Sample records for aa-genome oryza species

  1. Complete chloroplast and ribosomal sequences for 30 accessions elucidate evolution of Oryza AA genome species

    PubMed Central

    Kim, Kyunghee; Lee, Sang-Choon; Lee, Junki; Yu, Yeisoo; Yang, Kiwoung; Choi, Beom-Soon; Koh, Hee-Jong; Waminal, Nomar Espinosa; Choi, Hong-Il; Kim, Nam-Hoon; Jang, Woojong; Park, Hyun-Seung; Lee, Jonghoon; Lee, Hyun Oh; Joh, Ho Jun; Lee, Hyeon Ju; Park, Jee Young; Perumal, Sampath; Jayakodi, Murukarthick; Lee, Yun Sun; Kim, Backki; Copetti, Dario; Kim, Soonok; Kim, Sunggil; Lim, Ki-Byung; Kim, Young-Dong; Lee, Jungho; Cho, Kwang-Su; Park, Beom-Seok; Wing, Rod A.; Yang, Tae-Jin

    2015-01-01

    Cytoplasmic chloroplast (cp) genomes and nuclear ribosomal DNA (nR) are the primary sequences used to understand plant diversity and evolution. We introduce a high-throughput method to simultaneously obtain complete cp and nR sequences using Illumina platform whole-genome sequence. We applied the method to 30 rice specimens belonging to nine Oryza species. Concurrent phylogenomic analysis using cp and nR of several of specimens of the same Oryza AA genome species provides insight into the evolution and domestication of cultivated rice, clarifying three ambiguous but important issues in the evolution of wild Oryza species. First, cp-based trees clearly classify each lineage but can be biased by inter-subspecies cross-hybridization events during speciation. Second, O. glumaepatula, a South American wild rice, includes two cytoplasm types, one of which is derived from a recent interspecies hybridization with O. longistminata. Third, the Australian O. rufipogan-type rice is a perennial form of O. meridionalis. PMID:26506948

  2. Rapid diversification of five Oryza AA genomes associated with rice adaptation.

    PubMed

    Zhang, Qun-Jie; Zhu, Ting; Xia, En-Hua; Shi, Chao; Liu, Yun-Long; Zhang, Yun; Liu, Yuan; Jiang, Wen-Kai; Zhao, You-Jie; Mao, Shu-Yan; Zhang, Li-Ping; Huang, Hui; Jiao, Jun-Ying; Xu, Ping-Zhen; Yao, Qiu-Yang; Zeng, Fan-Chun; Yang, Li-Li; Gao, Ju; Tao, Da-Yun; Wang, Yue-Ju; Bennetzen, Jeffrey L; Gao, Li-Zhi

    2014-11-18

    Comparative genomic analyses among closely related species can greatly enhance our understanding of plant gene and genome evolution. We report de novo-assembled AA-genome sequences for Oryza nivara, Oryza glaberrima, Oryza barthii, Oryza glumaepatula, and Oryza meridionalis. Our analyses reveal massive levels of genomic structural variation, including segmental duplication and rapid gene family turnover, with particularly high instability in defense-related genes. We show, on a genomic scale, how lineage-specific expansion or contraction of gene families has led to their morphological and reproductive diversification, thus enlightening the evolutionary process of speciation and adaptation. Despite strong purifying selective pressures on most Oryza genes, we documented a large number of positively selected genes, especially those genes involved in flower development, reproduction, and resistance-related processes. These diversifying genes are expected to have played key roles in adaptations to their ecological niches in Asia, South America, Africa and Australia. Extensive variation in noncoding RNA gene numbers, function enrichment, and rates of sequence divergence might also help account for the different genetic adaptations of these rice species. Collectively, these resources provide new opportunities for evolutionary genomics, numerous insights into recent speciation, a valuable database of functional variation for crop improvement, and tools for efficient conservation of wild rice germplasm.

  3. Rapid diversification of five Oryza AA genomes associated with rice adaptation

    PubMed Central

    Zhang, Qun-Jie; Zhu, Ting; Xia, En-Hua; Shi, Chao; Liu, Yun-Long; Zhang, Yun; Liu, Yuan; Jiang, Wen-Kai; Zhao, You-Jie; Mao, Shu-Yan; Zhang, Li-Ping; Huang, Hui; Jiao, Jun-Ying; Xu, Ping-Zhen; Yao, Qiu-Yang; Zeng, Fan-Chun; Yang, Li-Li; Gao, Ju; Tao, Da-Yun; Wang, Yue-Ju; Bennetzen, Jeffrey L.; Gao, Li-Zhi

    2014-01-01

    Comparative genomic analyses among closely related species can greatly enhance our understanding of plant gene and genome evolution. We report de novo-assembled AA-genome sequences for Oryza nivara, Oryza glaberrima, Oryza barthii, Oryza glumaepatula, and Oryza meridionalis. Our analyses reveal massive levels of genomic structural variation, including segmental duplication and rapid gene family turnover, with particularly high instability in defense-related genes. We show, on a genomic scale, how lineage-specific expansion or contraction of gene families has led to their morphological and reproductive diversification, thus enlightening the evolutionary process of speciation and adaptation. Despite strong purifying selective pressures on most Oryza genes, we documented a large number of positively selected genes, especially those genes involved in flower development, reproduction, and resistance-related processes. These diversifying genes are expected to have played key roles in adaptations to their ecological niches in Asia, South America, Africa and Australia. Extensive variation in noncoding RNA gene numbers, function enrichment, and rates of sequence divergence might also help account for the different genetic adaptations of these rice species. Collectively, these resources provide new opportunities for evolutionary genomics, numerous insights into recent speciation, a valuable database of functional variation for crop improvement, and tools for efficient conservation of wild rice germplasm. PMID:25368197

  4. OryzaGenome: Genome Diversity Database of Wild Oryza Species.

    PubMed

    Ohyanagi, Hajime; Ebata, Toshinobu; Huang, Xuehui; Gong, Hao; Fujita, Masahiro; Mochizuki, Takako; Toyoda, Atsushi; Fujiyama, Asao; Kaminuma, Eli; Nakamura, Yasukazu; Feng, Qi; Wang, Zi-Xuan; Han, Bin; Kurata, Nori

    2016-01-01

    The species in the genus Oryza, encompassing nine genome types and 23 species, are a rich genetic resource and may have applications in deeper genomic analyses aiming to understand the evolution of plant genomes. With the advancement of next-generation sequencing (NGS) technology, a flood of Oryza species reference genomes and genomic variation information has become available in recent years. This genomic information, combined with the comprehensive phenotypic information that we are accumulating in our Oryzabase, can serve as an excellent genotype-phenotype association resource for analyzing rice functional and structural evolution, and the associated diversity of the Oryza genus. Here we integrate our previous and future phenotypic/habitat information and newly determined genotype information into a united repository, named OryzaGenome, providing the variant information with hyperlinks to Oryzabase. The current version of OryzaGenome includes genotype information of 446 O. rufipogon accessions derived by imputation and of 17 accessions derived by imputation-free deep sequencing. Two variant viewers are implemented: SNP Viewer as a conventional genome browser interface and Variant Table as a text-based browser for precise inspection of each variant one by one. Portable VCF (variant call format) file or tab-delimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/scaffolds/contigs and genome-wide variation information for almost all of the closely and distantly related wild Oryza species from the NIG Wild Rice Collection will be available in future releases. All of the resources can be accessed through http://viewer.shigen.info/oryzagenome/. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  5. Rapid and Recent Evolution of LTR Retrotransposons Drives Rice Genome Evolution During the Speciation of AA-Genome Oryza Species

    PubMed Central

    Zhang, Qun-Jie; Gao, Li-Zhi

    2017-01-01

    The dynamics of long terminal repeat (LTR) retrotransposons and their contribution to genome evolution during plant speciation have remained largely unanswered. Here, we perform a genome-wide comparison of all eight Oryza AA-genome species, and identify 3911 intact LTR retrotransposons classified into 790 families. The top 44 most abundant LTR retrotransposon families show patterns of rapid and distinct diversification since the species split over the last ∼4.8 MY (million years). Phylogenetic and read depth analyses of 11 representative retrotransposon families further provide a comprehensive evolutionary landscape of these changes. Compared with Ty1-copia, independent bursts of Ty3-gypsy retrotransposon expansions have occurred with the three largest showing signatures of lineage-specific evolution. The estimated insertion times of 2213 complete retrotransposons from the top 23 most abundant families reveal divergent life histories marked by speedy accumulation, decline, and extinction that differed radically between species. We hypothesize that this rapid evolution of LTR retrotransposons not only divergently shaped the architecture of rice genomes but also contributed to the process of speciation and diversification of rice. PMID:28413161

  6. Transposable element distribution, abundance and role in genome size variation in the genus Oryza.

    PubMed

    Zuccolo, Andrea; Sebastian, Aswathy; Talag, Jayson; Yu, Yeisoo; Kim, HyeRan; Collura, Kristi; Kudrna, Dave; Wing, Rod A

    2007-08-29

    The genus Oryza is composed of 10 distinct genome types, 6 diploid and 4 polyploid, and includes the world's most important food crop - rice (Oryza sativa [AA]). Genome size variation in the Oryza is more than 3-fold and ranges from 357 Mbp in Oryza glaberrima [AA] to 1283 Mbp in the polyploid Oryza ridleyi [HHJJ]. Because repetitive elements are known to play a significant role in genome size variation, we constructed random sheared small insert genomic libraries from 12 representative Oryza species and conducted a comprehensive study of the repetitive element composition, distribution and phylogeny in this genus. Particular attention was paid to the role played by the most important classes of transposable elements (Long Terminal Repeats Retrotransposons, Long interspersed Nuclear Elements, helitrons, DNA transposable elements) in shaping these genomes and in their contributing to genome size variation. We identified the elements primarily responsible for the most strikingly genome size variation in Oryza. We demonstrated how Long Terminal Repeat retrotransposons belonging to the same families have proliferated to very different extents in various species. We also showed that the pool of Long Terminal Repeat Retrotransposons is substantially conserved and ubiquitous throughout the Oryza and so its origin is ancient and its existence predates the speciation events that originated the genus. Finally we described the peculiar behavior of repeats in the species Oryza coarctata [HHKK] whose placement in the Oryza genus is controversial. Long Terminal Repeat retrotransposons are the major component of the Oryza genomes analyzed and, along with polyploidization, are the most important contributors to the genome size variation across the Oryza genus. Two families of Ty3-gypsy elements (RIRE2 and Atlantys) account for a significant portion of the genome size variations present in the Oryza genus.

  7. The oryza map alignment project: the golden path to unlocking the genetic potential of wild rice species.

    PubMed

    Wing, Rod A; Ammiraju, Jetty S S; Luo, Meizhong; Kim, Hyeran; Yu, Yeisoo; Kudrna, Dave; Goicoechea, Jose L; Wang, Wenming; Nelson, Will; Rao, Kiran; Brar, Darshan; Mackill, Dave J; Han, Bin; Soderlund, Cari; Stein, Lincoln; SanMiguel, Phillip; Jackson, Scott

    2005-09-01

    The wild species of the genus Oryza offer enormous potential to make a significant impact on agricultural productivity of the cultivated rice species Oryza sativa and Oryza glaberrima. To unlock the genetic potential of wild rice we have initiated a project entitled the 'Oryza Map Alignment Project' (OMAP) with the ultimate goal of constructing and aligning BAC/STC based physical maps of 11 wild and one cultivated rice species to the International Rice Genome Sequencing Project's finished reference genome--O. sativa ssp. japonica c. v. Nipponbare. The 11 wild rice species comprise nine different genome types and include six diploid genomes (AA, BB, CC, EE, FF and GG) and four tetrapliod genomes (BBCC, CCDD, HHKK and HHJJ) with broad geographical distribution and ecological adaptation. In this paper we describe our strategy to construct robust physical maps of all 12 rice species with an emphasis on the AA diploid O. nivara--thought to be the progenitor of modern cultivated rice.

  8. Development of Novel Microsatellite Markers for the BBCC Oryza Genome (Poaceae) Using High-Throughput Sequencing Technology

    PubMed Central

    Peng, Suotang; Xu, Qun; Yuan, Xiaoping; Feng, Yue; Yu, Hanyong; Wang, Yiping; Wei, Xinghua

    2014-01-01

    Wild species of Oryza are extremely valuable sources of genetic material that can be used to broaden the genetic background of cultivated rice, and to increase its resistance to abiotic and biotic stresses. Until recently, there was no sequence information for the BBCC Oryza genome; therefore, no special markers had been developed for this genome type. The lack of suitable markers made it difficult to search for valuable genes in the BBCC genome. The aim of this study was to develop microsatellite markers for the BBCC genome. We obtained 13,991 SSR-containing sequences and designed 14,508 primer pairs. The most abundant was hexanuclelotide (31.39%), followed by trinucleotide (27.67%) and dinucleotide (19.04%). 600 markers were selected for validation in 23 accessions of Oryza species with the BBCC genome. A set of 495 markers produced clear amplified fragments of the expected sizes. The average number of alleles per locus (Na) was 2.5, ranging from 1 to 9. The genetic diversity per locus (He) ranged from 0 to 0.844 with a mean of 0.333. The mean polymorphism information content (PIC) was 0.290, and ranged from 0 to 0.825. Of the 495 markers, 12 were only found in the BB genome, 173 were unique to the CC genome, and 198 were also present in the AA genome. These microsatellite markers could be used to evaluate the phylogenetic relationships among different Oryza genomes, and to construct a genetic linkage map for locating and identifying valuable genes in the BBCC genome, and would also for marker-assisted breeding programs that included accessions with the AA genome, especially Oryza sativa. PMID:24632997

  9. Genetic variation in the chloroplast genome suggests multiple domestication of cultivated Asian rice (Oryza sativa L.).

    PubMed

    Kawakami, Shin-ichi; Ebana, Kaworu; Nishikawa, Tomotaro; Sato, Yo-ichiro; Vaughan, Duncan A; Kadowaki, Koh-ichi

    2007-02-01

    Two hundred and seventy-five accessions of cultivated Asian rice and 44 accessions of AA genome Oryza species were classified into 8 chloroplast (cp) genome types (A-H) based on insertion-deletion events at 3 regions (8K, 57K, and 76K) of the cp genome. The ancestral cp genome type was determined according to the frequency of occurrence in Oryza species and the likely evolution of the variable 57K region of the cp genome. When 2 nucleotide substitutions (AA or TT) were taken into account, these 8 cp types were subdivided into 11 cp types. Most indica cultivars had 1 of 3 cp genome types that were also identified in the wild relatives of rice, O. nivara and O. rufipogon, suggesting that the 3 indica cp types had evolved from distinct gene pools of the O. rufipogon - O. nivara complex. The majority of japonica cultivars had 1 of 3 different cp genome types. One of these 3 was identified in O. rufipogon, suggesting that at least 1 japonica type is derived from O. rufipogon with the same cp genome type. These results provide evidence to support a polyphyletic origin of cultivated Asian rice from at least 4 principal lineages in the O. rufipogon - O. nivara complex.

  10. The Complete Chloroplast Genome of Wild Rice (Oryza minuta) and Its Comparison to Related Species.

    PubMed

    Asaf, Sajjad; Waqas, Muhammad; Khan, Abdul L; Khan, Muhammad A; Kang, Sang-Mo; Imran, Qari M; Shahzad, Raheem; Bilal, Saqib; Yun, Byung-Wook; Lee, In-Jung

    2017-01-01

    Oryza minuta , a tetraploid wild relative of cultivated rice (family Poaceae), possesses a BBCC genome and contains genes that confer resistance to bacterial blight (BB) and white-backed (WBPH) and brown (BPH) plant hoppers. Based on the importance of this wild species, this study aimed to understand the phylogenetic relationships of O. minuta with other Oryza species through an in-depth analysis of the composition and diversity of the chloroplast (cp) genome. The analysis revealed a cp genome size of 135,094 bp with a typical quadripartite structure and consisting of a pair of inverted repeats separated by small and large single copies, 139 representative genes, and 419 randomly distributed microsatellites. The genomic organization, gene order, GC content and codon usage are similar to those of typical angiosperm cp genomes. Approximately 30 forward, 28 tandem and 20 palindromic repeats were detected in the O . minuta cp genome. Comparison of the complete O. minuta cp genome with another eleven Oryza species showed a high degree of sequence similarity and relatively high divergence of intergenic spacers. Phylogenetic analyses were conducted based on the complete genome sequence, 65 shared genes and matK gene showed same topologies and O. minuta forms a single clade with parental O. punctata . Thus, the complete O . minuta cp genome provides interesting insights and valuable information that can be used to identify related species and reconstruct its phylogeny.

  11. Physiological and molecular characterization of Si uptake in wild rice species.

    PubMed

    Mitani-Ueno, Namiki; Ogai, Hisao; Yamaji, Naoki; Ma, Jian Feng

    2014-07-01

    Cultivated rice (Oryza sativa) accumulates high concentration of silicon (Si), which is required for its high and sustainable production. High Si accumulation in cultivated rice is achieved by a high expression of both influx (Lsi1) and efflux (Lsi2) Si transporters in roots. Herein, we physiologically investigated Si uptake, isolated and functionally characterized Si transporters in six wild rice species with different genome types. Si uptake by the roots was lower in Oryza rufipogon, Oryza barthii (AA genome), Oryza australiensis (EE genome) and Oryza punctata (BB genome), but similar in Oryza glumaepatula and Oryza meridionalis (AA genome) compared with the cultivated rice (cv. Nipponbare). However, all wild rice species and the cultivated rice showed similar concentration of Si in the shoots when grown in a field. All species with AA genome showed the same amino acid sequence of both Lsi1 and Lsi2 as O. sativa, whereas species with EE and BB genome showed several nucleotide differences in both Lsi1 and Lsi2. However, proteins encoded by these genes also showed transport activity for Si in Xenopus oocyte. The mRNA expression of Lsi1 in all wild rice species was lower than that in the cultivated rice, whereas the expression of Lsi2 was lower in O. rufipogon and O. barthii but similar in other species. Similar cellular localization of Lsi1 and Lsi2 was observed in all wild rice as the cultivated rice. These results indicate that superior Si uptake, the important trait for rice growth, is basically conserved in wild and cultivated rice species. © 2013 Scandinavian Plant Physiology Society.

  12. Mitochondrial Genome Analysis of Wild Rice (Oryza minuta) and Its Comparison with Other Related Species.

    PubMed

    Asaf, Sajjad; Khan, Abdul Latif; Khan, Abdur Rahim; Waqas, Muhammad; Kang, Sang-Mo; Khan, Muhammad Aaqil; Shahzad, Raheem; Seo, Chang-Woo; Shin, Jae-Ho; Lee, In-Jung

    2016-01-01

    Oryza minuta (Poaceae family) is a tetraploid wild relative of cultivated rice with a BBCC genome. O. minuta has the potential to resist against various pathogenic diseases such as bacterial blight (BB), white backed planthopper (WBPH) and brown plant hopper (BPH). Here, we sequenced and annotated the complete mitochondrial genome of O. minuta. The mtDNA genome is 515,022 bp, containing 60 protein coding genes, 31 tRNA genes and two rRNA genes. The mitochondrial genome organization and the gene content at the nucleotide level are highly similar (89%) to that of O. rufipogon. Comparison with other related species revealed that most of the genes with known function are conserved among the Poaceae members. Similarly, O. minuta mt genome shared 24 protein-coding genes, 15 tRNA genes and 1 ribosomal RNA gene with other rice species (indica and japonica). The evolutionary relationship and phylogenetic analysis revealed that O. minuta is more closely related to O. rufipogon than to any other related species. Such studies are essential to understand the evolutionary divergence among species and analyze common gene pools to combat risks in the current scenario of a changing environment.

  13. Overcoming the species hybridization barrier by ploidy manipulation in the genus Oryza.

    PubMed

    Tonosaki, Kaoru; Sekine, Daisuke; Ohnishi, Takayuki; Ono, Akemi; Furuumi, Hiroyasu; Kurata, Nori; Kinoshita, Tetsu

    2018-02-01

    In most eudicot and monocot species, interspecific and interploidy crosses generally display abnormalities in the endosperm that are the major cause of a post-zygotic hybridization barrier. In some eudicot species, however, this type of hybridization barrier can be overcome by the manipulation of ploidy levels of one parental species, suggesting that the molecular mechanisms underlying the species hybridization barrier can be circumvented by genome dosage. We previously demonstrated that endosperm barriers in interspecific and interploidy crosses in the genus Oryza involve overlapping but different mechanisms. This result contrasts with those in the genus Arabidopsis, which shows similar outcomes in both interploidy and interspecific crosses. Therefore, we postulated that an exploration of pathways for overcoming the species hybridization barrier in Oryza endosperm, by manipulating the ploidy levels in one parental species, might provide novel insights into molecular mechanisms. We showed that fertile hybrid seeds could be produced by an interspecific cross of female tetraploid Oryza sativa and male diploid Oryza longistaminata. Although the rate of nuclear divisions did not return to normal levels in the hybrid endosperm, the timing of cellularization, nucellus degeneration and the accumulation of storage products were close to normal levels. In addition, the expression patterns of the imprinted gene MADS87 and YUCCA11 were changed when the species barrier was overcome. These results suggest that the regulatory machinery for developmental transitions and imprinted gene expression are likely to play a central role in overcoming species hybridization barriers by genome dosage in the genus Oryza. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  14. Improved annotation through genome-scale metabolic modeling of Aspergillus oryzae

    PubMed Central

    Vongsangnak, Wanwipa; Olsen, Peter; Hansen, Kim; Krogsgaard, Steen; Nielsen, Jens

    2008-01-01

    Background Since ancient times the filamentous fungus Aspergillus oryzae has been used in the fermentation industry for the production of fermented sauces and the production of industrial enzymes. Recently, the genome sequence of A. oryzae with 12,074 annotated genes was released but the number of hypothetical proteins accounted for more than 50% of the annotated genes. Considering the industrial importance of this fungus, it is therefore valuable to improve the annotation and further integrate genomic information with biochemical and physiological information available for this microorganism and other related fungi. Here we proposed the gene prediction by construction of an A. oryzae Expressed Sequence Tag (EST) library, sequencing and assembly. We enhanced the function assignment by our developed annotation strategy. The resulting better annotation was used to reconstruct the metabolic network leading to a genome scale metabolic model of A. oryzae. Results Our assembled EST sequences we identified 1,046 newly predicted genes in the A. oryzae genome. Furthermore, it was possible to assign putative protein functions to 398 of the newly predicted genes. Noteworthy, our annotation strategy resulted in assignment of new putative functions to 1,469 hypothetical proteins already present in the A. oryzae genome database. Using the substantially improved annotated genome we reconstructed the metabolic network of A. oryzae. This network contains 729 enzymes, 1,314 enzyme-encoding genes, 1,073 metabolites and 1,846 (1,053 unique) biochemical reactions. The metabolic reactions are compartmentalized into the cytosol, the mitochondria, the peroxisome and the extracellular space. Transport steps between the compartments and the extracellular space represent 281 reactions, of which 161 are unique. The metabolic model was validated and shown to correctly describe the phenotypic behavior of A. oryzae grown on different carbon sources. Conclusion A much enhanced annotation of the A

  15. A walk on the wild side: Oryza species as source for rice abiotic stress tolerance.

    PubMed

    Menguer, Paloma Koprovski; Sperotto, Raul Antonio; Ricachenevsky, Felipe Klein

    2017-01-01

    Oryza sativa, the common cultivated rice, is one of the most important crops for human consumption, but production is increasingly threatened by abiotic stresses. Although many efforts have resulted in breeding rice cultivars that are relatively tolerant to their local environments, climate changes and population increase are expected to soon call for new, fast generation of stress tolerant rice germplasm, and current within-species rice diversity might not be enough to overcome such needs. The Oryza genus contains other 23 wild species, with only Oryza glaberrima being also domesticated. Rice domestication was performed with a narrow genetic diversity, and the other Oryza species are a virtually untapped genetic resource for rice stress tolerance improvement. Here we review the origin of domesticated Oryza sativa from wild progenitors, the ecological and genomic diversity of the Oryza genus, and the stress tolerance variation observed for wild Oryza species, including the genetic basis underlying the tolerance mechanisms found. The summary provided here is important to indicate how we should move forward to unlock the full potential of these germplasms for rice improvement.

  16. A walk on the wild side: Oryza species as source for rice abiotic stress tolerance

    PubMed Central

    Menguer, Paloma Koprovski; Sperotto, Raul Antonio; Ricachenevsky, Felipe Klein

    2017-01-01

    Abstract Oryza sativa, the common cultivated rice, is one of the most important crops for human consumption, but production is increasingly threatened by abiotic stresses. Although many efforts have resulted in breeding rice cultivars that are relatively tolerant to their local environments, climate changes and population increase are expected to soon call for new, fast generation of stress tolerant rice germplasm, and current within-species rice diversity might not be enough to overcome such needs. The Oryza genus contains other 23 wild species, with only Oryza glaberrima being also domesticated. Rice domestication was performed with a narrow genetic diversity, and the other Oryza species are a virtually untapped genetic resource for rice stress tolerance improvement. Here we review the origin of domesticated Oryza sativa from wild progenitors, the ecological and genomic diversity of the Oryza genus, and the stress tolerance variation observed for wild Oryza species, including the genetic basis underlying the tolerance mechanisms found. The summary provided here is important to indicate how we should move forward to unlock the full potential of these germplasms for rice improvement. PMID:28323300

  17. Convergent Loss of Awn in Two Cultivated Rice Species Oryza sativa and Oryza glaberrima Is Caused by Mutations in Different Loci.

    PubMed

    Furuta, Tomoyuki; Komeda, Norio; Asano, Kenji; Uehara, Kanako; Gamuyao, Rico; Angeles-Shim, Rosalyn B; Nagai, Keisuke; Doi, Kazuyuki; Wang, Diane R; Yasui, Hideshi; Yoshimura, Atsushi; Wu, Jianzhong; McCouch, Susan R; Ashikari, Motoyuki

    2015-09-02

    A long awn is one of the distinct morphological features of wild rice species. This organ is thought to aid in seed dispersal and prevent predation by animals. Most cultivated varieties of Oryza sativa and Oryza glaberrima, however, have lost the ability to form long awns. The causal genetic factors responsible for the loss of awn in these two rice species remain largely unknown. Here, we evaluated three sets of chromosome segment substitution lines (CSSLs) in a common O. sativa genetic background (cv. Koshihikari) that harbor genomic fragments from Oryza nivara, Oryza rufipogon, and Oryza glaberrima donors. Phenotypic analyses of these libraries revealed the existence of three genes, Regulator of Awn Elongation 1 (RAE1), RAE2, and RAE3, involved in the loss of long awns in cultivated rice. Donor segments at two of these genes, RAE1 and RAE2, induced long awn formation in the CSSLs whereas an O. sativa segment at RAE3 induced long awn formation in O. glaberrima. These results suggest that the two cultivated rice species, O. sativa and O. glaberrima, have taken independent paths to become awnless. Copyright © 2015 Furuta et al.

  18. Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A

    PubMed Central

    Salzberg, Steven L; Sommer, Daniel D; Schatz, Michael C; Phillippy, Adam M; Rabinowicz, Pablo D; Tsuge, Seiji; Furutani, Ayako; Ochiai, Hirokazu; Delcher, Arthur L; Kelley, David; Madupu, Ramana; Puiu, Daniela; Radune, Diana; Shumway, Martin; Trapnell, Cole; Aparna, Gudlur; Jha, Gopaljee; Pandey, Alok; Patil, Prabhu B; Ishihara, Hiromichi; Meyer, Damien F; Szurek, Boris; Verdier, Valerie; Koebnik, Ralf; Dow, J Maxwell; Ryan, Robert P; Hirata, Hisae; Tsuyumu, Shinji; Won Lee, Sang; Ronald, Pamela C; Sonti, Ramesh V; Van Sluys, Marie-Anne; Leach, Jan E; White, Frank F; Bogdanove, Adam J

    2008-01-01

    Background Xanthomonas oryzae pv. oryzae causes bacterial blight of rice (Oryza sativa L.), a major disease that constrains production of this staple crop in many parts of the world. We report here on the complete genome sequence of strain PXO99A and its comparison to two previously sequenced strains, KACC10331 and MAFF311018, which are highly similar to one another. Results The PXO99A genome is a single circular chromosome of 5,240,075 bp, considerably longer than the genomes of the other strains (4,941,439 bp and 4,940,217 bp, respectively), and it contains 5083 protein-coding genes, including 87 not found in KACC10331 or MAFF311018. PXO99A contains a greater number of virulence-associated transcription activator-like effector genes and has at least ten major chromosomal rearrangements relative to KACC10331 and MAFF311018. PXO99A contains numerous copies of diverse insertion sequence elements, members of which are associated with 7 out of 10 of the major rearrangements. A rapidly-evolving CRISPR (clustered regularly interspersed short palindromic repeats) region contains evidence of dozens of phage infections unique to the PXO99A lineage. PXO99A also contains a unique, near-perfect tandem repeat of 212 kilobases close to the replication terminus. Conclusion Our results provide striking evidence of genome plasticity and rapid evolution within Xanthomonas oryzae pv. oryzae. The comparisons point to sources of genomic variation and candidates for strain-specific adaptations of this pathogen that help to explain the extraordinary diversity of Xanthomonas oryzae pv. oryzae genotypes and races that have been isolated from around the world. PMID:18452608

  19. Human-Mediated Emergence as a Weed and Invasive Radiation in the Wild of the CD Genome Allotetraploid Rice Species (Oryza, Poaceae) in the Neotropics

    PubMed Central

    Second, Gérard; Rouhan, Germinal

    2008-01-01

    Background The genus Oryza is being used as a model in plant genomic studies although there are several issues still to be resolved regarding the spatio-temporal evolution of this ancient genus. Particularly contentious is whether undated transoceanic natural dispersal or recent human interference has been the principal agent determining its present distribution and differentiation. In this context, we studied the origin and distribution history of the allotetraploid CD rice genome. It is endemic to the Neotropics but the genus is thought to have originated in the Paleotropics, and there is relatively little genetic divergence between some orthologous sequences of the C genome component and their Old World counterparts. Methodology/Principal Findings Because of its allotetraploidy, there are several potential pitfalls in trying to date the formation of the CD genome using molecular data and this could lead to erroneous estimates. Therefore, we rather chose to rely on historical evidence to determine whether or not the CD genome was present in the Neotropics before the arrival of Columbus. We searched early collections of herbarium specimens and studied the reports of explorers of the tropical Americas for references to rice. In spite of numerous collectors traveling inland and collecting Oryza, plants determined as CD genome species were not observed away from cultivated rice fields until 1869. Various arguments suggest that they only consisted of weedy forms until that time. Conclusions/Significance The spatio-temporal distribution of herbarium collections fits a simple biogeographical scenario for the emergence in cultivated rice fields followed by radiation in the wild of the CD genome in the Neotropics during the last four centuries. This probably occurred from species introduced to the Americas by humans and we found no evidence that the CD genome pre-existed in the Old World. We therefore propose a new evolutionary hypothesis for such a recent origin of the

  20. Genome-wide identification of lineage-specific genes in Arabidopsis, Oryza and Populus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaohan; Jawdy, Sara; Tschaplinski, Timothy J

    2009-01-01

    Protein sequences were compared among Arabidopsis, Oryza and Populus to identify differential gene (DG) sets that are in one but not the other two genomes. The DG sets were screened against a plant transcript database, the NR protein database and six newly-sequenced genomes (Carica, Glycine, Medicago, Sorghum, Vitis and Zea) to identify a set of species-specific genes (SS). Gene expression, protein motif and intron number were examined. 192, 641 and 109 SS genes were identified in Arabidopsis, Oryza and Populus, respectively. Some SS genes were preferentially expressed in flowers, roots, xylem and cambium or up-regulated by stress. Six conserved motifsmore » in Arabidopsis and Oryza SS proteins were found in other distant lineages. The SS gene sets were enriched with intronless genes. The results reflect functional and/or anatomical differences between monocots and eudicots or between herbaceous and woody plants. The Populus-specific genes are candidates for carbon sequestration and biofuel research.« less

  1. Enhanced production of fructosyltransferase in Aspergillus oryzae by genome shuffling.

    PubMed

    Wang, Shenghai; Duan, Mengjie; Liu, Yalan; Fan, Sen; Lin, Xiaoshan; Zhang, Yi

    2017-03-01

    To breed Aspergillus oryzae strains with high fructosyltransferase (FTase) activity using intraspecific protoplast fusion via genome-shuffling. A candidate library was developed using UV/LiCl of the conidia of A. oryzae SBB201. By screening for enzyme activity and cell biomass, two mutants (UV-11 and UV-76) were chosen for protoplast fusion and subsequent genome shuffling. After three rounds of genome recombination, a fusion mutant RIII-7 was obtained. Its FTase activity was 180 U g -1 , approximately double that of the original strain, and RIII-7 was genetically stable. In fermentation culture, FTase activity of the genome-shuffled strain reached a maximum of 353 U g -1 using substrate-feeding method, and this value was approximately 3.4-times higher than that of the original strain A. oryzae SBB201. Intraspecific protoplast fusion of A. oryzae significantly enhanced FTase activity and generated a potentially useful strain for industrial production.

  2. Comparative Genome Analysis Between Aspergillus oryzae Strains Reveals Close Relationship Between Sites of Mutation Localization and Regions of Highly Divergent Genes among Aspergillus Species

    PubMed Central

    Umemura, Myco; Koike, Hideaki; Yamane, Noriko; Koyama, Yoshinori; Satou, Yuki; Kikuzato, Ikuya; Teruya, Morimi; Tsukahara, Masatoshi; Imada, Yumi; Wachi, Youji; Miwa, Yukino; Yano, Shuichi; Tamano, Koichi; Kawarabayasi, Yutaka; Fujimori, Kazuhiro E.; Machida, Masayuki; Hirano, Takashi

    2012-01-01

    Aspergillus oryzae has been utilized for over 1000 years in Japan for the production of various traditional foods, and a large number of A. oryzae strains have been isolated and/or selected for the effective fermentation of food ingredients. Characteristics of genetic alterations among the strains used are of particular interest in studies of A. oryzae. Here, we have sequenced the whole genome of an industrial fungal isolate, A. oryzae RIB326, by using a next-generation sequencing system and compared the data with those of A. oryzae RIB40, a wild-type strain sequenced in 2005. The aim of this study was to evaluate the mutation pressure on the non-syntenic blocks (NSBs) of the genome, which were previously identified through comparative genomic analysis of A. oryzae, Aspergillus fumigatus, and Aspergillus nidulans. We found that genes within the NSBs of RIB326 accumulate mutations more frequently than those within the SBs, regardless of their distance from the telomeres or of their expression level. Our findings suggest that the high mutation frequency of NSBs might contribute to maintaining the diversity of the A. oryzae genome. PMID:22912434

  3. Comparative genome analysis between Aspergillus oryzae strains reveals close relationship between sites of mutation localization and regions of highly divergent genes among Aspergillus species.

    PubMed

    Umemura, Myco; Koike, Hideaki; Yamane, Noriko; Koyama, Yoshinori; Satou, Yuki; Kikuzato, Ikuya; Teruya, Morimi; Tsukahara, Masatoshi; Imada, Yumi; Wachi, Youji; Miwa, Yukino; Yano, Shuichi; Tamano, Koichi; Kawarabayasi, Yutaka; Fujimori, Kazuhiro E; Machida, Masayuki; Hirano, Takashi

    2012-10-01

    Aspergillus oryzae has been utilized for over 1000 years in Japan for the production of various traditional foods, and a large number of A. oryzae strains have been isolated and/or selected for the effective fermentation of food ingredients. Characteristics of genetic alterations among the strains used are of particular interest in studies of A. oryzae. Here, we have sequenced the whole genome of an industrial fungal isolate, A. oryzae RIB326, by using a next-generation sequencing system and compared the data with those of A. oryzae RIB40, a wild-type strain sequenced in 2005. The aim of this study was to evaluate the mutation pressure on the non-syntenic blocks (NSBs) of the genome, which were previously identified through comparative genomic analysis of A. oryzae, Aspergillus fumigatus, and Aspergillus nidulans. We found that genes within the NSBs of RIB326 accumulate mutations more frequently than those within the SBs, regardless of their distance from the telomeres or of their expression level. Our findings suggest that the high mutation frequency of NSBs might contribute to maintaining the diversity of the A. oryzae genome.

  4. Genome information of Methylobacterium oryzae, a plant-probiotic methylotroph in the phyllosphere.

    PubMed

    Kwak, Min-Jung; Jeong, Haeyoung; Madhaiyan, Munusamy; Lee, Yi; Sa, Tong-Min; Oh, Tae Kwang; Kim, Jihyun F

    2014-01-01

    Pink-pigmented facultative methylotrophs in the Rhizobiales are widespread in the environment, and many Methylobacterium species associated with plants produce plant growth-promoting substances. To gain insights into the life style at the phyllosphere and the genetic bases of plant growth promotion, we determined and analyzed the complete genome sequence of Methylobacterium oryzae CBMB20T, a strain isolated from rice stem. The genome consists of a 6.29-Mb chromosome and four plasmids, designated as pMOC1 to pMOC4. Among the 6,274 coding sequences in the chromosome, the bacterium has, besides most of the genes for the central metabolism, all of the essential genes for the assimilation and dissimilation of methanol that are either located in methylotrophy islands or dispersed. M. oryzae is equipped with several kinds of genes for adaptation to plant surfaces such as defense against UV radiation, oxidative stress, desiccation, or nutrient deficiency, as well as high proportion of genes related to motility and signaling. Moreover, it has an array of genes involved in metabolic pathways that may contribute to promotion of plant growth; they include auxin biosynthesis, cytokine biosynthesis, vitamin B12 biosynthesis, urea metabolism, biosorption of heavy metals or decrease of metal toxicity, pyrroloquinoline quinone biosynthesis, 1-aminocyclopropane-1-carboxylate deamination, phosphate solubilization, and thiosulfate oxidation. Through the genome analysis of M. oryzae, we provide information on the full gene complement of M. oryzae that resides in the aerial parts of plants and enhances plant growth. The plant-associated lifestyle of M. oryzae pertaining to methylotrophy and plant growth promotion, and its potential as a candidate for a bioinoculant targeted to the phyllosphere and focused on phytostimulation are illuminated.

  5. Genomic structure analysis of a set of Oryza nivara introgression lines and identification of yield-associated QTLs using whole-genome resequencing

    PubMed Central

    Ma, Xin; Fu, Yongcai; Zhao, Xinhui; Jiang, Liyun; Zhu, Zuofeng; Gu, Ping; Xu, Wenying; Su, Zhen; Sun, Chuanqing; Tan, Lubin

    2016-01-01

    Oryza nivara, an annual wild AA-genome species of rice, is an important gene pool for broadening the genetic diversity of cultivated rice (O. sativa L.). Towards identifying and utilizing favourable alleles from O. nivara, we developed a set of introgression lines (ILs) by introducing O. nivara segments into the elite indica rice variety 93-11 background through advanced backcrossing and repeated selfing. Using whole-genome resequencing, a high-density genetic map containing 1,070 bin-markers was constructed for the 131 ILs, with an average length of 349 kb per bin. The 131 ILs cover 95% of O. nivara genome, providing a relatively complete genomic library for introgressing O. nivara alleles for trait improvement. Using this high-density bin-map, QTL mapping for 13 yield-related traits was performed and a total of 65 QTLs were detected across two environments. At ~36.9% of detected QTLs, the alleles from O. nivara conferred improving effects on yield-associated traits. Six cloned genes, Sh4/SHA1, Bh4, Sd1, TE/TAD1, GS3 and FZP, colocalised in the peak intervals of 9 QTLs. In conclusion, we developed new genetic materials for exploration and use of beneficial alleles from wild rice and provided a basis for future fine mapping and cloning of the favourable O. nivara-derived QTLs. PMID:27251022

  6. Genome Information of Methylobacterium oryzae, a Plant-Probiotic Methylotroph in the Phyllosphere

    PubMed Central

    Madhaiyan, Munusamy; Lee, Yi; Sa, Tong-Min; Oh, Tae Kwang; Kim, Jihyun F.

    2014-01-01

    Pink-pigmented facultative methylotrophs in the Rhizobiales are widespread in the environment, and many Methylobacterium species associated with plants produce plant growth-promoting substances. To gain insights into the life style at the phyllosphere and the genetic bases of plant growth promotion, we determined and analyzed the complete genome sequence of Methylobacterium oryzae CBMB20T, a strain isolated from rice stem. The genome consists of a 6.29-Mb chromosome and four plasmids, designated as pMOC1 to pMOC4. Among the 6,274 coding sequences in the chromosome, the bacterium has, besides most of the genes for the central metabolism, all of the essential genes for the assimilation and dissimilation of methanol that are either located in methylotrophy islands or dispersed. M. oryzae is equipped with several kinds of genes for adaptation to plant surfaces such as defense against UV radiation, oxidative stress, desiccation, or nutrient deficiency, as well as high proportion of genes related to motility and signaling. Moreover, it has an array of genes involved in metabolic pathways that may contribute to promotion of plant growth; they include auxin biosynthesis, cytokine biosynthesis, vitamin B12 biosynthesis, urea metabolism, biosorption of heavy metals or decrease of metal toxicity, pyrroloquinoline quinone biosynthesis, 1-aminocyclopropane-1-carboxylate deamination, phosphate solubilization, and thiosulfate oxidation. Through the genome analysis of M. oryzae, we provide information on the full gene complement of M. oryzae that resides in the aerial parts of plants and enhances plant growth. The plant-associated lifestyle of M. oryzae pertaining to methylotrophy and plant growth promotion, and its potential as a candidate for a bioinoculant targeted to the phyllosphere and focused on phytostimulation are illuminated. PMID:25211235

  7. Elusive Origins of the Extra Genes in Aspergillus oryzae

    PubMed Central

    Khaldi, Nora; Wolfe, Kenneth H.

    2008-01-01

    The genome sequence of Aspergillus oryzae revealed unexpectedly that this species has approximately 20% more genes than its congeneric species A. nidulans and A. fumigatus. Where did these extra genes come from? Here, we evaluate several possible causes of the elevated gene number. Many gene families are expanded in A. oryzae relative to A. nidulans and A. fumigatus, but we find no evidence of ancient whole-genome duplication or other segmental duplications, either in A. oryzae or in the common ancestor of the genus Aspergillus. We show that the presence of divergent pairs of paralogs is a feature peculiar to A. oryzae and is not shared with A. nidulans or A. fumigatus. In phylogenetic trees that include paralog pairs from A. oryzae, we frequently find that one of the genes in a pair from A. oryzae has the expected orthologous relationship with A. nidulans, A. fumigatus and other species in the subphylum Eurotiomycetes, whereas the other A. oryzae gene falls outside this clade but still within the Ascomycota. We identified 456 such gene pairs in A. oryzae. Further phylogenetic analysis did not however indicate a single consistent evolutionary origin for the divergent members of these pairs. Approximately one-third of them showed phylogenies that are suggestive of horizontal gene transfer (HGT) from Sordariomycete species, and these genes are closer together in the A. oryzae genome than expected by chance, but no unique Sordariomycete donor species was identifiable. The postulated HGTs from Sordariomycetes still leave the majority of extra A. oryzae genes unaccounted for. One possible explanation for our observations is that A. oryzae might have been the recipient of many separate HGT events from diverse donors. PMID:18725939

  8. What can comparative genomics tell us about species concepts in the genus Aspergillus?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rokas, Antonis; payne, gary; Federova, Natalie D.

    2007-12-15

    Understanding the nature of species" boundaries is a fundamental question in evolutionary biology. The availability of genomes from several species of the genus Aspergillus allows us for the first time to examine the demarcation of fungal species at the whole-genome level. Here, we examine four case studies, two of which involve intraspecific comparisons, whereas the other two deal with interspecific genomic comparisons between closely related species. These four comparisons reveal significant variation in the nature of species boundaries across Aspergillus. For example, comparisons between A. fumigatus and Neosartorya fischeri (the teleomorph of A. fischerianus) and between A. oryzae and A.more » flavus suggest that measures of sequence similarity and species-specific genes are significantly higher for the A. fumigatus - N. fischeri pair. Importantly, the values obtained from the comparison between A. oryzae and A. flavus are remarkably similar to those obtained from an intra-specific comparison of A. fumigatus strains, giving support to the proposal that A. oryzae represents a distinct ecotype of A. flavus and not a distinct species. We argue that genomic data can aid Aspergillus taxonomy by serving as a source of novel and unprecedented amounts of comparative data, as a resource for the development of additional diagnostic tools, and finally as a knowledge database about the biological differences between strains and species.« less

  9. A genome-specific repetitive DNA sequence from Oryza eichingeri: characterization, localization, and introgression to O. sativa.

    PubMed

    Yan, H. H.; Liu, G. Q.; Cheng, Z. K.; Li, X. B.; Liu, G. Z.; Min, S. K.; Zhu, L.H.

    2002-02-01

    In the course of transferring the brown planthopper resistance from a diploid, CC-genome wild rice species, Oryza eichingeri (IRGC acc. 105159 and 105163), to the cultivated rice variety 02428, we have isolated many alien addition and introgression lines. The O. eichingeri chromatin in some of these lines has previously been identified using genomic in situ hybridization and molecular-marker analysis. Here we cloned a tandemly repetitive DNA sequence from O. eichingeri IRGC acc105163, and detected it in 25 introgression lines. This repetitive DNA sequence showed high specificity to the rice CC genome, but was absent from all the four tetraploid species with BBCC or CCDD genomes. The monomer in this repetitive DNA sequence is 325-366-bp long, with a copy number of about 5,000 per 1 C of the O. eichingerigenome, showing 88% homology to a repetitive DNA sequence isolated from Oryza officinalis(2n=2 x=24, CC). Fluorescent in situ hybridization revealed 11 signals distributed over eight O. eichingeri chromosomes, mostly in terminal or subterminal regions.

  10. Genome-wide analysis of DUF221 domain-containing gene family in Oryza species and identification of its salinity stress-responsive members in rice.

    PubMed

    Ganie, Showkat Ahmad; Pani, Dipti Ranjan; Mondal, Tapan Kumar

    2017-01-01

    DUF221 domain-containing genes (DDP genes) play important roles in developmental biology, hormone signalling transduction, and responses to abiotic stress. Therefore to understand their structural and evolutionary relationship, we did a genome-wide analysis of this important gene family in rice. Further, through comparative genomics, DDP genes from Oryza sativa subsp. (indica), nine different wild species of rice and Arabidopsis were also identified. We also found an expansion of the DDP gene families in rice and Arabidopsis which is due to the segmental duplication events in some of the gene family members. In general, a highly purifying selection was found acting on all the deduced paralogous and orthologous DDP gene pairs. The data from microarray and subsequent qRT-PCR analysis revealed that although several OsDDPs were differentially regulated under salinity stress, yet OsDDP6 was upregulated at all the developmental stages in salt tolerant rice genotype, FL478. Interestingly, OsDDP6 was found to be involved in proline metabolism pathway as indicated by protein network analysis. The diverse gene structures, varied transmembrane topologies and the differential expression patterns implied the functional diversity in DDP genes. Therefore, the comprehensive evolutionary analysis of DDP genes from different Oryza species and Arabidopsis performed in this study will provide the basis for further functional validation studies vis-à-vis DDP genes of rice and other plant species.

  11. Genome-wide analysis of DUF221 domain-containing gene family in Oryza species and identification of its salinity stress-responsive members in rice

    PubMed Central

    Ganie, Showkat Ahmad; Pani, Dipti Ranjan

    2017-01-01

    DUF221 domain-containing genes (DDP genes) play important roles in developmental biology, hormone signalling transduction, and responses to abiotic stress. Therefore to understand their structural and evolutionary relationship, we did a genome-wide analysis of this important gene family in rice. Further, through comparative genomics, DDP genes from Oryza sativa subsp. (indica), nine different wild species of rice and Arabidopsis were also identified. We also found an expansion of the DDP gene families in rice and Arabidopsis which is due to the segmental duplication events in some of the gene family members. In general, a highly purifying selection was found acting on all the deduced paralogous and orthologous DDP gene pairs. The data from microarray and subsequent qRT-PCR analysis revealed that although several OsDDPs were differentially regulated under salinity stress, yet OsDDP6 was upregulated at all the developmental stages in salt tolerant rice genotype, FL478. Interestingly, OsDDP6 was found to be involved in proline metabolism pathway as indicated by protein network analysis. The diverse gene structures, varied transmembrane topologies and the differential expression patterns implied the functional diversity in DDP genes. Therefore, the comprehensive evolutionary analysis of DDP genes from different Oryza species and Arabidopsis performed in this study will provide the basis for further functional validation studies vis-à-vis DDP genes of rice and other plant species. PMID:28846681

  12. Draft Genome Sequence of Aspergillus oryzae ATCC 12892

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Shuang; Pomraning, Kyle R.; Bohutskyi, Pavlo

    The draft genome sequence ofAspergillus oryzaeATCC 12892 is presented here.A. oryzaeproduces 3-nitropropionic acid, which has been investigated with regard to understanding the biosynthesis of nitroorganic compounds.

  13. Exploring sheath blight quantitative trait loci in a Lemont/O. meridionalis advanced backcross population

    USDA-ARS?s Scientific Manuscript database

    Oryza meridionalis is the wild Oryza species endemic to Australia. There are eight AA genome Oryza species, one of which is cultivated rice, O. sativa and O. meridionalis is the most diverged of the eight species. An O. eridionalis (IRGC105608) accession was identified as being moderately resistant...

  14. Genome-Wide Distribution, Organisation and Functional Characterization of Disease Resistance and Defence Response Genes across Rice Species

    PubMed Central

    Singh, Sangeeta; Chand, Suresh; Singh, N. K.; Sharma, Tilak Raj

    2015-01-01

    The resistance (R) genes and defense response (DR) genes have become very important resources for the development of disease resistant cultivars. In the present investigation, genome-wide identification, expression, phylogenetic and synteny analysis was done for R and DR-genes across three species of rice viz: Oryza sativa ssp indica cv 93-11, Oryza sativa ssp japonica and wild rice species, Oryza brachyantha. We used the in silico approach to identify and map 786 R -genes and 167 DR-genes, 672 R-genes and 142 DR-genes, 251 R-genes and 86 DR-genes in the japonica, indica and O. brachyanth a genomes, respectively. Our analysis showed that 60.5% and 55.6% of the R-genes are tandemly repeated within clusters and distributed over all the rice chromosomes in indica and japonica genomes, respectively. The phylogenetic analysis along with motif distribution shows high degree of conservation of R- and DR-genes in clusters. In silico expression analysis of R-genes and DR-genes showed more than 85% were expressed genes showing corresponding EST matches in the databases. This study gave special emphasis on mechanisms of gene evolution and duplication for R and DR genes across species. Analysis of paralogs across rice species indicated 17% and 4.38% R-genes, 29% and 11.63% DR-genes duplication in indica and Oryza brachyantha, as compared to 20% and 26% duplication of R-genes and DR-genes in japonica respectively. We found that during the course of duplication only 9.5% of R- and DR-genes changed their function and rest of the genes have maintained their identity. Syntenic relationship across three genomes inferred that more orthology is shared between indica and japonica genomes as compared to brachyantha genome. Genome wide identification of R-genes and DR-genes in the rice genome will help in allele mining and functional validation of these genes, and to understand molecular mechanism of disease resistance and their evolution in rice and related species. PMID:25902056

  15. Genome comparison of two Magnaporthe oryzae field isolates reveals genome variations and potential virulence effectors

    PubMed Central

    2013-01-01

    Background Rice blast caused by the fungus Magnaporthe oryzae is an important disease in virtually every rice growing region of the world, which leads to significant annual decreases of grain quality and yield. To prevent disease, resistance genes in rice have been cloned and introduced into susceptible cultivars. However, introduced resistance can often be broken within few years of release, often due to mutation of cognate avirulence genes in fungal field populations. Results To better understand the pattern of mutation of M. oryzae field isolates under natural selection forces, we used a next generation sequencing approach to analyze the genomes of two field isolates FJ81278 and HN19311, as well as the transcriptome of FJ81278. By comparing the de novo genome assemblies of the two isolates against the finished reference strain 70–15, we identified extensive polymorphisms including unique genes, SNPs (single nucleotide polymorphism) and indels, structural variations, copy number variations, and loci under strong positive selection. The 1.75 MB of isolate-specific genome content carrying 118 novel genes from FJ81278, and 0.83 MB from HN19311 were also identified. By analyzing secreted proteins carrying polymorphisms, in total 256 candidate virulence effectors were found and 6 were chosen for functional characterization. Conclusions We provide results from genome comparison analysis showing extensive genome variation, and generated a list of M. oryzae candidate virulence effectors for functional characterization. PMID:24341723

  16. Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level

    PubMed Central

    2011-01-01

    Background Rhizopus oryzae is a zygomycete filamentous fungus, well-known as a saprobe ubiquitous in soil and as a pathogenic/spoilage fungus, causing Rhizopus rot and mucomycoses. Results Carbohydrate Active enzyme (CAZy) annotation of the R. oryzae identified, in contrast to other filamentous fungi, a low number of glycoside hydrolases (GHs) and a high number of glycosyl transferases (GTs) and carbohydrate esterases (CEs). A detailed analysis of CAZy families, supported by growth data, demonstrates highly specialized plant and fungal cell wall degrading abilities distinct from ascomycetes and basidiomycetes. The specific genomic and growth features for degradation of easily digestible plant cell wall mono- and polysaccharides (starch, galactomannan, unbranched pectin, hexose sugars), chitin, chitosan, β-1,3-glucan and fungal cell wall fractions suggest specific adaptations of R. oryzae to its environment. Conclusions CAZy analyses of the genome of the zygomycete fungus R. oryzae and comparison to ascomycetes and basidiomycete species revealed how evolution has shaped its genetic content with respect to carbohydrate degradation, after divergence from the Ascomycota and Basidiomycota. PMID:21241472

  17. Understanding of evolutionary genomics of invasive species of rice

    USDA-ARS?s Scientific Manuscript database

    Red rice is an aggressive, weedy form of cultivated rice (Oryza sativa) that infests crop fields and is a primary factor limiting rice productivity in the U.S. and worldwide. As the weedy relative of a genomic model species, red rice is a model for understanding the genetic and evolutionary mechani...

  18. Global Genomic Diversity of Oryza sativa Varieties Revealed by Comparative Physical Mapping

    PubMed Central

    Wang, Xiaoming; Kudrna, David A.; Pan, Yonglong; Wang, Hao; Liu, Lin; Lin, Haiyan; Zhang, Jianwei; Song, Xiang; Goicoechea, Jose Luis; Wing, Rod A.; Zhang, Qifa; Luo, Meizhong

    2014-01-01

    Bacterial artificial chromosome (BAC) physical maps embedding a large number of BAC end sequences (BESs) were generated for Oryza sativa ssp. indica varieties Minghui 63 (MH63) and Zhenshan 97 (ZS97) and were compared with the genome sequences of O. sativa spp. japonica cv. Nipponbare and O. sativa ssp. indica cv. 93-11. The comparisons exhibited substantial diversities in terms of large structural variations and small substitutions and indels. Genome-wide BAC-sized and contig-sized structural variations were detected, and the shared variations were analyzed. In the expansion regions of the Nipponbare reference sequence, in comparison to the MH63 and ZS97 physical maps, as well as to the previously constructed 93-11 physical map, the amounts and types of the repeat contents, and the outputs of gene ontology analysis, were significantly different from those of the whole genome. Using the physical maps of four wild Oryza species from OMAP (http://www.omap.org) as a control, we detected many conserved and divergent regions related to the evolution process of O. sativa. Between the BESs of MH63 and ZS97 and the two reference sequences, a total of 1532 polymorphic simple sequence repeats (SSRs), 71,383 SNPs, 1767 multiple nucleotide polymorphisms, 6340 insertions, and 9137 deletions were identified. This study provides independent whole-genome resources for intra- and intersubspecies comparisons and functional genomics studies in O. sativa. Both the comparative physical maps and the GBrowse, which integrated the QTL and molecular markers from GRAMENE (http://www.gramene.org) with our physical maps and analysis results, are open to the public through our Web site (http://gresource.hzau.edu.cn/resource/resource.html). PMID:24424778

  19. Transposable Elements as Stress Adaptive Capacitors Induce Genomic Instability in Fungal Pathogen Magnaporthe oryzae

    PubMed Central

    Chadha, Sonia; Sharma, Mradul

    2014-01-01

    A fundamental problem in fungal pathogenesis is to elucidate the evolutionary forces responsible for genomic rearrangements leading to races with fitter genotypes. Understanding the adaptive evolutionary mechanisms requires identification of genomic components and environmental factors reshaping the genome of fungal pathogens to adapt. Herein, Magnaporthe oryzae, a model fungal plant pathogen is used to demonstrate the impact of environmental cues on transposable elements (TE) based genome dynamics. For heat shock and copper stress exposed samples, eight TEs belonging to class I and II family were employed to obtain DNA profiles. Stress induced mutant bands showed a positive correlation with dose/duration of stress and provided evidences of TEs role in stress adaptiveness. Further, we demonstrate that genome dynamics differ for the type/family of TEs upon stress exposition and previous reports of stress induced MAGGY transposition has underestimated the role of TEs in M. oryzae. Here, we identified Pyret, MAGGY, Pot3, MINE, Mg-SINE, Grasshopper and MGLR3 as contributors of high genomic instability in M. oryzae in respective order. Sequencing of mutated bands led to the identification of LTR-retrotransposon sequences within regulatory regions of psuedogenes. DNA transposon Pot3 was identified in the coding regions of chromatin remodelling protein containing tyrosinase copper-binding and PWWP domains. LTR-retrotransposons Pyret and MAGGY are identified as key components responsible for the high genomic instability and perhaps these TEs are utilized by M. oryzae for its acclimatization to adverse environmental conditions. Our results demonstrate how common field stresses change genome dynamics of pathogen and provide perspective to explore the role of TEs in genome adaptability, signalling network and its impact on the virulence of fungal pathogens. PMID:24709911

  20. The International Oryza Map Alignment Project: development of a genus-wide comparative genomics platform to help solve the 9 billion-people question.

    PubMed

    Jacquemin, Julie; Bhatia, Dharminder; Singh, Kuldeep; Wing, Rod A

    2013-05-01

    The wild relatives of rice contain a virtually untapped reservoir of traits that can be used help drive the 21st century green revolution aimed at solving world food security issues by 2050. To better understand and exploit the 23 species of the Oryza genus the rice research community is developing foundational resources composed of: 1) reference genomes and transcriptomes for all 23 species; 2) advanced mapping populations for functional and breeding studies; and 3) in situ conservation sites for ecological, evolutionary and population genomics. To this end, 16 genome sequencing projects are currently underway, and all completed assemblies have been annotated; and several advanced mapping populations have been developed, and more will be generated, mapped, and phenotyped, to uncover useful alleles. As wild Oryza populations are threatened by human activity and climate change, we also discuss the urgent need for sustainable in situ conservation of the genus. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Rubisco activity is associated with photosynthetic thermotolerance in a wild rice (Oryza meridionalis)

    USDA-ARS?s Scientific Manuscript database

    Oryza meridionalis is a wild species of rice, endemic to tropical Australia. It shares a significant genome homology with the common domesticated rice Oryza sativa. Exploiting the fact that the two species are highly related but O. meridionalis has superior heat tolerance, experiments were undertake...

  2. The rice endophyte Harpophora oryzae genome reveals evolution from a pathogen to a mutualistic endophyte

    PubMed Central

    Xu, Xi-Hui; Su, Zhen-Zhu; Wang, Chen; Kubicek, Christian P.; Feng, Xiao-Xiao; Mao, Li-Juan; Wang, Jia-Ying; Chen, Chen; Lin, Fu-Cheng; Zhang, Chu-Long

    2014-01-01

    The fungus Harpophora oryzae is a close relative of the pathogen Magnaporthe oryzae and a beneficial endosymbiont of wild rice. Here, we show that H. oryzae evolved from a pathogenic ancestor. The overall genomic structures of H. and M. oryzae were found to be similar. However, during interactions with rice, the expression of 11.7% of all genes showed opposing trends in the two fungi, suggesting differences in gene regulation. Moreover, infection patterns, triggering of host defense responses, signal transduction and nutritional preferences exhibited remarkable differentiation between the two fungi. In addition, the H. oryzae genome was found to contain thousands of loci of transposon-like elements, which led to the disruption of 929 genes. Our results indicate that the gain or loss of orphan genes, DNA duplications, gene family expansions and the frequent translocation of transposon-like elements have been important factors in the evolution of this endosymbiont from a pathogenic ancestor. PMID:25048173

  3. Deciphering Genome Content and Evolutionary Relationships of Isolates from the Fungus Magnaporthe oryzae Attacking Different Host Plants

    PubMed Central

    Chiapello, Hélène; Mallet, Ludovic; Guérin, Cyprien; Aguileta, Gabriela; Amselem, Joëlle; Kroj, Thomas; Ortega-Abboud, Enrique; Lebrun, Marc-Henri; Henrissat, Bernard; Gendrault, Annie; Rodolphe, François; Tharreau, Didier; Fournier, Elisabeth

    2015-01-01

    Deciphering the genetic bases of pathogen adaptation to its host is a key question in ecology and evolution. To understand how the fungus Magnaporthe oryzae adapts to different plants, we sequenced eight M. oryzae isolates differing in host specificity (rice, foxtail millet, wheat, and goosegrass), and one Magnaporthe grisea isolate specific of crabgrass. Analysis of Magnaporthe genomes revealed small variation in genome sizes (39–43 Mb) and gene content (12,283–14,781 genes) between isolates. The whole set of Magnaporthe genes comprised 14,966 shared families, 63% of which included genes present in all the nine M. oryzae genomes. The evolutionary relationships among Magnaporthe isolates were inferred using 6,878 single-copy orthologs. The resulting genealogy was mostly bifurcating among the different host-specific lineages, but was reticulate inside the rice lineage. We detected traces of introgression from a nonrice genome in the rice reference 70-15 genome. Among M. oryzae isolates and host-specific lineages, the genome composition in terms of frequencies of genes putatively involved in pathogenicity (effectors, secondary metabolism, cazome) was conserved. However, 529 shared families were found only in nonrice lineages, whereas the rice lineage possessed 86 specific families absent from the nonrice genomes. Our results confirmed that the host specificity of M. oryzae isolates was associated with a divergence between lineages without major gene flow and that, despite the strong conservation of gene families between lineages, adaptation to different hosts, especially to rice, was associated with the presence of a small number of specific gene families. All information was gathered in a public database (http://genome.jouy.inra.fr/gemo). PMID:26454013

  4. Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae.

    PubMed

    Katayama, Takuya; Tanaka, Yuki; Okabe, Tomoya; Nakamura, Hidetoshi; Fujii, Wataru; Kitamoto, Katsuhiko; Maruyama, Jun-Ichi

    2016-04-01

    To develop a genome editing method using the CRISPR/Cas9 system in Aspergillus oryzae, the industrial filamentous fungus used in Japanese traditional fermentation and for the production of enzymes and heterologous proteins. To develop the CRISPR/Cas9 system as a genome editing technique for A. oryzae, we constructed plasmids expressing the gene encoding Cas9 nuclease and single guide RNAs for the mutagenesis of target genes. We introduced these into an A. oryzae strain and obtained transformants containing mutations within each target gene that exhibited expected phenotypes. The mutational rates ranged from 10 to 20 %, and 1 bp deletions or insertions were the most commonly induced mutations. We developed a functional and versatile genome editing method using the CRISPR/Cas9 system in A. oryzae. This technique will contribute to the use of efficient targeted mutagenesis in many A. oryzae industrial strains.

  5. Survey of protein–DNA interactions in Aspergillus oryzae on a genomic scale

    PubMed Central

    Wang, Chao; Lv, Yangyong; Wang, Bin; Yin, Chao; Lin, Ying; Pan, Li

    2015-01-01

    The genome-scale delineation of in vivo protein–DNA interactions is key to understanding genome function. Only ∼5% of transcription factors (TFs) in the Aspergillus genus have been identified using traditional methods. Although the Aspergillus oryzae genome contains >600 TFs, knowledge of the in vivo genome-wide TF-binding sites (TFBSs) in aspergilli remains limited because of the lack of high-quality antibodies. We investigated the landscape of in vivo protein–DNA interactions across the A. oryzae genome through coupling the DNase I digestion of intact nuclei with massively parallel sequencing and the analysis of cleavage patterns in protein–DNA interactions at single-nucleotide resolution. The resulting map identified overrepresented de novo TF-binding motifs from genomic footprints, and provided the detailed chromatin remodeling patterns and the distribution of digital footprints near transcription start sites. The TFBSs of 19 known Aspergillus TFs were also identified based on DNase I digestion data surrounding potential binding sites in conjunction with TF binding specificity information. We observed that the cleavage patterns of TFBSs were dependent on the orientation of TF motifs and independent of strand orientation, consistent with the DNA shape features of binding motifs with flanking sequences. PMID:25883143

  6. Comparison of the genomes and transcriptomes associated with the different protease secretions of Aspergillus oryzae 100-8 and 3.042.

    PubMed

    Zhao, Guozhong; Yao, Yunping; Hou, Lihua; Wang, Chunling; Cao, Xiaohong

    2014-10-01

    Aspergillus oryzae is used to produce traditional fermented foods and beverages. A. oryzae 3.042 produces a neutral protease and an alkaline protease but rarely an acid protease, which is unfavourable to soy-sauce fermentation. A. oryzae 100-8 was obtained by N(+) ion implantation mutagenesis of A. oryzae 3.042, and the protease secretions of these two strains are different. Sequencing the genome of A. oryzae 100-8 and comparing it to the genomes of A. oryzae 100-8 and 3.042 revealed some differences, such as single nucleotide polymorphisms, nucleotide deletion or insertion. Some of these differences may reflect the ability of A. oryzae to secrete proteases. Transcriptional sequencing and analysis of the two strains during the same growth processes provided further insights into the genes and pathways involved in protease secretion.

  7. Comparative Chemistry of Aspergillus oryzae (RIB40) and A. flavus (NRRL 3357)

    PubMed Central

    Rank, Christian; Klejnstrup, Marie Louise; Petersen, Lene Maj; Kildgaard, Sara; Frisvad, Jens Christian; Gotfredsen, Charlotte Held; Larsen, Thomas Ostenfeld

    2012-01-01

    Aspergillus oryzae and A. flavus are important species in industrial biotechnology and food safety and have been some of the first aspergilli to be fully genome sequenced. Bioinformatic analysis has revealed 99.5% gene homology between the two species pointing towards a large coherence in the secondary metabolite production. In this study we report on the first comparison of secondary metabolite production between the full genome sequenced strains of A. oryzae (RIB40) and A. flavus (NRRL 3357). Surprisingly, the overall chemical profiles of the two strains were mostly very different across 15 growth conditions. Contrary to previous studies we found the aflatrem precursor 13-desoxypaxilline to be a major metabolite from A. oryzae under certain growth conditions. For the first time, we additionally report A. oryzae to produce parasiticolide A and two new analogues hereof, along with four new alkaloids related to the A. flavus metabolites ditryptophenalines and miyakamides. Generally the secondary metabolite capability of A. oryzae presents several novel end products likely to result from the domestication process from A. flavus. PMID:24957367

  8. Genome Characterization of Oleaginous Aspergillus oryzae BCC7051: A Potential Fungal-Based Platform for Lipid Production

    DOE PAGES

    Thammarongtham, Chinae; Nookaew, Intawat; Vorapreeda, Tayvich; ...

    2017-09-01

    The selected robust fungus, Aspergillus oryzae strain BCC7051 is of interest for biotechnological production of lipid-derived products due to its capability to accumulate high amount of intracellular lipids using various sugars and agro-industrial substrates. Here in this paper, we report the genome sequence of the oleaginous A. oryzae BCC7051. The obtained reads were de novo assembled into 25 scaffolds spanning of 38,550,958 bps with predicted 11,456 protein-coding genes. By synteny mapping, a large rearrangement was found in two scaffolds of A. oryzae BCC7051 as compared to the reference RIB40 strain. The genetic relationship between BCC7051 and other strains of A.more » oryzae in terms of aflatoxin production was investigated, indicating that the A. oryzae BCC7051 was categorized into group 2 nonaflatoxin-producing strain. Moreover, a comparative analysis of the structural genes focusing on the involvement in lipid metabolism among oleaginous yeast and fungi revealed the presence of multiple isoforms of metabolic enzymes responsible for fatty acid synthesis in BCC7051. The alternative routes of acetyl-CoA generation as oleaginous features and malate/citrate/pyruvate shuttle were also identified in this A. oryzae strain. The genome sequence generated in this work is a dedicated resource for expanding genome-wide study of microbial lipids at systems level, and developing the fungal-based platform for production of diversified lipids with commercial relevance.« less

  9. Genome Characterization of Oleaginous Aspergillus oryzae BCC7051: A Potential Fungal-Based Platform for Lipid Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thammarongtham, Chinae; Nookaew, Intawat; Vorapreeda, Tayvich

    The selected robust fungus, Aspergillus oryzae strain BCC7051 is of interest for biotechnological production of lipid-derived products due to its capability to accumulate high amount of intracellular lipids using various sugars and agro-industrial substrates. Here in this paper, we report the genome sequence of the oleaginous A. oryzae BCC7051. The obtained reads were de novo assembled into 25 scaffolds spanning of 38,550,958 bps with predicted 11,456 protein-coding genes. By synteny mapping, a large rearrangement was found in two scaffolds of A. oryzae BCC7051 as compared to the reference RIB40 strain. The genetic relationship between BCC7051 and other strains of A.more » oryzae in terms of aflatoxin production was investigated, indicating that the A. oryzae BCC7051 was categorized into group 2 nonaflatoxin-producing strain. Moreover, a comparative analysis of the structural genes focusing on the involvement in lipid metabolism among oleaginous yeast and fungi revealed the presence of multiple isoforms of metabolic enzymes responsible for fatty acid synthesis in BCC7051. The alternative routes of acetyl-CoA generation as oleaginous features and malate/citrate/pyruvate shuttle were also identified in this A. oryzae strain. The genome sequence generated in this work is a dedicated resource for expanding genome-wide study of microbial lipids at systems level, and developing the fungal-based platform for production of diversified lipids with commercial relevance.« less

  10. Global Genome and Transcriptome Analyses of Magnaporthe oryzae Epidemic Isolate 98-06 Uncover Novel Effectors and Pathogenicity-Related Genes, Revealing Gene Gain and Lose Dynamics in Genome Evolution

    PubMed Central

    Dong, Yanhan; Li, Ying; Zhao, Miaomiao; Jing, Maofeng; Liu, Xinyu; Liu, Muxing; Guo, Xianxian; Zhang, Xing; Chen, Yue; Liu, Yongfeng; Liu, Yanhong; Ye, Wenwu; Zhang, Haifeng; Wang, Yuanchao; Zheng, Xiaobo; Wang, Ping; Zhang, Zhengguang

    2015-01-01

    Genome dynamics of pathogenic organisms are driven by pathogen and host co-evolution, in which pathogen genomes are shaped to overcome stresses imposed by hosts with various genetic backgrounds through generation of a variety of isolates. This same principle applies to the rice blast pathogen Magnaporthe oryzae and the rice host; however, genetic variations among different isolates of M. oryzae remain largely unknown, particularly at genome and transcriptome levels. Here, we applied genomic and transcriptomic analytical tools to investigate M. oryzae isolate 98-06 that is the most aggressive in infection of susceptible rice cultivars. A unique 1.4 Mb of genomic sequences was found in isolate 98-06 in comparison to reference strain 70-15. Genome-wide expression profiling revealed the presence of two critical expression patterns of M. oryzae based on 64 known pathogenicity-related (PaR) genes. In addition, 134 candidate effectors with various segregation patterns were identified. Five tested proteins could suppress BAX-mediated programmed cell death in Nicotiana benthamiana leaves. Characterization of isolate-specific effector candidates Iug6 and Iug9 and PaR candidate Iug18 revealed that they have a role in fungal propagation and pathogenicity. Moreover, Iug6 and Iug9 are located exclusively in the biotrophic interfacial complex (BIC) and their overexpression leads to suppression of defense-related gene expression in rice, suggesting that they might participate in biotrophy by inhibiting the SA and ET pathways within the host. Thus, our studies identify novel effector and PaR proteins involved in pathogenicity of the highly aggressive M. oryzae field isolate 98-06, and reveal molecular and genomic dynamics in the evolution of M. oryzae and rice host interactions. PMID:25837042

  11. Genomics of Aspergillus oryzae: Learning from the History of Koji Mold and Exploration of Its Future

    PubMed Central

    Machida, Masayuki; Yamada, Osamu; Gomi, Katsuya

    2008-01-01

    At a time when the notion of microorganisms did not exist, our ancestors empirically established methods for the production of various fermentation foods: miso (bean curd seasoning) and shoyu (soy sauce), both of which have been widely used and are essential for Japanese cooking, and sake, a magical alcoholic drink consumed at a variety of ritual occasions, are typical examples. A filamentous fungus, Aspergillus oryzae, is the key organism in the production of all these traditional foods, and its solid-state cultivation (SSC) has been confirmed to be the secret for the high productivity of secretory hydrolases vital for the fermentation process. Indeed, our genome comparison and transcriptome analysis uncovered mechanisms for effective degradation of raw materials in SSC: the extracellular hydrolase genes that have been found only in the A. oryzae genome but not in A. fumigatus are highly induced during SSC but not in liquid cultivation. Also, the temperature reduction process empirically adopted in the traditional soy-sauce fermentation processes has been found to be important to keep strong expression of the A. oryzae-specific extracellular hydrolases. One of the prominent potentials of A. oryzae is that it has been successfully applied to effective degradation of biodegradable plastic. Both cutinase, responsible for the degradation of plastic, and hydrophobin, which recruits cutinase on the hydrophobic surface to enhance degradation, have been discovered in A. oryzae. Genomic analysis in concert with traditional knowledge and technology will continue to be powerful tools in the future exploration of A. oryzae. PMID:18820080

  12. Integration of hybridization-based markers (overgos) into physical maps for comparative and evolutionary explorations in the genus Oryza and in Sorghum

    PubMed Central

    Hass-Jacobus, Barbara L; Futrell-Griggs, Montona; Abernathy, Brian; Westerman, Rick; Goicoechea, Jose-Luis; Stein, Joshua; Klein, Patricia; Hurwitz, Bonnie; Zhou, Bin; Rakhshan, Fariborz; Sanyal, Abhijit; Gill, Navdeep; Lin, Jer-Young; Walling, Jason G; Luo, Mei Zhong; Ammiraju, Jetty Siva S; Kudrna, Dave; Kim, Hye Ran; Ware, Doreen; Wing, Rod A; Miguel, Phillip San; Jackson, Scott A

    2006-01-01

    Background With the completion of the genome sequence for rice (Oryza sativa L.), the focus of rice genomics research has shifted to the comparison of the rice genome with genomes of other species for gene cloning, breeding, and evolutionary studies. The genus Oryza includes 23 species that shared a common ancestor 8–10 million years ago making this an ideal model for investigations into the processes underlying domestication, as many of the Oryza species are still undergoing domestication. This study integrates high-throughput, hybridization-based markers with BAC end sequence and fingerprint data to construct physical maps of rice chromosome 1 orthologues in two wild Oryza species. Similar studies were undertaken in Sorghum bicolor, a species which diverged from cultivated rice 40–50 million years ago. Results Overgo markers, in conjunction with fingerprint and BAC end sequence data, were used to build sequence-ready BAC contigs for two wild Oryza species. The markers drove contig merges to construct physical maps syntenic to rice chromosome 1 in the wild species and provided evidence for at least one rearrangement on chromosome 1 of the O. sativa versus Oryza officinalis comparative map. When rice overgos were aligned to available S. bicolor sequence, 29% of the overgos aligned with three or fewer mismatches; of these, 41% gave positive hybridization signals. Overgo hybridization patterns supported colinearity of loci in regions of sorghum chromosome 3 and rice chromosome 1 and suggested that a possible genomic inversion occurred in this syntenic region in one of the two genomes after the divergence of S. bicolor and O. sativa. Conclusion The results of this study emphasize the importance of identifying conserved sequences in the reference sequence when designing overgo probes in order for those probes to hybridize successfully in distantly related species. As interspecific markers, overgos can be used successfully to construct physical maps in species which

  13. Random Mutagenesis of the Aspergillus oryzae Genome Results in Fungal Antibacterial Activity

    PubMed Central

    Leonard, Cory A.; Brown, Stacy D.; Hayman, J. Russell

    2013-01-01

    Multidrug-resistant bacteria cause severe infections in hospitals and communities. Development of new drugs to combat resistant microorganisms is needed. Natural products of microbial origin are the source of most currently available antibiotics. We hypothesized that random mutagenesis of Aspergillus oryzae would result in secretion of antibacterial compounds. To address this hypothesis, we developed a screen to identify individual A. oryzae mutants that inhibit the growth of Methicillin-resistant Staphylococcus aureus (MRSA) in vitro. To randomly generate A. oryzae mutant strains, spores were treated with ethyl methanesulfonate (EMS). Over 3000 EMS-treated A. oryzae cultures were tested in the screen, and one isolate, CAL220, exhibited altered morphology and antibacterial activity. Culture supernatant from this isolate showed antibacterial activity against Methicillin-sensitive Staphylococcus aureus, MRSA, and Pseudomonas aeruginosa, but not Klebsiella pneumonia or Proteus vulgaris. The results of this study support our hypothesis and suggest that the screen used is sufficient and appropriate to detect secreted antibacterial fungal compounds resulting from mutagenesis of A. oryzae. Because the genome of A. oryzae has been sequenced and systems are available for genetic transformation of this organism, targeted as well as random mutations may be introduced to facilitate the discovery of novel antibacterial compounds using this system. PMID:23983696

  14. Random Mutagenesis of the Aspergillus oryzae Genome Results in Fungal Antibacterial Activity.

    PubMed

    Leonard, Cory A; Brown, Stacy D; Hayman, J Russell

    2013-01-01

    Multidrug-resistant bacteria cause severe infections in hospitals and communities. Development of new drugs to combat resistant microorganisms is needed. Natural products of microbial origin are the source of most currently available antibiotics. We hypothesized that random mutagenesis of Aspergillus oryzae would result in secretion of antibacterial compounds. To address this hypothesis, we developed a screen to identify individual A. oryzae mutants that inhibit the growth of Methicillin-resistant Staphylococcus aureus (MRSA) in vitro. To randomly generate A. oryzae mutant strains, spores were treated with ethyl methanesulfonate (EMS). Over 3000 EMS-treated A. oryzae cultures were tested in the screen, and one isolate, CAL220, exhibited altered morphology and antibacterial activity. Culture supernatant from this isolate showed antibacterial activity against Methicillin-sensitive Staphylococcus aureus, MRSA, and Pseudomonas aeruginosa, but not Klebsiella pneumonia or Proteus vulgaris. The results of this study support our hypothesis and suggest that the screen used is sufficient and appropriate to detect secreted antibacterial fungal compounds resulting from mutagenesis of A. oryzae. Because the genome of A. oryzae has been sequenced and systems are available for genetic transformation of this organism, targeted as well as random mutations may be introduced to facilitate the discovery of novel antibacterial compounds using this system.

  15. Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana

    PubMed Central

    Itoh, Takeshi; Tanaka, Tsuyoshi; Barrero, Roberto A.; Yamasaki, Chisato; Fujii, Yasuyuki; Hilton, Phillip B.; Antonio, Baltazar A.; Aono, Hideo; Apweiler, Rolf; Bruskiewich, Richard; Bureau, Thomas; Burr, Frances; Costa de Oliveira, Antonio; Fuks, Galina; Habara, Takuya; Haberer, Georg; Han, Bin; Harada, Erimi; Hiraki, Aiko T.; Hirochika, Hirohiko; Hoen, Douglas; Hokari, Hiroki; Hosokawa, Satomi; Hsing, Yue; Ikawa, Hiroshi; Ikeo, Kazuho; Imanishi, Tadashi; Ito, Yukiyo; Jaiswal, Pankaj; Kanno, Masako; Kawahara, Yoshihiro; Kawamura, Toshiyuki; Kawashima, Hiroaki; Khurana, Jitendra P.; Kikuchi, Shoshi; Komatsu, Setsuko; Koyanagi, Kanako O.; Kubooka, Hiromi; Lieberherr, Damien; Lin, Yao-Cheng; Lonsdale, David; Matsumoto, Takashi; Matsuya, Akihiro; McCombie, W. Richard; Messing, Joachim; Miyao, Akio; Mulder, Nicola; Nagamura, Yoshiaki; Nam, Jongmin; Namiki, Nobukazu; Numa, Hisataka; Nurimoto, Shin; O’Donovan, Claire; Ohyanagi, Hajime; Okido, Toshihisa; OOta, Satoshi; Osato, Naoki; Palmer, Lance E.; Quetier, Francis; Raghuvanshi, Saurabh; Saichi, Naomi; Sakai, Hiroaki; Sakai, Yasumichi; Sakata, Katsumi; Sakurai, Tetsuya; Sato, Fumihiko; Sato, Yoshiharu; Schoof, Heiko; Seki, Motoaki; Shibata, Michie; Shimizu, Yuji; Shinozaki, Kazuo; Shinso, Yuji; Singh, Nagendra K.; Smith-White, Brian; Takeda, Jun-ichi; Tanino, Motohiko; Tatusova, Tatiana; Thongjuea, Supat; Todokoro, Fusano; Tsugane, Mika; Tyagi, Akhilesh K.; Vanavichit, Apichart; Wang, Aihui; Wing, Rod A.; Yamaguchi, Kaori; Yamamoto, Mayu; Yamamoto, Naoyuki; Yu, Yeisoo; Zhang, Hao; Zhao, Qiang; Higo, Kenichi; Burr, Benjamin; Gojobori, Takashi; Sasaki, Takuji

    2007-01-01

    We present here the annotation of the complete genome of rice Oryza sativa L. ssp. japonica cultivar Nipponbare. All functional annotations for proteins and non-protein-coding RNA (npRNA) candidates were manually curated. Functions were identified or inferred in 19,969 (70%) of the proteins, and 131 possible npRNAs (including 58 antisense transcripts) were found. Almost 5000 annotated protein-coding genes were found to be disrupted in insertional mutant lines, which will accelerate future experimental validation of the annotations. The rice loci were determined by using cDNA sequences obtained from rice and other representative cereals. Our conservative estimate based on these loci and an extrapolation suggested that the gene number of rice is ∼32,000, which is smaller than previous estimates. We conducted comparative analyses between rice and Arabidopsis thaliana and found that both genomes possessed several lineage-specific genes, which might account for the observed differences between these species, while they had similar sets of predicted functional domains among the protein sequences. A system to control translational efficiency seems to be conserved across large evolutionary distances. Moreover, the evolutionary process of protein-coding genes was examined. Our results suggest that natural selection may have played a role for duplicated genes in both species, so that duplication was suppressed or favored in a manner that depended on the function of a gene. PMID:17210932

  16. The whole chloroplast genome of wild rice (Oryza australiensis).

    PubMed

    Wu, Zhiqiang; Ge, Song

    2016-01-01

    The whole chloroplast genome of wild rice (Oryza australiensis) is characterized in this study. The genome size is 135,224  bp, exhibiting a typical circular structure including a pair of 25,776  bp inverted repeats (IRa,b) separated by a large single-copy region (LSC) of 82,212  bp and a small single-copy region (SSC) of 12,470  bp. The overall GC content of the genome is 38.95%. 110 unique genes were annotated, including 76 protein-coding genes, 4 ribosomal RNA genes, and 30t RNA genes. Among these, 18 are duplicated in the inverted repeat regions, 13 genes contain one intron, and 2 genes (rps12 and ycf3) have two introns.

  17. Single molecule real-time sequencing of Xanthomonas oryzae genomes reveals a dynamic structure and complex TAL (transcription activator-like) effector gene relationships

    PubMed Central

    Booher, Nicholas J.; Carpenter, Sara C. D.; Sebra, Robert P.; Wang, Li; Salzberg, Steven L.; Leach, Jan E.

    2015-01-01

    Pathogen-injected, direct transcriptional activators of host genes, TAL (transcription activator-like) effectors play determinative roles in plant diseases caused by Xanthomonas spp. A large domain of nearly identical, 33–35 aa repeats in each protein mediates DNA recognition. This modularity makes TAL effectors customizable and thus important also in biotechnology. However, the repeats render TAL effector (tal) genes nearly impossible to assemble using next-generation, short reads. Here, we demonstrate that long-read, single molecule real-time (SMRT) sequencing solves this problem. Taking an ensemble approach to first generate local, tal gene contigs, we correctly assembled de novo the genomes of two strains of the rice pathogen X. oryzae completed previously using the Sanger method and even identified errors in those references. Sequencing two more strains revealed a dynamic genome structure and a striking plasticity in tal gene content. Our results pave the way for population-level studies to inform resistance breeding, improve biotechnology and probe TAL effector evolution. PMID:27148456

  18. Gene Space Dynamics during the Evolution of Aegilops tauschii, Brachypodium distachyon, Oryza sativa, and Sorghum bicolor Genomes

    USDA-ARS?s Scientific Manuscript database

    Nine different regions totaling 9.7 Mb of the 4.02 Gb Aegilops tauschii genome were sequenced using the Sanger sequencing technology and compared with orthologous Brachypodium distachyon, Oryza sativa (rice) and Sorghum bicolor (sorghum) genomic sequences. The ancestral gene content in these regio...

  19. A draft sequence of the rice genome (Oryza sativa L. ssp. indica).

    PubMed

    Yu, Jun; Hu, Songnian; Wang, Jun; Wong, Gane Ka-Shu; Li, Songgang; Liu, Bin; Deng, Yajun; Dai, Li; Zhou, Yan; Zhang, Xiuqing; Cao, Mengliang; Liu, Jing; Sun, Jiandong; Tang, Jiabin; Chen, Yanjiong; Huang, Xiaobing; Lin, Wei; Ye, Chen; Tong, Wei; Cong, Lijuan; Geng, Jianing; Han, Yujun; Li, Lin; Li, Wei; Hu, Guangqiang; Huang, Xiangang; Li, Wenjie; Li, Jian; Liu, Zhanwei; Li, Long; Liu, Jianping; Qi, Qiuhui; Liu, Jinsong; Li, Li; Li, Tao; Wang, Xuegang; Lu, Hong; Wu, Tingting; Zhu, Miao; Ni, Peixiang; Han, Hua; Dong, Wei; Ren, Xiaoyu; Feng, Xiaoli; Cui, Peng; Li, Xianran; Wang, Hao; Xu, Xin; Zhai, Wenxue; Xu, Zhao; Zhang, Jinsong; He, Sijie; Zhang, Jianguo; Xu, Jichen; Zhang, Kunlin; Zheng, Xianwu; Dong, Jianhai; Zeng, Wanyong; Tao, Lin; Ye, Jia; Tan, Jun; Ren, Xide; Chen, Xuewei; He, Jun; Liu, Daofeng; Tian, Wei; Tian, Chaoguang; Xia, Hongai; Bao, Qiyu; Li, Gang; Gao, Hui; Cao, Ting; Wang, Juan; Zhao, Wenming; Li, Ping; Chen, Wei; Wang, Xudong; Zhang, Yong; Hu, Jianfei; Wang, Jing; Liu, Song; Yang, Jian; Zhang, Guangyu; Xiong, Yuqing; Li, Zhijie; Mao, Long; Zhou, Chengshu; Zhu, Zhen; Chen, Runsheng; Hao, Bailin; Zheng, Weimou; Chen, Shouyi; Guo, Wei; Li, Guojie; Liu, Siqi; Tao, Ming; Wang, Jian; Zhu, Lihuang; Yuan, Longping; Yang, Huanming

    2002-04-05

    We have produced a draft sequence of the rice genome for the most widely cultivated subspecies in China, Oryza sativa L. ssp. indica, by whole-genome shotgun sequencing. The genome was 466 megabases in size, with an estimated 46,022 to 55,615 genes. Functional coverage in the assembled sequences was 92.0%. About 42.2% of the genome was in exact 20-nucleotide oligomer repeats, and most of the transposons were in the intergenic regions between genes. Although 80.6% of predicted Arabidopsis thaliana genes had a homolog in rice, only 49.4% of predicted rice genes had a homolog in A. thaliana. The large proportion of rice genes with no recognizable homologs is due to a gradient in the GC content of rice coding sequences.

  20. Multiple Translocation of the AVR-Pita Effector Gene among Chromosomes of the Rice Blast Fungus Magnaporthe oryzae and Related Species

    PubMed Central

    Chuma, Izumi; Isobe, Chihiro; Hotta, Yuma; Ibaragi, Kana; Futamata, Natsuru; Kusaba, Motoaki; Yoshida, Kentaro; Terauchi, Ryohei; Fujita, Yoshikatsu; Nakayashiki, Hitoshi; Valent, Barbara; Tosa, Yukio

    2011-01-01

    Magnaporthe oryzae is the causal agent of rice blast disease, a devastating problem worldwide. This fungus has caused breakdown of resistance conferred by newly developed commercial cultivars. To address how the rice blast fungus adapts itself to new resistance genes so quickly, we examined chromosomal locations of AVR-Pita, a subtelomeric gene family corresponding to the Pita resistance gene, in various isolates of M. oryzae (including wheat and millet pathogens) and its related species. We found that AVR-Pita (AVR-Pita1 and AVR-Pita2) is highly variable in its genome location, occurring in chromosomes 1, 3, 4, 5, 6, 7, and supernumerary chromosomes, particularly in rice-infecting isolates. When expressed in M. oryzae, most of the AVR-Pita homologs could elicit Pita-mediated resistance, even those from non-rice isolates. AVR-Pita was flanked by a retrotransposon, which presumably contributed to its multiple translocation across the genome. On the other hand, family member AVR-Pita3, which lacks avirulence activity, was stably located on chromosome 7 in a vast majority of isolates. These results suggest that the diversification in genome location of AVR-Pita in the rice isolates is a consequence of recognition by Pita in rice. We propose a model that the multiple translocation of AVR-Pita may be associated with its frequent loss and recovery mediated by its transfer among individuals in asexual populations. This model implies that the high mobility of AVR-Pita is a key mechanism accounting for the rapid adaptation toward Pita. Dynamic adaptation of some fungal plant pathogens may be achieved by deletion and recovery of avirulence genes using a population as a unit of adaptation. PMID:21829350

  1. Genomics reveals traces of fungal phenylpropanoid-flavonoid metabolic pathway in the f ilamentous fungus Aspergillus oryzae.

    PubMed

    Juvvadi, Praveen Rao; Seshime, Yasuyo; Kitamoto, Katsuhiko

    2005-12-01

    Fungal secondary metabolites constitute a wide variety of compounds which either play a vital role in agricultural, pharmaceutical and industrial contexts, or have devastating effects on agriculture, animal and human affairs by virtue of their toxigenicity. Owing to their beneficial and deleterious characteristics, these complex compounds and the genes responsible for their synthesis have been the subjects of extensive investigation by microbiologists and pharmacologists. A majority of the fungal secondary metabolic genes are classified as type I polyketide synthases (PKS) which are often clustered with other secondary metabolism related genes. In this review we discuss on the significance of our recent discovery of chalcone synthase (CHS) genes belonging to the type III PKS superfamily in an industrially important fungus, Aspergillus oryzae. CHS genes are known to play a vital role in the biosynthesis of flavonoids in plants. A comparative genome analyses revealed the unique character of A. oryzae with four CHS-like genes (csyA, csyB, csyC and csyD) amongst other Aspergilli (Aspergillus nidulans and Aspergillus fumigatus) which contained none of the CHS-like genes. Some other fungi such as Neurospora crassa, Fusarium graminearum, Magnaporthe grisea, Podospora anserina and Phanerochaete chrysosporium also contained putative type III PKSs, with a phylogenic distinction from bacteria and plants. The enzymatically active nature of these newly discovered homologues is expected owing to the conservation in the catalytic residues across the different species of plants and fungi, and also by the fact that a majority of these genes (csyA, csyB and csyD) were expressed in A. oryzae. While this finding brings filamentous fungi closer to plants and bacteria which until recently were the only ones considered to possess the type III PKSs, the presence of putative genes encoding other principal enzymes involved in the phenylpropanoid and flavonoid biosynthesis (viz

  2. Identification and diversity of functional centromere satellites in the wild rice species Oryza brachyantha.

    PubMed

    Yi, Chuandeng; Zhang, Wenli; Dai, Xibin; Li, Xing; Gong, Zhiyun; Zhou, Yong; Liang, Guohua; Gu, Minghong

    2013-12-01

    The centromere is a key chromosomal component for sister chromatid cohesion and is the site for kinetochore assembly and spindle fiber attachment, allowing each sister chromatid to faithfully segregate to each daughter cell during cell division. It is not clear what types of sequences act as functional centromeres and how centromere sequences are organized in Oryza brachyantha, an FF genome species. In this study, we found that the three classes of centromere-specific CentO-F satellites (CentO-F1, CentO-F2, and CentOF3) in O. brachyantha share no homology with the CentO satellites in Oryza sativa. The three classes of CentO-F satellites are all located within the chromosomal regions to which the spindle fibers attach and are characterized by megabase tandem arrays that are flanked by centromere-specific retrotransposons, CRR-F, in the O. brachyantha centromeres. Although these CentO-F satellites are quantitatively variable among 12 O. brachyantha centromeres, immunostaining with an antibody specific to CENH3 indicates that they are colocated with CENH3 in functional centromere regions. Our results demonstrate that the three classes of CentO-F satellites may be the major components of functional centromeres in O. brachyantha.

  3. Proteomic analysis of seed storage proteins in wild rice species of the Oryza genus.

    PubMed

    Jiang, Chunmiao; Cheng, Zaiquan; Zhang, Cheng; Yu, Tengqiong; Zhong, Qiaofang; Shen, J Qingxi; Huang, Xingqi

    2014-01-01

    The total protein contents of rice seeds are significantly higher in the three wild rice species (Oryza rufipogon Grill., Oryza officinalis Wall. and Oryza meyeriana Baill.) than in the cultivated rice (Oryza sativa L.). However, there is still no report regarding a systematic proteomic analysis of seed proteins in the wild rice species. Also, the relationship between the contents of seed total proteins and rice nutritional quality has not been thoroughly investigated. The total seed protein contents, especially the glutelin contents, of the three wild rice species were higher than those of the two cultivated rice materials. Based on the protein banding patterns of SDS-PAGE, O. rufipogon was similar to the two cultivated rice materials, followed by O. officinalis, while O. meyeriana exhibited notable differences. Interestingly, O. meyeriana had high contents of glutelin and low contents of prolamine, and lacked 26 kDa globulin band and appeared a new 28 kDa protein band. However, for O. officinali a 16 kDa protein band was absent and a row of unique 32 kDa proteins appeared. In addition, we found that 13 kDa prolamine band disappeared while special 14 kDa and 12 kDa protein bands were present in O. officinalis. Two-dimensional gel electrophoresis (2-DE) analysis revealed remarkable differences in protein profiles of the wild rice species and the two cultivated rice materials. Also, the numbers of detected protein spots of the three wild rice species were significantly higher than those of two cultivated rice. A total of 35 differential protein spots were found for glutelin acidic subunits, glutelin precursors and glutelin basic subunits in wild rice species. Among those, 18 protein spots were specific and 17 major spots were elevated. Six differential protein spots for glutelin acidic subunits were identified, including a glutelin type-A 2 precursor and five hypothetical proteins. This was the first report on proteomic analysis of the three wild rice species

  4. Heterologous Production of a Novel Cyclic Peptide Compound, KK-1, in Aspergillus oryzae.

    PubMed

    Yoshimi, Akira; Yamaguchi, Sigenari; Fujioka, Tomonori; Kawai, Kiyoshi; Gomi, Katsuya; Machida, Masayuki; Abe, Keietsu

    2018-01-01

    A novel cyclic peptide compound, KK-1, was originally isolated from the plant-pathogenic fungus Curvularia clavata . It consists of 10 amino acid residues, including five N -methylated amino acid residues, and has potent antifungal activity. Recently, the genome-sequencing analysis of C. clavata was completed, and the biosynthetic genes involved in KK-1 production were predicted by using a novel gene cluster mining tool, MIDDAS-M. These genes form an approximately 75-kb cluster, which includes nine open reading frames, containing a non-ribosomal peptide synthetase (NRPS) gene. To determine whether the predicted genes were responsible for the biosynthesis of KK-1, we performed heterologous production of KK-1 in Aspergillus oryzae by introduction of the cluster genes into the genome of A. oryzae . The NRPS gene was split in two fragments and then reconstructed in the A. oryzae genome, because the gene was quite large (approximately 40 kb). The remaining seven genes in the cluster, excluding the regulatory gene kkR , were simultaneously introduced into the strain of A. oryzae in which NRPS had already been incorporated. To evaluate the heterologous production of KK-1 in A. oryzae , gene expression was analyzed by RT-PCR and KK-1 productivity was quantified by HPLC. KK-1 was produced in variable quantities by a number of transformed strains, along with expression of the cluster genes. The amount of KK-1 produced by the strain with the greatest expression of all genes was lower than that produced by the original producer, C. clavata . Therefore, expression of the cluster genes is necessary and sufficient for the heterologous production of KK-1 in A. oryzae , although there may be unknown factors limiting productivity in this species.

  5. Heterologous Production of a Novel Cyclic Peptide Compound, KK-1, in Aspergillus oryzae

    PubMed Central

    Yoshimi, Akira; Yamaguchi, Sigenari; Fujioka, Tomonori; Kawai, Kiyoshi; Gomi, Katsuya; Machida, Masayuki; Abe, Keietsu

    2018-01-01

    A novel cyclic peptide compound, KK-1, was originally isolated from the plant-pathogenic fungus Curvularia clavata. It consists of 10 amino acid residues, including five N-methylated amino acid residues, and has potent antifungal activity. Recently, the genome-sequencing analysis of C. clavata was completed, and the biosynthetic genes involved in KK-1 production were predicted by using a novel gene cluster mining tool, MIDDAS-M. These genes form an approximately 75-kb cluster, which includes nine open reading frames, containing a non-ribosomal peptide synthetase (NRPS) gene. To determine whether the predicted genes were responsible for the biosynthesis of KK-1, we performed heterologous production of KK-1 in Aspergillus oryzae by introduction of the cluster genes into the genome of A. oryzae. The NRPS gene was split in two fragments and then reconstructed in the A. oryzae genome, because the gene was quite large (approximately 40 kb). The remaining seven genes in the cluster, excluding the regulatory gene kkR, were simultaneously introduced into the strain of A. oryzae in which NRPS had already been incorporated. To evaluate the heterologous production of KK-1 in A. oryzae, gene expression was analyzed by RT-PCR and KK-1 productivity was quantified by HPLC. KK-1 was produced in variable quantities by a number of transformed strains, along with expression of the cluster genes. The amount of KK-1 produced by the strain with the greatest expression of all genes was lower than that produced by the original producer, C. clavata. Therefore, expression of the cluster genes is necessary and sufficient for the heterologous production of KK-1 in A. oryzae, although there may be unknown factors limiting productivity in this species. PMID:29686660

  6. Genome-wide analysis of Dongxiang wild rice (Oryza rufipogon Griff.) to investigate lost/acquired genes during rice domestication.

    PubMed

    Zhang, Fantao; Xu, Tao; Mao, Linyong; Yan, Shuangyong; Chen, Xiwen; Wu, Zhenfeng; Chen, Rui; Luo, Xiangdong; Xie, Jiankun; Gao, Shan

    2016-04-26

    It is widely accepted that cultivated rice (Oryza sativa L.) was domesticated from common wild rice (Oryza rufipogon Griff.). Compared to other studies which concentrate on rice origin, this study is to genetically elucidate the substantially phenotypic and physiological changes from wild rice to cultivated rice at the whole genome level. Instead of comparing two assembled genomes, this study directly compared the Dongxiang wild rice (DXWR) Illumina sequencing reads with the Nipponbare (O. sativa) complete genome without assembly of the DXWR genome. Based on the results from the comparative genomics analysis, structural variations (SVs) between DXWR and Nipponbare were determined to locate deleted genes which could have been acquired by Nipponbare during rice domestication. To overcome the limit of the SV detection, the DXWR transcriptome was also sequenced and compared with the Nipponbare transcriptome to discover the genes which could have been lost in DXWR during domestication. Both 1591 Nipponbare-acquired genes and 206 DXWR-lost transcripts were further analyzed using annotations from multiple sources. The NGS data are available in the NCBI SRA database with ID SRP070627. These results help better understanding the domestication from wild rice to cultivated rice at the whole genome level and provide a genomic data resource for rice genetic research or breeding. One finding confirmed transposable elements contribute greatly to the genome evolution from wild rice to cultivated rice. Another finding suggested the photophosphorylation and oxidative phosphorylation system in cultivated rice could have adapted to environmental changes simultaneously during domestication.

  7. Genome-scale analysis of the high-efficient protein secretion system of Aspergillus oryzae.

    PubMed

    Liu, Lifang; Feizi, Amir; Österlund, Tobias; Hjort, Carsten; Nielsen, Jens

    2014-06-24

    The koji mold, Aspergillus oryzae is widely used for the production of industrial enzymes due to its particularly high protein secretion capacity and ability to perform post-translational modifications. However, systemic analysis of its secretion system is lacking, generally due to the poorly annotated proteome. Here we defined a functional protein secretory component list of A. oryzae using a previously reported secretory model of S. cerevisiae as scaffold. Additional secretory components were obtained by blast search with the functional components reported in other closely related fungal species such as Aspergillus nidulans and Aspergillus niger. To evaluate the defined component list, we performed transcriptome analysis on three α-amylase over-producing strains with varying levels of secretion capacities. Specifically, secretory components involved in the ER-associated processes (including components involved in the regulation of transport between ER and Golgi) were significantly up-regulated, with many of them never been identified for A. oryzae before. Furthermore, we defined a complete list of the putative A. oryzae secretome and monitored how it was affected by overproducing amylase. In combination with the transcriptome data, the most complete secretory component list and the putative secretome, we improved the systemic understanding of the secretory machinery of A. oryzae in response to high levels of protein secretion. The roles of many newly predicted secretory components were experimentally validated and the enriched component list provides a better platform for driving more mechanistic studies of the protein secretory pathway in this industrially important fungus.

  8. Comparative Analysis of the Genomes of Two Field Isolates of the Rice Blast Fungus Magnaporthe oryzae

    PubMed Central

    Li, Zhigang; Hu, Songnian; Yao, Nan; Dean, Ralph A.; Zhao, Wensheng; Shen, Mi; Zhang, Haiwang; Li, Chao; Liu, Liyuan; Cao, Lei; Xu, Xiaowen; Xing, Yunfei; Hsiang, Tom; Zhang, Ziding; Xu, Jin-Rong; Peng, You-Liang

    2012-01-01

    Rice blast caused by Magnaporthe oryzae is one of the most destructive diseases of rice worldwide. The fungal pathogen is notorious for its ability to overcome host resistance. To better understand its genetic variation in nature, we sequenced the genomes of two field isolates, Y34 and P131. In comparison with the previously sequenced laboratory strain 70-15, both field isolates had a similar genome size but slightly more genes. Sequences from the field isolates were used to improve genome assembly and gene prediction of 70-15. Although the overall genome structure is similar, a number of gene families that are likely involved in plant-fungal interactions are expanded in the field isolates. Genome-wide analysis on asynonymous to synonymous nucleotide substitution rates revealed that many infection-related genes underwent diversifying selection. The field isolates also have hundreds of isolate-specific genes and a number of isolate-specific gene duplication events. Functional characterization of randomly selected isolate-specific genes revealed that they play diverse roles, some of which affect virulence. Furthermore, each genome contains thousands of loci of transposon-like elements, but less than 30% of them are conserved among different isolates, suggesting active transposition events in M. oryzae. A total of approximately 200 genes were disrupted in these three strains by transposable elements. Interestingly, transposon-like elements tend to be associated with isolate-specific or duplicated sequences. Overall, our results indicate that gain or loss of unique genes, DNA duplication, gene family expansion, and frequent translocation of transposon-like elements are important factors in genome variation of the rice blast fungus. PMID:22876203

  9. A novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae.

    PubMed

    Das, Alok; Soubam, D; Singh, P K; Thakur, S; Singh, N K; Sharma, T R

    2012-06-01

    The dominant rice blast resistance gene, Pi54 confers resistance to Magnaporthe oryzae in different parts of India. In our effort to identify more effective forms of this gene, we isolated an orthologue of Pi54 named as Pi54rh from the blast-resistant wild species of rice, Oryza rhizomatis, using allele mining approach and validated by complementation. The Pi54rh belongs to CC-NBS-LRR family of disease resistance genes with a unique Zinc finger (C(3)H type) domain. The 1,447 bp Pi54rh transcript comprises of 101 bp 5'-UTR, 1,083 bp coding region and 263 bp 3'-UTR, driven by pathogen inducible promoter. We showed the extracellular localization of Pi54rh protein and the presence of glycosylation, myristoylation and phosphorylation sites which implicates its role in signal transduction process. This is in contrast to other blast resistance genes that are predicted to be intracellular NBS-LRR-type resistance proteins. The Pi54rh was found to express constitutively at basal level in the leaves, but upregulates 3.8-fold at 96 h post-inoculation with the pathogen. Functional validation of cloned Pi54rh gene using complementation test showed high degree of resistance to seven isolates of M. oryzae collected from different geographical locations of India. In this study, for the first time, we demonstrated that a rice blast resistance gene Pi54rh cloned from wild species of rice provides broad spectrum resistance to M. oryzae hence can be used in rice improvement breeding programme.

  10. Breeding and identification of novel koji molds with high activity of acid protease by genome recombination between Aspergillus oryzae and Aspergillus niger.

    PubMed

    Xu, Defeng; Pan, Li; Zhao, Haifeng; Zhao, Mouming; Sun, Jiaxin; Liu, Dongmei

    2011-09-01

    Acid protease is essential for degradation of proteins during soy sauce fermentation. To breed more suitable koji molds with high activity of acid protease, interspecific genome recombination between A. oryzae and A. niger was performed. Through stabilization with d-camphor and haploidization with benomyl, several stable fusants with higher activity of acid protease were obtained, showing different degrees of improvement in acid protease activity compared with the parental strain A. oryzae. In addition, analyses of mycelial morphology, expression profiles of extracellular proteins, esterase isoenzyme profiles, and random amplified polymorphic DNA (RAPD) were applied to identify the fusants through their phenotypic and genetic relationships. Morphology analysis of the mycelial shape of fusants indicated a phenotype intermediate between A. oryzae and A. niger. The profiles of extracellular proteins and esterase isoenzyme electrophoresis showed the occurrence of genome recombination during or after protoplast fusion. The dendrogram constructed from RAPD data revealed great heterogeneity, and genetic dissimilarity indices showed there were considerable differences between the fusants and their parental strains. This investigation suggests that genome recombination is a powerful tool for improvement of food-grade industrial strains. Furthermore, the presented strain improvement procedure will be applicable for widespread use for other industrial strains.

  11. Genome-Wide Comparative In Silico Analysis of the RNA Helicase Gene Family in Zea mays and Glycine max: A Comparison with Arabidopsis and Oryza sativa

    PubMed Central

    Huang, Jinguang; Zheng, Chengchao

    2013-01-01

    RNA helicases are enzymes that are thought to unwind double-stranded RNA molecules in an energy-dependent fashion through the hydrolysis of NTP. RNA helicases are associated with all processes involving RNA molecules, including nuclear transcription, editing, splicing, ribosome biogenesis, RNA export, and organelle gene expression. The involvement of RNA helicase in response to stress and in plant growth and development has been reported previously. While their importance in Arabidopsis and Oryza sativa has been partially studied, the function of RNA helicase proteins is poorly understood in Zea mays and Glycine max. In this study, we identified a total of RNA helicase genes in Arabidopsis and other crop species genome by genome-wide comparative in silico analysis. We classified the RNA helicase genes into three subfamilies according to the structural features of the motif II region, such as DEAD-box, DEAH-box and DExD/H-box, and different species showed different patterns of alternative splicing. Secondly, chromosome location analysis showed that the RNA helicase protein genes were distributed across all chromosomes with different densities in the four species. Thirdly, phylogenetic tree analyses identified the relevant homologs of DEAD-box, DEAH-box and DExD/H-box RNA helicase proteins in each of the four species. Fourthly, microarray expression data showed that many of these predicted RNA helicase genes were expressed in different developmental stages and different tissues under normal growth conditions. Finally, real-time quantitative PCR analysis showed that the expression levels of 10 genes in Arabidopsis and 13 genes in Zea mays were in close agreement with the microarray expression data. To our knowledge, this is the first report of a comparative genome-wide analysis of the RNA helicase gene family in Arabidopsis, Oryza sativa, Zea mays and Glycine max. This study provides valuable information for understanding the classification and putative functions of

  12. Genome-wide comparative in silico analysis of the RNA helicase gene family in Zea mays and Glycine max: a comparison with Arabidopsis and Oryza sativa.

    PubMed

    Xu, Ruirui; Zhang, Shizhong; Huang, Jinguang; Zheng, Chengchao

    2013-01-01

    RNA helicases are enzymes that are thought to unwind double-stranded RNA molecules in an energy-dependent fashion through the hydrolysis of NTP. RNA helicases are associated with all processes involving RNA molecules, including nuclear transcription, editing, splicing, ribosome biogenesis, RNA export, and organelle gene expression. The involvement of RNA helicase in response to stress and in plant growth and development has been reported previously. While their importance in Arabidopsis and Oryza sativa has been partially studied, the function of RNA helicase proteins is poorly understood in Zea mays and Glycine max. In this study, we identified a total of RNA helicase genes in Arabidopsis and other crop species genome by genome-wide comparative in silico analysis. We classified the RNA helicase genes into three subfamilies according to the structural features of the motif II region, such as DEAD-box, DEAH-box and DExD/H-box, and different species showed different patterns of alternative splicing. Secondly, chromosome location analysis showed that the RNA helicase protein genes were distributed across all chromosomes with different densities in the four species. Thirdly, phylogenetic tree analyses identified the relevant homologs of DEAD-box, DEAH-box and DExD/H-box RNA helicase proteins in each of the four species. Fourthly, microarray expression data showed that many of these predicted RNA helicase genes were expressed in different developmental stages and different tissues under normal growth conditions. Finally, real-time quantitative PCR analysis showed that the expression levels of 10 genes in Arabidopsis and 13 genes in Zea mays were in close agreement with the microarray expression data. To our knowledge, this is the first report of a comparative genome-wide analysis of the RNA helicase gene family in Arabidopsis, Oryza sativa, Zea mays and Glycine max. This study provides valuable information for understanding the classification and putative functions of

  13. From genes to genomes: a new paradigm for studying fungal pathogenesis in Magnaporthe oryzae.

    PubMed

    Xu, Jin-Rong; Zhao, Xinhua; Dean, Ralph A

    2007-01-01

    Magnaporthe oryzae is the most destructive fungal pathogen of rice worldwide and because of its amenability to classical and molecular genetic manipulation, availability of a genome sequence, and other resources it has emerged as a leading model system to study host-pathogen interactions. This chapter reviews recent progress toward elucidation of the molecular basis of infection-related morphogenesis, host penetration, invasive growth, and host-pathogen interactions. Related information on genome analysis and genomic studies of plant infection processes is summarized under specific topics where appropriate. Particular emphasis is placed on the role of MAP kinase and cAMP signal transduction pathways and unique features in the genome such as repetitive sequences and expanded gene families. Emerging developments in functional genome analysis through large-scale insertional mutagenesis and gene expression profiling are detailed. The chapter concludes with new prospects in the area of systems biology, such as protein expression profiling, and highlighting remaining crucial information needed to fully appreciate host-pathogen interactions.

  14. Genome-scale analysis of the high-efficient protein secretion system of Aspergillus oryzae

    PubMed Central

    2014-01-01

    Background The koji mold, Aspergillus oryzae is widely used for the production of industrial enzymes due to its particularly high protein secretion capacity and ability to perform post-translational modifications. However, systemic analysis of its secretion system is lacking, generally due to the poorly annotated proteome. Results Here we defined a functional protein secretory component list of A. oryzae using a previously reported secretory model of S. cerevisiae as scaffold. Additional secretory components were obtained by blast search with the functional components reported in other closely related fungal species such as Aspergillus nidulans and Aspergillus niger. To evaluate the defined component list, we performed transcriptome analysis on three α-amylase over-producing strains with varying levels of secretion capacities. Specifically, secretory components involved in the ER-associated processes (including components involved in the regulation of transport between ER and Golgi) were significantly up-regulated, with many of them never been identified for A. oryzae before. Furthermore, we defined a complete list of the putative A. oryzae secretome and monitored how it was affected by overproducing amylase. Conclusion In combination with the transcriptome data, the most complete secretory component list and the putative secretome, we improved the systemic understanding of the secretory machinery of A. oryzae in response to high levels of protein secretion. The roles of many newly predicted secretory components were experimentally validated and the enriched component list provides a better platform for driving more mechanistic studies of the protein secretory pathway in this industrially important fungus. PMID:24961398

  15. Genomes of 11 rice relatives unveil genetic conservation, turnover and innovation across the genus Oryza

    USDA-ARS?s Scientific Manuscript database

    The genus Oryza, with cultivated Asian and African rice and 22 wild species, is a model system for the study of molecular evolution over time-scales ranging from a few thousand to 15 million years. Over this period, species radiation, adaptation, and domestication all left their footprints in rice g...

  16. Long terminal repeat retrotransposons of Oryza sativa

    PubMed Central

    McCarthy, Eugene M; Liu, Jingdong; Lizhi, Gao; McDonald, John F

    2002-01-01

    Background Long terminal repeat (LTR) retrotransposons constitute a major fraction of the genomes of higher plants. For example, retrotransposons comprise more than 50% of the maize genome and more than 90% of the wheat genome. LTR retrotransposons are believed to have contributed significantly to the evolution of genome structure and function. The genome sequencing of selected experimental and agriculturally important species is providing an unprecedented opportunity to view the patterns of variation existing among the entire complement of retrotransposons in complete genomes. Results Using a new data-mining program, LTR_STRUC, (LTR retrotransposon structure program), we have mined the GenBank rice (Oryza sativa) database as well as the more extensive (259 Mb) Monsanto rice dataset for LTR retrotransposons. Almost two-thirds (37) of the 59 families identified consist of copia-like elements, but gypsy-like elements outnumber copia-like elements by a ratio of approximately 2:1. At least 17% of the rice genome consists of LTR retrotransposons. In addition to the ubiquitous gypsy- and copia-like classes of LTR retrotransposons, the rice genome contains at least two novel families of unusually small, non-coding (non-autonomous) LTR retrotransposons. Conclusions Each of the major clades of rice LTR retrotransposons is more closely related to elements present in other species than to the other clades of rice elements, suggesting that horizontal transfer may have occurred over the evolutionary history of rice LTR retrotransposons. Like LTR retrotransposons in other species with relatively small genomes, many rice LTR retrotransposons are relatively young, indicating a high rate of turnover. PMID:12372141

  17. Morphological and Molecular Data Reveal Three Distinct Populations of Indian Wild Rice Oryza rufipogon Griff. Species Complex.

    PubMed

    Singh, Balwant; Singh, Nisha; Mishra, Shefali; Tripathi, Kabita; Singh, Bikram P; Rai, Vandna; Singh, Ashok K; Singh, Nagendra K

    2018-01-01

    Wild relatives of crops possess adaptive mutations for agronomically important traits, which could play significant role in crop improvement for sustainable agriculture. However, global climate change and human activities pose serious threats to the natural habitats leading to erosion of genetic diversity of wild rice populations. The purpose of this study was to explore and characterize India's huge untapped wild rice diversity in Oryza rufipogon Griff. species complex from a wide range of ecological niches. We made strategic expeditions around diversity hot spots in 64 districts of nine different agro-climatic zones of the country and collected 418 wild rice accessions. Significant variation was observed among the accessions for 46 morphological descriptors, allowing classification into O. nivara, O. rufipogon , and O. sativa f. spontanea morpho-taxonomic groups. Genome-specific pSINE1 markers confirmed all the accessions having AA genome, which were further classified using ecotype-specific pSINE1 markers into annual, perennial, intermediate, and an unknown type. Principal component analysis revealed continuous variation for the morphological traits in each ecotype group. Genetic diversity analysis based on multi-allelic SSR markers clustered these accessions into three major groups and analysis of molecular variance for nine agro-climatic zones showed that 68% of the genetic variation was inherent amongst individuals while only 11% of the variation separated the zones, though there was significant correlation between genetic and spatial distances of the accessions. Model based population structure analysis using genome wide bi-allelic SNP markers revealed three sub-populations designated 'Pro-Indica,' 'Pro-Aus,' and 'Mid-Gangetic,' which showed poor correspondence with the morpho - taxonomic classification or pSINE1 ecotypes. There was Pan-India distribution of the 'Pro-Indica' and 'Pro-Aus' sub-populations across agro-climatic zones, indicating a more

  18. Morphological and Molecular Data Reveal Three Distinct Populations of Indian Wild Rice Oryza rufipogon Griff. Species Complex

    PubMed Central

    Singh, Balwant; Singh, Nisha; Mishra, Shefali; Tripathi, Kabita; Singh, Bikram P.; Rai, Vandna; Singh, Ashok K.; Singh, Nagendra K.

    2018-01-01

    Wild relatives of crops possess adaptive mutations for agronomically important traits, which could play significant role in crop improvement for sustainable agriculture. However, global climate change and human activities pose serious threats to the natural habitats leading to erosion of genetic diversity of wild rice populations. The purpose of this study was to explore and characterize India’s huge untapped wild rice diversity in Oryza rufipogon Griff. species complex from a wide range of ecological niches. We made strategic expeditions around diversity hot spots in 64 districts of nine different agro-climatic zones of the country and collected 418 wild rice accessions. Significant variation was observed among the accessions for 46 morphological descriptors, allowing classification into O. nivara, O. rufipogon, and O. sativa f. spontanea morpho-taxonomic groups. Genome-specific pSINE1 markers confirmed all the accessions having AA genome, which were further classified using ecotype-specific pSINE1 markers into annual, perennial, intermediate, and an unknown type. Principal component analysis revealed continuous variation for the morphological traits in each ecotype group. Genetic diversity analysis based on multi-allelic SSR markers clustered these accessions into three major groups and analysis of molecular variance for nine agro-climatic zones showed that 68% of the genetic variation was inherent amongst individuals while only 11% of the variation separated the zones, though there was significant correlation between genetic and spatial distances of the accessions. Model based population structure analysis using genome wide bi-allelic SNP markers revealed three sub-populations designated ‘Pro-Indica,’ ‘Pro-Aus,’ and ‘Mid-Gangetic,’ which showed poor correspondence with the morpho-taxonomic classification or pSINE1 ecotypes. There was Pan-India distribution of the ‘Pro-Indica’ and ‘Pro-Aus’ sub-populations across agro-climatic zones

  19. Australian wild rice reveals pre-domestication origin of polymorphism deserts in rice genome.

    PubMed

    Krishnan S, Gopala; Waters, Daniel L E; Henry, Robert J

    2014-01-01

    Rice is a major source of human food with a predominantly Asian production base. Domestication involved selection of traits that are desirable for agriculture and to human consumers. Wild relatives of crop plants are a source of useful variation which is of immense value for crop improvement. Australian wild rices have been isolated from the impacts of domestication in Asia and represents a source of novel diversity for global rice improvement. Oryza rufipogon is a perennial wild progenitor of cultivated rice. Oryza meridionalis is a related annual species in Australia. We have examined the sequence of the genomes of AA genome wild rices from Australia that are close relatives of cultivated rice through whole genome re-sequencing. Assembly of the resequencing data to the O. sativa ssp. japonica cv. Nipponbare shows that Australian wild rices possess 2.5 times more single nucleotide polymorphisms than in the Asian wild rice and cultivated O. sativa ssp. indica. Analysis of the genome of domesticated rice reveals regions of low diversity that show very little variation (polymorphism deserts). Both the perennial and annual wild rice from Australia show a high degree of conservation of sequence with that found in cultivated rice in the same 4.58 Mbp region on chromosome 5, which suggests that some of the 'polymorphism deserts' in this and other parts of the rice genome may have originated prior to domestication due to natural selection. Analysis of genes in the 'polymorphism deserts' indicates that this selection may have been due to biotic or abiotic stress in the environment of early rice relatives. Despite having closely related sequences in these genome regions, the Australian wild populations represent an invaluable source of diversity supporting rice food security.

  20. The Blast Fungus Decoded: Genomes in Flux.

    PubMed

    Langner, Thorsten; Białas, Aleksandra; Kamoun, Sophien

    2018-04-17

    Plant disease outbreaks caused by fungi are a chronic threat to global food security. A prime case is blast disease, which is caused by the ascomycete fungus Magnaporthe oryzae (syn. Pyricularia oryzae ), which is infamous as the most destructive disease of the staple crop rice. However, despite its Linnaean binomial name, M. oryzae is a multihost pathogen that infects more than 50 species of grasses. A timely study by P. Gladieux and colleagues (mBio 9:e01219-17, 2018, https://doi.org/10.1128/mBio.01219-17) reports the most extensive population genomic analysis of the blast fungus thus far. M. oryzae consists of an assemblage of differentiated lineages that tend to be associated with particular host genera. Nonetheless, there is clear evidence of gene flow between lineages consistent with maintaining M. oryzae as a single species. Here, we discuss these findings with an emphasis on the ecologic and genetic mechanisms underpinning gene flow. This work also bears practical implications for diagnostics, surveillance, and management of blast diseases. Copyright © 2018 Langner et al.

  1. Sequencing of mitochondrial genomes of nine Aspergillus and Penicillium species identifies mobile introns and accessory genes as main sources of genome size variability.

    PubMed

    Joardar, Vinita; Abrams, Natalie F; Hostetler, Jessica; Paukstelis, Paul J; Pakala, Suchitra; Pakala, Suman B; Zafar, Nikhat; Abolude, Olukemi O; Payne, Gary; Andrianopoulos, Alex; Denning, David W; Nierman, William C

    2012-12-12

    The genera Aspergillus and Penicillium include some of the most beneficial as well as the most harmful fungal species such as the penicillin-producer Penicillium chrysogenum and the human pathogen Aspergillus fumigatus, respectively. Their mitochondrial genomic sequences may hold vital clues into the mechanisms of their evolution, population genetics, and biology, yet only a handful of these genomes have been fully sequenced and annotated. Here we report the complete sequence and annotation of the mitochondrial genomes of six Aspergillus and three Penicillium species: A. fumigatus, A. clavatus, A. oryzae, A. flavus, Neosartorya fischeri (A. fischerianus), A. terreus, P. chrysogenum, P. marneffei, and Talaromyces stipitatus (P. stipitatum). The accompanying comparative analysis of these and related publicly available mitochondrial genomes reveals wide variation in size (25-36 Kb) among these closely related fungi. The sources of genome expansion include group I introns and accessory genes encoding putative homing endonucleases, DNA and RNA polymerases (presumed to be of plasmid origin) and hypothetical proteins. The two smallest sequenced genomes (A. terreus and P. chrysogenum) do not contain introns in protein-coding genes, whereas the largest genome (T. stipitatus), contains a total of eleven introns. All of the sequenced genomes have a group I intron in the large ribosomal subunit RNA gene, suggesting that this intron is fixed in these species. Subsequent analysis of several A. fumigatus strains showed low intraspecies variation. This study also includes a phylogenetic analysis based on 14 concatenated core mitochondrial proteins. The phylogenetic tree has a different topology from published multilocus trees, highlighting the challenges still facing the Aspergillus systematics. The study expands the genomic resources available to fungal biologists by providing mitochondrial genomes with consistent annotations for future genetic, evolutionary and population

  2. The perennial ryegrass GenomeZipper: targeted use of genome resources for comparative grass genomics.

    PubMed

    Pfeifer, Matthias; Martis, Mihaela; Asp, Torben; Mayer, Klaus F X; Lübberstedt, Thomas; Byrne, Stephen; Frei, Ursula; Studer, Bruno

    2013-02-01

    Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The perennial ryegrass GenomeZipper is an ordered, information-rich genome scaffold, facilitating map-based cloning and genome assembly in perennial ryegrass and closely related Poaceae species. It also represents a milestone in describing synteny between perennial ryegrass and fully sequenced model grass genomes, thereby increasing our understanding of genome organization and evolution in the most important temperate forage and turf grass species.

  3. Genomic Species Are Ecological Species as Revealed by Comparative Genomics in Agrobacterium tumefaciens

    PubMed Central

    Lassalle, Florent; Campillo, Tony; Vial, Ludovic; Baude, Jessica; Costechareyre, Denis; Chapulliot, David; Shams, Malek; Abrouk, Danis; Lavire, Céline; Oger-Desfeux, Christine; Hommais, Florence; Guéguen, Laurent; Daubin, Vincent; Muller, Daniel; Nesme, Xavier

    2011-01-01

    The definition of bacterial species is based on genomic similarities, giving rise to the operational concept of genomic species, but the reasons of the occurrence of differentiated genomic species remain largely unknown. We used the Agrobacterium tumefaciens species complex and particularly the genomic species presently called genomovar G8, which includes the sequenced strain C58, to test the hypothesis of genomic species having specific ecological adaptations possibly involved in the speciation process. We analyzed the gene repertoire specific to G8 to identify potential adaptive genes. By hybridizing 25 strains of A. tumefaciens on DNA microarrays spanning the C58 genome, we highlighted the presence and absence of genes homologous to C58 in the taxon. We found 196 genes specific to genomovar G8 that were mostly clustered into seven genomic islands on the C58 genome—one on the circular chromosome and six on the linear chromosome—suggesting higher plasticity and a major adaptive role of the latter. Clusters encoded putative functional units, four of which had been verified experimentally. The combination of G8-specific functions defines a hypothetical species primary niche for G8 related to commensal interaction with a host plant. This supports that the G8 ancestor was able to exploit a new ecological niche, maybe initiating ecological isolation and thus speciation. Searching genomic data for synapomorphic traits is a powerful way to describe bacterial species. This procedure allowed us to find such phenotypic traits specific to genomovar G8 and thus propose a Latin binomial, Agrobacterium fabrum, for this bona fide genomic species. PMID:21795751

  4. Comparative genomic analysis identified a mutation related to enhanced heterologous protein production in the filamentous fungus Aspergillus oryzae.

    PubMed

    Jin, Feng-Jie; Katayama, Takuya; Maruyama, Jun-Ichi; Kitamoto, Katsuhiko

    2016-11-01

    Genomic mapping of mutations using next-generation sequencing technologies has facilitated the identification of genes contributing to fundamental biological processes, including human diseases. However, few studies have used this approach to identify mutations contributing to heterologous protein production in industrial strains of filamentous fungi, such as Aspergillus oryzae. In a screening of A. oryzae strains that hyper-produce human lysozyme (HLY), we previously isolated an AUT1 mutant that showed higher production of various heterologous proteins; however, the underlying factors contributing to the increased heterologous protein production remained unclear. Here, using a comparative genomic approach performed with whole-genome sequences, we attempted to identify the genes responsible for the high-level production of heterologous proteins in the AUT1 mutant. The comparative sequence analysis led to the detection of a gene (AO090120000003), designated autA, which was predicted to encode an unknown cytoplasmic protein containing an alpha/beta-hydrolase fold domain. Mutation or deletion of autA was associated with higher production levels of HLY. Specifically, the HLY yields of the autA mutant and deletion strains were twofold higher than that of the control strain during the early stages of cultivation. Taken together, these results indicate that combining classical mutagenesis approaches with comparative genomic analysis facilitates the identification of novel genes involved in heterologous protein production in filamentous fungi.

  5. Post-genomic insights into the plant polysaccharide degradation potential of Aspergillus nidulans and comparison to Aspergillus niger and Aspergillus oryzae.

    PubMed

    Coutinho, Pedro M; Andersen, Mikael R; Kolenova, Katarina; vanKuyk, Patricia A; Benoit, Isabelle; Gruben, Birgit S; Trejo-Aguilar, Blanca; Visser, Hans; van Solingen, Piet; Pakula, Tiina; Seiboth, Bernard; Battaglia, Evy; Aguilar-Osorio, Guillermo; de Jong, Jan F; Ohm, Robin A; Aguilar, Mariana; Henrissat, Bernard; Nielsen, Jens; Stålbrand, Henrik; de Vries, Ronald P

    2009-03-01

    The plant polysaccharide degradative potential of Aspergillus nidulans was analysed in detail and compared to that of Aspergillus niger and Aspergillus oryzae using a combination of bioinformatics, physiology and transcriptomics. Manual verification indicated that 28.4% of the A. nidulans ORFs analysed in this study do not contain a secretion signal, of which 40% may be secreted through a non-classical method.While significant differences were found between the species in the numbers of ORFs assigned to the relevant CAZy families, no significant difference was observed in growth on polysaccharides. Growth differences were observed between the Aspergilli and Podospora anserina, which has a more different genomic potential for polysaccharide degradation, suggesting that large genomic differences are required to cause growth differences on polysaccharides. Differences were also detected between the Aspergilli in the presence of putative regulatory sequences in the promoters of the ORFs of this study and correlation of the presence of putative XlnR binding sites to induction by xylose was detected for A. niger. These data demonstrate differences at genome content, substrate specificity of the enzymes and gene regulation in these three Aspergilli, which likely reflect their individual adaptation to their natural biotope.

  6. OsSERK1 regulates rice development but not immunity to Xanthomonas oryzae pv. oryzae or Magnaporthe oryzae.

    PubMed

    Zuo, Shimin; Zhou, Xiaogang; Chen, Mawsheng; Zhang, Shilu; Schwessinger, Benjamin; Ruan, Deling; Yuan, Can; Wang, Jing; Chen, Xuewei; Ronald, Pamela C

    2014-12-01

    Somatic embryogenesis receptor kinase (SERK) proteins play pivotal roles in regulation of plant development and immunity. The rice genome contains two SERK genes, OsSerk1 and OsSerk2. We previously demonstrated that OsSerk2 is required for rice Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae (Xoo) and for normal development. Here we report the molecular characterization of OsSerk1. Overexpression of OsSerk1 results in a semi-dwarf phenotype whereas silencing of OsSerk1 results in a reduced angle of the lamina joint. OsSerk1 is not required for rice resistance to Xoo or Magnaporthe oryzae. Overexpression of OsSerk1 in OsSerk2-silenced lines complements phenotypes associated with brassinosteroid (BR) signaling defects, but not the disease resistance phenotype mediated by Xa21. In yeast, OsSERK1 interacts with itself forming homodimers, and also interacts with the kinase domains of OsSERK2 and BRI1, respectively. OsSERK1 is a functional protein kinase capable of auto-phosphorylation in vitro. We conclude that, whereas OsSERK2 regulates both rice development and immunity, OsSERK1 functions in rice development but not immunity to Xoo and M. oryzae. © 2014 Institute of Botany, Chinese Academy of Sciences.

  7. Phylogeography of Asian wild rice, Oryza rufipogon: a genome-wide view.

    PubMed

    Huang, Pu; Molina, Jeanmaire; Flowers, Jonathan M; Rubinstein, Samara; Jackson, Scott A; Purugganan, Michael D; Schaal, Barbara A

    2012-09-01

    Asian wild rice (Oryza rufipogon) that ranges widely across the eastern and southern part of Asia is recognized as the direct ancestor of cultivated Asian rice (O. sativa). Studies of the geographic structure of O. rufipogon, based on chloroplast and low-copy nuclear markers, reveal a possible phylogeographic signal of subdivision in O. rufipogon. However, this signal of geographic differentiation is not consistently observed among different markers and studies, with often conflicting results. To more precisely characterize the phylogeography of O. rufipogon populations, a genome-wide survey of unlinked markers, intensively sampled from across the entire range of O. rufipogon is critical. In this study, we surveyed sequence variation at 42 genome-wide sequence tagged sites (STS) in 108 O. rufipogon accessions from throughout the native range of the species. Using Bayesian clustering, principal component analysis and amova, we conclude that there are two genetically distinct O. rufipogon groups, Ruf-I and Ruf-II. The two groups exhibit a clinal variation pattern generally from north-east to south-west. Different from many earlier studies, Ruf-I, which is found mainly in China and the Indochinese Peninsula, shows genetic similarity with one major cultivated rice variety, O. satvia indica, whereas Ruf-II, mainly from South Asia and the Indochinese Peninsula, is not found to be closely related to cultivated rice varieties. The other major cultivated rice variety, O. sativa japonica, is not found to be similar to either O. rufipogon groups. Our results support the hypothesis of a single origin of the domesticated O. sativa in China. The possible role of palaeoclimate, introgression and migration-drift balance in creating this clinal variation pattern is also discussed. © 2012 Blackwell Publishing Ltd.

  8. CatB is Critical for Total Catalase Activity and Reduces Bactericidal Effects of Phenazine-1-Carboxylic Acid on Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola.

    PubMed

    Pan, Xiayan; Wu, Jian; Xu, Shu; Duan, Yabing; Zhou, Mingguo

    2017-02-01

    Rice bacterial leaf blight, caused by Xanthomonas oryzae pv. oryzae, and rice bacterial leaf streak, caused by X. oryzae pv. oryzicola, are major diseases of rice. Phenazine-1-carboxylic acid (PCA) is a natural product that is isolated from Pseudomonas spp. and is used to control many important rice diseases in China. We previously reported that PCA disturbs the redox balance, which results in the accumulation of reactive oxygen species in X. oryzae pv. oryzae. In this study, we found that PCA significantly upregulated the transcript levels of catB and katE, which encode catalases, and that PCA sensitivity was reduced when X. oryzae pvs. oryzae and oryzicola were cultured with exogenous catalase. Furthermore, catB deletion mutants of X. oryzae pvs. oryzae and oryzicola showed dramatically decreased total catalase activity, increased sensitivity to PCA, and reduced virulence in rice. In contrast, deletion mutants of srpA and katG, which also encode catalases, exhibited little change in PCA sensitivity. The results indicate that catB in both X. oryzae pvs. oryzae and oryzicola encodes a catalase that helps protect the bacteria against PCA-induced stress.

  9. The Perennial Ryegrass GenomeZipper: Targeted Use of Genome Resources for Comparative Grass Genomics1[C][W

    PubMed Central

    Pfeifer, Matthias; Martis, Mihaela; Asp, Torben; Mayer, Klaus F.X.; Lübberstedt, Thomas; Byrne, Stephen; Frei, Ursula; Studer, Bruno

    2013-01-01

    Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The perennial ryegrass GenomeZipper is an ordered, information-rich genome scaffold, facilitating map-based cloning and genome assembly in perennial ryegrass and closely related Poaceae species. It also represents a milestone in describing synteny between perennial ryegrass and fully sequenced model grass genomes, thereby increasing our understanding of genome organization and evolution in the most important temperate forage and turf grass species. PMID:23184232

  10. Heat tolerance in a wild Oryza species is attributed to maintenance of Rubisco activation by a thermally stable Rubisco activase ortholog.

    PubMed

    Scafaro, Andrew P; Gallé, Alexander; Van Rie, Jeroen; Carmo-Silva, Elizabete; Salvucci, Michael E; Atwell, Brian J

    2016-08-01

    The mechanistic basis of tolerance to heat stress was investigated in Oryza sativa and two wild rice species, Oryza meridionalis and Oryza australiensis. The wild relatives are endemic to the hot, arid Australian savannah. Leaf elongation rates and gas exchange were measured during short periods of supra-optimal heat, revealing species differences. The Rubisco activase (RCA) gene from each species was sequenced. Using expressed recombinant RCA and leaf-extracted RCA, the kinetic properties of the two isoforms were studied under high temperatures. Leaf elongation was undiminished at 45°C in O. australiensis. The net photosynthetic rate was almost 50% slower in O. sativa at 45°C than at 28°C, while in O. australiensis it was unaffected. Oryza meridionalis exhibited intermediate heat tolerance. Based on previous reports that RCA is heat-labile, the Rubisco activation state was measured. It correlated positively with leaf elongation rates across all three species and four periods of exposure to 45°C. Sequence analysis revealed numerous polymorphisms in the RCA amino acid sequence from O. australiensis. The O. australiensis RCA enzyme was thermally stable up to 42°C, contrasting with RCA from O. sativa, which was inhibited at 36°C. We attribute heat tolerance in the wild species to thermal stability of RCA, enabling Rubisco to remain active. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  11. In silico Analysis of 3′-End-Processing Signals in Aspergillus oryzae Using Expressed Sequence Tags and Genomic Sequencing Data

    PubMed Central

    Tanaka, Mizuki; Sakai, Yoshifumi; Yamada, Osamu; Shintani, Takahiro; Gomi, Katsuya

    2011-01-01

    To investigate 3′-end-processing signals in Aspergillus oryzae, we created a nucleotide sequence data set of the 3′-untranslated region (3′ UTR) plus 100 nucleotides (nt) sequence downstream of the poly(A) site using A. oryzae expressed sequence tags and genomic sequencing data. This data set comprised 1065 sequences derived from 1042 unique genes. The average 3′ UTR length in A. oryzae was 241 nt, which is greater than that in yeast but similar to that in plants. The 3′ UTR and 100 nt sequence downstream of the poly(A) site is notably U-rich, while the region located 15–30 nt upstream of the poly(A) site is markedly A-rich. The most frequently found hexanucleotide in this A-rich region is AAUGAA, although this sequence accounts for only 6% of all transcripts. These data suggested that A. oryzae has no highly conserved sequence element equivalent to AAUAAA, a mammalian polyadenylation signal. We identified that putative 3′-end-processing signals in A. oryzae, while less well conserved than those in mammals, comprised four sequence elements: the furthest upstream U-rich element, A-rich sequence, cleavage site, and downstream U-rich element flanking the cleavage site. Although these putative 3′-end-processing signals are similar to those in yeast and plants, some notable differences exist between them. PMID:21586533

  12. Gene expansion shapes genome architecture in the human pathogen Lichtheimia corymbifera: an evolutionary genomics analysis in the ancient terrestrial mucorales (Mucoromycotina).

    PubMed

    Schwartze, Volker U; Winter, Sascha; Shelest, Ekaterina; Marcet-Houben, Marina; Horn, Fabian; Wehner, Stefanie; Linde, Jörg; Valiante, Vito; Sammeth, Michael; Riege, Konstantin; Nowrousian, Minou; Kaerger, Kerstin; Jacobsen, Ilse D; Marz, Manja; Brakhage, Axel A; Gabaldón, Toni; Böcker, Sebastian; Voigt, Kerstin

    2014-08-01

    Lichtheimia species are the second most important cause of mucormycosis in Europe. To provide broader insights into the molecular basis of the pathogenicity-associated traits of the basal Mucorales, we report the full genome sequence of L. corymbifera and compared it to the genome of Rhizopus oryzae, the most common cause of mucormycosis worldwide. The genome assembly encompasses 33.6 MB and 12,379 protein-coding genes. This study reveals four major differences of the L. corymbifera genome to R. oryzae: (i) the presence of an highly elevated number of gene duplications which are unlike R. oryzae not due to whole genome duplication (WGD), (ii) despite the relatively high incidence of introns, alternative splicing (AS) is not frequently observed for the generation of paralogs and in response to stress, (iii) the content of repetitive elements is strikingly low (<5%), (iv) L. corymbifera is typically haploid. Novel virulence factors were identified which may be involved in the regulation of the adaptation to iron-limitation, e.g. LCor01340.1 encoding a putative siderophore transporter and LCor00410.1 involved in the siderophore metabolism. Genes encoding the transcription factors LCor08192.1 and LCor01236.1, which are similar to GATA type regulators and to calcineurin regulated CRZ1, respectively, indicating an involvement of the calcineurin pathway in the adaption to iron limitation. Genes encoding MADS-box transcription factors are elevated up to 11 copies compared to the 1-4 copies usually found in other fungi. More findings are: (i) lower content of tRNAs, but unique codons in L. corymbifera, (ii) Over 25% of the proteins are apparently specific for L. corymbifera. (iii) L. corymbifera contains only 2/3 of the proteases (known to be essential virulence factors) in comparison to R. oryzae. On the other hand, the number of secreted proteases, however, is roughly twice as high as in R. oryzae.

  13. Sensitive Detection of Xanthomonas oryzae Pathovars oryzae and oryzicola by Loop-Mediated Isothermal Amplification

    PubMed Central

    Lang, Jillian M.; Langlois, Paul; Nguyen, Marian Hanna R.; Triplett, Lindsay R.; Purdie, Laura; Holton, Timothy A.; Djikeng, Appolinaire; Vera Cruz, Casiana M.; Verdier, Valérie

    2014-01-01

    Molecular diagnostics for crop diseases can enhance food security by enabling the rapid identification of threatening pathogens and providing critical information for the deployment of disease management strategies. Loop-mediated isothermal amplification (LAMP) is a PCR-based tool that allows the rapid, highly specific amplification of target DNA sequences at a single temperature and is thus ideal for field-level diagnosis of plant diseases. We developed primers highly specific for two globally important rice pathogens, Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight (BB) disease, and X. oryzae pv. oryzicola, the causal agent of bacterial leaf streak disease (BLS), for use in reliable, sensitive LAMP assays. In addition to pathovar distinction, two assays that differentiate X. oryzae pv. oryzae by African or Asian lineage were developed. Using these LAMP primer sets, the presence of each pathogen was detected from DNA and bacterial cells, as well as leaf and seed samples. Thresholds of detection for all assays were consistently 104 to 105 CFU ml−1, while genomic DNA thresholds were between 1 pg and 10 fg. Use of the unique sequences combined with the LAMP assay provides a sensitive, accurate, rapid, simple, and inexpensive protocol to detect both BB and BLS pathogens. PMID:24837384

  14. Genome wide analysis of the transition to pathogenic lifestyles in Magnaporthales fungi.

    PubMed

    Zhang, Ning; Cai, Guohong; Price, Dana C; Crouch, Jo Anne; Gladieux, Pierre; Hillman, Bradley; Khang, Chang Hyun; LeBrun, Marc-Henri; Lee, Yong-Hwan; Luo, Jing; Qiu, Huan; Veltri, Daniel; Wisecaver, Jennifer H; Zhu, Jie; Bhattacharya, Debashish

    2018-04-12

    The rice blast fungus Pyricularia oryzae (syn. Magnaporthe oryzae, Magnaporthe grisea), a member of the order Magnaporthales in the class Sordariomycetes, is an important plant pathogen and a model species for studying pathogen infection and plant-fungal interaction. In this study, we generated genome sequence data from five additional Magnaporthales fungi including non-pathogenic species, and performed comparative genome analysis of a total of 13 fungal species in the class Sordariomycetes to understand the evolutionary history of the Magnaporthales and of fungal pathogenesis. Our results suggest that the Magnaporthales diverged ca. 31 millon years ago from other Sordariomycetes, with the phytopathogenic blast clade diverging ca. 21 million years ago. Little evidence of inter-phylum horizontal gene transfer (HGT) was detected in Magnaporthales. In contrast, many genes underwent positive selection in this order and the majority of these sequences are clade-specific. The blast clade genomes contain more secretome and avirulence effector genes, which likely play key roles in the interaction between Pyricularia species and their plant hosts. Finally, analysis of transposable elements (TE) showed differing proportions of TE classes among Magnaporthales genomes, suggesting that species-specific patterns may hold clues to the history of host/environmental adaptation in these fungi.

  15. The Magnaporthe oryzae Alt A 1-like protein MoHrip1 binds to the plant plasma membrane.

    PubMed

    Zhang, Yi; Liang, Yingbo; Dong, Yijie; Gao, Yuhan; Yang, Xiufen; Yuan, Jingjing; Qiu, Dewen

    2017-10-07

    MoHrip1, a protein isolated from Magnaporthe oryzae, belongs to the Alt A 1 (AA1) family. mohrip1 mRNA levels showed inducible expression throughout the infection process in rice. To determine the location of MoHrip1 in M. oryzae, a mohrip1-gfp mutant was generated. Fluorescence microscopy observations and western blotting analysis showed that MoHrip1 was both present in the secretome and abundant in the fungal cell wall. To obtain MoHrip1 protein, we carried out high-yield expression of MoHrip1 in Pichia pastoris. Treatment of tobacco plants with MoHrip1 induced the formation of necrosis, accumulation of reactive oxygen species and expression of several defense-related genes, as well as conferred disease resistance. By fusion to green fluorescent protein, we showed that MoHrip1 was able to bind to the tobacco and rice plant plasma membrane, causing rapid morphological changes at the cellular level, such as cell shrinkage and chloroplast disorganization. These findings indicate that MoHrip1 is a microbe-associated molecular pattern that is perceived by the plant immune system. This is the first study on an AA1 family protein that can bind to the plant plasma membrane. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Analyses of Old “Prokaryotic” Proteins Indicate Functional Diversification in Arabidopsis and Oryza sativa

    PubMed Central

    Singh, Anupama; Jethva, Minesh; Singla-Pareek, Sneh L.; Pareek, Ashwani; Kushwaha, Hemant R.

    2016-01-01

    During evolution, various processes such as duplication, divergence, recombination, and many other events leads to the evolution of new genes with novel functions. These evolutionary events, thus significantly impact the evolution of cellular, physiological, morphological, and other phenotypic trait of organisms. While evolving, eukaryotes have acquired large number of genes from the earlier prokaryotes. This work is focused upon identification of old “prokaryotic” proteins in Arabidopsis and Oryza sativa genome, further highlighting their possible role(s) in the two genomes. Our results suggest that with respect to their genome size, the fraction of old “prokaryotic” proteins is higher in Arabidopsis than in Oryza sativa. The large fractions of such proteins encoding genes were found to be localized in various endo-symbiotic organelles. The domain architecture of the old “prokaryotic” proteins revealed similar distribution in both Arabidopsis and Oryza sativa genomes showing their conserved evolution. In Oryza sativa, the old “prokaryotic” proteins were more involved in developmental processes, might be due to constant man-made selection pressure for better agronomic traits/productivity. While in Arabidopsis, these proteins were involved in metabolic functions. Overall, the analysis indicates the distinct pattern of evolution of old “prokaryotic” proteins in Arabidopsis and Oryza sativa. PMID:27014324

  17. The evolutionary imprint of domestication on genome variation and function of the filamentous fungus Aspergillus oryzae

    PubMed Central

    Gibbons, John G.; Salichos, Leonidas; Slot, Jason C.; Rinker, David C.; McGary, Kriston L.; King, Jonas G.; Klich, Maren A.; Tabb, David L.; McDonald, W. Hayes; Rokas, Antonis

    2012-01-01

    Summary The domestication of animals, plants and microbes fundamentally transformed the lifestyle and demography of the human species [1]. Although the genetic and functional underpinnings of animal and plant domestication are well understood, little is known about microbe domestication [2–6]. We systematically examined genome-wide sequence and functional variation between the domesticated fungus Aspergillus oryzae, whose saccharification abilities humans have harnessed for thousands of years to produce sake, soy sauce and miso from starch-rich grains, and its wild relative A. flavus, a potentially toxigenic plant and animal pathogen [7]. We discovered dramatic changes in the sequence variation and abundance profiles of genes and wholesale primary and secondary metabolic pathways between domesticated and wild relative isolates during growth on rice. Through selection by humans, our data suggest that an atoxigenic lineage of A. flavus gradually evolved into a “cell factory” for enzymes and metabolites involved in the saccharification process. These results suggest that whereas animal and plant domestication was largely driven by Neolithic “genetic tinkering” of developmental pathways, microbe domestication was driven by extensive remodeling of metabolism. PMID:22795693

  18. What the Aspergillus genomes have told us.

    PubMed

    Nierman, W C; May, G; Kim, H S; Anderson, M J; Chen, D; Denning, D W

    2005-05-01

    The sequencing and annotation of the genomes of the first strains of Aspergillus nidulans, Aspergillus oryzae, and Aspergillus fumigatus will be seen in retrospect as a transformational event in Aspergillus biology. With this event the entire genetic composition of A. nidulans, the sexual experimental model organism of the genus Aspergillus, A. oryzae, the food biotechnology organism which is the product of centuries of cultivation, and A. fumigatus, the most common causative agent of invasive aspergillosis is now revealed to the extent that we are at present able to understand. Each genome exhibits a large set of genes common to the three as well as a much smaller set of genes unique to each. Moreover, these sequences serve as resources providing the major tool to expanding our understanding of the biology of each. Transcription profiling of A. fumigatus at high temperatures and comparative genomic hybridization between A. fumigatus and a closely related Aspergillus species provides microarray based examples of the beginning of functional analysis of the genomes of these organisms going forward from the genome sequence.

  19. Gene Ontology annotation of the rice blast fungus, Magnaporthe oryzae

    PubMed Central

    Meng, Shaowu; Brown, Douglas E; Ebbole, Daniel J; Torto-Alalibo, Trudy; Oh, Yeon Yee; Deng, Jixin; Mitchell, Thomas K; Dean, Ralph A

    2009-01-01

    Background Magnaporthe oryzae, the causal agent of blast disease of rice, is the most destructive disease of rice worldwide. The genome of this fungal pathogen has been sequenced and an automated annotation has recently been updated to Version 6 . However, a comprehensive manual curation remains to be performed. Gene Ontology (GO) annotation is a valuable means of assigning functional information using standardized vocabulary. We report an overview of the GO annotation for Version 5 of M. oryzae genome assembly. Methods A similarity-based (i.e., computational) GO annotation with manual review was conducted, which was then integrated with a literature-based GO annotation with computational assistance. For similarity-based GO annotation a stringent reciprocal best hits method was used to identify similarity between predicted proteins of M. oryzae and GO proteins from multiple organisms with published associations to GO terms. Significant alignment pairs were manually reviewed. Functional assignments were further cross-validated with manually reviewed data, conserved domains, or data determined by wet lab experiments. Additionally, biological appropriateness of the functional assignments was manually checked. Results In total, 6,286 proteins received GO term assignment via the homology-based annotation, including 2,870 hypothetical proteins. Literature-based experimental evidence, such as microarray, MPSS, T-DNA insertion mutation, or gene knockout mutation, resulted in 2,810 proteins being annotated with GO terms. Of these, 1,673 proteins were annotated with new terms developed for Plant-Associated Microbe Gene Ontology (PAMGO). In addition, 67 experiment-determined secreted proteins were annotated with PAMGO terms. Integration of the two data sets resulted in 7,412 proteins (57%) being annotated with 1,957 distinct and specific GO terms. Unannotated proteins were assigned to the 3 root terms. The Version 5 GO annotation is publically queryable via the GO site

  20. Leveraging the rice genome sequence for monocot comparative and translational genomics.

    PubMed

    Lohithaswa, H C; Feltus, F A; Singh, H P; Bacon, C D; Bailey, C D; Paterson, A H

    2007-07-01

    Common genome anchor points across many taxa greatly facilitate translational and comparative genomics and will improve our understanding of the Tree of Life. To add to the repertoire of genomic tools applicable to the study of monocotyledonous plants in general, we aligned Allium and Musa ESTs to Oryza BAC sequences and identified candidate Allium-Oryza and Musa-Oryza conserved intron-scanning primers (CISPs). A random sampling of 96 CISP primer pairs, representing loci from 11 of the 12 chromosomes in rice, were tested on seven members of the order Poales and on representatives of the Arecales, Asparagales, and Zingiberales monocot orders. The single-copy amplification success rates of Allium (31.3%), Cynodon (31.4%), Hordeum (30.2%), Musa (37.5%), Oryza (61.5%), Pennisetum (33.3%), Sorghum (47.9%), Zea (33.3%), Triticum (30.2%), and representatives of the palm family (32.3%) suggest that subsets of these primers will provide DNA markers suitable for comparative and translational genomics in orphan crops, as well as for applications in conservation biology, ecology, invasion biology, population biology, systematic biology, and related fields.

  1. Cell biology of the Koji mold Aspergillus oryzae.

    PubMed

    Kitamoto, Katsuhiko

    2015-01-01

    Koji mold, Aspergillus oryzae, has been used for the production of sake, miso, and soy sauce for more than one thousand years in Japan. Due to the importance, A. oryzae has been designated as the national micro-organism of Japan (Koku-kin). A. oryzae has been intensively studied in the past century, with most investigations focusing on breeding techniques and developing methods for Koji making for sake brewing. However, the understanding of fundamental biology of A. oryzae remains relatively limited compared with the yeast Saccharomyces cerevisiae. Therefore, we have focused on studying the cell biology including live cell imaging of organelles, protein vesicular trafficking, autophagy, and Woronin body functions using the available genomic information. In this review, I describe essential findings of cell biology of A. oryzae obtained in our study for a quarter of century. Understanding of the basic biology will be critical for not its biotechnological application, but also for an understanding of the fundamental biology of other filamentous fungi.

  2. Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing

    PubMed Central

    Wang, Bin; Guo, Guangwu; Wang, Chao; Lin, Ying; Wang, Xiaoning; Zhao, Mouming; Guo, Yong; He, Minghui; Zhang, Yong; Pan, Li

    2010-01-01

    Aspergillus oryzae, an important filamentous fungus used in food fermentation and the enzyme industry, has been shown through genome sequencing and various other tools to have prominent features in its genomic composition. However, the functional complexity of the A. oryzae transcriptome has not yet been fully elucidated. Here, we applied direct high-throughput paired-end RNA-sequencing (RNA-Seq) to the transcriptome of A. oryzae under four different culture conditions. With the high resolution and sensitivity afforded by RNA-Seq, we were able to identify a substantial number of novel transcripts, new exons, untranslated regions, alternative upstream initiation codons and upstream open reading frames, which provide remarkable insight into the A. oryzae transcriptome. We were also able to assess the alternative mRNA isoforms in A. oryzae and found a large number of genes undergoing alternative splicing. Many genes and pathways that might be involved in higher levels of protein production in solid-state culture than in liquid culture were identified by comparing gene expression levels between different cultures. Our analysis indicated that the transcriptome of A. oryzae is much more complex than previously anticipated, and these results may provide a blueprint for further study of the A. oryzae transcriptome. PMID:20392818

  3. Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing.

    PubMed

    Wang, Bin; Guo, Guangwu; Wang, Chao; Lin, Ying; Wang, Xiaoning; Zhao, Mouming; Guo, Yong; He, Minghui; Zhang, Yong; Pan, Li

    2010-08-01

    Aspergillus oryzae, an important filamentous fungus used in food fermentation and the enzyme industry, has been shown through genome sequencing and various other tools to have prominent features in its genomic composition. However, the functional complexity of the A. oryzae transcriptome has not yet been fully elucidated. Here, we applied direct high-throughput paired-end RNA-sequencing (RNA-Seq) to the transcriptome of A. oryzae under four different culture conditions. With the high resolution and sensitivity afforded by RNA-Seq, we were able to identify a substantial number of novel transcripts, new exons, untranslated regions, alternative upstream initiation codons and upstream open reading frames, which provide remarkable insight into the A. oryzae transcriptome. We were also able to assess the alternative mRNA isoforms in A. oryzae and found a large number of genes undergoing alternative splicing. Many genes and pathways that might be involved in higher levels of protein production in solid-state culture than in liquid culture were identified by comparing gene expression levels between different cultures. Our analysis indicated that the transcriptome of A. oryzae is much more complex than previously anticipated, and these results may provide a blueprint for further study of the A. oryzae transcriptome.

  4. Gene Expansion Shapes Genome Architecture in the Human Pathogen Lichtheimia corymbifera: An Evolutionary Genomics Analysis in the Ancient Terrestrial Mucorales (Mucoromycotina)

    PubMed Central

    Wehner, Stefanie; Linde, Jörg; Valiante, Vito; Sammeth, Michael; Riege, Konstantin; Nowrousian, Minou; Kaerger, Kerstin; Jacobsen, Ilse D.; Marz, Manja; Brakhage, Axel A.; Gabaldón, Toni; Böcker, Sebastian; Voigt, Kerstin

    2014-01-01

    Lichtheimia species are the second most important cause of mucormycosis in Europe. To provide broader insights into the molecular basis of the pathogenicity-associated traits of the basal Mucorales, we report the full genome sequence of L. corymbifera and compared it to the genome of Rhizopus oryzae, the most common cause of mucormycosis worldwide. The genome assembly encompasses 33.6 MB and 12,379 protein-coding genes. This study reveals four major differences of the L. corymbifera genome to R. oryzae: (i) the presence of an highly elevated number of gene duplications which are unlike R. oryzae not due to whole genome duplication (WGD), (ii) despite the relatively high incidence of introns, alternative splicing (AS) is not frequently observed for the generation of paralogs and in response to stress, (iii) the content of repetitive elements is strikingly low (<5%), (iv) L. corymbifera is typically haploid. Novel virulence factors were identified which may be involved in the regulation of the adaptation to iron-limitation, e.g. LCor01340.1 encoding a putative siderophore transporter and LCor00410.1 involved in the siderophore metabolism. Genes encoding the transcription factors LCor08192.1 and LCor01236.1, which are similar to GATA type regulators and to calcineurin regulated CRZ1, respectively, indicating an involvement of the calcineurin pathway in the adaption to iron limitation. Genes encoding MADS-box transcription factors are elevated up to 11 copies compared to the 1–4 copies usually found in other fungi. More findings are: (i) lower content of tRNAs, but unique codons in L. corymbifera, (ii) Over 25% of the proteins are apparently specific for L. corymbifera. (iii) L. corymbifera contains only 2/3 of the proteases (known to be essential virulence factors) in comparision to R. oryzae. On the other hand, the number of secreted proteases, however, is roughly twice as high as in R. oryzae. PMID:25121733

  5. Microbial species delineation using whole genome sequences

    PubMed Central

    Varghese, Neha J.; Mukherjee, Supratim; Ivanova, Natalia; Konstantinidis, Konstantinos T.; Mavrommatis, Kostas; Kyrpides, Nikos C.; Pati, Amrita

    2015-01-01

    Increased sequencing of microbial genomes has revealed that prevailing prokaryotic species assignments can be inconsistent with whole genome information for a significant number of species. The long-standing need for a systematic and scalable species assignment technique can be met by the genome-wide Average Nucleotide Identity (gANI) metric, which is widely acknowledged as a robust measure of genomic relatedness. In this work, we demonstrate that the combination of gANI and the alignment fraction (AF) between two genomes accurately reflects their genomic relatedness. We introduce an efficient implementation of AF,gANI and discuss its successful application to 86.5M genome pairs between 13,151 prokaryotic genomes assigned to 3032 species. Subsequently, by comparing the genome clusters obtained from complete linkage clustering of these pairs to existing taxonomy, we observed that nearly 18% of all prokaryotic species suffer from anomalies in species definition. Our results can be used to explore central questions such as whether microorganisms form a continuum of genetic diversity or distinct species represented by distinct genetic signatures. We propose that this precise and objective AF,gANI-based species definition: the MiSI (Microbial Species Identifier) method, be used to address previous inconsistencies in species classification and as the primary guide for new taxonomic species assignment, supplemented by the traditional polyphasic approach, as required. PMID:26150420

  6. The Organelle Genomes of Hassawi Rice (Oryza sativa L.) and Its Hybrid in Saudi Arabia: Genome Variation, Rearrangement, and Origins

    PubMed Central

    Zhang, Tongwu; Hu, Songnian; Zhang, Guangyu; Pan, Linlin; Zhang, Xiaowei; Al-Mssallem, Ibrahim S.; Yu, Jun

    2012-01-01

    Hassawi rice (Oryza sativa L.) is a landrace adapted to the climate of Saudi Arabia, characterized by its strong resistance to soil salinity and drought. Using high quality sequencing reads extracted from raw data of a whole genome sequencing project, we assembled both chloroplast (cp) and mitochondrial (mt) genomes of the wild-type Hassawi rice (Hassawi-1) and its dwarf hybrid (Hassawi-2). We discovered 16 InDels (insertions and deletions) but no SNP (single nucleotide polymorphism) is present between the two Hassawi cp genomes. We identified 48 InDels and 26 SNPs in the two Hassawi mt genomes and a new type of sequence variation, termed reverse complementary variation (RCV) in the rice cp genomes. There are two and four RCVs identified in Hassawi-1 when compared to 93–11 (indica) and Nipponbare (japonica), respectively. Microsatellite sequence analysis showed there are more SSRs in the genic regions of both cp and mt genomes in the Hassawi rice than in the other rice varieties. There are also large repeats in the Hassawi mt genomes, with the longest length of 96,168 bp and 96,165 bp in Hassawi-1 and Hassawi-2, respectively. We believe that frequent DNA rearrangement in the Hassawi mt and cp genomes indicate ongoing dynamic processes to reach genetic stability under strong environmental pressures. Based on sequence variation analysis and the breeding history, we suggest that both Hassawi-1 and Hassawi-2 originated from the Indonesian variety Peta since genetic diversity between the two Hassawi cultivars is very low albeit an unknown historic origin of the wild-type Hassawi rice. PMID:22870184

  7. In vitro antifungal susceptibility of clinical species belonging to Aspergillus genus and Rhizopus oryzae.

    PubMed

    Kachuei, R; Khodavaisy, S; Rezaie, S; Sharifynia, S

    2016-03-01

    Among filamentous fungal pathogens, Aspergillus spp. and zygomycetes account for highest rates of morbidity and mortality among immunocompromised patients. Recently developed antifungal drugs offer the potential to improve management and therapeutic outcomes of fungal infections. The aim of this study was to analyse the in vitro activities of voriconazole, itraconazole, amphotericin B and caspofungin against clinical isolates of Aspergillus spp. and Rhizopus oryzae. The in vitro antifungal susceptibility of 54 isolates belonging to different clinical isolates of Aspergillus spp. and R. oryzae was tested for four antifungal agents using a microdilution reference method (CLSI, M38-A2). All isolates were identified by typical colony and microscopic characteristics, and also characterized by molecular methods. Caspofungin (MEC range: 0.008-0.25 and MEC50: 0.0023μg/mL) was the most active drug in vitro against Aspergillus spp., followed by voriconazole (MIC range: 0.031-8 and MIC50: 0.5μg/mL), itraconazole (MIC range: 0.031-16 and MIC50: 0.25μg/mL), and amphotericin B (MIC range: 0.125-4 and MIC50: 0.5μg/mL), in order of decreasing activity. The caspofungin, voriconazole, and itraconazole demonstrated poor in vitro activity against R. oryzae isolates evaluated, followed by amphotericin B. This study demonstrates that caspofungin had good antifungal activity and azole agents had better activity than amphotericin B against Aspergillus species. Although, azole drugs are considered ineffective against R. oryzae. This result is just from a small scale in vitro susceptibility study and we did not take other factors into consideration. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Antifungal activity of colistin against mucorales species in vitro and in a murine model of Rhizopus oryzae pulmonary infection.

    PubMed

    Ben-Ami, Ronen; Lewis, Russell E; Tarrand, Jeffrey; Leventakos, Konstantinos; Kontoyiannis, Dimitrios P

    2010-01-01

    In immunosuppressed hosts, mucormycosis is a life-threatening infection with few treatment options. We studied the activity of colistin (polymyxin E) against Mucorales species in vitro and in a murine model of pulmonary Rhizopus oryzae infection. Colistin exhibited fungicidal activity in vitro against Mucorales spores and mycelia. At the colistin MIC, initial R. oryzae hyphal damage was followed by rapid regrowth; however, regrowth was prevented by combining colistin with a subinhibitory concentration of amphotericin B. Using electron microscopy and FM4-64 staining, we demonstrated that colistin disrupts R. oryzae cytoplasmic and vacuolar membranes, resulting in the leakage of intracellular contents. The prophylactic intranasal treatment of immunosuppressed mice with colistimethate significantly reduced the mortality rate and pulmonary fungal burden resulting from inhalational challenge with R. oryzae spores, whereas intraperitoneal colistimethate treatment had no effect. We conclude that colistin has modest in vitro and in vivo fungicidal activity against Mucorales spp. Further studies are warranted to assess the use of this drug in the prevention and treatment of mucormycosis.

  9. Antifungal Activity of Colistin against Mucorales Species In Vitro and in a Murine Model of Rhizopus oryzae Pulmonary Infection▿

    PubMed Central

    Ben-Ami, Ronen; Lewis, Russell E.; Tarrand, Jeffrey; Leventakos, Konstantinos; Kontoyiannis, Dimitrios P.

    2010-01-01

    In immunosuppressed hosts, mucormycosis is a life-threatening infection with few treatment options. We studied the activity of colistin (polymyxin E) against Mucorales species in vitro and in a murine model of pulmonary Rhizopus oryzae infection. Colistin exhibited fungicidal activity in vitro against Mucorales spores and mycelia. At the colistin MIC, initial R. oryzae hyphal damage was followed by rapid regrowth; however, regrowth was prevented by combining colistin with a subinhibitory concentration of amphotericin B. Using electron microscopy and FM4-64 staining, we demonstrated that colistin disrupts R. oryzae cytoplasmic and vacuolar membranes, resulting in the leakage of intracellular contents. The prophylactic intranasal treatment of immunosuppressed mice with colistimethate significantly reduced the mortality rate and pulmonary fungal burden resulting from inhalational challenge with R. oryzae spores, whereas intraperitoneal colistimethate treatment had no effect. We conclude that colistin has modest in vitro and in vivo fungicidal activity against Mucorales spp. Further studies are warranted to assess the use of this drug in the prevention and treatment of mucormycosis. PMID:19858263

  10. Evolution of Transcription Activator-Like Effectors in Xanthomonas oryzae

    PubMed Central

    Erkes, Annett; Reschke, Maik; Boch, Jens

    2017-01-01

    Abstract Transcription activator-like effectors (TALEs) are secreted by plant–pathogenic Xanthomonas bacteria into plant cells where they act as transcriptional activators and, hence, are major drivers in reprogramming the plant for the benefit of the pathogen. TALEs possess a highly repetitive DNA-binding domain of typically 34 amino acid (AA) tandem repeats, where AA 12 and 13, termed repeat variable di-residue (RVD), determine target specificity. Different Xanthomonas strains possess different repertoires of TALEs. Here, we study the evolution of TALEs from the level of RVDs determining target specificity down to the level of DNA sequence with focus on rice-pathogenic Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc) strains. We observe that codon pairs coding for individual RVDs are conserved to a similar degree as the flanking repeat sequence. We find strong indications that TALEs may evolve 1) by base substitutions in codon pairs coding for RVDs, 2) by recombination of N-terminal or C-terminal regions of existing TALEs, or 3) by deletion of individual TALE repeats, and we propose possible mechanisms. We find indications that the reassortment of TALE genes in clusters is mediated by an integron-like mechanism in Xoc. We finally study the effect of the presence/absence and evolutionary modifications of TALEs on transcriptional activation of putative target genes in rice, and find that even single RVD swaps may lead to considerable differences in activation. This correlation allowed a refined prediction of TALE targets, which is the crucial step to decipher their virulence activity. PMID:28637323

  11. Rice-Map: a new-generation rice genome browser.

    PubMed

    Wang, Jun; Kong, Lei; Zhao, Shuqi; Zhang, He; Tang, Liang; Li, Zhe; Gu, Xiaocheng; Luo, Jingchu; Gao, Ge

    2011-03-30

    The concurrent release of rice genome sequences for two subspecies (Oryza sativa L. ssp. japonica and Oryza sativa L. ssp. indica) facilitates rice studies at the whole genome level. Since the advent of high-throughput analysis, huge amounts of functional genomics data have been delivered rapidly, making an integrated online genome browser indispensable for scientists to visualize and analyze these data. Based on next-generation web technologies and high-throughput experimental data, we have developed Rice-Map, a novel genome browser for researchers to navigate, analyze and annotate rice genome interactively. More than one hundred annotation tracks (81 for japonica and 82 for indica) have been compiled and loaded into Rice-Map. These pre-computed annotations cover gene models, transcript evidences, expression profiling, epigenetic modifications, inter-species and intra-species homologies, genetic markers and other genomic features. In addition to these pre-computed tracks, registered users can interactively add comments and research notes to Rice-Map as User-Defined Annotation entries. By smoothly scrolling, dragging and zooming, users can browse various genomic features simultaneously at multiple scales. On-the-fly analysis for selected entries could be performed through dedicated bioinformatic analysis platforms such as WebLab and Galaxy. Furthermore, a BioMart-powered data warehouse "Rice Mart" is offered for advanced users to fetch bulk datasets based on complex criteria. Rice-Map delivers abundant up-to-date japonica and indica annotations, providing a valuable resource for both computational and bench biologists. Rice-Map is publicly accessible at http://www.ricemap.org/, with all data available for free downloading.

  12. The draft genome of the C3 panicoid grass species Dichanthelium oligosanthes.

    PubMed

    Studer, Anthony J; Schnable, James C; Weissmann, Sarit; Kolbe, Allison R; McKain, Michael R; Shao, Ying; Cousins, Asaph B; Kellogg, Elizabeth A; Brutnell, Thomas P

    2016-10-28

    Comparisons between C 3 and C 4 grasses often utilize C 3 species from the subfamilies Ehrhartoideae or Pooideae and C 4 species from the subfamily Panicoideae, two clades that diverged over 50 million years ago. The divergence of the C 3 panicoid grass Dichanthelium oligosanthes from the independent C 4 lineages represented by Setaria viridis and Sorghum bicolor occurred approximately 15 million years ago, which is significantly more recent than members of the Bambusoideae, Ehrhartoideae, and Pooideae subfamilies. D. oligosanthes is ideally placed within the panicoid clade for comparative studies of C 3 and C 4 grasses. We report the assembly of the nuclear and chloroplast genomes of D. oligosanthes, from high-throughput short read sequencing data and a comparative transcriptomics analysis of the developing leaf of D. oligosanthes, S. viridis, and S. bicolor. Physiological and anatomical characterizations verified that D. oligosanthes utilizes the C 3 pathway for carbon fixation and lacks Kranz anatomy. Expression profiles of transcription factors along developing leaves of D. oligosanthes and S. viridis were compared with previously published data from S. bicolor, Zea mays, and Oryza sativa to identify a small suite of transcription factors that likely acquired functions specifically related to C 4 photosynthesis. The phylogenetic location of D. oligosanthes makes it an ideal C 3 plant for comparative analysis of C 4 evolution in the panicoid grasses. This genome will not only provide a better C 3 species for comparisons with C 4 panicoid grasses, but also highlights the power of using high-throughput sequencing to address questions in evolutionary biology.

  13. Draft Genome Sequence of the Putrescine-Producing Strain Lactococcus lactis subsp. lactis 1AA59

    PubMed Central

    del Rio, Beatriz; Linares, Daniel M.; Fernandez, María; Mayo, Baltasar; Martín, M. Cruz

    2015-01-01

    We report here the 2,576,542-bp genome annotated draft assembly sequence of Lactococcus lactis subsp. lactis 1AA59. This strain—isolated from a traditional cheese—produces putrescine, one of the most frequently biogenic amines found in dairy products. PMID:26089428

  14. Microbial species delineation using whole genome sequences.

    PubMed

    Varghese, Neha J; Mukherjee, Supratim; Ivanova, Natalia; Konstantinidis, Konstantinos T; Mavrommatis, Kostas; Kyrpides, Nikos C; Pati, Amrita

    2015-08-18

    Increased sequencing of microbial genomes has revealed that prevailing prokaryotic species assignments can be inconsistent with whole genome information for a significant number of species. The long-standing need for a systematic and scalable species assignment technique can be met by the genome-wide Average Nucleotide Identity (gANI) metric, which is widely acknowledged as a robust measure of genomic relatedness. In this work, we demonstrate that the combination of gANI and the alignment fraction (AF) between two genomes accurately reflects their genomic relatedness. We introduce an efficient implementation of AF,gANI and discuss its successful application to 86.5M genome pairs between 13,151 prokaryotic genomes assigned to 3032 species. Subsequently, by comparing the genome clusters obtained from complete linkage clustering of these pairs to existing taxonomy, we observed that nearly 18% of all prokaryotic species suffer from anomalies in species definition. Our results can be used to explore central questions such as whether microorganisms form a continuum of genetic diversity or distinct species represented by distinct genetic signatures. We propose that this precise and objective AF,gANI-based species definition: the MiSI (Microbial Species Identifier) method, be used to address previous inconsistencies in species classification and as the primary guide for new taxonomic species assignment, supplemented by the traditional polyphasic approach, as required. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Genome-wide association mapping of virulence gene in rice blast fungus Magnaporthe oryzae using a genotyping by sequencing approach.

    PubMed

    Korinsak, Siripar; Tangphatsornruang, Sithichoke; Pootakham, Wirulda; Wanchana, Samart; Plabpla, Anucha; Jantasuriyarat, Chatchawan; Patarapuwadol, Sujin; Vanavichit, Apichart; Toojinda, Theerayut

    2018-05-15

    Magnaporthe oryzae is a fungal pathogen causing blast disease in many plant species. In this study, seventy three isolates of M. oryzae collected from rice (Oryza sativa) in 1996-2014 were genotyped using a genotyping-by-sequencing approach to detect genetic variation. An association study was performed to identify single nucleotide polymorphisms (SNPs) associated with virulence genes using 831 selected SNP and infection phenotypes on local and improved rice varieties. Population structure analysis revealed eight subpopulations. The division into eight groups was not related to the degree of virulence. Association mapping showed five SNPs associated with fungal virulence on chromosome 1, 2, 3, 4 and 7. The SNP on chromosome 1 was associated with virulence against RD6-Pi7 and IRBL7-M which might be linked to the previously reported AvrPi7. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Genomic dissection of small RNAs in wild rice (Oryza rufipogon): lessons for rice domestication.

    PubMed

    Wang, Yu; Bai, Xuefei; Yan, Chenghai; Gui, Yiejie; Wei, Xinghua; Zhu, Qian-Hao; Guo, Longbiao; Fan, Longjiang

    2012-11-01

    The lack of a MIRNA set and genome sequence of wild rice (Oryza rufipogon) has prevented us from determining the role of MIRNA genes in rice domestication. In this study, a genome, three small RNA populations and a degradome of O. rufipogon were sequenced by Illumina platform and the expression levels of microRNAs (miRNAs) were investigated by miRNA chips. A de novo O. rufipogon genome was assembled using c. 55× coverage of raw sequencing data and a total of 387 MIRNAs were identified in the O. rufipogon genome based on c. 5.2 million unique small RNA reads from three different tissues of O. rufipogon. Of these, O. rufipogon MIRNAs, 259 were not found in the cultivated rice, suggesting a loss of these MIRNAs in the cultivated rice. We also found that 48 MIRNAs were novel in the cultivated rice, suggesting that they were potential targets of domestication selection. Some miRNAs showed significant expression differences between wild and cultivated rice, suggesting that expression of miRNA could also be a target of domestication, as demonstrated for the miR164 family. Our results illustrated that MIRNA genes, like protein-coding genes, might have been significantly shaped during rice domestication and could be one of the driving forces that contributed to rice domestication. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  17. Polygalacturonase from Sitophilus oryzae: Possible horizontal transfer of a pectinase gene from fungi to weevils

    PubMed Central

    Shen, Zhicheng; Denton, Michael; Mutti, Navdeep; Pappan, Kirk; Kanost, Michael R.; Reese, John C.; Reeck, Gerald R.

    2003-01-01

    Endo-polygalacturonase, one of the group of enzymes known collectively as pectinases, is widely distributed in bacteria, plants and fungi. The enzyme has also been found in several weevil species and a few other insects, such as aphids, but not in Drosophila melanogaster, Anopheles gambiae, or Caenorhabditis elegans or, as far as is known, in any more primitive animal species. What, then, is the genetic origin of the polygalacturonases in weevils? Since some weevil species harbor symbiotic microorganisms, it has been suggested, reasonably, that the symbionts' genomes of both aphids and weevils, rather than the insects' genomes, could encode polygalacturonase. We report here the cloning of a cDNA that encodes endo-polygalacturonase in the rice weevil, Sitophilus oryzae (L.), and investigations based on the cloned cDNA. Our results, which include analysis of genes in antibiotic-treated rice weevils, indicate that the enzyme is, in fact, encoded by the insect genome. Given the apparent absence of the gene in much of the rest of the animal kingdom, it is therefore likely that the rice weevil polygalacturonase gene was incorporated into the weevil's genome by horizontal transfer, possibly from a fungus. PMID:15841240

  18. Polygalacturonase from Sitophilus oryzae: possible horizontal transfer of a pectinase gene from fungi to weevils.

    PubMed

    Shen, Zhicheng; Denton, Michael; Mutti, Navdeep; Pappan, Kirk; Kanost, Michael R; Reese, John C; Reeck, Gerald R

    2003-01-01

    Endo-polygalacturonase, one of the group of enzymes known collectively as pectinases, is widely distributed in bacteria, plants and fungi. The enzyme has also been found in several weevil species and a few other insects, such as aphids, but not in Drosophila melanogaster, Anopheles gambiae, or Caenorhabditis elegans or, as far as is known, in any more primitive animal species. What, then, is the genetic origin of the polygalacturonases in weevils? Since some weevil species harbor symbiotic microorganisms, it has been suggested, reasonably, that the symbionts' genomes of both aphids and weevils, rather than the insects' genomes, could encode polygalacturonase. We report here the cloning of a cDNA that encodes endo-polygalacturonase in the rice weevil, Sitophilus oryzae (L.), and investigations based on the cloned cDNA. Our results, which include analysis of genes in antibiotic-treated rice weevils, indicate that the enzyme is, in fact, encoded by the insect genome. Given the apparent absence of the gene in much of the rest of the animal kingdom, it is therefore likely that the rice weevil polygalacturonase gene was incorporated into the weevil's genome by horizontal transfer, possibly from a fungus.

  19. Could abiotic stress tolerance in wild relatives of rice be used to improve Oryza sativa?

    PubMed

    Atwell, Brian J; Wang, Han; Scafaro, Andrew P

    2014-02-01

    Oryza sativa and Oryza glaberrima have been selected to acquire and partition resources efficiently as part of the process of domestication. However, genetic diversity in cultivated rice is limited compared to wild Oryza species, in spite of 120,000 genotypes being held in gene banks. By contrast, there is untapped diversity in the more than 20 wild species of Oryza, some having been collected from just a few coastal locations (e.g. Oryza schlechteri), while others are widely distributed (e.g. Oryza nivara and Oryza rufipogon). The extent of DNA sequence diversity and phenotypic variation is still being established in wild Oryza, with genetic barriers suggesting a vast range of morphologies and function even within species, such as has been demonstrated for Oryza meridionalis. With increasing climate variability and attempts to make more marginal land arable, abiotic and biotic stresses will be managed over the coming decades by tapping into the genetic diversity of wild relatives of O. sativa. To help create a more targeted approach to sourcing wild rice germplasm for abiotic stress tolerance, we have created a climate distribution map by plotting the natural occurrence of all Oryza species against corresponding temperature and moisture data. We then discuss interspecific variation in phenotype and its significance for rice, followed by a discussion of ways to integrate germplasm from wild relatives into domesticated rice. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  20. A comparative genomics strategy for targeted discovery of single-nucleotide polymorphisms and conserved-noncoding sequences in orphan crops.

    PubMed

    Feltus, F A; Singh, H P; Lohithaswa, H C; Schulze, S R; Silva, T D; Paterson, A H

    2006-04-01

    Completed genome sequences provide templates for the design of genome analysis tools in orphan species lacking sequence information. To demonstrate this principle, we designed 384 PCR primer pairs to conserved exonic regions flanking introns, using Sorghum/Pennisetum expressed sequence tag alignments to the Oryza genome. Conserved-intron scanning primers (CISPs) amplified single-copy loci at 37% to 80% success rates in taxa that sample much of the approximately 50-million years of Poaceae divergence. While the conserved nature of exons fostered cross-taxon amplification, the lesser evolutionary constraints on introns enhanced single-nucleotide polymorphism detection. For example, in eight rice (Oryza sativa) genotypes, polymorphism averaged 12.1 per kb in introns but only 3.6 per kb in exons. Curiously, among 124 CISPs evaluated across Oryza, Sorghum, Pennisetum, Cynodon, Eragrostis, Zea, Triticum, and Hordeum, 23 (18.5%) seemed to be subject to rigid intron size constraints that were independent of per-nucleotide DNA sequence variation. Furthermore, we identified 487 conserved-noncoding sequence motifs in 129 CISP loci. A large CISP set (6,062 primer pairs, amplifying introns from 1,676 genes) designed using an automated pipeline showed generally higher abundance in recombinogenic than in nonrecombinogenic regions of the rice genome, thus providing relatively even distribution along genetic maps. CISPs are an effective means to explore poorly characterized genomes for both DNA polymorphism and noncoding sequence conservation on a genome-wide or candidate gene basis, and also provide anchor points for comparative genomics across a diverse range of species.

  1. Genome mining reveals the genus Xanthomonas to be a promising reservoir for new bioactive non-ribosomally synthesized peptides

    PubMed Central

    2013-01-01

    Background Various bacteria can use non-ribosomal peptide synthesis (NRPS) to produce peptides or other small molecules. Conserved features within the NRPS machinery allow the type, and sometimes even the structure, of the synthesized polypeptide to be predicted. Thus, bacterial genome mining via in silico analyses of NRPS genes offers an attractive opportunity to uncover new bioactive non-ribosomally synthesized peptides. Xanthomonas is a large genus of Gram-negative bacteria that cause disease in hundreds of plant species. To date, the only known small molecule synthesized by NRPS in this genus is albicidin produced by Xanthomonas albilineans. This study aims to estimate the biosynthetic potential of Xanthomonas spp. by in silico analyses of NRPS genes with unknown function recently identified in the sequenced genomes of X. albilineans and related species of Xanthomonas. Results We performed in silico analyses of NRPS genes present in all published genome sequences of Xanthomonas spp., as well as in unpublished draft genome sequences of Xanthomonas oryzae pv. oryzae strain BAI3 and Xanthomonas spp. strain XaS3. These two latter strains, together with X. albilineans strain GPE PC73 and X. oryzae pv. oryzae strains X8-1A and X11-5A, possess novel NRPS gene clusters and share related NRPS-associated genes such as those required for the biosynthesis of non-proteinogenic amino acids or the secretion of peptides. In silico prediction of peptide structures according to NRPS architecture suggests eight different peptides, each specific to its producing strain. Interestingly, these eight peptides cannot be assigned to any known gene cluster or related to known compounds from natural product databases. PCR screening of a collection of 94 plant pathogenic bacteria indicates that these novel NRPS gene clusters are specific to the genus Xanthomonas and are also present in Xanthomonas translucens and X. oryzae pv. oryzicola. Further genome mining revealed other novel NRPS

  2. Cyclic nucleotide binding proteins in the Arabidopsis thaliana and Oryza sativa genomes

    PubMed Central

    Bridges, Dave; Fraser, Marie E; Moorhead, Greg BG

    2005-01-01

    Background Cyclic nucleotides are ubiquitous intracellular messengers. Until recently, the roles of cyclic nucleotides in plant cells have proven difficult to uncover. With an understanding of the protein domains which can bind cyclic nucleotides (CNB and GAF domains) we scanned the completed genomes of the higher plants Arabidopsis thaliana (mustard weed) and Oryza sativa (rice) for the effectors of these signalling molecules. Results Our analysis found that several ion channels and a class of thioesterases constitute the possible cyclic nucleotide binding proteins in plants. Contrary to some reports, we found no biochemical or bioinformatic evidence for a plant cyclic nucleotide regulated protein kinase, suggesting that cyclic nucleotide functions in plants have evolved differently than in mammals. Conclusion This paper provides a molecular framework for the discussion of cyclic nucleotide function in plants, and resolves a longstanding debate about the presence of a cyclic nucleotide dependent kinase in plants. PMID:15644130

  3. The draft genome of the C 3 panicoid grass species Dichanthelium oligosanthes

    DOE PAGES

    Studer, Anthony J.; Schnable, James C.; Weissmann, Sarit; ...

    2016-10-28

    Comparisons between C 3 and C 4 grasses often utilize C 3 species from the subfamilies Ehrhartoideae or Pooideae and C 4 species from the subfamily Panicoideae, two clades that diverged over 50 million years ago. The divergence of the C 3 panicoid grass Dichanthelium oligosanthes from the independent C 4 lineages represented by Setaria viridis and Sorghum bicolor occurred approximately 15 million years ago, which is significantly more recent than members of the Bambusoideae, Ehrhartoideae, and Pooideae subfamilies. D. oligosanthes is ideally placed within the panicoid clade for comparative studies of C 3 and C 4 grasses. Here, wemore » report the assembly of the nuclear and chloroplast genomes of D. oligosanthes, from high-throughput short read sequencing data and a comparative transcriptomics analysis of the developing leaf of D. oligosanthes, S. viridis, and S. bicolor. Physiological and anatomical characterizations verified that D. oligosanthes utilizes the C 3 pathway for carbon fixation and lacks Kranz anatomy. Expression profiles of transcription factors along developing leaves of D. oligosanthes and S. viridis were compared with previously published data from S. bicolor, Zea mays, and Oryza sativa to identify a small suite of transcription factors that likely acquired functions specifically related to C 4 photosynthesis. In conclusion, the phylogenetic location of D. oligosanthes makes it an ideal C 3 plant for comparative analysis of C 4 evolution in the panicoid grasses. This genome will not only provide a better C 3 species for comparisons with C 4 panicoid grasses, but also highlights the power of using high-throughput sequencing to address questions in evolutionary biology.« less

  4. The draft genome of the C 3 panicoid grass species Dichanthelium oligosanthes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Studer, Anthony J.; Schnable, James C.; Weissmann, Sarit

    Comparisons between C 3 and C 4 grasses often utilize C 3 species from the subfamilies Ehrhartoideae or Pooideae and C 4 species from the subfamily Panicoideae, two clades that diverged over 50 million years ago. The divergence of the C 3 panicoid grass Dichanthelium oligosanthes from the independent C 4 lineages represented by Setaria viridis and Sorghum bicolor occurred approximately 15 million years ago, which is significantly more recent than members of the Bambusoideae, Ehrhartoideae, and Pooideae subfamilies. D. oligosanthes is ideally placed within the panicoid clade for comparative studies of C 3 and C 4 grasses. Here, wemore » report the assembly of the nuclear and chloroplast genomes of D. oligosanthes, from high-throughput short read sequencing data and a comparative transcriptomics analysis of the developing leaf of D. oligosanthes, S. viridis, and S. bicolor. Physiological and anatomical characterizations verified that D. oligosanthes utilizes the C 3 pathway for carbon fixation and lacks Kranz anatomy. Expression profiles of transcription factors along developing leaves of D. oligosanthes and S. viridis were compared with previously published data from S. bicolor, Zea mays, and Oryza sativa to identify a small suite of transcription factors that likely acquired functions specifically related to C 4 photosynthesis. In conclusion, the phylogenetic location of D. oligosanthes makes it an ideal C 3 plant for comparative analysis of C 4 evolution in the panicoid grasses. This genome will not only provide a better C 3 species for comparisons with C 4 panicoid grasses, but also highlights the power of using high-throughput sequencing to address questions in evolutionary biology.« less

  5. Population Genomics of Paramecium Species.

    PubMed

    Johri, Parul; Krenek, Sascha; Marinov, Georgi K; Doak, Thomas G; Berendonk, Thomas U; Lynch, Michael

    2017-05-01

    Population-genomic analyses are essential to understanding factors shaping genomic variation and lineage-specific sequence constraints. The dearth of such analyses for unicellular eukaryotes prompted us to assess genomic variation in Paramecium, one of the most well-studied ciliate genera. The Paramecium aurelia complex consists of ∼15 morphologically indistinguishable species that diverged subsequent to two rounds of whole-genome duplications (WGDs, as long as 320 MYA) and possess extremely streamlined genomes. We examine patterns of both nuclear and mitochondrial polymorphism, by sequencing whole genomes of 10-13 worldwide isolates of each of three species belonging to the P. aurelia complex: P. tetraurelia, P. biaurelia, P. sexaurelia, as well as two outgroup species that do not share the WGDs: P. caudatum and P. multimicronucleatum. An apparent absence of global geographic population structure suggests continuous or recent dispersal of Paramecium over long distances. Intergenic regions are highly constrained relative to coding sequences, especially in P. caudatum and P. multimicronucleatum that have shorter intergenic distances. Sequence diversity and divergence are reduced up to ∼100-150 bp both upstream and downstream of genes, suggesting strong constraints imposed by the presence of densely packed regulatory modules. In addition, comparison of sequence variation at non-synonymous and synonymous sites suggests similar recent selective pressures on paralogs within and orthologs across the deeply diverging species. This study presents the first genome-wide population-genomic analysis in ciliates and provides a valuable resource for future studies in evolutionary and functional genetics in Paramecium. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Increased metabolite production by deletion of an HDA1-type histone deacetylase in the phytopathogenic fungi, Magnaporthe oryzae (Pyricularia oryzae) and Fusarium asiaticum.

    PubMed

    Maeda, K; Izawa, M; Nakajima, Y; Jin, Q; Hirose, T; Nakamura, T; Koshino, H; Kanamaru, K; Ohsato, S; Kamakura, T; Kobayashi, T; Yoshida, M; Kimura, M

    2017-11-01

    Histone deacetylases (HDACs) play an important role in the regulation of chromatin structure and gene expression. We found that dark pigmentation of Magnaporthe oryzae (anamorph Pyricularia oryzae) ΔMohda1, a mutant strain in which an orthologue of the yeast HDA1 was disrupted by double cross-over homologous recombination, was significantly stimulated in liquid culture. Analysis of metabolites in a ΔMohda1 mutant culture revealed that the accumulation of shunt products of the 1,8-dihydroxynaphthalene melanin and ergosterol pathways were significantly enhanced compared to the wild-type strain. Northern blot analysis of the ΔMohda1 mutant revealed transcriptional activation of three melanin genes that are dispersed throughout the genome of M. oryzae. The effect of deletion of the yeast HDA1 orthologue was also observed in Fusarium asiaticum from the Fusarium graminearum species complex; the HDF2 deletion mutant produced increased levels of nivalenol-type trichothecenes. These results suggest that histone modification via HDA1-type HDAC regulates the production of natural products in filamentous fungi. Natural products of fungi have significant impacts on human welfare, in both detrimental and beneficial ways. Although HDA1-type histone deacetylase is not essential for vegetative growth, deletion of the gene affects the expression of clustered secondary metabolite genes in some fungi. Here, we report that such phenomena are also observed in physically unlinked genes required for melanin biosynthesis in the rice blast fungus. In addition, production of Fusarium trichothecenes, previously reported to be unaffected by HDA1 deletion, was significantly upregulated in another Fusarium species. Thus, the HDA1-inactivation strategy may be regarded as a general approach for overproduction and/or discovery of fungal metabolites. © 2017 The Society for Applied Microbiology.

  7. Identification of rhizome-specific genes by genome-wide differential expression Analysis in Oryza longistaminata

    PubMed Central

    2011-01-01

    Background Rhizomatousness is a key component of perenniality of many grasses that contribute to competitiveness and invasiveness of many noxious grass weeds, but can potentially be used to develop perennial cereal crops for sustainable farmers in hilly areas of tropical Asia. Oryza longistaminata, a perennial wild rice with strong rhizomes, has been used as the model species for genetic and molecular dissection of rhizome development and in breeding efforts to transfer rhizome-related traits into annual rice species. In this study, an effort was taken to get insights into the genes and molecular mechanisms underlying the rhizomatous trait in O. longistaminata by comparative analysis of the genome-wide tissue-specific gene expression patterns of five different tissues of O. longistaminata using the Affymetrix GeneChip Rice Genome Array. Results A total of 2,566 tissue-specific genes were identified in five different tissues of O. longistaminata, including 58 and 61 unique genes that were specifically expressed in the rhizome tips (RT) and internodes (RI), respectively. In addition, 162 genes were up-regulated and 261 genes were down-regulated in RT compared to the shoot tips. Six distinct cis-regulatory elements (CGACG, GCCGCC, GAGAC, AACGG, CATGCA, and TAAAG) were found to be significantly more abundant in the promoter regions of genes differentially expressed in RT than in the promoter regions of genes uniformly expressed in all other tissues. Many of the RT and/or RI specifically or differentially expressed genes were located in the QTL regions associated with rhizome expression, rhizome abundance and rhizome growth-related traits in O. longistaminata and thus are good candidate genes for these QTLs. Conclusion The initiation and development of the rhizomatous trait in O. longistaminata are controlled by very complex gene networks involving several plant hormones and regulatory genes, different members of gene families showing tissue specificity and their

  8. Identification of rhizome-specific genes by genome-wide differential expression analysis in Oryza longistaminata.

    PubMed

    Hu, Fengyi; Wang, Di; Zhao, Xiuqin; Zhang, Ting; Sun, Haixi; Zhu, Linghua; Zhang, Fan; Li, Lijuan; Li, Qiong; Tao, Dayun; Fu, Binying; Li, Zhikang

    2011-01-24

    Rhizomatousness is a key component of perenniality of many grasses that contribute to competitiveness and invasiveness of many noxious grass weeds, but can potentially be used to develop perennial cereal crops for sustainable farmers in hilly areas of tropical Asia. Oryza longistaminata, a perennial wild rice with strong rhizomes, has been used as the model species for genetic and molecular dissection of rhizome development and in breeding efforts to transfer rhizome-related traits into annual rice species. In this study, an effort was taken to get insights into the genes and molecular mechanisms underlying the rhizomatous trait in O. longistaminata by comparative analysis of the genome-wide tissue-specific gene expression patterns of five different tissues of O. longistaminata using the Affymetrix GeneChip Rice Genome Array. A total of 2,566 tissue-specific genes were identified in five different tissues of O. longistaminata, including 58 and 61 unique genes that were specifically expressed in the rhizome tips (RT) and internodes (RI), respectively. In addition, 162 genes were up-regulated and 261 genes were down-regulated in RT compared to the shoot tips. Six distinct cis-regulatory elements (CGACG, GCCGCC, GAGAC, AACGG, CATGCA, and TAAAG) were found to be significantly more abundant in the promoter regions of genes differentially expressed in RT than in the promoter regions of genes uniformly expressed in all other tissues. Many of the RT and/or RI specifically or differentially expressed genes were located in the QTL regions associated with rhizome expression, rhizome abundance and rhizome growth-related traits in O. longistaminata and thus are good candidate genes for these QTLs. The initiation and development of the rhizomatous trait in O. longistaminata are controlled by very complex gene networks involving several plant hormones and regulatory genes, different members of gene families showing tissue specificity and their regulated pathways. Auxin

  9. Characterization of seeds of selected wild species of rice (Oryza) stored under high temperature and humidity conditions.

    PubMed

    Das, Smruti; Nayak, Monalisa; Patra, B C; Ramakrishnan, B; Krishnan, P

    2010-06-01

    Wild progenitors of rice (Oryza) are an invaluable resource for restoring genetic diversity and incorporating useful traits back into cultivars. Studies were conducted to characterize the biochemical changes, including SDS-PAGE banding pattern of storage proteins in seeds of six wild species (Oryza alta, O. grandiglumis, O. meridionalis, O. nivara, O. officinalis and O. rhizomatis) of rice stored under high temperature (45 degrees C) and humidity (approixmately 100%) for 15 days, which facilitated accelerated deterioration. Under the treated conditions, seeds of different wild rice species showed decrease in per cent germination and concentrations of protein and starch, but increase in conductivity of leachate and content of sugar. The SDS-PAGE analysis of seed proteins showed that not only the total number of bands, but also their intensity in terms of thickness differed for each species under storage. The total number of bands ranged from 11 to 22, but none of the species showed all the bands. Similarity index for protein bands between the control and treated seeds was observed to be least in O. rhizomatis and O. alta, while the indices were 0.7 and 0.625 for O. officinalis and O. nivara, respectively. This study clearly showed that seed deterioration led to distinctive biochemical changes, including the presence or absence as well as altered levels of intensity of proteins. Hence, SDS-PAGE protein banding pattern can be used effectively to characterize deterioration of seeds of different wild species of rice.

  10. Promises and challenges of genomics for rice pathology

    USDA-ARS?s Scientific Manuscript database

    Publically available genome sequences of Magnaporthe oryzae, Rhizoctonia solani, and Oryza sativa are being used to study host-pathogen interactions. Comparative genomic analyses on natural alleles of major resistance (R) genes and the corresponding avirulence (AVR) genes have provided new clues for...

  11. Highly efficient gene targeting in Aspergillus oryzae industrial strains under ligD mutation introduced by genome editing: Strain-specific differences in the effects of deleting EcdR, the negative regulator of sclerotia formation.

    PubMed

    Nakamura, Hidetoshi; Katayama, Takuya; Okabe, Tomoya; Iwashita, Kazuhiro; Fujii, Wataru; Kitamoto, Katsuhiko; Maruyama, Jun-Ichi

    2017-07-11

    Numerous strains of Aspergillus oryzae are industrially used for Japanese traditional fermentation and for the production of enzymes and heterologous proteins. In A. oryzae, deletion of the ku70 or ligD genes involved in non-homologous end joining (NHEJ) has allowed high gene targeting efficiency. However, this strategy has been mainly applied under the genetic background of the A. oryzae wild strain RIB40, and it would be laborious to delete the NHEJ genes in many A. oryzae industrial strains, probably due to their low gene targeting efficiency. In the present study, we generated ligD mutants from the A. oryzae industrial strains by employing the CRISPR/Cas9 system, which we previously developed as a genome editing method. Uridine/uracil auxotrophic strains were generated by deletion of the pyrG gene, which was subsequently used as a selective marker. We examined the gene targeting efficiency with the ecdR gene, of which deletion was reported to induce sclerotia formation under the genetic background of the strain RIB40. As expected, the deletion efficiencies were high, around 60~80%, in the ligD mutants of industrial strains. Intriguingly, the effects of the ecdR deletion on sclerotia formation varied depending on the strains, and we found sclerotia-like structures under the background of the industrial strains, which have never been reported to form sclerotia. The present study demonstrates that introducing ligD mutation by genome editing is an effective method allowing high gene targeting efficiency in A. oryzae industrial strains.

  12. A Comparative Genomics Strategy for Targeted Discovery of Single-Nucleotide Polymorphisms and Conserved-Noncoding Sequences in Orphan Crops1[W

    PubMed Central

    Feltus, F.A.; Singh, H.P.; Lohithaswa, H.C.; Schulze, S.R.; Silva, T.D.; Paterson, A.H.

    2006-01-01

    Completed genome sequences provide templates for the design of genome analysis tools in orphan species lacking sequence information. To demonstrate this principle, we designed 384 PCR primer pairs to conserved exonic regions flanking introns, using Sorghum/Pennisetum expressed sequence tag alignments to the Oryza genome. Conserved-intron scanning primers (CISPs) amplified single-copy loci at 37% to 80% success rates in taxa that sample much of the approximately 50-million years of Poaceae divergence. While the conserved nature of exons fostered cross-taxon amplification, the lesser evolutionary constraints on introns enhanced single-nucleotide polymorphism detection. For example, in eight rice (Oryza sativa) genotypes, polymorphism averaged 12.1 per kb in introns but only 3.6 per kb in exons. Curiously, among 124 CISPs evaluated across Oryza, Sorghum, Pennisetum, Cynodon, Eragrostis, Zea, Triticum, and Hordeum, 23 (18.5%) seemed to be subject to rigid intron size constraints that were independent of per-nucleotide DNA sequence variation. Furthermore, we identified 487 conserved-noncoding sequence motifs in 129 CISP loci. A large CISP set (6,062 primer pairs, amplifying introns from 1,676 genes) designed using an automated pipeline showed generally higher abundance in recombinogenic than in nonrecombinogenic regions of the rice genome, thus providing relatively even distribution along genetic maps. CISPs are an effective means to explore poorly characterized genomes for both DNA polymorphism and noncoding sequence conservation on a genome-wide or candidate gene basis, and also provide anchor points for comparative genomics across a diverse range of species. PMID:16607031

  13. The Aspergillus Genome Database: multispecies curation and incorporation of RNA-Seq data to improve structural gene annotations.

    PubMed

    Cerqueira, Gustavo C; Arnaud, Martha B; Inglis, Diane O; Skrzypek, Marek S; Binkley, Gail; Simison, Matt; Miyasato, Stuart R; Binkley, Jonathan; Orvis, Joshua; Shah, Prachi; Wymore, Farrell; Sherlock, Gavin; Wortman, Jennifer R

    2014-01-01

    The Aspergillus Genome Database (AspGD; http://www.aspgd.org) is a freely available web-based resource that was designed for Aspergillus researchers and is also a valuable source of information for the entire fungal research community. In addition to being a repository and central point of access to genome, transcriptome and polymorphism data, AspGD hosts a comprehensive comparative genomics toolbox that facilitates the exploration of precomputed orthologs among the 20 currently available Aspergillus genomes. AspGD curators perform gene product annotation based on review of the literature for four key Aspergillus species: Aspergillus nidulans, Aspergillus oryzae, Aspergillus fumigatus and Aspergillus niger. We have iteratively improved the structural annotation of Aspergillus genomes through the analysis of publicly available transcription data, mostly expressed sequenced tags, as described in a previous NAR Database article (Arnaud et al. 2012). In this update, we report substantive structural annotation improvements for A. nidulans, A. oryzae and A. fumigatus genomes based on recently available RNA-Seq data. Over 26 000 loci were updated across these species; although those primarily comprise the addition and extension of untranslated regions (UTRs), the new analysis also enabled over 1000 modifications affecting the coding sequence of genes in each target genome.

  14. Quantifying Temporal Genomic Erosion in Endangered Species.

    PubMed

    Díez-Del-Molino, David; Sánchez-Barreiro, Fatima; Barnes, Ian; Gilbert, M Thomas P; Dalén, Love

    2018-03-01

    Many species have undergone dramatic population size declines over the past centuries. Although stochastic genetic processes during and after such declines are thought to elevate the risk of extinction, comparative analyses of genomic data from several endangered species suggest little concordance between genome-wide diversity and current population sizes. This is likely because species-specific life-history traits and ancient bottlenecks overshadow the genetic effect of recent demographic declines. Therefore, we advocate that temporal sampling of genomic data provides a more accurate approach to quantify genetic threats in endangered species. Specifically, genomic data from predecline museum specimens will provide valuable baseline data that enable accurate estimation of recent decreases in genome-wide diversity, increases in inbreeding levels, and accumulation of deleterious genetic variation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Detailed analysis of targeted gene mutations caused by the Platinum-Fungal TALENs in Aspergillus oryzae RIB40 strain and a ligD disruptant.

    PubMed

    Mizutani, Osamu; Arazoe, Takayuki; Toshida, Kenji; Hayashi, Risa; Ohsato, Shuichi; Sakuma, Tetsushi; Yamamoto, Takashi; Kuwata, Shigeru; Yamada, Osamu

    2017-03-01

    Transcription activator-like effector nucleases (TALENs), which can generate DNA double-strand breaks at specific sites in the desired genome locus, have been used in many organisms as a tool for genome editing. In Aspergilli, including Aspergillus oryzae, however, the use of TALENs has not been validated. In this study, we performed genome editing of A. oryzae wild-type strain via error of nonhomologous end-joining (NHEJ) repair by transient expression of high-efficiency Platinum-Fungal TALENs (PtFg TALENs). Targeted mutations were observed as various mutation patterns. In particular, approximately half of the PtFg TALEN-mediated deletion mutants had deletions larger than 1 kb in the TALEN-targeting region. We also conducted PtFg TALEN-based genome editing in A. oryzae ligD disruptant (ΔligD) lacking the ligD gene involved in the final step of the NHEJ repair and found that mutations were still obtained as well as wild-type. In this case, the ratio of the large deletions reduced compared to PtFg TALEN-based genome editing in the wild-type. In conclusion, we demonstrate that PtFg TALENs are sufficiently functional to cause genome editing via error of NHEJ in A. oryzae. In addition, we reveal that genome editing using TALENs in A. oryzae tends to cause large deletions at the target region, which were partly suppressed by deletion of ligD. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Experimental evolution reveals genome-wide spectrum and dynamics of mutations in the rice blast fungus, Magnaporthe oryzae.

    PubMed

    Jeon, Junhyun; Choi, Jaeyoung; Lee, Gir-Won; Dean, Ralph A; Lee, Yong-Hwan

    2013-01-01

    Knowledge on mutation processes is central to interpreting genetic analysis data as well as understanding the underlying nature of almost all evolutionary phenomena. However, studies on genome-wide mutational spectrum and dynamics in fungal pathogens are scarce, hindering our understanding of their evolution and biology. Here, we explored changes in the phenotypes and genome sequences of the rice blast fungus Magnaporthe oryzae during the forced in vitro evolution by weekly transfer of cultures on artificial media. Through combination of experimental evolution with high throughput sequencing technology, we found that mutations accumulate rapidly prior to visible phenotypic changes and that both genetic drift and selection seem to contribute to shaping mutational landscape, suggesting the buffering capacity of fungal genome against mutations. Inference of mutational effects on phenotypes through the use of T-DNA insertion mutants suggested that at least some of the DNA sequence mutations are likely associated with the observed phenotypic changes. Furthermore, our data suggest oxidative damages and UV as major sources of mutation during subcultures. Taken together, our work revealed important properties of original source of variation in the genome of the rice blast fungus. We believe that these results provide not only insights into stability of pathogenicity and genome evolution in plant pathogenic fungi but also a model in which evolution of fungal pathogens in natura can be comparatively investigated.

  17. Conservation genomics of threatened animal species.

    PubMed

    Steiner, Cynthia C; Putnam, Andrea S; Hoeck, Paquita E A; Ryder, Oliver A

    2013-01-01

    The genomics era has opened up exciting possibilities in the field of conservation biology by enabling genomic analyses of threatened species that previously were limited to model organisms. Next-generation sequencing (NGS) and the collection of genome-wide data allow for more robust studies of the demographic history of populations and adaptive variation associated with fitness and local adaptation. Genomic analyses can also advance management efforts for threatened wild and captive populations by identifying loci contributing to inbreeding depression and disease susceptibility, and predicting fitness consequences of introgression. However, the development of genomic tools in wild species still carries multiple challenges, particularly those associated with computational and sampling constraints. This review provides an overview of the most significant applications of NGS and the implications and limitations of genomic studies in conservation.

  18. AoS28D, a proline-Xaa carboxypeptidase secreted by Aspergillus oryzae.

    PubMed

    Salamin, Karine; Eugster, Philippe J; Jousson, Olivier; Waridel, Patrice; Grouzmann, Eric; Monod, Michel

    2017-05-01

    Prolyl peptidases of the MEROPS S28 family are of particular interest because they are key enzymes in the digestion of proline-rich peptides. A BLAST analysis of the Aspergillus oryzae genome revealed sequences coding for four proteases of the S28 family. Three of these proteases, AoS28A, AoS28B, and AoS28C, were previously characterized as acidic prolyl endopeptidases. The fourth protease, AoS28D, showed high sequence divergence with other S28 proteases and belongs to a phylogenetically distinct cluster together with orthologous proteases from other Aspergillus species. The objective of the present paper was to characterize AoS28D protease in terms of substrate specificity and activity. AoS28D produced by gene overexpression in A. oryzae and in Pichia pastoris was a 70-kDa glycoprotein with a 10-kDa sugar moiety. In contrast with other S28 proteases, AoS28D did not hydrolyze internal Pro-Xaa bonds of several tested peptides. Similarly, to human lysosomal Pro-Xaa carboxypeptidase, AoS28D demonstrated selectivity for cleaving C-terminal Pro-Xaa bonds which are resistant to carboxypeptidases of the S10 family concomitantly secreted by A. oryzae. Therefore, AoS28D could act in synergy with these enzymes during sequential degradation of a peptide from its C-terminus.

  19. Evaluation of commercial soy sauce koji strains of Aspergillus oryzae for γ-aminobutyric acid (GABA) production.

    PubMed

    Ab Kadir, Safuan; Wan-Mohtar, Wan Abd Al Qadr Imad; Mohammad, Rosfarizan; Abdul Halim Lim, Sarina; Sabo Mohammed, Abdulkarim; Saari, Nazamid

    2016-10-01

    In this study, four selected commercial strains of Aspergillus oryzae were collected from soy sauce koji. These A. oryzae strains designated as NSK, NSZ, NSJ and NST shared similar morphological characteristics with the reference strain (A. oryzae FRR 1675) which confirmed them as A. oryzae species. They were further evaluated for their ability to produce γ-aminobutyric acid (GABA) by cultivating the spore suspension in a broth medium containing 0.4 % (w/v) of glutamic acid as a substrate for GABA production. The results showed that these strains were capable of producing GABA; however, the concentrations differed significantly (P < 0.05) among themselves. Based on the A. oryzae strains, highest GABA concentration was obtained from NSK (194 mg/L) followed by NSZ (63 mg/L), NSJ (51.53 mg/L) and NST (31.66 mg/L). Therefore, A. oryzae NSK was characterized and the sequence was found to be similar to A. oryzae and A. flavus with 99 % similarity. The evolutionary distance (K nuc) between sequences of identical fungal species was calculated and a phylogenetic tree prepared from the K nuc data showed that the isolate belonged to the A. oryzae species. This finding may allow the development of GABA-rich ingredients using A. oryzae NSK as a starter culture for soy sauce production.

  20. Rubisco activity is associated with photosynthetic thermotolerance in a wild rice (Oryza meridionalis).

    PubMed

    Scafaro, Andrew P; Yamori, Wataru; Carmo-Silva, A Elizabete; Salvucci, Michael E; von Caemmerer, Susanne; Atwell, Brian J

    2012-09-01

    Oryza meridionalis is a wild species of rice, endemic to tropical Australia. It shares a significant genome homology with the common domesticated rice Oryza sativa. Exploiting the fact that the two species are highly related but O. meridionalis has superior heat tolerance, experiments were undertaken to identify the impact of temperature on key events in photosynthesis. At an ambient CO(2) partial pressure of 38 Pa and irradiance of 1500 µmol quanta m(-2) s(-1), the temperature optimum of photosynthesis was 33.7 ± 0.8°C for O. meridionalis, significantly higher than the 30.6 ± 0.7°C temperature optimum of O. sativa. To understand the basis for this difference, we measured gas exchange and rubisco activation state between 20 and 42°C and modeled the response to determine the rate-limiting steps of photosynthesis. The temperature response of light respiration (R(light)) and the CO(2) compensation point in the absence of respiration (Γ(*)) were determined and found to be similar for the two species. C3 photosynthesis modeling showed that despite the difference in susceptibility to high temperature, both species had a similar temperature-dependent limitation to photosynthesis. Both rice species were limited by ribulose-1,5-bisphosphate (RuBP) regeneration at temperatures of 25 and 30°C but became RuBP carboxylation limited at 35 and 40°C. The activation state of rubisco in O. meridionalis was more stable at higher temperatures, explaining its greater heat tolerance compared with O. sativa. Copyright © Physiologia Plantarum 2012.

  1. Identification and toxigenic potential of the industrially important fungi, Aspergillus oryzae and Aspergillus sojae.

    PubMed

    Jørgensen, Thomas R

    2007-12-01

    Mold strains belonging to the species Aspergillus oryzae and Aspergillus sojae are highly valued as koji molds in the traditional preparation of fermented foods, such as miso, sake, and shoyu, and as protein production hosts in modern industrial processes. A. oryzae and A. sojae are relatives of the wild molds Aspergillus flavus and Aspergillus parasiticus. All four species are classified to the A. flavus group. Strains of the A. flavus group are characterized by a high degree of morphological similarity. Koji mold species are generally perceived of as being nontoxigenic, whereas wild molds are associated with the carcinogenic aflatoxins. Thus, reliable identification of individual strains is very important for application purposes. This review considers the pheno- and genotypic markers used in the classification of A. flavus group strains and specifically in the identification of A. oryzae and A. sojae strains. Separation of A. oryzae and A. sojae from A. flavus and A. parasiticus, respectively, is inconsistent, and both morphologic and molecular evidence support conspecificity. The high degree of identity is reflected by the divergent identification of reference cultures maintained in culture collections. As close relatives of aflatoxin-producing wild molds, koji molds possess an aflatoxin gene homolog cluster. Some strains identified as A. oryzae and A. sojae have been implicated in aflatoxin production. Identification of a strain as A. oryzae or A. sojae is no guarantee of its inability to produce aflatoxins or other toxic metabolites. Toxigenic potential must be determined specifically for individual strains. The species taxa, A. oryzae and A. sojae, are currently conserved by societal issues.

  2. Secretome of Aspergillus oryzae in Shaoxing rice wine koji.

    PubMed

    Zhang, Bo; Guan, Zheng-Bing; Cao, Yu; Xie, Guang-Fa; Lu, Jian

    2012-04-16

    Shaoxing rice wine is the most famous and representative Chinese rice wine. Aspergillus oryzae SU16 is used in the manufacture of koji, the Shaoxing rice wine starter culture. In the current study, a comprehensive analysis of the secretome profile of A. oryzae SU16 in Shaoxing rice wine koji was performed for the first time. The proteomic analysis for the identification of the secretory proteins was done using two-dimensional electrophoresis combined with matrix-assisted laser desorption/ionization-tandem time of flight mass spectrometry based on the annotated A. oryzae genome sequence. A total of 41 unique proteins were identified from the secretome. These proteins included 17 extracellular proteins following the classical secretory pathway, and 10 extracellular proteins putatively secreted by the non-classical secretory pathway. The present secretome profile greatly differed from previous reports on A. oryzae growing in other solid-state nutrient sources. Several new secretory or putative secretory proteins were also found. These proteomic data will significantly aid the advancement of research on the secretome of A. oryzae, especially in solid-state cultures, and in elucidating the production process mechanism of Shaoxing rice wine koji. The findings may promote the technological development and innovation of the Shaoxing rice wine industry. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. The biosynthesis, structure and gelatinization properties of starches from wild and cultivated African rice species (Oryza barthii and Oryza glaberrima).

    PubMed

    Wang, Kai; Wambugu, Peterson W; Zhang, Bin; Wu, Alex Chi; Henry, Robert J; Gilbert, Robert G

    2015-09-20

    The molecular structure and gelatinization properties of starches from domesticated African rice (Oryza glaberrima) and its wild progenitor (Oryza barthii) are determined and comparison made with Asian domesticated rice (Oryza sativa), the commonest commercial rice. This suggests possible enzymatic processes contributing to the unique traits of the African varieties. These have similar starch structures, including smaller amylose molecules, but larger amounts of amylose chains across the whole amylose chain-length distribution, and higher amylose contents, than O. sativa. They also show a higher proportion of two- and three-lamellae spanning amylopectin branch chains (degree of polymerization 34-100) than O. sativa, which contributes to their higher gelatinization temperatures. Fitting amylopectin chain-length distribution with a biosynthesis-based mathematical model suggests that the reason for this difference might be because O. glaberrima and O. barthii have more active SSIIIa and/or less active SBEIIb enzymes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Genomic Analysis of the Basal Lineage Fungus Rhizopus oryzae Reveals a Whote-Genome Duplication

    USDA-ARS?s Scientific Manuscript database

    Rhizopus oryzae is the primary etiologic agent of mucormycosis, an emerging lifethreatening infection. The rapid growth and angioinvasive nature of mucormycotic infections in humans result in an overall mortality rate that exceeds 50%, even with combined surgical and antifungal therapies. As part ...

  5. A novel non-thermostable deuterolysin from Aspergillus oryzae.

    PubMed

    Maeda, Hiroshi; Katase, Toru; Sakai, Daisuke; Takeuchi, Michio; Kusumoto, Ken-Ichi; Amano, Hitoshi; Ishida, Hiroki; Abe, Keietsu; Yamagata, Youhei

    2016-09-01

    Three putative deuterolysin (EC 3.4.24.29) genes (deuA, deuB, and deuC) were found in the Aspergillus oryzae genome database ( http://www.bio.nite.go.jp/dogan/project/view/AO ). One of these genes, deuA, was corresponding to NpII gene, previously reported. DeuA and DeuB were overexpressed by recombinant A. oryzae and were purified. The degradation profiles against protein substrates of both enzymes were similar, but DeuB showed wider substrate specificity against peptidyl MCA-substrates compared with DeuA. Enzymatic profiles of DeuB except for thermostability also resembled those of DeuA. DeuB was inactivated by heat treatment above 80° C, different from thermostable DeuA. Transcription analysis in wild type A. oryzae showed only deuB was expressed in liquid culture, and the addition of the proteinous substrate upregulated the transcription. Furthermore, the NaNO3 addition seems to eliminate the effect of proteinous substrate for the transcription of deuB.

  6. Sequence- and Structure-Based Functional Annotation and Assessment of Metabolic Transporters in Aspergillus oryzae: A Representative Case Study

    PubMed Central

    Raethong, Nachon; Wong-ekkabut, Jirasak; Laoteng, Kobkul; Vongsangnak, Wanwipa

    2016-01-01

    Aspergillus oryzae is widely used for the industrial production of enzymes. In A. oryzae metabolism, transporters appear to play crucial roles in controlling the flux of molecules for energy generation, nutrients delivery, and waste elimination in the cell. While the A. oryzae genome sequence is available, transporter annotation remains limited and thus the connectivity of metabolic networks is incomplete. In this study, we developed a metabolic annotation strategy to understand the relationship between the sequence, structure, and function for annotation of A. oryzae metabolic transporters. Sequence-based analysis with manual curation showed that 58 genes of 12,096 total genes in the A. oryzae genome encoded metabolic transporters. Under consensus integrative databases, 55 unambiguous metabolic transporter genes were distributed into channels and pores (7 genes), electrochemical potential-driven transporters (33 genes), and primary active transporters (15 genes). To reveal the transporter functional role, a combination of homology modeling and molecular dynamics simulation was implemented to assess the relationship between sequence to structure and structure to function. As in the energy metabolism of A. oryzae, the H+-ATPase encoded by the AO090005000842 gene was selected as a representative case study of multilevel linkage annotation. Our developed strategy can be used for enhancing metabolic network reconstruction. PMID:27274991

  7. Sequence- and Structure-Based Functional Annotation and Assessment of Metabolic Transporters in Aspergillus oryzae: A Representative Case Study.

    PubMed

    Raethong, Nachon; Wong-Ekkabut, Jirasak; Laoteng, Kobkul; Vongsangnak, Wanwipa

    2016-01-01

    Aspergillus oryzae is widely used for the industrial production of enzymes. In A. oryzae metabolism, transporters appear to play crucial roles in controlling the flux of molecules for energy generation, nutrients delivery, and waste elimination in the cell. While the A. oryzae genome sequence is available, transporter annotation remains limited and thus the connectivity of metabolic networks is incomplete. In this study, we developed a metabolic annotation strategy to understand the relationship between the sequence, structure, and function for annotation of A. oryzae metabolic transporters. Sequence-based analysis with manual curation showed that 58 genes of 12,096 total genes in the A. oryzae genome encoded metabolic transporters. Under consensus integrative databases, 55 unambiguous metabolic transporter genes were distributed into channels and pores (7 genes), electrochemical potential-driven transporters (33 genes), and primary active transporters (15 genes). To reveal the transporter functional role, a combination of homology modeling and molecular dynamics simulation was implemented to assess the relationship between sequence to structure and structure to function. As in the energy metabolism of A. oryzae, the H(+)-ATPase encoded by the AO090005000842 gene was selected as a representative case study of multilevel linkage annotation. Our developed strategy can be used for enhancing metabolic network reconstruction.

  8. Genome-wide Identification and characterization of circular RNAs in the rice blast fungus Magnaporthe oryzae.

    PubMed

    Yuan, Jialan; Wang, Zhao; Xing, Junjie; Yang, Qingyong; Chen, Xiao-Lin

    2018-04-30

    Numerous circRNAs have been identified in different organisms, but little attention has been addressed on fungal circRNAs. Here, we identified a total of 8,848 circRNAs from the model plant pathogenic fungus M. oryzae. 5,840 circRNAs were identified from mycelium, 2,721 circRNAs from conidium, while only 287 circRNAs from both tissues. This indicated that most of the M. oryzae circRNAs were specifically expressed in mycelium or in conidium. Parental genes of circRNAs in mycelium were enriched in basic metabolisms required for normal growth, while in conidium, they were enriched in biogenesis of storages potentially used for infection. M. oryzae circRNAs could also bind to miRNAs, suggesting they may also function as sponges in fungi. This study suggested M. oryzae circRNAs could play important roles in regulation of growth and development.

  9. Serendipitous discovery of Wolbachia genomes in multiple Drosophila species.

    PubMed

    Salzberg, Steven L; Dunning Hotopp, Julie C; Delcher, Arthur L; Pop, Mihai; Smith, Douglas R; Eisen, Michael B; Nelson, William C

    2005-01-01

    The Trace Archive is a repository for the raw, unanalyzed data generated by large-scale genome sequencing projects. The existence of this data offers scientists the possibility of discovering additional genomic sequences beyond those originally sequenced. In particular, if the source DNA for a sequencing project came from a species that was colonized by another organism, then the project may yield substantial amounts of genomic DNA, including near-complete genomes, from the symbiotic or parasitic organism. By searching the publicly available repository of DNA sequencing trace data, we discovered three new species of the bacterial endosymbiont Wolbachia pipientis in three different species of fruit fly: Drosophila ananassae, D. simulans, and D. mojavensis. We extracted all sequences with partial matches to a previously sequenced Wolbachia strain and assembled those sequences using customized software. For one of the three new species, the data recovered were sufficient to produce an assembly that covers more than 95% of the genome; for a second species the data produce the equivalent of a 'light shotgun' sampling of the genome, covering an estimated 75-80% of the genome; and for the third species the data cover approximately 6-7% of the genome. The results of this study reveal an unexpected benefit of depositing raw data in a central genome sequence repository: new species can be discovered within this data. The differences between these three new Wolbachia genomes and the previously sequenced strain revealed numerous rearrangements and insertions within each lineage and hundreds of novel genes. The three new genomes, with annotation, have been deposited in GenBank.

  10. Genome-wide comparative analysis of four Indian Drosophila species.

    PubMed

    Mohanty, Sujata; Khanna, Radhika

    2017-12-01

    Comparative analysis of multiple genomes of closely or distantly related Drosophila species undoubtedly creates excitement among evolutionary biologists in exploring the genomic changes with an ecology and evolutionary perspective. We present herewith the de novo assembled whole genome sequences of four Drosophila species, D. bipectinata, D. takahashii, D. biarmipes and D. nasuta of Indian origin using Next Generation Sequencing technology on an Illumina platform along with their detailed assembly statistics. The comparative genomics analysis, e.g. gene predictions and annotations, functional and orthogroup analysis of coding sequences and genome wide SNP distribution were performed. The whole genome of Zaprionus indianus of Indian origin published earlier by us and the genome sequences of previously sequenced 12 Drosophila species available in the NCBI database were included in the analysis. The present work is a part of our ongoing genomics project of Indian Drosophila species.

  11. Genome-Wide Identification and Analysis of Biotic and Abiotic Stress Regulation of C4 Photosynthetic Pathway Genes in Rice.

    PubMed

    Muthusamy, Senthilkumar K; Lenka, Sangram K; Katiyar, Amit; Chinnusamy, Viswanathan; Singh, Ashok K; Bansal, Kailash C

    2018-06-19

    Photosynthetic fixation of CO 2 is more efficient in C 4 than in C 3 plants. Rice is a C 3 plant and a potential target for genetic engineering of the C 4 pathway. It is known that genes encoding C 4 enzymes are present in C 3 plants. However, no systematic analysis has been conducted to determine if these C 4 gene family members are expressed in diverse rice genotypes. In this study, we identified 15 genes belonging to the five C 4 gene families in rice genome through BLAST search using known maize C 4 photosynthetic pathway genes. Phylogenetic relationship of rice C 4 photosynthetic pathway genes and their isoforms with other grass genomes (Brachypodium, maize, Sorghum and Setaria), showed that these genes were highly conserved across grass genomes. Spatiotemporal, hormone, and abiotic stress specific expression pattern of the identified genes revealed constitutive as well as inductive responses of the C 4 photosynthetic pathway in different tissues and developmental stages of rice. Expression levels of C 4 specific gene family members in flag leaf during tillering stage were quantitatively analyzed in five rice genotypes covering three species, viz. Oryza sativa, ssp. japonica (cv. Nipponbare), Oryza sativa, ssp. indica (cv IR64, Swarna), and two wild species Oryza barthii and Oryza australiensis. The results showed that all the identified genes expressed in rice and exhibited differential expression pattern during different growth stages, and in response to biotic and abiotic stress conditions and hormone treatments. Our study concludes that C 4 photosynthetic pathway genes present in rice play a crucial role in stress regulation and might act as targets for C 4 pathway engineering via CRISPR-mediated breeding.

  12. Genomic patterns of species diversity and divergence in Eucalyptus.

    PubMed

    Hudson, Corey J; Freeman, Jules S; Myburg, Alexander A; Potts, Brad M; Vaillancourt, René E

    2015-06-01

    We examined genome-wide patterns of DNA sequence diversity and divergence among six species of the important tree genus Eucalyptus and investigated their relationship with genomic architecture. Using c. 90 range-wide individuals of each Eucalyptus species (E. grandis, E. urophylla, E. globulus, E. nitens, E. dunnii and E. camaldulensis), genetic diversity and divergence were estimated from 2840 polymorphic diversity arrays technology markers covering the 11 chromosomes. Species differentiating markers (SDMs) identified in each of 15 pairwise species comparisons, along with species diversity (HHW ) and divergence (FST ), were projected onto the E. grandis reference genome. Across all species comparisons, SDMs totalled 1.1-5.3% of markers and were widely distributed throughout the genome. Marker divergence (FST and SDMs) and diversity differed among and within chromosomes. Patterns of diversity and divergence were broadly conserved across species and significantly associated with genomic features, including the proximity of markers to genes, the relative number of clusters of tandem duplications, and gene density within or among chromosomes. These results suggest that genomic architecture influences patterns of species diversity and divergence in the genus. This influence is evident across the six species, encompassing diverse phylogenetic lineages, geography and ecology. © 2015 University of Tasmania New Phytologist © 2015 New Phytologist Trust.

  13. Local differentiation amidst extensive allele sharing in Oryza nivara and O. rufipogon

    PubMed Central

    Banaticla-Hilario, Maria Celeste N; van den Berg, Ronald G; Hamilton, Nigel Ruaraidh Sackville; McNally, Kenneth L

    2013-01-01

    Genetic variation patterns within and between species may change along geographic gradients and at different spatial scales. This was revealed by microsatellite data at 29 loci obtained from 119 accessions of three Oryza series Sativae species in Asia Pacific: Oryza nivara Sharma and Shastry, O. rufipogon Griff., and O. meridionalis Ng. Genetic similarities between O. nivara and O. rufipogon across their distribution are evident in the clustering and ordination results and in the large proportion of shared alleles between these taxa. However, local-level species separation is recognized by Bayesian clustering and neighbor-joining analyses. At the regional scale, the two species seem more differentiated in South Asia than in Southeast Asia as revealed by FST analysis. The presence of strong gene flow barriers in smaller spatial units is also suggested in the analysis of molecular variance (AMOVA) results where 64% of the genetic variation is contained among populations (as compared to 26% within populations and 10% among species). Oryza nivara (HE = 0.67) exhibits slightly lower diversity and greater population differentiation than O. rufipogon (HE = 0.70). Bayesian inference identified four, and at a finer structural level eight, genetically distinct population groups that correspond to geographic populations within the three taxa. Oryza meridionalis and the Nepalese O. nivara seemed diverged from all the population groups of the series, whereas the Australasian O. rufipogon appeared distinct from the rest of the species. PMID:24101993

  14. Dynamics of genome change among Legionella species

    PubMed Central

    Joseph, Sandeep J.; Cox, Daniel; Wolff, Bernard; Morrison, Shatavia S.; Kozak-Muiznieks, Natalia A.; Frace, Michael; Didelot, Xavier; Castillo-Ramirez, Santiago; Winchell, Jonas; Read, Timothy D.; Dean, Deborah

    2016-01-01

    Legionella species inhabit freshwater and soil ecosystems where they parasitize protozoa. L. pneumonphila (LP) serogroup-1 (Lp1) is the major cause of Legionnaires’ Disease (LD), a life-threatening pulmonary infection that can spread systemically. The increased global frequency of LD caused by Lp and non-Lp species underscores the need to expand our knowledge of evolutionary forces underlying disease pathogenesis. Whole genome analyses of 43 strains, including all known Lp serogroups 1–17 and 17 emergent LD-causing Legionella species (of which 33 were sequenced in this study) in addition to 10 publicly available genomes, resolved the strains into four phylogenetic clades along host virulence demarcations. Clade-specific genes were distinct for genetic exchange and signal-transduction, indicating adaptation to specific cellular and/or environmental niches. CRISPR spacer comparisons hinted at larger pools of accessory DNA sequences in Lp than predicted by the pan-genome analyses. While recombination within Lp was frequent and has been reported previously, population structure analysis identified surprisingly few DNA admixture events between species. In summary, diverse Legionella LD–causing species share a conserved core-genome, are genetically isolated from each other, and selectively acquire genes with potential for enhanced virulence. PMID:27633769

  15. Spaceflight-induced genetic and epigenetic changes in the rice (Oryza sativa L.) genome are independent of each other.

    PubMed

    Ou, Xiufang; Long, Likun; Wu, Ying; Yu, Yingjie; Lin, Xiuyun; Qi, Xin; Liu, Bao

    2010-07-01

    An array of studies have reported that the spaceflight environment is mutagenic and may induce phenotypic and genetic changes in diverse organisms. We reported recently that in at least some plant species (e.g., rice) the spaceflight environment can be particularly potent in generating heritable epigenetic changes in the form of altered cytosine methylation patterns and activation of transposable elements. To further study the issue of spaceflight-induced genomic instability, and in particular to test whether the incurred genetic and epigenetic changes are connected or independent of each other, we performed the present study. We subjected seeds of the standard laboratory rice (Oryza sativa L.) cultivar Nipponbare to a spaceflight in the spaceship Long March 2 for 18 days. We then investigated the genetic and DNA methylation stabilities of 11 randomly selected plants germinated from the spaceflown seeds by using two kinds of DNA markers, amplified fragment length polymorphism (AFLP) and methylation sensitive amplified polymorphism (MSAP). For AFLP, by using 15 primer combinations, we assessed 460 genomic loci and found that the frequencies of genetic changes across the 11 plants ranged from 0.7% to 6.7% with an average frequency of 3.5%. For MSAP, by using 14 primer combinations, we assessed 467 loci and detected the occurrence of four major types of cytosine methylation alterations at the CCGG sites, namely CG or CNG hypomethylation and CG or CNG hypermethylation. Collectively, the frequencies of the two kinds of hypermethylation, CG (1.95%) and CNG (1.44%), are about two times higher than those of the two kinds of hypomethylation, CG (0.76%) and CNG (0.80%), though different plants showed variable frequencies for each type of alteration. Further analysis suggested that both the genetic and cytosine methylation changes manifested apparent mutational bias towards specific genomic regions, but the two kinds of instabilities are independent of each other based on

  16. Rice diversity panels available through the genetic stocks oryza collection

    USDA-ARS?s Scientific Manuscript database

    The Genetic Stocks Oryza (GSOR) Collection was established in 2004 at the USDA-ARS, Dale Bumpers National Rice Research Center (DBNRRC) located in Stuttgart, AR. The mission of GSOR is to provide unique genetic resources to the rice research community for genetic and genomics related research. GSOR ...

  17. Bamboo Flowering from the Perspective of Comparative Genomics and Transcriptomics

    PubMed Central

    Biswas, Prasun; Chakraborty, Sukanya; Dutta, Smritikana; Pal, Amita; Das, Malay

    2016-01-01

    Bamboos are an important member of the subfamily Bambusoideae, family Poaceae. The plant group exhibits wide variation with respect to the timing (1–120 years) and nature (sporadic vs. gregarious) of flowering among species. Usually flowering in woody bamboos is synchronous across culms growing over a large area, known as gregarious flowering. In many monocarpic bamboos this is followed by mass death and seed setting. While in sporadic flowering an isolated wild clump may flower, set little or no seed and remain alive. Such wide variation in flowering time and extent means that the plant group serves as repositories for genes and expression patterns that are unique to bamboo. Due to the dearth of available genomic and transcriptomic resources, limited studies have been undertaken to identify the potential molecular players in bamboo flowering. The public release of the first bamboo genome sequence Phyllostachys heterocycla, availability of related genomes Brachypodium distachyon and Oryza sativa provide us the opportunity to study this long-standing biological problem in a comparative and functional genomics framework. We identified bamboo genes homologous to those of Oryza and Brachypodium that are involved in established pathways such as vernalization, photoperiod, autonomous, and hormonal regulation of flowering. Additionally, we investigated triggers like stress (drought), physiological maturity and micro RNAs that may play crucial roles in flowering. We also analyzed available transcriptome datasets of different bamboo species to identify genes and their involvement in bamboo flowering. Finally, we summarize potential research hurdles that need to be addressed in future research. PMID:28018419

  18. RPAN: rice pan-genome browser for ∼3000 rice genomes.

    PubMed

    Sun, Chen; Hu, Zhiqiang; Zheng, Tianqing; Lu, Kuangchen; Zhao, Yue; Wang, Wensheng; Shi, Jianxin; Wang, Chunchao; Lu, Jinyuan; Zhang, Dabing; Li, Zhikang; Wei, Chaochun

    2017-01-25

    A pan-genome is the union of the gene sets of all the individuals of a clade or a species and it provides a new dimension of genome complexity with the presence/absence variations (PAVs) of genes among these genomes. With the progress of sequencing technologies, pan-genome study is becoming affordable for eukaryotes with large-sized genomes. The Asian cultivated rice, Oryza sativa L., is one of the major food sources for the world and a model organism in plant biology. Recently, the 3000 Rice Genome Project (3K RGP) sequenced more than 3000 rice genomes with a mean sequencing depth of 14.3×, which provided a tremendous resource for rice research. In this paper, we present a genome browser, Rice Pan-genome Browser (RPAN), as a tool to search and visualize the rice pan-genome derived from 3K RGP. RPAN contains a database of the basic information of 3010 rice accessions, including genomic sequences, gene annotations, PAV information and gene expression data of the rice pan-genome. At least 12 000 novel genes absent in the reference genome were included. RPAN also provides multiple search and visualization functions. RPAN can be a rich resource for rice biology and rice breeding. It is available at http://cgm.sjtu.edu.cn/3kricedb/ or http://www.rmbreeding.cn/pan3k. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. The Role of Iron Competition in the Antagonistic Action of the Rice Endophyte Streptomyces sporocinereus OsiSh-2 Against the Pathogen Magnaporthe oryzae.

    PubMed

    Zeng, Jiarui; Xu, Ting; Cao, Lidan; Tong, Chunyi; Zhang, Xuan; Luo, Dingyi; Han, Shuping; Pang, Pei; Fu, Weibin; Yan, Jindong; Liu, Xuanming; Zhu, Yonghua

    2018-04-20

    Rice blast caused by Magnaporthe oryzae severely impacts global rice yield stability. The rice endophyte Streptomyces sporocinereus OsiSh-2, with strong antagonistic activity towards M. oryzae, has been reported in our previous study. To decipher the model of the antagonistic action of OsiSh-2 towards M. oryzae, we compared the iron-capturing abilities of these two strains. The cultivation of OsiSh-2 and a M. oryzae strain under iron-rich and iron-starved conditions showed that M. oryzae depended more on iron supplementation for growth and development than did OsiSh-2. Genomic analysis of the S. sporocinereus and M. oryzae species strains revealed that they might possess different iron acquisition strategies. The actinobacterium OsiSh-2 is likely to favor siderophore utilization compared to the fungus M. oryzae. In addition, protein annotations found that OsiSh-2 contains the highest number of the siderophore biosynthetic gene clusters among the 13 endophytic actinomycete strains and 13 antifungal actinomycete strains that we compared, indicating the prominent siderophore production potential of OsiSh-2. Additionally, we verified that OsiSh-2 could excrete considerably more siderophores than Guy11 under iron-restricted conditions and displayed greater Fe 3+ -reducing activity during iron-supplemental conditions. Measurements of the iron mobilization between the antagonistic OsiSh-2 and Guy11 showed that the iron concentration is higher around OsiSh-2 than around Guy11. In addition, adding iron near OsiSh-2 could decrease the antagonism of OsiSh-2 towards Guy11. Our study revealed that the antagonistic capacity displayed by OsiSh-2 towards M. oryzae was related to the competition for iron. The highly efficient iron acquisition system of OsiSh-2 may offer valuable insight for the biocontrol of rice blast.

  20. Tapping the promise of genomics in species with complex, nonmodel genomes.

    PubMed

    Hirsch, Candice N; Buell, C Robin

    2013-01-01

    Genomics is enabling a renaissance in all disciplines of plant biology. However, many plant genomes are complex and remain recalcitrant to current genomic technologies. The complexities of these nonmodel plant genomes are attributable to gene and genome duplication, heterozygosity, ploidy, and/or repetitive sequences. Methods are available to simplify the genome and reduce these barriers, including inbreeding and genome reduction, making these species amenable to current sequencing and assembly methods. Some, but not all, of the complexities in nonmodel genomes can be bypassed by sequencing the transcriptome rather than the genome. Additionally, comparative genomics approaches, which leverage phylogenetic relatedness, can aid in the interpretation of complex genomes. Although there are limitations in accessing complex nonmodel plant genomes using current sequencing technologies, genome manipulation and resourceful analyses can allow access to even the most recalcitrant plant genomes.

  1. Identification and fine-mapping of Xa33, a novel gene for resistance to Xanthomonas oryzae pv. oryzae.

    PubMed

    Kumar, P Natraj; Sujatha, K; Laha, G S; Rao, K Srinivasa; Mishra, B; Viraktamath, B C; Hari, Y; Reddy, C S; Balachandran, S M; Ram, T; Madhav, M Sheshu; Rani, N Shobha; Neeraja, C N; Reddy, G Ashok; Shaik, H; Sundaram, R M

    2012-02-01

    Broadening of the genetic base for identification and transfer of genes for resistance to insect pests and diseases from wild relatives of rice is an important strategy in resistance breeding programs across the world. An accession of Oryza nivara, International Rice Germplasm Collection (IRGC) accession number 105710, was identified to exhibit high level and broad-spectrum resistance to Xanthomonas oryzae pv. oryzae. In order to study the genetics of resistance and to tag and map the resistance gene or genes present in IRGC 105710, it was crossed with the bacterial blight (BB)-susceptible varieties 'TN1' and 'Samba Mahsuri' (SM) and then backcrossed to generate backcross mapping populations. Analysis of these populations and their progeny testing revealed that a single dominant gene controls resistance in IRGC 105710. The BC(1)F(2) population derived from the cross IRGC 105710/TN1//TN1 was screened with a set of 72 polymorphic simple-sequence repeat (SSR) markers distributed across the rice genome and the resistance gene was coarse mapped on chromosome 7 between the SSR markers RM5711 and RM6728 at a genetic distance of 17.0 and 19.3 centimorgans (cM), respectively. After analysis involving 49 SSR markers located between the genomic interval spanned by RM5711 and RM6728, and BC(2)F(2) population consisting of 2,011 individuals derived from the cross IRGC 105710/TN1//TN1, the gene was fine mapped between two SSR markers (RMWR7.1 and RMWR7.6) located at a genetic distance of 0.9 and 1.2 cM, respectively, from the gene and flanking it. The linkage distances were validated in a BC(1)F(2) mapping population derived from the cross IRGC 105710/SM//2 × SM. The BB resistance gene present in the O. nivara accession was identified to be novel based on its unique map location on chromosome 7 and wider spectrum of BB resistance; this gene has been named Xa33. The genomic region between the two closely flanking SSR markers was in silico analyzed for putatively expressed

  2. Development of genome- and transcriptome-derived microsatellites in related species of snapping shrimps with highly duplicated genomes.

    PubMed

    Gaynor, Kaitlyn M; Solomon, Joseph W; Siller, Stefanie; Jessell, Linnet; Duffy, J Emmett; Rubenstein, Dustin R

    2017-11-01

    Molecular markers are powerful tools for studying patterns of relatedness and parentage within populations and for making inferences about social evolution. However, the development of molecular markers for simultaneous study of multiple species presents challenges, particularly when species exhibit genome duplication or polyploidy. We developed microsatellite markers for Synalpheus shrimp, a genus in which species exhibit not only great variation in social organization, but also interspecific variation in genome size and partial genome duplication. From the four primary clades within Synalpheus, we identified microsatellites in the genomes of four species and in the consensus transcriptome of two species. Ultimately, we designed and tested primers for 143 microsatellite markers across 25 species. Although the majority of markers were disomic, many markers were polysomic for certain species. Surprisingly, we found no relationship between genome size and the number of polysomic markers. As expected, markers developed for a given species amplified better for closely related species than for more distant relatives. Finally, the markers developed from the transcriptome were more likely to work successfully and to be disomic than those developed from the genome, suggesting that consensus transcriptomes are likely to be conserved across species. Our findings suggest that the transcriptome, particularly consensus sequences from multiple species, can be a valuable source of molecular markers for taxa with complex, duplicated genomes. © 2017 John Wiley & Sons Ltd.

  3. Morphological and molecular characterization of fungal pathogen, Magnaphorthe oryzae

    NASA Astrophysics Data System (ADS)

    Hasan, Nor'Aishah; Rafii, Mohd Y.; Rahim, Harun A.; Ali, Nusaibah Syd; Mazlan, Norida; Abdullah, Shamsiah

    2016-02-01

    Rice is arguably the most crucial food crops supplying quarter of calories intake. Fungal pathogen, Magnaphorthe oryzae promotes blast disease unconditionally to gramineous host including rice species. This disease spurred an outbreaks and constant threat to cereal production. Global rice yield declining almost 10-30% including Malaysia. As Magnaphorthe oryzae and its host is model in disease plant study, the rice blast pathosystem has been the subject of intense interest to overcome the importance of the disease to world agriculture. Therefore, in this study, our prime objective was to isolate samples of Magnaphorthe oryzae from diseased leaf obtained from MARDI Seberang Perai, Penang, Malaysia. Molecular identification was performed by sequences analysis from internal transcribed spacer (ITS) region of nuclear ribosomal RNA genes. Phylogenetic affiliation of the isolated samples were analyzed by comparing the ITS sequences with those deposited in the GenBank database. The sequence of the isolate demonstrated at least 99% nucleotide identity with the corresponding sequence in GenBank for Magnaphorthe oryzae. Morphological observed under microscope demonstrated that the structure of conidia followed similar characteristic as M. oryzae. Finding in this study provide useful information for breeding programs, epidemiology studies and improved disease management.

  4. Mycobacterial species as case-study of comparative genome analysis.

    PubMed

    Zakham, F; Belayachi, L; Ussery, D; Akrim, M; Benjouad, A; El Aouad, R; Ennaji, M M

    2011-02-08

    The genus Mycobacterium represents more than 120 species including important pathogens of human and cause major public health problems and illnesses. Further, with more than 100 genome sequences from this genus, comparative genome analysis can provide new insights for better understanding the evolutionary events of these species and improving drugs, vaccines, and diagnostics tools for controlling Mycobacterial diseases. In this present study we aim to outline a comparative genome analysis of fourteen Mycobacterial genomes: M. avium subsp. paratuberculosis K—10, M. bovis AF2122/97, M. bovis BCG str. Pasteur 1173P2, M. leprae Br4923, M. marinum M, M. sp. KMS, M. sp. MCS, M. tuberculosis CDC1551, M. tuberculosis F11, M. tuberculosis H37Ra, M. tuberculosis H37Rv, M. tuberculosis KZN 1435 , M. ulcerans Agy99,and M. vanbaalenii PYR—1, For this purpose a comparison has been done based on their length of genomes, GC content, number of genes in different data bases (Genbank, Refseq, and Prodigal). The BLAST matrix of these genomes has been figured to give a lot of information about the similarity between species in a simple scheme. As a result of multiple genome analysis, the pan and core genome have been defined for twelve Mycobacterial species. We have also introduced the genome atlas of the reference strain M. tuberculosis H37Rv which can give a good overview of this genome. And for examining the phylogenetic relationships among these bacteria, a phylogenic tree has been constructed from 16S rRNA gene for tuberculosis and non tuberculosis Mycobacteria to understand the evolutionary events of these species.

  5. Sequencing of Australian wild rice genomes reveals ancestral relationships with domesticated rice.

    PubMed

    Brozynska, Marta; Copetti, Dario; Furtado, Agnelo; Wing, Rod A; Crayn, Darren; Fox, Glen; Ishikawa, Ryuji; Henry, Robert J

    2017-06-01

    The related A genome species of the Oryza genus are the effective gene pool for rice. Here, we report draft genomes for two Australian wild A genome taxa: O. rufipogon-like population, referred to as Taxon A, and O. meridionalis-like population, referred to as Taxon B. These two taxa were sequenced and assembled by integration of short- and long-read next-generation sequencing (NGS) data to create a genomic platform for a wider rice gene pool. Here, we report that, despite the distinct chloroplast genome, the nuclear genome of the Australian Taxon A has a sequence that is much closer to that of domesticated rice (O. sativa) than to the other Australian wild populations. Analysis of 4643 genes in the A genome clade showed that the Australian annual, O. meridionalis, and related perennial taxa have the most divergent (around 3 million years) genome sequences relative to domesticated rice. A test for admixture showed possible introgression into the Australian Taxon A (diverged around 1.6 million years ago) especially from the wild indica/O. nivara clade in Asia. These results demonstrate that northern Australia may be the centre of diversity of the A genome Oryza and suggest the possibility that this might also be the centre of origin of this group and represent an important resource for rice improvement. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Comparative Study of Lectin Domains in Model Species: New Insights into Evolutionary Dynamics

    PubMed Central

    Van Holle, Sofie; De Schutter, Kristof; Eggermont, Lore; Tsaneva, Mariya; Dang, Liuyi; Van Damme, Els J. M.

    2017-01-01

    Lectins are present throughout the plant kingdom and are reported to be involved in diverse biological processes. In this study, we provide a comparative analysis of the lectin families from model species in a phylogenetic framework. The analysis focuses on the different plant lectin domains identified in five representative core angiosperm genomes (Arabidopsis thaliana, Glycine max, Cucumis sativus, Oryza sativa ssp. japonica and Oryza sativa ssp. indica). The genomes were screened for genes encoding lectin domains using a combination of Basic Local Alignment Search Tool (BLAST), hidden Markov models, and InterProScan analysis. Additionally, phylogenetic relationships were investigated by constructing maximum likelihood phylogenetic trees. The results demonstrate that the majority of the lectin families are present in each of the species under study. Domain organization analysis showed that most identified proteins are multi-domain proteins, owing to the modular rearrangement of protein domains during evolution. Most of these multi-domain proteins are widespread, while others display a lineage-specific distribution. Furthermore, the phylogenetic analyses reveal that some lectin families evolved to be similar to the phylogeny of the plant species, while others share a closer evolutionary history based on the corresponding protein domain architecture. Our results yield insights into the evolutionary relationships and functional divergence of plant lectins. PMID:28587095

  7. Preliminary Genomic Characterization of Ten Hardwood Tree Species from Multiplexed Low Coverage Whole Genome Sequencing

    PubMed Central

    Staton, Margaret; Best, Teodora; Khodwekar, Sudhir; Owusu, Sandra; Xu, Tao; Xu, Yi; Jennings, Tara; Cronn, Richard; Arumuganathan, A. Kathiravetpilla; Coggeshall, Mark; Gailing, Oliver; Liang, Haiying; Romero-Severson, Jeanne; Schlarbaum, Scott; Carlson, John E.

    2015-01-01

    Forest health issues are on the rise in the United States, resulting from introduction of alien pests and diseases, coupled with abiotic stresses related to climate change. Increasingly, forest scientists are finding genetic/genomic resources valuable in addressing forest health issues. For a set of ten ecologically and economically important native hardwood tree species representing a broad phylogenetic spectrum, we used low coverage whole genome sequencing from multiplex Illumina paired ends to economically profile their genomic content. For six species, the genome content was further analyzed by flow cytometry in order to determine the nuclear genome size. Sequencing yielded a depth of 0.8X to 7.5X, from which in silico analysis yielded preliminary estimates of gene and repetitive sequence content in the genome for each species. Thousands of genomic SSRs were identified, with a clear predisposition toward dinucleotide repeats and AT-rich repeat motifs. Flanking primers were designed for SSR loci for all ten species, ranging from 891 loci in sugar maple to 18,167 in redbay. In summary, we have demonstrated that useful preliminary genome information including repeat content, gene content and useful SSR markers can be obtained at low cost and time input from a single lane of Illumina multiplex sequence. PMID:26698853

  8. Molecular detection of Xanthomonas oryzae pv. oryzae, Xanthomonas oryzae pv. oryzicola, and Burkholderia glumae in infected rice seeds and leaves

    USDA-ARS?s Scientific Manuscript database

    Polymerase chain reaction (PCR) is particularly useful for plant pathogen detection. In the present study, multiplex PCR and SYBR green real-time PCR were developed to facilitate simultaneous detection of three important rice pathogens, Xanthomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, and Bur...

  9. Analysis of Rhizome Development in Oryza longistaminata, a Wild Rice Species.

    PubMed

    Yoshida, Akiko; Terada, Yasuhiko; Toriba, Taiyo; Kose, Katsumi; Ashikari, Motoyuki; Kyozuka, Junko

    2016-10-01

    Vegetative reproduction is a form of asexual propagation in plants. A wide range of plants develop rhizomes, modified stems that grow underground horizontally, as a means of vegetative reproduction. In rhizomatous species, despite their distinct developmental patterns, both rhizomes and aerial shoots derive from axillary buds. Therefore, it is of interest to understand the basis of rhizome initiation and development. Oryza longistaminata, a wild rice species, develops rhizomes. We analyzed bud initiation and growth of O. longistaminata rhizomes using various methods of morphological observation. We show that, unlike aerial shoot buds that contain a few leaves only, rhizome buds initiate several leaves and bend to grow at right angles to the original rhizome. Rhizomes are maintained in the juvenile phase irrespective of the developmental phase of the aerial shoot. Stem elongation and reproductive transition are tightly linked in the aerial shoots, but are uncoupled in the rhizome. Our findings indicate that developmental programs operate independently in the rhizomes and aerial shoots. Temporal modification of the developmental pathways that are common to rhizomes and aerial shoots may be the source of developmental plasticity. Furthermore, the creation of new developmental systems appears to be necessary for rhizome development. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. DroSpeGe: rapid access database for new Drosophila species genomes.

    PubMed

    Gilbert, Donald G

    2007-01-01

    The Drosophila species comparative genome database DroSpeGe (http://insects.eugenes.org/DroSpeGe/) provides genome researchers with rapid, usable access to 12 new and old Drosophila genomes, since its inception in 2004. Scientists can use, with minimal computing expertise, the wealth of new genome information for developing new insights into insect evolution. New genome assemblies provided by several sequencing centers have been annotated with known model organism gene homologies and gene predictions to provided basic comparative data. TeraGrid supplies the shared cyberinfrastructure for the primary computations. This genome database includes homologies to Drosophila melanogaster and eight other eukaryote model genomes, and gene predictions from several groups. BLAST searches of the newest assemblies are integrated with genome maps. GBrowse maps provide detailed views of cross-species aligned genomes. BioMart provides for data mining of annotations and sequences. Common chromosome maps identify major synteny among species. Potential gain and loss of genes is suggested by Gene Ontology groupings for genes of the new species. Summaries of essential genome statistics include sizes, genes found and predicted, homology among genomes, phylogenetic trees of species and comparisons of several gene predictions for sensitivity and specificity in finding new and known genes.

  11. Complete nucleotide sequence of the Cryptomeria japonica D. Don. chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species.

    PubMed

    Hirao, Tomonori; Watanabe, Atsushi; Kurita, Manabu; Kondo, Teiji; Takata, Katsuhiko

    2008-06-23

    The recent determination of complete chloroplast (cp) genomic sequences of various plant species has enabled numerous comparative analyses as well as advances in plant and genome evolutionary studies. In angiosperms, the complete cp genome sequences of about 70 species have been determined, whereas those of only three gymnosperm species, Cycas taitungensis, Pinus thunbergii, and Pinus koraiensis have been established. The lack of information regarding the gene content and genomic structure of gymnosperm cp genomes may severely hamper further progress of plant and cp genome evolutionary studies. To address this need, we report here the complete nucleotide sequence of the cp genome of Cryptomeria japonica, the first in the Cupressaceae sensu lato of gymnosperms, and provide a comparative analysis of their gene content and genomic structure that illustrates the unique genomic features of gymnosperms. The C. japonica cp genome is 131,810 bp in length, with 112 single copy genes and two duplicated (trnI-CAU, trnQ-UUG) genes that give a total of 116 genes. Compared to other land plant cp genomes, the C. japonica cp has lost one of the relevant large inverted repeats (IRs) found in angiosperms, fern, liverwort, and gymnosperms, such as Cycas and Gingko, and additionally has completely lost its trnR-CCG, partially lost its trnT-GGU, and shows diversification of accD. The genomic structure of the C. japonica cp genome also differs significantly from those of other plant species. For example, we estimate that a minimum of 15 inversions would be required to transform the gene organization of the Pinus thunbergii cp genome into that of C. japonica. In the C. japonica cp genome, direct repeat and inverted repeat sequences are observed at the inversion and translocation endpoints, and these sequences may be associated with the genomic rearrangements. The observed differences in genomic structure between C. japonica and other land plants, including pines, strongly support the

  12. Morphological and molecular characterization of fungal pathogen, Magnaphorthe oryzae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, Nor’Aishah, E-mail: aishahnh@ns.uitm.edu.my; Rafii, Mohd Y., E-mail: mrafii@upm.edu.my; Department of Crop Science, Universiti Putra Malaysia

    2016-02-01

    Rice is arguably the most crucial food crops supplying quarter of calories intake. Fungal pathogen, Magnaphorthe oryzae promotes blast disease unconditionally to gramineous host including rice species. This disease spurred an outbreaks and constant threat to cereal production. Global rice yield declining almost 10-30% including Malaysia. As Magnaphorthe oryzae and its host is model in disease plant study, the rice blast pathosystem has been the subject of intense interest to overcome the importance of the disease to world agriculture. Therefore, in this study, our prime objective was to isolate samples of Magnaphorthe oryzae from diseased leaf obtained from MARDI Seberangmore » Perai, Penang, Malaysia. Molecular identification was performed by sequences analysis from internal transcribed spacer (ITS) region of nuclear ribosomal RNA genes. Phylogenetic affiliation of the isolated samples were analyzed by comparing the ITS sequences with those deposited in the GenBank database. The sequence of the isolate demonstrated at least 99% nucleotide identity with the corresponding sequence in GenBank for Magnaphorthe oryzae. Morphological observed under microscope demonstrated that the structure of conidia followed similar characteristic as M. oryzae. Finding in this study provide useful information for breeding programs, epidemiology studies and improved disease management.« less

  13. A comprehensive crop genome research project: the Superhybrid Rice Genome Project in China.

    PubMed

    Yu, Jun; Wong, Gane Ka-Shu; Liu, Siqi; Wang, Jian; Yang, Huanming

    2007-06-29

    In May 2000, the Beijing Institute of Genomics formally announced the launch of a comprehensive crop genome research project on rice genomics, the Chinese Superhybrid Rice Genome Project. SRGP is not simply a sequencing project targeted to a single rice (Oryza sativa L.) genome, but a full-swing research effort with an ultimate goal of providing inclusive basic genomic information and molecular tools not only to understand biology of the rice, both as an important crop species and a model organism of cereals, but also to focus on a popular superhybrid rice landrace, LYP9. We have completed the first phase of SRGP and provide the rice research community with a finished genome sequence of an indica variety, 93-11 (the paternal cultivar of LYP9), together with ample data on subspecific (between subspecies) polymorphisms, transcriptomes and proteomes, useful for within-species comparative studies. In the second phase, we have acquired the genome sequence of the maternal cultivar, PA64S, together with the detailed catalogues of genes uniquely expressed in the parental cultivars and the hybrid as well as allele-specific markers that distinguish parental alleles. Although SRGP in China is not an open-ended research programme, it has been designed to pave a way for future plant genomics research and application, such as to interrogate fundamentals of plant biology, including genome duplication, polyploidy and hybrid vigour, as well as to provide genetic tools for crop breeding and to carry along a social burden-leading a fight against the world's hunger. It began with genomics, the newly developed and industry-scale research field, and from the world's most populous country. In this review, we summarize our scientific goals and noteworthy discoveries that exploit new territories of systematic investigations on basic and applied biology of rice and other major cereal crops.

  14. Ensembl Genomes: an integrative resource for genome-scale data from non-vertebrate species.

    PubMed

    Kersey, Paul J; Staines, Daniel M; Lawson, Daniel; Kulesha, Eugene; Derwent, Paul; Humphrey, Jay C; Hughes, Daniel S T; Keenan, Stephan; Kerhornou, Arnaud; Koscielny, Gautier; Langridge, Nicholas; McDowall, Mark D; Megy, Karine; Maheswari, Uma; Nuhn, Michael; Paulini, Michael; Pedro, Helder; Toneva, Iliana; Wilson, Derek; Yates, Andrew; Birney, Ewan

    2012-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrative resource for genome-scale data from non-vertebrate species. The project exploits and extends technology (for genome annotation, analysis and dissemination) developed in the context of the (vertebrate-focused) Ensembl project and provides a complementary set of resources for non-vertebrate species through a consistent set of programmatic and interactive interfaces. These provide access to data including reference sequence, gene models, transcriptional data, polymorphisms and comparative analysis. Since its launch in 2009, Ensembl Genomes has undergone rapid expansion, with the goal of providing coverage of all major experimental organisms, and additionally including taxonomic reference points to provide the evolutionary context in which genes can be understood. Against the backdrop of a continuing increase in genome sequencing activities in all parts of the tree of life, we seek to work, wherever possible, with the communities actively generating and using data, and are participants in a growing range of collaborations involved in the annotation and analysis of genomes.

  15. Purification and enzymatic characterization of secretory glycoside hydrolase family 3 (GH3) aryl β-glucosidases screened from Aspergillus oryzae genome.

    PubMed

    Kudo, Kanako; Watanabe, Akira; Ujiie, Seiryu; Shintani, Takahiro; Gomi, Katsuya

    2015-12-01

    By a global search of the genome database of Aspergillus oryzae, we found 23 genes encoding putative β-glucosidases, among which 10 genes with a signal peptide belonging to glycoside hydrolase family 3 (GH3) were overexpressed in A. oryzae using the improved glaA gene promoter. Consequently, crude enzyme preparations from three strains, each harboring the genes AO090038000223 (bglA), AO090103000127 (bglF), and AO090003001511 (bglJ), showed a substrate preference toward p-nitrophenyl-β-d-glucopyranoside (pNPGlc) and thus were purified to homogeneity and enzymatically characterized. All the purified enzymes (BglA, BglF, and BglJ) preferentially hydrolyzed aryl β-glycosides, including pNPGlc, rather than cellobiose, and these enzymes were proven to be aryl β-glucosidases. Although the specific activity of BglF toward all the substrates tested was significantly low, BglA and BglJ showed appreciably high activities toward pNPGlc and arbutin. The kinetic parameters of BglA and BglJ for pNPGlc suggested that both the enzymes had relatively higher hydrolytic activity toward pNPGlc among the fungal β-glucosidases reported. The thermal and pH stabilities of BglA were higher than those of BglJ, and BglA was particularly stable in a wide pH range (pH 4.5-10). In contrast, BglJ was the most heat- and alkaline-labile among the three β-glucosidases. Furthermore, BglA was more tolerant to ethanol than BglJ; as a result, it showed much higher hydrolytic activity toward isoflavone glycosides in the presence of ethanol than BglJ. This study suggested that the mining of novel β-glucosidases exhibiting higher activity from microbial genome sequences is of great use for the production of beneficial compounds such as isoflavone aglycones. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Entire nucleotide sequences of Gossypium raimondii and G. arboreum mitochondrial genomes revealed A-genome species as cytoplasmic donor of the allotetraploid species.

    PubMed

    Chen, Z; Nie, H; Grover, C E; Wang, Y; Li, P; Wang, M; Pei, H; Zhao, Y; Li, S; Wendel, J F; Hua, J

    2017-05-01

    Cotton (Gossypium spp.) is commonly grouped into eight diploid genomic groups, designated A-G and K, and an allotetraploid genomic group, AD. Gossypium raimondii (D 5 ) and G. arboreum (A 2 ) are the putative contributors to the progenitor of G. hirsutum (AD 1 ), the economically important fibre-producing cotton species. Mitochondrial DNA from week-old etiolated seedlings was extracted from isolated organelles using discontinuous sucrose density gradient method. Mitochondrial genomes were sequenced, assembled, annotated and analysed in orderly. Gossypium raimondii (D 5 ) and G. arboreum (A 2 ) mitochondrial genomes were provided in this study. The mitochondrial genomes of two diploid species harboured circular genome of 643,914 bp (D 5 ) and 687,482 bp (A 2 ), respectively. They differ in size and number of repeat sequences, both contain illuminating triplicate sequences with 7317 and 10,246 bp, respectively, demonstrating dynamic difference and rearranged genome organisations. Comparing the D 5 and A 2 mitogenomes with mitogenomes of tetraploid Gossypium species (AD 1 , G. hirsutum; AD 2 , G. barbadense), a shared 11 kbp fragment loss was detected in allotetraploid species, three regions shared by G. arboreum (A 2 ), G. hirsutum (AD 1 ) and G. barbadense (AD 2 ), while eight regions were specific to G. raimondii (D 5 ). The presence/absence variations and gene-based phylogeny supported that A-genome is a cytoplasmic donor to the progenitor of allotetraploid species G. hirsutum and G. barbadense. The results present structure variations and phylogeny of Gossypium mitochondrial genome evolution. © 2017 The Authors. Plant Biology published by John Wiley & Sons Ltd on behalf of German Botanical Society, Royal Dutch Botanical Society.

  17. Gene flow between divergent cereal - and grass-specific lineages of the rice blast fungus Magnaporthe oryzae

    USDA-ARS?s Scientific Manuscript database

    Delineating species and epidemic lineages in fungal plant pathogens is critical to our understanding of disease emergence and the structure of fungal biodiversity, and also informs international regulatory decisions. Pyricularia oryzae (syn. Magnaporthe oryzae) is a multi-host pathogen that infects ...

  18. AmphiBase: A new genomic resource for non-model amphibian species.

    PubMed

    Kwon, Taejoon

    2017-01-01

    More than five thousand genes annotated in the recently published Xenopus laevis and Xenopus tropicalis genomes do not have a candidate orthologous counterpart in other vertebrate species. To determine whether these sequences represent genuine amphibian-specific genes or annotation errors, it is necessary to analyze them alongside sequences from other amphibian species. However, due to large genome sizes and an abundance of repeat sequences, there are limited numbers of gene sequences available from amphibian species other than Xenopus. AmphiBase is a new genomic resource covering non-model amphibian species, based on public domain transcriptome data and computational methods developed during the X. laevis genome project. Here, I review the current status of AmphiBase, including amphibian species with available transcriptome data or biological samples, and describe the challenges of building a comprehensive amphibian genomic resource in the absence of genomes. This mini-review will be informative for researchers interested in functional genomic experiments using amphibian model organisms, such as Xenopus and axolotl, and will assist in interpretation of results implicating "orphan genes." Additionally, this study highlights an opportunity for researchers working on non-model amphibian species to collaborate in their future efforts and develop amphibian genomic resources as a community. © 2017 Wiley Periodicals, Inc.

  19. Dissection of the Octoploid Strawberry Genome by Deep Sequencing of the Genomes of Fragaria Species

    PubMed Central

    Hirakawa, Hideki; Shirasawa, Kenta; Kosugi, Shunichi; Tashiro, Kosuke; Nakayama, Shinobu; Yamada, Manabu; Kohara, Mistuyo; Watanabe, Akiko; Kishida, Yoshie; Fujishiro, Tsunakazu; Tsuruoka, Hisano; Minami, Chiharu; Sasamoto, Shigemi; Kato, Midori; Nanri, Keiko; Komaki, Akiko; Yanagi, Tomohiro; Guoxin, Qin; Maeda, Fumi; Ishikawa, Masami; Kuhara, Satoru; Sato, Shusei; Tabata, Satoshi; Isobe, Sachiko N.

    2014-01-01

    Cultivated strawberry (Fragaria x ananassa) is octoploid and shows allogamous behaviour. The present study aims at dissecting this octoploid genome through comparison with its wild relatives, F. iinumae, F. nipponica, F. nubicola, and F. orientalis by de novo whole-genome sequencing on an Illumina and Roche 454 platforms. The total length of the assembled Illumina genome sequences obtained was 698 Mb for F. x ananassa, and ∼200 Mb each for the four wild species. Subsequently, a virtual reference genome termed FANhybrid_r1.2 was constructed by integrating the sequences of the four homoeologous subgenomes of F. x ananassa, from which heterozygous regions in the Roche 454 and Illumina genome sequences were eliminated. The total length of FANhybrid_r1.2 thus created was 173.2 Mb with the N50 length of 5137 bp. The Illumina-assembled genome sequences of F. x ananassa and the four wild species were then mapped onto the reference genome, along with the previously published F. vesca genome sequence to establish the subgenomic structure of F. x ananassa. The strategy adopted in this study has turned out to be successful in dissecting the genome of octoploid F. x ananassa and appears promising when applied to the analysis of other polyploid plant species. PMID:24282021

  20. Rice Blast Fungus (Magnaporthe oryzae) Infects Arabidopsis via a Mechanism Distinct from That Required for the Infection of Rice1[W][OA

    PubMed Central

    Park, Ju-Young; Jin, Jianming; Lee, Yin-Won; Kang, Seogchan; Lee, Yong-Hwan

    2009-01-01

    Magnaporthe oryzae is a hemibiotrophic fungal pathogen that causes rice (Oryza sativa) blast. Although M. oryzae as a whole infects a wide variety of monocotyledonous hosts, no dicotyledonous plant has been reported as a host. We found that two rice pathogenic strains of M. oryzae, KJ201 and 70-15, interacted differentially with 16 ecotypes of Arabidopsis (Arabidopsis thaliana). Strain KJ201 infected all ecotypes with varying degrees of virulence, whereas strain 70-15 caused no symptoms in certain ecotypes. In highly susceptible ecotypes, small chlorotic lesions appeared on infected leaves within 3 d after inoculation and subsequently expanded across the affected leaves. The fungus produced spores in susceptible ecotypes but not in resistant ecotypes. Fungal cultures recovered from necrotic lesions caused the same symptoms in healthy plants, satisfying Koch's postulates. Histochemical analyses showed that infection by the fungus caused an accumulation of reactive oxygen species and eventual cell death. Similar to the infection process in rice, the fungus differentiated to form appressorium and directly penetrated the leaf surface in Arabidopsis. However, the pathogenic mechanism in Arabidopsis appears distinct from that in rice; three fungal genes essential for pathogenicity in rice played only limited roles in causing disease symptoms in Arabidopsis, and the fungus seems to colonize Arabidopsis as a necrotroph through the secretion of phytotoxic compounds, including 9,12-octadecadienoic acid. Expression of PR-1 and PDF1.2 was induced in response to infection by the fungus, suggesting the activation of salicylic acid- and jasmonic acid/ethylene-dependent signaling pathways. However, the roles of these signaling pathways in defense against M. oryzae remain unclear. In combination with the wealth of genetic and genomic resources available for M. oryzae, this newly established pathosystem allows comparison of the molecular and cellular mechanisms underlying

  1. Strain/species identification in metagenomes using genome-specific markers

    PubMed Central

    Tu, Qichao; He, Zhili; Zhou, Jizhong

    2014-01-01

    Shotgun metagenome sequencing has become a fast, cheap and high-throughput technology for characterizing microbial communities in complex environments and human body sites. However, accurate identification of microorganisms at the strain/species level remains extremely challenging. We present a novel k-mer-based approach, termed GSMer, that identifies genome-specific markers (GSMs) from currently sequenced microbial genomes, which were then used for strain/species-level identification in metagenomes. Using 5390 sequenced microbial genomes, 8 770 321 50-mer strain-specific and 11 736 360 species-specific GSMs were identified for 4088 strains and 2005 species (4933 strains), respectively. The GSMs were first evaluated against mock community metagenomes, recently sequenced genomes and real metagenomes from different body sites, suggesting that the identified GSMs were specific to their targeting genomes. Sensitivity evaluation against synthetic metagenomes with different coverage suggested that 50 GSMs per strain were sufficient to identify most microbial strains with ≥0.25× coverage, and 10% of selected GSMs in a database should be detected for confident positive callings. Application of GSMs identified 45 and 74 microbial strains/species significantly associated with type 2 diabetes patients and obese/lean individuals from corresponding gastrointestinal tract metagenomes, respectively. Our result agreed with previous studies but provided strain-level information. The approach can be directly applied to identify microbial strains/species from raw metagenomes, without the effort of complex data pre-processing. PMID:24523352

  2. An overproduction of astellolides induced by genetic disruption of chromatin-remodeling factors in Aspergillus oryzae.

    PubMed

    Shinohara, Yasutomo; Kawatani, Makoto; Futamura, Yushi; Osada, Hiroyuki; Koyama, Yasuji

    2016-01-01

    The filamentous fungus Aspergillus oryzae is an important industrial mold. Recent genomic analysis indicated that A. oryzae has a large number of biosynthetic genes for secondary metabolites (SMs), but many of the SMs they produce have not been identified. For better understanding of SMs production by A. oryzae, we screened a gene-disruption library of transcription factors including chromatin-remodeling factors and found two gene disruptions that show similarly altered SM production profiles. One is a homolog of Aspergillus nidulans cclA, a component of the histone 3 lysine 4 (H3K4) methyltransferase complex of proteins associated with Set1 complex, and the other, sppA, is an ortholog of Saccharomyces cerevisiae SPP1, another component of a complex of proteins associated with Set1 complex. The cclA and sppA disruptions in A. oryzae are deficient in trimethylation of H3K4. Furthermore, one of the SMs that increased in the cclA disruptant was identified as astellolide F (14-deacetyl astellolide B). These data indicate that both cclA and sppA affect production of SMs including astellolides by affecting the methylation status of H3K4 in A. oryzae.

  3. The genome sequence of the biocontrol fungus Metarhizium anisopliae and comparative genomics of Metarhizium species.

    PubMed

    Pattemore, Julie A; Hane, James K; Williams, Angela H; Wilson, Bree A L; Stodart, Ben J; Ash, Gavin J

    2014-08-07

    Metarhizium anisopliae is an important fungal biocontrol agent of insect pests of agricultural crops. Genomics can aid the successful commercialization of biopesticides by identification of key genes differentiating closely related species, selection of virulent microbial isolates which are amenable to industrial scale production and formulation and through the reduction of phenotypic variability. The genome of Metarhizium isolate ARSEF23 was recently published as a model for M. anisopliae, however phylogenetic analysis has since re-classified this isolate as M. robertsii. We present a new annotated genome sequence of M. anisopliae (isolate Ma69) and whole genome comparison to M. robertsii (ARSEF23) and M. acridum (CQMa 102). Whole genome analysis of M. anisopliae indicates significant macrosynteny with M. robertsii but with some large genomic inversions. In comparison to M. acridum, the genome of M. anisopliae shares lower sequence homology. While alignments overall are co-linear, the genome of M. acridum is not contiguous enough to conclusively observe macrosynteny. Mating type gene analysis revealed both MAT1-1 and MAT1-2 genes present in M. anisopliae suggesting putative homothallism, despite having no known teleomorph, in contrast with the putatively heterothallic M. acridum isolate CQMa 102 (MAT1-2) and M. robertsii isolate ARSEF23 (altered MAT1-1). Repetitive DNA and RIP analysis revealed M. acridum to have twice the repetitive content of the other two species and M. anisopliae to be five times more RIP affected than M. robertsii. We also present an initial bioinformatic survey of candidate pathogenicity genes in M. anisopliae. The annotated genome of M. anisopliae is an important resource for the identification of virulence genes specific to M. anisopliae and development of species- and strain- specific assays. New insight into the possibility of homothallism and RIP affectedness has important implications for the development of M. anisopliae as a

  4. Expression and localization of exocytic and recycling Rabs from Magnaporthe oryzae in mammalian cells

    PubMed Central

    Qi, Yaoyao; Marlin, M. Caleb; Liang, Zhimin; Zhang, Dongmei; Zhou, Jie; Wang, Zonghua; Lu, Guodong; Li, Guangpu

    2018-01-01

    Rab GTPases are master regulators of intracellular membrane trafficking along endocytic and exocytic pathways. In this chapter, we began to characterize the exocytic and recycling Rabs from the filamentous fungus Magnaporthe oryzae (M. oryzae) that causes the rice blast disease. Among the 11 putative Rabs identified from the M. oryzae genome database (MoRabs), MoRab1, MoRab8, and MoRab11 appear orthologs of mammalian Rab1, Rab8, and Rab11 and likely function in exocytosis and endosomal recycling. To test this contention, we cloned, expressed, and determined intracellular localization of the three MoRabs in mammalian cells, in comparison to their human counterparts (hRabs). The MoRabs were well expressed as GFP fusion proteins and colocalized with the tdTomato-labeled hRabs on exocytic and recycling organelles, as determined by immunoblot analysis and confocal fluorescence microscopy. The colocalization supports the contention that the MoRabs are indeed Rab orthologs and may play important roles in the development and pathogenicity of M. oryzae. PMID:26360026

  5. Growth promotion and inhibition of the Amazonian wild rice species Oryza grandiglumis to survive flooding.

    PubMed

    Okishio, Takuma; Sasayama, Daisuke; Hirano, Tatsuya; Akimoto, Masahiro; Itoh, Kazuyuki; Azuma, Tetsushi

    2014-09-01

    In Asian cultivated rice (Oryza sativa), distinct mechanisms to survive flooding are activated in two groups of varieties. Submergence-tolerant rice varieties possessing the SUBMERGENCE1A (SUB1A) gene display reduced growth during flash floods at the seedling stage and resume growth after the flood recedes, whereas deepwater rice varieties possessing the SNORKEL1 (SK1) and SNORKEL2 (SK2) genes display enhanced growth based on internodal elongation during prolonged submergence at the mature stage. In this study, we investigated the occurrence of these growth responses to submergence in the wild rice species Oryza grandiglumis, which is native to the Amazon floodplains. When subjected to gradual submergence, adult plants of O. grandiglumis accessions showed enhanced internodal elongation with rising water level and their growth response closely resembled that of deepwater varieties of O. sativa with high floating capacity. On the other hand, when subjected to complete submergence, seedlings of O. grandiglumis accessions displayed reduced shoot growth and resumed normal growth after desubmergence, similar to the response of submergence-tolerant varieties of O. sativa. Neither SUB1A nor the SK genes were detected in the O. grandiglumis accessions. These results indicate that the O. grandiglumis accessions are capable of adapting successfully to flooding by activating two contrasting mechanisms as the situation demands and that each mechanism of adaptation to flooding is not mediated by SUB1A or the SK genes.

  6. Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (Oryza sativa L. japonica) genome: new insights from bioinformatics analysis

    PubMed Central

    2012-01-01

    Background GDSL esterases/lipases are a newly discovered subclass of lipolytic enzymes that are very important and attractive research subjects because of their multifunctional properties, such as broad substrate specificity and regiospecificity. Compared with the current knowledge regarding these enzymes in bacteria, our understanding of the plant GDSL enzymes is very limited, although the GDSL gene family in plant species include numerous members in many fully sequenced plant genomes. Only two genes from a large rice GDSL esterase/lipase gene family were previously characterised, and the majority of the members remain unknown. In the present study, we describe the rice OsGELP (Oryza sativa GDSL esterase/lipase protein) gene family at the genomic and proteomic levels, and use this knowledge to provide insights into the multifunctionality of the rice OsGELP enzymes. Results In this study, an extensive bioinformatics analysis identified 114 genes in the rice OsGELP gene family. A complete overview of this family in rice is presented, including the chromosome locations, gene structures, phylogeny, and protein motifs. Among the OsGELPs and the plant GDSL esterase/lipase proteins of known functions, 41 motifs were found that represent the core secondary structure elements or appear specifically in different phylogenetic subclades. The specification and distribution of identified putative conserved clade-common and -specific peptide motifs, and their location on the predicted protein three dimensional structure may possibly signify their functional roles. Potentially important regions for substrate specificity are highlighted, in accordance with protein three-dimensional model and location of the phylogenetic specific conserved motifs. The differential expression of some representative genes were confirmed by quantitative real-time PCR. The phylogenetic analysis, together with protein motif architectures, and the expression profiling were analysed to predict the

  7. GENOMIC APPROACHES FOR CROSS-SPECIES EXTRAPOLATION IN TOXICOLOGY

    EPA Science Inventory

    The latest tools for investigating stress in organisms, genomic technologies provide great insight into how different organisms respond to environmental conditions. However, their usefulness needs testing, verification, and codification. Genomic Approaches for Cross-Species Extra...

  8. Transcriptome analysis of WRKY gene family in Oryza officinalis Wall ex Watt and WRKY genes involved in responses to Xanthomonas oryzae pv. oryzae stress

    PubMed Central

    Jiang, Chunmiao; Shen, Qingxi J.; Wang, Bo; He, Bin; Xiao, Suqin; Chen, Ling; Yu, Tengqiong; Ke, Xue; Zhong, Qiaofang; Fu, Jian; Chen, Yue; Wang, Lingxian; Yin, Fuyou; Zhang, Dunyu; Ghidan, Walid; Huang, Xingqi; Cheng, Zaiquan

    2017-01-01

    Oryza officinalis Wall ex Watt, a very important and special wild rice species, shows abundant genetic diversity and disease resistance features, especially high resistance to bacterial blight. The molecular mechanisms of bacterial blight resistance in O. officinalis have not yet been elucidated. The WRKY transcription factor family is one of the largest gene families involved in plant growth, development and stress response. However, little is known about the numbers, structure, molecular phylogenetics, and expression of the WRKY genes under Xanthomonas oryzae pv. oryzae (Xoo) stress in O. officinalis due to lacking of O. officinalis genome. Therefore, based on the RNA-sequencing data of O. officinalis, we performed a comprehensive study of WRKY genes in O. officinalis and identified 89 OoWRKY genes. Then 89 OoWRKY genes were classified into three groups based on the WRKY domains and zinc finger motifs. Phylogenetic analysis strongly supported that the evolution of OoWRKY genes were consistent with previous studies of WRKYs, and subgroup IIc OoWRKY genes were the original ancestors of some group II and group III OoWRKYs. Among the 89 OoWRKY genes, eight OoWRKYs displayed significantly different expression (>2-fold, p<0.01) in the O. officinalis transcriptome under Xoo strains PXO99 and C5 stress 48 h, suggesting these genes might play important role in PXO99 and C5 stress responses in O. officinalis. QRT-PCR analysis and confirmation of eight OoWRKYs expression patterns revealed that they responded strongly to PXO99 and C5 stress 24 h, 48 h, and 72 h, and the trends of these genes displaying marked changes were consistent with the 48 h RNA-sequencing data, demonstrated these genes played important roles in response to biotic stress and might even involved in the bacterial blight resistance. Tissue expression profiles of eight OoWRKY genes revealed that they were highly expressed in root, stem, leaf, and flower, especially in leaf (except OoWRKY71), suggesting

  9. Transcriptome analysis of WRKY gene family in Oryza officinalis Wall ex Watt and WRKY genes involved in responses to Xanthomonas oryzae pv. oryzae stress.

    PubMed

    Jiang, Chunmiao; Shen, Qingxi J; Wang, Bo; He, Bin; Xiao, Suqin; Chen, Ling; Yu, Tengqiong; Ke, Xue; Zhong, Qiaofang; Fu, Jian; Chen, Yue; Wang, Lingxian; Yin, Fuyou; Zhang, Dunyu; Ghidan, Walid; Huang, Xingqi; Cheng, Zaiquan

    2017-01-01

    Oryza officinalis Wall ex Watt, a very important and special wild rice species, shows abundant genetic diversity and disease resistance features, especially high resistance to bacterial blight. The molecular mechanisms of bacterial blight resistance in O. officinalis have not yet been elucidated. The WRKY transcription factor family is one of the largest gene families involved in plant growth, development and stress response. However, little is known about the numbers, structure, molecular phylogenetics, and expression of the WRKY genes under Xanthomonas oryzae pv. oryzae (Xoo) stress in O. officinalis due to lacking of O. officinalis genome. Therefore, based on the RNA-sequencing data of O. officinalis, we performed a comprehensive study of WRKY genes in O. officinalis and identified 89 OoWRKY genes. Then 89 OoWRKY genes were classified into three groups based on the WRKY domains and zinc finger motifs. Phylogenetic analysis strongly supported that the evolution of OoWRKY genes were consistent with previous studies of WRKYs, and subgroup IIc OoWRKY genes were the original ancestors of some group II and group III OoWRKYs. Among the 89 OoWRKY genes, eight OoWRKYs displayed significantly different expression (>2-fold, p<0.01) in the O. officinalis transcriptome under Xoo strains PXO99 and C5 stress 48 h, suggesting these genes might play important role in PXO99 and C5 stress responses in O. officinalis. QRT-PCR analysis and confirmation of eight OoWRKYs expression patterns revealed that they responded strongly to PXO99 and C5 stress 24 h, 48 h, and 72 h, and the trends of these genes displaying marked changes were consistent with the 48 h RNA-sequencing data, demonstrated these genes played important roles in response to biotic stress and might even involved in the bacterial blight resistance. Tissue expression profiles of eight OoWRKY genes revealed that they were highly expressed in root, stem, leaf, and flower, especially in leaf (except OoWRKY71), suggesting

  10. Genome-wide sequence variations between wild and cultivated tomato species revisited by whole genome sequence mapping.

    PubMed

    Sahu, Kamlesh Kumar; Chattopadhyay, Debasis

    2017-06-02

    Cultivated tomato (Solanum lycopersicum L.) is the second most important vegetable crop after potato and a member of thirteen interfertile species of Solanum genus. Domestication and continuous selection for desirable traits made cultivated tomato species susceptible to many stresses as compared to the wild species. In this study, we analyzed and compared the genomes of wild and cultivated tomato accessions to identify the genomic regions that encountered changes during domestication. Analysis was based on SNP and InDel mining of twentynine accessions of twelve wild tomato species and forty accessions of cultivated tomato. Percentage of common SNPs among the accessions within a species corresponded with the reproductive behavior of the species. SNP profiles of the wild tomato species within a phylogenetic subsection varied with their geographical distribution. Interestingly, the ratio of genic SNP to total SNPs increased with phylogenetic distance of the wild tomato species from the domesticated species, suggesting that variations in gene-coding region play a major role in speciation. We retrieved 2439 physical positions in 1594 genes including 32 resistance related genes where all the wild accessions possessed a common wild variant allele different from all the cultivated accessions studied. Tajima's D analysis predicted a very strong purifying selection associated with domestication in nearly 1% of its genome, half of which is contributed by chromosome 11. This genomic region with a low Tajima's D value hosts a variety of genes associated with important agronomic trait such as, fruit size, tiller number and wax deposition. Our analysis revealed a broad-spectrum genetic base in wild tomato species and erosion of that in cultivated tomato due to recurrent selection for agronomically important traits. Identification of the common wild variant alleles and the genomic regions undergoing purifying selection during cultivation would facilitate future breeding program by

  11. Experimental transmission of AA amyloidosis by injecting the AA amyloid protein into interleukin-1 receptor antagonist knockout (IL-1raKO) mice.

    PubMed

    Watanabe, K; Uchida, K; Chambers, J K; Tei, M; Shoji, A; Ushio, N; Nakayama, H

    2015-05-01

    The incidence of AA amyloidosis is high in humans with rheumatoid arthritis and several animal species, including cats and cattle with prolonged inflammation. AA amyloidosis can be experimentally induced in mice using severe inflammatory stimuli and a coinjection of AA amyloid; however, difficulties have been associated with transmitting AA amyloidosis to a different animal species, and this has been attributed to the "species barrier." The interleukin-1 receptor antagonist knockout (IL-1raKO) mouse, a rodent model of human rheumatoid arthritis, has been used in the transmission of AA amyloid. When IL-1raKO and BALB/c mice were intraperitoneally injected with mouse AA amyloid together with a subcutaneous pretreatment of 2% AgNO3, all mice from both strains that were injected with crude or purified murine AA amyloid developed AA amyloidosis. However, the amyloid index, which was determined by the intensity of AA amyloid deposition, was significantly higher in IL-1raKO mice than in BALB/c mice. When IL-1raKO and BALB/c mice were injected with crude or purified bovine AA amyloid together with the pretreatment, 83% (5/6 cases) and 38% (3/8 cases) of IL-1raKO mice and 17% (1/6 cases) and 0% (0/6 cases) of BALB/c mice, respectively, developed AA amyloidosis. Similarly, when IL-1raKO and BALB/c mice were injected with crude or purified feline AA amyloid, 33% (2/6 cases) and 88% (7/8 cases) of IL-1raKO mice and 0% (0/6 cases) and 29% (2/6 cases) of BALB/c mice, respectively, developed AA amyloidosis. These results indicated that IL-1raKO mice are a useful animal model for investigating AA amyloidogenesis. © The Author(s) 2014.

  12. Transcription activator-like (TAL) effectors targeting OsSWEET genes enhance virulence on diverse rice (Oryza sativa) varieties when expressed individually in a TAL effector-deficient strain of Xanthomonas oryzae.

    PubMed

    Verdier, Valérie; Triplett, Lindsay R; Hummel, Aaron W; Corral, Rene; Cernadas, R Andres; Schmidt, Clarice L; Bogdanove, Adam J; Leach, Jan E

    2012-12-01

    Genomes of the rice (Oryza sativa) xylem and mesophyll pathogens Xanthomonas oryzae pv. oryzae (Xoo) and pv. oryzicola (Xoc) encode numerous secreted transcription factors called transcription activator-like (TAL) effectors. In a few studied rice varieties, some of these contribute to virulence by activating corresponding host susceptibility genes. Some activate disease resistance genes. The roles of X. oryzae TAL effectors in diverse rice backgrounds, however, are poorly understood. Xoo TAL effectors that promote infection by activating SWEET sucrose transporter genes were expressed in TAL effector-deficient X. oryzae strain X11-5A, and assessed in 21 rice varieties. Some were also tested in Xoc on variety Nipponbare. Several Xoc TAL effectors were tested in X11-5A on four rice varieties. Xoo TAL effectors enhanced X11-5A virulence on most varieties, but to varying extents depending on the effector and variety. SWEET genes were activated in all tested varieties, but increased virulence did not correlate with activation level. SWEET activators also enhanced Xoc virulence on Nipponbare. Xoc TAL effectors did not alter X11-5A virulence. SWEET-targeting TAL effectors contribute broadly and non-tissue-specifically to virulence in rice, and their function is affected by host differences besides target sequences. Further, the utility of X11-5A for characterizing individual TAL effectors in rice was established. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  13. High-density marker profiling confirms ancestral genomes of Avena species and identifies D-genome chromosomes of hexaploid oat.

    PubMed

    Yan, Honghai; Bekele, Wubishet A; Wight, Charlene P; Peng, Yuanying; Langdon, Tim; Latta, Robert G; Fu, Yong-Bi; Diederichsen, Axel; Howarth, Catherine J; Jellen, Eric N; Boyle, Brian; Wei, Yuming; Tinker, Nicholas A

    2016-11-01

    Genome analysis of 27 oat species identifies ancestral groups, delineates the D genome, and identifies ancestral origin of 21 mapped chromosomes in hexaploid oat. We investigated genomic relationships among 27 species of the genus Avena using high-density genetic markers revealed by genotyping-by-sequencing (GBS). Two methods of GBS analysis were used: one based on tag-level haplotypes that were previously mapped in cultivated hexaploid oat (A. sativa), and one intended to sample and enumerate tag-level haplotypes originating from all species under investigation. Qualitatively, both methods gave similar predictions regarding the clustering of species and shared ancestral genomes. Furthermore, results were consistent with previous phylogenies of the genus obtained with conventional approaches, supporting the robustness of whole genome GBS analysis. Evidence is presented to justify the final and definitive classification of the tetraploids A. insularis, A. maroccana (=A. magna), and A. murphyi as containing D-plus-C genomes, and not A-plus-C genomes, as is most often specified in past literature. Through electronic painting of the 21 chromosome representations in the hexaploid oat consensus map, we show how the relative frequency of matches between mapped hexaploid-derived haplotypes and AC (DC)-genome tetraploids vs. A- and C-genome diploids can accurately reveal the genome origin of all hexaploid chromosomes, including the approximate positions of inter-genome translocations. Evidence is provided that supports the continued classification of a diverged B genome in AB tetraploids, and it is confirmed that no extant A-genome diploids, including A. canariensis, are similar enough to the D genome of tetraploid and hexaploid oat to warrant consideration as a D-genome diploid.

  14. An efficient method for visualization and growth of fluorescent Xanthomonas oryzae pv. oryzae in planta

    PubMed Central

    Han, Sang-Wook; Park, Chang-Jin; Lee, Sang-Won; Ronald, Pamela C

    2008-01-01

    Background Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight disease, is a serious pathogen of rice. Here we describe a fluorescent marker system to study virulence and pathogenicity of X. oryzae pv. oryzae. Results A fluorescent X. oryzae pv. oryzae Philippine race 6 strain expressing green fluorescent protein (GFP) (PXO99GFP) was generated using the gfp gene under the control of the neomycin promoter in the vector, pPneo-gfp. The PXO99GFPstrain displayed identical virulence and avirulence properties as the wild type control strain, PXO99. Using fluorescent microscopy, bacterial multiplication and colonization were directly observed in rice xylem vessels. Accurate and rapid determination of bacterial growth was assessed using fluoremetry and an Enzyme-Linked ImmunoSorbant Assay (ELISA). Conclusion Our results indicate that the fluorescent marker system is useful for assessing bacterial infection and monitoring bacterial multiplication in planta. PMID:18826644

  15. Genome size of 14 species of fireflies (Insecta, Coleoptera, Lampyridae)

    PubMed Central

    Liu, Gui-Chun; Dong, Zhi-Wei; He, Jin-Wu; Zhao, Ruo-Ping; Wang, Wen; Li, Xue-Yan

    2017-01-01

    Eukaryotic genome size data are important both as the basis for comparative research into genome evolution and as estimators of the cost and difficulty of genome sequencing programs for non-model organisms. In this study, the genome size of 14 species of fireflies (Lampyridae) (two genera in Lampyrinae, three genera in Luciolinae, and one genus in subfamily incertae sedis) were estimated by propidium iodide (PI)-based flow cytometry. The haploid genome sizes of Lampyridae ranged from 0. 42 to 1. 31 pg, a 3. 1-fold span. Genome sizes of the fireflies varied within the tested subfamilies and genera. Lamprigera and Pyrocoelia species had large and small genome sizes, respectively. No correlation was found between genome size and morphological traits such as body length, body width, eye width, and antennal length. Our data provide additional information on genome size estimation of the firefly family Lampyridae. Furthermore, this study will help clarify the cost and difficulty of genome sequencing programs for non-model organisms and will help promote studies on firefly genome evolution. PMID:29280364

  16. Evidence for Biotrophic Lifestyle and Biocontrol Potential of Dark Septate Endophyte Harpophora oryzae to Rice Blast Disease

    PubMed Central

    Su, Zhen-Zhu; Mao, Li-Juan; Li, Na; Feng, Xiao-Xiao; Yuan, Zhi-Lin; Wang, Li-Wei; Lin, Fu-Cheng; Zhang, Chu-Long

    2013-01-01

    The mutualism pattern of the dark septate endophyte (DSE) Harpophora oryzae in rice roots and its biocontrol potential in rice blast disease caused by Magnaporthe oryzae were investigated. Fluorescent protein-expressing H. oryzae was used to monitor the colonization pattern. Hyphae invaded from the epidermis to the inner cortex, but not into the root stele. Fungal colonization increased with root tissue maturation, showing no colonization in the meristematic zone, slight colonization in the elongation zone, and heavy colonization in the differentiation zone. H. oryzae adopted a biotrophic lifestyle in roots accompanied by programmed cell death. Real-time PCR facilitated the accurate quantification of fungal growth and the respective plant response. The biocontrol potential of H. oryzae was visualized by inoculation with eGFP-tagged M. oryzae in rice. H. oryzae protected rice from M. oryzae root invasion by the accumulation of H2O2 and elevated antioxidative capacity. H. oryzae also induced systemic resistance against rice blast. This systemic resistance was mediated by the OsWRKY45-dependent salicylic acid (SA) signaling pathway, as indicated by the strongly upregulated expression of OsWRKY45. The colonization pattern of H. oryzae was consistent with the typical characteristics of DSEs. H. oryzae enhanced local resistance by reactive oxygen species (ROS) and high antioxidative level and induced OsWRKY45-dependent SA-mediated systemic resistance against rice blast. PMID:23637814

  17. High sequence variations in the region containing genes encoding a cellular morphogenesis protein and the repressor of sexual development help to reveal origins of Aspergillus oryzae.

    PubMed

    Chang, Perng-Kuang; Scharfenstein, Leslie L; Solorzano, Cesar D; Abbas, Hamed K; Hua, Sui-Sheng T; Jones, Walker A; Zablotowicz, Robert M

    2015-05-04

    Aspergillus oryzae and Aspergillus flavus are closely related fungal species. The A. flavus morphotype that produces numerous small sclerotia (S strain) and aflatoxin has a unique 1.5 kb deletion in the norB-cypA region of the aflatoxin gene cluster (i.e. the S genotype). Phylogenetic studies have indicated that an isolate of the nonaflatoxigenic A. flavus with the S genotype is the ancestor of A. oryzae. Genome sequence comparison between A. flavus NRRL3357, which produces large sclerotia (L strain), and S-strain A. flavus 70S identified a region (samA-rosA) that was highly variable in the two morphotypes. A third type of samA-rosA region was found in A. oryzae RIB40. The three samA-rosA types were later revealed to be commonly present in A. flavus L-strain populations. Of the 182 L-strain A. flavus field isolates examined, 46%, 15% and 39% had the samA-rosA type of NRRL3357, 70S and RIB40, respectively. The three types also were found in 18 S-strain A. flavus isolates with different proportions. For A. oryzae, however, the majority (80%) of the 16 strains examined had the RIB40 type and none had the NRRL3357 type. The results suggested that A. oryzae strains in the current culture collections were mostly derived from the samA-rosA/RIB40 lineage of the nonaflatoxigenic A. flavus with the S genotype. Published by Elsevier B.V.

  18. Genome-wide introgression among distantly related Heliconius butterfly species.

    PubMed

    Zhang, Wei; Dasmahapatra, Kanchon K; Mallet, James; Moreira, Gilson R P; Kronforst, Marcus R

    2016-02-27

    Although hybridization is thought to be relatively rare in animals, the raw genetic material introduced via introgression may play an important role in fueling adaptation and adaptive radiation. The butterfly genus Heliconius is an excellent system to study hybridization and introgression but most studies have focused on closely related species such as H. cydno and H. melpomene. Here we characterize genome-wide patterns of introgression between H. besckei, the only species with a red and yellow banded 'postman' wing pattern in the tiger-striped silvaniform clade, and co-mimetic H. melpomene nanna. We find a pronounced signature of putative introgression from H. melpomene into H. besckei in the genomic region upstream of the gene optix, known to control red wing patterning, suggesting adaptive introgression of wing pattern mimicry between these two distantly related species. At least 39 additional genomic regions show signals of introgression as strong or stronger than this mimicry locus. Gene flow has been on-going, with evidence of gene exchange at multiple time points, and bidirectional, moving from the melpomene to the silvaniform clade and vice versa. The history of gene exchange has also been complex, with contributions from multiple silvaniform species in addition to H. besckei. We also detect a signature of ancient introgression of the entire Z chromosome between the silvaniform and melpomene/cydno clades. Our study provides a genome-wide portrait of introgression between distantly related butterfly species. We further propose a comprehensive and efficient workflow for gene flow identification in genomic data sets.

  19. Genomic and functional characterization of coleopteran insect-specific α-amylase inhibitor gene from Amaranthus species.

    PubMed

    Bhide, Amey J; Channale, Sonal M; Yadav, Yashpal; Bhattacharjee, Kabita; Pawar, Pankaj K; Maheshwari, V L; Gupta, Vidya S; Ramasamy, Sureshkumar; Giri, Ashok P

    2017-06-01

    The smallest 32 amino acid α-amylase inhibitor from Amaranthus hypochondriacus (AAI) is reported. The complete gene of pre-protein (AhAI) encoding a 26 amino acid (aa) signal peptide followed by the 43 aa region and the previously identified 32 aa peptide was cloned successfully. Three cysteine residues and one disulfide bond conserved within known α-amylase inhibitors were present in AhAI. Identical genomic and open reading frame was found to be present in close relatives of A. hypochondriacus namely Amaranthus paniculatus, Achyranthes aspera and Celosia argentea. Interestingly, the 3'UTR of AhAI varied in these species. The highest expression of AhAI was observed in A. hypochondriacus inflorescence; however, it was not detected in the seed. We hypothesized that the inhibitor expressed in leaves and inflorescence might be transported to the seeds. Sub-cellular localization studies clearly indicated the involvement of AhAI signal peptide in extracellular secretion. Full length rAhAI showed differential inhibition against α-amylases from human, insects, fungi and bacteria. Particularly, α-amylases from Helicoverpa armigera (Lepidoptera) were not inhibited by AhAI while Tribolium castaneum and Callosobruchus chinensis (Coleoptera) α-amylases were completely inhibited. Molecular docking of AhAI revealed tighter interactions with active site residues of T. castaneum α-amylase compared to C. chinensis α-amylase, which could be the rationale behind the disparity in their IC 50 . Normal growth, development and adult emergence of C. chinensis were hampered after feeding on rAhAI. Altogether, the ability of AhAI to affect the growth of C. chinensis demonstrated its potential as an efficient bio-control agent, especially against stored grain pests.

  20. Small genomes and large seeds: chromosome numbers, genome size and seed mass in diploid Aesculus species (Sapindaceae).

    PubMed

    Krahulcová, Anna; Trávnícek, Pavel; Krahulec, František; Rejmánek, Marcel

    2017-04-01

    Aesculus L. (horse chestnut, buckeye) is a genus of 12-19 extant woody species native to the temperate Northern Hemisphere. This genus is known for unusually large seeds among angiosperms. While chromosome counts are available for many Aesculus species, only one has had its genome size measured. The aim of this study is to provide more genome size data and analyse the relationship between genome size and seed mass in this genus. Chromosome numbers in root tip cuttings were confirmed for four species and reported for the first time for three additional species. Flow cytometric measurements of 2C nuclear DNA values were conducted on eight species, and mean seed mass values were estimated for the same taxa. The same chromosome number, 2 n = 40, was determined in all investigated taxa. Original measurements of 2C values for seven Aesculus species (eight taxa), added to just one reliable datum for A. hippocastanum , confirmed the notion that the genome size in this genus with relatively large seeds is surprisingly low, ranging from 0·955 pg 2C -1 in A. parviflora to 1·275 pg 2C -1 in A. glabra var. glabra. The chromosome number of 2 n = 40 seems to be conclusively the universal 2 n number for non-hybrid species in this genus. Aesculus genome sizes are relatively small, not only within its own family, Sapindaceae, but also within woody angiosperms. The genome sizes seem to be distinct and non-overlapping among the four major Aesculus clades. These results provide an extra support for the most recent reconstruction of Aesculus phylogeny. The correlation between the 2C values and seed masses in examined Aesculus species is slightly negative and not significant. However, when the four major clades are treated separately, there is consistent positive association between larger genome size and larger seed mass within individual lineages. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For

  1. Small genomes and large seeds: chromosome numbers, genome size and seed mass in diploid Aesculus species (Sapindaceae)

    PubMed Central

    Krahulcová, Anna; Trávníček, Pavel; Rejmánek, Marcel

    2017-01-01

    Background and Aims Aesculus L. (horse chestnut, buckeye) is a genus of 12–19 extant woody species native to the temperate Northern Hemisphere. This genus is known for unusually large seeds among angiosperms. While chromosome counts are available for many Aesculus species, only one has had its genome size measured. The aim of this study is to provide more genome size data and analyse the relationship between genome size and seed mass in this genus. Methods Chromosome numbers in root tip cuttings were confirmed for four species and reported for the first time for three additional species. Flow cytometric measurements of 2C nuclear DNA values were conducted on eight species, and mean seed mass values were estimated for the same taxa. Key Results The same chromosome number, 2n = 40, was determined in all investigated taxa. Original measurements of 2C values for seven Aesculus species (eight taxa), added to just one reliable datum for A. hippocastanum, confirmed the notion that the genome size in this genus with relatively large seeds is surprisingly low, ranging from 0·955 pg 2C–1 in A. parviflora to 1·275 pg 2C–1 in A. glabra var. glabra. Conclusions The chromosome number of 2n = 40 seems to be conclusively the universal 2n number for non-hybrid species in this genus. Aesculus genome sizes are relatively small, not only within its own family, Sapindaceae, but also within woody angiosperms. The genome sizes seem to be distinct and non-overlapping among the four major Aesculus clades. These results provide an extra support for the most recent reconstruction of Aesculus phylogeny. The correlation between the 2C values and seed masses in examined Aesculus species is slightly negative and not significant. However, when the four major clades are treated separately, there is consistent positive association between larger genome size and larger seed mass within individual lineages. PMID:28065925

  2. The draft genome of the pest tephritid fruit fly Bactrocera tryoni: resources for the genomic analysis of hybridising species.

    PubMed

    Gilchrist, Anthony Stuart; Shearman, Deborah C A; Frommer, Marianne; Raphael, Kathryn A; Deshpande, Nandan P; Wilkins, Marc R; Sherwin, William B; Sved, John A

    2014-12-20

    The tephritid fruit flies include a number of economically important pests of horticulture, with a large accumulated body of research on their biology and control. Amongst the Tephritidae, the genus Bactrocera, containing over 400 species, presents various species groups of potential utility for genetic studies of speciation, behaviour or pest control. In Australia, there exists a triad of closely-related, sympatric Bactrocera species which do not mate in the wild but which, despite distinct morphologies and behaviours, can be force-mated in the laboratory to produce fertile hybrid offspring. To exploit the opportunities offered by genomics, such as the efficient identification of genetic loci central to pest behaviour and to the earliest stages of speciation, investigators require genomic resources for future investigations. We produced a draft de novo genome assembly of Australia's major tephritid pest species, Bactrocera tryoni. The male genome (650-700 Mbp) includes approximately 150 Mb of interspersed repetitive DNA sequences and 60 Mb of satellite DNA. Assessment using conserved core eukaryotic sequences indicated 98% completeness. Over 16,000 MAKER-derived gene models showed a large degree of overlap with other Dipteran reference genomes. The sequence of the ribosomal RNA transcribed unit was also determined. Unscaffolded assemblies of B. neohumeralis and B. jarvisi were then produced; comparison with B. tryoni showed that the species are more closely related than any Drosophila species pair. The similarity of the genomes was exploited to identify 4924 potentially diagnostic indels between the species, all of which occur in non-coding regions. This first draft B. tryoni genome resembles other dipteran genomes in terms of size and putative coding sequences. For all three species included in this study, we have identified a comprehensive set of non-redundant repetitive sequences, including the ribosomal RNA unit, and have quantified the major satellite DNA

  3. Botulinum neurotoxin homologs in non-Clostridium species.

    PubMed

    Mansfield, Michael J; Adams, Jeremy B; Doxey, Andrew C

    2015-01-30

    Clostridial neurotoxins (CNTs) are the deadliest toxins known and the causative agents of botulism and tetanus. Despite their structural and functional complexity, no CNT homologs are currently known outside Clostridium. Here, we report the first homologs of Clostridium CNTs within the genome of the rice fermentation organism Weissella oryzae SG25. One gene in W. oryzae S25 encodes a protein with a four-domain architecture and HExxH protease motif common to botulinum neurotoxins (BoNTs). An adjacent gene with partial similarity to CNTs is also present, and both genes seem to have been laterally transferred into the W. oryzae genome from an unknown source. Identification of mobile, CNT-related genes outside of Clostridium has implications for our understanding of the evolution of this important toxin family. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. A new function of graphene oxide emerges: inactivating phytopathogenic bacterium Xanthomonas oryzae pv. Oryzae

    NASA Astrophysics Data System (ADS)

    Chen, Juanni; Wang, Xiuping; Han, Heyou

    2013-05-01

    Xanthomonas oryzae pv. oryzae ( Xoo) is one representative phytopathogenic bacterium causing bacteria infections in rice. The antibacterial activity of graphene suspended in different dispersants against Xoo was first investigated. Bacteriological test data, fluorescence microscope and transmission electron microscopy images are provided, which yield insight into the antibacterial action of the nanoscale materials. Surprisingly, the results showed graphene oxide (GO) exhibits superior bactericidal effect even at extremely low dose in water (250 μg/mL), almost killing 94.48 % cells, in comparison to common bactericide bismerthiazol with only 13.3 % mortality. The high efficiency in inactivating the bacteria on account of considerable changes in the cell membranes caused by the extremely sharp edges of graphene oxide and generation of reactive oxygen species, which may be the fatal factor for bacterial inactivation. Given the superior antibacterial effect of GO and the fact that GO can be mass-produced with low cost, we expect a new application could be developed as bactericide for controlling plant disease, which may be a matter of great importance for agricultural development.

  5. Disentangling methodological and biological sources of gene tree discordance on Oryza (Poaceae) chromosome 3.

    PubMed

    Zwickl, Derrick J; Stein, Joshua C; Wing, Rod A; Ware, Doreen; Sanderson, Michael J

    2014-09-01

    We describe new methods for characterizing gene tree discordance in phylogenomic data sets, which screen for deviations from neutral expectations, summarize variation in statistical support among gene trees, and allow comparison of the patterns of discordance induced by various analysis choices. Using an exceptionally complete set of genome sequences for the short arm of chromosome 3 in Oryza (rice) species, we applied these methods to identify the causes and consequences of differing patterns of discordance in the sets of gene trees inferred using a panel of 20 distinct analysis pipelines. We found that discordance patterns were strongly affected by aspects of data selection, alignment, and alignment masking. Unusual patterns of discordance evident when using certain pipelines were reduced or eliminated by using alternative pipelines, suggesting that they were the product of methodological biases rather than evolutionary processes. In some cases, once such biases were eliminated, evolutionary processes such as introgression could be implicated. Additionally, patterns of gene tree discordance had significant downstream impacts on species tree inference. For example, inference from supermatrices was positively misleading when pipelines that led to biased gene trees were used. Several results may generalize to other data sets: we found that gene tree and species tree inference gave more reasonable results when intron sequence was included during sequence alignment and tree inference, the alignment software PRANK was used, and detectable "block-shift" alignment artifacts were removed. We discuss our findings in the context of well-established relationships in Oryza and continuing controversies regarding the domestication history of O. sativa. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. [The application of genome editing in identification of plant gene function and crop breeding].

    PubMed

    Zhou, Xiang-chun; Xing, Yong-zhong

    2016-03-01

    Plant genome can be modified via current biotechnology with high specificity and excellent efficiency. Zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system are the key engineered nucleases used in the genome editing. Genome editing techniques enable gene targeted mutagenesis, gene knock-out, gene insertion or replacement at the target sites during the endogenous DNA repair process, including non-homologous end joining (NHEJ) and homologous recombination (HR), triggered by the induction of DNA double-strand break (DSB). Genome editing has been successfully applied in the genome modification of diverse plant species, such as Arabidopsis thaliana, Oryza sativa, and Nicotiana tabacum. In this review, we summarize the application of genome editing in identification of plant gene function and crop breeding. Moreover, we also discuss the improving points of genome editing in crop precision genetic improvement for further study.

  7. Comparative Genomics of Bacillus species and its Relevance in Industrial Microbiology.

    PubMed

    Sharma, Archana; Satyanarayana, T

    2013-01-01

    With the advent of high throughput sequencing platforms and relevant analytical tools, the rate of microbial genome sequencing has accelerated which has in turn led to better understanding of microbial molecular biology and genetics. The complete genome sequences of important industrial organisms provide opportunities for human health, industry, and the environment. Bacillus species are the dominant workhorses in industrial fermentations. Today, genome sequences of several Bacillus species are available, and comparative genomics of this genus helps in understanding their physiology, biochemistry, and genetics. The genomes of these bacterial species are the sources of many industrially important enzymes and antibiotics and, therefore, provide an opportunity to tailor enzymes with desired properties to suit a wide range of applications. A comparative account of strengths and weaknesses of the different sequencing platforms are also highlighted in the review.

  8. X. couchianus and X. hellerii genome models provide genomic variation insight among Xiphophorus species.

    PubMed

    Shen, Yingjia; Chalopin, Domitille; Garcia, Tzintzuni; Boswell, Mikki; Boswell, William; Shiryev, Sergey A; Agarwala, Richa; Volff, Jean-Nicolas; Postlethwait, John H; Schartl, Manfred; Minx, Patrick; Warren, Wesley C; Walter, Ronald B

    2016-01-07

    Xiphophorus fishes are represented by 26 live-bearing species of tropical fish that express many attributes (e.g., viviparity, genetic and phenotypic variation, ecological adaptation, varied sexual developmental mechanisms, ability to produce fertile interspecies hybrids) that have made attractive research models for over 85 years. Use of various interspecies hybrids to investigate the genetics underlying spontaneous and induced tumorigenesis has resulted in the development and maintenance of pedigreed Xiphophorus lines specifically bred for research. The recent availability of the X. maculatus reference genome assembly now provides unprecedented opportunities for novel and exciting comparative research studies among Xiphophorus species. We present sequencing, assembly and annotation of two new genomes representing Xiphophorus couchianus and Xiphophorus hellerii. The final X. couchianus and X. hellerii assemblies have total sizes of 708 Mb and 734 Mb and correspond to 98 % and 102 % of the X. maculatus Jp 163 A genome size, respectively. The rates of single nucleotide change range from 1 per 52 bp to 1 per 69 bp among the three genomes and the impact of putatively damaging variants are presented. In addition, a survey of transposable elements allowed us to deduce an ancestral TE landscape, uncovered potential active TEs and document a recent burst of TEs during evolution of this genus. Two new Xiphophorus genomes and their corresponding transcriptomes were efficiently assembled, the former using a novel guided assembly approach. Three assembled genome sequences within this single vertebrate order of new world live-bearing fishes will accelerate our understanding of relationship between environmental adaptation and genome evolution. In addition, these genome resources provide capability to determine allele specific gene regulation among interspecies hybrids produced by crossing any of the three species that are known to produce progeny predisposed to tumor

  9. The Biofuel Feedstock Genomics Resource: a web-based portal and database to enable functional genomics of plant biofuel feedstock species.

    PubMed

    Childs, Kevin L; Konganti, Kranti; Buell, C Robin

    2012-01-01

    Major feedstock sources for future biofuel production are likely to be high biomass producing plant species such as poplar, pine, switchgrass, sorghum and maize. One active area of research in these species is genome-enabled improvement of lignocellulosic biofuel feedstock quality and yield. To facilitate genomic-based investigations in these species, we developed the Biofuel Feedstock Genomic Resource (BFGR), a database and web-portal that provides high-quality, uniform and integrated functional annotation of gene and transcript assembly sequences from species of interest to lignocellulosic biofuel feedstock researchers. The BFGR includes sequence data from 54 species and permits researchers to view, analyze and obtain annotation at the gene, transcript, protein and genome level. Annotation of biochemical pathways permits the identification of key genes and transcripts central to the improvement of lignocellulosic properties in these species. The integrated nature of the BFGR in terms of annotation methods, orthologous/paralogous relationships and linkage to seven species with complete genome sequences allows comparative analyses for biofuel feedstock species with limited sequence resources. Database URL: http://bfgr.plantbiology.msu.edu.

  10. Identification and characterization of suppressors of plant cell death (SPD) effectors from Magnaporthe oryzae.

    PubMed

    Sharpee, William; Oh, Yeonyee; Yi, Mihwa; Franck, William; Eyre, Alex; Okagaki, Laura H; Valent, Barbara; Dean, Ralph A

    2017-08-01

    Phytopathogenic microorganisms, including the fungal pathogen Magnaporthe oryzae, secrete a myriad of effector proteins to facilitate infection. Utilizing the transient expression of candidate effectors in the leaves of the model plant Nicotiana benthamiana, we identified 11 suppressors of plant cell death (SPD) effectors from M. oryzae that were able to block the host cell death reaction induced by Nep1. Ten of these 11 were also able to suppress BAX-mediated plant cell death. Five of the 11 SPD genes have been identified previously as either essential for the pathogenicity of M. oryzae, secreted into the plant during disease development, or as suppressors or homologues of other characterized suppressors. In addition, of the remaining six, we showed that SPD8 (previously identified as BAS162) was localized to the rice cytoplasm in invaded and surrounding uninvaded cells during biotrophic invasion. Sequence analysis of the 11 SPD genes across 43 re-sequenced M. oryzae genomes revealed that SPD2, SPD4 and SPD7 have nucleotide polymorphisms amongst the isolates. SPD4 exhibited the highest level of nucleotide diversity of any currently known effector from M. oryzae in addition to the presence/absence polymorphisms, suggesting that this gene is potentially undergoing selection to avoid recognition by the host. Taken together, we have identified a series of effectors, some of which were previously unknown or whose function was unknown, that probably act at different stages of the infection process and contribute to the virulence of M. oryzae. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  11. Phylogenomics of plant genomes: a methodology for genome-wide searches for orthologs in plants

    PubMed Central

    Conte, Matthieu G; Gaillard, Sylvain; Droc, Gaetan; Perin, Christophe

    2008-01-01

    Background Gene ortholog identification is now a major objective for mining the increasing amount of sequence data generated by complete or partial genome sequencing projects. Comparative and functional genomics urgently need a method for ortholog detection to reduce gene function inference and to aid in the identification of conserved or divergent genetic pathways between several species. As gene functions change during evolution, reconstructing the evolutionary history of genes should be a more accurate way to differentiate orthologs from paralogs. Phylogenomics takes into account phylogenetic information from high-throughput genome annotation and is the most straightforward way to infer orthologs. However, procedures for automatic detection of orthologs are still scarce and suffer from several limitations. Results We developed a procedure for ortholog prediction between Oryza sativa and Arabidopsis thaliana. Firstly, we established an efficient method to cluster A. thaliana and O. sativa full proteomes into gene families. Then, we developed an optimized phylogenomics pipeline for ortholog inference. We validated the full procedure using test sets of orthologs and paralogs to demonstrate that our method outperforms pairwise methods for ortholog predictions. Conclusion Our procedure achieved a high level of accuracy in predicting ortholog and paralog relationships. Phylogenomic predictions for all validated gene families in both species were easily achieved and we can conclude that our methodology outperforms similarly based methods. PMID:18426584

  12. Biosystematics and evolutionary relationships of perennial Triticeae species revealed by genomic analyses

    USDA-ARS?s Scientific Manuscript database

    Literature published after 1984 were reviewed to address: (1) genome relationships among monogenomic diploid species, (2) progenitors of the unknown Y genome in Elymus polyploids, X in Thinopyrum intermedium, and Xm in Leymus, and (3) genome constitutions of some perennial Triticeae species that wer...

  13. Genome size evolution at the speciation level: the cryptic species complex Brachionus plicatilis (Rotifera).

    PubMed

    Stelzer, Claus-Peter; Riss, Simone; Stadler, Peter

    2011-04-07

    Studies on genome size variation in animals are rarely done at lower taxonomic levels, e.g., slightly above/below the species level. Yet, such variation might provide important clues on the tempo and mode of genome size evolution. In this study we used the flow-cytometry method to study the evolution of genome size in the rotifer Brachionus plicatilis, a cryptic species complex consisting of at least 14 closely related species. We found an unexpectedly high variation in this species complex, with genome sizes ranging approximately seven-fold (haploid '1C' genome sizes: 0.056-0.416 pg). Most of this variation (67%) could be ascribed to the major clades of the species complex, i.e. clades that are well separated according to most species definitions. However, we also found substantial variation (32%) at lower taxonomic levels--within and among genealogical species--and, interestingly, among species pairs that are not completely reproductively isolated. In one genealogical species, called B. 'Austria', we found greatly enlarged genome sizes that could roughly be approximated as multiples of the genomes of its closest relatives, which suggests that whole-genome duplications have occurred early during separation of this lineage. Overall, genome size was significantly correlated to egg size and body size, even though the latter became non-significant after controlling for phylogenetic non-independence. Our study suggests that substantial genome size variation can build up early during speciation, potentially even among isolated populations. An alternative, but not mutually exclusive interpretation might be that reproductive isolation tends to build up unusually slow in this species complex.

  14. Sequencing and functional annotation of the whole genome of the filamentous fungus Aspergillus westerdijkiae.

    PubMed

    Han, Xiaolong; Chakrabortti, Alolika; Zhu, Jindong; Liang, Zhao-Xun; Li, Jinming

    2016-08-15

    Aspergillus westerdijkiae produces ochratoxin A (OTA) in Aspergillus section Circumdati. It is responsible for the contamination of agricultural crops, fruits, and food commodities, as its secondary metabolite OTA poses a potential threat to animals and humans. As a member of the filamentous fungi family, its capacity for enzymatic catalysis and secondary metabolite production is valuable in industrial production and medicine. To understand the genetic factors underlying its pathogenicity, enzymatic degradation, and secondary metabolism, we analysed the whole genome of A. westerdijkiae and compared it with eight other sequenced Aspergillus species. We sequenced the complete genome of A. westerdijkiae and assembled approximately 36 Mb of its genomic DNA, in which we identified 10,861 putative protein-coding genes. We constructed a phylogenetic tree of A. westerdijkiae and eight other sequenced Aspergillus species and found that the sister group of A. westerdijkiae was the A. oryzae - A. flavus clade. By searching the associated databases, we identified 716 cytochrome P450 enzymes, 633 carbohydrate-active enzymes, and 377 proteases. By combining comparative analysis with Kyoto Encyclopaedia of Genes and Genomes (KEGG), Conserved Domains Database (CDD), and Pfam annotations, we predicted 228 potential carbohydrate-active enzymes related to plant polysaccharide degradation (PPD). We found a large number of secondary biosynthetic gene clusters, which suggested that A. westerdijkiae had a remarkable capacity to produce secondary metabolites. Furthermore, we obtained two more reliable and integrated gene sequences containing the reported portions of OTA biosynthesis and identified their respective secondary metabolite clusters. We also systematically annotated these two hybrid t1pks-nrps gene clusters involved in OTA biosynthesis. These two clusters were separate in the genome, and one of them encoded a couple of GH3 and AA3 enzyme genes involved in sucrose and glucose

  15. Genome Modification Technologies and Their Applications in Avian Species.

    PubMed

    Lee, Hong Jo; Kim, Young Min; Ono, Tamao; Han, Jae Yong

    2017-10-26

    The rapid development of genome modification technology has provided many great benefits in diverse areas of research and industry. Genome modification technologies have also been actively used in a variety of research areas and fields of industry in avian species. Transgenic technologies such as lentiviral systems and piggyBac transposition have been used to produce transgenic birds for diverse purposes. In recent years, newly developed programmable genome editing tools such as transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) have also been successfully adopted in avian systems with primordial germ cell (PGC)-mediated genome modification. These genome modification technologies are expected to be applied to practical uses beyond system development itself. The technologies could be used to enhance economic traits in poultry such as acquiring a disease resistance or producing functional proteins in eggs. Furthermore, novel avian models of human diseases or embryonic development could also be established for research purposes. In this review, we discuss diverse genome modification technologies used in avian species, and future applications of avian biotechnology.

  16. Coordination of Leaf Photosynthesis, Transpiration, and Structural Traits in Rice and Wild Relatives (Genus Oryza).

    PubMed

    Giuliani, Rita; Koteyeva, Nuria; Voznesenskaya, Elena; Evans, Marc A; Cousins, Asaph B; Edwards, Gerald E

    2013-07-01

    The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO(2) access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 accessions (representatives of 17 species and eight genomes). Hypotheses of associations within, and between, structure, photosynthesis, and transpiration were tested. Two main clusters of positively interrelated leaf traits were identified: in the first cluster were structural features, leaf thickness (Thick(leaf)), mesophyll (M) cell surface area exposed to intercellular air space per unit of leaf surface area (S(mes)), and M cell size; a second group included functional traits, net photosynthetic rate, transpiration rate, M conductance to CO(2) diffusion (g(m)), stomatal conductance to gas diffusion (g(s)), and the g(m)/g(s) ratio.While net photosynthetic rate was positively correlated with gm, neither was significantly linked with any individual structural traits. The results suggest that changes in gm depend on covariations of multiple leaf (S(mes)) and M cell (including cell wall thickness) structural traits. There was an inverse relationship between Thick(leaf) and transpiration rate and a significant positive association between Thick(leaf) and leaf transpiration efficiency. Interestingly, high g(m) together with high g(m)/g(s) and a low S(mes)/g(m) ratio (M resistance to CO(2) diffusion per unit of cell surface area exposed to intercellular air space) appear to be ideal for supporting leaf photosynthesis while preserving water; in addition, thick M cell walls may be beneficial for plant drought tolerance.

  17. Genome size evolution at the speciation level: The cryptic species complex Brachionus plicatilis (Rotifera)

    PubMed Central

    2011-01-01

    Background Studies on genome size variation in animals are rarely done at lower taxonomic levels, e.g., slightly above/below the species level. Yet, such variation might provide important clues on the tempo and mode of genome size evolution. In this study we used the flow-cytometry method to study the evolution of genome size in the rotifer Brachionus plicatilis, a cryptic species complex consisting of at least 14 closely related species. Results We found an unexpectedly high variation in this species complex, with genome sizes ranging approximately seven-fold (haploid '1C' genome sizes: 0.056-0.416 pg). Most of this variation (67%) could be ascribed to the major clades of the species complex, i.e. clades that are well separated according to most species definitions. However, we also found substantial variation (32%) at lower taxonomic levels - within and among genealogical species - and, interestingly, among species pairs that are not completely reproductively isolated. In one genealogical species, called B. 'Austria', we found greatly enlarged genome sizes that could roughly be approximated as multiples of the genomes of its closest relatives, which suggests that whole-genome duplications have occurred early during separation of this lineage. Overall, genome size was significantly correlated to egg size and body size, even though the latter became non-significant after controlling for phylogenetic non-independence. Conclusions Our study suggests that substantial genome size variation can build up early during speciation, potentially even among isolated populations. An alternative, but not mutually exclusive interpretation might be that reproductive isolation tends to build up unusually slow in this species complex. PMID:21473744

  18. Comparative Analysis of Genome Sequences Covering the Seven Cronobacter Species

    PubMed Central

    Cummings, Craig A.; Shih, Rita; Degoricija, Lovorka; Rico, Alain; Brzoska, Pius; Hamby, Stephen E.; Masood, Naqash; Hariri, Sumyya; Sonbol, Hana; Chuzhanova, Nadia; McClelland, Michael; Furtado, Manohar R.; Forsythe, Stephen J.

    2012-01-01

    Background Species of Cronobacter are widespread in the environment and are occasional food-borne pathogens associated with serious neonatal diseases, including bacteraemia, meningitis, and necrotising enterocolitis. The genus is composed of seven species: C. sakazakii, C. malonaticus, C. turicensis, C. dublinensis, C. muytjensii, C. universalis, and C. condimenti. Clinical cases are associated with three species, C. malonaticus, C. turicensis and, in particular, with C. sakazakii multilocus sequence type 4. Thus, it is plausible that virulence determinants have evolved in certain lineages. Methodology/Principal Findings We generated high quality sequence drafts for eleven Cronobacter genomes representing the seven Cronobacter species, including an ST4 strain of C. sakazakii. Comparative analysis of these genomes together with the two publicly available genomes revealed Cronobacter has over 6,000 genes in one or more strains and over 2,000 genes shared by all Cronobacter. Considerable variation in the presence of traits such as type six secretion systems, metal resistance (tellurite, copper and silver), and adhesins were found. C. sakazakii is unique in the Cronobacter genus in encoding genes enabling the utilization of exogenous sialic acid which may have clinical significance. The C. sakazakii ST4 strain 701 contained additional genes as compared to other C. sakazakii but none of them were known specific virulence-related genes. Conclusions/Significance Genome comparison revealed that pair-wise DNA sequence identity varies between 89 and 97% in the seven Cronobacter species, and also suggested various degrees of divergence. Sets of universal core genes and accessory genes unique to each strain were identified. These gene sequences can be used for designing genus/species specific detection assays. Genes encoding adhesins, T6SS, and metal resistance genes as well as prophages are found in only subsets of genomes and have contributed considerably to the variation of

  19. Comparison of expression of secondary metabolite biosynthesis cluster genes in Aspergillus flavus, A. parasiticus, and A. oryzae.

    PubMed

    Ehrlich, Kenneth C; Mack, Brian M

    2014-06-23

    Fifty six secondary metabolite biosynthesis gene clusters are predicted to be in the Aspergillus flavus genome. In spite of this, the biosyntheses of only seven metabolites, including the aflatoxins, kojic acid, cyclopiazonic acid and aflatrem, have been assigned to a particular gene cluster. We used RNA-seq to compare expression of secondary metabolite genes in gene clusters for the closely related fungi A. parasiticus, A. oryzae, and A. flavus S and L sclerotial morphotypes. The data help to refine the identification of probable functional gene clusters within these species. Our results suggest that A. flavus, a prevalent contaminant of maize, cottonseed, peanuts and tree nuts, is capable of producing metabolites which, besides aflatoxin, could be an underappreciated contributor to its toxicity.

  20. Comparison of Expression of Secondary Metabolite Biosynthesis Cluster Genes in Aspergillus flavus, A. parasiticus, and A. oryzae

    PubMed Central

    Ehrlich, Kenneth C.; Mack, Brian M.

    2014-01-01

    Fifty six secondary metabolite biosynthesis gene clusters are predicted to be in the Aspergillus flavus genome. In spite of this, the biosyntheses of only seven metabolites, including the aflatoxins, kojic acid, cyclopiazonic acid and aflatrem, have been assigned to a particular gene cluster. We used RNA-seq to compare expression of secondary metabolite genes in gene clusters for the closely related fungi A. parasiticus, A. oryzae, and A. flavus S and L sclerotial morphotypes. The data help to refine the identification of probable functional gene clusters within these species. Our results suggest that A. flavus, a prevalent contaminant of maize, cottonseed, peanuts and tree nuts, is capable of producing metabolites which, besides aflatoxin, could be an underappreciated contributor to its toxicity. PMID:24960201

  1. Genome Wide Identification, Evolutionary, and Expression Analysis of VQ Genes from Two Pyrus Species

    PubMed Central

    Meng, Dandan; Abdullah, Muhammad; Jin, Qing; Lin, Yi; Cai, Yongping

    2018-01-01

    The VQ motif-containing gene, a member of the plant-specific genes, is involved in the plant developmental process and various stress responses. The VQ motif-containing gene family has been studied in several plants, such as rice (Oryza sativa), maize (Zea mays), and Arabidopsis (Arabidopsis thaliana). However, no systematic study has been performed in Pyrus species, which have important economic value. In our study, we identified 41 and 28 VQ motif-containing genes in Pyrus bretschneideri and Pyrus communis, respectively. Phylogenetic trees were calculated using A. thaliana and O. sativa VQ motif-containing genes as a template, allowing us to categorize these genes into nine subfamilies. Thirty-two and eight paralogous of VQ motif-containing genes were found in P. bretschneideri and P. communis, respectively, showing that the VQ motif-containing genes had a more remarkable expansion in P. bretschneideri than in P. communis. A total of 31 orthologous pairs were identified from the P. bretschneideri and P. communis VQ motif-containing genes. Additionally, among the paralogs, we found that these duplication gene pairs probably derived from segmental duplication/whole-genome duplication (WGD) events in the genomes of P. bretschneideri and P. communis, respectively. The gene expression profiles in both P. bretschneideri and P. communis fruits suggested functional redundancy for some orthologous gene pairs derived from a common ancestry, and sub-functionalization or neo-functionalization for some of them. Our study provided the first systematic evolutionary analysis of the VQ motif-containing genes in Pyrus, and highlighted the diversification and duplication of VQ motif-containing genes in both P. bretschneideri and P. communis. PMID:29690608

  2. Genome Wide Identification, Evolutionary, and Expression Analysis of VQ Genes from Two Pyrus Species.

    PubMed

    Cao, Yunpeng; Meng, Dandan; Abdullah, Muhammad; Jin, Qing; Lin, Yi; Cai, Yongping

    2018-04-23

    The VQ motif-containing gene, a member of the plant-specific genes, is involved in the plant developmental process and various stress responses. The VQ motif-containing gene family has been studied in several plants, such as rice ( Oryza sativa ), maize ( Zea mays ), and Arabidopsis ( Arabidopsis thaliana ). However, no systematic study has been performed in Pyrus species, which have important economic value. In our study, we identified 41 and 28 VQ motif-containing genes in Pyrus bretschneideri and Pyrus communis , respectively. Phylogenetic trees were calculated using A. thaliana and O. sativa VQ motif-containing genes as a template, allowing us to categorize these genes into nine subfamilies. Thirty-two and eight paralogous of VQ motif-containing genes were found in P. bretschneideri and P. communis , respectively, showing that the VQ motif-containing genes had a more remarkable expansion in P. bretschneideri than in P. communis . A total of 31 orthologous pairs were identified from the P. bretschneideri and P. communis VQ motif-containing genes. Additionally, among the paralogs, we found that these duplication gene pairs probably derived from segmental duplication/whole-genome duplication (WGD) events in the genomes of P. bretschneideri and P. communis , respectively. The gene expression profiles in both P. bretschneideri and P. communis fruits suggested functional redundancy for some orthologous gene pairs derived from a common ancestry, and sub-functionalization or neo-functionalization for some of them. Our study provided the first systematic evolutionary analysis of the VQ motif-containing genes in Pyrus , and highlighted the diversification and duplication of VQ motif-containing genes in both P. bretschneideri and P. communis .

  3. Structural analysis of cerebrosides from Aspergillus fungi: the existence of galactosylceramide in A. oryzae.

    PubMed

    Tani, Yasushi; Amaishi, Yasunori; Funatsu, Tori; Ito, Masahiro; Itonori, Saki; Hata, Yoji; Ashida, Hisashi; Yamamoto, Kenji

    2014-12-01

    Glucosylceramide and galactosylceramide were detected in three Aspergillus species: Aspergillus oryzae, Aspergillus sojae and Aspergillus. awamori, using borate-coated TLC. The cerebrosides from A. oryzae were further purified by ion exchange and iatrobeads column chromatographies with or without borate, and determined the composition of sugar, fatty acid and sphingoid base by GC/MS, MALDI-TOF/MS and (1)H-NMR. We identified them as β-glucosylceramide and β-galactosylceramide. The ceramide moiety of both cerebrosides consisted mainly of 2-hydroxystearic acid and either 9-methyl-octadeca-4, 8-sphingadienine or octadeca-4, 8-sphingadienine. To our knowledge, this is the first study to provide evidence for the presence of β-galactosylceramide in A. oryzae.

  4. Fungal histidine phosphotransferase plays a crucial role in photomorphogenesis and pathogenesis in Magnaporthe oryzae

    NASA Astrophysics Data System (ADS)

    Mohanan, Varsha C.; Chandarana, Pinal M.; Chattoo, Bharat. B.; Patkar, Rajesh N.; Manjrekar, Johannes

    2017-05-01

    Two-component signal transduction (TCST) pathways play crucial roles in many cellular functions such as stress responses, biofilm formation and sporulation. The histidine phosphotransferase (HPt), which is an intermediate phosphotransfer protein in a two-component system, transfers a phosphate group to a phosphorylatable aspartate residue in the target protein(s), and up-regulates stress-activated MAP kinase cascades. Most fungal genomes carry a single copy of the gene coding for HPt, which are potential antifungal targets. However, unlike the histidine kinases (HK) or the downstream response regulators (RR) in two-component system, the HPts have not been well studied in phytopathogenic fungi. In this study, we investigated the role of HPt in the model rice-blast fungal pathogen Magnaporthe oryzae. We found that in M. oryzae an additional isoform of the HPT gene YPD1 was expressed specifically in response to light. Further, the expression of light-regulated genes such as those encoding envoy and blue-light-harvesting protein, and PAS domain containing HKs was significantly reduced upon down-regulation of YPD1 in M. oryzae. Importantly, down-regulation of YPD1 led to a significant decrease in the ability to penetrate the host cuticle and in light-dependent conidiation in M. oryzae. Thus, our results indicate that Ypd1 plays an important role in asexual development and host invasion, and suggest that YPD1 isoforms likely have distinct roles to play in the rice-blast pathogen M. oryzae.

  5. Genome size variation among sex types in dioecious and triecious Caricaceae species

    USDA-ARS?s Scientific Manuscript database

    Caricaceae is a small family consisting of 35 species of varying sexual systems and includes economically important fruit crop, Carica papaya, and other species of “highland papayas”. Flow cytometry was used to obtain genome sizes for 11 species in three genera of Caricaceae to determine if genome s...

  6. Comparative genomics of the bacterial genus Streptococcus illuminates evolutionary implications of species groups.

    PubMed

    Gao, Xiao-Yang; Zhi, Xiao-Yang; Li, Hong-Wei; Klenk, Hans-Peter; Li, Wen-Jun

    2014-01-01

    Members of the genus Streptococcus within the phylum Firmicutes are among the most diverse and significant zoonotic pathogens. This genus has gone through considerable taxonomic revision due to increasing improvements of chemotaxonomic approaches, DNA hybridization and 16S rRNA gene sequencing. It is proposed to place the majority of streptococci into "species groups". However, the evolutionary implications of species groups are not clear presently. We use comparative genomic approaches to yield a better understanding of the evolution of Streptococcus through genome dynamics, population structure, phylogenies and virulence factor distribution of species groups. Genome dynamics analyses indicate that the pan-genome size increases with the addition of newly sequenced strains, while the core genome size decreases with sequential addition at the genus level and species group level. Population structure analysis reveals two distinct lineages, one including Pyogenic, Bovis, Mutans and Salivarius groups, and the other including Mitis, Anginosus and Unknown groups. Phylogenetic dendrograms show that species within the same species group cluster together, and infer two main clades in accordance with population structure analysis. Distribution of streptococcal virulence factors has no obvious patterns among the species groups; however, the evolution of some common virulence factors is congruous with the evolution of species groups, according to phylogenetic inference. We suggest that the proposed streptococcal species groups are reasonable from the viewpoints of comparative genomics; evolution of the genus is congruent with the individual evolutionary trajectories of different species groups.

  7. Comparative Genomics of the Bacterial Genus Streptococcus Illuminates Evolutionary Implications of Species Groups

    PubMed Central

    Gao, Xiao-Yang; Zhi, Xiao-Yang; Li, Hong-Wei; Klenk, Hans-Peter; Li, Wen-Jun

    2014-01-01

    Members of the genus Streptococcus within the phylum Firmicutes are among the most diverse and significant zoonotic pathogens. This genus has gone through considerable taxonomic revision due to increasing improvements of chemotaxonomic approaches, DNA hybridization and 16S rRNA gene sequencing. It is proposed to place the majority of streptococci into “species groups”. However, the evolutionary implications of species groups are not clear presently. We use comparative genomic approaches to yield a better understanding of the evolution of Streptococcus through genome dynamics, population structure, phylogenies and virulence factor distribution of species groups. Genome dynamics analyses indicate that the pan-genome size increases with the addition of newly sequenced strains, while the core genome size decreases with sequential addition at the genus level and species group level. Population structure analysis reveals two distinct lineages, one including Pyogenic, Bovis, Mutans and Salivarius groups, and the other including Mitis, Anginosus and Unknown groups. Phylogenetic dendrograms show that species within the same species group cluster together, and infer two main clades in accordance with population structure analysis. Distribution of streptococcal virulence factors has no obvious patterns among the species groups; however, the evolution of some common virulence factors is congruous with the evolution of species groups, according to phylogenetic inference. We suggest that the proposed streptococcal species groups are reasonable from the viewpoints of comparative genomics; evolution of the genus is congruent with the individual evolutionary trajectories of different species groups. PMID:24977706

  8. Characterization and evolutionary analysis of ent-kaurene synthase like genes from the wild rice species Oryza rufipogon.

    PubMed

    Toyomasu, Tomonobu; Miyamoto, Koji; Shenton, Matthew R; Sakai, Arisa; Sugawara, Chizu; Horie, Kiyotaka; Kawaide, Hiroshi; Hasegawa, Morifumi; Chuba, Masaru; Mitsuhashi, Wataru; Yamane, Hisakazu; Kurata, Nori; Okada, Kazunori

    2016-11-18

    Cultivated rice (Oryza sativa) possesses various labdane-related diterpene synthase genes, homologs of ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS) that are responsible for the biosynthesis of phytohormone gibberellins. The CPS homologs and KS like (KSL) homologs successively converted geranylgeranyl diphosphate to cyclic diterpene hydrocarbons via ent-copalyl diphosphate or syn-copalyl diphosphate in O. sativa. Consequently, a variety of labdane-related diterpenoids, including phytoalexin phytocassanes, momilactones and oryzalexins, have been identified from cultivated rice. Our previous report indicated that the biosynthesis of phytocassanes and momilactones is conserved in Oryza rufipogon, the progenitor of Asian cultivated rice. Moreover, their biosynthetic gene clusters, containing OsCPS2 and OsKSL7 for phytocassane biosynthesis and OsCPS4 and OsKSL4 for momilactone biosynthesis, are also present in the O. rufipogon genome. We herein characterized O. rufipogon homologs of OsKSL5, OsKSL6, OsKSL8 responsible for oryzalexin S biosynthesis, and OsKSL10 responsible for oryzalexins A-F biosynthesis, to obtain more evolutionary insight into diterpenoid biosynthesis in O. sativa. Our phytoalexin analyses showed that no accumulation of oryzalexins was detected in extracts from O. rufipogon leaf blades. In vitro functional analyses indicated that unlike OsKSL10, O. rufipogon KSL10 functions as an ent-miltiradiene synthase, which explains the lack of accumulation of oryzalexins A-F in O. rufipogon. The different functions of KSL5 and KSL8 in O. sativa japonica to those in indica are conserved in each type of O. rufipogon, while KSL6 functions (ent-isokaurene synthases) are well conserved. Our study suggests that O. sativa japonica has evolved distinct specialized diterpenoid metabolism, including the biosynthesis of oryzalexins. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Genome Modification Technologies and Their Applications in Avian Species

    PubMed Central

    Lee, Hong Jo; Kim, Young Min; Ono, Tamao

    2017-01-01

    The rapid development of genome modification technology has provided many great benefits in diverse areas of research and industry. Genome modification technologies have also been actively used in a variety of research areas and fields of industry in avian species. Transgenic technologies such as lentiviral systems and piggyBac transposition have been used to produce transgenic birds for diverse purposes. In recent years, newly developed programmable genome editing tools such as transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) have also been successfully adopted in avian systems with primordial germ cell (PGC)-mediated genome modification. These genome modification technologies are expected to be applied to practical uses beyond system development itself. The technologies could be used to enhance economic traits in poultry such as acquiring a disease resistance or producing functional proteins in eggs. Furthermore, novel avian models of human diseases or embryonic development could also be established for research purposes. In this review, we discuss diverse genome modification technologies used in avian species, and future applications of avian biotechnology. PMID:29072628

  10. Substantial genome synteny preservation among woody angiosperm species: comparative genomics of Chinese chestnut (Castanea mollissima) and plant reference genomes.

    PubMed

    Staton, Margaret; Zhebentyayeva, Tetyana; Olukolu, Bode; Fang, Guang Chen; Nelson, Dana; Carlson, John E; Abbott, Albert G

    2015-10-05

    Chinese chestnut (Castanea mollissima) has emerged as a model species for the Fagaceae family with extensive genomic resources including a physical map, a dense genetic map and quantitative trait loci (QTLs) for chestnut blight resistance. These resources enable comparative genomics analyses relative to model plants. We assessed the degree of conservation between the chestnut genome and other well annotated and assembled plant genomic sequences, focusing on the QTL regions of most interest to the chestnut breeding community. The integrated physical and genetic map of Chinese chestnut has been improved to now include 858 shared sequence-based markers. The utility of the integrated map has also been improved through the addition of 42,970 BAC (bacterial artificial chromosome) end sequences spanning over 26 million bases of the estimated 800 Mb chestnut genome. Synteny between chestnut and ten model plant species was conducted on a macro-syntenic scale using sequences from both individual probes and BAC end sequences across the chestnut physical map. Blocks of synteny with chestnut were found in all ten reference species, with the percent of the chestnut physical map that could be aligned ranging from 10 to 39 %. The integrated genetic and physical map was utilized to identify BACs that spanned the three previously identified QTL regions conferring blight resistance. The clones were pooled and sequenced, yielding 396 sequence scaffolds covering 13.9 Mbp. Comparative genomic analysis on a microsytenic scale, using the QTL-associated genomic sequence, identified synteny from chestnut to other plant genomes ranging from 5.4 to 12.9 % of the genome sequences aligning. On both the macro- and micro-synteny levels, the peach, grape and poplar genomes were found to be the most structurally conserved with chestnut. Interestingly, these results did not strictly follow the expectation that decreased phylogenetic distance would correspond to increased levels of genome

  11. The Complete Chloroplast Genome of Catha edulis: A Comparative Analysis of Genome Features with Related Species

    PubMed Central

    Tembrock, Luke R.; Zheng, Shaoyu; Wu, Zhiqiang

    2018-01-01

    Qat (Catha edulis, Celastraceae) is a woody evergreen species with great economic and cultural importance. It is cultivated for its stimulant alkaloids cathine and cathinone in East Africa and southwest Arabia. However, genome information, especially DNA sequence resources, for C. edulis are limited, hindering studies regarding interspecific and intraspecific relationships. Herein, the complete chloroplast (cp) genome of Catha edulis is reported. This genome is 157,960 bp in length with 37% GC content and is structurally arranged into two 26,577 bp inverted repeats and two single-copy areas. The size of the small single-copy and the large single-copy regions were 18,491 bp and 86,315 bp, respectively. The C. edulis cp genome consists of 129 coding genes including 37 transfer RNA (tRNA) genes, 8 ribosomal RNA (rRNA) genes, and 84 protein coding genes. For those genes, 112 are single copy genes and 17 genes are duplicated in two inverted regions with seven tRNAs, four rRNAs, and six protein coding genes. The phylogenetic relationships resolved from the cp genome of qat and 32 other species confirms the monophyly of Celastraceae. The cp genomes of C. edulis, Euonymus japonicus and seven Celastraceae species lack the rps16 intron, which indicates an intron loss took place among an ancestor of this family. The cp genome of C. edulis provides a highly valuable genetic resource for further phylogenomic research, barcoding and cp transformation in Celastraceae. PMID:29425128

  12. MANTIS: a phylogenetic framework for multi-species genome comparisons.

    PubMed

    Tzika, Athanasia C; Helaers, Raphaël; Van de Peer, Yves; Milinkovitch, Michel C

    2008-01-15

    Practitioners of comparative genomics face huge analytical challenges as whole genome sequences and functional/expression data accumulate. Furthermore, the field would greatly benefit from a better integration of this wealth of data with evolutionary concepts. Here, we present MANTIS, a relational database for the analysis of (i) gains and losses of genes on specific branches of the metazoan phylogeny, (ii) reconstructed genome content of ancestral species and (iii) over- or under-representation of functions/processes and tissue specificity of gained, duplicated and lost genes. MANTIS estimates the most likely positions of gene losses on the true phylogeny using a maximum-likelihood function. A user-friendly interface and an extensive query system allow to investigate questions pertaining to gene identity, phylogenetic mapping and function/expression parameters. MANTIS is freely available at http://www.mantisdb.org and constitutes the missing link between multi-species genome comparisons and functional analyses.

  13. Comparative genomics of bdelloid rotifers: Insights from desiccating and nondesiccating species

    PubMed Central

    Almeida, Pedro; Wilson, Christopher G.; Smith, Thomas P.; Fontaneto, Diego; Crisp, Alastair; Micklem, Gos; Tunnacliffe, Alan

    2018-01-01

    Bdelloid rotifers are a class of microscopic invertebrates that have existed for millions of years apparently without sex or meiosis. They inhabit a variety of temporary and permanent freshwater habitats globally, and many species are remarkably tolerant of desiccation. Bdelloids offer an opportunity to better understand the evolution of sex and recombination, but previous work has emphasised desiccation as the cause of several unusual genomic features in this group. Here, we present high-quality whole-genome sequences of 3 bdelloid species: Rotaria macrura and R. magnacalcarata, which are both desiccation intolerant, and Adineta ricciae, which is desiccation tolerant. In combination with the published assembly of A. vaga, which is also desiccation tolerant, we apply a comparative genomics approach to evaluate the potential effects of desiccation tolerance and asexuality on genome evolution in bdelloids. We find that ancestral tetraploidy is conserved among all 4 bdelloid species, but homologous divergence in obligately aquatic Rotaria genomes is unexpectedly low. This finding is contrary to current models regarding the role of desiccation in shaping bdelloid genomes. In addition, we find that homologous regions in A. ricciae are largely collinear and do not form palindromic repeats as observed in the published A. vaga assembly. Consequently, several features interpreted as genomic evidence for long-term ameiotic evolution are not general to all bdelloid species, even within the same genus. Finally, we substantiate previous findings of high levels of horizontally transferred nonmetazoan genes in both desiccating and nondesiccating bdelloid species and show that this unusual feature is not shared by other animal phyla, even those with desiccation-tolerant representatives. These comparisons call into question the proposed role of desiccation in mediating horizontal genetic transfer. PMID:29689044

  14. Disruption of ten protease genes in the filamentous fungus Aspergillus oryzae highly improves production of heterologous proteins.

    PubMed

    Yoon, Jaewoo; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2011-02-01

    Proteolytic degradation by secreted proteases into the culture medium is one of the significant problems to be solved in heterologous protein production by filamentous fungi including Aspergillus oryzae. Double (tppA, and pepE) and quintuple (tppA, pepE, nptB, dppIV, and dppV) disruption of protease genes enhanced human lysozyme (HLY) and bovine chymosin (CHY) production by A. oryzae. In this study, we used a quintuple protease gene disruptant and performed successive rounds of disruption for five additional protease genes (alpA, pepA, AopepAa, AopepAd, and cpI), which were previously investigated by DNA microarray analyses for their expression. Gene disruption was performed by pyrG marker recycling with a highly efficient gene-targeting background (∆ligD) as previously reported. As a result, the maximum yields of recombinant CHY and HLY produced by a decuple protease gene disruptant were approximately 30% and 35%, respectively, higher than those produced by a quintuple protease gene disruptant. Thus, we successfully constructed a decuple protease gene disruptant possessing highly improved capability of heterologous protein production. This is the first report on decuple protease gene disruption that improved the levels of heterologous protein production by the filamentous fungus A. oryzae.

  15. Genome-wide screening of Oryza sativa ssp. japonica and indica reveals a complex family of proteins with ribosome-inactivating protein domains.

    PubMed

    Wytynck, Pieter; Rougé, Pierre; Van Damme, Els J M

    2017-11-01

    Ribosome-inactivating proteins (RIPs) are cytotoxic enzymes capable of halting protein synthesis by irreversible modification of ribosomes. Although RIPs are widespread they are not ubiquitous in the plant kingdom. The physiological importance of RIPs is not fully elucidated, but evidence suggests a role in the protection of the plant against biotic and abiotic stresses. Searches in the rice genome revealed a large and highly complex family of proteins with a RIP domain. A comparative analysis retrieved 38 RIP sequences from the genome sequence of Oryza sativa subspecies japonica and 34 sequences from the subspecies indica. The RIP sequences are scattered over different chromosomes but are mostly found on the third chromosome. The phylogenetic tree revealed the pairwise clustering of RIPs from japonica and indica. Molecular modeling and sequence analysis yielded information on the catalytic site of the enzyme, and suggested that a large part of RIP domains probably possess N-glycosidase activity. Several RIPs are differentially expressed in plant tissues and in response to specific abiotic stresses. This study provides an overview of RIP motifs in rice and will help to understand their biological role(s) and evolutionary relationships. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Genome-Wide Identification and Transferability of Microsatellite Markers between Palmae Species

    PubMed Central

    Xiao, Yong; Xia, Wei; Ma, Jianwei; Mason, Annaliese S.; Fan, Haikuo; Shi, Peng; Lei, Xintao; Ma, Zilong; Peng, Ming

    2016-01-01

    The Palmae family contains 202 genera and approximately 2800 species. Except for Elaeis guineensis and Phoenix dactylifera, almost no genetic and genomic information is available for Palmae species. Therefore, this is an obstacle to the conservation and genetic assessment of Palmae species, especially those that are currently endangered. The study was performed to develop a large number of microsatellite markers which can be used for genetic analysis in different Palmae species. Based on the assembled genome of E. guineensis and P. dactylifera, a total of 814 383 and 371 629 microsatellites were identified. Among these microsatellites identified in E. guineensis, 734 509 primer pairs could be designed from the flanking sequences of these microsatellites. The majority (618 762) of these designed primer pairs had in silico products in the genome of E. guineensis. These 618 762 primer pairs were subsequently used to in silico amplify the genome of P. dactylifera. A total of 7 265 conserved microsatellites were identified between E. guineensis and P. dactylifera. One hundred and thirty-five primer pairs flanking the conserved SSRs were stochastically selected and validated to have high cross-genera transferability, varying from 16.7 to 93.3% with an average of 73.7%. These genome-wide conserved microsatellite markers will provide a useful tool for genetic assessment and conservation of different Palmae species in the future. PMID:27826307

  17. Transcript Profiling Reveals the Presence of Abiotic Stress and Developmental Stage Specific Ascorbate Oxidase Genes in Plants

    PubMed Central

    Batth, Rituraj; Singh, Kapil; Kumari, Sumita; Mustafiz, Ananda

    2017-01-01

    Abiotic stress and climate change is the major concern for plant growth and crop yield. Abiotic stresses lead to enhanced accumulation of reactive oxygen species (ROS) consequently resulting in cellular damage and major losses in crop yield. One of the major scavengers of ROS is ascorbate (AA) which acts as first line of defense against external oxidants. An enzyme named ascorbate oxidase (AAO) is known to oxidize AA and deleteriously affect the plant system in response to stress. Genome-wide analysis of AAO gene family has led to the identification of five, three, seven, four, and six AAO genes in Oryza sativa, Arabidopsis, Glycine max, Zea mays, and Sorghum bicolor genomes, respectively. Expression profiling of these genes was carried out in response to various abiotic stresses and during various stages of vegetative and reproductive development using publicly available microarray database. Expression analysis in Oryza sativa revealed tissue specific expression of AAO genes wherein few members were exclusively expressed in either root or shoot. These genes were found to be regulated by both developmental cues as well as diverse stress conditions. The qRT-PCR analysis in response to salinity and drought stress in rice shoots revealed OsAAO2 to be the most stress responsive gene. On the other hand, OsAAO3 and OsAAO4 genes showed enhanced expression in roots under salinity/drought stresses. This study provides lead about important stress responsive AAO genes in various crop plants, which could be used to engineer climate resilient crop plants. PMID:28261251

  18. Directional Selection from Host Plants Is a Major Force Driving Host Specificity in Magnaporthe Species.

    PubMed

    Zhong, Zhenhui; Norvienyeku, Justice; Chen, Meilian; Bao, Jiandong; Lin, Lianyu; Chen, Liqiong; Lin, Yahong; Wu, Xiaoxian; Cai, Zena; Zhang, Qi; Lin, Xiaoye; Hong, Yonghe; Huang, Jun; Xu, Linghong; Zhang, Honghong; Chen, Long; Tang, Wei; Zheng, Huakun; Chen, Xiaofeng; Wang, Yanli; Lian, Bi; Zhang, Liangsheng; Tang, Haibao; Lu, Guodong; Ebbole, Daniel J; Wang, Baohua; Wang, Zonghua

    2016-05-06

    One major threat to global food security that requires immediate attention, is the increasing incidence of host shift and host expansion in growing number of pathogenic fungi and emergence of new pathogens. The threat is more alarming because, yield quality and quantity improvement efforts are encouraging the cultivation of uniform plants with low genetic diversity that are increasingly susceptible to emerging pathogens. However, the influence of host genome differentiation on pathogen genome differentiation and its contribution to emergence and adaptability is still obscure. Here, we compared genome sequence of 6 isolates of Magnaporthe species obtained from three different host plants. We demonstrated the evolutionary relationship between Magnaporthe species and the influence of host differentiation on pathogens. Phylogenetic analysis showed that evolution of pathogen directly corresponds with host divergence, suggesting that host-pathogen interaction has led to co-evolution. Furthermore, we identified an asymmetric selection pressure on Magnaporthe species. Oryza sativa-infecting isolates showed higher directional selection from host and subsequently tends to lower the genetic diversity in its genome. We concluded that, frequent gene loss or gain, new transposon acquisition and sequence divergence are host adaptability mechanisms for Magnaporthe species, and this coevolution processes is greatly driven by directional selection from host plants.

  19. Directional Selection from Host Plants Is a Major Force Driving Host Specificity in Magnaporthe Species

    PubMed Central

    Zhong, Zhenhui; Norvienyeku, Justice; Chen, Meilian; Bao, Jiandong; Lin, Lianyu; Chen, Liqiong; Lin, Yahong; Wu, Xiaoxian; Cai, Zena; Zhang, Qi; Lin, Xiaoye; Hong, Yonghe; Huang, Jun; Xu, Linghong; Zhang, Honghong; Chen, Long; Tang, Wei; Zheng, Huakun; Chen, Xiaofeng; Wang, Yanli; Lian, Bi; Zhang, Liangsheng; Tang, Haibao; Lu, Guodong; Ebbole, Daniel J.; Wang, Baohua; Wang, Zonghua

    2016-01-01

    One major threat to global food security that requires immediate attention, is the increasing incidence of host shift and host expansion in growing number of pathogenic fungi and emergence of new pathogens. The threat is more alarming because, yield quality and quantity improvement efforts are encouraging the cultivation of uniform plants with low genetic diversity that are increasingly susceptible to emerging pathogens. However, the influence of host genome differentiation on pathogen genome differentiation and its contribution to emergence and adaptability is still obscure. Here, we compared genome sequence of 6 isolates of Magnaporthe species obtained from three different host plants. We demonstrated the evolutionary relationship between Magnaporthe species and the influence of host differentiation on pathogens. Phylogenetic analysis showed that evolution of pathogen directly corresponds with host divergence, suggesting that host-pathogen interaction has led to co-evolution. Furthermore, we identified an asymmetric selection pressure on Magnaporthe species. Oryza sativa-infecting isolates showed higher directional selection from host and subsequently tends to lower the genetic diversity in its genome. We concluded that, frequent gene loss or gain, new transposon acquisition and sequence divergence are host adaptability mechanisms for Magnaporthe species, and this coevolution processes is greatly driven by directional selection from host plants. PMID:27151494

  20. Comparative Chloroplast Genomics of Gossypium Species: Insights Into Repeat Sequence Variations and Phylogeny

    PubMed Central

    Wu, Ying; Liu, Fang; Yang, Dai-Gang; Li, Wei; Zhou, Xiao-Jian; Pei, Xiao-Yu; Liu, Yan-Gai; He, Kun-Lun; Zhang, Wen-Sheng; Ren, Zhong-Ying; Zhou, Ke-Hai; Ma, Xiong-Feng; Li, Zhong-Hu

    2018-01-01

    Cotton is one of the most economically important fiber crop plants worldwide. The genus Gossypium contains a single allotetraploid group (AD) and eight diploid genome groups (A–G and K). However, the evolution of repeat sequences in the chloroplast genomes and the phylogenetic relationships of Gossypium species are unclear. Thus, we determined the variations in the repeat sequences and the evolutionary relationships of 40 cotton chloroplast genomes, which represented the most diverse in the genus, including five newly sequenced diploid species, i.e., G. nandewarense (C1-n), G. armourianum (D2-1), G. lobatum (D7), G. trilobum (D8), and G. schwendimanii (D11), and an important semi-wild race of upland cotton, G. hirsutum race latifolium (AD1). The genome structure, gene order, and GC content of cotton species were similar to those of other higher plant plastid genomes. In total, 2860 long sequence repeats (>10 bp in length) were identified, where the F-genome species had the largest number of repeats (G. longicalyx F1: 108) and E-genome species had the lowest (G. stocksii E1: 53). Large-scale repeat sequences possibly enrich the genetic information and maintain genome stability in cotton species. We also identified 10 divergence hotspot regions, i.e., rpl33-rps18, psbZ-trnG (GCC), rps4-trnT (UGU), trnL (UAG)-rpl32, trnE (UUC)-trnT (GGU), atpE, ndhI, rps2, ycf1, and ndhF, which could be useful molecular genetic markers for future population genetics and phylogenetic studies. Site-specific selection analysis showed that some of the coding sites of 10 chloroplast genes (atpB, atpE, rps2, rps3, petB, petD, ccsA, cemA, ycf1, and rbcL) were under protein sequence evolution. Phylogenetic analysis based on the whole plastomes suggested that the Gossypium species grouped into six previously identified genetic clades. Interestingly, all 13 D-genome species clustered into a strong monophyletic clade. Unexpectedly, the cotton species with C, G, and K-genomes were admixed and

  1. Discovery and analysis of an active long terminal repeat-retrotransposable element in Aspergillus oryzae.

    PubMed

    Jie Jin, Feng; Hara, Seiichi; Sato, Atsushi; Koyama, Yasuji

    2014-01-01

    Wild-type Aspergillus oryzae RIB40 contains two copies of the AO090005001597 gene. We previously constructed A. oryzae RIB40 strain, RKuAF8B, with multiple chromosomal deletions, in which the AO090005001597 copy number was found to be increased significantly. Sequence analysis indicated that AO090005001597 is part of a putative 6,000-bp retrotransposable element, flanked by two long terminal repeats (LTRs) of 669 bp, with characteristics of retroviruses and retrotransposons, and thus designated AoLTR (A. oryzae LTR-retrotransposable element). AoLTR comprised putative reverse transcriptase, RNase H, and integrase domains. The deduced amino acid sequence alignment of AoLTR showed 94% overall identity with AFLAV, an A. flavus Tf1/sushi retrotransposon. Quantitative real-time RT-PCR showed that AoLTR gene expression was significantly increased in the RKuAF8B, in accordance with the increased copy number. Inverse PCR indicated that the full-length retrotransposable element was randomly integrated into multiple genomic locations. However, no obvious phenotypic changes were associated with the increased AoLTR gene copy number.

  2. Characterization of the radical-scavenging reaction of 2-O-substituted ascorbic acid derivatives, AA-2G, AA-2P, and AA-2S: a kinetic and stoichiometric study.

    PubMed

    Takebayashi, Jun; Tai, Akihiro; Gohda, Eiichi; Yamamoto, Itaru

    2006-04-01

    The aim of this study was to characterize the antioxidant activity of three ascorbic acid (AA) derivatives O-substituted at the C-2 position of AA: ascorbic acid 2-glucoside (AA-2G), ascorbic acid 2-phosphate (AA-2P), and ascorbic acid 2-sulfate (AA-2S). The radical-scavenging activities of these AA derivatives and some common low molecular-weight antioxidants such as uric acid or glutathione against 1,1-diphenyl-picrylhydrazyl (DPPH) radical, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS+), or galvinoxyl radical were kinetically and stoichiometrically evaluated under pH-controlled conditions. Those AA derivatives slowly and continuously reacted with DPPH radical and ABTS+, but not with galvinoxyl radical. They effectively reacted with DPPH radical under acidic conditions and with ABTS+ under neutral conditions. In contrast, AA immediately quenched all species of radicals tested at all pH values investigated. The reactivity of Trolox, a water-soluble vitamin E analogue, was comparable to that of AA in terms of kinetics and stoichiometrics. Uric acid and glutathione exhibited long-lasting radical-scavenging activity against these radicals under certain pH conditions. The radical-scavenging profiles of AA derivatives were closer to those of uric acid and glutathione rather than to that of AA. The number of radicals scavenged by one molecule of AA derivatives, uric acid, or glutathione was equal to or greater than that by AA or Trolox under the appropriate conditions. These data suggest the potential usage of AA derivatives as radical scavengers.

  3. Cross-species bacterial artificial chromosome (BAC) library screening via overgo-based hybridization and BAC-contig mapping of a yield enhancement quantitative trait locus (QTL) yld1.1 in the Malaysian wild rice Oryza rufipogon.

    PubMed

    Song, Beng-Kah; Nadarajah, Kalaivani; Romanov, Michael N; Ratnam, Wickneswari

    2005-01-01

    The construction of BAC-contig physical maps is an important step towards a partial or ultimate genome sequence analysis. Here, we describe our initial efforts to apply an overgo approach to screen a BAC library of the Malaysian wild rice species, Oryza rufipogon. Overgo design is based on repetitive element masking and sequence uniqueness, and uses short probes (approximately 40 bp), making this method highly efficient and specific. Pairs of 24-bp oligos that contain an 8-bp overlap were developed from the publicly available genomic sequences of the cultivated rice, O. sativa, to generate 20 overgo probes for a 1-Mb region that encompasses a yield enhancement QTL yld1.1 in O. rufipogon. The advantages of a high similarity in melting temperature, hybridization kinetics and specific activities of overgos further enabled a pooling strategy for library screening by filter hybridization. Two pools of ten overgos each were hybridized to high-density filters representing the O. rufipogon genomic BAC library. These screening tests succeeded in providing 69 PCR-verified positive hits from a total of 23,040 BAC clones of the entire O. rufipogon library. A minimal tilling path of clones was generated to contribute to a fully covered BAC-contig map of the targeted 1-Mb region. The developed protocol for overgo design based on O. sativa sequences as a comparative genomic framework, and the pooled overgo hybridization screening technique are suitable means for high-resolution physical mapping and the identification of BAC candidates for sequencing.

  4. Genome sequences of three phytopathogenic species of the Magnaporthaceae family of fungi

    USDA-ARS?s Scientific Manuscript database

    Magnaporthaceae is a family of ascomycetes that includes three fungi of great economic importance: Magnaporthe oryzae, Gaeumannomyces graminis var. tritici, and Magnaporthe poae. These three fungi cause widespread disease and loss in cereal and grass crops, including rice blast disease (M. oryzae), ...

  5. Genome skimming identifies polymorphism in tern populations and species

    PubMed Central

    2012-01-01

    Background Terns (Charadriiformes: Sterninae) are a lineage of cosmopolitan shorebirds with a disputed evolutionary history that comprises several species of conservation concern. As a non-model system in genetics, previous study has left most of the nuclear genome unexplored, and population-level studies are limited to only 15% of the world's species of terns and noddies. Screening of polymorphic nuclear sequence markers is needed to enhance genetic resolution because of supposed low mitochondrial mutation rate, documentation of nuclear insertion of hypervariable mitochondrial regions, and limited success of microsatellite enrichment in terns. Here, we investigated the phylogenetic and population genetic utility for terns and relatives of a variety of nuclear markers previously developed for other birds and spanning the nuclear genome. Markers displaying a variety of mutation rates from both the nuclear and mitochondrial genome were tested and prioritized according to optimal cross-species amplification and extent of genetic polymorphism between (1) the main tern clades and (2) individual Royal Terns (Thalasseus maxima) breeding on the US East Coast. Results Results from this genome skimming effort yielded four new nuclear sequence-based markers for tern phylogenetics and 11 intra-specific polymorphic markers. Further, comparison between the two genomes indicated a phylogenetic conflict at the base of terns, involving the inclusion (mitochondrial) or exclusion (nuclear) of the Angel Tern (Gygis alba). Although limited mitochondrial variation was confirmed, both nuclear markers and a short tandem repeat in the mitochondrial control region indicated the presence of considerable genetic variation in Royal Terns at a regional scale. Conclusions These data document the value of intronic markers to the study of terns and allies. We expect that these and additional markers attained through next-generation sequencing methods will accurately map the genetic origin and

  6. The rice XA21 ectodomain fused to the Arabidopsis EFR cytoplasmic domain confers resistance to Xanthomonas oryzae pv. oryzae.

    PubMed

    Thomas, Nicholas C; Oksenberg, Nir; Liu, Furong; Caddell, Daniel; Nalyvayko, Alina; Nguyen, Yen; Schwessinger, Benjamin; Ronald, Pamela C

    2018-01-01

    Rice ( Oryza sativa ) plants expressing the XA21 cell-surface receptor kinase are resistant to Xanthomonas oryzae pv. oryzae (Xoo) infection. We previously demonstrated that expressing a chimeric protein containing the ELONGATION FACTOR Tu RECEPTOR (EFR) ectodomain and the XA21 endodomain (EFR:XA21) in rice does not confer robust resistance to Xoo . To test if the XA21 ectodomain is required for Xoo resistance, we produced transgenic rice lines expressing a chimeric protein consisting of the XA21 ectodomain and EFR endodomain (XA21:EFR) and inoculated these lines with Xoo . We also tested if the XA21:EFR rice plants respond to a synthetic sulfated 21 amino acid derivative (RaxX21-sY) of the activator of XA21-mediated immunity, RaxX. We found that five independently transformed XA21:EFR rice lines displayed resistance to Xoo as measured by lesion length analysis, and showed that five lines share characteristic markers of the XA21 defense response (generation of reactive oxygen species and defense response gene expression) after treatment with RaxX21-sY. Our results indicate that expression of the XA21:EFR chimeric receptor in rice confers resistance to Xoo . These results suggest that the endodomain of the EFR and XA21 immune receptors are interchangeable and the XA21 ectodomain is the key determinant conferring robust resistance to Xoo .

  7. Origins of species: acquired genomes and individuality

    NASA Technical Reports Server (NTRS)

    Margulis, L.

    1993-01-01

    Entire genomes with their accompanying protein synthetic systems are transferred throughout the biosphere primarily as bacteria and protists which become symbionts as they irreversibly integrate into pre-existing organisms to form more complex individuals. Individualization is stabilized by simultaneous transmission of once-separate heterologous genetic systems. The origin of new species is hypothesized to correlate with the acquisition, integration and subsequent inheritance of such acquired microbial genomes. These processes were recognized by Mereschkovsky ("Symbiogenesis" in Russian, 1909) and by Wallin ("Symbionticism", see p. 181, this issue).

  8. Rice, Japonica (Oryza sativa L.).

    PubMed

    Main, Marcy; Frame, Bronwyn; Wang, Kan

    2015-01-01

    The importance of rice, as a food crop, is reflected in the extensive global research being conducted in an effort to improve and better understand this particular agronomic plant. In regard to biotechnology, this has led to the development of numerous genetic transformation protocols. Over the years, many of these methods have become increasingly straightforward, rapid, and efficient, thereby making rice valuable as a model crop for scientific research and functional genomics. The focus of this chapter is on one such protocol that uses Agrobacterium-mediated transformation of Oryza sativa L. ssp. Japonica cv. Nipponbare with an emphasis on tissue desiccation. The explants consist of callus derived from mature seeds which are cocultivated on filter paper postinfection. Hygromycin selection is used for the recovery of subsequent genetically engineered events.

  9. Genetic dissection of ozone tolerance in rice (Oryza sativa L.) by a genome-wide association study

    PubMed Central

    Ueda, Yoshiaki; Frimpong, Felix; Qi, Yitao; Matthus, Elsa; Wu, Linbo; Höller, Stefanie; Kraska, Thorsten; Frei, Michael

    2015-01-01

    Tropospheric ozone causes various negative effects on plants and affects the yield and quality of agricultural crops. Here, we report a genome-wide association study (GWAS) in rice (Oryza sativa L.) to determine candidate loci associated with ozone tolerance. A diversity panel consisting of 328 accessions representing all subgroups of O. sativa was exposed to ozone stress at 60 nl l–1 for 7h every day throughout the growth season, or to control conditions. Averaged over all genotypes, ozone significantly affected biomass-related traits (plant height –1.0%, shoot dry weight –15.9%, tiller number –8.3%, grain weight –9.3%, total panicle weight –19.7%, single panicle weight –5.5%) and biochemical/physiological traits (symptom formation, SPAD value –4.4%, foliar lignin content +3.4%). A wide range of genotypic variance in response to ozone stress were observed in all phenotypes. Association mapping based on more than 30 000 single-nucleotide polymorphism (SNP) markers yielded 16 significant markers throughout the genome by applying a significance threshold of P<0.0001. Furthermore, by determining linkage disequilibrium blocks associated with significant SNPs, we gained a total of 195 candidate genes for these traits. The following sequence analysis revealed a number of novel polymorphisms in two candidate genes for the formation of visible leaf symptoms, a RING and an EREBP gene, both of which are involved in cell death and stress defence reactions. This study demonstrated substantial natural variation of responses to ozone in rice and the possibility of using GWAS in elucidating the genetic factors underlying ozone tolerance. PMID:25371505

  10. Genome analysis of 7 Kengyilia (Triticeae Poaceae) species with FISH and GISH

    USDA-ARS?s Scientific Manuscript database

    Genome composition of and genetic relationships among seven Kengyilia species were assessed using a technique of sequential FISH (fluorescence in situ hybridization) and GISH (genomic in situ hybridization). Five of these 7 species, K. kokonorica, K. rigidula, K. hirsula, K. grandiglumis, and K. th...

  11. Genomic patterns of nucleotide diversity in divergent populations of U.S. weedy rice

    PubMed Central

    2010-01-01

    Background Weedy rice (red rice), a conspecific weed of cultivated rice (Oryza sativa L.), is a significant problem throughout the world and an emerging threat in regions where it was previously absent. Despite belonging to the same species complex as domesticated rice and its wild relatives, the evolutionary origins of weedy rice remain unclear. We use genome-wide patterns of single nucleotide polymorphism (SNP) variation in a broad geographic sample of weedy, domesticated, and wild Oryza samples to infer the origin and demographic processes influencing U.S. weedy rice evolution. Results We find greater population structure than has been previously reported for U.S. weedy rice, and that the multiple, genetically divergent populations have separate origins. The two main U.S. weedy rice populations share genetic backgrounds with cultivated O. sativa varietal groups not grown commercially in the U.S., suggesting weed origins from domesticated ancestors. Hybridization between weedy groups and between weedy rice and local crops has also led to the evolution of distinct U.S. weedy rice populations. Demographic simulations indicate differences among the main weedy groups in the impact of bottlenecks on their establishment in the U.S., and in the timing of divergence from their cultivated relatives. Conclusions Unlike prior research, we did not find unambiguous evidence for U.S. weedy rice originating via hybridization between cultivated and wild Oryza species. Our results demonstrate the potential for weedy life-histories to evolve directly from within domesticated lineages. The diverse origins of U.S. weedy rice populations demonstrate the multiplicity of evolutionary forces that can influence the emergence of weeds from a single species complex. PMID:20550656

  12. The evolution of microbial species - a view through the genomic lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varghese, Neha; Mukherjee, Supratim; ivanova, Natalia

    2014-03-17

    For a long time prokaryotic species definition has been under debate and a constant source of turmoil in microbiology. This has recently prompted the ASM to call for a scalable and reproducible technique, which uses meaningful commonalities to cluster microorganisms into groups corresponding to prokaryotic species. Whole-genome Average Nucleotide Identity (gANI) was previously suggested as a measure of genetic distance that generally agrees with prokaryotic species assignments based on the accepted best practices (DNA-DNA hybridization and 16S rDNA similarity). In this work, we prove that gANI is indeed the meaningful commonality based on which microorganisms can be grouped into themore » aforementioned clusters. By analyzing 1.76 million pairs of genomes we find that identification of the closest relatives of an organism via gANI is precise, scalable, reproducible, and reflects the evolutionary dynamics of microbes. We model the previously unexplored statistical properties of gANI using 6,000 microbial genomes and apply species-specific gANI cutoffs to reveal anomalies in the current taxonomic species definitions for almost 50percent of the species with multiple genome sequences. We also provide evidence of speciation events and genetic continuums in 17.8percent of those species. We consider disagreements between gANI-based groupings and named species and demonstrate that the former have all the desired features to serve as the much-needed natural groups for moving forward with taxonomy. Further, the groupings identified are presented in detail at http://ani.jgi-psf.org to facilitate comprehensive downstream analysis for researchers across different disciplines« less

  13. Systemic AA amyloidosis in the red fox (Vulpes vulpes).

    PubMed

    Rising, Anna; Cederlund, Ella; Palmberg, Carina; Uhlhorn, Henrik; Gaunitz, Stefan; Nordling, Kerstin; Ågren, Erik; Ihse, Elisabet; Westermark, Gunilla T; Tjernberg, Lars; Jörnvall, Hans; Johansson, Jan; Westermark, Per

    2017-11-01

    Amyloid A (AA) amyloidosis occurs spontaneously in many mammals and birds, but the prevalence varies considerably among different species, and even among subgroups of the same species. The Blue fox and the Gray fox seem to be resistant to the development of AA amyloidosis, while Island foxes have a high prevalence of the disease. Herein, we report on the identification of AA amyloidosis in the Red fox (Vulpes vulpes). Edman degradation and tandem MS analysis of proteolyzed amyloid protein revealed that the amyloid partly was composed of full-length SAA. Its amino acid sequence was determined and found to consist of 111 amino acid residues. Based on inter-species sequence comparisons we found four residue exchanges (Ser31, Lys63, Leu71, Lys72) between the Red and Blue fox SAAs. Lys63 seems unique to the Red fox SAA. We found no obvious explanation to how these exchanges might correlate with the reported differences in SAA amyloidogenicity. Furthermore, in contrast to fibrils from many other mammalian species, the isolated amyloid fibrils from Red fox did not seed AA amyloidosis in a mouse model. © 2017 The Protein Society.

  14. Coevolutionary dynamics of rice blast resistance gene Pi-ta and Magnaporthe oryzae avirulence gene AVR-Pita 1

    USDA-ARS?s Scientific Manuscript database

    The Pi-ta gene in rice is effective in preventing infections by Magnaporthe oryzae strains that contain the corresponding avirulence gene, AVR-Pita1. Genome sequencing and mapping studies demonstrated that AVR-Pita1 is highly unstable, and diverse haplotypes of AVR-Pita1 have been identified from is...

  15. Whole-genome sequencing of staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species.

    PubMed

    Takeuchi, Fumihiko; Watanabe, Shinya; Baba, Tadashi; Yuzawa, Harumi; Ito, Teruyo; Morimoto, Yuh; Kuroda, Makoto; Cui, Longzhu; Takahashi, Mikio; Ankai, Akiho; Baba, Shin-ichi; Fukui, Shigehiro; Lee, Jean C; Hiramatsu, Keiichi

    2005-11-01

    Staphylococcus haemolyticus is an opportunistic bacterial pathogen that colonizes human skin and is remarkable for its highly antibiotic-resistant phenotype. We determined the complete genome sequence of S.haemolyticus to better understand its pathogenicity and evolutionary relatedness to the other staphylococcal species. A large proportion of the open reading frames in the genomes of S.haemolyticus, Staphylococcus aureus, and Staphylococcus epidermidis were conserved in their sequence and order on the chromosome. We identified a region of the bacterial chromosome just downstream of the origin of replication that showed little homology among the species but was conserved among strains within a species. This novel region, designated the "oriC environ," likely contributes to the evolution and differentiation of the staphylococcal species, since it was enriched for species-specific nonessential genes that contribute to the biological features of each staphylococcal species. A comparative analysis of the genomes of S.haemolyticus, S.aureus, and S.epidermidis elucidated differences in their biological and genetic characteristics and pathogenic potentials. We identified as many as 82 insertion sequences in the S.haemolyticus chromosome that probably mediated frequent genomic rearrangements, resulting in phenotypic diversification of the strain. Such rearrangements could have brought genomic plasticity to this species and contributed to its acquisition of antibiotic resistance.

  16. Whole-Genome Sequencing of Staphylococcus haemolyticus Uncovers the Extreme Plasticity of Its Genome and the Evolution of Human-Colonizing Staphylococcal Species

    PubMed Central

    Takeuchi, Fumihiko; Watanabe, Shinya; Baba, Tadashi; Yuzawa, Harumi; Ito, Teruyo; Morimoto, Yuh; Kuroda, Makoto; Cui, Longzhu; Takahashi, Mikio; Ankai, Akiho; Baba, Shin-ichi; Fukui, Shigehiro; Lee, Jean C.; Hiramatsu, Keiichi

    2005-01-01

    Staphylococcus haemolyticus is an opportunistic bacterial pathogen that colonizes human skin and is remarkable for its highly antibiotic-resistant phenotype. We determined the complete genome sequence of S.haemolyticus to better understand its pathogenicity and evolutionary relatedness to the other staphylococcal species. A large proportion of the open reading frames in the genomes of S.haemolyticus, Staphylococcus aureus, and Staphylococcus epidermidis were conserved in their sequence and order on the chromosome. We identified a region of the bacterial chromosome just downstream of the origin of replication that showed little homology among the species but was conserved among strains within a species. This novel region, designated the “oriC environ,” likely contributes to the evolution and differentiation of the staphylococcal species, since it was enriched for species-specific nonessential genes that contribute to the biological features of each staphylococcal species. A comparative analysis of the genomes of S.haemolyticus, S.aureus, and S.epidermidis elucidated differences in their biological and genetic characteristics and pathogenic potentials. We identified as many as 82 insertion sequences in the S.haemolyticus chromosome that probably mediated frequent genomic rearrangements, resulting in phenotypic diversification of the strain. Such rearrangements could have brought genomic plasticity to this species and contributed to its acquisition of antibiotic resistance. PMID:16237012

  17. Comparative genomic analysis of three Leishmania species that cause diverse human disease

    PubMed Central

    Peacock, Christopher S; Seeger, Kathy; Harris, David; Murphy, Lee; Ruiz, Jeronimo C; Quail, Michael A; Peters, Nick; Adlem, Ellen; Tivey, Adrian; Aslett, Martin; Kerhornou, Arnaud; Ivens, Alasdair; Fraser, Audrey; Rajandream, Marie-Adele; Carver, Tim; Norbertczak, Halina; Chillingworth, Tracey; Hance, Zahra; Jagels, Kay; Moule, Sharon; Ormond, Doug; Rutter, Simon; Squares, Rob; Whitehead, Sally; Rabbinowitsch, Ester; Arrowsmith, Claire; White, Brian; Thurston, Scott; Bringaud, Frédéric; Baldauf, Sandra L; Faulconbridge, Adam; Jeffares, Daniel; Depledge, Daniel P; Oyola, Samuel O; Hilley, James D; Brito, Loislene O; Tosi, Luiz R O; Barrell, Barclay; Cruz, Angela K; Mottram, Jeremy C; Smith, Deborah F; Berriman, Matthew

    2008-01-01

    Leishmania parasites cause a broad spectrum of clinical disease. Here we report the sequencing of the genomes of two species of Leishmania: Leishmania infantum and Leishmania braziliensis. The comparison of these sequences with the published genome of Leishmania major reveals marked conservation of synteny and identifies only ∼200 genes with a differential distribution between the three species. L. braziliensis, contrary to Leishmania species examined so far, possesses components of a putative RNA-mediated interference pathway, telomere-associated transposable elements and spliced leader–associated SLACS retrotransposons. We show that pseudogene formation and gene loss are the principal forces shaping the different genomes. Genes that are differentially distributed between the species encode proteins implicated in host-pathogen interactions and parasite survival in the macrophage. PMID:17572675

  18. Genome-wide association study of rice grain width variation.

    PubMed

    Zheng, Xiao-Ming; Gong, Tingting; Ou, Hong-Ling; Xue, Dayuan; Qiao, Weihua; Wang, Junrui; Liu, Sha; Yang, Qingwen; Olsen, Kenneth M

    2018-04-01

    Seed size is variable within many plant species, and understanding the underlying genetic factors can provide insights into mechanisms of local environmental adaptation. Here we make use of the abundant genomic and germplasm resources available for rice (Oryza sativa) to perform a large-scale genome-wide association study (GWAS) of grain width. Grain width varies widely within the crop and is also known to show climate-associated variation across populations of its wild progenitor. Using a filtered dataset of >1.9 million genome-wide SNPs in a sample of 570 cultivated and wild rice accessions, we performed GWAS with two complementary models, GLM and MLM. The models yielded 10 and 33 significant associations, respectively, and jointly yielded seven candidate locus regions, two of which have been previously identified. Analyses of nucleotide diversity and haplotype distributions at these loci revealed signatures of selection and patterns consistent with adaptive introgression of grain width alleles across rice variety groups. The results provide a 50% increase in the total number of rice grain width loci mapped to date and support a polygenic model whereby grain width is shaped by gene-by-environment interactions. These loci can potentially serve as candidates for studies of adaptive seed size variation in wild grass species.

  19. Identification and characterization of microRNAs in oilseed rape (Brassica napus) responsive to infection with the pathogenic fungus Verticillium longisporum using Brassica AA (Brassica rapa) and CC (Brassica oleracea) as reference genomes.

    PubMed

    Shen, Dan; Suhrkamp, Ina; Wang, Yu; Liu, Shenyi; Menkhaus, Jan; Verreet, Joseph-Alexander; Fan, Longjiang; Cai, Daguang

    2014-11-01

    Verticillium longisporum, a soil-borne pathogenic fungus, causes vascular disease in oilseed rape (Brassica napus). We proposed that plant microRNAs (miRNAs) are involved in the plant-V. longisporum interaction. To identify oilseed rape miRNAs, we deep-sequenced two small RNA libraries made from V. longisporum infected/noninfected roots and employed Brassica rapa and Brassica oleracea genomes as references for miRNA prediction and characterization. We identified 893 B. napus miRNAs representing 360 conserved and 533 novel miRNAs, and mapped 429 and 464 miRNAs to the AA and CC genomes, respectively. Microsynteny analysis with the conserved miRNAs and their flanking protein coding sequences revealed 137 AA-CC genome syntenic miRNA pairs and 61 AA and 42 CC genome-unique miRNAs. Sixty-two miRNAs were responsive to the V. longisporum infection. We present data for specific interactions and simultaneously reciprocal changes in the expression levels of the miRNAs and their targets in the infected roots. We demonstrate that miRNAs are involved in the plant-fungus interaction and that miRNA168-Argonaute 1 (AGO1) expression modulation might act as a key regulatory module in a compatible plant-V. longisporum interaction. Our results suggest that V. longisporum may have evolved a virulence mechanism by interference with plant miRNAs to reprogram plant gene expression and achieve infection. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  20. Total centromere size and genome size are strongly correlated in ten grass species.

    PubMed

    Zhang, Han; Dawe, R Kelly

    2012-05-01

    It has been known for decades that centromere size varies across species, but the factors involved in setting centromere boundaries are unknown. As a means to address this question, we estimated centromere sizes in ten species of the grass family including rice, maize, and wheat, which diverged 60~80 million years ago and vary by 40-fold in genome size. Measurements were made using a broadly reactive antibody to rice centromeric histone H3 (CENH3). In species-wide comparisons, we found a clear linear relationship between total centromere size and genome size. Species with large genomes and few chromosomes tend to have the largest centromeres (e.g., rye) while species with small genomes and many chromosomes have the smallest centromeres (e.g., rice). However, within a species, centromere size is surprisingly uniform. We present evidence from three oat-maize addition lines that support this claim, indicating that each of three maize centromeres propagated in oat are not measurably different from each other. In the context of previously published data, our results suggest that the apparent correlation between chromosome and centromere size is incidental to a larger trend that reflects genome size. Centromere size may be determined by a limiting component mechanism similar to that described for Caenorhabditis elegans centrosomes.

  1. Coordination of Leaf Photosynthesis, Transpiration, and Structural Traits in Rice and Wild Relatives (Genus Oryza)1[W][OA

    PubMed Central

    Giuliani, Rita; Koteyeva, Nuria; Voznesenskaya, Elena; Evans, Marc A.; Cousins, Asaph B.; Edwards, Gerald E.

    2013-01-01

    The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO2 access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 accessions (representatives of 17 species and eight genomes). Hypotheses of associations within, and between, structure, photosynthesis, and transpiration were tested. Two main clusters of positively interrelated leaf traits were identified: in the first cluster were structural features, leaf thickness (Thickleaf), mesophyll (M) cell surface area exposed to intercellular air space per unit of leaf surface area (Smes), and M cell size; a second group included functional traits, net photosynthetic rate, transpiration rate, M conductance to CO2 diffusion (gm), stomatal conductance to gas diffusion (gs), and the gm/gs ratio. While net photosynthetic rate was positively correlated with gm, neither was significantly linked with any individual structural traits. The results suggest that changes in gm depend on covariations of multiple leaf (Smes) and M cell (including cell wall thickness) structural traits. There was an inverse relationship between Thickleaf and transpiration rate and a significant positive association between Thickleaf and leaf transpiration efficiency. Interestingly, high gm together with high gm/gs and a low Smes/gm ratio (M resistance to CO2 diffusion per unit of cell surface area exposed to intercellular air space) appear to be ideal for supporting leaf photosynthesis while preserving water; in addition, thick M cell walls may be beneficial for plant drought tolerance. PMID:23669746

  2. What Does Genetic Diversity of Aspergillus flavus Tell Us About Aspergillus oryzae?

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus and Aspergillus oryzae belong to Aspergillus section Flavi. They are closely related and are of significant economic importance. The former species has the ability to produce harmful aflatoxins while the latter is widely used in food fermentation and industrial enzyme production. ...

  3. Robustness and Strategies of Adaptation among Farmer Varieties of African Rice (Oryza glaberrima) and Asian Rice (Oryza sativa) across West Africa

    PubMed Central

    Maat, Harro; Richards, Paul; Struik, Paul C.

    2013-01-01

    This study offers evidence of the robustness of farmer rice varieties (Oryza glaberrima and O. sativa) in West Africa. Our experiments in five West African countries showed that farmer varieties were tolerant of sub-optimal conditions, but employed a range of strategies to cope with stress. Varieties belonging to the species Oryza glaberrima – solely the product of farmer agency – were the most successful in adapting to a range of adverse conditions. Some of the farmer selections from within the indica and japonica subspecies of O. sativa also performed well in a range of conditions, but other farmer selections from within these two subspecies were mainly limited to more specific niches. The results contradict the rather common belief that farmer varieties are only of local value. Farmer varieties should be considered by breeding programmes and used (alongside improved varieties) in dissemination projects for rural food security. PMID:23536754

  4. Robustness and strategies of adaptation among farmer varieties of African Rice (Oryza glaberrima) and Asian Rice (Oryza sativa) across West Africa.

    PubMed

    Mokuwa, Alfred; Nuijten, Edwin; Okry, Florent; Teeken, Béla; Maat, Harro; Richards, Paul; Struik, Paul C

    2013-01-01

    This study offers evidence of the robustness of farmer rice varieties (Oryza glaberrima and O. sativa) in West Africa. Our experiments in five West African countries showed that farmer varieties were tolerant of sub-optimal conditions, but employed a range of strategies to cope with stress. Varieties belonging to the species Oryza glaberrima - solely the product of farmer agency - were the most successful in adapting to a range of adverse conditions. Some of the farmer selections from within the indica and japonica subspecies of O. sativa also performed well in a range of conditions, but other farmer selections from within these two subspecies were mainly limited to more specific niches. The results contradict the rather common belief that farmer varieties are only of local value. Farmer varieties should be considered by breeding programmes and used (alongside improved varieties) in dissemination projects for rural food security.

  5. Sex Chromosome Turnover Contributes to Genomic Divergence between Incipient Stickleback Species

    PubMed Central

    Yoshida, Kohta; Makino, Takashi; Yamaguchi, Katsushi; Shigenobu, Shuji; Hasebe, Mitsuyasu; Kawata, Masakado; Kume, Manabu; Mori, Seiichi; Peichel, Catherine L.; Toyoda, Atsushi; Fujiyama, Asao; Kitano, Jun

    2014-01-01

    Sex chromosomes turn over rapidly in some taxonomic groups, where closely related species have different sex chromosomes. Although there are many examples of sex chromosome turnover, we know little about the functional roles of sex chromosome turnover in phenotypic diversification and genomic evolution. The sympatric pair of Japanese threespine stickleback (Gasterosteus aculeatus) provides an excellent system to address these questions: the Japan Sea species has a neo-sex chromosome system resulting from a fusion between an ancestral Y chromosome and an autosome, while the sympatric Pacific Ocean species has a simple XY sex chromosome system. Furthermore, previous quantitative trait locus (QTL) mapping demonstrated that the Japan Sea neo-X chromosome contributes to phenotypic divergence and reproductive isolation between these sympatric species. To investigate the genomic basis for the accumulation of genes important for speciation on the neo-X chromosome, we conducted whole genome sequencing of males and females of both the Japan Sea and the Pacific Ocean species. No substantial degeneration has yet occurred on the neo-Y chromosome, but the nucleotide sequence of the neo-X and the neo-Y has started to diverge, particularly at regions near the fusion. The neo-sex chromosomes also harbor an excess of genes with sex-biased expression. Furthermore, genes on the neo-X chromosome showed higher non-synonymous substitution rates than autosomal genes in the Japan Sea lineage. Genomic regions of higher sequence divergence between species, genes with divergent expression between species, and QTL for inter-species phenotypic differences were found not only at the regions near the fusion site, but also at other regions along the neo-X chromosome. Neo-sex chromosomes can therefore accumulate substitutions causing species differences even in the absence of substantial neo-Y degeneration. PMID:24625862

  6. The two-component signal system in rice (Oryza sativa L.): a genome-wide study of cytokinin signal perception and transduction.

    PubMed

    Du, Liming; Jiao, Fangchan; Chu, Jun; Jin, Gulei; Chen, Ming; Wu, Ping

    2007-06-01

    In this report we define the genes of two-component regulatory systems in rice through a comprehensive computational analysis of rice (Oryza sativa L.) genome sequence databases. Thirty-seven genes were identified, including 5 HKs (cytokinin-response histidine protein kinase) (OsHK1-4, OsHKL1), 5 HPs (histidine phosphotransfer proteins) (OsHP1-5), 15 type-A RRs (response regulators) (OsRR1-15), 7 type B RR genes (OsRR16-22), and 5 predicted pseudo-response regulators (OsPRR1-5). Protein motif organization, gene structure, phylogenetic analysis, chromosomal location, and comparative analysis between rice, maize, and Arabidopsis are described. Full-length cDNA clones of each gene were isolated from rice. Heterologous expression of each of the OsHKs in yeast mutants conferred histidine kinase function in a cytokinin-dependent manner. Nonconserved regions of individual cDNAs were used as probes in expression profiling experiments. This work provides a foundation for future functional dissection of the rice cytokinin two-component signaling pathway.

  7. Genome-wide identification of conserved microRNA and their response to drought stress in Dongxiang wild rice (Oryza rufipogon Griff.).

    PubMed

    Zhang, Fantao; Luo, Xiangdong; Zhou, Yi; Xie, Jiankun

    2016-04-01

    To identify drought stress-responsive conserved microRNA (miRNA) from Dongxiang wild rice (Oryza rufipogon Griff., DXWR) on a genome-wide scale, high-throughput sequencing technology was used to sequence libraries of DXWR samples, treated with and without drought stress. 505 conserved miRNAs corresponding to 215 families were identified. 17 were significantly down-regulated and 16 were up-regulated under drought stress. Stem-loop qRT-PCR revealed the same expression patterns as high-throughput sequencing, suggesting the accuracy of the sequencing result was high. Potential target genes of the drought-responsive miRNA were predicted to be involved in diverse biological processes. Furthermore, 16 miRNA families were first identified to be involved in drought stress response from plants. These results present a comprehensive view of the conserved miRNA and their expression patterns under drought stress for DXWR, which will provide valuable information and sequence resources for future basis studies.

  8. Comparative analyses of plastid genomes from fourteen Cornales species: inferences for phylogenetic relationships and genome evolution.

    PubMed

    Fu, Chao-Nan; Li, Hong-Tao; Milne, Richard; Zhang, Ting; Ma, Peng-Fei; Yang, Jing; Li, De-Zhu; Gao, Lian-Ming

    2017-12-08

    The Cornales is the basal lineage of the asterids, the largest angiosperm clade. Phylogenetic relationships within the order were previously not fully resolved. Fifteen plastid genomes representing 14 species, ten genera and seven families of Cornales were newly sequenced for comparative analyses of genome features, evolution, and phylogenomics based on different partitioning schemes and filtering strategies. All plastomes of the 14 Cornales species had the typical quadripartite structure with a genome size ranging from 156,567 bp to 158,715 bp, which included two inverted repeats (25,859-26,451 bp) separated by a large single-copy region (86,089-87,835 bp) and a small single-copy region (18,250-18,856 bp) region. These plastomes encoded the same set of 114 unique genes including 31 transfer RNA, 4 ribosomal RNA and 79 coding genes, with an identical gene order across all examined Cornales species. Two genes (rpl22 and ycf15) contained premature stop codons in seven and five species respectively. The phylogenetic relationships among all sampled species were fully resolved with maximum support. Different filtering strategies (none, light and strict) of sequence alignment did not have an effect on these relationships. The topology recovered from coding and noncoding data sets was the same as for the whole plastome, regardless of filtering strategy. Moreover, mutational hotspots and highly informative regions were identified. Phylogenetic relationships among families and intergeneric relationships within family of Cornales were well resolved. Different filtering strategies and partitioning schemes do not influence the relationships. Plastid genomes have great potential to resolve deep phylogenetic relationships of plants.

  9. Detection of AA76, a Common Form of Amyloid A Protein, as a Way of Diagnosing AA Amyloidosis.

    PubMed

    Sato, Junji; Okuda, Yasuaki; Kuroda, Takeshi; Yamada, Toshiyuki

    2016-01-01

    Reactive amyloid deposits consist of amyloid A (AA) proteins, the degradation products of serum amyloid A (SAA). Since the most common species of AA is the amino terminal portion produced by cleavage between residues 76 and 77 of SAA (AA76), the presence of AA76 in tissues could be a consequence of AA amyloid deposition. This study assessed the diagnostic significance of the detection of AA76 for AA amyloidosis using two different approaches. Biopsy specimens (n=130 from 54 subjects) from gastroduodenal mucosa or abdominal fat (n=9 from 9 subjects) of patients who had already been diagnosed with or were suspected of having AA amyloidosis were used. Fixed mucosal sections were subjected to immunohistochemistry using a newly developed antibody recognizing the carboxyl terminal end of AA76 (anti-AA76). The non-fixed materials from gastroduodenal mucosa or abdominal fat were subjected to immunoblotting for detection of the size of AA76. Among the gastroduodenal specimens (n=115) from already diagnosed patients, the positive rates of Congo red staining, immunohistochemistry using anti-AA76, and immunoblotting were 68.4%, 73.0%, and 92.2%, respectively. The anti-AA76 did not stain the supposed SAA in the blood or leakage, which was stained by anti-SAA antibody. AA76 was not detected either by immunohistochemistry or by immunoblot in the materials from patients in whom AA amyloidosis had been ruled out. In the abdominal fat, the immunoblot detected AA76 in 8 materials from 8 already diagnosed patients and did not in 1 patient whose gastroduodenal mucosa was negative. In conclusion, the detection of AA76 may alter the ability to diagnose AA amyloidosis. In immunohistochemistry for fixed specimens, the new anti-AA76 antibody can improve the specificity. Immunoblot for non-fixed materials, which can considerably improve the sensitivity, should be beneficial for small materials like abdominal fat. © 2016 by the Association of Clinical Scientists, Inc.

  10. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species

    PubMed Central

    Dasmahapatra, Kanchon K; Walters, James R.; Briscoe, Adriana D.; Davey, John W.; Whibley, Annabel; Nadeau, Nicola J.; Zimin, Aleksey V.; Hughes, Daniel S. T.; Ferguson, Laura C.; Martin, Simon H.; Salazar, Camilo; Lewis, James J.; Adler, Sebastian; Ahn, Seung-Joon; Baker, Dean A.; Baxter, Simon W.; Chamberlain, Nicola L.; Chauhan, Ritika; Counterman, Brian A.; Dalmay, Tamas; Gilbert, Lawrence E.; Gordon, Karl; Heckel, David G.; Hines, Heather M.; Hoff, Katharina J.; Holland, Peter W.H.; Jacquin-Joly, Emmanuelle; Jiggins, Francis M.; Jones, Robert T.; Kapan, Durrell D.; Kersey, Paul; Lamas, Gerardo; Lawson, Daniel; Mapleson, Daniel; Maroja, Luana S.; Martin, Arnaud; Moxon, Simon; Palmer, William J.; Papa, Riccardo; Papanicolaou, Alexie; Pauchet, Yannick; Ray, David A.; Rosser, Neil; Salzberg, Steven L.; Supple, Megan A.; Surridge, Alison; Tenger-Trolander, Ayse; Vogel, Heiko; Wilkinson, Paul A.; Wilson, Derek; Yorke, James A.; Yuan, Furong; Balmuth, Alexi L.; Eland, Cathlene; Gharbi, Karim; Thomson, Marian; Gibbs, Richard A.; Han, Yi; Jayaseelan, Joy C.; Kovar, Christie; Mathew, Tittu; Muzny, Donna M.; Ongeri, Fiona; Pu, Ling-Ling; Qu, Jiaxin; Thornton, Rebecca L.; Worley, Kim C.; Wu, Yuan-Qing; Linares, Mauricio; Blaxter, Mark L.; Constant, Richard H. ffrench; Joron, Mathieu; Kronforst, Marcus R.; Mullen, Sean P.; Reed, Robert D.; Scherer, Steven E.; Richards, Stephen; Mallet, James; McMillan, W. Owen; Jiggins, Chris D.

    2012-01-01

    The evolutionary importance of hybridization and introgression has long been debated1. We used genomic tools to investigate introgression in Heliconius, a rapidly radiating genus of neotropical butterflies widely used in studies of ecology, behaviour, mimicry and speciation2-5 . We sequenced the genome of Heliconius melpomene and compared it with other taxa to investigate chromosomal evolution in Lepidoptera and gene flow among multiple Heliconius species and races. Among 12,657 predicted genes for Heliconius, biologically important expansions of families of chemosensory and Hox genes are particularly noteworthy. Chromosomal organisation has remained broadly conserved since the Cretaceous, when butterflies split from the silkmoth lineage. Using genomic resequencing, we show hybrid exchange of genes between three co-mimics, H. melpomene, H. timareta, and H. elevatus, especially at two genomic regions that control mimicry pattern. Closely related Heliconius species clearly exchange protective colour pattern genes promiscuously, implying a major role for hybridization in adaptive radiation. PMID:22722851

  11. Project 1: Microbial Genomes: A Genomic Approach to Understanding the Evolution of Virulence. Project 2: From Genomes to Life: Drosophilia Development in Space and Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert DeSalle

    2004-09-10

    This project seeks to use the genomes of two close relatives, A. actinomycetemcomitans and H. aphrophilus, to understand the evolutionary changes that take place in a genome to make it more or less virulent. Our primary specific aim of this project was to sequence, annotate, and analyze the genomes of Actinobacillus actinomycetemcomitans (CU1000, serotype f) and Haemophilus aphrophilus. With these genome sequences we have then compared the whole genome sequences to each other and to the current Aa (HK1651 www.genome.ou.edu) genome project sequence along with other fully sequenced Pasteurellaceae to determine inter and intra species differences that may account formore » the differences and similarities in disease. We also propose to create and curate a comprehensive database where sequence information and analysis for the Pasteurellaceae (family that includes the genera Actinobacillus and Haemophilus) are readily accessible. And finally we have proposed to develop phylogenetic techniques that can be used to efficiently and accurately examine the evolution of genomes. Below we report on progress we have made on these major specific aims. Progress on the specific aims is reported below under two major headings--experimental approaches and bioinformatics and systematic biology approaches.« less

  12. Genomics of Extinct and Endangered Species (2011 JGI User Meeting)

    ScienceCinema

    Shuster, Stephen

    2018-02-13

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Stephen Shuster of Penn State University gives a presentation on "Genomics of Extinct and Endangered Species" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011.

  13. Genomic Resources of Three Pulsatilla Species Reveal Evolutionary Hotspots, Species-Specific Sites and Variable Plastid Structure in the Family Ranunculaceae.

    PubMed

    Szczecińska, Monika; Sawicki, Jakub

    2015-09-15

    The European continent is presently colonized by nine species of the genus Pulsatilla, five of which are encountered only in mountainous regions of southwest and south-central Europe. The remaining four species inhabit lowlands in the north-central and eastern parts of the continent. Most plants of the genus Pulsatilla are rare and endangered, which is why most research efforts focused on their biology, ecology and hybridization. The objective of this study was to develop genomic resources, including complete plastid genomes and nuclear rRNA clusters, for three sympatric Pulsatilla species that are most commonly found in Central Europe. The results will supply valuable information about genetic variation, which can be used in the process of designing primers for population studies and conservation genetics research. The complete plastid genomes together with the nuclear rRNA cluster can serve as a useful tool in hybridization studies. Six complete plastid genomes and nuclear rRNA clusters were sequenced from three species of Pulsatilla using the Illumina sequencing technology. Four junctions between single copy regions and inverted repeats and junctions between the identified locally-collinear blocks (LCB) were confirmed by Sanger sequencing. Pulsatilla genomes of 120 unique genes had a total length of approximately 161-162 kb, and 21 were duplicated in the inverted repeats (IR) region. Comparative plastid genomes of newly-sequenced Pulsatilla and the previously-identified plastomes of Aconitum and Ranunculus species belonging to the family Ranunculaceae revealed several variations in the structure of the genome, but the gene content remained constant. The nuclear rRNA cluster (18S-ITS1-5.8S-ITS2-26S) of studied Pulsatilla species is 5795 bp long. Among five analyzed regions of the rRNA cluster, only Internal Transcribed Spacer 2 (ITS2) enabled the molecular delimitation of closely-related Pulsatilla patens and Pulsatilla vernalis. The determination of complete

  14. Comparative chloroplast genomes of eleven Schima (Theaceae) species: Insights into DNA barcoding and phylogeny.

    PubMed

    Yu, Xiang-Qin; Drew, Bryan T; Yang, Jun-Bo; Gao, Lian-Ming; Li, De-Zhu

    2017-01-01

    Schima is an ecologically and economically important woody genus in tea family (Theaceae). Unresolved species delimitations and phylogenetic relationships within Schima limit our understanding of the genus and hinder utilization of the genus for economic purposes. In the present study, we conducted comparative analysis among the complete chloroplast (cp) genomes of 11 Schima species. Our results indicate that Schima cp genomes possess a typical quadripartite structure, with conserved genomic structure and gene order. The size of the Schima cp genome is about 157 kilo base pairs (kb). They consistently encode 114 unique genes, including 80 protein-coding genes, 30 tRNAs, and 4 rRNAs, with 17 duplicated in the inverted repeat (IR). These cp genomes are highly conserved and do not show obvious expansion or contraction of the IR region. The percent variability of the 68 coding and 93 noncoding (>150 bp) fragments is consistently less than 3%. The seven most widely touted DNA barcode regions as well as one promising barcode candidate showed low sequence divergence. Eight mutational hotspots were identified from the 11 cp genomes. These hotspots may potentially be useful as specific DNA barcodes for species identification of Schima. The 58 cpSSR loci reported here are complementary to the microsatellite markers identified from the nuclear genome, and will be leveraged for further population-level studies. Phylogenetic relationships among the 11 Schima species were resolved with strong support based on the cp genome data set, which corresponds well with the species distribution pattern. The data presented here will serve as a foundation to facilitate species identification, DNA barcoding and phylogenetic reconstructions for future exploration of Schima.

  15. Identification of Pseudomonas mosselii BS011 gene clusters required for suppression of Rice Blast Fungus Magnaporthe oryzae.

    PubMed

    Wu, Lijuan; Xiao, Wei; Chen, Guoqing; Song, Dawei; Khaskheli, Maqsood Ahmed; Li, Pei; Zhang, Shiying; Feng, Guozhong

    2018-04-25

    Pseudomonas is a Gram-negative, rod-shaped bacteria. Many members of this genus displayed remarkable physiological and metabolic activity against different plant pathogens. However, Pseudomonas mosselii has not yet been characterized in biocontrol against plant disease. Here we isolated a strain of P. mosselii BS011 from the rhizosphere soil of rice plants, and the isolate showed strong inhibitory activity against the rice blast fungus Magnaporthe oryzae. Further we sequenced the complete genome of BS011, which consist of 5.75 Mb with a circular chromosome, 5,170 protein-coding genes, 23 rRNA and 78 tRNA operons. Bioinformatic analysis revealed that seven gene clusters may be involved in the biosynthesis of metabolites. Gene deletion experiments demonstrated that the gene cluster c-xtl is required for inhibitory activity against M. oryzae. Bioassay showed that the crude extract from BS011 fermentation sample significantly inhibited the development of M. oryzae at a concentration of 10 μg/ml. Besides, we illustrated that the crude extract of BS011 impaired the appressorial formation in a dose dependent manner. Collectively our results revealed that P. mosselii BS011 is a promising biocontrol agent and the gene cluster c-xtl is essential for inhibiting the development of M. oryzae. Copyright © 2018. Published by Elsevier B.V.

  16. Genomics of Extinct and Endangered Species (2011 JGI User Meeting)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shuster, Stephen

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Stephen Shuster of Penn State University gives a presentation on "Genomics of Extinct and Endangeredmore » Species" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011.« less

  17. In-silico Taxonomic Classification of 373 Genomes Reveals Species Misidentification and New Genospecies within the Genus Pseudomonas.

    PubMed

    Tran, Phuong N; Savka, Michael A; Gan, Han Ming

    2017-01-01

    The genus Pseudomonas has one of the largest diversity of species within the Bacteria kingdom. To date, its taxonomy is still being revised and updated. Due to the non-standardized procedure and ambiguous thresholds at species level, largely based on 16S rRNA gene or conventional biochemical assay, species identification of publicly available Pseudomonas genomes remains questionable. In this study, we performed a large-scale analysis of all Pseudomonas genomes with species designation (excluding the well-defined P. aeruginosa ) and re-evaluated their taxonomic assignment via in silico genome-genome hybridization and/or genetic comparison with valid type species. Three-hundred and seventy-three pseudomonad genomes were analyzed and subsequently clustered into 145 distinct genospecies. We detected 207 erroneous labels and corrected 43 to the proper species based on Average Nucleotide Identity Multilocus Sequence Typing (MLST) sequence similarity to the type strain. Surprisingly, more than half of the genomes initially designated as Pseudomonas syringae and Pseudomonas fluorescens should be classified either to a previously described species or to a new genospecies. Notably, high pairwise average nucleotide identity (>95%) indicating species-level similarity was observed between P. synxantha-P. libanensis, P. psychrotolerans - P. oryzihabitans , and P. kilonensis- P. brassicacearum , that were previously differentiated based on conventional biochemical tests and/or genome-genome hybridization techniques.

  18. chromoWIZ: a web tool to query and visualize chromosome-anchored genes from cereal and model genomes.

    PubMed

    Nussbaumer, Thomas; Kugler, Karl G; Schweiger, Wolfgang; Bader, Kai C; Gundlach, Heidrun; Spannagl, Manuel; Poursarebani, Naser; Pfeifer, Matthias; Mayer, Klaus F X

    2014-12-10

    Over the last years reference genome sequences of several economically and scientifically important cereals and model plants became available. Despite the agricultural significance of these crops only a small number of tools exist that allow users to inspect and visualize the genomic position of genes of interest in an interactive manner. We present chromoWIZ, a web tool that allows visualizing the genomic positions of relevant genes and comparing these data between different plant genomes. Genes can be queried using gene identifiers, functional annotations, or sequence homology in four grass species (Triticum aestivum, Hordeum vulgare, Brachypodium distachyon, Oryza sativa). The distribution of the anchored genes is visualized along the chromosomes by using heat maps. Custom gene expression measurements, differential expression information, and gene-to-group mappings can be uploaded and can be used for further filtering. This tool is mainly designed for breeders and plant researchers, who are interested in the location and the distribution of candidate genes as well as in the syntenic relationships between different grass species. chromoWIZ is freely available and online accessible at http://mips.helmholtz-muenchen.de/plant/chromoWIZ/index.jsp.

  19. The complete mitochondrial genome of a stonefly species, Togoperla sp. (Plecoptera: Perlidae).

    PubMed

    Wang, Kai; Wang, Yuyu; Yang, Ding

    2016-05-01

    The complete mitochondrial (mt) genome of a stonefly species, Togoperla sp. (Plecoptera: Perlidae), was sequenced. The 15,723 bp long genome has the standard metazoan complement of 37 genes and an A+T-rich region, which is the same as the insect ancestral genome arrangement.

  20. The bacterial species definition in the genomic era

    PubMed Central

    Konstantinidis, Konstantinos T; Ramette, Alban; Tiedje, James M

    2006-01-01

    The bacterial species definition, despite its eminent practical significance for identification, diagnosis, quarantine and diversity surveys, remains a very difficult issue to advance. Genomics now offers novel insights into intra-species diversity and the potential for emergence of a more soundly based system. Although we share the excitement, we argue that it is premature for a universal change to the definition because current knowledge is based on too few phylogenetic groups and too few samples of natural populations. Our analysis of five important bacterial groups suggests, however, that more stringent standards for species may be justifiable when a solid understanding of gene content and ecological distinctiveness becomes available. Our analysis also reveals what is actually encompassed in a species according to the current standards, in terms of whole-genome sequence and gene-content diversity, and shows that this does not correspond to coherent clusters for the environmental Burkholderia and Shewanella genera examined. In contrast, the obligatory pathogens, which have a very restricted ecological niche, do exhibit clusters. Therefore, the idea of biologically meaningful clusters of diversity that applies to most eukaryotes may not be universally applicable in the microbial world, or if such clusters exist, they may be found at different levels of distinction. PMID:17062412

  1. Complete mitochondrial genome sequences from five Eimeria species (Apicomplexa; Coccidia; Eimeriidae) infecting domestic turkeys.

    PubMed

    Ogedengbe, Mosun E; El-Sherry, Shiem; Whale, Julia; Barta, John R

    2014-07-17

    Clinical and subclinical coccidiosis is cosmopolitan and inflicts significant losses to the poultry industry globally. Seven named Eimeria species are responsible for coccidiosis in turkeys: Eimeria dispersa; Eimeria meleagrimitis; Eimeria gallopavonis; Eimeria meleagridis; Eimeria adenoeides; Eimeria innocua; and, Eimeria subrotunda. Although attempts have been made to characterize these parasites molecularly at the nuclear 18S rDNA and ITS loci, the maternally-derived and mitotically replicating mitochondrial genome may be more suited for species level molecular work; however, only limited sequence data are available for Eimeria spp. infecting turkeys. The purpose of this study was to sequence and annotate the complete mitochondrial genomes from 5 Eimeria species that commonly infect the domestic turkey (Meleagris gallopavo). Six single-oocyst derived cultures of five Eimeria species infecting turkeys were PCR-amplified and sequenced completely prior to detailed annotation. Resulting sequences were aligned and used in phylogenetic analyses (BI, ML, and MP) that included complete mitochondrial genomes from 16 Eimeria species or concatenated CDS sequences from each genome. Complete mitochondrial genome sequences were obtained for Eimeria adenoeides Guelph, 6211 bp; Eimeria dispersa Briston, 6238 bp; Eimeria meleagridis USAR97-01, 6212 bp; Eimeria meleagrimitis USMN08-01, 6165 bp; Eimeria gallopavonis Weybridge, 6215 bp; and Eimeria gallopavonis USKS06-01, 6215 bp). The order, orientation and CDS lengths of the three protein coding genes (COI, COIII and CytB) as well as rDNA fragments encoding ribosomal large and small subunit rRNA were conserved among all sequences. Pairwise sequence identities between species ranged from 88.1% to 98.2%; sequence variability was concentrated within CDS or between rDNA fragments (where indels were common). No phylogenetic reconstruction supported monophyly of Eimeria species infecting turkeys; Eimeria dispersa may have arisen

  2. Genetic diversity associated with conservation of endangered Dongxiang wild rice (Oryza rufipogon)

    USDA-ARS?s Scientific Manuscript database

    The wild progenitor species (Oryza rufipogon) of Asian cultivated rice (O. sativa) is located in Dongxiang county, China where it is considered the northernmost range worldwide. Nine ex situ and three in situ populations of the Dongxiang wild rice (DXWR) and four groups of modern cultivars were geno...

  3. Scientific Advances with Aspergillus Species that Are Used for Food and Biotech Applications.

    PubMed

    Biesebeke, Rob Te; Record, Erik

    2008-01-01

    Yeast and filamentous fungi have been used for centuries in diverse biotechnological processes. Fungal fermentation technology is traditionally used in relation to food production, such as for bread, beer, cheese, sake and soy sauce. Last century, the industrial application of yeast and filamentous fungi expanded rapidly, with excellent examples such as purified enzymes and secondary metabolites (e.g. antibiotics), which are used in a wide range of food as well as non-food industries. Research on protein and/or metabolite secretion by fungal species has focused on identifying bottlenecks in (post-) transcriptional regulation of protein production, metabolic rerouting, morphology and the transit of proteins through the secretion pathway. In past years, genome sequencing of some fungi (e.g. Aspergillus oryzae, Aspergillus niger) has been completed. The available genome sequences have enabled identification of genes and functionally important regions of the genome. This has directed research to focus on a post-genomics era in which transcriptomics, proteomics and metabolomics methodologies will help to explore the scientific relevance and industrial application of fungal genome sequences.

  4. New Multilocus Variable-Number Tandem-Repeat Analysis Tool for Surveillance and Local Epidemiology of Bacterial Leaf Blight and Bacterial Leaf Streak of Rice Caused by Xanthomonas oryzae

    PubMed Central

    Poulin, L.; Grygiel, P.; Magne, M.; Rodriguez-R, L. M.; Forero Serna, N.; Zhao, S.; El Rafii, M.; Dao, S.; Tekete, C.; Wonni, I.; Koita, O.; Pruvost, O.; Verdier, V.; Vernière, C.

    2014-01-01

    Multilocus variable-number tandem-repeat analysis (MLVA) is efficient for routine typing and for investigating the genetic structures of natural microbial populations. Two distinct pathovars of Xanthomonas oryzae can cause significant crop losses in tropical and temperate rice-growing countries. Bacterial leaf streak is caused by X. oryzae pv. oryzicola, and bacterial leaf blight is caused by X. oryzae pv. oryzae. For the latter, two genetic lineages have been described in the literature. We developed a universal MLVA typing tool both for the identification of the three X. oryzae genetic lineages and for epidemiological analyses. Sixteen candidate variable-number tandem-repeat (VNTR) loci were selected according to their presence and polymorphism in 10 draft or complete genome sequences of the three X. oryzae lineages and by VNTR sequencing of a subset of loci of interest in 20 strains per lineage. The MLVA-16 scheme was then applied to 338 strains of X. oryzae representing different pathovars and geographical locations. Linkage disequilibrium between MLVA loci was calculated by index association on different scales, and the 16 loci showed linear Mantel correlation with MLSA data on 56 X. oryzae strains, suggesting that they provide a good phylogenetic signal. Furthermore, analyses of sets of strains for different lineages indicated the possibility of using the scheme for deeper epidemiological investigation on small spatial scales. PMID:25398857

  5. A homolog of an Escherichia coli phosphate-binding protein gene from Xanthomonas oryzae pv. oryzae

    NASA Technical Reports Server (NTRS)

    Hopkins, C. M.; White, F. F.; Heaton, L. A.; Guikema, J. A.; Leach, J. E.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    A Xanthomonas oryzae pv. oryzae gene with sequence similarity to an Escherichia coli phosphate-binding protein gene (phoS) produces a periplasmic protein of apparent M(r) 35,000 when expressed in E. coli. Amino terminal sequencing revealed that a signal peptide is removed during transport to the periplasm in E. coli.

  6. Genomic Resources of Three Pulsatilla Species Reveal Evolutionary Hotspots, Species-Specific Sites and Variable Plastid Structure in the Family Ranunculaceae

    PubMed Central

    Szczecińska, Monika; Sawicki, Jakub

    2015-01-01

    Background: The European continent is presently colonized by nine species of the genus Pulsatilla, five of which are encountered only in mountainous regions of southwest and south-central Europe. The remaining four species inhabit lowlands in the north-central and eastern parts of the continent. Most plants of the genus Pulsatilla are rare and endangered, which is why most research efforts focused on their biology, ecology and hybridization. The objective of this study was to develop genomic resources, including complete plastid genomes and nuclear rRNA clusters, for three sympatric Pulsatilla species that are most commonly found in Central Europe. The results will supply valuable information about genetic variation, which can be used in the process of designing primers for population studies and conservation genetics research. The complete plastid genomes together with the nuclear rRNA cluster can serve as a useful tool in hybridization studies. Methodology/principal findings: Six complete plastid genomes and nuclear rRNA clusters were sequenced from three species of Pulsatilla using the Illumina sequencing technology. Four junctions between single copy regions and inverted repeats and junctions between the identified locally-collinear blocks (LCB) were confirmed by Sanger sequencing. Pulsatilla genomes of 120 unique genes had a total length of approximately 161–162 kb, and 21 were duplicated in the inverted repeats (IR) region. Comparative plastid genomes of newly-sequenced Pulsatilla and the previously-identified plastomes of Aconitum and Ranunculus species belonging to the family Ranunculaceae revealed several variations in the structure of the genome, but the gene content remained constant. The nuclear rRNA cluster (18S-ITS1-5.8S-ITS2-26S) of studied Pulsatilla species is 5795 bp long. Among five analyzed regions of the rRNA cluster, only Internal Transcribed Spacer 2 (ITS2) enabled the molecular delimitation of closely-related Pulsatilla patens and

  7. Genome Sequences of Six Wheat-Infecting Fusarium Species Isolates

    PubMed Central

    Moolhuijzen, Paula M.; Manners, John M.; Wilcox, Stephen A.; Bellgard, Matthew I.

    2013-01-01

    Fusarium pathogens represent a major constraint to wheat and barley production worldwide. To facilitate future comparative studies of Fusarium species that are pathogenic to wheat, the genome sequences of four Fusarium pseudograminearum isolates, a single Fusarium acuminatum isolate, and an organism from the Fusarium incarnatum-F. equiseti species complex are reported. PMID:24009115

  8. Chromosome Numbers and Genome Size Variation in Indian Species of Curcuma (Zingiberaceae)

    PubMed Central

    Leong-Škorničková, Jana; Šída, Otakar; Jarolímová, Vlasta; Sabu, Mamyil; Fér, Tomáš; Trávníček, Pavel; Suda, Jan

    2007-01-01

    Background and Aims Genome size and chromosome numbers are important cytological characters that significantly influence various organismal traits. However, geographical representation of these data is seriously unbalanced, with tropical and subtropical regions being largely neglected. In the present study, an investigation was made of chromosomal and genome size variation in the majority of Curcuma species from the Indian subcontinent, and an assessment was made of the value of these data for taxonomic purposes. Methods Genome size of 161 homogeneously cultivated plant samples classified into 51 taxonomic entities was determined by propidium iodide flow cytometry. Chromosome numbers were counted in actively growing root tips using conventional rapid squash techniques. Key Results Six different chromosome counts (2n = 22, 42, 63, >70, 77 and 105) were found, the last two representing new generic records. The 2C-values varied from 1·66 pg in C. vamana to 4·76 pg in C. oligantha, representing a 2·87-fold range. Three groups of taxa with significantly different homoploid genome sizes (Cx-values) and distinct geographical distribution were identified. Five species exhibited intraspecific variation in nuclear DNA content, reaching up to 15·1 % in cultivated C. longa. Chromosome counts and genome sizes of three Curcuma-like species (Hitchenia caulina, Kaempferia scaposa and Paracautleya bhatii) corresponded well with typical hexaploid (2n = 6x = 42) Curcuma spp. Conclusions The basic chromosome number in the majority of Indian taxa (belonging to subgenus Curcuma) is x = 7; published counts correspond to 6x, 9x, 11x, 12x and 15x ploidy levels. Only a few species-specific C-values were found, but karyological and/or flow cytometric data may support taxonomic decisions in some species alliances with morphological similarities. Close evolutionary relationships among some cytotypes are suggested based on the similarity in homoploid genome sizes and geographical grouping

  9. Genomic signatures of near-extinction and rebirth of the crested ibis and other endangered bird species.

    PubMed

    Li, Shengbin; Li, Bo; Cheng, Cheng; Xiong, Zijun; Liu, Qingbo; Lai, Jianghua; Carey, Hannah V; Zhang, Qiong; Zheng, Haibo; Wei, Shuguang; Zhang, Hongbo; Chang, Liao; Liu, Shiping; Zhang, Shanxin; Yu, Bing; Zeng, Xiaofan; Hou, Yong; Nie, Wenhui; Guo, Youmin; Chen, Teng; Han, Jiuqiang; Wang, Jian; Wang, Jun; Chen, Chen; Liu, Jiankang; Stambrook, Peter J; Xu, Ming; Zhang, Guojie; Gilbert, M Thomas P; Yang, Huanming; Jarvis, Erich D; Yu, Jun; Yan, Jianqun

    2014-01-01

    Nearly one-quarter of all avian species is either threatened or nearly threatened. Of these, 73 species are currently being rescued from going extinct in wildlife sanctuaries. One of the previously most critically-endangered is the crested ibis, Nipponia nippon. Once widespread across North-East Asia, by 1981 only seven individuals from two breeding pairs remained in the wild. The recovering crested ibis populations thus provide an excellent example for conservation genomics since every individual bird has been recruited for genomic and demographic studies. Using high-quality genome sequences of multiple crested ibis individuals, its thriving co-habitant, the little egret, Egretta garzetta, and the recently sequenced genomes of 41 other avian species that are under various degrees of survival threats, including the bald eagle, we carry out comparative analyses for genomic signatures of near extinction events in association with environmental and behavioral attributes of species. We confirm that both loss of genetic diversity and enrichment of deleterious mutations of protein-coding genes contribute to the major genetic defects of the endangered species. We further identify that genetic inbreeding and loss-of-function genes in the crested ibis may all constitute genetic susceptibility to other factors including long-term climate change, over-hunting, and agrochemical overuse. We also establish a genome-wide DNA identification platform for molecular breeding and conservation practices, to facilitate sustainable recovery of endangered species. These findings demonstrate common genomic signatures of population decline across avian species and pave a way for further effort in saving endangered species and enhancing conservation genomic efforts.

  10. Use of the Aspergillus oryzae actin gene promoter in a novel reporter system for exploring antifungal compounds and their target genes.

    PubMed

    Marui, Junichiro; Yoshimi, Akira; Hagiwara, Daisuke; Fujii-Watanabe, Yoshimi; Oda, Ken; Koike, Hideaki; Tamano, Koichi; Ishii, Tomoko; Sano, Motoaki; Machida, Masayuki; Abe, Keietsu

    2010-08-01

    Demand for novel antifungal drugs for medical and agricultural uses has been increasing because of the diversity of pathogenic fungi and the emergence of drug-resistant strains. Genomic resources for various living species, including pathogenic fungi, can be utilized to develop novel and effective antifungal compounds. We used Aspergillus oryzae as a model to construct a reporter system for exploring novel antifungal compounds and their target genes. The comprehensive gene expression analysis showed that the actin-encoding actB gene was transcriptionally highly induced by benomyl treatment. We therefore used the actB gene to construct a novel reporter system for monitoring responses to cytoskeletal stress in A. oryzae by introducing the actB promoter::EGFP fusion gene. Distinct fluorescence was observed in the reporter strain with minimum background noise in response to not only benomyl but also compounds inhibiting lipid metabolism that is closely related to cell membrane integrity. The fluorescent responses indicated that the reporter strain can be used to screen for lead compounds affecting fungal microtubule and cell membrane integrity, both of which are attractive antifungal targets. Furthermore, the reporter strain was shown to be technically applicable for identifying novel target genes of antifungal drugs triggering perturbation of fungal microtubules or membrane integrity.

  11. Crystallization and preliminary crystallographic studies of LipA, a secretory lipase/esterase from Xanthomonas oryzae pv. oryzae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aparna, Gudlur; Chatterjee, Avradip; Jha, Gopaljee

    2007-08-01

    The crystallization and preliminary crystallographic studies of LipA, a lipase/esterase secreted by X. oryzae pv. oryzae during its infection of rice plants, are reported. Xanthomonas oryzae pv. oryzae is the causal agent of bacterial leaf blight, a serious disease of rice. Several enzymes that are secreted through the type II secretion system of this bacterium play an important role in the plant–microbe interaction, being important for virulence and also being able to induce potent host defence responses. One of these enzymes is a secretory lipase/esterase, LipA, which shows a very weak homology to other bacterial lipases and gives a positivemore » tributyrin plate assay. In this study, LipA was purified from the culture supernatant of an overexpressing clone of X. oryzae pv. oryzae and two types of crystals belonging to space group C2 but with two different unit-cell parameters were obtained using the hanging-drop vapour-diffusion method. Type I crystals diffract to a maximum resolution of 1.89 Å and have unit-cell parameters a = 93.1, b = 62.3, c = 66.1 Å, β = 90.8°. Type II crystals have unit-cell parameters a = 103.6, b = 54.6, c = 66.3 Å, β = 92.6° and diffract to 1.86 Å. Solvent-content analysis shows one monomer in the asymmetric unit in both the crystal forms.« less

  12. Genetic Architecture of Cold Tolerance in Rice (Oryza sativa) Determined through High Resolution Genome-Wide Analysis

    USDA-ARS?s Scientific Manuscript database

    Cold temperature is an important abiotic stress which negatively affects morphological development and seed production in rice (Oryza sativa L.). At the seedling stage, cold stress causes poor germination, seedling injury and poor stand establishment; and at the reproductive stage cold decreases se...

  13. In-silico Taxonomic Classification of 373 Genomes Reveals Species Misidentification and New Genospecies within the Genus Pseudomonas

    PubMed Central

    Tran, Phuong N.; Savka, Michael A.; Gan, Han Ming

    2017-01-01

    The genus Pseudomonas has one of the largest diversity of species within the Bacteria kingdom. To date, its taxonomy is still being revised and updated. Due to the non-standardized procedure and ambiguous thresholds at species level, largely based on 16S rRNA gene or conventional biochemical assay, species identification of publicly available Pseudomonas genomes remains questionable. In this study, we performed a large-scale analysis of all Pseudomonas genomes with species designation (excluding the well-defined P. aeruginosa) and re-evaluated their taxonomic assignment via in silico genome-genome hybridization and/or genetic comparison with valid type species. Three-hundred and seventy-three pseudomonad genomes were analyzed and subsequently clustered into 145 distinct genospecies. We detected 207 erroneous labels and corrected 43 to the proper species based on Average Nucleotide Identity Multilocus Sequence Typing (MLST) sequence similarity to the type strain. Surprisingly, more than half of the genomes initially designated as Pseudomonas syringae and Pseudomonas fluorescens should be classified either to a previously described species or to a new genospecies. Notably, high pairwise average nucleotide identity (>95%) indicating species-level similarity was observed between P. synxantha-P. libanensis, P. psychrotolerans–P. oryzihabitans, and P. kilonensis- P. brassicacearum, that were previously differentiated based on conventional biochemical tests and/or genome-genome hybridization techniques. PMID:28747902

  14. Comparative Analysis of Begonia Plastid Genomes and Their Utility for Species-Level Phylogenetics

    PubMed Central

    Harrison, Nicola; Harrison, Richard J.

    2016-01-01

    Recent, rapid radiations make species-level phylogenetics difficult to resolve. We used a multiplexed, high-throughput sequencing approach to identify informative genomic regions to resolve phylogenetic relationships at low taxonomic levels in Begonia from a survey of sixteen species. A long-range PCR method was used to generate draft plastid genomes to provide a strong phylogenetic backbone, identify fast evolving regions and provide informative molecular markers for species-level phylogenetic studies in Begonia. PMID:27058864

  15. The Production of Biodiesel from Cottonseed Oil Using Rhizopus oryzae Whole Cell Biocatalysts

    NASA Astrophysics Data System (ADS)

    Athalye, Sneha Kishor

    Biodiesel is an environmentally friendly alternative to fossil fuels which have become increasingly expensive in recent times. An alternate approach to alkaline biodiesel production is needed as catalyst miscibility with the glycerol by-product, generation of large amounts of waste water, and saponification of the feedstock are major disadvantages associated with the process. Lipases are water soluble enzymes which act as catalysts in many lipid based reactions. Reuse of lipases can significantly reduce cost of enzymatic biodiesel production; however retention of lipolytic activity still remains a challenge. Use of microbial cells immobilized on various surfaces like sponge, foam and plastics as biocatalysts instead of extracted enzyme could help overcome this problem. A novel, rigid biomass support with high surface area made from recyclable polyethylene (Bioblok(TM)) was used in this study. Several fungal and bacterial species have been reported to possess appreciable levels of lipase activity. The biomass production and immobilization as well as lipase activity of three different species; Candida rugosa (ATCC #38772), Aspergillus oryzae (ATCC #58299), and Rhizopus oryzae (ATTC #34612) were tested. C. rugosa did not attach well to the support particles while A.oryzae had lower biomass accumulation of 6.1 g (dry cell wt)/L compared to 11.8 g (dry cell wt)/L for R.oryzae. Hence Rhizopus oryzae, fungal specie with cell surface bound lipase was selected for the current study. The study investigated the influence of media composition and growth time of the R.oryzae whole cell biocatalysts, immobilized on the BSPs, for FAME production from cottonseed oil. R.oryzae BSPs grown in basal media supplemented with 1% (w/v) of glucose or oil or both for 48 h, 72 h or 90 h were used in a 36 h transesterification reaction with cottonseed oil and methanol. BSPs grown in both glucose and oil supplemented medium for 72 h had the highest conversion of 22.4% (wt/wt) and a biomass

  16. Comparative analysis of the root transcriptomes of cultivated and wild rice varieties in response to Magnaporthe oryzae infection revealed both common and species-specific pathogen responses.

    PubMed

    Tian, Lei; Shi, Shaohua; Nasir, Fahad; Chang, Chunling; Li, Weiqiang; Tran, Lam-Son Phan; Tian, Chunjie

    2018-04-20

    Magnaporthe oryzae, the causal fungus of rice blast disease, negatively impacts global rice production. Wild rice (Oryza rufipogon), a relative of cultivated rice (O. sativa), possesses unique attributes that enable it to resist pathogen invasion. Although wild rice represents a major resource for disease resistance, relative to current cultivated rice varieties, no prior studies have compared the immune and transcriptional responses in the roots of wild and cultivated rice to M. oryzae. In this study, we showed that M. oryzae could act as a typical root-infecting pathogen in rice, in addition to its common infection of leaves, and wild rice roots were more resistant to M. oryzae than cultivated rice roots. Next, we compared the differential responses of wild and cultivated rice roots to M. oryzae using RNA-sequencing (RNA-seq) to unravel the molecular mechanisms underlying the enhanced resistance of the wild rice roots. Results indicated that both common and genotype-specific mechanisms exist in both wild and cultivated rice that are associated with resistance to M. oryzae. In wild rice, resistance mechanisms were associated with lipid metabolism, WRKY transcription factors, chitinase activities, jasmonic acid, ethylene, lignin, and phenylpropanoid and diterpenoid metabolism; while the pathogen responses in cultivated rice were mainly associated with phenylpropanoid, flavone and wax metabolism. Although modulations in primary metabolism and phenylpropanoid synthesis were common to both cultivated and wild rice, the modulation of secondary metabolism related to phenylpropanoid synthesis was associated with lignin synthesis in wild rice and flavone synthesis in cultivated rice. Interestingly, while the expression of fatty acid and starch metabolism-related genes was altered in both wild and cultivated rice in response to the pathogen, changes in lipid acid synthesis and lipid acid degradation were dominant in cultivated and wild rice, respectively. The response

  17. Comparative Genomic Analysis of Phylogenetically Closely Related Hydrogenobaculum sp. Isolates from Yellowstone National Park

    PubMed Central

    Romano, Christine; D'Imperio, Seth; Woyke, Tanja; Mavromatis, Konstantinos; Lasken, Roger; Shock, Everett L.

    2013-01-01

    We describe the complete genome sequences of four closely related Hydrogenobaculum sp. isolates (≥99.7% 16S rRNA gene identity) that were isolated from the outflow channel of Dragon Spring (DS), Norris Geyser Basin, in Yellowstone National Park (YNP), WY. The genomes range in size from 1,552,607 to 1,552,931 bp, contain 1,667 to 1,676 predicted genes, and are highly syntenic. There are subtle differences among the DS isolates, which as a group are different from Hydrogenobaculum sp. strain Y04AAS1 that was previously isolated from a geographically distinct YNP geothermal feature. Genes unique to the DS genomes encode arsenite [As(III)] oxidation, NADH-ubiquinone-plastoquinone (complex I), NADH-ubiquinone oxidoreductase chain, a DNA photolyase, and elements of a type II secretion system. Functions unique to strain Y04AAS1 include thiosulfate metabolism, nitrate respiration, and mercury resistance determinants. DS genomes contain seven CRISPR loci that are almost identical but are different from the single CRISPR locus in strain Y04AAS1. Other differences between the DS and Y04AAS1 genomes include average nucleotide identity (94.764%) and percentage conserved DNA (80.552%). Approximately half of the genes unique to Y04AAS1 are predicted to have been acquired via horizontal gene transfer. Fragment recruitment analysis and marker gene searches demonstrated that the DS metagenome was more similar to the DS genomes than to the Y04AAS1 genome, but that the DS community is likely comprised of a continuum of Hydrogenobaculum genotypes that span from the DS genomes described here to an Y04AAS1-like organism, which appears to represent a distinct ecotype relative to the DS genomes characterized. PMID:23435891

  18. The Xanthomonas oryzae pv. oryzae PhoPQ Two-Component System Is Required for AvrXA21 Activity, hrpG Expression, and Virulence▿ †

    PubMed Central

    Lee, Sang-Won; Jeong, Kyu-Sik; Han, Sang-Wook; Lee, Seung-Eun; Phee, Bong-Kwan; Hahn, Tae-Ryong; Ronald, Pamela

    2008-01-01

    The rice pathogen recognition receptor, XA21, confers resistance to Xanthomonas oryzae pv. oryzae strains producing the type one system-secreted molecule, AvrXA21. X. oryzae pv. oryzae requires a regulatory two-component system (TCS) called RaxRH to regulate expression of eight rax (required for AvrXA21 activity) genes and to sense population cell density. To identify other key components in this critical regulatory circuit, we assayed proteins expressed in a raxR gene knockout strain. This survey led to the identification of the phoP gene encoding a response regulator that is up-regulated in the raxR knockout strain. Next we generated a phoP knockout strain and found it to be impaired in X. oryzae pv. oryzae virulence and no longer able to activate the response regulator HrpG (hypersensitive reaction and pathogenicity G) in response to low levels of Ca2+. The impaired virulence of the phoP knockout strain can be partially complemented by constitutive expression of hrpG, indicating that PhoP controls a key aspect of X. oryzae pv. oryzae virulence through regulation of hrpG. A gene encoding the cognate putative histidine protein kinase, phoQ, was also isolated. Growth curve analysis revealed that AvrXA21 activity is impaired in a phoQ knockout strain as reflected by enhanced growth of this strain in rice lines carrying XA21. These results suggest that the X. oryzae pv. oryzae PhoPQ TCS functions in virulence and in the production of AvrXA21 in partnership with RaxRH. PMID:18203830

  19. Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana.

    PubMed

    Yu, Jingyin; Tehrim, Sadia; Zhang, Fengqi; Tong, Chaobo; Huang, Junyan; Cheng, Xiaohui; Dong, Caihua; Zhou, Yanqiu; Qin, Rui; Hua, Wei; Liu, Shengyi

    2014-01-03

    Plant disease resistance (R) genes with the nucleotide binding site (NBS) play an important role in offering resistance to pathogens. The availability of complete genome sequences of Brassica oleracea and Brassica rapa provides an important opportunity for researchers to identify and characterize NBS-encoding R genes in Brassica species and to compare with analogues in Arabidopsis thaliana based on a comparative genomics approach. However, little is known about the evolutionary fate of NBS-encoding genes in the Brassica lineage after split from A. thaliana. Here we present genome-wide analysis of NBS-encoding genes in B. oleracea, B. rapa and A. thaliana. Through the employment of HMM search and manual curation, we identified 157, 206 and 167 NBS-encoding genes in B. oleracea, B. rapa and A. thaliana genomes, respectively. Phylogenetic analysis among 3 species classified NBS-encoding genes into 6 subgroups. Tandem duplication and whole genome triplication (WGT) analyses revealed that after WGT of the Brassica ancestor, NBS-encoding homologous gene pairs on triplicated regions in Brassica ancestor were deleted or lost quickly, but NBS-encoding genes in Brassica species experienced species-specific gene amplification by tandem duplication after divergence of B. rapa and B. oleracea. Expression profiling of NBS-encoding orthologous gene pairs indicated the differential expression pattern of retained orthologous gene copies in B. oleracea and B. rapa. Furthermore, evolutionary analysis of CNL type NBS-encoding orthologous gene pairs among 3 species suggested that orthologous genes in B. rapa species have undergone stronger negative selection than those in B .oleracea species. But for TNL type, there are no significant differences in the orthologous gene pairs between the two species. This study is first identification and characterization of NBS-encoding genes in B. rapa and B. oleracea based on whole genome sequences. Through tandem duplication and whole genome

  20. A Reference Genome for US Rice

    USDA-ARS?s Scientific Manuscript database

    The development of reference genomes for rice has served as means for understanding the allelic diversity and genetic structure of a cereal grain that feeds half of the world. It has long been understood that Oryza sativa diverged into two major sub-populations Indica and Japonica, over 400 K years ...

  1. The complete chloroplast genome of two Brassica species, Brassica nigra and B. Oleracea.

    PubMed

    Seol, Young-Joo; Kim, Kyunghee; Kang, Sang-Ho; Perumal, Sampath; Lee, Jonghoon; Kim, Chang-Kug

    2017-03-01

    The two Brassica species, Brassica nigra and Brassica oleracea, are important agronomic crops. The chloroplast genome sequences were generated by de novo assembly using whole genome next-generation sequences. The chloroplast genomes of B. nigra and B. oleracea were 153 633 bp and 153 366 bp in size, respectively, and showed conserved typical chloroplast structure. The both chloroplast genomes contained a total of 114 genes including 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Phylogenetic analysis revealed that B. oleracea is closely related to B. rapa and B. napus but B. nigra is more diverse than the neighbor species Raphanus sativus.

  2. Characterization of genome in tetraploid StY species of Elymus (Triticeae: Poaceae) using sequential FISH and GISH.

    PubMed

    Liu, Ruijuan; Wang, Richard R-C; Yu, Feng; Lu, Xingwang; Dou, Quanwen

    2017-08-01

    Genomes of ten species of Elymus, either presumed or known as tetraploid StY, were characterized using fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH). These tetraploid species could be grouped into three categories. Type I included StY genome reported species-Roegneria pendulina, R. nutans, R. glaberrima, R. ciliaris, and Elymus nevskii, and StY genome presumed species-R. sinica, R. breviglumis, and R. dura, whose genome could be separated into two sets based on different GISH intensities. Type I genome constitution was deemed as putative StY. The St genome were mainly characterized with intense hybridization with pAs1, fewer AAG sites, and linked distribution of 5S rDNA and 18S-26S rDNA, while the Y genome with less intense hybridization with pAs1, more varied AAG sites, and isolated distribution of 5S rDNA and 18S-26S rDNA. Nevertheless, further genomic variations were detected among the different StY species. Type II included E. alashanicus, whose genome could be easily separated based on GISH pattern. FISH and GISH patterns suggested that E. alashanicus comprised a modified St genome and an unknown genome. Type III included E. longearistatus, whose genome could not be separated by GISH and was designated as St l Y l . Notably, a close relationship between S l and Y l genomes was observed.

  3. Species Choice for Comparative Genomics: Being Greedy Works

    PubMed Central

    Pardi, Fabio; Goldman, Nick

    2005-01-01

    Several projects investigating genetic function and evolution through sequencing and comparison of multiple genomes are now underway. These projects consume many resources, and appropriate planning should be devoted to choosing which species to sequence, potentially involving cooperation among different sequencing centres. A widely discussed criterion for species choice is the maximisation of evolutionary divergence. Our mathematical formalization of this problem surprisingly shows that the best long-term cooperative strategy coincides with the seemingly short-term “greedy” strategy of always choosing the next best single species. Other criteria influencing species choice, such as medical relevance or sequencing costs, can also be accommodated in our approach, suggesting our results' broad relevance in scientific policy decisions. PMID:16327885

  4. Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome.

    PubMed

    Zhao, Keyan; Wright, Mark; Kimball, Jennifer; Eizenga, Georgia; McClung, Anna; Kovach, Michael; Tyagi, Wricha; Ali, Md Liakat; Tung, Chih-Wei; Reynolds, Andy; Bustamante, Carlos D; McCouch, Susan R

    2010-05-24

    The domestication of Asian rice (Oryza sativa) was a complex process punctuated by episodes of introgressive hybridization among and between subpopulations. Deep genetic divergence between the two main varietal groups (Indica and Japonica) suggests domestication from at least two distinct wild populations. However, genetic uniformity surrounding key domestication genes across divergent subpopulations suggests cultural exchange of genetic material among ancient farmers. In this study, we utilize a novel 1,536 SNP panel genotyped across 395 diverse accessions of O. sativa to study genome-wide patterns of polymorphism, to characterize population structure, and to infer the introgression history of domesticated Asian rice. Our population structure analyses support the existence of five major subpopulations (indica, aus, tropical japonica, temperate japonica and GroupV) consistent with previous analyses. Our introgression analysis shows that most accessions exhibit some degree of admixture, with many individuals within a population sharing the same introgressed segment due to artificial selection. Admixture mapping and association analysis of amylose content and grain length illustrate the potential for dissecting the genetic basis of complex traits in domesticated plant populations. Genes in these regions control a myriad of traits including plant stature, blast resistance, and amylose content. These analyses highlight the power of population genomics in agricultural systems to identify functionally important regions of the genome and to decipher the role of human-directed breeding in refashioning the genomes of a domesticated species.

  5. Whole genome sequencing data and de novo draft assemblies for 66 teleost species

    PubMed Central

    Malmstrøm, Martin; Matschiner, Michael; Tørresen, Ole K.; Jakobsen, Kjetill S.; Jentoft, Sissel

    2017-01-01

    Teleost fishes comprise more than half of all vertebrate species, yet genomic data are only available for 0.2% of their diversity. Here, we present whole genome sequencing data for 66 new species of teleosts, vastly expanding the availability of genomic data for this important vertebrate group. We report on de novo assemblies based on low-coverage (9–39×) sequencing and present detailed methodology for all analyses. To facilitate further utilization of this data set, we present statistical analyses of the gene space completeness and verify the expected phylogenetic position of the sequenced genomes in a large mitogenomic context. We further present a nuclear marker set used for phylogenetic inference and evaluate each gene tree in relation to the species tree to test for homogeneity in the phylogenetic signal. Collectively, these analyses illustrate the robustness of this highly diverse data set and enable extensive reuse of the selected phylogenetic markers and the genomic data in general. This data set covers all major teleost lineages and provides unprecedented opportunities for comparative studies of teleosts. PMID:28094797

  6. The complete chloroplast genomes of two Wisteria species, W. floribunda and W. sinensis (Fabaceae).

    PubMed

    Kim, Na-Rae; Kim, Kyunghee; Lee, Sang-Choon; Lee, Jung-Hoon; Cho, Seong-Hyun; Yu, Yeisoo; Kim, Young-Dong; Yang, Tae-Jin

    2016-11-01

    Wisteria floribunda and Wisteria sinensis are ornamental woody vines in the Fabaceae. The complete chloroplast genome sequences of the two species were generated by de novo assembly using whole genome next generation sequences. The chloroplast genomes of W. floribunda and W. sinensis were 130 960 bp and 130 561 bp long, respectively, and showed inverted repeat (IR)-lacking structures as those reported in IRLC in the Fabaceae. The chloroplast genomes of both species contained same number of protein-coding sequences (77), tRNA genes (30), and rRNA genes (4). The phylogenetic analysis with the reported chloroplast genomes confirmed close taxonomical relationship of W. floribunda and W. sinensis.

  7. [Exposure degree of important non-target arthropods to Cry2Aa in Bt rice fields].

    PubMed

    Zhang, Qing-Ling; Li, Yun-He; Hua, Hong-Xia; Yang, Chang-Ju; Wu, Hong-Jin; Peng, Yu-Fa

    2013-06-01

    Based on the principle of "risk = hazard x exposure", the selected representative nontarget organisms in the assessment of the potential effects of insect-resistant genetically modified (GM) crops on non-target arthropods in laboratory are generally the arthropod species highly exposed to the insecticidal proteins expressed by the GM crops in farmland ecosystem. In order to understand the exposure degree of the important arthropod species to Cry proteins in Bt rice fields, and to select the appropriate non-target arthropods in the risk assessment of insect-resistant GM crops, the enzyme-linked immunosorbent assay (ELISA) was conducted to measure the Cry2Aa protein concentration in the arthropods collected from the cry2Aa rice fields at different rice growth stages. The results showed that there was a significant difference in the Cry2Aa content protein concentration in different arthropod species. Some species did not contain Cry2Aa protein, while some species contained larger amounts of Cry2Aa protein. Relative to the arthropods colleted after rice anthesis, the arthropods colleted in rice anthesis contained relative higher concentrations of Cry2Aa protein, especially for the predacious arthropods. No Cry proteins were detected in parasitic arthropods. This study provided references for the laboratory assessment of the effects of GM rice on nontarget arthropods.

  8. Recombination-Driven Genome Evolution and Stability of Bacterial Species.

    PubMed

    Dixit, Purushottam D; Pang, Tin Yau; Maslov, Sergei

    2017-09-01

    While bacteria divide clonally, horizontal gene transfer followed by homologous recombination is now recognized as an important contributor to their evolution. However, the details of how the competition between clonality and recombination shapes genome diversity remains poorly understood. Using a computational model, we find two principal regimes in bacterial evolution and identify two composite parameters that dictate the evolutionary fate of bacterial species. In the divergent regime, characterized by either a low recombination frequency or strict barriers to recombination, cohesion due to recombination is not sufficient to overcome the mutational drift. As a consequence, the divergence between pairs of genomes in the population steadily increases in the course of their evolution. The species lacks genetic coherence with sexually isolated clonal subpopulations continuously formed and dissolved. In contrast, in the metastable regime, characterized by a high recombination frequency combined with low barriers to recombination, genomes continuously recombine with the rest of the population. The population remains genetically cohesive and temporally stable. Notably, the transition between these two regimes can be affected by relatively small changes in evolutionary parameters. Using the Multi Locus Sequence Typing (MLST) data, we classify a number of bacterial species to be either the divergent or the metastable type. Generalizations of our framework to include selection, ecologically structured populations, and horizontal gene transfer of nonhomologous regions are discussed as well. Copyright © 2017 by the Genetics Society of America.

  9. Complete mitochondrial genome sequences from five Eimeria species (Apicomplexa; Coccidia; Eimeriidae) infecting domestic turkeys

    PubMed Central

    2014-01-01

    Background Clinical and subclinical coccidiosis is cosmopolitan and inflicts significant losses to the poultry industry globally. Seven named Eimeria species are responsible for coccidiosis in turkeys: Eimeria dispersa; Eimeria meleagrimitis; Eimeria gallopavonis; Eimeria meleagridis; Eimeria adenoeides; Eimeria innocua; and, Eimeria subrotunda. Although attempts have been made to characterize these parasites molecularly at the nuclear 18S rDNA and ITS loci, the maternally-derived and mitotically replicating mitochondrial genome may be more suited for species level molecular work; however, only limited sequence data are available for Eimeria spp. infecting turkeys. The purpose of this study was to sequence and annotate the complete mitochondrial genomes from 5 Eimeria species that commonly infect the domestic turkey (Meleagris gallopavo). Methods Six single-oocyst derived cultures of five Eimeria species infecting turkeys were PCR-amplified and sequenced completely prior to detailed annotation. Resulting sequences were aligned and used in phylogenetic analyses (BI, ML, and MP) that included complete mitochondrial genomes from 16 Eimeria species or concatenated CDS sequences from each genome. Results Complete mitochondrial genome sequences were obtained for Eimeria adenoeides Guelph, 6211 bp; Eimeria dispersa Briston, 6238 bp; Eimeria meleagridis USAR97-01, 6212 bp; Eimeria meleagrimitis USMN08-01, 6165 bp; Eimeria gallopavonis Weybridge, 6215 bp; and Eimeria gallopavonis USKS06-01, 6215 bp). The order, orientation and CDS lengths of the three protein coding genes (COI, COIII and CytB) as well as rDNA fragments encoding ribosomal large and small subunit rRNA were conserved among all sequences. Pairwise sequence identities between species ranged from 88.1% to 98.2%; sequence variability was concentrated within CDS or between rDNA fragments (where indels were common). No phylogenetic reconstruction supported monophyly of Eimeria species infecting turkeys

  10. Comparative Analysis of Four Buckwheat Species Based on Morphology and Complete Chloroplast Genome Sequences.

    PubMed

    Wang, Cheng-Long; Ding, Meng-Qi; Zou, Chen-Yan; Zhu, Xue-Mei; Tang, Yu; Zhou, Mei-Liang; Shao, Ji-Rong

    2017-07-26

    Buckwheat is a nutritional and economically crop belonging to Polygonaceae, Fagopyrum. To better understand the mutation patterns and evolution trend in the chloroplast (cp) genome of buckwheat, and found sufficient number of variable regions to explore the phylogenetic relationships of this genus, two complete cp genomes of buckwheat including Fagopyrum dibotrys (F. dibotrys) and Fagopyrum luojishanense (F. luojishanense) were sequenced, and other two Fagopyrum cp genomes were used for comparative analysis. After morphological analysis, the main difference among these buckwheat were height, leaf shape, seeds and flower type. F. luojishanense was distinguishable from the cultivated species easily. Although the F. dibotrys and two cultivated species has some similarity, they different in habit and component contents. The cp genome of F. dibotrys was 159,320 bp while the F. luojishanense was 159,265 bp. 48 and 61 SSRs were found in F. dibotrys and F. luojishanense respectively. Meanwhile, 10 highly variable regions among these buckwheat species were located precisely. The phylogenetic relationships among four Fagopyrum species based on complete cp genomes was showed. The results suggested that F. dibotrys is more closely related to Fagopyrum tataricum. These data provided valuable genetic information for Fagopyrum species identification, taxonomy, phylogenetic study and molecular breeding.

  11. Genomic signatures of selection at linked sites: unifying the disparity among species

    PubMed Central

    Cutter, Asher D.; Payseur, Bret A.

    2014-01-01

    Population genetics theory supplies powerful predictions about how natural selection interacts with genetic linkage to sculpt the genomic landscape of nucleotide polymorphism. Both the spread of beneficial mutations and removal of deleterious mutations act to depress polymorphism levels, especially in low-recombination regions. However, empiricists have documented extreme disparities among species. Here we characterize the dominant features that could drive variation in linked selection among species, including roles for selective sweeps being ‘hard’ or ‘soft’, and concealing by demography and genomic confounds. We advocate targeted studies of close relatives to unify our understanding of how selection and linkage interact to shape genome evolution. PMID:23478346

  12. Phylogenomic Analyses and Reclassification of Species within the Genus Tsukamurella: Insights to Species Definition in the Post-genomic Era.

    PubMed

    Teng, Jade L L; Tang, Ying; Huang, Yi; Guo, Feng-Biao; Wei, Wen; Chen, Jonathan H K; Wong, Samson S Y; Lau, Susanna K P; Woo, Patrick C Y

    2016-01-01

    Owing to the highly similar phenotypic profiles, protein spectra and 16S rRNA gene sequences observed between three pairs of Tsukamurella species (Tsukamurella pulmonis/Tsukamurella spongiae, Tsukamurella tyrosinosolvens/Tsukamurella carboxy-divorans, and Tsukamurella pseudospumae/Tsukamurella sunchonensis), we hypothesize that and the six Tsukamurella species may have been misclassified and that there may only be three Tsukamurella species. In this study, we characterized the type strains of these six Tsukamurella species by tradition DNA-DNA hybridization (DDH) and "digital DDH" after genome sequencing to determine their exact taxonomic positions. Traditional DDH showed 81.2 ± 0.6% to 99.7 ± 1.0% DNA-DNA relatedness between the two Tsukamurella species in each of the three pairs, which was above the threshold for same species designation. "Digital DDH" based on Genome-To-Genome Distance Calculator and Average Nucleotide Identity for the three pairs also showed similarity results in the range of 82.3-92.9 and 98.1-99.1%, respectively, in line with results of traditional DDH. Based on these evidence and according to Rules 23a and 42 of the Bacteriological Code, we propose that T. spongiae Olson et al. 2007, should be reclassified as a later heterotypic synonym of T. pulmonis Yassin et al. 1996, T. carboxydivorans Park et al. 2009, as a later heterotypic synonym of T. tyrosinosolvens Yassin et al. 1997, and T. sunchonensis Seong et al. 2008 as a later heterotypic synonym of T. pseudospumae Nam et al. 2004. With the advancement of genome sequencing technologies, classification of bacterial species can be readily achieved by "digital DDH" than traditional DDH.

  13. Comparative genomics of Clostridium bolteae and Clostridium clostridioforme reveals species-specific genomic properties and numerous putative antibiotic resistance determinants.

    PubMed

    Dehoux, Pierre; Marvaud, Jean Christophe; Abouelleil, Amr; Earl, Ashlee M; Lambert, Thierry; Dauga, Catherine

    2016-10-21

    Clostridium bolteae and Clostridium clostridioforme, previously included in the complex C. clostridioforme in the group Clostridium XIVa, remain difficult to distinguish by phenotypic methods. These bacteria, prevailing in the human intestinal microbiota, are opportunistic pathogens with various drug susceptibility patterns. In order to better characterize the two species and to obtain information on their antibiotic resistance genes, we analyzed the genomes of six strains of C. bolteae and six strains of C. clostridioforme, isolated from human infection. The genome length of C. bolteae varied from 6159 to 6398 kb, and 5719 to 6059 CDSs were detected. The genomes of C. clostridioforme were smaller, between 5467 and 5927 kb, and contained 5231 to 5916 CDSs. The two species display different metabolic pathways. The genomes of C. bolteae contained lactose operons involving PTS system and complex regulation, which contribute to phenotypic differentiation from C. clostridioforme. The Acetyl-CoA pathway, similar to that of Faecalibacterium prausnitzii, a major butyrate producer in the human gut, was only found in C. clostridioforme. The two species have also developed diverse flagella mobility systems contributing to gut colonization. Their genomes harboured many CDSs involved in resistance to beta-lactams, glycopeptides, macrolides, chloramphenicol, lincosamides, rifampin, linezolid, bacitracin, aminoglycosides and tetracyclines. Overall antimicrobial resistance genes were similar within a species, but strain-specific resistance genes were found. We discovered a new group of genes coding for rifampin resistance in C. bolteae. C. bolteae 90B3 was resistant to phenicols and linezolide in producing a 23S rRNA methyltransferase. C. clostridioforme 90A8 contained the VanB-type Tn1549 operon conferring vancomycin resistance. We also detected numerous genes encoding proteins related to efflux pump systems. Genomic comparison of C. bolteae and C. clostridiofrome revealed

  14. Draft Genome Sequencing and Comparative Analysis of Aspergillus sojae NBRC4239

    PubMed Central

    Sato, Atsushi; Oshima, Kenshiro; Noguchi, Hideki; Ogawa, Masahiro; Takahashi, Tadashi; Oguma, Tetsuya; Koyama, Yasuji; Itoh, Takehiko; Hattori, Masahira; Hanya, Yoshiki

    2011-01-01

    We conducted genome sequencing of the filamentous fungus Aspergillus sojae NBRC4239 isolated from the koji used to prepare Japanese soy sauce. We used the 454 pyrosequencing technology and investigated the genome with respect to enzymes and secondary metabolites in comparison with other Aspergilli sequenced. Assembly of 454 reads generated a non-redundant sequence of 39.5-Mb possessing 13 033 putative genes and 65 scaffolds composed of 557 contigs. Of the 2847 open reading frames with Pfam domain scores of >150 found in A. sojae NBRC4239, 81.7% had a high degree of similarity with the genes of A. oryzae. Comparative analysis identified serine carboxypeptidase and aspartic protease genes unique to A. sojae NBRC4239. While A. oryzae possessed three copies of α-amyalse gene, A. sojae NBRC4239 possessed only a single copy. Comparison of 56 gene clusters for secondary metabolites between A. sojae NBRC4239 and A. oryzae revealed that 24 clusters were conserved, whereas 32 clusters differed between them that included a deletion of 18 508 bp containing mfs1, mao1, dmaT, and pks-nrps for the cyclopiazonic acid (CPA) biosynthesis, explaining the no productivity of CPA in A. sojae. The A. sojae NBRC4239 genome data will be useful to characterize functional features of the koji moulds used in Japanese industries. PMID:21659486

  15. Characterization of St and Y genome in StStYY Elymus species (Triticeae: Poaceae) using Sequential FISH and GISH

    USDA-ARS?s Scientific Manuscript database

    Tetraploid species possessing StY genome could be donors to hexaploid species having StYH, StYP, or StYW genome constitution in the genus Elymus, and a few of StY species have been intensely studied for inferring the origin of the Y genome. In this study, genome characterization of St and Y genome w...

  16. Motif mismatches in microsatellites: insights from genome-wide investigation among 20 insect species.

    PubMed

    Behura, Susanta K; Severson, David W

    2015-02-01

    We present a detailed genome-wide comparative study of motif mismatches of microsatellites among 20 insect species representing five taxonomic orders. The results show that varying proportions (∼15-46%) of microsatellites identified in these species are imperfect in motif structure, and that they also vary in chromosomal distribution within genomes. It was observed that the genomic abundance of imperfect repeats is significantly associated with the length and number of motif mismatches of microsatellites. Furthermore, microsatellites with a higher number of mismatches tend to have lower abundance in the genome, suggesting that sequence heterogeneity of repeat motifs is a key determinant of genomic abundance of microsatellites. This relationship seems to be a general feature of microsatellites even in unrelated species such as yeast, roundworm, mouse and human. We provide a mechanistic explanation of the evolutionary link between motif heterogeneity and genomic abundance of microsatellites by examining the patterns of motif mismatches and allele sequences of single-nucleotide polymorphisms identified within microsatellite loci. Using Drosophila Reference Genetic Panel data, we further show that pattern of allelic variation modulates motif heterogeneity of microsatellites, and provide estimates of allele age of specific imperfect microsatellites found within protein-coding genes. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  17. Reclassification of Rhodospirillum photometricum Molisch 1907, Rhodospirillum sulfurexigens Anil Kumar et al. 2008 and Rhodospirillum oryzae Lakshmi et al. 2013 in a new genus, Pararhodospirillum gen. nov., as Pararhodospirillum photometricum comb. nov., Pararhodospirillum sulfurexigens comb. nov. and Pararhodospirillum oryzae comb. nov., respectively, and emended description of the genus Rhodospirillum.

    PubMed

    Lakshmi, K V N S; Divyasree, B; Ramprasad, E V V; Sasikala, Ch; Ramana, Ch V

    2014-04-01

    The genus Rhodospirillum is represented by four species, with three of them showing phylogenetic divergence compared to the type species, Rhodospirillum rubrum. Differences in the major diagnostic properties such as internal photosynthetic membranes, quinones, fatty acids, carotenoid composition and a few other phenotypic properties warrant the reclassification of members of this genus. Resultantly, a new genus, Pararhodospirillum gen. nov., is proposed based on the analysis of nine strains to accommodate Rhodospirillum photometricum, Rhodospirillum sulfurexigens and Rhodospirillum oryzae as Pararhodospirillum photometricum comb. nov., Pararhodospirillum sulfurexigens comb. nov. and Pararhodospirillum oryzae comb. nov., respectively. The type species of the genus is Pararhodospirillum photometricum comb. nov. An emended description of the genus Rhodospirillum is also proposed.

  18. The genomes of four tapeworm species reveal adaptations to parasitism.

    PubMed

    Tsai, Isheng J; Zarowiecki, Magdalena; Holroyd, Nancy; Garciarrubio, Alejandro; Sánchez-Flores, Alejandro; Brooks, Karen L; Tracey, Alan; Bobes, Raúl J; Fragoso, Gladis; Sciutto, Edda; Aslett, Martin; Beasley, Helen; Bennett, Hayley M; Cai, Xuepeng; Camicia, Federico; Clark, Richard; Cucher, Marcela; De Silva, Nishadi; Day, Tim A; Deplazes, Peter; Estrada, Karel; Fernández, Cecilia; Holland, Peter W H; Hou, Junling; Hu, Songnian; Huckvale, Thomas; Hung, Stacy S; Kamenetzky, Laura; Keane, Jacqueline A; Kiss, Ferenc; Koziol, Uriel; Lambert, Olivia; Liu, Kan; Luo, Xuenong; Luo, Yingfeng; Macchiaroli, Natalia; Nichol, Sarah; Paps, Jordi; Parkinson, John; Pouchkina-Stantcheva, Natasha; Riddiford, Nick; Rosenzvit, Mara; Salinas, Gustavo; Wasmuth, James D; Zamanian, Mostafa; Zheng, Yadong; Cai, Jianping; Soberón, Xavier; Olson, Peter D; Laclette, Juan P; Brehm, Klaus; Berriman, Matthew

    2013-04-04

    Tapeworms (Cestoda) cause neglected diseases that can be fatal and are difficult to treat, owing to inefficient drugs. Here we present an analysis of tapeworm genome sequences using the human-infective species Echinococcus multilocularis, E. granulosus, Taenia solium and the laboratory model Hymenolepis microstoma as examples. The 115- to 141-megabase genomes offer insights into the evolution of parasitism. Synteny is maintained with distantly related blood flukes but we find extreme losses of genes and pathways that are ubiquitous in other animals, including 34 homeobox families and several determinants of stem cell fate. Tapeworms have specialized detoxification pathways, metabolism that is finely tuned to rely on nutrients scavenged from their hosts, and species-specific expansions of non-canonical heat shock proteins and families of known antigens. We identify new potential drug targets, including some on which existing pharmaceuticals may act. The genomes provide a rich resource to underpin the development of urgently needed treatments and control.

  19. The genomes of four tapeworm species reveal adaptations to parasitism

    PubMed Central

    Sánchez-Flores, Alejandro; Brooks, Karen L.; Tracey, Alan; Bobes, Raúl J.; Fragoso, Gladis; Sciutto, Edda; Aslett, Martin; Beasley, Helen; Bennett, Hayley M.; Cai, Xuepeng; Camicia, Federico; Clark, Richard; Cucher, Marcela; De Silva, Nishadi; Day, Tim A; Deplazes, Peter; Estrada, Karel; Fernández, Cecilia; Holland, Peter W. H.; Hou, Junling; Hu, Songnian; Huckvale, Thomas; Hung, Stacy S.; Kamenetzky, Laura; Keane, Jacqueline A.; Kiss, Ferenc; Koziol, Uriel; Lambert, Olivia; Liu, Kan; Luo, Xuenong; Luo, Yingfeng; Macchiaroli, Natalia; Nichol, Sarah; Paps, Jordi; Parkinson, John; Pouchkina-Stantcheva, Natasha; Riddiford, Nick; Rosenzvit, Mara; Salinas, Gustavo; Wasmuth, James D.; Zamanian, Mostafa; Zheng, Yadong; Cai, Jianping; Soberón, Xavier; Olson, Peter D.; Laclette, Juan P.; Brehm, Klaus; Berriman, Matthew

    2014-01-01

    Summary Tapeworms cause debilitating neglected diseases that can be deadly and often require surgery due to ineffective drugs. Here we present the first analysis of tapeworm genome sequences using the human-infective species Echinococcus multilocularis, E. granulosus, Taenia solium and the laboratory model Hymenolepis microstoma as examples. The 115-141 megabase genomes offer insights into the evolution of parasitism. Synteny is maintained with distantly related blood flukes but we find extreme losses of genes and pathways ubiquitous in other animals, including 34 homeobox families and several determinants of stem cell fate. Tapeworms have species-specific expansions of non-canonical heat shock proteins and families of known antigens; specialised detoxification pathways, and metabolism finely tuned to rely on nutrients scavenged from their hosts. We identify new potential drug targets, including those on which existing pharmaceuticals may act. The genomes provide a rich resource to underpin the development of urgently needed treatments and control. PMID:23485966

  20. Range expansion and habitat shift triggered elevated diversification of the rice genus (Oryza, Poaceae) during the Pleistocene.

    PubMed

    Lin, Li; Tang, Liang; Bai, Yun-Jun; Tang, Zhi-Yao; Wang, Wei; Chen, Zhi-Duan

    2015-09-03

    The rice genus (Oryza) contains many wild genetic resources that are vital to the well-being of humans. However, little is known about the process by which the genus diversified or the factors that drove its speciation. Here, we integrated the phylogenetic, molecular dating and biogeographic methods to investigate the spatial-temporal patterns of Oryza diversification, and used a series of model tests to examine whether intercontinental migrations and/or key innovations were associated with significant changes in diversification rates in the genus. Oryza became differentiated in tropical Asia in the Miocene. There were two migrations from the ancestral area into Africa and Australia during the Miocene. We inferred at least 10 migration events out of tropical Asia since the Pleistocene, mainly involving the species adapting open habitat. A rapid increase in diversification rates of the whole Oryza occurred during the Pleistocene. Intercontinental migrations from tropical Asia to other tropical regions were positively correlated with shift in habitat, but not with changes in life history. A habitat preference shift from shade tolerant to open habitat predated the burst in diversification rates. Rice species may have been pre-adapted to invade open habitat. Significant increase in diversification rates occurred during the Pleistocene and is associated with range expansion and habitat shift, but not with life history. The rice genus provides an excellent case supporting the idea that range expansion and invasion of novel habitats can drive the diversification of a group.

  1. Integrating Genomic Data Sets for Knowledge Discovery: An Informed Approach to Management of Captive Endangered Species.

    PubMed

    Irizarry, Kristopher J L; Bryant, Doug; Kalish, Jordan; Eng, Curtis; Schmidt, Peggy L; Barrett, Gini; Barr, Margaret C

    2016-01-01

    Many endangered captive populations exhibit reduced genetic diversity resulting in health issues that impact reproductive fitness and quality of life. Numerous cost effective genomic sequencing and genotyping technologies provide unparalleled opportunity for incorporating genomics knowledge in management of endangered species. Genomic data, such as sequence data, transcriptome data, and genotyping data, provide critical information about a captive population that, when leveraged correctly, can be utilized to maximize population genetic variation while simultaneously reducing unintended introduction or propagation of undesirable phenotypes. Current approaches aimed at managing endangered captive populations utilize species survival plans (SSPs) that rely upon mean kinship estimates to maximize genetic diversity while simultaneously avoiding artificial selection in the breeding program. However, as genomic resources increase for each endangered species, the potential knowledge available for management also increases. Unlike model organisms in which considerable scientific resources are used to experimentally validate genotype-phenotype relationships, endangered species typically lack the necessary sample sizes and economic resources required for such studies. Even so, in the absence of experimentally verified genetic discoveries, genomics data still provides value. In fact, bioinformatics and comparative genomics approaches offer mechanisms for translating these raw genomics data sets into integrated knowledge that enable an informed approach to endangered species management.

  2. Integrating Genomic Data Sets for Knowledge Discovery: An Informed Approach to Management of Captive Endangered Species

    PubMed Central

    Irizarry, Kristopher J. L.; Bryant, Doug; Kalish, Jordan; Eng, Curtis; Schmidt, Peggy L.; Barrett, Gini; Barr, Margaret C.

    2016-01-01

    Many endangered captive populations exhibit reduced genetic diversity resulting in health issues that impact reproductive fitness and quality of life. Numerous cost effective genomic sequencing and genotyping technologies provide unparalleled opportunity for incorporating genomics knowledge in management of endangered species. Genomic data, such as sequence data, transcriptome data, and genotyping data, provide critical information about a captive population that, when leveraged correctly, can be utilized to maximize population genetic variation while simultaneously reducing unintended introduction or propagation of undesirable phenotypes. Current approaches aimed at managing endangered captive populations utilize species survival plans (SSPs) that rely upon mean kinship estimates to maximize genetic diversity while simultaneously avoiding artificial selection in the breeding program. However, as genomic resources increase for each endangered species, the potential knowledge available for management also increases. Unlike model organisms in which considerable scientific resources are used to experimentally validate genotype-phenotype relationships, endangered species typically lack the necessary sample sizes and economic resources required for such studies. Even so, in the absence of experimentally verified genetic discoveries, genomics data still provides value. In fact, bioinformatics and comparative genomics approaches offer mechanisms for translating these raw genomics data sets into integrated knowledge that enable an informed approach to endangered species management. PMID:27376076

  3. Mutation of the rice XA21 predicted nuclear localization sequence does not affect resistance to Xanthomonas oryzae pv. oryzae

    DOE PAGES

    Wei, Tong; Chen, Tsung-Chi; Ho, Yuen Ting; ...

    2016-10-05

    Background: The rice receptor kinase XA21 confers robust resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae( Xoo). We previously reported that XA21 is cleaved in transgenic plants overexpressing XA21 with a GFP tag ( Ubi-XA21-GFP) and that the released C-terminal domain is localized to the nucleus. XA21 carries a predicted nuclear localization sequence (NLS) that directs the C-terminal domain to the nucleus in transient assays, whereas alanine substitutions in the NLS disrupt the nuclear localization. Methods: To determine if the predicted NLS is required for XA21-mediated immunity in planta, we generated transgenic plants overexpressing an XA21 variant carrying themore » NLS with the same alanine substitutions ( Ubi-XA21nls-GFP). Results: Ubi- XA21nls-GFP plants displayed slightly longer lesion lengths, higher Xoo bacterial populations after inoculation and lower levels of reactive oxygen species production compared with the Ubi- XA21-GFP control plants. However, the Ubi- XA21nls-GFP plants express lower levels of protein than that observed in Ubi- XA21-GFP. Discussion: These results demonstrate that the predicted NLS is not required for XA21-mediated immunity.« less

  4. Mutation of the rice XA21 predicted nuclear localization sequence does not affect resistance to Xanthomonas oryzae pv. oryzae.

    PubMed

    Wei, Tong; Chen, Tsung-Chi; Ho, Yuen Ting; Ronald, Pamela C

    2016-01-01

    The rice receptor kinase XA21 confers robust resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae ( Xoo ). We previously reported that XA21 is cleaved in transgenic plants overexpressing XA21 with a GFP tag ( Ubi -XA21-GFP) and that the released C-terminal domain is localized to the nucleus. XA21 carries a predicted nuclear localization sequence (NLS) that directs the C-terminal domain to the nucleus in transient assays, whereas alanine substitutions in the NLS disrupt the nuclear localization. To determine if the predicted NLS is required for XA21-mediated immunity in planta , we generated transgenic plants overexpressing an XA21 variant carrying the NLS with the same alanine substitutions ( Ubi -XA21nls-GFP). Ubi- XA21nls-GFP plants displayed slightly longer lesion lengths, higher Xoo bacterial populations after inoculation and lower levels of reactive oxygen species production compared with the Ubi- XA21-GFP control plants. However, the Ubi- XA21nls-GFP plants express lower levels of protein than that observed in Ubi- XA21-GFP. These results demonstrate that the predicted NLS is not required for XA21-mediated immunity.

  5. Mutation of the rice XA21 predicted nuclear localization sequence does not affect resistance to Xanthomonas oryzae pv. oryzae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Tong; Chen, Tsung-Chi; Ho, Yuen Ting

    Background: The rice receptor kinase XA21 confers robust resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae( Xoo). We previously reported that XA21 is cleaved in transgenic plants overexpressing XA21 with a GFP tag ( Ubi-XA21-GFP) and that the released C-terminal domain is localized to the nucleus. XA21 carries a predicted nuclear localization sequence (NLS) that directs the C-terminal domain to the nucleus in transient assays, whereas alanine substitutions in the NLS disrupt the nuclear localization. Methods: To determine if the predicted NLS is required for XA21-mediated immunity in planta, we generated transgenic plants overexpressing an XA21 variant carrying themore » NLS with the same alanine substitutions ( Ubi-XA21nls-GFP). Results: Ubi- XA21nls-GFP plants displayed slightly longer lesion lengths, higher Xoo bacterial populations after inoculation and lower levels of reactive oxygen species production compared with the Ubi- XA21-GFP control plants. However, the Ubi- XA21nls-GFP plants express lower levels of protein than that observed in Ubi- XA21-GFP. Discussion: These results demonstrate that the predicted NLS is not required for XA21-mediated immunity.« less

  6. Reference-guided de novo assembly approach improves genome reconstruction for related species.

    PubMed

    Lischer, Heidi E L; Shimizu, Kentaro K

    2017-11-10

    The development of next-generation sequencing has made it possible to sequence whole genomes at a relatively low cost. However, de novo genome assemblies remain challenging due to short read length, missing data, repetitive regions, polymorphisms and sequencing errors. As more and more genomes are sequenced, reference-guided assembly approaches can be used to assist the assembly process. However, previous methods mostly focused on the assembly of other genotypes within the same species. We adapted and extended a reference-guided de novo assembly approach, which enables the usage of a related reference sequence to guide the genome assembly. In order to compare and evaluate de novo and our reference-guided de novo assembly approaches, we used a simulated data set of a repetitive and heterozygotic plant genome. The extended reference-guided de novo assembly approach almost always outperforms the corresponding de novo assembly program even when a reference of a different species is used. Similar improvements can be observed in high and low coverage situations. In addition, we show that a single evaluation metric, like the widely used N50 length, is not enough to properly rate assemblies as it not always points to the best assembly evaluated with other criteria. Therefore, we used the summed z-scores of 36 different statistics to evaluate the assemblies. The combination of reference mapping and de novo assembly provides a powerful tool to improve genome reconstruction by integrating information of a related genome. Our extension of the reference-guided de novo assembly approach enables the application of this strategy not only within but also between related species. Finally, the evaluation of genome assemblies is often not straight forward, as the truth is not known. Thus one should always use a combination of evaluation metrics, which not only try to assess the continuity but also the accuracy of an assembly.

  7. The 'A' genome donor of Eleusine coracana (L.) Gaertn. (Gramineae).

    PubMed

    Hiremath, S C; Salimath, S S

    1992-08-01

    In an attempt to discover 'A' and 'B' genome donor(s) to finger millet, Eleusine coracana, or its progenitor species, E. africana (both allotetraploid 2n=4x=36), five diploid species, E. Indica, E. Floccifolia, E. multiflora, E. tristachya and E. intermedia, were crossed to finger millet and its progenitor taxon. Crosses were successful only with E. coracana. Three combinations of triploid hybrids E. coracana x E. indica, E. coracana x E. floccifolia, and E. coracana x E. multiflora were obtained and analysed. Meiotic behaviour was perfectly normal in parental species. The regular number of 18 bivalents in E. coracana, 9 bivalents in E. indica, E. intermedia, E. tristachya and E. floccifolia and 8 bivalents in E. multiflora were invariably noticed. In E. coracana x E. indica hybrids a mean chromosome pairing of 8.84I+8.80II+0.03III+0.10IV per cell was found. About 86.5% of the cells showed the typical 9I+9II configuration, suggesting that E. indica (AA) is one of the diploid genome donors to cultivated species E. coracana. A mean chromosome pairing of 11.08I+7.63II+0.16III+0.04IV per cell was found in E. coracana x E. floccifolia hybrids. Two to ten bivalents and varying numbers of univalents were seen in 55% of the cells. About 45% of the cells showed the 9I+9II configuration. Various evidence suggests that perennial E. floccifolia is a primitive member of the 'A' genome group of Eleusine species, and it may not be a genome donor to E. coracana. In E. coracana x E. multiflora hybrids (2n=26) mean chromosome pairing of 21.45I+1.97II+0.13III+0.04IV per cell was found. About 91% of the cells were observed to have 20-26 univalents. Only a small percentage of the cells contained bivalents or multivalents. This pairing behaviour indicates that E. multiflora lacks genomic homology with the 'A' or 'B' genome of E. coracana. Genomically E. multiflora is a distinct species and a genomic symbol of 'C' is assigned to it. Identification of the 'B' genome donor species to

  8. A novel genome-wide microsatellite resource for species of Eucalyptus with linkage-to-physical correspondence on the reference genome sequence.

    PubMed

    Grattapaglia, Dario; Mamani, Eva M C; Silva-Junior, Orzenil B; Faria, Danielle A

    2015-03-01

    Keystone species in their native ranges, eucalypts, are ecologically and genetically very diverse, growing naturally along extensive latitudinal and altitudinal ranges and variable environments. Besides their ecological importance, eucalypts are also the most widely planted trees for sustainable forestry in the world. We report the development of a novel collection of 535 microsatellites for species of Eucalyptus, 494 designed from ESTs and 41 from genomic libraries. A selected subset of 223 was evaluated for individual identification, parentage testing, and ancestral information content in the two most extensively studied species, Eucalyptus grandis and Eucalyptus globulus. Microsatellites showed high transferability and overlapping allele size range, suggesting they have arisen still in their common ancestor and confirming the extensive genome conservation between these two species. A consensus linkage map with 437 microsatellites, the most comprehensive microsatellite-only genetic map for Eucalyptus, was built by assembling segregation data from three mapping populations and anchored to the Eucalyptus genome. An overall colinearity between recombination-based and physical positioning of 84% of the mapped microsatellites was observed, with some ordering discrepancies and sporadic locus duplications, consistent with the recently described whole genome duplication events in Eucalyptus. The linkage map covered 95.2% of the 605.8-Mbp assembled genome sequence, placing one microsatellite every 1.55 Mbp on average, and an overall estimate of physical to recombination distance of 618 kbp/cM. The genetic parameters estimates together with linkage and physical position data for this large set of microsatellites should assist marker choice for genome-wide population genetics and comparative mapping in Eucalyptus. © 2014 John Wiley & Sons Ltd.

  9. Characterization of the complete chloroplast genome of the endangered species Carya sinensis (Juglandaceae)

    Treesearch

    Yiheng Hu; Xi Chen; Xiaojia Feng; Keith E. Woeste; Peng Zhao

    2016-01-01

    Carya sinensis (Chinese Hickory, beaked walnut, or beaked hickory) is an endangered species that needs urgent conservation action. Here, we reported the complete chloroplast (cp) genome sequence and the genomic features of the C. sinensis cp, which is the first complete cp genome of any member of Carya. The...

  10. Effect of temperature and commodity on insecticidal efficacy of spinosad dust against Sitophilus oryzae (Coleoptera: Curculionidae) and Rhyzopertha dominica (Coleoptera: Bostrychidae).

    PubMed

    Athanassiou, Christos G; Kavallieratos, Nickolas G; Chintzoglou, George J; Peteinatos, Gerassimos G; Boukouvala, Maria C; Petrou, Stamatina S; Panoussakis, Emmanouel C

    2008-06-01

    The insecticidal effect of spinosad dust, a formulation that contains 0.125% spinosad, was evaluated against adults of Sitophilus oryzae (L.) and Rhyzopertha dominica (F.) at three temperature levels (20, 25, and 30 degrees C) and four commodities (wheat, Triticum aestivum L.; barley, Hordeum vulgare L.; rice, Oryza sativa L.; and maize, Zea mays L.). For this purpose, quantities of the above-mentioned grains were treated with spinosad at two dose rates (20 and 50 ppm of the formulation, corresponding to 0.025 and 0.06 ppm AI, respectively), and mortality of the exposed adults in the treated grains was measured after 7 and 14 d, whereas progeny production was assessed 65 d later. Generally, for both species, mortality increased with dose, exposure interval, and temperature. For S. oryzae, adult survival and progeny production were lower on wheat than the other grains. After 14 d of exposure, mortality of S. oryzae adults on wheat treated with 50 ppm ranged between 61 and 98%, whereas in the other three commodities it did not exceed 42%. Mortality of R. dominica after 14 d on grains treated 50 ppm ranged between 91 and 100%. For this species, progeny production from exposed parental adults was low in all commodities regardless of temperature. Results indicate that spinosad dust can be used as an alternative to traditional grain protectants, but its effectiveness is highly determined by the target species, commodity, dose, and temperature.

  11. The Agassiz's desert tortoise genome provides a resource for the conservation of a threatened species.

    PubMed

    Tollis, Marc; DeNardo, Dale F; Cornelius, John A; Dolby, Greer A; Edwards, Taylor; Henen, Brian T; Karl, Alice E; Murphy, Robert W; Kusumi, Kenro

    2017-01-01

    Agassiz's desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on deep transcriptome sequences of adult skeletal muscle, lung, brain, and blood. The draft genome assembly for G. agassizii has a scaffold N50 length of 252 kbp and a total length of 2.4 Gbp. Genome annotation reveals 20,172 protein-coding genes in the G. agassizii assembly, and that gene structure is more similar to chicken than other turtles. We provide a series of comparative analyses demonstrating (1) that turtles are among the slowest-evolving genome-enabled reptiles, (2) amino acid changes in genes controlling desert tortoise traits such as shell development, longevity and osmoregulation, and (3) fixed variants across the Gopherus species complex in genes related to desert adaptations, including circadian rhythm and innate immune response. This G. agassizii genome reference and annotation is the first such resource for any tortoise, and will serve as a foundation for future analysis of the genetic basis of adaptations to the desert environment, allow for investigation into genomic factors affecting tortoise health, disease and longevity, and serve as a valuable resource for additional studies in this species complex.

  12. Environmental Response and Genomic Regions Correlated with Rice Root Growth and Yield under Drought in the OryzaSNP Panel across Multiple Study Systems

    PubMed Central

    Wade, Len J.; Bartolome, Violeta; Mauleon, Ramil; Vasant, Vivek Deshmuck; Prabakar, Sumeet Mankar; Chelliah, Muthukumar; Kameoka, Emi; Nagendra, K.; Reddy, K. R. Kamalnath; Varma, C. Mohan Kumar; Patil, Kalmeshwar Gouda; Shrestha, Roshi; Al-Shugeairy, Zaniab; Al-Ogaidi, Faez; Munasinghe, Mayuri; Gowda, Veeresh; Semon, Mande; Suralta, Roel R.; Shenoy, Vinay; Vadez, Vincent; Serraj, Rachid; Shashidhar, H. E.; Yamauchi, Akira; Babu, Ranganathan Chandra; Price, Adam; McNally, Kenneth L.; Henry, Amelia

    2015-01-01

    The rapid progress in rice genotyping must be matched by advances in phenotyping. A better understanding of genetic variation in rice for drought response, root traits, and practical methods for studying them are needed. In this study, the OryzaSNP set (20 diverse genotypes that have been genotyped for SNP markers) was phenotyped in a range of field and container studies to study the diversity of rice root growth and response to drought. Of the root traits measured across more than 20 root experiments, root dry weight showed the most stable genotypic performance across studies. The environment (E) component had the strongest effect on yield and root traits. We identified genomic regions correlated with root dry weight, percent deep roots, maximum root depth, and grain yield based on a correlation analysis with the phenotypes and aus, indica, or japonica introgression regions using the SNP data. Two genomic regions were identified as hot spots in which root traits and grain yield were co-located; on chromosome 1 (39.7–40.7 Mb) and on chromosome 8 (20.3–21.9 Mb). Across experiments, the soil type/ growth medium showed more correlations with plant growth than the container dimensions. Although the correlations among studies and genetic co-location of root traits from a range of study systems points to their potential utility to represent responses in field studies, the best correlations were observed when the two setups had some similar properties. Due to the co-location of the identified genomic regions (from introgression block analysis) with QTL for a number of previously reported root and drought traits, these regions are good candidates for detailed characterization to contribute to understanding rice improvement for response to drought. This study also highlights the utility of characterizing a small set of 20 genotypes for root growth, drought response, and related genomic regions. PMID:25909711

  13. Identification of species and geographical strains of Sitophilus oryzae and Sitophilus zeamais using the visible/near-infrared hyperspectral imaging technique.

    PubMed

    Cao, Yang; Zhang, Chaojie; Chen, Quansheng; Li, Yanyu; Qi, Shuai; Tian, Lin; Ren, YongLin

    2015-08-01

    Identifying stored-product insects is essential for granary management. Automated, computer-based classification methods are rapidly developing in many areas. A hyperspectral imaging technique could potentially be developed to identify stored-product insect species and geographical strains. This study tested and adapted the technique using four geographical strains of each of two insect species, the rice weevil and maize weevil, to collect and analyse the resultant hyperspectral data. Three characteristic images that corresponded to the dominant wavelengths, 505, 659 and 955 nm, were selected by multivariate image analysis. Each image was processed, and 22 morphological and textural features from regions of interest were extracted as the inputs for an identification model. We found the backpropagation neural network model to be the superior method for distinguishing between the insect species and geographical strains. The overall recognition rates of the classification model for insect species were 100 and 98.13% for the calibration and prediction sets respectively, while the rates of the model for geographical strains were 94.17 and 86.88% respectively. This study has demonstrated that hyperspectral imaging, together with the appropriate recognition method, could provide a potential instrument for identifying insects and could become a useful tool for identification of Sitophilus oryzae and Sitophilus zeamais to aid in the management of stored-product insects. © 2014 Society of Chemical Industry.

  14. Gene Duplication, Population Genomics, and Species-Level Differentiation within a Tropical Mountain Shrub

    PubMed Central

    Mastretta-Yanes, Alicia; Zamudio, Sergio; Jorgensen, Tove H.; Arrigo, Nils; Alvarez, Nadir; Piñero, Daniel; Emerson, Brent C.

    2014-01-01

    Gene duplication leads to paralogy, which complicates the de novo assembly of genotyping-by-sequencing (GBS) data. The issue of paralogous genes is exacerbated in plants, because they are particularly prone to gene duplication events. Paralogs are normally filtered from GBS data before undertaking population genomics or phylogenetic analyses. However, gene duplication plays an important role in the functional diversification of genes and it can also lead to the formation of postzygotic barriers. Using populations and closely related species of a tropical mountain shrub, we examine 1) the genomic differentiation produced by putative orthologs, and 2) the distribution of recent gene duplication among lineages and geography. We find high differentiation among populations from isolated mountain peaks and species-level differentiation within what is morphologically described as a single species. The inferred distribution of paralogs among populations is congruent with taxonomy and shows that GBS could be used to examine recent gene duplication as a source of genomic differentiation of nonmodel species. PMID:25223767

  15. MoDUO1, a Duo1-like gene, is required for full virulence of the rice blast fungus Magnaporthe oryzae.

    PubMed

    Peng, Haowen; Feng, Youjun; Zhu, Xiaohui; Lan, Xiuwan; Tang, Mei; Wang, Jinzi; Dong, Haitao; Chen, Baoshan

    2011-12-01

    Duo1, a major component of the Dam1 complex which has been found in two species of yeast (the budding yeast Saccharomyces cerevisae and the fission yeast Schizosaccharomyces pombe), is involved in mitosis-related chromosome segregation, while its relevance to pathogenicity in filamentous fungi remains unclear. This report elucidated this very fact in the case of the rice blast fungus Magnaporthe oryzae. A gene designated MoDUO1 that encodes a Duo1-like homolog (MoDuo1) was discovered in the M. oryzae genome. Two types of MoDUO1 mutants were obtained using genetic approaches of Agrobacterium-mediated gene disruption and homologous recombination. Both disruption and deletion of MoDUO1 can exert profound effects on the formation pattern of conidiophores and conidial morphology, such as abnormal nucleic numbers in conidia and delayed extension of infectious hyphae. Intriguingly, plant infection assays demonstrated that inactivation of MoDUO1 significantly attenuates the virulence in its natural host rice leaves, and functional complementation can restore it. Subcellular localization assays showed that MoDuo1 is mainly distributed in the cytosol of fungal cells. Proteomics-based investigation revealed that the expression of four mitosis-related proteins is shut down in the MoDUO1 mutant, suggesting that MoDuo1 may have a function in mitosis. In light of the fact that Duo1 orthologs are widespread in plant and human fungal pathogens, our finding may represent a common mechanism underlying fungal virulence. To the best of our knowledge, this is the first example of linking a Duo1-like homolog to the pathogenesis of a pathogenic fungus, which might provide clues to additional studies on the role of Dam1 complex in M. oryzae and its interaction with rice.

  16. Comparative genomics of two jute species and insight into fibre biogenesis.

    PubMed

    Islam, Md Shahidul; Saito, Jennifer A; Emdad, Emdadul Mannan; Ahmed, Borhan; Islam, Mohammad Moinul; Halim, Abdul; Hossen, Quazi Md Mosaddeque; Hossain, Md Zakir; Ahmed, Rasel; Hossain, Md Sabbir; Kabir, Shah Md Tamim; Khan, Md Sarwar Alam; Khan, Md Mursalin; Hasan, Rajnee; Aktar, Nasima; Honi, Ummay; Islam, Rahin; Rashid, Md Mamunur; Wan, Xuehua; Hou, Shaobin; Haque, Taslima; Azam, Muhammad Shafiul; Moosa, Mahdi Muhammad; Elias, Sabrina M; Hasan, A M Mahedi; Mahmood, Niaz; Shafiuddin, Md; Shahid, Saima; Shommu, Nusrat Sharmeen; Jahan, Sharmin; Roy, Saroj; Chowdhury, Amlan; Akhand, Ashikul Islam; Nisho, Golam Morshad; Uddin, Khaled Salah; Rabeya, Taposhi; Hoque, S M Ekramul; Snigdha, Afsana Rahman; Mortoza, Sarowar; Matin, Syed Abdul; Islam, Md Kamrul; Lashkar, M Z H; Zaman, Mahboob; Yuryev, Anton; Uddin, Md Kamal; Rahman, Md Sharifur; Haque, Md Samiul; Alam, Md Monjurul; Khan, Haseena; Alam, Maqsudul

    2017-01-30

    Jute (Corchorus sp.) is one of the most important sources of natural fibre, covering ∼80% of global bast fibre production 1 . Only Corchorus olitorius and Corchorus capsularis are commercially cultivated, though there are more than 100 Corchorus species 2 in the Malvaceae family. Here we describe high-quality draft genomes of these two species and their comparisons at the functional genomics level to support tailor-designed breeding. The assemblies cover 91.6% and 82.2% of the estimated genome sizes for C. olitorius and C. capsularis, respectively. In total, 37,031 C. olitorius and 30,096 C. capsularis genes are identified, and most of the genes are validated by cDNA and RNA-seq data. Analyses of clustered gene families and gene collinearity show that jute underwent shared whole-genome duplication ∼18.66 million years (Myr) ago prior to speciation. RNA expression analysis from isolated fibre cells reveals the key regulatory and structural genes involved in fibre formation. This work expands our understanding of the molecular basis of fibre formation laying the foundation for the genetic improvement of jute.

  17. Genome-Wide Microsatellite Characterization and Marker Development in the Sequenced Brassica Crop Species

    PubMed Central

    Shi, Jiaqin; Huang, Shunmou; Zhan, Jiepeng; Yu, Jingyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong

    2014-01-01

    Although much research has been conducted, the pattern of microsatellite distribution has remained ambiguous, and the development/utilization of microsatellite markers has still been limited/inefficient in Brassica, due to the lack of genome sequences. In view of this, we conducted genome-wide microsatellite characterization and marker development in three recently sequenced Brassica crops: Brassica rapa, Brassica oleracea and Brassica napus. The analysed microsatellite characteristics of these Brassica species were highly similar or almost identical, which suggests that the pattern of microsatellite distribution is likely conservative in Brassica. The genomic distribution of microsatellites was highly non-uniform and positively or negatively correlated with genes or transposable elements, respectively. Of the total of 115 869, 185 662 and 356 522 simple sequence repeat (SSR) markers developed with high frequencies (408.2, 343.8 and 356.2 per Mb or one every 2.45, 2.91 and 2.81 kb, respectively), most represented new SSR markers, the majority had determined physical positions, and a large number were genic or putative single-locus SSR markers. We also constructed a comprehensive database for the newly developed SSR markers, which was integrated with public Brassica SSR markers and annotated genome components. The genome-wide SSR markers developed in this study provide a useful tool to extend the annotated genome resources of sequenced Brassica species to genetic study/breeding in different Brassica species. PMID:24130371

  18. Genome-wide microsatellite characterization and marker development in the sequenced Brassica crop species.

    PubMed

    Shi, Jiaqin; Huang, Shunmou; Zhan, Jiepeng; Yu, Jingyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong

    2014-02-01

    Although much research has been conducted, the pattern of microsatellite distribution has remained ambiguous, and the development/utilization of microsatellite markers has still been limited/inefficient in Brassica, due to the lack of genome sequences. In view of this, we conducted genome-wide microsatellite characterization and marker development in three recently sequenced Brassica crops: Brassica rapa, Brassica oleracea and Brassica napus. The analysed microsatellite characteristics of these Brassica species were highly similar or almost identical, which suggests that the pattern of microsatellite distribution is likely conservative in Brassica. The genomic distribution of microsatellites was highly non-uniform and positively or negatively correlated with genes or transposable elements, respectively. Of the total of 115 869, 185 662 and 356 522 simple sequence repeat (SSR) markers developed with high frequencies (408.2, 343.8 and 356.2 per Mb or one every 2.45, 2.91 and 2.81 kb, respectively), most represented new SSR markers, the majority had determined physical positions, and a large number were genic or putative single-locus SSR markers. We also constructed a comprehensive database for the newly developed SSR markers, which was integrated with public Brassica SSR markers and annotated genome components. The genome-wide SSR markers developed in this study provide a useful tool to extend the annotated genome resources of sequenced Brassica species to genetic study/breeding in different Brassica species.

  19. Genome wide analysis of the transition to pathogenic lifestyles in Magnaporthales fungi

    USDA-ARS?s Scientific Manuscript database

    The rice blast fungus Pyricularia oryzae (syn. Magnaporthe oryzae, Magnaporthe grisea), a member of the order Magnaporthales in the class Sordariomycetes, is an important plant pathogen and a model species for studying pathogen infection and plant-fungal interaction. In this study, we generated geno...

  20. Exploring the genome of the salt-marsh Spartina maritima (Poaceae, Chloridoideae) through BAC end sequence analysis.

    PubMed

    Ferreira de Carvalho, J; Chelaifa, H; Boutte, J; Poulain, J; Couloux, A; Wincker, P; Bellec, A; Fourment, J; Bergès, H; Salmon, A; Ainouche, M

    2013-12-01

    Spartina species play an important ecological role on salt marshes. Spartina maritima is an Old-World species distributed along the European and North-African Atlantic coasts. This hexaploid species (2n = 6x = 60, 2C = 3,700 Mb) hybridized with different Spartina species introduced from the American coasts, which resulted in the formation of new invasive hybrids and allopolyploids. Thus, S. maritima raises evolutionary and ecological interests. However, genomic information is dramatically lacking in this genus. In an effort to develop genomic resources, we analysed 40,641 high-quality bacterial artificial chromosome-end sequences (BESs), representing 26.7 Mb of the S. maritima genome. BESs were searched for sequence homology against known databases. A fraction of 16.91% of the BESs represents known repeats including a majority of long terminal repeat (LTR) retrotransposons (13.67%). Non-LTR retrotransposons represent 0.75%, DNA transposons 0.99%, whereas small RNA, simple repeats and low-complexity sequences account for 1.38% of the analysed BESs. In addition, 4,285 simple sequence repeats were detected. Using the coding sequence database of Sorghum bicolor, 6,809 BESs found homology accounting for 17.1% of all BESs. Comparative genomics with related genera reveals that the microsynteny is better conserved with S. bicolor compared to other sequenced Poaceae, where 37.6% of the paired matching BESs are correctly orientated on the chromosomes. We did not observe large macrosyntenic rearrangements using the mapping strategy employed. However, some regions appeared to have experienced rearrangements when comparing Spartina to Sorghum and to Oryza. This work represents the first overview of S. maritima genome regarding the respective coding and repetitive components. The syntenic relationships with other grass genomes examined here help clarifying evolution in Poaceae, S. maritima being a part of the poorly-known Chloridoideae sub-family.

  1. Comparative toxicity and micronuclei formation in Tribolium castaneum, Callosobruchus maculatus and Sitophilus oryzae exposed to high doses of gamma radiation.

    PubMed

    Ahmadi, Mehrdad; Mozdarani, Hossein; Abd-Alla, Adly M M

    2015-07-01

    The effects of gamma radiation on mortality and micronucleus formation in Tribolium castaneum Herbst, Callosobruchus maculatus (F.) and Sitophilus oryzae (L.) genital cells were evaluated. Two groups of healthy and active adult insects 1-3 and 8-10 days old were irradiated with various doses (50-200 Gy) gamma ray. Seven days post-irradiation; mortality rates and micronucleus formation were assessed in genital cells of the irradiated insects. The results show that with increasing gamma doses, the mortality rate of each species increased and T. castaneum and S. oryzae showed the low and high sensitivity respectively. It was shown that the micronucleus appearance in the tested insects had correlation with amount and intensity of radiation doses. Moreover our results indicate different levels in the genotoxicity of gamma radiation among the insects' genital cells under study. The frequency of micronuclei in genital cells of 1-3 days old insects exposed to 50 and 200 Gy were 12.6 and 38.8 Mn/1000 cells in T. castaneum, 20.8 and 46.8 Mn/1000 cells in C. maculatus and 16.8 and 57.2 Mn/1000 cells in S. oryzae respectively. A high sensitivity of the genital cells to irradiation exposure was seen in S. oryzae correlated with its high mortality rate compared with the other two species. These results might be indicative of inflicting chromosomal damage expressed as micronucleus in high mortality rates observed in the pest population; an indication of genotoxic effects of radiation on the studied species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Genome characterization of a breeding line derived from a cross between Oryza sativa and Oryza rufipogon.

    PubMed

    Keong, B P; Harikrishna, J A

    2012-02-01

    A preliminary screening was conducted on BC3F1 and BC4F1 backcross families developed from crossing Oryza sativa (MR219) and O. rufipogon (IRGC105491). Despite earlier results showing that O. rufipogon alleles (wild introgression) contributed to both number of panicles (qPPL-2) and tillers (qTPL-2) at loci RM250, RM208, and RM48 in line A20 of the BC2F2 population, we observed that wild introgression was lost at loci RM250 and RM208 but retained at locus RM48 in BC3F1 and BC4F1. Progeny tests conducted utilizing genotype and phenotype data on both BC4F1 and a reference population, BC2F7 (A20 line), did not show significant differences between groups having the MR219 allele and wild introgression at locus RM48. This suggests that there is no additive and transgressive effect of wild introgression in the BC3F1 and BC4F1 generated. The presence of wild introgression was largely due to gene contamination by cross-pollination during field breeding practices.

  3. Genome-wide association study of rice (Oryza sativa L.) leaf traits with a high-throughput leaf scorer.

    PubMed

    Yang, Wanneng; Guo, Zilong; Huang, Chenglong; Wang, Ke; Jiang, Ni; Feng, Hui; Chen, Guoxing; Liu, Qian; Xiong, Lizhong

    2015-09-01

    Leaves are the plant's solar panel and food factory, and leaf traits are always key issues to investigate in plant research. Traditional methods for leaf trait measurement are time-consuming. In this work, an engineering prototype has been established for high-throughput leaf scoring (HLS) of a large number of Oryza sativa accessions. The mean absolute per cent of errors in traditional measurements versus HLS were below 5% for leaf number, area, shape, and colour. Moreover, HLS can measure up to 30 leaves per minute. To demonstrate the usefulness of HLS in dissecting the genetic bases of leaf traits, a genome-wide association study (GWAS) was performed for 29 leaf traits related to leaf size, shape, and colour at three growth stages using HLS on a panel of 533 rice accessions. Nine associated loci contained known leaf-related genes, such as Nal1 for controlling the leaf width. In addition, a total of 73, 123, and 177 new loci were detected for traits associated with leaf size, colour, and shape, respectively. In summary, after evaluating the performance with a large number of rice accessions, the combination of GWAS and high-throughput leaf phenotyping (HLS) has proven a valuable strategy to identify the genetic loci controlling rice leaf traits. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. Linking secondary metabolites to gene clusters through genome sequencing of six diverse Aspergillus species

    DOE PAGES

    Kjerbolling, Inge; Vesth, Tammi C.; Frisvad, Jens C.; ...

    2018-01-09

    The fungal genus of Aspergillus is highly interesting, containing everything from industrial cell factories over model organisms to human pathogens. In particular, this group has a prolific production of bioactive secondary metabolites (SMs). In this work, four diverse Aspergillus species (A. campestris, A. novofumigatus, A. ochraceoroseus and A. steynii) has been whole genome PacBio sequenced to provide genetic references in three Aspergillus sections. Additionally, A. taichungensis and A. candidus were sequenced for SM elucidation. Thirteen Aspergillus genomes were analysed with comparative genomics to determine phylogeny and genetic diversity, showing that each new genome contains 15–27% genes not found in othermore » sequenced Aspergilli. In particular, the new species A. novofumigatus was compared to the pathogenic species A. fumigatus. This suggests that A. novofumigatus can produce most of the same allergens, virulence and pathogenicity factors as A. fumigatus suggesting that A. novofumigatus could be as pathogenic as A. fumigatus. Furthermore, SMs were linked to gene clusters based on biological and chemical knowledge and analysis, genome sequences and predictive algorithms.« less

  5. Linking secondary metabolites to gene clusters through genome sequencing of six diverse Aspergillus species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kjerbolling, Inge; Vesth, Tammi C.; Frisvad, Jens C.

    The fungal genus of Aspergillus is highly interesting, containing everything from industrial cell factories over model organisms to human pathogens. In particular, this group has a prolific production of bioactive secondary metabolites (SMs). In this work, four diverse Aspergillus species (A. campestris, A. novofumigatus, A. ochraceoroseus and A. steynii) has been whole genome PacBio sequenced to provide genetic references in three Aspergillus sections. Additionally, A. taichungensis and A. candidus were sequenced for SM elucidation. Thirteen Aspergillus genomes were analysed with comparative genomics to determine phylogeny and genetic diversity, showing that each new genome contains 15–27% genes not found in othermore » sequenced Aspergilli. In particular, the new species A. novofumigatus was compared to the pathogenic species A. fumigatus. This suggests that A. novofumigatus can produce most of the same allergens, virulence and pathogenicity factors as A. fumigatus suggesting that A. novofumigatus could be as pathogenic as A. fumigatus. Furthermore, SMs were linked to gene clusters based on biological and chemical knowledge and analysis, genome sequences and predictive algorithms.« less

  6. The Complete Chloroplast Genome Sequences of Five Epimedium Species: Lights into Phylogenetic and Taxonomic Analyses

    PubMed Central

    Zhang, Yanjun; Du, Liuwen; Liu, Ao; Chen, Jianjun; Wu, Li; Hu, Weiming; Zhang, Wei; Kim, Kyunghee; Lee, Sang-Choon; Yang, Tae-Jin; Wang, Ying

    2016-01-01

    Epimedium L. is a phylogenetically and economically important genus in the family Berberidaceae. We here sequenced the complete chloroplast (cp) genomes of four Epimedium species using Illumina sequencing technology via a combination of de novo and reference-guided assembly, which was also the first comprehensive cp genome analysis on Epimedium combining the cp genome sequence of E. koreanum previously reported. The five Epimedium cp genomes exhibited typical quadripartite and circular structure that was rather conserved in genomic structure and the synteny of gene order. However, these cp genomes presented obvious variations at the boundaries of the four regions because of the expansion and contraction of the inverted repeat (IR) region and the single-copy (SC) boundary regions. The trnQ-UUG duplication occurred in the five Epimedium cp genomes, which was not found in the other basal eudicotyledons. The rapidly evolving cp genome regions were detected among the five cp genomes, as well as the difference of simple sequence repeats (SSR) and repeat sequence were identified. Phylogenetic relationships among the five Epimedium species based on their cp genomes showed accordance with the updated system of the genus on the whole, but reminded that the evolutionary relationships and the divisions of the genus need further investigation applying more evidences. The availability of these cp genomes provided valuable genetic information for accurately identifying species, taxonomy and phylogenetic resolution and evolution of Epimedium, and assist in exploration and utilization of Epimedium plants. PMID:27014326

  7. Effect of the Presence of Live or Dead Insects on Subsequent Captures of Six Stored-Product Beetle Species: The Relative Species Matters.

    PubMed

    Athanassiou, Christos G; Kavallieratos, Nickolas G; Campbell, James F

    2017-04-01

    In trapping programs prior capture of individuals of the same or different species may influence subsequent attractiveness of the trap. To evaluate this process with stored-product insects, the effect of the presence of dead or alive adults in traps on the behavioral responses of six stored-product insect species, Tribolium confusum Jacquelin du Val, T. castaneum (Herbst) (Coleoptera: Tenebrionidae), Sitophilus oryzae (L.), S. granarius (L.) (Coleoptera: Curculionidae), Oryzaephilus surinamensis (L.) and O. mercator (Fauvel) (Coleoptera: Silvanidae), was studied in choice tests under laboratory conditions. Two series of tests were carried out. In the first series, the choice was between either alive or dead adults of same species and blank (no adults). Overall, dead adults had the strongest influence, increasing the response of S. oryzae, S. granarius, O. surinamensis, and O. mercator and decreasing the response of the two Tribolium species. Presence of alive adults generally did not result in a response different from blank, except for T. castaneum and O. surinamensis that had a reduced response. In the second series of tests, the choice was between alive or dead individuals of the species vs. alive or dead individuals of its relative cogeneric species. For choices between alive individuals, S. oryzae, S. granarius, and O. surinamensis showed a preference for alive individuals of the same species vs. the cogeneric species, and for all the other species there was no preference. For choices between dead individuals, T. castaneum exhibited a preference for individuals of the same species, while S. oryzae, S. granarius, and O. mercator showed a preference for individuals of the cogeneric species, and all other combinations did exhibit a preference. Our results suggest that traps containing alive and dead individuals of the same and other species can seriously affect the response and capture of additional insects. © The Authors 2017. Published by Oxford University

  8. Metalaxyl Degradation by Mucorales Strains Gongronella sp. and Rhizopus oryzae.

    PubMed

    Martins, Maria Rosário; Santos, Cledir; Pereira, Pablo; Cruz-Morais, Júlio; Lima, Nelson

    2017-12-14

    In this study, the degradation of metalaxyl was investigated in the presence of two Mucorales strains, previously isolated from soil subjected to repeated treatments with this fungicide and selected after enrichment technique. Fungal strains were characterised by a polyphasic approach using phylogenetic analysis of the Internal Transcribed Spacer (ITS) gene region, phenotypic characterisation by Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) spectral analysis, and growth kinetics experiments. The strains were identified as Gongronella sp. and Rhizopus oryzae . The fungal growth kinetics in liquid cultures containing metalaxyl fits with Haldane model. Under laboratory conditions, the ability of Gongronella sp. and R. oryzae cultures to degrade metalaxyl was evaluated in liquid cultures and soil experiments. Both species were able to: (a) use metalaxyl as the main carbon and energy source; and (b) degrade metalaxyl in polluted soils, with rates around 1.0 mg kg - ¹ d - ¹. This suggests these strains could degrade metalaxyl in soils contaminated with this fungicide.

  9. Multiple Rice MicroRNAs Are Involved in Immunity against the Blast Fungus Magnaporthe oryzae1[C][W][OPEN

    PubMed Central

    Li, Yan; Lu, Yuan-Gen; Shi, Yi; Wu, Liang; Xu, Yong-Ju; Huang, Fu; Guo, Xiao-Yi; Zhang, Yong; Fan, Jing; Zhao, Ji-Qun; Zhang, Hong-Yu; Xu, Pei-Zhou; Zhou, Jian-Min; Wu, Xian-Jun; Wang, Ping-Rong; Wang, Wen-Ming

    2014-01-01

    MicroRNAs (miRNAs) are indispensable regulators for development and defense in eukaryotes. However, the miRNA species have not been explored for rice (Oryza sativa) immunity against the blast fungus Magnaporthe oryzae, the most devastating fungal pathogen in rice production worldwide. Here, by deep sequencing small RNA libraries from susceptible and resistant lines in normal conditions and upon M. oryzae infection, we identified a group of known rice miRNAs that were differentially expressed upon M. oryzae infection. They were further classified into three classes based on their expression patterns in the susceptible japonica line Lijiangxin Tuan Hegu and in the resistant line International Rice Blast Line Pyricularia-Kanto51-m-Tsuyuake that contains a single resistance gene locus, Pyricularia-Kanto 51-m (Pikm), within the Lijiangxin Tuan Hegu background. RNA-blot assay of nine of them confirmed sequencing results. Real-time reverse transcription-polymerase chain reaction assay showed that the expression of some target genes was negatively correlated with the expression of miRNAs. Moreover, transgenic rice plants overexpressing miR160a and miR398b displayed enhanced resistance to M. oryzae, as demonstrated by decreased fungal growth, increased hydrogen peroxide accumulation at the infection site, and up-regulated expression of defense-related genes. Taken together, our data indicate that miRNAs are involved in rice immunity against M. oryzae and that overexpression of miR160a or miR398b can enhance rice resistance to the disease. PMID:24335508

  10. Bilateral endogenous necrotizing scleritis due to Aspergillus oryzae.

    PubMed

    Stenson, S; Brookner, A; Rosenthal, S

    1982-01-01

    A case of bilateral necrotizing scleritis due to Aspergillus oryzae is reported. The patient was a former addict of intravenous narcotics treated five years previously for meningitis due to the same organism. A seeding focus in the thoracic spine was eventually found. The patient responded well to combined local and systemic therapy with amphotericin B, flucytosine, and natamycin. This represents, to the best of our knowledge, both the first reported case of ocular disease due to this species of Aspergillus and of isolated scleral, nonintraocular involvement in endogenous oculomycosis.

  11. Karyotype and genome size in Euterpe Mart. (Arecaceae) species.

    PubMed

    Oliveira, Ludmila Cristina; de Oliveira, Maria do Socorro Padilha; Davide, Lisete Chamma; Torres, Giovana Augusta

    2016-01-01

    Euterpe (Martius, 1823), a genus from Central and South America, has species with high economic importance in Brazil, because of their palm heart and fruits, known as açaí berries. Breeding programs have been conducted to increase yield and establish cultivation systems to replace the extraction of wild material. These programs need basic information about the genome of these species to better explore the available genetic variability. The aim of this study was to compare Euterpe edulis (Martius, 1824), Euterpe oleracea (Martius, 1824) and Euterpe precatoria (Martius, 1842), with regard to karyotype, type of interphase nucleus and nuclear DNA amount. Metaphase chromosomes and interphase nuclei from root tip meristematic cells were obtained by the squashing technique and solid stained for microscope analysis. The DNA amount was estimated by flow cytometry. There were previous reports on the chromosome number of Euterpe edulis and Euterpe oleracea, but chromosome morphology of these two species and the whole karyotype of Euterpe precatoria are reported for the first time. The species have 2n=36, a number considered as a pleisomorphic feature in Arecoideae since the modern species, according to floral morphology, have the lowest chromosome number (2n=28 and 2n=30). The three Euterpe species also have the same type of interphase nuclei, classified as semi-reticulate. The species differed on karyotypic formulas, on localization of secondary constriction and genome size. The data suggest that the main forces driving Euterpe karyotype evolution were structural rearrangements, such as inversions and translocations that alter chromosome morphology, and either deletion or amplification that led to changes in chromosome size.

  12. Karyotype and genome size in Euterpe Mart. (Arecaceae) species

    PubMed Central

    Oliveira, Ludmila Cristina; de Oliveira, Maria do Socorro Padilha; Davide, Lisete Chamma; Torres, Giovana Augusta

    2016-01-01

    Abstract Euterpe (Martius, 1823), a genus from Central and South America, has species with high economic importance in Brazil, because of their palm heart and fruits, known as açaí berries. Breeding programs have been conducted to increase yield and establish cultivation systems to replace the extraction of wild material. These programs need basic information about the genome of these species to better explore the available genetic variability. The aim of this study was to compare Euterpe edulis (Martius, 1824), Euterpe oleracea (Martius, 1824) and Euterpe precatoria (Martius, 1842), with regard to karyotype, type of interphase nucleus and nuclear DNA amount. Metaphase chromosomes and interphase nuclei from root tip meristematic cells were obtained by the squashing technique and solid stained for microscope analysis. The DNA amount was estimated by flow cytometry. There were previous reports on the chromosome number of Euterpe edulis and Euterpe oleracea, but chromosome morphology of these two species and the whole karyotype of Euterpe precatoria are reported for the first time. The species have 2n=36, a number considered as a pleisomorphic feature in Arecoideae since the modern species, according to floral morphology, have the lowest chromosome number (2n=28 and 2n=30). The three Euterpe species also have the same type of interphase nuclei, classified as semi-reticulate. The species differed on karyotypic formulas, on localization of secondary constriction and genome size. The data suggest that the main forces driving Euterpe karyotype evolution were structural rearrangements, such as inversions and translocations that alter chromosome morphology, and either deletion or amplification that led to changes in chromosome size. PMID:27186334

  13. Selective whole genome amplification for resequencing target microbial species from complex natural samples.

    PubMed

    Leichty, Aaron R; Brisson, Dustin

    2014-10-01

    Population genomic analyses have demonstrated power to address major questions in evolutionary and molecular microbiology. Collecting populations of genomes is hindered in many microbial species by the absence of a cost effective and practical method to collect ample quantities of sufficiently pure genomic DNA for next-generation sequencing. Here we present a simple method to amplify genomes of a target microbial species present in a complex, natural sample. The selective whole genome amplification (SWGA) technique amplifies target genomes using nucleotide sequence motifs that are common in the target microbe genome, but rare in the background genomes, to prime the highly processive phi29 polymerase. SWGA thus selectively amplifies the target genome from samples in which it originally represented a minor fraction of the total DNA. The post-SWGA samples are enriched in target genomic DNA, which are ideal for population resequencing. We demonstrate the efficacy of SWGA using both laboratory-prepared mixtures of cultured microbes as well as a natural host-microbe association. Targeted amplification of Borrelia burgdorferi mixed with Escherichia coli at genome ratios of 1:2000 resulted in >10(5)-fold amplification of the target genomes with <6.7-fold amplification of the background. SWGA-treated genomic extracts from Wolbachia pipientis-infected Drosophila melanogaster resulted in up to 70% of high-throughput resequencing reads mapping to the W. pipientis genome. By contrast, 2-9% of sequencing reads were derived from W. pipientis without prior amplification. The SWGA technique results in high sequencing coverage at a fraction of the sequencing effort, thus allowing population genomic studies at affordable costs. Copyright © 2014 by the Genetics Society of America.

  14. Investigation of potential targets of Porphyromonas CRISPRs among the genomes of Porphyromonas species

    PubMed Central

    Shibasaki, Masaki; Maruyama, Fumito; Sekizaki, Tsutomu; Nakagawa, Ichiro

    2017-01-01

    The oral bacterial species Porphyromonas gingivalis, a periodontal pathogen, has plastic genomes that may be driven by homologous recombination with exogenous deoxyribonucleic acid (DNA) that is incorporated by natural transformation and conjugation. However, bacteriophages and plasmids, both of which are main resources of exogenous DNA, do not exist in the known P. gingivalis genomes. This could be associated with an adaptive immunity system conferred by clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated (cas) genes in P. gingivalis as well as innate immune systems such as a restriction-modification system. In a previous study, few immune targets were predicted for P. gingivalis CRISPR/Cas. In this paper, we analyzed 51 P. gingivalis genomes, which were newly sequenced, and publicly available genomes of 13 P. gingivalis and 46 other Porphyromonas species. We detected 6 CRISPR/Cas types (classified by sequence similarity of repeat) in P. gingivalis and 12 other types in the remaining species. The Porphyromonas CRISPR spacers with potential targets in the genus Porphyromonas were approximately 23 times more abundant than those with potential targets in other genus taxa (1,720/6,896 spacers vs. 74/6,896 spacers). Porphyromonas CRISPR/Cas may be involved in genome plasticity by exhibiting selective interference against intra- and interspecies nucleic acids. PMID:28837670

  15. Genome Sequence of Cronobacter sakazakii BAA-894 and Comparative Genomic Hybridization Analysis with Other Cronobacter Species

    PubMed Central

    Kucerova, Eva; Clifton, Sandra W.; Xia, Xiao-Qin; Long, Fred; Porwollik, Steffen; Fulton, Lucinda; Fronick, Catrina; Minx, Patrick; Kyung, Kim; Warren, Wesley; Fulton, Robert; Feng, Dongyan; Wollam, Aye; Shah, Neha; Bhonagiri, Veena; Nash, William E.; Hallsworth-Pepin, Kymberlie; Wilson, Richard K.

    2010-01-01

    Background The genus Cronobacter (formerly called Enterobacter sakazakii) is composed of five species; C. sakazakii, C. malonaticus, C. turicensis, C. muytjensii, and C. dublinensis. The genus includes opportunistic human pathogens, and the first three species have been associated with neonatal infections. The most severe diseases are caused in neonates and include fatal necrotizing enterocolitis and meningitis. The genetic basis of the diversity within the genus is unknown, and few virulence traits have been identified. Methodology/Principal Findings We report here the first sequence of a member of this genus, C. sakazakii strain BAA-894. The genome of Cronobacter sakazakii strain BAA-894 comprises a 4.4 Mb chromosome (57% GC content) and two plasmids; 31 kb (51% GC) and 131 kb (56% GC). The genome was used to construct a 387,000 probe oligonucleotide tiling DNA microarray covering the whole genome. Comparative genomic hybridization (CGH) was undertaken on five other C. sakazakii strains, and representatives of the four other Cronobacter species. Among 4,382 annotated genes inspected in this study, about 55% of genes were common to all C. sakazakii strains and 43% were common to all Cronobacter strains, with 10–17% absence of genes. Conclusions/Significance CGH highlighted 15 clusters of genes in C. sakazakii BAA-894 that were divergent or absent in more than half of the tested strains; six of these are of probable prophage origin. Putative virulence factors were identified in these prophage and in other variable regions. A number of genes unique to Cronobacter species associated with neonatal infections (C. sakazakii, C. malonaticus and C. turicensis) were identified. These included a copper and silver resistance system known to be linked to invasion of the blood-brain barrier by neonatal meningitic strains of Escherichia coli. In addition, genes encoding for multidrug efflux pumps and adhesins were identified that were unique to C. sakazakii strains from

  16. Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size.

    PubMed

    Lysak, Martin A; Cheung, Kwok; Kitschke, Michaela; Bures, Petr

    2007-10-01

    The paleopolyploid character of genomes of the economically important genus Brassica and closely related species (tribe Brassiceae) is still fairly controversial. Here, we report on the comparative painting analysis of block F of the crucifer Ancestral Karyotype (AK; n = 8), consisting of 24 conserved genomic blocks, in 10 species traditionally treated as members of the tribe Brassiceae. Three homeologous copies of block F were identified per haploid chromosome complement in Brassiceae species with 2n = 14, 18, 20, 32, and 36. In high-polyploid (n >or= 30) species Crambe maritima (2n = 60), Crambe cordifolia (2n = 120), and Vella pseudocytisus (2n = 68), six, 12, and six copies of the analyzed block have been revealed, respectively. Homeologous regions resembled the ancestral structure of block F within the AK or were altered by inversions and/or translocations. In two species of the subtribe Zillineae, two of the three homeologous regions were combined via a reciprocal translocation onto one chromosome. Altogether, these findings provide compelling evidence of an ancient hexaploidization event and corresponding whole-genome triplication shared by the tribe Brassiceae. No direct relationship between chromosome number and genome size variation (1.2-2.5 pg/2C) has been found in Brassiceae species with 2n = 14 to 36. Only two homeologous copies of block F suggest a whole-genome duplication but not the triplication event in Orychophragmus violaceus (2n = 24), and confirm a phylogenetic position of this species outside the tribe Brassiceae. Chromosome duplication detected in Orychophragmus as well as chromosome rearrangements shared by Zillineae species demonstrate the usefulness of comparative cytogenetics for elucidation of phylogenetic relationships.

  17. Roseomonas oryzae sp. nov., isolated from paddy rhizosphere soil.

    PubMed

    Ramaprasad, E V V; Sasikala, Ch; Ramana, Ch V

    2015-10-01

    A non-motile, coccus-shaped, pale-pink-pigmented bacterium, designated strain JC288T, was isolated from a paddy rhizosphere soil collected from Western Ghats, Kankumbi, Karnataka, India. Cells were found to be Gram-stain-negative, and catalase- and oxidase-positive; the major fatty acids were C16 : 0, C16 : 1ω7c/C16 : 1ω6c, C18 : 1ω7c/C18 : 1ω6c and C18 : 1 2-OH. The predominant respiratory quinone was Q-10 and the genomic DNA G+C content was 67.5 mol%. Strain JC288T contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, four unidentified aminolipids, three unidentified phospholipids, two unidentified lipids, an aminophospholipid and a glycolipid. Hydroxyspirilloxanthin was the major carotenoid of strain JC288T. 16S rRNA gene sequence comparisons indicated that strain JC288T represents a member of the genus Roseomonas within the family Acetobacteraceae of the phylum Proteobacteria. Strain JC288T shared the highest 16S rRNA gene sequence similarity with Roseomonas rhizosphaerae YW11T (97.3 %), Roseomonas aestuarii JC17T (97.1 %), Roseomonas cervicalis CIP 104027T (95.9 %) and other members of the genus Roseomonas ( < 95.5 %). The distinct genomic difference and morphological, physiological and chemotaxonomic differences from the previously described taxa support the classification of strain JC288T as a representative of a novel species of the genus Roseomonas, for which the name Roseomonas oryzae sp. nov. is proposed. The type strain is JC288T ( = KCTC 42542T = LMG 28711T).

  18. Natural Selection and Recombination Rate Variation Shape Nucleotide Polymorphism Across the Genomes of Three Related Populus Species

    PubMed Central

    Wang, Jing; Street, Nathaniel R.; Scofield, Douglas G.; Ingvarsson, Pär K.

    2016-01-01

    A central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome resequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum, and population-scaled recombination rates in three species of Populus: Populus tremula, P. tremuloides, and P. trichocarpa. We find that P. tremuloides has the highest level of genome-wide variation, skewed allele frequencies, and population-scaled recombination rates, whereas P. trichocarpa harbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, due to both purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination largely explain the disparate magnitudes and signatures of linked selection that we observe among species. The present work provides the first phylogenetic comparative study on a genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species. PMID:26721855

  19. Natural Selection and Recombination Rate Variation Shape Nucleotide Polymorphism Across the Genomes of Three Related Populus Species.

    PubMed

    Wang, Jing; Street, Nathaniel R; Scofield, Douglas G; Ingvarsson, Pär K

    2016-03-01

    A central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome resequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum, and population-scaled recombination rates in three species of Populus: Populus tremula, P. tremuloides, and P. trichocarpa. We find that P. tremuloides has the highest level of genome-wide variation, skewed allele frequencies, and population-scaled recombination rates, whereas P. trichocarpa harbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, due to both purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination largely explain the disparate magnitudes and signatures of linked selection that we observe among species. The present work provides the first phylogenetic comparative study on a genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species. Copyright © 2016 by the Genetics Society of America.

  20. Gene duplication, population genomics, and species-level differentiation within a tropical mountain shrub.

    PubMed

    Mastretta-Yanes, Alicia; Zamudio, Sergio; Jorgensen, Tove H; Arrigo, Nils; Alvarez, Nadir; Piñero, Daniel; Emerson, Brent C

    2014-09-14

    Gene duplication leads to paralogy, which complicates the de novo assembly of genotyping-by-sequencing (GBS) data. The issue of paralogous genes is exacerbated in plants, because they are particularly prone to gene duplication events. Paralogs are normally filtered from GBS data before undertaking population genomics or phylogenetic analyses. However, gene duplication plays an important role in the functional diversification of genes and it can also lead to the formation of postzygotic barriers. Using populations and closely related species of a tropical mountain shrub, we examine 1) the genomic differentiation produced by putative orthologs, and 2) the distribution of recent gene duplication among lineages and geography. We find high differentiation among populations from isolated mountain peaks and species-level differentiation within what is morphologically described as a single species. The inferred distribution of paralogs among populations is congruent with taxonomy and shows that GBS could be used to examine recent gene duplication as a source of genomic differentiation of nonmodel species. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Functional analysis of histone deacetylase and its role in stress response, drug resistance and solid-state cultivation in Aspergillus oryzae.

    PubMed

    Kawauchi, Moriyuki; Iwashita, Kazuhiro

    2014-08-01

    In the eukaryotic cell, histone deacetylases (HDACs) play key roles in the regulation of fundamental cellular process such as development regulation, stress response, secondary metabolism and genome integrity. Here, we provide a comprehensive phenotypic analysis using HDAC disruptants in Aspergillus oryzae. Our study revealed that four HDACs, hdaA/Aohda1, hdaB/Aorpd3, hdaD/Aohos2 and hst4/AohstD were involved in stress response, cell wall synthesis and chromatin integrity in A. oryzae. Osmotic stress sensitivity of HDAC disruptants differed between plate cultures and liquid cultures, suggesting that HDACs adapt to the difference environmental conditions. Using a common A. oryzae fermentation medium, rice-koji, we also characterized HDACs related to growth and enzyme production to investigate which HDACs will be required for adaptation to environmental conditions and stress resistances. Because HDACs are widely conserved, our study has broad applications and may inform work with filamentous fungi and other eukaryote. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. The Agassiz’s desert tortoise genome provides a resource for the conservation of a threatened species

    PubMed Central

    Tollis, Marc; DeNardo, Dale F.; Cornelius, John A.; Dolby, Greer A.; Edwards, Taylor; Henen, Brian T.; Karl, Alice E.; Murphy, Robert W.

    2017-01-01

    Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on deep transcriptome sequences of adult skeletal muscle, lung, brain, and blood. The draft genome assembly for G. agassizii has a scaffold N50 length of 252 kbp and a total length of 2.4 Gbp. Genome annotation reveals 20,172 protein-coding genes in the G. agassizii assembly, and that gene structure is more similar to chicken than other turtles. We provide a series of comparative analyses demonstrating (1) that turtles are among the slowest-evolving genome-enabled reptiles, (2) amino acid changes in genes controlling desert tortoise traits such as shell development, longevity and osmoregulation, and (3) fixed variants across the Gopherus species complex in genes related to desert adaptations, including circadian rhythm and innate immune response. This G. agassizii genome reference and annotation is the first such resource for any tortoise, and will serve as a foundation for future analysis of the genetic basis of adaptations to the desert environment, allow for investigation into genomic factors affecting tortoise health, disease and longevity, and serve as a valuable resource for additional studies in this species complex. PMID:28562605

  3. Three extracellular dipeptidyl peptidases found in Aspergillus oryzae show varying substrate specificities.

    PubMed

    Maeda, Hiroshi; Sakai, Daisuke; Kobayashi, Takuji; Morita, Hiroto; Okamoto, Ayako; Takeuchi, Michio; Kusumoto, Ken-Ichi; Amano, Hitoshi; Ishida, Hiroki; Yamagata, Youhei

    2016-06-01

    Three extracellular dipeptidyl peptidase genes, dppB, dppE, and dppF, were unveiled by sequence analysis of the Aspergillus oryzae genome. We investigated their differential enzymatic profiles, in order to gain an understanding of the diversity of these genes. The three dipeptidyl peptidases were expressed using Aspergillus nidulans as the host. Each recombinant enzyme was purified and subsequently characterized. The enzymes displayed similar optimum pH values, but optimum temperatures, pH stabilities, and substrate specificities varied. DppB was identified as a Xaa-Prolyl dipeptidyl peptidase, while DppE scissile substrates were similar to the substrates for Aspergillus fumigatus DPPV (AfDPPV). DppF was found to be a novel enzyme that could digest both substrates for A. fumigatus DPPIV and AfDPPV. Semi-quantitative PCR revealed that the transcription of dppB in A. oryzae was induced by protein substrates and repressed by the addition of an inorganic nitrogen source, despite the presence of protein substrates. The transcription of dppE depended on its growth time, while the transcription of dppF was not affected by the type of the nitrogen source in the medium, and it started during the early stage of the fungal growth. Based on these results, we conclude that these enzymes may represent the nutrition acquisition enzymes. Additionally, DppF may be one of the sensor peptidases responsible for the detection of the protein substrates in A. oryzae environment. DppB may be involved in nitrogen assimilation control, since the transcription of dppB was repressed by NaNO3, despite the presence of protein substrates.

  4. Genome-Wide Analysis of NBS-LRR Genes in Sorghum Genome Revealed Several Events Contributing to NBS-LRR Gene Evolution in Grass Species

    PubMed Central

    Yang, Xiping; Wang, Jianping

    2016-01-01

    The nucleotide-binding site (NBS)–leucine-rich repeat (LRR) gene family is crucially important for offering resistance to pathogens. To explore evolutionary conservation and variability of NBS-LRR genes across grass species, we identified 88, 107, 24, and 44 full-length NBS-LRR genes in sorghum, rice, maize, and Brachypodium, respectively. A comprehensive analysis was performed on classification, genome organization, evolution, expression, and regulation of these NBS-LRR genes using sorghum as a representative of grass species. In general, the full-length NBS-LRR genes are highly clustered and duplicated in sorghum genome mainly due to local duplications. NBS-LRR genes have basal expression levels and are highly potentially targeted by miRNA. The number of NBS-LRR genes in the four grass species is positively correlated with the gene clustering rate. The results provided a valuable genomic resource and insights for functional and evolutionary studies of NBS-LRR genes in grass species. PMID:26792976

  5. Breast Cancer Gene Therapy: Development of Novel Non-Invasive Magnetic Resonance Assay to Optimize Efficacy

    DTIC Science & Technology

    2005-05-01

    5 mM citric acid). A solution of fl-gal [G5160 from Aspergillus oryzae (Aldrich), 95 ug in 10 /L of buffer] was added and the absorption (A = 420 nm...At pH 4.5-the optimal pH for fl-gal (5) Herschman, H. R. (2002) Non-invasive imaging of reporter derived from Aspergillus oryzae-16 showed very...instrumentation; 2. An understanding of the genome for several species and associated genomics, proteomics , etc.; 3. Novel pharmaceuticals providing high target

  6. Roegneria alashanica Keng: a species with the StStStYStY genome constitution.

    PubMed

    Wang, Richard R-C; Jensen, Kevin B

    2017-06-01

    The genome constitution of tetraploid Roegneria alashanica Keng has been in question for a long time. Most scientific studies have suggested that R. alashanica had two versions of the St genome, St 1 St 2 , similar to that of Pseudoroegneria elytrigioides (C. Yen & J.L. Yang) B.R. Lu. A study, however, concluded that R. alashanica had the StY genome formula typical for tetraploid species of Roegneria. For the present study, R. alashanica, Elymus longearistatus (Bioss.) Tzvelev (StY genomes), Pseudoroegneria strigosa (M. Bieb.) Á. Löve (St), Pseudoroegneria libanoctica (Hackel) D.R. Dewey (St), and Pseudoroegneria spicata (Pursh) Á. Löve (St) were screened for the Y-genome specific marker B14(F+R) 269 . All E. longearistatus plants expressed intense bands specific to the Y genome. Only 6 of 10 R. alashanica plants exhibited relatively faint bands for the STS marker. Previously, the genome in species of Pseudoroegneria exhibiting such faint Y-genome specific marker was designated as St Y . Based on these results, R. alashanica lacks the Y genome in E. longearistatus but likely possess two remotely related St genomes, St and St Y . According to its genome constitution, R. alashanica should be classified in the genus Pseudoroenera and given the new name Pseudoroegneria alashanica (Keng) R.R.-C. Wang and K.B. Jensen.

  7. Metabolomic Profiles of Aspergillus oryzae and Bacillus amyloliquefaciens During Rice Koji Fermentation.

    PubMed

    Lee, Da Eun; Lee, Sunmin; Jang, Eun Seok; Shin, Hye Won; Moon, Byoung Seok; Lee, Choong Hwan

    2016-06-14

    Rice koji, used early in the manufacturing process for many fermented foods, produces diverse metabolites and enzymes during fermentation. Using gas chromatography time-of-flight mass spectrometry (GC-TOF-MS), ultrahigh-performance liquid chromatography linear trap quadrupole ion trap tandem mass spectrometry (UHPLC-LTQ-IT-MS/MS), and multivariate analysis we generated the metabolite profiles of rice koji produced by fermentation with Aspergillus oryzae (RK_AO) or Bacillus amyloliquefaciens (RK_BA) for different durations. Two principal components of the metabolomic data distinguished the rice koji samples according to their fermenter species and fermentation time. Several enzymes secreted by the fermenter species, including α-amylase, protease, and β-glucosidase, were assayed to identify differences in expression levels. This approach revealed that carbohydrate metabolism, serine-derived amino acids, and fatty acids were associated with rice koji fermentation by A. oryzae, whereas aromatic and branched chain amino acids, flavonoids, and lysophospholipids were more typical in rice koji fermentation by B. amyloliquefaciens. Antioxidant activity was significantly higher for RK_BA than for RK_AO, as were the abundances of flavonoids, including tricin, tricin glycosides, apigenin glycosides, and chrysoeriol glycosides. In summary, we have used MS-based metabolomics and enzyme activity assays to evaluate the effects of using different microbial species and fermentation times on the nutritional profile of rice koji.

  8. Complete chloroplast genome sequences of Praxelis (Eupatorium catarium Veldkamp), an important invasive species.

    PubMed

    Zhang, Ying; Li, Lei; Yan, Ting Liang; Liu, Qiang

    2014-10-01

    Praxelis (Eupatorium catarium Veldkamp) is a new hazardous invasive plant species that has caused serious economic losses and environmental damage in the Northern hemisphere tropical and subtropical regions. Although previous studies focused on detecting the biological characteristics of this plant to prevent its expansion, little effort has been made to understand the impact of Praxelis on the ecosystem in an evolutionary process. The genetic information of Praxelis is required for further phylogenetic identification and evolutionary studies. Here, we report the complete Praxelis chloroplast (cp) genome sequence. The Praxelis chloroplast genome is 151,410 bp in length including a small single-copy region (18,547 bp) and a large single-copy region (85,311 bp) separated by a pair of inverted repeats (IRs; 23,776 bp). The genome contains 85 unique and 18 duplicated genes in the IR region. The gene content and organization are similar to other Asteraceae tribe cp genomes. We also analyzed the whole cp genome sequence, repeat structure, codon usage, contraction of the IR and gene structure/organization features between native and invasive Asteraceae plants, in order to understand the evolution of organelle genomes between native and invasive Asteraceae. Comparative analysis identified the 14 markers containing greater than 2% parsimony-informative characters, indicating that they are potential informative markers for barcoding and phylogenetic analysis. Moreover, a sister relationship between Praxelis and seven other species in Asteraceae was found based on phylogenetic analysis of 28 protein-coding sequences. Complete cp genome information is useful for plant phylogenetic and evolutionary studies within this invasive species and also within the Asteraceae family. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. A stable hybrid containing haploid genomes of two obligate diploid Candida species.

    PubMed

    Chakraborty, Uttara; Mohamed, Aiyaz; Kakade, Pallavi; Mugasimangalam, Raja C; Sadhale, Parag P; Sanyal, Kaustuv

    2013-08-01

    Candida albicans and Candida dubliniensis are diploid, predominantly asexual human-pathogenic yeasts. In this study, we constructed tetraploid (4n) strains of C. albicans of the same or different lineages by spheroplast fusion. Induction of chromosome loss in the tetraploid C. albicans generated diploid or near-diploid progeny strains but did not produce any haploid progeny. We also constructed stable heterotetraploid somatic hybrid strains (2n + 2n) of C. albicans and C. dubliniensis by spheroplast fusion. Heterodiploid (n + n) progeny hybrids were obtained after inducing chromosome loss in a stable heterotetraploid hybrid. To identify a subset of hybrid heterodiploid progeny strains carrying at least one copy of all chromosomes of both species, unique centromere sequences of various chromosomes of each species were used as markers in PCR analysis. The reduction of chromosome content was confirmed by a comparative genome hybridization (CGH) assay. The hybrid strains were found to be stably propagated. Chromatin immunoprecipitation (ChIP) assays with antibodies against centromere-specific histones (C. albicans Cse4/C. dubliniensis Cse4) revealed that the centromere identity of chromosomes of each species is maintained in the hybrid genomes of the heterotetraploid and heterodiploid strains. Thus, our results suggest that the diploid genome content is not obligatory for the survival of either C. albicans or C. dubliniensis. In keeping with the recent discovery of the existence of haploid C. albicans strains, the heterodiploid strains of our study can be excellent tools for further species-specific genome elimination, yielding true haploid progeny of C. albicans or C. dubliniensis in future.

  10. Drought-tolerant rice germplasm developed from an Oryza officinalis transformation-competent artificial chromosome clone.

    PubMed

    Liu, R; Zhang, H H; Chen, Z X; Shahid, M Q; Fu, X L; Liu, X D

    2015-10-29

    Oryza officinalis has proven to be a natural gene reservoir for the improvement of domesticated rice as it carries many desirable traits; however, the transfer of elite genes to cultivated rice by conventional hybridization has been a challenge for rice breeders. In this study, the conserved sequence of plant stress-related NAC transcription factors was selected as a probe to screen the O. officinalis genomic transformation-competent artificial chromosome library by Southern blot; 11 positive transformation-competent artificial chromosome clones were subsequently detected. By Agrobacterium-mediated transformation, an indica rice variety, Huajingxian 74 (HJX74), was transformed with a TAC clone harboring a NAC gene-positive genomic fragment from O. officinalis. Molecular analysis revealed that the O. officinalis genomic fragment was integrated into the genome of HJX74. The transgenic lines exhibited high tolerance to drought stress. Our results demonstrate that the introduction of stress-related transformation-competent artificial chromosome clones, coupled with a transgenic validation approach, is an effective method of transferring agronomically important genes from O. officinalis to cultivated rice.

  11. Overview on the Role of Advance Genomics in Conservation Biology of Endangered Species.

    PubMed

    Khan, Suliman; Nabi, Ghulam; Ullah, Muhammad Wajid; Yousaf, Muhammad; Manan, Sehrish; Siddique, Rabeea; Hou, Hongwei

    2016-01-01

    In the recent era, due to tremendous advancement in industrialization, pollution and other anthropogenic activities have created a serious scenario for biota survival. It has been reported that present biota is entering a "sixth" mass extinction, because of chronic exposure to anthropogenic activities. Various ex situ and in situ measures have been adopted for conservation of threatened and endangered plants and animal species; however, these have been limited due to various discrepancies associated with them. Current advancement in molecular technologies, especially, genomics, is playing a very crucial role in biodiversity conservation. Advance genomics helps in identifying the segments of genome responsible for adaptation. It can also improve our understanding about microevolution through a better understanding of selection, mutation, assertive matting, and recombination. Advance genomics helps in identifying genes that are essential for fitness and ultimately for developing modern and fast monitoring tools for endangered biodiversity. This review article focuses on the applications of advanced genomics mainly demographic, adaptive genetic variations, inbreeding, hybridization and introgression, and disease susceptibilities, in the conservation of threatened biota. In short, it provides the fundamentals for novice readers and advancement in genomics for the experts working for the conservation of endangered plant and animal species.

  12. Genome-wide analysis of codon usage bias in four sequenced cotton species.

    PubMed

    Wang, Liyuan; Xing, Huixian; Yuan, Yanchao; Wang, Xianlin; Saeed, Muhammad; Tao, Jincai; Feng, Wei; Zhang, Guihua; Song, Xianliang; Sun, Xuezhen

    2018-01-01

    Codon usage bias (CUB) is an important evolutionary feature in a genome which provides important information for studying organism evolution, gene function and exogenous gene expression. The CUB and its shaping factors in the nuclear genomes of four sequenced cotton species, G. arboreum (A2), G. raimondii (D5), G. hirsutum (AD1) and G. barbadense (AD2) were analyzed in the present study. The effective number of codons (ENC) analysis showed the CUB was weak in these four species and the four subgenomes of the two tetraploids. Codon composition analysis revealed these four species preferred to use pyrimidine-rich codons more frequently than purine-rich codons. Correlation analysis indicated that the base content at the third position of codons affect the degree of codon preference. PR2-bias plot and ENC-plot analyses revealed that the CUB patterns in these genomes and subgenomes were influenced by combined effects of translational selection, directional mutation and other factors. The translational selection (P2) analysis results, together with the non-significant correlation between GC12 and GC3, further revealed that translational selection played the dominant role over mutation pressure in the codon usage bias. Through relative synonymous codon usage (RSCU) analysis, we detected 25 high frequency codons preferred to end with T or A, and 31 low frequency codons inclined to end with C or G in these four species and four subgenomes. Finally, 19 to 26 optimal codons with 19 common ones were determined for each species and subgenomes, which preferred to end with A or T. We concluded that the codon usage bias was weak and the translation selection was the main shaping factor in nuclear genes of these four cotton genomes and four subgenomes.

  13. Effect of the Microstructure on Diffusion Bonded AA5083, AA6082 and AA7075 Aluminium Alloys

    NASA Astrophysics Data System (ADS)

    Venugopal, S.; Mahendran, G.

    2018-05-01

    Rolled plates of aluminium alloys AA5083, AA6082 and AA7075 of 5 mm thickness are joined by diffusion bonding at varied parameters. The microstructure evolution of AA5083, AA6082 and AA7075 aluminium alloys is characterized by Transmission Electron Microscopy (TEM). Metallurgical investigations and mechanical tests are also performed to correlate the results of the TEM investigations with the mechanical properties of the produced diffusion bonded joints. It is observed that the bonding and shear strength of the alloys increase with the increase in bonding temperature, due to the diffusion of micro-constituents in the interface. High temperature enhances the uniform distribution of secondary phase particles and reduces pore formation/defects in the bonded joints.

  14. Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects

    PubMed Central

    Kota, Madhuri; Daniell, Henry; Varma, Sam; Garczynski, Stephen F.; Gould, Fred; Moar, William J.

    1999-01-01

    Evolving levels of resistance in insects to the bioinsecticide Bacillus thuringiensis (Bt) can be dramatically reduced through the genetic engineering of chloroplasts in plants. When transgenic tobacco leaves expressing Cry2Aa2 protoxin in chloroplasts were fed to susceptible, Cry1A-resistant (20,000- to 40,000-fold) and Cry2Aa2-resistant (330- to 393-fold) tobacco budworm Heliothis virescens, cotton bollworm Helicoverpa zea, and the beet armyworm Spodoptera exigua, 100% mortality was observed against all insect species and strains. Cry2Aa2 was chosen for this study because of its toxicity to many economically important insect pests, relatively low levels of cross-resistance against Cry1A-resistant insects, and its expression as a protoxin instead of a toxin because of its relatively small size (65 kDa). Southern blot analysis confirmed stable integration of cry2Aa2 into all of the chloroplast genomes (5,000–10,000 copies per cell) of transgenic plants. Transformed tobacco leaves expressed Cry2Aa2 protoxin at levels between 2% and 3% of total soluble protein, 20- to 30-fold higher levels than current commercial nuclear transgenic plants. These results suggest that plants expressing high levels of a nonhomologous Bt protein should be able to overcome or at the very least, significantly delay, broad spectrum Bt-resistance development in the field. PMID:10051556

  15. The complete chloroplast genome sequence of Aconitum coreanum and Aconitum carmichaelii and comparative analysis with other Aconitum species

    PubMed Central

    Park, Inkyu; Kim, Wook-jin; Yang, Sungyu; Yeo, Sang-Min; Li, Hulin

    2017-01-01

    Aconitum species (belonging to the Ranunculaceae) are well known herbaceous medicinal ingredients and have great economic value in Asian countries. However, there are still limited genomic resources available for Aconitum species. In this study, we sequenced the chloroplast (cp) genomes of two Aconitum species, A. coreanum and A. carmichaelii, using the MiSeq platform. The two Aconitum chloroplast genomes were 155,880 and 157,040 bp in length, respectively, and exhibited LSC and SSC regions separated by a pair of inverted repeat regions. Both cp genomes had 38% GC content and contained 131 unique functional genes including 86 protein-coding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. The gene order, content, and orientation of the two Aconitum cp genomes exhibited the general structure of angiosperms, and were similar to those of other Aconitum species. Comparison of the cp genome structure and gene order with that of other Aconitum species revealed general contraction and expansion of the inverted repeat regions and single copy boundary regions. Divergent regions were also identified. In phylogenetic analysis, Aconitum species positon among the Ranunculaceae was determined with other family cp genomes in the Ranunculales. We obtained a barcoding target sequence in a divergent region, ndhC–trnV, and successfully developed a SCAR (sequence characterized amplified region) marker for discrimination of A. coreanum. Our results provide useful genetic information and a specific barcode for discrimination of Aconitum species. PMID:28863163

  16. The complete chloroplast genome sequence of Aconitum coreanum and Aconitum carmichaelii and comparative analysis with other Aconitum species.

    PubMed

    Park, Inkyu; Kim, Wook-Jin; Yang, Sungyu; Yeo, Sang-Min; Li, Hulin; Moon, Byeong Cheol

    2017-01-01

    Aconitum species (belonging to the Ranunculaceae) are well known herbaceous medicinal ingredients and have great economic value in Asian countries. However, there are still limited genomic resources available for Aconitum species. In this study, we sequenced the chloroplast (cp) genomes of two Aconitum species, A. coreanum and A. carmichaelii, using the MiSeq platform. The two Aconitum chloroplast genomes were 155,880 and 157,040 bp in length, respectively, and exhibited LSC and SSC regions separated by a pair of inverted repeat regions. Both cp genomes had 38% GC content and contained 131 unique functional genes including 86 protein-coding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. The gene order, content, and orientation of the two Aconitum cp genomes exhibited the general structure of angiosperms, and were similar to those of other Aconitum species. Comparison of the cp genome structure and gene order with that of other Aconitum species revealed general contraction and expansion of the inverted repeat regions and single copy boundary regions. Divergent regions were also identified. In phylogenetic analysis, Aconitum species positon among the Ranunculaceae was determined with other family cp genomes in the Ranunculales. We obtained a barcoding target sequence in a divergent region, ndhC-trnV, and successfully developed a SCAR (sequence characterized amplified region) marker for discrimination of A. coreanum. Our results provide useful genetic information and a specific barcode for discrimination of Aconitum species.

  17. Comparative genomics of Toll-like receptor signalling in five species

    PubMed Central

    Jann, Oliver C; King, Annemarie; Corrales, Nestor Lopez; Anderson, Susan I; Jensen, Kirsty; Ait-ali, Tahar; Tang, Haizhou; Wu, Chunhua; Cockett, Noelle E; Archibald, Alan L; Glass, Elizabeth J

    2009-01-01

    Background Over the last decade, several studies have identified quantitative trait loci (QTL) affecting variation of immune related traits in mammals. Recent studies in humans and mice suggest that part of this variation may be caused by polymorphisms in genes involved in Toll-like receptor (TLR) signalling. In this project, we used a comparative approach to investigate the importance of TLR-related genes in comparison with other immunologically relevant genes for resistance traits in five species by associating their genomic location with previously published immune-related QTL regions. Results We report the genomic localisation of TLR1-10 and ten associated signalling molecules in sheep and pig using in-silico and/or radiation hybrid (RH) mapping techniques and compare their positions with their annotated homologues in the human, cattle and mouse whole genome sequences. We also report medium-density RH maps for porcine chromosomes 8 and 13. A comparative analysis of the positions of previously published relevant QTLs allowed the identification of homologous regions that are associated with similar health traits in several species and which contain TLR related and other immunologically relevant genes. Additional evidence was gathered by examining relevant gene expression and association studies. Conclusion This comparative genomic approach identified eight genes as potentially causative genes for variations of health related traits. These include susceptibility to clinical mastitis in dairy cattle, general disease resistance in sheep, cattle, humans and mice, and tolerance to protozoan infection in cattle and mice. Four TLR-related genes (TLR1, 6, MyD88, IRF3) appear to be the most likely candidate genes underlying QTL regions which control the resistance to the same or similar pathogens in several species. Further studies are required to investigate the potential role of polymorphisms within these genes. PMID:19432955

  18. Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species

    PubMed Central

    2013-01-01

    Background The process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, acceptance of newer read technologies) and in their final output (composition of assembled sequence). More importantly, it remains largely unclear how to best assess the quality of assembled genome sequences. The Assemblathon competitions are intended to assess current state-of-the-art methods in genome assembly. Results In Assemblathon 2, we provided a variety of sequence data to be assembled for three vertebrate species (a bird, a fish, and snake). This resulted in a total of 43 submitted assemblies from 21 participating teams. We evaluated these assemblies using a combination of optical map data, Fosmid sequences, and several statistical methods. From over 100 different metrics, we chose ten key measures by which to assess the overall quality of the assemblies. Conclusions Many current genome assemblers produced useful assemblies, containing a significant representation of their genes and overall genome structure. However, the high degree of variability between the entries suggests that there is still much room for improvement in the field of genome assembly and that approaches which work well in assembling the genome of one species may not necessarily work well for another. PMID:23870653

  19. The genomes of two key bumblebee species with primitive eusocial organization.

    PubMed

    Sadd, Ben M; Barribeau, Seth M; Bloch, Guy; de Graaf, Dirk C; Dearden, Peter; Elsik, Christine G; Gadau, Jürgen; Grimmelikhuijzen, Cornelis J P; Hasselmann, Martin; Lozier, Jeffrey D; Robertson, Hugh M; Smagghe, Guy; Stolle, Eckart; Van Vaerenbergh, Matthias; Waterhouse, Robert M; Bornberg-Bauer, Erich; Klasberg, Steffen; Bennett, Anna K; Câmara, Francisco; Guigó, Roderic; Hoff, Katharina; Mariotti, Marco; Munoz-Torres, Monica; Murphy, Terence; Santesmasses, Didac; Amdam, Gro V; Beckers, Matthew; Beye, Martin; Biewer, Matthias; Bitondi, Márcia M G; Blaxter, Mark L; Bourke, Andrew F G; Brown, Mark J F; Buechel, Severine D; Cameron, Rossanah; Cappelle, Kaat; Carolan, James C; Christiaens, Olivier; Ciborowski, Kate L; Clarke, David F; Colgan, Thomas J; Collins, David H; Cridge, Andrew G; Dalmay, Tamas; Dreier, Stephanie; du Plessis, Louis; Duncan, Elizabeth; Erler, Silvio; Evans, Jay; Falcon, Tiago; Flores, Kevin; Freitas, Flávia C P; Fuchikawa, Taro; Gempe, Tanja; Hartfelder, Klaus; Hauser, Frank; Helbing, Sophie; Humann, Fernanda C; Irvine, Frano; Jermiin, Lars S; Johnson, Claire E; Johnson, Reed M; Jones, Andrew K; Kadowaki, Tatsuhiko; Kidner, Jonathan H; Koch, Vasco; Köhler, Arian; Kraus, F Bernhard; Lattorff, H Michael G; Leask, Megan; Lockett, Gabrielle A; Mallon, Eamonn B; Antonio, David S Marco; Marxer, Monika; Meeus, Ivan; Moritz, Robin F A; Nair, Ajay; Näpflin, Kathrin; Nissen, Inga; Niu, Jinzhi; Nunes, Francis M F; Oakeshott, John G; Osborne, Amy; Otte, Marianne; Pinheiro, Daniel G; Rossié, Nina; Rueppell, Olav; Santos, Carolina G; Schmid-Hempel, Regula; Schmitt, Björn D; Schulte, Christina; Simões, Zilá L P; Soares, Michelle P M; Swevers, Luc; Winnebeck, Eva C; Wolschin, Florian; Yu, Na; Zdobnov, Evgeny M; Aqrawi, Peshtewani K; Blankenburg, Kerstin P; Coyle, Marcus; Francisco, Liezl; Hernandez, Alvaro G; Holder, Michael; Hudson, Matthew E; Jackson, LaRonda; Jayaseelan, Joy; Joshi, Vandita; Kovar, Christie; Lee, Sandra L; Mata, Robert; Mathew, Tittu; Newsham, Irene F; Ngo, Robin; Okwuonu, Geoffrey; Pham, Christopher; Pu, Ling-Ling; Saada, Nehad; Santibanez, Jireh; Simmons, DeNard; Thornton, Rebecca; Venkat, Aarti; Walden, Kimberly K O; Wu, Yuan-Qing; Debyser, Griet; Devreese, Bart; Asher, Claire; Blommaert, Julie; Chipman, Ariel D; Chittka, Lars; Fouks, Bertrand; Liu, Jisheng; O'Neill, Meaghan P; Sumner, Seirian; Puiu, Daniela; Qu, Jiaxin; Salzberg, Steven L; Scherer, Steven E; Muzny, Donna M; Richards, Stephen; Robinson, Gene E; Gibbs, Richard A; Schmid-Hempel, Paul; Worley, Kim C

    2015-04-24

    The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation.

  20. A bicontinental origin of polyploid Australian/New Zealand Lepidium species (Brassicaceae)? Evidence from genomic in situ hybridization.

    PubMed

    Dierschke, Tom; Mandáková, Terezie; Lysak, Martin A; Mummenhoff, Klaus

    2009-09-01

    Incongruence between chloroplast and nuclear DNA phylogenies, and single additive nucleotide positions in internal transcribed spacer (ITS) sequences of polyploid Australian/New Zealand (NZ) Lepidium species have been used to suggest a bicontinental hybrid origin. This pattern was explained by two trans-oceanic dispersals of Lepidium species from California and Africa and subsequent hybridization followed by homogenization of the ribosomal DNA sequence either to the Californian (C-clade) or to the African ITS-type (A-clade) in two different ITS-lineages of Australian/NZ Lepidium polyploids. Genomic in situ hybridization (GISH) was used to unravel the genomic origin of polyploid Australian/NZ Lepidium species. Fluorescence in situ hybridization (FISH) with ribosomal DNA (rDNA) probes was applied to test the purported ITS evolution, and to facilitate chromosome counting in high-numbered polyploids. In Australian/NZ A-clade Lepidium polyploids, GISH identified African and Australian/NZ C-clade species as putative ancestral genomes. Neither the African nor the Californian genome were detected in Australian/NZ C-clade species and the Californian genome was not detected in Australian/NZ A-clade species. Five of the eight polyploid species (from 7x to 11x) displayed a diploid-like set of rDNA loci. Even the undecaploid species Lepidium muelleriferdinandi (2n = 11x = 88) showed only one pair of each rDNA repeat. In A-clade allopolyploids, in situ rDNA localization combined with GISH corroborated the presence of the African ITS-type. The nuclear genomes of African and Australian/NZ C-clade species were detected by GISH in allopolyploid Australian/NZ Lepidium species of the A-clade, supporting their hybrid origin. The presumed hybrid origin of Australian/NZ C-clade taxa could not be confirmed. Hence, it is assumed that Californian ancestral taxa experienced rapid radiation in Australia/NZ into extant C-clade polyploid taxa followed by hybridization with African species. As a

  1. Motif-independent prediction of a secondary metabolism gene cluster using comparative genomics: application to sequenced genomes of Aspergillus and ten other filamentous fungal species.

    PubMed

    Takeda, Itaru; Umemura, Myco; Koike, Hideaki; Asai, Kiyoshi; Machida, Masayuki

    2014-08-01

    Despite their biological importance, a significant number of genes for secondary metabolite biosynthesis (SMB) remain undetected due largely to the fact that they are highly diverse and are not expressed under a variety of cultivation conditions. Several software tools including SMURF and antiSMASH have been developed to predict fungal SMB gene clusters by finding core genes encoding polyketide synthase, nonribosomal peptide synthetase and dimethylallyltryptophan synthase as well as several others typically present in the cluster. In this work, we have devised a novel comparative genomics method to identify SMB gene clusters that is independent of motif information of the known SMB genes. The method detects SMB gene clusters by searching for a similar order of genes and their presence in nonsyntenic blocks. With this method, we were able to identify many known SMB gene clusters with the core genes in the genomic sequences of 10 filamentous fungi. Furthermore, we have also detected SMB gene clusters without core genes, including the kojic acid biosynthesis gene cluster of Aspergillus oryzae. By varying the detection parameters of the method, a significant difference in the sequence characteristics was detected between the genes residing inside the clusters and those outside the clusters. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  2. Sequencing of whole plastid genomes and nuclear ribosomal DNA of Diospyros species (Ebenaceae) endemic to New Caledonia: many species, little divergence

    PubMed Central

    Turner, Barbara; Paun, Ovidiu; Munzinger, Jérôme; Chase, Mark W.; Samuel, Rosabelle

    2016-01-01

    Background and Aims Some plant groups, especially on islands, have been shaped by strong ancestral bottlenecks and rapid, recent radiation of phenotypic characters. Single molecular markers are often not informative enough for phylogenetic reconstruction in such plant groups. Whole plastid genomes and nuclear ribosomal DNA (nrDNA) are viewed by many researchers as sources of information for phylogenetic reconstruction of groups in which expected levels of divergence in standard markers are low. Here we evaluate the usefulness of these data types to resolve phylogenetic relationships among closely related Diospyros species. Methods Twenty-two closely related Diospyros species from New Caledonia were investigated using whole plastid genomes and nrDNA data from low-coverage next-generation sequencing (NGS). Phylogenetic trees were inferred using maximum parsimony, maximum likelihood and Bayesian inference on separate plastid and nrDNA and combined matrices. Key Results The plastid and nrDNA sequences were, singly and together, unable to provide well supported phylogenetic relationships among the closely related New Caledonian Diospyros species. In the nrDNA, a 6-fold greater percentage of parsimony-informative characters compared with plastid DNA was found, but the total number of informative sites was greater for the much larger plastid DNA genomes. Combining the plastid and nuclear data improved resolution. Plastid results showed a trend towards geographical clustering of accessions rather than following taxonomic species. Conclusions In plant groups in which multiple plastid markers are not sufficiently informative, an investigation at the level of the entire plastid genome may also not be sufficient for detailed phylogenetic reconstruction. Sequencing of complete plastid genomes and nrDNA repeats seems to clarify some relationships among the New Caledonian Diospyros species, but the higher percentage of parsimony-informative characters in nrDNA compared with

  3. Genome-wide comparative analysis of NBS-encoding genes in four Gossypium species

    USDA-ARS?s Scientific Manuscript database

    Nucleotide binding site (NBS) genes encode a large family of disease resistance (R) proteins in plants. The availability of genomic data of the two diploid cotton species, Gossypium arboreum and Gossypium raimondii, and the two allotetraploid cotton species, Gossypium hirsutum (TM-1) and Gossypium ...

  4. Population Dynamics Among six Major Groups of the Oryza rufipogon Species Complex, Wild Relative of Cultivated Asian Rice.

    PubMed

    Kim, HyunJung; Jung, Janelle; Singh, Namrata; Greenberg, Anthony; Doyle, Jeff J; Tyagi, Wricha; Chung, Jong-Wook; Kimball, Jennifer; Hamilton, Ruaraidh Sackville; McCouch, Susan R

    2016-12-01

    Understanding population structure of the wild progenitor of Asian cultivated rice (O. sativa), the Oryza rufipogon species complex (ORSC), is of interest to plant breeders and contributes to our understanding of rice domestication. A collection of 286 diverse ORSC accessions was evaluated for nuclear variation using genotyping-by-sequencing (113,739 SNPs) and for chloroplast variation using Sanger sequencing (25 polymorphic sites). Six wild subpopulations were identified, with 25 % of accessions classified as admixed. Three of the wild groups were genetically and geographically closely related to the O. sativa subpopulations, indica, aus and japonica, and carried O. sativa introgressions; the other three wild groups were genetically divergent, had unique chloroplast haplotypes, and were located at the geographical extremes of the species range. The genetic subpopulations were significantly correlated (r 2  = 0.562) with traditional species designations, O. rufipogon (perennial) and O. nivara (annual), differentiated based on morphology and life history. A wild diversity panel of 95 purified (inbred) accessions was developed for future genetic studies. Our results suggest that the cultivated aus subpopulation is most closely related to an annual wild relative, japonica to a perennial wild relative, and indica to an admixed population of diverse annual and perennial wild ancestors. Gene flow between ORSC and O. sativa is common in regions where rice is cultivated, threatening the identity and diversity of wild ORSC populations. The three geographically isolated ORSC populations harbor variation rarely seen in cultivated rice and provide a unique window into the genetic composition of ancient rice subpopulations.

  5. The 9aaTAD Transactivation Domains: From Gal4 to p53.

    PubMed

    Piskacek, Martin; Havelka, Marek; Rezacova, Martina; Knight, Andrea

    2016-01-01

    The family of the Nine amino acid Transactivation Domain, 9aaTAD family, comprises currently over 40 members. The 9aaTAD domains are universally recognized by the transcriptional machinery from yeast to man. We had identified the 9aaTAD domains in the p53, Msn2, Pdr1 and B42 activators by our prediction algorithm. In this study, their competence to activate transcription as small peptides was proven. Not surprisingly, we elicited immense 9aaTAD divergence in hundreds of identified orthologs and numerous examples of the 9aaTAD species' convergence. We found unforeseen similarity of the mammalian p53 with yeast Gal4 9aaTAD domains. Furthermore, we identified artificial 9aaTAD domains generated accidentally by others. From an evolutionary perspective, the observed easiness to generate 9aaTAD transactivation domains indicates the natural advantage for spontaneous generation of transcription factors from DNA binding precursors.

  6. Characterization and Comparative Analysis of the Complete Chloroplast Genome of the Critically Endangered Species Streptocarpus teitensis (Gesneriaceae).

    PubMed

    Kyalo, Cornelius M; Gichira, Andrew W; Li, Zhi-Zhong; Saina, Josphat K; Malombe, Itambo; Hu, Guang-Wan; Wang, Qing-Feng

    2018-01-01

    Streptocarpus teitensis (Gesneriaceae) is an endemic species listed as critically endangered in the International Union for Conservation of Nature (IUCN) red list of threatened species. However, the sequence and genome information of this species remains to be limited. In this article, we present the complete chloroplast genome structure of Streptocarpus teitensis and its evolution inferred through comparative studies with other related species. S. teitensis displayed a chloroplast genome size of 153,207 bp, sheltering a pair of inverted repeats (IR) of 25,402 bp each split by small and large single-copy (SSC and LSC) regions of 18,300 and 84,103 bp, respectively. The chloroplast genome was observed to contain 116 unique genes, of which 80 are protein-coding, 32 are transfer RNAs, and four are ribosomal RNAs. In addition, a total of 196 SSR markers were detected in the chloroplast genome of Streptocarpus teitensis with mononucleotides (57.1%) being the majority, followed by trinucleotides (33.2%) and dinucleotides and tetranucleotides (both 4.1%), and pentanucleotides being the least (1.5%). Genome alignment indicated that this genome was comparable to other sequenced members of order Lamiales. The phylogenetic analysis suggested that Streptocarpus teitensis is closely related to Lysionotus pauciflorus and Dorcoceras hygrometricum .

  7. The complete mitochondrial genomes of five Eimeria species infecting domestic rabbits.

    PubMed

    Liu, Guo-Hua; Tian, Si-Qin; Cui, Ping; Fang, Su-Fang; Wang, Chun-Ren; Zhu, Xing-Quan

    2015-12-01

    Rabbit coccidiosis caused by members of the genus Eimeria can cause enormous economic impact worldwide, but the genetics, epidemiology and biology of these parasites remain poorly understood. In the present study, we sequenced and annotated the complete mitochondrial (mt) genomes of five Eimeria species that commonly infect the domestic rabbits. The complete mt genomes of Eimeria intestinalis, Eimeria flavescens, Eimeria media, Eimeria vejdovskyi and Eimeria irresidua were 6261bp, 6258bp, 6168bp, 6254bp, 6259bp in length, respectively. All of the mt genomes consist of 3 genes for proteins (cytb, cox1, and cox3), 14 gene fragments for the large subunit (LSU) rRNA and 11 gene fragments for the small subunit (SSU) rRNA, but no transfer RNA (tRNA) genes. The gene order of the mt genomes is similar to that of Plasmodium, but distinct from Haemosporida and Theileria. Phylogenetic analyses based on full nucleotide sequences using Bayesian analysis revealed that the monophyly of the Eimeria of rabbits was strongly statistically supported with a Bayesian posterior probabilities. These data provide novel mtDNA markers for studying the population genetics and molecular epidemiology of the Eimeria species, and should have implications for the molecular diagnosis, prevention and control of coccidiosis in rabbits. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Chloroplast genome resources and molecular markers differentiate rubber dandelion species from weedy relatives.

    PubMed

    Zhang, Yingxiao; Iaffaldano, Brian J; Zhuang, Xiaofeng; Cardina, John; Cornish, Katrina

    2017-02-02

    Rubber dandelion (Taraxacum kok-saghyz, TK) is being developed as a domestic source of natural rubber to meet increasing global demand. However, the domestication of TK is complicated by its colocation with two weedy dandelion species, Taraxacum brevicorniculatum (TB) and the common dandelion (Taraxacum officinale, TO). TB is often present as a seed contaminant within TK accessions, while TO is a pandemic weed, which may have the potential to hybridize with TK. To discriminate these species at the molecular level, and facilitate gene flow studies between the potential rubber crop, TK, and its weedy relatives, we generated genomic and marker resources for these three dandelion species. Complete chloroplast genome sequences of TK (151,338 bp), TO (151,299 bp), and TB (151,282 bp) were obtained using the Illumina GAII and MiSeq platforms. Chloroplast sequences were analyzed and annotated for all the three species. Phylogenetic analysis within Asteraceae showed that TK has a closer genetic distance to TB than to TO and Taraxacum species were most closely related to lettuce (Lactuca sativa). By sequencing multiple genotypes for each species and testing variants using gel-based methods, four chloroplast Single Nucleotide Polymorphism (SNP) variants were found to be fixed between TK and TO in large populations, and between TB and TO. Additionally, Expressed Sequence Tag (EST) resources developed for TO and TK permitted the identification of five nuclear species-specific SNP markers. The availability of chloroplast genomes of these three dandelion species, as well as chloroplast and nuclear molecular markers, will provide a powerful genetic resource for germplasm differentiation and purification, and the study of potential gene flow among Taraxacum species.

  9. Amplifying recombination genome-wide and reshaping crossover landscapes in Brassicas

    PubMed Central

    Falque, Matthieu; Trotoux, Gwenn; Eber, Frédérique; Nègre, Sylvie; Gilet, Marie; Huteau, Virginie; Lodé, Maryse; Jousseaume, Thibaut; Dechaumet, Sylvain; Morice, Jérôme; Coriton, Olivier; Rousseau-Gueutin, Mathieu

    2017-01-01

    Meiotic recombination by crossovers (COs) is tightly regulated, limiting its key role in producing genetic diversity. However, while COs are usually restricted in number and not homogenously distributed along chromosomes, we show here how to disrupt these rules in Brassica species by using allotriploid hybrids (AAC, 2n = 3x = 29), resulting from the cross between the allotetraploid rapeseed (B. napus, AACC, 2n = 4x = 38) and one of its diploid progenitors (B. rapa, AA, 2n = 2x = 20). We produced mapping populations from different genotypes of both diploid AA and triploid AAC hybrids, used as female and/or as male. Each population revealed nearly 3,000 COs that we studied with SNP markers well distributed along the A genome (on average 1 SNP per 1.25 Mbp). Compared to the case of diploids, allotriploid hybrids showed 1.7 to 3.4 times more overall COs depending on the sex of meiosis and the genetic background. Most surprisingly, we found that such a rise was always associated with (i) dramatic changes in the shape of recombination landscapes and (ii) a strong decrease of CO interference. Hybrids carrying an additional C genome exhibited COs all along the A chromosomes, even in the vicinity of centromeres that are deprived of COs in diploids as well as in most studied species. Moreover, in male allotriploid hybrids we found that Class I COs are mostly responsible for the changes of CO rates, landscapes and interference. These results offer the opportunity for geneticists and plant breeders to dramatically enhance the generation of diversity in Brassica species by disrupting the linkage drag coming from limits on number and distribution of COs. PMID:28493942

  10. The buffering capacity of stems: genetic architecture of nonstructural carbohydrates in cultivated Asian rice, Oryza sativa.

    PubMed

    Wang, Diane R; Han, Rongkui; Wolfrum, Edward J; McCouch, Susan R

    2017-07-01

    Harnessing stem carbohydrate dynamics in grasses offers an opportunity to help meet future demands for plant-based food, fiber and fuel production, but requires a greater understanding of the genetic controls that govern the synthesis, interconversion and transport of such energy reserves. We map out a blueprint of the genetic architecture of rice (Oryza sativa) stem nonstructural carbohydrates (NSC) at two critical developmental time-points using a subpopulation-specific genome-wide association approach on two diverse germplasm panels followed by quantitative trait loci (QTL) mapping in a biparental population. Overall, 26 QTL are identified; three are detected in multiple panels and are associated with starch-at-maturity, sucrose-at-maturity and NSC-at-heading. They tag OsHXK6 (rice hexokinase), ISA2 (rice isoamylase) and a tandem array of sugar transporters. This study provides the foundation for more in-depth molecular investigation to validate candidate genes underlying rice stem NSC and informs future comparative studies in other agronomically vital grass species. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  11. The buffering capacity of stems: genetic architecture of nonstructural carbohydrates in cultivated Asian rice, Oryza sativa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Diane R.; Han, Rongkui; Wolfrum, Edward J.

    Harnessing stem carbohydrate dynamics in grasses offers an opportunity to help meet future demands for plant-based food, fiber and fuel production, but requires a greater understanding of the genetic controls that govern the synthesis, interconversion and transport of such energy reserves. We map out a blueprint of the genetic architecture of rice ( Oryza sativa) stem nonstructural carbohydrates (NSC) at two critical developmental time-points using a subpopulation-specific genome-wide association approach on two diverse germplasm panels followed by quantitative trait loci (QTL) mapping in a biparental population. Overall, 26 QTL are identified; three are detected in multiple panels and are associatedmore » with starch-at-maturity, sucrose-at-maturity and NSC-at-heading. They tag OsHXK6 (rice hexokinase), ISA2 (rice isoamylase) and a tandem array of sugar transporters. Furthermore, this study provides the foundation for more in-depth molecular investigation to validate candidate genes underlying rice stem NSC and informs future comparative studies in other agronomically vital grass species.« less

  12. The buffering capacity of stems: genetic architecture of nonstructural carbohydrates in cultivated Asian rice, Oryza sativa

    DOE PAGES

    Wang, Diane R.; Han, Rongkui; Wolfrum, Edward J.; ...

    2017-05-30

    Harnessing stem carbohydrate dynamics in grasses offers an opportunity to help meet future demands for plant-based food, fiber and fuel production, but requires a greater understanding of the genetic controls that govern the synthesis, interconversion and transport of such energy reserves. We map out a blueprint of the genetic architecture of rice ( Oryza sativa) stem nonstructural carbohydrates (NSC) at two critical developmental time-points using a subpopulation-specific genome-wide association approach on two diverse germplasm panels followed by quantitative trait loci (QTL) mapping in a biparental population. Overall, 26 QTL are identified; three are detected in multiple panels and are associatedmore » with starch-at-maturity, sucrose-at-maturity and NSC-at-heading. They tag OsHXK6 (rice hexokinase), ISA2 (rice isoamylase) and a tandem array of sugar transporters. Furthermore, this study provides the foundation for more in-depth molecular investigation to validate candidate genes underlying rice stem NSC and informs future comparative studies in other agronomically vital grass species.« less

  13. Ancestral Chromosomal Blocks Are Triplicated in Brassiceae Species with Varying Chromosome Number and Genome Size1

    PubMed Central

    Lysak, Martin A.; Cheung, Kwok; Kitschke, Michaela; Bureš, Petr

    2007-01-01

    The paleopolyploid character of genomes of the economically important genus Brassica and closely related species (tribe Brassiceae) is still fairly controversial. Here, we report on the comparative painting analysis of block F of the crucifer Ancestral Karyotype (AK; n = 8), consisting of 24 conserved genomic blocks, in 10 species traditionally treated as members of the tribe Brassiceae. Three homeologous copies of block F were identified per haploid chromosome complement in Brassiceae species with 2n = 14, 18, 20, 32, and 36. In high-polyploid (n ≥ 30) species Crambe maritima (2n = 60), Crambe cordifolia (2n = 120), and Vella pseudocytisus (2n = 68), six, 12, and six copies of the analyzed block have been revealed, respectively. Homeologous regions resembled the ancestral structure of block F within the AK or were altered by inversions and/or translocations. In two species of the subtribe Zillineae, two of the three homeologous regions were combined via a reciprocal translocation onto one chromosome. Altogether, these findings provide compelling evidence of an ancient hexaploidization event and corresponding whole-genome triplication shared by the tribe Brassiceae. No direct relationship between chromosome number and genome size variation (1.2–2.5 pg/2C) has been found in Brassiceae species with 2n = 14 to 36. Only two homeologous copies of block F suggest a whole-genome duplication but not the triplication event in Orychophragmus violaceus (2n = 24), and confirm a phylogenetic position of this species outside the tribe Brassiceae. Chromosome duplication detected in Orychophragmus as well as chromosome rearrangements shared by Zillineae species demonstrate the usefulness of comparative cytogenetics for elucidation of phylogenetic relationships. PMID:17720758

  14. Genetic analysis of conidiation regulatory pathways in koji-mold Aspergillus oryzae.

    PubMed

    Ogawa, Masahiro; Tokuoka, Masafumi; Jin, Feng Jie; Takahashi, Tadashi; Koyama, Yasuji

    2010-01-01

    Conidia of koji-mold Aspergillus oryzae are often used as starters in the fermented food industry. However, little is known about conidiation regulation in A. oryzae. To improve the productivity of conidia in A. oryzae, it is necessary to understand conidiation regulation in the strain. Therefore, we analyzed the conidiation regulatory system in A. oryzae using 10 kinds of conidiation regulatory gene disruptants. The phenotypes of AorfluG, AorflbA, AorflbB, AorflbC, AorflbD, AorflbE, AorbrlA, AorabaA, AorwetA, and AorfadA mutants are almost identical to those of the corresponding mutants in Aspergillus nidulans. The results indicated that the functions of conidiation regulatory genes are almost conserved between A. oryzae and A. nidulans. However, the severely reduced conidiation phenotype of the AorfluG disruptant in A. oryzae differs from the phenotype of the corresponding mutant in Aspergillus fumigatus in air-exposed culture conditions. These results suggest that A. oryzae, A. nidulans, and A. fumigatus have a G-protein signaling pathway and brlA orthologs in common, and only A. fumigatus has particular brlA activation pathways that are independent of the fluG ortholog. Furthermore, the analyses of AorflbA disruptant and AorfadA dominant-active mutants implicated that AorFadA-mediated G-protein signaling suppresses vegetative growth of A. oryzae.

  15. Evidence for inter-specific recombination among the mitochondrial genomes of Fusarium species in the Gibberella fujikuroi complex.

    PubMed

    Fourie, Gerda; van der Merwe, Nicolaas A; Wingfield, Brenda D; Bogale, Mesfin; Tudzynski, Bettina; Wingfield, Michael J; Steenkamp, Emma T

    2013-09-08

    The availability of mitochondrial genomes has allowed for the resolution of numerous questions regarding the evolutionary history of fungi and other eukaryotes. In the Gibberella fujikuroi species complex, the exact relationships among the so-called "African", "Asian" and "American" Clades remain largely unresolved, irrespective of the markers employed. In this study, we considered the feasibility of using mitochondrial genes to infer the phylogenetic relationships among Fusarium species in this complex. The mitochondrial genomes of representatives of the three Clades (Fusarium circinatum, F. verticillioides and F. fujikuroi) were characterized and we determined whether or not the mitochondrial genomes of these fungi have value in resolving the higher level evolutionary relationships in the complex. Overall, the mitochondrial genomes of the three species displayed a high degree of synteny, with all the genes (protein coding genes, unique ORFs, ribosomal RNA and tRNA genes) in identical order and orientation, as well as introns that share similar positions within genes. The intergenic regions and introns generally contributed significantly to the size differences and diversity observed among these genomes. Phylogenetic analysis of the concatenated protein-coding dataset separated members of the Gibberella fujikuroi complex from other Fusarium species and suggested that F. fujikuroi ("Asian" Clade) is basal in the complex. However, individual mitochondrial gene trees were largely incongruent with one another and with the concatenated gene tree, because six distinct phylogenetic trees were recovered from the various single gene datasets. The mitochondrial genomes of Fusarium species in the Gibberella fujikuroi complex are remarkably similar to those of the previously characterized Fusarium species and Sordariomycetes. Despite apparently representing a single replicative unit, all of the genes encoded on the mitochondrial genomes of these fungi do not share the same

  16. Complete Genome Sequence of Zucchini Yellow Mosaic Virus Strain Kurdistan, Iran.

    PubMed

    Maghamnia, Hamid Reza; Hajizadeh, Mohammad; Azizi, Abdolbaset

    2018-03-01

    The complete genome sequence of Zucchini yellow mosaic virus strain Kurdistan (ZYMV-Kurdistan) infecting squash from Iran was determined from 13 overlapping fragments. Excluding the poly (A) tail, ZYMV-Kurdistan genome consisted of 9593 nucleotides (nt), with 138 and 211 nt at the 5' and 3' non-translated regions, respectively. It contained two open-reading frames (ORFs), the large ORF encoding a polyprotein of 3080 amino acids (aa) and the small overlapping ORF encoding a P3N-PIPO protein of 74 aa. This isolate had six unique aa differences compared to other ZYMV isolates and shared 79.6-98.8% identities with other ZYMV genome sequences at the nt level and 90.1-99% identities at the aa level. A phylogenetic tree of ZYMV complete genomic sequences showed that Iranian and Central European isolates are closely related and form a phylogenetically homogenous group. All values in the ratio of substitution rates at non-synonymous and synonymous sites ( d N / d S ) were below 1, suggestive of strong negative selection forces during ZYMV protein history. This is the first report of complete genome sequence information of the most prevalent virus in the west of Iran. This study helps our understanding of the genetic diversity of ZYMV isolates infecting cucurbit plants in Iran, virus evolution and epidemiology and can assist in designing better diagnostic tools.

  17. Complete genome sequence of Brachyspira intermedia reveals unique genomic features in Brachyspira species and phage-mediated horizontal gene transfer

    PubMed Central

    2011-01-01

    Background Brachyspira spp. colonize the intestines of some mammalian and avian species and show different degrees of enteropathogenicity. Brachyspira intermedia can cause production losses in chickens and strain PWS/AT now becomes the fourth genome to be completed in the genus Brachyspira. Results 15 classes of unique and shared genes were analyzed in B. intermedia, B. murdochii, B. hyodysenteriae and B. pilosicoli. The largest number of unique genes was found in B. intermedia and B. murdochii. This indicates the presence of larger pan-genomes. In general, hypothetical protein annotations are overrepresented among the unique genes. A 3.2 kb plasmid was found in B. intermedia strain PWS/AT. The plasmid was also present in the B. murdochii strain but not in nine other Brachyspira isolates. Within the Brachyspira genomes, genes had been translocated and also frequently switched between leading and lagging strands, a process that can be followed by different AT-skews in the third positions of synonymous codons. We also found evidence that bacteriophages were being remodeled and genes incorporated into them. Conclusions The accessory gene pool shapes species-specific traits. It is also influenced by reductive genome evolution and horizontal gene transfer. Gene-transfer events can cross both species and genus boundaries and bacteriophages appear to play an important role in this process. A mechanism for horizontal gene transfer appears to be gene translocations leading to remodeling of bacteriophages in combination with broad tropism. PMID:21816042

  18. Overview on the Role of Advance Genomics in Conservation Biology of Endangered Species

    PubMed Central

    Khan, Suliman; Nabi, Ghulam; Ullah, Muhammad Wajid; Yousaf, Muhammad; Manan, Sehrish; Siddique, Rabeea

    2016-01-01

    In the recent era, due to tremendous advancement in industrialization, pollution and other anthropogenic activities have created a serious scenario for biota survival. It has been reported that present biota is entering a “sixth” mass extinction, because of chronic exposure to anthropogenic activities. Various ex situ and in situ measures have been adopted for conservation of threatened and endangered plants and animal species; however, these have been limited due to various discrepancies associated with them. Current advancement in molecular technologies, especially, genomics, is playing a very crucial role in biodiversity conservation. Advance genomics helps in identifying the segments of genome responsible for adaptation. It can also improve our understanding about microevolution through a better understanding of selection, mutation, assertive matting, and recombination. Advance genomics helps in identifying genes that are essential for fitness and ultimately for developing modern and fast monitoring tools for endangered biodiversity. This review article focuses on the applications of advanced genomics mainly demographic, adaptive genetic variations, inbreeding, hybridization and introgression, and disease susceptibilities, in the conservation of threatened biota. In short, it provides the fundamentals for novice readers and advancement in genomics for the experts working for the conservation of endangered plant and animal species. PMID:28025636

  19. Comparative genomic analysis of the WRKY III gene family in populus, grape, arabidopsis and rice.

    PubMed

    Wang, Yiyi; Feng, Lin; Zhu, Yuxin; Li, Yuan; Yan, Hanwei; Xiang, Yan

    2015-09-08

    WRKY III genes have significant functions in regulating plant development and resistance. In plant, WRKY gene family has been studied in many species, however, there still lack a comprehensive analysis of WRKY III genes in the woody plant species poplar, three representative lineages of flowering plant species are incorporated in most analyses: Arabidopsis (a model plant for annual herbaceous dicots), grape (one model plant for perennial dicots) and Oryza sativa (a model plant for monocots). In this study, we identified 10, 6, 13 and 28 WRKY III genes in the genomes of Populus trichocarpa, grape (Vitis vinifera), Arabidopsis thaliana and rice (Oryza sativa), respectively. Phylogenetic analysis revealed that the WRKY III proteins could be divided into four clades. By microsynteny analysis, we found that the duplicated regions were more conserved between poplar and grape than Arabidopsis or rice. We dated their duplications by Ks analysis of Populus WRKY III genes and demonstrated that all the blocks were formed after the divergence of monocots and dicots. Strong purifying selection has played a key role in the maintenance of WRKY III genes in Populus. Tissue expression analysis of the WRKY III genes in Populus revealed that five were most highly expressed in the xylem. We also performed quantitative real-time reverse transcription PCR analysis of WRKY III genes in Populus treated with salicylic acid, abscisic acid and polyethylene glycol to explore their stress-related expression patterns. This study highlighted the duplication and diversification of the WRKY III gene family in Populus and provided a comprehensive analysis of this gene family in the Populus genome. Our results indicated that the majority of WRKY III genes of Populus was expanded by large-scale gene duplication. The expression pattern of PtrWRKYIII gene identified that these genes play important roles in the xylem during poplar growth and development, and may play crucial role in defense to drought

  20. Construction of brewing-wine Aspergillus oryzae pyrG- mutant by pyrG gene deletion and its application in homology transformation.

    PubMed

    Du, Yu; Xie, Guizhen; Yang, Chunfa; Fang, Baishan; Chen, Hongwen

    2014-06-01

    pyrG(-) host cells are indispensable for pyrG(-) based transformation system. Isolations of pyrG(-) host cells by random mutations are limited by time-consuming, unclear genetic background and potential interferences of homogenous recombination. The purpose of this study was to construct brewing-wine Aspergillus oryzae pyrG(-) mutant by site-directed mutation of pyrG gene deletion which would be used as a host for further transformation. pMD-pyrGAB, a vector carrying pyrG deletion cassette, was used to construct pyrG(-) mutant of A. oryzae. Three stable pyrG deletion mutants of A. oryzae were isolated by resistant to 5-fluoroorotic acid and confirmed by polymerase chain reaction analysis, indicating that pyrG was completely excised. The ΔpyrG mutants were applied as pyrG(-) host cells to disrupt xdh gene encoding xylitol dehydrogenase, which involves in xylitol production of A. oryzae. The xdh disruption mutants were efficiently constructed by transforming a pMD-pyrG-xdh disruption plasmid carrying pyrG, and the produced xylitol concentration of the Δxdh mutant was three times as much as that of the ΔpyrG recipient. Site-directed pyrG gene deletion is thus an effective way for the isolation of pyrG(-) host cells, and the established host-vector system could be applied in further functional genomics analysis and molecular breeding of A. oryzae. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  1. Presence and Functionality of Mating Type Genes in the Supposedly Asexual Filamentous Fungus Aspergillus oryzae

    PubMed Central

    Wada, Ryuta; Maruyama, Jun-ichi; Yamaguchi, Haruka; Yamamoto, Nanase; Wagu, Yutaka; Paoletti, Mathieu; Archer, David B.; Dyer, Paul S.

    2012-01-01

    The potential for sexual reproduction in Aspergillus oryzae was assessed by investigating the presence and functionality of MAT genes. Previous genome studies had identified a MAT1-1 gene in the reference strain RIB40. We now report the existence of a complementary MAT1-2 gene and the sequencing of an idiomorphic region from A. oryzae strain AO6. This allowed the development of a PCR diagnostic assay, which detected isolates of the MAT1-1 and MAT1-2 genotypes among 180 strains assayed, including industrial tane-koji isolates. Strains used for sake and miso production showed a near-1:1 ratio of the MAT1-1 and MAT1-2 mating types, whereas strains used for soy sauce production showed a significant bias toward the MAT1-2 mating type. MAT1-1 and MAT1-2 isogenic strains were then created by genetic manipulation of the resident idiomorph, and gene expression was compared by DNA microarray and quantitative real-time PCR (qRT-PCR) methodologies under conditions in which MAT genes were expressed. Thirty-three genes were found to be upregulated more than 10-fold in either the MAT1-1 host strain or the MAT1-2 gene replacement strain relative to each other, showing that both the MAT1-1 and MAT1-2 genes functionally regulate gene expression in A. oryzae in a mating type-dependent manner, the first such report for a supposedly asexual fungus. MAT1-1 expression specifically upregulated an α-pheromone precursor gene, but the functions of most of the genes affected were unknown. The results are consistent with a heterothallic breeding system in A. oryzae, and prospects for the discovery of a sexual cycle are discussed. PMID:22327593

  2. Nuclear genomes distinguish cryptic species suggested by their DNA barcodes and ecology

    PubMed Central

    Janzen, Daniel H.; Burns, John M.; Cong, Qian; Hallwachs, Winnie; Dapkey, Tanya; Manjunath, Ramya; Hajibabaei, Mehrdad; Hebert, Paul D. N.; Grishin, Nick V.

    2017-01-01

    DNA sequencing brings another dimension to exploration of biodiversity, and large-scale mitochondrial DNA cytochrome oxidase I barcoding has exposed many potential new cryptic species. Here, we add complete nuclear genome sequencing to DNA barcoding, ecological distribution, natural history, and subtleties of adult color pattern and size to show that a widespread neotropical skipper butterfly known as Udranomia kikkawai (Weeks) comprises three different species in Costa Rica. Full-length barcodes obtained from all three century-old Venezuelan syntypes of U. kikkawai show that it is a rainforest species occurring from Costa Rica to Brazil. The two new species are Udranomia sallydaleyae Burns, a dry forest denizen occurring from Costa Rica to Mexico, and Udranomia tomdaleyi Burns, which occupies the junction between the rainforest and dry forest and currently is known only from Costa Rica. Whereas the three species are cryptic, differing but slightly in appearance, their complete nuclear genomes totaling 15 million aligned positions reveal significant differences consistent with their 0.00065-Mbp (million base pair) mitochondrial barcodes and their ecological diversification. DNA barcoding of tropical insects reared by a massive inventory suggests that the presence of cryptic species is a widespread phenomenon and that further studies will substantially increase current estimates of insect species richness. PMID:28716927

  3. The complete mitochondrial genomes for three Toxocara species of human and animal health significance

    PubMed Central

    Li, Ming-Wei; Lin, Rui-Qing; Song, Hui-Qun; Wu, Xiang-Yun; Zhu, Xing-Quan

    2008-01-01

    Background Studying mitochondrial (mt) genomics has important implications for various fundamental areas, including mt biochemistry, physiology and molecular biology. In addition, mt genome sequences have provided useful markers for investigating population genetic structures, systematics and phylogenetics of organisms. Toxocara canis, Toxocara cati and Toxocara malaysiensis cause significant health problems in animals and humans. Although they are of importance in human and animal health, no information on the mt genomes for any of Toxocara species is available. Results The sizes of the entire mt genome are 14,322 bp for T. canis, 14029 bp for T. cati and 14266 bp for T. malaysiensis, respectively. These circular genomes are amongst the largest reported to date for all secernentean nematodes. Their relatively large sizes relate mainly to an increased length in the AT-rich region. The mt genomes of the three Toxocara species all encode 12 proteins, two ribosomal RNAs and 22 transfer RNA genes, but lack the ATP synthetase subunit 8 gene, which is consistent with all other species of Nematode studied to date, with the exception of Trichinella spiralis. All genes are transcribed in the same direction and have a nucleotide composition high in A and T, but low in G and C. The contents of A+T of the complete genomes are 68.57% for T. canis, 69.95% for T. cati and 68.86% for T. malaysiensis, among which the A+T for T. canis is the lowest among all nematodes studied to date. The AT bias had a significant effect on both the codon usage pattern and amino acid composition of proteins. The mt genome structures for three Toxocara species, including genes and non-coding regions, are in the same order as for Ascaris suum and Anisakis simplex, but differ from Ancylostoma duodenale, Necator americanus and Caenorhabditis elegans only in the location of the AT-rich region, whereas there are substantial differences when compared with Onchocerca volvulus,Dirofiliria immitis and

  4. The complete mitochondrial genomes for three Toxocara species of human and animal health significance.

    PubMed

    Li, Ming-Wei; Lin, Rui-Qing; Song, Hui-Qun; Wu, Xiang-Yun; Zhu, Xing-Quan

    2008-05-16

    Studying mitochondrial (mt) genomics has important implications for various fundamental areas, including mt biochemistry, physiology and molecular biology. In addition, mt genome sequences have provided useful markers for investigating population genetic structures, systematics and phylogenetics of organisms. Toxocara canis, Toxocara cati and Toxocara malaysiensis cause significant health problems in animals and humans. Although they are of importance in human and animal health, no information on the mt genomes for any of Toxocara species is available. The sizes of the entire mt genome are 14,322 bp for T. canis, 14029 bp for T. cati and 14266 bp for T. malaysiensis, respectively. These circular genomes are amongst the largest reported to date for all secernentean nematodes. Their relatively large sizes relate mainly to an increased length in the AT-rich region. The mt genomes of the three Toxocara species all encode 12 proteins, two ribosomal RNAs and 22 transfer RNA genes, but lack the ATP synthetase subunit 8 gene, which is consistent with all other species of Nematode studied to date, with the exception of Trichinella spiralis. All genes are transcribed in the same direction and have a nucleotide composition high in A and T, but low in G and C. The contents of A+T of the complete genomes are 68.57% for T. canis, 69.95% for T. cati and 68.86% for T. malaysiensis, among which the A+T for T. canis is the lowest among all nematodes studied to date. The AT bias had a significant effect on both the codon usage pattern and amino acid composition of proteins. The mt genome structures for three Toxocara species, including genes and non-coding regions, are in the same order as for Ascaris suum and Anisakis simplex, but differ from Ancylostoma duodenale, Necator americanus and Caenorhabditis elegans only in the location of the AT-rich region, whereas there are substantial differences when compared with Onchocerca volvulus,Dirofiliria immitis and Strongyloides stercoralis

  5. Development and characterization of rice mutants for functional genomic studies and breeding

    USDA-ARS?s Scientific Manuscript database

    Mutagenesis is a powerful tool for creating genetic materials for studying functional genomics, breeding, and understanding the molecular basis of disease resistance. Approximately 100,000 putative mutants of rice (Oryza sativa L.) have been generated with mutagens. Numerous mutant genes involved in...

  6. Genome wide re-sequencing of newly developed Rice Lines from common wild rice (Oryza rufipogon Griff.) for the identification of NBS-LRR genes.

    PubMed

    Liu, Wen; Ghouri, Fozia; Yu, Hang; Li, Xiang; Yu, Shuhong; Shahid, Muhammad Qasim; Liu, Xiangdong

    2017-01-01

    Common wild rice (Oryza rufipogon Griff.) is an important germplasm for rice breeding, which contains many resistance genes. Re-sequencing provides an unprecedented opportunity to explore the abundant useful genes at whole genome level. Here, we identified the nucleotide-binding site leucine-rich repeat (NBS-LRR) encoding genes by re-sequencing of two wild rice lines (i.e. Huaye 1 and Huaye 2) that were developed from common wild rice. We obtained 128 to 147 million reads with approximately 32.5-fold coverage depth, and uniquely covered more than 89.6% (> = 1 fold) of reference genomes. Two wild rice lines showed high SNP (single-nucleotide polymorphisms) variation rate in 12 chromosomes against the reference genomes of Nipponbare (japonica cultivar) and 93-11 (indica cultivar). InDels (insertion/deletion polymorphisms) count-length distribution exhibited normal distribution in the two lines, and most of the InDels were ranged from -5 to 5 bp. With reference to the Nipponbare genome sequence, we detected a total of 1,209,308 SNPs, 161,117 InDels and 4,192 SVs (structural variations) in Huaye 1, and 1,387,959 SNPs, 180,226 InDels and 5,305 SVs in Huaye 2. A total of 44.9% and 46.9% genes exhibited sequence variations in two wild rice lines compared to the Nipponbare and 93-11 reference genomes, respectively. Analysis of NBS-LRR mutant candidate genes showed that they were mainly distributed on chromosome 11, and NBS domain was more conserved than LRR domain in both wild rice lines. NBS genes depicted higher levels of genetic diversity in Huaye 1 than that found in Huaye 2. Furthermore, protein-protein interaction analysis showed that NBS genes mostly interacted with the cytochrome C protein (Os05g0420600, Os01g0885000 and BGIOSGA038922), while some NBS genes interacted with heat shock protein, DNA-binding activity, Phosphoinositide 3-kinase and a coiled coil region. We explored abundant NBS-LRR encoding genes in two common wild rice lines through genome wide re

  7. Genome wide re-sequencing of newly developed Rice Lines from common wild rice (Oryza rufipogon Griff.) for the identification of NBS-LRR genes

    PubMed Central

    Yu, Hang; Li, Xiang; Yu, Shuhong; Shahid, Muhammad Qasim

    2017-01-01

    Common wild rice (Oryza rufipogon Griff.) is an important germplasm for rice breeding, which contains many resistance genes. Re-sequencing provides an unprecedented opportunity to explore the abundant useful genes at whole genome level. Here, we identified the nucleotide-binding site leucine-rich repeat (NBS-LRR) encoding genes by re-sequencing of two wild rice lines (i.e. Huaye 1 and Huaye 2) that were developed from common wild rice. We obtained 128 to 147 million reads with approximately 32.5-fold coverage depth, and uniquely covered more than 89.6% (> = 1 fold) of reference genomes. Two wild rice lines showed high SNP (single-nucleotide polymorphisms) variation rate in 12 chromosomes against the reference genomes of Nipponbare (japonica cultivar) and 93–11 (indica cultivar). InDels (insertion/deletion polymorphisms) count-length distribution exhibited normal distribution in the two lines, and most of the InDels were ranged from -5 to 5 bp. With reference to the Nipponbare genome sequence, we detected a total of 1,209,308 SNPs, 161,117 InDels and 4,192 SVs (structural variations) in Huaye 1, and 1,387,959 SNPs, 180,226 InDels and 5,305 SVs in Huaye 2. A total of 44.9% and 46.9% genes exhibited sequence variations in two wild rice lines compared to the Nipponbare and 93–11 reference genomes, respectively. Analysis of NBS-LRR mutant candidate genes showed that they were mainly distributed on chromosome 11, and NBS domain was more conserved than LRR domain in both wild rice lines. NBS genes depicted higher levels of genetic diversity in Huaye 1 than that found in Huaye 2. Furthermore, protein-protein interaction analysis showed that NBS genes mostly interacted with the cytochrome C protein (Os05g0420600, Os01g0885000 and BGIOSGA038922), while some NBS genes interacted with heat shock protein, DNA-binding activity, Phosphoinositide 3-kinase and a coiled coil region. We explored abundant NBS-LRR encoding genes in two common wild rice lines through genome wide re

  8. Development and cross-species/genera transferability of microsatellite markers discovered using 454 genome sequencing in chokecherry (Prunus virginiana L.).

    PubMed

    Wang, Hongxia; Walla, James A; Zhong, Shaobin; Huang, Danqiong; Dai, Wenhao

    2012-11-01

    Chokecherry (Prunus virginiana L.) (2n = 4x = 32) is a unique Prunus species for both genetics and disease-resistance research due to its tetraploid nature and X-disease resistance. However, no genetic and genomic information on chokecherry is available. A partial chokecherry genome was sequenced using Roche 454 sequencing technology. A total of 145,094 reads covering 4.8 Mbp of the chokecherry genome were generated and 15,113 contigs were assembled, of which 11,675 contigs were larger than 100 bp in size. A total of 481 SSR loci were identified from 234 (out of 11,675) contigs and 246 polymerase chain reaction (PCR) primer pairs were designed. Of 246 primers, 212 (86.2 %) effectively produced amplification from the genomic DNA of chokecherry. All 212 amplifiable chokecherry primers were used to amplify genomic DNA from 11 other rosaceous species (sour cherry, sweet cherry, black cherry, peach, apricot, plum, apple, crabapple, pear, juneberry, and raspberry). Thus, chokecherry SSR primers can be transferable across Prunus species and other rosaceous species. An average of 63.2 and 58.7 % of amplifiable chokecherry primers amplified DNA from cherry and other Prunus species, respectively, while 47.2 % of amplifiable chokecherry primers amplified DNA from other rosaceous species. Using random genome sequence data generated from next-generation sequencing technology to identify microsatellite loci appears to be rapid and cost-efficient, particularly for species with no sequence information available. Sequence information and confirmed transferability of the identified chokecherry SSRs among species will be valuable for genetic research in Prunus and other rosaceous species. Key message A total of 246 SSR primers were identified from chokecherry genome sequences. Of which, 212 were confirmed amplifiable both in chokecherry and other 11 other rosaceous species.

  9. Draft Nuclear Genome, Complete Chloroplast Genome, and Complete Mitochondrial Genome for the Biofuel/Bioproduct Feedstock Species Scenedesmus obliquus Strain DOE0152z

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starkenburg, S. R.; Polle, J. E. W.; Hovde, B.

    ABSTRACT The green alga Scenedesmus obliquus is an emerging platform species for the industrial production of biofuels. Here, we report the draft assembly and annotation for the nuclear, plastid, and mitochondrial genomes of S. obliquus strain DOE0152z.

  10. Draft Nuclear Genome, Complete Chloroplast Genome, and Complete Mitochondrial Genome for the Biofuel/Bioproduct Feedstock Species Scenedesmus obliquus Strain DOE0152z

    DOE PAGES

    Starkenburg, S. R.; Polle, J. E. W.; Hovde, B.; ...

    2017-08-10

    ABSTRACT The green alga Scenedesmus obliquus is an emerging platform species for the industrial production of biofuels. Here, we report the draft assembly and annotation for the nuclear, plastid, and mitochondrial genomes of S. obliquus strain DOE0152z.

  11. Genomic analysis of three Bifidobacterium species isolated from the calf gastrointestinal tract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, William J.; Cookson, Adrian L.; Altermann, Eric

    Ruminant animals contribute significantly to the global value of agriculture and rely on a complex microbial community for efficient digestion. However, little is known of how this microbial-host relationship develops and is maintained. To begin to address this, we have determined the ability of three Bifidobacterium species isolated from the faeces of newborn calves to grow on carbohydrates typical of a newborn ruminant diet. Genome sequences have been determined for these bacteria with analysis of the genomes providing insights into the host association and identification of several genes that may mediate interactions with the ruminant gastrointestinal tract. The present studymore » provides a starting point from which we can define the role of potential beneficial microbes in the nutrition of young ruminants and begin to influence the interactions between the microbiota and the host. The differences observed in genomic content hint at niche partitioning among the bifidobacterial species analysed and the different strategies they employ to successfully adapt to this habitat.« less

  12. Genomic analysis of three Bifidobacterium species isolated from the calf gastrointestinal tract

    DOE PAGES

    Kelly, William J.; Cookson, Adrian L.; Altermann, Eric; ...

    2016-07-29

    Ruminant animals contribute significantly to the global value of agriculture and rely on a complex microbial community for efficient digestion. However, little is known of how this microbial-host relationship develops and is maintained. To begin to address this, we have determined the ability of three Bifidobacterium species isolated from the faeces of newborn calves to grow on carbohydrates typical of a newborn ruminant diet. Genome sequences have been determined for these bacteria with analysis of the genomes providing insights into the host association and identification of several genes that may mediate interactions with the ruminant gastrointestinal tract. The present studymore » provides a starting point from which we can define the role of potential beneficial microbes in the nutrition of young ruminants and begin to influence the interactions between the microbiota and the host. The differences observed in genomic content hint at niche partitioning among the bifidobacterial species analysed and the different strategies they employ to successfully adapt to this habitat.« less

  13. The ReproGenomics Viewer: an integrative cross-species toolbox for the reproductive science community

    PubMed Central

    Darde, Thomas A.; Sallou, Olivier; Becker, Emmanuelle; Evrard, Bertrand; Monjeaud, Cyril; Le Bras, Yvan; Jégou, Bernard; Collin, Olivier; Rolland, Antoine D.; Chalmel, Frédéric

    2015-01-01

    We report the development of the ReproGenomics Viewer (RGV), a multi- and cross-species working environment for the visualization, mining and comparison of published omics data sets for the reproductive science community. The system currently embeds 15 published data sets related to gametogenesis from nine model organisms. Data sets have been curated and conveniently organized into broad categories including biological topics, technologies, species and publications. RGV's modular design for both organisms and genomic tools enables users to upload and compare their data with that from the data sets embedded in the system in a cross-species manner. The RGV is freely available at http://rgv.genouest.org. PMID:25883147

  14. Variability among Cucurbitaceae species (melon, cucumber and watermelon) in a genomic region containing a cluster of NBS-LRR genes.

    PubMed

    Morata, Jordi; Puigdomènech, Pere

    2017-02-08

    Cucurbitaceae species contain a significantly lower number of genes coding for proteins with similarity to plant resistance genes belonging to the NBS-LRR family than other plant species of similar genome size. A large proportion of these genes are organized in clusters that appear to be hotspots of variability. The genomes of the Cucurbitaceae species measured until now are intermediate in size (between 350 and 450 Mb) and they apparently have not undergone any genome duplications beside those at the origin of eudicots. The cluster containing the largest number of NBS-LRR genes has previously been analyzed in melon and related species and showed a high degree of interspecific and intraspecific variability. It was of interest to study whether similar behavior occurred in other cluster of the same family of genes. The cluster of NBS-LRR genes located in melon chromosome 9 was analyzed and compared with the syntenic regions in other cucurbit genomes. This is the second cluster in number within this species and it contains nine sequences with a NBS-LRR annotation including two genes, Fom1 and Prv, providing resistance against Fusarium and Ppapaya ring-spot virus (PRSV). The variability within the melon species appears to consist essentially of single nucleotide polymorphisms. Clusters of similar genes are present in the syntenic regions of the two species of Cucurbitaceae that were sequenced, cucumber and watermelon. Most of the genes in the syntenic clusters can be aligned between species and a hypothesis of generation of the cluster is proposed. The number of genes in the watermelon cluster is similar to that in melon while a higher number of genes (12) is present in cucumber, a species with a smaller genome than melon. After comparing genome resequencing data of 115 cucumber varieties, deletion of a group of genes is observed in a group of varieties of Indian origin. Clusters of genes coding for NBS-LRR proteins in cucurbits appear to have specific variability in

  15. Os11Gsk gene from a wild rice, Oryza rufipogon improves yield in rice.

    PubMed

    Thalapati, Sudhakar; Batchu, Anil K; Neelamraju, Sarla; Ramanan, Rajeshwari

    2012-06-01

    Chromosomal segments from wild rice species Oryza rufipogon, introgressed into an elite indica rice restorer line (KMR3) using molecular markers, resulted in significant increase in yield. Here we report the transcriptome analysis of flag leaves and fully emerged young panicles of one of the high yielding introgression lines IL50-7 in comparison to KMR3. A 66-fold upregulated gene Os11Gsk, which showed no transcript in KMR3 was highly expressed in O. rufipogon and IL50-7. A 5-kb genomic region including Os11Gsk and its flanking regions could be PCR amplified only from IL50-7, O. rufipogon, japonica varieties of rice-Nipponbare and Kitaake but not from the indica varieties, KMR3 and Taichung Native-1. Three sister lines of IL50-7 yielding higher than KMR3 showed presence of Os11Gsk, whereas the gene was absent in three other ILs from the same cross having lower yield than KMR3, indicating an association of the presence of Os11Gsk with high yield. Southern analysis showed additional bands in the genomic DNA of O. rufipogon and IL50-7 with Os11Gsk probe. Genomic sequence analysis of ten highly co-expressed differentially regulated genes revealed that two upregulated genes in IL50-7 were derived from O. rufipogon and most of the downregulated genes were either from KMR3 or common to KMR3, IL50-7, and O. rufipogon. Thus, we show that Os11Gsk is a wild rice-derived gene introduced in KMR3 background and increases yield either by regulating expression of functional genes sharing homology with it or by causing epigenetic modifications in the introgression line.

  16. Bioconversion of Capsaicin by Aspergillus oryzae.

    PubMed

    Lee, Minji; Cho, Jeong-Yong; Lee, Yu Geon; Lee, Hyoung Jae; Lim, Seong-Il; Park, So-Lim; Moon, Jae-Hak

    2015-07-08

    This study identified metabolites of capsaicin bioconverted by Aspergillus oryzae, which is generally used for mass production of gochujang prepared by fermenting red pepper powder in Korea. A. oryzae was incubated with capsaicin in potato dextrose broth. Capsaicin decreased depending on the incubation period, but new metabolites increased. Five capsaicin metabolites purified from the ethyl acetate fraction of the capsaicin culture were identified as N-vanillylcarbamoylbutyric acid, N-vanillyl-9-hydroxy-8-methyloctanamide, ω-hydroxycapsaicin, 8-methyl-N-vanillylcarbamoyl-6(E)-octenoic acid, and 2-methyl-N-vanillylcarbamoyl-6(Z)-octenoic acid by nuclear magnetic resonance (NMR) and mass spectrometry (MS). The capsaicin metabolites in gochujang were confirmed and quantitated by selective multiple reaction monitoring detection after liquid chromatography electrospray ionization MS using the isolated compounds as external standards. On the basis of the structures of the capsaicin metabolites, it is proposed that capsaicin metabolites were converted by A. oryzae by ω-hydroxylation, alcohol oxidation, hydrogenation, isomerization, and α- and/or β-oxidation.

  17. A genomics based discovery of secondary metabolite biosynthetic gene clusters in Aspergillus ustus.

    PubMed

    Pi, Borui; Yu, Dongliang; Dai, Fangwei; Song, Xiaoming; Zhu, Congyi; Li, Hongye; Yu, Yunsong

    2015-01-01

    Secondary metabolites (SMs) produced by Aspergillus have been extensively studied for their crucial roles in human health, medicine and industrial production. However, the resulting information is almost exclusively derived from a few model organisms, including A. nidulans and A. fumigatus, but little is known about rare pathogens. In this study, we performed a genomics based discovery of SM biosynthetic gene clusters in Aspergillus ustus, a rare human pathogen. A total of 52 gene clusters were identified in the draft genome of A. ustus 3.3904, such as the sterigmatocystin biosynthesis pathway that was commonly found in Aspergillus species. In addition, several SM biosynthetic gene clusters were firstly identified in Aspergillus that were possibly acquired by horizontal gene transfer, including the vrt cluster that is responsible for viridicatumtoxin production. Comparative genomics revealed that A. ustus shared the largest number of SM biosynthetic gene clusters with A. nidulans, but much fewer with other Aspergilli like A. niger and A. oryzae. These findings would help to understand the diversity and evolution of SM biosynthesis pathways in genus Aspergillus, and we hope they will also promote the development of fungal identification methodology in clinic.

  18. A Genomics Based Discovery of Secondary Metabolite Biosynthetic Gene Clusters in Aspergillus ustus

    PubMed Central

    Pi, Borui; Yu, Dongliang; Dai, Fangwei; Song, Xiaoming; Zhu, Congyi; Li, Hongye; Yu, Yunsong

    2015-01-01

    Secondary metabolites (SMs) produced by Aspergillus have been extensively studied for their crucial roles in human health, medicine and industrial production. However, the resulting information is almost exclusively derived from a few model organisms, including A. nidulans and A. fumigatus, but little is known about rare pathogens. In this study, we performed a genomics based discovery of SM biosynthetic gene clusters in Aspergillus ustus, a rare human pathogen. A total of 52 gene clusters were identified in the draft genome of A. ustus 3.3904, such as the sterigmatocystin biosynthesis pathway that was commonly found in Aspergillus species. In addition, several SM biosynthetic gene clusters were firstly identified in Aspergillus that were possibly acquired by horizontal gene transfer, including the vrt cluster that is responsible for viridicatumtoxin production. Comparative genomics revealed that A. ustus shared the largest number of SM biosynthetic gene clusters with A. nidulans, but much fewer with other Aspergilli like A. niger and A. oryzae. These findings would help to understand the diversity and evolution of SM biosynthesis pathways in genus Aspergillus, and we hope they will also promote the development of fungal identification methodology in clinic. PMID:25706180

  19. Ethylene is not involved in adaptive responses to flooding in the Amazonian wild rice species Oryza grandiglumis.

    PubMed

    Okishio, Takuma; Sasayama, Daisuke; Hirano, Tatsuya; Akimoto, Masahiro; Itoh, Kazuyuki; Azuma, Tetsushi

    2015-02-01

    The Amazonian wild rice Oryza grandiglumis has two contrasting adaptation mechanisms to flooding submergence: a quiescence response to complete submergence at the seedling stage and an escape response based on internodal elongation to partial submergence at the mature stage. We investigated possible factors that trigger these responses. In stem segments excised from mature O. grandiglumis plants, complete submergence only slightly promoted internodal elongation with increased ethylene levels in the internodes, while partial submergence substantially promoted internodal elongation without increased ethylene levels in the internodes. Incubation of non-submerged stem segments under a continuous flow of humidified ethylene-free air promoted internodal elongation to the same extent as that observed for partially submerged segments. Applied ethylene had little effect on the internodal elongation of non-submerged segments irrespective of humidity conditions. These results indicate that the enhanced internodal elongation of submerged O. grandiglumis plants is not triggered by ethylene accumulated during submergence but by the moist surroundings provided by submergence. The growth of shoots in O. grandiglumis seedlings was not promoted by ethylene or complete submergence, as is the case in O. sativa cultivars possessing the submergence-tolerant gene SUB1A. However, because the genome of O. grandiglumis lacks the SUB1A gene, the quiescence response of O. grandiglumis seedlings to complete submergence may be regulated by a mechanism distinct from that involved in the response of submergence-tolerant O. sativa cultivars. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. Next generation haplotyping to decipher nuclear genomic interspecific admixture in Citrus species: analysis of chromosome 2.

    PubMed

    Curk, Franck; Ancillo, Gema; Garcia-Lor, Andres; Luro, François; Perrier, Xavier; Jacquemoud-Collet, Jean-Pierre; Navarro, Luis; Ollitrault, Patrick

    2014-12-29

    The most economically important Citrus species originated by natural interspecific hybridization between four ancestral taxa (Citrus reticulata, Citrus maxima, Citrus medica, and Citrus micrantha) and from limited subsequent interspecific recombination as a result of apomixis and vegetative propagation. Such reticulate evolution coupled with vegetative propagation results in mosaic genomes with large chromosome fragments from the basic taxa in frequent interspecific heterozygosity. Modern breeding of these species is hampered by their complex heterozygous genomic structures that determine species phenotype and are broken by sexual hybridisation. Nevertheless, a large amount of diversity is present in the citrus gene pool, and breeding to allow inclusion of desirable traits is of paramount importance. However, the efficient mobilization of citrus biodiversity in innovative breeding schemes requires previous understanding of Citrus origins and genomic structures. Haplotyping of multiple gene fragments along the whole genome is a powerful approach to reveal the admixture genomic structure of current species and to resolve the evolutionary history of the gene pools. In this study, the efficiency of parallel sequencing with 454 methodology to decipher the hybrid structure of modern citrus species was assessed by analysis of 16 gene fragments on chromosome 2. 454 amplicon libraries were established using the Fluidigm array system for 48 genotypes and 16 gene fragments from chromosome 2. Haplotypes were established from the reads of each accession and phylogenetic analyses were performed using the haplotypic data for each gene fragment. The length of 454 reads and the level of differentiation between the ancestral taxa of modern citrus allowed efficient haplotype phylogenetic assignations for 12 of the 16 gene fragments. The analysis of the mixed genomic structure of modern species and cultivars (i) revealed C. maxima introgressions in modern mandarins, (ii) was

  1. High-throughput SNP genotyping in the highly heterozygous genome of Eucalyptus: assay success, polymorphism and transferability across species

    PubMed Central

    2011-01-01

    Background High-throughput SNP genotyping has become an essential requirement for molecular breeding and population genomics studies in plant species. Large scale SNP developments have been reported for several mainstream crops. A growing interest now exists to expand the speed and resolution of genetic analysis to outbred species with highly heterozygous genomes. When nucleotide diversity is high, a refined diagnosis of the target SNP sequence context is needed to convert queried SNPs into high-quality genotypes using the Golden Gate Genotyping Technology (GGGT). This issue becomes exacerbated when attempting to transfer SNPs across species, a scarcely explored topic in plants, and likely to become significant for population genomics and inter specific breeding applications in less domesticated and less funded plant genera. Results We have successfully developed the first set of 768 SNPs assayed by the GGGT for the highly heterozygous genome of Eucalyptus from a mixed Sanger/454 database with 1,164,695 ESTs and the preliminary 4.5X draft genome sequence for E. grandis. A systematic assessment of in silico SNP filtering requirements showed that stringent constraints on the SNP surrounding sequences have a significant impact on SNP genotyping performance and polymorphism. SNP assay success was high for the 288 SNPs selected with more rigorous in silico constraints; 93% of them provided high quality genotype calls and 71% of them were polymorphic in a diverse panel of 96 individuals of five different species. SNP reliability was high across nine Eucalyptus species belonging to three sections within subgenus Symphomyrtus and still satisfactory across species of two additional subgenera, although polymorphism declined as phylogenetic distance increased. Conclusions This study indicates that the GGGT performs well both within and across species of Eucalyptus notwithstanding its nucleotide diversity ≥2%. The development of a much larger array of informative SNPs across

  2. Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii.

    PubMed

    Funk, Helena T; Berg, Sabine; Krupinska, Karin; Maier, Uwe G; Krause, Kirsten

    2007-08-22

    The holoparasitic plant genus Cuscuta comprises species with photosynthetic capacity and functional chloroplasts as well as achlorophyllous and intermediate forms with restricted photosynthetic activity and degenerated chloroplasts. Previous data indicated significant differences with respect to the plastid genome coding capacity in different Cuscuta species that could correlate with their photosynthetic activity. In order to shed light on the molecular changes accompanying the parasitic lifestyle, we sequenced the plastid chromosomes of the two species Cuscuta reflexa and Cuscuta gronovii. Both species are capable of performing photosynthesis, albeit with varying efficiencies. Together with the plastid genome of Epifagus virginiana, an achlorophyllous parasitic plant whose plastid genome has been sequenced, these species represent a series of progression towards total dependency on the host plant, ranging from reduced levels of photosynthesis in C. reflexa to a restricted photosynthetic activity and degenerated chloroplasts in C. gronovii to an achlorophyllous state in E. virginiana. The newly sequenced plastid genomes of C. reflexa and C. gronovii reveal that the chromosome structures are generally very similar to that of non-parasitic plants, although a number of species-specific insertions, deletions (indels) and sequence inversions were identified. However, we observed a gradual adaptation of the plastid genome to the different degrees of parasitism. The changes are particularly evident in C. gronovii and include (a) the parallel losses of genes for the subunits of the plastid-encoded RNA polymerase and the corresponding promoters from the plastid genome, (b) the first documented loss of the gene for a putative splicing factor, MatK, from the plastid genome and (c) a significant reduction of RNA editing. Overall, the comparative genomic analysis of plastid DNA from parasitic plants indicates a bias towards a simplification of the plastid gene expression

  3. Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii

    PubMed Central

    Funk, Helena T; Berg, Sabine; Krupinska, Karin; Maier, Uwe G; Krause, Kirsten

    2007-01-01

    Background The holoparasitic plant genus Cuscuta comprises species with photosynthetic capacity and functional chloroplasts as well as achlorophyllous and intermediate forms with restricted photosynthetic activity and degenerated chloroplasts. Previous data indicated significant differences with respect to the plastid genome coding capacity in different Cuscuta species that could correlate with their photosynthetic activity. In order to shed light on the molecular changes accompanying the parasitic lifestyle, we sequenced the plastid chromosomes of the two species Cuscuta reflexa and Cuscuta gronovii. Both species are capable of performing photosynthesis, albeit with varying efficiencies. Together with the plastid genome of Epifagus virginiana, an achlorophyllous parasitic plant whose plastid genome has been sequenced, these species represent a series of progression towards total dependency on the host plant, ranging from reduced levels of photosynthesis in C. reflexa to a restricted photosynthetic activity and degenerated chloroplasts in C. gronovii to an achlorophyllous state in E. virginiana. Results The newly sequenced plastid genomes of C. reflexa and C. gronovii reveal that the chromosome structures are generally very similar to that of non-parasitic plants, although a number of species-specific insertions, deletions (indels) and sequence inversions were identified. However, we observed a gradual adaptation of the plastid genome to the different degrees of parasitism. The changes are particularly evident in C. gronovii and include (a) the parallel losses of genes for the subunits of the plastid-encoded RNA polymerase and the corresponding promoters from the plastid genome, (b) the first documented loss of the gene for a putative splicing factor, MatK, from the plastid genome and (c) a significant reduction of RNA editing. Conclusion Overall, the comparative genomic analysis of plastid DNA from parasitic plants indicates a bias towards a simplification of the

  4. Spontaneous, Experimentally Induced, and Transmissible AA Amyloidosis in Japanese Quail ( Coturnix japonica).

    PubMed

    Nakayama, Yumi; Kamiie, Junichi; Watanabe, Gen; Suzuki, Kazuhiko; Murakami, Tomoaki

    2017-11-01

    The authors describe a spontaneous case of amyloid A (AA) amyloidosis in an adult female Japanese quail ( Coturnix japonica). The bird developed AA amyloidosis secondary to chronic peritonitis caused by a Gram-negative bacillus infection. Mild amyloid deposition was also identified in the intestinal tract of apparently healthy adult individuals, suggesting that quail may develop intestinal amyloidosis with age. Based on these observations, it was hypothesized that quail can develop AA amyloidosis following inflammatory stimulation with lipopolysaccharide (LPS). Therefore, adult quail were repeatedly injected with LPS and the development of AA amyloidosis was confirmed. The amyloid deposition in this model increased when quail amyloid was intravenously injected as an amyloid-enhancing factor. The experiments were repeated with young quail, but amyloid deposits were not observed following LPS injections. However, AA amyloidosis did develop when quail amyloid was injected in addition to LPS. These results indicated that adult quail develop AA amyloidosis after inflammatory stimulation with LPS. Furthermore, quail AA amyloidosis was shown to have transmissibility regardless of age. Interestingly, the authors found that administration of chicken amyloid fibrils also induced AA amyloidosis in young quail. This is the first report of cross-species transmission of avian AA amyloidosis.

  5. A genome-wide association study of a global rice panel reveals resistance in Oryza sativa to root-knot nematodes

    PubMed Central

    Dimkpa, Stanley O. N.; Lahari, Zobaida; Shrestha, Roshi; Douglas, Alex; Gheysen, Godelieve; Price, Adam H.

    2016-01-01

    The root-knot nematode Meloidogyne graminicola is one of the most serious nematode pests worldwide and represents a major constraint on rice production. While variation in the susceptibility of Asian rice (Oryza sativa) exists, so far no strong and reliable resistance has been reported. Quantitative trait loci for partial resistance have been reported but no underlying genes have been tagged or cloned. Here, 332 accessions of the Rice Diversity Panel 1 were assessed for gall formation, revealing large variation across all subpopulations of rice and higher susceptibility in temperate japonica accessions. Accessions Khao Pahk Maw and LD 24 appeared to be resistant, which was confirmed in large pot experiments where no galls were observed. Detailed observations on these two accessions revealed no nematodes inside the roots 2 days after inoculation and very few females after 17 days (5 in Khao Pahk Maw and <1 in LD 24, in comparison with >100 in the susceptible controls). These two cultivars appear ideal donors for breeding root-knot nematode resistance. A genome-wide association study revealed 11 quantitative trait loci, two of which are close to epistatic loci detected in the Bala x Azucena population. The discussion highlights a small number of candidate genes worth exploring further, in particular many genes with lectin domains and genes on chromosome 11 with homology to the Hordeum Mla locus. PMID:26552884

  6. Grain Unloading Of Arsenic Species In Rice

    EPA Science Inventory

    Rice (Oryza sativa) is the staple food for over half the world's population yet may represent a significant dietary source of inorganic arsenic (As), a nonthreshold, class 1 human carcinogen. Rice grain As is dominated by the inorganic species, and the organic species dim...

  7. Unraveling the secrets of rice wild species

    USDA-ARS?s Scientific Manuscript database

    The rice wild species (Oryza spp.) genepool is a relatively untapped source of novel alleles for crop improvement. Several different accessions of rice wild species have been crossed as donor parents with several different Asian rice (O. sativa) cultivars, as the recurrent parent to develop mappi...

  8. Leptospira species molecular epidemiology in the genomic era.

    PubMed

    Caimi, K; Repetto, S A; Varni, V; Ruybal, P

    2017-10-01

    Leptospirosis is a zoonotic disease which global burden is increasing often related to climatic change. Hundreds of whole genome sequences from worldwide isolates of Leptospira spp. are available nowadays, together with online tools that permit to assign MLST sequence types (STs) directly from raw sequence data. In this work we have applied R7L-MLST to near 500 genomes and strains collection globally distributed. All 10 pathogenic species as well as intermediate were typed using this MLST scheme. The correlation observed between STs and serogroups in our previous work, is still satisfied with this higher dataset sustaining the implementation of MLST to assist serological classification as a complementary approach. Bayesian phylogenetic analysis of concatenated sequences from R7-MLST loci allowed us to resolve taxonomic inconsistencies but also showed that events such as recombination, gene conversion or lateral gene transfer played an important role in the evolution of Leptospira genus. Whole genome sequencing allows us to contribute with suitable epidemiologic information useful to apply in the design of control strategies and also in diagnostic methods for this illness. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Contrasting patterns of variation in weedy traits and unique crop features in divergent populations of US weedy rice (Oryza sativa sp.) in Arkansas and California.

    PubMed

    Kanapeckas, Kimberly L; Tseng, Te-Ming; Vigueira, Cynthia C; Ortiz, Aida; Bridges, William C; Burgos, Nilda R; Fischer, Albert J; Lawton-Rauh, Amy

    2018-06-01

    Weed evolution from crops involves changes in key traits, but it is unclear how genetic and phenotypic variation contribute to weed diversification and productivity. Weedy rice is a conspecific weed of rice (Oryza sativa) worldwide. We used principal component analysis and hierarchical clustering to understand how morphologically and evolutionarily distinct US weedy rice populations persist in rice fields in different locations under contrasting management regimes. Further, we used a representative subset of 15 sequence-tagged site fragments of expressed genes from global Oryza to assess genome-wide sequence variation among populations. Crop hull color and crop-overlapping maturity dates plus awns, seed (panicle) shattering (> 50%), pigmented pericarp and stature variation (30.2% of total phenotypic variance) characterize genetically less diverse California weedy rice. By contrast, wild-like hull color, seed shattering (> 50%) and stature differences (55.8% of total phenotypic variance) typify genetically diverse weedy rice ecotypes in Arkansas. Recent de-domestication of weedy species - such as in California weedy rice - can involve trait combinations indistinguishable from the crop. This underscores the need for strict seed certification with genetic monitoring and proactive field inspection to prevent proliferation of weedy plant types. In established populations, tillage practice may affect weed diversity and persistence over time. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Comparative genome analysis of 52 fish species suggests differential associations of repetitive elements with their living aquatic environments.

    PubMed

    Yuan, Zihao; Liu, Shikai; Zhou, Tao; Tian, Changxu; Bao, Lisui; Dunham, Rex; Liu, Zhanjiang

    2018-02-13

    Repetitive elements make up significant proportions of genomes. However, their roles in evolution remain largely unknown. To provide insights into the roles of repetitive elements in fish genomes, we conducted a comparative analysis of repetitive elements of 52 fish species in 22 orders in relation to their living aquatic environments. The proportions of repetitive elements in various genomes were found to be positively correlated with genome sizes, with a few exceptions. More importantly, there appeared to be specific enrichment between some repetitive element categories with species habitat. Specifically, class II transposons appear to be more abundant in freshwater bony fish than in marine bony fish when phylogenetic relationship is not considered. In contrast, marine bony fish harbor more tandem repeats than freshwater species. In addition, class I transposons appear to be more abundant in primitive species such as cartilaginous fish and lamprey than in bony fish. The enriched association of specific categories of repetitive elements with fish habitats suggests the importance of repetitive elements in genome evolution and their potential roles in fish adaptation to their living environments. However, due to the restriction of the limited sequenced species, further analysis needs to be done to alleviate the phylogenetic biases.

  11. Genomic relations among 31 species of Mammillaria haworth (Cactaceae) using random amplified polymorphic DNA.

    PubMed

    Mattagajasingh, Ilwola; Mukherjee, Arup Kumar; Das, Premananda

    2006-01-01

    Thirty-one species of Mammillaria were selected to study the molecular phylogeny using random amplified polymorphic DNA (RAPD) markers. High amount of mucilage (gelling polysaccharides) present in Mammillaria was a major obstacle in isolating good quality genomic DNA. The CTAB (cetyl trimethyl ammonium bromide) method was modified to obtain good quality genomic DNA. Twenty-two random decamer primers resulted in 621 bands, all of which were polymorphic. The similarity matrix value varied from 0.109 to 0.622 indicating wide variability among the studied species. The dendrogram obtained from the unweighted pair group method using arithmetic averages (UPGMA) analysis revealed that some of the species did not follow the conventional classification. The present work shows the usefulness of RAPD markers for genetic characterization to establish phylogenetic relations among Mammillaria species.

  12. Understanding the Origin of Species with Genome-Scale Data: the Role of Gene Flow

    PubMed Central

    Sousa, Vitor; Hey, Jody

    2017-01-01

    As it becomes easier to sequence multiple genomes from closely related species, evolutionary biologists working on speciation are struggling to get the most out of very large population-genomic data sets. Such data hold the potential to resolve evolutionary biology’s long-standing questions about the role of gene exchange in species formation. In principle the new population genomic data can be used to disentangle the conflicting roles of natural selection and gene flow during the divergence process. However there are great challenges in taking full advantage of such data, especially with regard to including recombination in genetic models of the divergence process. Current data, models, methods and the potential pitfalls in using them will be considered here. PMID:23657479

  13. Genomic diversity guides conservation strategies among rare terrestrial orchid species when taxonomy remains uncertain.

    PubMed

    Ahrens, Collin W; Supple, Megan A; Aitken, Nicola C; Cantrill, David J; Borevitz, Justin O; James, Elizabeth A

    2017-06-01

    Species are often used as the unit for conservation, but may not be suitable for species complexes where taxa are difficult to distinguish. Under such circumstances, it may be more appropriate to consider species groups or populations as evolutionarily significant units (ESUs). A population genomic approach was employed to investigate the diversity within and among closely related species to create a more robust, lineage-specific conservation strategy for a nationally endangered terrestrial orchid and its relatives from south-eastern Australia. Four putative species were sampled from a total of 16 populations in the Victorian Volcanic Plain (VVP) bioregion and one population of a sub-alpine outgroup in south-eastern Australia. Morphological measurements were taken in situ along with leaf material for genotyping by sequencing (GBS) and microsatellite analyses. Species could not be differentiated using morphological measurements. Microsatellite and GBS markers confirmed the outgroup as distinct, but only GBS markers provided resolution of population genetic structure. The nationally endangered Diuris basaltica was indistinguishable from two related species ( D. chryseopsis and D. behrii ), while the state-protected D. gregaria showed genomic differentiation. Genomic diversity identified among the four Diuris species suggests that conservation of this taxonomically complex group will be best served by considering them as one ESU rather than separately aligned with species as currently recognized. This approach will maximize evolutionary potential among all species during increased isolation and environmental change. The methods used here can be applied generally to conserve evolutionary processes for groups where taxonomic uncertainty hinders the use of species as conservation units. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  14. Rapidly evolving R genes in diverse grass species confer resistance to rice blast disease

    PubMed Central

    Yang, Sihai; Li, Jing; Zhang, Xiaohui; Zhang, Qijun; Huang, Ju; Chen, Jian-Qun; Hartl, Daniel L.; Tian, Dacheng

    2013-01-01

    We show that the genomes of maize, sorghum, and brachypodium contain genes that, when transformed into rice, confer resistance to rice blast disease. The genes are resistance genes (R genes) that encode proteins with nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains (NBS–LRR proteins). By using criteria associated with rapid molecular evolution, we identified three rapidly evolving R-gene families in these species as well as in rice, and transformed a randomly chosen subset of these genes into rice strains known to be sensitive to rice blast disease caused by the fungus Magnaporthe oryzae. The transformed strains were then tested for sensitivity or resistance to 12 diverse strains of M. oryzae. A total of 15 functional blast R genes were identified among 60 NBS–LRR genes cloned from maize, sorghum, and brachypodium; and 13 blast R genes were obtained from 20 NBS–LRR paralogs in rice. These results show that abundant blast R genes occur not only within species but also among species, and that the R genes in the same rapidly evolving gene family can exhibit an effector response that confers resistance to rapidly evolving fungal pathogens. Neither conventional evolutionary conservation nor conventional evolutionary convergence supplies a satisfactory explanation of our findings. We suggest a unique mechanism termed “constrained divergence,” in which R genes and pathogen effectors can follow only limited evolutionary pathways to increase fitness. Our results open avenues for R-gene identification that will help to elucidate R-gene vs. effector mechanisms and may yield new sources of durable pathogen resistance. PMID:24145399

  15. Phylogeny of Plant CAMTAs and Role of AtCAMTAs in Nonhost Resistance to Xanthomonas oryzae pv. oryzae

    PubMed Central

    Rahman, Hafizur; Yang, Juan; Xu, You-Ping; Munyampundu, Jean-Pierre; Cai, Xin-Zhong

    2016-01-01

    regulated the immunity triggered by flg22 and nonhost resistance to Xanthomonas oryzae pv. oryzae via repressing accumulation of reactive oxygen species probably by targeting CBP60G, EDS1, and NDR1 and involving SA pathway. PMID:26973658

  16. Phylogeny of Plant CAMTAs and Role of AtCAMTAs in Nonhost Resistance to Xanthomonas oryzae pv. oryzae.

    PubMed

    Rahman, Hafizur; Yang, Juan; Xu, You-Ping; Munyampundu, Jean-Pierre; Cai, Xin-Zhong

    2016-01-01

    regulated the immunity triggered by flg22 and nonhost resistance to Xanthomonas oryzae pv. oryzae via repressing accumulation of reactive oxygen species probably by targeting CBP60G, EDS1, and NDR1 and involving SA pathway.

  17. A draft physical map of a D-genome cotton species (Gossypium raimondii)

    PubMed Central

    2010-01-01

    Background Genetically anchored physical maps of large eukaryotic genomes have proven useful both for their intrinsic merit and as an adjunct to genome sequencing. Cultivated tetraploid cottons, Gossypium hirsutum and G. barbadense, share a common ancestor formed by a merger of the A and D genomes about 1-2 million years ago. Toward the long-term goal of characterizing the spectrum of diversity among cotton genomes, the worldwide cotton community has prioritized the D genome progenitor Gossypium raimondii for complete sequencing. Results A whole genome physical map of G. raimondii, the putative D genome ancestral species of tetraploid cottons was assembled, integrating genetically-anchored overgo hybridization probes, agarose based fingerprints and 'high information content fingerprinting' (HICF). A total of 13,662 BAC-end sequences and 2,828 DNA probes were used in genetically anchoring 1585 contigs to a cotton consensus genetic map, and 370 and 438 contigs, respectively to Arabidopsis thaliana (AT) and Vitis vinifera (VV) whole genome sequences. Conclusion Several lines of evidence suggest that the G. raimondii genome is comprised of two qualitatively different components. Much of the gene rich component is aligned to the Arabidopsis and Vitis vinifera genomes and shows promise for utilizing translational genomic approaches in understanding this important genome and its resident genes. The integrated genetic-physical map is of value both in assembling and validating a planned reference sequence. PMID:20569427

  18. Bat Biology, Genomes, and the Bat1K Project: To Generate Chromosome-Level Genomes for All Living Bat Species.

    PubMed

    Teeling, Emma C; Vernes, Sonja C; Dávalos, Liliana M; Ray, David A; Gilbert, M Thomas P; Myers, Eugene

    2018-02-15

    Bats are unique among mammals, possessing some of the rarest mammalian adaptations, including true self-powered flight, laryngeal echolocation, exceptional longevity, unique immunity, contracted genomes, and vocal learning. They provide key ecosystem services, pollinating tropical plants, dispersing seeds, and controlling insect pest populations, thus driving healthy ecosystems. They account for more than 20% of all living mammalian diversity, and their crown-group evolutionary history dates back to the Eocene. Despite their great numbers and diversity, many species are threatened and endangered. Here we announce Bat1K, an initiative to sequence the genomes of all living bat species (n∼1,300) to chromosome-level assembly. The Bat1K genome consortium unites bat biologists (>148 members as of writing), computational scientists, conservation organizations, genome technologists, and any interested individuals committed to a better understanding of the genetic and evolutionary mechanisms that underlie the unique adaptations of bats. Our aim is to catalog the unique genetic diversity present in all living bats to better understand the molecular basis of their unique adaptations; uncover their evolutionary history; link genotype with phenotype; and ultimately better understand, promote, and conserve bats. Here we review the unique adaptations of bats and highlight how chromosome-level genome assemblies can uncover the molecular basis of these traits. We present a novel sequencing and assembly strategy and review the striking societal and scientific benefits that will result from the Bat1K initiative.

  19. Pan-genome analysis of the emerging foodborne pathogen Cronobacter spp. suggests a species-level bidirectional divergence driven by niche adaptation

    PubMed Central

    2013-01-01

    Background Members of the genus Cronobacter are causes of rare but severe illness in neonates and preterm infants following the ingestion of contaminated infant formula. Seven species have been described and two of the species genomes were subsequently published. In this study, we performed comparative genomics on eight strains of Cronobacter, including six that we sequenced (representing six of the seven species) and two previously published, closed genomes. Results We identified and characterized the features associated with the core and pan genome of the genus Cronobacter in an attempt to understand the evolution of these bacteria and the genetic content of each species. We identified 84 genomic regions that are present in two or more Cronobacter genomes, along with 45 unique genomic regions. Many potentially horizontally transferred genes, such as lysogenic prophages, were also identified. Most notable among these were several type six secretion system gene clusters, transposons that carried tellurium, copper and/or silver resistance genes, and a novel integrative conjugative element. Conclusions Cronobacter have diverged into two clusters, one consisting of C. dublinensis and C. muytjensii (Cdub-Cmuy) and the other comprised of C. sakazakii, C. malonaticus, C. universalis, and C. turicensis, (Csak-Cmal-Cuni-Ctur) from the most recent common ancestral species. While several genetic determinants for plant-association and human virulence could be found in the core genome of Cronobacter, the four Cdub-Cmuy clade genomes contained several accessory genomic regions important for survival in a plant-associated environmental niche, while the Csak-Cmal-Cuni-Ctur clade genomes harbored numerous virulence-related genetic traits. PMID:23724777

  20. The genomic view of genes responsive to the antagonistic phytohormones, abscisic acid, and gibberellin.

    PubMed

    Yazaki, Junshi; Kikuchi, Shoshi

    2005-01-01

    We now have the various genomics tools for monocot (Oryza sativa) and a dicot (Arabidopsis thaliana) plant. Plant is not only a very important agricultural resource but also a model organism for biological research. It is important that the interaction between ABA and GA is investigated for controlling the transition from embryogenesis to germination in seeds using genomics tools. These studies have investigated the relationship between dormancy and germination using genomics tools. Genomics tools identified genes that had never before been annotated as ABA- or GA-responsive genes in plant, detected new interactions between genes responsive to the two hormones, comprehensively characterized cis-elements of hormone-responsive genes, and characterized cis-elements of rice and Arabidopsis. In these research, ABA- and GA-regulated genes have been classified as functional proteins (proteins that probably function in stress or PR tolerance) and regulatory proteins (protein factors involved in further regulation of signal transduction). Comparison between ABA and/or GA-responsive genes in rice and those in Arabidopsis has shown that the cis-element has specificity in each species. cis-Elements for the dehydration-stress response have been specified in Arabidopsis but not in rice. cis-Elements for protein storage are remarkably richer in the upstream regions of the rice gene than in those of Arabidopsis.

  1. Self-excising Cre/mutant lox marker recycling system for multiple gene integrations and consecutive gene deletions in Aspergillus oryzae.

    PubMed

    Zhang, Silai; Ban, Akihiko; Ebara, Naoki; Mizutani, Osamu; Tanaka, Mizuki; Shintani, Takahiro; Gomi, Katsuya

    2017-04-01

    In this study, we developed a self-excising Cre/loxP-mediated marker recycling system with mutated lox sequences to introduce a number of biosynthetic genes into Aspergillus oryzae. To construct the self-excising marker cassette, both the selectable marker, the Aspergillus nidulans adeA gene, and the Cre recombinase gene (cre), conditionally expressed by the xylanase-encoding gene promoter, were designed to be located between the mutant lox sequences, lox66 and lox71. However, construction of the plasmid failed, possibly owing to a slight expression of cre downstream of the fungal gene promoter in Escherichia coli. Hence, to avoid the excision of the cassette in E. coli, a 71-bp intron of the A. oryzae xynG2 gene was inserted into the cre gene. The A. oryzae adeA deletion mutant was transformed with the resulting plasmid in the presence of glucose, and the transformants were cultured in medium containing xylose as the sole carbon source. PCR analysis of genomic DNA from resultant colonies revealed the excision of both the marker and Cre expression construct, indicating that the self-excising marker cassette was efficient at removing the selectable marker. Using the marker recycling system, hyperproduction of kojic acid could be achieved in A. oryzae by the introduction of two genes that encode oxidoreductase and transporter. Furthermore, we also constructed an alternative marker recycling cassette bearing the A. nidulans pyrithiamine resistant gene (ptrA) as a dominant selectable marker. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Multiplex Polymerase Chain Reaction for Identification of Shigellae and Four Shigella Species Using Novel Genetic Markers Screened by Comparative Genomics.

    PubMed

    Kim, Hyun-Joong; Ryu, Ji-Oh; Song, Ji-Yeon; Kim, Hae-Yeong

    2017-07-01

    In the detection of Shigella species using molecular biological methods, previously known genetic markers for Shigella species were not sufficient to discriminate between Shigella species and diarrheagenic Escherichia coli. The purposes of this study were to screen for genetic markers of the Shigella genus and four Shigella species through comparative genomics and develop a multiplex polymerase chain reaction (PCR) for the detection of shigellae and Shigella species. A total of seven genomic DNA sequences from Shigella species were subjected to comparative genomics for the screening of genetic markers of shigellae and each Shigella species. The primer sets were designed from the screened genetic markers and evaluated using PCR with genomic DNAs from Shigella and other bacterial strains in Enterobacteriaceae. A novel Shigella quintuplex PCR, designed for the detection of Shigella genus, S. dysenteriae, S. boydii, S. flexneri, and S. sonnei, was developed from the evaluated primer sets, and its performance was demonstrated with specifically amplified results from each Shigella species. This Shigella multiplex PCR is the first to be reported with novel genetic markers developed through comparative genomics and may be a useful tool for the accurate detection of the Shigella genus and species from closely related bacteria in clinical microbiology and food safety.

  3. Complete mitochondrial genome sequences of Atlantic representatives of the invasive Pacific coral species Tubastraea coccinea and T. tagusensis (Scleractinia, Dendrophylliidae): Implications for species identification.

    PubMed

    Capel, K C C; Migotto, A E; Zilberberg, C; Lin, M F; Forsman, Z; Miller, D J; Kitahara, M V

    2016-09-30

    Members of the azooxanthellate coral genus Tubastraea are invasive species with particular concern because they have become established and are fierce competitors in the invaded areas in many parts of the world. Pacific Tubastraea species are spreading fast throughout the Atlantic Ocean, occupying over 95% of the available substrate in some areas and out-competing native endemic species. Approximately half of all known coral species are azooxanthellate but these are seriously under-represented compared to zooxanthellate corals in terms of the availability of mitochondrial (mt) genome data. In the present study, the complete mt DNA sequences of Atlantic individuals of the invasive scleractinian species Tubastraea coccinea and Tubastraea tagusensis were determined and compared to the GenBank reference sequence available for a Pacific "T. coccinea" individual. At 19,094bp (compared to 19,070bp for the GenBank specimen), the mt genomes assembled for the Atlantic T. coccinea and T. tagusensis were among the longest sequence determined to date for "Complex" scleractinians. Comparisons of genomes data showed that the "T. coccinea" sequence deposited on GenBank was more closely related to that from Dendrophyllia arbuscula than to the Atlantic Tubastraea spp., in terms of genome length and base pair similarities. This was confirmed by phylogenetic analysis, suggesting that the former was misidentified and might actually be a member from the genus Dendrophyllia. In addition, although in general the COX1 locus has a slow evolutionary rate in Scleractinia, it was the most variable region of the Tubastraea mt genome and can be used as markers for genus or species identification. Given the limited data available for azooxanthellate corals, the results presented here represent an important contribution to our understanding of phylogenetic relationships and the evolutionary history of the Scleractinia. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Evolutionary Genomics of Genes Involved in Olfactory Behavior in the Drosophila melanogaster Species Group

    PubMed Central

    Lavagnino, Nicolás; Serra, François; Arbiza, Leonardo; Dopazo, Hernán; Hasson, Esteban

    2012-01-01

    Previous comparative genomic studies of genes involved in olfactory behavior in Drosophila focused only on particular gene families such as odorant receptor and/or odorant binding proteins. However, olfactory behavior has a complex genetic architecture that is orchestrated by many interacting genes. In this paper, we present a comparative genomic study of olfactory behavior in Drosophila including an extended set of genes known to affect olfactory behavior. We took advantage of the recent burst of whole genome sequences and the development of powerful statistical tools to analyze genomic data and test evolutionary and functional hypotheses of olfactory genes in the six species of the Drosophila melanogaster species group for which whole genome sequences are available. Our study reveals widespread purifying selection and limited incidence of positive selection on olfactory genes. We show that the pace of evolution of olfactory genes is mostly independent of the life cycle stage, and of the number of life cycle stages, in which they participate in olfaction. However, we detected a relationship between evolutionary rates and the position that the gene products occupy in the olfactory system, genes occupying central positions tend to be more constrained than peripheral genes. Finally, we demonstrate that specialization to one host does not seem to be associated with bursts of adaptive evolution in olfactory genes in D. sechellia and D. erecta, the two specialists species analyzed, but rather different lineages have idiosyncratic evolutionary histories in which both historical and ecological factors have been involved. PMID:22346339

  5. Complete chloroplast genome sequence of a major invasive species, crofton weed (Ageratina adenophora).

    PubMed

    Nie, Xiaojun; Lv, Shuzuo; Zhang, Yingxin; Du, Xianghong; Wang, Le; Biradar, Siddanagouda S; Tan, Xiufang; Wan, Fanghao; Weining, Song

    2012-01-01

    Crofton weed (Ageratina adenophora) is one of the most hazardous invasive plant species, which causes serious economic losses and environmental damages worldwide. However, the sequence resource and genome information of A. adenophora are rather limited, making phylogenetic identification and evolutionary studies very difficult. Here, we report the complete sequence of the A. adenophora chloroplast (cp) genome based on Illumina sequencing. The A. adenophora cp genome is 150, 689 bp in length including a small single-copy (SSC) region of 18, 358 bp and a large single-copy (LSC) region of 84, 815 bp separated by a pair of inverted repeats (IRs) of 23, 755 bp. The genome contains 130 unique genes and 18 duplicated in the IR regions, with the gene content and organization similar to other Asteraceae cp genomes. Comparative analysis identified five DNA regions (ndhD-ccsA, psbI-trnS, ndhF-ycf1, ndhI-ndhG and atpA-trnR) containing parsimony-informative characters higher than 2%, which may be potential informative markers for barcoding and phylogenetic analysis. Repeat structure, codon usage and contraction of the IR were also investigated to reveal the pattern of evolution. Phylogenetic analysis demonstrated a sister relationship between A. adenophora and Guizotia abyssinica and supported a monophyly of the Asterales. We have assembled and analyzed the chloroplast genome of A. adenophora in this study, which was the first sequenced plastome in the Eupatorieae tribe. The complete chloroplast genome information is useful for plant phylogenetic and evolutionary studies within this invasive species and also within the Asteraceae family.

  6. Resolving Evolutionary Relationships in Closely Related Species with Whole-Genome Sequencing Data

    PubMed Central

    Nater, Alexander; Burri, Reto; Kawakami, Takeshi; Smeds, Linnéa; Ellegren, Hans

    2015-01-01

    Using genetic data to resolve the evolutionary relationships of species is of major interest in evolutionary and systematic biology. However, reconstructing the sequence of speciation events, the so-called species tree, in closely related and potentially hybridizing species is very challenging. Processes such as incomplete lineage sorting and interspecific gene flow result in local gene genealogies that differ in their topology from the species tree, and analyses of few loci with a single sequence per species are likely to produce conflicting or even misleading results. To study these phenomena on a full phylogenomic scale, we use whole-genome sequence data from 200 individuals of four black-and-white flycatcher species with so far unresolved phylogenetic relationships to infer gene tree topologies and visualize genome-wide patterns of gene tree incongruence. Using phylogenetic analysis in nonoverlapping 10-kb windows, we show that gene tree topologies are extremely diverse and change on a very small physical scale. Moreover, we find strong evidence for gene flow among flycatcher species, with distinct patterns of reduced introgression on the Z chromosome. To resolve species relationships on the background of widespread gene tree incongruence, we used four complementary coalescent-based methods for species tree reconstruction, including complex modeling approaches that incorporate post-divergence gene flow among species. This allowed us to infer the most likely species tree with high confidence. Based on this finding, we show that regions of reduced effective population size, which have been suggested as particularly useful for species tree inference, can produce positively misleading species tree topologies. Our findings disclose the pitfalls of using loci potentially under selection as phylogenetic markers and highlight the potential of modeling approaches to disentangle species relationships in systems with large effective population sizes and post

  7. Plastid genomics in horticultural species: importance and applications for plant population genetics, evolution, and biotechnology

    PubMed Central

    Rogalski, Marcelo; do Nascimento Vieira, Leila; Fraga, Hugo P.; Guerra, Miguel P.

    2015-01-01

    During the evolution of the eukaryotic cell, plastids, and mitochondria arose from an endosymbiotic process, which determined the presence of three genetic compartments into the incipient plant cell. After that, these three genetic materials from host and symbiont suffered several rearrangements, bringing on a complex interaction between nuclear and organellar gene products. Nowadays, plastids harbor a small genome with ∼130 genes in a 100–220 kb sequence in higher plants. Plastid genes are mostly highly conserved between plant species, being useful for phylogenetic analysis in higher taxa. However, intergenic spacers have a relatively higher mutation rate and are important markers to phylogeographical and plant population genetics analyses. The predominant uniparental inheritance of plastids is like a highly desirable feature for phylogeny studies. Moreover, the gene content and genome rearrangements are efficient tools to capture and understand evolutionary events between different plant species. Currently, genetic engineering of the plastid genome (plastome) offers a number of attractive advantages as high-level of foreign protein expression, marker gene excision, gene expression in operon and transgene containment because of maternal inheritance of plastid genome in most crops. Therefore, plastid genome can be used for adding new characteristics related to synthesis of metabolic compounds, biopharmaceutical, and tolerance to biotic and abiotic stresses. Here, we describe the importance and applications of plastid genome as tools for genetic and evolutionary studies, and plastid transformation focusing on increasing the performance of horticultural species in the field. PMID:26284102

  8. Plastid genomics in horticultural species: importance and applications for plant population genetics, evolution, and biotechnology.

    PubMed

    Rogalski, Marcelo; do Nascimento Vieira, Leila; Fraga, Hugo P; Guerra, Miguel P

    2015-01-01

    During the evolution of the eukaryotic cell, plastids, and mitochondria arose from an endosymbiotic process, which determined the presence of three genetic compartments into the incipient plant cell. After that, these three genetic materials from host and symbiont suffered several rearrangements, bringing on a complex interaction between nuclear and organellar gene products. Nowadays, plastids harbor a small genome with ∼130 genes in a 100-220 kb sequence in higher plants. Plastid genes are mostly highly conserved between plant species, being useful for phylogenetic analysis in higher taxa. However, intergenic spacers have a relatively higher mutation rate and are important markers to phylogeographical and plant population genetics analyses. The predominant uniparental inheritance of plastids is like a highly desirable feature for phylogeny studies. Moreover, the gene content and genome rearrangements are efficient tools to capture and understand evolutionary events between different plant species. Currently, genetic engineering of the plastid genome (plastome) offers a number of attractive advantages as high-level of foreign protein expression, marker gene excision, gene expression in operon and transgene containment because of maternal inheritance of plastid genome in most crops. Therefore, plastid genome can be used for adding new characteristics related to synthesis of metabolic compounds, biopharmaceutical, and tolerance to biotic and abiotic stresses. Here, we describe the importance and applications of plastid genome as tools for genetic and evolutionary studies, and plastid transformation focusing on increasing the performance of horticultural species in the field.

  9. Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics.

    PubMed

    Sakai, Hiroaki; Lee, Sung Shin; Tanaka, Tsuyoshi; Numa, Hisataka; Kim, Jungsok; Kawahara, Yoshihiro; Wakimoto, Hironobu; Yang, Ching-chia; Iwamoto, Masao; Abe, Takashi; Yamada, Yuko; Muto, Akira; Inokuchi, Hachiro; Ikemura, Toshimichi; Matsumoto, Takashi; Sasaki, Takuji; Itoh, Takeshi

    2013-02-01

    The Rice Annotation Project Database (RAP-DB, http://rapdb.dna.affrc.go.jp/) has been providing a comprehensive set of gene annotations for the genome sequence of rice, Oryza sativa (japonica group) cv. Nipponbare. Since the first release in 2005, RAP-DB has been updated several times along with the genome assembly updates. Here, we present our newest RAP-DB based on the latest genome assembly, Os-Nipponbare-Reference-IRGSP-1.0 (IRGSP-1.0), which was released in 2011. We detected 37,869 loci by mapping transcript and protein sequences of 150 monocot species. To provide plant researchers with highly reliable and up to date rice gene annotations, we have been incorporating literature-based manually curated data, and 1,626 loci currently incorporate literature-based annotation data, including commonly used gene names or gene symbols. Transcriptional activities are shown at the nucleotide level by mapping RNA-Seq reads derived from 27 samples. We also mapped the Illumina reads of a Japanese leading japonica cultivar, Koshihikari, and a Chinese indica cultivar, Guangluai-4, to the genome and show alignments together with the single nucleotide polymorphisms (SNPs) and gene functional annotations through a newly developed browser, Short-Read Assembly Browser (S-RAB). We have developed two satellite databases, Plant Gene Family Database (PGFD) and Integrative Database of Cereal Gene Phylogeny (IDCGP), which display gene family and homologous gene relationships among diverse plant species. RAP-DB and the satellite databases offer simple and user-friendly web interfaces, enabling plant and genome researchers to access the data easily and facilitating a broad range of plant research topics.

  10. All roads lead to weediness: patterns of genomic divergence reveal extensive recurrent weedy rice origins from South Asian Oryza

    USDA-ARS?s Scientific Manuscript database

    Weedy rice (Oryza spp.), a weedy relative of cultivated rice (O. sativa), invades and persists in cultivated rice fields worldwide. Many weedy rice populations have evolved similar adaptive traits, considered part of the “agricultural weed syndrome,” making this an ideal model to study the genetic b...

  11. Comparative proteomic analyses reveal that the regulators of G-protein signaling proteins regulate amino acid metabolism of the rice blast fungus Magnaporthe oryzae.

    PubMed

    Zhang, Haifeng; Ma, Hongyu; Xie, Xin; Ji, Jun; Dong, Yanhan; Du, Yan; Tang, Wei; Zheng, Xiaobo; Wang, Ping; Zhang, Zhengguang

    2014-11-01

    The rice blast fungus Magnaporthe oryzae encodes eight regulators of G-protein (GTP-binding protein) signaling (RGS) proteins MoRgs1-MoRgs8 that orchestrate the growth, asexual/sexual production, appressorium differentiation, and pathogenicity. To address the mechanisms by which MoRgs proteins function, we conducted a 2DE proteome study and identified 82 differentially expressed proteins by comparing five ∆Morgs mutants with wild-type Guy11 strain. We found that the abundances of eight amino acid (AA) biosynthesis or degradation associated proteins were markedly altered in five ∆Morgs mutants, indicating one of the main collective roles for the MoRgs proteins is to influence AA metabolism. We showed that MoRgs proteins have distinct roles in AA metabolism and nutrient responses from growth assays. In addition, we characterized MoLys20 (Lys is lysine), a homocitrate synthase, whose abundance was significantly decreased in the ∆Morgs mutants. The ∆Molys20 mutant is auxotrophic for lys and exogenous lys could partially rescue its auxotrophic defects. Deletion of MoLYS20 resulted in defects in conidiation and infection, as well as pathogenicity on rice. Overall, our results indicate that one of the critical roles for MoRgs proteins is to regulate AA metabolism, and that MoLys20 may be directly or indirectly regulated by MoRgs and participated in lys biosynthesis, thereby affecting fungal development and pathogenicity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Complete chloroplast genome sequence and comparative analysis of loblolly pine (Pinus taeda L.) with related species

    PubMed Central

    Khan, Abdul Latif; Khan, Muhammad Aaqil; Shahzad, Raheem; Lubna; Kang, Sang Mo; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Lee, In-Jung

    2018-01-01

    Pinaceae, the largest family of conifers, has a diversified organization of chloroplast (cp) genomes with two typical highly reduced inverted repeats (IRs). In the current study, we determined the complete sequence of the cp genome of an economically and ecologically important conifer tree, the loblolly pine (Pinus taeda L.), using Illumina paired-end sequencing and compared the sequence with those of other pine species. The results revealed a genome size of 121,531 base pairs (bp) containing a pair of 830-bp IR regions, distinguished by a small single copy (42,258 bp) and large single copy (77,614 bp) region. The chloroplast genome of P. taeda encodes 120 genes, comprising 81 protein-coding genes, four ribosomal RNA genes, and 35 tRNA genes, with 151 randomly distributed microsatellites. Approximately 6 palindromic, 34 forward, and 22 tandem repeats were found in the P. taeda cp genome. Whole cp genome comparison with those of other Pinus species exhibited an overall high degree of sequence similarity, with some divergence in intergenic spacers. Higher and lower numbers of indels and single-nucleotide polymorphism substitutions were observed relative to P. contorta and P. monophylla, respectively. Phylogenomic analyses based on the complete genome sequence revealed that 60 shared genes generated trees with the same topologies, and P. taeda was closely related to P. contorta in the subgenus Pinus. Thus, the complete P. taeda genome provided valuable resources for population and evolutionary studies of gymnosperms and can be used to identify related species. PMID:29596414

  13. Role of N-terminal 28-amino-acid region of Rhizopus oryzae lipase in directing proteins to secretory pathway of Aspergillus oryzae.

    PubMed

    Hama, Shinji; Tamalampudi, Sriappareddy; Shindo, Naoki; Numata, Takao; Yamaji, Hideki; Fukuda, Hideki; Kondo, Akihiko

    2008-07-01

    To develop a new approach for improving heterologous protein production in Aspergillus oryzae, we focused on the functional role of the N-terminal region of Rhizopus oryzae lipase (ROL). Several N-terminal deletion variants of ROL were expressed in A. oryzae. Interestingly, a segment of 28 amino acids from the C-terminal region of the propeptide (N28) was found to be critical for secretion of ROL into the culture medium. To further investigate the role of N28, the ROL secretory process was visualized in vivo using ROL-green fluorescent protein (GFP) fusion proteins. In cells producing ROL with N28, fluorescence observations showed that the fusion proteins are transported through endoplasmic reticulum (ER), Golgi, and cell wall, which is one of the typical secretory processes in a eukaryotic cell. Because the expression of the mature ROL-GFP fusion protein induced fluorescence accumulation without its translocation into the ER, N28 is considered to play a crucial role in protein transport. When N28 was inserted between the secretion signal and GFP, fluorescence observations showed that GFP, which is originally a cytoplasmic protein, was efficiently translocated into the ER of A. oryzae, resulting in an enhanced secretion of mature GFP after proteolytic cleavage of N28. These findings suggest that N28 facilitates protein translocation into ER and can be a promising candidate for improving heterologous protein production in A. oryzae.

  14. A novel bacterial blight resistance gene from Oryza nivara mapped to 38 kb region on chromosome 4L and transferred to Oryza sativa L.

    PubMed

    Cheema, Kuljit K; Grewal, Navjit K; Vikal, Yogesh; Sharma, Rajiv; Lore, Jagjeet S; Das, Aparna; Bhatia, Dharminder; Mahajan, Ritu; Gupta, Vikas; Bharaj, Tajinder S; Singh, Kuldeep

    2008-10-01

    Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv oryzae (Xoo) is one of the major constraints to productivity in South-East Asia. The strategy of using major genes, singly or in combination, continues to be the most effective approach for BB management. Currently, more than two dozen genes have been designated but not all the known genes are effective against all the prevalent pathotypes. The challenge, therefore, is to continue to expand the gene pool of effective and potentially durable resistance genes. Wild species constitute an important reservoir of the resistance genes including BB. An accession of Oryza nivara (IRGC 81825) was found to be resistant to all the seven Xoo pathotypes prevalent in northern states of India. Inheritance and mapping of resistance in O. nivara was studied by using F2, BC2F2, BC3F1 and BC3F2 progenies of the cross involving Oryza sativa cv PR114 and the O. nivara acc. 81825 using the most virulent Xoo pathotype. Genetic analysis of the segregating progenies revealed that the BB resistance in O. nivara was conditioned by a single dominant gene. Bulked segregant analysis (BSA) of F2 population using 191 polymorphic SSR markers identified a approximately 35 centiMorgans (cM) chromosomal region on 4L, bracketed by RM317 and RM562, to be associated with BB resistance. Screening of BC3F1 and BC2F2 progenies and their genotyping with more than 30 polymorphic SSR markers in the region, covering Bacterial artificial chromosome (BAC) clone OSJNBb0085C12, led to mapping of the resistance gene between the STS markers based on annotated genes LOC_Os04g53060 and LOC_Os04g53120, which is approximately 38.4 kb. Since none of the known Xa genes, which are mapped on chromosome 4L, are effective against the Xoo pathotypes tested, the BB resistance gene identified and transferred from O. nivara is novel and is tentatively designated as Xa30(t). Homozygous resistant BC3F3 progenies with smallest introgression region have been identified.

  15. Genotype × Environment Interactions of Yield Traits in Backcross Introgression Lines Derived from Oryza sativa cv. Swarna/Oryza nivara

    PubMed Central

    Balakrishnan, Divya; Subrahmanyam, Desiraju; Badri, Jyothi; Raju, Addanki Krishnam; Rao, Yadavalli Venkateswara; Beerelli, Kavitha; Mesapogu, Sukumar; Surapaneni, Malathi; Ponnuswamy, Revathi; Padmavathi, G.; Babu, V. Ravindra; Neelamraju, Sarla

    2016-01-01

    Advanced backcross introgression lines (BILs) developed from crosses of Oryza sativa var. Swarna/O. nivara accessions were grown and evaluated for yield and related traits. Trials were conducted for consecutive three seasons in field conditions in a randomized complete block design with three replications. Data on yield traits under irrigated conditions were analyzed using the Additive Main Effect and Multiplicative Interaction (AMMI), Genotype and Genotype × Environment Interaction (GGE) and modified rank-sum statistic (YSi) for yield stability. BILs viz., G3 (14S) and G6 (166S) showed yield stability across the seasons along with high mean yield performance. G3 is early in flowering with high yield and has good grain quality and medium height, hence could be recommended for most of the irrigated locations. G6 is a late duration genotype, with strong culm strength, high grain number and panicle weight. G6 has higher yield and stability than Swarna but has Swarna grain type. Among the varieties tested DRRDhan 40 and recurrent parent Swarna showed stability for yield traits across the seasons. The component traits thousand grain weight, panicle weight, panicle length, grain number and plant height explained highest genotypic percentage over environment and interaction factors and can be prioritized to dissect stable QTLs/ genes. These lines were genotyped using microsatellite markers covering the entire rice genome and also using a set of markers linked to previously reported yield QTLs. It was observed that wild derived lines with more than 70% of recurrent parent genome were stable and showed enhanced yield levels compared to genotypes with higher donor genome introgressions. PMID:27807437

  16. Learning from oligosaccharide soaks of crystals of an AA13 lytic polysaccharide monooxygenase: crystal packing, ligand binding and active-site disorder.

    PubMed

    Frandsen, Kristian E H; Poulsen, Jens Christian Navarro; Tovborg, Morten; Johansen, Katja S; Lo Leggio, Leila

    2017-01-01

    Lytic polysaccharide monooxygenases (LPMOs) are a class of copper-dependent enzymes discovered within the last ten years. They oxidatively cleave polysaccharides (chitin, lignocellulose, hemicellulose and starch-derived), presumably making recalcitrant substrates accessible to glycoside hydrolases. Recently, the first crystal structure of an LPMO-substrate complex was reported, giving insights into the interaction of LPMOs with β-linked substrates (Frandsen et al., 2016). The LPMOs acting on α-linked glycosidic bonds (family AA13) display binding surfaces that are quite different from those of LPMOs that act on β-linked glycosidic bonds (families AA9-AA11), as revealed from the first determined structure (Lo Leggio et al., 2015), and thus presumably the AA13s interact with their substrate in a distinct fashion. Here, several new structures of the same AA13 enzyme, Aspergillus oryzae AA13, are presented. Crystals obtained in the presence of high zinc-ion concentrations were used, as they can be obtained more reproducibly than those used to refine the deposited copper-containing structure. One structure with an ordered zinc-bound active site was solved at 1.65 Å resolution, and three structures from crystals soaked with maltooligosaccharides in solutions devoid of zinc ions were solved at resolutions of up to 1.10 Å. Despite similar unit-cell parameters, small rearrangements in the crystal packing occur when the crystals are depleted of zinc ions, resulting in a more occluded substrate-binding surface. In two of the three structures maltooligosaccharide ligands are bound, but not at the active site. Two of the structures presented show a His-ligand conformation that is incompatible with metal-ion binding. In one of these structures this conformation is the principal one (80% occupancy), giving a rare atomic resolution view of a substantially misfolded enzyme that is presumably rendered inactive.

  17. WRKY transcription factor genes in wild rice Oryza nivara

    PubMed Central

    Xu, Hengjian; Watanabe, Kenneth A.; Zhang, Liyuan; Shen, Qingxi J.

    2016-01-01

    The WRKY transcription factor family is one of the largest gene families involved in plant development and stress response. Although many WRKY genes have been studied in cultivated rice (Oryza sativa), the WRKY genes in the wild rice species Oryza nivara, the direct progenitor of O. sativa, have not been studied. O. nivara shows abundant genetic diversity and elite drought and disease resistance features. Herein, a total of 97 O. nivara WRKY (OnWRKY) genes were identified. RNA-sequencing demonstrates that OnWRKY genes were generally expressed at higher levels in the roots of 30-day-old plants. Bioinformatic analyses suggest that most of OnWRKY genes could be induced by salicylic acid, abscisic acid, and drought. Abundant potential MAPK phosphorylation sites in OnWRKYs suggest that activities of most OnWRKYs can be regulated by phosphorylation. Phylogenetic analyses of OnWRKYs support a novel hypothesis that ancient group IIc OnWRKYs were the original ancestors of only some group IIc and group III WRKYs. The analyses also offer strong support that group IIc OnWRKYs containing the HVE sequence in their zinc finger motifs were derived from group Ia WRKYs. This study provides a solid foundation for the study of the evolution and functions of WRKY genes in O. nivara. PMID:27345721

  18. Transposon fingerprinting using low coverage whole genome shotgun sequencing in Cacao (Theobroma cacao L.) and related species

    PubMed Central

    2013-01-01

    Background Transposable elements (TEs) and other repetitive elements are a large and dynamically evolving part of eukaryotic genomes, especially in plants where they can account for a significant proportion of genome size. Their dynamic nature gives them the potential for use in identifying and characterizing crop germplasm. However, their repetitive nature makes them challenging to study using conventional methods of molecular biology. Next generation sequencing and new computational tools have greatly facilitated the investigation of TE variation within species and among closely related species. Results (i) We generated low-coverage Illumina whole genome shotgun sequencing reads for multiple individuals of cacao (Theobroma cacao) and related species. These reads were analysed using both an alignment/mapping approach and a de novo (graph based clustering) approach. (ii) A standard set of ultra-conserved orthologous sequences (UCOS) standardized TE data between samples and provided phylogenetic information on the relatedness of samples. (iii) The mapping approach proved highly effective within the reference species but underestimated TE abundance in interspecific comparisons relative to the de novo methods. (iv) Individual T. cacao accessions have unique patterns of TE abundance indicating that the TE composition of the genome is evolving actively within this species. (v) LTR/Gypsy elements are the most abundant, comprising c.10% of the genome. (vi) Within T. cacao the retroelement families show an order of magnitude greater sequence variability than the DNA transposon families. (vii) Theobroma grandiflorum has a similar TE composition to T. cacao, but the related genus Herrania is rather different, with LTRs making up a lower proportion of the genome, perhaps because of a massive presence (c. 20%) of distinctive low complexity satellite-like repeats in this genome. Conclusions (i) Short read alignment/mapping to reference TE contigs provides a simple and effective

  19. Transposon fingerprinting using low coverage whole genome shotgun sequencing in cacao (Theobroma cacao L.) and related species.

    PubMed

    Sveinsson, Saemundur; Gill, Navdeep; Kane, Nolan C; Cronk, Quentin

    2013-07-24

    Transposable elements (TEs) and other repetitive elements are a large and dynamically evolving part of eukaryotic genomes, especially in plants where they can account for a significant proportion of genome size. Their dynamic nature gives them the potential for use in identifying and characterizing crop germplasm. However, their repetitive nature makes them challenging to study using conventional methods of molecular biology. Next generation sequencing and new computational tools have greatly facilitated the investigation of TE variation within species and among closely related species. (i) We generated low-coverage Illumina whole genome shotgun sequencing reads for multiple individuals of cacao (Theobroma cacao) and related species. These reads were analysed using both an alignment/mapping approach and a de novo (graph based clustering) approach. (ii) A standard set of ultra-conserved orthologous sequences (UCOS) standardized TE data between samples and provided phylogenetic information on the relatedness of samples. (iii) The mapping approach proved highly effective within the reference species but underestimated TE abundance in interspecific comparisons relative to the de novo methods. (iv) Individual T. cacao accessions have unique patterns of TE abundance indicating that the TE composition of the genome is evolving actively within this species. (v) LTR/Gypsy elements are the most abundant, comprising c.10% of the genome. (vi) Within T. cacao the retroelement families show an order of magnitude greater sequence variability than the DNA transposon families. (vii) Theobroma grandiflorum has a similar TE composition to T. cacao, but the related genus Herrania is rather different, with LTRs making up a lower proportion of the genome, perhaps because of a massive presence (c. 20%) of distinctive low complexity satellite-like repeats in this genome. (i) Short read alignment/mapping to reference TE contigs provides a simple and effective method of investigating

  20. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species.

    PubMed

    Kim, Seungill; Park, Minkyu; Yeom, Seon-In; Kim, Yong-Min; Lee, Je Min; Lee, Hyun-Ah; Seo, Eunyoung; Choi, Jaeyoung; Cheong, Kyeongchae; Kim, Ki-Tae; Jung, Kyongyong; Lee, Gir-Won; Oh, Sang-Keun; Bae, Chungyun; Kim, Saet-Byul; Lee, Hye-Young; Kim, Shin-Young; Kim, Myung-Shin; Kang, Byoung-Cheorl; Jo, Yeong Deuk; Yang, Hee-Bum; Jeong, Hee-Jin; Kang, Won-Hee; Kwon, Jin-Kyung; Shin, Chanseok; Lim, Jae Yun; Park, June Hyun; Huh, Jin Hoe; Kim, June-Sik; Kim, Byung-Dong; Cohen, Oded; Paran, Ilan; Suh, Mi Chung; Lee, Saet Buyl; Kim, Yeon-Ki; Shin, Younhee; Noh, Seung-Jae; Park, Junhyung; Seo, Young Sam; Kwon, Suk-Yoon; Kim, Hyun A; Park, Jeong Mee; Kim, Hyun-Jin; Choi, Sang-Bong; Bosland, Paul W; Reeves, Gregory; Jo, Sung-Hwan; Lee, Bong-Woo; Cho, Hyung-Taeg; Choi, Hee-Seung; Lee, Min-Soo; Yu, Yeisoo; Do Choi, Yang; Park, Beom-Seok; van Deynze, Allen; Ashrafi, Hamid; Hill, Theresa; Kim, Woo Taek; Pai, Hyun-Sook; Ahn, Hee Kyung; Yeam, Inhwa; Giovannoni, James J; Rose, Jocelyn K C; Sørensen, Iben; Lee, Sang-Jik; Kim, Ryan W; Choi, Ik-Young; Choi, Beom-Soon; Lim, Jong-Sung; Lee, Yong-Hwan; Choi, Doil

    2014-03-01

    Hot pepper (Capsicum annuum), one of the oldest domesticated crops in the Americas, is the most widely grown spice crop in the world. We report whole-genome sequencing and assembly of the hot pepper (Mexican landrace of Capsicum annuum cv. CM334) at 186.6× coverage. We also report resequencing of two cultivated peppers and de novo sequencing of the wild species Capsicum chinense. The genome size of the hot pepper was approximately fourfold larger than that of its close relative tomato, and the genome showed an accumulation of Gypsy and Caulimoviridae family elements. Integrative genomic and transcriptomic analyses suggested that change in gene expression and neofunctionalization of capsaicin synthase have shaped capsaicinoid biosynthesis. We found differential molecular patterns of ripening regulators and ethylene synthesis in hot pepper and tomato. The reference genome will serve as a platform for improving the nutritional and medicinal values of Capsicum species.

  1. An Efficient Method for Genomic DNA Extraction from Different Molluscs Species

    PubMed Central

    Pereira, Jorge C.; Chaves, Raquel; Bastos, Estela; Leitão, Alexandra; Guedes-Pinto, Henrique

    2011-01-01

    The selection of a DNA extraction method is a critical step when subsequent analysis depends on the DNA quality and quantity. Unlike mammals, for which several capable DNA extraction methods have been developed, for molluscs the availability of optimized genomic DNA extraction protocols is clearly insufficient. Several aspects such as animal physiology, the type (e.g., adductor muscle or gills) or quantity of tissue, can explain the lack of efficiency (quality and yield) in molluscs genomic DNA extraction procedure. In an attempt to overcome these aspects, this work describes an efficient method for molluscs genomic DNA extraction that was tested in several species from different orders: Veneridae, Ostreidae, Anomiidae, Cardiidae (Bivalvia) and Muricidae (Gastropoda), with different weight sample tissues. The isolated DNA was of high molecular weight with high yield and purity, even with reduced quantities of tissue. Moreover, the genomic DNA isolated, demonstrated to be suitable for several downstream molecular techniques, such as PCR sequencing among others. PMID:22174651

  2. Mediterranean species of Caulerpa are polyploid with smaller genomes in the invasive ones.

    PubMed

    Varela-Álvarez, Elena; Gómez Garreta, Amelia; Rull Lluch, Jordi; Salvador Soler, Noemi; Serrao, Ester A; Siguán, María Antonia Ribera

    2012-01-01

    Caulerpa species are marine green algae, which often act as invasive species with rapid clonal proliferation when growing outside their native biogeographical borders. Despite many publications on the genetics and ecology of Caulerpa species, their life history and ploidy levels are still to be resolved and are the subject of large controversy. While some authors claimed that the thallus found in nature has a haplodiplobiontic life cycle with heteromorphic alternation of generations, other authors claimed a diploid or haploid life cycle with only one generation involved. DAPI-staining with image analysis and microspectrophotometry were used to estimate relative nuclear DNA contents in three species of Caulerpa from the Mediterranean, at individual, population and species levels. Results show that ploidy levels and genome size vary in these three Caulerpa species, with a reduction in genome size for the invasive ones. Caulerpa species in the Mediterranean are polyploids in different life history phases; all sampled C. taxifolia and C. racemosa var. cylindracea were in haplophasic phase, but in C. prolifera, the native species, individuals were found in both diplophasic and haplophasic phases. Different levels of endopolyploidy were found in both C. prolifera and C. racemosa var. cylindracea. Life history is elucidated for the Mediterranean C. prolifera and it is hypothesized that haplophasic dominance in C. racemosa var. cylindracea and C. taxifolia is a beneficial trait for their invasive strategies.

  3. Landscape genomic prediction for restoration of a Eucalyptus foundation species under climate change.

    PubMed

    Supple, Megan Ann; Bragg, Jason G; Broadhurst, Linda M; Nicotra, Adrienne B; Byrne, Margaret; Andrew, Rose L; Widdup, Abigail; Aitken, Nicola C; Borevitz, Justin O

    2018-04-24

    As species face rapid environmental change, we can build resilient populations through restoration projects that incorporate predicted future climates into seed sourcing decisions. Eucalyptus melliodora is a foundation species of a critically endangered community in Australia that is a target for restoration. We examined genomic and phenotypic variation to make empirical based recommendations for seed sourcing. We examined isolation by distance and isolation by environment, determining high levels of gene flow extending for 500 km and correlations with climate and soil variables. Growth experiments revealed extensive phenotypic variation both within and among sampling sites, but no site-specific differentiation in phenotypic plasticity. Model predictions suggest that seed can be sourced broadly across the landscape, providing ample diversity for adaptation to environmental change. Application of our landscape genomic model to E. melliodora restoration projects can identify genomic variation suitable for predicted future climates, thereby increasing the long term probability of successful restoration. © 2018, Supple et al.

  4. Antagonism of rice phylloplane fungi against Cercospora oryzae

    NASA Astrophysics Data System (ADS)

    Mardani, A.; Hadiwiyono

    2018-03-01

    Narrow brown leaf spot (NBLS) caused by Cercospora oryzae Miyake is one of the important obstacle in rice cultivation that can decrease the productivity up to 40%. It has been known well that some phylloplane fungi are antagonistic to some leaf diseases. Phylloplane fungi of rice however haven’t been studied much and poorly understood as biological control agent of rice pathogen such C. oryzae. The research aimed to study the antagonism of some phylloplane fungi of rice against C. oryzae. At least 14 isolates of phylloplane fungi were collected which consisted of six pathogenic and eight nonpathogenic variants. All of nonpathogenic isolates were antagonistic against C. oryzae both in vitro and only one isolate could not inhibit the infection of the pathogen in vivo. Some isolates were identified as Aspergillus, Mucor, Penicillium, Fusarium, and Trichoderma. The isolate of Mucor and Fusarium could inhibit the highest growth of pathogen on potato dextrose medium that were at 36.0% and 35.5% respectively. Whereas on artificial inoculation on rice, some isolates such Penicillium and Fusarium could inhibit most effectively and were significantly different to Mencozeb application with dosage 5g L-1.

  5. Genome-Wide Discovery and Deployment of Insertions and Deletions Markers Provided Greater Insights on Species, Genomes, and Sections Relationships in the Genus Arachis.

    PubMed

    Vishwakarma, Manish K; Kale, Sandip M; Sriswathi, Manda; Naresh, Talari; Shasidhar, Yaduru; Garg, Vanika; Pandey, Manish K; Varshney, Rajeev K

    2017-01-01

    Small insertions and deletions (InDels) are the second most prevalent and the most abundant structural variations in plant genomes. In order to deploy these genetic variations for genetic analysis in genus Arachis , we conducted comparative analysis of the draft genome assemblies of both the diploid progenitor species of cultivated tetraploid groundnut ( Arachis hypogaea L.) i.e., Arachis duranensis (A subgenome) and Arachis ipaënsis (B subgenome) and identified 515,223 InDels. These InDels include 269,973 insertions identified in A. ipaënsis against A. duranensis while 245,250 deletions in A. duranensis against A. ipaënsis . The majority of the InDels were of single bp (43.7%) and 2-10 bp (39.9%) while the remaining were >10 bp (16.4%). Phylogenetic analysis using genotyping data for 86 (40.19%) polymorphic markers grouped 96 diverse Arachis accessions into eight clusters mostly by the affinity of their genome. This study also provided evidence for the existence of "K" genome, although distinct from both the "A" and "B" genomes, but more similar to "B" genome. The complete homology between A. monticola and A. hypogaea tetraploid taxa showed a very similar genome composition. The above analysis has provided greater insights into the phylogenetic relationship among accessions, genomes, sub species and sections. These InDel markers are very useful resource for groundnut research community for genetic analysis and breeding applications.

  6. Genome-Wide Discovery and Deployment of Insertions and Deletions Markers Provided Greater Insights on Species, Genomes, and Sections Relationships in the Genus Arachis

    PubMed Central

    Vishwakarma, Manish K.; Kale, Sandip M.; Sriswathi, Manda; Naresh, Talari; Shasidhar, Yaduru; Garg, Vanika; Pandey, Manish K.; Varshney, Rajeev K.

    2017-01-01

    Small insertions and deletions (InDels) are the second most prevalent and the most abundant structural variations in plant genomes. In order to deploy these genetic variations for genetic analysis in genus Arachis, we conducted comparative analysis of the draft genome assemblies of both the diploid progenitor species of cultivated tetraploid groundnut (Arachis hypogaea L.) i.e., Arachis duranensis (A subgenome) and Arachis ipaënsis (B subgenome) and identified 515,223 InDels. These InDels include 269,973 insertions identified in A. ipaënsis against A. duranensis while 245,250 deletions in A. duranensis against A. ipaënsis. The majority of the InDels were of single bp (43.7%) and 2–10 bp (39.9%) while the remaining were >10 bp (16.4%). Phylogenetic analysis using genotyping data for 86 (40.19%) polymorphic markers grouped 96 diverse Arachis accessions into eight clusters mostly by the affinity of their genome. This study also provided evidence for the existence of “K” genome, although distinct from both the “A” and “B” genomes, but more similar to “B” genome. The complete homology between A. monticola and A. hypogaea tetraploid taxa showed a very similar genome composition. The above analysis has provided greater insights into the phylogenetic relationship among accessions, genomes, sub species and sections. These InDel markers are very useful resource for groundnut research community for genetic analysis and breeding applications. PMID:29312366

  7. BAUM: improving genome assembly by adaptive unique mapping and local overlap-layout-consensus approach.

    PubMed

    Wang, Anqi; Wang, Zhanyu; Li, Zheng; Li, Lei M

    2018-06-15

    It is highly desirable to assemble genomes of high continuity and consistency at low cost. The current bottleneck of draft genome continuity using the second generation sequencing (SGS) reads is primarily caused by uncertainty among repetitive sequences. Even though the single-molecule real-time sequencing technology is very promising to overcome the uncertainty issue, its relatively high cost and error rate add burden on budget or computation. Many long-read assemblers take the overlap-layout-consensus (OLC) paradigm, which is less sensitive to sequencing errors, heterozygosity and variability of coverage. However, current assemblers of SGS data do not sufficiently take advantage of the OLC approach. Aiming at minimizing uncertainty, the proposed method BAUM, breaks the whole genome into regions by adaptive unique mapping; then the local OLC is used to assemble each region in parallel. BAUM can (i) perform reference-assisted assembly based on the genome of a close species (ii) or improve the results of existing assemblies that are obtained based on short or long sequencing reads. The tests on two eukaryote genomes, a wild rice Oryza longistaminata and a parrot Melopsittacus undulatus, show that BAUM achieved substantial improvement on genome size and continuity. Besides, BAUM reconstructed a considerable amount of repetitive regions that failed to be assembled by existing short read assemblers. We also propose statistical approaches to control the uncertainty in different steps of BAUM. http://www.zhanyuwang.xin/wordpress/index.php/2017/07/21/baum. Supplementary data are available at Bioinformatics online.

  8. Basics of genome editing technology and its application in livestock species.

    PubMed

    Petersen, Bjoern

    2017-08-01

    In the last decade, the research community has witnessed a blooming of targeted genome editing tools and applications. Novel programmable DNA nucleases such as zinc finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs) and the clustered regularly interspaced short palindromic repeats/Cas9 system (CRISPR/Cas9) possess long recognition sites and are capable of cutting DNA in a very specific manner. These DNA nucleases mediate targeted genetic alterations by enhancing the DNA mutation rate via induction of double-strand breaks at a predetermined genomic site. Compared to conventional homologous recombination-based gene targeting, DNA nucleases, also referred to as Genome Editors (GEs), can increase the targeting rate around 10,000- to 100,000-fold. The successful application of different GEs has been shown in a myriad of different organisms, including insects, amphibians, plants, nematodes and several mammalian species, including human cells and embryos. In contrast to all other DNA nucleases, that rely on protein-DNA binding, CRISPR/Cas9 uses RNA to establish a specific binding of its DNA nuclease. Besides its capability to facilitate multiplexed genomic modifications in one shot, the CRISPR/Cas is much easier to design compared to all other DNA nucleases. Current results indicate that any DNA nuclease can be successfully employed in a broad range of organisms which renders them useful for improving the understanding of complex physiological systems such as reproduction, producing transgenic animals, including creating large animal models for human diseases, creating specific cell lines, and plants, and even for treating human genetic diseases. This review provides an update on DNA nucleases, their underlying mechanism and focuses on their application to edit the genome of livestock species. © 2017 Blackwell Verlag GmbH.

  9. Genome-wide survey and analysis of microsatellites in nematodes, with a focus on the plant-parasitic species Meloidogyne incognita.

    PubMed

    Castagnone-Sereno, Philippe; Danchin, Etienne G J; Deleury, Emeline; Guillemaud, Thomas; Malausa, Thibaut; Abad, Pierre

    2010-10-25

    Microsatellites are the most popular source of molecular markers for studying population genetic variation in eukaryotes. However, few data are currently available about their genomic distribution and abundance across the phylum Nematoda. The recent completion of the genomes of several nematode species, including Meloidogyne incognita, a major agricultural pest worldwide, now opens the way for a comparative survey and analysis of microsatellites in these organisms. Using MsatFinder, the total numbers of 1-6 bp perfect microsatellites detected in the complete genomes of five nematode species (Brugia malayi, Caenorhabditis elegans, M. hapla, M. incognita, Pristionchus pacificus) ranged from 2,842 to 61,547, and covered from 0.09 to 1.20% of the nematode genomes. Under our search criteria, the most common repeat motifs for each length class varied according to the different nematode species considered, with no obvious relation to the AT-richness of their genomes. Overall, (AT)n, (AG)n and (CT)n were the three most frequent dinucleotide microsatellite motifs found in the five genomes considered. Except for two motifs in P. pacificus, all the most frequent trinucleotide motifs were AT-rich, with (AAT)n and (ATT)n being the only common to the five nematode species. A particular attention was paid to the microsatellite content of the plant-parasitic species M. incognita. In this species, a repertoire of 4,880 microsatellite loci was identified, from which 2,183 appeared suitable to design markers for population genetic studies. Interestingly, 1,094 microsatellites were identified in 801 predicted protein-coding regions, 99% of them being trinucleotides. When compared against the InterPro domain database, 497 of these CDS were successfully annotated, and further assigned to Gene Ontology terms. Contrasted patterns of microsatellite abundance and diversity were characterized in five nematode genomes, even in the case of two closely related Meloidogyne species. 2,245 di- to

  10. Gene Prioritization of Resistant Rice Gene against Xanthomas oryzae pv. oryzae by Using Text Mining Technologies

    PubMed Central

    Xia, Jingbo; Zhang, Xing; Yuan, Daojun; Chen, Lingling; Webster, Jonathan; Fang, Alex Chengyu

    2013-01-01

    To effectively assess the possibility of the unknown rice protein resistant to Xanthomonas oryzae pv. oryzae, a hybrid strategy is proposed to enhance gene prioritization by combining text mining technologies with a sequence-based approach. The text mining technique of term frequency inverse document frequency is used to measure the importance of distinguished terms which reflect biomedical activity in rice before candidate genes are screened and vital terms are produced. Afterwards, a built-in classifier under the chaos games representation algorithm is used to sieve the best possible candidate gene. Our experiment results show that the combination of these two methods achieves enhanced gene prioritization. PMID:24371834

  11. Gene prioritization of resistant rice gene against Xanthomas oryzae pv. oryzae by using text mining technologies.

    PubMed

    Xia, Jingbo; Zhang, Xing; Yuan, Daojun; Chen, Lingling; Webster, Jonathan; Fang, Alex Chengyu

    2013-01-01

    To effectively assess the possibility of the unknown rice protein resistant to Xanthomonas oryzae pv. oryzae, a hybrid strategy is proposed to enhance gene prioritization by combining text mining technologies with a sequence-based approach. The text mining technique of term frequency inverse document frequency is used to measure the importance of distinguished terms which reflect biomedical activity in rice before candidate genes are screened and vital terms are produced. Afterwards, a built-in classifier under the chaos games representation algorithm is used to sieve the best possible candidate gene. Our experiment results show that the combination of these two methods achieves enhanced gene prioritization.

  12. Promoter sequence of 3-phosphoglycerate kinase gene 1 of lactic acid-producing fungus rhizopus oryzae and a method of expressing a gene of interest in fungal species

    DOEpatents

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR

    2002-10-15

    The present invention provides the promoter clone discovery of phosphoglycerate kinase gene 1 of a lactic acid-producing filamentous fungal strain, Rhizopus oryzae. The isolated promoter can constitutively regulate gene expression under various carbohydrate conditions. In addition, the present invention also provides a design of an integration vector for the transformation of a foreign gene in Rhizopus oryzae.

  13. Promoter sequence of 3-phosphoglycerate kinase gene 2 of lactic acid-producing fungus rhizopus oryzae and a method of expressing a gene of interest in fungal species

    DOEpatents

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR

    2003-03-04

    The present invention provides the promoter clone discovery of phosphoglycerate kinase gene 2 of a lactic acid-producing filamentous fungal strain, Rhizopus oryzae. The isolated promoter can constitutively regulate gene expression under various carbohydrate conditions. In addition, the present invention also provides a design of an integration vector for the transformation of a foreign gene in Rhizopus oryzae.

  14. Genetic architecture of cold tolerance in rice (Oryza sativa) determined through high resolution genome-wide analysis

    PubMed Central

    Shakiba, Ehsan; Edwards, Jeremy D.; Jodari, Farman; Duke, Sara E.; Baldo, Angela M.; Korniliev, Pavel; McCouch, Susan R.; Eizenga, Georgia C.

    2017-01-01

    Cold temperature is an important abiotic stress which negatively affects morphological development and seed production in rice (Oryza sativa L.). At the seedling stage, cold stress causes poor germination, seedling injury and poor stand establishment; and at the reproductive stage cold decreases seed yield. The Rice Diversity Panel 1 (RDP1) is a global collection of over 400 O. sativa accessions representing the five major subpopulations from the INDICA and JAPONICA varietal groups, with a genotypic dataset consisting of 700,000 SNP markers. The objectives of this study were to evaluate the RDP1 accessions for the complex, quantitatively inherited cold tolerance traits at the germination and reproductive stages, and to conduct genome-wide association (GWA) mapping to identify SNPs and candidate genes associated with cold stress at these stages. GWA mapping of the germination index (calculated as percent germination in cold divided by warm treatment) revealed 42 quantitative trait loci (QTLs) associated with cold tolerance at the seedling stage, including 18 in the panel as a whole, seven in temperate japonica, six in tropical japonica, 14 in JAPONICA, and nine in INDICA, with five shared across all subpopulations. Twenty-two of these QTLs co-localized with 32 previously reported cold tolerance QTLs. GWA mapping of cold tolerance at the reproductive stage detected 29 QTLs, including seven associated with percent sterility, ten with seed weight per panicle, 14 with seed weight per plant and one region overlapping for two traits. Fifteen co-localized with previously reported QTLs for cold tolerance or yield components. Candidate gene ontology searches revealed these QTLs were associated with significant enrichment for genes related to with lipid metabolism, response to stimuli, response to biotic stimuli (suggesting cross-talk between biotic and abiotic stresses), and oxygen binding. Overall the JAPONICA accessions were more tolerant to cold stress than INDICA

  15. Genome wide survey, discovery and evolution of repetitive elements in three Entamoeba species

    PubMed Central

    Lorenzi, Hernan; Thiagarajan, Mathangi; Haas, Brian; Wortman, Jennifer; Hall, Neil; Caler, Elisabet

    2008-01-01

    Background Identification and mapping of repetitive elements is a key step for accurate gene prediction and overall structural annotation of genomes. During the assembly and annotation of three highly repetitive amoeba genomes, Entamoeba histolytica, Entamoeba dispar, and Entamoeba invadens, we performed comparative sequence analysis to identify and map all class I and class II transposable elements in their sequences. Results Here, we report the identification of two novel Entamoeba-specific repeats: ERE1 and ERE2; ERE1 is spread across the three genomes and associated with different repeats in a species-specific manner, while ERE2 is unique to E. histolytica. We also report the identification of two novel subfamilies of LINE and SINE retrotransposons in E. dispar and provide evidence for how the different LINE and SINE subfamilies evolved in these species. Additionally, we found a putative transposase-coding gene in E. histolytica and E. dispar related to the mariner transposon Hydargos from E. invadens. The distribution of transposable elements in these genomes is markedly skewed with a tendency of forming clusters. More than 70% of the three genomes have a repeat density below their corresponding average value indicating that transposable elements are not evenly distributed. We show that repeats and repeat-clusters are found at syntenic break points between E. histolytica and E. dispar and hence, could work as recombination hot spots promoting genome rearrangements. Conclusion The mapping of all transposable elements found in these parasites shows that repeat coverage is up to three times higher than previously reported. LINE, ERE1 and mariner elements were present in the common ancestor to the three Entamoeba species while ERE2 was likely acquired by E. histolytica after its separation from E. dispar. We demonstrate that E. histolytica and E. dispar share their entire repertoire of LINE and SINE retrotransposons and that Eh_SINE3/Ed_SINE1 originated as a

  16. Phylogenetic relationship and virulence inference of Streptococcus Anginosus Group: curated annotation and whole-genome comparative analysis support distinct species designation

    PubMed Central

    2013-01-01

    Background The Streptococcus Anginosus Group (SAG) represents three closely related species of the viridans group streptococci recognized as commensal bacteria of the oral, gastrointestinal and urogenital tracts. The SAG also cause severe invasive infections, and are pathogens during cystic fibrosis (CF) pulmonary exacerbation. Little genomic information or description of virulence mechanisms is currently available for SAG. We conducted intra and inter species whole-genome comparative analyses with 59 publically available Streptococcus genomes and seven in-house closed high quality finished SAG genomes; S. constellatus (3), S. intermedius (2), and S. anginosus (2). For each SAG species, we sequenced at least one numerically dominant strain from CF airways recovered during acute exacerbation and an invasive, non-lung isolate. We also evaluated microevolution that occurred within two isolates that were cultured from one individual one year apart. Results The SAG genomes were most closely related to S. gordonii and S. sanguinis, based on shared orthologs and harbor a similar number of proteins within each COG category as other Streptococcus species. Numerous characterized streptococcus virulence factor homologs were identified within the SAG genomes including; adherence, invasion, spreading factors, LPxTG cell wall proteins, and two component histidine kinases known to be involved in virulence gene regulation. Mobile elements, primarily integrative conjugative elements and bacteriophage, account for greater than 10% of the SAG genomes. S. anginosus was the most variable species sequenced in this study, yielding both the smallest and the largest SAG genomes containing multiple genomic rearrangements, insertions and deletions. In contrast, within the S. constellatus and S. intermedius species, there was extensive continuous synteny, with only slight differences in genome size between strains. Within S. constellatus we were able to determine important SNPs and changes in

  17. Complete mitochondrial genomes of eleven extinct or possibly extinct bird species.

    PubMed

    Anmarkrud, Jarl A; Lifjeld, Jan T

    2017-03-01

    Natural history museum collections represent a vast source of ancient and historical DNA samples from extinct taxa that can be utilized by high-throughput sequencing tools to reveal novel genetic and phylogenetic information about them. Here, we report on the successful sequencing of complete mitochondrial genome sequences (mitogenomes) from eleven extinct bird species, using de novo assembly of short sequences derived from toepad samples of degraded DNA from museum specimens. For two species (the Passenger Pigeon Ectopistes migratorius and the South Island Piopio Turnagra capensis), whole mitogenomes were already available from recent studies, whereas for five others (the Great Auk Pinguinis impennis, the Imperial Woodpecker Campehilus imperialis, the Huia Heteralocha acutirostris, the Kauai Oo Moho braccathus and the South Island Kokako Callaeas cinereus), there were partial mitochondrial sequences available for comparison. For all seven species, we found sequence similarities of >98%. For the remaining four species (the Kamao Myadestes myadestinus, the Paradise Parrot Psephotellus pulcherrimus, the Ou Psittirostra psittacea and the Lesser Akialoa Akialoa obscura), there was no sequence information available for comparison, so we conducted blast searches and phylogenetic analyses to determine their phylogenetic positions and identify their closest extant relatives. These mitogenomes will be valuable for future analyses of avian phylogenetics and illustrate the importance of museum collections as repositories for genomics resources. © 2016 John Wiley & Sons Ltd.

  18. First report of wheat blast caused by magnaporthe oryzae pathotype triticum in Bangladesh

    USDA-ARS?s Scientific Manuscript database

    Wheat blast or ‘brusone’, caused by the ascomycetous fungus Magnaporthe oryzae B.C. Couch (synonym Pyricularia oryzae Cavara), was first identified in 1985 in Brazil. M. oryzae is composed of a range of morphologically identical but genetically different host-specific pathotypes that are specialized...

  19. Microbial genomic taxonomy

    PubMed Central

    2013-01-01

    A need for a genomic species definition is emerging from several independent studies worldwide. In this commentary paper, we discuss recent studies on the genomic taxonomy of diverse microbial groups and a unified species definition based on genomics. Accordingly, strains from the same microbial species share >95% Average Amino Acid Identity (AAI) and Average Nucleotide Identity (ANI), >95% identity based on multiple alignment genes, <10 in Karlin genomic signature, and > 70% in silico Genome-to-Genome Hybridization similarity (GGDH). Species of the same genus will form monophyletic groups on the basis of 16S rRNA gene sequences, Multilocus Sequence Analysis (MLSA) and supertree analysis. In addition to the established requirements for species descriptions, we propose that new taxa descriptions should also include at least a draft genome sequence of the type strain in order to obtain a clear outlook on the genomic landscape of the novel microbe. The application of the new genomic species definition put forward here will allow researchers to use genome sequences to define simultaneously coherent phenotypic and genomic groups. PMID:24365132

  20. Rice (Oryza) hemoglobins

    USDA-ARS?s Scientific Manuscript database

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice (Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a sin...

  1. Purification and enzymatic characterization of a novel β-1,6-glucosidase from Aspergillus oryzae.

    PubMed

    Watanabe, Akira; Suzuki, Moe; Ujiie, Seiryu; Gomi, Katsuya

    2016-03-01

    In this study, among the 10 genes that encode putative β-glucosidases in the glycoside hydrolase family 3 (GH3) with a signal peptide in the Aspergillus oryzae genome, we found a novel gene (AO090038000425) encoding β-1,6-glucosidase with a substrate specificity for gentiobiose. The transformant harboring AO090038000425, which we named bglH, was overexpressed under the control of the improved glaA gene promoter to form a small clear zone around the colony in a plate assay using 4-methylumbelliferyl β-d-glucopyranoside as the fluorogenic substrate for β-glucosidase. We purified BglH to homogeneity and enzymatically characterize this enzyme. The thermal and pH stabilities of BglH were higher than those of other previously studied A. oryzae β-glucosidases, and BglH was stable over a wide temperature range (4°C-60°C). BglH was inhibited by Hg(2+), Zn(2+), glucono-δ-lactone, glucose, dimethyl sulfoxide, and ethanol, but not by ethylenediaminetetraacetic acid. Interestingly, BglH preferentially hydrolyzed gentiobiose rather than other oligosaccharides and aryl β-glucosides, thereby demonstrating that this enzyme is a β-1,6-glucosidase. To the best of our knowledge, this is the first report of the purification and characterization of β-1,6-glucosidase from Aspergillus fungi or from other eukaryotes. This study suggests that it may be possible to find a more suitable β-glucosidase such as BglH for reducing the bitter taste of gentiobiose, and thus for controlling the sweetness of starch hydrolysates in the food industry via genome mining. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. A genome-wide association study of a global rice panel reveals resistance in Oryza sativa to root-knot nematodes.

    PubMed

    Dimkpa, Stanley O N; Lahari, Zobaida; Shrestha, Roshi; Douglas, Alex; Gheysen, Godelieve; Price, Adam H

    2016-02-01

    The root-knot nematode Meloidogyne graminicola is one of the most serious nematode pests worldwide and represents a major constraint on rice production. While variation in the susceptibility of Asian rice (Oryza sativa) exists, so far no strong and reliable resistance has been reported. Quantitative trait loci for partial resistance have been reported but no underlying genes have been tagged or cloned. Here, 332 accessions of the Rice Diversity Panel 1 were assessed for gall formation, revealing large variation across all subpopulations of rice and higher susceptibility in temperate japonica accessions. Accessions Khao Pahk Maw and LD 24 appeared to be resistant, which was confirmed in large pot experiments where no galls were observed. Detailed observations on these two accessions revealed no nematodes inside the roots 2 days after inoculation and very few females after 17 days (5 in Khao Pahk Maw and <1 in LD 24, in comparison with >100 in the susceptible controls). These two cultivars appear ideal donors for breeding root-knot nematode resistance. A genome-wide association study revealed 11 quantitative trait loci, two of which are close to epistatic loci detected in the Bala x Azucena population. The discussion highlights a small number of candidate genes worth exploring further, in particular many genes with lectin domains and genes on chromosome 11 with homology to the Hordeum Mla locus. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Seqping: gene prediction pipeline for plant genomes using self-training gene models and transcriptomic data.

    PubMed

    Chan, Kuang-Lim; Rosli, Rozana; Tatarinova, Tatiana V; Hogan, Michael; Firdaus-Raih, Mohd; Low, Eng-Ti Leslie

    2017-01-27

    Gene prediction is one of the most important steps in the genome annotation process. A large number of software tools and pipelines developed by various computing techniques are available for gene prediction. However, these systems have yet to accurately predict all or even most of the protein-coding regions. Furthermore, none of the currently available gene-finders has a universal Hidden Markov Model (HMM) that can perform gene prediction for all organisms equally well in an automatic fashion. We present an automated gene prediction pipeline, Seqping that uses self-training HMM models and transcriptomic data. The pipeline processes the genome and transcriptome sequences of the target species using GlimmerHMM, SNAP, and AUGUSTUS pipelines, followed by MAKER2 program to combine predictions from the three tools in association with the transcriptomic evidence. Seqping generates species-specific HMMs that are able to offer unbiased gene predictions. The pipeline was evaluated using the Oryza sativa and Arabidopsis thaliana genomes. Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis showed that the pipeline was able to identify at least 95% of BUSCO's plantae dataset. Our evaluation shows that Seqping was able to generate better gene predictions compared to three HMM-based programs (MAKER2, GlimmerHMM and AUGUSTUS) using their respective available HMMs. Seqping had the highest accuracy in rice (0.5648 for CDS, 0.4468 for exon, and 0.6695 nucleotide structure) and A. thaliana (0.5808 for CDS, 0.5955 for exon, and 0.8839 nucleotide structure). Seqping provides researchers a seamless pipeline to train species-specific HMMs and predict genes in newly sequenced or less-studied genomes. We conclude that the Seqping pipeline predictions are more accurate than gene predictions using the other three approaches with the default or available HMMs.

  4. Cloning of stanniocalcin (STC) cDNAs of divergent teleost species: Monomeric STC supports monophyly of the ancient teleosts, the osteoglossomorphs.

    PubMed

    Amemiya, Yutaka; Irwin, David M; Youson, John H

    2006-10-01

    Molecular cloning of teleost stanniocalcin (STC) cDNAs was undertaken in two species of order Osteoglossiformes of subdivision Osteoglossomorpha and one species of each of orders Cypriniformes and Perciformes within the subdivision Euteleostei. The elephantnose (Gnathonemus petersii) and the butterflyfish (Pantadon buchholzi) are basal teleosts in different osteoglossiforme suborders yet their 218 amino acid (aa) mature hormones, from prehormones of 249 and 251aa, respectively, have only 10 cysteine residues. A substitution for cysteine at the intermonomeric disulfide linkage site, implies that their STCs exist as monomeric peptides, as is the case with STC from another osteoglossormorph, arawana [Amemiya, Y., Marra, L.E., Reyhani, N., Youson, J.H., 2002. Stanniocalcin from an ancient teleost: a monomeric form of the hormone and a possible extracorpuscular distribution. Mol. Cell. Endocrinol. 188, 141-150]. The STC cDNA of the generalized teleost and cyprinid, the white sucker (Catostomus commersoni), encodes a prehormone of 249aa with a signal peptide of 31aa and a mature protein of 218aa that possesses 11 cysteine residues. The latter feature is consistent with a previous analysis that white sucker mature STC is a glycosylated, homodimeric peptide [Amemiya, Y., Marra, L.E., Reyhani, N., Youson, J.H., 2002. Stanniocalcin from an ancient teleost: a monomeric form of the hormone and a possible extracorpuscular distribution. Mol. Cell. Endocrinol. 188, 141-150]. An open reading frame of the STC cDNA of the derived teleost and perciforme, the smallmouth bass (Micropterus dolomieui), encodes a prehormone of 255aa with a signal peptide of 33aa and a mature protein of 222aa. The position of the 11 cysteines in smallmouth bass STC suggests that it exists as a homodimeric peptide. A phylogenetic analysis, using the new STC-1 amino acid sequences and those in the gene data base provided strong support for monophyly of the Osteoglossomorpha and indicated, with positioning of

  5. Genomics and introgression: discovery and mapping of thousands of species-diagnostic SNPs using RAD sequencing

    USGS Publications Warehouse

    Hand, Brian K.; Hether, Tyler D; Kovach, Ryan P.; Muhlfeld, Clint C.; Amish, Stephen J.; Boyer, Matthew C.; O’Rourke, Sean M.; Miller, Michael R.; Lowe, Winsor H.; Hohenlohe, Paul A.; Luikart, Gordon

    2015-01-01

    Invasive hybridization and introgression pose a serious threat to the persistence of many native species. Understanding the effects of hybridization on native populations (e.g., fitness consequences) requires numerous species-diagnostic loci distributed genome-wide. Here we used RAD sequencing to discover thousands of single-nucleotide polymorphisms (SNPs) that are diagnostic between rainbow trout (RBT, Oncorhynchus mykiss), the world’s most widely introduced fish, and native westslope cutthroat trout (WCT, O. clarkii lewisi) in the northern Rocky Mountains, USA. We advanced previous work that identified 4,914 species-diagnostic loci by using longer sequence reads (100 bp vs. 60 bp) and a larger set of individuals (n = 84). We sequenced RAD libraries for individuals from diverse sampling sources, including native populations of WCT and hatchery broodstocks of WCT and RBT. We also took advantage of a newly released reference genome assembly for RBT to align our RAD loci. In total, we discovered 16,788 putatively diagnostic SNPs, 10,267 of which we mapped to anchored chromosome locations on the RBT genome. A small portion of previously discovered putative diagnostic loci (325 of 4,914) were no longer diagnostic (i.e., fixed between species) based on our wider survey of non-hybridized RBT and WCT individuals. Our study suggests that RAD loci mapped to a draft genome assembly could provide the marker density required to identify genes and chromosomal regions influencing selection in admixed populations of conservation concern and evolutionary interest.

  6. Fob1 and Fob2 Proteins Are Virulence Determinants of Rhizopus oryzae via Facilitating Iron Uptake from Ferrioxamine

    PubMed Central

    Liu, Mingfu; Lin, Lin; Gebremariam, Teclegiorgis; Luo, Guanpingsheng; Skory, Christopher D.; French, Samuel W.; Chou, Tsui-Fen; Edwards, John E.; Ibrahim, Ashraf S.

    2015-01-01

    Dialysis patients with chronic renal failure receiving deferoxamine for treating iron overload are uniquely predisposed for mucormycosis, which is most often caused by Rhizopus oryzae. Although the deferoxamine siderophore is not secreted by Mucorales, previous studies established that Rhizopus species utilize iron from ferrioxamine (iron-rich form of deferoxamine). Here we determined that the CBS domain proteins of Fob1 and Fob2 act as receptors on the cell surface of R. oryzae during iron uptake from ferrioxamine. Fob1 and Fob2 cell surface expression was induced in the presence of ferrioxamine and bound radiolabeled ferrioxamine. A R. oryzae strain with targeted reduced Fob1/Fob2 expression was impaired for iron uptake, germinating, and growing on medium with ferrioxamine as the sole source of iron. This strain also exhibited reduced virulence in a deferoxamine-treated, but not the diabetic ketoacidotic (DKA), mouse model of mucormycosis. The mechanism by which R. oryzae obtains iron from ferrioxamine involves the reductase/permease uptake system since the growth on ferrioxamine supplemented medium is associated with elevated reductase activity and the use of the ferrous chelator bathophenanthroline disulfonate abrogates iron uptake and growth on medium supplemented with ferrioxamine as a sole source of iron. Finally, R. oryzae mutants with reduced copies of the high affinity iron permease (FTR1) or with decreased FTR1 expression had an impaired iron uptake from ferrioxamine in vitro and reduced virulence in the deferoxamine-treated mouse model of mucormycosis. These two receptors appear to be conserved in Mucorales, and can be the subject of future novel therapy to maintain the use of deferoxamine for treating iron-overload. PMID:25974051

  7. Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine

    PubMed Central

    Elsik, Christine G.; Tayal, Aditi; Diesh, Colin M.; Unni, Deepak R.; Emery, Marianne L.; Nguyen, Hung N.; Hagen, Darren E.

    2016-01-01

    We report an update of the Hymenoptera Genome Database (HGD) (http://HymenopteraGenome.org), a model organism database for insect species of the order Hymenoptera (ants, bees and wasps). HGD maintains genomic data for 9 bee species, 10 ant species and 1 wasp, including the versions of genome and annotation data sets published by the genome sequencing consortiums and those provided by NCBI. A new data-mining warehouse, HymenopteraMine, based on the InterMine data warehousing system, integrates the genome data with data from external sources and facilitates cross-species analyses based on orthology. New genome browsers and annotation tools based on JBrowse/WebApollo provide easy genome navigation, and viewing of high throughput sequence data sets and can be used for collaborative genome annotation. All of the genomes and annotation data sets are combined into a single BLAST server that allows users to select and combine sequence data sets to search. PMID:26578564

  8. Detection of Alicyclobacillus species in fruit juice using a random genomic DNA microarray chip.

    PubMed

    Jang, Jun Hyeong; Kim, Sun-Joong; Yoon, Bo Hyun; Ryu, Jee-Hoon; Gu, Man Bock; Chang, Hyo-Ihl

    2011-06-01

    This study describes a method using a DNA microarray chip to rapidly and simultaneously detect Alicyclobacillus species in orange juice based on the hybridization of genomic DNA with random probes. Three food spoilage bacteria were used in this study: Alicyclobacillus acidocaldarius, Alicyclobacillus acidoterrestris, and Alicyclobacillus cycloheptanicus. The three Alicyclobacillus species were adjusted to 2 × 10(3) CFU/ml and inoculated into pasteurized 100% pure orange juice. Cy5-dCTP labeling was used for reference signals, and Cy3-dCTP was labeled for target genomic DNA. The molar ratio of 1:1 of Cy3-dCTP and Cy5-dCTP was used. DNA microarray chips were fabricated using randomly fragmented DNA of Alicyclobacillus spp. and were hybridized with genomic DNA extracted from Bacillus spp. Genomic DNA extracted from Alicyclobacillus spp. showed a significantly higher hybridization rate compared with DNA of Bacillus spp., thereby distinguishing Alicyclobacillus spp. from Bacillus spp. The results showed that the microarray DNA chip containing randomly fragmented genomic DNA was specific and clearly identified specific food spoilage bacteria. This microarray system is a good tool for rapid and specific detection of thermophilic spoilage bacteria, mainly Alicyclobacillus spp., and is useful and applicable to the fruit juice industry.

  9. Identification of Pectin Degrading Enzymes Secreted by Xanthomonas oryzae pv. oryzae and Determination of Their Role in Virulence on Rice

    PubMed Central

    Tayi, Lavanya; Maku, Roshan V.; Patel, Hitendra Kumar; Sonti, Ramesh V.

    2016-01-01

    Xanthomonas oryzae pv.oryzae (Xoo) causes the serious bacterial blight disease of rice. Xoo secretes a repertoire of plant cell wall degrading enzymes (CWDEs) like cellulases, xylanases, esterases etc., which act on various components of the rice cell wall. The major cellulases and xylanases secreted by Xoo have been identified and their role in virulence has been determined. In this study, we have identified some of the pectin degrading enzymes of Xoo and assessed their role in virulence. Bioinformatics analysis indicated the presence of four pectin homogalacturonan (HG) degrading genes in the genome of Xoo. The four HG degrading genes include one polygalacturonase (pglA), one pectin methyl esterase (pmt) and two pectate lyases (pel and pelL). There was no difference in the expression of pglA, pmt and pel genes by laboratory wild type Xoo strain (BXO43) grown in either nutrient rich PS medium or in plant mimic XOM2 medium whereas the expression of pelL gene was induced in XOM2 medium as indicated by qRT-PCR experiments. Gene disruption mutations were generated in each of these four genes. The polygalacturonase mutant pglA- was completely deficient in degrading the substrate Na-polygalacturonicacid (PGA). Strains carrying mutations in the pmt, pel and pelL genes were as efficient as wild type Xoo (BXO43) in cleaving PGA. These observations clearly indicate that PglA is the major pectin degrading enzyme produced by Xoo. The pectin methyl esterase, Pmt, is the pectin de-esterifying enzyme secreted by Xoo as evident from the enzymatic activity assay performed using pectin as the substrate. Mutations in the pglA, pmt, pel and pelL genes have minimal effects on virulence. This suggests that, as compared to cellulases and xylanases, the HG degrading enzymes may not have a major role in the pathogenicity of Xoo. PMID:27907079

  10. Identification of Pectin Degrading Enzymes Secreted by Xanthomonas oryzae pv. oryzae and Determination of Their Role in Virulence on Rice.

    PubMed

    Tayi, Lavanya; Maku, Roshan V; Patel, Hitendra Kumar; Sonti, Ramesh V

    2016-01-01

    Xanthomonas oryzae pv.oryzae (Xoo) causes the serious bacterial blight disease of rice. Xoo secretes a repertoire of plant cell wall degrading enzymes (CWDEs) like cellulases, xylanases, esterases etc., which act on various components of the rice cell wall. The major cellulases and xylanases secreted by Xoo have been identified and their role in virulence has been determined. In this study, we have identified some of the pectin degrading enzymes of Xoo and assessed their role in virulence. Bioinformatics analysis indicated the presence of four pectin homogalacturonan (HG) degrading genes in the genome of Xoo. The four HG degrading genes include one polygalacturonase (pglA), one pectin methyl esterase (pmt) and two pectate lyases (pel and pelL). There was no difference in the expression of pglA, pmt and pel genes by laboratory wild type Xoo strain (BXO43) grown in either nutrient rich PS medium or in plant mimic XOM2 medium whereas the expression of pelL gene was induced in XOM2 medium as indicated by qRT-PCR experiments. Gene disruption mutations were generated in each of these four genes. The polygalacturonase mutant pglA- was completely deficient in degrading the substrate Na-polygalacturonicacid (PGA). Strains carrying mutations in the pmt, pel and pelL genes were as efficient as wild type Xoo (BXO43) in cleaving PGA. These observations clearly indicate that PglA is the major pectin degrading enzyme produced by Xoo. The pectin methyl esterase, Pmt, is the pectin de-esterifying enzyme secreted by Xoo as evident from the enzymatic activity assay performed using pectin as the substrate. Mutations in the pglA, pmt, pel and pelL genes have minimal effects on virulence. This suggests that, as compared to cellulases and xylanases, the HG degrading enzymes may not have a major role in the pathogenicity of Xoo.

  11. The variable genomic architecture of isolation between hybridizing species of house mice.

    PubMed

    Teeter, Katherine C; Thibodeau, Lisa M; Gompert, Zachariah; Buerkle, C Alex; Nachman, Michael W; Tucker, Priscilla K

    2010-02-01

    Studies of the genetics of hybrid zones can provide insight into the genomic architecture of species boundaries. By examining patterns of introgression of multiple loci across a hybrid zone, it may be possible to identify regions of the genome that have experienced selection. Here, we present a comparison of introgression in two replicate transects through the house mouse hybrid zone through central Europe, using data from 41 single nucleotide markers. Using both genomic and geographic clines, we found many differences in patterns of introgression between the two transects, as well as some similarities. We found that many loci may have experienced the effects of selection at linked sites, including selection against hybrid genotypes, as well as positive selection in the form of genotypes introgressed into a foreign genetic background. We also found many positive associations of conspecific alleles among unlinked markers, which could be caused by epistatic interactions. Different patterns of introgression in the two transects highlight the challenge of using hybrid zones to identify genes underlying isolation and raise the possibility that the genetic basis of isolation between these species may be dependent on the local population genetic make-up or the local ecological setting.

  12. Aa Ah Nak

    ERIC Educational Resources Information Center

    Tha, Na Gya; Wus, Thay

    2017-01-01

    In this article, Aa Ah Nak, the authors' methodology presents not only various reflections but also diverse contradictions about the Aa Nii language as well as language revitalization. This article explores language foundation and how the Aa Nii language revitalization is inextricably linked to the genocide and resulting historic trauma pervasive…

  13. The Potential of Streptomyces as Biocontrol Agents against the Rice Blast Fungus, Magnaporthe oryzae (Pyricularia oryzae).

    PubMed

    Law, Jodi Woan-Fei; Ser, Hooi-Leng; Khan, Tahir M; Chuah, Lay-Hong; Pusparajah, Priyia; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2017-01-01

    Rice is a staple food source for more than three billion people worldwide. However, rice is vulnerable to diseases, the most destructive among them being rice blast, which is caused by the fungus Magnaporthe oryzae (anamorph Pyricularia oryzae ). This fungus attacks rice plants at all stages of development, causing annual losses of approximately 10-30% in various rice producing regions. Synthetic fungicides are often able to effectively control plant diseases, but some fungicides result in serious environmental and health problems. Therefore, there is growing interest in discovering and developing new, improved fungicides based on natural products as well as introducing alternative measures such as biocontrol agents to manage plant diseases. Streptomyce s bacteria appear to be promising biocontrol agents against a wide range of phytopathogenic fungi, which is not surprising given their ability to produce various bioactive compounds. This review provides insight into the biocontrol potential of Streptomyces against the rice blast fungus, M. oryzae . The ability of various S treptomyces spp. to act as biocontrol agents of rice blast disease has been studied by researchers under both laboratory and greenhouse/growth chamber conditions. Laboratory studies have shown that Streptomyces exhibit inhibitory activity against M. oryzae . In greenhouse studies, infected rice seedlings treated with Streptomyces resulted in up to 88.3% disease reduction of rice blast. Studies clearly show that Streptomyces spp. have the potential to be used as highly effective biocontrol agents against rice blast disease; however, the efficacy of any biocontrol agent may be affected by several factors including environmental conditions and methods of application. In order to fully exploit their potential, further studies on the isolation, formulation and application methods of Streptomyces along with field experiments are required to establish them as effective biocontrol agents.

  14. The Potential of Streptomyces as Biocontrol Agents against the Rice Blast Fungus, Magnaporthe oryzae (Pyricularia oryzae)

    PubMed Central

    Law, Jodi Woan-Fei; Ser, Hooi-Leng; Khan, Tahir M.; Chuah, Lay-Hong; Pusparajah, Priyia; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2017-01-01

    Rice is a staple food source for more than three billion people worldwide. However, rice is vulnerable to diseases, the most destructive among them being rice blast, which is caused by the fungus Magnaporthe oryzae (anamorph Pyricularia oryzae). This fungus attacks rice plants at all stages of development, causing annual losses of approximately 10–30% in various rice producing regions. Synthetic fungicides are often able to effectively control plant diseases, but some fungicides result in serious environmental and health problems. Therefore, there is growing interest in discovering and developing new, improved fungicides based on natural products as well as introducing alternative measures such as biocontrol agents to manage plant diseases. Streptomyces bacteria appear to be promising biocontrol agents against a wide range of phytopathogenic fungi, which is not surprising given their ability to produce various bioactive compounds. This review provides insight into the biocontrol potential of Streptomyces against the rice blast fungus, M. oryzae. The ability of various Streptomyces spp. to act as biocontrol agents of rice blast disease has been studied by researchers under both laboratory and greenhouse/growth chamber conditions. Laboratory studies have shown that Streptomyces exhibit inhibitory activity against M. oryzae. In greenhouse studies, infected rice seedlings treated with Streptomyces resulted in up to 88.3% disease reduction of rice blast. Studies clearly show that Streptomyces spp. have the potential to be used as highly effective biocontrol agents against rice blast disease; however, the efficacy of any biocontrol agent may be affected by several factors including environmental conditions and methods of application. In order to fully exploit their potential, further studies on the isolation, formulation and application methods of Streptomyces along with field experiments are required to establish them as effective biocontrol agents. PMID:28144236

  15. Using rice genome-wide association studies to identify DNA markers for marker-assisted selection

    USDA-ARS?s Scientific Manuscript database

    Rice association mapping panels are collections of rice (Oryza sativa L.) accessions developed for genome-wide association (GWA) studies. One of these panels, the Rice Diversity Panel 1 (RDP1) was phenotyped by various research groups for several traits of interest, and more recently, genotyped with...

  16. Genetics and genomics of disease resistance in salmonid species

    PubMed Central

    Yáñez, José M.; Houston, Ross D.; Newman, Scott

    2014-01-01

    Infectious and parasitic diseases generate large economic losses in salmon farming. A feasible and sustainable alternative to prevent disease outbreaks may be represented by genetic improvement for disease resistance. To include disease resistance into the breeding goal, prior knowledge of the levels of genetic variation for these traits is required. Furthermore, the information from the genetic architecture and molecular factors involved in resistance against diseases may be used to accelerate the genetic progress for these traits. In this regard, marker assisted selection and genomic selection are approaches which incorporate molecular information to increase the accuracy when predicting the genetic merit of selection candidates. In this article we review and discuss key aspects related to disease resistance in salmonid species, from both a genetic and genomic perspective, with emphasis in the applicability of disease resistance traits into breeding programs in salmonids. PMID:25505486

  17. MOSAIC: an online database dedicated to the comparative genomics of bacterial strains at the intra-species level.

    PubMed

    Chiapello, Hélène; Gendrault, Annie; Caron, Christophe; Blum, Jérome; Petit, Marie-Agnès; El Karoui, Meriem

    2008-11-27

    The recent availability of complete sequences for numerous closely related bacterial genomes opens up new challenges in comparative genomics. Several methods have been developed to align complete genomes at the nucleotide level but their use and the biological interpretation of results are not straightforward. It is therefore necessary to develop new resources to access, analyze, and visualize genome comparisons. Here we present recent developments on MOSAIC, a generalist comparative bacterial genome database. This database provides the bacteriologist community with easy access to comparisons of complete bacterial genomes at the intra-species level. The strategy we developed for comparison allows us to define two types of regions in bacterial genomes: backbone segments (i.e., regions conserved in all compared strains) and variable segments (i.e., regions that are either specific to or variable in one of the aligned genomes). Definition of these segments at the nucleotide level allows precise comparative and evolutionary analyses of both coding and non-coding regions of bacterial genomes. Such work is easily performed using the MOSAIC Web interface, which allows browsing and graphical visualization of genome comparisons. The MOSAIC database now includes 493 pairwise comparisons and 35 multiple maximal comparisons representing 78 bacterial species. Genome conserved regions (backbones) and variable segments are presented in various formats for further analysis. A graphical interface allows visualization of aligned genomes and functional annotations. The MOSAIC database is available online at http://genome.jouy.inra.fr/mosaic.

  18. Increased production of free fatty acids in Aspergillus oryzae by disruption of a predicted acyl-CoA synthetase gene.

    PubMed

    Tamano, Koichi; Bruno, Kenneth S; Koike, Hideaki; Ishii, Tomoko; Miura, Ai; Umemura, Myco; Culley, David E; Baker, Scott E; Machida, Masayuki

    2015-04-01

    Fatty acids are attractive molecules as source materials for the production of biodiesel fuel. Previously, we attained a 2.4-fold increase in fatty acid production by increasing the expression of fatty acid synthesis-related genes in Aspergillus oryzae. In this study, we achieved an additional increase in the production of fatty acids by disrupting a predicted acyl-CoA synthetase gene in A. oryzae. The A. oryzae genome is predicted to encode six acyl-CoA synthetase genes and disruption of AO090011000642, one of the six genes, resulted in a 9.2-fold higher accumulation (corresponding to an increased production of 0.23 mmol/g dry cell weight) of intracellular fatty acid in comparison to the wild-type strain. Furthermore, by introducing a niaD marker from Aspergillus nidulans to the disruptant, as well as changing the concentration of nitrogen in the culture medium from 10 to 350 mM, fatty acid productivity reached 0.54 mmol/g dry cell weight. Analysis of the relative composition of the major intracellular free fatty acids caused by disruption of AO090011000642 in comparison to the wild-type strain showed an increase in stearic acid (7 to 26 %), decrease in linoleic acid (50 to 27 %), and no significant changes in palmitic or oleic acid (each around 20-25 %).

  19. The MET13 Methylenetetrahydrofolate Reductase Gene Is Essential for Infection-Related Morphogenesis in the Rice Blast Fungus Magnaporthe oryzae

    PubMed Central

    Wang, Hong; Wang, Congcong; Li, Ya; Yue, Xiaofeng; Ma, Zhonghua; Talbot, Nicholas J.; Wang, Zhengyi

    2013-01-01

    Methylenetetrahydrofolate reductases (MTHFRs) play a key role in the biosynthesis of methionine in both prokaryotic and eukaryotic organisms. In this study, we report the identification of a novel T-DNA-tagged mutant WH672 in the rice blast fungus Magnaporthe oryzae, which was defective in vegetative growth, conidiation and pathogenicity. Analysis of the mutation confirmed a single T-DNA insertion upstream of MET13, which encodes a 626-amino-acid protein encoding a MTHFR. Targeted gene deletion of MET13 resulted in mutants that were non-pathogenic and significantly impaired in aerial growth and melanin pigmentation. All phenotypes associated with Δmet13 mutants could be overcome by addition of exogenous methionine. The M. oryzae genome contains a second predicted MTHFR-encoding gene, MET12. The deduced amino acid sequences of Met13 and Met12 share 32% identity. Interestingly, Δmet12 mutants produced significantly less conidia compared with the isogenic wild-type strain and grew very poorly in the absence of methionine, but were fully pathogenic. Deletion of both genes resulted in Δmet13Δmet12 mutants that showed similar phenotypes to single Δmet13 mutants. Taken together, we conclude that the MTHFR gene, MET13, is essential for infection-related morphogenesis by the rice blast fungus M. oryzae. PMID:24116181

  20. Characterization of recombinant prolyl aminopeptidase from Aspergillus oryzae.

    PubMed

    Matsushita-Morita, M; Furukawa, I; Suzuki, S; Yamagata, Y; Koide, Y; Ishida, H; Takeuchi, M; Kashiwagi, Y; Kusumoto, K-I

    2010-07-01

    Prolyl aminopeptidase (PAP) degrades only amino-terminal proline from peptides. The food-grade fungus Aspergillus oryzae produces this enzyme only in small amounts. In this paper, we present efficient production of recombinant PAP with an overexpression system of A. oryzae and characterization of its biochemical properties. The gene encoding PAP was overexpressed as a His-tag fusion protein under a taka-amylase gene (amyB) promoter with a limited expressing condition in A. oryzae. The PAP activity in the mycelia grown in rich medium containing glucose (repressing condition) was twice that in starch (inducing condition). The enzyme prepared as cell-free extract was partially purified through two-step column chromatography. The PAP was estimated to be a hexameric protein and exhibited salt tolerance against NaCl of up to 4 mol l(-1). Aspergillus oryzae PAP was produced under the repressing condition of amyB promoter in a PAP-overexpressing strain and purified 1800-folds. Overproduction of PAP under promoter-inducing conditions led to an increase in inactive PAP, possibly because of irregular folding. PAP with a high specific activity and salt tolerance may be used effectively in the manufacturing processes of fermented foods. Journal compilation © 2009 The Society for Applied Microbiology. No claim to Japanese Government works.