazards associated with phreatic phases that occur during basaltic fissure eruptions. In the present paper we focus on a general understanding of the geological history of the site. We utilize geospatial analysis of lava surfaces, lithologic and geochemical signatures of lava flows and explosively ejected blocks, and surveys via ground observation and remote sensing. Lithologic and geochemical signatures readily distinguish between Kings Bowl and underlying pre-Kings Bowl lava flows, both of which comprise phreatic ejecta from the Kings Bowl fissure. These basalt types, as well as neighboring lava flows from the contemporaneous Wapi lava field and the older Inferno Chasm vent and outflow channel, fall compositionally within the framework of eastern Snake River Plain olivine tholeiites. Total volume of lava in the Kings Bowl field is estimated to be 0.0125 km3, compared to a previous estimate of 0.005 km3. The main (central) lava lake lost a total of 0.0018 km3 of magma by either drain-back into the fissure system or breakout flows from breached levees. Phreatic explosions along the Kings Bowl fissure system occurred after magma supply was cut off, leading to fissure evacuation, and were triggered by magma withdrawal. The fissure system produced multiple phreatic explosions and the main pit is accompanied by others that occur as subordinate pits and linear blast corridors along the fissure. The drop in magma supply and the concomitant influx of groundwater were necessary processes that led to the formation of Kings Bowl and other pits along the fissure. A conceptual model is presented that has relevance to the broader range of low-volume, monogenetic

  16. Structural Development and Oxidation of the Takanoobane Rhyolite Lava in Aso Caldera, Japan

    NASA Astrophysics Data System (ADS)

    Furukawa, K.; Uno, K.; Miyagi, I.

    2007-12-01

    The Takanoobane rhyolite lava (hereafter described as the TR lava) is distributed in the western part of Aso caldera, middle Kyushu Island, SW Japan. The TR lava is one of the central cones. The volume, SiO2 contents and K-Ar age are 0.14km3 (Miyabuchi et al., 2004), 71-72% (Furukawa, 2006) and 51+-5ka (Matsumoto et al., 1991), respectively. The TR lava was effused in a subaerial environment. In this study, we show vertical structural variation and the development of the TR lava from the four drilling cores obtained by Aso Volcanological Laboratory in 2001-2002. The TR lava is about 90m thick in the proximal part, and the internal structures are divided into three parts: Alternation of the pumiceous layers and the obsidian layers (the upper part), the crystalline rhyolite layer (the central part), and the obsidian layer (the lower part). This structural variation apparently resembles to that of the Obsidian Dome near long valley caldera in eastern California (Manley and Fink, 1987). The central crystalline rhyolite layer of the TR lava is characterized by the development of the flow structure, which is composed of interconnected minute cavities. The shapes and sizes of the structure are varied from stubby or lens to flattened and from a few mm to above 5 cm in length, respectively. The morphology of the flow structure tends to be flattened with distance from the source region. It is probably due to shear stress caused by the lava movement We described the vertical variation of the mineral assemblage of Fe-Ti oxides. It shows that the highly oxidized Fe-Ti oxides tend to be distributed around the flow structure. Thus, the part is selectively oxidized. It is supported also by the rock magnetic experiments. Above studies and cooling history calculated by a numerical modeling show that the oxidation was caused by the increasing of fO2 at the part. We interpret that the increasing of fO2 was caused by the release of hydrogen from the degassing lava. Hydrogen should be

  17. Lava Simulation and Risk Assessment During The July 2001 Etnean Eruption

    NASA Astrophysics Data System (ADS)

    Crisci, G. M.; di Gregorio, S.; Rongo, R.; Spataro, W.

    SCIARA, a two-dimensional cellular automata model for the simulation of lava flows, has been in the past validated on real cases of Etnean eruptions. Its lastest release, SCIARA-hex1 was applied on the 1991-93 Etnean eruption in validation phase. The simulation results are satisfying within limits to forecast the lava flow path. The pre- sented version isnSt more sophisticated than the previous version, because it does- nSt manage lava layers at different temperatures in the same cell and their distinct outflows, but its speed permitted to generate a large number of scenarios in quickly evolving emergence situation. Moreover, SCIARA-hex1 was applied recently during the Etnean crisis in the summer of 2001, when a new eruption threatened the town of Nicolosi. The emission, that started on July 18th 2001, represented during the cri- sis the main danger for the towns of Nicolosi and Belpasso; it was, in its maximum extension, only four kilometres away from the Nicolosi. The study was done in collab- oration with the Italian National Institute of Geophysics and Vulcanology of Catania. This Sreal timeT application proved that SCIARA is a reliable and flexible tool for & cedil;forecasting lava flow paths and for assessing hazard in the Etnean area, besides being useful for the creation of real scenarios. In SCIARA, lava flows are viewed as a dy- namic system based on local interactions with discrete time and space, where space is represented by hexagonal cells, which specification (state) describes the character- istics (substates) of the corresponding piece of space. The neighbouring of a cell c, specifying the interacting cells, is given by its adjacent cells. The computation of the new values of the substates in the cells gives the evolution of the phenomenon. The distribution of the lava is crucial in the definition of the model: it is based on a proce- dure of minimisation of the differences. Moreover, with respect to previous SCIARA models, spurious symmetries

  18. Gusev Rocks Solidified from Lava (False Color)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    In recent weeks, as NASA's Mars Exploration Rover Spirit has driven through the basin south of 'Husband Hill,' it has been traversing mainly sand and dune deposits. This week, though, Spirit has been maneuvering along the edge of an arc-shaped feature called 'Lorre Ridge' and has encountered some spectacular examples of basaltic rocks with striking textures. This panoramic camera (Pancam) image shows a group of boulders informally named 'FuYi.' These basaltic rocks were formed by volcanic processes and may be a primary constituent of Lorre Ridge and other interesting landforms in the basin.

    Spirit first encountered basalts at its landing site two years ago, on a vast plain covered with solidified lava that appeared to have flowed across Gusev Crater. Later, basaltic rocks became rare as Spirit climbed Husband Hill. The basaltic rocks that Spirit is now seeing are interesting because they exhibit many small holes or vesicles, similar to some kinds of volcanic rocks on Earth. Vesicular rocks form when gas bubbles are trapped in lava flows and the rock solidifies around the bubbles. When the gas escapes, it leaves holes in the rock. The quantity of gas bubbles in rocks on Husband Hill varies considerably; some rocks have none and some, such as several here at FuYi, are downright frothy.

    The change in textures and the location of the basalts may be signs that Spirit is driving along the edge of a lava flow. This lava may be the same as the basalt blanketing the plains of Spirit's landing site, or it may be different. The large size and frothy nature of the boulders around Lorre Ridge might indicate that eruptions once took place at the edge of the lava flow, where the lava interacted with the rocks of the basin floor. Scientists hope to learn more as Spirit continues to investigate these rocks.

    As Earth approaches the Chinese New Year (The Year of the Dog), the Athena science team decided to use nicknames representing Chinese culture and geography

  19. Changes in lava effusion rate, explosion characteristics and degassing revealed by time-series photogrammetry and feature tracking velocimetry of Santiaguito lava dome

    NASA Astrophysics Data System (ADS)

    Andrews, B. J.; Grocke, S.; Benage, M.

    2016-12-01

    The Santiaguito dome complex, Guatemala, provides a unique opportunity to observe an active lava dome with an array of DSLR and video cameras from the safety of Santa Maria volcano, a vantage point 2500 m away from and 1000 m above the dome. Radio triggered DSLR cameras can collect synchronized images at rates up to 10 frames/minute. Single-camera datasets describe lava dome surface motions and application of Feature-Tracking-Velocimetry (FTV) to the image sequences measures apparent lava flow surface velocities (as projected onto the camera-imaging plane). Multi-camera datasets describe the lava dome surface topography and 3D velocity field; this 4D photogrammetric approach yields georeferenced point clouds and DEMs with specific points or features tracked through time. HD video cameras document explosions and characterize those events as comparatively gas-rich or ash-rich. Comparison of observations collected during January and November 2012 and January 2016 reveals changes in the effusion rate and explosion characteristics at the active Santiaguito dome that suggest a change in shallow degassing behavior. The 2012 lava dome had numerous incandescent regions and surface velocities of 3 m/hr along the southern part of the dome summit where the dome fed a lava flow. The 2012 dome also showed a remarkably periodic (26±6 minute) pattern of inflation and deflation interpreted to reflect gas accumulation and release, with some releases occurring explosively. Video observations show that the explosion plumes were generally ash-poor. In contrast, the January 2016 dome exhibited very limited incandescence, and had reduced surface velocities of <1 m/hr. Explosions occurred infrequently, but were generally longer duration ( e.g. 90-120 s compared to 30 s) and more ash-rich than those in 2012. We suggest that the reduced lava effusion rate in 2016 produced a net increase in the gas accumulation capacity of the shallow magma, and thus larger, less-frequent explosions. These

  20. Features of lava lake filling and draining and their implications for eruption dynamics

    USGS Publications Warehouse

    Stovall, W.K.; Houghton, Bruce F.; Harris, A.J.L.; Swanson, D.A.

    2009-01-01

    Lava lakes experience filling, circulation, and often drainage depending upon the style of activity and location of the vent. Features formed by these processes have proved difficult to document due to dangerous conditions during the eruption, inaccessibility, and destruction of features during lake drainage. Kilauea Iki lava lake, Kilauea, Hawai'i, preserves many such features, because lava ponded in a pre-existing crater adjacent to the vent and eventually filled to the level of, and interacted with, the vent and lava fountains. During repeated episodes, a cyclic pattern of lake filling to above vent level, followed by draining back to vent level, preserved features associated with both filling and draining. Field investigations permit us to describe the characteristic features associated with lava lakes on length scales ranging from centimeters to hundreds of meters in a fashion analogous to descriptions of lava flows. Multiple vertical rinds of lava coating the lake walls formed during filling as the lake deepened and lava solidified against vertical faces. Drainage of the lake resulted in uneven formation of roughly horizontal lava shelves on the lakeward edge of the vertical rinds; the shelves correlate with stable, staggered lake stands. Shelves either formed as broken relict slabs of lake crust that solidified in contact with the wall or by accumulation, accretion, and widening at the lake surface in a dynamic lateral flow regime. Thin, upper lava shelves reflect an initially dynamic environment, in which rapid lake lowering was replaced by slower and more staggered drainage with the formation of thicker, more laterally continuous shelves. At all lava lakes experiencing stages of filling and draining these processes may occur and result in the formation of similar sets of features. ?? Springer-Verlag 2009.

  1. Primary vesicles, vesicle-rich segregation structures and recognition of primary and secondary porosities in lava flows from the Paraná igneous province, southern Brazil

    NASA Astrophysics Data System (ADS)

    Barreto, Carla Joana S.; de Lima, Evandro F.; Goldberg, Karin

    2017-04-01

    This study focuses on a volcanic succession of pāhoehoe to rubbly lavas of the Paraná-Etendeka Province exposed in a single road profile in southernmost Brazil. This work provides an integrated approach for examining primary vesicles and vesicle-rich segregation structures at the mesoscopic scale. In addition, this study provides a quantitative analysis of pore types in thin section. We documented distinct distribution patterns of vesicle and vesicle-rich segregation structures according to lava thickness. In compound pāhoehoe lavas, the cooling allows only vesicles (<1 cm size) and pipe vesicles to be frozen into place. In inflated pāhoehoe lavas, vesicles of different sizes are common, including pipe vesicles, and also segregation structures such as proto-cylinders, cylinders, cylinder sheets, vesicle sheets, and pods. In rubbly lavas, only vesicles of varying sizes occur. Gas release from melt caused the formation of primary porosity, while hydrothermal alteration and tectonic fracturing are the main processes that generated secondary porosity. Although several forms of porosity were created in the basaltic lava flows, the precipitation of secondary minerals within the pores has tended to reduce the original porosities. Late-stage fractures could create efficient channel networks for possible hydrocarbon/groundwater migration and entrapment owing to their ability to connect single pores. Quantitative permeability data should be gathered in future studies to confirm the potential of these lavas for store hydrocarbons or groundwater.

  2. Multiple constraints on the age of a Pleistocene lava dam across the Little Colorado River at Grand Falls, Arizona

    USGS Publications Warehouse

    Duffield, W.; Riggs, N.; Kaufman, D.; Champion, D.; Fenton, C.; Forman, S.; McIntosh, W.; Hereford, R.; Plescia, J.; Ort, M.

    2006-01-01

    The Grand Falls basalt lava flow in northern Arizona was emplaced in late Pleistocene time. It flowed 10 km from its vent area to the Little Colorado River, where it cascaded into and filled a 65-m-deep canyon to form the Grand Falls lava dam. Lava continued ???25 km downstream and ???1 km onto the far rim beyond where the canyon was filled. Subsequent fluvial sedimentation filled the reservoir behind the dam, and eventually the river established a channel along the margin of the lava flow to the site where water falls back into the pre-eruption canyon. The ca. 150 ka age of the Grand Falls flow provided by whole-rock K-Ar analysis in the 1970s is inconsistent with the preservation of centimeter-scale flow-top features on the surface of the flow and the near absence of physical and chemical weathering on the flow downstream of the falls. The buried Little Colorado River channel and the present-day channel are at nearly the same elevation, indicating that very little, if any, regional downcutting has occurred since emplacement of the flow. Newly applied dating techniques better define the age of the lava dam. Infrared-stimulated luminescence dating of silty mudstone baked by the lava yielded an age of 19.6 ?? 1.2 ka. Samples from three noneroded or slightly eroded outcrops at the top of the lava flow yielded 3He cosmogenic ages of 16 ?? 1 ka, 17 ?? 1 ka, and 20 ?? 1 ka. A mean age of 8 ?? 19 ka was obtained from averaging four samples using the 40Ar/39Ar step-heating method. Finally, paleomagnetic directions in lava samples from two sites at Grand Falls and one at the vent area are nearly identical and match the curve of magnetic secular variation at ca. 15 ka, 19 ka, 23 ka, and 28 ka. We conclude that the Grand Falls flow was emplaced at ca. 20 ka. ?? 2006 Geological Society of America.

  3. Observations and initial modeling of lava-SO2 interactions at Prometheus, Io

    NASA Astrophysics Data System (ADS)

    Milazzo, M. P.; Keszthelyi, L. P.; McEwen, A. S.

    2001-12-01

    We present observations and initial modeling of the lava-SO2 interactions at the flow fronts in the Prometheus region of Io. Recent high-resolution observations of Prometheus reveal a compound flow field with many active flow lobes. Many of the flow lobes are associated with bright streaks of what is interpreted to be volatilized and recondensed SO2 radiating away from the hot lava. Lower-resolution color data show diffuse blue to violet areas, also near the active flow front, perhaps from active venting of SO2. Not clearly visible in any of the images is a single source vent for the active plume. While the size of the proposed vent is probably near the limit of the resolution, we expected to see radial or concentric albedo patterns or other evidence for gas and entrained particles above the flow field. The lack of an obvious plume vent, earlier suggestions that the Prometheus-type plumes may originate from the advancing flow lobes, and the high-resolution images showing evidence for large-scale volatilization of the SO2-rich substrate at Prometheus encouraged us to develop a model to quantify the heat transfer between a basaltic lava flow and a substrate of SO2 snow. We calculate that the vaporization rate of SO2 snow is 2.5×10-6ms-1 per unit area. Using an estimated 5 m2s-1 lava coverage rate (from change detection images), we show that the gas production rate of SO2 at the flow fronts is enough to produce a resurfacing rate of ~0.24 cm yr-1 at the annulus of Prometheus. This is much less than other estimates of resurfacing by the Prometheus plume. While not easily explaining the main Prometheus plume, our model readily accounts for the bright streaks.

  4. Mariner 9 photographs of small-scale volcanic structures on Mars

    NASA Technical Reports Server (NTRS)

    Greeley, R.

    1972-01-01

    Surface features on the flanks of Martian shield volcanoes photographed by Mariner 9 are identified as lava flow channels, rift zones, and partly collapsed lava tubes by comparisons with similar structures on the flanks of Mauna Loa shield volcano, Hawaii. From these identifications, the composition of the Martian lava flows is interpreted to be basaltic, with viscosities ranging from those of fluid pahoehoe to more viscous aa.

  5. Lengths and hazards from channel-fed lava flows on Mauna Loa, Hawai`i, determined from thermal and downslope modeling with FLOWGO

    NASA Astrophysics Data System (ADS)

    Rowland, Scott K.; Garbeil, Harold; Harris, Andrew J. L.

    2005-08-01

    Using the FLOWGO thermo-rheological model we have determined cooling-limited lengths of channel-fed (i.e. ‘a‘ā) lava flows from Mauna Loa. We set up the program to run autonomously, starting lava flows from every 4th line and sample in a 30-m spatial-resolution SRTM DEM within regions corresponding to the NE and SW rift zones and the N flank of the volcano. We consider that each model run represents an effective effusion rate, which for an actual flow coincides with it reaching 90% of its total length. We ran the model at effective effusion rates ranging from 1 to 1,000 m3 s-1, and determined the cooling-limited channel length for each. Keeping in mind that most flows extend 1 2 km beyond the end of their well-developed channels and that our results are non-probabilistic in that they give all potential vent sites an equal likelihood to erupt, lava coverage results include the following: SW rift zone flows threaten almost all of Mauna Loa’s SW flanks, even at effective effusion rates as low as 50 m3 s-1 (the average effective effusion rate for SW rift zone eruptions since 1843 is close to 400 m3 s-1). N flank eruptions, although rare in the recent geologic record, have the potential to threaten much of the coastline S of Keauhou with effective effusion rates of 50 100 m3 s-1, and the coast near Anaeho‘omalu if effective effusion rates are 400 500 m3 s-1 (the 1859 ‘a‘ā flow reached this coast with an effective effusion rate of ˜400 m3 s-1). If the NE rift zone continues to be active only at elevations >2,500 m, in order for a channel-fed flow to reach Hilo the effective effusion rate needs to be ≥400 m3 s-1 (the 1984 flow by comparison, had an effective effusion rate of 200 m3 s-1). Hilo could be threatened by NE rift zone channel-fed flows with lower effective effusion rates but only if they issue from vents at ˜2,000 m or lower. Populated areas on Mauna Loa’s SE flanks (e.g. Pāhala), could be threatened by SW rift zone eruptions with effective

  6. What factors control the superficial lava dome explosivity?

    NASA Astrophysics Data System (ADS)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoit; Morgan, Daniel J.

    2015-04-01

    Dome-forming eruption is a frequent eruptive style; lava domes result from intermittent, slow extrusion of viscous lava. Most dome-forming eruptions produce highly microcrystallized and highly- to almost totally-degassed magmas which have a low explosive potential. During lava dome growth, recurrent collapses of unstable parts are the main destructive process of the lava dome, generating concentrated pyroclastic density currents (C-PDC) channelized in valleys. These C-PDC have a high, but localized, damage potential that largely depends on the collapsed volume. Sometimes, a dilute ash cloud surge develops at the top of the concentrated flow with an increased destructive effect because it may overflow ridges and affect larger areas. In some cases, large lava dome collapses can induce a depressurization of the magma within the conduit, leading to vulcanian explosions. By contrast, violent, laterally directed, explosions may occur at the base of a growing lava dome: this activity generates dilute and turbulent, highly-destructive, pyroclastic density currents (D-PDC), with a high velocity and propagation poorly dependent on the topography. Numerous studies on lava dome behaviors exist, but the triggering of lava dome explosions is poorly understood. Here, seven dome-forming eruptions are investigated: in the Lesser Antilles arc: Montagne Pelée, Martinique (1902-1905, 1929-1932 and 650 y. BP eruptions), Soufrière Hills, Montserrat; in Guatemala, Santiaguito (1929 eruption); in La Chaîne des Puys, France (Puy de Dome and Puy Chopine eruptions). We propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by these key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite

  7. Lava Morphology Classification of a Fast-Spreading Ridge Using Deep-Towed Sonar Data: East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Meyer, J.; White, S.

    2005-05-01

    Classification of lava morphology on a regional scale contributes to the understanding of the distribution and extent of lava flows at a mid-ocean ridge. Seafloor classification is essential to understand the regional undersea environment at midocean ridges. In this study, the development of a classification scheme is found to identify and extract textural patterns of different lava morphologies along the East Pacific Rise using DSL-120 side-scan and ARGO camera imagery. Application of an accurate image classification technique to side-scan sonar allows us to expand upon the locally available visual ground reference data to make the first comprehensive regional maps of small-scale lava morphology present at a mid-ocean ridge. The submarine lava morphologies focused upon in this study; sheet flows, lobate flows, and pillow flows; have unique textures. Several algorithms were applied to the sonar backscatter intensity images to produce multiple textural image layers useful in distinguishing the different lava morphologies. The intensity and spatially enhanced images were then combined and applied to a hybrid classification technique. The hybrid classification involves two integrated classifiers, a rule-based expert system classifier and a machine learning classifier. The complementary capabilities of the two integrated classifiers provided a higher accuracy of regional seafloor classification compared to using either classifier alone. Once trained, the hybrid classifier can then be applied to classify neighboring images with relative ease. This classification technique has been used to map the lava morphology distribution and infer spatial variability of lava effusion rates along two segments of the East Pacific Rise, 17 deg S and 9 deg N. Future use of this technique may also be useful for attaining temporal information. Repeated documentation of morphology classification in this dynamic environment can be compared to detect regional seafloor change.

  8. Vesicular komatiites, 3.5-Ga Komati Formation, Barberton Greenstone Belt, South Africa: inflation of submarine lavas and origin of spinifex zones

    NASA Astrophysics Data System (ADS)

    Dann, Jesse

    2001-08-01

    Komatiites of the 3.5-Ga Komati Formation are ultramafic lavas (>23% MgO) erupted in a submarine, lava plain environment. Newly discovered vesicular komatiites have vesicular upper crusts disrupted by synvolcanic structures that are similar to inflation-related structures of modern lava flows. Detailed outcrop maps reveal flows with upper vesicular zones, 2-15 m thick, which were (1) rotated by differential inflation, (2) intruded by dikes from the interior of the flow, (3) extended, forming a flooded graben, and/or (4) entirely engulfed. The largest inflated structure is a tumulus with 20 m of surface relief, which was covered by a compound flow unit of spinifex flow lobes. The lava that inflated and rotated the upper vesicular crust did not vesiculate, but crystallized as a thick spinifex zone with fist-size skeletal olivine. Instead of representing rapidly cooled lava, the spinifex zone cooled slowly beneath an insulating upper crust during inflation. Overpressure of the inflating lava may have inhibited vesiculation. This work describes the oldest vesicular komatiites known, illustrates the first field evidence for inflated structures in komatiite flows, proposes a new factor in the development of spinifex zones, and concludes that the inflation model is useful for understanding the evolution of komatiite submarine flow fields.

  9. Lava discharge during Etna's January 2011 fire fountain tracked using MSG-SEVIRI

    NASA Astrophysics Data System (ADS)

    Gouhier, Mathieu; Harris, Andrew; Calvari, Sonia; Labazuy, Philippe; Guéhenneux, Yannick; Donnadieu, Franck; Valade, Sébastien

    2012-05-01

    Etna's January 2011 eruption provided an excellent opportunity to test the ability of Meteosat Second Generation satellite's Spinning Enhanced Visible and InfraRed Imager (SEVIRI) sensor to track a short-lived effusive event. The presence of lava fountaining, the rapid expansion of lava flows, and the complexity of the resulting flow field make such events difficult to track from the ground. During the Etna's January 2011 eruption, we were able to use thermal data collected by SEVIRI every 15 min to generate a time series of the syn-eruptive heat flux. Lava discharge waxed over a ~1-h period to reach a peak that was first masked from the satellite view by a cold tephra plume and then was of sufficient intensity to saturate the 3.9-μm channel. Both problems made it impossible to estimate time-averaged lava discharge rates using the syn-eruptive heat flux curve. Therefore, through integration of data obtained by ground-based Doppler radar and thermal cameras, as well as ancillary satellite data (from Moderate Resolution Imaging Spectrometer and Advanced Very High Resolution Radiometer), we developed a method that allowed us to identify the point at which effusion stagnated, to allow definition of a lava cooling curve. This allowed retrieval of a lava volume of ~1.2 × 106 m3, which, if emitted for 5 h, was erupted at a mean output rate of ~70 m3 s-1. The lava volume estimated using the cooling curve method is found to be similar to the values inferred from field measurements.

  10. Gusev Rocks Solidified from Lava (3-D)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    In recent weeks, as NASA's Mars Exploration Rover Spirit has driven through the basin south of 'Husband Hill,' it has been traversing mainly sand and dune deposits. This week, though, Spirit has been maneuvering along the edge of an arc-shaped feature called 'Lorre Ridge' and has encountered some spectacular examples of basaltic rocks with striking textures. This panoramic camera (Pancam) image shows a group of boulders informally named 'FuYi.' These basaltic rocks were formed by volcanic processes and may be a primary constituent of Lorre Ridge and other interesting landforms in the basin.

    Spirit first encountered basalts at its landing site two years ago, on a vast plain covered with solidified lava that appeared to have flowed across Gusev Crater. Later, basaltic rocks became rare as Spirit climbed Husband Hill. The basaltic rocks that Spirit is now seeing are interesting because they exhibit many small holes or vesicles, similar to some kinds of volcanic rocks on Earth. Vesicular rocks form when gas bubbles are trapped in lava flows and the rock solidifies around the bubbles. When the gas escapes, it leaves holes in the rock. The quantity of gas bubbles in rocks on Husband Hill varies considerably; some rocks have none and some, such as several here at FuYi, are downright frothy.

    The change in textures and the location of the basalts may be signs that Spirit is driving along the edge of a lava flow. This lava may be the same as the basalt blanketing the plains of Spirit's landing site, or it may be different. The large size and frothy nature of the boulders around Lorre Ridge might indicate that eruptions once took place at the edge of the lava flow, where the lava interacted with the rocks of the basin floor. Scientists hope to learn more as Spirit continues to investigate these rocks.

    As Earth approaches the Chinese New Year (The Year of the Dog), the Athena science team decided to use nicknames representing Chinese culture and geography

  11. Prehistoric Agriculture and Soil Fertility on Lava Flows in Northern Arizona, USA: Results from the San Francisco Volcanic Field REU

    NASA Astrophysics Data System (ADS)

    Broadman, E.; Anderson, K. C.

    2013-12-01

    The San Francisco Volcanic Field in northern Arizona is home to ~600 cinder cones, the youngest of which is Sunset Crater (erupted ~AD 1100). This study documents trends in available phosphate and nitrate content with time, testing whether lowered soil pH from the addition of Sunset cinders increased soil fertility and became a factor in Anasazi agricultural success. Soil fertility is examined both before and after Sunset's eruption in soils of different ages that have developed from eolian deposition on top of lava flows. An increase in phosphate and nitrate levels following acidification would suggest that the presence of Sunset cinders brought the soils to the optimal pH for mobilization of these nutrients. The combined effects of the cinder layer retaining nutrients and water, wetter climates, and increases in phosphate and nitrate (both limiting nutrients for plant growth), would have contributed to Anasazi agricultural success after Sunset's eruption. Samples for this study were taken from eolian-derived soils of different ages atop lava flows in the San Francisco Volcanic Field. OSL data from these soils on Strawberry and SP Craters' lava flows yielded age estimates of ~12.3 ka (Strawberry) and ~32.7 ka (SP), on which a soil chronosequence was based. Results from the chronosequence supported these OSL ages, indicating that soils on the SP flow are older than those on the Strawberry flow. Field descriptions, Harden Development Indices, particle size analysis, and nutrient content analysis were used for this aspect of the project. An experimental acid wash method will be used to simulate the addition of Sunset's acidic cinders, and will yield data for phosphate and nitrate content after Sunset erupted. Preliminary results indicate that phosphate and nitrate accumulate in upper, eolian-derived horizons (Av, Bw) and in more deeply buried carbonate horizons (Bk). Higher concentrations of phosphate and nitrate were found in older (SP) soils than younger

  12. Trondhjemitic melts produced by in-situ differentiation of a tholeiitic lava flow, Reykjanes Peninsula, Iceland.

    NASA Astrophysics Data System (ADS)

    Martin, E.; Sigmarsson, O.

    2006-12-01

    How the continental crust began to form early in Earth's history is unconstrained. However, it is reasonable to presume that higher heat flow in the past, resulted in more frequent interaction of mantle plumes and mid- oceanic ridges. If true, then Iceland could be a good analogue for processes occurring on Earth at its youth stage. This is supported by the relatively high abundance of silicic rocks in Iceland but their rarity on other oceanic hot spots. The origin of Icelandic silicic rocks has been a subject of a lively debate but has been shown to be principally formed by partial melting of hydrothermally altered basaltic crust. However, in rare cases, their origin by fractional crystallization from mantle derived basalts is suggested. Segregation veins in lava flows frequently contain interstitial glasses of silicic compositions. Moreover, they allow an exceptional overview of the fractional crystallization mechanism. These veins form by gas filter pressing during cooling and degassing of solidifying lava flows, after approximately 50% fractional crystallization of anhydrous minerals. Pairs of samples, host lava and associated segregation veins, from Reykjanes Peninsula (Iceland), Lanzarote (Canary Island) and Masaya's volcano (Nicaragua), allow the assessment of a near-complete fractional crystallization of olivine tholeiitic basalt at pressure close to one atmosphere. Interstitial glass patches in segregation veins represent the final product of this process (80 97 % of fractional crystallization). These ultimate liquids are of granitic composition in the case of Lanzarote and Masaya but overwhelmingly trondhjemitic at Reykjanes. It appears that the initial K2O/Na2O of the basaltic liquid controls the evolution path of the residual liquid composition produced at pressure close to 0.1 MPa (1 bar). Granitic liquids are generated from basalts of high initial K2O/Na2O whereas low initial K2O/Na2O leads to trondhjemitic compositions. The trondhjemitic composition

  13. If Lava Mingled with Ground Ice on Mars

    NASA Astrophysics Data System (ADS)

    Martel, L. M. V.

    2001-06-01

    Clusters of small cones on the lava plains of Mars have caught the attention of planetary geologists for years for a simple and compelling reason: ground ice. These cones look like volcanic rootless cones found on Earth where hot lava flows over wet surfaces such as marshes, shallow lakes or shallow aquifers. Steam explosions fragment the lava into small pieces that fall into cone-shaped debris piles. Peter Lanagan, Alfred McEwen, Laszlo Keszthelyi (University of Arizona), and Thorvaldur Thordarson (University of Hawaii) recently identified groups of cones in the equatorial region of Mars using new high-resolution Mars Orbiter Camera (MOC) images. They report that the Martian cones have the same appearance, size, and geologic setting as rootless cones found in Iceland. If the Martian and terrestrial cones formed in the same way, then the Martian cones mark places where ground ice or groundwater existed at the time the lavas surged across the surface, estimated to be less than 10 million years ago, and where ground ice may still be today.

  14. The role of lava erosion in the formation of lunar rilles and Martian channels

    USGS Publications Warehouse

    Carr, M.H.

    1974-01-01

    Lava tubes and channels develop around active sources of low viscosity lava. The channels normally form without erosion; however, sustained flow can result in the incision of a lava channel and simulation of fluvial erosion features. Lava erosion by means of thermal incision was modelled by computer, erosion rates calculated, and these compared with rates observed terrestrially. Lunar sinuous rilles are examined in light of the proposed lava erosion. The mechanism explains many features of lunar rilles that were heretofore puzzling and implies erosion rates comparable to terrestrial rates. Many Mars channels also appear to form by the action of lava; however, the larger, more spectacular Mars channels do not appear to have been formed by the same process. ?? 1974.

  15. Recent Flood Volcanism on Mars: Implications for Climate Change, Layered Deposits, and Lava-Water Interactions

    NASA Astrophysics Data System (ADS)

    Keszthelyi, L.; McEwen, A.

    2001-05-01

    In many ways, the high-resolution imaging of volcanic features on Mars has been disappointing due to the significantly degraded state of the ancient surfaces. One major exception has been the recent volcanism in the Cerberus Plains and Amazonis Planitia (Keszthelyi et al., 2000). Crater counts suggest some lava surfaces are less than 10 Ma (Hartmann and Berman, 2000), though rapid burial and very recent exhumation would allow for somewhat older eruptions. Investigation of the platy-ridged portion of the 1783-1784 Laki flow field in Iceland revealed that these lava flows have a morphology unlike any in Hawaii. We have called this form of lava "rubbly pahoehoe" and find it in several terrestrial flood basalt settings (Keszthelyi and Thordarson, 2000). Rubbly pahoehoe on Iceland and Mars transitions into undisrupted inflated pahoehoe flows at their margins. These flows are hypothesized to form as surges in flow rate travel through large inflating sheet flows. This allows emplacement underneath a thick mobile insulating crust, permitting lava to travel great distances in a rapid but laminar manner. Thermal modeling suggests eruption rates on the order of 105 m3/s feeding these sheets of lava, a rate about an order of magnitude larger than typical for terrestrial flood basalt eruptions. These huge eruptions potentially have significant climatic implications. If the dissolved volatile content of the Martian flood lavas were similar to that of large terrestrial basaltic eruptions (Thordarson and Self, 1996; McSween et al., 2001) we would expect on the order of 300 Gt of highly acidic gas to be released. Simultaneously, several thousand cubic kilometers of highly vesicular basaltic ash should be produced. Further gas release and ash production would come from the rootless cone fields found on the lavas (Lanagan et al., submitted). The acid-laced ash may be deposited to form the Medussae Fossae Formation and perhaps other finely layered sedimentary deposits seen on Mars

  16. Gusev Rocks Solidified from Lava (Approximate True Color)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    In recent weeks, as NASA's Mars Exploration Rover Spirit has driven through the basin south of 'Husband Hill,' it has been traversing mainly sand and dune deposits. This week, though, Spirit has been maneuvering along the edge of an arc-shaped feature called 'Lorre Ridge' and has encountered some spectacular examples of basaltic rocks with striking textures. This panoramic camera (Pancam) image shows a group of boulders informally named 'FuYi.' These basaltic rocks were formed by volcanic processes and may be a primary constituent of Lorre Ridge and other interesting landforms in the basin.

    Spirit first encountered basalts at its landing site two years ago, on a vast plain covered with solidified lava that appeared to have flowed across Gusev Crater. Later, basaltic rocks became rare as Spirit climbed Husband Hill. The basaltic rocks that Spirit is now seeing are interesting because they exhibit many small holes or vesicles, similar to some kinds of volcanic rocks on Earth. Vesicular rocks form when gas bubbles are trapped in lava flows and the rock solidifies around the bubbles. When the gas escapes, it leaves holes in the rock. The quantity of gas bubbles in rocks on Husband Hill varies considerably; some rocks have none and some, such as several here at FuYi, are downright frothy.

    The change in textures and the location of the basalts may be signs that Spirit is driving along the edge of a lava flow. This lava may be the same as the basalt blanketing the plains of Spirit's landing site, or it may be different. The large size and frothy nature of the boulders around Lorre Ridge might indicate that eruptions once took place at the edge of the lava flow, where the lava interacted with the rocks of the basin floor. Scientists hope to learn more as Spirit continues to investigate these rocks.

    As Earth approaches the Chinese New Year (The Year of the Dog), the Athena science team decided to use nicknames representing Chinese culture and geography

  17. Venus - Lakshmi Region

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This Magellan image is centered at 55 degrees north latitude, 348.5 degrees longitude, in the eastern Lakshmi region of Venus. This image, which is of an area 300 kilometers (180 miles) in width and 230 kilometers (138 miles) in length, is a mosaic of orbits 458 through 484. The image shows a relatively flat plains region composed of many lava flows. The dark flows mostly likely represent smooth lava flows similar to 'pahoehoe' flows on Earth while the brighter lava flows are rougher flows similar to 'aa' flows on Earth. (The terms 'pahoehoe' and 'aa' refer to textures of lava with pahoehoe a smooth or ropey surface, and aa a rough, clinkery texture). The rougher flows are brighter because the rough surface returns more energy to the radar than the smooth flows. Situated on top of the lava flows are three dark splotches. Because of the thick Venusian atmosphere, the small impactors break up before they reached the surface. Only the fragments from the broken up impactor are deposited on the surface and these fragments produce the dark splotches in this image. The splotch at the far right (east) has a crater centered in it, indicating that the impactor was not completely destroyed during its journey through the atmosphere. The dark splotches in the center and to the far left in this image each represent an impactor that was broken up into small fragments that did not penetrate the surface to produce a crater. The dark splotch at the left has been modified by the wind. A southwest northeast wind flow has moved some of the debris making up the splotch to the northeast where it has piled up against some small ridges.

  18. Venusian pancake domes: Insights from terrestrial voluminous silicic lavas and thermal modeling

    NASA Technical Reports Server (NTRS)

    Manley, Curtis R.

    1993-01-01

    The so-called 'pancake' domes, and several other volcanoes on Venus, appear to represent large extrusions of silicic lava. Similar voluminous rhyolite lava flows, often associated with mantle plumes, are known on Earth. Venus' high ambient temperature, and insulation by the dome's brecciated carapace, both act to prolong cooling of a dome's interior, allowing for episodic lava input over an extended period of time. Field relations and aspect ratios of terrestrial voluminous rhyolite lavas imply continuous, non-episodic growth, reflecting tapping of a large volume of dry, anatectic silicic magma. Petrogenetically, the venusian domes may be analogous to chains of small domes on Earth, which represent 'leakage' of evolved material from magma bodies fractionating from much more mafic liquids.

  19. Cooling and crystallization of rhyolite-obsidian lava: Insights from micron-scale projections on plagioclase microlites

    NASA Astrophysics Data System (ADS)

    Sano, Kyohei; Toramaru, Atsushi

    2017-07-01

    To reveal the cooling process of a rhyolite-obsidian flow, we studied the morphology of plagioclase microlites in the Tokachi-Ishizawa lava of Shirataki, northern Hokkaido, Japan, where the structure of the lava can be observed from obsidian at the base of the flow to the innermost rhyolite. Needle-like micron-scale textures, known as "projections", occur on the short side surfaces of the plagioclase microlites. Using FE-SEM we discovered a positive correlation between the lengths and spacings of these projections. On the basis of the instability theory of an interface between melt and crystal, and to understand the length and spacing data, we developed a model that explains the positive correlation and allows us to simultaneously estimate growth rates and growth times. Applying the model to our morphological data and the estimated growth rates and growth times, we suggest that the characteristics of the projections reflect the degree of undercooling, which in turn correlates with lava structure (the obsidian at the margin of the flow experienced a higher degree of undercooling than the interior rhyolite). The newly developed method provides insights into the degree of undercooling during the final stages of crystallization of a rhyolitic lava flow.

  20. Environmental implication of subaqueous lava flows from a continental Large Igneous Province: Examples from the Moroccan Central Atlantic Magmatic Province (CAMP)

    NASA Astrophysics Data System (ADS)

    El Ghilani, S.; Youbi, N.; Madeira, J.; Chellai, E. H.; López-Galindo, A.; Martins, L.; Mata, J.

    2017-03-01

    The Late Triassic-Early Jurassic volcanic sequence of the Central Atlantic Magmatic Province (CAMP) of Morocco is classically subdivided into four stratigraphic units: the Lower, Middle, Upper and Recurrent Formations separated by intercalated sediments deposited during short hiatuses in volcanic activity. Although corresponding to a Large Igneous Province formed in continental environment, it contains subaqueous lava flows, including dominant pillowed flows but also occasional sheet flows. We present a study of the morphology, structure and morphometry of subaqueous lava flows from three sections located at the Marrakech High-Atlas (regions of Aït-Ourir, Jbel Imzar and Oued Lhar-Herissane), as well as an analysis of the sediments, in order to characterize them and to understand their environmental meaning. The analysis of clays by the diffraction method X-ray revealed the presence of illite, mica, phengite, céladonite, talc and small amounts of quartz, hematite, calcite and feldspar, as well as two pairs of interbedded irregular (chlorite Smectite/chlorite-Mica). Fibrous minerals such as sepiolite and palygorskite were not detected. The peperite of Herissane region (Central High Atlas) provided an excellent overview on the factors favoring the magma-sediment interaction. These are the products of a mixture of unconsolidated or poorly consolidated sediments, low permeability with a low viscosity magma. The attempt of dating palynology proved unfortunately without results.

  1. 3D seismic imaging of voluminous earliest Eocene buried lava fields and coastal escarpments off mid-Norway

    NASA Astrophysics Data System (ADS)

    Planke, Sverre; Millett, John M.; Maharjan, Dwarika; Jerram, Dougal A.; Mansour Abdelmalak, Mohamed

    2017-04-01

    Continental breakup between Greenland and NW Europe in the Paleogene was associated with massive basaltic volcanism, forming kilometer-thick sequences of flood basalts along the conjugate rifted margins. This event was temporarily associated with a warm world, the early Eocene greenhouse, and the short-lived Paleocene-Eocene Thermal Maximum (PETM). A 2500 km2 large industry-standard 3D seismic cube has recently been acquired on the Vøring Marginal High offshore mid-Norway to image sub-basalt sedimentary rocks. This cube also provides a unique opportunity for imaging top- and intra-basalt structures. Detailed seismic geomorphological interpretation of the Top basalt horizon reveal new insight into the late-stage development of the lava flow fields and the kilometer high coastal Vøring Escarpment. Subaerial lava flows with compressional ridges and inflated lava lobes cover the marginal high, with comparable structure and size to modern subaerial lava fields. Pitted surfaces, likely formed by lava emplaced in a wet environment, are present in the western part of the study area near the continent-ocean boundary. The prominent Vøring Escarpment formed when eastward-flowing lava reached the coastline. The escarpment morphology is influenced by pre-existing structural highs, and locally these highs are by-passed by the lava flows which are clearly deflected around them. Volcanogenic debris flows are well-imaged on the escarpment horizon along with large-scale slump blocks. Similar features exist in active volcanic environments, e.g. on the south coast of Hawaii. Numerous post-volcanic extensional faults and incised channels cut both into the marginal high and the escarpment, and show that the area was geologically active after the volcanism ceased. In conclusion, igneous seismic geomorphology and seismic volcanostratigraphy are two very powerful methods to understand the volcanic deposits and development of rifted margins, and the association of major volcanic events

  2. Shallow and deep controls on lava lake surface motion at Kīlauea Volcano

    USGS Publications Warehouse

    Patrick, Matthew R.; Orr, Tim R.; Swanson, Don; Lev, Einat

    2016-01-01

    Lava lakes provide a rare window into magmatic behavior, and lake surface motion has been used to infer deeper properties of the magmatic system. At Halema'uma'u Crater, at the summit of Kīlauea Volcano, multidisciplinary observations for the past several years indicate that lava lake surface motion can be broadly divided into two regimes: 1) stable and 2) unstable. Stable behavior is driven by lava upwelling from deeper in the lake (presumably directly from the conduit) and is an intrinsic process that drives lava lake surface motion most of the time. This stable behavior can be interrupted by periods of unstable flow (often reversals) driven by spattering – a shallowly-rooted process often extrinsically triggered by small rockfalls from the crater wall. The bursting bubbles at spatter sources create void spaces and a localized surface depression which draws and consumes surrounding surface crust. Spattering is therefore a location of lava downwelling, not upwelling. Stable (i.e. deep, upwelling-driven) and unstable (i.e. shallow, spattering-driven) behavior often alternate through time, have characteristic surface velocities, flow directions and surface temperature regimes, and also correspond to changes in spattering intensity, outgassing rates, lava level and seismic tremor. These results highlight that several processes, originating at different depths, can control the motion of the lava lake surface, and long-term interdisciplinary monitoring is required to separate these influences. These observations indicate that lake surface motion is not always a reliable proxy for deeper lake or magmatic processes. From these observations, we suggest that shallow outgassing (spattering), not lake convection, drives the variations in lake motion reported at Erta 'Ale lava lake.

  3. Shallow and deep controls on lava lake surface motion at Kīlauea Volcano

    NASA Astrophysics Data System (ADS)

    Patrick, M. R.; Orr, T.; Swanson, D. A.; Lev, E.

    2016-12-01

    Lava lakes provide a rare window into magmatic behavior, and lake surface motion has been used to infer deeper properties of the magmatic system. At Halema'uma'u Crater, at the summit of Kīlauea Volcano, multidisciplinary observations for the past several years indicate that lava lake surface motion can be broadly divided into two regimes: 1) stable and 2) unstable. Stable behavior is driven by lava upwelling from deeper in the lake (presumably directly from the conduit) and is an intrinsic process that drives lava lake surface motion most of the time. This stable behavior can be interrupted by periods of unstable flow (often reversals) driven by spattering - a shallowly-rooted process often extrinsically triggered by small rockfalls from the crater wall. The bursting bubbles at spatter sources create void spaces and a localized surface depression which draws and consumes surrounding surface crust. Spattering is therefore a location of lava downwelling, not upwelling. Stable (i.e. deep, upwelling-driven) and unstable (i.e. shallow, spattering-driven) behavior often alternate through time, have characteristic surface velocities, flow directions and surface temperature regimes, and also correspond to changes in spattering intensity, outgassing rates, lava level and seismic tremor. These results highlight that several processes, originating at different depths, can control the motion of the lava lake surface, and long-term interdisciplinary monitoring is required to separate these influences. These observations indicate that lake surface motion is not always a reliable proxy for deeper lake or magmatic processes. From these observations, we suggest that shallow outgassing (spattering), not lake convection, drives the variations in lake motion reported at Erta 'Ale lava lake.

  4. Lava and Snow on Klyuchevskaya Volcano [detail

    NASA Image and Video Library

    2017-12-08

    This false-color (shortwave infrared, near infrared, green) satellite image reveals an active lava flow on the western slopes of Klyuchevskaya Volcano. Klyuchevskaya is one of several active volcanoes on the Kamchatka Peninsula in far eastern Russia. The lava flow itself is bright red. Snow on Klyuchevskaya and nearby mountains is cyan, while bare ground and volcanic debris is gray or brown. Vegetation is green. The image was collected by Landsat 8 on September 9, 2013. NASA Earth Observatory image by Jesse Allen and Robert Simmon, using Instrument: Landsat 8 - OLI More info: 1.usa.gov/1evspH7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Using terrestrial radar to explore lava channel erosion on Momotombo volcano, Nicaragua

    NASA Astrophysics Data System (ADS)

    Gallant, E.; Deng, F.; Xie, S.; Connor, L.; Connor, C.; Saballos, J. A.; Dixon, T. H.; Myhre, D.

    2017-12-01

    We explore the application of terrestrial radar as a tool for imaging topography on Momotombo volcano, Nicaragua. A major feature of the edifice is an incised lava flow channel (possibly created by the 1904 eruption) that measures 150m in width and up to 60m in depth. This feature is unusual because most lava channels are constructional in nature and constrained by levees on their margins. The radar elevation model was used alongside a TerraSAR-X/TanDEM-X DEM to help create a topographic time series. We consider the possibility that the channel was formed during the 1904 eruption by thermal and / or mechanical erosion. We aim to quantify the energy required to create the observed topography by merging this topographic time series with existing field observations and mathematical models of erosion via lava flow.

  6. Introducing Kansas Lava

    NASA Astrophysics Data System (ADS)

    Gill, Andy; Bull, Tristan; Kimmell, Garrin; Perrins, Erik; Komp, Ed; Werling, Brett

    Kansas Lava is a domain specific language for hardware description. Though there have been a number of previous implementations of Lava, we have found the design space rich, with unexplored choices. We use a direct (Chalmers style) specification of circuits, and make significant use of Haskell overloading of standard classes, leading to concise circuit descriptions. Kansas Lava supports both simulation (inside GHCi), and execution via VHDL, by having a dual shallow and deep embedding inside our Signal type. We also have a lightweight sized-type mechanism, allowing for MATLAB style matrix based specifications to be directly expressed in Kansas Lava.

  7. Circulation patterns in active lava lakes

    NASA Astrophysics Data System (ADS)

    Redmond, T. C.; Lev, E.

    2014-12-01

    Active lava lakes provide a unique window into magmatic conduit processes. We investigated circulation patterns of 4 active lava lakes: Kilauea's Halemaumau crater, Mount Erebus, Erta Ale and Nyiragongo, and in an artificial "lava lake" constructed at the Syracuse University Lava Lab. We employed visual and thermal video recordings collected at these volcanoes and use computer vision techniques to extract time-dependent, two-dimensional surface velocity maps. The large amount of data available from Halemaumau enabled us to identify several characteristic circulation patterns. One such pattern is a rapid acceleration followed by rapid deceleration, often to a level lower than the pre-acceleration level, and then a slow recovery. Another pattern is periodic asymmetric peaks of gradual acceleration and rapid deceleration, or vice versa, previously explained by gas pistoning. Using spectral analysis, we find that the dominant period of circulation cycles at approximately 30 minutes, 3 times longer than the dominant period identified previously for Mount Erebus. Measuring a complete surface velocity field allowed us to map and follow locations of divergence and convergence, therefore upwelling and downwelling, thus connecting the surface flow with that at depth. At Nyiragongo, the location of main upwelling shifts gradually, yet is usually at the interior of the lake, for Erebus it is usually along the perimeter yet often there is catastrophic downwelling at the interior; For Halemaumau upwelling/downwelling position is almost always on the perimeter. In addition to velocity fields, we developed an automated tool for counting crustal plates at the surface of the lava lakes, and found a correlation, and a lag time, between changes if circulation vigor and the average size of crustal plates. Circulation in the artificial basaltic lava "lake" was limited by its size and degree of foaming, yet we measured surface velocities and identify patterns. Maximum surface velocity

  8. Rootless Cones on Mars: A Consequence of Lava-Ground Ice Interaction

    NASA Technical Reports Server (NTRS)

    Fagents, S. A.; Greeley, R.; Lanagan, P.

    2002-01-01

    Fields of small cratered cones on Mars are interpreted to have formed by rootless eruptions due to explosive interaction of lava with ground ice contained within the regolith beneath the flow. Melting and vaporization of the ice, and subsequent explosive expansion of the vapour, act to excavate the lava and construct a rootless cone around the explosion site. Similar features are found in Iceland, where flowing lava encountered water-saturated substrates. The martian cones have basal diameters of c. 30-1000 m and are located predominantly in the northern volcanic plains. High-resolution Mars Orbiter Camera images offer significant improvements over Viking data for interpretation of cone origins. A new model of the dynamics of cone formation indicates that very modest amounts of water ice are required to initiate and sustain the explosive interactions that produced the observed features. This is consistent with the likely low availability of water ice in the martian regolith. The scarcity of impact craters on many of the host lava flows indicates very young ages, suggesting that ground ice was present as recently as less than 10 - l00 Ma, and may persist today. Rootless cones therefore act as a spatial and temporal probe of the distribution of ground ice on Mars, which is of key significance in understanding the evolution of the martian climate. The location of water in liquid or solid form is of great importance to future robotic and human exploration strategies, and to the search for extraterrestrial life.

  9. Mapping the distribution of vesicular textures on silicic lavas using the Thermal Infrared Multispectral Scanner

    NASA Technical Reports Server (NTRS)

    Ondrusek, Jaime; Christensen, Philip R.; Fink, Jonathan H.

    1993-01-01

    To investigate the effect of vesicularity on TIMS (Thermal Infrared Multispectral Scanner) imagery independent of chemical variations, we studied a large rhyolitic flow of uniform composition but textural heterogeneity. The imagery was recalibrated so that the digital number values for a lake in the scene matched a calculated ideal spectrum for water. TIMS spectra for the lava show useful differences in coarsely and finely vesicular pumice data, particularly in TIMS bands 3 and 4. Images generated by ratioing these bands accurately map out those areas known from field studies to be coarsely vesicular pumice. These texture-related emissivity variations are probably due to the larger vesicles being relatively deeper and separated by smaller septa leaving less smooth glass available to give the characteristic emission of the lava. In studies of inaccessible lava flows (as on Mars) areas of coarsely vesicular pumice must be identified and avoided before chemical variations can be interpreted. Remotely determined distributions of vesicular and glassy textures can also be related to the volatile contents and potential hazards associated with the emplacement of silicic lava flows on Earth.

  10. Degassing driving crystallization of plagioclase phenocrysts in lava tube stalactites on Mount Etna (Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Lanzafame, Gabriele; Ferlito, Carmelo

    2014-10-01

    Basaltic lava flows can form tubes in response to the cooling of the outer surface. We collected lava stalactites (frozen lava tears) and sampled lava from the ceilings of three lava tubes on Mount Etna. Comparison of the petrographic characters between ceiling lavas and relative stalactites reveals surprising differences in the groundmass textures and crystal compositions. Major and trace element contents in stalactites show only a slight increase in alkali and SiO2 compared to ceiling lava, whereas significant differences exist in composition and textures between plagioclases within the ceiling lava and those within the stalactites, being in the last case definitively more An-rich. We advance the hypothesis that the high temperature reached in the cave caused the exsolution of the volatiles still trapped in the dripping melt. The volatiles, mainly H2O, formed bubbles and escaped from the melt; such a water-loss might have promoted the silicate polymerization in the stalactites resulting in the growth of An-rich plagioclase phenocrysts. Our results have important implications: in fact plagioclase phenocrysts are usually associated with intratelluric growth and are often considered as the main petrologic evidence for the existence of a magma chamber. The textural and chemical features of plagioclases in stalactites prove that phenocryst growth in syn to post-eruptive conditions is plausible and clearly explains the relatively low viscosity of many phenocryst-rich lava flows on Mount Etna, as well as on many other volcanoes around the world. Therefore, we can conclude that plagioclase phenocrysts cannot exclusively be considered as having originated within a magma chamber.

  11. Emplacement of pillow lavas from the ~ 2.8 Ga Chitradurga Greenstone Belt, South India: A physical volcanological, morphometric and geochemical perspective

    NASA Astrophysics Data System (ADS)

    Duraiswami, Raymond A.; Inamdar, Mustaqueem M.; Shaikh, Tahira N.

    2013-08-01

    The physical volcanology and morphometric analyses of pillowed lava flows from the Chitradurga basin of Chitradurga Greenstone Belt, South India have been undertaken. In the Chitradurga hills individual pillowed flows alternate with massive submarine sheet flows. The pillows from such flows are separated by chert and occur as spheroidal, elongated or reniform units that are devoid of vesicles, vesicle bands or pipe vesicles. The Mardihalli flow is exposed as a small elongated mound in the basin and consists of a massive core that is draped by pillows along the flow crest and flanks. The pillows from Mardihalli occur as spheroidal to elongate units with smooth, spalled or wrinkled surfaces with vesicular interiors. Repeated budding of larger pillows have produced a series of interconnected pillow units indicating fluid lava that was emplaced on steeply dipping flanks. Based on the morphological features the pillowed flows from the Chitradurga basin were emplaced at low effusion rates (≤ 5 m3/s). Pillows in these flows formed from low viscosity lavas that underwent negligible to moderate inflation due to rapid chilling. Sporadic occurrences of pillow breccias, hyaloclastite and chert breccias in the pillowed flow fields indicate disruption of pillows due to lava surges and slumping. It is envisaged that the Chitradurga basin witnessed distinct episodes of submarine tholeiite eruptions that produced pillowed lavas that variably interacted with sea water to produce geochemistries. The field and stratigraphic relationships of the volcanics and associated clastic sediments suggest that the pillow lavas were emplaced in a shallow marine marginal inter/back arc basin.

  12. PyFLOWGO: An open-source platform for simulation of channelized lava thermo-rheological properties

    NASA Astrophysics Data System (ADS)

    Chevrel, Magdalena Oryaëlle; Labroquère, Jérémie; Harris, Andrew J. L.; Rowland, Scott K.

    2018-02-01

    Lava flow advance can be modeled through tracking the evolution of the thermo-rheological properties of a control volume of lava as it cools and crystallizes. An example of such a model was conceived by Harris and Rowland (2001) who developed a 1-D model, FLOWGO, in which the velocity of a control volume flowing down a channel depends on rheological properties computed following the thermal path estimated via a heat balance box model. We provide here an updated version of FLOWGO written in Python that is an open-source, modern and flexible language. Our software, named PyFLOWGO, allows selection of heat fluxes and rheological models of the user's choice to simulate the thermo-rheological evolution of the lava control volume. We describe its architecture which offers more flexibility while reducing the risk of making error when changing models in comparison to the previous FLOWGO version. Three cases are tested using actual data from channel-fed lava flow systems and results are discussed in terms of model validation and convergence. PyFLOWGO is open-source and packaged in a Python library to be imported and reused in any Python program (https://github.com/pyflowgo/pyflowgo)

  13. Investigating the Early Atmospheres of Earth and Mars through Rivers, Raindrops, and Lava Flows

    NASA Astrophysics Data System (ADS)

    Som, Sanjoy M.

    2010-11-01

    nitrogen level of at most twice present levels and perhaps well below present levels. To constrain this further, I re-evaluate a published paleobarometry technique using the vesicle size-distribution in simply emplaced lava flows and apply it to sea-level erupted lava flows from the 2.7 billion year old Fortescue group of Western Australia. Results from three flows suggest a range for atmospheric pressure 0.07 < Patm < 0.64 atm, which has profound consequences for our interpretation of the history of the nitrogen cycle by implying that the development of the nitrogenase enzyme necessary for nitrogen fixation happened very early on in the development of life.

  14. Emplacement of the youngest flood lava on Mars: A short, turbulent story

    USGS Publications Warehouse

    Jaeger, W.L.; Keszthelyi, L.P.; Skinner, J.A.; Milazzo, M.P.; McEwen, A.S.; Titus, T.N.; Rosiek, M.R.; Galuszka, D.M.; Howington-Kraus, E.; Kirk, R.L.

    2010-01-01

    Recently acquired data from the High Resolution Imaging Science Experiment (HiRISE), Context (CTX) imager, and Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) spacecraft were used to investigate the emplacement of the youngest flood-lava flow on Mars. Careful mapping finds that the Athabasca Valles flood lava is the product of a single eruption, and it covers 250,000 km2 of western Elysium Planitia with an estimated 5000-7500 km3 of mafic or ultramafic lava. Calculations utilizing topographic data enhanced with MRO observations to refine the dimensions of the channel system show that this flood lava was emplaced turbulently over a period of only a few to several weeks. This is the first well-documented example of a turbulently emplaced flood lava anywhere in the Solar System. However, MRO data suggest that this same process may have operated in a number of martian channel systems. The magnitude and dynamics of these lava floods are similar to the aqueous floods that are generally believed to have eroded the channels, raising the intriguing possibility that mechanical erosion by lava could have played a role in their incision. ?? 2009.

  15. Emplacement of the youngest flood lava on Mars: A short, turbulent story

    USGS Publications Warehouse

    Jaeger, W.L.; Keszthelyi, L.P.; Skinner, J.A.; Milazzo, M.P.; McEwen, A.S.; Titus, T.N.; Rosiek, M.R.; Galuszka, D.M.; Howington-Kraus, E.; Kirk, R.L.

    2009-01-01

    Recently acquired data from the High Resolution Imaging Science Experiment (HiRISE), Context (CTX) imager, and Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) spacecraft were used to investigate the emplacement of the youngest flood-lava flow on Mars. Careful mapping finds that the Athabasca Valles flood lava is the product of a single eruption, and it covers 250,000 km2 of western Elysium Planitia with an estimated 5000-7500 km3 of mafic or ultramafic lava. Calculations utilizing topographic data enhanced with MRO observations to refine the dimensions of the channel system show that this flood lava was emplaced turbulently over a period of only a few to several weeks. This is the first well-documented example of a turbulently emplaced flood lava anywhere in the Solar System. However, MRO data suggest that this same process may have operated in a number of martian channel systems. The magnitude and dynamics of these lava floods are similar to the aqueous floods that are generally believed to have eroded the channels, raising the intriguing possibility that mechanical erosion by lava could have played a role in their incision.

  16. Lava Eruption and Emplacement: Using Clues from Hawaii and Iceland to Probe the Lunar Past

    NASA Technical Reports Server (NTRS)

    Needham, Debra Hurwitz; Hamilton, C. W.; Bleacher, J. E.; Whelley, P. L.; Young, K. E.; Scheidt, S. P.; Richardson, J. A.; Sutton, S. S.

    2017-01-01

    Investigating recent eruptions on Earth is crucial to improving understanding of relationships between eruption dynamics and final lava flow morphologies. In this study, we investigated eruptions in Holuhraun, Iceland, and Kilauea, Hawaii to gain insight into the lava dynamics near the source vent, the initiation of lava channels, and the origin of down-channel features. Insights are applied to Rima Bode on the lunar nearside to deduce the sequence of events that formed this lunar sinuous rille system. These insights are crucial to correctly interpreting whether the volcanic features associated with Rima Bode directly relate to eruption conditions at the vent and, thus, can help us understand those eruption dynamics, or, alternatively, whether the features formed as a result of more localized influences on lava flow dynamics. For example, if the lava channel developed early in the eruption and was linked to pulses in vent activity, its morphology can be analyzed to interpret the flux and duration of the eruption. Conversely, if the lava channel initiated late in the eruption as the result of a catastrophic breaching of lava that had previously pooled within the vent [e.g., 1], then the final channel morphology will not indicate eruption dynamics but rather local dynamics associated with that breach event. Distinguishing between these two scenarios is crucial for correctly interpreting the intensity and duration of volcanic history on the Moon.

  17. Lava Eruption and Emplacement: Using Clues from Hawaii and Iceland to Probe the Lunar Past

    NASA Technical Reports Server (NTRS)

    Needham, D. H.; Hamilton, C. W.; Bleacher, J. E.; Whelley, P. L.; Young, K. E.; Scheidt, S. P.; Richardson, J. A.; Sutton, S. S.

    2017-01-01

    Investigating recent eruptions on Earth is crucial to improving understanding of relationships between eruption dynamics and final lava flow morphologies. In this study, we investigated eruptions in Holuhraun, Iceland, and Kilauea, Hawaii to gain insight into the lava dynamics near the source vent, the initiation of lava channels, and the origin of down-channel features. Insights are applied to Rima Bode on the lunar nearside to deduce the sequence of events that formed this lunar sinuous rille system.These insights are crucial to correctly interpreting whether the volcanic features associated with Rima Bode directly relate to eruption conditions at the vent and, thus, can help us understand those eruption dynamics, or, alternatively, whether the features formed as a result of more localized influences on lava flow dynamics. For example, if the lava channel developed early in the eruption and was linked to pulses in vent activity, its morphology can be analyzed to interpret the flux and duration of the eruption. Conversely, if the lava channel initiated late in the eruption as the result of a catastrophic breaching of lava that had previously pooled within the vent [e.g., 1], then the final channel morphology will not indicate eruption dynamics but rather local dynamics associated with that breach event. Distinguishing between these two scenarios is crucial for correctly interpreting the intensity and duration of volcanic history on the Moon.

  18. Photogrammetric and Global Positioning System Measurements of Active Pahoehoe Lava Lobe Emplacement on Kilauea, Hawaii

    NASA Technical Reports Server (NTRS)

    Hamilton, Christopher W.; Glaze, Lori S.; James, Mike R.; Baloga, Stephen M.; Fagents, Sarah A.

    2012-01-01

    Basalt is the most common rock type on the surface of terrestrial bodies throughout the solar system and -- by total volume and areal coverage -- pahoehoe flows are the most abundant form of basaltic lava in subaerial and submarine environments on Earth. A detailed understanding of pahoehoe emplacement processes is necessary for developing accurate models of flow field development, assessing hazards associated with active lava flows, and interpreting the significance of lava flow morphology on Earth and other planetary bodies. Here, we examine the active emplacement of pahoehoe lobes along the margins of the Hook Flow from Pu'u 'O'o on Kilauea, Hawaii. Topographic data were acquired between 21 and 23 February 2006 using stereo-imaging and differential global positing system (DGPS) measurements. During this time, the average discharge rate for the Hook Flow was 0.01-0.05 cubic m/s. Using stereogrammetric point clouds and interpolated digital terrain models (DTMs), active flow fronts were digitized at 1 minute intervals. These areal spreading maps show that the lava lobe grew by a series of breakouts tha t broadly fit into two categories: narrow (0.2-0.6 m-wide) toes that grew preferentially down-slope, and broad (1.4-3.5 m-wide) breakouts that formed along the sides of the lobe, nearly perpendicular to the down-flow axis. These lobes inflated to half of their final thickness within approx 5 minutes, with a rate of inflation that generally deceased with time. Through a combination of down-slope and cross-slope breakouts, lobes developed a parabolic cross-sectional shape within tens of minutes. We also observed that while the average local discharge rate for the lobe was generally constant at 0.0064 +/- 0.0019 cubic m/s, there was a 2 to 6 fold increase in the areal coverage rate every 4.1 +/- 0.6 minutes. We attribute this periodicity to the time required for the dynamic pressurization of the liquid core of the lava lobe to exceed the cooling-induced strength of the

  19. Lava dome growth and mass wasting measured by a time series of ground-based radar and seismicity observations

    NASA Astrophysics Data System (ADS)

    Wadge, G.; Macfarlane, D. G.; Odbert, H. M.; James, M. R.; Hole, J. K.; Ryan, G.; Bass, V.; de Angelis, S.; Pinkerton, H.; Robertson, D. A.; Loughlin, S. C.

    2008-08-01

    Exogenous growth of Peléean lava domes involves the addition of lava from a central summit vent and mass wasting on the flanks as rockfalls and pyroclastic flows. These processes were investigated at the Soufrière Hills Volcano, Montserrat, between 30 March and 10 April 2006, using a ground-based imaging millimeter-wave radar, AVTIS, to measure the shape of the dome and talus surface and rockfall seismicity combined with camera observations to infer pyroclastic flow deposit volumes. The topographic evolution of the lava dome was recorded in a time series of radar range and intensity measurements from a distance of 6 km, recording a southeastward shift in the locus of talus deposition with time, and an average height increase for the talus surface of about 2 m a day. The AVTIS measurements show an acceleration in lava extrusion rate on 5 April, with a 2-day lag in the equivalent change in the rockfall seismicity record. The dense rock equivalent volumetric budget of lava added and dispersed, including the respective proportions of the total for each component, was calculated using: (1) AVTIS range and intensity measurements of the change in summit lava (˜1.5 × 106 m3, 22%), (2) AVTIS range measurements to measure the talus growth (˜3.9 × 106 m3, 57%), and (3) rockfall seismicity to measure the pyroclastic flow deposit volumes (˜1.4 × 106 m3, 21%), which gives an overall dense rock equivalent extrusion rate of about 7 m3·s-1. These figures demonstrate how efficient nonexplosive lava dome growth can be in generating large volumes of primary clastic deposits, a process that, by reducing the proportion of erupted lava stored in the summit region, will reduce the likelihood of large hazardous pyroclastic flows.

  20. Textural variations and fragmentation processes in peperite formed between felsic lava flow and wet substrate: An example from the Cretaceous Buan Volcanics, southwest Korea

    NASA Astrophysics Data System (ADS)

    Gihm, Yong Sik; Kwon, Chang Woo

    2017-02-01

    Multiple exposures of peperite within the Cretaceous Buan Volcanics, southwest Korea, have been examined in order to determine variations in their textural characteristics and to investigate their mode of formation. Along undulating boundaries between rhyolite (lava flow) and deformed host sediment expressed as a series of load and flame structures, exposures commonly contain two distinct types of peperite. Type-1 peperites are composed mostly of rounded juvenile clasts at their base and polyhedral juvenile clasts at their upper levels, interpreted to have formed via a two-stage process. Firstly, abrasion of juvenile clasts occurred after their fragmentation due to shear stress imparted by the overlying and still-moving lava flow, forming rounded juvenile clasts. Subsequent in situ quenching fragmentation of the lava flow produced clasts with platy to polyhedral shapes immediately after emplacement of the lava flow. Type-2 peperites laterally extend into the interior of featureless rhyolite as layers that decrease in thickness with increasing distance away from the flame zone. These layers exhibit horizontal textural variations, ranging from poorly sorted mixtures of ash- to block-sized angular juvenile clasts in the proximal zone, to closely packed polyhedral and tabular juvenile clasts with jigsaw-crack textures in the middle and distal zones. Type-2 peperite are inferred to have formed due to internal steam explosions that resulted from an expansion of heated pore water (leading to an increase in pore fluid pressure) that had been vertically injected into the interior of the rhyolite from the flame zone. The proximal zone, composed mainly of poorly sorted mixtures of juvenile clasts, represents the explosion sites. Juvenile clasts in the middle and distal zones are interpreted to have formed due to three separate processes: the development of fractures in the rhyolite during the internal steam explosions, injection of the host sediment through the fractures, and

  1. THE AESTHETICS AND DYNAMICS OF LAVA: An interdisciplinary course in which the volcano is brought to the students.

    NASA Astrophysics Data System (ADS)

    Wysocki, R.; Karson, J. A.

    2017-12-01

    The power, fury, and nearly indescribably beauty of flowing lava has permeated the entirety of human existence. Being in the presence of flowing lava redefines the educational experience magnitudes beyond that of the classroom, online and/or an analog experiment. For the last 8 years the Syracuse University Lava Project (SULP) has presented this unique immersive experience nearly weekly year-round. It is through this intensely direct education experience that Pre-K to Post Doc students are exposed to a fundamental geomorphic mechanism: flowing lava. The SULP facility is located in the Syracuse Sculpture Studio and 1.1 Ga basalt is turned into 1200°C molten lava flowing from a reconfigured bronze furnace. Originally conceived as a means to find art material via scientific experiment the project has evolved into a truly one-of-a-kind interdisciplinary course "The Aesthetics and Dynamics of Lava," a course populated by students from across the academic spectrum. Students in this cross-listed course design their own investigations with lava- art or science or some combination - in the context of our background presentations as a launching point. Key benefits include interacting with faculty from very different backgrounds and with very different scholarly/funding systems and students with different outlooks, to engage in multiple modes of learning. Students use scientific tools and processes (FLIR camera, microprobe, thin sections, etc.) as well as those from art and design to produce reports in a variety of formats: traditional written reports, video projects, computer modeling, online presentations, sculpture, photography, etc. Our collaboration has truly blurred the lines between science and art, creating a learning environment in which students from across all academic disciplines work together to share their diverse impressions of lava flow events through shared projects, broadening their perspectives and enabling them to see one another's worlds from new points

  2. Assimilation of granite by basaltic magma at Burnt Lava flow, Medicine Lake volcano, northern California: Decoupling of heat and mass transfer

    USGS Publications Warehouse

    Grove, T.L.; Kinzler, R.J.; Baker, M.B.; Donnelly-Nolan, J. M.; Lesher, C.E.

    1988-01-01

    At Medicine Lake volcano, California, andesite of the Holocene Burnt Lava flow has been produced by fractional crystallization of parental high alumina basalt (HAB) accompanied by assimilation of granitic crustal material. Burnt Lava contains inclusions of quenched HAB liquid, a potential parent magma of the andesite, highly melted granitic crustal xenoliths, and xenocryst assemblages which provide a record of the fractional crystallization and crustal assimilation process. Samples of granitic crustal material occur as xenoliths in other Holocene and Pleistocene lavas, and these xenoliths are used to constrain geochemical models of the assimilation process. A large amount of assimilation accompanied fractional crystallization to produce the contaminated Burnt lava andesites. Models which assume that assimilation and fractionation occurred simultaneously estimate the ratio of assimilation to fractional crystallization (R) to be >1 and best fits to all geochemical data are at an R value of 1.35 at F=0.68. Petrologic evidence, however, indicates that the assimilation process did not involve continuous addition of granitic crust as fractionation occurred. Instead, heat and mass transfer were separated in space and time. During the assimilation process, HAB magma underwent large amounts of fractional crystallization which was not accompanied by significant amounts of assimilation. This fractionation process supplied heat to melt granitic crust. The models proposed to explain the contamination process involve fractionation, replenishment by parental HAB, and mixing of evolved and parental magmas with melted granitic crust. ?? 1988 Springer-Verlag.

  3. Geology, geochronology, and potential volcanic hazards in the Lava Ridge-Hells Half Acre area, eastern Snake River Plain, Idaho

    USGS Publications Warehouse

    Kuntz, Mel A.; Dalrymple, G. Brent

    1979-01-01

    The evaluation of volcanic hazards for the proposed Safety Test Reactor Facility (STF) at the Argonne National Laboratory-West (ANLW) site, Idaho National Engineering Laboratory (INEL), Idaho, involves an analysis of the geology of the Lava Ridge-Hells Half Acre area and of K-At age determinations on lava flows in cored drill holes. The ANLW site at INEL lies in a shallow topographic depression bounded on the east and south by volcanic rift zones that are the locus of past shield-type basalt volcanism and by rhyolite domes erupted along the ring fracture of an inferred rhyolite caldera. The K-At age data indicate that the ANLW site has been flooded by basalt lava flows at irregular intervals from perhaps a few thousand years to as much as 300,000-400,000 years, with an average recurrence interval between flows of approximately 80,000-100,000 years. At least five major lava flows have covered the ANLW site within the past 500,000 years.

  4. Variations in the Characteristics of Craters of the Moon Lava Flows from Vent to Termination: Remotely Sensed Spectra and Field Observations

    NASA Astrophysics Data System (ADS)

    Hobson, V. R.; Shervais, J. W.

    2004-12-01

    Developing a method to characterize the physical, chemical and temporal aspects of terrestrial volcanics is a necessary step toward studying volcanics on other planetary bodies. Volcanoes and flows close to populated centers have been studied to varying degree, but remote volcanics remain largely unstudied. Remotely sensed data and derived information can be used to select field sites on Earth and on other planets. Scientists studying volcanics in dangerous areas would benefit from as much advance knowledge of the area as possible before beginning fieldwork. By using satellites and other remote sensing methods, information about the eruptive history can be derived and potentially, the hazard these remote volcanic areas may pose to current and future generations can be estimated. Using Landsat TM, ASTER and other remotely sensed data, the extent and characteristics of lava flows can be examined, but verification and refinement of these methods requires collection of data on the ground. Young lava flows at Craters of the Moon National Park were selected to test methods for remote mapping of recent volcanics. These late Pleistocene to Holocene basalt flows have been mapped to 1:100,000 scale (Kuntz et al, 1988) and have only minor vegetative cover. A range of remotely sensed spectral images were combined to optimize recovery of the mapped flows. Major flow units can be distinguished from each other using unsupervised classification of Landsat TM Bands 1-7, but differentiation of flows within these units presents greater difficulty. Principal component analyses revealed that during the daytime, thermal infrared variations outweigh variations in all other bands. Larger-scale features were observed like edge effects attributable to changes in surface roughness or texture that might occur at flow fronts or at boundaries between flows. Using a digitized version of the geologic map, TM and ASTER data for individual flows were isolated and examined for changes with distance

  5. Reconstructing western Grand Canyon's lava dams and their failure mechanisms: new insights from geochemical correlation and 40Ar/39Ar dating

    NASA Astrophysics Data System (ADS)

    Crow, R.; Karlstrom, K. E.; McIntosh, W. C.; Peters, L.; Dunbar, N. W.

    2010-12-01

    New geochemical analyzes and 40Ar/39Ar dating of lava dam remnants allows for the more accurate reconstruction of the timing, extent, and structure of western Grand Canyon’s lava dams. Whole-rock major, trace, and rare-earth element (REE) analyzes on over 60 basaltic lava dam remnants, cascades, plugs, and basaltic alluvium, show compositional variation from basanites to alkali basalts to tholeiites. Whitmore Canyon flows, for example, are some of the only tholeiitic flows and have a distinguishable trace and REE composition, which allows for correlation of dam remnants. Over 30 new high-precision 40Ar/39Ar dates also aid in remnant correlation and establish a better-constrained sequence of intra-canyon lava dams. Reliable 40Ar/39Ar dates on western Grand Canyon’s intra-canyon basalts range from ca. 100 ka to 840 ka (new date). The best understood lava dam formed from tholeiitic flows that erupted on the north rim, flowed down Whitmore side canyon and blocked a 6-km-long reach of the Grand Canyon. The youngest of these flows is unique because we know its age (200ka), its composition (tholeiitic), and the exact area where it entered Grand Canyon. The highest flow in the resulting dam, Whitmore Cascade, is capped with very coarse basaltic alluvium that previous workers have attributed to an upstream catastrophic dam failure event at about 200 ka. However, strong similarities between the geochemistry and age of the alluvium with the underlying Whitmore Cascade flow suggest that the alluvial deposit is related to failure of the 200 ka Whitmore Cascade dam itself. Similarly the 100 ka Upper Gray Ledge flow is commonly overlain by a balsaltic alluvium that is indistinguishable in terms of age and geochemistry from the underlying Upper Gray Ledge flow. These observations lead to a new model for Grand Canyon lava dams by which lava dams undergo multi-staged failure where the upstream parts of dams fail quickly (sometimes catastrophically) but downstream parts are

  6. The 2011 El Hierro submarine eruption: estimation of erupted lava flow volume on the basis of helicopter thermal surveys

    NASA Astrophysics Data System (ADS)

    Hernández, P. A.; Calvari, S.; Calvo, D.; Marquez, A.; Padron, E.; Pérez, N.; Melian, G.; Padilla, G.; Barrancos, J.; Dionis, S.; Rodríguez, F.; Nolasco, D.; Hernández, I.

    2012-04-01

    been collected each time in order to compare the temperature distribution with the features observed on the sea surface. Calculation of lava flow volume and effusion rate from thermal images collected by helicopter surveys has been largely used during the last decade for monitoring effusive eruptions at Etna, Stromboli, Kilauea, and other volcanoes. In this study, lava flow volume is calculated on the basis of temperature difference between the seawater contained within the dark patch, and the temperature of the seawater surface away from the eruption. These values have to be considered as minimum values, because they do not take into account the volume of lava isolated from the seawater by a thick crust that did not contribute to seawater warming. To calculate the lava volume we have used the model proposed by Harris et al. (1998) for the portion of the lava flow field spreading below sea level. Preliminary results indicate that during the period of study, about 5Mm3 of magma have been needed to heat the observed surface heated sea water at the submarine eruption site.

  7. Lava heating and loading of ice sheets on early Mars: Predictions for meltwater generation, groundwater recharge, and resulting landforms

    NASA Astrophysics Data System (ADS)

    Cassanelli, James P.; Head, James W.

    2016-06-01

    Recent modeling studies of the early Mars climate predict a predominantly cold climate, characterized by the formation of regional ice sheets across the highland areas of Mars. Formation of the predicted "icy highlands" ice sheets is coincident with a peak in the volcanic flux of Mars involving the emplacement of the Late Noachian - Early Hesperian ridged plains unit. We explore the relationship between the predicted early Mars "icy highlands" ice sheets, and the extensive early flood volcanism to gain insight into the surface conditions prevalent during the Late Noachian to Early Hesperian transition period. Using Hesperia Planum as a type area, we develop an ice sheet lava heating and loading model. We quantitatively assess the thermal and melting processes involved in the lava heating and loading process following the chronological sequence of lava emplacement. We test a broad range of parameters to thoroughly constrain the lava heating and loading process and outline predictions for the formation of resulting geological features. We apply the theoretical model to a study area within the Hesperia Planum region and assess the observed geology against predictions derived from the ice sheet lava heating and loading model. Due to the highly cratered nature of the Noachian highlands terrain onto which the volcanic plains were emplaced, we predict highly asymmetrical lava loading conditions. Crater interiors are predicted to accumulate greater thicknesses of lava over more rapid timescales, while in the intercrater plains, lava accumulation occurs over longer timescales and does not reach great thicknesses. We find that top-down melting due to conductive heat transfer from supraglacial lava flows is generally limited when the emplaced lava flows are less than ∼10 m thick, but is very significant at lava flow thicknesses of ∼100 m or greater. We find that bottom-up cryosphere and ice sheet melting is most likely to occur within crater interiors where lavas

  8. Field and experimental constraints on the rheology of arc basaltic lavas: the January 2014 Eruption of Pacaya (Guatemala)

    NASA Astrophysics Data System (ADS)

    Soldati, A.; Sehlke, A.; Chigna, G.; Whittington, A.

    2016-06-01

    We estimated the rheology of an active basaltic lava flow in the field, and compared it with experimental measurements carried out in the laboratory. In the field we mapped, sampled, and recorded videos of the 2014 flow on the southern flank of Pacaya, Guatemala. Velocimetry data extracted from videos allowed us to determine that lava traveled at ˜2.8 m/s on the steep ˜45° slope 50 m from the vent, while 550 m further downflow it was moving at only ˜0.3 m/s on a ˜4° slope. Estimates of effective viscosity based on Jeffreys' equation increased from ˜7600 Pa s near the vent to ˜28,000 Pa s downflow. In the laboratory, we measured the viscosity of a representative lava composition using a concentric cylinder viscometer, at five different temperatures between 1234 and 1199 °C, with crystallinity increasing from 0.1 to 40 vol%. The rheological data were best fit by power law equations, with the flow index decreasing as crystal fraction increased, and no detectable yield strength. Although field-based estimates are based on lava characterized by a lower temperature, higher crystal and bubble fraction, and with a more complex petrographic texture, field estimates and laboratory measurements are mutually consistent and both indicate shear-thinning behavior. The complementary field and laboratory data sets allowed us to isolate the effects of different factors in determining the rheological evolution of the 2014 Pacaya flows. We assess the contributions of cooling, crystallization, and changing ground slope to the 3.7-fold increase in effective viscosity observed in the field over 550 m, and conclude that decreasing slope is the single most important factor over that distance. It follows that the complex relations between slope, flow velocity, and non-Newtonian lava rheology need to be incorporated into models of lava flow emplacement.

  9. Lava lakes on Io: Observations of Io's volcanic activity from Galileo NIMS during the 2001 fly-bys

    USGS Publications Warehouse

    Lopes, R.M.C.; Kamp, L.W.; Smythe, W.D.; Mouginis-Mark, P.; Kargel, J.; Radebaugh, J.; Turtle, E.P.; Perry, J.; Williams, D.A.; Carlson, R.W.; Doute, S.

    2004-01-01

    Galileo's Near-Infrared Mapping Spectrometer (NIMS) obtained its final observations of Io during the spacecraft's fly-bys in August (I31) and October 2001 (I32). We present a summary of the observations and results from these last two fly-bys, focusing on the distribution of thermal emission from Io's many volcanic regions that give insights into the eruption styles of individual hot spots. We include a compilation of hot spot data obtained from Galileo, Voyager, and ground-based observations. At least 152 active volcanic centers are now known on Io, 104 of which were discovered or confirmed by Galileo observations, including 23 from the I31 and I32 Io fly-by observations presented here. We modify the classification scheme of Keszthelyi et al. (2001, J. Geophys. Res. 106 (E12) 33 025-33 052) of Io eruption styles to include three primary types: promethean (lava flow fields emplaced as compound pahoehoe flows with small plumes 200 km high plumes and rapidly-emplaced flow fields), and a new style we call "lokian" that includes all eruptions confined within paterae with or without associated plume eruptions). Thermal maps of active paterae from NIMS data reveal hot edges that are characteristic of lava lakes. Comparisons with terrestrial analogs show that Io's lava lakes have thermal properties consistent with relatively inactive lava lakes. The majority of activity on Io, based on locations and longevity of hot spots, appears to be of this third type. This finding has implications for how Io is being resurfaced as our results imply that eruptions of lava are predominantly confined within paterae, thus making it unlikely that resurfacing is done primarily by extensive lava flows. Our conclusion is consistent with the findings of Geissler et al. (2004, Icarus, this issue) that plume eruptions and deposits, rather than the eruption of copious amounts of effusive lavas, are responsible for Io's high resurfacing rates. The origin and longevity of islands within ionian

  10. Subsidence of Puna, Hawaii inferred from sulfur content of drilled lava flows

    USGS Publications Warehouse

    Moore, J.G.; Thomas, D.M.

    1988-01-01

    Sulfur was analyzed in more than 200 lava samples from five drill holes located on the east rift zone of Kilauea volcano on the island of Hawaii. The sulfur content is a gage of whether lava was erupted subaerially (low sulfur) or erupted subaqueously (high sulfur). Despite considerable variation, sulfur is generally low (less than 0.025%) in the upper part of the holes, begins to increase at a depth of 250-320 m below sea level, and generally reaches a high level (greater than 0.1%) indicative of steady submarine eruption at 330-450 m below sea level. Assuming that the island is subsiding at 2.4 mm/yr, an analysis of these data indicates that part of the variation in sulfur concentration results from past eustatic oscillation of sea level, and that the volcano (at the drill hole site) finally emerged for the last time about 98 ka. The long-term average rate of lava accumulation is roughly 4.4 mm/yr, and upward growth of the volcano at the drill hole area is about 2 mm/yr in excess of subsidence. ?? 1988.

  11. Effect of pin tool design on the material flow of dissimilar AA7075-AA6061 friction stir welds

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammed M.; Ishak, M.; Rejab, M. R. M.

    2017-10-01

    Tool design is the most influential aspect in the friction stir welding (FSW) technology. Influence of pin tool geometry on material flow pattern are studied in this work during the FSW of dissimilar AA7075 and AA6061 aluminium alloys. Three truncated pin tool profiles (threaded, threaded with single flat, and unthreaded with single flat) were used to prepare the weldments. The workpieces were joined using a custom-made clamping system under 1100 rpm of spindle speed, 300 mm/min of traverse rate and 3° of tilt angle. The metallographic analysis showed that defect-free welds can be produced using the three pin tools with significant changes in the mixing stir zone structure. The results declared that the introducing of the flat on the cone of the probe deviates the pattern of the onion rings without changing the chemical composition of the created layers. This in turn improves the hardness distribution and tensile strength of the welded joint. It was also noted that both heat affected zone (HAZ) and thermal-mechanical affected zone (TMAZ) are similar in composition to their corresponding base materials (BM).

  12. Lunar Lava Tube Sensing

    NASA Technical Reports Server (NTRS)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  13. New 40ar/39ar Radiometric, Geochemistry And Structural Data On The Giant Okavango Mafic Dike Swarm And Lava-flows From The Karoo Province In Botswana: Implications For Gondwana Break-up.

    NASA Astrophysics Data System (ADS)

    Jourdan, F.; Tshoso, G.; Féraud, G.; Bertrand, H.; Legall, B.; Tiercelin, J. J.; Kampunzu, A. B.

    The lower Jurassic Karoo magmatism represents one of the most important conti- nental flood basalt (CFB) provinces of the Phanerozoic. It is dominated by tholeiites occurring as traps and apparently radiating giant dike swarms and is associated with the disruption of Gondwana and the opening of the Indian Ocean. The Karoo volcanic province located at the South-East of the African continent, covers a surface of about 3x106 km2. Whereas most of the geochronological and geochemical studies were per- formed in the Southern part of the province, very few data are available in the NW. This is particularly the case for lava flows and for the N110 oriented, 1500 km long and 100 km wide giant Okavango Dike Swarm (ODS) of Botswana. Lava-flows were sampled in a 800 m deep borehole located in the SE of Botswana and consist in low- Ti tholeiites. ODS dolerites are characterized mainly by augite and plagioclase with remnants of olivine and are high UTi tholeiites (TiO2> 2 wt%) enriched in LREE relative to HREE (La/Ybn = 3.5-9.7). 40Ar/39Ar plateau ages ranging from 177.3 s´ 2.1 (2 sigma) Ma (-58m deep) to 178.0 s´ 2.2 Ma (-719m deep), and from 178.3 s´ 1.1 Ma to 179.3 s´ 1.2 Ma have been obtained on pure plagioclase separates for the lava-flows and the ODS, respectively. No significant age variation could be identified along the 661m thick lava-flow section, but these lava-flows are slightly younger than both ODS dikes and high-Ti lava-flows from Zimbabwe (Jones et al., 2000, GC, v.2, p110). However, all these basaltic events (both low- and high- Ti) from the north- ern Karoo sub-province appear significantly younger than the southern low-Ti Karoo formations, particularly if we consider 40Ar/39Ar dates obtained only on plagioclase separates, yielding ages which range between 180.3 s´ 1.8 and 184.7 s´ 0.7 Ma (Duncan et al., 1997, Jour. Geoph. Res., v. 102, p18127). Therefore, a time-related northwards migration of the magmatism is suggested. Moreover, one dated ODS dike

  14. Lava and Snow on Klyuchevskaya Volcano [high res

    NASA Image and Video Library

    2013-09-20

    IDL TIFF file This false-color (shortwave infrared, near infrared, green) satellite image reveals an active lava flow on the western slopes of Klyuchevskaya Volcano. Klyuchevskaya is one of several active volcanoes on the Kamchatka Peninsula in far eastern Russia. The lava flow itself is bright red. Snow on Klyuchevskaya and nearby mountains is cyan, while bare ground and volcanic debris is gray or brown. Vegetation is green. The image was collected by Landsat 8 on September 9, 2013. NASA Earth Observatory image by Jesse Allen and Robert Simmon, using Instrument: Landsat 8 - OLI More info: 1.usa.gov/1evspH7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. A comparison of calculated and measured rheological properties of crystallising lavas in the field and in the laboratory

    NASA Technical Reports Server (NTRS)

    Pinkerton, Harry; Norton, Gill

    1993-01-01

    Models of most magmatic processes, including realistic models of planetary lava flows require accurate data on the rheological properties of magma. Previous studies suggest that field and laboratory rheological properties of Hawaiian lavas can be calculated from their physico-chemical properties using a non-Newtonian rheology model. The present study uses new measurements of the rheological properties of crystallizing lavas to show that this is also true for lavas from Mount Etna. Rheological measurements on quenched Etna basalts were made in a specially designed furnace using a Haake Rotovisco viscometer attached to a spindle which has been designed to eliminate slippage at the melt-spindle interface. Using this spindle, we have made measurements at lower temperatures than other workers in this field. From these measurements, Mount Etna lavas are Newtonian at temperatures above 1120 C and they are thixotropic pseudoplastic fluids with a yield strength at lower temperatures. The close agreement between calculated and measured rheology over the temperature range 1084 - 1125 C support the use of the non-Newtonian rheology model in future modeling of planetary lava flows.

  16. Catastrophic lava dome failure at Soufrière Hills Volcano, Montserrat, 12-13 July 2003

    USGS Publications Warehouse

    Herd, Richard A.; Edmonds, Marie; Bass, Venus A.

    2005-01-01

    The lava dome collapse of 12–13 July 2003 was the largest of the Soufrière Hills Volcano eruption thus far (1995–2005) and the largest recorded in historical times from any volcano; 210 million m3 of dome material collapsed over 18 h and formed large pyroclastic flows, which reached the sea. The evolution of the collapse can be interpreted with reference to the complex structure of the lava dome, which comprised discrete spines and shear lobes and an apron of talus. Progressive slumping of talus for 10 h at the beginning of the collapse generated low-volume pyroclastic flows. It undermined the massive part of the lava dome and eventually prompted catastrophic failure. From 02:00 to 04:40 13 July 2003 large pyroclastic flows were generated; these reached their largest magnitude at 03:35, when the volume flux of material lost from the lava dome probably approached 16 million m3 over two minutes. The high flux of pyroclastic flows into the sea caused a tsunami and a hydrovolcanic explosion with an associated pyroclastic surge, which flowed inland. A vulcanian explosion occurred during or immediately after the largest pyroclastic flows at 03:35 13 July and four further explosions occurred at progressively longer intervals during 13–15 July 2003. The dome collapse lasted approximately 18 h, but 170 of the total 210 million m3 was removed in only 2.6 h during the most intense stage of the collapse.

  17. Correlations between topography and intraflow width behavior in Martian and terrestrial lava flows

    NASA Astrophysics Data System (ADS)

    Peitersen, Matthew N.; Crown, David A.

    2000-02-01

    Local correlations between topography and width behavior within lava flows at Puu Oo, Mount Etna, Glass Mountain, Cerro Bayo, Alba Patera, Tyrrhena Patera, Elysium Mons, and Olympus Mons were investigated. For each flow, width and slope data were both referenced via downflow distance as a sequence of points; the data were then divided into collections of adjacent three-point features and two-point segments. Four discrete types of analyses were conducted: (1) Three-point analysis examined positional correlations between width and slope features, (2) two-point analysis did the same for flow segments, (3) mean slope analysis included segment slope comparisons, and (4) sudden width behavior analysis measured abruptness of width changes. The distribution of types of correlations compared to random combinations of features and segments does not suggest a significant correlation between flow widths and local underlying slopes and indicates that for these flows at least, other factors have more influence on changes in width than changes in underlying topography. Mean slopes underlying narrowing, widening, and constant flow width segments were calculated. An inverse correlation between slope and width was found only at Mount Etna, where slopes underlying narrowing segments were greater than those underlying widening in 62% of the examined flows. For the majority of flows at Mount Etna, Puu Oo, and Olympus Mons, slopes were actually greatest under constant width segments; this may imply a topographically dependent resistance to width changes. The rate of change of width was also examined. Sudden width changes are relatively common at Puu Oo, Mount Etna, Elysium Mons, and Tyrrhena Patera and relatively rare at Glass Mountain, Cerro Bayo, Olympus Mons, and Alba Patera. After correction for mapping scale, Puu Oo, Mount Etna, Olympus Mons, and Alba Patera appear to fall on the same trend; Glass Mount exhibits unusually small amounts of sudden width behavior, and Tyrrhena Patera

  18. Microfracture development and foam collapse during lava dome growth

    NASA Astrophysics Data System (ADS)

    Ashwell, P.; Kendrick, J. E.; Lavallee, Y.; kennedy, B.; Hess, K.; Cole, J. W.; Dingwell, D. B.

    2012-12-01

    The ability of a volcano to degas effectively is regulated by the collapse of the foam during lava dome growth. As a lava dome extrudes and cools, it will begin to collapse under its own weight, leading to the closure of bubbles and the eventual blockage of the permeable foam network. A reduction in the lavas permeability hinders gas movement and increases internal bubble pressure, which may eventually lead to failure of the bubble walls, and ultimately to explosive fragmentation of the dome. However, the behaviour of lava dome material under compression is poorly understood. Here we present the results of low-load, uniaxial, high temperature (850oC) compression experiments on glassy, rhyolitic dome material from Ngongotaha (~200ka, following collapse of Rotorua Caldera) and Tarawera (1314AD, from dome collapse generated block and ash flow) domes in New Zealand. The development of textures and microstructures was tracked using neutron computed tomography at incremental stages of strain. Porosity and permeability measurements, using pycnometry and gas permeability, before and after each experiment quantified the evolution of the permeable bubble network. Our results show that uniaxial compression of vesicular lava leads to a systematic reduction of porosity on a timescale comparable to volcanic eruptions (hours - days). The closure of bubbles naturally decreases permeability parallel and perpendicular to the applied load, and at high strains fractures begin to initiate in phenocrysts and propagate vertically into the glass. These microfractures result in localised increases in permeability. Crystallinity and initial vesicularity of each sample affects the rate of bubble collapse and the evolution of permeability. The most highly compressed samples (60%) show textures similar to samples collected from the centre of Tarawera Dome, thought to have suffered from collapse shortly after dome emplacement. However, structures and porosities in the deformed Ngongotaha

  19. Rheology and thermal budget of lunar basalts: an experimental study and its implications for rille formation of non-Newtonian lavas on the Moon

    NASA Astrophysics Data System (ADS)

    Sehlke, A.; Whittington, A. G.

    2015-12-01

    Sinuous lava channels are a characteristic feature observed on the Moon. Their formation is assumed to be due to a combination of mechanical and thermal erosion of the lava into the substrate during emplacement as surface channels, or due to collapsed subsurface lava tubes after the lava has evacuated. The viscosity (η) of the lava plays an important role, because it controls the volume flux of the emplaced lava that governs the mechanical and thermal erosion potential of the lava flow. Thermal properties, such as heat capacity (Cp) and latent heat of crystallization (ΔHcryst) are important parameters in order for the substrate to melt and causing thermal buffering during crystallization of the flowing lava. We experimentally studied the rheological evolution of analog lavas representing the KREEP terrain and high-Ti mare basalts during cooling and crystallization. We find that the two lavas behave very differently. High-Ti mare lava begins to crystallize around 1300 ºC with a viscosity of 8.6±0.6 Pa s and crystal content around 2 vol%. On cooling to 1169 ºC, the effective viscosity of the crystal-melt suspension is increased to only 538±33 Pa s (at a strain rate of 1 s-1) due to crystallization of 14±1 vol% blocky magnetite and acicular ulvöspinel-rich magnetite. The flow behavior of these suspensions depends on the strain rate, where flow curves below strain rates of 10 s-1show shear-thinning character, but resemble Bingham behavior at greater strain rates. In contrast, the KREEP lava crystallizes rapidly over a narrow temperature interval of ~ 30 degrees. The first crystals detected were ulvospinel-rich magnetites at 1204 ºC with ~2 vol% and a viscosity of 90±2 Pa s. On cooling to 1178 ºC, anorthite and enstatite appears, so that the crystal-melt suspension has become strongly pseudoplastic at a crystal content of 22±2 vol% with a flow index (n) of 0.63 and an effective viscosity of 1600±222 Pa s at a strain rate of 1 s-1. We are currently measuring

  20. Deformation at Lava Lake Volcanoes: Lessons from Karthala

    NASA Astrophysics Data System (ADS)

    Biggs, J.; Rust, A.; Owens, C.

    2014-12-01

    To remain hot, permanent lava lakes require a continuous connection to a magma reservoir. Depending on the state of the conduit, changes in magma pressure could result in changes in the lake level (hydraulic head) or be accommodated elastically leading to surface deformation. Observing deformation is therefore key to understanding the plumbing system associated with lava lakes. However, the majority of the world's lava lakes lie in difficult socio-economic or remote locations meaning that there are few ground-based observations, and it is often necessary to rely on satellite imagery. Karthala volcano experienced a sequence of eruptions in April 2005, Nov 2005, May 2006 and Jan 2007. The first 3 took place at the Choungou Chahale crater, which typically contains either a water or lava lake; the last formed a new pit crater to the north. Satellite thermal imagery (Hirn et al, 2008) does not show an anomaly during the first eruption, which had a phreatomagmatic component, but large thermal anomalies, associated with an ephemeral lava lake were detected during the Nov 2005 and May 2006 eruptions. The final eruption produced a smaller anomaly attributed to a minor lava flow. Here we present InSAR observations from 2004-2010. We find no significant deformation associated with the first three eruptions, but the January 2007 eruption was associated with ~25 cm of deformation near the volcano's summit, characteristic of a dyke intrusion aligned with the northern rift zone. We also observe an unusual pattern deformation along the coast which may be attributed to rapid settling of soft sediment or recent volcanic deposits triggered by seismic activity. We propose that the first eruption cleared the reservoir-summit connection and interacted with the water in Choungou Chahale. The following eruptions formed a lava lake, but without causing deformation. By the final eruption, the conduit had become blocked and magma intruded along the rift zone causing deformation but no

  1. Cosmic ray exposure dating with in situ produced cosmogenic 3He: results from young Hawaiian lava flows

    USGS Publications Warehouse

    Kurz, M.D.; Colodner, D.; Trull, T.W.; Moore, R.B.; O'Brien, K.

    1990-01-01

    In an effort to determine the in situ production rate of spallation-produced cosmogenic 3He, and evaluate its use as a surface exposure chronometer, we have measured cosmogenic helium contents in a suite of Hawaiian radiocarbon-dated lava flows. The lava flows, ranging in age from 600 to 13,000 years, were collected from Hualalai and Mauna Loa volcanoes on the island of Hawaii. Because cosmic ray surface-exposure dating requires the complete absence of erosion or soil cover, these lava flows were selected specifically for this purpose. The 3He production rate, measured within olivine phenocrysts, was found to vary significantly, ranging from 47 to 150 atoms g-1 yr-1 (normalized to sea level). Although there is considerable scatter in the data, the samples younger than 10,000 years are well-preserved and exposed, and the production rate variations are therefore not related to erosion or soil cover. Data averaged over the past 2000 years indicate a sea-level 3He production rate of 125 ?? 30 atoms g-1 yr-1, which agrees well with previous estimates. The longer record suggests a minimum in sea level normalized 3He production rate between 2000 and 7000 years (55 ?? 15 atoms g-1 yr-1), as compared to samples younger than 2000 years (125 ?? 30 atoms g-1 yr-1), and those between 7000 and 10,000 years (127 ?? 19 atoms g-1 yr-1). The minimum in production rate is similar in age to that which would be produced by variations in geomagnetic field strength, as indicated by archeomagnetic data. However, the production rate variations (a factor of 2.3 ?? 0.8) are poorly determined due to the large uncertainties in the youngest samples and questions of surface preservation for the older samples. Calculations using the atmospheric production model of O'Brien (1979) [35], and the method of Lal and Peters (1967) [11], predict smaller production rate variations for similar variation in dipole moment (a factor of 1.15-1.65). Because the production rate variations, archeomagnetic data

  2. The Chaitén rhyolite lava dome: Eruption sequence, lava dome volumes, rapid effusion rates and source of the rhyolite magma

    USGS Publications Warehouse

    Pallister, John S.; Diefenbach, Angela K.; Burton, William C.; Munoz, Jorge; Griswold, Julia P.; Lara, Luis E.; Lowenstern, Jacob B.; Valenzuela, Carolina E.

    2013-01-01

    We use geologic field mapping and sampling, photogrammetric analysis of oblique aerial photographs, and digital elevation models to document the 2008-2009 eruptive sequence at Chaitén Volcano and to estimate volumes and effusion rates for the lava dome. We also present geochemical and petrologic data that contribute to understanding the source of the rhyolite and its unusually rapid effusion rates. The eruption consisted of five major phases: 1. An explosive phase (1-11 May 2008); 2. A transitional phase (11-31 May 2008) in which low-altitude tephra columns and simultaneous lava extrusion took place; 3. An exogenous lava flow phase (June-September 2008); 4. A spine extrusion and endogenous growth phase (October 2008-February 2009); and 5. A mainly endogenous growth phase that began after the collapse of a prominent Peléean spine on 19 February 2009 and continued until the end of the eruption (late 2009 or possibly earliest 2010). The 2008-2009 rhyolite lava dome has a total volume of approximately 0.8 km3. The effusion rate averaged 66 m3s-1 during the first two weeks and averaged 45 m3s-1 for the first four months of the eruption, during which 0.5 km3 of rhyolite lava was erupted. These are among the highest rates measured world-wide for historical eruptions of silicic lava. Chaitén’s 2008-2009 lava is phenocryst-poor obsidian and microcrystalline rhyolite with 75.3±0.3% SiO2. The lava was erupted at relatively high temperature and is remarkably similar in composition and petrography to Chaitén’s pre-historic rhyolite. The rhyolite’s normative composition plots close to that of low pressure (100-200 MPa) minimum melts in the granite system, consistent with estimates of approximately 5 to 10 km source depths based on phase equilibria and geodetic studies. Calcic plagioclase, magnesian orthopyroxene and aluminous amphibole among the sparse phenocrysts suggest derivation of the rhyolite by melt extraction from a more mafic magmatic mush. High temperature

  3. Operational tracking of lava lake surface motion at Kīlauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Patrick, Matthew R.; Orr, Tim R.

    2018-03-08

    Surface motion is an important component of lava lake behavior, but previous studies of lake motion have been focused on short time intervals. In this study, we implement the first continuous, real-time operational routine for tracking lava lake surface motion, applying the technique to the persistent lava lake in Halema‘uma‘u Crater at the summit of Kīlauea Volcano, Hawai‘i. We measure lake motion by using images from a fixed thermal camera positioned on the crater rim, transmitting images to the Hawaiian Volcano Observatory (HVO) in real time. We use an existing optical flow toolbox in Matlab to calculate motion vectors, and we track the position of lava upwelling in the lake, as well as the intensity of spattering on the lake surface. Over the past 2 years, real-time tracking of lava lake surface motion at Halema‘uma‘u has been an important part of monitoring the lake’s activity, serving as another valuable tool in the volcano monitoring suite at HVO.

  4. Relative dating of Hawaiian lava flows using multispectral thermal infrared images - A new tool for geologic mapping of young volcanic terranes

    NASA Technical Reports Server (NTRS)

    Kahle, Anne B.; Gillespie, Alan R.; Abbott, Elsa A.; Abrams, Michael J.; Walker, Richard E.

    1988-01-01

    The weathering of Hawaiian basalts in arid and semiarid environments is accompanied by changes in their thermal infrared emittance spectra. The spectral differences can be measured and mapped with multispectral imaging systems. The differences appear to be related to the degree of development, preservation, and alteration of glassy crusts; the oxidation of iron; and the accretion of silica-rich surface veneers. Because the measurements are quantitative and in image format, they are useful for estimating relative ages in geologic mapping of lava flows. In Hawaii this technique is most diagnostic for distinguishing among sparsely vegetated flows less than 1.5 ka in age.

  5. The evolution of volcanic material on Mars: Preliminary results of sand-lavas relationships from the analogy with sandy lavas in Iceland

    NASA Astrophysics Data System (ADS)

    Mangold, N.; Baratoux, D.; Arnalds, O.; Grégoire, M.; Platevoët, B.; Bardintzeff, J. M.; Chevrier, V.; Pinet, P.; Mathé, P. E.; Rochette, P.

    2004-12-01

    The surface of Mars is covered by volcanic rocks from few tens of millions years to 3.5 by old. The presence of water and atmosphere can strongly affect these rocks, by both chemical and mechanical erosion and transport. The interpretation of multispectral and hyperspectral data of Mars requires a better comprehension of these surface processes in order to understand if the spectral data still corresponds to the volcanic composition at the time of formation. Volcanic material in Iceland is a good analog for the studies of possible landforms resulting from the formation, transport and deposition of basaltic sand on Mars. Iceland is amongst the unique places on Earth with a cold environment, abundant basaltic rocks and sands, and the presence of palagonite, a possible typical constituent of the Martian soil. A first field campaign has been achieved in fall 2003, with the objectives of sites selection and chemical analysis of sands and lavas in order to establish the sources of sands, and the mineralogical and chemical evolution from lava to sands. The first site is close to Skjalbreidur volcano, south of Langjokull and is composed of weathered lava blocks, sands and gravels. The second sampling site is close to Eldborgir volcano, also south of Langjokull, weathered lava flows and sands are observed here. The third sampling site is around Hekla volcano. The results of the chemical analysis indicate different situations for the origin of sands. For the first two sites, major, minor and traces elements are correlated and indicate that the sands, which are basaltic in composition, are genetically related to the surrounding lava. The sands at Hekla volcano, andesitic in composition, indicate a contamination of material eroded from basaltic lava flow by a more silicic component erupted from Hekla. Sands coming from different sources, of possibly different chemical and mineralogical composition, and of different nature of eruption can easily mix each other which has

  6. Using Lava Tube Skylight Thermal Emission Spectra to Determine Lava Composition on Io: Quantitative Constraints for Observations by Future Missions to the Jovian System.

    NASA Astrophysics Data System (ADS)

    Davies, A. G.

    2008-12-01

    Deriving the composition of Io's dominant lavas (mafic or ultramafic?) is a major objective of the next missions to the jovian system. The best opportunities for making this determination are from observations of thermal emission from skylights, holes in the roof of a lava tube through which incandescent lava radiates, and Io thermal outbursts, where lava fountaining is taking place [1]. Allowing for lava cooling across the skylight, the expected thermal emission spectra from skylights of different sizes have been calculated for laminar and turbulent tube flow and for mafic and ultramafic composition lavas. The difference between the resulting mafic and ultramafic lava spectra has been quantified, as has the instrument sensitivity needed to acquire the necessary data to determine lava eruption temperature, both from Europa orbit and during an Io flyby. A skylight is an excellent target to observe lava that has cooled very little since eruption (<0.1 K per km from source vent [2]). Using skylights has a number of advantages over outbursts. Lava fountains have a complex physical and thermal structure, and many model inputs can only be roughly estimated. Outburst events are also relatively rare. Finally, fluctuations in fountain activity mean that multi-spectral observations ideally have to be contemporaneous [3] to yield usable results. Skylights provide an unvarying thermal signal on timescales of 1 minute or longer, and expose a restricted range of temperatures close to lava eruption temperature. Skylights are therefore easily discernible against a cool background, and are detectable from great distances at night or with Io in eclipse with imagers covering the range 0.4 to 5.0 μm. To distinguish between ultramafic and mafic lavas, multispectral (or hyperspectral) observations with precise exposure timing and knowledge of filter response are needed in the range 0.4 to 0.8 μm, with (minimally) an additional model-constraining measurement at ~4-5 μm. As with many

  7. Palaeomagnetism of the Upper Miocene- Lower Pliocene lavas from the East Carpathians: contribution to the paleosecular variation of geomagnetic field

    PubMed Central

    Vişan, Mădălina; Panaiotu, Cristian G.; Necula, Cristian; Dumitru, Anca

    2016-01-01

    Investigations of the paleosecular variation of the geomagnetic field on geological timescales depend on globally distributed data sets from lava flows. We report new paleomagnetic results from lava flows of the East Carpathian Mountains (23.6°E, 46.4°N) erupted between 4 and 6 Ma. The average virtual geomagnetic pole position (76 sites) includes the North Geographic Pole and the dispersion of virtual geomagnetic poles is in general agreement with the data of the Time Averaged geomagnetic Field Initiative. Based on this study and previous results from the East Carpathians obtained from 0.04–4 Ma old lava flows, we show that high value of dispersion are characteristic only for 1.5–2.8 Ma old lava flows. High values of dispersion during the Matuyama chron are also reported around 50°N, in the global paleosecular variation data set. More data are needed at a global level to determine if these high dispersions reflect the behaviour of the geomagnetic field or an artefact of inadequate number of sites. This study of the East Carpathians volcanic rocks brings new data from southeastern Europe and which can contribute to the databases for time averaged field and paleosecular variation from lavas in the last 6 Ma. PMID:26997549

  8. Simulation of Cooling and Pressure Effects on Inflated Pahoehoe Lava Flows

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.; Baloga, Stephen M.

    2016-01-01

    Pahoehoe lobes are often emplaced by the advance of discrete toes accompanied by inflation of the lobe surface. Many random effects complicate modeling lobe emplacement, such as the location and orientation of toe breakouts, their dimensions, mechanical strength of the crust, micro-topography and a host of other factors. Models that treat the movement of lava parcels as a random walk have explained some of the overall features of emplacement. However, cooling of the surface and internal pressurization of the fluid interior has not been modeled. This work reports lobe simulations that explicitly incorporate 1) cooling of surface lava parcels, 2) the propensity of breakouts to occur at warmer margins that are mechanically weaker than cooler ones, and 3) the influence of internal pressurization associated with inflation. The surface temperature is interpreted as a surrogate for the mechanic strength of the crust at each location and is used to determine the probability of a lava parcel transfer from that location. When only surface temperature is considered, the morphology and dimensions of simulated lobes are indistinguishable from equiprobable simulations. However, inflation within a lobe transmits pressure to all connected fluid locations with the warmer margins being most susceptible to breakouts and expansion. Simulations accounting for internal pressurization feature morphologies and dimensions that are dramatically different from the equiprobable and temperature-dependent models. Even on flat subsurfaces the pressure-dependent model produces elongate lobes with distinct directionality. Observables such as topographic profiles, aspect ratios, and maximum extents should be readily distinguishable in the field.

  9. Temporal and Spatial Variability in the Geochemistry of Axial and CoAxial Segment Lavas and their Mantle Sources

    NASA Astrophysics Data System (ADS)

    Smith, M. C.; Perfit, M. R.; Davis, C.; Kamenov, G. D.

    2011-12-01

    Three spatially related volcanic eruptions along the CoAxial Segment of the Juan de Fuca Ridge (JdFR) have documented emplacements between 1981 and 1993. Two of the historic flows outcrop at the "Flow Site" and were emplaced within less than 12 years and 500 m from one another. The third was emplaced at the "Floc Site" to the south in the 1980s. Previous studies have documented that CoAxial lavas are among the most incompatible element and isotopically depleted lavas along the entire JdFR, whereas the Axial Seamount segment immediately south of CoAxial has erupted the most chemically enriched lavas south of the Endeavor Segment. Geochemical studies have shown little temporal change in the chemistry of recent Axial Seamount eruptives, whereas CoAxial lavas exhibit distinct chemical differences over short time periods. Significant chemical differences observed among depleted CoAxial lavas emplaced close to one another in space and time are in marked contrast to the relatively constant chemical characteristics of enriched lavas erupted at the magmatically more robust Axial segment only 10's of kilometers to the south and west. New trace element and isotopic (Sr, Nd, Pb) geochemical analyses of historic and older CoAxial lavas have resulted in better documentation of interflow and intraflow chemical variation providing an improved understanding of spatial/temporal chemical variability in lavas, and further insight into JdFR magmatic processes. Modeling of major and trace element abundances suggest that the observed intraflow chemical variation within CoAxial lavas is largely due to shallow-level fractional crystallization but that a single fractional crystallization model cannot account for all interflow chemical variation. In fact, elemental and isotopic data require different parental magmas for each of the three recent CoAxial Segment lava flows suggesting very short-term differences or changes in the chemical character of the mantle source region. In particular

  10. Paleomagnetic and Geochronologic Results of Latest Cretaceous Lava Flows From the Lhasa Terrane and Their Tectonic Implications

    NASA Astrophysics Data System (ADS)

    Ma, Yiming; Yang, Tianshui; Bian, Weiwei; Jin, Jingjie; Wang, Qiang; Zhang, Shihong; Wu, Huaichun; Li, Haiyan; Cao, Liwan; Yuan, Haifan; Ding, Jikai

    2017-11-01

    To position the Asian southern margin before the India-Asia collision, paleomagnetic and geochronologic studies were performed on the Dianzhong Formation lava flows from the Shiquanhe area of the westernmost Lhasa terrane (LT). Zircon U-Pb analyses dated the lava flows to 69.5 ± 2.5 Ma. The characteristic remanent magnetization directions contain antipodal polarities and pass fold tests, implying that they are primary magnetizations; this interpretation is supported by rock-magnetic analyses and petrographic observations. Forty-four site-mean directions were divided into 17 statistically independent direction groups. The group-mean direction after tilt correction is Ds = 43.3°, Is = 30.3°, k = 28.0, α95 = 6.9°. The corresponding paleopole at 47.8°N, 181.4°E (A95 = 6.4°) yields a paleolatitude of 16.6° ± 6.4°N for the Shiquanhe area of westernmost Tibet (32.34°N, 80.12°E). Consistent paleolatitudes for the southern margin of the LT calculated from the western and central part of the LT indicate that the leading edge of the LT was aligned relatively W-E. When compared with the reference pole at 70 Ma for Eurasia, this new paleopole suggests that crustal shortening between the Shiquanhe area and stable Asia was 1,500 ± 800 km. This is supported by the crustal shortening (600-1,000 km) absorbed by Cenozoic thrust and fold belts within this area, indicating that the magnitude of crustal shortening within Asia north of the India-Asia suture zone was similar in the central and western part of the plateau.

  11. Littoral hydrovolcanic explosions: A case study of lava-seawater interaction at Kilauea Volcano

    USGS Publications Warehouse

    Mattox, T.N.; Mangan, M.T.

    1997-01-01

    A variety of hydrovolcanic explosions may occur as basaltic lava flows into the ocean. Observations and measurements were made during a two-year span of unusually explosive littoral activity as tube-fed pahoehoe from Kilauea Volcano inundated the southeast coastline of the island of Hawai'i. Our observations suggest that explosive interactions require high entrance fluxes (??? 4 m3/s) and are most often initiated by collapse of a developing lava delta. Two types of interactions were observed. "Open mixing" of lava and seawater occurred when delta collapse exposed the mouth of a severed lava tube or incandescent fault scarp to wave action. The ensuing explosions produced unconsolidated deposits of glassy lava fragments or lithic debris. Interactions under "confined mixing" conditions occurred when a lava tube situated at or below sea level fractured. Explosions ruptured the roof of the tube and produced circular mounds of welded spatter. We estimate a water/rock mass ratio of 0.15 for the most common type of littoral explosion and a kinetic energy release of 0.07-1.3 kJ/kg for the range of events witnessed.

  12. Influence of FSW pin tool geometry on plastic flow of AA7075 T651

    NASA Astrophysics Data System (ADS)

    Lertora, Enrico; Mandolfino, Chiara; Gambaro, Carla

    2016-10-01

    In this paper the behaviour of the plastic flow during Friction Stir Welding of AA7075 T651 plates, realized with different shaped tools, has been investigated. In particular, the influence of the shape of three tools was studied using copper strips placed along the welds. After welding, radiography and metallurgical analysis were used in order to investigate the marker movement and its fragmentation.

  13. Nicaragua Eruption Lava Threat Closely Monitored by NASA EO-1 Spacecraft

    NASA Image and Video Library

    2015-12-07

    Momotombo volcano, Nicaragua, began erupting on Dec. 1, 2015, after more than a century of inactivity. On Dec. 4, 2015, the Advanced Land Imager (ALI) on NASA's Earth Observing 1 (EO-1) spacecraft observed the new eruption. This image is created from infrared data, and shows the incandescent active vent at the summit of the volcano and lava flowing down the side of the volcano. These data are being examined by scientists to determine where lava will flow, allowing assessment of possible threats to local infrastructure. The EO-1 data were obtained at an altitude of 438 miles (705 kilometers) and at a resolution of 98 feet (30 meters) per pixel at different visible and infrared wavelengths. The ALI image is 23 miles (37 kilometers) wide. http://photojournal.jpl.nasa.gov/catalog/PIA20203

  14. The airborne lava-seawater interaction plume at Kilauea Volcano, Hawai'i

    USGS Publications Warehouse

    Edmonds, M.; Gerlach, T.M.

    2006-01-01

    Lava flows into the sea at Kīlauea Volcano, Hawaiʻi, and generates an airborne gas and aerosol plume. Water (H2O), hydrogen chloride (HCl), carbon dioxide (CO2), nitrogen dioxide (NO2) and sulphur dioxide (SO2) gases were quantified in the plume in 2004–2005, using Open Path Fourier Transform infra-red Spectroscopy. The molar abundances of these species and thermodynamic modelling are used to discuss their generation. The range in molar HCl / H2O confirms that HCl is generated when seawater is boiled dry and magnesium salts are hydrolysed (as proposed by [T.M. Gerlach, J.L. Krumhansl, R.O. Fournier, J. Kjargaard, Acid rain from the heating and evaporation of seawater by molten lava: a new volcanic hazard, EOS (Trans. Am. Geophys. Un.) 70 (1989) 1421–1422]), in contrast to models of Na-metasomatism. Airborne droplets of boiled seawater brine form nucleii for subsequent H2O and HCl condensation, which acidifies the droplets and liberates CO2 gas from bicarbonate and carbonate. NO2 is derived from the thermal decomposition of nitrates in coastal seawater, which takes place as the lava heats droplets of boiled seawater brine to 350–400 °C. SO2 is derived from the degassing of subaerial lava flows on the coastal plain. The calculated mass flux of HCl from a moderate-sized ocean entry significantly increases the total HCl emission at Kīlauea (including magmatic sources) and is comparable to industrial HCl emitters in the United States. For larger lava ocean entries, the flux of HCl will cause intense local environmental hazards, such as high localised HCl concentrations and acid rain.

  15. New and revised 14C dates for Hawaiian surface lava flows: Paleomagnetic and geomagnetic implications

    USGS Publications Warehouse

    Pressline, N.; Trusdell, F.A.; Gubbins, David

    2009-01-01

    Radiocarbon dates have been obtained for 30 charcoal samples corresponding to 27 surface lava flows from the Mauna Loa and Kilauea volcanoes on the Island of Hawaii. The submitted charcoal was a mixture of fresh and archived material. Preparation and analysis was undertaken at the NERC Radiocarbon Laboratory in Glasgow, Scotland, and the associated SUERC Accelerator Mass Spectrometry facility. The resulting dates range from 390 years B.P. to 12,910 years B.P. with corresponding error bars an order of magnitude smaller than previously obtained using the gas-counting method. The new and revised 14C data set can aid hazard and risk assessment on the island. The data presented here also have implications for geomagnetic modelling, which at present is limited by large dating errors. Copyright 2009 by the American Geophysical Union.

  16. Geochemistry and petrogenesis of lava flows around Linga, Chhindwara area in the Eastern Deccan Volcanic Province (EDVP), India

    NASA Astrophysics Data System (ADS)

    Ganguly, Sohini; Ray, Jyotisankar; Koeberl, Christian; Saha, Abhishek; Thöni, Martin; Balaram, V.

    2014-09-01

    Based on systematic three-tier arrangement of vesicles, entablature and columnar joints, three distinct quartz normative tholeiitic lava flows (I, II and III) were recognized in the area around Linga, in the Eastern Deccan Volcanic Province (EDVP). Each of the flows exhibits intraflow chemical variations marked by high Mg#-low Ti, and low Mg#-high Ti contents. The MgO (4.27-7.74 wt.%), Mg# (23.45-41.89) and Zr (161.5-246.3 ppm) of Linga flows suggest an evolved chemistry marked by fractional crystallization and crustal contamination processes. Positive Rb and Th anomalies, negative Nb anomalies, relative enrichment of LILE-LREE with respect to Nb, Nb/Th:3.71-6.77 indicate crustal contamination of magma by continental materials through magma-crust interaction during melt migration and contributions from sub-continental lithospheric mantle (SCLM). Negative K, Sr and Ti anomalies corroborate an intracontinental, rift-controlled tectonic setting for the genesis and evolution of Linga basalts. Chondrite-normalized REE patterns reflect low HREE abundances and prominent LREE/HREE, MREE/HREE fractionation thereby pointing towards partial melting of garnet peridotite mantle source. Nb, Zr, Y variations suggest 10-15% partial melting of mantle source for the derivation of parent tholeiitic melt that suffered crystal fractionation of phenocrystal phases and subsequent liquid immiscibility. Critical evaluation of Srinitial and Ndinitial (65 Ma) isotopic compositions (87Sr/86Srinitial between 0.705656 and 0.706980 and 143Nd/144Ndinitial between 0.512523 and 0.512598) suggests that these basalts were derived from an enriched mantle (∼EM I-EM II) source. The εSr (21.84-41.27) and εNd (-0.28 to 1.10) isotopic signatures defined by higher εSr and lower εNd fingerprint a plume-related source. Positive and negative values of εNd indicate an isotopically heterogeneous mantle source marked by mixing of depleted (DM) and enriched mantle (EM I-EM II) components at the source

  17. Observations on basaltic lava streams in tubes from Kilauea Volcano, island of Hawai'i

    USGS Publications Warehouse

    Kauahikaua, J.; Cashman, K.V.; Mattox, T.N.; Christina, Heliker C.; Hon, K.A.; Mangan, M.T.; Thornber, C.R.

    1998-01-01

    From 1986 to 1997, the Pu'u 'O'o-Kupaianaha eruption of Kilauea produced a vast pahoehoe flow field fed by lava tubes that extended 10-12 km from vents on the volcano's east rift zone to the ocean. Within a kilometer of the vent, tubes were as much as 20 m high and 10-25 m wide. On steep slopes (4-10??) a little farther away from the vent, some tubes formed by roofing over of lava channels. Lava streams were typically 1-2 m deep flowing within a tube that here was typically 5 m high and 3 m wide. On the coastal plain (<1??), tubes within inflated sheet flows were completely filled, typically 1-2 m high, and several tens of meters wide. Tubes develop as a flow's crust grows on the top, bottom, and sides of the tubes, restricting the size of the fluid core. The tubes start out with nearly elliptical cross-sectional shapes, many times wider than high. Broad, flat sheet flows evolve into elongate tumuli with an axial crack as the flanks of the original flow were progressively buried by breakouts. Temperature measurements and the presence of stalactites in active tubes confirmed that the tube walls were above the solidus and subject to melting. Sometimes, the tubes began downcutting. Progressive downcutting was frequently observed through skylights; a rate of 10 cm/d was measured at one skylight for nearly 2 months.

  18. Mixing and mingling in Iceland: The origin of a diverse suite of Tertiary lavas

    NASA Astrophysics Data System (ADS)

    Jordan, B. T.

    2006-12-01

    A sequence of intermediate and silicic volcanic units occurs within a stratigraphic package dominated by moderately evolved tholeiitic basalts in the mountains Laxardalsfjoll and Langadalsfjall in the southern Skagi Peninsula of north-central Iceland. This sequence consists of several minor rhyolite and dacite lavas directly overlain by a voluminous (>3 km3) litholigically diverse andesite to rhyolite lava flow Above this flow is a basaltic andesite to dacite lava, or lavas (mapping not complete), and the sequence is capped by an extensive rhyolite lava. Pyroclastic deposits, including one welded tuff, occur within the sequence. The sequence was erupted at 7.8 Ma, not long before the abandonment of the Skagi-Snaefellsnes rift zone in which it was erupted. The rhyolite lavas are generally aphyric. The lower rhyolites are of variable composition (71-75% SiO2) and the upper is a high-silica rhyolite (75-76% SiO2). The lower dacite and upper basaltic andesite to dacite lava(s) are aphyric and plot on a linear mixing trend between well defined end-members, a moderately evolved basalt and a high-silica rhyolite. The most anomalous unit is the andesite-rhyolite lava. It is lithologically heterogeneous with <<1% to 20% coarse (up to 3 cm) nearly equant plagioclase phenocrysts. Lithologies commonly vary across sharp borders within the flow, with domains of different lithologies being up to 10s of m in extent. The coarse plagioclase phenocrysts are calcic, up to An87 indicating an origin in basaltic magma. The whole rock composition varies from andesite (58% SiO2) to rhyolite (70% SiO2). Silica content is inversely correlated with phenocryst abundance, but can not be explained by phenocrysts alone. A wide range of mixing and mingling textures are observed at mesoscopic and microscopic scales. Major and trace element variations are quite distinct from the other mixed unit and indicate that the end members of mixing are a plagioclase-rich basalt and a range of silicic

  19. Modelling the Thermal and Infrared Spectral Properties of Active Vents: Comparing Basaltic Lava Flows of Tolbachik, Russia to Arsia Mons, Mars

    NASA Astrophysics Data System (ADS)

    Ramsey, M. S.; Harris, A. J. L.

    2016-12-01

    Satellite observations of active vents commonly group into several broad categories: thermal analysis, deformational studies, and gas/ash detection. These observations become increasingly detailed depending on the spatial, spectral and/or temporal resolution of the sensor. Higher temporal resolution thermal infrared (TIR) data are used to determine the time-averaged discharge rate (TADR) and the potential down-slope inundation of the newly-forming flow using thermorheologic-based modelling. Whereas, increased spectral resolution leads to improved measurement of the flow's composition, crystal content, and vesicularity. Combined, these data help to improve the accuracy of cooling-based viscosity models such as FLOWGO. In addition to topography, the dominant (internal) factors controlling flow propagation are the discharge rate combined with cooling and increasing viscosity. The cooling of the glassy lava surface is directly imaged by the TIR instrument to determine temperature, which is then used to calculate the model's starting conditions. Understanding the cooling, formation and dynamics of basaltic surfaces therefore helps to resolve compositional, textural, and silicate structural changes. Models, coupled with accurate knowledge of the characteristics of older, inactive flows (such as those on Mars), can be reversed to predict the vent conditions at the time of the eruption. Being able to directly connect the final flow morphology to specific eruption conditions is a critical goal to understand the last stages of volcanism on Mars and becomes an important educational tool where combined with 3D visualization. The 2012-2013 eruption of Tolbachik volcano, Russia was the largest and most thermally intense flow-forming eruption in the past 50 years, producing longer lava flows than that of a typical eruption at Kilauea or Etna. These flows have been studied using various scales of TIR data at the time of eruption and following cooling. The input parameters for the

  20. ‘Column on column’ structures as indicators of lava/ice interaction, Ruapehu andesite volcano, New Zealand

    NASA Astrophysics Data System (ADS)

    Spörli, K. B.; Rowland, J. V.

    2006-10-01

    Lava flows of the Mangawhero Formation (ca. 15-60 ka) on Ruapehu volcano erupted during the last glaciation. In a distal flow lobe at Tukino, on the east side of the mountain, small secondary columns (10-20 cm thick) have formed on the sides of large, rectangular, primary (0.5-3 m thick) cooling columns. Thick (10 m+) zones of such small columns form a lateral and basal outer rind of the lobe. As they do not mark glassy zones of quenching, these secondary columns are interpreted as being formed by a second cooling event at temperatures below the boundary between the low creep and elastic regimes (˜ 600 °C) by rapid influx of copious amounts of water. Temperature drops deduced from extensional strains of the two sets of columns were used to gauge the viability of such a two-stage process. Absence of reliable data on andesite contraction coefficients was overcome by using a sliding scale to assess a large range of values. The estimates indicate that two-stage chilling is feasible. After flowing across relatively ice-poor terrain, the lava flow must have interacted with a valley glacier that provided water for further chilling the already formed primary columns and formation of the outer rind small columns. Given this evidence for lava/ice interaction, it is likely that prominent, thick flows elsewhere in the Mangawhero Formation may have been constrained to their ridge-top locations by ice conditions similar to those described by Lescinsky and Sisson [Lescinsky, D.T., Sisson, T.W., 1998. Ridge-forming, ice-bounded lava flows at Mount Rainier, Washington. Geology, 26, 351-354].

  1. Exceptional mobility of an advancing rhyolitic obsidian flow at Cordón Caulle volcano in Chile.

    PubMed

    Tuffen, Hugh; James, Mike R; Castro, Jonathan M; Schipper, C Ian

    2013-01-01

    The emplacement mechanisms of rhyolitic lava flows are enigmatic and, despite high lava viscosities and low inferred effusion rates, can result in remarkably, laterally extensive (>30 km) flow fields. Here we present the first observations of an active, extensive rhyolitic lava flow field from the 2011-2012 eruption at Cordón Caulle, Chile. We combine high-resolution four-dimensional flow front models, created using automated photo reconstruction techniques, with sequential satellite imagery. Late-stage evolution greatly extended the compound lava flow field, with localized extrusion from stalled, ~35 m-thick flow margins creating >80 breakout lobes. In January 2013, flow front advance continued ~3.6 km from the vent, despite detectable lava supply ceasing 6-8 months earlier. This illustrates how efficient thermal insulation by the lava carapace promotes prolonged within-flow horizontal lava transport, boosting the extent of the flow. The unexpected similarities with compound basaltic lava flow fields point towards a unifying model of lava emplacement.

  2. Fred's Flow (Canada) and Murphy Well (Australia): thick komatiitic lava flows with contrasting compositions, emplacement mechanisms and water contents

    NASA Astrophysics Data System (ADS)

    Siégel, Coralie; Arndt, Nicholas; Barnes, Stephen; Henriot, Anne-Laure; Haenecour, Pierre; Debaille, Vinciane; Mattielli, Nadine

    2014-12-01

    Two Archaean komatiitic flows, Fred's Flow in Canada and the Murphy Well Flow in Australia, have similar thicknesses (120 and 160 m) but very different compositions and internal structures. Their contrasting differentiation profiles are keys to determine the cooling and crystallization mechanisms that operated during the eruption of Archaean ultramafic lavas. Fred's Flow is the type example of a thick komatiitic basalt flow. It is strongly differentiated and consists of a succession of layers with contrasting textures and compositions. The layering is readily explained by the accumulation of olivine and pyroxene in a lower cumulate layer and by evolution of the liquid composition during downward growth of spinifex-textured rocks within the upper crust. The magmas that erupted to form Fred's Flow had variable compositions, ranging from 12 to 20 wt% MgO, and phenocryst contents from 0 to 20 vol%. The flow was emplaced by two pulses. A first ~20-m-thick pulse was followed by another more voluminous but less magnesian pulse that inflated the flow to its present 120 m thickness. Following the second pulse, the flow crystallized in a closed system and differentiated into cumulates containing 30-38 wt% MgO and a residual gabbroic layer with only 6 wt% MgO. The Murphy Well Flow, in contrast, has a remarkably uniform composition throughout. It comprises a 20-m-thick upper layer of fine-grained dendritic olivine and 2-5 vol% amygdales, a 110-120 m intermediate layer of olivine porphyry and a 20-30 m basal layer of olivine orthocumulate. Throughout the flow, MgO contents vary little, from only 30 to 33 wt%, except for the slightly more magnesian basal layer (38-40 wt%). The uniform composition of the flow and dendritic olivine habits in the upper 20 m point to rapid cooling of a highly magnesian liquid with a composition like that of the bulk of the flow. Under equilibrium conditions, this liquid should have crystallized olivine with the composition Fo94.9, but the most

  3. King's Bowl Pit Crater, Lava Field and Eruptive Fissure, Idaho - A Multipurpose Volcanic Planetary Analog

    NASA Astrophysics Data System (ADS)

    Hughes, S. S.; Garry, B.; Kobs-Nawotniak, S. E.; Sears, D. W. G.; Borg, C.; Elphic, R. C.; Haberle, C. W.; Kobayashi, L.; Lim, D. S. S.; Sears, H.; Skok, J. R.; Heldmann, J. L.

    2014-12-01

    King's Bowl (KB) and its associated eruptive fissure and lava field on the eastern Snake River Plain, is being investigated by the NASA SSERVI FINESSE (Field Investigations to Enable Solar System Science and Exploration) team as a planetary analog to similar pits on the Moon, Mars and Vesta. The 2,220 ± 100 BP basaltic eruption in Craters of the Moon National Monument and Preserve represents early stages of low shield growth, which was aborted when magma supply was cut off. Compared to mature shields, KB is miniscule, with ~0.02 km3 of lava over ~3 km2, yet the ~6 km long series of fissures, cracks and pits are well-preserved for analog studies of volcanic processes. The termination of eruption was likely related to proximity of the 2,270 ± 50 BP eruption of the much larger Wapi lava field (~5.5 km3 over 325 km2 area) on the same rift. Our investigation extends early work by R. Greeley and colleagues, focusing on imagery, compositional variations, ejecta distribution, dGPS profiles and LiDAR scans of features related to: (1) fissure eruptions - spatter ramparts, cones, feeder dikes, extension cracks; (2) lava lake formation - surface morphology, squeeze-ups, slab pahoehoe lava mounds, lava drain-back, flow lobe overlaps; and (3) phreatic steam blasts - explosion pits, ejecta blankets of ash and blocks. Preliminary results indicate multiple fissure eruptions and growth of a basin-filled lava lake up to ~ 10 m thick with outflow sheet lava flows. Remnant mounds of original lake crust reveal an early high lava lake level, which subsided as much as 5 m as the molten interior drained back into the fissure system. Rapid loss of magma supply led to the collapse of fissure walls allowing groundwater influx that triggered multiple steam blasts along at least 500 m. Early blasts occurred while lake magma pressure was still high enough to produce squeeze-ups when penetrated by ejecta blocks. The King's Bowl pit crater exemplifies processes of a small, but highly energetic

  4. Improved understanding of magnetic signatures of basaltic lava flows and cones with implication for extraterrestrial exploration

    NASA Astrophysics Data System (ADS)

    Arlensiú Ordóñez Cencerrado, Amanda; Kilian, Rolf; Díaz-Michelena, Marina

    2017-04-01

    Large areas of Mars and other celestial bodies are covered with basaltic lava flows and their associated craters. Depending on the individual cooling history and related single versus multi-domain status of the magnetites, as well as the global magnetic field characteristic during crystallization, such rocks could be characterized by very distinct remanent and induced magnetic signatures. Thus, a characterization of analogue craters and lava flows on Earth, and the creation of a database of their distinct magnetic parameters is of key importance for the near future exploration of planetary surfaces like Mars and the Moon. For example, three potential landing sites of the ExoMars 2020 mission include such geological scenarios. Complete on ground measurements of their distinct magnetic properties would also allow information about the characteristics of the early Martian magnetic field. As case study in the former context we selected a small crater (56°07' S, 69°42' E), which represents an agglutinated spatter cone, and its surrounding lava flows within the Pali Aike Volcano Field in Patagonia. Although the chemical composition of the basalts formed along and outside of the crater is similar, distinct local cooling, outgassing and crystallization histories are likely to produced huge differences in the magnetic signatures. With the objective to achieve a better interpretation of future more extended on ground geophysical characterization on board planetary vehicles, we performed a profound magnetic characterization of the Pali Aike crater including: • magnetic surveys with scalar, vector and gradiometric measurements providing high-resolution vector magnetic maps of the crater, • paleomagnetic data obtained from drilled oriented samples along a transect across the crater. Further laboratory data including remanence, susceptibility, coercitivity which have been also drawn in Day plots to analyse single versus multi domain status of magnetites in the basaltic

  5. Geologic field-trip guide to Medicine Lake Volcano, northern California, including Lava Beds National Monument

    USGS Publications Warehouse

    Donnelly-Nolan, Julie M.; Grove, Timothy L.

    2017-08-17

    Medicine Lake volcano is among the very best places in the United States to see and walk on a variety of well-exposed young lava flows that range in composition from basalt to rhyolite. This field-trip guide to the volcano and to Lava Beds National Monument, which occupies part of the north flank, directs visitors to a wide range of lava flow compositions and volcanic phenomena, many of them well exposed and Holocene in age. The writing of the guide was prompted by a field trip to the California Cascades Arc organized in conjunction with the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) quadrennial meeting in Portland, Oregon, in August of 2017. This report is one of a group of three guides describing the three major volcanic centers of the southern Cascades Volcanic Arc. The guides describing the Mount Shasta and Lassen Volcanic Center parts of the trip share an introduction, written as an overview to the IAVCEI field trip. However, this guide to Medicine Lake volcano has descriptions of many more stops than are included in the 2017 field trip. The 23 stops described here feature a range of compositions and volcanic phenomena. Many other stops are possible and some have been previously described, but these 23 have been selected to highlight the variety of volcanic phenomena at this rear-arc center, the range of compositions, and for the practical reason that they are readily accessible. Open ground cracks, various vent features, tuffs, lava-tube caves, evidence for glaciation, and lava flows that contain inclusions and show visible evidence of compositional zonation are described and visited along the route.

  6. Ancient Lavas in Shenandoah National Park near Luray, Virginia

    USGS Publications Warehouse

    Reed, John Calvin

    1969-01-01

    In the Blue Ridge Province of northern Virginia, Maryland, and southern Pennsylvania, Lower Cambrian beds are underlain by a thick sequence of greenstone and interbedded sedimentary rocks known as the Catoctin Formation. An area near Luray, Va., was studied to determine the thickness of the formation, its relationship to overlying and underlying rocks, and the original nature of the lavas from which the Catoctin greenstone was derived. There the Catoctin Formation lies unconformably on granitic rocks. Its basal sedimentary layer ranges from a few inches to 150 feet in thickness and contains pebbles of underlying basement rocks. The erosion surface beneath the Catoctin is irregular, and in several places, hills as much as 1,000 feet high were buried beneath the Catoctin lavas. No important time break is indicated between the deposition of the Catoctin Formation and the overlying Cambrian sediments. The original Catoctin lavas were basaltic and were probably normal plateau basalts. Columnar joints, amygdules, sedimentary dikes, flow breccias low-dipping primary joints, and other primary structures are well preserved.

  7. Lava delta deformation as a proxy for submarine slope instability

    NASA Astrophysics Data System (ADS)

    Di Traglia, Federico; Nolesini, Teresa; Solari, Lorenzo; Ciampalini, Andrea; Frodella, William; Steri, Damiano; Allotta, Benedetto; Rindi, Andrea; Marini, Lorenzo; Monni, Niccolò; Galardi, Emanuele; Casagli, Nicola

    2018-04-01

    the 30 December 2002 landslide, which involved the lava delta and its surrounding areas. InSAR data provided the post-effusive deformation field after the 2007 and 2014 flank eruptions, whereas LEM results highlighted that the accumulation of lava flows on the prone-to-failure SdF submarine slope is the main cause of the detected lava delta deformation. Lava delta instability, measured also at Pico Island (Azores) and Kilauea volcano (Hawaii), is evidence of the broader spectrum of instability phenomena that take place in the coastal or submarine area of the flanks of the volcanoes. At Kilauea, past lava deltas have moved faster than the surrounding slope and the recorded movements relate only to the collapses of the deltas themselves, producing rapid mass wasting near the coasts. In contrast, at Stromboli and Pico, lava deltas move at the same velocity as the surrounding slope. In these cases, the displacement at lava deltas can be considered as a proxy for the deformation of submarine slides. There are very few studies dealing with lava delta deformation, thus, the analysis presented in this work will benefit the monitoring of submarine slopes in other prone-to-failure coastal or island volcanic systems which have the potential to generate tsunamis.

  8. Eruptive behavior of the Marum/Mbwelesu lava lake, Vanuatu and comparisons with lava lakes on Earth and Io

    NASA Astrophysics Data System (ADS)

    Radebaugh, Jani; Lopes, Rosaly M.; Howell, Robert R.; Lorenz, Ralph D.; Turtle, Elizabeth P.

    2016-08-01

    Observations from field remote sensing of the morphology, kinematics and temperature of the Marum/Mbwelesu lava lake in the Vanuatu archipelago in 2014 reveal a highly active, vigorously erupting lava lake. Active degassing and fountaining observed at the 50 m lava lake led to large areas of fully exposed lavas and rapid ( 5 m/s) movement of lava from the centers of upwelling outwards to the lake margins. These rapid lava speeds precluded the formation of thick crust; there was never more than 30% non-translucent crust. The lava lake was observed with several portable, handheld, low-cost, near-infrared imagers, all of which measured temperatures near 1000 °C and one as high as 1022 °C, consistent with basaltic temperatures. Fine-scale structure in the lava fountains and cooled crust was visible in the near infrared at 5 cm/pixel from 300 m above the lake surface. The temperature distribution across the lake surface is much broader than at more quiescent lava lakes, peaking 850 °C, and is attributed to the highly exposed nature of the rapidly circulating lake. This lava lake has many characteristics in common with other active lava lakes, such as Erta Ale in Ethiopia, being confined, persistent and high-temperature; however it was much more active than is typical for Erta Ale, which often has > 90% crust. Furthermore, it is a good analogue for the persistent, high-temperature lava lakes contained within volcanic depressions on Jupiter's moon Io, such as Pele, also believed from spacecraft and ground-based observations to exhibit similar behavior of gas emission, rapid overturn and fountaining.

  9. Palaeomagnetic intensities from 14C-dated lava flows on the Big Island, Hawaii: 0-21 kyr

    USGS Publications Warehouse

    Pressling, Nicola; Laj, Carlo; Kissel, Catherie; Champion, Duane E.; Gubbins, David

    2006-01-01

    Thellier–Thellier experiments were carried out on 216 lava samples collected by the USGS on the Big Island. 35 individual flows from the Kilauea, Mauna Loa and Hualalai volcanoes are represented and independent radiocarbon dating of the flows yields absolute ages ranging from 290 to 20,240 yrs old. The palaeomagnetic analysis was carried out at the Laboratoire des Sciences du Climat et de l'Environnement in Gif-sur-Yvette, France, in two custom built, large capacity furnaces that have been specifically designed to minimise oxidation. The temperature steps were adapted to accommodate the characteristic loss of magnetisation at low temperatures seen in the Curie balance results and the use of half-size samples allowed secondary experiments to be carried out where necessary. The strict PICRIT-03 selection criteria were rigorously applied to the data and a high success rate of 53% has been achieved on a sample level. The flow averaged results almost double the existing 14C-dated palaeointensity dataset for this time window and confirm a period of high intensity over the past 4 kyr preceded by a period in which the dipole moment was weaker. However, the values attained in this study are on average higher than previously published data; reliability of these values is discussed.

  10. Towards an avatar for deciphering the modes of three-phase interactions in lava lakes

    NASA Astrophysics Data System (ADS)

    Suckale, J.; Qin, Z.; Culha, C.; Lev, E.

    2016-12-01

    An avatar is the virtual representation of a character, system or idea. Here, we present progress towards building a numerical avatar for lava lakes that allows us to constrain the modes of multiphase interactions between crystals, gas, and magmatic fluid in the interior of lava lakes. We focus on lava lakes, because they expose the free surface of magma to direct observations. They hence offer a unique window into different regimes of the three-phase flow dynamics of crystals, gases, and melts in magmatic convection more generally. The multiphase interactions between crystals, gases and melt give rise to nonlinear and unstable behavior in magmatic systems and are hence key for understanding the behavior of the bulk magma, but are notoriously difficult to capture in numerical models. Our avatar approach solves the full set of governing equations entailing the momentum, mass, and energy balance for each of the three phases at the scale of individual crystals or bubble interfaces. It hence obviates the need for simplifying assumptions regarding the individual behavior of the three phases or their mutual coupling to achieve a minimally preconditioned virtual representation of a lava lake. To identify the multi-phase regime at depth, we compute the observational signatures of different multiphase regimes, both in terms of surface velocity and temperature distribution, and compare the computed synthetic data to observational surface data for lava lakes. We focus specifically on the lava lake dynamics at Mount Erebus, Antarctica, and Kīlauea, Hawai'i. These two lava lakes are particularly well observed, which presents a compelling opportunity for closely linking modeling and observations. The also exhibit notably different circulation patterns. We hypothesize that Erebus and Kīlauea highlight different mechanisms through which multiphase interactions alter magmatic convection and eruptive behavior in basaltic systems. We suggest that volumetric flow effects like bubble

  11. Geochemical discrimination of five pleistocene Lava-Dam outburst-flood deposits, western Grand Canyon, Arizona

    USGS Publications Warehouse

    Fenton, C.R.; Poreda, R.J.; Nash, B.P.; Webb, R.H.; Cerling, T.E.

    2004-01-01

    Pleistocene basaltic lava dams and outburst-flood deposits in the western Grand Canyon, Arizona, have been correlated by means of cosmogenic 3He (3Hec) ages and concentrations of SiO2, Na2O, K2O, and rare earth elements. These data indicate that basalt clasts and vitroclasts in a given outburst-flood deposit came from a common source, a lava dam. With these data, it is possible to distinguish individual dam-flood events and improve our understanding of the interrelations of volcanism and river processes. At least five lava dams on the Colorado River failed catastrophically between 100 and 525 ka; subsequent outburst floods emplaced basalt-rich deposits preserved on benches as high as 200 m above the current river and up to 53 km downstream of dam sites. Chemical data also distinguishes individual lava flows that were collectively mapped in the past as large long-lasting dam complexes. These chemical data, in combination with age constraints, increase our ability to correlate lava dams and outburst-flood deposits and increase our understanding of the longevity of lava dams. Bases of correlated lava dams and flood deposits approximate the elevation of the ancestral river during each flood event. Water surface profiles are reconstructed and can be used in future hydraulic models to estimate the magnitude of these large-scale floods.

  12. Paleointensity study of the historical andesitic lava flows: LTD-DHT Shaw and Thellier paleointensities from the Sakurajima 1914 and 1946 lavas in Japan

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Hoshi, H.

    2005-12-01

    Correct determination of absolute paleointensities is essential to investigate past geomagnetic field. There are two types of methods to obtain the paleointensities: the Thellier-type and Shaw-type methods. Many paleomagnetists have so far regarded the former method as reliable. However, there are increasing evidences that it is sometimes not robust for basaltic lavas resulting in systematic high paleointensities (e.g. Calvo et al., 2002; Yamamoto et al., 2003). Alternatively, the double heating technique of the Shaw method combined with low temperature demagnetization (LTD-DHT Shaw method; Tsunakawa et al., 1997; Yamamoto et al., 2003), a lately developed paleointensity technique in Japan, can yield reliable answers even from such basaltic samples (e.g. Yamamoto et al., 2003; Mochizuki et al., 2004; Oishi et al., 2005). In the Japanese archipelago, there are not only basaltic lavas but also andesitic lavas. They are important candidates of the absolute paleointensity determination in Japan. For a case study, we sampled oriented paleomagnetic cores from three sites of the Sakurajima 1914 (TS01 and TS02) and 1946 (SW01) lavas in Japan. Several rock magnetic experiments revealed that main magnetic carriers of the present samples are titanomagnetites with Curie temperatures of about 300-550 C, and that high temperature oxidation progresses in the order of SW01, TS01 and TS02. The LTD-DHT Shaw and Coe-Thellier experiments were conducted on 72 and 63 specimens, respectively. They gave 64 and 60 successful determinations. If the results are normalized by expected field intensities calculated from IGRF-9 (Macmillan et al., 2003) and grouped into LTD-DHT Shaw and Thellier datasets, their averages and standard deviations (1 sigma) resulted in 0.98+/-0.11 (LTD-DHT Shaw) and 1.13+/-0.13 (Thellier). Considering the standard deviations, we can say that both paleointensity methods recovered correct geomagnetic field. However, it is apparent that the LTD-DHT Shaw method has

  13. Stability of lava lakes

    NASA Astrophysics Data System (ADS)

    Witham, Fred; Llewellin, Edward W.

    2006-11-01

    A physical model of a generic lava lake system is developed. We derive the requisite conditions for the existence of an 'equilibrium lava lake' in which magmastatic pressure at the base of the conduit balances the pressure in the underlying magmatic reservoir. The stability of this lava lake system is tested by investigating the response of the system to perturbation. We develop a graphical method, based on the system's pressure-depth profile, to predict the subsequent behaviour of the system. Despite the simplicity of the modelled system, we find a broad behavioural spectrum. Initially, the rise of bubbles through the magma is ignored. In this case, both stable, long-lived lava lakes, and unstable lakes that are prone to sudden draining, are predicted. The stability of the system is shown to be controlled by lake-conduit geometry, the solubility and gas expansion laws and the magma's volatile content. We show that an unstable lake must collapse to a new, stable equilibrium. Subsequent recharge of the system by, for example, conduit overturn, would promote a return to the original equilibrium, giving rise to cyclic behaviour. Such a mechanism is consistent with lava lake behaviour during the 1983-1984 Pu'u 'O'o eruption of Kilauea. When the rise of bubbles through the magma is considered, our model predicts that stable lakes must drain over time. We, therefore, deduce that persistently degassing, stable lava lakes, such as those observed at Mt. Erebus, Antarctica, and Mauna Ulu, Kilauea, Hawaii, must have an effective conduit convection mechanism or an exogenous supply of bubbles from depth.

  14. The 2005 eruption of Sierra Negra volcano, Galápagos, Ecuador

    USGS Publications Warehouse

    Geist, Dennis J.; Harpp, Karen S.; Naumann, Terry R.; Poland, Michael P.; Chadwick, William W.; Hall, Minard; Rader, Erika

    2008-01-01

    Sierra Negra volcano began erupting on 22 October 2005, after a repose of 26 years. A plume of ash and steam more than 13 km high accompanied the initial phase of the eruption and was quickly followed by a ~2-km-long curtain of lava fountains. The eruptive fissure opened inside the north rim of the caldera, on the opposite side of the caldera from an active fault system that experienced an mb 4.6 earthquake and ~84 cm of uplift on 16 April 2005. The main products of the eruption were an `a`a flow that ponded in the caldera and clastigenic lavas that flowed down the north flank. The `a`a flow grew in an unusual way. Once it had established most of its aerial extent, the interior of the flow was fed via a perched lava pond, causing inflation of the `a`a. This pressurized fluid interior then fed pahoehoe breakouts along the margins of the flow, many of which were subsequently overridden by `a`a, as the crust slowly spread from the center of the pond and tumbled over the pahoehoe. The curtain of lava fountains coalesced with time, and by day 4, only one vent was erupting. The effusion rate slowed from day 7 until the eruption’s end two days later on 30 October. Although the caldera floor had inflated by ~5 m since 1992, and the rate of inflation had accelerated since 2003, there was no transient deformation in the hours or days before the eruption. During the 8 days of the eruption, GPS and InSAR data show that the caldera floor deflated ~5 m, and the volcano contracted horizontally ~6 m. The total eruptive volume is estimated as being ~150×106 m3. The opening-phase tephra is more evolved than the eruptive products that followed. The compositional variation of tephra and lava sampled over the course of the eruption is attributed to eruption from a zoned sill that lies 2.1 km beneath the caldera floor.

  15. What factors control superficial lava dome explosivity?

    PubMed

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J

    2015-09-30

    Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management.

  16. Kilauea's Ongoing Eruption: 25th Year Brings Major Changes

    NASA Astrophysics Data System (ADS)

    Orr, T. R.

    2007-12-01

    the July 21 eruption, initially fed `a`a and pahoehoe flows but, within a few days, developed into a system of perched lava ponds. By the end of July, the perched pond over the easternmost fissure evolved into an open channel feeding a series of `a`a flows heading downrift around the north side of the Kupaianaha shield. The lava supply from other fissure segments declined and stagnated within a few days of the lava channel's formation. As of September 4, 2007, `a`a flows have extended up to ~6 km from the fissure and have covered more than 600 hectares. Unless the eruption supply rate increases, `a`a flows fed by the open channel will likely travel no more than a few kilometers from the vent and pose no threat to those living downslope. If the eruptive style changes, however, to one characterized by tube-fed pahoehoe, then downslope communities could be directly impacted.

  17. High-Latitude Paleomagnetic and Ar-Ar Study of 0 - 6 MA Lavas from Eastern Iceland: Contribution to the Time-Averaged Field Initiative

    NASA Astrophysics Data System (ADS)

    Døssing, A.; Muxworthy, A. R.; Mac Niocaill, C.; Riishuus, M. S.

    2013-12-01

    Statistical analyses of paleomagnetic data from sequential lava flows allow us to study the geomagnetic field behavior on kyr to Myr timescales. Previous paleomagnetic studies have lacked high-latitude, high-quality measurements and resolution necessary to investigate the persistence of high-latitude geomagnetic field anomalies observed in the recent and historical field records, and replicated in some numerical geodynamo simulations. As part of the Time-Averaged Field Initiative (TAFI) project, the lava sequences found in Nordurdalur (by Fljótsdalur) and Jökuldalur in eastern Iceland provide an excellent opportunity to improve high-latitude data suitable for investigating the 0-5 Ma TAF and paleosecular variation. These adjacent valleys, separated by 40 km, are known to comprise a fairly continuous record of lava flows erupted from the Northern Rift Zone between 0.5 and 5-7 Ma. During a five weeks field campaign in summer 2013, we collected a total of ~1900 cores (10-16 cores/site; mean = ~13 cores/site) from ~140 separate lava flows (165 in total) along eight stratigraphic profiles in Nordurdalur and Jökuldalur. In addition, hand samples were collected from ~70 sites to deliver ~40 new 40Ar/39Ar radiometric age measurements. We present a preliminary composite magnetostratigraphic interpretation of the exposed volcanic pile in Nordurdalur and Jökuldalur. The new data will be compared and contrasted with previously published paleomagnetic and geochronological results. In addition, determinations of the anisotropy of the magnetic susceptibility of individual lava flows is sought to deliver fossil lava flow directions. The aim of the study is ultimately to present a high-quality study of paleomagnetic directions and intensities from Iceland spanning the past 6-7 Myr. The new Fjlotsdalur and Jökuldalur data will be combined with previously published paleomagnetic results.

  18. Paleomagnetism and dating of a thick lava pile in the Permian Bakaly formation of eastern Kazakhstan: Regularities and singularities of the paleomagnetic record in thick lava series

    NASA Astrophysics Data System (ADS)

    Bazhenov, Mikhail L.; Van der Voo, Rob; Menzo, Zachary; Dominguez, Ada R.; Meert, Joseph G.; Levashova, Natalia M.

    2016-04-01

    Paleomagnetic results on thick lava series are among the most important sources of information on the characteristics of ancient geomagnetic fields. Most paleo-secular variation data from lavas (PSVL) are of late Cenozoic age. There are far fewer results from lavas older than 5 Ma. The Central Asia Orogenic Belt that occupies several million square kilometers in Asia is probably the world's largest area of Paleozoic volcanism and is thus an attractive target for PSVL studies. We studied a ca. 1700 m thick lava pile in eastern Kazakhstan of Early Permian age. Magmatic zircons, successfully separated from an acid flow in this predominantly basaltic sequence, yielded an Early Permian age of 286.3 ± 3.5 Ma. Oriented samples were collected from 125 flows, resulting in 88 acceptable quality flow-means (n ⩾ 4 samples, radius of confidence circle α95 ⩽ 15°) of the high-temperature magnetization component. The uniformly reversed component is pre-tilting and arguably of a primary origin. The overall mean direction has a declination = 242.0° and an inclination = -56.2° (k = 71.5, α95 = 1.8°; N = 88 sites; pole at 44.1°N, 160.6°E, A95 = 2.2°). Our pole agrees well with the Early Permian reference data for Baltica, in accord with the radiometric age of the lava pile and geological views on evolution of the western part of the Central Asia Orogenic Belt. The new Early Permian result indicates a comparatively low level of secular variation especially when compared to PSVL data from intervals with frequent reversals. Still, the overall scatter of dispersion estimates that are used as proxies for SV magnitudes, elongation values and elongation orientations for PSVL data is high and cannot be fitted into any particular field model with fixed parameters. Both observed values and numerical simulations indicate that the main cause for the scatter of form parameters (elongation values and elongation orientations) is the too small size of collections. Dispersion estimates

  19. What factors control superficial lava dome explosivity?

    PubMed Central

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J.

    2015-01-01

    Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management. PMID:26420069

  20. Ambient Effects on Basalt and Rhyolite Lavas under Venusian, Subaerial, and Subaqueous Conditions

    NASA Technical Reports Server (NTRS)

    Bridges, Nathan T.

    1997-01-01

    Both subaerial and subaqueous environments have been used as analog settings for Venus volcanism. To assess the merits of this, the effects of ambient conditions on the physical properties of lava on Venus, the seafloor, and land on Earth are evaluated. Rhyolites on Venus and on the surface of Earth solidify before basalts do because of their lower eruption temperatures. Rhyolite crust is thinner than basalt crust at times less than about an hour, especially on Venus. At later times, rhyolite crust is thicker because of its lower latent heat relative to basalt. The high pressure on the seafloor and Venus inhibits the exsolution of volatiles in lavas. Vesicularity and bulk density are proportional, so that lavas of the same composition should be more dense on the seafloor and less dense on land. Because viscosity depends partly upon the fraction of unvesiculated water in a melt, basalts with the same initial volatile abundance will be least viscous on the seafloor and most viscous on land. Assuming the same preeruptive H2O contents, molten rhyolites on Venus will have viscosities approx. 10% that of rhyolites on land. Despite lower expected viscosities, under-water flows are more buoyant and should have heights like subaerial and Venusian lavas of the same composition and extrusive history. In cases where the influence of crust is insignificant, a volume of rhyolite will have a higher aspect ratio than the same volume of basalt, no matter what the environment. If flow rheology is dominated by the presence of strong crust, aspect ratios differ little among environments or between compositions. These analyses support a rhyolitic interpretation for the composition of Venusian festooned flows and a basaltic interpretation for the composition of Venusian steep-sided domes. Although ambient effects are significant, extrusion rate and eruption history must also be considered to explain analogous volcanic landforms on Earth and Venus.

  1. Vertical Structural Variation and Their Development of the Sanukayama Rhyolite Lava in Kozushima Island, Japan

    NASA Astrophysics Data System (ADS)

    Furukawa, K.; Uno, K.; Kanamaru, T.; Nakai, K.

    2017-12-01

    We revealed structural development of the Pleistocene Sanukayama rhyolite lava of Kozushima Island, Japan. The good exposure, with about 130 m thick, provides valuable opportunity to understand the vertical structural variation. This exposure corresponds to the upper half of the lava. The paleomagnetic results show that the lava emplaced in subaerial condition at least in the exposed part. The vertical lithofacies are divided into the pumiceous (25-40 m thick), obsidian (40-60 m), spherulitic (30-50 m) layers from top to base. The pumiceous layer is characterized by massive foliated pumice. The foliation dips are gradually changed from gentle (10-30°) in lower part to steep (around 90°) in upper part. This shows the balloon-like morphology. The massive pumiceous layer would be generated from late stage diapiric inflation of the lava (Fink and Manley, 1987). The obsidian layer is composed of massive and welded-brecciated parts. The ductile-deformed light-colored veins, with a few mm thick, are frequently developed. In the microscopic observation, the veins are composed of broken crystals and obsidian clasts indicating fracturing of the lava followed by ductile deformation such as the RFH process (Tuffen et al., 2003). In this layer, extensive vesiculation and microlite development must have been prevented by higher load pressure and faster cooling, respectively. Consequently, they resulted in formation of the obsidian. The spherulitic layer is characterized by development of the ductile-deformed flow banding. The microscopic observation shows that the bands are formed by the spherulite trail. Furthermore, the microlites are aligned within the spherulites. In the heat-retained inner part of the lava, microlites would be developed around the healed fractures. The microlites acted as nucleation site of spherulite. In transition layer between obsidian and spherulitic layers (<10 m thick), the fragments of spherulitic rhyolite are entrained within the obsidian layer

  2. American pika in a low-elevation lava landscape: expanding the known distribution of a temperature-sensitive species.

    PubMed

    Shinderman, Matt

    2015-09-01

    In 2010, the American pika (Ochotona princeps fenisex) was denied federal protection based on limited evidence of persistence in low-elevation environments. Studies in nonalpine areas have been limited to relatively few environments, and it is unclear whether patterns observed elsewhere (e.g., Bodie, CA) represent other nonalpine habitats. This study was designed to establish pika presence in a new location, determine distribution within the surveyed area, and evaluate influences of elevation, vegetation, lava complexity, and distance to habitat edge on pika site occupancy. In 2011 and 2012, we conducted surveys for American pika on four distinct subalpine lava flows of Newberry National Volcanic Monument, Oregon, USA. Field surveys were conducted at predetermined locations within lava flows via silent observation and active searching for pika sign. Site habitat characteristics were included as predictors of occupancy in multinomial regression models. Above and belowground temperatures were recorded at a subsample of pika detection sites. Pika were detected in 26% (2011) and 19% (2012) of survey plots. Seventy-four pika were detected outside survey plot boundaries. Lava complexity was the strongest predictor of pika occurrence, where pika were up to seven times more likely to occur in the most complicated lava formations. Pika were two times more likely to occur with increasing elevation, although they were found at all elevations in the study area. This study expands the known distribution of the species and provides additional evidence for persistence in nonalpine habitats. Results partially support the predictive occupancy model developed for pika at Craters of the Moon National Monument, another lava environment. Characteristics of the lava environment clearly influence pika site occupancy, but habitat variables reported as important in other studies were inconclusive here. Further work is needed to gain a better understanding of the species' current

  3. American pika in a low-elevation lava landscape: expanding the known distribution of a temperature-sensitive species

    PubMed Central

    Shinderman, Matt

    2015-01-01

    In 2010, the American pika (Ochotona princeps fenisex) was denied federal protection based on limited evidence of persistence in low-elevation environments. Studies in nonalpine areas have been limited to relatively few environments, and it is unclear whether patterns observed elsewhere (e.g., Bodie, CA) represent other nonalpine habitats. This study was designed to establish pika presence in a new location, determine distribution within the surveyed area, and evaluate influences of elevation, vegetation, lava complexity, and distance to habitat edge on pika site occupancy. In 2011 and 2012, we conducted surveys for American pika on four distinct subalpine lava flows of Newberry National Volcanic Monument, Oregon, USA. Field surveys were conducted at predetermined locations within lava flows via silent observation and active searching for pika sign. Site habitat characteristics were included as predictors of occupancy in multinomial regression models. Above and belowground temperatures were recorded at a subsample of pika detection sites. Pika were detected in 26% (2011) and 19% (2012) of survey plots. Seventy-four pika were detected outside survey plot boundaries. Lava complexity was the strongest predictor of pika occurrence, where pika were up to seven times more likely to occur in the most complicated lava formations. Pika were two times more likely to occur with increasing elevation, although they were found at all elevations in the study area. This study expands the known distribution of the species and provides additional evidence for persistence in nonalpine habitats. Results partially support the predictive occupancy model developed for pika at Craters of the Moon National Monument, another lava environment. Characteristics of the lava environment clearly influence pika site occupancy, but habitat variables reported as important in other studies were inconclusive here. Further work is needed to gain a better understanding of the species’ current

  4. New Evidence for the Low-Pressure Origin of Lava-Hyaloclastite Sequences in South Iceland

    NASA Astrophysics Data System (ADS)

    Banik, T.; Hoskuldsson, A.; Miller, C. F.; Furbish, D. J.; Wallace, P. J.

    2011-12-01

    hyaloclastite that was incorporated into a meltwater lake-draining jökulhlaup. Ensuing subaerial lava from the ongoing eruption flowed onto still-plastic hyaloclastite and sank to its base. Thermal modeling suggests that influx of heat from the underlying lava resulted in increased fluid pressure in the hyaloclastite matrix. Fracturing of the chilled rind that had formed atop the lava permitted injection of lava into the overlying hyaloclastite. Diffusion of pressure away from the injection site dragged the matrix apart, facilitating propagation of lava upward to form the apophyses.

  5. LAVA Applications to Open Rotors

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin C.; Housman, Jeff; Barad, Mike; Brehm, Christoph

    2015-01-01

    Outline: LAVA (Launch Ascent Vehicle Aerodynamics); Introduction; Acoustics Related Applications; LAVA Applications to Open Rotor; Structured Overset Grids; Cartesian Grid with Immersed Boundary; High Speed Case; High Speed Case with Plate Low Speed Case.

  6. Some observations aimed at improving the success rate of paleointensity experiments for lava flows (Invited)

    NASA Astrophysics Data System (ADS)

    Valet, J. M.; Herrero-Bervera, E.

    2009-12-01

    Emile Thellier did not believe to the possibility of obtaining reliable determinations of absolute paleointensity from lava flows and defended that only archeomagnetic material was suitable. Many protocols have been proposed over the past fifty years to defend that this assertion was not really justified. We have performed paleointensity studies on contemporaneous flows in Hawaii and in the Canaries. To those we have added determinations obtained from relatively recent flows at Santorini. The hawaiian flows that are dominated by pure magnetite with a narrow distribution of grain sizes provide by far the most accurate determinations of paleointensity. Such characteristics are simply derived from the spectrum of unbloking temperatures. Thus the evolution of the TRM upon thermal demagnetization appears to be a very important feature for successfull paleointensity experiments. The existence of a sharp decrease of the magnetization before reaching the unique Curie temperature of the rock is conclusively a very appropriate condition for obtaining suitable field determinations. Of course, these characteristics are only valid if the pTRM checks do not deviate from the original TRM. In this respect, we have noticed that deviations larger than 5% are frequently associated with significant deviations from the expected field intensity. The results from the Canary islands are also consistent with this observation despite the presence of a larger amount of titanium. Overall, these conclusions make sense when faced to Thellier’s statement regarding the success of archeomagnetic material. Indeed, the features that have been outlined above are typical of the characteristics found in archeological materials which have been largely oxidized during cooling and are dominated by a single magnetic mineral with a tiny distribution of grain sizes.

  7. Effusive silicic volcanism in the Central Andes: The Chao dacite and other young lavas of the Altiplano-Puna Volcanic Complex

    NASA Technical Reports Server (NTRS)

    De Silva, S. L.; Self, S.; Francis, P. W.; Drake, R. E.; Ramirez, Carlos R.

    1994-01-01

    The largest known Quaternary silicic lava body in the world is Cerro Chao in north Chile, a 14-km-long coulee with a volume of at least 26 cu km. It is the largest of a group of several closely similar dacitic lavas erupted during a recent (less than 100,000 year old) magmatic episode in the Altiplano-Puna Volcanic Complex (APVC; 21-24 deg S) of the Centra; Andean Volcanic Zone. The eruption of Chao proceeded in three phases. Phase 1 was explosive and produced approximately 1 cu km of coarse, nonwelded dacitic pumice deposits and later block and ash flows that form an apron in front of the main lava body. Phase 2 was dominantly effusive and erupted approximately 22.5 cu km of magma in the form of a composite coulee covering approximately 53 sq km with a 400-m-high flow front and a small cone of poorly expanded pumice around the vent. The lava is homogeneous with rare flow banding and vesicular tops and selvages. Ogives (flow ridges) reaching heights of 30 m form prominent features on its surface. Phase 3 produced a 6-km-long, 3-km-wide flow that emanated from a collapsed dome. Ogives are subdued, and the lava is glassier than that produced in previous phases. All the Chao products are crystal-rich high-K dacites and rhyodacites with phenocrysts of plagioclase, quartz, hornblende, biotite, sphene, rare snidine, and oxides. Phenocryst contents reach 40-60 vol % (vesicle free) in the main phase 2 lavas but are lower in the phase 1 (20-25%) and phase 3 (approximately 40%) lavas. Ovoid andesitic inclusions with vesicular interiors and chilled margins up to 10 cm are found in the later stages of phase 2 and compose up to 5% of the phase 3 lava. There is little evidence for preeruptive zonation of the magma body in composition, temperature (approximately 840 C), fO2 (19(exp -11), or water content, so we propose that eruption of the Chao complex was driven by intrusion of fresh, hot andesitic magma into a crystallizing and largely homogeneous body of dacitic magma

  8. Lava tubes - Potential shelters for habitats

    NASA Astrophysics Data System (ADS)

    Horz, F.

    Natural caverns occur on the moon in the form of 'lava tubes', which are the drained conduits of underground lava rivers. The inside dimensions of these tubes measure tens to hundreds of meters, and their roofs are expected to be thicker than 10 meters. Consequently, lava tube interiors offer an environment that is naturally protected from the hazards of radiation and meteorite impact. Further, constant, relatively benign temperatures of -20 C prevail. These are extremely favorable environmental conditions for human activities and industrial operations. Significant operational, technological, and economical benefits might result if a lunar base were constructed inside a lava tube.

  9. Alkalic Lavas From Nintoku Seamount, Emperor Seamount Chain: Geochemistry of Hawaiian Post-Shield Magmatism at 55 Ma

    NASA Astrophysics Data System (ADS)

    Shafer, J. T.; Gudding, J. A.; Neal, C. R.; Regelous, M.

    2002-12-01

    Ocean Drilling Project (ODP) Leg 197, Site 1205 penetrated 283 m into the volcanic basement of Nintoku Seamount, which is located roughly half-way along the Emperor Seamount Chain and has been dated at approximately 55-56 Ma by 40Ar-39Ar (R. Duncan, pers. comm., 2002). 25 subaerially-erupted lava flows, together with interflow sediments and soil horizons, were recovered. We report major and trace element compositions of 33 rock samples spanning the entire lava sequence and hawaiite clasts from a conglomerate immediately overlying the igneous basement. The volcanic rocks at Site 1205 are dominantly alkalic to intermediate basalts with between 5 and 11% MgO, with the degree of alkalinity generally increasing up-section, and the eruption rate (inferred from the thickness and abundance of interflow soils) appears to have decreased with time. Two flows in the lower half of the hole are tholeiitic and divide the section into two different alkalic basalt series. One of these flows contains accumulated olivine crystals and has a picritic composition. The upper alkalic series generally becomes enriched in the highly incompatible elements (ITEs) up-section from the tholeiitic units and is overlain by a conglomerate that contains cobbles of hawaiite that are highly enriched in ITEs. Normalized patterns are subparallel to those of the upper series of alkalic basalts, suggesting the hawaiites may be related by fractional crystallization. The lower alkalic series contains basalts that are among the most ITE enriched of the recovered basement sequence, but does not show the same variations as the upper series. The petrology of the Site 1205 lavas is very similar to those of lavas erupted during the later evolutionary stages of young volcanoes from the Hawaiian Islands and were probably all erupted during the post-shield alkalic stage; at Nintoku the post-shield alkalic cap appears to be relatively thick (at least 300m) compared to many other Hawaiian volcanoes, but is similar to

  10. Periodic behavior in lava dome eruptions

    NASA Astrophysics Data System (ADS)

    Barmin, A.; Melnik, O.; Sparks, R. S. J.

    2002-05-01

    Lava dome eruptions commonly display fairly regular alternations between periods of high activity and periods of low or no activity. The time scale for these alternations is typically months to several years. Here we develop a generic model of magma discharge through a conduit from an open-system magma chamber with continuous replenishment. The model takes account of the principal controls on flow, namely the replenishment rate, magma chamber size, elastic deformation of the chamber walls, conduit resistance, and variations of magma viscosity, which are controlled by degassing during ascent and kinetics of crystallization. The analysis indicates a rich diversity of behavior with periodic patterns similar to those observed. Magma chamber size can be estimated from the period with longer periods implying larger chambers. Many features observed in volcanic eruptions such as alternations between periodic behaviors and continuous discharge, sharp changes in discharge rate, and transitions from effusive to catastrophic explosive eruption can be understood in terms of the non-linear dynamics of conduit flows from open-system magma chambers. The dynamics of lava dome growth at Mount St. Helens (1980-1987) and Santiaguito (1922-2000) was analyzed with the help of the model. The best-fit models give magma chamber volumes of ∼0.6 km3 for Mount St. Helens and ∼65 km3 for Santiaguito. The larger magma chamber volume is the major factor in explaining why Santiaguito is a long-lived eruption with a longer periodicity of pulsations in comparison with Mount St. Helens.

  11. The degassing and crystallisation behaviour of basaltic lavas

    NASA Astrophysics Data System (ADS)

    Applegarth, L. J.; Tuffen, H.; Pinkerton, H.; James, M. R.

    2010-12-01

    Degassing is a fundamental volcanic process that can play a major role in controlling eruptive styles. Volatile loss during magma ascent and decompression increases the liquidus temperature of the residual melt, resulting in undercooling that can trigger crystallisation (1,2). Late-stage crystallisation and vesiculation are significant factors in controlling the eruptive behaviour of volcanoes of intermediate composition (2), but their effects on basaltic volcanic activity have yet to be fully investigated. We present the results of experiments designed to measure the degassing and crystallisation behaviour of volcanic rocks at temperatures up to 1250°C, using thermo-gravimetric analysis coupled with differential scanning calorimetry and mass spectrometry (TGA-DSC-MS). During TGA-DSC-MS analysis, volatiles released from a sample under a controlled heating programme are identified in a mass spectrometer whilst changes to the sample weight and heat flow are simultaneously recorded. By subjecting samples of basaltic lava and bombs to two heating cycles, we have shown that the onset of degassing (mass loss) is systematically followed by crystallisation (exothermic events) on the first heating cycle. During the second cycle, when the sample has been fully degassed, no mass loss or crystallisation are recorded. Our results also highlight complexities in the processes; in some cases up to four pulses of degassing and crystallisation have been identified during a single heating cycle. Our results allow us to measure the total volatile content of samples, the onset temperatures of degassing and crystallisation and the time lag between the two processes, and the enthalpy, hence percentage, of crystallisation taking place. These results have important implications for our understanding of basaltic volcanic eruptions. During effusive basaltic eruptions, lava can travel many kilometres, threatening property and infrastructure. The final areal flow extent is partly dependent on

  12. Geophysical sensing experiments on Kilauea Iki lava lake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermance, J.F.; Forsyth, D.W.; Colp, J.L.

    1979-12-01

    The Hawaiian lava lake in the Kilauea Iki pit crater, resulting from the 1959 summit eruption of Kilauea volcano, has served as a natural laboratory for the continuing study of the petrology, rheology, and thermal history of ponded molten basalt flows in the field environment. During 1975 and 1976, a series of electromagnetic and seismic experiments were coordinated in an attempt to define the in-situ geophysical properties and the configuration of the molten lava core as closely as possible. Drilling and geophysical experiments in 1976 suggested that the solidified crust of the lava lake had a cool, resistive surface layer,more » undersaturated with water to a depth of 5 meters. A warm, wet layer containing appreciable water and/or steam was essentially isothermal (100/sup 0/C) to 33 meters. From 33 to 45 meters the temperature climbed rapidly (from 100/sup 0/ to 1070/sup 0/C) until a thin plexus of molten sills was encountered, interbedded with solid layers. Below this (50 meters) was apparently a layer having the highest temperature, lowest viscosity, and lowest density of olivine phenocrysts. At 70 meters, a transition zone to a crystalline mush was indicated, and finally (between 80 and 95 meters), solid basalt extended down to the preflow surface at a depth of 115 to 120 meters.« less

  13. Disclosing the temperature of columnar jointing in lavas.

    PubMed

    Lamur, Anthony; Lavallée, Yan; Iddon, Fiona E; Hornby, Adrian J; Kendrick, Jackie E; von Aulock, Felix W; Wadsworth, Fabian B

    2018-04-12

    Columnar joints form by cracking during cooling-induced contraction of lava, allowing hydrothermal fluid circulation. A lack of direct observations of their formation has led to ambiguity about the temperature window of jointing and its impact on fluid flow. Here we develop a novel thermo-mechanical experiment to disclose the temperature of columnar jointing in lavas. Using basalts from Eyjafjallajökull volcano (Iceland) we show that contraction during cooling induces stress build-up below the solidus temperature (980 °C), resulting in localised macroscopic failure between 890 and 840 °C. This temperature window for incipient columnar jointing is supported by modelling informed by mechanical testing and thermal expansivity measurements. We demonstrate that columnar jointing takes place well within the solid state of volcanic rocks, and is followed by a nonlinear increase in system permeability of <9 orders of magnitude during cooling. Columnar jointing may promote advective cooling in magmatic-hydrothermal environments and fluid loss during geothermal drilling and thermal stimulation.

  14. Feeder systems of acidic lava flows from the Paraná-Etendeka Igneous Province in southern Brazil and their implications for eruption style

    NASA Astrophysics Data System (ADS)

    de Lima, Evandro Fernandes; Waichel, Breno Leitão; Rossetti, Lucas De Magalhães May; Sommer, Carlos Augusto; Simões, Matheus Silva

    2018-01-01

    In the Rio Grande do Sul State, southern Brazil, the volcanic sequence of the Paraná-Etendeka Igneous Province consists of pahoehoe and rubbly pahoehoe lava flows with basaltic and basaltic andesitic composition respectively, overlaid by acidic volcanic rocks. The acidic volcanic rocks of the Paraná-Etendeka Igneous Province exhibit textures and structures that can be related to effusive and/or explosive eruptions generating predominantly rheoignimbrites. The huge lava volume related to the emplacement of large igneous provinces implicates on efficient feeder systems that are more commonly observed in continental environments. In the Paraná-Etendeka Igneous Province, feeders of basaltic rocks are exposed in several dyke swarms (Ponta Grossa NW trending, Florianópolis/Skeleton Coast (NW Namibia) N-S trending, Serra do Mar NE trending and Henties Bay/Outjo NE trending). In contrast, the only feeder system proposed to the acidic rocks of the Paraná-Etendeka Igneous Province is the Messum complex in Namibia (Milner et al. 1995). In the study area, the opening of three quarries for the extraction of dimension stones has exposed impressive structures/textures that show the effusive emplacement and the ductile to fragile-ductile magma transition along the acidic feeder dykes. Besides that, magma mixing/mingling processes between two acidic magmas are observed along the dykes. Here we describe new occurrences of acidic feeder dykes, correlate the dykes with acidic flows and discuss their importance to understand the emplacement of the Palmas type acid units in southern Brazil.

  15. Lava flows and cinder cones at Barren Island volcano, India (2005-2017): a spatio-temporal analysis using satellite images

    NASA Astrophysics Data System (ADS)

    Martha, Tapas R.; Roy, Priyom; Vinod Kumar, K.

    2018-02-01

    Barren Island volcano erupted during January-February 2017. Located near the Andaman trench and over a subduction zone, it is the only active volcano in India. It comprises a prominent caldera within which there is a polygenetic intra-caldera cinder cone system, with a record of eruptive events which date back to eighteenth century (1787-1832). Major eruptions occurred in 1991, 1994-1995, 2005 and, since 2008, the volcano has been showing near continuous activity with periodic eruptions. We used coarse spatial resolution "fire" products (Band I4) from Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite to detect days of eruption during the January-February 2017 period. Moderate spatial resolution (23.5 m) short-wavelength infrared (SWIR) data of Resourcesat-2 Linear Imaging Self Scanning Sensor-III available for specific days during this period were used to verify signatures of volcanic eruption. Thermal infrared band data from the Landsat series over the 2005-2017 periods were used to estimate the brightness temperature and location of the active vent within the polygenetic cinder cone field. High-spatial resolution images (1-5.8 m) in the visible bands (Resourcesat-2 LISS-IV, Cartosat-1 and 2) were used to delineate the changes in overall morphology of the volcano and to identify an inner crater ring fault, new paths of lava flow and the formation of a new cinder cone on the old crater. These multi-temporal data sets show significant changes in the paths of lava flows from 2005 to 2017. The observations also document periodic shifts in the location of effusive vents. Morphogenetic changes in recent eruptive phases of the Barren Island volcano were successfully delineated using a combination of multi-temporal and multi-resolution satellite images in visible, SWIR and thermal infrared regions of the electromagnetic spectrum.

  16. Time Average Field and Secular Variations of Pleistocene to Recent Lava Flows From the Ruiz-Tolima Volcanic Complex (Colombia)

    NASA Astrophysics Data System (ADS)

    Mejia, V.; Sánchez-Duque, A.; Opdyke, N. D.; Huang, K.; Rosales, A.

    2009-05-01

    Thirty three Pleistocene to recent lava flows from the Ruiz-Tolima Volcanic Complex (Colombian Andes) have been sampled for time average field (TAF) and paleosecular variation studies. A total of 10 cores were drilled per flow (site) and stepwise AF demagnetization has been carried out. After principal component analysis and mean-site direction calculations, 29 sites (25 and 4 with normal and reverse polarity, respectively), with α95 < 5.5° were selected for further calculations. The overall mean direction among the sites (D = 1.8°, I = 6.3°, α95 = 5.6°) closely fits (at the 95% confidence level) the expected paleomagnetic direction (at the area of study) of a geomagnetic field composed primarily by a geocentric axial dipole with 5% axial quadrupole component (I = 5.72°), but also coincides with a simple GAD model. VGP scatter (13°) is similar to that expected from Model G (12.8°).

  17. Quantification of L-band InSAR coherence over volcanic areas using LiDAR and in situ measurements

    NASA Astrophysics Data System (ADS)

    Arab-Sedze, Melanie; Heggy, Essam; Bretard, Frederic; Berveiller, Daniel; Jacquemoud, Stephane

    2014-07-01

    Interferometric Synthetic Aperture Radar (InSAR) is a powerful tool to monitor large-scale ground deformation at active volcanoes. However, vegetation and pyroclastic deposits degrade the radar coherence and therefore the measurement of 3-D surface displacements. In this article, we explore the complementarity between ALOS - PALSAR coherence images, airborne LiDAR data and in situ measurements acquired over the Piton de La Fournaise volcano (Reunion Island, France) to determine the sources of errors that may affect repeat-pass InSAR measure- ments. We investigate three types of surfaces: terrains covered with vegetation, lava flows (a'a, pahoehoe or slabby pahoehoe lava flows) and pyroclastic deposits (lapilli). To explain the loss of coherence observed over the Dolomieu crater between 2008 and 2009, we first use laser altimetry data to map topographic variations. The LiDAR intensity, which depends on surface reflectance, also provides ancillary information about the potential sources of coherence loss. In addition, surface roughness and rock dielectric properties of each terrain have been determined in situ to better understand how electromagnetic waves interact with such media: rough and porous surfaces, such as the a'a lava flows, produce a higher coherence loss than smoother surfaces, such as the pahoehoe lava flows. Variations in dielectric properties suggest a higher penetration depth in pyroclasts than in lava flows at L-band frequency. Decorrelation over the lapilli is hence mainly caused by volumetric effects. Finally, a map of LAI (Leaf Area Index) produced using SPOT 5 imagery allows us to quantify the effect of vegeta- tion density: radar coherence is negatively correlated with LAI and is unreliable for values higher than 7.5.

  18. The initial cooling of pahoehoe flow lobes

    USGS Publications Warehouse

    Keszthelyi, L.; Denlinger, R.

    1996-01-01

    In this paper we describe a new thermal model for the initial cooling of pahoehoe lava flows. The accurate modeling of this initial cooling is important for understanding the formation of the distinctive surface textures on pahoehoe lava flows as well as being the first step in modeling such key pahoehoe emplacement processes as lava flow inflation and lava tube formation. This model is constructed from the physical phenomena observed to control the initial cooling of pahoehoe flows and is not an empirical fit to field data. We find that the only significant processes are (a) heat loss by thermal radiation, (b) heat loss by atmospheric convection, (c) heat transport within the flow by conduction with temperature and porosity-dependent thermal properties, and (d) the release of latent heat during crystallization. The numerical model is better able to reproduce field measurements made in Hawai'i between 1989 and 1993 than other published thermal models. By adjusting one parameter at a time, the effect of each of the input parameters on the cooling rate was determined. We show that: (a) the surfaces of porous flows cool more quickly than the surfaces of dense flows, (b) the surface cooling is very sensitive to the efficiency of atmospheric convective cooling, and (c) changes in the glass forming tendency of the lava may have observable petrographic and thermal signatures. These model results provide a quantitative explanation for the recently observed relationship between the surface cooling rate of pahoehoe lobes and the porosity of those lobes (Jones 1992, 1993). The predicted sensitivity of cooling to atmospheric convection suggests a simple field experiment for verification, and the model provides a tool to begin studies of the dynamic crystallization of real lavas. Future versions of the model can also be made applicable to extraterrestrial, submarine, silicic, and pyroclastic flows.

  19. Volcanology and eruptive styles of Barren Island: an active mafic stratovolcano in the Andaman Sea, NE Indian Ocean

    NASA Astrophysics Data System (ADS)

    Sheth, Hetu C.; Ray, Jyotiranjan S.; Bhutani, Rajneesh; Kumar, Alok; Smitha, R. S.

    2009-11-01

    Barren Island (India) is a relatively little studied, little known active volcano in the Andaman Sea, and the northernmost active volcano of the great Indonesian arc. The volcano is built of prehistoric (possibly late Pleistocene) lava flows (dominantly basalt and basaltic andesite, with minor andesite) intercalated with volcaniclastic deposits (tuff breccias, and ash beds deposited by pyroclastic falls and surges), which are exposed along a roughly circular caldera wall. There are indications of a complete phreatomagmatic tephra ring around the exposed base of the volcano. A polygenetic cinder cone has existed at the centre of the caldera and produced basalt-basaltic andesite aa and blocky aa lava flows, as well as tephra, during historic eruptions (1787-1832) and three recent eruptions (1991, 1994-95, 2005-06). The recent aa flows include a toothpaste aa flow, with tilted and overturned crustal slabs carried atop an aa core, as well as locally developed tumuli-like elliptical uplifts having corrugated crusts. Based on various evidence we infer that it belongs to either the 1991 or the 1994-95 eruptions. The volcano has recently (2008) begun yet another eruption, so far only of tephra. We make significantly different interpretations of several features of the volcano than previous workers. This study of the volcanology and eruptive styles of the Barren Island volcano lays the ground for detailed geochemical-isotopic and petrogenetic work, and provides clues to what the volcano can be expected to do in the future.

  20. A Volcano of Mud or Lava?

    NASA Image and Video Library

    2018-06-11

    This image from NASA's Mars Reconnaissance Orbiter (MRO) shows a hill with a central crater. Such features have been interpreted as both mud volcanoes (really a sedimentary structure) and as actual volcanoes (the erupting lava kind). They occur on the floor of Valles Marineris below a closed topographic contour that could have held a lake, and the compaction of wet sediments may have created mud volcanoes. The fracture pattern of the bright flow unit surrounding the hill resembles mud cracks. However, there have also been observations from the CRISM instrument interpreted as high-temperature minerals, suggesting actual volcanism, although not necessarily at this location. Fine layers in the hill are consistent with either volcanism or mud flows. Either way, this activity is relatively recent in geologic time and may mark habitable subsurface environments. https://photojournal.jpl.nasa.gov/catalog/PIA22514