Sample records for aa5xxx aluminum alloys

  1. Intergranular corrosion in AA5XXX aluminum alloys with discontinuous precipitation at the grain boundaries

    NASA Astrophysics Data System (ADS)

    Bumiller, Elissa

    The US Navy currently uses AA5xxx aluminum alloys for structures exposed to a marine environment. These alloys demonstrate excellent corrosion resistance over other aluminum alloys (e.g., AA2xxx or AA7xxx) in this environment, filling a niche in the marine structures market when requiring a light-weight alternative to steel. However, these alloys are susceptible to localized corrosion; more specifically, intergranular corrosion (IGC) is of concern. IGC of AA5xxx alloys due to the precipitation of beta phase on the grain boundaries is a well-established phenomenon referred to as sensitization. At high degrees of sensitization, the IGC path is a continuous anodic path of beta phase particles. At lower degrees of sensitization, the beta phase coverage at the grain boundaries is not continuous. The traditional ranges of susceptibility to IGC as defined by ASTM B928 are in question due to recent studies. These studies showed that even at mid range degrees of sensitization where the beta phase is no longer continuous, IGC may still occur. Previous thoughts on IGC of these alloy systems were founded on the idea that once the grain boundary precipitate became discontinuous the susceptibility to IGC was greatly reduced. Additionally, IGC susceptibility has been defined metallurgically by compositional gradients at the grain boundaries. However, AA5xxx alloys show no compositional gradients at the grain boundaries, yet are still susceptible to IGC. The goal of this work is to establish criteria necessary for IGC to occur given no continuous beta phase path and no compositional gradient at the grain boundaries. IGC performance of the bulk alloy system AA5083 has been studied along with the primary phases present in the IGC system: alpha and beta phases using electrochemistry and modeling as the primary tools. Numerical modeling supports that at steady-state the fissure tip is likely saturated with Mg in excess of the 4% dissolved in the matrix. By combining these results

  2. Microstructural-Scale Model for Surfaces Spreading of Intergranular Corrosion in Sensitized Stainless Steels and Aluminum-Magnesium (AA5XXX) Alloys

    NASA Astrophysics Data System (ADS)

    Jain, Swati

    Components from AA5XXX (Al-Mg alloys with more than 3 wt% Mg) alloys are X attractive due to availability of low cost, high strength to weight ratio and good weldability. Therefore, these alloys have potential applications in Naval ships. However, these alloys become susceptible to IGC (intergranular corrosion) due to beta-phase precipitation due to improper heat treatment or inadvertent thermal exposure. Stainless steels may also become susceptible due to carbide precipitation and chromium depletion on grain boundaries. IGC susceptibility depends on the interplay between the metallurgical conditions, electrochemical conditions, and chemical conditions. Specific combinations cause IGC while others do not. The objective of this study is to investigate the conditions which bring about surface spreading of IGC in these alloy classes. To accomplish this goal, a microstructure scale model was developed with experimental inputs to understand the 2-D IGC spreading in stainless steels and AA5XXX alloys. The conditions strongly affecting IGC spreading were elucidated. Upon natural and artificial aging, the stainless steels become susceptible to intergranular corrosion because of chromium depletion in the grain boundaries. After aging Al-Mg (AA5XXX) alloys show susceptibility due to the precipitation of the beta-phase (Al3Mg7) in the grain boundaries. Chromium depleted grain boundaries in stainless steels are anodically more active as compared to the interior of the grains. (3-phase rich grain boundaries have lower OCP (open circuit potential) and pitting potentials as compared to the Al-Mg solid solutions. A new approach to modeling the IGC surface spreading in polycrystalline materials that is presented. This model is the first to couple several factors into one granular scale model that illustrates the way in which they interact and IGC occurs. It sheds new information on conditions which cause IGC spreading in two alloy classes and describes a new theory for the critical

  3. Through-thickness recrystallization characteristics of a laminated AA3xxx–AA6xxx aluminum alloy system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, L.H., E-mail: l2liao@uwaterloo.ca; Jin, H.; Gallerneault, M.

    2015-03-15

    The through-thickness annealing behavior of a laminated AA3xxx–AA6xxx alloy system at 300 °C has been studied by scanning electron microscopy, electron backscatter diffraction analysis, electron probe micro-analysis, differential scanning calorimetry, and hardness measurement. Results show that the recrystallization process starts at the interface region between the AA3xxx (clad) and AA6xxx (core) layers. Subsequently, the recrystallization process front progresses into the core layer, while the clad layer is the last region to recrystallize. It is also found that precipitation precedes recrystallization in the entire laminate at the investigated temperature. The preferential onset of recrystallization at the interface region is attributed tomore » the net driving pressure being the highest in this region. The factors that lead to such enhanced net driving pressure are (a) deformation incompatibility between the two alloy layers, (b) lower solute content of the interface, which also leads to lower volume fraction of precipitates, and (c) an accelerated rate of precipitate coarsening due to the presence of a higher density of dislocations. The gradual progress of recrystallization from the interface towards the core layer is dictated by precipitate coarsening and the dependence of its rate on the density of deformation-induced dislocations. The lower driving pressure due to lower work hardening capacity, high solute drag pressure due to Mn, and additional Zener drag from precipitates that form due to solute redistribution during annealing explain the late initiation of recrystallization in the clad layer. - Highlights: • The through-thickness recrystallization of a laminated system is investigated. • The early onset of recrystallization at the interface is discussed. • The effects of precipitation and coarsening on recrystallization are analyzed.« less

  4. Characterization of beta phase growth and experimental validation of long term thermal exposure sensitization of AA5XXX alloys

    NASA Astrophysics Data System (ADS)

    Zhu, Yakun

    The United States Navy has a need for fast, light-weight ships to provide rapid deployment in its operations. Strong and corrosion-resistant aluminum alloys, such as AA5083 (UNS A95083) as well as other AA5XXX alloys, have properties that are well-suited for such applications. However, AA5XXX alloys are susceptible to intergranular corrosion (IGC) and stress corrosion cracking (SCC) because of sensitization which is a consequence of the formation of the grain boundary beta-phase, Al3Mg2, and the anodic dissolution of the beta-phase. Significant research has been performed to measure and understand the effects of time, temperature, stress, and sea water on sensitization and associated intergranular corrosion and stress corrosion cracking under steady-state conditions. In the present work, the behaviors of beta-phase nucleation and growth were characterized using optical and electron microscopy, the relationship between preexisting particles and beta-phase, as well as the effect of different heat treatment times and temperatures on IGC and SCC susceptibility of 5XXX alloys were investigated. Grain boundary beta-phase thickness was measured with high resolution transmission electron microscopy (TEM). The corrosion sensitization susceptibility was evaluated according to the American Society for Testing and Materials (ASTM) standard G67 tests, that is, nitric acid mass-loss testing (NAMLT). Diffusion of Mg is manifested by the thickening of beta-phase along the grainboundary because the grain boundary is considered as the preferential site for beta-phase nucleation. The beta-phase growth rate was monitored using high resolution TEM. The variety of precipitates and their subsequent effects on beta-phase nucleation and growth kinetics was investigated. The existence of various intermetallic particles was observed in both baseline and thermally exposed (70°C and 175°C) samples. These particles are usually either rod-shaped or equiaxed, and rich in Mn, Fe, and Cr

  5. Modeling the microstructural changes during hot tandem rolling of AA5 XXX aluminum alloys: Part I. Microstructural evolution

    NASA Astrophysics Data System (ADS)

    Wells, M. A.; Samarasekera, I. V.; Brimacombe, J. K.; Hawbolt, E. B.; Lloyd, D. J.

    1998-06-01

    A comprehensive mathematical model of the hot tandem rolling process for aluminum alloys has been developed. Reflecting the complex thermomechanical and microstructural changes effected in the alloys during rolling, the model incorporated heat flow, plastic deformation, kinetics of static recrystallization, final recrystallized grain size, and texture evolution. The results of this microstructural engineering study, combining computer modeling, laboratory tests, and industrial measurements, are presented in three parts. In this Part I, laboratory measurements of static recrystallization kinetics and final recrystallized grain size are described for AA5182 and AA5052 aluminum alloys and expressed quantitatively by semiempirical equations. In Part II, laboratory measurements of the texture evolution during static recrystallization are described for each of the alloys and expressed mathematically using a modified form of the Avrami equation. Finally, Part III of this article describes the development of an overall mathematical model for an industrial aluminum hot tandem rolling process which incorporates the microstructure and texture equations developed and the model validation using industrial data. The laboratory measurements for the microstructural evolution were carried out using industrially rolled material and a state-of-the-art plane strain compression tester at Alcan International. Each sample was given a single deformation and heat treated in a salt bath at 400 °C for various lengths of time to effect different levels of recrystallization in the samples. The range of hot-working conditions used for the laboratory study was chosen to represent conditions typically seen in industrial aluminum hot tandem rolling processes, i.e., deformation temperatures of 350 °C to 500 °C, strain rates of 0.5 to 100 seconds and total strains of 0.5 to 2.0. The semiempirical equations developed indicated that both the recrystallization kinetics and the final recrystallized

  6. Structure-composition-property relationships in 5xxx series aluminum alloys

    NASA Astrophysics Data System (ADS)

    Unocic, Kinga A.

    Al-Mg alloys are well suited for marine applications due to their low density, ease of fabrication, structural durability, and most notably resistance to corrosion. The purpose of this study is to investigate the effects of alloying additions, mechanical processing and heat treatments on the development of grain boundary phases that have an effect on intergranular corrosion (IGC). Cu, Zn, and Si modified compositions of AA5083 were produced that were subjected to a low and high degree of cold work and various heat treatments. ASTM G67 (NAMLT) intergranular corrosion testing and detailed microstructural characterization for various alloys was carried out. An optimal composition and processing condition that yielded the best intergranular corrosion resistant material was identified based on the ASTM G67 test screening. Further, the outstanding modified AA5083 was selected for further microstructural analysis. This particular alloy with has a magnesium level high enough to make it susceptible to intergranular corrosion is very resistant to IGC. It was found that development of the appropriate sub-structure with some Cu, Si and Zn resulted in a material very resistant to IGC. Formation of many sinks, provided by sub-boundaries, within microstructure is very beneficial since it produces a relatively uniform distribution of Mg in the grain interiors, and this can suppress sensitization of this alloy very successfully. This is a very promising rote for the production of high-strength, and corrosion resistant aluminum alloys. Additionally in this study, TEM sample preparation become very crucial step in grain boundary phase investigation. Focus Ion Beam (FIB) milling was used as a primary TEM sample preparation technique because it enables to extract the samples from desired and very specific locations without dissolving grain boundary phases as it was in conventional electropolishing method. However, other issues specifically relevant to FIB milling of aluminum alloys

  7. Measurements of degree of sensitization (DoS) in aluminum alloys using EMAT ultrasound.

    PubMed

    Li, Fang; Xiang, Dan; Qin, Yexian; Pond, Robert B; Slusarski, Kyle

    2011-07-01

    Sensitization in 5XXX aluminum alloys is an insidious problem characterized by the gradual formation and growth of beta phase (Mg(2)Al(3)) at grain boundaries, which increases the susceptibility of alloys to intergranular corrosion (IGC) and intergranular stress-corrosion cracking (IGSCC). The degree of sensitization (DoS) is currently quantified by the ASTM G67 Nitric Acid Mass Loss Test, which is destructive and time consuming. A fast, reliable, and non-destructive method for rapid detection and the assessment of the condition of DoS in AA5XXX aluminum alloys in the field is highly desirable. In this paper, we describe a non-destructive method for measurements of DoS in aluminum alloys with an electromagnetic acoustic transducer (EMAT). AA5083 aluminum alloy samples were sensitized at 100°C with processing times varying from 7days to 30days. The DoS of sensitized samples was first quantified with the ASTM 67 test in the laboratory. Both ultrasonic velocity and attenuation in sensitized specimens were then measured using EMAT and the results were correlated with the DoS data. We found that the longitudinal wave velocity was almost a constant, independent of the sensitization, which suggests that the longitudinal wave can be used to determine the sample thickness. The shear wave velocity and especially the shear wave attenuation are sensitive to DoS. Relationships between DoS and the shear velocity, as well as the shear attenuation have been established. Finally, we performed the data mining to evaluate and improve the accuracy in the measurements of DoS in aluminum alloys with EMAT. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Static Recovery Modeling of Dislocation Density in a Cold Rolled Clad Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Penlington, Alex

    Clad alloys feature one or more different alloys bonded to the outside of a core alloy, with non-equilibrium, interalloy interfaces. There is limited understanding of the recovery and recrystallization behaviour of cold rolled clad aluminum alloys. In order to optimize the properties of such alloys, new heat treatment processes may be required that differ from what is used for the monolithic alloys. This study examines the recovery behaviour of a cold rolled Novelis Fusion(TM) alloy containing an AA6XXX core with an AA3003 cladding on one side. The bond between alloys appears microscopically discrete and continuous, but has a 30 microm wide chemical gradient. The as-deformed structure at the interalloy region consists of pancaked sub-grains with dislocations at the misorientation boundaries and a lower density organized within the more open interiors. X-ray line broadening was used to extract the dislocation density from the interalloy region and an equivalently deformed AA6XXX following static annealing using a modified Williamson-Hall analysis. This analysis assumed that Gaussian broadening contributions in a pseudo-Voigt function corresponded only to strain from dislocations. The kinetics of the dislocation density evolution to recrystallization were studied isothermally at 2 minute intervals, and isochronally at 175 and 205°C. The data fit the Nes model, in which the interalloy region recovered faster than AA6XXX at 175°C, but was slower at 205°C. This was most likely caused by change in texture and chemistry within this region such as over-aging of AA6XXX . Simulation of a continuous annealing and self homogenization process both with and without pre-recovery indicates a detectable, though small change in the texture and grain size in the interalloy region.

  9. [Comparison of texture distribution of cold rolled DC and CC AA 5052 aluminum alloy at different positions through thickness direction by XRD].

    PubMed

    Chen, Ming-biao; Ma, Min; Yang, Qing-xiang; Wang, Shan; Liu, Wen-chang; Zhao, Ying-mei

    2013-09-01

    To provide gist of DC AA 5052 and CC AA 5052 aluminum alloy to industry production and application, the texture variation of cold rolled sheets through thickness direction was studied by X-ray diffraction method, and the difference in texture at surface, quarter and center layer was analyzed. The hot plates of direct chill cast (DC) AA 5052 and continuous cast (CC) AA 5052 aluminum alloy were annealed at 454 degrees C for 4 hours and then cold rolled to different reductions. The strength and volume fraction of the fiber in CC AA 5052 aluminum alloy is larger than in DC AA 5052 aluminum alloy after same rolling reduction The volume fraction of the recrystallization texture cube in the CC AA 5052 aluminum alloy is less than in the DC AA 5052 aluminum alloy, which result in that CC AA 5052 aluminum alloy needs less cold rolling reduction than DC AA 5052 aluminum alloy for generating the texture with same intensity and volume fraction at surface layer, quarter layer and center layer. The manufacturability and performance of CC AA 5052 aluminum alloy is superior to DC AA 5052 aluminum alloy for use in stamping.

  10. Evolution of microstructure and precipitates in 2xxx aluminum alloy after severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Adamczyk-Cieslak, B.; Zdunek, J.; Mizera, J.

    2016-04-01

    This paper investigates the influence of precipitation on the microstructure development in a 2xxx aluminum alloy subjected to hydrostatic extrusion. A three step reduction of the diameter was performed using hydrostatic extrusion (HE) process: from 20mm (initial state) to 10 mm, 5 mm and 3 mm, which corresponds to the logarithmic deformations ɛ = 1.4, ɛ = 2.8 and ɛ = 3.8 respectively. The microstructure and precipitation analysis before and after deformation was performed using transmission electron microscope (TEM), and scanning electron microscopy (SEM). As a result of the tests, a very significant influence of precipitation on the degree of refinement and mechanism of microstructure transformation was stated.

  11. Constant amplitude and post-overload fatigue crack growth behavior in PM aluminum alloy AA 8009

    NASA Technical Reports Server (NTRS)

    Reynolds, A. P.

    1992-01-01

    A recently developed, rapidly solidified, powder metallurgy, dispersion strengthened aluminum alloy, AA 8009, was fatigue tested at room temperature in lab air. Constant amplitude/constant delta kappa and single spike overload conditions were examined. High fatigue crack growth rates and low crack closure levels compared to typical ingot metallurgy aluminum alloys were observed. It was proposed that minimal crack roughness, crack path delection, and limited slip reversibility, resulting from ultra-fine microstructure, were responsible for the relatively poor da/dN-delta kappa performance of AA 8009 as compared to that of typical IM aluminum alloys.

  12. Constant amplitude and post-overload fatigue crack growth behavior in PM aluminum alloy AA 8009

    NASA Technical Reports Server (NTRS)

    Reynolds, A. P.

    1991-01-01

    A recently developed, rapidly solidified, powder metallurgy, dispersion strengthened aluminum alloy, AA 8009, was fatigue tested at room temperature in lab air. Constant amplitude/constant delta kappa and single spike overload conditions were examined. High fatigue crack growth rates and low crack closure levels compared to typical ingot metallurgy aluminum alloys were observed. It was proposed that minimal crack roughness, crack path deflection, and limited slip reversibility, resulting from ultra-fine microstructure, were responsible for the relatively poor da/dN-delta kappa performance of AA 8009 as compared to that of typical IM aluminum alloys.

  13. Dynamic Response and Microstructure Evolution of AA2219-T4 and AA2219-T6 Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Olasumboye, A.; Owolabi, G.; Odeshi, A.; Zeytinci, A.; Yilmaz, N.

    2018-02-01

    In this study, the dynamic deformation behavior of AA2219 aluminum alloy was investigated in two different temper conditions: T4 and T6, with a view to determining the effect of heat treatment on the microstructure and flow behavior of the material under high strain rates. Split Hopkinson pressure bar experiment was used in determining the dynamic response of the alloy while a digital image correlation system was employed in visualizing and tracking the surface deformation of the specimens. Optical microscopy and scanning electron microscopy were used to assess the microstructure of the material after following standard metallographic specimen preparation techniques. The results obtained showed heterogeneous deformation of the alloy in the two temper conditions. It was observed that the dynamic mechanical behavior of each sample preparation was dependent on its strength properties due to aging type, which in turn controls the metamorphosis of the strengthening precipitates and the initial microstructure. At the maximum strain rate of 3500 s-1, transformed bands leading to crack nucleation was observed in the AA2219-T4 aluminum alloy while AA2219-T6 had fractured at the same strain rate. The modes of crack formation and growth in the two alloys were found to be similar: nucleation, growth and coalescence of voids. However, shear band bifurcation phenomenon was observed only in the AA2219-T6 alloy.

  14. Dynamic Response and Microstructure Evolution of AA2219-T4 and AA2219-T6 Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Olasumboye, A.; Owolabi, G.; Odeshi, A.; Zeytinci, A.; Yilmaz, N.

    2018-06-01

    In this study, the dynamic deformation behavior of AA2219 aluminum alloy was investigated in two different temper conditions: T4 and T6, with a view to determining the effect of heat treatment on the microstructure and flow behavior of the material under high strain rates. Split Hopkinson pressure bar experiment was used in determining the dynamic response of the alloy while a digital image correlation system was employed in visualizing and tracking the surface deformation of the specimens. Optical microscopy and scanning electron microscopy were used to assess the microstructure of the material after following standard metallographic specimen preparation techniques. The results obtained showed heterogeneous deformation of the alloy in the two temper conditions. It was observed that the dynamic mechanical behavior of each sample preparation was dependent on its strength properties due to aging type, which in turn controls the metamorphosis of the strengthening precipitates and the initial microstructure. At the maximum strain rate of 3500 s-1, transformed bands leading to crack nucleation was observed in the AA2219-T4 aluminum alloy while AA2219-T6 had fractured at the same strain rate. The modes of crack formation and growth in the two alloys were found to be similar: nucleation, growth and coalescence of voids. However, shear band bifurcation phenomenon was observed only in the AA2219-T6 alloy.

  15. Thermal Exposure and Environment Effects on Tension, Fracture and Fatigue of 5XXX Alloys Tested in Different Orientations

    DTIC Science & Technology

    2017-12-27

    were determined and the effects of changes in loading rate and solution on this susceptibility were determined. Technical Approach The technical... approach followed in this completed work has been to conduct quasi- static fracture and fatigue experiments on 5XXX commercial aluminum alloys of interest...Metallic Materials Studied by Correlative Tomography", in 38th Riso International Symposium on Materials Science - IOP Conf. Series: Materials Science

  16. Analysis of the flow property of aluminum alloy AA6016 based on the fracture morphology using the hydroforming technology

    NASA Astrophysics Data System (ADS)

    Lang, Lihui; Zhang, Quanda; Sun, Zhiying; Wang, Yao

    2017-09-01

    In this paper, the hydraulic bulging experiments were respectively carried out using AA6016-T4 aluminum alloy and AA6016-O aluminum alloy, and the deformation properties and fracture mechanism of aluminum alloy under the conditions of thermal and hydraulic were analyzed. Firstly, the aluminum alloy AA6016 was dealt with two kinds of heat treatment systems such as solid solution heat treatment adding natural ageing and full annealing, then the aluminum alloy such as AA6016-T4 and AA6016-O were obtained. In the same working environment, the two kinds of materials were used in the process of hydraulic bulging experiments, according to the observation and measurement of the deformation sizes of grid circles and material thicknesses near the fracture region, the flow properties and development trend of fracture defect of the materials were analyzed comprehensively from the perspective of qualitative analysis and quantitative analysis; Secondly, the two kinds of materials were sampled in different regions of the fracture area and the microstructure morphology of the fracture was observed by the scanning electron microscope (SEM). The influence laws of the heat treatment systems on the fracture defect of the aluminum alloy under the condition of the liquid pressure were studied preliminarily by observing the distribution characteristics of the fracture microstructure morphology of dimple. At the same time, the experimental research on the ordinary stamping forming process of AA6016-O was carried out and the influence law of different forming process on the fracture defect of the aluminum alloy material was studied by observing the distribution of the fracture microstructure morphology; Finally, the development process of the fracture defect of aluminum alloy sheet was described theoretically from the view of the stress state.

  17. Microstructural evolution during the homogenization heat treatment of 6XXX and 7XXX aluminum alloys

    NASA Astrophysics Data System (ADS)

    Priya, Pikee

    homogenization heat treatment at both length scales which include the (i) dissolution and transformation of the as-cast secondary phases; (ii) precipitation of dispersoids; and (iii) reprecipitation of some of the secondary phases during post-homogenization cooling. The kinetics of the phase transformations are mostly diffusion controlled except for the eta to S phase transformation in 7XXX alloys which is interface reaction rate controlled which has been implemented using a novel approach. Recommendations for homogenization temperature, time, cooling rates and compositions are made for Al-Si-Mg-Fe-Mn and Al-Zn-Cu-Mg-Zr alloys. The numerical model developed has been applied for a through process solidification-homogenization modeling of a Direct-Chill cast AA7050 cylindrical billet to study the radial variation of microstructure after solidification, homogenization and post-homogenization cooling.

  18. Polycrystal-Plasticity Simulation of Roping in AA 6xxx Automotive Sheet Alloys

    NASA Astrophysics Data System (ADS)

    Engler, O.; Schäfer, C.; Brinkman, H.-J.

    The occurrence of roping in AA 6xxx series sheet for car body applications is caused by the collective deformation of band-like clusters of grains with similar crystallographic orientation. In this study large-scale orientation maps obtained by electron back-scattered diffraction (EBSD) are input into a visco-plastic self-consistent polycrystal-plasticity model to analyze the strain anisotropy caused by the topographic arrangement of the recrystallization texture orientations and, in turn, the occurrence of roping. At variance to earlier studies, the measurements were carried out in the short transverse section of the sheets so as to get information on distribution and morphology of orientation clusters through the sheet thickness. Then, narrow bands in the EBSD maps aligned parallel to the ridges on the sheet surface are considered, and the variation in macroscopic strain response from band to band is determined. For a given deformation of the sample these simulations yield quantitative information on the level of roping of Al-alloy sheet for car body applications.

  19. The Role of Second Phase Hard Particles on Hole Stretchability of two AA6xxx Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Xiaohua; Sun, Xin; Golovashchenko, Sergey F.

    The hole stretchability of two Aluminum Alloys (AA6111 and AA6022) are studied by using a two stages integrated finite element framework where the edge geometry and edge damages from the hole piercing processes were considered in the subsequent hole expansion processes. Experimentally it has been found that AA6022 has higher hole expansion ratios than those of AA6111. This observation has been nicely captured by finite element simulations. The main cause of differences have been identified to the volume fractions of the random distributed second phase hard particles which play a critical role in determining the fracture strains of the materials.

  20. NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-based materials for high speed aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr.

    1993-01-01

    This report on the NASA-UVa Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from January 1, 1992 to June 30, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) powder metallurgy 2XXX alloys, (3) rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  1. NASA-UVa light aerospace alloy and structures technology program supplement: Aluminum-based materials for high speed aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr. (Editor)

    1995-01-01

    This report on the NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from July 1, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) Ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) Powder metallurgy 2XXX alloys, (3) Rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) Discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  2. Development and Processing Improvement of Aerospace Aluminum Alloys-Development of AL-Cu-Mg-Ag Alloy (2139)

    NASA Technical Reports Server (NTRS)

    Cho, Alex; Lisagor, W. Barry; Bales, Thomas T.

    2007-01-01

    This final report supplement in presentation format describes a comprehensive multi-tasked contract study to continue the development of the silver bearing alloy now registered as aluminum alloy 2139 by the Aluminum Association. Two commercial scale ingots were processed into nominal plate gauges of two, four and six inches, and were extensively characterized in terms of metallurgical and crystallographic structure, and resulting mechanical properties. This report includes comparisons of the property combinations for this alloy and 2XXX and 7XXX alloys more widely used in high performance applications. Alloy 2139 shows dramatic improvement in all combinations of properties, moreover, the properties of this alloy are retained in all gauge thicknesses, contrary to typical reductions observed in thicker gauges of the other alloys in the comparison. The advancements achieved in this study are expected to result in rapid, widespread use of this alloy in a broad range of ground based, aircraft, and spacecraft applications.

  3. Modeling the Hot Ductility of AA6061 Aluminum Alloy After Severe Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Khamei, A. A.; Dehghani, K.; Mahmudi, R.

    2015-05-01

    Solutionized AA6061 aluminum alloy was processed by equal-channel angular pressing followed by cold rolling. The hot ductility of the material was studied after severe plastic deformation. The hot tensile tests were carried out in the temperature range of 300-500°C and at the strain rates of 0.0005-0.01 s-1. Depending on the temperature and strain rate, the applied strain level exhibited significant effects on the hot ductility, strain-rate sensitivity, and activation energy. It can be suggested that the possible mechanism dominated the hot deformation during tensile testing is dynamic recovery and dislocation creep. Constitutive equations were developed to model the hot ductility of the severe plastic deformed AA6061 alloy.

  4. beta Phase Growth and Precipitation in the 5xxx Series Aluminum Alloy System

    NASA Astrophysics Data System (ADS)

    Scotto D'Antuono, Daniel

    The 5xxx series aluminum alloys are commonly used for structural applications due to their high strength to weight ratio, corrosion resistance, and weldability. This material system is a non-heat treatable aluminum and derives its strength from a super saturation of magnesium (3%>), and from cold rolling. While these materials have many admiral properties, they can undergo a process known as sensitization when exposed to elevated temperatures (50-280°C) for extended periods of time. During this process, magnesium segregates toward the grain boundaries and forms the secondary precipitate β phase (Al3Mg2). When exposed to harsh environments such as sea water, a galvanic couple is formed between the Al matrix and the β phase precipitates. The precipitates become anodic to the matrix and preferentially dissolve leaving gaps along the boundary network, ultimately leading to stress corrosion cracking. While this problem has been known to occur for some time now, questions relating to nucleation sites, misorientation dependence, effect of prior strain, and preferred temperature regimes remain unanswered. The work contained in this thesis attempted to better understand the kinetics, growth, and misorientation dependence, of β phase precipitation using in situ transmission electron microscopy experiments which allowed for direct visualization of the precipitation process. Orientation imaging using a Nanomegas/ASTAR system (OIM in TEM) coupled with the in situ experiments, along with elemental STEM EELs mapping were used to better understand the diffusion of Mg and found low angle boundaries as potential sites for nucleation. The resulting STEM EELs experiments also showed that Mg is much more stable at the grain boundaries than previously thought. Concurrent bulk ex-situ studies were used to compare various heat treatments, as well as to failed in service material showing that the low temperature treatments yield the metastable β’ phase more readily than the

  5. Sensitization of Naturally Aged Aluminum 5083 Armor Plate

    DTIC Science & Technology

    2015-07-29

    susceptibility to intergranular corrosion of 5XXX series aluminum alloys by mass loss after exposure to nitric acid (NAMLT Test)”, ASTM G-67-04. [6...67 nitric acid mass-loss values were 19 to 25 mg/cm2. The transmission electron microscopy microstructure of the sample was found to be consistent...5XXX Series Aluminum Alloys by Mass Loss after Exposure to Nitric Acid “ was used as an assessment of the degree of sensitization (DOS) of the alloy.[5

  6. Wear behaviors of pure aluminum and extruded aluminum alloy (AA2024-T4) under variable vertical loads and linear speeds

    NASA Astrophysics Data System (ADS)

    Jung, Jeki; Oak, Jeong-Jung; Kim, Yong-Hwan; Cho, Yi Je; Park, Yong Ho

    2017-11-01

    The aim of this study was to investigate the transition of wear behavior for pure aluminum and extruded aluminum alloy 2024-T4 (AA2024-T4). The wear test was carried using a ball-on-disc wear testing machine at various vertical loads and linear speeds. The transition of wear behaviors was analyzed based on the microstructure, wear tracks, wear cross-section, and wear debris. The critical wear rates for each material are occurred at lower linear speed for each vertical load. The transition of wear behavior was observed in which abrasion wears with the generation of an oxide layer, fracture of oxide layer, adhesion wear, severe adhesion wear, and the generation of seizure occurred in sequence. In case of the pure aluminum, the change of wear debris occurred in the order of blocky, flake, and needle-like debris. Cutting chip, flake-like, and coarse flake-like debris was occurred in sequence for the extruded AA2024-T4. The transition in the wear behavior of extruded AA2024-T4 occurred slower than in pure aluminum.

  7. NASA-UVA Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr.

    1997-01-01

    This is the final report of the study "Aluminum-Based Materials for High Speed Aircraft" which had the objectives (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials and (2) to assess the materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT. The research team consisted of ALCOA, Allied-Signal, Boeing, McDonnell Douglas, Reynolds Metals and the University of Virginia. Four classes of aluminum alloys were investigated: (1) I/M 2XXX containing Li and I/M 2XXX without Li, (2) I/M 6XXX, (3) two P/M 2XXX alloys, and (4) two different aluminum-based metal matrix composites (MMC). The I/M alloys were targeted for a Mach 2.0 aircraft and the P/M and MMC alloys were targeted for a Mach 2.4 aircraft. Design studies were conducted using several different concepts including skin/stiffener (baseline), honeycomb sandwich, integrally stiffened and hybrid adaptations (conventionally stiffened thin-sandwich skins). Alloy development included fundamental studies of coarsening behavior, the effect of stress on nucleation and growth of precipitates, and fracture toughness as a function of temperature were an integral part of this program. The details of all phases of the research are described in this final report.

  8. Dynamic Response of AA2519 Aluminum Alloy under High Strain Rates

    NASA Astrophysics Data System (ADS)

    Olasumboye, Adewale Taiwo

    Like others in the AA2000 series, AA2519 is a heat-treatable Al-Cu alloy. Its excellent ballistic properties and stress corrosion cracking resistance, combined with other properties, qualify it as a prime candidate for armored vehicle and aircraft applications. However, available data on its high strain-rate response remains limited. In this study, AA2519 aluminum alloy was investigated in three different temper conditions: T4, T6, and T8, to determine the effects of heat treatment on the microstructure and dynamic deformation behavior of the material at high strain rates ranging within 1000 ≤ epsilon ≤ 4000 s-1. Split Hopkinson pressure bar integrated with digital image correlation system was used for mechanical response characterization. Optical microscopy and scanning electron microscopy were used to assess the microstructure of the material after following standard metallographic specimen preparation techniques. Results showed heterogeneous deformation in the three temper conditions. It was observed that dynamic behavior in each condition was dependent on strength properties due to the aging type controlling the strengthening precipitates produced and initial microstructure. At 1500 s -1, AA2519-T6 exhibited peak dynamic yield strength and flow stress of 509 and 667 MPa respectively, which are comparable with what were observed in T8 condition at higher rate of 3500 s-1 but AA2519-T4 showed the least strength and flow stress properties. Early stress collapse, dynamic strain aging, and higher susceptibility to shear band formation and fracture were observed in the T6 condition within the selected range of high strain rates. The alloy's general mode of damage evolution was by dispersoid particle nucleation, shearing and cracking.

  9. Aluminum-lithium alloys in helicopters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, A.F.

    1997-10-01

    Aluminium-lithium alloys are widely applied on the EH101 helicopter, designed and built jointly by GKN Westland Helicopters of England and Agusta S.p.A. of Italy. With the exception of the powder metallurgy alloy AA 5091, all the current commercially available aluminum-lithium alloys are produced by direct-chill casting, and require a precipitation-aging heat treatment to achieve the required properties. In aluminum-lithium alloys containing greater than 1.3% (by weight) of lithium, the intermetallic phase {delta}{prime}-Al{sub 3}Li precipitates upon natural or artificial aging, but the associated strengthening effect is insufficient to meet the medium or high strength levels usually required (the damage tolerant tempermore » in AA 8090 is an exception).« less

  10. Fatigue behavior of a 2XXX series aluminum alloy reinforced with 15 vol Pct SiCp

    NASA Astrophysics Data System (ADS)

    Bonnen, J. J.; Allison, J. E.; Jones, J. W.

    1991-05-01

    The fatigue behavior of a naturally aged powder metallurgy 2xxx series aluminum alloy (Alcoa MB85) and a composite made of this alloy with 15 vol pct SiCp, has been investigated. Fatigue lives were determined using load-controlled axial testing of unnotched cylindrical samples. The influence of mean stress was determined at stress ratios of -1, 0.1, and 0.7. Mean stress had a significant influence on fatigue life, and this influence was consistent with that normally observed in metals. At each stress ratio, the incorporation of SiC reinforcement led to an increase in fatigue life at low and intermediate stresses. When considered on a strain-life basis, however, the composite materials had a somewhat inferior resistance to fatigue. Fatigue cracks initiated from several different microstructural features or defect types, but fatigue life did not vary significantly with the specific initiation site. As the fatigue crack advanced away from the fatigue crack initiation site, increasing numbers of SiC particles were fractured, in agreement with crack-tip process zone models.

  11. Change of Hot Cracking Susceptibility in Welding of High Strength Aluminum Alloy AA 7075

    NASA Astrophysics Data System (ADS)

    Holzer, M.; Hofmann, K.; Mann, V.; Hugger, F.; Roth, S.; Schmidt, M.

    High strength aluminum alloys are known as hard to weld alloys due to their high hot crack susceptibility. However, they have high potential for applications in light weight constructions of automotive industry and therefore it is needed to increase weldability. One major issue is the high hot cracking susceptibility. Vaporization during laser beam welding leads to a change of concentration of the volatile elements magnesium and zinc. Hence, solidification range of the weld and therefore hot cracking susceptibility changes. Additionally, different welding velocities lead to changed solidification conditions with certain influence on hot cracking. This paper discusses the influence of energy per unit length during laser beam welding of AA 7075 on the change of element concentration in the weld seam and the resulting influence on hot cracking susceptibility. Therefore EDS-measurements of weld seams generated with different velocities are performed to determine the change of element concentration. These quantitative data is used to numerically calculate the solidification range in order to evaluate its influence on the hot cracking susceptibility. Besides that, relative hot crack length and mechanical properties are measured. The results increase knowledge about welding of high strength aluminum alloy AA 7075 and hence support further developing of the welding process.

  12. Compression Behavior and Energy Absorption of Aluminum Alloy AA6061 Tubes with Multiple Holes

    NASA Astrophysics Data System (ADS)

    Simhachalam, Bade; Lakshmana Rao, C.; Srinivas, Krishna

    2014-05-01

    In this article, compression behavior and energy absorption of aluminum alloy AA6061 tubes are investigated both experimentally and numerically. Static and dynamic simulations are done using LS-Dyna Software for AA6061 tubes. True stress-plastic strain curves from the tensile test are used in the static and dynamic simulations of AA6061 tubes. The energy absorption values between experimental compression results and numeral simulation are found to be in good agreement. Dynamic simulations are done with drop velocity of up to 10 m/s to understand the inertia effects on energy absorption. The deformed modes from the numerical simulation are compared between tubes with and without holes in static and dynamic conditions.

  13. Influences of post weld heat treatment on tensile strength and microstructure characteristics of friction stir welded butt joints of AA2014-T6 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Rajendran, C.; Srinivasan, K.; Balasubramanian, V.; Balaji, H.; Selvaraj, P.

    2016-08-01

    Friction stir welded (FSWed) joints of aluminum alloys exhibited a hardness drop in both the advancing side (AS) and retreating side (RS) of the thermo-mechanically affected zone (TMAZ) due to the thermal cycle involved in the FSW process. In this investigation, an attempt has been made to overcome this problem by post weld heat treatment (PWHT) methods. FSW butt (FSWB) joints of Al-Cu (AA2014-T6) alloy were PWHT by two methods such as simple artificial aging (AA) and solution treatment followed by artificial aging (STA). Of these two treatments, STA was found to be more beneficial than the simple aging treatment to improve the tensile properties of the FSW joints of AA2014 aluminum alloy.

  14. Corrosion behavior of ultrafine-grained AA2024 aluminum alloy produced by cryorolling

    NASA Astrophysics Data System (ADS)

    Laxman Mani Kanta, P.; Srivastava, V. C.; Venkateswarlu, K.; Paswan, Sharma; Mahato, B.; Das, Goutam; Sivaprasad, K.; Krishna, K. Gopala

    2017-11-01

    The objectives of this study were to produce ultrafine-grained (UFG) AA2024 aluminum alloy by cryorolling followed by aging and to evaluate its corrosion behavior. Solutionized samples were cryorolled to 85% reduction in thickness. Subsequent aging resulted in a UFG structure with finer precipitates of Al2CuMg in the cryorolled alloy. The (1) solutionized and (2) solutionized and cryorolled samples were uniformly aged at 160°C/24 h and were designated as CGPA and CRPA, respectively; these samples were subsequently subjected to corrosion studies. Potentiodynamic polarization studies in 3.5wt% NaCl solution indicated an increase in corrosion potential and a decrease in corrosion current density for CRPA compared to CGPA. In the case of CRPA, electrochemical impedance spectroscopic studies indicated the presence of two complex passive oxide layers with a higher charge transfer resistance and lower mass loss during intergranular corrosion tests. The improved corrosion resistance of CRPA was mainly attributed to its UFG structure, uniform distribution of fine precipitates, and absence of coarse grain-boundary precipitation and associated precipitate-free zones as compared with the CGPA alloy.

  15. Acoustic emission from a solidifying aluminum-lithium alloy

    NASA Technical Reports Server (NTRS)

    Henkel, D. P.; Wood, J. D.

    1992-01-01

    Physical phenomena associated with the solidification of an AA2090 Al-Li alloy have been characterized by AE methods. Repeatable patterns of AE activity as a function of solidification time are recorded and explained for ultrahigh-purity (UHP) aluminum and an Al-4.7 wt pct Cu binary alloy, in addition to the AA2090 Al-Li alloy, by the complementary utilization of thermal, AE, and metallographic methods. One result shows that the solidification of UHP aluminum produces one discrete period of high AE activity as the last 10 percent of solid forms.

  16. Analysis of Particle-Stimulated Nucleation (PSN)-Dominated Recrystallization for Hot-Rolled 7050 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Adam, Khaled F.; Long, Zhengdong; Field, David P.

    2017-04-01

    In 7xxx series aluminum alloys, the constituent large and small second-phase particles present during deformation process. The fraction and spatial distribution of these second-phase particles significantly influence the recrystallized structure, kinetics, and texture in the subsequent treatment. In the present work, the Monte Carlo Potts model was used to model particle-stimulated nucleation (PSN)-dominated recrystallization and grain growth in high-strength aluminum alloy 7050. The driving force for recrystallization is deformation-induced stored energy, which is also strongly affected by the coarse particle distribution. The actual microstructure and particle distribution of hot-rolled plate were used as an initial point for modeling of recrystallization during the subsequent solution heat treatment. Measurements from bright-field TEM images were performed to enhance qualitative interpretations of the developed microstructure. The influence of texture inhomogeneity has been demonstrated from a theoretical point of view using pole figures. Additionally, in situ annealing measurements in SEM were performed to track the orientational and microstructural changes and to provide experimental support for the recrystallization mechanism of PSN in AA7050.

  17. Four-point-bend fatigue of AA 2026 aluminum alloys

    NASA Astrophysics Data System (ADS)

    Li, J. X.; Zhai, T.; Garratt, M. D.; Bray, G. H.

    2005-09-01

    High-cycle fatigue tests were carried out on a newly developed high-strength AA 2026 Al alloy, which was in the form of extrusion bars with square and rectangular cross sections, using a self-aligning four-point-bend rig at room temperature, 15 Hz, and R = 0.1, in lab air. The fatigue strength of the square and rectangular bars was measured to be 85 and 90 pct of their yield strength, respectively, more than twice that of the predecessor to the 2026 alloy (the AA 2024 Al alloy). Fatigue cracks were found to be always initiated at large Θ' (Al7Cu2(Fe,Mn)) particles and to propagate predominantly in a crystallographic mode in the AA 2026 alloy. The fatigue fractographies of the square and rectangular extrusion bars were found to be markedly different, due to their different grain structures (fibril and layered, respectively). Fracture steps on the crack face were found in both of these extrusion bars. Since the 2026 alloy was purer in terms of Fe and Si content, it contained much less coarse particles than in a 2024 alloy. This partially accounted for the superior fatigue strength of the 2026 alloy.

  18. The Role of Stress in the Corrosion Cracking of Aluminum Alloys

    DTIC Science & Technology

    2013-03-01

    Corrosion IGSCC Intergranular Stress Corrosion Cracking NAMLT Nitric Acid Mass Loss Test SCC Stress Corrosion Cracking TGSCC Transgranular Stress...solution at a nitric acid mass loss test (NAMLT) value of 49 mg/cm 2 with an applied voltage of 0.73 VSCE. They also showed that the amount of corrosion ...for determining the susceptibility to intergranualr corrosion of 5XXX series aluminum alloys by mass loss after exposure to nitric acid ," vol.

  19. The Solidification Behavior of AA2618 Aluminum Alloy and the Influence of Cooling Rate

    PubMed Central

    Liu, Yulin; Liu, Ming; Luo, Lei; Wang, Jijie; Liu, Chunzhong

    2014-01-01

    In AA2618 aluminum alloy, the iron- and nickel-rich intermetallics formed during solidification are of great effect on the mechanical properties of the alloy at both room temperature and elevated temperatures. However, the solidification behavior of the alloy and the formation mechanism of the intermetallics during solidification of the alloy are not clear. This research fills the gap and contributes to understanding the intermetallic of the alloy. The results showed that cooling rate was of great influence on the formation of the intermetallics. Under the condition of slow cooling, the as-cast microstructures of the alloy were complex with many coarse eutectic compounds including Al9FeNi, Al7(CuNi)5, Si, Al2Cu and Al2CuMg. The phase Al9FeNi was the dominant intermetallic compound, which precipitated at the earlier stage of the solidification by eutectic reaction L → α-Al + Al9FeNi. Increasing the cooling rate would suppress the formation of the coarse eutectic intermetallics. Under the condition of near-rapid cooling, the as-cast microstructures of the alloy consisted of metastable intermetallics Al9FeNi and Al2Cu; the equilibrium eutectic compounds were suppressed. This research concluded that intermetallics could be refined to a great extent by near-rapid cooling. PMID:28788281

  20. Modeling the microstructural changes during hot tandem rolling of AA5 XXX aluminum alloys: Part II. Textural evolution

    NASA Astrophysics Data System (ADS)

    Wells, M. A.; Samarasekera, I. V.; Brimacombe, J. K.; Hawbolt, E. B.; Lloyd, D. J.

    1998-06-01

    In Part II of this article, the experimental work undertaken to measure the effect of deformation parameters (temperature, strain, and strain rate) on the texture formation during hot deformation and the evolution during subsequent recrystallization is described. In addition, the isothermal kinetics of development of individual texture components were also determined. A neutron diffractometer was used to measure the texture in the as-hot-deformed aluminum samples, and the samples were then heat treated in a 400 °C salt bath for various lengths of time, with the texture being remeasured at various stages in the recrystallization process. Using data from the experimental program, the texture evolution during recrystallization was modeled by applying a modified form of the Avrami equation. Results indicated that, of the deformation parameters studied, textural development was most sensitive to the deformation temperature for both alloys. In addition, modeling results revealed that the Cu component ({112} <111>) was the first to recrystallize, typically followed by the S ({123} <634>) and Bs ({110} <112>) components. This is in agreement with earlier work which indicated that the Bs component was the hardest to recrystallize, possibly because it is able to deform on very few slip systems and, hence, the dislocation interaction may be low.

  1. Investigation of Fatigue Crack-Growth Resistance of Aluminum Alloys under Spectrum Loading.

    DTIC Science & Technology

    1983-04-01

    Effects on Fatigue Crack Progation in 2024 -T3 Aluminum Alloy ," Eng. Frac. Mech, Vol...results ("a" from 6 to 13 mm) can be made (Figure 20a): 1. The 2XXX alloys 2020-T651, 2324-T39, and 2024 - T351 had longer spectrum fatigue lives than the...strength and spectrum life exists at all three maximum peak stress levels for the 2024 alloy , with the lower yield strength T351 condition having

  2. Effect of Scandium on the Interaction of Concurrent Precipitation and Recrystallization in Commercial AA3003 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Tu, Yiyou; Qian, Huan; Zhou, Xuefeng; Jiang, Jianqing

    2014-04-01

    In the current study, the effect of Sc addition on the interaction of concurrent precipitation and recrystallization in commercial AA3003 aluminum alloy was investigated using optical microscopy, scanning electron microscopy, and transmission electron microscopy. In case of AA3003 alloy, which was cold rolled to a true strain of 2.20 and heated at a heating rate of 150 K/s, the onset of precipitation and ending of recrystallization are signified by the critical temperature, T C ~740 K (467 °C). There is a change in the shape of the recrystallized grains from pancake-like to equiaxed shape, as the annealing temperature increases greater than T C. In case of AA3003 alloy microalloyed with 0.4 wt pct of Sc, the high no. density precipitation of coherent Al3Sc precipitates always occurs before recrystallization because of the small nucleation barrier and high rate of decomposition. This leads to extremely coarse pancake-like recrystallization grains with high fraction of low-angle grain boundaries in the entire annealing temperature range, even at a high brazing temperature of 883 K (610 °C).

  3. Material characterization and finite element simulations of aluminum alloy sheets during non-isothermal forming process

    NASA Astrophysics Data System (ADS)

    Zhang, Nan

    The utilization of more non-ferrous materials is one of the key factors to succeed out of the constantly increasing demand for lightweight vehicles in automotive sector. Aluminum-magnesium alloys have been identified as the most promising substitutions to the conventional steel without significant compromise in structural stiffness and strength. However, the conventional forming methods to deform the aluminum alloy sheets are either costly or insufficient in formability which limit the wide applications of aluminum alloy sheets. A recently proposed non-isothermal hot stamping approach, which is also referred as Hot Blank - Cold Die (HB-CD) stamping, aims at fitting the commercial grade aluminum alloy sheets, such as AA5XXX and AA7XXX, into high-volume and cost-effective production for automotive sector. In essence, HB-CD is a mutation of the conventional hot stamping approach for boron steel (22MnB5) which deforms the hot blank within the cold tool set. By elevating the operation temperature, the formability of aluminum alloy sheets can be significantly improved. Meanwhile, heating the blank only and deforming within the cold tool sets allow to reduce the energy and time consumed. This research work aims at conducting a comprehensive investigation of HB-CD with particular focuses on material characterization, constitutive modeling and coupled thermo-mechanical finite element simulations with validation. The material properties of AA5182-O, a popular commercial grade of aluminum alloy sheet in automotive sector, are obtained through isothermal tensile testing at temperatures from 25° to 300°, covering a quasi-static strain-rate range (0.001--0.1s-1). As the state-of-the-art non-contact strain measurement technique, digital image correlation (DIC) system is utilized to evaluate the stress-strain curves as well as to reveal the details of material deformation with full-field and multi-axis strain measurement. Material anisotropy is characterized by extracting the

  4. Corrosion Inhibition of Sodium Benzoate on Aluminum Alloys in Tropical Seawater

    NASA Astrophysics Data System (ADS)

    Rosliza, R.; Senin, H. B.

    2008-05-01

    The corrosion inhibition of aluminum and its alloys is the subject of remarkable technological importance due to their increased industrial applications. This paper reports the results of the corrosion inhibition properties of AA6061 and AA6063 aluminum alloys in tropical seawater using sodium benzoate as an inhibitor. It was found that the corrosion inhibition occurred through the adsorption on the surfactant on the metal surface without modifying the mechanism of corrosion processes.

  5. A Positron Annihilation Study of Corrosion of Aluminum and Aluminum Alloy by NaOH

    NASA Astrophysics Data System (ADS)

    Wu, Y. C.; Zhai, T.; Coleman, P. G.

    2012-08-01

    Corrosion of fully-annealed pure aluminum and a continuous-cast AA2037 aluminum alloy (solutionized and water quenched) in a 1M NaOH solution for various periods of time were analyzed with positron beam-based Doppler broadening spectroscopy. By varying the energy of the incident positron beam, corrosion-induced defects at different depths from the surface were detected. It was found that the Doppler-broadened annihilation line-width parameter was significantly increased near the surface of pure aluminum after corrosion, probably due to the interaction between positrons and nanometer-sized voids formed near the aluminum surface during corrosion. Examination by atomic force microscopy indicated that many pits were formed on the aluminum surface after corrosion. In contrast, a significant decrease in the line-width parameter was observed in AA2037 alloy after corrosion and interpreted as being caused by copper enrichment at the metal-oxide interface during corrosion; such enrichment at large cavity sites was confirmed by energy dispersion spectrometry.

  6. Coating of 6028 Aluminum Alloy Using Aluminum Piston Alloy and Al-Si Alloy-Based Nanocomposites Produced by the Addition of Al-Ti5-B1 to the Matrix Melt

    NASA Astrophysics Data System (ADS)

    El-Labban, Hashem F.; Abdelaziz, M.; Mahmoud, Essam R. I.

    2014-10-01

    The Al-12 pctSi alloy and aluminum-based composites reinforced with TiB2 and Al3Ti intermetallics exhibit good wear resistance, strength-to-weight ratio, and strength-to-cost ratio when compared to equivalent other commercial Al alloys, which make them good candidates as coating materials. In this study, structural AA 6028 alloy is used as the base material. Four different coating materials were used. The first one is Al-Si alloy that has Si content near eutectic composition. The second, third, and fourth ones are Al-6 pctSi-based reinforced with TiB2 and Al3Ti nano-particles produced by addition of Al-Ti5-B1 master alloy with different weight percentages (1, 2, and 3 pct). The coating treatment was carried out with the aid of GTAW process. The microstructures of the base and coated materials were investigated using optical microscope and scanning electron microscope equipped with EDX analyzer. Microhardness of the base material and the coated layer were evaluated using a microhardness tester. GTAW process results in almost sound coated layer on 6028 aluminum alloy with the used four coating materials. The coating materials of Al-12 pct Si alloy resulted in very fine dendritic Al-Si eutectic structure. The interface between the coated layer and the base metal was very clean. The coated layer was almost free from porosities or other defects. The coating materials of Al-6 pct Si-based mixed with Al-Ti5-B1 master alloy with different percentages (1, 2, and 3 pct), results in coated layer consisted of matrix of fine dendrite eutectic morphology structure inside α-Al grains. Many fine in situ TiAl3 and TiB2 intermetallics were precipitated almost at the grain boundary of α-Al grains. The amounts of these precipitates are increased by increasing the addition of Al-Ti5-B1 master alloy. The surface hardness of the 6028 aluminum alloy base metal was improved with the entire four used surface coating materials. The improvement reached to about 85 pct by the first type of

  7. Effect of temperature on the anodizing process of aluminum alloy AA 5052

    NASA Astrophysics Data System (ADS)

    Theohari, S.; Kontogeorgou, Ch.

    2013-11-01

    The effect of temperature (10-40 °C) during the anodizing process of AA 5052 for 40 min in 175 g/L sulfuric acid solution at constant voltage (15 V) was studied in comparison with pure aluminum. The incorporated magnesium species in the barrier layer result in the further increase of the minimum current density passed during anodizing, as the temperature increases, by about 42% up to 30 °C and then by 12% up to 40 °C. Then during the anodizing process for 40 min a blocking effect on oxide film growth was gradually observed as the temperature increased until 30 °C. The results of EDAX analysis on thick films reveal that the mean amount of the magnesium species inside the film is about 50-70% less than that in the bulk alloy, while it is higher at certain locations adjacent to the film surface at 30 °C. The increase of anodizing temperature does not influence the porosity of thin films (formed for short times) on pure aluminum, while it reduces it on the alloy. At 40 °C the above mentioned blocking effects disappear. It means that the presence of magnesium species causes an impediment to the effect of temperature on iss, on the film thickness and on the porosity of thin films, only under conditions where film growth takes place without significant loss of the anodizing charge to side reactions.

  8. Stress Corrosion Cracking Study of Aluminum Alloys Using Electrochemical Noise Analysis

    NASA Astrophysics Data System (ADS)

    Rathod, R. C.; Sapate, S. G.; Raman, R.; Rathod, W. S.

    2013-12-01

    Stress corrosion cracking studies of aluminum alloys AA2219, AA8090, and AA5456 in heat-treated and non heat-treated condition were carried out using electrochemical noise technique with various applied stresses. Electrochemical noise time series data (corrosion potential vs. time) was obtained for the stressed tensile specimens in 3.5% NaCl aqueous solution at room temperature (27 °C). The values of drop in corrosion potential, total corrosion potential, mean corrosion potential, and hydrogen overpotential were evaluated from corrosion potential versus time series data. The electrochemical noise time series data was further analyzed with rescaled range ( R/ S) analysis proposed by Hurst to obtain the Hurst exponent. According to the results, higher values of the Hurst exponents with increased applied stresses showed more susceptibility to stress corrosion cracking as confirmed in case of alloy AA 2219 and AA8090.

  9. Heat-Affected Zone Liquation Cracking Resistance of Friction Stir Processed Aluminum-Copper Alloy AA 2219

    NASA Astrophysics Data System (ADS)

    Karthik, G. M.; Janaki Ram, G. D.; Kottada, Ravi Sankar

    2017-04-01

    In the current work, the effect of friction stir processing on heat-affected zone (HAZ) liquation cracking resistance of aluminum-copper alloy AA 2219 was evaluated. In Gleeble hot-ductility tests and longitudinal Varestraint tests, the FSPed material, despite its very fine dynamically recrystallized equiaxed grain structure, showed considerably higher susceptibility to HAZ liquation cracking when compared to the base material. Detailed microstructural studies showed that the increased cracking susceptibility of the FSPed material is due to (i) increase in the amount of liquating θ phase (equilibrium Al2Cu) and (ii) increase in the population of grain boundary θ particles. An important learning from the current work is that, in certain materials like alloy 2219, the use of FSP as a pretreatment to fusion welding can be counterproductive.

  10. Corrosion Behavior of Aluminum Alloys in Acidic Media

    NASA Astrophysics Data System (ADS)

    Ramli, Rosliza; Seoh, S. Y.; Nik, W. B. Wan; Senin, H. B.

    2007-05-01

    The corrosion inhibition of Al and its alloys are the subject of tremendous technological importance due to the increased industrial applications of these materials. This study will report the results of weight loss, polarization and electrochemical impedance spectroscopic (EIS) measurements on the corrosion inhibition of AA6061 and AA6063 aluminum alloys in acidic media using sodium benzoate as an inhibitor. The results showed that addition of sodium benzoate retards the rate of dissolution and hence inhibits the corrosion of the aluminum alloy in acidic media. The inhibition efficiency increases with the increase of immersion time in acetic acid however it displays a different behavior in sulfuric acid. Langmuir adsorption isotherm fits well with the experimental data. EIS studies showed that there was a significant increase in overall resistance after addition of sodium benzoate, when compared to the case without inhibitor. Langmuir adsorption isotherm fits well with the experimental data.

  11. Gas tungsten arc welding of aluminum alloys 1XXX and 3003 to 3004, 5052 and 5X54. Welding procedure specification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1985-08-01

    Procedure WPS-2201 is qualified under Section IX of the ASME Boiler and Pressure Vessel for gas tungsten arc welding of aluminum alloys 1060, 1100, and 3003 (P-21) to 3004, 5052, 5154, and 5454 (P-22), in thickness range 0.062 to 0.5 in.; filler metal is ER5356 (F-22); shielding gas is argon.

  12. Frictional conditions between alloy AA6060 aluminium and tool steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wideroee, Fredrik; Welo, Torgeir

    The frictional conditions in the new process of screw extrusion of aluminium have been investigated. The contact behaviour between the aluminum alloy and the tool steel in the extruder is vital for understanding the extrusion process. Using a compressive-rotational method for frictional measurements the conditions for unlubricated sticking friction between aluminum alloy AA6060 and tool steel at different combinations of temperatures and pressures have been investigated. In this method the samples in the form of disks are put under hydrostatic pressure while simultaneously being rotated at one end. Pins made from contrast material have been inserted into the samples tomore » measure the deformation introduced. This approach along with 3D simulations form a method for determining the frictional conditions. The paper describes the test method and the results. It was found that the necessary pressure for sticking to occur between the aluminum AA6060 and the different parts of the extruder is heavily influenced by the temperature.« less

  13. Microstructure-sensitive plasticity and fatigue modeling of extruded 6061 aluminum alloys

    NASA Astrophysics Data System (ADS)

    McCullough, Robert Ross

    In this study, the development of fatigue failure and stress anisotropy in light weight ductile metal alloys, specifically Al-Mg-Si aluminum alloys, was investigated. The experiments were carried out on an extruded 6061 aluminum alloy. Reverse loading experiments were performed up to a prestrain of 5% in both tension-followed-by-compression and compression-followed-by-tension. The development of isotropic and kinematic hardening and subsequent anisotropy was indicated by the observation of the Bauschinger effect phenomenon. Experimental results show that 6061 aluminum alloy exhibited a slight increase in the kinematic hardening versus applied prestrain. However, the ratio of kinematic-to-isotropic hardening remained near unity. An internal state variable (ISV) plasticity and damage model was used to capture the evolution of the anisotropy for the as-received T6 and partially annealed conditions. Following the stress anisotropy experiments, the same extruded 6061 aluminum alloy was tested under fully reversing, strain-controlled low cycle fatigue at up to 2.5% strain amplitudes and two heat treatment conditions. Observations were made of the development of striation fields up to the point of nucleation at cracked and clustered precipitants and free surfaces through localized precipitant slip band development. A finite element enabled micro-mechanics study of fatigue damage development of local strain field in the presence of hard phases was conducted. Both the FEA and experimental data sets were utilized in the implementation of a multi-stage fatigue model in order to predict the microstructure response, including fatigue nucleation and propagation contributions on the total fatigue life in AA6061. Good correlation between experimental and predicted results in the number of cycles to final failure was observed. The AA6061 material maintained relatively consistent low cycle fatigue performance despite two different heat treatments.

  14. A parametric study of surface roughness and bonding mechanisms of aluminum alloys with epoxies: a molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Timilsina, Rajendra; Termaath, Stephanie

    The marine environment is highly aggressive towards most materials. However, aluminium-magnesium alloys (Al-Mg, specifically, 5xxx series) have exceptionally long service life in such aggressive marine environments. For instance, an Al-Mg alloy, AA5083, is extensively used in naval structures because of its good mechanical strength, formability, seawater corrosion resistance and weldability. However, bonding mechanisms of these alloys with epoxies in a rough surface environment are not fully understood yet. It requires a rigorous investigation at molecular or atomic levels. We performed a molecular dynamics simulation to study an adherend surface preparation and surface bonding mechanisms of Al-Mg alloy (AA5083) with different epoxies by developing several computer models. Various distributions of surface roughness are introduced in the models and performed molecular dynamics simulations. Formation of a beta phase (Al3Mg2) , microstructures, bonding energies at the interface, bonding strengths and durability are investigated. Office of Naval Research.

  15. Microstructure dependence of dynamic fracture and yielding in aluminum and an aluminum alloy at strain rates of 2 × 106 s-1 and faster

    NASA Astrophysics Data System (ADS)

    Dalton, D. A.; Worthington, D. L.; Sherek, P. A.; Pedrazas, N. A.; Quevedo, H. J.; Bernstein, A. C.; Rambo, P.; Schwarz, J.; Edens, A.; Geissel, M.; Smith, I. C.; Taleff, E. M.; Ditmire, T.

    2011-11-01

    Experiments investigating fracture and resistance to plastic deformation at fast strain rates (>106 s-1) were performed via laser ablation on thin sheets of aluminum and aluminum alloys. Single crystal high purity aluminum (Al-HP) and a single crystal 1100 series aluminum alloy (AA1100) were prepared to investigate the role of impurity particles. Specimens of aluminum alloy +3 wt. % Mg (Al+3Mg) at three different grain sizes were also studied to determine the effect of grain size. In the present experiments, high purity aluminum (Al-HP) exhibited the highest spall strength over 1100 series aluminum alloy (AA1100) and Al+3Mg. Fracture characterization and particle analysis revealed that fracture was initiated in the presence of particles associated with impurity content in the AA1100 and at both grain boundaries and particles in Al+3Mg. The Al+3Mg specimens exhibited the greatest resistance to plastic deformation likely resulting from the presence of magnesium atoms. The Al-HP and AA1100, both lacking a strengthening element such as Mg, were found to have the same Hugoniot elastic limit (HEL) stress. Within the single crystal specimens, orientation effects on spall strength and HEL stress appear to be negligible. Although the fracture character shows a trend with grain size, no clear dependence of spall strength and HEL stress on grain size was measured for the Al+3Mg. Hydrodynamic simulations show how various strength and fracture models are insufficient to predict material behavior at fast strain rates, and a revised set of Tuler-Butcher coefficients for spall are proposed.

  16. Corrosion and Corrosion-Fatigue Behavior of 7075 Aluminum Alloys Studied by In Situ X-Ray Tomography

    NASA Astrophysics Data System (ADS)

    Stannard, Tyler

    7XXX Aluminum alloys have high strength to weight ratio and low cost. They are used in many critical structural applications including automotive and aerospace components. These applications frequently subject the alloys to static and cyclic loading in service. Additionally, the alloys are often subjected to aggressive corrosive environments such as saltwater spray. These chemical and mechanical exposures have been known to cause premature failure in critical applications. Hence, the microstructural behavior of the alloys under combined chemical attack and mechanical loading must be characterized further. Most studies to date have analyzed the microstructure of the 7XXX alloys using two dimensional (2D) techniques. While 2D studies yield valuable insights about the properties of the alloys, they do not provide sufficiently accurate results because the microstructure is three dimensional and hence its response to external stimuli is also three dimensional (3D). Relevant features of the alloys include the grains, subgrains, intermetallic inclusion particles, and intermetallic precipitate particles. The effects of microstructural features on corrosion pitting and corrosion fatigue of aluminum alloys has primarily been studied using 2D techniques such as scanning electron microscopy (SEM) surface analysis along with post-mortem SEM fracture surface analysis to estimate the corrosion pit size and fatigue crack initiation site. These studies often limited the corrosion-fatigue testing to samples in air or specialized solutions, because samples tested in NaCl solution typically have fracture surfaces covered in corrosion product. Recent technological advancements allow observation of the microstructure, corrosion and crack behavior of aluminum alloys in solution in three dimensions over time (4D). In situ synchrotron X-Ray microtomography was used to analyze the corrosion and cracking behavior of the alloy in four dimensions to elucidate crack initiation at corrosion pits

  17. Aluminum alloy AA-6061 and RSA-6061 heat treatment for large mirror applications

    NASA Astrophysics Data System (ADS)

    Newswander, T.; Crowther, B.; Gubbels, G.; Senden, R.

    2013-09-01

    Aluminum mirrors and telescopes can be built to perform well if the material is processed correctly and can be relatively low cost and short schedule. However, the difficulty of making high quality aluminum telescopes increases as the size increases, starting with uniform heat treatment through the thickness of large mirror substrates. A risk reduction effort was started to build and test a ½ meter diameter super polished aluminum mirror. Material selection, the heat treatment process and stabilization are the first critical steps to building a successful mirror. In this study, large aluminum blanks of both conventional AA-6061 per AMS-A-22771 and RSA AA-6061 were built, heat treated and stress relieved. Both blanks were destructively tested with a cut through the thickness. Hardness measurements and tensile tests were completed. We present our results in this paper and make suggestions for modification of procedures and future work.

  18. Effect of the Microstructure on Diffusion Bonded AA5083, AA6082 and AA7075 Aluminium Alloys

    NASA Astrophysics Data System (ADS)

    Venugopal, S.; Mahendran, G.

    2018-05-01

    Rolled plates of aluminium alloys AA5083, AA6082 and AA7075 of 5 mm thickness are joined by diffusion bonding at varied parameters. The microstructure evolution of AA5083, AA6082 and AA7075 aluminium alloys is characterized by Transmission Electron Microscopy (TEM). Metallurgical investigations and mechanical tests are also performed to correlate the results of the TEM investigations with the mechanical properties of the produced diffusion bonded joints. It is observed that the bonding and shear strength of the alloys increase with the increase in bonding temperature, due to the diffusion of micro-constituents in the interface. High temperature enhances the uniform distribution of secondary phase particles and reduces pore formation/defects in the bonded joints.

  19. Gas tungsten arc welding of aluminum alloys 6XXX. Welding procedure specification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1985-08-01

    Procedure WPS-1003 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for gas tungsten arc welding of aluminum alloys 6061 and 6063 (P-23), in thickness range 0.035 to 0.516 in.; filler metal is ER4043 (F-23) or ER5356 (F-22); shielding gas is argon.

  20. Effects Of Welding On The Fatigue Behaviour Of Commercial Aluminum AA-1100 Joints

    NASA Astrophysics Data System (ADS)

    Uthayakumar, M.; Balasubramanian, V.; Rani, Ahmad Majdi Abdul; Hadzima, Branislav

    2018-04-01

    Friction Stir Welding (FSW) is an budding solid state welding process, which is frequently used for joining aluminum alloys where materials can be joined without melt and recast. Therefore, when welding alloys through FSW the phase transformations occurs will be in the solid state form. The present work is aimed in evaluating the fatigue life of friction stir welded commercial grade aluminum alloy joints. The commercial grade AA1100 aluminum alloy of 12mm thickness plate is welded and the specimens are tested using a rotary beam fatigue testing machine at different stress levels. The stress versus number of cycles (S-N) curves was plotted using the data points. The Fatigue life of tungsten inert gas (TIG) and metal inert gas (MIG) welded joints was compared. The fatigue life of the weld joints was interrelated with the tensile properties, microstructure and micro hardness properties. The effects of the notches and welding processes are evaluated and reported.

  1. Stress Corrosion Cracking Behavior of Multipass TIG-Welded AA2219 Aluminum Alloy in 3.5 wt pct NaCl Solution

    NASA Astrophysics Data System (ADS)

    Venugopal, A.; Sreekumar, K.; Raja, V. S.

    2012-09-01

    The stress corrosion cracking (SCC) behavior of the AA2219 aluminum alloy in the single-pass (SP) and multipass (MP) welded conditions was examined and compared with that of the base metal (BM) in 3.5 wt pct NaCl solution using a slow-strain-rate technique (SSRT). The reduction in ductility was used as a parameter to evaluate the SCC susceptibility of both the BM and welded joints. The results showed that the ductility ratio ( ɛ NaCl/( ɛ air) was 0.97 and 0.96, respectively, for the BM and MP welded joint, and the same was marginally reduced to 0.9 for the SP welded joint. The fractographic examination of the failed samples revealed a typical ductile cracking morphology for all the base and welded joints, indicating the good environmental cracking resistance of this alloy under all welded conditions. To understand the decrease in the ductility of the SP welded joint, preexposure SSRT followed by microstructural observations were made, which showed that the decrease in ductility ratio of the SP welded joint was caused by the electrochemical pitting that assisted the nucleation of cracks in the form of corrosion induced mechanical cracking rather than true SCC failure of the alloy. The microstructural examination and polarization tests demonstrated a clear grain boundary (GB) sensitization of the PMZ, resulting in severe galvanic corrosion of the SP weld joint, which initiated the necessary conditions for the localized corrosion and cracking along the PMZ. The absence of PMZ and a refined fusion zone (FZ) structure because of the lesser heat input and postweld heating effect improved the galvanic corrosion resistance of the MP welded joint greatly, and thus, failure occurred along the FZ.

  2. Fatigue Resistance of Al-Cu-Li and Comparison with 7xxx Aerospace Alloys

    NASA Astrophysics Data System (ADS)

    Daniélou, A.; Ronxin, J. P.; Nardin, C.; Ehrström, J. C.

    Al-Cu-Li alloys are of great interest for aerospace applications due to their good mechanical property balance, excellent corrosion resistance and reduced density. These alloys exhibit an increased resistance to fatigue in particular when compared to 7xxx alloys.

  3. Reduced-Pressure Foaming of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Vinod Kumar, G. S.; Mukherjee, M.; Garcia-Moreno, F.; Banhart, J.

    2013-01-01

    We developed a novel process for foaming aluminum and its alloys without using a blowing agent. The process involves a designated apparatus in which molten aluminum and its alloys are first foamed under reduced pressure and then solidified quickly. Foaming was done for pure aluminum (99.99 pct) and AlMg5 alloy not containing stabilizing particles and AlMg5 and AlSi9Mg5 alloys containing 5 vol pct SiO2 particles. We discuss the foaming mechanism and develop a model for estimating the porosity that can be achieved in this process. The nucleation of pores in foams is also discussed.

  4. Effect of Post Weld Heat Treatment on Corrosion Behavior of AA2014 Aluminum – Copper Alloy Electron Beam Welds

    NASA Astrophysics Data System (ADS)

    Venkata Ramana, V. S. N.; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    The present work pertains to the study of corrosion behavior of aluminum alloy electron beam welds. The aluminium alloy used in the present study is copper containing AA2014 alloy. Electron Beam Welding (EBW) was used to weld the alloys in annealed (O) condition. Microstructural changes across the welds were recorded and the effect of post weld heat treatment (PWHT) in T4 (Solutionized and naturally aged) condition on pitting corrosion resistance was studied. A software based PAR basic electrochemical system was used for potentio-dynamic polarization tests. From the study it is observed that weld in O condition is prone to more liquation than that of PWHT condition. This may be attributed to re-melting and solidification of excess eutectic present in the O condition of the base metal. It was also observed that slightly higher hardness values are recorded in O condition than that of PWHT condition. The pitting corrosion resistance of the PMZ/HAZ in PWHT condition is better than that of O condition. This is attributed to copper segregation at the grain boundaries of PMZ in O condition.

  5. Weldability of AA 5052 H32 aluminium alloy by TIG welding and FSW process - A comparative study

    NASA Astrophysics Data System (ADS)

    Shanavas, S.; Raja Dhas, J. Edwin

    2017-10-01

    Aluminium 5xxx series alloys are the strongest non-heat treatable aluminium alloy. Its application found in automotive components and body structures due to its good formability, good strength, high corrosion resistance, and weight savings. In the present work, the influence of Tungsten Inert Gas (TIG) welding parameters on the quality of weld on AA 5052 H32 aluminium alloy plates were analyzed and the mechanical characterization of the joint so produced was compared with Friction stir (FS) welded joint. The selected input variable parameters are welding current and inert gas flow rate. Other parameters such as welding speed and arc voltage were kept constant throughout the study, based on the response from several trial runs conducted. The quality of the weld is measured in terms of ultimate tensile strength. A double side V-butt joints were fabricated by double pass on one side to ensure maximum strength of TIG welded joints. Macro and microstructural examination were conducted for both welding process.

  6. Mitigating Intergranular Stress Corrosion Cracking in Age-Hardenable Al-Zn-Mg-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Ajay Krishnan, M.; Raja, V. S.; Shukla, Shweta; Vaidya, S. M.

    2018-04-01

    This article reports an attempt to develop high-strength aluminum alloys of 7xxx series resistant to intergranular stress corrosion cracking (SCC). A novel aging technique reported in this work exhibited improved strength levels (as high as 100 MPa to that of conventional overaged temper for AA 7050) with significant resistance to SCC measured even at a low strain rate (10-7 s-1) in 3.5 wt pct NaCl. The novel aging heat treatment produced a microstructure that is finer and dense enough in the matrix to impart strength, whereas it is enriched with Cu on the grain boundaries to impart SCC resistance. A detailed explanation for the enhanced strength and SCC resistance is discussed.

  7. Mitigating Intergranular Stress Corrosion Cracking in Age-Hardenable Al-Zn-Mg-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Ajay Krishnan, M.; Raja, V. S.; Shukla, Shweta; Vaidya, S. M.

    2018-06-01

    This article reports an attempt to develop high-strength aluminum alloys of 7xxx series resistant to intergranular stress corrosion cracking (SCC). A novel aging technique reported in this work exhibited improved strength levels (as high as 100 MPa to that of conventional overaged temper for AA 7050) with significant resistance to SCC measured even at a low strain rate (10-7 s-1) in 3.5 wt pct NaCl. The novel aging heat treatment produced a microstructure that is finer and dense enough in the matrix to impart strength, whereas it is enriched with Cu on the grain boundaries to impart SCC resistance. A detailed explanation for the enhanced strength and SCC resistance is discussed.

  8. An evaluation of the benefits of utilizing rapid solidification for development of 2XXX (Al-Cu-Mg) alloys

    NASA Technical Reports Server (NTRS)

    Paris, H. G.; Chellman, D. J.

    1986-01-01

    The advantages of rapid solidification processing over ingot metallurgy processing in the development of 2XXX aluminum alloy compositions were evaluated using a similarly processed ingot metallurgy (IM) control alloy. The powder metallurgy (PM) alloy extrusions showed a reduced age-hardening response in comparison with similar IM compositions, with higher tensile properties for naturally aged extrusions but lower properties for artificially aged ones. However, the tensile properties of naturally and artificially aged PM alloy extrusions based on a version of IM 2034 alloy, but containing 0.6 weight percent zirconium, were comparable to those of the IM control extrusions and had significantly superior combinations of strength and toughness. The tensile properties of this PM alloy showed even greater advantage in 6.4-mm (0.25-in.) and 1.8-mm (0.070-in.) plate and sheet, the yield strength being about 68 MPa (10 ksi) greater than reported values for the IM 2034 alloy sheet. An artificially aged PM alloy based on 2219 alloy also showed a strength and strength-toughness combination comparable to those of the PM Al-Cu-Mg-Zr alloy, substantially outperforming the IM 2219 alloy. These results show that rapid solidification offers the flexibility needed to modify conventional IM compositions to produce new alloy compositions with superior mechanical properties.

  9. Modeling the Controlled Recrystallization of Particle-Containing Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Adam, Khaled; Root, Jameson M.; Long, Zhengdong; Field, David P.

    2017-01-01

    The recrystallized fraction for AA7050 during the solution heat treatment is highly dependent upon the history of deformation during thermomechanical processing. In this work, a state variable model was developed to predict the recrystallization volume fraction as a function of processing parameters. Particle stimulated nucleation (PSN) was observed as a dominant mechanism of recrystallization in AA7050. The mesoscale Monte Carlo Potts model was used to simulate the evolved microstructure during static recrystallization with the given recrystallization fraction determined already by the state variable model for AA7050 alloy. The spatial inhomogeneity of nucleation is obtained from the measurement of the actual second-phase particle distribution in the matrix identified using backscattered electron (BSE) imaging. The state variable model showed good fit with the experimental results, and the simulated microstructures were quantitatively comparable to the experimental results for the PSN recrystallized microstructure of 7050 aluminum alloy. It was also found that the volume fraction of recrystallization did not proceed as dictated by the Avrami equation in this alloy because of the presence of the growth inhibitors.

  10. Microstructure/mechanical property relationships for various thermal treatments of Al-Cu-Mg-X PM aluminum alloys

    NASA Technical Reports Server (NTRS)

    Blackburn, L. B.

    1986-01-01

    The thermal response and aging behavior of three 2XXX-series powder metallurgy aluminum alloys have been investigated, using Rockwell B hardness measurements, optical and electron microscopy, and energy-dispersive chemical analysis, in order to correlate microstructure with measured mechanical properties. Results of the thermal response study indicated that an increased solution heat treatment temperature was effective in resolutionizing large primary constituents in the alloy bearing more copper but had no apparent effect on the microconstituents of the other two. Aging studies conducted at room temperature and at 120, 150, and 180 C for times ranging up to 60 days indicated that classic aging response curves, as determined by hardness measurements, occurred at lower aging temperatures than were previously studied for these alloys, as well as at lower aging temperatures than are commonly used for ingot metallurgy alloys of similar compositions. Microstructural examination and fracture surface analysis of peak-aged tension specimens indicated that the highest tensile strengths are associated with extremely fine and homogeneous distributions of theta-prime or S-prime phases combined with low levels of both large constituent particles and dispersoids. Examination of the results suggest that refined solution heat treatments and lower aging temperatures may be necessary to achieve optimum mechanical properties for these 2XXX series alloys.

  11. Experiment-based modelling of grain boundary β-phase (Mg2Al3) evolution during sensitisation of aluminium alloy AA5083.

    PubMed

    Zhang, R; Steiner, M A; Agnew, S R; Kairy, S K; Davies, C H J; Birbilis, N

    2017-06-07

    An empirical model for the evolution of β-phase (Mg 2 Al 3 ) along grain boundaries in aluminium alloy AA5083 (Al-Mg-Mn) during isothermal exposures is proposed herein. Developing a quantitative understanding of grain boundary precipitation is important to interpreting intergranular corrosion and stress corrosion cracking in this alloy system. To date, complete ab initio models for grain boundary precipitation based upon fundamental principles of thermodynamics and kinetics are not available, despite the critical role that such precipitates play in dictating intergranular corrosion phenomena. Empirical models can therefore serve an important role in advancing the understanding of grain boundary precipitation kinetics, which is an approach applicable beyond the present context. High resolution scanning electron microscopy was to quantify the size and distribution of β-phase precipitates on Ga-embrittled intergranular fracture surfaces of AA5083. The results are compared with the degree of sensitisation (DoS) as judged by nitric acid mass loss testing (ASTM-G67-04), and discussed with models for sensitisation in 5xxx series Al-alloys. The work herein allows sensitisation to be quantified from an unambiguous microstructural perspective.

  12. Aluminum Alloy and Article Cast Therefrom

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2003-01-01

    A cast article from an aluminum alloy, which has improved mechanical properties at elevated temperatures, has the following composition in weight percent: Silicon 14 - 25.0, Copper 5.5 - 8.0, Iron 0.05 - 1.2, Magnesium 0.5 - 1.5, Nickel 0.05 - 0.9, Manganese 0.05 - 1.0, Titanium 0.05 - 1.2, Zirconium 0.05 - 1.2, Vanadium 0.05 - 1.2, Zinc 0.05 - 0.9, Phosphorus 0.001 - 0.1, and the balance is Aluminum, wherein the silicon-to-magnesium ratio is 10 - 25, and the copper-to-magnesium ratio is 4 - 15. The aluminum alloy contains a simultaneous dispersion of three types of Al3X compound particles (X=Ti, V, Zr) having a LI2, crystal structure, and their lattice parameters are coherent to the aluminum matrix lattice. A process for producing this cast article is also disclosed, as well as a metal matrix composite, which includes the aluminum alloy serving as a matrix and containing up to about 60% by volume of a secondary filler material.

  13. A microstructure-based yield stress and work-hardening model for textured 6xxx aluminium alloys

    NASA Astrophysics Data System (ADS)

    Khadyko, M.; Myhr, O. R.; Dumoulin, S.; Hopperstad, O. S.

    2016-04-01

    The plastic properties of an aluminium alloy are defined by its microstructure. The most important factors are the presence of alloying elements in the form of solid solution and precipitates of various sizes, and the crystallographic texture. A nanoscale model that predicts the work-hardening curves of 6xxx aluminium alloys was proposed by Myhr et al. The model predicts the solid solution concentration and the particle size distributions of different types of metastable precipitates from the chemical composition and thermal history of the alloy. The yield stress and the work hardening of the alloy are then determined from dislocation mechanics. The model was largely used for non-textured materials in previous studies. In this work, a crystal plasticity-based approach is proposed for the work hardening part of the nanoscale model, which allows including the influence of the crystallographic texture. The model is evaluated by comparison with experimental data from uniaxial tensile tests on two textured 6xxx alloys in five temper conditions.

  14. The Ballistic and Corrosion Evaluation of Magnesium Elektron E675 vs. Baseline Magnesium Alloy AZ31B and Aluminum Alloy 5083 for Armor Applications

    DTIC Science & Technology

    2011-06-01

    critical property in reducing the plastic failure of the material. The ductility is marginally better than Mg AZ31B. 2 Table 1. Chemical...composition (%) of metal alloys. Element (%)/Alloy CPMg 9980B AZ31B-H24 AA5083-H131 Aluminum — 2.5–3.5 REM Manganese 0.10 max 0.2–1.0 0.40‒1.0 Zinc — 0.6...This trend was attributed to the lack of ductility in E675 compared to 5083, which reduced energy dissipation. Visual analysis of the Mg E675

  15. The Mechanical Behavior of Friction-Stir Spot Welded Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Güler, Hande

    2014-10-01

    Aluminum and alloys are widely used in the automotive industry due to the light weight, good formability, and malleability. Spot welding is the most commonly used joining method of these materials, but the high current requirements and the inconsistent quality of the final welds make this process unsuitable. An alternative welding technique, the friction-stir spot welding process, can also be successfully used in joining of aluminum and alloys. In this study, 1-mm-thick AA5754 Al-alloy plates in the H-111 temper conditions were joined by friction-stir spot welding using two different weld parameters such as tool rotational speed and dwell time. Mechanical properties of the joints were obtained with extensive hardness measurements and tensile shear tests. The effect of these parameters on the failure modes of welded joints was also determined.

  16. Advanced Cast Aluminum Alloys

    DTIC Science & Technology

    2009-02-01

    This production route has demonstrated that aluminum alloys with yield strengths in excess of 690 MPa with good elongation (reportedly 8%) are...series of aluminum alloys have poor-to-fair general corrosion resistance and poor-to-good stress corrosion cracking resistance. Wrought 2519...aluminum alloy has good strength, good ballistic performance, good stress corrosion cracking resistance but only fair general corrosion resistance

  17. Recycling of Aluminum Alloy with Dimox and Rheocasting Functionalize High Performance Structural Foam Composite

    NASA Astrophysics Data System (ADS)

    Rabeeh, Bakr Mohamed

    Great efforts aiming towards the synthesis and the development of structural composite materials. Direct metal oxidation, DIMOX introduced for hybrid composite processing. However, oxidation temperatures around 1100°C lead to the formation of porous ceramic materials. To utilize this porosity intentionally for foam production, a new approach based on synergetic effect of alloying elements, DIMOX and semisolid (rheocsting) processing is developed. A semisolid reaction, rheocasting is introduced to control porosity shape and size. Aluminum alloy 6xxx (automobile scrap pistons) is recycled for this objective and DIMOX at 1100°C for 30 min, then rheocasting, at 750°C for 30 minutes. The effect of α-Fe powder, Mg powder, and Boric acid powder established for the objective of a hybrid structural metal matrix composite in bulk foam matrix. The kinetic of formation of hybrid metal matrix foam composite is introduced. Microstructural and mechanical characterization established for high performance Aluminum foam hybrid composite materials.

  18. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  19. The FEM simulation of continuous rotary extrusion (CRE) of aluminum alloy AA3003

    NASA Astrophysics Data System (ADS)

    Rajendran, Nijenthan; Valberg, Henry; Misiolek, Wojciech Z.

    2017-10-01

    Continuous Rotary Extrusion (CRE) process is also known in literature under Conform TM name and it is mainly used for the continuous extrusion of Aluminum and Copper alloys. CRE use a feedstock in the form of rod, powders and chips, which are fed into the groove of the rotating wheel. As the wheel rotates the feedstock moves along with it due to friction with the wheel. Once the feedstock reaches the abutment the material deforms plastically and it is extruded through the die. CRE has lot to offer when compared to other more conventional extrusion processes such as low energy input, no limit in billet length as it is a continuous process as well as improved material physical properties due to plastic deformation under constant parameters. In this work a FEM model has been developed using Deform TM 3D, to study the metal flow and state variables of AA3003 CRE extrusion. The effect of extrusion wheel velocity has been investigated. The results show that increase in wheel velocity will heat up the feedstock metal due to high shear deformation and higher friction, which significantly changes metal flow conditions at the die exit.

  20. Experimental and numerical investigation of strain rate effect on low cycle fatigue behaviour of AA 5754 alloy

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Singh, A.

    2018-04-01

    The present study deals with evaluation of low cycle fatigue (LCF) behavior of aluminum alloy 5754 (AA 5754) at different strain rates. This alloy has magnesium (Mg) as main alloying element (Al-Mg alloy) which makes this alloy suitable for Marines and Cryogenics applications. The testing procedure and specimen preparation are guided by ASTM E606 standard. The tests are performed at 0.5% strain amplitude with three different strain rates i.e. 0.5×10-3 sec-1, 1×10-3 sec-1 and 2×10-3 sec-1 thus the frequency of tests vary accordingly. The experimental results show that there is significant decrease in the fatigue life with the increase in strain rate. LCF behavior of AA 5754 is also simulated at different strain rates by finite element method. Chaboche kinematic hardening cyclic plasticity model is used for simulating the hardening behavior of the material. Axisymmetric finite element model is created to reduce the computational cost of the simulation. The material coefficients used for “Chaboche Model” are determined by experimentally obtained stabilized hysteresis loop. The results obtained from finite element simulation are compared with those obtained through LCF experiments.

  1. Aluminum alloy anode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Sun, Z. H.; Chen, Z. F.; Fu, Q. W.; Jiang, X. Y.

    2017-03-01

    Aluminum has larger theoretical capacity of 2235 mAh/g than that of graphite (372 mAh/g), but it has big disadvantages including shorter cycle life and higher irreversible capacity loss. Improving cycle performance can be obtained via alloying of aluminum. In this paper, two ternary aluminum alloy, Al7Cu2Fe and Al73Cu5Fe22 were prepared. The main phase of Al7Cu2Fe alloy was Al7Cu2Fe. The heat treatment increased the proportion of Al7Cu2Fe. The main phase of Al73Cu5Fe22 alloy was Al60Cu30Fe10. The heat treatment reduced the proportion of Al60Cu30Fe10. For two alloys, the heat treatment could increase discharge capacity compared with cast alloy. The discharge capacity was improved by 50%. The content of aluminum in alloys has little effect on improving cycle performance, and it has obvious influence on the phase structure of alloy with heat treatment.

  2. Influence of surface pretreatments on the quality of trivalent chromium process coatings on aluminum alloy

    NASA Astrophysics Data System (ADS)

    Viroulaud, Rémi; Światowska, Jolanta; Seyeux, Antoine; Zanna, Sandrine; Tardelli, Joffrey; Marcus, Philippe

    2017-11-01

    The effects of surface pretreatments (degreasing and pickling) on the characteristics of the Trivalent Chromium Process (TCP) coating on pure aluminum and on AA2024-T351 aluminum alloy were investigated here by means of surface sensitive techniques: X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The XPS and ToF-SIMS results evidence that the TCP coating homogeneity is strongly dependent on the pretreatment process used. The TCP coverage factor, calculated from XPS results, is significantly lower, on both pure aluminum and AA2024-T351 alloy surface, when a pickling step is applied. One of the main effects of pickling pretreatment is strong metallic copper enrichment at the surface of the 2024 alloy, associated with chemical dissolution of Al-Cu intermetallic particles. However, it is evidenced here, that the copper enrichment is not detrimental for the quality of the TCP coating. The coating failure, observed when the pickling step is applied, can be assigned to a faster kinetics of the coating growth leading to formation of thicker conversion coating more susceptible to cracking or to the localized presence of aluminum fluoride species leading to the appearance of coating defects or detachment.

  3. Dynamic Behavior of AA2519-T8 Aluminum Alloy Under High Strain Rate Loading in Compression

    NASA Astrophysics Data System (ADS)

    Olasumboye, A. T.; Owolabi, G. M.; Odeshi, A. G.; Yilmaz, N.; Zeytinci, A.

    2018-06-01

    In this study, the effects of strain rate on the dynamic behavior, microstructure evolution and hence, failure of the AA2519-T8 aluminum alloy were investigated under compression at strain rates ranging from 1000 to 3500 s-1. Cylindrical specimens of dimensions 3.3 mm × 3.3 mm (L/D = 1) were tested using the split-Hopkinson pressure bar integrated with a digital image correlation system. The microstructure of the alloy was assessed using optical and scanning electron microscopes. Results showed that the dynamic yield strength of the alloy is strain rate dependent, with the maximum yield strength attained by the material being 500 MPa. The peak flow stress of 562 MPa was attained by the material at 3500 s-1. The alloy also showed a significant rate of strain hardening that is typical of other Al-Cu alloys; the rate of strain hardening, however, decreased with increase in strain rate. It was determined that the strain rate sensitivity coefficient of the alloy within the range of high strain rates used in this study is approximately 0.05 at 0.12 plastic strain; a more significant value than what was reported in literature under quasi-static loading. Micrographs obtained showed potential sites for the evolution of adiabatic shear band at 3500 s-1, with a characteristic circular-shaped surface profile comprising partially dissolved second phase particles in the continuous phase across the incident plane of the deformed specimen. The regions surrounding the site showed little or no change in the size of particles. However, the constituent coarse particles were observed as agglomerations of fractured pieces, thus having a shape factor different from those contained in the as-received alloy. Since the investigated alloy is a choice material for military application where it can be exposed to massive deformation at high strain rates, this study provides information on its microstructural and mechanical responses to such extreme loading condition.

  4. Dynamic Behavior of AA2519-T8 Aluminum Alloy Under High Strain Rate Loading in Compression

    NASA Astrophysics Data System (ADS)

    Olasumboye, A. T.; Owolabi, G. M.; Odeshi, A. G.; Yilmaz, N.; Zeytinci, A.

    2018-02-01

    In this study, the effects of strain rate on the dynamic behavior, microstructure evolution and hence, failure of the AA2519-T8 aluminum alloy were investigated under compression at strain rates ranging from 1000 to 3500 s-1. Cylindrical specimens of dimensions 3.3 mm × 3.3 mm (L/D = 1) were tested using the split-Hopkinson pressure bar integrated with a digital image correlation system. The microstructure of the alloy was assessed using optical and scanning electron microscopes. Results showed that the dynamic yield strength of the alloy is strain rate dependent, with the maximum yield strength attained by the material being 500 MPa. The peak flow stress of 562 MPa was attained by the material at 3500 s-1. The alloy also showed a significant rate of strain hardening that is typical of other Al-Cu alloys; the rate of strain hardening, however, decreased with increase in strain rate. It was determined that the strain rate sensitivity coefficient of the alloy within the range of high strain rates used in this study is approximately 0.05 at 0.12 plastic strain; a more significant value than what was reported in literature under quasi-static loading. Micrographs obtained showed potential sites for the evolution of adiabatic shear band at 3500 s-1, with a characteristic circular-shaped surface profile comprising partially dissolved second phase particles in the continuous phase across the incident plane of the deformed specimen. The regions surrounding the site showed little or no change in the size of particles. However, the constituent coarse particles were observed as agglomerations of fractured pieces, thus having a shape factor different from those contained in the as-received alloy. Since the investigated alloy is a choice material for military application where it can be exposed to massive deformation at high strain rates, this study provides information on its microstructural and mechanical responses to such extreme loading condition.

  5. Study on effects of powder and flake chemistry and morphology on the properties of Al-Cu-Mg-X-X-X powder metallurgy advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Meschter, P. J.; Lederich, R. J.; Oneal, J. E.

    1986-01-01

    A study was conducted: (1) to develop rapid solidification processed (RSP) dispersoid-containing Al-3Cu-2Li-1Mg-0.2Zr alloys as substitutes for titanium alloys and commercial 2XXX aluminum alloys for service to at least 150 C; and (2) to develop RSP Al-4Li-Cu-Mg-Zr alloys as substitutes for high-strength commercial 7XXX alloys in ambient-temperature applications. RSP Al-3Cu-2Li-1Mg-0.2Zr alloys have density-normalized yield stresses at 150 C up to 52% larger than that of 2124-T851 and up to 30% larger than that of Ti-6Al-4V. Strength at 150 C in these alloys is provided by thermally stable delta' (Al3Li), T1 (Al2LiCu), and S' (Al2CuMg) precipitates. Density-normalized yield stresses of RSP Al-3Cu-2Li-1Mg-0.2Zr alloys are up to 100% larger than that of 2124-T851 and equivalent to that of Al-8Fe-4Ce at 260 C. Strength in the RSP alloys at 260 C is provided by incoherent dispersoids and subboundary constituent particles such as T1 and S. The RSP alloys are attractive substitutes in less than or = 100-h exposures for 2xxx and Al-4Fe-Ce alloys up to 260 C and for titanium alloys up to 150 C. RSP Al-4Li-Cu-Mg-Zr alloys have ambient-temperature yield and ultimate tensile stresses similar to that of 7050-T7651, and are 14% less dense. RSP Al-4Li-0.5Cu-1.5Mg-0.2Zr has a 20% higher specific yield stress, 40% higher specific elastic modulus, and superior corrosion resistance compared to the properties of 7050-T7651. Strength in the Al-4Li-Cu-Mg-Zr alloy class is primarily provided by the substructure and delta' precipitates and is independent of Cu:Mg ratio. Improvements in fracture toughness and transverse-orientation properties in both alloy classes depend on improved melt practices to eliminate oxide inclusions which are incorporated into the consolidated forms.

  6. The Effects of Specimen Geometry on the Plastic Deformation of AA 2219-T8 Aluminum Alloy Under Dynamic Impact Loading

    NASA Astrophysics Data System (ADS)

    Owolabi, G. M.; Bolling, D. T.; Odeshi, A. G.; Whitworth, H. A.; Yilmaz, N.; Zeytinci, A.

    2017-12-01

    The effects of specimen geometry on shear strain localization in AA 2219-T8 aluminum alloy under dynamic impact loading were investigated. The alloy was machined into cylindrical, cuboidal and conical (frustum) test specimens. Both deformed and transformed adiabatic shear bands developed in the alloy during the impact loading. The critical strain rate for formation of the deformed band was determined to be 2500 s-1 irrespective of the specimen geometry. The critical strain rate required for formation of transformed band is higher than 3000 s-1 depending on the specimen geometry. The critical strain rate for formation of transformed bands is lowest (3000 s-1) in the Ø5 mm × 5 mm cylindrical specimens and highest (> 6000 s-1) in the conical specimens. The cylindrical specimens showed the greatest tendency to form transformed bands, whereas the conical specimen showed the least tendency. The shape of the shear bands on the impacted plane was also observed to be dependent on the specimen geometry. Whereas the shear bands on the compression plane of the conical specimens formed elongated cycles, two elliptical shaped shear bands facing each other were observed on the cylindrical specimens. Two parallel shear bands were observed on the compression planes of the cuboidal specimens. The dynamic stress-strain curves vary slightly with the specimen geometry. The cuboidal specimens exhibit higher tendency for strain hardening and higher maximum flow stress than the other specimens. The microstructure evolution leading to the formation of transformed bands is also discussed in this paper.

  7. Improvements to the strength and corrosion resistance of aluminum-magnesium-manganese alloys of near-AA5083 chemistry

    NASA Astrophysics Data System (ADS)

    Carroll, Mark Christopher

    Aluminum alloys of the 5000 series (AI-Mg-Mn) are extremely popular in a wide range of applications that call for a balance of moderately high strength, good corrosion resistance, and light weight, all at a moderate cost. One of the most popular 5000 series alloys is designated A1-5083, containing, in addition to aluminum, approximately 4 wt% magnesium and 0.7 wt% manganese. In order to increase the range of versatility of this particular alloy, a number of modifications have been examined that will potentially improve the strength and corrosion resistance characteristics while maintaining a chemical composition that is very close to the proven 5083 alloy. The strength of the 5083-based alloys under study are investigated with two goals in mind---to maximize the potential strength characteristics in a "standard" 5083 form through changes in minor processing parameters or through minor alloying additions. Increasing the standard alloy's potential is possible through improved efficiency of "preprocessing" heat treatments that maximize the homogeneous dispersion of secondary manganese-based particles. For the modified alloy study, additions of scandium and zirconium are shown to improve strength not only by forming secondary particles in the alloy, but also through substitutional solid solution strengthening, even when added at very small levels. Corrosion resistance of these 5083-based alloys is investigated once again through minor alloying additions; specifically zinc, copper, and silver. Zinc is particularly effective in that it changes the corrosion-susceptible binary aluminum-magnesium phase that would otherwise form on grain boundaries following exposure to moderately elevated temperatures for extended periods of time to a ternary aluminum-magnesium-zinc phase. This chemical composition of this ternary phase that forms following zinc additions can be further altered through minor additions of copper and silver. By determining threshold levels for these

  8. Effect of Localized Corrosion on Fatigue-Crack Growth in 2524-T3 and 2198-T851 Aluminum Alloys Used as Aircraft Materials

    NASA Astrophysics Data System (ADS)

    Moreto, J. A.; Broday, E. E.; Rossino, L. S.; Fernandes, J. C. S.; Bose Filho, W. W.

    2018-03-01

    Corrosion and fatigue of aluminum alloys are major issues for the in-service life assessment of aircraft structures and for the management of aging air fleets. The aim of this work was to evaluate the effect of localized corrosion on fatigue crack growth (FCG) resistance of the AA2198-T851 Al-Li alloy (Solution Heat Treated, Cold Worked, and Artificially Aged), comparing it with the FCG resistance of AA2524-T3 (Solution Heat Treated and Cold Worked), considering the effect of seawater fog environment. Before fatigue tests, the corrosion behavior of 2198-T851 and 2524-T3 aluminum alloys was verified using open circuit potential and potentiodynamic polarization techniques. Fatigue in air and corrosion fatigue tests were performed applying a stress ratio (R) of 0.1, 15 Hz (air) and 0.1 Hz (seawater fog) frequencies, using a sinusoidal waveform in all cases. The results showed that the localized characteristics of the 2198-T851 and 2524-T3 aluminum alloys are essentially related to the existence of intermetallic compounds, which, due to their different nature, may be cathodic or anodic in relation to the aluminum matrix. The corrosive medium has affected the FCG rate of both aluminum alloys, in a quite similar way.

  9. Investigation into the stress corrosion cracking properties of AA2099, an aluminum-lithium-copper alloy

    NASA Astrophysics Data System (ADS)

    Padgett, Barbara Nicole

    Recently developed Al-Li-Cu alloys show great potential for implementation in the aerospace industry because of the attractive mix of good mechanical properties and low density. AA2099 is an Al-Li-Cu alloy with the following composition Al-2.69wt%Cu-1.8wt%Li-0.6wt%Zn-0.3wt%Mg-0.3wt%Mn-0.08wt%Zr. The environmental assisted cracking and localized corrosion behavior of the AA2099 was investigated in this thesis. The consequences of uncontrolled grain boundary precipitation via friction stir welding on the stress corrosion cracking (SCC) behavior of AA2099 was investigated first. Using constant extension rate testing, intergranular corrosion immersion experiments, and potentiodynamic scans, the heat-affected zone on the trailing edge of the weld (HTS) was determined to be most susceptible of the weld zones. The observed SCC behavior for the HTS was linked to the dissolution of an active phase (Al2CuLi, T1) populating the grain boundary. It should be stated that the SCC properties of AA2099 in the as-received condition were determined to be good. Focus was then given to the electrochemical behavior of precipitate phases that may occupy grain and sub-grain boundaries in AA2099. The grain boundary micro-chemistry and micro-electrochemistry have been alluded to within the literature as having significant influence on the SCC behavior of Al-Li-Cu alloys. Major precipitates found in this alloy system are T1 (Al 2CuLi), T2 (Al7.5Cu4Li), T B (Al6CuLi3), and theta (Al2 Cu). These phases were produced in bulk form so that the electrochemical nature of each phase could be characterized. It was determined T1 was most active electrochemically and theta was least. When present on grain boundaries in the alloy, electrochemical behavior of the individual precipitates aligned with the observed corrosion behavior of the alloy (e.g. TB was accompanied by general pitting corrosion and T 1 was accompanied by intergranular corrosion attack). In addition to the electrochemical behavior of

  10. Damage percolation during stretch flange forming of aluminum alloy sheet

    NASA Astrophysics Data System (ADS)

    Chen, Zengtao; Worswick, Michael J.; Keith Pilkey, A.; Lloyd, David J.

    2005-12-01

    A multi-scale finite element (FE)-damage percolation model was employed to simulate stretch flange forming of aluminum alloys AA5182 and AA5754. Material softening and strain gradients were captured using a Gurson-based FE model. FE results were then fed into the so-called damage percolation code, from which the damage development was modelled within measured microstructures. The formability of the stretch flange samples was predicted based upon the onset of catastrophic failure triggered by profuse void coalescence within the measured second-phase particle field. Damage development is quantified in terms of crack and void areal fractions, and compared to metallographic results obtained from interrupted stretch flange specimens. Parametric study is conducted on the effect of void nucleation strain in the prediction of formability of stretch flanges to "calibrate" proper nucleation strains for both alloys.

  11. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  12. Dissimilar Impact Welding of 6111-T4, 5052-H32 Aluminum Alloys to 22MnB5, DP980 Steels and the Structure-Property Relationship of a Strongly Bonded Interface

    NASA Astrophysics Data System (ADS)

    Liu, Bert; Vivek, Anupam; Presley, Michael; Daehn, Glenn S.

    2018-03-01

    The ability to weld high-strength aluminum to high-strength steel is highly desired for vehicle lightweighting but difficult to attain by conventional means. In this work, vaporizing foil actuator welding was used to successfully weld four Al/Fe combinations consisting of high-strength alloys: AA5052-H32, AA6111-T4, DP980, and 22MnB5. Flyer velocities up to 727 m/s were reached using 10 kJ input energy. In lap-shear testing, samples primarily failed in base aluminum near the aluminum's native strength, showing that the welds were stronger than a base metal and that the base metal was not significantly weakened by the welding process. A particularly strong weld area was studied by transmission electron microscopy to shed light on the microstructural features of strong impact welds. It was found to be characterized by a continuously bonded, fully crystalline interface, extremely fine (nanoscale) grains, mesoscopic as well as microscopic wavy features, and lack of large continuous intermetallic compounds.

  13. Microstructure, accumulated strain, and mechanical behavior of AA6061 Al alloy severely deformed at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Magalhães, D. C.; Kliauga, A. M.; Ferrante, M.; Sordi, V. L.

    2017-05-01

    The combination of Severe Plastic Deformation (SPD) and cryogenic temperatures can be an efficient way to obtain metals and alloys with very refined microstructure and thus optimize the strength-ductility pair. However, there is still a lack of studies on cryogenic SPD process and their effects on microstructure and mechanical properties, especially in precipitation-hardenable aluminum alloys. This study describes the effect of low temperature processing on microstructure, aging kinetic and tensile properties of AA6061 Al alloy after cryo-SPD. Samples of AA6061 Al alloy in the solutionized state was processed by Equal-channel angular pressing (ECAP) at 77 K and 298 K, up to accumulate true strains up to 4.2. Results indicated that the aging kinetic is accelerated when deformation is performed at cryogenic temperature, dislocation density measurement by x-ray and diffraction analysis at TEM achieved a saturation level of 2×1015 m-2 by ECAP at 298K and 5×1015 m-2 after cryogenic ECAP plus precipitation hardening. The same level of yield strength was observed in both deformation procedures but an improvement in uniform elongation was achieved by cryogenic ECAP followed by a T6 treatment

  14. Double-pulse femtosecond laser peening of aluminum alloy AA5038: Effect of inter-pulse delay on transient optical plume emission and final surface micro-hardness

    NASA Astrophysics Data System (ADS)

    Ageev, E. I.; Bychenkov, V. Yu.; Ionin, A. A.; Kudryashov, S. I.; Petrov, A. A.; Samokhvalov, A. A.; Veiko, V. P.

    2016-11-01

    Double-pulse ablative femtosecond laser peening of the AA5038 aluminum alloy surface in the phase explosion regime results in its enhanced microhardness, which monotonously decreases till the initial value versus inter-pulse delay, increasing on a sub-nanosecond timescale. Optical emission spectroscopy of the double-pulse ablative plume reveals the same trend in the yield of the corresponding atomic and ion emission versus inter-pulse delay, enlightening the interaction of the second femtosecond laser pump pulse with the surface and the resulting plume.

  15. Systems study of transport aircraft incorporating advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.

    1982-01-01

    A study was performed to quantify the potential benefits of utilizing advanced aluminum alloys in commercial transport aircraft and to define the effort necessary to develop fully the alloys to a viable commercial production capability. The comprehensive investigation (1) established realistic advanced aluminum alloy property goals to maximize aircraft systems effectiveness (2) identified performance and economic benefits of incorporating the advanced alloy in future advanced technology commercial aircraft designs (3) provided a recommended plan for development and integration of the alloys into commercial aircraft production (4) provided an indication of the timing and investigation required by the metal producing industry to support the projected market and (5) evaluate application of advanced aluminum alloys to other aerospace and transit systems as a secondary objective. The results of the investigation provided a roadmap and identified key issues requiring attention in an advanced aluminum alloy and applications technology development program.

  16. The effect of precipitation on the evolution of recrystallization textures in an AA 8011 aluminum alloy sheet

    NASA Astrophysics Data System (ADS)

    Ryu, Jong-Ho; Lee, Yoon-Soo; Lee, Dong Nyung

    2001-06-01

    The texture of an AA 8011 aluminum alloy sheet cold rolled by 95% showed a typical β-fiber, which runs from the copper orientation [C={112}<111>] over S [{123}<634>] to brass [B={011}<112>]. The development of annealing textures depended on annealing temperatures due to the interaction between precipitation and recrystallization. Upon annealing at a low temperature of 275°C, precipitation took place before recrystallization. This led to a weak recrystallization texture consisting of {011}<122>, {001˜<100>, and {hk0}<001>, among which the {011}<122> orientation developed near large FeAl3 particles as the main orientation and the cube [{001}<100>] orientation originating from the matrix was relatively weak. After annealing at 350 and 500°C, a strong cube texture developed along with a weak {011}<122> orientation. When the cube orientation developed, the copper orientation disappeared most rapidly. These results were discussed based on the interaction between precipitation and recrystallization.

  17. Experimental Investigation on Friction Stir Welding of Cryorolled AA2219 Aluminum Alloy Joints

    NASA Astrophysics Data System (ADS)

    Babu, K. Kamal; Panneerselvam, K.; Sathiya, P.; Haq, A. Noorul; Sundarrajan, S.; Mastanaiah, P.; Murthy, C. V. Srinivasa

    2017-07-01

    In this paper, experimental investigation on cryorolled aluminum AA2219-T87 plate by using friction stir welding (FSW) process is carried out. AA2219-T87 plates with a size of 200×100×22.4 mm were rolled and reduced to 12.2mm thickness (more than 45% of reduction in total thickness of the base material) at cryogenic temperature (operating temperature range -90--30∘C). The cryorolled (CR) plates have reduced grain size, improved hardness and increased corrosion resistance property compared with the uncryorolled AA2219-T87 plates. FSW joints of cryorolled AA2219-T87 plates were prepared using cylindrical threaded FSW tool pin profile. Mechanical and metallurgical behaviors of friction stir welded joints were analyzed and the effects of the FSW process parameters are discussed in this paper. The variation of microhardness in the FSW joint regions were correlated with the microstructure of FSW joints. Cryorolled plate and FSW joints were tested for corrosion resistance using potentiodynamic polarization test. FSW joints shows better result during the corrosion resistance analysis compared to base AA2219-T87. The X-ray diffraction (XRD) test results showed that fine α-Al grains with eutectic phase (Al2Cu) were present in the weld nugget (WN). The large clusters of strengthening precipitates were reduced in size and merged with the weld nugget portion.

  18. Microstructural features of friction stir welded dissimilar Aluminium alloys AA2219-AA7475

    NASA Astrophysics Data System (ADS)

    Zaman Khan, Noor; Ubaid, Mohammed; Siddiquee, Arshad Noor; Khan, Zahid A.; Al-Ahmari, Abdulrahman; Chen, Xizhang; Haider Abidi, Mustufa

    2018-05-01

    High strength, good corrosion resistance, light weight make aluminium alloys a material of choice in many industrial sectors like aerospace, marine etc. Problems associated with welding of these alloys by fusion welding processes restricted their use in various industries. Friction stir welding (FSW), a clean solid-state joining process, easily overcomes various difficulties encountered during conventional fusion welding processes. In the present work, the effect of rotational speed (710 rpm, 900 rpm and 1120 rpm) on micro-hardness distribution and microstructure of FSWed dissimilar aluminium alloy joints were analyzed. Plates of AA7475-T761 and AA2219-O having thickness of 2.5 mm were welded by fixing AA7475 on retreating side (RS) and AA2219 on advancing side (AS). Welded joints were characterized by Vickers micro-hardness testing, scanning electron microscopy (SEM) and optical microscopy (OM). Results revealed that rotational speed significantly affects the micro-hardness due to increase in grain size, coarsening and dissolution of strengthening precipitates and re-precipitation. Higher micro-hardness values were observed in stir zone due to grain refinement and re-precipitation. Minimum micro-hardness value was observed at the TMAZ/HAZ of advancing side due to thermal softening.

  19. Casting Characteristics of High Cerium Content Aluminum Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, D; Rios, O R; Sims, Z C

    This paper compares the castability of the near eutectic aluminum-cerium alloy system to the aluminum-silicon and aluminum-copper systems. The alloys are compared based on die filling capability, feeding characteristics and tendency to hot tear in both sand cast and permanent mold applications. The castability ranking of the binary Al–Ce systems is as good as the aluminum-silicon system with some deterioration as additional alloying elements are added. In alloy systems that use cerium in combination with common aluminum alloying elements such as silicon, magnesium and/or copper, the casting characteristics are generally better than the aluminum-copper system. In general, production systems formore » melting, de-gassing and other processing of aluminum-silicon or aluminum-copper alloys can be used without modification for conventional casting of aluminum-cerium alloys.« less

  20. FABRICATION OF URANIUM-ALUMINUM ALLOYS

    DOEpatents

    Saller, H.A.

    1959-12-15

    A process is presented for producing a workable article of a uranium- aluminum alloy in which the uranium content is between 14 and 70% by weight; aluminum powder and powdered UAl/sub 2/, UAl/sub 3/, UAl/sub 5/, or UBe/sub 9/ are mixed, and the mixture is compressed into the shape desired and sintered at between 450 and 600 deg C.

  1. Synthesis of aluminum-based scandium-yttrium master alloys

    NASA Astrophysics Data System (ADS)

    Bazhin, V. Yu.; Kosov, Ya. I.; Lobacheva, O. L.; Dzhevaga, N. V.

    2015-07-01

    The preparation technology for an Al-2% Sc-0.5% Y master alloy using aluminum-manganese alloys has been developed and tested. The microstructure of the prepared master alloy is studied and the compositions of intermetallics is determined. The efficient technological parameters of the synthesis are determined. It is shown that varying the compositions of starting reagents and alloying additions and optimizing the process conditions (temperature, mixing, etc.) allow us to forecast the manufacturing and operating characteristics of aluminum-based master alloys. Joint additions of scandium and yttrium oxides to a charge favor a substantial decrease in the grain size of the formed intermetallics; this effect appears to the utmost in the case of microallying with yttrium up to 0.5 wt %.

  2. Fatigue Crack-Growth Resistance of Aluminum Alloys Under Spectrum Loading. Volume 2. Aluminum Lithium Alloys.

    DTIC Science & Technology

    1985-12-01

    Effects on Fatigue Crack Propagation in 2024 -T3 Aluminum Alloy ," Eng. Frac. Mech, * Vol. 8, 1976, p. 657...Retardation Behavior of 7075 * and 2024 Aluminum Alloys ," ASTNI STP 631, 1977. 89 hill". .A•, - . 34. Chanani, G.R., "Investigation of Effects of Saltwater...1.0 9,අ &M Ma ki-L6 &Ŗ &- La 06 lin "Ll Ull 1.25 "A Lm Wit Rtlc()FIV WtklLl’-"- ll*A FATIGUE CRACK-GROWTH RESISTANCE OF ALUMINUM ALLOYS

  3. Environment assisted degradation mechanisms in aluminum-lithium alloys

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Stoner, Glenn E.; Swanson, Robert E.

    1988-01-01

    Section 1 of this report records the progress achieved on NASA-LaRC Grant NAG-1-745 (Environment Assisted Degradation Mechanisms in Al-Li Alloys), and is based on research conducted during the period April 1 to November 30, 1987. A discussion of work proposed for the project's second year is included. Section 2 provides an overview of the need for research on the mechanisms of environmental-mechanical degradation of advanced aerospace alloys based on aluminum and lithium. This research is to provide NASA with the basis necessary to permit metallurgical optimization of alloy performance and engineering design with respect to damage tolerance, long term durability and reliability. Section 3 reports on damage localization mechanisms in aqueous chloride corrosion fatigue of aluminum-lithium alloys. Section 4 reports on progress made on measurements and mechanisms of localized aqueous corrosion in aluminum-lithium alloys. Section 5 provides a detailed technical proposal for research on environmental degradation of Al-Li alloys, and the effect of hydrogen in this.

  4. The influence of process parameters on porosity formation in hybrid LASER-GMA welding of AA6082 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Ascari, Alessandro; Fortunato, Alessandro; Orazi, Leonardo; Campana, Giampaolo

    2012-07-01

    This paper deals with an experimental campaign carried out on AA6082 8 mm thick plates in order to investigate the role of process parameters on porosity formation in hybrid LASER-GMA welding. Bead on plate weldments were obtained on the above mentioned aluminum alloy considering the variation of the following process parameters: GMAW current (120 and 180 A for short-arc mode, 90 and 130 A for pulsed-arc mode), arc transfer mode (short-arc and pulsed-arc) and mutual distance between arc and LASER sources (0, 3 and 6 mm). Porosities occurring in the fused zone were observed by means of X-ray inspection and measured exploiting an image analysis software. In order to understand the possible correlation between process parameters and porosity formation an analysis of variance statistical approach was exploited. The obtained results pointed out that GMAW current is significant on porosity formation, while the distance between the sources do not affect this aspect.

  5. Microstructure Stability During Creep of Friction Stir Welded AA2024-T3 Alloy

    NASA Astrophysics Data System (ADS)

    Regev, Michael; Rashkovsky, Tal; Cabibbo, Marcello; Spigarelli, Stefano

    2018-01-01

    The poor weldability of the AA2024 aluminum alloy limits its use in industrial applications. Because friction stir welding (FSW) is a non-fusion welding process, it seems to be a promising solution for welding this alloy. In the current study, FSW was applied to butt weld AA2024-T3 aluminum alloy plates. Creep tests were conducted at 250 and at 315 °C on both the parent material and the friction stir welded specimens. The microstructures of the welded and non-welded AA2024-T3 specimens before and after the creep tests were studied and compared. A comprehensive transmission electron microscopy study together with a high-resolution scanning electron microscopy study and energy-dispersive x-ray spectroscopy analysis was conducted to investigate the microstructure stability. The parent material seems to contain two kinds of Cu-rich precipitates—coarse precipitates of a few microns each and uniformly dispersed fine nanosized precipitates. Unlike the parent material, the crept specimens were found to contain the two kinds of precipitates mentioned above together with platelet-like precipitates. In addition, extensive decoration of the grain boundaries with precipitates was clearly observed in the crept specimens. Controlled aging experiments for up to 280 h at the relevant temperatures were conducted on both the parent material and the welded specimens in order to isolate the contribution of exposure to high temperatures to the microstructure changes. TEM study showed the development of dislocation networks into a cellular dislocation structure in the case of the parent metal. Changes in the dislocation structure as a function of the creep strain and the FSW process were recorded. A detailed creep data analysis was conducted, taking into account the instability of the microstructure.

  6. Investigations on Laser Beam Welding of Different Dissimilar Joints of Steel and Aluminum Alloys for Automotive Lightweight Construction

    NASA Astrophysics Data System (ADS)

    Seffer, Oliver; Pfeifer, Ronny; Springer, André; Kaierle, Stefan

    Due to the enormous potential of weight saving, and the consequential reduction of pollutant emissions, the use of hybrid components made of steel and aluminum alloys is increasing steadily, especially concerning automotive lightweight construction. However, thermal joining of steel and aluminum is still being researched, due to a limited solubility of the binary system of iron and aluminum causing the formation of hard and brittle intermetallic phases, which decrease the strength and the formability of the dissimilar seam. The presented results show the investigation of laser beam welding for joining different dissimilar hybrid components of the steel materials HX220LAD+Z100, 22MnB5+AS150 and 1.4301, as well as the aluminum alloy AA6016-T4 as a lap joint. Among other things, the influences of the energy per unit length, the material grade, the sheet thickness t, the weld type (lap weld, fillet weld) and the arrangement of the base materials in a lap joint (aluminum-sided irradiation, steel-sided irradiation) on the achievable strengths are analyzed. The characterization of the dissimilar joints includes tensile shear tests and metallographic analyses, depending on the energy per unit length.

  7. Microstructures and Mechanical Properties of Friction Stir Spot Welded Aluminum Alloy AA2014

    NASA Astrophysics Data System (ADS)

    Babu, S.; Sankar, V. S.; Janaki Ram, G. D.; Venkitakrishnan, P. V.; Madhusudhan Reddy, G.; Prasad Rao, K.

    2013-01-01

    Friction stir spot welding (FSSW) is a relatively recent development, which can provide a superior alternative to resistance spot welding and riveting for fabrication of aluminum sheet metal structures. In the current work, FSSW experiments were conducted in 3-mm thick sheets of aluminum alloy 2014 in T4 and T6 conditions, with and without Alclad layers. The effects of tool geometry and welding process parameters on joint formation were investigated. A good correlation between process parameters, bond width, hook height, joint strength, and fracture mode was observed. The presence of Alclad layers and the base metal temper condition were found to have no major effect on joint formation and joint strength. Friction stir spot welds produced under optimum conditions were found to be superior to riveted joints in lap-shear and cross-tension tests. The prospects of FSSW in aluminum sheet metal fabrication are discussed.

  8. Experimental Study of Laser - enhanced 5A03 Aluminum Alloy and Its Stress Corrosion Resistance

    NASA Astrophysics Data System (ADS)

    Wang, Guicheng; Chen, Jing; Pang, Tao

    2018-02-01

    Based on the study of improving the stress corrosion resistance of 5A03 aluminum alloy for ship, this paper mainly studied the tensile test, surface morphology and residual stress under laser shock, high temperature and stress corrosion. It is found that the residual compressive stress and the grain refinement on the surface of the material during the heat strengthening process increase the breaking strength of the sample in the stress corrosion environment. Appropriate high temperature maintenance helps to enhance the effect of deformation strengthening. In the 300°C environment insulation, due to recrystallization of the material, the performance decreased significantly. This study provides an experimental basis for effectively improving the stress corrosion resistance of 5A03 aluminum alloy.

  9. Aluminum battery alloys

    DOEpatents

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  10. Aluminum battery alloys

    DOEpatents

    Thompson, D.S.; Scott, D.H.

    1984-09-28

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  11. Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Pandurangan, B.; Ochterbeck, J. M.; Yen, C.-F.; Cheeseman, B. A.; Reynolds, A. P.; Sutton, M. A.

    2012-09-01

    Workpiece material flow and stirring/mixing during the friction stir welding (FSW) process are investigated computationally. Within the numerical model of the FSW process, the FSW tool is treated as a Lagrangian component while the workpiece material is treated as an Eulerian component. The employed coupled Eulerian/Lagrangian computational analysis of the welding process was of a two-way thermo-mechanical character (i.e., frictional-sliding/plastic-work dissipation is taken to act as a heat source in the thermal-energy balance equation) while temperature is allowed to affect mechanical aspects of the model through temperature-dependent material properties. The workpiece material (AA5059, solid-solution strengthened and strain-hardened aluminum alloy) is represented using a modified version of the classical Johnson-Cook model (within which the strain-hardening term is augmented to take into account for the effect of dynamic recrystallization) while the FSW tool material (AISI H13 tool steel) is modeled as an isotropic linear-elastic material. Within the analysis, the effects of some of the FSW key process parameters are investigated (e.g., weld pitch, tool tilt-angle, and the tool pin-size). The results pertaining to the material flow during FSW are compared with their experimental counterparts. It is found that, for the most part, experimentally observed material-flow characteristics are reproduced within the current FSW-process model.

  12. Effect of Repair Welding on Electrochemical Corrosion and Stress Corrosion Cracking Behavior of TIG Welded AA2219 Aluminum Alloy in 3.5 Wt Pct NaCl Solution

    NASA Astrophysics Data System (ADS)

    Venugopal, A.; Sreekumar, K.; Raja, V. S.

    2010-12-01

    The stress corrosion cracking (SCC) behavior of AA2219 aluminum alloy in the as-welded (AW) and repair-welded (RW) conditions was examined and compared with that of the base metal (BM) in 3.5 wt pct NaCl solution using the slow strain rate technique (SSRT). The reduction in ductility was used as a parameter to evaluate the SCC susceptibility of both BM and welded joints. The results show that the ductility ratio ( ɛ NaCl/( ɛ air)) of the BM was close to one (0.97) and reduced to 0.9 for the AW joint. This value further reduced to 0.77 after carrying out one repair welding operation. However, the RW specimen exhibited higher ductility than the single-weld specimens even in 3.5 wt pct NaCl solution. SSRT results obtained using pre-exposed samples followed by post-test metallographic observations clearly showed localized pitting corrosion along the partially melted zone (PMZ), signifying that the reduction in ductility ratio of both the AW and RW joints was more due to mechanical overload failure, caused by the localized corrosion and a consequent reduction in specimen thickness, than due to SCC. Also, the RW joint exhibited higher ductility than the AW joint both in air and the environment, although SCC index (SI) for the former is lower than that of the latter. Fractographic examination of the failed samples, in general, revealed a typical ductile cracking morphology for all the base and welded joints, indicating the good environmental cracking resistance of this alloy. Microstructural examination and polarization tests further demonstrate grain boundary melting along the PMZ, and that provided the necessary electrochemical condition for the preferential cracking on that zone of the weldment.

  13. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications

    NASA Astrophysics Data System (ADS)

    Santa Coloma, P.; Izagirre, U.; Belaustegi, Y.; Jorcin, J. B.; Cano, F. J.; Lapeña, N.

    2015-08-01

    Novel chromium-free conversion coatings based on Zr/Ti/Mn/Mo compounds were developed at a pilot scale to improve the corrosion resistance of the AA2024-T3 and AA7075-T6 aluminum alloys for aircraft applications. The influence of the presence of Zr and Ti in the Zr/Ti/Mn/Mo conversion bath's formulation on the corrosion resistance of the coated alloys was investigated. The corrosion resistance provided by the conversion coatings was evaluated by salt spray exposure and potentiodynamic sweeps. Optical and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) and atomic force microscopy (AFM) operating in the Kelvin Probe mode (SKPFM) were used to provide microstructural information of the coated samples that achieved the best results in the corrosion tests. The salt spray test evidenced the higher corrosion resistance of the coated samples compared to the bare surfaces for both alloys. The potentiodynamic tests showed that the corrosion current density decreased for coated AA7075-T6 and AA2024-T3 alloys, which indicated an obvious improvement of the corrosion resistance with all the processes for both alloys. Although the corrosion resistance of the coated samples appeared to be higher for the alloy AA7075-T6 than for the alloy AA2024-T3, both alloys achieved the best corrosion protection with the coatings deposited from conversion bath formulations containing no titanium salts. The microscopy analysis on the coated AA7075-T6 samples revealed that a local deposition of Zr compounds and, possibly, an oxidation process occurred in the vicinity of the alloy's intermetallic particles. The amount of the Zr deposits at these locations increased with coating's formulations without Ti, which provided the best corrosion resistance. The Cr-free conversion coatings developed in this study for the AA7075-T6 and AA2024-T3 alloys do not meet yet the strict requirements of the aircraft industry. However, they significantly improved the corrosion

  14. Investigation on local ductility of 6xxx-aluminium sheet alloys

    NASA Astrophysics Data System (ADS)

    Henn, P.; Liewald, M.; Sindel, M.

    2017-09-01

    Within the scope of this paper influence of localization of loading conditions on the ductility of two different 6xxx-aluminium sheet alloys is investigated. In order to improve the prediction of sheet material crash performance, material parameters based on uniaxial tensile and notched tensile tests are determined with varying consolidation areas. Especially evaluation methods based on the localized necking behaviour in tensile tests are investigated. The potential of local ductility characterisation is validated with results of Edge-Compression Tests (ECT) which applies load conditions that occur in actual crash events.

  15. The combined effects of prior-corrosion and aggressive chemical environments on fatigue crack growth behavior in aluminum alloy 7075-T651

    NASA Astrophysics Data System (ADS)

    Mills, Thomas Brian

    1997-11-01

    Exfoliation corrosion is a potentially severe form of corrosion that frequently affects high-strength aluminum, particularly 2xxx- and 7xxx-series alloys. Exfoliation degrades components such as sheets, plates, and extrusions that have highly elongated grain structures. Few attempts have been made to investigate the effects of this form of corrosion on the fatigue performance of these materials, so a preliminary study was conducted to determine the effects of exfoliation corrosion on the fatigue response of quarter-inch 7075-T651 aluminum alloy plate. This was accomplished by subjecting aluminum panels to an ASTM standard corrosive solution known as EXCO then fatiguing the panels in corrosion fatigue environments of dry air, humid air, and artificial acid rain. Statistical analyses of the fatigue crack growth data suggest that prior-corrosion and corrosion fatigue are competing mechanisms that both have the potential of accelerating crack growth rates. In the dry air cases, exfoliation accelerated crack growth rates a maximum of 4.75 times over the uncorroded material at lower stress intensities such as 5 ksi surdinch. This accelerated behavior dropped off rapidly, however, and was nonexistent at higher stress intensities. Humid air increased crack velocities considerably as compared to the dry air uncorroded case, but the addition of exfoliation corrosion to the humid cases did not have a significant effect on crack growth behavior. On the other hand, specimens containing exfoliation corrosion and then exposed to artificial acid rain had significantly higher crack growth rates than their uncorroded counterparts. Finally, fractographic examinations of the specimens revealed evidence of lower energy, quasi-cleavage fracture persisting near to the exfoliated edge of specimens tested in the dry air, humid air, and artificial acid rain environments. The implications of this research are that prior-corrosion damage has the ability to significantly increase crack growth

  16. Beryllium-aluminum alloys for investment castings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nachtrab, W.T.; Levoy, N.

    1997-05-01

    Beryllium-aluminum alloys containing greater than 60 wt % beryllium are very favorable materials for applications requiring light weight and high stiffness. However, when produced by traditional powder metallurgical methods, these alloys are expensive and have limited applications. To reduce the cost of making beryllium-aluminum components, Nuclear Metals Inc. (NMI) and Lockheed Martin Electronics and Missiles have recently developed a family of patented beryllium-aluminum alloys that can be investment cast. Designated Beralcast, the alloys can achieve substantial weight savings because of their high specific strength and stiffness. In some cases, weight has been reduced by up to 50% over aluminum investmentmore » casting. Beralcast is now being used to make thin wall precision investment castings for several advanced aerospace applications, such as the RAH-66 Comanche helicopter and F-22 jet fighter. This article discusses alloy compositions, properties, casting method, and the effects of cobalt additions on strength.« less

  17. Lattice mismatch modeling of aluminum alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Dongwon; Roy, Shibayan; Watkins, Thomas R.

    We present a theoretical framework to accurately predict the lattice mismatch between the fcc matrix and precipitates in the multi-component aluminum alloys as a function of temperature and composition. We use a computational thermodynamic approach to model the lattice parameters of the multi-component fcc solid solution and θ'-Al2Cu precipitate phase. Better agreement between the predicted lattice parameters of fcc aluminum in five commercial alloys (206, 319, 356, A356, and A356 + 0.5Cu) and experimental data from the synchrotron X-ray diffraction (SXD) has been obtained when simulating supersaturated rather than equilibrium solid solutions. We use the thermal expansion coefficient of thermodynamicallymore » stable θ-Al2Cu to describe temperature-dependent lattice parameters of meta-stable θ' and to show good agreement with the SXD data. Both coherent and semi-coherent interface mismatches between the fcc aluminum matrix and θ' in Al-Cu alloys are presented as a function of temperature. Our calculation results show that the concentration of solute atoms, particularly Cu, in the matrix greatly affects the lattice mismatch« less

  18. Precision forging technology for aluminum alloy

    NASA Astrophysics Data System (ADS)

    Deng, Lei; Wang, Xinyun; Jin, Junsong; Xia, Juchen

    2018-03-01

    Aluminum alloy is a preferred metal material for lightweight part manufacturing in aerospace, automobile, and weapon industries due to its good physical properties, such as low density, high specific strength, and good corrosion resistance. However, during forging processes, underfilling, folding, broken streamline, crack, coarse grain, and other macro- or microdefects are easily generated because of the deformation characteristics of aluminum alloys, including narrow forgeable temperature region, fast heat dissipation to dies, strong adhesion, high strain rate sensitivity, and large flow resistance. Thus, it is seriously restricted for the forged part to obtain precision shape and enhanced property. In this paper, progresses in precision forging technologies of aluminum alloy parts were reviewed. Several advanced precision forging technologies have been developed, including closed die forging, isothermal die forging, local loading forging, metal flow forging with relief cavity, auxiliary force or vibration loading, casting-forging hybrid forming, and stamping-forging hybrid forming. High-precision aluminum alloy parts can be realized by controlling the forging processes and parameters or combining precision forging technologies with other forming technologies. The development of these technologies is beneficial to promote the application of aluminum alloys in manufacturing of lightweight parts.

  19. Rapid Solidification of a New Generation Aluminum-Lithium Alloy via Electrospark Deposition

    NASA Astrophysics Data System (ADS)

    Heard, David W.; Boselli, Julien; Gauvin, Raynald; Brochu, Mathieu

    Electrospark deposition (ESD) is a rapid solidification processing technique capable of depositing a metal onto a conductive substrate. The short pulse duration and high pulse frequency, combined with the small amount of material transferred during each pulse, results in high cooling rates being realized, on the order of 105-106 C/sec. This study investigates the ability to induce solute trapping behavior, for a new generation aluminum-lithium alloy, AA2199, using ESD.

  20. NASA-427: A New Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center researchers have developed a new, stronger aluminum alloy, ideal for cast aluminum products that have powder or paint-baked thermal coatings. With advanced mechanical properties, the NASA-427 alloy shows greater tensile strength and increased ductility, providing substantial improvement in impact toughness. In addition, this alloy improves the thermal coating process by decreasing the time required for heat treatment. With improvements in both strength and processing time, use of the alloy provides reduced materials and production costs, lower product weight, and better product performance. The superior properties of NASA-427 can benefit many industries, including automotive, where it is particularly well-suited for use in aluminum wheels.

  1. Crack Repair in Aerospace Aluminum Alloy Panels by Cold Spray

    NASA Astrophysics Data System (ADS)

    Cavaliere, P.; Silvello, A.

    2017-04-01

    The cold-spray process has recently been recognized as a very useful tool for repairing metallic sheets, achieving desired adhesion strengths when employing optimal combinations of material process parameters. We present herein the possibility of repairing cracks in aluminum sheets by cold spray. A 2099 aluminum alloy panel with a surface 30° V notch was repaired by cold spraying of 2198 and 7075 aluminum alloy powders. The crack behavior of V-notched sheets subjected to bending loading was studied by finite-element modeling (FEM) and mechanical experiments. The simulations and mechanical results showed good agreement, revealing a remarkable K factor reduction, and a consequent reduction in crack nucleation and growth velocity. The results enable prediction of the failure initiation locus in the case of repaired panels subjected to bending loading and deformation. The stress concentration was quantified to show how the residual stress field and failure are affected by the mechanical properties of the sprayed materials and by the geometrical and mechanical properties of the interface. It was demonstrated that the crack resistance increases more than sevenfold in the case of repair using AA2198 and that cold-spray repair can contribute to increased global fatigue life of cracked structures.

  2. Effect of processing parameters on the corrosion behaviour of friction stir processed AA 2219 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Surekha, K.; Murty, B. S.; Prasad Rao, K.

    2009-04-01

    The effect of processing parameters (rotation speed and traverse speed) on the corrosion behaviour of friction stir processed high strength precipitation hardenable AA 2219-T87 alloy was investigated. The results indicate that the rotation speed has a major influence in determining the rate of corrosion, which is attributed to the breaking down and dissolution of the intermetallic particles. Corrosion resistance of friction stir processed alloy was studied by potentiodynamic polarization, electrochemical impedance spectroscopy, salt spray and immersion tests.

  3. [Microbiological corrosion of aluminum alloys].

    PubMed

    Smirnov, V F; Belov, D V; Sokolova, T N; Kuzina, O V; Kartashov, V R

    2008-01-01

    Biological corrosion of ADO quality aluminum and aluminum-based construction materials (alloys V65, D16, and D16T) was studied. Thirteen microscopic fungus species and six bacterial species proved to be able to attack aluminum and its alloys. It was found that biocorrosion of metals by microscopic fungi and bacteria was mediated by certain exometabolites. Experiments on biocorrosion of the materials by the microscopic fungus Alternaria alternata, the most active biodegrader, demonstrated that the micromycete attack started with the appearance of exudate with pH 8-9 on end faces of the samples.

  4. Fractal nature of aluminum alloys substructures under creep and its implications

    NASA Astrophysics Data System (ADS)

    Fernández, R.; Bruno, G.; González-Doncel, G.

    2018-04-01

    The present work offers an explanation for the variation of the power-law stress exponent, n, with the stress σ normalized to the shear modulus G in aluminum alloys. The approach is based on the assumption that the dislocation structure generated with deformation has a fractal nature. It fully explains the evolution of n with σ/G even beyond the so-called power law breakdown region. Creep data from commercially pure Al99.8%, Al-3.85%Mg, and ingot AA6061 alloy tested at different temperatures and stresses are used to validate the proposed ideas. Finally, it is also shown that the fractal description of the dislocation structure agrees well with current knowledge.

  5. Effect of Interfacial Reaction on the Mechanical Performance of Steel to Aluminum Dissimilar Ultrasonic Spot Welds

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Wang, Li; Chen, Ying-Chun; Robson, Joe D.; Prangnell, Philip B.

    2016-01-01

    The early stages of formation of intermetallic compounds (IMC) have been investigated in dissimilar aluminum to steel welds, manufactured by high power (2.5 kW) ultrasonic spot welding (USW). To better understand the influence of alloy composition, welds were produced between a low-carbon steel (DC04) and two different aluminum alloys (6111 and 7055). The joint strengths were measured in lap shear tests and the formation and growth behavior of IMCs at the weld interface were characterized by electron microscopy, for welding times from 0.2 to 2.4 seconds. With the material combinations studied, the η (Fe2Al5) intermetallic phase was found to form first, very rapidly in the initial stage of welding, with a discontinuous island morphology. Continuous layers of η and then θ (FeAl3) phase were subsequently seen to develop on extending the welding time to greater than 0.7 second. The IMC layer formed in the DC04-AA7055 combination grew thicker than for the DC04-AA6111 welds, despite both weld sets having near identical thermal histories. Zinc was also found to be dissolved in the IMC phases when welding with the AA7055 alloy. After post-weld aging of the aluminum alloy, fracture in the lap shear tests always occurred along the joint interface; however, the DC04-AA6111 welds had higher fracture energy than the DC04-AA7055 combination.

  6. Synthesizing Aluminum alloys by double mechanical alloying

    NASA Astrophysics Data System (ADS)

    Froyen, L.; Delaey, L.; Niu, X. P.; Le Brun, P.; Peytour, C.

    1995-03-01

    A new synthesis technique, namely double mechanical alloying (dMA), has been developed to fabricate aluminum alloys containing the finely distributed intermetallic compounds and inert dispersoids Al4C3 and Al2O3 The technique consists mainly of three steps: a primary milling stage of elemental powders (MAI) followed by a heat treatment to promote the formation of intermetallic phases, a secondary milling stage (MA2) to refine the microstructure, and consolidation of the produced powders. The results of mechanical and tribological properties of the resulting materials indicate that the dMA is a promising technique for the fabrication of aluminum alloys for applications requiring wear resistance and high-temperature performance.

  7. The Cryogenic Tensile Properties of an Extruded Aluminum-Beryllium Alloy

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.

    2002-01-01

    Basic mechanical properties; i.e., ultimate tensile strength, yield strength, percent elongation, and elastic modulus, were obtained for the aluminum-beryllium alloy, AlBeMet162, at cryogenic (-195.5 C (-320 F) and -252.8 C (-423 F)) temperatures. The material evaluated was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions."

  8. Cast B2-phase iron-aluminum alloys with improved fluidity

    DOEpatents

    Maziasz, Philip J.; Paris, Alan M.; Vought, Joseph D.

    2002-01-01

    Systems and methods are described for iron aluminum alloys. A composition includes iron, aluminum and manganese. A method includes providing an alloy including iron, aluminum and manganese; and processing the alloy. The systems and methods provide advantages because additions of manganese to iron aluminum alloys dramatically increase the fluidity of the alloys prior to solidification during casting.

  9. Gas-tungsten arc welding of aluminum alloys

    DOEpatents

    Frye, Lowell D.

    1984-01-01

    A gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to provide a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surfaces are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy contiguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  10. Gas tungsten arc welding of aluminum alloys 3004, 5052, and 5X54. Welding procedure specification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1985-08-01

    Procedure WPS-1002 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for gas tungsten arc welding of aluminum alloys 3004, 5052, 5154, and 5454 (P-22), in thickness range 0.062 to 0.5 in.; filler metal is ER4043 (F-23) for 3004, and ER5356 (F-22) for other alloys; shielding gas is argon.

  11. Interfacial Reaction During Dissimilar Joining of Aluminum Alloy to Magnesium and Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Robson, J. D.; Panteli, A.; Zhang, C. Q.; Baptiste, D.; Cai, E.; Prangnell, P. B.

    Ultrasonic welding (USW), a solid state joining process, has been used to produce welds between AA6111 aluminum alloy and AZ31 magnesium alloys or titanium alloy Ti-6Al-4V. The mechanical properties of the welds have been assessed and it has been shown that it is the nature and thickness of the intermetallic compounds (IMCs) at the joint line that are critical in determining joint strength and particularly fracture energy. Al-Mg welds suffer from a very low fracture energy, even when strength is comparable with that of similar metal Mg-Mg welds, due to a thick IMC layer always being formed. It is demonstrated that in USW of Al-Ti alloy the slow interdiffusion kinetics means that an IMC layer does not form during welding, and fracture energy is greater. A model has been developed to predict IMC formation during welding and provide an understanding of the critical factors that determine the IMC thickness. It is predicted that in Al-Mg welds, most of the lMC thickening occurs whilst the IMC regions grow as separate islands, prior to the formation of a continuous layer.

  12. Constitutive Behavior and Deep Drawability of Three Aluminum Alloys Under Different Temperatures and Deformation Speeds

    NASA Astrophysics Data System (ADS)

    Panicker, Sudhy S.; Prasad, K. Sajun; Basak, Shamik; Panda, Sushanta Kumar

    2017-08-01

    In the present work, uniaxial tensile tests were carried out to evaluate the stress-strain response of AA2014, AA5052 and AA6082 aluminum alloys at four temperatures: 303, 423, 523 and 623 K, and three strain rates: 0.0022, 0.022 and 0.22 s-1. It was found that the Cowper-Symonds model was not a robust constitutive model, and it failed to predict the flow behavior, particularly the thermal softening at higher temperatures. Subsequently, a comparative study was made on the capability of Johnson-Cook (JC), modified Zerilli-Armstrong (m-ZA), modified Arrhenius (m-ARR) and artificial neural network (ANN) for modeling the constitutive behavior of all the three aluminum alloys under the mentioned strain rates and temperatures. Also, the improvement in formability of the materials was evaluated at an elevated temperature of 623 K in terms of cup height and maximum safe strains by conducting cylindrical cup deep drawing experiments under two different punch speeds of 4 and 400 mm/min. The cup heights increased during warm deep drawing due to thermal softening and increase in failure strains. Also, a small reduction in cup height was observed when the punch speed increased from 4 to 400 mm/min at 623 K. Hence, it was suggested to use high-speed deformation at elevated temperature to reduce both punch load and cycle time during the deep drawing process.

  13. The effect of welding parameters on surface quality of AA6351 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Yacob, S.; MAli, M. A.; Ahsan, Q.; Ariffin, N.; Ali, R.; Arshad, A.; Wahab, M. I. A.; Ismail, S. A.; Roji, NS M.; Din, W. B. W.; Zakaria, M. H.; Abdullah, A.; Yusof, M. I.; Kamarulzaman, K. Z.; Mahyuddin, A.; Hamzah, M. N.; Roslan, R.

    2015-12-01

    In the present work, the effects of gas metal arc welding-cold metal transfer (GMAW-CMT) parameters on surface roughness are experimentally assessed. The purpose of this study is to develop a better understanding of the effects of welding speed, material thickness and contact tip to work distance on the surface roughness. Experiments are conducted using single pass gas metal arc welding-cold metal transfer (GMAW-CMT) welding technique to join the material. The material used in this experiment was AA6351 aluminum alloy with the thickness of 5mm and 6mm. A Mahr Marsuft XR 20 machine was used to measure the average roughness (Ra) of AA6351 joints. The main and interaction effect analysis was carried out to identify process parameters that affect the surface roughness. The results show that all the input process parameters affect the surface roughness of AA6351 joints. Additionally, the average roughness (Ra) results also show a decreasing trend with increased of welding speed. It is proven that gas metal arc welding-cold metal transfer (GMAW-CMT)welding process has been successful in term of providing weld joint of good surface quality for AA6351 based on the low value surface roughness condition obtained in this setup. The outcome of this experimental shall be valuable for future fabrication process in order to obtained high good quality weld.

  14. Gas-tungsten arc welding of aluminum alloys

    DOEpatents

    Frye, L.D.

    1982-03-25

    The present invention is directed to a gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to profice a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surface are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy continguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  15. Effect of Intensive Plastic Deformation on Microstructure and Mechanical Properties of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Rakhadilov, Bauyrzhan; Uazyrkhanova, Gulzhaz; Myakinin, Alexandr; Uazyrkhanova, Zhuldyz

    2016-08-01

    In work it was studied the influence of intensive plastic deformation on structure and mechanical properties of aluminum alloys. Intensive plastic deformation was carried out by using equal-channel angular extrusion. It is shown that the most efficient angle of intersection of the channels is the angle of Φ=120°, which ensures defect-free parts at the highest possible level of accumulated strain (e=8). It is established that the intensive milling grain structures in aluminum alloys AMG6 and AMC occurs at ECAE-12 passes, while the intersection angle of the channels of 120°. After ECAE-12 in aluminum alloys the grain refinement reaches to the size of ∼⃒1.0-1.5 gm. It is determined that as a result of equal channel angular pressing, the microhardness of alloy AMG6 increases almost 4 times in comparison with the initial state, the microhardness of alloy AMC increases by almost 4.5 times in comparison with the initial state. It is shown that ECAE-12 mass loss is reduced to 5.4 and 5.6 mg, which shows an increase in wear-resistance of aluminum alloys AMG6 and AMC 13-14 %.

  16. Fatigue crack propagation in aluminum-lithium alloys

    NASA Technical Reports Server (NTRS)

    Rao, K. T. V.; Ritchie, R. O.; Piascik, R. S.; Gangloff, R. P.

    1989-01-01

    The principal mechanisms which govern the fatigue crack propagation resistance of aluminum-lithium alloys are investigated, with emphasis on their behavior in controlled gaseous and aqueous environments. Extensive data describe the growth kinetics of fatigue cracks in ingot metallurgy Al-Li alloys 2090, 2091, 8090, and 8091 and in powder metallurgy alloys exposed to moist air. Results are compared with data for traditional aluminum alloys 2024, 2124, 2618, 7075, and 7150. Crack growth is found to be dominated by shielding from tortuous crack paths and resultant asperity wedging. Beneficial shielding is minimized for small cracks, for high stress ratios, and for certain loading spectra. While water vapor and aqueous chloride environments enhance crack propagation, Al-Li-Cu alloys behave similarly to 2000-series aluminum alloys. Cracking in water vapor is controlled by hydrogen embrittlement, with surface films having little influence on cyclic plasticity.

  17. Constitutive behavior of as-cast AA1050, AA3104, and AA5182

    NASA Astrophysics Data System (ADS)

    van Haaften, W. M.; Magnin, B.; Kool, W. H.; Katgerman, L.

    2002-07-01

    Recent thermomechanical modeling to calculate the stress field in industrially direct-chill (DC) cast-aluminum slabs has been successful, but lack of material data limits the accuracy of these calculations. Therefore, the constitutive behavior of three aluminum alloys (AA1050, AA3104, and AA5182) was determined in the as-cast condition using tensile tests at low strain rates and from room temperature to solidus temperature. The parameters of two constitutive equations, the extended Ludwik equation and a combination of the Sellars-Tegart equation with a hardening law, were determined. In order to study the effect of recovery, the constitutive behavior after prestraining at higher temperatures was also investigated. To evaluate the quantified constitutive equations, tensile tests were performed simulating the deformation and cooling history experienced by the material during casting. It is concluded that both constitutive equations perform well, but the combined hardening-Sellars-Tegart (HST) equation has temperature-independent parameters, which makes it easier to implement in a DC casting model. Further, the deformation history of the ingot should be taken into account for accurate stress calculations.

  18. An Improvement of the Anisotropy and Formability Predictions of Aluminum Alloy Sheets

    NASA Astrophysics Data System (ADS)

    Banabic, D.; Comsa, D. S.; Jurco, P.; Wagner, S.; Vos, M.

    2004-06-01

    The paper presents an yield criterion for orthotropic sheet metals and its implementation in a theoretical model in order to calculate the Forming Limit Curves. The proposed yield criterion has been validated for two aluminum alloys: AA3103-0 and AA5182-0, respectively. The biaxial tensile test of cross specimens has been used for the determination of the experimental yield locus. The new yield criterion has been implemented in the Marciniak-Kuczynski model for the calculus of limit strains. The calculated Forming Limit Curves have been compared with the experimental ones, determined by frictionless test: bulge test, plane strain test and uniaxial tensile test. The predicted Forming Limit Curves using the new yield criterion are in good agreement with the experimental ones.

  19. Transverse-Weld Tensile Properties of a New Al-4Cu-2Si Alloy as Filler Metal

    NASA Astrophysics Data System (ADS)

    Sampath, K.

    2009-12-01

    AA2195, an Al-Cu-Li alloy in the T8P4 age-hardened condition, is a candidate aluminum armor for future combat vehicles, as this material offers higher static strength and ballistic protection than current aluminum armor alloys. However, certification of AA2195 alloy for armor applications requires initial qualification based on the ballistic performance of welded panels in the as-welded condition. Currently, combat vehicle manufacturers primarily use gas metal arc welding (GMAW) process to meet their fabrication needs. Unfortunately, a matching GMAW consumable electrode is currently not commercially available to allow effective joining of AA2195 alloy. This initial effort focused on an innovative, low-cost, low-risk approach to identify an alloy composition suitable for effective joining of AA2195 alloy, and evaluated transverse-weld tensile properties of groove butt joints produced using the identified alloy. Selected commercial off-the-shelf (COTS) aluminum alloy filler wires were twisted to form candidate twisted filler rods. Representative test weldments were produced using AA2195 alloy, candidate twisted filler rods and gas tungsten arc welding (GTAW) process. Selected GTA weldments produced using Al-4wt.%Cu-2wt.%Si alloy as filler metal consistently provided transverse-weld tensile properties in excess of 275 MPa (40 ksi) UTS and 8% El (over 25 mm gage length), thereby showing potential for acceptable ballistic performance of as-welded panels. Further developmental work is required to evaluate in detail GMAW consumable wire electrodes based on the Al-Cu-Si system containing 4.2-5.0 wt.% Cu and 1.6-2.0 wt.% Si.

  20. Charge-density-shear-moduli relationships in aluminum-lithium alloys.

    PubMed

    Eberhart, M

    2001-11-12

    Using the first principles full-potential linear-augmented-Slater-type orbital technique, the energies and charge densities of aluminum and aluminum-lithium supercells have been computed. The experimentally observed increase in aluminum's shear moduli upon alloying with lithium is argued to be the result of predictable changes to aluminum's total charge density, suggesting that simple rules may allow the alloy designer to predict the effects of dilute substitutional elements on alloy elastic response.

  1. Effect of Thermomechanical Treatment on the Environmentally Induced Cracking Behavior of AA7075 Alloy

    NASA Astrophysics Data System (ADS)

    Ghosh, Rahul; Venugopal, A.; Sankaravelayudham, P.; Panda, Rajiv; Sharma, S. C.; George, Koshy M.; Raja, V. S.

    2015-02-01

    The influence of thermomechanical treatment on the stress corrosion cracking behavior of AA7075 aluminum alloy forgings was examined in 3.5% NaCl solution by varying the extent of thermomechanical working imparted to each of the conditions. The results show that inadequate working during billet processing resulted in inferior corrosion and mechanical properties. However, more working with intermediate pre-heating stages also led to precipitation of coarse particles resulting in lowering of mechanical properties marginally and a significant reduction in the general/pitting corrosion resistance. The results obtained in the present study indicate that optimum working with controlled pre-heating levels is needed during forging to achieve the desired properties. It is also demonstrated that AA7075 in the over aged condition does not show any environmental cracking susceptibility in spite of the microstructural variations in terms of size and volume fraction of the precipitates. However, the above microstructural variations definitely affected the pitting corrosion and mechanical properties significantly and hence a strict control over the working and pre-heating stages during billet processing is suggested.

  2. Reinforcing aluminum alloys with high strength fibers

    NASA Technical Reports Server (NTRS)

    Kolpashnikov, A. I.; Manuylov, V. F.; Chukhin, B. D.; Shiryayev, Y. V.; Shurygin, A. S.

    1982-01-01

    A study is made of the possibility of reinforcing aluminum and aluminum based alloys with fibers made of high strength steel wire. The method of introducing the fibers is described in detail. Additional strengthening by reinforcement of the high alloy system Al - An - Mg was investigated.

  3. Nitrate reduction in water by aluminum alloys particles.

    PubMed

    Bao, Zunsheng; Hu, Qing; Qi, Weikang; Tang, Yang; Wang, Wei; Wan, Pingyu; Chao, Jingbo; Yang, Xiao Jin

    2017-07-01

    Nano zero-valent iron (NZVI) particles have been extensively investigated for nitrate reduction in water. However, the reduction by NZVI requires acidic pH conditions and the final product is exclusively ammonium, leading to secondary contamination. In addition, nanomaterials have potential threats to environment and the transport and storage of nanomaterials are of safety concerns. Aluminum, the most abundant metal element in the earth's crust, is able to reduce nitrate, but the passivation of aluminum limits its application. Here we report Al alloys (85% Al) with Fe, Cu or Si for aqueous nitrate reduction. The Al alloys particles of 0.85-0.08 mm were inactivate under ambient conditions and a simple treatment with warm water (45 °C) quickly activated the alloy particles for rapid reduction of nitrate. The Al-Fe alloy particles at a dosage of 5 g/L rapidly reduced 50 mg-N/L nitrate at a reaction rate constant (k) of 3.2 ± 0.1 (mg-N/L) 1.5 /min between pH 5-6 and at 4.0 ± 0.1 (mg-N/L) 1.5 /min between pH 9-11. Dopping Cu in the Al-Fe alloy enhanced the rates of reduction whereas dopping Si reduced the reactivity of the Al-Fe alloy. The Al alloys converted nitrate to 20% nitrogen and 80% ammonium. Al in the alloy particles provided electrons for the reduction and the intermetallic compounds in the alloys were likely to catalyze nitrate reduction to nitrogen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Acceptable aluminum additions for minimal environmental effect in iron-aluminum alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikka, V.K.; Viswanathan, S.; Vyas, S.

    A systematic study of iron-aluminum alloys has shown that Fe-16 at. % Al alloys are not very sensitive to environmental embrittlement. The Fe-22 and -28 at. % Al alloys are sensitive to environmental embrittlement, and the effect can be reduced by the addition of chromium and through the control of grain size by additions of zirconium and carbon. The Fe-16 at. % Al binary, and alloys based on it, yielded over 20% room-temperature (RT) elongation even after high-temperature annealing treatments at 1100[degree]C. The best values for the Fe-22 and -28 at. % Al-base alloys after similar annealing treatments were 5more » and 10%, respectively. A multicomponent alloy, FAP, based on Fe- 16 at. % Al was designed, which gave an RT ductility of over 25%.« less

  5. Acceptable aluminum additions for minimal environmental effect in iron-aluminum alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikka, V.K.; Viswanathan, S.; Vyas, S.

    A systematic study of iron-aluminum alloys has shown that Fe-16 at. % Al alloys are not very sensitive to environmental embrittlement. The Fe-22 and -28 at. % Al alloys are sensitive to environmental embrittlement, and the effect can be reduced by the addition of chromium and through the control of grain size by additions of zirconium and carbon. The Fe-16 at. % Al binary, and alloys based on it, yielded over 20% room-temperature (RT) elongation even after high-temperature annealing treatments at 1100{degree}C. The best values for the Fe-22 and -28 at. % Al-base alloys after similar annealing treatments were 5more » and 10%, respectively. A multicomponent alloy, FAP, based on Fe- 16 at. % Al was designed, which gave an RT ductility of over 25%.« less

  6. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, Anton

    1988-01-01

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  7. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, A.

    1988-01-21

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  8. A hot-cracking mitigation technique for welding high-strength aluminum alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y.P.; Dong, P.; Zhang, J.

    2000-01-01

    A hot-cracking mitigation technique for gas tungsten arc welding (GTAW) of high-strength aluminum alloy 2024 is presented. The proposed welding technique incorporates a trailing heat sink (an intense cooling source) with respect to the welding torch. The development of the mitigation technique was based on both detailed welding process simulation using advanced finite element techniques and systematic laboratory experiments. The finite element methods were used to investigate the detailed thermomechanical behavior of the weld metal that undergoes the brittle temperature range (BTR) during welding. As expected, a tensile deformation zone within the material BTR region was identified behind the weldmore » pool under conventional GTA welding process conventional GTA welding process conditions for the aluminum alloy studied. To mitigate hot cracking, the tensile zone behind the weld pool must be eliminated or reduce to a satisfactory level if the weld metal hot ductility cannot be further improved. With detailed computational modeling, it was found that by the introduction of a trailing heat sink at some distance behind the welding arc, the tensile strain rate with respect to temperature in the zone encompassing the BTR region can be significantly reduced. A series of parametric studies were also conducted to derive optimal process parameters for the trailing heat sink. The experimental results confirmed the effectiveness of the trailing heat sink technique. With a proper implementation of the trailing heat sink method, hot cracking can be completely eliminated in welding aluminum alloy 2024 (AA 2024).« less

  9. Microstructures and properties of aluminum die casting alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. M. Makhlouf; D. Apelian; L. Wang

    1998-10-01

    This document provides descriptions of the microstructure of different aluminum die casting alloys and to relate the various microstructures to the alloy chemistry. It relates the microstructures of the alloys to their main engineering properties such as ultimate tensile strength, yield strength, elongation, fatigue life, impact resistance, wear resistance, hardness, thermal conductivity and electrical conductivity. Finally, it serves as a reference source for aluminum die casting alloys.

  10. Effect of tool pin features on process response variables during friction stir welding of dissimilar aluminum alloys

    DOE PAGES

    Rabby, Reza; Tang, Wei; Reynolds, A. P.

    2015-05-13

    In this article, the effect of pin features and orientation/placement of the materials on advancing side were investigated for friction stir welding (FSW) of dissimilar aluminum alloys AA2050 and AA6061. Pins for FSW were produced with a 2.12 mm pitch thread having three flats/flutes. Three sets of rotational speed/welding speed were used to perform a series of welds in a butt joint arrangement. The results show that, joint quality, process response variables and welding temperature are highly affected by pin features and material orientation in FSW. Defect free joints with effective material transportation in the weld nugget zone were obtainedmore » when welding was performed with AA2050 on the advancing side. The tool also encounters less in-plane reaction force for welding with 2050 on the advancing side. Pin with thread+3 flats produces quality welds at low rotational and travel speed regardless of the location of alloys on advancing or retreating side.« less

  11. Effect of tool pin features on process response variables during friction stir welding of dissimilar aluminum alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabby, Reza; Tang, Wei; Reynolds, A. P.

    In this article, the effect of pin features and orientation/placement of the materials on advancing side were investigated for friction stir welding (FSW) of dissimilar aluminum alloys AA2050 and AA6061. Pins for FSW were produced with a 2.12 mm pitch thread having three flats/flutes. Three sets of rotational speed/welding speed were used to perform a series of welds in a butt joint arrangement. The results show that, joint quality, process response variables and welding temperature are highly affected by pin features and material orientation in FSW. Defect free joints with effective material transportation in the weld nugget zone were obtainedmore » when welding was performed with AA2050 on the advancing side. The tool also encounters less in-plane reaction force for welding with 2050 on the advancing side. Pin with thread+3 flats produces quality welds at low rotational and travel speed regardless of the location of alloys on advancing or retreating side.« less

  12. Laser Surface Alloying of Copper, Manganese, and Magnesium with Pure Aluminum Substrate

    NASA Astrophysics Data System (ADS)

    Jiru, Woldetinsay G.; Sankar, M. Ravi; Dixit, Uday S.

    2016-03-01

    Laser surface alloying is one of the recent technologies used in the manufacturing sector for improving the surface properties of the metals. Light weight materials like aluminum alloys, titanium alloys, and magnesium alloys are used in the locomotive, aerospace, and structural applications. In the present work, an experimental study was conducted to improve the surface hardness of commercially pure aluminum plate. CO2 laser is used to melt pre-placed powders of pure copper, manganese, and magnesium. Microstructure of alloyed surface was analyzed using optical microscope. The best surface alloying was obtained at the optimum values of laser parameters, viz., laser power, scan speed, and laser beam diameter. In the alloyed region, microhardness increased from 30 HV0.5 to 430 HV0.5, while it was 60 HV0.5 in the heat-affected region. Tensile tests revealed some reduction in the strength and total elongation due to alloying. On the other hand, corrosion resistance improved.

  13. Advanced powder metallurgy aluminum alloys and composites

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  14. Particulate and gaseous emissions when welding aluminum alloys.

    PubMed

    Cole, Homer; Epstein, Seymour; Peace, Jon

    2007-09-01

    Fabrication and repair of aluminum components and structures commonly involves the use of electric arc welding. The interaction of the arc and the metal being welded generates ultraviolet radiation, metallic oxides, fumes, and gases. Aluminum is seldom used as the pure metal but is often alloyed with other metals to improve strength and other physical properties. Therefore, the exact composition of any emissions will depend on the welding process and the particular aluminum alloy being welded. To quantify such emissions, The Aluminum Association sponsored several studies to characterize arc welding emissions by the gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW) processes for various combinations of base and filler alloys. In all cases, the tests were conducted under conditions that could be found in a production weld shop without forced ventilation. The concentrations of each analyte that a welder could be exposed to were greatly affected by the welding process, the composition of the base and filler alloys, the position of the welder, and the welding helmet. The results obtained can be used by employers to identify and control potential hazards associated with the welding of aluminum alloys and can provide the basis for hazard communication to employees involved in the welding of these alloys.

  15. Dry sliding behavior of aluminum alloy 8011 with 12% fly ash composites

    NASA Astrophysics Data System (ADS)

    Magibalan, S.; Senthilkumar, P.; Palanivelu, R.; Senthilkumar, C.; Shivasankaran, N.; Prabu, M.

    2018-05-01

    This research focused on the fabrication of aluminum alloy 8011 with 12% fly ash (FA) composite (AA8011%–12% FA) using the stir casting method. A three-level central composite design experiment was developed using response surface methodology with various parameters such as load, time, and sliding velocity varied in the range of 5 to 15 N, 5 to 15 min, and 1.5 to 4.5 m.s‑1, respectively. Dry sliding wear tests were performed as per the experimental design using a pin on disc at room temperature. The obtained regression result indicated that the developed model performed well in relating the wear process parameters and predicted the wear behavior of the composite. The surface plot showed that the wear rate increases with increase in load, time, and sliding velocity. Hardness was evaluated by Vickers hardness testing machine. Moreover, the surface morphology of the worn-out composite was examined using a scanning electron microscope.

  16. High-strength laser welding of aluminum-lithium scandium-doped alloys

    NASA Astrophysics Data System (ADS)

    Malikov, A. G.; Ivanova, M. Yu.

    2016-11-01

    The work presents the experimental investigation of laser welding of an aluminum alloy (system Al-Mg-Li) and aluminum alloy (system Al-Cu-Li) doped with Sc. The influence of nano-structuring of the surface layer welded joint by cold plastic deformation on the strength properties of the welded joint is determined. It is founded that, regarding the deformation degree over the thickness, the varying value of the welded joint strength is different for these aluminum alloys. The strength of the plastically deformed welded joint, aluminum alloys of the Al-Mg-Li and Al-Cu-Li systems reached 0.95 and 0.6 of the base alloy strength, respectively.

  17. Reinforcement with alumina particles at the interface region of AA6101-T6 and AA1350 alloys during friction stir welding

    NASA Astrophysics Data System (ADS)

    Ashok Kumar, R.; Thansekhar, M. R.

    2018-04-01

    This paper deals the combinational effect of friction stir welding and friction stir processing on dissimilar AA6101-T6 and AA1350 aluminium alloys. For that, alumina particles are reinforced at interface region of AA6101-T6 and AA1350 aluminium alloys. Friction Stir Welding and Friction Stir Processing are done simultaneously for various sizes of groove. To analyze the welding quality and surface modifications, mechanical, wear and microstructural tests are carried out. Among these, smallest groove of 0.5 mm width and 1 mm depth reveals highest tensile and bending strengths and largest groove of 2 mm width and 3 mm depth gives maximum hardness and wear resistance. Taguchi technique shows that groove width is most influencing parameter. Developed second order models with interaction predict the responses with minimum error.

  18. Finite Element Simulation of Temperature and Strain Distribution during Friction Stir Welding of AA2024 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Jain, Rahul; Pal, Surjya Kanta; Singh, Shiv Brat

    2017-02-01

    Friction Stir Welding (FSW) is a solid state joining process and is handy for welding aluminum alloys. Finite Element Method (FEM) is an important tool to predict state variables of the process but numerical simulation of FSW is highly complex due to non-linear contact interactions between tool and work piece and interdependency of displacement and temperature. In the present work, a three dimensional coupled thermo-mechanical method based on Lagrangian implicit method is proposed to study the thermal history, strain distribution and thermo-mechanical process in butt welding of Aluminum alloy 2024 using DEFORM-3D software. Workpiece is defined as rigid-visco plastic material and sticking condition between tool and work piece is defined. Adaptive re-meshing is used to tackle high mesh distortion. Effect of tool rotational and welding speed on plastic strain is studied and insight is given on asymmetric nature of FSW process. Temperature distribution on the workpiece and tool is predicted and maximum temperature is found in workpiece top surface.

  19. Fretting of Nickel-Chromium-Aluminum Alloys at Temperatures to 816 C

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1974-01-01

    A series of four nickel-based alloys containing 10 percent and 20 percent chromium in combination with 2 percent and 5 percent aluminum were fretted in dry air at temperatures to 816 C. At all temperatures, the alloys showed far less fretting wear than did high-purity nickel. This was attributed to the formation of protective oxide films on the alloys, the result of the selective oxidation of the alloy constituents. Increasing the aluminum concentration reduced fretting wear at all temperatures. Increasing the chromium concentration from 10 percent to 20 percent resulted in decreased fretting wear at 23 and 540 C, but increased fretting wear at 650 and 816 C.

  20. Iron-aluminum alloys having high room-temperature and method for making same

    DOEpatents

    Sikka, Vinod K.; McKamey, Claudette G.

    1993-01-01

    Iron-aluminum alloys having selectable room-temperature ductilities of greater than 20%, high resistance to oxidation and sulfidation, resistant pitting and corrosion in aqueous solutions, and possessing relatively high yield and ultimate tensile strengths are described. These alloys comprise 8 to 9.5% aluminum, up to 7% chromium, up to 4% molybdenum, up to 0.05% carbon, up to 0.5% of a carbide former such as zirconium, up to 0.1 yttrium, and the balance iron. These alloys in wrought form are annealed at a selected temperature in the range of 700.degree. C. to about 1100.degree. C. for providing the alloys with selected room-temperature ductilities in the range of 20 to about 29%.

  1. Corrosion of aluminum alloys by chlorinated hydrocarbon/methanol mixtures

    NASA Technical Reports Server (NTRS)

    De Forest, W. S.

    1967-01-01

    Laboratory investigations show that water-free mixtures of Freon MF /trichlorofluoromethane/ and methanol vigorously attack aluminum alloys which contain significant amounts of copper. Freon MF alone did not attack the aluminum alloys at room temperature. Pure methanol had only a slight corrosive effect on the alloy.

  2. Stress Corrosion Cracking of Certain Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Hasse, K. R.; Dorward, R. C.

    1983-01-01

    SC resistance of new high-strength alloys tested. Research report describes progress in continuing investigation of stress corrosion (SC) cracking of some aluminum alloys. Objective of program is comparing SC behavior of newer high-strength alloys with established SC-resistant alloy.

  3. Aluminum and its light alloys

    NASA Technical Reports Server (NTRS)

    Merica, Paul D

    1920-01-01

    Report is a summary of research work which has been done here and abroad on the constitution and mechanical properties of the various alloy systems with aluminum. The mechanical properties and compositions of commercial light alloys for casting, forging, or rolling, obtainable in this country are described.

  4. Iron-aluminum alloys having high room-temperature and method for making same

    DOEpatents

    Sikka, V.K.; McKamey, C.G.

    1993-08-24

    A wrought and annealed iron-aluminum alloy is described consisting essentially of 8 to 9.5% aluminum, an effective amount of chromium sufficient to promote resistance to aqueous corrosion of the alloy, and an alloying constituent selected from the group of elements consisting of an effective amount of molybdenum sufficient to promote solution hardening of the alloy and resistance of the alloy to pitting when exposed to solutions containing chloride, up to about 0.05% carbon with up to about 0.5% of a carbide former which combines with the carbon to form carbides for controlling grain growth at elevated temperatures, and mixtures thereof, and the balance iron, wherein said alloy has a single disordered [alpha] phase crystal structure, is substantially non-susceptible to hydrogen embrittlement, and has a room-temperature ductility of greater than 20%.

  5. Airborne bacteria associated with corrosion of mild steel 1010 and aluminum alloy 1100.

    PubMed

    Rajasekar, Aruliah; Xiao, Wang; Sethuraman, Manivannan; Parthipan, Punniyakotti; Elumalai, Punniyakotti

    2017-03-01

    A novel approach to measure the contribution of airborne bacteria on corrosion effects of mild steel (MS) and aluminum alloy (AA) as a function of their exposure period, and the atmospheric chemical composition was investigated at an urban industrial coastal site, Singapore. The 16S rRNA and phylogenetic analyses showed that Firmicutes are the predominant bacteria detected in AA and MS samples. The dominant bacterial groups identified were Bacillaceae, Staphylococcaceae, and Paenibacillaceae. The growth and proliferation of these bacteria could be due to the presence of humidity and chemical pollutants in the atmosphere, leading to corrosion. Weight loss showed stronger corrosion resistance of AA (1.37 mg/cm 2 ) than MS (26.13 mg/cm 2 ) over the exposure period of 150 days. The higher corrosion rate could be a result of simultaneous action of pollutants and bacterial exopolysaccharides on the metal surfaces. This study demonstrates the significant involvement of airborne bacteria on atmospheric corrosion of engineering materials.

  6. Seacoast stress corrosion cracking of aluminum alloys

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1981-01-01

    The stress corrosion cracking resistance of high strength, wrought aluminum alloys in a seacoast atmosphere was investigated and the results were compared with those obtained in laboratory tests. Round tensile specimens taken from the short transverse grain direction of aluminum plate and stressed up to 100 percent of their yield strengths were exposed to the seacoast and to alternate immersion in salt water and synthetic seawater. Maximum exposure periods of one year at the seacoast, 0.3 or 0.7 of a month for alternate immersion in salt water, and three months for synthetic seawater were indicated for aluminum alloys to avoid false indications of stress corrosion cracking failure resulting from pitting. Correlation of the results was very good among the three test media using the selected exposure periods. It is concluded that either of the laboratory test media is suitable for evaluating the stress corrosion cracking performance of aluminum alloys in seacoast atmosphere.

  7. Plastic strain and grain size effects in the surface roughening of a model aluminum alloy

    NASA Astrophysics Data System (ADS)

    Moore, Eric Joseph

    To address issues surrounding improved automotive fuel economy, an experiment was designed to study the effect of uniaxial plastic tensile deformation on surface roughness and on slip and grain rotation. Electron backscatter diffraction (EBSD) and scanning laser confocal microscopy (SLCM) were used to track grain size, crystallographic texture, and surface topography as a function of incremental true strain for a coarse-grained binary alloy that is a model for AA5xxx series aluminum alloys. One-millimeter thick sheets were heat treated at 425°C to remove previous rolling texture and to grow grains to sizes in the range ˜10-8000 mum. At five different strain levels, 13 sample regions, containing 43 grains, were identified in both EBSD and SLCM micrographs, and crystallographic texture and surface roughness were measured. After heat treatment, a strong cube texture matrix emerged, with bands of generally non-cube grains embedded parallel to the rolling direction (RD). To characterize roughness, height profiles from SLCM micrographs were extracted and a filtered Fourier transform approach was used to separate the profiles into intergranular (long wavelength) and intragranular (short wavelength) signatures. The commonly-used rms roughness parameter (Rq) characterized intragranular results. Two important parameters assess intergranular results in two grain size regimes: surface tilt angle (Deltatheta) and surface height discontinuity (DeltazH) between neighboring grains at a boundary. In general, the magnitude of Rq and Deltatheta increase monotonically with strain and indicate that intergranular roughness is the major contributor to overall surface roughness for true strains up to epsilon = 0.12. Surface height discontinuity DeltazH is defined due to exceptions in surface tilt angle analyses. The range of observed Deltatheta= 1-10° are consistent with the observed 3-12° rotation of individual grains as measured with EBSD. For some grain boundaries with Deltatheta

  8. Transient thermal analysis during friction stir welding between AA2014-T6 and pure copper

    NASA Astrophysics Data System (ADS)

    Gadhavi, A. R.; Ghetiya, N. D.; Patel, K. M.

    2018-04-01

    AA2xxx-Cu alloys showed larger applications in the defence sectors and in aerospace industries due to high strength to weight ratio and toughness. FSW in a butt joint configuration was carried out between AA2014-T6 and pure Copper placing AA2014 on AS and Cu on RS. Temperature profiles were observed by inserting K-type thermocouples in the mid-thickness at various locations of the plate. A sharp decrease in temperature profiles was observed on Copper side due to its higher thermal conductivity. A thermal numerical model was prepared in ANSYS to compare the simulated temperature profiles with the experimental temperature profiles and both the temperature profiles were found to be in good agreement.

  9. Effect of Temper Condition on the Corrosion and Fatigue Performance of AA2219 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Ghosh, Rahul; Venugopal, A.; Rao, G. Sudarshan; Ramesh Narayanan, P.; Pant, Bhanu; Cherian, Roy M.

    2018-02-01

    The effect of temper condition and corrosion on the fatigue behavior of alloy AA2219 has been investigated in different temper conditions (T87 and T851). Corrosion testing was performed by exposing the tensile specimens to 3.5% NaCl solution for different time periods, and the corrosion damage was quantified using a 3D profilometer. The exposure-tested specimens were subjected for fatigue testing at different stress levels, and the reduction in fatigue life was measured along with detailed fracture morphology variations. The results indicated that the alloy in both tempers suffers localized corrosion damage and the measured corrosion depth was 120 and 1200 µm, respectively, for T87 and T851 conditions. The loss in fatigue strength was found to be high for T851 (67%) when compared to that of T87 temper condition (58%) for a pre-corrosion time of 15 days. In both cases, fatigue crack initiation is associated with corrosion pits, which act as stress raisers. However, the crack propagation was predominantly transgranular for T87 and a mixed transgranular and intergranular fracture in the case of T851 temper condition. This was shown to be due to the heterogeneous microstructure due to the thermomechanical working and the delay in quench time imposed on the alloy forging in T851 temper condition. The findings in this paper present useful information for the selection of appropriate heat treatment condition to facilitate control of the corrosion behavior which is of great significance for their fatigue performance.

  10. Modification of Sr on 4004 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Guo, Erjun; Cao, Guojian; Feng, Yicheng; Wang, Liping; Wang, Guojun; Lv, Xinyu

    2013-05-01

    As a brazing foil, 4004 Al alloy has good welding performance. However, the high Si content decreases the plasticity of the alloy. To improve the plasticity of 4004 Al alloy and subsequently improve the productivity of 4004 Al foil or 434 composite foil, 4004 Al alloy was modified by Al-10%Sr master alloy. Modification effects of an additional amount of Sr, modification temperature, and holding time on 4004 aluminum alloy were studied by orthogonal design. The results showed that the greatest impact parameter of 4004 aluminum alloy modification was the additional amount of Sr, followed by holding time and modification temperature. The optimum modification parameters obtained by orthogonal design were as follows: Sr addition of 0.04%, holding time of 60 min, and modification temperature of 760°C. The effect of Sr addition on modification was analyzed in detail based on orthogonal results. With increasing of Sr addition, elongation of 4004 alloy increased at first, and decreased after reaching the maximum value.

  11. Roll Casting of Aluminum Alloy Clad Strip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, R.; Tsuge, H.; Haga, T.

    2011-01-17

    Casting of aluminum alloy three layers of clad strip was tried using the two sets of twin roll casters, and effects of the casting parameters on the cladding conditions were investigated. One twin roll caster was mounted on the other twin roll caster. Base strip was 8079 aluminum alloy and overlay strips were 6022 aluminum alloy. Effects of roll-load of upper and lower casters and melt temperature of the lower caster were investigated. When the roll-load of the upper and lower caster was large enough, the overlay strip could be solidified and be connected. The overlay strip could be connectedmore » when the melt of the overlay strip cast by the lower caster was low enough. Sound three layers of clad strip could be cast by proper conditions.« less

  12. A computational study of low-head direct chill slab casting of aluminum alloy AA2024

    NASA Astrophysics Data System (ADS)

    Hasan, Mainul; Begum, Latifa

    2016-04-01

    The steady state casting of an industrial-sized AA2024 slab has been modeled for a vertical low-head direct chill caster. The previously verified 3-D CFD code is used to investigate the solidification phenomena of the said long-range alloy by varying the pouring temperature, casting speed and the metal-mold contact heat transfer coefficient from 654 to 702 °C, 60-180 mm/min, and 1.0-4.0 kW/(m2 K), respectively. The important predicted results are presented and thoroughly discussed.

  13. Thermodynamics of Titanium-Aluminum-Oxygen Alloys Studied

    NASA Technical Reports Server (NTRS)

    Copland, Evan H.; Jacobson, Nathan S.

    2001-01-01

    Titanium-aluminum alloys are promising intermediate-temperature alloys for possible compressor applications in gas-turbine engines. These materials are based on the a2-Ti3Al + g-TiAl phases. The major issue with these materials is high oxygen solubility in a2-Ti3Al, and oxidation of unsaturated alloys generally leads to mixed non-protective TiO2+Al2O3 scales. From phase diagram studies, oxygen saturated a2-Ti3Al(O) is in equilibrium with Al2O3; however, oxygen dissolution has a detrimental effect on mechanical properties and cannot be accepted. To better understand the effect of oxygen dissolution, we examined the thermodynamics of titanium-aluminum-oxygen alloys.

  14. Laser Surface Alloying of Aluminum for Improving Acid Corrosion Resistance

    NASA Astrophysics Data System (ADS)

    Jiru, Woldetinsay Gutu; Sankar, Mamilla Ravi; Dixit, Uday Shanker

    2018-04-01

    In the present study, laser surface alloying of aluminum with magnesium, manganese, titanium and zinc, respectively, was carried out to improve acid corrosion resistance. Laser surface alloying was conducted using 1600 and 1800 W power source using CO2 laser. Acid corrosion resistance was tested by dipping the samples in a solution of 2.5% H2SO4 for 200 h. The weight loss due to acid corrosion was reduced by 55% for AlTi, 41% for AlMg alloy, 36% for AlZn and 22% for AlMn alloy. Laser surface alloyed samples offered greater corrosion resistance than the aluminum substrate. It was observed that localized pitting corrosion was the major factor to damage the surface when exposed for a long time. The hardness after laser surface alloying was increased by a factor of 8.7, 3.4, 2.7 and 2 by alloying with Mn, Mg, Ti and Zn, respectively. After corrosion test, hardness was reduced by 51% for AlTi sample, 40% for AlMg sample, 41.4% for AlMn sample and 33% for AlZn sample.

  15. Metallography of Aluminum and Its Alloys : Use of Electrolytic Polishing

    NASA Technical Reports Server (NTRS)

    Jacquet, Pierre A

    1955-01-01

    Recent methods are described for electropolishing aluminum and aluminum alloys. Numerous references are included of electrolytic micrographic investigations carried out during the period 1948 to 1952. A detailed description of a commercial electrolytic polishing unit, suitable for micrographic examination of aluminum and its alloys, is included.

  16. Friction stir welding process and material microstructure evolution modeling in 2000 and 5000 series of aluminum alloy

    NASA Astrophysics Data System (ADS)

    Yalavarthy, Harshavardhan

    Interactions between the rotating and advancing pin-shaped tool (terminated at one end with a circular-cylindrical shoulder) with the clamped welding-plates and the associated material and heat transport during a Friction Stir Welding (FSW) process are studied computationally using a fully-coupled thermo-mechanical finite-element analysis. To surmount potential numerical problems associated with extensive mesh distortions/entanglement, an Arbitrary Lagrangian Eulerian (ALE) formulation was used which enabled adaptive re-meshing (to ensure the continuing presence of a high-quality mesh) while allowing full tracking of the material free surfaces. To demonstrate the utility of the present computational approach, the analysis is applied to the cases of same-alloy FSW of two Aluminum-alloy grades: (a) AA5083 (a solid-solution strengthened and strain-hardened/stabilized Al-Mg-Mn alloy); and (b) AA2139 (a precipitation hardened quaternary Al-Cu-Mg-Ag alloy). Both of these alloys are currently being used in military-vehicle hull structural and armor systems. In the case of non-age-hardenable AA5083, the dominant microstructure evolution processes taking place during FSW are extensive plastic deformation and dynamic recrystallization of highly-deformed material subjected to elevated temperatures approaching the melting temperature. To account for the competition between plastic-deformation controlled strengthening and dynamic-recrystallization induced softening phenomena during the FSW process, the original Johnson-Cook strain- and strain-rate hardening and temperature-softening material strength model is modified in the present work using the available recrystallization-kinetics experimental data. In the case of AA2139, in addition to plastic deformation and dynamic recrystallization, precipitates coarsening, over-aging, dissolution and re-precipitation had to be also considered. Limited data available in the open literature pertaining to the kinetics of the aforementioned

  17. Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition

    DTIC Science & Technology

    2014-11-01

    Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition by Tiffany Ngo ARL-TN-0643...November 2014 Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition Tiffany Ngo Weapons and...3. DATES COVERED (From - To) August 2014 4. TITLE AND SUBTITLE Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by

  18. Fundamental Investigation of Fatigue Crack Growth Retardation in Aluminum Alloys

    DTIC Science & Technology

    1976-09-01

    Fatigue Crack Propagation in 2024 -T3 Aluminum Alloy , " ASTM STP 536, p. 115, 1973. 9. J. Schijve, " Effect of Load Sequences...Hertzberg, " Effect of Multiple Over- loads on Fatigue Crack Propagation in 2024 -T3 Aluminum Alloy , " ASTM STP-536, p. 115, 1973. 9. J. Schijve... Effect of Thickness on Retardation Behavior of 7075 and 2024 Aluminum Alloys .......... 185 vi LIST OF ILLUSTRATIONS FIGURE PAGE 1 SEN

  19. Review and Study of Physics Driven Pitting Corrosion Modeling in 2024-T3 Aluminum Alloys (Postprint)

    DTIC Science & Technology

    2015-05-01

    AFRL-RX-WP-JA-2015-0218 REVIEW AND STUDY OF PHYSICS DRIVEN PITTING CORROSION MODELING IN 2024-T3 ALUMINUM ALLOYS (POSTPRINT) Lingyu...2014 – 1 April 2015 4. TITLE AND SUBTITLE REVIEW AND STUDY OF PHYSICS DRIVEN PITTING CORROSION MODELING IN 2024-T3 ALUMINUM ALLOYS (POSTPRINT) 5a...18 Review and Study of Physics Driven Pitting Corrosion Modeling in 2024-T3 Aluminum Alloys Lingyu Yu 1*, Kumar V. Jata2 1Mechanical Engineering

  20. Effect of Fe- and Si-Enriched Secondary Precipitates and Surface Roughness on Pore Formation on Aluminum Plate Surfaces During Anodizing

    NASA Astrophysics Data System (ADS)

    Zhu, Yuanzhi; Wang, Shizhi; Yang, Qingda; Zhou, Feng

    2014-09-01

    Two twin roll casts (TRCs) and one hot rolled (HR) AA 1235 aluminum alloy plates with different microstructures are prepared. The plates were electrolyzed in a 1.2 wt% HCl solution with a voltage of 21 V and a current of 1.9 mA. The shape, size, and number of pores formed on the surfaces of these plates were analyzed and correlated with the microstructures of the plates. It is found that pores are easier to form on the alloy plates containing subgrains with a lower dislocation density inside the subgrains, rather than along the grain boundaries. Furthermore, Fe- and Si-enriched particles in the AA1235 aluminum alloys lead to the formation of pores on the surface during electrolyzing; the average precipitate sizes of 4, 3.5, and 2 μm in Alloy 1#, Alloy 2# and Alloy 3# result in the average pore sizes of 3.78, 2.76, and 1.9 μm on the surfaces of the three alloys, respectively; The G.P zone in the alloy also facilitates the surface pore formation. High-surface roughness enhances the possibility of entrapping more lubricants into the plate surface, which eventually blocks the formation of the pores on the surface of the aluminum plates in the following electrolyzing process.

  1. Characterising ductility of 6xxx-series aluminium sheet alloys at combined loading conditions

    NASA Astrophysics Data System (ADS)

    Henn, Philipp; Liewald, Mathias; Sindel, Manfred

    2017-10-01

    This paper presents a new approach to characterise material ductility when combined, three dimensional loading conditions occurring during vehicle crash are applied. So called "axial crush test" of closed hat sections is simplified by reducing it down to a two-dimensional testing procedure. This newly developed edge-compression test (ECT) provides the opportunity to investigate a defined characteristic axial folding behaviour of a profile edge. The potential to quantify and to differentiate crashworthiness of material by use of new edge-compression test is investigated by carrying out experimental studies with two different 6xxx-aluminium sheet alloys.

  2. Influence of Composition on the Environmental Impact of a Cast Aluminum Alloy

    PubMed Central

    Gómez, Patricia; Elduque, Daniel; Sarasa, Judith; Pina, Carmelo; Javierre, Carlos

    2016-01-01

    The influence of alloy composition on the environmental impact of the production of six aluminum casting alloys (Al Si12Cu1(Fe), Al Si5Mg, Al Si9Cu3Zn3Fe, Al Si10Mg(Fe), Al Si9Cu3(Fe)(Zn) and Al Si9) has been analyzed. In order to perform a more precise environmental impact calculation, Life Cycle Assessment (LCA) with ReCiPe Endpoint methodology has been used, with the EcoInvent v3 AlMg3 aluminum alloy dataset as a reference. This dataset has been updated with the material composition ranges of the mentioned alloys. The balanced, maximum and minimum environmental impact values have been obtained. In general, the overall impact of the studied aluminum alloys varies from 5.98 × 10−1 pts to 1.09 pts per kg, depending on the alloy composition. In the analysis of maximum and minimum environmental impact, the alloy that has the highest uncertainty is AlSi9Cu3(Fe)(Zn), with a range of ±9%. The elements that contribute the most to increase its impact are Copper and Tin. The environmental impact of a specific case, an LED luminaire housing made out of an Al Si12Cu1(Fe) cast alloy, has been studied, showing the importance of considering the composition. Significant differences with the standard datasets that are currently available in EcoInvent v3 have been found. PMID:28773536

  3. Influence of Composition on the Environmental Impact of a Cast Aluminum Alloy.

    PubMed

    Gómez, Patricia; Elduque, Daniel; Sarasa, Judith; Pina, Carmelo; Javierre, Carlos

    2016-05-25

    The influence of alloy composition on the environmental impact of the production of six aluminum casting alloys (Al Si12Cu1(Fe), Al Si5Mg, Al Si9Cu3Zn3Fe, Al Si10Mg(Fe), Al Si9Cu3(Fe)(Zn) and Al Si9) has been analyzed. In order to perform a more precise environmental impact calculation, Life Cycle Assessment (LCA) with ReCiPe Endpoint methodology has been used, with the EcoInvent v3 AlMg3 aluminum alloy dataset as a reference. This dataset has been updated with the material composition ranges of the mentioned alloys. The balanced, maximum and minimum environmental impact values have been obtained. In general, the overall impact of the studied aluminum alloys varies from 5.98 × 10 -1 pts to 1.09 pts per kg, depending on the alloy composition. In the analysis of maximum and minimum environmental impact, the alloy that has the highest uncertainty is AlSi9Cu3(Fe)(Zn), with a range of ±9%. The elements that contribute the most to increase its impact are Copper and Tin. The environmental impact of a specific case, an LED luminaire housing made out of an Al Si12Cu1(Fe) cast alloy, has been studied, showing the importance of considering the composition. Significant differences with the standard datasets that are currently available in EcoInvent v3 have been found.

  4. Friction stir processing of an aluminum-magnesium alloy with pre-placing elemental titanium powder: In-situ formation of an Al{sub 3}Ti-reinforced nanocomposite and materials characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodabakhshi, F., E-mail: farzadkhodabakhshi83@gmail.com; Simchi, A.; Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran

    A fine-grained Al–Mg/Al{sub 3}Ti nanocomposite was fabricated by friction stir processing (FSP) of an aluminum-magnesium (AA5052) alloy with pre-placed titanium powder in the stirred zone. Microstructural evolutions and formation of intermetallic phases were analyzed by optical and electron microscopic techniques across the thickness section of the processed sheets. The microstructure of the nanocomposite consisted of a fine-grained aluminum matrix (1.5 µm), un-reacted titanium particles (<40 µm) and reinforcement particles of Al{sub 3}Ti (<100 nm) and Mg{sub 2}Si (<100 nm). Detailed microstructural analysis indicated solid-state interfacial reactions between the aluminum matrix and micro-sized titanium particles to form Al{sub 3}Ti intermetallic phase.more » The hard inclusions were then fractured and re-distributed in the metal matrix by the severe thermo-mechanical conditions imposed by FSP. Evaluation of mechanical properties by hardness measurement and uniaxial tensile test determined significant enhancement in the mechanical strength (by 2.5 order of magnetite) with a high ductility (~22%). Based on a dislocation-based model analysis, it was suggested that the strength enhancement was governed by grain refinement and the presence of hard inclusions (4 vol%) in the metal matrix. Fractographic studies also showed a ductile-brittle fracture mode for the nanocomposite compared with fully ductile rupture of the annealed alloy as well as the FSPed specimen without pre-placing titanium particles. - Highlights: • FSP was employed to fabricate in situ nanocomposite. • The AA5052 Al alloy with pre-placed micro-sized Ti particles were utilized. • The structural analysis was revealed that the in situ formation of Al{sub 3}Ti nanophase. • The SZ grain structure was refined by PSN and ZHP mechanisms during DRX. • Hardness and tensile strength were improved up to ~2.5 times with a good ductility.« less

  5. Controlled Release from Core-Shell Nanoporous Silica Particles for Corrosion Inhibition of Aluminum Alloys

    DOE PAGES

    Jiang, Xingmao; Jiang, Ying-Bing; Liu, Nanguo; ...

    2011-01-01

    Ceriumore » m (Ce) corrosion inhibitors were encapsulated into hexagonally ordered nanoporous silica particles via single-step aerosol-assisted self-assembly. The core/shell structured particles are effective for corrosion inhibition of aluminum alloy AA2024-T3. Numerical simulation proved that the core-shell nanostructure delays the release process. The effective diffusion coefficient elucidated from release data for monodisperse particles in water was 1.0 × 10 − 14  m 2 s for Ce 3+ compared to 2.5 × 10 − 13  m 2 s for NaCl. The pore size, pore surface chemistry, and the inhibitor solubility are crucial factors for the application. Microporous hydrophobic particles encapsulating a less soluble corrosion inhibitor are desirable for long-term corrosion inhibition.« less

  6. Aluminum-Silicon Alloy Having Improved Properties at Elevated Temperatures and Articles Cast Therefrom

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2002-01-01

    An aluminum alloy suitable for high temperature applications, such as heavy duty pistons and other internal combustion applications. having the following composition, by weight percent (wt %): Silicon: 11.0-14.0; Copper: 5.6-8.0; Iron: 0-0.8; Magnesium: 0.5-1.5; Nickel: 0.05-0.9; Manganese: 0.5-1.5; Titanium: 0.05-1.2; Zirconium: 0.12-1.2; Vanadium: 0.05-1.2; Zinc: 0.005-0.9; Strontium: 0.001-0.1; Aluminum: balance. In this alloy the ratio of silicon:magnesium is 10-25, and the ratio of copper:magnesium is 4-15. After an article is cast from this alloy, the article is treated in a solutionizing step which dissolves unwanted precipitates and reduces any segregation present in the original alloy. After this solutionizing step, the article is quenched, and is then aged at an elevated temperature for maximum strength.

  7. Structural Phase Evolution in Ultrasonic-Assisted Friction Stir Welded 2195 Aluminum Alloy Joints

    NASA Astrophysics Data System (ADS)

    Eliseev, A. A.; Fortuna, S. V.; Kalashnikova, T. A.; Chumaevskii, A. V.; Kolubaev, E. A.

    2017-10-01

    The authors examined the structural and phase state of fixed joints produced by method of friction stir welding (FSW) and ultrasonic-assisted friction stir welding (UAFSW) from extruded profile of aluminum alloy AA2195. In order to identify the role of ultrasonic application in the course of welding, such characteristics, as volume fraction and average size of secondary particles are compared in the base material and stir zones of FSW and UAFSW joints. By applying the methods of SEM and TEM analysis, researchers established the complex character of phase transitions as a result of ultrasonic application.

  8. Gas tungsten arc welding of aluminum alloys 6XXX. Welding procedure specification. Supplement 1. Records of procedure qualification tests. [6061 and 6063

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1986-06-01

    Procedure WPS-1003 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for gas tungsten arc welding of aluminum alloys 6061 and 6063 (P-23), in thickness range 0.035 to 0.516 inch; filler metal is ER4043 (F-23) or ER5356 (F-22); shielding gas is argon.

  9. An investigation of plastic fracture in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Low, J. R., Jr.; Vanstone, R. H.; Merchant, R. H.

    1972-01-01

    The brittle fracture of many high strength alloys such as steel, titanium, and aluminum was shown to occur by a process called plastic fracture. According to this process microscopic voids form at impurity particles, then grow and coalesce to cause the final rupture. To further understand the role of impurities, four aluminum alloys were investigated: 2024-T851, 2124-T851, 7075-T7351 and 7079-T651. Fractography, quantitative metallography, and microprobe studies assessed the roles of various impurity particles relative to these alloys.

  10. Fume generation rates for stainless steel, nickel and aluminum alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castner, H.R.

    1996-12-01

    This paper describes a study of the effects of pulsed welding current on fume produced during gas metal arc welding (GMAW) of stainless steel, nickel, and aluminum alloys. This is an extension of earlier studies of mild steel electrode wire. Reduction of welding fume is important because steady current GMAW of stainless steels and nickel alloys may produce fume that exceeds recommended worker exposure limits for some of the fume constituents. Fume generation from aluminum alloy ER5356 was studied because steady current welding with this alloy produces much higher fume generation rates than ER4043 alloy electrode wire. This work showsmore » that pulsed current can reduce GMAW fume generation rates for Er308L, ER310, and ER312 stainless steel, ERNiCr-3 nickel alloy, and ER5356 aluminum-magnesium alloy electrode wires.« less

  11. Materials data handbook: Aluminum alloy 6061

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for aluminum alloy 6061 is presented. The scope of the information includes physical and mechanical properties of the alloy at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  12. Materials data handbook: Aluminum alloy 2219

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for aluminum 2219 alloy is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  13. Materials data handbook: Aluminum alloy 7075

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information on aluminum alloy 7075 is presented. The scope of the information includes physical and mechanical properties of the alloy at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  14. Materials data handbook: Aluminum alloy 5456

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for aluminum alloy 5456 is presented. The scope of the information includes physical and mechanical property data at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  15. Oxidation of nickel-aluminum and iron-aluminum alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cathcart, J.V.

    1984-01-01

    The high-temperature oxidation behavior of several ordered alloys in the Ni-Al and Fe-Al systems is reviewed with special emphasis on Ni/sub 3/Al and NiAl. Ordering influences oxidation through its effect on the activities of the alloy components and by changing the point defect concentration in an alloy. Three categories of Ni-Al alloys are distinguished based on Al content and oxidation behavior. A characteristic feature of the oxidation of high-aluminum Ni-Al and Fe-Al alloys is the formation of voids in the substrate at the oxide-metal interface. The mechanism of void formation and its suppression by minor additions of oxygen-active elements aremore » discussed. A brief description of the effect of pre-oxidation on the reactions of Ni/sub 3/Al-base alloys in SO/sub 2//O/sub 2/ environments is also included.« less

  16. Stress Corrosion Cracking Behavior of LD10 Aluminum Alloy in UDMH and N2O4 propellant

    NASA Astrophysics Data System (ADS)

    Zhang, Youhong; Chang, Xinlong; Liu, Wanlei

    2018-03-01

    The LD10 aluminum alloy double cantilever beam specimens were corroded under the conditions of Unsymmetric Uimethyl Hydrazine (UDMH), Dinitrogen Tetroxide (N2O4), and 3.5% NaCl environment. The crack propagation behavior of the aluminum alloy in different corrosion environment was analyzed. The stress corrosion cracking behavior of aluminum alloy in N2O4 is relatively slight and there are not evident stress corrosion phenomenons founded in UDMH.

  17. The Effect of Impurities on the Processing of Aluminum Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zi-Kui Liu; Shengjun Zhang; Qingyou Han

    2007-04-23

    thermodynamic database developed in this project, thermodynamic simulations were carried out to investigate the effect of sodium on the HTE of Al-Mg alloys. The simulation results indicated that the liquid miscibility gap resulting from the dissolved sodium in the molten material plays an important role in HTE. A liquid phase forms from the solid face-centered cubic (fcc) phase (most likely at grain boundaries) during cooling, resulting in the occurrence of HTE. Comparison of the thermodynamic simulation results with experimental measurements on the high-temperature ductility of an Al-5Mg-Na alloy shows that HTE occurs in the temperature range at which the liquid phase exists. Based on this fundamental understanding of the HTE mechanism during processing of aluminum alloy, an HTE sensitive zone and a hot-rolling safe zone of the Al-Mg-Na alloys are defined as functions of processing temperature and alloy composition. The tendency of HTE was evaluated based on thermodynamic simulations of the fraction of the intergranular sodium-rich liquid phase. Methods of avoiding HTE during rolling/extrusion of Al-Mg-based alloys were suggested. Energy and environmental benefits from the results of this project could occur through a number of avenues: (1) energy benefits accruing from reduced rejection rates of the aluminum sheet and bar, (2) reduced dross formation during the remelting of the aluminum rejects, and (3) reduced CO2 emission related to the energy savings. The sheet and extruded bar quantities produced in the United States during 2000 were 10,822 and 4,546 million pounds, respectively. It is assumed that 50% of the sheet and 10% of the bar will be affected by implementing the results of this project. With the current process, the rejection rate of sheet and bar is estimated at 5%. Assuming that at least half of the 5% rejection of sheet and bar will be eliminated by using the results of this project and that 4% of the aluminum will be lost through dross (Al2O3) during remelting

  18. Welding procedure specification. Suppliment 1. Records of procedure qualification tests. Gas tungsten arc welding of aluminum alloys 1XXX and 3003 to 3004, 5052 and 5X54. [1060, 1100, and 3003 to 3004, 5052, 5154, and 5454

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1986-06-01

    Procedure WPS-2202 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for gas tungsten arc welding of aluminum alloys 1060, 1100, and 3003 (P-21) to 3004, 5052, 5154, and 5454 (P-22), in thickness range 0.062 to 0.062 to 0.5 inch; filler metal is ER5356 (F-22); shielding gas is argon.

  19. Mechanical Properties of Titanium and Aluminum Alloys at Cryogenic Temperatures

    DTIC Science & Technology

    1962-03-01

    aluminum alloys. Table I is a tabulation of the chemical composition of the tita - nium alloys. The bar was 5/8 inch in diameter and the sheet 0.060 inch...Ti-6AI-4V Tensile azid yield strength data for both bar and sheet of this tita - nium alloy are shown in Figure A-3. Bar and sheet data show approxi...not recommended for low temperature applications. The remainder of the tita - nium alloys were tested from room temperature to -452 F. In general, Ti

  20. Laser surface alloying on aluminum and its alloys: A review

    NASA Astrophysics Data System (ADS)

    Chi, Yiming; Gu, Guochao; Yu, Huijun; Chen, Chuanzhong

    2018-01-01

    Aluminum and its alloys have been widely used in aerospace, automotive and transportation industries owing to their excellent properties such as high specific strength, good ductility and light weight. Surface modification is of crucial importance to the surface properties of aluminum and its alloys since high coefficient of friction, wear characteristics and low hardness have limited their long term performance. Laser surface alloying is one of the most effective methods of producing proper microstructure by means of non-equilibrium solidification which results from rapid heating and cooling. In this paper, the influence of different processing parameters, such as laser power and scanning velocity is discussed. The developments of various material systems including ceramics, metals or alloys, and metal matrix composites (MMCs) are reviewed. The microstructure, hardness, wear properties and other behaviors of laser treated layer are analyzed. Besides, the existing problems during laser surface treatment and the corresponding solutions are elucidated and the future developments are predicted.

  1. Current and Future Uses of Aluminum in the Automotive Industry

    NASA Astrophysics Data System (ADS)

    Long, R. S.; Boettcher, E.; Crawford, D.

    2017-12-01

    Aluminum use is growing in automotive closures and body in white applications to improve vehicle performance and fuel economy. The auto industry is looking for higher-strength aluminum materials needed for strength-driven safety-critical parts. Through cooperation with industrial partners and support from the Department of Energy (DOE), multiple experimental 7xxx alloys were developed for automotive applications. The objective is to enable complex shapes to be formed at temperatures below 225°C. A demonstration part has been developed that is representative of the forming challenges within a current hot-stamped door ring component. This part tooling has been built and installed into a press line which includes blank heating and robotic transfer. Forming trials of these alloys are currently underway and the formability, strength and corrosion performance of these materials are being evaluated.

  2. Current and Future Uses of Aluminum in the Automotive Industry

    DOE PAGES

    Long, R. S.; Boettcher, E.; Crawford, D.

    2017-08-29

    Aluminum use is growing in automotive closures and body in white applications to improve vehicle performance and fuel economy. The auto industry is looking for higher strength aluminum materials needed for strength driven safety critical parts. Through cooperation with industrial partners and support from the Department of Energy (DOE), multiple experimental 7xxx alloys were developed for automotive applications. The objective is to enable complex shapes to be formed at temperatures below 225° C. A demonstration part has been developed that is representative of the forming challenges within a current hot stamped door ring component. This part tooling has been builtmore » and installed into a press line which includes blank heating and robotic transfer. Forming trials of these alloys are currently underway and the formability, strength and corrosion performance of these materials are being evaluated.« less

  3. Current and Future Uses of Aluminum in the Automotive Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, R. S.; Boettcher, E.; Crawford, D.

    Aluminum use is growing in automotive closures and body in white applications to improve vehicle performance and fuel economy. The auto industry is looking for higher strength aluminum materials needed for strength driven safety critical parts. Through cooperation with industrial partners and support from the Department of Energy (DOE), multiple experimental 7xxx alloys were developed for automotive applications. The objective is to enable complex shapes to be formed at temperatures below 225° C. A demonstration part has been developed that is representative of the forming challenges within a current hot stamped door ring component. This part tooling has been builtmore » and installed into a press line which includes blank heating and robotic transfer. Forming trials of these alloys are currently underway and the formability, strength and corrosion performance of these materials are being evaluated.« less

  4. Properties of Free-Machining Aluminum Alloys at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Faltus, Jiří; Karlík, Miroslav; Haušild, Petr

    In areas close to the cutting tool the workpieces being dry machined could be heated up to 350°C and they may be impact loaded. Therefore it is of interest to study mechanical properties of corresponding materials at elevated temperatures. Free-machining alloys of Al-Cu and Al-Mg-Si systems containing Pb, Bi and Sn additions (AA2011, AA2111B, AA6262, and AA6023) were subjected to Charpy U notch impact test at the temperatures ranging from 20 to 350°C. The tested alloys show a sharp drop in notch impact strength KU at different temperatures. This drop of KU is caused by liquid metal embrittlement due to the melting of low-melting point dispersed phases which is documented by differential scanning calorimetry. Fracture surfaces of the specimens were observed using a scanning electron microscope. At room temperature, the fractures of all studied alloys exhibited similar ductile dimple fracture micromorphology, at elevated temperatures, numerous secondary intergranular cracks were observed.

  5. Characterization of B4C-composite-reinforced aluminum alloy composites

    NASA Astrophysics Data System (ADS)

    Singh, Ram; Rai, R. N.

    2018-04-01

    Dry sliding wear tests conducted on Pin-on-disk wear test machine. The rotational speed of disc is ranging from (400-600rpm) and under loads ranging from (30-70 N) the contact time between the disc and pin is constant for each pin specimen of composites is 15 minute. In all manufacturing industries the uses of composite materials has been increasing globally, In the present study, an aluminum 5083 alloy is used as the matrix and 5% of weight percentage of Boron Carbide (B4C) as the reinforcing material. The composite is produced using stir casting technique. This is cost effective method. The aluminum 5083 matrix can be strengthened by reinforcing with hard ceramic particles like silicon carbide and boron carbide. In this experiment, aluminum 5083 alloy is selected as one of main material for making parts of the ship it has good mechanical properties, good corrosion resistance and it is can welded very easily and does have good strength. The samples are tested for hardness and tensile strength. The mechanical properties like Hardness can be increased by reinforcing aluminum 5083alloy 5% boron carbide (B4C) particles and tensile strength. Finally the Scanning Electron Microscope (SEM) analysis and EDS is done, which helps to study topography of composites and it produces images of a sample by scanning it with a focused beam of electrons and the presence of composition found in the matrix.

  6. Oxidation of nickel-aluminum and iron-aluminum alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cathcart, J.V.

    1985-01-01

    The high-temperature oxidation behavior of several ordered alloys in the Ni-Al and Fe-Al systems is reviewed with special emphasis on Ni/sub 3/Al and NiAl. Ordering influences oxidation through its effect on the activities of the alloy components and by changing the point defect concentration in an alloy. Three categories of Ni-Al alloys are distinguished based on Al content and oxidation behavior. A characteristic feature of the oxidation of high-aluminum Ni-Al and Fe-Al alloys is the formation of voids in the substrate at the oxidate-metal interface. The mechanism of void formation and its suppression by minor additions of oxygen-active elements ismore » discussed. A brief description of the effect of preoxidation on the reactions of Ni/sub 3/Al-base alloys in SO/sub 2//O/sub 2/ environments is also included. 51 references, 14 figures, 1 table.« less

  7. Corrosion behavior of aluminum-alumina composites in aerated 3.5 percent chloride solution

    NASA Astrophysics Data System (ADS)

    Acevedo Hurtado, Paul Omar

    Aluminum based metal matrix composites are finding many applications in engineering. Of these Al-Al2O3 composites appear to have promise in a number of defense applications because of their mechanical properties. However, their corrosion behavior remains suspect, especially in marine environments. While efforts are being made to improve the corrosion resistance of Al-Al2O3 composites, the mechanism of corrosion is not well known. In this study, the corrosion behavior of powder metallurgy processed Al-Cu alloy reinforced with 10, 15, 20 and 25 vol. % Al2O3 particles (XT 1129, XT 2009, XT 2048, XT 2031) was evaluated in aerated 3.5% NaCl solution using microstructural and electrochemical measurements. AA1100-O and AA2024T4 monolithic alloys were also studied for comparison purposes. The composites and unreinforced alloys were subjected to potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) testing. Addition of 25 vol. % Al2O 3 to the base alloys was found to increase its corrosion resistance considerably. Microstructural studies revealed the presence of intermetallic Al2Cu particles in these composites that appeared to play an important role in the observations. Pitting potential for these composites was near corrosion potential values, and repassivation potential was below the corresponding corrosion potential, indicating that these materials begin to corrode spontaneously as soon as they come in contact with the 3.5 % NaCl solution. EIS measurements indicate the occurrence of adsorption/diffusion phenomena at the interface of the composites which ultimately initiate localized or pitting corrosion. Polarization resistance values were extracted from the EIS data for all the materials tested. Electrically equivalent circuits are proposed to describe and substantiate the corrosive processes occurring in these Al-Al2O 3 composite materials.

  8. Chemically activated nanodiamonds for aluminum alloy corrosion protection and monitoring

    NASA Astrophysics Data System (ADS)

    Hannstein, Inga; Adler, Anne-Katrin; Lapina, Victoria; Osipov, Vladimir; Opitz, Jörg; Schreiber, Jürgen; Meyendorf, Norbert

    2009-03-01

    In the present study, a smart coating for light metal alloys was developed and investigated. Chemically activated nanodiamonds (CANDiT) were electrophoretically deposited onto anodized aluminum alloy AA2024 substrates in order to increase corrosion resistance, enhance bonding properties and establish a means of corrosion monitoring based on the fluorescence behavior of the particles. In order to create stable aqueous CANDiT dispersions suitable for electrophoretic deposition, mechanical milling had to be implemented under specific chemical conditions. The influence of the CANDiT volume fraction and pH of the dispersion on the electrochemical properties of the coated samples was investigated. Linear voltammetry measurements reveal that the chemical characteristics of the CANDiT dispersion have a distinct influence on the quality of the coating. The fluorescence spectra as well as fluorescence excitation spectra of the samples show that corrosion can be easily detected by optical means. Furthermore, an optimization on the basis of "smart" - algorithms for the data processing of a surface analysis by the laser-speckle-method is presented.

  9. Corrosion of aluminum alloy 2024 by microorganisms isolated from aircraft fuel tanks.

    PubMed

    McNamara, Christopher J; Perry, Thomas D; Leard, Ryan; Bearce, Ktisten; Dante, James; Mitchell, Ralph

    2005-01-01

    Microorganisms frequently contaminate jet fuel and cause corrosion of fuel tank metals. In the past, jet fuel contaminants included a diverse group of bacteria and fungi. The most common contaminant was the fungus Hormoconis resinae. However, the jet fuel community has been altered by changes in the composition of the fuel and is now dominated by bacterial contaminants. The purpose of this research was to determine the composition of the microbial community found in fuel tanks containing jet propellant-8 (JP-8) and to determine the potential of this community to cause corrosion of aluminum alloy 2024 (AA2024). Isolates cultured from fuel tanks containing JP-8 were closely related to the genus Bacillus and the fungi Aureobasidium and Penicillium. Biocidal activity of the fuel system icing inhibitor diethylene glycol monomethyl ether is the most likely cause of the prevalence of endospore forming bacteria. Electrochemical impedance spectroscopy and metallographic analysis of AA2024 exposed to the fuel tank environment indicated that the isolates caused corrosion of AA2024. Despite the limited taxonomic diversity of microorganisms recovered from jet fuel, the community has the potential to corrode fuel tanks.

  10. Filler wire for aluminum alloys and method of welding

    NASA Technical Reports Server (NTRS)

    Bjorkman, Jr., Gerald W. O. (Inventor); Cho, Alex (Inventor); Russell, Carolyn K. (Inventor)

    2003-01-01

    A weld filler wire chemistry has been developed for fusion welding 2195 aluminum-lithium. The weld filler wire chemistry is an aluminum-copper based alloy containing high additions of titanium and zirconium. The additions of titanium and zirconium reduce the crack susceptibility of aluminum alloy welds while producing good weld mechanical properties. The addition of silver further improves the weld properties of the weld filler wire. The reduced weld crack susceptibility enhances the repair weldability, including when planishing is required.

  11. Machinability of hypereutectic silicon-aluminum alloys

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Akasawa, T.

    1999-08-01

    The machinability of high-silicon aluminum alloys made by a P/M process and by casting was compared. The cutting test was conducted by turning on lathes with the use of cemented carbide tools. The tool wear by machining the P/M alloy was far smaller than the tool wear by machining the cast alloy. The roughness of the machined surface of the P/M alloy is far better than that of the cast alloy, and the turning speed did not affect it greatly at higher speeds. The P/M alloy produced long chips, so the disposal can cause trouble. The size effect of silicon grains on the machinability is discussed.

  12. Maco/Micro Studies of Hydrogen Embrittlement Mechanisms in Titanium and Aluminum Alloys.

    DTIC Science & Technology

    1981-04-01

    DISTRIBUTION STATEMENT (.frhe .,bstf-f: - te-.J ’ h/’ 4 J .0 d lfr n, /5,po IS. SUPPLEMENTARY N3TES a Hydrogen Embrittlement, Titanium Alloys, Aluminum...AD-A116 025 MINNESOTA U4IV MINNEAPOLIS F/ 6 11/ 6 NACO/MICRO STUD~IES OF HYDRO6EN ENORITTLEMENT MECHANISMS IN TITA--CYCCUD APR 81 W W GERBERICH AFOSR77...HYDROGEN EMBRITTLEMENT MECHANSIMS IN TITANIUM AND ALUMINUM ALLOYS FINAL REPORT for Period October 1975 to October 1981 4M University of Minnesota Minneapolis

  13. Corrosion Properties of Dissimilar Friction Stir Welded 6061 Aluminum and HT590 Steel

    NASA Astrophysics Data System (ADS)

    Seo, Bosung; Song, Kuk Hyun; Park, Kwangsuk

    2018-05-01

    Corrosion properties of dissimilar friction stir welded 6061 aluminum and HT590 steel were investigated to understand effects of galvanic corrosion. As cathode when coupled, HT590 was cathodically protected. However, the passivation of AA6061 made the aluminum alloy cathode temporarily, which leaded to corrosion of HT590. From the EIS analysis showing Warburg diffusion plot in Nyquist plots, it can be inferred that the stable passivation layer was formed on AA6061. However, the weld as well as HT590 did not show Warburg diffusion plot in Nyquist plots, suggesting that there was no barrier for corrosion or even if it exists, the barrier had no function for preventing and/or retarding charge transport through the passivation layer. The open circuit potential measurements showed that the potential of the weld was similar to that of HT590, which lied in the pitting region for AA6061, making the aluminum alloy part of the weld keep corrosion state. That resulted in the cracked oxide film on AA6061 of the weld, which could not play a role of corrosion barrier.

  14. Protection by Thermal and Chemical Activation with Cerium Salts of the Alloy AA2017 in Aqueous Solutions of NaCl

    NASA Astrophysics Data System (ADS)

    Bethencourt, Manuel; Botana, Francisco Javier; Cano, María José; González-Rovira, Leandro; Marcos, Mariano; Sánchez-Amaya, José María

    2012-01-01

    A wide variety of anticorrosive treatments for aluminum alloys that can be employed as "green" alternatives to those based on Cr(VI) are currently under development. This article reports a study of the morphological and anticorrosive characteristics of surface layers formed on the Al-Cu alloy AA2017 by immersion treatment in baths of cerium salt, accelerated by increased temperature and the employment of hydrogen peroxide. Scanning electron microscopy (SEM)/X-ray energy dispersive spectroscopy (XEDS) studies of the samples treated have demonstrated the existence of a heterogeneous layer formed by a film of aluminum oxide/hydroxide on the matrix, and a series of dispersed islands of cerium over the cathodic intermetallics. The protective efficacy has been evaluated using electrochemical techniques, linear polarizations (LP) and electrochemical impedance spectroscopy (EIS), and salt spray tests. The results obtained indicate that the layer provided good resistance to corrosion in media with chlorides, and the method gives a considerable reduction of the time required for the immersion treatments.

  15. Biaxial Testing of 2195 Aluminum Lithium Alloy Using Cruciform Specimens

    NASA Technical Reports Server (NTRS)

    Johnston, W. M.; Pollock, W. D.; Dawicke, D. S.; Wagner, John A. (Technical Monitor)

    2002-01-01

    A cruciform biaxial test specimen was used to test the effect of biaxial load on the yield of aluminum-lithium alloy 2195. Fifteen cruciform specimens were tested from 2 thicknesses of 2195-T8 plate, 0.45 in. and 1.75 in. These results were compared to the results from uniaxial tensile tests of the same alloy, and cruciform biaxial tests of aluminum alloy 2219-T87.

  16. High Strength and Wear Resistant Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    In this paper, a new high strength and wear resistant aluminum cast alloy invented by NASA-MSFC for high temperature applications will be presented. Developed to meet U.S. automotive legislation requiring low-exhaust emission, the novel NASA 398 aluminum-silicon alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (500 F-800 F), enabling new pistons to utilize less material, which can lead to reducing part weight and cost as well as improving performance. NASA 398 alloy also offers greater wear resistance, surface hardness, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys for several commercial and automotive applications. The new alloy can be produced economically using permanent steel molds from conventional gravity casting or sand casting. The technology was developed to stimulate the development of commercial aluminum casting products from NASA-developed technology by offering companies the opportunity to license this technology.

  17. Measurements and Modeling of Stress in Precipitation-Hardened Aluminum Alloy AA2618 during Gleeble Interrupted Quenching and Constrained Cooling

    NASA Astrophysics Data System (ADS)

    Chobaut, Nicolas; Carron, Denis; Saelzle, Peter; Drezet, Jean-Marie

    2016-11-01

    Solutionizing and quenching are the key steps in the fabrication of heat-treatable aluminum parts such as AA2618 compressor impellers for turbochargers as they highly impact the mechanical characteristics of the product. In particular, quenching induces residual stresses that can cause unacceptable distortions during machining and unfavorable stresses in service. Predicting and controlling stress generation during quenching of large AA2618 forgings are therefore of particular interest. Since possible precipitation during quenching may affect the local yield strength of the material and thus impact the level of macroscale residual stresses, consideration of this phenomenon is required. A material model accounting for precipitation in a simple but realistic way is presented. Instead of modeling precipitation that occurs during quenching, the model parameters are identified using a limited number of tensile tests achieved after representative interrupted cooling paths in a Gleeble machine. This material model is presented, calibrated, and validated against constrained coolings in a Gleeble blocked-jaws configuration. Applications of this model are FE computations of stress generation during quenching of large AA2618 forgings for compressor impellers.

  18. Primary and secondary creep in aluminum alloys as a solid state transformation

    NASA Astrophysics Data System (ADS)

    Fernández, R.; Bruno, G.; González-Doncel, G.

    2016-08-01

    Despite the massive literature and the efforts devoted to understand the creep behavior of aluminum alloys, a full description of this phenomenon on the basis of microstructural parameters and experimental conditions is, at present, still missing. The analysis of creep is typically carried out in terms of the so-called steady or secondary creep regime. The present work offers an alternative view of the creep behavior based on the Orowan dislocation dynamics. Our approach considers primary and secondary creep together as solid state isothermal transformations, similar to recrystallization or precipitation phenomena. In this frame, it is shown that the Johnson-Mehl-Avrami-Kolmogorov equation, typically used to analyze these transformations, can also be employed to explain creep deformation. The description is fully compatible with present (empirical) models of steady state creep. We used creep curves of commercially pure Al and ingot AA6061 alloy at different temperatures and stresses to validate the proposed model.

  19. Evaluation and control of environmental corrosion for aluminum and steel alloys

    NASA Technical Reports Server (NTRS)

    Franklin, D. B.

    1977-01-01

    Corrosion protection systems for aerospace application and the effects of surface treatments and methods of controlling stress corrosion are evaluated. Chromate pigmented systems were found to be most effective for aluminum alloys; zinc-rich coatings gave the greatest protection to steel alloys. Various steel and aluminum alloys are rated for stress corrosion resistance.

  20. The Metallurgy of High Fracture Toughness Aluminum-Based Plate Products for Aircraft Internal Structure

    NASA Astrophysics Data System (ADS)

    Boselli, J.; Bray, G.; Rioja, R. J.; Mooy, D.; Venema, G.; Feyen, G.; Wang, W.

    A significant volume of "thick" aluminum plate products is used in the manufacture of an aircraft's internal structure in applications such as ribs, spars, frames, bulkheads, etc. With the recent launch of more fuel efficient and primarily metallic single aisle aircraft as well as the introduction of composite-intensive twin-aisle aircraft, a number of opportunities exist for upgrading alloys developed more than 30 years ago with a new generation of thick plate products. These include 7xxx aluminum alloys that show significant improvements in both strength and toughness along with Al-Li alloys that show high strength, low density and very high corrosion resistance with significantly improved toughness over previous generation Al-Li. This paper will review these improvements and provide insights into the metallurgy behind better fracture toughness, particularly in the short transverse direction, by considering the impact of composition and processing on quench sensitivity.

  1. The effect of laser surface melting on microstructure and corrosion behavior of friction stir welded aluminum alloy 2219

    NASA Astrophysics Data System (ADS)

    Ma, Shengchong; Zhao, Yong; Zou, Jiasheng; Yan, Keng; Liu, Chuan

    2017-11-01

    This study aimed to explore the electrochemical properties and microstructure of friction stir welds to understand the correlation between their properties and processing. Friction stir welding is a promising solid-state joining process for high-strength aluminum alloys (AA). Although friction stir welding (FSW) eliminates the problems of fusion welding due to the fact that it is performed below Tm, it causes severe plastic deformation in the material. Some AA welded by FSW exhibit relatively poor corrosion resistance. In this research, the corrosion resistance of such welds was enhanced through laser surface melting. A friction stir weld of AA 2219 was laser melted. The melt depth and microstructure were observed using optical and scanning electron microscopy. The melt zone exhibited epitaxially grown columnar grains. The redistribution of elemental composition was analyzed using energy-dispersive spectroscopy. The anticorrosion properties of both laser-melted and original welds were studied in aqueous 3.5% NaCl solution using cyclic potentiodynamic polarization. The results indicated a noticeable increase in the pitting corrosion resistance after the laser treatment on the surface. The repassivation potential was nobler than the corrosion potential after the laser treatment, confirming that the resistance to pitting growth improved.

  2. Effects of aluminum-copper alloy filtration on photon spectra, air kerma rate and image contrast.

    PubMed

    Gonçalves, Andréa; Rollo, João Manuel Domingos de Almeida; Gonçalves, Marcelo; Haiter Neto, Francisco; Bóscolo, Frab Norberto

    2004-01-01

    This study evaluated the performance of aluminum-copper alloy filtration, without the original aluminum filter, for dental radiography in terms of x-ray energy spectrum, air kerma rate and image quality. Comparisons of various thicknesses of aluminum-copper alloy in three different percentages were made with aluminum filtration. Tests were conducted on an intra-oral dental x-ray machine and were made on mandible phantom and on step-wedge. Depending on the thickness of aluminum-copper alloy filtration, the beam could be hardened and filtrated. The use of the aluminum-copper alloy filter resulted in reductions in air kerma rate from 8.40% to 47.33%, and indicated the same image contrast when compared to aluminum filtration. Aluminum-copper alloy filtration may be considered a good alternative to aluminum filtration.

  3. Warm Temperature Deformation Behavior and Processing Maps of 5182 and 7075 Aluminum Alloy Sheets with Fine Grains

    NASA Astrophysics Data System (ADS)

    Jang, D. H.; Kim, W. J.

    2018-05-01

    The tensile deformation behavior and processing maps of commercial 5182 and 7075 aluminum alloy sheets with similarly fine grain sizes (about 8 μm) were examined and compared over the temperature range of 423-723 K. The 5182 aluminum alloy with equiaxed grains exhibited larger strain rate sensitivity exponent ( m) values than the 7075 aluminum alloy with elongated grains under most of the testing conditions. The fracture strain behaviors of the two alloys as a function of strain rate and temperature followed the trend in their m values. In the processing maps, the power dissipation parameter values of the 5182 aluminum alloy were larger than those of the 7075 aluminum alloy and the instability domains of the 5182 aluminum alloy were smaller compared to that of the 7075 aluminum alloy, implying that the 5182 aluminum alloy had a better hot workability than the 7075 aluminum alloy.

  4. Ultrafine nanoporous palladium-aluminum film fabricated by citric acid-assisted hot-water-treatment of aluminum-palladium alloy film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harumoto, Takashi; Tamura, Yohei; Ishiguro, Takashi, E-mail: ishiguro@rs.noda.tus.ac.jp

    Hot-water-treatment has been adapted to fabricate ultrafine nanoporous palladium-aluminum film from aluminum-palladium alloy film. Using citric acid as a chelating agent, a precipitation of boehmite (aluminum oxide hydroxide, AlOOH) on the nanoporous palladium-aluminum film was suppressed. According to cross-sectional scanning transmission electron microscopy observations, the ligament/pore sizes of the prepared nanoporous film were considerably small (on the order of 10 nm). Since this fabrication method only requires aluminum alloy film and hot-water with chelating agent, the ultrafine nanoporous film can be prepared simply and environmentally friendly.

  5. Evaluating stress corrosion cracking behaviour of high strength AA7075-T651 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Prabhuraj, P.; Rajakumar, S.; Lakshminarayanan, A. K.; Balasubramanian, V.

    2017-12-01

    The objective of the present study is to determine the threshold stress level of stress corrosion cracking (SCC) in AA7075-T651 aluminium alloy by suitable experimentation. The test was carried out using a circumferential notch specimen in a horizontal-type constant load SCC setup in a 3.5 wt.% NaCl solution. The time to failure by SCC was determined at various loading conditions. The threshold stress of AA7075-T651 alloy was found to be 242 MPa in a 3.5 wt.% NaCl solution. The various regions of the fractured surface specimen such as machined notch, SCC region and final overload fracture area were examined using scanning electron microscopy (SEM) in order to identify the SCC mechanism.

  6. Long-term strategies for increased recycling of automotive aluminum and its alloying elements.

    PubMed

    Løvik, Amund N; Modaresi, Roja; Müller, Daniel B

    2014-04-15

    Aluminum recycling currently occurs in a cascading fashion, where some alloys, used in a limited number of applications, absorb most of the end-of-life scrap. An expected increase in scrap supply in coming decades necessitates restructuring of the aluminum cycle to open up new recycling paths for alloys and avoid a potential scrap surplus. This paper explores various interventions in end-of-life management and recycling of automotive aluminum, using a dynamic substance flow analysis model of aluminum and its alloying elements with resolution on component and alloy level (vehicle-component-alloy-element model). It was found that increased component dismantling before vehicle shredding can be an effective, so far underestimated, intervention in the medium term, especially if combined with development of safety-relevant components such as wheels from secondary material. In the long term, automatic alloy sorting technologies are most likely required, but could at the same time reduce the need for magnesium removal in refining. Cooperation between the primary and secondary aluminum industries, the automotive industry, and end-of-life vehicle dismantlers is therefore essential to ensure continued recycling of automotive aluminum and its alloying elements.

  7. Study of Plastic Deformation in Binary Aluminum Alloys by Internal-Friction Methods

    NASA Technical Reports Server (NTRS)

    Olson, E. C.; Maringer, R. E.; Marsh, L. L.; Manning, G. K.

    1959-01-01

    The damping capacity of several aluminum-copper alloys has been investigated during tensile elongation. This damping is shown to depend on strain rate, strain, temperature, alloy content, and heat treatment. A tentative hypothesis, based on the acceleration of solute atom diffusion by deformation-produced vacancies, is proposed to account for the observed behavior. Internal-friction maxima are observed in deformed aluminum and aluminum-copper alloys at -70 deg and -50 deg C. The peaks appear to be relatively insensitive to frequency and alloy content, but they disappear after annealing at temperatures nearing the recrystallization temperature.

  8. Etching Behavior of Aluminum Alloy Extrusions

    NASA Astrophysics Data System (ADS)

    Zhu, Hanliang

    2014-11-01

    The etching treatment is an important process step in influencing the surface quality of anodized aluminum alloy extrusions. The aim of etching is to produce a homogeneously matte surface. However, in the etching process, further surface imperfections can be generated on the extrusion surface due to uneven materials loss from different microstructural components. These surface imperfections formed prior to anodizing can significantly influence the surface quality of the final anodized extrusion products. In this article, various factors that influence the materials loss during alkaline etching of aluminum alloy extrusions are investigated. The influencing variables considered include etching process parameters, Fe-rich particles, Mg-Si precipitates, and extrusion profiles. This study provides a basis for improving the surface quality in industrial extrusion products by optimizing various process parameters.

  9. Thermal coatings for titanium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Cunnington, George R.; Clark, Ronald K.; Robinson, John C.

    1993-01-01

    Titanium aluminides and titanium alloys are candidate materials for use in hot structure and heat-shield components of hypersonic vehicles because of their good strength-to-weight characteristics at elevated temperature. However, in order to utilize their maximum temperature capability, they must be coated to resist oxidation and to have a high total remittance. Also, surface catalysis for recombination of dissociated species in the aerodynamic boundary layer must be minimized. Very thin chemical vapor deposition (CVD) coatings are attractive candidates for this application because of durability and very light weight. To demonstrate this concept, coatings of boron-silicon and aluminum-boron-silicon compositions were applied to the titanium-aluminides alpha2 (Ti-14Al-21Nb), super-alpha2 (Ti-14Al-23-Nb-2V), and gamma (Ti-33Al-6Nb-1Ta) and to the titanium alloy beta-21S (Ti-15Mo-3Al-3Nb-0.2Si). Coated specimens of each alloy were subjected to a set of simulated hypersonic vehicle environmental tests to determine their properties of oxidation resistance, surface catalysis, radiative emittance, and thermal shock resistance. Surface catalysis results should be viewed as relative performance only of the several coating-alloy combinations tested under the specific environmental conditions of the LaRC Hypersonic Materials Environmental Test System (HYMETS) arc-plasma-heated hypersonic wind tunnel. Tests were also conducted to evaluate the hydrogen transport properties of the coatings and any effects of the coating processing itself on fatigue life of the base alloys. Results are presented for three types of coatings, which are as follows: (1) a single layer boron silicon coating, (2) a single layer aluminum-boron-silicon coating, and (3) a multilayer coating consisting of an aluminum-boron-silicon sublayer with a boron-silicon outer layer.

  10. Method of producing superplastic alloys and superplastic alloys produced by the method

    NASA Technical Reports Server (NTRS)

    Troeger, Lillianne P. (Inventor); Starke, Jr., Edgar A. (Inventor); Crooks, Roy (Inventor)

    2002-01-01

    A method for producing new superplastic alloys by inducing in an alloy the formation of precipitates having a sufficient size and homogeneous distribution that a sufficiently refined grain structure to produce superplasticity is obtained after subsequent PSN processing. An age-hardenable alloy having at least one dispersoid phase is selected for processing. The alloy is solution heat-treated and cooled to form a supersaturated solid solution. The alloy is plastically deformed sufficiently to form a high-energy defect structure useful for the subsequent heterogeneous nucleation of precipitates. The alloy is then aged, preferably by a multi-stage low and high temperature process, and precipitates are formed at the defect sites. The alloy then is subjected to a PSN process comprising plastically deforming the alloy to provide sufficient strain energy in the alloy to ensure recrystallization, and statically recrystallizing the alloy. A grain structure exhibiting new, fine, equiaxed and uniform grains is produced in the alloy. An exemplary 6xxx alloy of the type capable of being produced by the present invention, and which is useful for aerospace, automotive and other applications, is disclosed and claimed. The process is also suitable for processing any age-hardenable aluminum or other alloy.

  11. Formability analysis of aluminum alloys through deep drawing process

    NASA Astrophysics Data System (ADS)

    Pranavi, U.; Janaki Ramulu, Perumalla; Chandramouli, Ch; Govardhan, Dasari; Prasad, PVS. Ram

    2016-09-01

    Deep drawing process is a significant metal forming process used in the sheet metal forming operations. From this process complex shapes can be manufactured with fewer defects. Deep drawing process has different effectible process parameters from which an optimum level of parameters should be identified so that an efficient final product with required mechanical properties will be obtained. The present work is to evaluate the formability of Aluminum alloy sheets using deep drawing process. In which effects of punch radius, lubricating conditions, die radius, and blank holding forces on deep drawing process observed for AA 6061 aluminum alloy sheet of 2 mm thickness. The numerical simulations are performed for deep drawing of square cups using three levels of aforesaid parameters like lubricating conditions and blank holding forces and two levels of punch radii and die radii. For numerical simulation a commercial FEM code is used in which Hollomon's power law and Hill's 1948 yield criterions are implemented. The deep drawing setup used in the FEM code is modeled using a CAD tool by considering the modeling requirements from the literature. Two different strain paths (150x150mm and 200x200mm) are simulated. Punch forces, thickness distributions and dome heights are evaluated for all the conditions. In addition failure initiation and propagation is also observed. From the results, by increasing the coefficient of friction and blank holding force, punch force, thickness distribution and dome height variations are observed. The comparison has done and the optimistic parameters were suggested from the results. From this work one can predict the formability for different strain paths without experimentation.

  12. Method to increase the toughness of aluminum-lithium alloys at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Sankaran, Krishnan K. (Inventor); Sova, Brian J. (Inventor); Babel, Henry W. (Inventor)

    2006-01-01

    A method to increase the toughness of the aluminum-lithium alloy C458 and similar alloys at cryogenic temperatures above their room temperature toughness is provided. Increasing the cryogenic toughness of the aluminum-lithium alloy C458 allows the use of alloy C458 for cryogenic tanks, for example for launch vehicles in the aerospace industry. A two-step aging treatment for alloy C458 is provided. A specific set of times and temperatures to age the aluminum-lithium alloy C458 to T8 temper is disclosed that results in a higher toughness at cryogenic temperatures compared to room temperature. The disclosed two-step aging treatment for alloy 458 can be easily practiced in the manufacturing process, does not involve impractical heating rates or durations, and does not degrade other material properties.

  13. Aluminum alloy material structure impact localization by using FBG sensors

    NASA Astrophysics Data System (ADS)

    Zhu, Xiubin

    2014-12-01

    The aluminum alloy structure impact localization system by using fiber Bragg grating (FBG) sensors and impact localization algorithm was investigated. A four-FBG sensing network was established. And the power intensity demodulation method was initialized employing the narrow-band tunable laser. The wavelet transform was used to weaken the impact signal noise. And the impact signal time difference was extracted to build the time difference localization algorithm. At last, a fiber Bragg grating impact localization system was established and experimentally verified. The experimental results showed that in the aluminum alloy plate with the 500 mm*500 mm*2 mm test area, the maximum and average impact abscissa localization errors were 11 mm and 6.25 mm, and the maximum and average impact ordinate localization errors were 9 mm and 4.25 mm, respectively. The fiber Bragg grating sensors and demodulation system are feasible to realize the aviation aluminum alloy material structure impact localization. The research results provide a reliable method for the aluminum alloy material structure impact localization.

  14. Development and characterization of Powder Metallurgy (PM) 2XXX series Al alloy products and Metal Matrix Composite (MMC) 2XXX Al/SiC materials for high temperature aircraft structural applications

    NASA Technical Reports Server (NTRS)

    Chellman, D. J.; Gurganus, T. B.; Walker, J. A.

    1992-01-01

    The results of a series of material studies performed by the Lockheed Aeronautical Systems Company over the time period from 1980 to 1991 are discussed. The technical objective of these evaluations was to develop and characterize advanced aluminum alloy materials with temperature capabilities extending to 350 F. An overview is given of the first five alloy development efforts under this contract. Prior work conducted during the first five modifications of the alloy development program are listed. Recent developments based on the addition of high Zr levels to an optimum Al-Cu-Mg alloy composition by powder metallurgy processing are discussed. Both reinforced and SiC or B4C ceramic reinforced alloys were explored to achieve specific target goals for high temperature aluminum alloy applications.

  15. Study of issues in difficult-to-weld thick materials by hybrid laser arc welding

    NASA Astrophysics Data System (ADS)

    Mazar Atabaki, Mehdi

    There is a high interest for the high strength-to-weight ratio with good ductility for the welds of advanced alloys. The concern about the welding of thick materials (Advanced high strength steels (AHSS) and 5xxx and 6xxx series of aluminum alloys) has stimulated the development of manufacturing processes to overcome the associated issues. The need to weld the dissimilar materials (AHSS and aluminum alloys) is also required for some specific applications in different industries. Hence, the requirement in the development of a state-of-the-art welding procedure can be helpful to fulfill the constraints. Among the welding methods hybrid laser/arc welding (HLAW) has shown to be an effective method to join thick and difficult-to-weld materials. This process benefits from both advantages of the gas metal arc welding (GMAW) and laser welding processes. The interaction of the arc and laser can help to have enough penetration of weld in thick plates. However, as the welding of dissimilar aluminum alloys and steels is very difficult because of the formation of brittle intermetallics the present work proposed a procedure to effectively join the alloys. The reports showed that the explosively welded aluminum alloys to steels have the highest toughness, and that could be used as an "insert" (TRICLAD) for welding the thick plates of AHSS to aluminum alloys. Therefore, the HLAW of the TRICLAD-Flange side (Aluminum alloy (AA 5456)) to the Web side (Aluminum alloys (AA 6061 and AA 5456)) and the TRICLAD-Flange side (ASTM A516) to the Web side (AHSS) was studied in the present work. However, there are many issues related to HLAW of the dissimilar steels as well as dissimilar aluminum alloys that have to be resolved in order to obtain sound welds. To address the challenges, the most recent welding methods for joining aluminum alloys to steels were studied and the microstructural development, mechanical properties, and on-line monitoring of the welding processes were discussed as well

  16. Violent oxidation of lithium-containing aluminum alloys in liquid oxygen

    NASA Astrophysics Data System (ADS)

    Dalins, Ilmars; Karimi, Majid; Ila, Daryush

    1991-06-01

    A strong exothermic and quite well known thermite reaction involving aluminum, oxygen and transition metals (Fe, Cr, Ni, etc.) has apparently been initiated during impact testing of Alcoa aluminum alloy #2090 in liquid oxygen at NASA-MSFC. In some instances, this reaction, essentially an oxidation process, has been so intense that the Inconel 718 cup containing the aluminum alloy disk and associated impacter has melted raising certain safety concerns in the use of this alloy. Reaction products as well as the test specimen surfaces have been studied with surface science techniques like XPS/ESCA, SIMS and AES. Typically, in order to initiate the thermite reaction a temperature of approximately 1000°C is necessary. The mechanism responsible for this oxidation is of great interest. The analysis of the reaction products together with a theoretical analysis, including digital modeling has been pursued. There is strong evidence that the large relaxation energy of the aluminum oxide coating, formed during the aluminum alloy cleaning process, is causing a highly localized energy release during fracture or lattice deformation which is enhancing the oxidation process to a runaway condition. The presence of alkali atoms (Li) enhances the likelihood and intensity of the oxidation reaction. The details of the surface studies will be discussed.

  17. Effect of rotation speed and welding speed on Friction Stir Welding of AA1100 Aluminium alloy

    NASA Astrophysics Data System (ADS)

    Raja, P.; Bojanampati, S.; Karthikeyan, R.; Ganithi, R.

    2018-04-01

    Aluminum AA1100 is the most widely used grade of Aluminium due to its excellent corrosion resistance, high ductility and reflective finish, the selected material was welded with Friction Stir Welding (FSW) process on a CNC machine, using a combination of different tool rotation speed (1500 rpm, 2500 rpm, 3500 rpm) and welding speed (10 mm/min, 30 mm/min, 50 mm/min) as welding parameters. The effect of FSW using this welding parameter was studied by measuring the ultimate tensile strength of the welded joints. A high-speed steel tool was prepared for welding the Aluminium AA1100 alloy having an 8mm shoulder diameter and pin dimension of 4mm diameter and 2.8 mm length. The welded joints were tested using the universal testing machine. It was found that Ultimate Tensile Strength of FSW specimen was highest with a value of 98.08 MPa when the weld was performed at rotation speed of 1500 RPM and welding speed of 50 mm/min.

  18. Environmental fatigue in aluminum-lithium alloys

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.

    1992-01-01

    Aluminum-lithium alloys exhibit similar environmental fatigue crack growth characteristics compared to conventional 2000 series alloys and are more resistant to environmental fatigue compared to 7000 series alloys. The superior fatigue crack growth behavior of Al-Li alloys 2090, 2091, 8090, and 8091 is due to crack closure caused by tortuous crack path morphology and crack surface corrosion products. At high R and reduced closure, chemical environment effects are pronounced resulting in accelerated near threshold da/dN. The beneficial effects of crack closure are minimized for small cracks resulting in rapid growth rates. Limited data suggest that the 'chemically small crack' effect, observed in other alloy system, is not pronounced in Al-Li alloys. Modeling of environmental fatigue in Al-Li-Cu alloys related accelerated fatigue crack growth in moist air and salt water to hydrogen embrittlement.

  19. Properties of welded joints in laser welding of aeronautic aluminum-lithium alloys

    NASA Astrophysics Data System (ADS)

    Malikov, A. G.; Orishich, A. M.

    2017-01-01

    The work presents the experimental investigation of the laser welding of the aluminum-lithium alloys (system Al-Mg-Li) and aluminum alloy (system Al-Cu-Li) doped with Sc. The influence of the nano-structuring of the surface layer welded joint by the cold plastic deformation method on the strength properties of the welded joint is determined. It is founded that, regarding the deformation degree over the thickness, the varying value of the welded joint strength is different for these aluminum alloys.

  20. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOEpatents

    Stevenson, David T.; Troup, Robert L.

    1985-01-01

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide.

  1. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOEpatents

    Stevenson, D.T.; Troup, R.L.

    1985-01-01

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide. 1 fig.

  2. Advanced powder metallurgy aluminum alloys via rapid solidification technology

    NASA Technical Reports Server (NTRS)

    Ray, R.

    1984-01-01

    Aluminum alloys containing 10 to 11.5 wt. pct. of iron and 1.5 to 3 wt. pct. of chromium using the technique of rapid solidification powder metallurgy were studied. Alloys were prepared as thin ribbons (.002 inch thick) rapidly solidified at uniform rate of 10(6) C/second by the melt spinning process. The melt spun ribbons were pulverized into powders (-60 to 400 mesh) by a rotating hammer mill. The powders were consolidated by hot extrusion at a high reduction ratio of 50:1. The powder extrusion temperature was varied to determine the range of desirable processing conditions necessary to yield useful properties. Powders and consolidated alloys were characterized by SEM and optical metallography. The consolidated alloys were evaluated for (1) thermal stability, (2) tensile properties in the range, room temperature to 450 F, and (3) notch toughness in the range, room temperature to 450 F.

  3. Adhesion enhancement of titanium nitride coating on aluminum casting alloy by intrinsic microstructures

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong L.; Preston, Andrew; Tran, Anh T. T.; Dickinson, Michelle; Metson, James B.

    2016-07-01

    Aluminum casting alloys have excellent castability, high strength and good corrosion resistance. However, the presence of silicon in these alloys prevents surface finishing with conventional methods such as anodizing. Hard coating with titanium nitride can provide wear and corrosion resistances, as well as the aesthetic finish. A critical factor for a durable hard coating is its bonding with the underlying substrate. In this study, a titanium nitride layer was coated on LM25 casting alloy and a reference high purity aluminum substrate using Ion Assisted Deposition. Characterization of the coating and the critical interface was carried out by a range of complementing techniques, including SIMS, XPS, TEM, SEM/EDS and nano-indentation. It was observed that the coating on the aluminum alloy is stronger compared to that on the pure aluminum counterpart. Silicon particles in the alloy offers the reinforcement though mechanical interlocking at microscopic level, even with nano-scale height difference. This reinforcement overcomes the adverse effect caused by surface segregation of magnesium in aluminum casting alloys.

  4. Welding procedure specification. Supplement 1. Records of procedure qualification tests. Gas tungsten arc welding of aluminum alloys 3004, 5052, and 5X54

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1986-06-01

    Procedure WPS-1002 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for gas tungsten arc welding of aluminum alloys 3004, 5052, 5154, and 5454 (P-22), in thickness range 0.062 to 0.5 inches; filler metal is ER4043 (F-23) for 3004, and ER5356 (F-22) for other alloys; shielding gas is argon.

  5. Comparative study on Ti/Zr/V and chromate conversion treated aluminum alloys: Anti-corrosion performance and epoxy coating adhesion properties

    NASA Astrophysics Data System (ADS)

    Zhu, Wen; Li, Wenfang; Mu, Songlin; Fu, Nianqing; Liao, Zhongmiao

    2017-05-01

    In this study, a Ti/Zr/V conversion coating (TZVCC) was deposited on the surface of aluminum alloy 6063 (AA6063) as an alternative of the chromate conversion coating (CCC). Both the TZVCC treated AA6063 (TZVCC/AA6063) and CCC treated AA6063 (CCC/AA6063) were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM) and contact angle measuring device. The anti-corrosion performance of the TZVCC/AA6063 and CCC/AA6063 was evaluated by electrochemical measurements and neutral salt spray tests. It showed that both the surface roughness and surface free energy of the AA6063 were significantly increased after TZVCC treatment. The anti-corrosion performance of TZVCC/AA6063 was superior to that of CCC/AA6063. In addition, the effects of the TZVCC and CCC on the adhesion properties and anti-corrosion performance of epoxy coating applied on samples were examined by pull-off tests and electrochemical impedance spectroscopy (EIS). The dry, wet and recovery adhesive strengths of the epoxy coating on TZVCC treated samples (epoxy coated TZVCC/AA6063) were very close to those of epoxy coating on CCC treated ones (epoxy coated CCC/AA6063). The epoxy coated TZVCC/AA6063 showed better corrosion resistance than the epoxy coated CCC/AA6063 and epoxy coated AA6063.

  6. Stress-Corrosion Cracking in High Strength Steels and in Titanium and Aluminum Alloys

    DTIC Science & Technology

    1972-01-01

    EFFECTS 01: STRESS) 155 Table 2. Mechanical, Fracture, and Stress Corrosion Properties for Plates of Several Aluminum Alloys --Continued 4f’l14...One of the most effective SCC preventives for high strength aluminum alloys is surface working by shot peening, particularl) when used in combination...Aluminaut uses aluminum alloy anodes to supplement the protection of the pressure hull offered by several layers of polyurethane coating 175). 100 A

  7. Applications of high-temperature powder metal aluminum alloys to small gas turbines

    NASA Technical Reports Server (NTRS)

    Millan, P. P., Jr.

    1982-01-01

    A program aimed at the development of advanced powder-metallurgy (PM) aluminum alloys for high-temperature applications up to 650 F using the concepts of rapid solidification and mechanical alloying is discussed. In particular, application of rapidly solidified PM aluminum alloys to centrifugal compressor impellers, currently used in auxiliary power units for both military and commercial aircraft and potentially for advanced automotive gas turbine engines, is examined. It is shown that substitution of high-temperature aluminum for titanium alloy impellers operating in the 360-650 F range provides significant savings in material and machining costs and results in reduced component weight, and consequently, reduced rotating group inertia requirements.

  8. First-principles surface interaction studies of aluminum-copper and aluminum-copper-magnesium secondary phases in aluminum alloys

    NASA Astrophysics Data System (ADS)

    da Silva, Thiago H.; Nelson, Eric B.; Williamson, Izaak; Efaw, Corey M.; Sapper, Erik; Hurley, Michael F.; Li, Lan

    2018-05-01

    First-principles density functional theory-based calculations were performed to study θ-phase Al2Cu, S-phase Al2CuMg surface stability, as well as their interactions with water molecules and chloride (Cl-) ions. These secondary phases are commonly found in aluminum-based alloys and are initiation points for localized corrosion. Density functional theory (DFT)-based simulations provide insight into the origins of localized (pitting) corrosion processes of aluminum-based alloys. For both phases studied, Cl- ions cause atomic distortions on the surface layers. The nature of the distortions could be a factor to weaken the interlayer bonds in the Al2Cu and Al2CuMg secondary phases, facilitating the corrosion process. Electronic structure calculations revealed not only electron charge transfer from Cl- ions to alloy surface but also electron sharing, suggesting ionic and covalent bonding features, respectively. The S-phase Al2CuMg structure has a more active surface than the θ-phase Al2Cu. We also found a higher tendency of formation of new species, such as Al3+, Al(OH)2+, HCl, AlCl2+, Al(OH)Cl+, and Cl2 on the S-phase Al2CuMg surface. Surface chemical reactions and resultant species present contribute to establishment of local surface chemistry that influences the corrosion behavior of aluminum alloys.

  9. Hot forging of roll-cast high aluminum content magnesium alloys

    NASA Astrophysics Data System (ADS)

    Kishi, Tomohiro; Watari, Hisaki; Suzuki, Mayumi; Haga, Toshio

    2017-10-01

    This paper reports on hot forging of high aluminum content magnesium alloy sheets manufactured using horizontal twin-roll casting. AZ111 and AZ131 were applied for twin-roll casting, and a hot-forging test was performed to manufacture high-strength magnesium alloy components economically. For twin-roll casting, the casting conditions of a thick sheet for hot forging were investigated. It was found that twin-roll casting of a 10mm-thick magnesium alloy sheet was possible at a roll speed of 2.5m/min. The grain size of the cast strip was 50 to 70µm. In the hot-forging test, blank material was obtained from as-cast strip. A servo press machine with a servo die cushion was used to investigate appropriate forging conditions (e.g., temperature, forging load, and back pressure) for twin-roll casts (TRCs) AZ111 and AZ131. It was determined that high aluminum content magnesium alloy sheets manufactured using twin-roll casting could be forged with a forging load of 150t and a back pressure of 3t at 420 to 430°C. Applying back pressure during hot forging effectively forged a pin-shaped product.

  10. Evaluation of Stress Corrosion Cracking Susceptibility Using Fracture Mechanics Techniques, Part 1. [environmental tests of aluminum alloys, stainless steels, and titanium alloys

    NASA Technical Reports Server (NTRS)

    Sprowls, D. O.; Shumaker, M. B.; Walsh, J. D.; Coursen, J. W.

    1973-01-01

    Stress corrosion cracking (SSC) tests were performed on 13 aluminum alloys, 13 precipitation hardening stainless steels, and two titanium 6Al-4V alloy forgings to compare fracture mechanics techniques with the conventional smooth specimen procedures. Commercially fabricated plate and rolled or forged bars 2 to 2.5-in. thick were tested. Exposures were conducted outdoors in a seacoast atmosphere and in an inland industrial atmosphere to relate the accelerated tests with service type environments. With the fracture mechanics technique tests were made chiefly on bolt loaded fatigue precracked compact tension specimens of the type used for plane-strain fracture toughness tests. Additional tests of the aluminum alloy were performed on ring loaded compact tension specimens and on bolt loaded double cantilever beams. For the smooth specimen procedure 0.125-in. dia. tensile specimens were loaded axially in constant deformation type frames. For both aluminum and steel alloys comparative SCC growth rates obtained from tests of precracked specimens provide an additional useful characterization of the SCC behavior of an alloy.

  11. The Delayed Fracture of Aluminum Alloys.

    DTIC Science & Technology

    1981-01-01

    Cracking of a Maraging Steel ," Corrosion NACE, 1971, vol. 27, no. 10, pp. 429-433. 42. H.R. Smith and D.E. Piper: "Stress- Corrosion Testing with Pre...Sivaramakrishman, and R. Kumar: "Influence of Processing Variables on the Stress Corrosion Characteristics of Weldable Al-Zn-Mg Alloys," Light Met. Age , 1979...if necessary and Identify by block number) aluminum alloys, stress- corrosion cracking, oxide film, Auger electron spectroscopy, Auger depth profiling

  12. High strength cast aluminum alloy development

    NASA Astrophysics Data System (ADS)

    Druschitz, Edward A.

    The goal of this research was to understand how chemistry and processing affect the resulting microstructure and mechanical properties of high strength cast aluminum alloys. Two alloy systems were investigated including the Al-Cu-Ag and the Al-Zn-Mg-Cu systems. Processing variables included solidification under pressure (SUP) and heat treatment. This research determined the range in properties that can be achieved in BAC 100(TM) (Al-Cu micro-alloyed with Ag, Mn, Zr, and V) and generated sufficient property data for design purposes. Tensile, stress corrosion cracking, and fatigue testing were performed. CuAl2 and Al-Cu-Fe-Mn intermetallics were identified as the ductility limiting flaws. A solution treatment of 75 hours or longer was needed to dissolve most of the intermetallic CuAl 2. The Al-Cu-Fe-Mn intermetallic was unaffected by heat treatment. These results indicate that faster cooling rates, a reduction in copper concentration and a reduction in iron concentration might increase the ductility of the alloy by decreasing the size and amount of the intermetallics that form during solidification. Six experimental Al-Zn-Mg-Cu series alloys were produced. Zinc concentrations of 8 and 12wt% and Zn/Mg ratios of 1.5 to 5.5 were tested. Copper was held constant at 0.9%. Heat treating of the alloys was optimized for maximum hardness. Al-Zn-Mg-Cu samples were solution treated at 441°C (826°F) for 4 hours before ramping to 460°C (860°F) for 75 hours and then aged at 120°C (248°F) for 75 hours. X-ray diffraction showed that the age hardening precipitates in most of these alloys was the T phase (Mg32Zn 31.9Al17.1). Tensile testing of the alloys showed that the best mechanical properties were obtained in the lowest alloy condition. Chilled Al-8.2Zn-1.4Mg-0.9Cu solidified under pressure resulted in an alloy with a yield strength of 468MPa (68ksi), tensile strength of 525MPa (76ksi) and an elongation of 9%.

  13. The Cryogenic Properties of Several Aluminum-Beryllium Alloys and a Beryllium Oxide Material

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Performance related mechanical properties for two aluminum-beryllium (Al-Be) alloys and one beryllium-oxide (BeO) material were developed at cryogenic temperatures. Basic mechanical properties (Le., ultimate tensile strength, yield strength, percent elongation, and elastic modulus were obtained for the aluminum-beryllium alloy, AlBeMetl62 at cryogenic [-195.5"C (-320 F) and -252.8"C (-423"F)I temperatures. Basic mechanical properties for the Be0 material were obtained at cyrogenic [- 252.8"C (-423"F)] temperatures. Fracture properties were obtained for the investment cast alloy Beralcast 363 at cryogenic [-252.8"C (-423"F)] temperatures. The AlBeMetl62 material was extruded, the Be0 material was hot isostatic pressing (HIP) consolidated, and the Beralcast 363 material was investment cast.

  14. Tensile Properties of Friction Stir Welded Joints of AA 2024-T6 Alloy at Different Welding Speeds

    NASA Astrophysics Data System (ADS)

    Avula, Dhananjayulu; Devuri, Venkateswarlu; Cheepu, Muralimohan; Dwivedi, Dheerendra Kumar

    2018-03-01

    The influence of welding speed on the friction stir welded joint properties of hardness, tensile properties, defects and microstructure characterization are studied in the present study. The friction stir welding was conducted on AA2014-T6 heat treated alloy with 5 mm thickness plate in butt joint configuration. The welding speed was varied from 8 mm/min to 120 mm/min at the fixed travel speed and load conditions. It is observed that the welding speeds at higher rate with wide range can be possible to weld this alloy at higher rates of tool revolution suggesting that the inherent capability of friction stir welding technique for aluminum 2014 alloys. The strength of the joints gradually increases with enhancing of welding speed. The micro structural observations exhibited the formation of equiaxed grains in the stir zone and slightly in the thermo-mechanically affected zone. In addition, the size of the grains decreases with increase in welding speed owing to the presence of low heat input. Hence the hardness of the joints slightly increased in the stir zones over the other zones of the weld nugget. The joint strength initially increases with the welding speed and starts to decreases after reaching to the maximum value. The relationship between the welding conditions and friction stir welded joint properties has been discussed.

  15. The effect of hydrogen embrittlement on the localized plastic deformation of aluminum alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bochkareva, Anna, E-mail: avb@ispms.tsc.ru; Lunev, Aleksey, E-mail: agl@ispms.tsc.ru; National Research Tomsk Polytechnic University, Tomsk, 634050

    2015-10-27

    The effect of hydrogen embrittlement on the localized plastic deformation of aluminum alloy D1 was investigated. The studies were performed for the test samples of aluminum alloy subjected to electrolytic hydrogenation. It is found that the mechanical properties and localized plastic deformation parameters of aluminum alloy are affected adversely by hydrogen embrittlement. The hydrogenated counterpart of alloy has a lower degree of ductility relative to the original alloy; however, the plastic flow behavior of material remains virtually unaffected. Using scanning electron and atomic force microscopy methods, the changes in the fracture surface were investigated. The deformation diagrams were examined formore » the deformed samples of aluminum alloy. These are found to show all the plastic flow stages: the linear, parabolic and pre-failure stages would occur for the respective values of the exponent n from the Ludwik-Holomon equation. Using digital speckle image technique, the local strain patterns were being registered for the original alloy D1 and the counterpart subjected to electrolytic hydrogenation for 100 h.« less

  16. Advanced powder metallurgy aluminum alloys via rapid solidification technology, phase 2

    NASA Technical Reports Server (NTRS)

    Ray, Ranjan; Jha, Sunil C.

    1987-01-01

    Marko's rapid solidification technology was applied to processing high strength aluminum alloys. Four classes of alloys, namely, Al-Li based (class 1), 2124 type (class 2), high temperature Al-Fe-Mo (class 3), and PM X7091 type (class 4) alloy, were produced as melt-spun ribbons. The ribbons were pulverized, cold compacted, hot-degassed, and consolidated through single or double stage extrusion. The mechanical properties of all four classes of alloys were measured at room and elevated temperatures and their microstructures were investigated optically and through electron microscopy. The microstructure of class 1 Al-Li-Mg alloy was predominantly unrecrystallized due to Zr addition. Yield strengths to the order of 50 Ksi were obtained, but tensile elongation in most cases remained below 2 percent. The class 2 alloys were modified composition of 2124 aluminum alloy, through addition of 0.6 weight percent Zr and 1 weight percent Ni. Nickel addition gave rise to a fine dispersion of intermetallic particles resisting coarsening during elevated temperature exposure. The class 2 alloy showed good combination of tensile strength and ductility and retained high strength after 1000 hour exposure at 177 C. The class 3 Al-Fe-Mo alloy showed high strength and good ductility both at room and high temperatures. The yield and tensile strength of class 4 alloy exceeded those of the commercial 7075 aluminum alloy.

  17. Statistical and Graphical Assessment of Circumferential and Radial Hardness Variation of AISI 4140, AISI 1020 and AA 6082 Aluminum Alloy

    PubMed Central

    Al-Khalid, Hamad; Alaskari, Ayman; Oraby, Samy

    2011-01-01

    Hardness homogeneity of the commonly used structural ferrous and nonferrous engineering materials is of vital importance in the design stage, therefore, reliable information regarding material properties homogeneity should be validated and any deviation should be addressed. In the current study the hardness variation, over wide spectrum radial locations of some ferrous and nonferrous structural engineering materials, was investigated. Measurements were performed over both faces (cross-section) of each stock bar according to a pre-specified stratified design, ensuring the coverage of the entire area both in radial and circumferential directions. Additionally the credibility of the apparatus and measuring procedures were examined through a statistically based calibration process of the hardness reference block. Statistical and response surface graphical analysis are used to examine the nature, adequacy and significance of the measured hardness values. Calibration of the apparatus reference block proved the reliability of the measuring system, where no strong evidence was found against the stochastic nature of hardness measures over the various stratified locations. Also, outlier elimination procedures were proved to be beneficial only at fewer measured points. Hardness measurements showed a dispersion domain that is within the acceptable confidence interval. For AISI 4140 and AISI 1020 steels, hardness is found to have a slight decrease trend as the diameter is reduced, while an opposite behavior is observed for AA 6082 aluminum alloy. However, no definite significant behavior was noticed regarding the effect of the sector sequence (circumferential direction). PMID:28817030

  18. Statistical and Graphical Assessment of Circumferential and Radial Hardness Variation of AISI 4140, AISI 1020 and AA 6082 Aluminum Alloy.

    PubMed

    Al-Khalid, Hamad; Alaskari, Ayman; Oraby, Samy

    2011-12-23

    Hardness homogeneity of the commonly used structural ferrous and nonferrous engineering materials is of vital importance in the design stage, therefore, reliable information regarding material properties homogeneity should be validated and any deviation should be addressed. In the current study the hardness variation, over wide spectrum radial locations of some ferrous and nonferrous structural engineering materials, was investigated. Measurements were performed over both faces (cross-section) of each stock bar according to a pre-specified stratified design, ensuring the coverage of the entire area both in radial and circumferential directions. Additionally the credibility of the apparatus and measuring procedures were examined through a statistically based calibration process of the hardness reference block. Statistical and response surface graphical analysis are used to examine the nature, adequacy and significance of the measured hardness values. Calibration of the apparatus reference block proved the reliability of the measuring system, where no strong evidence was found against the stochastic nature of hardness measures over the various stratified locations. Also, outlier elimination procedures were proved to be beneficial only at fewer measured points. Hardness measurements showed a dispersion domain that is within the acceptable confidence interval. For AISI 4140 and AISI 1020 steels, hardness is found to have a slight decrease trend as the diameter is reduced, while an opposite behavior is observed for AA 6082 aluminum alloy. However, no definite significant behavior was noticed regarding the effect of the sector sequence (circumferential direction).

  19. Materials Design for Joinable, High Performance Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Glamm, Ryan James

    An aluminum alloy compatible with friction stir welding is designed for automotive and aerospace structural applications. Current weldable automotive aluminum alloys do not possess the necessary strength to meet safety standards and therefore are not able to replace steel in the automotive body. Significant weight savings could be achieved if steel components are replaced with aluminum. Current aerospace alloys are not weldable, requiring machining of large pieces that are then riveted together. If an aerospace alloy could be friction stir welded, smaller pieces could be welded, reducing material waste. Using a systems approach for materials design, property goals are set from performance objectives. From previous research and computational predictions, a structure is designed for a prototype alloy containing dynamic precipitates to readily dissolve and re-precipitate and high stability precipitates to resist dissolution and coarsening in the weld region. It is found that a Ag modified Al-3.9Mg-0.04Cu (at. %) alloy enhanced the rate and magnitude of hardening during ageing, both beneficial effects for dynamic precipitation. In the same alloy, ageing at 350°C results in hardening from Al 3(Sc,Zr) precipitates. Efforts to effectively precipitate both populations simultaneously are unsuccessful. The Al3(Sc,Zr) precipitation hardened prototype is friction stir processed and no weak zones are found in the weld hardness profile. An aerospace alloy design is proposed, utilizing the dual precipitate structure shown in the prototype. The automotive alloy is designed using a basic strength model with parameters determined from the initial prototype alloy analysis. After ageing to different conditions, the alloy is put through a simulated heat affected zone thermal cycle with a computer controlled induction heater. The aged samples lose hardness from the weld cycle but recover hardness from a post weld heat treatment. Atom probe tomography and transmission electron

  20. NASA-UVA Light Aerospace Alloy and Structures Technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Starke, Edgar A., Jr.; Gangloff, Richard P.; Herakovich, Carl T.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.

    1995-01-01

    The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites, and thermal gradient structures in collaboration with NASA-Langley researchers. The general aim is to produce relevant data and basic understanding of material mechanical response, environment/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated students for aerospace technologies. Specific technical objectives are presented for each of the following research projects: time-temperature dependent fracture in advanced wrought ingot metallurgy, and spray deposited aluminum alloys; cryogenic temperature effects on the deformation and fracture of Al-Li-Cu-In alloys; effects of aging and temperature on the ductile fracture of AA2095 and AA2195; mechanisms of localized corrosion in alloys 2090 and 2095; hydrogen interactions in aluminum-lithium alloys 2090 and selected model alloys; mechanisms of deformation and fracture in high strength titanium alloys (effects of temperature and hydrogen and effects of temperature and microstructure); evaluations of wide-panel aluminum alloy extrusions; Al-Si-Ge alloy development; effects of texture and precipitates on mechanical property anisotropy of Al-Cu-Mg-X alloys; damage evolution in polymeric composites; and environmental effects in fatigue life prediction - modeling crack propagation in light aerospace alloys.

  1. The hydrogen diffusion in liquid aluminum alloys from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Jakse, N.; Pasturel, A.

    2014-09-01

    We study the hydrogen diffusion in liquid aluminum alloys through extensive ab initio molecular dynamics simulations. At the microscopic scale, we show that the hydrogen motion is characterized by a broad distribution of spatial jumps that does not correspond to a Brownian motion. To determine the self-diffusion coefficient of hydrogen in liquid aluminum alloys, we use a generalized continuous time random walk model recently developed to describe the hydrogen diffusion in pure aluminum. In particular, we show that the model successfully accounts the effects of alloying elements on the hydrogen diffusion in agreement with experimental features.

  2. Microstructure and corrosion resistance of a fluorosilane modified silane-graphene film on 2024 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Dun, Yuchao; Zhao, Xuhui; Tang, Yuming; Dino, Sahib; Zuo, Yu

    2018-04-01

    Heptadecafluorodecyl trimethoxysilane (FAS-17) was incorporated into γ-(2,3-epoxypropoxy) propyltrimethoxysilane/graphene (GPTMS/rGO) by adding pre-hydrolyzed FAS-17 solution in GPTMS solution, and a hybrid silane-graphene film (FG/rGO) was prepared on 2024 aluminum alloy surface. The FG/rGO film showed better thermal shock resistance, good adhesion force and high micro-hardness, compared with GPTMS/rGO film. In neutral 3.5 wt% NaCl solution, the corrosion current density for 2024 AA sample with FG/rGO film was 3.40 × 10-3 μA/cm2, which is about one fifth of that for the sample with GPTMS/rGO film. In acidic and alkaline NaCl solutions, the FG/rGO film also showed obviously better corrosion resistance than GPTMS/rGO film. EIS results confirm that the FG/rGO film showed longer performance than GPTMS/rGO film for 2024 AA in NaCl solution. The hydrophobic FAS-17 increased water contact angle of the film surface from 68° to 113°, and changed the stacking structure of graphene in the film. The higher crosslink degree and less interfaces promoted the barrier property of FG/rGO film against aggressive ions and prolonged the performance time in NaCl solution.

  3. Preparation of aluminum-magnesium alloy from magnesium oxide in RECl3-KCl-MgCl2 electrolyte by molten salts electrolysis method

    NASA Astrophysics Data System (ADS)

    Yang, Shaohua; Wu, Lin; Yang, Fengli; Li, Mingzhou; Hu, Xianwei; Wang, Zhaowen; Shi, Zhongning; Gao, Bingliang

    Aluminum-magnesium alloys were prepared from magnesium oxide by molten salt electrolysis method. 10w%RECl3-63.5w%KCl-23.5w%MgCl2-3w%MgO was taken as electrolyte. The results showed that RE could be attained in aluminum-magnesium alloy, and it was proved that the RE was reduced directly by aluminum. Magnesium in the alloy was produced by electrolysis on cathode. The content of RE in the alloy was about 0.8wt %-1.2wt%, and the content of Mg in the alloy was lwt%˜6wt% with electrolytic times. The highest current efficiency was 81.3% with 0.8A/cm2 current density. The process of electrolysis was controlled together by electrochemical polarization and concentration polarization.

  4. Recrystallization and Grain Growth Kinetics in Binary Alpha Titanium-Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Trump, Anna Marie

    Titanium alloys are used in a variety of important naval and aerospace applications and often undergo thermomechanical processing which leads to recrystallization and grain growth. Both of these processes have a significant impact on the mechanical properties of the material. Therefore, understanding the kinetics of these processes is crucial to being able to predict the final properties. Three alloys are studied with varying concentrations of aluminum which allows for the direct quantification of the effect of aluminum content on the kinetics of recrystallization and grain growth. Aluminum is the most common alpha stabilizing alloying element used in titanium alloys, however the effect of aluminum on these processes has not been previously studied. This work is also part of a larger Integrated Computational Materials Engineering (ICME) effort whose goal is to combine both computational and experimental efforts to develop computationally efficient models that predict materials microstructure and properties based on processing history. The static recrystallization kinetics are measured using an electron backscatter diffraction (EBSD) technique and a significant retardation in the kinetics is observed with increasing aluminum concentration. An analytical model is then used to capture these results and is able to successfully predict the effect of solute concentration on the time to 50% recrystallization. The model reveals that this solute effect is due to a combination of a decrease in grain boundary mobility and a decrease in driving force with increasing aluminum concentration. The effect of microstructural inhomogeneities is also experimentally quantified and the results are validated with a phase field model for recrystallization. These microstructural inhomogeneities explain the experimentally measured Avrami exponent, which is lower than the theoretical value calculated by the JMAK model. Similar to the effect seen in recrystallization, the addition of aluminum

  5. Oxidation of aluminum alloy cladding for research and test reactor fuel

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Soo; Hofman, G. L.; Robinson, A. B.; Snelgrove, J. L.; Hanan, N.

    2008-08-01

    The oxide thicknesses on aluminum alloy cladding were measured for the test plates from irradiation tests RERTR-6 and 7A in the ATR (advanced test reactor). The measured thicknesses were substantially lower than those of test plates with similar power from other reactors available in the literature. The main reason is believed to be due to the lower pH (pH 5.1-5.3) of the primary coolant water in the ATR than in the other reactors (pH 5.9-6.5) for which we have data. An empirical model for oxide film thickness predictions on aluminum alloy used as fuel cladding in the test reactors was developed as a function of irradiation time, temperature, surface heat flux, pH, and coolant flow rate. The applicable ranges of pH and coolant flow rates cover most research and test reactors. The predictions by the new model are in good agreement with the in-pile test data available in the literature as well as with the RERTR test data measured in the ATR.

  6. Technology of welding aluminum alloys-II

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Step-by-step procedures were developed for high integrity manual and machine welding of aluminum alloys. Detailed instructions are given for each step with tables and graphs to specify materials and dimensions. Throughout work sequence, processing procedure designates manufacturing verification points and inspection points.

  7. Experimental Study on Dissimilar Friction Stir welding of Aluminium Alloys (5083-H111 and 6082-T6) to investigate the mechanical properties

    NASA Astrophysics Data System (ADS)

    Kumar, H. M. Anil; Venkata Ramana, V.; Pawar, Mayur

    2018-03-01

    Friction stir welding is an innovative technology in the joining realm of metals and alloys. This technique is highly economical and suitable especially for non ferrous alloys compared to ferrous alloys. It finds many applications in various fields of aeronautics, automobile, ship building industries etc. The paper presents the comparative results of mechanical properties such as tensile strength, microstructure, macro structure and hardness on the similar and dissimilar aluminum alloys AA5083-H111 and AA6082-T6 under certain selected variables - constant tool rotational speed, its tilt angle, welding speed using friction stir welding process. It is observed from the experimental results that joint efficiency of dissimilar aluminium alloys is higher than the similar aluminum alloys.

  8. Stress-corrosion characteristics of aluminum casting alloy M-45

    NASA Technical Reports Server (NTRS)

    Lovoy, C. V.

    1968-01-01

    Evaluation of the stress-corrosion characteristics of aluminum alloy M-45 shows that the most favorable artificial aging cycle for this alloy, with regard to optimum strength and stress-corrosion resistance, appears to be 400 degrees F for 12 hours.

  9. The structure and mechanical properties of AlMg5Si2Mn alloy after surface alloying by the use of fiber laser

    NASA Astrophysics Data System (ADS)

    Pakieła, Wojciech; Tanski, Tomasz; Pawlyta, Mirosława; Pakieła, Katarzyna; Brytan, Zbigniew; Sroka, Marek

    2018-03-01

    Laser surface treatment is successfully applied to increase hardness as well as corrosion and wear resistance in light alloys such as aluminum or magnesium. The laser surface remelting also can be used to repair superficial cracks, voids or porosity caused by the mechanical impact, metallurgical process as well as the corrosive environment on the surface of the aluminum alloy. The purpose of this paper was to investigate the influence of a fiber laser surface treatment on the structure and properties of the EN AC AlMg5Si2Mn alloy. The goal of this investigation was to increase the hardness and improve tribological properties of the aluminum alloy surface as a result of the conducted laser surface treatment. During laser processing, the top surface of the aluminum alloy was enriched with Cr and Ni particles. The grain size of the applied particles was approximately about 60-130 m. The Cr-Ni powder has been introduced in the molten pool using vacuum feeder at a constant rate of 4.5 g/min. For surface remelting we used square laser beam at a size 3 × 3 mm and with the power of 3.0 kW. The linear laser scan rate of the beam was set at 0.5 m/min. Argon was used to protect the liquid metal alloy during surface treatment. Application of the laser treatment on aluminum alloy has enabled to obtain much harder as well as better wear resistant material compared to the untreated EN AC AlMg5Si2Mn.

  10. Superhydrophobic aluminum alloy surfaces by a novel one-step process.

    PubMed

    Saleema, N; Sarkar, D K; Paynter, R W; Chen, X-G

    2010-09-01

    A simple one-step process has been developed to render aluminum alloy surfaces superhydrophobic by immersing the aluminum alloy substrates in a solution containing NaOH and fluoroalkyl-silane (FAS-17) molecules. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements have been performed to characterize the morphological features, chemical composition and superhydrophobicity of the surfaces. The resulting surfaces provided a water contact angle as high as ∼162° and a contact angle hysteresis as low as ∼4°. The study indicates that it is possible to fabricate superhydrophobic aluminum surfaces easily and effectively without involving the traditional two-step processes.

  11. A Fatigue Model for Discontinuous Particulate-Reinforced Aluminum Alloy Composite: Influence of Microstructure

    NASA Astrophysics Data System (ADS)

    McCullough, R. R.; Jordon, J. B.; Brammer, A. T.; Manigandan, K.; Srivatsan, T. S.; Allison, P. G.; Rushing, T. W.

    2014-01-01

    In this paper, the use of a microstructure-sensitive fatigue model is put forth for the analysis of discontinuously reinforced aluminum alloy metal matrix composite. The fatigue model was used for a ceramic particle-reinforced aluminum alloy deformed under conditions of fully reversed strain control. Experimental results revealed the aluminum alloy to be strongly influenced by volume fraction of the particulate reinforcement phase under conditions of strain-controlled fatigue. The model safely characterizes the evolution of fatigue damage in this aluminum alloy composite into the distinct stages of crack initiation and crack growth culminating in failure. The model is able to capture the specific influence of particle volume fraction, particle size, and nearest neighbor distance in quantifying fatigue life. The model yields good results for correlation of the predicted results with the experimental test results on the fatigue behavior of the chosen aluminum alloy for two different percentages of the ceramic particle reinforcement. Further, the model illustrates that both particle size and volume fraction are key factors that govern fatigue lifetime. This conclusion is well supported by fractographic observations of the cyclically deformed and failed specimens.

  12. Effect of Iron Impurity on the Phase Composition, Structure and Properties of Magnesium Alloys Containing Manganese and Aluminum

    NASA Astrophysics Data System (ADS)

    Volkova, E. F.

    2017-07-01

    Results of a study of the interaction between iron impurity and manganese and aluminum alloying elements during formation of phase composition in alloys of the Mg - Mn, Mg - Al, Mg - Al - Mn, and Mg - Al - Zn - Mn systems are presented. It is proved that this interaction results in introduction of Fe into the intermetallic phase. The phase compositions of model magnesium alloys and commercial alloys MA2-1 and MA5 are studied. It is shown that both manganese and aluminum may bind the iron impurity into phases. Composite Fe-containing intermetallic phases of different compositions influence differently the corrosion resistance of magnesium alloys.

  13. Evaluation of Sc-Bearing Aluminum Alloy C557 for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Dicus, Dennis L.

    2002-01-01

    The performance of the Al-Mg-Sc alloy C557 was evaluated to assess its potential for a broad range of aerospace applications, including airframe and launch vehicle structures. Of specific interest were mechanical properties at anticipated service temperatures and thermal stability of the alloy. Performance was compared with conventional airframe aluminum alloys and with other emerging aluminum alloys developed for specific service environments. Mechanical properties and metallurgical structure were evaluated for commercially rolled sheet in the as-received H116 condition and after thermal exposures at 107 C. Metallurgical analyses were performed to de.ne grain morphology and texture, strengthening precipitates, and to assess the effect of thermal exposure.

  14. Anti-icing/frosting and self-cleaning performance of superhydrophobic aluminum alloys

    NASA Astrophysics Data System (ADS)

    Feng, Libang; Yan, Zhongna; Shi, Xueting; Sultonzoda, Firdavs

    2018-02-01

    Ice formation and frost deposition on cryogenic equipment and systems can result in serious problems and huge economic loss. Hence, it is quite necessary to develop new materials to prevent icing and frosting on cold surfaces in engineering fields. Here, a superhydrophobic aluminum alloy with enhanced anti-frosting, anti-icing, and self-cleaning performance has been developed by a facile one-step method. The anti-frosting/icing performance of superhydrophobic aluminum alloys is confirmed by frosting/icing time delay, consolidating and freezing temperature reduction, and lower amount of frost/ice adhesion. Meanwhile, the excellent self-cleaning performance is authenticated by the fact that simulated pollution particles can be cleaned out by rolling water droplets completely. Finally, based on the classical nucleation theory, anti-icing and anti-frosting mechanisms of the superhydrophobic aluminum alloys are deduced. Results show that grounded on "air cushion" and "heat insulation" effect, a larger nucleation barrier and a lower crystal growth rate can be observed, which, hence, inhibit ice formation and frost deposition. It can be concluded that preparing superhydrophobic surfaces would be an effective strategy for improving anti-icing, anti-frosting, and self-cleaning performance of aluminum alloys.

  15. Diffusion bonded boron/aluminum spar-shell fan blade

    NASA Technical Reports Server (NTRS)

    Carlson, C. E. K.; Cutler, J. L.; Fisher, W. J.; Memmott, J. V. W.

    1980-01-01

    Design and process development tasks intended to demonstrate composite blade application in large high by-pass ratio turbofan engines are described. Studies on a 3.0 aspect radio space and shell construction fan blade indicate a potential weight savings for a first stage fan rotor of 39% when a hollow titanium spar is employed. An alternate design which featured substantial blade internal volume filled with titanium honeycomb inserts achieved a 14% potential weight savings over the B/M rotor system. This second configuration requires a smaller development effort and entails less risk to translate a design into a successful product. The feasibility of metal joining large subsonic spar and shell fan blades was demonstrated. Initial aluminum alloy screening indicates a distinct preference for AA6061 aluminum alloy for use as a joint material. The simulated airfoil pressings established the necessity of rigid air surfaces when joining materials of different compressive rigidities. The two aluminum alloy matrix choices both were successfully formed into blade shells.

  16. Bearing Strengths of Some Wrought-aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Moore, R L; Wescoat, C

    1943-01-01

    Although a number of investigations of the bearing strength of aluminum alloys have been made, the problem remains one of considerable interest to the aircraft industry. For this reason it has seemed advisable to make additional tests of the commonly used aircraft alloys in an effort to establish a better basis for the selection of allowable bearing values. Current design practice does not recognize the effect of edge distance upon bearing strengths, and for this reason edge distance was one of the principal variables considered in this investigation. The increasing emphasis being placed upon permanent set limitations makes it essential that more information on bearing yield phenomena be obtained. The object of this investigation was to determine bearing yield and ultimate strengths of the following aluminum alloy products: 17S-T, 24S-T, Alclad 24S-T, 24S-RT, 52S-0, 52S-1/2H, 52S-H, 53S-T, and 61S-T extrusions. Ratios of these bearing properties to tensile properties were also determined.

  17. Stress Ratio Effects on Crack Opening Loads and Crack Growth Rates in Aluminum Alloy 2024

    NASA Technical Reports Server (NTRS)

    Riddell, William T.; Piascik, Robert S.

    1998-01-01

    The effects of stress ratio (R) and crack opening behavior on fatigue crack growth rates (da/dN) for aluminum alloy (AA) 2024-T3 were investigated using constant-delta K testing, closure measurements, and fractography. Fatigue crack growth rates were obtained for a range of delta K and stress ratios. Results show that constant delta K fatigue crack growth for R ranging from near 0 to 1 is divided into three regions. In Region 1, at low R, da/dN increases with increasing R. In Region 2, at intermediate R, fatigue crack growth rates are relatively independent of R. In Region 3, at high R, further increases in da/dN are observed with increasing R.

  18. Effect of Holding Pressure on Microstructure and Mechanical Properties of A356 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoyan; Zhang, Huarui; Ma, Zhen; Jia, Lina; Zhang, Hu

    2018-02-01

    In this study, the effect of holding pressure on microstructure and mechanical properties of low-pressure die cast A356 aluminum alloy was investigated. The results showed that the application of high holding pressure (300 kPa) generated castings with denser structure and superior mechanical properties. By increasing the holding pressure up to 300 kPa, the size of secondary dendrite arm spacing greatly reduced by 22.7% at the cooling rate of 1°C/s and decreased by 12.8% at 10°C/s. The Feret's diameter and aspect ratio of eutectic silicon particles decreased by 8.4 and 5.1% at the cooling rate of 1°C/s and decreased by 9.3 and 6.4% at 10°C/s, respectively. Meanwhile, the density of A356 aluminum alloy increased to 2.678 g/cm3 and the area fraction of porosity decreased to 0.035%. Thus, tensile properties of A356 aluminum alloy obtained at high holding pressure were enhanced, especially the ductility. All these could be associated with the better filling capability and faster cooling rate caused by high holding pressure. In the analytical range of experimental conditions, the correlation of mechanical properties with process parameters was established by statistical models to predict the ultimate tensile strength and elongation of low-pressure die cast A356 aluminum alloy.

  19. Friction Stir Processing of As-Cast AA5083: Superplastic Response

    DTIC Science & Technology

    2009-06-01

    3 A. ALUMINUM ALLOY 5083............................................................................3 B. SUPERPLASTICITY...ALUMINUM ALLOY 5083 The United States Navy is always considering the most effective and cost effective materials and manufacturing processes. These...desires have lead to a long-term interest in aluminum alloys for naval shipbuilding and design. The 5 -series aluminum alloys (Al-Mg system) are widely

  20. Calibration curves for commercial copper and aluminum alloys using handheld laser-induced breakdown spectroscopy

    DOE PAGES

    Bennett, B. N.; Martin, M. Z.; Leonard, D. N.; ...

    2018-02-13

    Handheld laser-induced breakdown spectroscopy (HH LIBS) was used to study the elemental composition of four copper alloys and four aluminum alloys to produce calibration curves. The HH LIBS instrument used is a SciAps Z-500, commercially available, that contains a class-1 solid-state laser with an output wavelength of 1532 nm, a laser energy of 5 mJ/pulse, and a pulse duration of 5 ns. Test samples were solid specimens comprising of copper and aluminum alloys and data were collected from the samples’ surface at three different locations, employing a 12-point-grid pattern for each data set. All three data sets of the spectramore » were averaged, and the intensity, corrected by subtraction of background, was used to produce the elemental calibration curves. Calibration curves are presented for the matrix elements, copper and aluminum, as well as several minor elements. The surface damage produced by the laser was examined by microscopy. The alloys were tested in air and in a glovebox to evaluate the instrument’s ability to identify the constituents within materials under different environmental conditions. The main objective of using this HH LIBS technology is to determine its capability to fingerprint the presence of certain elements related to subpercent level within materials in real time and in-situ, as a starting point for undertaking future complex material characterization work.« less

  1. Calibration curves for commercial copper and aluminum alloys using handheld laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Bennett, B. N.; Martin, M. Z.; Leonard, D. N.; Garlea, E.

    2018-03-01

    Handheld laser-induced breakdown spectroscopy (HH LIBS) was used to study the elemental composition of four copper alloys and four aluminum alloys to produce calibration curves. The HH LIBS instrument used is a SciAps Z-500, commercially available, that contains a class-1 solid-state laser with an output wavelength of 1532 nm, laser energy of 5 mJ/pulse, and a pulse duration of 5 ns. Test samples were solid specimens comprising copper and aluminum alloys and data were collected from the samples' surface at three different locations, employing a 12-point-grid pattern for each data set. All three data sets of the spectra were averaged, and the intensity, corrected by subtraction of background, was used to produce the elemental calibration curves. Calibration curves are presented for the matrix elements, copper and aluminum, as well as several minor elements. The surface damage produced by the laser was examined by microscopy. The alloys were tested in air and in a glovebox to evaluate the instrument's ability to identify the constituents within materials under different environmental conditions. The main objective of using this HH LIBS technology is to determine its capability to fingerprint the presence of certain elements related to subpercent level within materials in real time and in situ, as a starting point for undertaking future complex material characterization work.

  2. Calibration curves for commercial copper and aluminum alloys using handheld laser-induced breakdown spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, B. N.; Martin, M. Z.; Leonard, D. N.

    Handheld laser-induced breakdown spectroscopy (HH LIBS) was used to study the elemental composition of four copper alloys and four aluminum alloys to produce calibration curves. The HH LIBS instrument used is a SciAps Z-500, commercially available, that contains a class-1 solid-state laser with an output wavelength of 1532 nm, a laser energy of 5 mJ/pulse, and a pulse duration of 5 ns. Test samples were solid specimens comprising of copper and aluminum alloys and data were collected from the samples’ surface at three different locations, employing a 12-point-grid pattern for each data set. All three data sets of the spectramore » were averaged, and the intensity, corrected by subtraction of background, was used to produce the elemental calibration curves. Calibration curves are presented for the matrix elements, copper and aluminum, as well as several minor elements. The surface damage produced by the laser was examined by microscopy. The alloys were tested in air and in a glovebox to evaluate the instrument’s ability to identify the constituents within materials under different environmental conditions. The main objective of using this HH LIBS technology is to determine its capability to fingerprint the presence of certain elements related to subpercent level within materials in real time and in-situ, as a starting point for undertaking future complex material characterization work.« less

  3. Eutectic structures in friction spot welding joint of aluminum alloy to copper

    NASA Astrophysics Data System (ADS)

    Shen, Junjun; Suhuddin, Uceu F. H.; Cardillo, Maria E. B.; dos Santos, Jorge F.

    2014-05-01

    A dissimilar joint of AA5083 Al alloy and copper was produced by friction spot welding. The Al-MgCuAl2 eutectic in both coupled and divorced manners were found in the weld. At a relatively high temperature, mass transport of Cu due to plastic deformation, material flow, and atomic diffusion, combined with the alloy system of AA5083 are responsible for the ternary eutectic melting.

  4. Commercialization of NASA's High Strength Cast Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2003-01-01

    In this paper, the commercialization of a new high strength cast aluminum alloy, invented by NASA-Marshall Space Flight Center, for high temperature applications will be presented. Originally developed to meet U.S. automotive legislation requiring low- exhaust emission, the novel NASA aluminum alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (450 F-750 F), which can lead to reducing part weight and cost as well as improving performance for automotive engine applications. It is an ideal low cost material for cast components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. NASA alloy also offers greater wear resistance, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys, and the new alloy can be produced economically from sand, permanent mold and investment casting. Since 2001, this technology was licensed to several companies for automotive and marine internal combustion engines applications.

  5. Study on the rheoformability of semi-solid 7075 wrought aluminum alloy using seed process =

    NASA Astrophysics Data System (ADS)

    Zhao, Qinfu

    Semisolid metal forming is becoming more and more attractive in the foundry industry due to its low cost and easy operation to produce high quality near-net-shape components. Over the past years, semisolid forming technique is mainly applied on the casting aluminum alloys due to their superior castability because of low melting temperature and viscosity. In semisolid forming field, thixoforming has been majorly used which involves of reheating the billet into semisolid state followed by casting process. Rheocasting is a more economic semisolid processing compared to thixoforming, which the semisolid billet is produced directly from liquid phase. The SEED process is one of reliable rheocasting techniques to produce high quality semisolid billets. To produce high quality semisolid billets, their unique rheological properties have been the most important issue need to be fully investigated. The aim of present project is to produce high quality semisolid AA7075 billets by SEED process and analyze their rheological properties under various process conditions. The effect of the SEED processing parameters and grain refiners on the semisolid microstructure and rheoformability were investigated. The deformation and rheological behavior of the semisolid billets of AA7075 base and its grain-refined alloys were studied using parallel-plate viscometer. In the first part, the evolution of liquid fraction to temperature of semisolid AA7075 alloy was investigated using Differential Scanning Calorimetry (DSC). It was found that the liquidus and solidus temperature of AA7075 alloy were 631 °C and 490°C respectively. And the corresponding temperatures of solid fraction of 40% and 60% were 622°C and 610°C, which was recognized as the temperature window for semisolid forming of this alloy. In the second part, the semisolid slurries were rheocasted using SEED technology and the effect of the SEED process parameters like swirling frequency and demolding temperature on evolution of

  6. Characterization of Molybdate Conversion Coatings for Aluminum Alloys by Electrochemical Impedance Spectroscopy

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina

    2000-01-01

    Electrochemical impedance spectroscopy (EIS) was used to investigate the corrosion inhibiting properties of newly developed proprietary molybdate conversion coatings on aluminum alloy 2024-T3 under immersion in aerated 5% (w/w) NaCl. Corrosion potential and EIS measurements were gathered for six formulations of the coating at several immersion times for two weeks. Nyquist as well as Bode plots of the data were obtained. The conversion-coated alloy panels showed an increase in the corrosion potential during the first 24 hours of immersion that later subsided and approached a steady value. Corrosion potential measurements indicated that formulations A, D, and F exhibit a protective effect on aluminum 2024-T3. The EIS spectra of the conversion-coated alloy were characterized by an impedance that is higher than the impedance of the bare alloy at all the immersion times. The low frequency impedance, Z(sub lf) (determined from the value at 0.05 Hz) for the conversion-coated alloy was higher at all the immersion times than that of the bare panel. This indicates improvement of corrosion resistance with addition of the molybdate conversion coating. Scanning electron microscopy (SEM) revealed the presence of cracks in the coating and the presence of cubic crystals believed to be calcium carbonate. Energy dispersive spectroscopy (EDS) of the test panels revealed the presence of high levels of aluminum, oxygen, and calcium but did not detect the presence of molybdenum on the test panels. X-ray photoelectron spectroscopy (XPS) indicated the presence of less than 0.01 atomic percent molybdenum on the surface of the coating.

  7. Friction stir welding process to repair voids in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Rosen, Charles D. (Inventor); Litwinski, Edward (Inventor); Valdez, Juan M. (Inventor)

    1999-01-01

    The present invention provides an in-process method to repair voids in an aluminum alloy, particularly a friction stir weld in an aluminum alloy. For repairing a circular void or an in-process exit hole in a weld, the method includes the steps of fabricating filler material of the same composition or compatible with the parent material into a plug form to be fitted into the void, positioning the plug in the void, and friction stir welding over and through the plug. For repairing a longitudinal void (30), the method includes machining the void area to provide a trough (34) that subsumes the void, fabricating filler metal into a strip form (36) to be fitted into the trough, positioning the strip in the trough, and rewelding the void area by traversing a friction stir welding tool longitudinally through the strip. The method is also applicable for repairing welds made by a fusing welding process or voids in aluminum alloy workpieces themselves.

  8. Double-sided laser beam welded T-joints for aluminum-lithium alloy aircraft fuselage panels: Effects of filler elements on microstructure and mechanical properties

    NASA Astrophysics Data System (ADS)

    Han, Bing; Tao, Wang; Chen, Yanbin; Li, Hao

    2017-08-01

    In the current work, T-joints consisting of 2.0 mm thick 2060-T8/2099-T83 aluminum-lithium alloys for aircraft fuselage panels have been fabricated by double-sided fiber laser beam welding with different filler wires. A new type wire CW3 (Al-6.2Cu-5.4Si) was studied and compared with conventional wire AA4047 (Al-12Si) mainly on microstructure and mechanical properties. It was found that the main combined function of Al-6.2%Cu-5.4%Si in CW3 resulted in considerable improvements especially on intergranular strength, hot cracking susceptibility and hoop tensile properties. Typical non-dendritic equiaxed zone (EQZ) was observed along welds' fusion boundary. Hot cracks and fractures during the load were always located within the EQZ, however, this typical zone could be restrained by CW3, effectively. Furthermore, changing of the main intergranular precipitated phase within the EQZ from T phase by AA4047 to T2 phase by CW3 also resulted in developments on microscopic intergranular reinforcement and macroscopic hoop tensile properties. In addition, bridging caused by richer substructure dendrites within CW3 weld's columnar zone resulted in much lower hot cracking susceptibility of the whole weld than AA4047.

  9. Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions

    DTIC Science & Technology

    2013-01-01

    REPORT Friction Stir Weld Failure Mechanisms in Aluminum -Armor Structures Under Ballistic Impact Loading Conditions 14. ABSTRACT 16. SECURITY...Stir Weld Failure Mechanisms in Aluminum -Armor Structures Under Ballistic Impact Loading Conditions M. Grujicic, B. Pandurangan, A. Arakere, C-F. Yen...K.O. Pedersen, Fracture Mechanisms of Aluminum Alloy AA7075-T651 Under Various Loading Conditions , Int. J. Impact Eng., 2010, 37, p 537–551 24. T

  10. Direct-soldering 6061 aluminum alloys with ultrasonic coating.

    PubMed

    Ding, Min; Zhang, Pei-lei; Zhang, Zhen-yu; Yao, Shun

    2010-02-01

    In this study, the authors applied furnace soldering with ultrasonic coating method to solder 6061 aluminum alloy and investigated the effects of both coating time and soldering temperature on its properties. The following results were obtained: firstly, the solder region mainly composed of four kinds of microstructure zones: rich Sn zone, rich-Pb zone, Sn-Pb eutectic phase and rich Al zone. Meanwhile, the microanalysis identified a continuous reaction product at the alumina-solder interface as a rich-Pb zone. Therefore, the joint strength changed with soldering time and soldering temperature. Secondly, the tensile data had significantly greater variability, with values ranging from 13.99MPa to 24.74MPa. The highest value was obtained for the samples coated with Sn-Pb-Zn alloy for 45s. Fractures occurred along the solder-alumina interface for the 6061 aluminum alloy with its surface including hybrid tough fracture of dimple and tear ridge. The interface could initially strip at the rich Bi zone with the effect of shear stress.

  11. Eutectic structures in friction spot welding joint of aluminum alloy to copper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Junjun, E-mail: junjun.shen@hzg.de; Suhuddin, Uceu F. H.; Cardillo, Maria E. B.

    2014-05-12

    A dissimilar joint of AA5083 Al alloy and copper was produced by friction spot welding. The Al-MgCuAl{sub 2} eutectic in both coupled and divorced manners were found in the weld. At a relatively high temperature, mass transport of Cu due to plastic deformation, material flow, and atomic diffusion, combined with the alloy system of AA5083 are responsible for the ternary eutectic melting.

  12. New water-soluble metal working fluids additives from phosphonic acid derivatives for aluminum alloy materials.

    PubMed

    Kohara, Ichitaro; Tomoda, Hideyuki; Watanabe, Shoji

    2007-01-01

    Water-soluble metal working fluids are used for processing of aluminum alloy materials. This short paper describes properties of new additives for water-soluble cutting fluids for aluminum alloy materials. Some alkyldiphosphonic acids were prepared with known method. Amine salts of these phosphonic acids showed anti-corrosion property for aluminum alloy materials. However, they have no hard water tolerance. Monoesters of octylphosphonic acid were prepared by the reaction of octylphosphonic acid dichloride with various alcohols in the presence of triethylamine. Amine salts of monoester of octylphosphonic acid with diethyleneglycol monomethyl ether, ethyleneglycol monomethyl ether and triethyleneglycol monomethyl ether showed both of a good anti-corrosion property for aluminum alloy materials and hard water tolerance.

  13. An improved stress corrosion test medium for aluminum alloys

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Coston, J. E.

    1981-01-01

    A laboratory test method that is only mildly corrosive to aluminum and discriminating for use in classifying the stress corrosion cracking resistance of aluminum alloys is presented along with the method used in evaluating the media selected for testing. The proposed medium is easier to prepare and less expensive than substitute ocean water.

  14. Method of preparing an electrode material of lithium-aluminum alloy

    DOEpatents

    Settle, Jack L.; Myles, Kevin M.; Battles, James E.

    1976-01-01

    A solid compact having a uniform alloy composition of lithium and aluminum is prepared as a negative electrode for an electrochemical cell. Lithium losses during preparation are minimized by dissolving aluminum within a lithium-rich melt at temperatures near the liquidus temperatures. The desired alloy composition is then solidified and fragmented. The fragments are homogenized to a uniform composition by annealing at a temperature near the solidus temperature. After comminuting to fine particles, the alloy material can be blended with powdered electrolyte and pressed into a solid compact having the desired electrode shape. In the preparation of some electrodes, an electrically conductive metal mesh is embedded into the compact as a current collector.

  15. First wall design of aluminum alloy R-tokamak

    NASA Astrophysics Data System (ADS)

    Hamada, Y.; Matsuoka, K.; Ogawa, Y.; Kitagawa, S.; Toi, K.; Yamazaki, K.; Abe, Y.; Amano, T.; Fujita, J.; Kaneko, O.; Kawahata, K.; Kuroda, T.; Matsuura, K.; Midzuno, Y.; Naitou, H.; Noda, N.; Ohkubo, K.; Oka, Y.; Sakurai, K.; Tanahashi, S.; Watari, T.

    1984-05-01

    A design study of a low-activation D-T tokamak Reacting Plasma Project In Nagoya has been finished. The study emphasizes the vacuum vessel and the bumper limiter. Our choice of materials (aluminum vacuum vessel, copper conductors, aluminum TF coil case and lead shield) results in a radiation level of about 1 × 10 -3 times that of a TFTR type design, and 1 × 10 -4 times that of JET type design, at 2 weeks after one D-T shot. Thick graphite tiles will be fixed directly on the aluminum vacuum vessel using aluminum spring washers and bolts. With this simplified structure of the bumper limiter, the inner surface temperature of the thick aluminum vacuum vessel will be less than 120°C which is required to reduce the overaging effect of the aluminum alloy.

  16. Effect of Preexisting Corrosion on Fatigue Cracking of Aluminum Alloys 2024-T3 and 7075-T6

    DTIC Science & Technology

    1995-08-01

    alloys 2024 -T3 and 7075-T6. It was determined that preexisting corrosion has a detrimental effect on the fatigue life of aluminum alloys 2024 -T3 and...following conclusions were drawn: 1. Preexisting corrosion has a detrimental effect on the fatigue life of aluminum alloys 2024 -T3 and 7075-T6. The...corrosion has a detrimental effect on the fatigue life of aluminum alloys

  17. The behavior of ZrO2/20%Y2O3 and Al2O3 coatings deposited on aluminum alloys at high temperature regime

    NASA Astrophysics Data System (ADS)

    Pintilei, G. L.; Crismaru, V. I.; Abrudeanu, M.; Munteanu, C.; Baciu, E. R.; Istrate, B.; Basescu, N.

    2015-10-01

    Aluminum alloy present numerous advantages like lightness, high specific strength and diversity which recommend them to a high number of applications from different fields. In extreme environments the protection of aluminum alloys is difficult and requires a high number of requirements like high temperature resistance, thermal fatigue resistance, corrosion fatigue resistance and galvanic corrosion resistance. To obtain these characteristics coatings can be applied to the surfaces so they can enhance the mechanical and chemical properties of the parts. In this paper two coatings were considered for deposition on an AA2024 aluminum alloy, ZrO2/20%Y2O3 and Al2O3. To obtain a better adherence of the coating to the base material an additional bond layer of NiCr is used. Both the coatings and bond layer were deposited by atmospheric plasma spraying on the samples. The samples were subjected to a temperature of 500 °C and after that slowly cooled to room temperature. The samples were analyzed by electron microscopy and X-ray diffraction to determine the morphological and phase changes that occurred during the temperature exposure. To determine the stress level in the parts due to thermal expansion a finite element analysis was performed in the same conditions as the tests.

  18. In-Situ Synthetic TiB2 Particulate Reinforced Metal Matrix Composite Coating on AA2024 Aluminum Alloy by Laser Cladding Technology

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Kan, Yide; Liu, Wenjin

    In order to improve the wear resistance of aluminum alloy, in-situ synthesized TiB2 and Ti3B4 peritectic composite particulate reinforced metal matrix composite, formed on a 2024 aluminum alloy by laser cladding with a powder mixture of Fe-coated Boron, Ti and Al, was successfully achieved using 3-KW CW CO2 laser. The chemical composition, microstructure and phase structure of the composite clad coating were analyzed by energy dispersive X-ray spectroscopy (EDX), SEM, AFM and XRD. The typical microstructure of the composite coating is composed of TiB2, Ti3B4, Al3Ti, Al3Fe and α-Al. The surface hardness of cladding coating increases with the amount of added Fe-coated B and Ti powder which determines the amount of TiB2 and Ti3B4 peritectic composite particulate. The nanohardness and the elastic modulus at the interface of the TiB2 and Ti3B4 peritectic composite particulate/matrix were investigated using the nanoindentation technique. The results showed that the nanohardness and the reduced elastic modulus from the peritectic composite particulate to the matrix is a gradient distribution.

  19. Mechanical Characteristics of Welded Joints of Aluminum Alloy 6061 T6 Formed by Arc and Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Astarita, A.; Squillace, A.; Nele, L.

    2016-01-01

    Butt welds formed by arc welding in inert gas with nonconsumable electrode (tungsten inert gas (TIG) welding) and by friction stir welding (FSW) from aluminum alloy AA6061 T6 are studied. Comparative analysis of the structures and mechanical properties of the welded joints is performed using the results of optical and electron microscopy, tensile tests, tests for residual bending ductility, and measurements of microhardness. The changes in the microstructure in different zones and the degrees of degradation of the mechanical properties after the welding are determined. It is shown that the size of the tool for the friction stir welding affects the properties of the welds. Quantitative results showing the relation between the microscopic behavior of the alloy and the welding-induced changes in the microstructure are obtained. Friction stir welding is shown to provide higher properties of the welds.

  20. Spectro-photometric determinations of Mn, Fe and Cu in aluminum master alloys

    NASA Astrophysics Data System (ADS)

    Rehan; Naveed, A.; Shan, A.; Afzal, M.; Saleem, J.; Noshad, M. A.

    2016-08-01

    Highly reliable, fast and cost effective Spectro-photometric methods have been developed for the determination of Mn, Fe & Cu in aluminum master alloys, based on the development of calibration curves being prepared via laboratory standards. The calibration curves are designed so as to induce maximum sensitivity and minimum instrumental error (Mn 1mg/100ml-2mg/100ml, Fe 0.01mg/100ml-0.2mg/100ml and Cu 2mg/100ml-10mg/ 100ml). The developed Spectro-photometric methods produce accurate results while analyzing Mn, Fe and Cu in certified reference materials. Particularly, these methods are suitable for all types of Al-Mn, Al-Fe and Al-Cu master alloys (5%, 10%, 50% etc. master alloys).Moreover, the sampling practices suggested herein include a reasonable amount of analytical sample, which truly represent the whole lot of a particular master alloy. Successive dilution technique was utilized to meet the calibration curve range. Furthermore, the workout methods were also found suitable for the analysis of said elements in ordinary aluminum alloys. However, it was observed that Cush owed a considerable interference with Fe, the later one may not be accurately measured in the presence of Cu greater than 0.01 %.

  1. Thermomechanical processing of aluminum micro-alloyed with Sc, Zr, Ti, B, and C

    NASA Astrophysics Data System (ADS)

    McNamara, Cameron T.

    Critical exploration of the minimalistic high strength low alloy aluminum (HSLA-Al) paradigm is necessary for the continued development of advanced aluminum alloys. In this study, scandium (Sc) and zirconium (Zr) are examined as the main precipitation strengthening additions, while magnesium (Mg) is added to probe the synergistic effects of solution and precipitation hardening, as well as the grain refinement during solidification afforded by a moderate growth restriction factor. Further, pathways of recrystallization are explored in several potential HSLA-Al syste =ms sans Sc. Aluminum-titanium-boron (Al-Ti-B) and aluminum-titanium-carbon (Al-Ti-C) grain refining master alloys are added to a series of Al-Zr alloys to examine both the reported Zr poisoning effect on grain size reduction and the impact on recrystallization resistance through the use of electron backscattered diffraction (EBSD) imaging. Results include an analysis of active strengthening mechanisms and advisement for both constitution and thermomechanical processing of HSLA-Al alloys for wrought or near-net shape cast components. The mechanisms of recrystallization are discussed for alloys which contain a bimodal distribution of particles, some of which act as nucleation sites for grain formation during annealing and others which restrict the growth of the newly formed grains.

  2. The Column Strength of Two Extruded Aluminum-Alloy H-Sections

    NASA Technical Reports Server (NTRS)

    Osgood, William R; Holt, Marshall

    1939-01-01

    Extruded aluminum-alloy members of various cross sections are used in aircraft as compression members either singly or as stiffeners for aluminum-alloy sheet. In order to design such members, it is necessary to know their column strength or, in the case of stiffeners, the value of the double modulus, which is best obtained for practical purposes from column tests. Column tests made on two extruded h-sections are described, and column formulas and formulas for the ratio of the double modulus to Young's modulus, based on the tests, are given.

  3. Niobium-aluminum base alloys having improved, high temperature oxidation resistance

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G. (Inventor); Stephens, Joseph R. (Inventor)

    1991-01-01

    A niobium-aluminum base alloy having improved oxidation resistance at high temperatures and consisting essentially of 48%-52% niobium, 36%-42% aluminum, 4%-10% chromium, 0%-2%, more preferably 1%-2%, silicon and/or tungsten with tungsten being preferred, and 0.1%-2.0% of a rare earth selected from the group consisting of yttrium, ytterbium and erbium. Parabolic oxidation rates, k.sub.p, at 1200.degree. C. range from about 0.006 to 0.032 (mg/cm.sup.2).sup.2 /hr. The new alloys also exhibit excellent cyclic oxidation resistance.

  4. All-aluminum-alloy UHV chamber for molecular beam epitaxy, 1

    NASA Astrophysics Data System (ADS)

    Suemitsu, M.; Miyamoto, N.

    1984-03-01

    The first all aluminum alloy (ex. JIS.6263-t6,2219-t87 etc) MBE chamber is constructed and described. After exposure to atmosphere, the chamber is drown to 10(-9) torr in 24 hours, and reaches an ultrahigh vacuum of 1.6x10(-10) torr by a 115 C, 24 bakeout process. The light weight and low cost as well as the short pump-down time and the law outgassing rate of the all aluminum alloy vacuum system seems to have a considerable applicative potentiality for equipment used in semiconductor ultrahigh vacuum processes.

  5. Cleavage crystallography of liquid metal embrittled aluminum alloys

    NASA Technical Reports Server (NTRS)

    Reynolds, A. P.; Stoner, G. E.

    1991-01-01

    The crystallography of liquid metal-induced transgranular cleavage in six aluminum alloys having a variety of microstructures has been determined via Laue X-ray back reflection. The cleavage crystallography was independent of alloy microstructure, and the cleavage plane was 100-plane oriented in all cases. It was further determined that the cleavage crystallography was not influenced by alloy texture. Examination of the fracture surface indicated that there was not a unique direction of crack propagation. In addition, the existence of 100-plane cleavage on alloy 2024 fracture surfaces was inferred by comparison of secondary cleavage crack intersection geometry on the 2024 surfaces with the geometry of secondary cleavage crack intersections on the test alloys.

  6. Micro and Nano Laser Pulses for Melting and Surface Alloying of Aluminum with Copper

    NASA Astrophysics Data System (ADS)

    Hamoudi, Walid K.; Ismail, Raid A.; Sultan, Fatima I.; Jaleel, Summayah

    2017-03-01

    In the present work, the use of microsecond and nanosecond laser pulses to alloy copper in aluminum is presented. In the first run, high purity (99.999%) copper thin film was thermally evaporated over (99.9%) purity, 300 μm aluminum sheet. Thereafter, surface alloying was performed using (1-3) 500 μs, (0.1-1.5) Joule Nd: YAG laser pulses; operating at 1060 nm wavelength. Hard homogeneous alloyed zone was obtained at depths between 60 and 110 μm below the surface. In the second run, 9 ns laser pulses from Q-switched Nd: YAG laser operating at 1060 nm was employed to melt/alloy Al-Cu sheets. The resulted alloyed depth, after using 20 laser pulses, was 199.22 μm for Al over Cu samples and 419.61 μm for Cu over Al samples. X-ray diffraction and fluorescence analysis revealed the formation of Cu2Al2, CuAl2 and δ- Al4Cu9 phases with percentage depended on laser energy and copper layer thicknesses.

  7. Statistical Analysis of High-Cycle Fatigue Behavior of Friction Stir Welded AA5083-H321

    DTIC Science & Technology

    2011-01-01

    durable structures are: (a) FSW is 111being used in a serial production of aluminum alloy -based 112ferryboat deck structures in Finland; (b) Al-Mg- Si -based...and strain-hardened/stabilized Al-Mg-Mn alloy ) are characterized by a relatively large statistical scatter. This scatter is closely related to the...associated with friction stir-welded (FSW) joints of AA5083-H321 (a solid-solution-strengthened and strain-hardened/stabilized Al-Mg-Mn alloy ) are

  8. Microstructural development from interdiffusion and reaction between Usbnd Mo and AA6061 alloys annealed at 600° and 550 °C

    NASA Astrophysics Data System (ADS)

    Perez, E.; Keiser, D. D.; Sohn, Y. H.

    2016-08-01

    The U.S. Material Management and Minimization Reactor Conversion Program is developing low enrichment fuel systems encased in Al-alloy for use in research and test reactors. Monolithic fuel plates have local regions where the Usbnd Mo fuel plate may come into contact with the Al-alloy 6061 (AA6061) cladding. This results in the development of interdiffusion zones with complex microstructures with multiple phases. In this study, the microstructural development of diffusion couples, Usbnd 7 wt%Mo, Usbnd 10 wt%Mo, and Usbnd 12 wt%Mo vs. AA6061, annealed at 600 °C for 24 h and at 550 °C for 1, 5, and 20 h, were analyzed by scanning electron microscopy with x-ray energy dispersive spectroscopy. The microstructural development and kinetics were compared to diffusion couples Usbnd Mo vs. high purity Al and binary Alsbnd Si alloys. The diffusion couples developed complex interaction regions where phase development was influenced by the alloying additions of the AA6061.

  9. Study of localized corrosion in aluminum alloys by the scanning reference electrode technique

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1995-01-01

    Localized corrosion in 2219-T87 aluminum (Al) alloy, 2195 aluminum-lithium (Al-Li) alloy, and welded 2195 Al-Li alloy (4043 filler) have been investigated using the relatively new scanning reference electrode technique (SRET). Anodic sites are more frequent and of greater strength in the 2195 Al-Li alloy than in the 2219-T87 Al alloy, indicating a greater tendency toward pitting for the latter. However, the overall corrosion rates are about the same for these two alloys, as determined using the polarization resistance technique. In the welded 2195 Al-Li alloy, the weld bean is entirely cathodic, with rather strongly anodic heat affected zones (HAZ) bordering both sides, indicating a high probability of corrosion in the HAZ parallel to the weld bead.

  10. Fabrication of the micro/nano-structure superhydrophobic surface on aluminum alloy by sulfuric acid anodizing and polypropylene coating.

    PubMed

    Wu, Ruomei; Liang, Shuquan; Liu, Jun; Pan, Anqiang; Yu, Y; Tang, Yan

    2013-03-01

    The preparation of the superhydrophobic surface on aluminum alloy by anodizing and polypropylene (PP) coating was reported. Both the different anodizing process and different PP coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. By PP coating after anodizing, a good superhydrophobic surface was facilely fabricated. The optimum conditions for anodizing were determined by orthogonal experiments. After the aluminium-alloy was grinded with 600# sandpaper, pretreated by 73 g/L hydrochloric acid solution at 1 min, when the concentration of sulfuric acid was 180 g/L, the concentration of oxalic acid was 5 g/L, the concentration of potassium dichromate was 10 g/L, the concentration of chloride sodium was 50 g/L and 63 g/L of glycerol, anodization time was 20 min, and anodization current was 1.2 A/dm2, anodization temperature was 30-35 degrees C, the best micro-nanostructure aluminum alloy films was obtained. On the other hand, the PP with different concentrations was used to the PP with different concentrations was used to coat the aluminum alloy surface after anodizing. The results showed that the best superhydrophobicity was achieved by coating PP, and the duration of the superhydrophobic surface was improved by modifying the coat the aluminum alloy surface after anodizing. The results showed that the best superhydrophobicity was surface with high concentration PP. The morphologies of micro/nano-structure superhydrophobic surface were further confirmed by scanning electron microscope (SEM). The material of PP with the low surface free energy combined with the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.

  11. Friction stir welding of T joints of dissimilar aluminum alloy: A review

    NASA Astrophysics Data System (ADS)

    Thakare, Shrikant B.; Kalyankar, Vivek D.

    2018-04-01

    Aluminum alloys are preferred in the mechanical design due to their advantages like high strength, good corrosion resistance, low density and good weldability. In various industrial applications T joints configuration of aluminum alloys are used. In different fields, T joints having skin (horizontal sheet) strengthen by stringers (vertical sheets) were used to increase the strength of structure without increasing the weight. T joints are usually carried out by fusion welding which has limitations in joining of aluminum alloy due to significant distortion and metallurgical defects. Some aluminum alloys are even non weldable by fusion welding. The friction stir welding (FSW) has an excellent replacement of conventional fusion welding for T joints. In this article, FSW of T joints is reviewed by considering aluminum alloy and various joint geometries for defect analysis. The previous experiments carried out on T joints shows the factors such as tool geometry, fixturing device and joint configurations plays significant role in defect free joints. It is essential to investigate the material flow during FSW to know joining mechanism and the formation of joint. In this study the defect occurred in the FSW are studied for various joint configurations and parameters. Also the effect of the parameters and defects occurs on the tensile strength are studied. It is concluded that the T-joints of different joint configurations can be pretended successfully. Comparing to base metal some loss in tensile strength was observed in the weldments as well as overall reduction of the hardness in the thermos mechanically affected zone also observed.

  12. Replacement of steel parts with extruded aluminum alloys in an automobile

    NASA Astrophysics Data System (ADS)

    Daggula, Manikantha Reddy

    Over the past years, vehicle emissions have shown a negative impact on environment and human health. A new strategy has been used by automakers to reduce a vehicle's weight which significantly reduce fuel consumption and C02 emissions. A very light car consumes very less fuel as it needs to overcome less inertia, decreasing the required power to movie the vehicle. Reducing weight is the easiest way to increase fuel economy and making it by just 10% can increase its efficiency 6 to 8 percent. For a normal scale 80% of vehicles weight is shared among chassis, power train and other exterior components. Almost 60% of the vehicles weight is comprised of steel and the remaining is with cast and extruded aluminum and magnesium alloys. Our main aim is to look for the parts like Fuel tank holder, Fuel filler neck, Turbo inlet assembly, and Brake lines, Dash board frame which are made from steel and replace them with extruded aluminum alloys, to analyze a conventional rear wheel aluminum drive shaft and replace it with a new design and with a new aluminum alloy. The current project involves dismantling an automobile and looking for feasible steel parts and making samples, analyzing the hardness of the samples. These parts are optimally analyzed using Ansys Finite element analysis tool, these parts are subjected to the constraints such as three-point bending, tensile testing, hydrostatic pressure and also torsional stress action on the drive shaft, the deformation and stress are observed in these parts. The results show the current steel parts can be replaced with 3000 series aluminum alloy and the drive shaft can be replaced with new design with 6061-T6 Al-alloy which decreases 25% of the shaft weight.

  13. Microstructure and Mechanical Properties of Friction Stir Welded Aluminum Alloy/Stainless Steel Lap Joints

    NASA Astrophysics Data System (ADS)

    Ogura, Tomo; Nishida, Taichi; Nishida, Hidehito; Yoshikawa, Syuhei; Yoshida, Takumi; Omichi, Noriko; Fujimoto, Mitsuo; Hirose, Akio

    The mechanical properties and interfacial microstructure of an aluminum alloy/stainless steel dissimilar lap joint using friction stir welding (FSW) were characterized. In an FSWed A3003 aluminum alloy-SUS304 steel lap joint, the strength on the advancing side was larger than that at the retreating side. TEM observation indicated that a sound joint can be obtained from the stage of the formation of the amorphous layer owing to the mechanical alloying effects before the formation of intermetallic compounds. This lap joining technique was also successfully applied to A6061-T6 aluminum alloy-grooved SUS304 plates. The maximum tensile strength of the lap joint was approximately the same as that of the base alloy, however, the proof stress of the joint decreased with the dissolution of the β″ phase in the A6061 aluminium alloy, which is caused by the generation of heat during friction stir welding.

  14. Materials data handbook: Aluminum alloy 2014, 2nd edition

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A revised edition of the materials data handbook on the aluminum alloy 2014 is presented. The scope of the information presented includes physical and mechanical property data at cryogenic, ambient and elevated temperatures, supplemented with useful information in such areas as material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication and joining techniques. Design data are presented, as available, and these data are complemented with information on the typical behavior of the alloy.

  15. Alloying effect of copper concentration on the localized corrosion of aluminum alloy for heat exchanger tube

    NASA Astrophysics Data System (ADS)

    Hong, Min-Sung; Park, In-Jun; Kim, Jung-Gu

    2017-07-01

    This study examined the alloying effect of Cu content on the localized corrosion properties of Al alloy in synthetic acid rain containing 200 ppm of Cl- ion. In aluminum alloy tubes, a small amount of Cu is contained as the additive to improve the mechanical strength or as the impurity. The Cu-containing intermetallic compound, Al2Cu can cause galvanic corrosion because it has more noble potential than Al matrix. Therefore aluminum tube could be penetrated by localized corrosion attack. The results were obtained from electrochemical test, scanning electron microscopy, and time of flight secondary ion mass spectrometry (ToF-SIMS) mapping. Severe localized corrosion was occurred on the Al-0.03 wt% Cu alloy. The negative effect of Cu on the pitting corrosion was attributed to the presence of the Al2Cu precipitates.

  16. Corrosion fatigue of 2219-T87 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Mcmillan, V. C.

    1986-01-01

    Corrosion fatigue studies were conducted on bare, chemical conversion coated, and anodized 2219-T87 aluminum alloy. These tests were performed using a rotating beam machine running at a velocity of 2500 rpm. The corrosive environments tested were distilled water, 100 ppm NaCl, and 3.5 percent NaCl. Results were compared to the endurance limit in air. An evaluation of the effect of protective coatings on corrosion fatigue was made by comparing the fatigue properties of specimens with coatings to those without.

  17. Effect of oxide layer formation on deformation of aluminum alloys under fire conditions

    DOE PAGES

    Yilmaz, Nadir; Vigil, Francisco M.; Tolendino, Greg; ...

    2015-05-14

    The purpose of this study is to investigate the structural behavior of aluminum alloys used in the aerospace industry when exposed to conditions similar to those of an accident scenario, such as a fuel fire. This study focuses on the role that the aluminum oxide layer plays in the deformation and the strength of the alloy above melting temperature. To replicate some of the thermal and atmospheric conditions that the alloys might experience in an accident scenario, aluminum rod specimens were subjected to temperatures near to or above their melting temperature in air, nitrogen, and vacuum environments. The characteristics ofmore » their deformation, such as geometry and rate of deformation, were observed. Tests were conducted by suspending aluminum rods vertically from an enclosure. This type of experiment was performed in two different environments: air and nitrogen. The change in environments allowed the effects of the oxide layer on the material strength to be analyzed by inhibiting the growth of the oxide layer. Observations were reported from imaging taken during the experiment showing creep behavior of aluminum alloys at elevated temperatures and time to failure. In addition, an example of tensile load–displacement data obtained in air and vacuum was reported to understand the effect of oxide layer on aluminum deformation and strength.« less

  18. Texture and mechanical properties of Al-0.5Mg-1.0Si-0.5Cu alloy sheets manufactured via a cross rolling method

    NASA Astrophysics Data System (ADS)

    Jeon, Jae-Yeol; Son, Hyeon-Taek; Woo, Kee-Do; Lee, Kwang-Jin

    2012-04-01

    The relationship between the texture and mechanical properties of 6xxx aluminum alloy sheets processed via cross rolling was investigated. The microstructures of the conventional rolled and cross rolled sheets after annealing were analyzed using optical micrographs (OM). The texture distribution across the thickness in the Al-Mg-Si-Cu alloy, conventional rolled sheets, and cross rolled sheets both before and after annealing was investigated via X-ray texture measurements. The texture was analyzed in three layers from the surface to the center of the sheet. The β-fiber texture of the conventional rolled sheet was typical of the texture obtained using aluminumoll ring. After annealing, the typical β-fiber orientations were changed to recrystallization textures: cube{001}<100> and normal direction (ND)-rotated cubes. However, the texture of the cross rolled sheet was composed of an asymmetrical, rolling direction (RD)-rotated cubes. After annealing, the asymmetrical orientations in the cross rolled sheet were changed to a randomized texture. The average R-value of the annealed cross rolled sheets was higher than that of the conventional rolled sheets. The limit dome height (LDH) test results demonstrated that cross rolling is effective in improving the formability of the Al-Mg-Si-Cu alloy sheets.

  19. Fatigue Strength Estimation Based on Local Mechanical Properties for Aluminum Alloy FSW Joints

    PubMed Central

    Sillapasa, Kittima; Mutoh, Yoshiharu; Miyashita, Yukio; Seo, Nobushiro

    2017-01-01

    Overall fatigue strengths and hardness distributions of the aluminum alloy similar and dissimilar friction stir welding (FSW) joints were determined. The local fatigue strengths as well as local tensile strengths were also obtained by using small round bar specimens extracted from specific locations, such as the stir zone, heat affected zone, and base metal. It was found from the results that fatigue fracture of the FSW joint plate specimen occurred at the location of the lowest local fatigue strength as well as the lowest hardness, regardless of microstructural evolution. To estimate the fatigue strengths of aluminum alloy FSW joints from the hardness measurements, the relationship between fatigue strength and hardness for aluminum alloys was investigated based on the present experimental results and the available wide range of data from the references. It was found as: σa (R = −1) = 1.68 HV (σa is in MPa and HV has no unit). It was also confirmed that the estimated fatigue strengths were in good agreement with the experimental results for aluminum alloy FSW joints. PMID:28772543

  20. Perforation of Thin Aluminum Alloy Plates by Blunt Projectiles - Experimental and Numerical Investigation

    NASA Astrophysics Data System (ADS)

    Wei, Gang; Zhang, Wei; Xiao, Xinke; Guo, Zitao

    2011-06-01

    Reducing the armor weight has become a research focus in terms of armored material with the increasing requirement of the mobility and flexibility of tanks and armored vehicles in modern local wars. Due to high strength-to-density ratio, aluminum alloy has become a potential light armored material. In this study, both lab-scale ballistic test and finite element simulation were adopted to examine the ballistic resistance of aluminum alloy targets. Blunt high strength steel projectiles with 12.7 mm diameter were launched by light gas gun against 3.3 mm thick aluminum alloy plates at velocity of 90 ~170 m/s. The ballistic limit velocity was obtained. Plugging failure and obvious structure deformation of targets were observed, and with the impact velocity increasing, the target structure deformation decrease gradually. Corresponding 2D finite element simulations were conducted by ABAQUS/EXPLICIT combined with material performance testing. Good agreement between the numerical simulations and the experimental results was found. Detailed computational results were provided to understand the deformation and failure mechanisms of the aluminum alloy plates.

  1. Fatigue Strength Estimation Based on Local Mechanical Properties for Aluminum Alloy FSW Joints.

    PubMed

    Sillapasa, Kittima; Mutoh, Yoshiharu; Miyashita, Yukio; Seo, Nobushiro

    2017-02-15

    Overall fatigue strengths and hardness distributions of the aluminum alloy similar and dissimilar friction stir welding (FSW) joints were determined. The local fatigue strengths as well as local tensile strengths were also obtained by using small round bar specimens extracted from specific locations, such as the stir zone, heat affected zone, and base metal. It was found from the results that fatigue fracture of the FSW joint plate specimen occurred at the location of the lowest local fatigue strength as well as the lowest hardness, regardless of microstructural evolution. To estimate the fatigue strengths of aluminum alloy FSW joints from the hardness measurements, the relationship between fatigue strength and hardness for aluminum alloys was investigated based on the present experimental results and the available wide range of data from the references. It was found as: σ a ( R = -1) = 1.68 HV ( σ a is in MPa and HV has no unit). It was also confirmed that the estimated fatigue strengths were in good agreement with the experimental results for aluminum alloy FSW joints.

  2. Blue-Light Hazard From Gas Metal Arc Welding of Aluminum Alloys.

    PubMed

    Nakashima, Hitoshi; Takahashi, Jyunya; Fujii, Nobuyuki; Okuno, Tsutomu

    2017-10-01

    The objective was to quantify the blue-light hazard from gas metal arc welding (GMAW) of aluminum alloys. The exposure level is expected to depend on the welding conditions. Therefore, it is important to identify the blue-light hazard under various welding conditions. We experimentally conducted GMAW of aluminum alloys under various welding conditions and measured the spectral radiance of the arcs. The effective blue-light radiance, which the American Conference of Governmental Industrial Hygienists has defined to quantify the exposure level of blue light, was calculated from the measured spectral radiance. The maximum acceptable exposure duration per 10000 s for this effective blue-light radiance was calculated. The effective blue-light radiance measured in this study was in the range of 2.9-20.0 W cm-2·sr. The corresponding maximum acceptable exposure duration per 10000 s was only 5.0-34 s, so it is hazardous to view the welding arc. The effective blue-light radiance was higher at higher welding currents than at lower welding currents, when pulsed welding currents were used rather than steady welding currents, and when magnesium was included in the welding materials. It is very hazardous to view the arcs in GMAW of aluminum alloys. Welders and their helpers should use appropriate eye protection in arc-welding operations. They should also avoid direct light exposure when starting an arc-welding operation. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  3. Biaxial Testing of 2219-T87 Aluminum Alloy Using Cruciform Specimens

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Pollock, W. D.

    1997-01-01

    A cruciform biaxial test specimen was designed and seven biaxial tensile tests were conducted on 2219-T87 aluminum alloy. An elastic-plastic finite element analysis was used to simulate each tests and predict the yield stresses. The elastic-plastic finite analysis accurately simulated the measured load-strain behavior for each test. The yield stresses predicted by the finite element analyses indicated that the yield behavior of the 2219-T87 aluminum alloy agrees with the von Mises yield criterion.

  4. Surface alloying of aluminum with molybdenum by high-current pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Xia, Han; Zhang, Conglin; Lv, Peng; Cai, Jie; Jin, Yunxue; Guan, Qingfeng

    2018-02-01

    The surface alloying of pre-coated molybdenum (Mo) film on aluminum (Al) substrate by high-current pulsed electron beam (HCPEB) was investigated. The microstructure and phase analysis were conducted by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that Mo particles were dissolved into Al matrix to form alloying layer, which was composed of Mo, Al and acicular or equiaxed Al5Mo phases after surface alloying. Meanwhile, various structure defects such as dislocation loops, high-density dislocations and dislocation walls were observed in the alloying surface. The corrosion resistance was tested by using potentiodynamic polarization curves and electrochemical impedance spectra (EIS). Electrochemical results indicate that all the alloying samples had better corrosion resistance in 3.5 wt% NaCl solution compared to initial sample. The excellent corrosion resistance is mainly attributed to the combined effect of the structure defects and the addition of Mo element to form a more stable passive film.

  5. Mechanical evaluation of aluminum alloy ring fixator.

    PubMed

    Tosborvorn, Somboon; Cheechareon, Sukrom; Ruttanuchun, Kittiput; Sirivedin, Suparerk; Rhienumporn, Chaitawat

    2006-11-01

    To test the homemade ring fixator as a tool for correction of bony deformity. The authors developed an aluminum alloy ring fixator and tested it to find out the accuracy of manufacturing and strength of the ring systems under axial load with the Roundness Testing Machine and Lloyd Universal Testing Machine. The mean diameter of the twenty five-drill holes was 6.5843872 +/- 0.0521594 mm (mean +/- SD). Distance between particular drill holes, which reflected the precision of drilling, had a high accuracy with standard deviation from 0.1138 to 0.1870 mm. The roundness of the rings was 0.2421376 +/- 0.12437977 mm (mean +/- SD). The system structure had minimal permanent deformity at breaking point, mean yield strength of the system was 4786.9 +/- 14.353 N (mean +/- SD). This was caused by the failure of the wire. Mean stiffness of the system was 127 N./mm. The aluminum alloy ring fixator was strong enough and well tolerated for clinical usage

  6. Corrosion protection of aluminum alloys in contact with other metals

    NASA Technical Reports Server (NTRS)

    Kuster, C. A.

    1969-01-01

    Study establishes the quality of chemical and galvanized protection afforded by anodized and aldozided coatings applied to test panels of various aluminum alloys. The test panels, placed in firm contact with panels of titanium alloys, were subjected to salt spray tests and visually examined for corrosion effect.

  7. Corrosion resistance of sodium sulfate coated cobalt-chromium-aluminum alloys at 900 C, 1000 C, and 1100 C

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.

    1979-01-01

    The corrosion of sodium sulfate coated cobalt alloys was measured and the results compared to the cyclic oxidation of alloys with the same composition, and to the hot corrosion of compositionally equivalent nickel-base alloys. Cobalt alloys with sufficient aluminum content to form aluminum containing scales corrode less than their nickel-base counterparts. The cobalt alloys with lower aluminum levels form CoO scales and corrode more than their nickel-base counterparts which form NiO scales.

  8. Ultrasonic semi-solid coating soldering 6061 aluminum alloys with Sn-Pb-Zn alloys.

    PubMed

    Yu, Xin-ye; Xing, Wen-qing; Ding, Min

    2016-07-01

    In this paper, 6061 aluminum alloys were soldered without a flux by the ultrasonic semi-solid coating soldering at a low temperature. According to the analyses, it could be obtained that the following results. The effect of ultrasound on the coating which promoted processes of metallurgical reaction between the components of the solder and 6061 aluminum alloys due to the thermal effect. Al2Zn3 was obtained near the interface. When the solder was in semi-solid state, the connection was completed. Ultimately, the interlayer mainly composed of three kinds of microstructure zones: α-Pb solid solution phases, β-Sn phases and Sn-Pb eutectic phases. The strength of the joints was improved significantly with the minimum shear strength approaching 101MPa. Copyright © 2016. Published by Elsevier B.V.

  9. High-temperature, low-cycle fatigue behavior of an Al-Mg-Si based heat-resistant aluminum alloy

    NASA Astrophysics Data System (ADS)

    Kim, Kyu-Sik; Sung, Si-Young; Han, Bum-Suck; Park, Joong-Cheol; Lee, Kee-Ahn

    2015-11-01

    High-temperature, low-cycle fatigue behavior of the new heat-resistant aluminum alloy was investigated in this study. The aluminum alloy consists of aluminum matrix and small amount of precipitated Mg2Si and (Co, Ni)3Al4 strengthening particles. At room temperature and 523 K, the yield and tensile strengths of Al-Mg-Si-(Co, Ni) the aluminum alloy were maintained with no significant decrease, and elongation increased slightly. Low-cycle fatigue tests controlled by total strain were performed with strain ratio (R) = -1, strain rate = 2×10-3 s-1 at 523 K. The fatigue limit of the low-cycle fatigue of this alloy showed plastic strain amplitude (Δ ɛ pa) of 0.22% at 103 cycles. This value was superior to that of conventional aluminum alloy such as A319. The results of the fractographical observation showed that second phases, especially (Co, Ni)3Al4 particles, affected fatigue behavior. This study also attempted to clarify the mechanism of high-temperature, low-cycle fatigue deformation of Al-Mg-Si-(Co, Ni) alloy in relation to its microstructure and energy dissipation analysis.

  10. Fracture mechanics and surface chemistry studies of fatigue crack growth in an aluminum alloy

    NASA Astrophysics Data System (ADS)

    Wei, R. P.; Pao, P. S.; Hart, R. G.; Weir, T. W.; Simmons, G. W.

    1980-12-01

    Fracture mechanics and surface chemistry studies were carried out to develop further understanding of the influence of water vapor on fatigue crack growth in aluminum alloys. The room temperature fatigue crack growth response was determined for 2219-T851 aluminum alloy exposed to water vapor at pressures from 1 to 30 Pa over a range of stress intensity factors ( K). Data were also obtained in vacuum (at < 0.50 μPa), and dehumidified argon. The test results showed that, at a frequency of 5 Hz, the rate of crack growth is essentially unaffected by water vapor until a threshold pressure is reached. Above this threshold, the rates increased, reaching a maximum within one order of magnitude increase in vapor pressure. This maximum crack growth rate is equal to that obtained in air (40 to 60 pct relative humidity), distilled water and 3.5 pct NaCl solution on the same material. Parallel studies of the reactions of water vapor with fresh alloy surfaces (produced either by in situ impact fracture or by ion etching) were made by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). The extent of surface reaction was monitored by changes in the oxygen AES and XPS signals. Correlation between the fatigue crack growth response and the surface reaction kinetics has been made, and is consistent with a transport-limited model for crack growth. The results also suggest that enhancement of fatigue crack growth by water vapor in the aluminum alloys occurs through a “hydrogen embrittle ment” mechanism.

  11. New weldable high strength aluminum alloy developed for cryogenic service

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Wrought aluminum alloy has improved low temperature notch toughness and weldability. This alloy can be mill-fabricated to plate and sheet without difficulty. Post-weld aging improves weld ductility and strength properties. A typical treatment is 8 hours at 225 deg F plus 16 hours at 300 deg F.

  12. The Effect of Alloying Elements on Thermal Conductivity and Casting Characteristic in High Pressure Die Casting of Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-Woo; Cho, Jae-Ik; Choi, Se-Weon; Kim, Young-Chan; Kang, Chang-Seog

    Recently, demand of aluminum alloys for use in high thermal conductivity application is increases but the most aluminum die casting alloys exhibit very lower thermal properties because of their high concentrations of alloying elements. However, those alloying elements are essential to obtain sufficient fluidity and mechanical strength. Therefore, the purpose of this study is to analyze the effect of alloying elements in die casting alloys, Si, Cu, Mg, Fe and Mn, in thermal conductivity, die casting characteristics and mechanical properties and find out the appropriate amount of each alloying element for development of heat sink component. The results showed that Mn had the most deleterious effect in thermal conductivity and Si and Fe contents were important to improve strength and limit casting defects, such as hot tearing and die soldering. The alloy with 0.2 1.0wt%Cu, 0.3 0.6wt%Fe and 1.0 2.0wt%Si showed very good combination of high thermal conductivity and good casting characteristics.

  13. Laser Surface Treatment and Modification of Aluminum Alloy Matrix Composites

    NASA Astrophysics Data System (ADS)

    Abbass, Muna Khethier

    2018-02-01

    The present work aimed to study the laser surface treatment and modification of Al-4.0%Cu-1.0%Mg alloy matrix composite reinforced with 10%SiC particles produced by stir casting. The specimens of the base alloy and composite were irradiated with an Nd:YAG laser of 1000 mJ, 1064 nm and 3 Hz . Dry wear test using the pin-on -disc technique at different sliding times (5-30 min) at a constant applied load and sliding speed were performed before and after laser treatment. Micro hardness and wear resistance were increased for all samples after laser hardening treatment. The improvement of these properties is explained by microstructural homogenization and grain refinement of the laser treated surface. Modification and refinement of SiC particles and grain refinement in the microstructure of the aluminum alloy matrix (α-Al) were observed by optical and SEM micrographs. The highest increase in hardness was 21.4% and 26.2% for the base alloy and composite sample respectively.

  14. Process for Producing a Cast Article from a Hypereutectic Aluminum-Silicon Alloy

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2003-01-01

    A process for making a cast article from an aluminum alloy includes first casting an article from an alloy having the following composition, in weight percent: Silicon (Si) 14.0-25.0, Copper (CU) 5.5-8.0, Iron (Fe) 0-0.8, Magnesium (Mg) 0.5-1.5, Nickel (Ni) 0.05-1.2, Manganese (Mn) 0-1.0, Titanium (Ti) 0.05-1.2, Zirconium (Zr) 0.12-1.2, Vanadium (V) 0.05-1.2, Zinc (Zn) 0-0.9, Phosphorus (P) 0.001-0.1, Aluminum, balance. In this alloy the ration of Si:Mg is 15-35, and the ratio of Cu:Mg is 4-15. After an article is cast from the alloy, the cast article is aged at a temperature within the range of 400 F to 500 F for a time period within the range of four to 16 hours. It has been found especially advantageous if the cast article is first exposed to a solutionizing step prior to the aging step. This solutionizing step is carried out by exposing the cast article to a temperature within the range of 875 F to 1025 F for a time period of fifteen minutes to four hours. It has also been found to be especially advantageous if the solutionizing step is followed directly with a quenching step, wherein the cast article is quenched in a quenching medium such as water at a temperature within the range of 120 F to 300 F. The resulting cast article is highly suitable in a number of high temperature applications, such as heavy-duty pistons for internal combustion engines.

  15. Stress corrosion cracking of an aluminum alloy used in external fixation devices.

    PubMed

    Cartner, Jacob L; Haggard, Warren O; Ong, Joo L; Bumgardner, Joel D

    2008-08-01

    Treatment for compound and/or comminuted fractures is frequently accomplished via external fixation. To achieve stability, the compositions of external fixators generally include aluminum alloy components due to their high strength-to-weight ratios. These alloys are particularly susceptible to corrosion in chloride environments. There have been several clinical cases of fixator failure in which corrosion was cited as a potential mechanism. The aim of this study was to evaluate the effects of physiological environments on the corrosion susceptibility of aluminum 7075-T6, since it is used in orthopedic external fixation devices. Electrochemical corrosion curves and alternate immersion stress corrosion cracking tests indicated aluminum 7075-T6 is susceptible to corrosive attack when placed in physiological environments. Pit initiated stress corrosion cracking was the primary form of alloy corrosion, and subsequent fracture, in this study. Anodization of the alloy provided a protective layer, but also caused a decrease in passivity ranges. These data suggest that once the anodization layer is disrupted, accelerated corrosion processes occur. (c) 2007 Wiley Periodicals, Inc.

  16. Thermomechanical treatment of welded joints of aluminum-lithium alloys modified by scandium

    NASA Astrophysics Data System (ADS)

    Malikov, A. G.

    2017-12-01

    At present, the aeronautical equipment manufacture involves up-to-date high-strength aluminum alloys of decreased density resulting from the lithium admixture. Various technologies of fusible welding of these alloys are being developed. The paper presents experimental investigations of the optimization of the laser welding of aluminum alloys with the scandium-modified welded joint after thermomechanical treatment. The effect of scandium on the micro- and macrostructure is studied along with strength characteristics of the welded joint. It is found that thermomechanical treatment allows us to obtain the strength of the welded joint 0.89 for the Al-Mg-Li system and 0.99 for the Al-Cu-Li system with the welded joint modified by scandium in comparison with the base alloy after treatment.

  17. Benign joining of ultrafine grained aerospace aluminum alloys using nanotechnology.

    PubMed

    Longtin, Rémi; Hack, Erwin; Neuenschwander, Jürg; Janczak-Rusch, Jolanta

    2011-12-22

    Ultrafine grained aluminum alloys have restricted applicability due to their limited thermal stability. Metalized 7475 alloys can be soldered and brazed at room temperature using nanotechnology. Reactive foils are used to release heat for milliseconds directly at the interface between two components leading to a metallurgical joint without significantly heating the bulk alloy, thus preserving its mechanical properties. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Investigation of Microstructure and Microhardness in Self-Reacting Friction Stir Welded AA2014-T6 and AA2219-T87

    NASA Technical Reports Server (NTRS)

    Horton, K. Renee; McGill, Preston; Barkey, Mark

    2011-01-01

    Friction stir welding (FSW) is a solid state welding process with potential advantages for aerospace and automotive industries dealing with light alloys. Self-reacting friction stir welding (SR-FSW) is one variation of the FSW process being developed at the National Aeronautics and Space Administration (NASA) for use in the fabrication of propellant tanks. This work reports on the microstructure and microhardness of SR-FSW between two dissimilar aluminum alloys. Specifically, the study examines the cross section of the weld joint formed between an AA2014-T6 plate on the advancing side and an AA2219-T87 plate on the retreating side. The microstructural analysis shows an irregularly displaced weld seam from the advancing side past the thermo-mechanical affected zone (TMAZ) into the weld nugget region. There are sharp variations in the microhardness across the weld. These variations are described in the paper and mechanisms for their formation are discussed.

  19. Reaction rates and prediction of thermal instability during aluminum alloy 6061 dissolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarlane, J.; DePaoli, D. W.; Mattus, C. H.

    Here, chemical kinetics of dissolution of aluminum alloy 6061 was investigated for the processing of Pu-238 for deep space missions. The rate of dissolution was measured by the heat release and appeared to be controlled by the rate of release of Al(OH) 4 – from the metal surface. Rates of reaction were measured from 273 to 365 K, giving an activation energy of 72 ± 13 kJ•(mol Al) –1 and a pre-exponential factor of 5 ± 3 × 10 9 dm 3mol –1min –1. Minor alloying elements did not appear to affect the reaction kinetics. The average heat of dissolutionmore » was –360 ± 70 kJ•(mol NaAlO 2) –1. When extrapolated to an infinitely dilute solution of aluminum, kJ•(mol NaAlO 2) –1.« less

  20. Reaction rates and prediction of thermal instability during aluminum alloy 6061 dissolution

    DOE PAGES

    McFarlane, J.; DePaoli, D. W.; Mattus, C. H.

    2017-11-10

    Here, chemical kinetics of dissolution of aluminum alloy 6061 was investigated for the processing of Pu-238 for deep space missions. The rate of dissolution was measured by the heat release and appeared to be controlled by the rate of release of Al(OH) 4 – from the metal surface. Rates of reaction were measured from 273 to 365 K, giving an activation energy of 72 ± 13 kJ•(mol Al) –1 and a pre-exponential factor of 5 ± 3 × 10 9 dm 3mol –1min –1. Minor alloying elements did not appear to affect the reaction kinetics. The average heat of dissolutionmore » was –360 ± 70 kJ•(mol NaAlO 2) –1. When extrapolated to an infinitely dilute solution of aluminum, kJ•(mol NaAlO 2) –1.« less

  1. Effect of a high temperature and hydrostatic pressure on the structure and the properties of a high-strength cast AM5 (the 201.2 alloy type) aluminum alloy

    NASA Astrophysics Data System (ADS)

    Akopyan, T. K.; Padalko, A. G.; Belov, N. A.; Shurkin, P. K.

    2016-07-01

    The phase-transition temperatures of a high-strength cast AM5 aluminum alloy are determined at atmospheric pressure and an excess pressure of 100 MPa using differential barothermic analysis (DBA) and classical differential thermal analysis (DTA). An excess pressure of 100 MPa is shown to increase the critical temperatures of the alloy by 12-17°C (including an increase in the solidus temperature by 12°C), which makes it possible to increase the hot isostatic pressing (HIP) temperature above the temperature of heating for quenching. The following three barothermal treatment schedules at p = 100 MPa and τ = 3 h, which have different isothermal holding temperatures, are chosen to study the influence of HIP on the structure and the properties of alloy AM5 castings: HIP1 ( t 1 = 505 ± 2°C), HIP2 ( t 2 = 520 ± 2°C), and HIP3 ( t 3 = 540 ± 2°C). High-temperature HIP treatment is found to increase the casting density and improve the morphology of secondary phases additionally, which ensures an increase in the plasticity of the alloy. In particular, the plasticity of the alloy after heat treatment according to schedule HIP3 + T6 (T6 means artificial aging to achieve the maximum strength) increases by a factor of ˜1.5.

  2. Hot hardness of nickel-rich nickel-chromium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Levine, S. R.

    1976-01-01

    Rockwell A hardness of cast nickel-chromium-aluminum (NiCrAl) alloys was examined from ambient to 1150 K and compared to cast NiAl and IN-100. Alloy constitution was either gamma, gamma prime + gamma or gamma + beta + alpha + gamma prime. Below 1000 K beta containing NiCrAl alloys have hardnesses comparable to IN-100; above 1000 K they soften faster than IN-100. At 1150 K the hardness of beta-containing NiCrAl alloys decreases with increasing beta-content. The beta-containing NiCrAl alloys were harder than beta-NiAl. The ultimate tensile strengths of the NiCrAl alloys were estimated. The effects of NiCrAl coatings on strength and fatigue life of cooled turbine components were deduced.

  3. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    NASA Astrophysics Data System (ADS)

    Liu, Wenyong; Luo, Yuting; Sun, Linyu; Wu, Ruomei; Jiang, Haiyun; Liu, Yuejun

    2013-01-01

    We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162° and the sliding angle of 2° was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed by optical microscope (OM) and scanning electron microscope (SEM). Combined with the material of PP with the low surface free energy, the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.

  4. Effect of S-phase precipitates on deformation nanostructuring and hardening of 2xxx aluminum alloy

    NASA Astrophysics Data System (ADS)

    Markushev, Michael; Krymskiy, Stanislav; Avtokratova, Elena; Ilyasov, Rafis; Sitdikov, Oleg

    2017-12-01

    The influence of preliminary heat treatment, involving quenching and further aging at 190°C for 10 h, on the grain structure, hardness, and tensile strength of hot-pressed commercial D16 alloy severely deformed via room-temperature high pressure torsion (HPT) (10 revolutions under P = 6 GPa) was investigated. In spite of higher deformation strengthening, owing to the formation of a more developed nanostructure in the prequenched material, the alloy hardness and strength in both HPT conditions (i.e. after quenching and further aging) were quite similar. The nature of the alloy structure-property relations found is discussed.

  5. Iron-niobium-aluminum alloy having high-temperature corrosion resistance

    DOEpatents

    Hsu, Huey S.

    1988-04-14

    An alloy for use in high temperature sulfur and oxygen containing environments, having aluminum for oxygen resistance, niobium for sulfur resistance and the balance iron, is discussed. 4 figs., 2 tabs.

  6. Aluminum-Alloy-Matrix/Alumina-Reinforcement Composites

    NASA Technical Reports Server (NTRS)

    Kashalikar, Uday; Rozenoyer, Boris

    2004-01-01

    Isotropic composites of aluminum-alloy matrices reinforced with particulate alumina have been developed as lightweight, high-specific-strength, less-expensive alternatives to nickel-base and ferrous superalloys. These composites feature a specific gravity of about 3.45 grams per cubic centimeter and specific strengths of about 200 MPa/(grams per cubic centimeter). The room-temperature tensile strength is 100 ksi (689 MPa) and stiffness is 30 Msi (206 GPa). At 500 F (260 C), these composites have shown 80 percent retention in strength and 95 percent retention in stiffness. These materials also have excellent fatigue tolerance and tribological properties. They can be fabricated in net (or nearly net) sizes and shapes to make housings, pistons, valves, and ducts in turbomachinery, and to make structural components of such diverse systems as diesel engines, automotive brake systems, and power-generation, mining, and oil-drilling equipment. Separately, incorporation of these metal matrix composites within aluminum gravity castings for localized reinforcement has been demonstrated. A composite part of this type can be fabricated in a pressure infiltration casting process. The process begins with the placement of a mold with alumina particulate preform of net or nearly net size and shape in a crucible in a vacuum furnace. A charge of the alloy is placed in the crucible with the preform. The interior of the furnace is evacuated, then the furnace heaters are turned on to heat the alloy above its liquidus temperature. Next, the interior of the furnace is filled with argon gas at a pressure about 900 psi (approximately equal to 6.2 MPa) to force the molten alloy to infiltrate the preform. Once infiltrated, the entire contents of the crucible can be allowed to cool in place, and the composite part recovered from the mold.

  7. Investigation of the formability of aluminium alloys at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Tisza, M.; Budai, D.; Kovács, P. Z.; Lukács, Zs

    2016-11-01

    Aluminium alloys are more and more widely applied in car body manufacturing. Increasing the formability of aluminium alloys are one of the most relevant tasks in todays’ research topics. In this paper, the focus will be on the investigation of the formability of aluminium alloys concerning those material grades that are more widely applied in the automotive industry including the 5xxx and 6xxx aluminium alloy series. Recently, besides the cold forming of aluminium sheets the forming of aluminium alloys at elevated temperatures became a hot research topic, too. In our experimental investigations, we mostly examined the EN AW 5754 and EN AW 6082 aluminium alloys at elevated temperatures. We analysed the effect of various material and process parameters (e.g. temperature, sheet thickness) on the formability of aluminium alloys with particular emphasis on the Forming Limit Diagrams at elevated temperatures in order to find the optimum forming conditions for these alloys.

  8. Macrosegregation in aluminum alloy ingot cast by the semicontinuous direct chill method

    NASA Technical Reports Server (NTRS)

    Yu, H.; Granger, D. A.

    1984-01-01

    A theoretical model of the semicontinuous DC casting method is developed to predict the positive segregation observed at the subsurface and the negative segregation commonly found at the center of large commercial-size aluminum alloy ingot. Qualitative analysis of commercial-size aluminum alloy semicontinuous cast direct chill (DC) ingot is carried out. In the analysis, both positive segregation in the ingot subsurface and negative segregation at the center of the ingot are examined. Ingot subsurface macrosegregation is investigated by considering steady state casting of a circular cross-section binary alloy ingot. Nonequilibrium solidification is assumed with no solid diffusion, constant equilibrium partition ratio, and constant solid density.

  9. Springback of aluminum alloy brazing sheet in warm forming

    NASA Astrophysics Data System (ADS)

    Han, Kyu Bin; George, Ryan; Kurukuri, Srihari; Worswick, Michael J.; Winkler, Sooky

    2017-10-01

    The use of aluminum is increasing in the automotive industry due to its high strength-to-weight ratio, recyclability and corrosion resistance. However, aluminum is prone to significant springback due to its low elastic modulus coupled with its high strength. In this paper, a warm forming process is studied to improve the springback characteristics of 0.2 mm thick brazing sheet with an AA3003 core and AA4045 clad. Warm forming decreases springback by lowering the flow stress. The parts formed have complex features and geometries that are representative of automotive heat exchangers. The key objective is to utilize warm forming to control the springback to improve the part flatness which enables the use of harder temper material with improved strength. The experiments are performed by using heated dies at several different temperatures up to 350 °C and the blanks are pre-heated in the dies. The measured springback showed a reduction in curvature and improved flatness after forming at higher temperatures, particularly for the harder temper material conditions.

  10. Fusion boundary microstructure evolution in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Kostrivas, Anastasios Dimitrios

    2000-10-01

    A melting technique was developed to simulate the fusion boundary of aluminum alloys using the GleebleRTM thermal simulator. Using a steel sleeve to contain the aluminum, samples were heated to incremental temperatures above the solidus temperature of a number of alloys. In alloy 2195, a 4wt%Cu-1wt%Li alloy, an equiaxed non-dendritic zone (EQZ) could be formed by heating in the temperature range from approximately 630 to 640°C. At temperatures above 640°C, solidification occurred by the normal epitaxial nucleation and growth mechanism. Fusion boundary behavior was also studied in alloys 5454-H34, 6061-T6, and 2219-T8. Additionally, experimental alloy compositions were produced by making bead on plate welds using an alloy 5454-H32 base metal and 5025 or 5087 filler metals. These filler metals contain zirconium and scandium additions, respectively, and were expected to influence nucleation and growth behavior. Both as-welded and welded/heat treated (540°C and 300°C) substrates were tested by melting simulation, resulting in dendritic and EQZ structures depending on composition and substrate condition. Orientation imaging microscopy (OIM(TM)) was employed to study the crystallographic character of the microstructures produced and to verify the mechanism responsible for EQZ formation. OIM(TM) proved that grains within the EQZ have random orientation. In all other cases, where the simulated microstructures were dendritic in nature, it was shown that epitaxy was the dominant mode of nucleation. The lack of any preferred crystallographic orientation relationship in the EQZ supports a theory proposed by Lippold et al that the EQZ is the result of heterogeneous nucleation within the weld unmixed zone. EDS analysis of the 2195 on STEM revealed particles with ternary composition consisted of Zr, Cu and Al and a tetragonal type crystallographic lattice. Microdiffraction line scans on EQZ grains in the alloy 2195 showed very good agreement between the measured Cu

  11. A detailed investigation of the strain hardening response of aluminum alloyed Hadfield steel

    NASA Astrophysics Data System (ADS)

    Canadinc, Demircan

    The unusual strain hardening response exhibited by Hadfield steel single and polycrystals under tensile loading was investigated. Hadfield steel, which deforms plastically through the competing mechanisms slip and twinning, was alloyed with aluminum in order to suppress twinning and study the role of slip only. To avoid complications due to a grained structure, only single crystals of the aluminum alloyed Hadfield steel were considered at the initial stage of the current study. As a result of alloying with aluminum, twinning was suppressed; however a significant increase in the strain hardening response was also present. A detailed microstructural analysis showed the presence of high-density dislocation walls that evolve in volume fraction due to plastic deformation and interaction with slip systems. The very high strain hardening rates exhibited by the aluminum alloyed Hadfield steel single crystals was attributed to the blockage of glide dislocations by the high-density dislocation walls. A crystal plasticity model was proposed, that accounts for the volume fraction evolution and rotation of the dense dislocation walls, as well as their interaction with the active slip systems. The novelty of the model lies in the simplicity of the constitutive equations that define the strain hardening, and the fact that it is based on experimental data regarding the microstructure. The success of the model was tested by its application to different crystallographic orientations, and finally the polycrystals of the aluminum alloyed Hadfield steel. Meanwhile, the capability of the model to predict texture was also observed through the rotation of the loading axis in single crystals. The ability of the model to capture the polycrystalline deformation response provides a venue for its utilization in other alloys that exhibit dislocation sheet structures.

  12. In vitro and in vivo corrosion evaluation of nickel-chromium- and copper-aluminum-based alloys.

    PubMed

    Benatti, O F; Miranda, W G; Muench, A

    2000-09-01

    The low resistance to corrosion is the major problem related to the use of copper-aluminum alloys. This in vitro and in vivo study evaluated the corrosion of 2 copper-aluminum alloys (Cu-Al and Cu-Al-Zn) compared with a nickel-chromium alloy. For the in vitro test, specimens were immersed in the following 3 corrosion solutions: artificial saliva, 0.9% sodium chloride, and 1.0% sodium sulfide. For the in vivo test, specimens were embedded in complete dentures, so that one surface was left exposed. The 3 testing sites were (1) close to the oral mucosa (partial self-cleaning site), (2) surface exposed to the oral cavity (self-cleaning site), and (3) specimen bottom surface exposed to the saliva by means of a tunnel-shaped perforation (non-self-cleaning site). Almost no corrosion occurred with the nickel-chromium alloy, for either the in vitro or in vivo test. On the other hand, the 2 copper-aluminum-based alloys exhibited high corrosion in the sulfide solution. These same alloys also underwent high corrosion in non-self-cleaning sites for the in vivo test, although minimal attack was observed in self-cleaning sites. The nickel-chromium alloy presented high resistance to corrosion. Both copper-aluminum alloys showed considerable corrosion in the sulfide solution and clinically in the non-self-cleaning site. However, in self-cleaning sites these 2 alloys did not show substantial corrosion.

  13. Synthetic sea water - An improved stress corrosion test medium for aluminum alloys

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1973-01-01

    A major problem in evaluating the stress corrosion cracking resistance of aluminum alloys by alternate immersion in 3.5 percent salt (NaCl) water is excessive pitting corrosion. Several methods were examined to eliminate this problem and to find an improved accelerated test medium. These included the addition of chromate inhibitors, surface treatment of specimens, and immersion in synthetic sea water. The results indicate that alternate immersion in synthetic sea water is a very promising stress corrosion test medium. Neither chromate inhibitors nor surface treatment (anodize and alodine) of the aluminum specimens improved the performance of alternate immersion in 3.5 percent salt water sufficiently to be classified as an effective stress corrosion test method.

  14. Oxidation resistant, thoria-dispersed nickel-chromium-aluminum alloy

    NASA Technical Reports Server (NTRS)

    Baranow, S.; Klingler, L. J.

    1973-01-01

    Modified thoria-dispersed nickel-chromium alloy has been developed that exhibits greatly improved resistance to high-temperature oxidation. Additions of aluminum have been made to change nature of protective oxide scale entirely and to essentially inhibit oxidation at temperatures up to 1260 C.

  15. Hot corrosion resistance of nickel-chromium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Barret, C. A.

    1977-01-01

    The hot corrosion resistance of nickel-chromium-aluminum alloys was examined by cyclically oxidizing sodium sulfate-coated specimens in still air at 900, 1000, and 1100 C. The compositions tested were within the ternary region: Ni, Ni-50 at.% Cr, and Ni-50 at.% Al. At each temperature the corrosion data were statistically fitted to a third order regression equation as a function of chromium and aluminum contents. From these equations corrosion isopleths were prepared. Compositional regions with the best hot corrosion resistance were identified.

  16. Hot corrosion resistance of nickel-chromium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Barrett, C. A.

    1977-01-01

    The hot corrosion resistance of nickel-chromium-aluminum alloy was examined by cyclically oxidizing sodium sulfate coated specimens in still air at 900, 1000 and 1100 C. The compositions tested were within the ternary region: Ni; Ni-50 at.% Cr; and Ni-50 at.% Al. At each temperature the corrosion data were statistically fitted to a third order regression equation as a function of chromium and aluminum contents. Corrosion isopleths were prepared from these equations. Compositional regions with the best hot corrosion resistance were identified.

  17. Mechanisms of fatigue crack retardation following single tensile overloads in powder metallurgy aluminum alloys

    NASA Technical Reports Server (NTRS)

    Bray, G. H.; Reynolds, A. P.; Starke, E. A., Jr.

    1992-01-01

    In ingot metallurgy (IM) alloys, the number of delay cycles following a single tensile overload typically increases from a minimum at an intermediate baseline stress intensity range, Delta-K(B), with decreasing Delta-K(B) approaching threshold and increasing Delta-K(B) approaching unstable fracture to produce a characteristic 'U' shaped curve. Two models have been proposed to explain this behavior. One model is based on the interaction between roughness and plasticity-induced closure, while the other model only utilizes plasticity-induced closure. This article examines these models, using experimental results from constant amplitude and single overload fatigue tests performed on two powder metallurgy (PM) aluminum alloys, AL-905XL and AA 8009. The results indicate that the 'U'-shaped curve is primarily due to plasticity-induced closure, and that the plasticity-induced retardation effect is through-thickness in nature, occurring in both the surface and interior regions. However, the retardation effect is greater at the surface, because the increase in plastic strain at the crack tip and overload plastic zone size are larger in the plane-stress surface regions than in the plane-strain interior regions. These results are not entirely consistent with either of the proposed models.

  18. Superhydrophobic surface prepared by micro-milling and WEDM on aluminum alloy

    NASA Astrophysics Data System (ADS)

    Yanling, Wan; Jian, Yang; Huadong, Yu

    2018-06-01

    To simulate the hydrophobic microstructure of rice leaf surface, high-speed precision micro-milling machine was used to fabricate micro groove array structure on the surface of aluminum alloy. The micro-and nanostructure was constructed on the surface of the grooved convex platform by Wire Cut Electrical Discharge Machining (WEDM). The surface morphology and hydrophobic properties of the aluminum alloy microstructures fabricated by two processing methods were observed respectively, and the hydrophobic mechanism was analyzed. The results show that the contact angle was effectively improved from 49° up to 158.4° in the vertical direction, and 146.7° in the parallel direction. The change of surface wettability from hydrophilic to hydrophobic was realized. By comparison, the micro-and nanostructure fabricated by WEDM had improved the hydrophobic stability of the aluminum alloy surface while enlarging the contact Angle, and the micro-milling groove structure further amplified the contact angle and greatly reduced the contact area of the water droplet, it was also observed that the drop took longer to completely spread on the sample after WEDM.

  19. The stress-corrosion cracking behavior of high-strength aluminum powder metallurgy alloys

    NASA Astrophysics Data System (ADS)

    Pickens, J. R.; Christodoulou, L.

    1987-01-01

    The susceptibility to stress-corrosion cracking (SCC) of rapidly solidified (RS) aluminum powder metallurgy (P/M) alloys 7090 and 7091, mechanically alloyed aluminum P/M alloy IN* 9052, and ingot metallurgy (I/M) alloys of similar compositions was compared using bolt-loaded double cantilever beam specimens. In addition, the effects of aging, grain size, grain boundary segregation, pre-exposure embrittlement, and loading mode on the SCC of 7091 were independently assessed. Finally, the data generated were used to elucidate the mechanisms of SCC in the three P/M alloys. The IN 9052 had the lowest SCC susceptibility of all alloys tested in the peak-strength condition, although no SCC was observed in the two RS alloys in the overaged condition. The susceptibility of the RS alloys was greater in the underaged than the peak-aged temper. We detected no significant differences in susceptibility of 7091 with grain sizes varying from 2 to 300 μm. Most of the crack advance during SCC of 7091 was by hydrogen embrittlement (HE). Furthermore, both RS alloys were found to be susceptible to preexposure embrittlement—also indicative of HE. The P/M alloys were less susceptible to SCC than the I/M alloys in all but one test.

  20. Mechanical properties of anodized coatings over molten aluminum alloy

    DOE PAGES

    Grillet, Anne M.; Gorby, Allen D.; Trujillo, Steven M.; ...

    2007-10-22

    A method to measure interfacial mechanical properties at high temperatures and in a controlled atmosphere has been developed to study anodized aluminum surface coatings at temperatures where the interior aluminum alloy is molten. This is the first time that the coating strength has been studied under these conditions. In this study, we have investigated the effects of ambient atmosphere, temperature, and surface finish on coating strength for samples of aluminum alloy 7075. Surprisingly, the effective Young's modulus or strength of the coating when tested in air was twice as high as when samples were tested in an inert nitrogen ormore » argon atmosphere. Additionally, the effective Young's modulus of the anodized coating increased with temperature in an air atmosphere but was independent of temperature in an inert atmosphere. The effect of surface finish was also examined. Sandblasting the surface prior to anodization was found to increase the strength of the anodized coating with the greatest enhancement noted for a nitrogen atmosphere. Lastly, machining marks were not found to significantly affect the strength.« less

  1. X-ray photoelectron spectroscopic study of the oxide film on an aluminum-tin alloy in 3.5% sodium chloride solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venugopal, A.; Selvam, P.; Raja, V.S.

    1997-10-01

    Oxide films on Al and an Al-Sn alloy were analyzed by x-ray photoelectron spectroscopy (XPS) after immersion in 3.5% sodium chloride (NaCl) solution. Results showed Sn exhibited both Sn{sup 2+} and Sn{sup 4+} oxidation stats in the oxide film. It was proposed that incorporation of these cations in the film would result in generation of more anionic and cationic vacancies in aluminum oxide (Al{sub 2}O{sub 3}), leading to active dissolution of Al.

  2. Microstructure Evolution during Dissimilar Friction Stir Welding of AA7003-T4 and AA6060-T4.

    PubMed

    Dong, Jialiang; Zhang, Datong; Zhang, Weiwen; Zhang, Wen; Qiu, Cheng

    2018-02-27

    In this work, the dissimilar joint of AA7003-T4 and 6060-T4 alloy has been produced by friction stir welding (FSW). The microstructure was examined by optical microscope (OM), electron back scattered diffraction (EBSD), transmission electron microscopy (TEM), and the mechanical properties of the joint were investigated. It is demonstrated that sound dissimilar joint can be produced through FSW. In the nugget; precipitations dissolve into the matrix and η' reprecipitate subsequently; and the elongated aluminum grains are replaced by fine and equiaxed grains due to dynamic recrystallization (DRX). In the heat affected zone (HAZ), coarse β' and η precipitates are formed and the aluminum grains are coarser as compared to the base materials. In the thermo-mechanical affected zone (TMAZ), equiaxed and elongated grains coexist due to incomplete DRX. The ultimate tensile strength of the dissimilar joint is 159.2 MPa and its elongation is 10.4%. The weak area exists in the HAZ of 6060 alloy, which is placed in the retreating side during FSW. The correlations between the microstucture and mechanical properties of the dissimilar joint are discussed.

  3. Tailored Welding Technique for High Strength Al-Cu Alloy for Higher Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Biradar, N. S.; Raman, R.

    AA2014 aluminum alloy, with 4.5% Cu as major alloying element, offers highest strength and hardness values in T6 temper and finds extensive use in aircraft primary structures. However, this alloy is difficult to weld by fusion welding because the dendritic structure formed can affect weld properties seriously. Among the welding processes, AC-TIG technique is largely used for welding. As welded yield strength was in the range of 190-195 MPa, using conventional TIG technique. Welding metallurgy of AA2014 was critically reviewed and factors responsible for lower properties were identified. Square-wave AC TIG with Transverse mechanical arc oscillation (TMAO) was postulated to improve the weld strength. A systematic experimentation using 4 mm thick plates produced YS in the range of 230-240 MPa, has been achieved. Through characterization including optical and SEM/EDX was conducted to validate the metallurgical phenomena attributable to improvement in weld properties.

  4. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy.

    PubMed

    Terry, Brandon C; Sippel, Travis R; Pfeil, Mark A; Gunduz, I Emre; Son, Steven F

    2016-11-05

    Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (ISP). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal ISP by ∼7s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5±4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. High-temperature corrosion of iron-aluminum and iron-aluminum-yttrium alloys

    NASA Astrophysics Data System (ADS)

    Insoo, Kim

    The high-temperature corrosion behavior of Fe3Al alloy has been investigated by conducting two studies: (1) corrosion of Fe 3Al and Fe3Al-Y alloys in oxidizing atmosphere and (2) corrosion of Fe3Al in mixed chlorine/oxygen environments. In the first study, oxidation of the two alloys, Fe-14.3 wt% Al and Fe-14.1 wt% Al-0.3 wt% Y, was carried out in the temperature range of 800 to 1100°C to investigate the general oxidation behavior of Fe3Al and the effect of yttrium on the oxidation of Fe3Al in terms of oxidation kinetics, oxide scale adhesion and microstructure. At lower temperatures (<1000°C), the oxidation rate of the two alloys was nearly identical, and the parabolic rate constant obtained as a function of temperature was Kp = 5128 exp[--39500 (cal/mol)/RT] mg2/cm4 h. At higher temperatures, however, yttrium-added Fe3Al alloy exhibited lower oxidation rate and much more improved oxide adhesion. The lower oxidation rate observed in Fe3Al-Y alloy seems to be due to the followings: (1) a decrease in aluminum diffusion through alumina scale and (2) modification of the scale growth mechanism from simultaneous countercurrent diffusion of aluminum and oxygen to predominant inward diffusion of oxygen, which generates less growth stress and thus prevents the formation of fast diffusion paths such as microcracks. The adhesion improvement of alumina scale formed on the Fe3Al-Y was attributed to the modification of alumina growth mechanism by the addition of Y to the Fe3Al alloy. The change of growth mechanism leads to the formation of pegs, decrease of the oxide growth stress, and decrease of voids formation, which enhances the adhesion of alumina scale to the Fe3Al alloy. The second study has focused on the corrosion of Fe3Al in the temperature range of 600--800°C in Cl2-Ar gas mixtures containing traces of oxygen as an impurity. Weight gain was observed during the corrosion of Fe3Al at 600°C in 0.25% Cl2-Ar, which is due to the formation of Fe2O3, while continuous

  6. Microstructure and texture of a nano-grained complex Al alloy fabricated by accumulative roll-bonding of dissimilar Al alloys.

    PubMed

    Lee, Seong-Hee; Jeon, Jae-Yeol; Lee, Kwang-Jin

    2013-01-01

    An ultrafine grain (UFG) complex lamella aluminum alloy sheet was successfully fabricated by ARB process using AA1050 and AA6061. The lamella thickness of the alloy became thinner and elongated to the rolling direction with increasing the number of ARB cycles. By TEM observation, it is revealed that the aspect ratio of UFGs formed by ARB became smaller with increasing the number of ARB cycles. In addition, the effect of ARB process on the development of deformation texture at the quarter thickness of ARB-processed sheets was clarified. ARB process leaded to the formation of the rolling texture with shear texture and weak cube orientation. The subdivision of the grains to the rolling direction began to occur after 3 cycles of the ARB, resulting in formation of ultrafine grains with small aspect ratio. After 5 cycles, the ultrafine grained structure with the average grain diameter of 560 nm develops in almost whole regions of the sample.

  7. Microstructural development from interdiffusion and reaction between U–Mo and AA6061 alloys annealed at 600° and 550 °C

    DOE PAGES

    Perez, E.; Keiser, D. D.; Sohn, Y. H.

    2016-05-10

    The U.S. Material Management and Minimization Reactor Conversion Program is developing low enrichment fuel systems encased in Al-alloy for use in research and test reactors. Monolithic fuel plates have local regions where the Usingle bondMo fuel plate may come into contact with the Al-alloy 6061 (AA6061) cladding. This results in the development of interdiffusion zones with complex microstructures with multiple phases. In this study, the microstructural development of diffusion couples, U–7 wt%Mo, U–10 wt%Mo, and U–12 wt%Mo vs. AA6061, annealed at 600 °C for 24 h and at 550 °C for 1, 5, and 20 h, were analyzed by scanningmore » electron microscopy with x-ray energy dispersive spectroscopy. The microstructural development and kinetics were compared to diffusion couples U–Mo vs. high purity Al and binary Al–Si alloys. As a result, the diffusion couples developed complex interaction regions where phase development was influenced by the alloying additions of the AA6061.« less

  8. Corrosion behaviour of laser-cleaned AA7024 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Zhang, F. D.; Liu, H.; Suebka, C.; Liu, Y. X.; Liu, Z.; Guo, W.; Cheng, Y. M.; Zhang, S. L.; Li, L.

    2018-03-01

    Laser cleaning has been considered as a promising technique for the preparation of aluminium alloy surfaces prior to joining and welding and has been practically used in the automotive industry. The process is based on laser ablation to remove surface contaminations and aluminium oxides. However the change of surface chemistry and oxide status may affect corrosion behaviour of aluminium alloys. Until now, no work has been reported on the corrosion characteristics of laser cleaned metallic surfaces. In this study, we investigated the corrosion behaviour of laser-cleaned AA7024-T4 aluminium alloy using potentiodynamic polarisation, electrochemical impedance spectroscopy (EIS) and scanning vibrating electrode technique (SVET). The results showed that the laser-cleaned surface exhibited higher corrosion resistance in 3.5 wt.% NaCl solution than as-received hot-rolled alloy, with significant increase in impedance and decrease in capacitance, while SVET revealed that the active anodic points appeared on the as-received surface were not presented on the laser-cleaned surfaces. Such corrosion behaviours were correlated to the change of surface oxide status measured by glow discharge optical emission spectrometry (GDOES) and X-ray photoelectron spectroscopy (XPS). It was suggested that the removal of the original less protective oxide layer consisting of MgO and MgAl2O4 on the as-received surfaces and the newly formed more protective oxide layer containing mainly Al2O3 and MgO by laser cleaning were responsible for the improvement of the corrosion performance.

  9. Effect of iron-intermetallics and porosity on tensile and impact properties of aluminum-silicon-copper and aluminum-silicon-magnesium cast alloys

    NASA Astrophysics Data System (ADS)

    Ma, Zheyuan

    Aluminum-silicon (Al-Si) alloys are an important class of materials that constitute the majority of aluminum cast parts produced, due to their superior properties and excellent casting characteristics. Within this family of alloys, Al-Si-Cu and Al-Si-Mg cast alloys are frequently employed in automotive applications. The commercially popular 319 and 356 alloys, representing these two alloy systems, were selected for study in the present work, with the aim of investigating the effect of iron intermetallics and porosity on the alloy performance. This was carried out through a study of the tensile and impact properties, these being two of the important mechanical properties used in design calculations. Iron, through the precipitation of second phase intermetallic constituents, in particular the platelike beta-Al5FeSi phase, is harmful to the alloy properties. Likewise, gas- or shrinkage porosity in castings is also detrimental to the mechanical properties. By determining the optimum alloying, melt processing and solidification parameters (viz., Fe content, Sr modification and cooling rate) required to minimize the harmful effects of porosity and iron intermetallics, and studying their role on the fracture behavior, the fracture mechanism in the alloys could be determined. Castings were prepared from both industrial and experimental 319.2, B319.2 and A356.2 alloy melts, containing Fe levels of 0.2--1.0 wt%. Sr-modified (˜200 ppm) melts were also prepared for each alloy Fe level. The end-chilled refractory mold used provided directional solidification and a range of cooling rates (or dendrite arm spacings, DAS) within the same casting. Tensile and impact test samples machined from specimen blanks sectioned from the castings at various heights above the chill end provided DASs of 23--85mum. All samples were T6-heat-treated before testing. Tests were carried out employing Instron Universal and Instrumented Charpy testing machines. Optical microscopy, image analysis, SEM

  10. Fabrication of superhydrophobic surface with improved corrosion inhibition on 6061 aluminum alloy substrate

    NASA Astrophysics Data System (ADS)

    Li, Xuewu; Zhang, Qiaoxin; Guo, Zheng; Shi, Tian; Yu, Jingui; Tang, Mingkai; Huang, Xingjiu

    2015-07-01

    This work has developed a simple and low-cost method to render 6061 aluminum alloy surface superhydrophobicity and excellent corrosion inhibition. The superhydrophobic aluminum alloy surface has been fabricated by hydrochloric acid etching, potassium permanganate passivation and fluoroalkyl-silane modification. Meanwhile, the effect of the etching and passivation time on the wettability and corrosion inhibition of the fabricated surface has also been investigated. Results show that with the etching time of 6 min and passivation time of 180 min the fabricated micro/nano-scale terrace-like hierarchical structures accompanying with the nanoscale coral-like network bulge structures after being modified can result in superhydrophobicity with a water contact angle (CA) of 155.7°. Moreover, an extremely weak adhesive force to droplets as well as an outstanding self-cleaning behavior of the superhydrophobic surface has also been proved. Finally, corrosion inhibition in seawater of the as-prepared aluminum alloy surface is characterized by potentiodynamic polarization curves and electrochemical impedance spectroscopy. Evidently, the fabricated superhydrophobic surface attained an improved corrosion inhibition efficiency of 83.37% compared with the traditional two-step processing consisting of etching and modification, which will extend the further applications of aluminum alloy especially in marine engineering fields.

  11. Nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tashlykova-Bushkevich, Iya I.

    2015-12-31

    The present work summarizes recent progress in the investigation of nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys foils produced at exceptionally high cooling rates. We focus here on the potential of modification of hydrogen desorption kinetics in respect to weak and strong trapping sites that could serve as hydrogen sinks in Al materials. It is shown that it is important to elucidate the surface microstructure of the Al alloy foils at the submicrometer scale because rapidly solidified microstructural features affect hydrogen trapping at nanostructured defects. We discuss the profound influence of solute atoms on hydrogen−lattice defectmore » interactions in the alloys. with emphasis on role of vacancies in hydrogen evolution; both rapidly solidified pure Al and conventionally processed aluminum samples are considered.« less

  12. Aging Optimization of Aluminum-Lithium Alloy L277 for Application to Cryotank Structures

    NASA Technical Reports Server (NTRS)

    Sova, B. J.; Sankaran, K. K.; Babel, H.; Farahmand, B.; Cho, A.

    2003-01-01

    Compared with aluminum alloys such as 2219, which is widely used in space vehicle for cryogenic tanks and unpressurized structures, aluminum-lithium alloys possess attractive combinations of lower density and higher modulus along with comparable mechanical properties and improved damage tolerance. These characteristics have resulted in the successful use of the aluminum-lithium alloy 2195 for the Space Shuttle External Tank, and the consideration of newer U.S. aluminum-lithium alloys such as L277 and C458 for future space vehicles. A design of experiments aging study was conducted for plate and a limited study on extrusions. To achieve the T8 temper, Alloy L277 is typically aged at 290 F for 40 hours. In the study for plate, a two-step aging treatment was developed through a design of experiments study and the one step aging used as a control. Based on the earlier NASA studies on 2195, the first step aging temperature was varied between 220 F and 260 F. The second step aging temperatures was varied between 290 F and 310 F, which is in the range of the single-step aging temperature. For extrusions, two, single-step, and one two-step aging condition were evaluated. The results of the design of experiments used for the T8 temper as well as a smaller set of experiments for the T6 temper for plate and the results for extrusions will be presented.

  13. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys

    NASA Astrophysics Data System (ADS)

    Guo, Lian; Zhang, Fen; Lu, Jun-Cai; Zeng, Rong-Chang; Li, Shuo-Qi; Song, Liang; Zeng, Jian-Min

    2018-04-01

    The magnesium aluminum and zinc aluminum layered double hydroxides intercalated with NO3 -(MgAl-NO3-LDH and ZnAl-NO3-LDH) were prepared by the coprecipitation method, and the magnesium aluminum and the zinc aluminum layered double hydroxides intercalated with VO x -(MgAl-VO x -LDH and ZnAl-VO x -LDH) were prepared by the anion-exchange method. Morphologies, microstructures and chemical compositions of LDHs were investigated by SEM, EDS, XRD, FTIR, Raman and TG analyses. The immersion tests were carried to determine the corrosion inhibition properties of MgAl-VO x -LDH and ZnAl-VO x -LDH on AZ31 Mg alloys. The results showed that ZnAl-VO x -LDH possesses the best anion-exchange and inhibition abilities. The influence of treatment parameters on microstructures of LDHs were discussed. Additionally, an inhibition mechanism for ZnAl-VO x -LDH on the AZ31 magnesium alloy was proposed and discussed.

  14. Nanostructuring of Aluminum Alloy Powders by Cryogenic Attrition with Hydrogen-Free Process Control Agent

    DTIC Science & Technology

    2015-02-01

    Nanostructuring of Aluminum Alloy Powders by Cryogenic Attrition with Hydrogen-Free Process Control Agent by Frank Kellogg , Clara Hofmeister...Process Control Agent Frank Kellogg Bowhead Science and Technology Clara Hofmeister Advanced Materials Processing and Analysis Center...NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Frank Kellogg , Clara Hofmeister, Anit Giri, and Kyu Cho 5d. PROJECT NUMBER 5e

  15. Finite element modelling of aluminum alloy 2024-T3 under transverse impact loading

    NASA Astrophysics Data System (ADS)

    Abdullah, Ahmad Sufian; Kuntjoro, Wahyu; Yamin, A. F. M.

    2017-12-01

    Fiber metal laminate named GLARE is a new aerospace material which has great potential to be widely used in future lightweight aircraft. It consists of aluminum alloy 2024-T3 and glass-fiber reinforced laminate. In order to produce reliable finite element model of impact response or crashworthiness of structure made of GLARE, one can initially model and validate the finite element model of the impact response of its constituents separately. The objective of this study was to develop a reliable finite element model of aluminum alloy 2024-T3 under low velocity transverse impact loading using commercial software ABAQUS. Johnson-Cook plasticity and damage models were used to predict the alloy's material properties and impact behavior. The results of the finite element analysis were compared to the experiment that has similar material and impact conditions. Results showed good correlations in terms of impact forces, deformation and failure progressions which concluded that the finite element model of 2024-T3 aluminum alloy under low velocity transverse impact condition using Johnson-Cook plastic and damage models was reliable.

  16. Effects of Stress Relaxation Aging with Electrical Pulses on Microstructures and Properties of 2219 Aluminum Alloy

    PubMed Central

    Tan, Jingsheng; Zhan, Lihua; Zhang, Jiao; Yang, Zhan; Ma, Ziyao

    2016-01-01

    To realize the high-efficiency and high-performance manufacture of complex high-web panels, this paper introduced electric pulse current (EPC) into the stress relaxation aging forming process of 2219 aluminum alloy and systematically studied the effects of EPC, stress, and aging time upon the microstructure and properties of 2219 aluminum alloy. It is discovered that: (a) EPC greatly enhanced the mechanical properties after stress relaxation aging and reduced the sensitivity of the yield strength for the initial stress under the aging system of 165 °C/11 h; (b) compared with general aging, stress relaxation aging instead delayed the aging process of 2219 aluminum alloy and greatly increased the peak strength value; (c) EPC accelerated the aging precipitation behavior of 2219 aluminum alloy and reduced transgranular and grain-boundary energy difference, thus leading to a more diffused distribution of the transgranular precipitated phase and the absence of a significant precipitation-free zone (PFZ) and grain-boundary stable phase in the grain boundary, further improving the mechanical properties of the alloy. PMID:28773660

  17. General Corrosion Resistance Assessments of AA7085, AA7129, and Other High-Performance Aluminum Alloys for Department of Defense (DOD) Systems UsingLaboratory Based Accelerated Corrosion Methods and Electrochemistry

    DTIC Science & Technology

    2013-09-01

    laboratory should play a role in the final design decision process. Integration factors such as conversion coatings , primers, topcoats, and their...Cyclic Accelerated Corrosion Analysis of Nonchromate Conversion Coatings on Aluminum Alloys 2024, 2219, 5083, and 7075 Using DoD Paint Systems; ARL...Titanium 0.08 0.10 max 0.10 max 0.15 max 0.08 max 0.05 max Zirconium 0.05 – 0.15 0.05 – 0.15 - 0.10 – 0.25 0.05 – 0.15 - Vanadium - - - - - 0.05 max

  18. On the Formation of Lightweight Nanocrystalline Aluminum Alloys by Electrodeposition

    DOE PAGES

    Hilty, Robert D.; Masur, Lawrence J.

    2017-08-08

    New nanocrystalline aluminum alloys have been fabricated by electrodeposition. These are thermodynamically stable alloys of Al-Mn and Al-Zr with grain sizes < 100nm. Al-Mn and Al-Zr alloys are characterized here showing high strength (up to 1350 MPa) and hardness (up to 450 HVN) while maintaining the specific gravity of Al. Smooth and dense deposits plated from ionic liquids, such as EMIM:Cl (1-Ethyl-3-methylimidazolium chloride), can develop to thicknesses of 1mm or more.

  19. Aging Optimization of Aluminum-Lithium Alloy C458 for Application to Cryotank Structures

    NASA Technical Reports Server (NTRS)

    Sova, B. J.; Sankaran, K. K.; Babel, H.; Farahmand, B.; Rioja, R.

    2003-01-01

    Compared with aluminum alloys such as 2219, which is widely used in space vehicle for cryogenic tanks and unpressurized structures, aluminum-lithium alloys possess attractive combinations of lower density and higher modulus along with comparable mechanical properties. These characteristics have resulted in the successful use of the aluminum-lithium alloy 2195 (Al-1.0 Li-4.0 Cu-0.4 Mg-0.4 Ag-0.12 Zr) for the Space Shuttle External Tank, and the consideration of newer U.S. aluminum-lithium alloys such as L277 and C458 for future space vehicles. These newer alloys generally have lithium content less than 2 wt. % and their composition and processing have been carefully tailored to increase the toughness and reduce the mechanical property anisotropy of the earlier generation alloys such 2090 and 8090. Alloy processing, particularly the aging treatment, has a significant influence on the strength-toughness combinations and their dependence on service environments for aluminum-lithium alloys. Work at NASA Marshall Space Flight Center on alloy 2195 has shown that the cryogenic toughness can be improved by employing a two-step aging process. This is accomplished by aging at a lower temperature in the first step to suppress nucleation of the strengthening precipitate at sub-grain boundaries while promoting nucleation in the interior of the grains. Second step aging at the normal aging temperature results in precipitate growth to the optimum size. A design of experiments aging study was conducted for plate. To achieve the T8 temper, Alloy C458 (Al-1.8 Li-2.7 Cu-0.3 Mg-0.08 Zr-0.3 Mn-0.6 Zn) is typically aged at 300F for 24hours. In this study, a two-step aging treatment was developed through a comprehensive 2(exp 4) full factorial design of experiments study and the typical one-step aging used as a reference. Based on the higher lithium content of C458 compared with 2195, the first step aging temperature was varied between 175F and 250F. The second step aging temperatures was

  20. Aging Optimization of Aluminum-Lithium Alloy C458 for Application to Cryotank Structures

    NASA Technical Reports Server (NTRS)

    Sova, B. J.; Sankaran, K. K.; Babel, H.; Farahmand, B.; Rioja, R.

    2003-01-01

    Compared with aluminum alloys such as 2219, which is widely used in space vehicle for cryogenic tanks and unpressurized structures, aluminum-lithium alloys possess attractive combinations of lower density and higher modulus along with comparable mechanical properties. These characteristics have resulted in the successful use of the aluminum-lithium alloy 2195 (Al-1.0 Li-4.0 Cu-0.4 Mg-0.4 Ag-0.12 Zr) for the Space Shuttle External Tank, and the consideration of newer U.S. aluminum-lithium alloys such as L277 and C458 for future space vehicles. These newer alloys generally have lithium content less than 2 wt. % and their composition and processing have been carefully tailored to increase the toughness and reduce the mechanical property anisotropy of the earlier generation alloys such 2090 and 8090. Alloy processing, particularly the aging treatment, has a significant influence on the strength-toughness combinations and their dependence on service environments for aluminum-lithium alloys. Work at NASA Marshall Space Flight Center on alloy 2195 has shown that the cryogenic toughness can be improved by employing a two-step aging process. This is accomplished by aging at a lower temperature in the first step to suppress nucleation of the strengthening precipitate at sub-grain boundaries while promoting nucleation in the interior of the grains. Second step aging at the normal aging temperature results in precipitate growth to the optimum size. A design of experiments aging study was conducted for plate. To achieve the T8 temper, Alloy C458 (Al-1.8 Li-2.7 Cu-0.3 Mg- 0.08 Zr-0.3 Mn-0.6 Zn) is typically aged at 300 F for 24 hours. In this study, a two-step aging treatment was developed through a comprehensive 24 full factorial design of experiments study and the typical one-step aging used as a reference. Based on the higher lithium content of C458 compared with 2195, the first step aging temperature was varied between 175 F and 250 F. The second step aging temperatures was

  1. Numerical investigation for formability of aluminum 6016 alloy under non-isothermal warm forming process

    NASA Astrophysics Data System (ADS)

    Hu, P.; Dai, M. H.; Ying, L.; Shi, D. Y.; Zhao, K. M.; Lu, J. D.

    2013-05-01

    The warm forming technology of aluminum alloy has attracted attention from worldwide automotive engineering sector in recent years, with which the complex geometry parts can be realized at elevated temperature. A non-isothermal warm forming process for the heat treatable aluminum can quickly carry out its application on traditional production line by adding a furnace to heat up the aluminum alloy sheet. The 6000 aluminum alloy was investigated by numerical simulation and experiment using the Nakajima test model in this paper. A modified Fields-Backofen model was introduced into numerical simulation process to describe the thermo-mechanical flow behavior of a 6000 series aluminum alloy. The experimental data was obtained by conducting thermal-mechanical uniaxial tensile experiment in temperatures range of 25˜400°C to guarantee the numerical simulation more accurate. The numerical simulation was implemented with LS_DYNA software in terms of coupled dynamic explicit method for investigating the effect of initial forming temperature and the Binder Holder Force (BHF), which are critical process parameters in non-isothermal warm forming. The results showed that the optimal initial forming temperature range was 300°C˜350°C. By means of conducting numerical simulation in deep drawing box model, the forming window of BHF and temperature around the optimal initial forming temperature (275°, 300° and 325°) are investigated, which can provide guidance to actual experiment.

  2. AA6082 to DX56-Steel Laser Brazing: Process Parameter-Intermetallic Formation Correlation

    NASA Astrophysics Data System (ADS)

    Narsimhachary, D.; Pal, S.; Shariff, S. M.; Padmanabham, G.; Basu, A.

    2017-09-01

    In the present study, laser-brazed AA6082 to DX56-galvanized steel joints were investigated to understand the influence of process parameters on joint strength in terms of intermetallic layer formation. 1.5-mm-thick sheet of aluminum alloy (AA6082-T6) and galvanized steel (DX56) sheet of 0.7 mm thickness were laser-brazed with 1.5-mm-diameter Al-12% Si solid filler wire. During laser brazing, laser power (4.6 kW) and wire feed rate (3.4 m/min) were kept constant with a varying laser scan speed of 3.5, 3, 2.5, 2, 1.5, and 1 m/min. Microstructure of brazed joint reveals epitaxial growth at the aluminum side and intermetallic layer formation at steel interface. Intermetallic layer formation was confirmed by EDS analysis and XRD study. Hardness profile showed hardness drop in filler region, and failure during tensile testing was initiated through the filler region near the steel interface. As per both experimental study and numerical analysis, it was observed that intermetallic layer thickness decreases with increasing brazing speed. Zn vaporization from galvanized steel interface also affected the joint strength. It was found that high laser scan speed or faster cooling rate can be chosen for suppressing intermetallic layer formation or at least decreasing the layer thickness which results in improved mechanical properties.

  3. The role of hydrogen in hot-salt stress corrosion cracking of titanium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Ondrejcin, R. S.

    1971-01-01

    Additional support is presented for the previously proposed role of hydrogen as an embrittling agent in hot-salt stress corrosion cracking of titanium-aluminum alloys. The main source of hydrogen formed during the reactions of titanium alloys with hot salt was identified as water associated with the salt. Hydrogen is produced by the reaction of an intermediate (hydrogen halide) with the alloy rather than from metal-water reactions. The fracture mode of precracked tensile specimens was ductile when the specimens were tested in air, and brittle when tests were made in high-pressure hydrogen. Stressed titanium-aluminum alloys also were cracked by bombardment with hydrogen ions produced in a proton accelerator. The approximate concentrations of the hydrogen ions in the alloys were calculated.

  4. Stress corrosion cracking of sensitized AA5083 (Al-4.5Mg-1.0Mn)

    NASA Astrophysics Data System (ADS)

    Searles, J. L.; Gouma, P. I.; Buchheit, R. G.

    2001-11-01

    The AA5083 (Al-4.4Mg-0.7Mn-0.15Cr) alloy is a nonheat-treatable aluminum alloy known for its excellent corrosion resistance. However, it can become susceptible to intergranular stress corrosion cracking (IGSCC) when exposed to temperatures ranging from 50 °C to 200 °C for sufficient lengths of time. This IGSCC is widely believed to be associated with dissolution of the electrochemically active β phase, Al3Mg2, which is precipitated on grain boundaries. Recently, alternative mechanisms have been invoked related to hydrogen effects and/or free Mg segregation or depletion in the grainboundary regions. To establish a baseline for the sensitization effect, constant-extension-rate tests (CERTs) were conducted under open-circuit conditions and under potential control in 3.5 pct NaCl on samples isothermally treated at 150 °C. To aid in interpreting the CERT results, grain-boundary precipitation and solute depletion were characterized by transmission electron microscopy (TEM). Additionally, the electrochemical behavior of the β phase was characterized by anodic polarization of the intermetallic compound synthesized in bulk form. In CERTs under open-circuit conditions, the measured ductility depended strongly on sensitization time, reaching a minimum at 189 hours, followed by a slight increase at longer times. This trend correlated well with the fractional coverage of β phase on grain boundaries, which increased up to 189 hours, where it existed with nearly continuous coverage. At longer times, this film coarsened and became discontinuous. Correspondingly, some resistance to IGSCC was recovered. In polarization experiments, bulk synthesized β phase was found to be spontaneously passive from its corrosion potential (-1.40 VSCE) up to about -0.92 VSCE, where passivity was observed to break down. Sensitized AA5083 samples polarized below the β-phase breakdown potential showed almost no evidence of IGSCC, indicating that a high β dissolution rate is a requirement for

  5. Evaluation of AA5052 alloy anode in alkaline electrolyte with organic rare-earth complex additives for aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Wang, Dapeng; Li, Heshun; Liu, Jie; Zhang, Daquan; Gao, Lixin; Tong, Lin

    2015-10-01

    Behaviours of the AA5052 aluminium alloy anode of the alkaline aluminium-air battery are studied by the hydrogen evolution test, the electrochemical measurements and the surface analysis method. The combination of amino-acid and rare earth as electrolyte additives effectively retards the self-corrosion of AA5052 aluminium alloy in 4 M NaOH solution. It shows that the combination of L-cysteine and cerium nitrate has a synergistic effect owing to the formation of a complex film on AA5052 alloy surface. The organic rare-earth complex can decrease the anodic polarisation, suppress the hydrogen evolution and increase the anodic utilization rate.

  6. A study of aluminum-lithium alloy solidification using acoustic emission techniques. Ph.D. Thesis, 1991

    NASA Technical Reports Server (NTRS)

    Henkel, Daniel P.

    1992-01-01

    Physical phenomena associated with the solidification of an aluminum lithium alloy was characterized using acoustic emission (AE) techniques. It is shown that repeatable patterns of AE activity may be correlated to microstructural changes that occur during solidification. The influence of the experimental system on generated signals was examined in the time and frequency domains. The analysis was used to show how an AE signal from solidifying aluminum is changed by each component in the detection system to produce a complex waveform. Conventional AE analysis has shown that a period of high AE activity occurs in pure aluminum, an Al-Cu alloy, and the Al-Li alloy, as the last fraction of solid forms. A model attributes this to the internal stresses of grain boundary formation. An additional period of activity occurs as the last fraction of solid forms, but only in the two alloys. A model attributes this to the formation of interdendritic porosity which was not present in the pure aluminum. The AE waveforms were dominated by resonant effects of the waveguide and the transducer.

  7. The relative stress-corrosion-cracking susceptibility of candidate aluminum-lithium alloys for aerospace structural applications

    NASA Technical Reports Server (NTRS)

    Pizzo, P. P.

    1980-01-01

    The microstructure and tensile properties of two powder metallurgy processed aluminum-lithium alloys were determined. Strength properties of 480 MPa yield and 550 MPa ultimate tensile strength with 5% strain to fracture were attained. Very little reduction in area was observed and fracture characteristics were brittle. The magnesium bearing alloy exhibited the highest strength and ductility, but fracture was intergranular. Recrystallization and grain growth, as well as coarse grain boundary precipitation, occurred in Alloy 2. The fracture morphology of the two alloys differed. Alloy 1 fractured along a plane of maximum shear stress, while Alloy 2 fractured along a plane of maximum tensile stress. It is found that a fixed orientation relationship exists between the shear fracture plane and the rolling direction which suggests that the PM alloys are strongly textured.

  8. Small-crack effects in high-strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Wu, X. R.; Venneri, S. L.; Li, C. G.

    1994-01-01

    The National Aeronautics and Space Administration and the Chinese Aeronautical Establishment participated in a Fatigue and Fracture Mechanics Cooperative Program. The program objectives were to identify and characterize crack initiation and growth of small cracks (10 microns to 2 mm long) in commonly used US and PRC aluminum alloys, to improve fracture mechanics analyses of surface- and corner-crack configurations, and to develop improved life-prediction methods. Fatigue and small-crack tests were performed on single-edgenotch tension (SENT) specimens and large-crack tests were conducted on center-crack tension specimens for constant-amplitude (stress ratios of -1, 0, and 0.5) and Mini-TWIST spectrum loading. The plastic replica method was used to monitor the initiation and growth of small fatigue cracks at the semicircular notch. Crack growth results from each laboratory on 7075-T6 bare and LC9cs clad aluminum alloys agreed well and showed that fatigue life was mostly crack propagation from a material defect (inclusion particles or void) or from the cladding layer. Finite-element and weight-function methods were used to determine stress intensity factors for surface and corner cracks in the SENT specimens. Equations were then developed and used in a crack growth and crack-closure model to correlate small- and large-crack data and to make life predictions for various load histories. The cooperative program produced useful experimental data and efficient analysis methods for improving life predictions. The results should ultimately improve aircraft structural reliability and safety.

  9. METHOD OF ALLOYING REACTIVE METALS WITH ALUMINUM OR BERYLLIUM

    DOEpatents

    Runnalls, O.J.C.

    1957-10-15

    A halide of one or more of the reactive metals, neptunium, cerium and americium, is mixed with aluminum or beryllium. The mass is heated at 700 to 1200 deg C, while maintaining a substantial vacuum of above 10/sup -3/ mm of mercury or better, until the halide of the reactive metal is reduced and the metal itself alloys with the reducing metal. The reaction proceeds efficiently due to the volatilization of the halides of the reducing metal, aluminum or beryllium.

  10. Influence of scandium on the microstructure and strength properties of the welded joint at the laser welding of aluminum-lithium alloys

    NASA Astrophysics Data System (ADS)

    Malikov, A. G.; Golyshev, A. A.; Ivanova, M. Yu.

    2017-10-01

    Today, aeronautical equipment manufacture involves up-to-date high-strength aluminum alloys of decreased density resulting from lithium admixture. Various technologies of fusible welding of these alloys are being developed. Serious demands are imposed to the welded joints of aluminum alloys in respect to their strength characteristics. The paper presents experimental investigations of the optimization of the laser welding of aluminum alloys with the scandium-modified welded joint. The effect of scandium on the micro-and macro-structure has been studied as well as the strength characteristics of the welded joint. It has been found that scandium under in the laser welding process increases the welded joint elasticity for the system Al-Mg-Li, aluminum alloy 1420 by 20 %, and almost doubles the same for the system Al-Cu-Li, aluminum alloy 1441.

  11. An Economic Model and Experiments to Understand Aluminum-Cerium Alloy Recycling

    NASA Astrophysics Data System (ADS)

    Iyer, Ananth V.; Lim, Heejong; Rios, Orlando; Sims, Zachary; Weiss, David

    2018-04-01

    We provide an economic model to understand the impact of adoption, sorting and pricing of scrap on the recycling of a new aluminum-cerium (AlCe) alloy for use in engine blocks in the automobile industry. The goal of the laboratory portion of this study is to investigate possible effects of cerium contamination on well-established aluminum recycling streams. Our methodology includes three components: (1) focused data gathering from industry supply chain participants, (2) experimental data through laboratory experiments to understand the impact of cerium on existing alloys and (3) an economic model to understand pricing incentives on a recycler's separation of AlCe engine blocks.

  12. Mechanical behavior of monocrystalline aluminum-lithium alloy at low temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Z.G.; Liu, W.; Xu, Y.B.

    1994-12-01

    Investigations have indicated that at low temperature aluminum- lithium alloys display improved toughness and an improved strength-toughness relationship. The yield strength, ultimate tensile strength, elongation and the fracture toughness increase with decreasing temperatures. Several mechanisms have been proposed to explain this most striking feature. Webster claimed that low melting point impurities, such as sodium and potassium, are responsible for the improvement of mechanical properties in Al-Li alloys at low temperatures. However, Venkateswara Rao et al. indicated that the increased delamination at low temperatures can increase the degree of in-plane crack deflection, resulting in toughening of the alloys. On the basismore » of their own results, Xu and coworker pointed out that the improvement of tensile and fatigue properties at liquid nitrogen temperatures is also presumably attributable to the delamination. Therefore, the mechanisms responsible for the variation in mechanical properties with temperature are not currently well-understood. In order to elucidate the real situation, single crystals of a binary aluminum-lithium alloy were adopted in the present study. This paper is devoted to the description of the behavior of the load-displacement curves and the associated slip traces on the sample surfaces.« less

  13. Analysis of the Noneroding Penetration of Tungsten Alloy Long Rods into Aluminum Targets

    DTIC Science & Technology

    2003-09-01

    J D YATTEAU 5941 S MIDDLEFIELD RD SUITE 100 LITTLETON CO 80123 2 APPLIED RESEARCH ASSOC INC D GRADY F MAESTAS SUITE A220 4300...of Tungsten Alloy Long Rods Into Aluminum Targets 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER AH80 5e. TASK NUMBER 6. AUTHOR( S ) Steven B...Segletes 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) U.S. Army Research Laboratory ATTN: AMSRL-WM-TD Aberdeen

  14. Experimental Investigation on the Joining of Aluminum Alloy Sheets Using Improved Clinching Process

    PubMed Central

    Chen, Chao; Zhao, Shengdun; Han, Xiaolan; Zhao, Xuzhe; Ishida, Tohru

    2017-01-01

    Aluminum alloy sheets have been widely used to build the thin-walled structures by mechanical clinching technology in recent years. However, there is an exterior protrusion located on the lower sheet and a pit on the upper sheet, which may restrict the application of the clinching technology in visible areas. In the present study, an improved clinched joint used to join aluminum alloy sheets was investigated by experimental method. The improved clinching process used for joining aluminum alloy evolves through four phases: (a) localized deformation; (b) drawing; (c) backward extrusion; and (d) mechanical interlock forming. A flat surface can be produced using the improved clinching process. Shearing strength, tensile strength, material flow, main geometrical parameters, and failure mode of the improved clinched joint were investigated. The sheet material was compressed to flow radially and upward using a punch, which generated a mechanical interlock by producing severe localized plastic deformation. The neck thickness and interlock of the improved clinched joint were increased by increasing the forming force, which also contributed to increase the strength of the clinched joint. The improved clinched joint can get high shearing strength and tensile strength. Three main failure modes were observed in the failure process, which were neck fracture mode, button separation mode, and mixed failure mode. The improved clinched joint has better joining quality to join aluminum alloy sheets on the thin-walled structures. PMID:28763027

  15. Experimental Investigation on the Joining of Aluminum Alloy Sheets Using Improved Clinching Process.

    PubMed

    Chen, Chao; Zhao, Shengdun; Han, Xiaolan; Zhao, Xuzhe; Ishida, Tohru

    2017-08-01

    Aluminum alloy sheets have been widely used to build the thin-walled structures by mechanical clinching technology in recent years. However, there is an exterior protrusion located on the lower sheet and a pit on the upper sheet, which may restrict the application of the clinching technology in visible areas. In the present study, an improved clinched joint used to join aluminum alloy sheets was investigated by experimental method. The improved clinching process used for joining aluminum alloy evolves through four phases: (a) localized deformation; (b) drawing; (c) backward extrusion; and (d) mechanical interlock forming. A flat surface can be produced using the improved clinching process. Shearing strength, tensile strength, material flow, main geometrical parameters, and failure mode of the improved clinched joint were investigated. The sheet material was compressed to flow radially and upward using a punch, which generated a mechanical interlock by producing severe localized plastic deformation. The neck thickness and interlock of the improved clinched joint were increased by increasing the forming force, which also contributed to increase the strength of the clinched joint. The improved clinched joint can get high shearing strength and tensile strength. Three main failure modes were observed in the failure process, which were neck fracture mode, button separation mode, and mixed failure mode. The improved clinched joint has better joining quality to join aluminum alloy sheets on the thin-walled structures.

  16. Effect of Copper and Silicon on Al-5%Zn Alloy as a Candidate Low Voltage Sacrificial Anode

    NASA Astrophysics Data System (ADS)

    Pratesa, Yudha; Ferdian, Deni; Togina, Inez

    2017-05-01

    One common method used for corrosion protection is a sacrificial anode. Sacrificial anodes that usually employed in the marine environment are an aluminum alloy sacrificial anode, especially Al-Zn-In. However, the electronegativity of these alloys can cause corrosion overprotection and stress cracking (SCC) on a high-strength steel. Therefore, there is a development of the sacrificial anode aluminum low voltage to reduce the risk of overprotection. The addition of alloying elements such as Cu, Si, and Ge will minimize the possibility of overprotection. This study was conducted to analyze the effect of silicon and copper addition in Al-5Zn. The experiment started from casting the sacrificial anode aluminum uses electrical resistance furnace in a graphite crucible in 800°C. The results alloy was analyzed using Optical emission spectroscopy (OES), Differential scanning calorimetry, electrochemical impedance spectroscopy, and metallography. Aluminum alloy with the addition of a copper alloy is the most suitable and efficient to serve as a low-voltage sacrificial anode aluminum. Charge transfer resistivity of copper is smaller than silicon which indicates that the charge transfer between the metal and the electrolyte is easier t to occur. Also, the current potential values in coupling with steel are also in the criteria range of low-voltage aluminum sacrificial anodes.

  17. Fracture characteristics of structural aerospace alloys containing deep surface flaws. [aluminum-titanium alloys

    NASA Technical Reports Server (NTRS)

    Masters, J. N.; Bixler, W. D.; Finger, R. W.

    1973-01-01

    Conditions controlling the growth and fracture of deep surface flaws in aerospace alloys were investigated. Static fracture tests were performed on 7075-T651 and 2219-T87 aluminum, and 6Ai-4V STA titanium . Cyclic flaw growth tests were performed on the two latter alloys, and sustain load tests were performed on the titanium alloy. Both the cyclic and the sustain load tests were performed with and without a prior proof overload cycle to investigate possible growth retardation effects. Variables included in all test series were thickness, flaw depth-to-thickness ratio, and flaw shape. Results were analyzed and compared with previously developed data to determine the limits of applicability of available modified linear elastic fracture solutions.

  18. Microstructural Characterization of Aluminum-Lithium Alloys 1460 and 2195

    NASA Technical Reports Server (NTRS)

    Wang, Z. M.; Shenoy, R. N.

    1998-01-01

    Transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) techniques were employed to characterize the precipitate distributions in lithium-containing aluminum alloys 1460 and 2195 in the T8 condition. TEM examinations revealed delta prime and T1 as the primary strengthening precipitates in alloys 1460 and 2195 respectively. TEM results showed a close similarity of the Russian alloy 1460 to the U.S. alloy 2090, which has a similar composition and heat treatment schedule. DSC analyses also indicate a comparable delta prime volume fraction. TEM study of a fractured tensile sample of alloy 1460 showed that delta prime precipitates are sheared by dislocations during plastic deformation and that intense stress fields arise at grain boundaries due to planar slip. Differences in fracture toughness of alloys 1460 and 2195 are rationalized on the basis of a literature review and observations from the present study.

  19. Characteristics of the aluminum alloy sheets for forming and application examples

    NASA Astrophysics Data System (ADS)

    Uema, Naoyuki; Asano, Mineo

    2013-12-01

    In this paper, the characteristics and application examples of aluminum alloy sheets developed for automotive parts by Sumitomo Light Metal are described. For the automotive closure panels (ex., hood, back-door), an Al-Mg-Si alloy sheet having an excellent hemming performance was developed. The cause of the occurrence and the propagation of cracks by bending were considered to be the combined effect of the shear bands formed across several crystal grains and the micro-voids formed around the second phase particles. By reducing the shear band formation during bending by controlling the crystallographic texture, the Al-Mg-Si alloy sheets showed an excellent hemming performance. For the automotive outer panels (ex., roof, fender, trunk-lid), an Al-Mg alloy sheet, which has both a good hot blow formability and excellent surface appearance after hot blow forming was developed, and hot blow forming technology was put to practical use using this developed Al-Mg alloy sheet. For automotive heat insulators, a high ductile Al-Fe alloy sheet was developed. The heat insulator, which integrated several panels, was put into practical use using this developed Al-Fe alloy sheet. The textured sheet was often used as a heat insulator in order to reduce the thickness of the aluminum alloy sheet and obtain good press formability. The new textured sheet, which has both high rigidity and good press formability for heat insulators, was developed by FE analysis.

  20. Spray-coating of superhydrophobic aluminum alloys with enhanced mechanical robustness.

    PubMed

    Zhang, Youfa; Ge, Dengteng; Yang, Shu

    2014-06-01

    A superhydrophobic aluminum alloy was prepared by one-step spray coating of an alcohol solution consisting of hydrophobic silica nanoparticles (15-40 nm) and methyl silicate precursor on etched aluminum alloy with pitted morphology. The as-sprayed metal surface showed a water contact angle of 155° and a roll-off angle of 4°. The coating was subjected to repeated mechanical tests, including high-pressure water jetting, sand particles impacting, and sandpaper shear abrasion. It remained superhydrophobic with a roll-off angle <10° up to three cycles of water jetting (25 kPa for 10 min) and sand particle impinging. After five cycles, the roll-off angle increased, but no more than 19° while the water contact angle remained greater than 150°. The superhydrophobic state was also maintained after three cycles of sandpaper abrasion. It was found that the micro-protrusion structures on the etched aluminum alloy played an important role to enhance the coating mechanical robustness, where the nanoparticles could grab on the rough surface, specifically in the groove structures, in comparison with the smooth glass substrates spray coated with the same materials. Further, we showed that the superhydrophobicity could be restored by spray a new cycle of the nanocomposite solution on the damaged surface. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. An Investigation on Axial Deformation Behavior of Thin-Wall Unfilled and Filled Tube with Aluminum Alloy (Al-Si7Mg) Foam Reinforced with SiC Particles

    NASA Astrophysics Data System (ADS)

    Kumaraswamidhas, L. A.; Rajak, Dipen Kumar; Das, S.

    2016-08-01

    The objective of this research is to produce superior quality aluminum alloy foam with low relative density and higher resistance against compression deformation. This investigation has studied crash energy capacities of unfilled and filled aluminum alloy foams in mild steel tubes. The foam has been prepared by the melt route process with an addition of 5wt.% silicon carbide particles. The fabricated aluminum alloy foams were characterized by field emission scanning electron microscopy, x-ray diffraction, Fourier transform infrared spectroscopy, and Material Pro analyzer. It was observed that the foam-filled tubes could absorb more energy as compared to the unfilled tubes before reaching the complete densification point. Also, the aluminum alloy foams had better energy absorption capacity during the crash or impact loading. This article demonstrates the excellent ability of aluminum alloy foam application in the field where there is a need to absorb crash energy. It is to be noted that the amount of energy absorption will be greater for low-density foam filled in thin-wall rectangular section tubes. We have seen an increasing trend in the application of aluminum foams inside the thin-wall mild steel tubes for maximum energy absorption.

  2. Perforation of Thin Aluminum Alloy Plates by Blunt Projectiles - Experimental and Numerical Investigation

    NASA Astrophysics Data System (ADS)

    Wei, Gang; Zhang, Wei

    2013-06-01

    Reducing the armor weight has become a research focus in terms of armored material with the increasing requirement of the mobility and flexibility of tanks and armored vehicles in modern local wars. Due to high strength-to-density ratio, aluminum alloy has become a potential light armored material. In this study, both lab-scale ballistic test and finite element simulation were adopted to examine the ballistic resistance of aluminum alloy targets. Blunt high strength steel projectiles with 12.7 mm diameter were launched by light gas gun against 3.3 mm thick aluminum alloy plates at velocity of 90 ~ 170 m/s. The ballistic limit velocity was obtained. Plugging failure and obvious structure deformation of targets were observed, and with the impact velocity increasing, the target structure deformation decrease gradually. Corresponding 2D finite element simulations were conducted by ABAQUS/EXPLICIT combined with material performance testing. Good agreement between the numerical simulations and the experimental results was found. National Natural Science Foundation of China (No.: 11072072).

  3. Research on the Treatment of Aluminum Alloy Chemical Milling Wastewater with Fenton Process

    NASA Astrophysics Data System (ADS)

    Zong-liang, Huang; Ru, Li; Peng, Luo; Jun-li, Gu

    2018-03-01

    The aluminum alloy chemical milling wastewater was treated by Fenton method. The effect of pH value, reaction time, rotational speed, H2O2 dosage, Fe2+ dosage and the molar ratio between H2O2 and Fe2+ on the COD removal rate of aluminum alloy chemical milling wastewater were investigated by single factor experiment and orthogonal experiment. The results showed that the optimum operating conditions for Fenton oxidation were as follows: the initial pH value was 3, the rotational speed was 250r/min, the molar ratio of H2O2 and Fe2+ was 8, the reaction time was 90 min. Under the optimum conditions, the removal rate of the wastewater’s COD is about 72.36%. In the reaction kinetics that aluminum alloy chemical milling wastewater was oxidized and degraded by Fenton method under the optimum conditions, the reaction sequence of the initial COD was 0.8204.

  4. Formation of the structure of thin-sheet rolled product from a high-strength sparingly alloyed aluminum alloy ``nikalin''

    NASA Astrophysics Data System (ADS)

    Shurkin, P. K.; Belov, N. A.; Akopyan, T. K.; Alabin, A. N.; Aleshchenko, A. S.; Avxentieva, N. N.

    2017-09-01

    The regime of thermomechanical treatment of flat ingots of a high-strength sparingly alloyed alloy based on the Al-Zn-Mg-Ni-Fe system upon the production of thin-sheet rolled products with a reduction of more than 97% has been substantiated. Using experimental and calculated methods, the structure and phase composition of the experimental alloy in the as cast and deformed state and after heat treatment including quenching with subsequent aging have been studied. It has been found that the structure of the wrought semi-finished products after aging according to T and T1 regimes consists of the precipitation-hardened aluminum matrix and uniformly distributed isolated particles of Al9FeNi with a size of 1-2 μm, which provides a combination of high strength and satisfactory plasticity at the level of standard high-strength aluminum alloys of the Al-Zn-Mg-Cu system. The fractographic analysis confirmed that the tested samples underwent a ductile fracture.

  5. Several braze filler metals for joining an oxide-dispersion-strengthened nickel-chromium-aluminum alloy

    NASA Technical Reports Server (NTRS)

    Gyorgak, C. A.

    1975-01-01

    An evaluation was made of five braze filler metals for joining an aluminum-containing oxide dispersion-strengthened (ODS) alloy, TD-NiCrAl. All five braze filler metals evaluated are considered suitable for joining TD-NiCrAl in terms of wettability and flow. Also, the braze alloys appear to be tolerant of slight variations in brazing procedures since joints prepared by three sources using three of the braze filler metals exhibited similar brazing characteristics and essentially equivalent 1100 C stress-rupture properties in a brazed butt-joint configuration. Recommendations are provided for brazing the aluminum-containing ODS alloys.

  6. Solid-state Bonding of Superplastic Aluminum Alloy 7475 Sheet

    NASA Technical Reports Server (NTRS)

    Byun, T. D. S.; Vastava, R. B.

    1985-01-01

    Experimental works were carried out to study the feasibility of solid state bonding of superplastic aluminum 7475 sheet. Amount of deformation, bonding time, surface cleaning method and intermediate layer were the process parameters investigated. Other parameters, held constant by the superplastic forming condition which is required to obtain a concurrent solid state bonding, are bonding temperature, bonding pressure and atmosphere. Bond integrity was evaluated through metallographic examination, X-ray line scan analysis, SEM fractographic analysis and lap shear tests. The early results of the development program indicated that sound solid state bonding was accomplished for this high strength 7475 alloy with significant amounts of deformation. A thin intermediate layer of the soft 5052 aluminum alloy aided in achieving a solid state bonding by reducing the required amount of plastic deformation at the interface. Bond strength was substantially increased by a post bond heat treatment.

  7. Effects of stress concentration on the fatigue strength of 7003-T5 aluminum alloy butt joints with weld reinforcement

    NASA Astrophysics Data System (ADS)

    Zhu, Zongtao; Li, Yuanxing; Zhang, Mingyue; Hui, Chen

    2015-03-01

    7003-T5 Aluminum (Al) alloy plates with a thickness of 5 mm are welded by gas metal arc welding (GMAW) method in this work. In order to investigate the influence of stress concentration introduced by weld reinforcement on fatigue strength, the stress concentration factor of the butt joint is calculated. Microscopic and X-ray techniques were utilized to make sure there are no weld defects with large size in butt weld, which can induce extra stress concentration. The cyclic stress - number of cycles to failure (S-N) curves of the joints with and without the welder were obtained by fatigue testing, and the results show that the fatigue strength of 7003-T5 Al alloy butt joints with the weld reinforcement is 50 MPa, which is only 45% of the joints without the weld reinforcement. Fracture surface observation indicated that the fatigue source and propagation are dissimilar for the specimens with and without the welder due to the stress concentration at the weld root. The stress concentration with a factor of 1.7 has great effect on the fatigue strength, but little influence on the tensile strength.

  8. Cerium-based, intermetallic-strengthened aluminum casting alloy: High-volume co-product development

    DOE PAGES

    Sims, Zachary C.; Weiss, David; McCall, S. K.; ...

    2016-05-23

    Here, several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanicalmore » properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.« less

  9. Self-Reacting Friction Stir Welding for Aluminum Alloy Circumferential Weld Applications

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerry; Cantrell, Mark; Carter, Robert

    2003-01-01

    Friction stir welding is an innovative weld process that continues to grow in use, in the commercial, defense, and space sectors. It produces high quality and high strength welds in aluminum alloys. The process consists of a rotating weld pin tool that plasticizes material through friction. The plasticized material is welded by applying a high weld forge force through the weld pin tool against the material during pin tool rotation. The high weld forge force is reacted against an anvil and a stout tool structure. A variation of friction stir welding currently being evaluated is self-reacting friction stir welding. Self-reacting friction stir welding incorporates two opposing shoulders on the crown and root sides of the weld joint. In self-reacting friction stir welding, the weld forge force is reacted against the crown shoulder portion of the weld pin tool by the root shoulder. This eliminates the need for a stout tooling structure to react the high weld forge force required in the typical friction stir weld process. Therefore, the self-reacting feature reduces tooling requirements and, therefore, process implementation costs. This makes the process attractive for aluminum alloy circumferential weld applications. To evaluate the application of self-reacting friction stir welding for aluminum alloy circumferential welding, a feasibility study was performed. The study consisted of performing a fourteen-foot diameter aluminum alloy circumferential demonstration weld using typical fusion weld tooling. To accomplish the demonstration weld, weld and tack weld development were performed and fourteen-foot diameter rings were fabricated. Weld development consisted of weld pin tool selection and the generation of a process map and envelope. Tack weld development evaluated gas tungsten arc welding and friction stir welding for tack welding rings together for circumferential welding. As a result of the study, a successful circumferential demonstration weld was produced leading

  10. Influence of SMAT Parameters on Microstructural and Mechanical Properties of Al-Mg-Si Alloy AA 6061

    NASA Astrophysics Data System (ADS)

    Anand Kumar, S.; Satish Kumar, P.; Ganesh Sundara Raman, S.; Sankara Narayanan, T. S. N.

    2017-04-01

    In the present work, the influence of surface mechanical attrition treatment (SMAT) parameters on the microstructural and mechanical properties of an aluminum-magnesium-silicon alloy AA 6061 was studied using design of experiment technique. Balls of three different diameters were used, and SMAT was done for three different durations. The microstructural features of the surface layer fabricated by SMAT were characterized by cross-sectional scanning electron microscopic observations, x-ray diffraction technique and transmission electron microscopy. The microindentation hardness, nanoindentation hardness and surface roughness were determined. Due to SMAT, nanocrystallites formed on the surface and near-surface regions, and hardness and surface roughness increased. The ball diameter was the most influencing SMAT parameter compared to the treatment duration. However, interaction between ball diameter and treatment duration could not be ignored. Regression equations were developed relating the process parameters to the surface properties. The ball diameter and treatment duration could thus be properly selected as per the required values of roughness and/or the hardness.

  11. Influence of ECAP temperature on the formability of a particle reinforced 2017 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Wagner, S.; Härtel, M.; Frint, P.; F-X Wagner, M.

    2017-03-01

    Severe plastic deformation methods are commonly used to increase the strength of materials by generating ultrafine-grained microstructures. The application of these methods to Al-Cu alloys is, however, difficult because of their poor formability at room temperature. An additional reduction of formability of such alloys occurs when ceramic particles are added as reinforcement: this often triggers shear localization and crack initiation during ECAP. This is the main reason why equal-channel angular pressing (ECAP) of aluminum matrix composites (AMCs) can generally only be performed at elevated temperatures and using ECAP dies with a channel angle larger than 90° (e.g. 120°). In this study we present a brief first report on an alternative approach for the improvement of the formability of an AMC (AA2017, 10 % SiC): ECAP at low temperatures. We show that, using a temperature of -60 °C and a channel angle of 90° (corresponding to an equivalent strain of 1.1), ECAP of the AMC can be successfully performed without material failure. The mechanical properties of the strongly deformed AMC are analyzed by tensile testing. Our results indicate that the increased formability of the AMC at low temperatures can be attributed to the suppression of unstable plastic flow that affects formability at room temperature.

  12. Predicting Microstructure and Microsegregation in Multicomponent Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Yan, Xinyan; Ding, Ling; Chen, ShuangLin; Xie, Fanyou; Chu, M.; Chang, Y. Austin

    Accurate predictions of microstructure and microsegregation in metallic alloys are highly important for applications such as alloy design and process optimization. Restricted assumptions concerning the phase diagram could easily lead to erroneous predictions. The best approach is to couple microsegregation modeling with phase diagram computations. A newly developed numerical model for the prediction of microstructure and microsegregation in multicomponent alloys during dendritic solidification was introduced. The micromodel is directly coupled with phase diagram calculations using a user-friendly and robust phase diagram calculation engine-PANDAT. Solid state back diffusion, undercooling and coarsening effects are included in this model, and the experimentally measured cooling curves are used as the inputs to carry out the calculations. This model has been used to predict the microstructure and microsegregation in two multicomponent aluminum alloys, 2219 and 7050. The calculated values were confirmed using results obtained from directional solidification.

  13. Mechanical behavior of aluminum-bearing ferritic alloys for accident-tolerant fuel cladding applications

    NASA Astrophysics Data System (ADS)

    Guria, Ankan

    Nuclear power currently provides about 13% of electrical power worldwide. Nuclear reactors generating this power traditionally use Zirconium (Zr) based alloys as the fuel cladding material. Exothermic reaction of Zr with steam under accident conditions may lead to production of hydrogen with the possibility of catastrophic consequences. Following the Fukushima-Daiichi incident, the exploration of accident-tolerant fuel cladding materials accelerated. Aluminum-rich (around 5 wt. %) ferritic steels such as Fecralloy, APMT(TM) and APM(TM) are considered as potential materials for accident-tolerant fuel cladding applications. These materials create an aluminum-based oxide scale protecting the alloy at elevated temperatures. Tensile deformation behavior of the above alloys was studied at different temperatures (25-500 °C) at a strain rate of 10-3 s-1 and correlated with microstructural characteristics. Higher strength and decent ductility of APMT(TM) led to further investigation of the alloy at various combination of strain rates and temperatures followed by fractography and detailed microscopic analyses. Serrations appeared in the stress-strain curves of APMT(TM) and Fecralloy steel tested in a limited temperature range (250-400 °C). The appearance of serrations is explained on the basis of dynamic strain aging (DSA) effect due to solute-dislocation interactions. The research in this study is being performed using the funds received from the US DOE Office of Nuclear Energy's Nuclear Energy University Programs (NEUP).

  14. Laser-initiated combustion studies of selected aluminum, copper, iron, and nickel alloys

    NASA Technical Reports Server (NTRS)

    Bransford, J. W.; Clark, A. F.

    1981-01-01

    The results of combustion studies at atmospheric pressure on ten metal alloys are presented. The alloys studied were aluminum alloys 1100, 2219, 6061, and tensile-50; 304, 347 and 21-6-9 stainless steel; inconel 600; beryllium copper and a bronze. It was found that once ignition was achieved all alloys would generally burn to completion. The overall combustion process appears to obey a first order rate process. Preliminary conclusions are presented along with recommendations for future work.

  15. Structure-Property Relationships of Solid State Additive Manufactured Aluminum Alloy 2219 and Inconel 625

    NASA Astrophysics Data System (ADS)

    Rivera Almeyda, Oscar G.

    In this investigation, the processing-structure-property relations are correlated for solid state additively manufactured (SSAM) Inconel 625 (IN 625) and a SSAM aluminum alloy 2219 (AA2219). This is the first research of these materials processed by a new SSAM method called additive friction stir (AFS). The AFS process results in a refined grain structure by extruding solid rod through a rotating tool generating heat and severe plastic deformation. In the case of the AFS IN625, the IN625 alloy is known for exhibiting oxidation resistance and temperature mechanical stability, including strength and ductility. This study is the first to investigate the beneficial grain refinement and densification produced by AFS in IN625 that results in advantageous mechanical properties (YS, UTS, epsilonf) at both quasi-static and high strain rate. Electron Backscatter Diffraction (EBSD) observed dynamic recrystallization and grain refinement during the layer deposition in the AFS specimens, where the results identified fine equiaxed grain structures formed by dynamic recrystallization (DRX) with even finer grain structures forming at the layer interfaces. The EBSD quantified grains as fine as 0.27 microns in these interface regions while the average grain size was approximately 1 micron. Additionally, this is the first study to report on the strain rate dependence of AFS IN625 through quasi-static (QS) (0.001/s) and high strain rate (HR) (1500/s) tensile experiments using a servo hydraulic frame and a direct tension-Kolsky bar, respectively, which captured both yield and ultimate tensile strengths increasing as strain rate increased. Fractography performed on specimens showed a ductile fracture surface on both QS, and HR. Alternatively, the other AFS material system investigated in this study, AA2219, is mostly used for aerospace applications, specifically for rocket fuel tanks. EBSD was performed in the cross-section of the AA2219, also exhibiting DRX with equiaxed microstructure

  16. Three-dimensional flow characteristics of aluminum alloy in multi-pass equal channel angular pressing

    NASA Astrophysics Data System (ADS)

    Jin, Young-Gwan; Son, Il-Heon; Im, Yong-Taek

    2010-06-01

    Experiments with a square specimen made of commercially pure aluminum alloy (AA1050) were conducted to investigate deformation behaviour during a multi-pass Equal Channel Angular Pressing (ECAP) for routes A, Bc, and C up to four passes. Three-dimensional finite element numerical simulations of the multi-pass ECAP were carried out in order to evaluate the influence of processing routes and number of passes on local flow behaviour by applying a simplified saturation model of flow stress under an isothermal condition. Simulation results were investigated by comparing them with the experimentally measured data in terms of load variations and microhardness distributions. Also, transmission electron microscopy analysis was employed to investigate the microstructural changes. The present work clearly shows that the three-dimensional flow characteristics of the deformed specimen were dependent on the strain path changes due to the processing routes and number of passes that occurred during the multi-pass ECAP.

  17. Expanding the Availability of Lightweight Aluminum Alloy Armor Plate Procured from Detailed Military Specifications

    NASA Astrophysics Data System (ADS)

    Doherty, Kevin; Squillacioti, Richard; Cheeseman, Bryan; Placzankis, Brian; Gallardy, Denver

    For many years, the range of aluminum alloys for armor plate applications obtainable in accordance with detailed military specifications was very limited. However, the development of improved aluminum alloys for aerospace and other applications has provided an opportunity to modernize the Army portfolio for ground vehicle armor applications. While the benefits of offering additional alloy choices to vehicle designers is obvious, the process of creating detailed military specifications for armor plate applications is not trivial. A significant amount of material and testing is required to develop the details required by an armor plate specification. Due to the vast number of material programs that require standardization and with a limited amount of manpower and funds as a result of Standardization Reform in 1995, one typically requires a need statement from a vehicle program office to justify and sponsor the work. This presentation will focus on recent aluminum alloy armor plate specifications that have added capability to vehicle designers' selection of armor materials that offer possible benefits such as lower cost, higher strength, better ballistic and corrosion resistance, improved weldability, etc.

  18. Microstructure Evolution during Dissimilar Friction Stir Welding of AA7003-T4 and AA6060-T4

    PubMed Central

    Dong, Jialiang; Zhang, Datong; Zhang, Weiwen; Zhang, Wen; Qiu, Cheng

    2018-01-01

    In this work, the dissimilar joint of AA7003-T4 and 6060-T4 alloy has been produced by friction stir welding (FSW). The microstructure was examined by optical microscope (OM), electron back scattered diffraction (EBSD), transmission electron microscopy (TEM), and the mechanical properties of the joint were investigated. It is demonstrated that sound dissimilar joint can be produced through FSW. In the nugget; precipitations dissolve into the matrix and η′ reprecipitate subsequently; and the elongated aluminum grains are replaced by fine and equiaxed grains due to dynamic recrystallization (DRX). In the heat affected zone (HAZ), coarse β′ and η precipitates are formed and the aluminum grains are coarser as compared to the base materials. In the thermo-mechanical affected zone (TMAZ), equiaxed and elongated grains coexist due to incomplete DRX. The ultimate tensile strength of the dissimilar joint is 159.2 MPa and its elongation is 10.4%. The weak area exists in the HAZ of 6060 alloy, which is placed in the retreating side during FSW. The correlations between the microstucture and mechanical properties of the dissimilar joint are discussed. PMID:29495463

  19. Stress-corrosion behavior of aluminum-lithium alloys in aqueous environments

    NASA Technical Reports Server (NTRS)

    Pizzo, P. P.; Galvin, R. P.; Nelson, H. G.

    1983-01-01

    The stress corrosion susceptibility of two powder metallurgy (P/M) alloys, Al-Li-Cu and Al-Li-Cu-Mg two mechanically attrited (M/A) alloys, Al-Li-Cu and Al-Li-Mg; and two wrought, ingot alloys, X-2020 and AA7475, are compared. Time-dependent fracture in an aqueous sodium chloride environment under alternate immersion condition was found to vary significantly between alloys. The stress corrosion behavior of the two powder metallurgy processed alloys was studied in detail under conditions of crack initiation, static crack growth, and fatigue crack growth. A variety of stress corrosion tests were performed including smooth surface, time-to-failure tests; potentiostatic tests on smooth surfaces exposed to constant applied strain rates; and fracture mechanics-type tests under static and cyclic loads. Both alloys show surface pitting and subsequent intergranular corrosion. Pitting is more severe in the magnesium-bearing alloy and is associated with stringer particles strung along the extrusion direction as a result of P/M processing.

  20. Warm Forming of Aluminum Alloys using a Coupled Thermo-Mechanical Anisotropic Material Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abedrabbo, Nader; Pourboghrat, Farhang; Carsley, John E.

    Temperature-dependant anisotropic material models for two types of automotive aluminum alloys (5754-O and 5182-O) were developed and implemented in LS-Dyna as a user material subroutine (UMAT) for coupled thermo-mechanical finite element analysis (FEA) of warm forming of aluminum alloys. The anisotropy coefficients of the Barlat YLD2000 plane stress yield function for both materials were calculated for the range of temperatures 25 deg. C-260 deg. C. Curve fitting was used to calculate the anisotropy coefficients of YLD2000 and the flow stress as a function of temperature. This temperature-dependent material model was successfully applied to the coupled thermo-mechanical analysis of stretching ofmore » aluminum sheets and results were compared with experiments.« less

  1. Secondary Heating Under Quenching Cooling of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Tsukrov, S. L.; Ber, L. B.

    2017-07-01

    Variants of secondary heating of aluminum alloys are considered, i.e., under quenching of plates in a water tank or on a horizontal quenching unit with water jet cooling, under continuous quenching of strips, and under quenching of tubes in vertical furnaces. Recommendation are given for removal or substantial reduction of the intensity of secondary heating under industrial conditions.

  2. Effect of Traverse and Rotational Speeds on the Tensile Behavior of the Underwater Dissimilar Friction Stir Welded Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Bijanrostami, Kh.; Barenji, R. Vatankhah; Hashemipour, M.

    2017-02-01

    The tensile behavior of the underwater dissimilar friction stir welded AA6061 and AA7075 aluminum alloy joints was investigated for the first time. For this aim, the joints were welded at different conditions and tensile test was conducted for measuring the strength and elongation of them. In addition, the microstructure of the joints was characterized by means of optical and transmission electron microscopes. Scanning electron microscope was used for fractography of the joints. Furthermore, the process parameters and tensile properties of the joints were correlated and optimized. The results revealed that the maximum tensile strength of 237.3 MPa and elongation of 41.2% could be obtained at a rotational speed 1853 rpm and a traverse speed of 50 mm/min. In comparison with the optimum condition, higher heat inputs caused grain growth and reduction in dislocation density and hence led to lower strength. The higher elongations for the joints welded at higher heat inputs were due to lower dislocation density inside the grains, which was consistent with a more ductile fracture of them.

  3. The Delayed Fracture of Aluminum Alloys, End of Year Report.

    DTIC Science & Technology

    1982-03-01

    Corrosion Cracking of Maraging Steel ," Corrosion NACE, 1971, vol. 27, no. 10, pp. 429-433. 17. J.C.M. Li, R.A. Oriani, and L.S. Darken: "The...Park, OH, 1974, p. 274. 32. M.V. Hyatt and M.O. Speidel: Chapter 4 of Stress- Corrosion Cracking in High Strength Steels and in Titanium and Aluminum...reverse side it necessary and identify by block number) Aluminum alloys, stress corrosion cracking, oxide film, Auger electron spectroscopy, Mode I

  4. Effect of Material Thermo-viscoplastic Modeling on the Prediction of Forming Limit Curves of Aluminum Alloy 5086

    NASA Astrophysics Data System (ADS)

    Chu, Xingrong; Leotoing, Lionel; Guines, Dominique; Ragneau, Eric

    2015-09-01

    A solution to improve the formability of aluminum alloy sheets can consist in investigating warm forming processes. The optimization of forming process parameters needs a precise evaluation of material properties and sheet metal formability for actual operating environment. Based on the analytical M-K theory, a finite element (FE) M-K model was proposed to predict forming limit curves (FLCs) at different temperatures and strain rates. The influences of initial imperfection value ( f 0) and material thermos-viscoplastic model on the FLCs are discussed in this work. The flow stresses of AA5086 were characterized by uniaxial tensile tests at different temperatures (20, 150, and 200 °C) and equivalent strain rates (0.0125, 0.125, and 1.25 s-1). Three types of hardening models (power law model, saturation model, and mixed model) were proposed and adapted to correlate the experimental flow stresses. The three hardening models were implemented into the FE M-K model in order to predict FLCs for different forming conditions. The predicted limit strains are very sensitive to the thermo-viscoplastic modeling of AA5086 and to the calibration of the initial geometrical imperfection which controls the onset of necking.

  5. Effect of Aluminum Coating on the Surface Properties of Ti-(~49 at. pct) Ni Alloy

    NASA Astrophysics Data System (ADS)

    Sinha, Arijit; Khan, Gobinda Gopal; Mondal, Bholanath; Majumdar, Jyotsna Dutta; Chattopadhyay, Partha Protim

    2015-08-01

    Stable porous layer of mixed Al2O3 and TiO2 has been formed on the Ti-(~49 at. pct) Ni alloy surface with an aim to suppress leaching of Ni from the alloy surface in contact with bio-fluid and to enhance the process of osseointegration. Aluminum coating on the Ni-Ti alloy surface prior to the anodization treatment has resulted in enhancement of depth and uniformity of pores. Thermal oxidation of the anodized aluminum-coated Ni-Ti samples has exhibited the formation of Al2O3 and TiO2 phases with dense porous structure. The nanoindentation and nanoscratch measurements have indicated a remarkable improvement in the hardness, wear resistance, and adhesiveness of the porous aluminum-coated Ni-Ti sample after thermal oxidation.

  6. Grain-scale investigations of deformation heterogeneities in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Güler, Baran; Şimşek, Ülke; Yalçınkaya, Tuncay; Efe, Mert

    2018-05-01

    The anisotropic deformation of Aluminum alloys at micron scale exhibits localized deformation, which has negative implications on the macroscale mechanical and forming behavior. The scope of this work is twofold. Firstly, micro-scale deformation heterogeneities affecting forming behavior of aluminum alloys is investigated through experimental microstructure analysis at large strains and various strain paths. The effects of initial texture, local grain misorientation, and strain paths on the strain localizations are established. In addition to uniaxial tension condition, deformation heterogeneities are also investigated under equibiaxial tension condition to determine the strain path effects on the localization behavior. Secondly, the morphology and the crystallographic data obtained from the experiments is transferred to Abaqus software, in order to predict both macroscopic response and the microstructure evolution though crystal plasticity finite element simulations. The model parameters are identified through the comparison with experiments and the capability of the model to capture real material response is discussed as well.

  7. Stuy on Fatigue Life of Aluminum Alloy Considering Fretting

    NASA Astrophysics Data System (ADS)

    Yang, Maosheng; Zhao, Hongqiang; Wang, Yunxiang; Chen, Xiaofei; Fan, Jiali

    2018-01-01

    To study the influence of fretting on Aluminum Alloy, a global finite element model considering fretting was performed using the commercial code ABAQUS. With which a new model for predicting fretting fatigue life has been presented based on friction work. The rationality and effectiveness of the model were validated according to the contrast of experiment life and predicting life. At last influence factor on fretting fatigue life of aerial aluminum alloy was investigated with the model. The results revealed that fretting fatigue life decreased monotonously with the increasing of normal load and then became constant at higher pressures. At low normal load, fretting fatigue life was found to increase with increase in the pad radius. At high normal load, however, the fretting fatigue life remained almost unchanged with changes in the fretting pad radius. The bulk stress amplitude had the dominant effect on fretting fatigue life. The fretting fatigue life diminished as the bulk stress amplitude increased.

  8. Antimicrobial properties of ternary eutectic aluminum alloys.

    PubMed

    Hahn, Claudia; Hans, Michael; Hein, Christina; Dennstedt, Anne; Mücklich, Frank; Rettberg, Petra; Hellweg, Christine Elisabeth; Leichert, Lars Ingo; Rensing, Christopher; Moeller, Ralf

    2018-06-27

    Several Escherichia coli deletion mutants of the Keio collection were selected for analysis to better understand which genes may play a key role in copper or silver homeostasis. Each of the selected E. coli mutants had a deletion of a single gene predicted to encode proteins for homologous recombination or contained functions directly linked to copper or silver transport or transformation. The survival of these strains on pure copper surfaces, stainless steel, and alloys of aluminum, copper and/or silver was investigated. When exposed to pure copper surfaces, E. coli ΔcueO was the most sensitive, whereas E. coli ΔcopA was the most resistant amongst the different strains tested. However, we observed a different trend in sensitivities in E. coli strains upon exposure to alloys of the system Al-Ag-Cu. While minor antimicrobial effects were detected after exposure of E. coli ΔcopA and E. coli ΔrecA to Al-Ag alloys, no effect was detected after exposure to Al-Cu alloys. The release of copper ions and cell-associated copper ion concentrations were determined for E. coli ΔcopA and the wild-type E. coli after exposure to pure copper surfaces. Altogether, compared to binary alloys, ternary eutectic alloys (Al-Ag-Cu) had the highest antimicrobial effect and thus, warrant further investigation.

  9. Finite element analysis of the upsetting of a 5056 aluminum alloy sample with consideration of its microstructure

    NASA Astrophysics Data System (ADS)

    Voronin, S. V.; Chaplygin, K. K.

    2017-12-01

    Computer simulation of upsetting the finite element models (FEMs) of an isotropic 5056 aluminum alloy sample and a 5056 aluminum alloy sample with consideration of microstructure is carried out. The stress and strain distribution patterns at different process stages are obtained. The strain required for the deformation of the FEMs of 5056 alloy samples is determined. The influence of the material microstructure on the stress-strain behavior and technological parameters are demonstrated.

  10. Perforation of thin aluminum alloy plates by blunt projectiles: An experimental and numerical investigation

    NASA Astrophysics Data System (ADS)

    Wei, G.; Zhang, W.

    2014-04-01

    Reducing the armor weight has become a research focus in terms of armored material. Due to high strength-to-density ratio, aluminum alloy has become a potential light armored material. In this study, both lab-scale ballistic test and finite element simulation were adopted to examine the ballistic resistance of aluminum alloy targets. Blunt high strength steel projectiles with 12.7 mm diameter were launched by light gas gun against 3.3 mm thickness 7A04 aluminum alloy plates at a velocity of 90~170 m/s. The ballistic limit velocity was obtained. Plugging failure and obvious structure deformation of targets were observed. Corresponding 2D finite element simulations were conducted by ABAQUS/EXPLICIT combined with material performance testing. The validity of numerical simulations was verified by comparing with the experimental results. Detailed analysis of the failure modes and characters of the targets were carried out to reveal the target damage mechanism combined with the numerical simulation.

  11. Corrosion and wear resistance of titanium- and aluminum-based metal matrix composites fabricated by direct metal laser deposition

    NASA Astrophysics Data System (ADS)

    Waldera, Benjamin L.

    Titanium- and Aluminum-based metal matrix composites (MMC) have shown favorable properties for aerospace applications such as airframes, reinforcement materials and joining elements. In this research, such coatings were developed by direct metal laser deposition with a powder-fed fiber coupled diode laser. The MMC formulations consisted of pure titanium and aluminum matrices with reinforcing powder blends of chromium carbide and tungsten carbide nickel alloy. Two powder formulations were investigated for each matrix material (Ti1, Ti2, Al1 and Al2). Titanium based composites were deposited onto a Ti6Al4V plate while aluminum composites were deposited onto AA 7075 and AA 5083 for Al1 and Al2, respectively. Microstructures of the MMCs were studied by optical and scanning electron microscopy. The hardness and reduced Young's modulus (Er) were assessed through depth-sensing instrumented nanoindentation. microhardness (Vickers) was also analyzed for each composite. The corrosion resistance of the MMCs were compared by monitoring open circuit potential (OCP), polarization resistance (Rp) and potentiodynamic polarization in 0.5 M NaCl to simulate exposure to seawater. The Ti-MMCs demonstrated improvements in hardness between 205% and 350% over Ti6Al4V. Al-MMCs showed improvements between 47% and 79% over AA 7075 and AA 5083. The MMCs showed an increase in anodic current density indicating the formation of a less protective surface oxide than the base metals.

  12. In-Situ Neutron Diffraction Studies of Micromechanical Behavior in a Friction Stir Welded AA7475-T761

    NASA Astrophysics Data System (ADS)

    Liu, X. P.; Lin Peng, R.; Hofmann, M.; Johansson, S.; Wang, Y. D.

    2011-01-01

    An in-situ neutron diffraction technique was used to investigate the lattice strain distributions and micromechanical behavior in a friction stir welded (FSW) sheet of AA7475-T761. The neutron diffraction experiments were performed on the spectrometer for material research, STRESS-SPEC, at FRM II (Garching, Germany). The lattice strain profiles around the weld center were measured as a function of the applied strain during the tensile loading and unloading. The anisotropic elastic and plastic properties of the FSW aluminum alloy were simulated by elasto-plastic self-consistent (EPSC) model to predict the anisotropic deformation behaviors involving the grain-to-grain interactions. Material parameters used for describing the constitutive laws of each test position were determined from the measured lattice strain distributions for different diffraction hkl planes as well as the macroscopic stress-strain curve of the FSW aluminum alloy. A good agreement between experimental results and numerical simulations was obtained. The present investigations provided a reliable prediction of the anisotropic micromechanical behavior of the FSW aluminum alloy during tensile deformation.

  13. THE ACCURATE DETERMINATION OF MICROGRAM AMOUNTS OF BORON IN ALUMINUM AND ALUMINUM-URANIUM ALLOYS BY THE METHYL BORATE-CURCUMIN-OXALIC ACID METHOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crocker, I.H.

    1958-10-01

    A method was developed for the deternninntion of boron in aluminum and aluminum--uranium alloys in which the boron concentration is 30 ppm or more. Boron is separated by distillation as methyl borate from a hydrochloric acid solution of the alloy and is determined spectrophotometrically by the boric acid-- curcumin-oxalic acid color reaction. A precision of plus or minus 2% is attain able when the determination is penformed with the utmost care. The accuracy is such that no bias need be given when a calibration curve is used. (auth)

  14. Aluminum alloy/alumina-based ceramic interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebeau, T.; Strom-Olsen, J.O.; Gruzleski, J.E.

    1995-07-01

    Wetting experiments were performed on eutectic ZrO{sub 2}/Al{sub 2}O{sub 3} (ZA), ZrO{sub 2}/Al{sub 2}O{sub 3}/TiO{sub 2} (ZAT), and ZrO{sub 2}/Al{sub 2}O{sub 3}/SiO{sub 2} (ZAS) ceramic substrates with different Al alloys. Four major variables were tested to study the wetting behavior of the different ceramic-metal systems. Variable include holding time, melt temperature, ally, and ceramic compositions. An experimental setup was designed to measure in situ contact angles using the sessile drop method. For any ceramic substrate, a temperature over 950 C was necessary to observe an equilibrium wetting angle of less than 90{degree} with pure Al; by alloying the aluminum, wettingmore » could be observed at lower temperatures ({theta} = 76--86{degree} at 900 C for Al-10 wt. % Si, {theta} {approximately}72{degree} at 850 C for Al-2.4 wt. % Mg) forming clean interfaces. Finally, ZAS specimens reacted with molten Al alloys over 900 C to produce Zr-Al based intermetallics at the metal-ceramic interface.« less

  15. Antenatal Diagnosis of an XXX Female

    PubMed Central

    Krone, Lawrence R.; Prichard, Lorraine L.; Bradshaw, Christy L.; Jones, Oliver W.; Peterson, Raymond M.; Dixson, Barbara K.

    1975-01-01

    This report describes the first antenatal diagnosis of an XXX female. Over 150 postnatal cases of XXX females have been described. There is no specific phenotype associated with the sex chromosome abnormality and most such persons are fertile. The frequency of XXX females in mental institutions is 3.9 per 1,000 female subjects whereas the frequency in consecutive newborn infants is 1.1 per 1,000 newborns. Chi-square analysis shows this difference cannot be due to chance. On the other hand, data from consecutive newborn studies suggest that intellectual development in XXX newborns is within normal range. Available evidence favors normal development in XXX female infants although the risk for developmental disabilities may be higher for the XXX than for the XX infant. ImagesFigure 1. PMID:1154778

  16. Chemical interactions and thermodynamic studies in aluminum alloy/molten salt systems

    NASA Astrophysics Data System (ADS)

    Narayanan, Ramesh

    The recycling of aluminum and aluminum alloys such as Used Beverage Container (UBC) is done under a cover of molten salt flux based on (NaCl-KCl+fluorides). The reactions of aluminum alloys with molten salt fluxes have been investigated. Thermodynamic calculations are performed in the alloy/salt flux systems which allow quantitative predictions of the equilibrium compositions. There is preferential reaction of Mg in Al-Mg alloy with molten salt fluxes, especially those containing fluorides like NaF. An exchange reaction between Al-Mg alloy and molten salt flux has been demonstrated. Mg from the Al-Mg alloy transfers into the salt flux while Na from the salt flux transfers into the metal. Thermodynamic calculations indicated that the amount of Na in metal increases as the Mg content in alloy and/or NaF content in the reacting flux increases. This is an important point because small amounts of Na have a detrimental effect on the mechanical properties of the Al-Mg alloy. The reactions of Al alloys with molten salt fluxes result in the formation of bluish purple colored "streamers". It was established that the streamer is liquid alkali metal (Na and K in the case of NaCl-KCl-NaF systems) dissipating into the melt. The melts in which such streamers were observed are identified. The metal losses occurring due to reactions have been quantified, both by thermodynamic calculations and experimentally. A computer program has been developed to calculate ternary phase diagrams in molten salt systems from the constituting binary phase diagrams, based on a regular solution model. The extent of deviation of the binary systems from regular solution has been quantified. The systems investigated in which good agreement was found between the calculated and experimental phase diagrams included NaF-KF-LiF, NaCl-NaF-NaI and KNOsb3-TINOsb3-LiNOsb3. Furthermore, an insight has been provided on the interrelationship between the regular solution parameters and the topology of the phase

  17. Power ultrasound irradiation during the alkaline etching process of the 2024 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Moutarlier, V.; Viennet, R.; Rolet, J.; Gigandet, M. P.; Hihn, J. Y.

    2015-11-01

    Prior to any surface treatment on an aluminum alloy, a surface preparation is necessary. This commonly consists in performing an alkaline etching followed by acid deoxidizing. In this work, the use of power ultrasound irradiation during the etching step on the 2024 aluminum alloy was studied. The etching rate was estimated by weight loss, and the alkaline film formed during the etching step was characterized by glow discharge optical emission spectrometry (GDOES) and scanning electron microscope (SEM). The benefit of power ultrasound during the etching step was confirmed by pitting potential measurement in NaCl solution after a post-treatment (anodizing).

  18. Liquid oxygen LOX compatibility evaluations of aluminum lithium (Al-Li) alloys: Investigation of the Alcoa 2090 and MMC weldalite 049 alloys

    NASA Technical Reports Server (NTRS)

    Diwan, Ravinder M.

    1989-01-01

    The behavior of liquid oxygen (LOX) compatibility of aluminum lithium (Al-Li) alloys is investigated. Alloy systems of Alcoa 2090, vintages 1 to 3, and of Martin Marietta Corporation (MMC) Weldalite 049 were evaluated for their behavior related to the LOX compatibility employing liquid oxygen impact test conditions under ambient pressures and up to 1000 psi. The developments of these aluminum lithium alloys are of critical and significant interest because of their lower densities and higher specific strengths and improved mechanical properties at cryogenic temperatures. Of the different LOX impact tests carried out at the Marshall Space Flight Center (MSFC), it is seen that in certain test conditions at higher pressures, not all Al-Li alloys are LOX compatible. In case of any reactivity, it appears that lithium makes the material more sensitive at grain boundaries due to microstructural inhomogeneities and associated precipitate free zones (PFZ). The objectives were to identify and rationalize the microstructural mechanisms that could be relaxed to LOX compatibility behavior of the alloy system in consideration. The LOX compatibility behavior of Al-Li 2090 and Weldalite 049 is analyzed in detail using microstructural characterization techniques with light optical metallography, scanning electron microscopy (SEM), electron microprobe analysis, and surface studies using secondary ion mass spectrometry (SIMS), electron spectroscopy in chemical analysis (ESCA) and Auger electron spectroscopy (AES). Differences in the behavior of these aluminum lithium alloys are assessed and related to their chemistry, heat treatment conditions, and microstructural effects.

  19. Demonstration of the Impact of Thermomagnetic Processing on Cast Aluminum Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludtka, Gerard Michael; Murphy, Bart L.; Rios, Orlando

    2017-10-01

    This project builds on an earlier Manufacturing Demonstration Facility Technical Collaboration phase 1 project to investigate application of high magnetic fields during solution heat treating and aging of three different cast aluminum alloys.

  20. Laser shocking of 2024 and 7075 aluminum alloys

    NASA Technical Reports Server (NTRS)

    Clauer, A. H.; Fairand, B. P.; Slater, J. E.

    1977-01-01

    The effect of laser generated stress waves on the microstructure, hardness, strength and stress corrosion resistance of 2024 and 7075 aluminum alloys was investigated. Pulsed CO2 and neodymium-glass lasers were used to determine the effect of wavelength and pulse duration on pressure generation and material property changes. No changes in material properties were observed with CO2 laser. The strength and hardness of 2024-T351 and the strength of 7075-T73 aluminum alloys were substantially improved by the stress wave environments generated with the neodymium-glass laser. The mechanical properties of 2024-T851 and 7075-T651 were unchanged by the laser treatment. The correlation of the laser shock data with published results of flyer plate experiments demonstrated that a threshold pressure needed to be exceeded before strengthening and hardening could occur. Peak pressures generated by the pulsed laser source were less than 7.0 GPa which was below the threshold pressure required to change the mechanical properties of 2024-T851 and 7075-T651. Corrosion studies indicated that laser shocking increased the resistance to local attack in 2024-T351 and 7075-T651.

  1. Effects of high frequency current in welding aluminum alloy 6061

    NASA Technical Reports Server (NTRS)

    Fish, R. E.

    1968-01-01

    Uncontrolled high frequency current causes cracking in the heat-affected zone of aluminum alloy 6061 weldments during tungsten inert gas ac welding. Cracking developed when an improperly adjusted superimposed high frequency current was agitating the semimolten metal in the areas of grain boundary.

  2. The Special Features of the Deformation Behavior of an Ultrafine-Grained Aluminum Alloy of the Al-Mg-Li System at Room Temperature

    NASA Astrophysics Data System (ADS)

    Naydenkin, E. V.; Mishin, I. P.; Ivanov, K. V.

    2015-04-01

    The special features of the deformation behavior of an ultrafine-grained aluminum alloy produced by severe plastic deformation are investigated. Unlike ultrafine-grained pure aluminum, the second-phase particles precipitated in the bulk and at the grain boundaries of the alloy are shown to hinder the development of grain boundary sliding and plastic strain localization. This increases the length of the strain hardening stage and uniformity of elongation of a heterogeneous aluminum alloy specimen as compared to pure aluminum.

  3. Thermomechanical treatment of 2124 PM aluminum alloys with low and high dispersoid levels

    NASA Technical Reports Server (NTRS)

    Sarkar, B.; Lisagor, W. B.

    1986-01-01

    The effects of thermomechanical treatment (TMT) on the mechanical properties and metallurgical structure of 2124 powder metallurgy aluminum alloys prepared from rapidly solidified powders were investigated. The alloys were prepared by using a standard canning/vacuum degassing/hot consolidation/extrusion sequence. Two compositions, with manganese contents of 0.5 and 1.5 percent, were investigated to examine the effects of low and high dispersoid levels. The results indicate that significant improvements in strength can be accomplished through TMT for this PM alloy system with little loss in toughness. The increase in strength observed is attributed to the presence of much finer, more homogeneous S-prime precipitation than that observed without TMT. Rolling deformation at room temperature resulted in some tendency for nonuniform (planar) deformation and resulted in slightly lower notch strength values. The lower notch strengths observed in the higher manganese composition were attributed to the coarser, more dense dispersoids observed in this material.

  4. Torsional Stability of Aluminum Alloy Seamless Tubing

    NASA Technical Reports Server (NTRS)

    Moore, R L; Paul, D A

    1939-01-01

    Torsion tests were made on 51ST aluminum-alloy seamless tubes having diameter-to-thickness ratios of from 77 to 139 and length-to-diameter ratios of from 1 to 60. The torsional strengths developed in the tubes which failed elastically (all tubes having lengths greater than 2 to 6 times the diameter) were in most cases within 10 percent of the value indicated by the theories of Donnel, Timoshenko, and Sturm, assuming a condition of simply supported ends.

  5. Laser Overlap Welding of Zinc-coated Steel on Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Kashani, Hamed Tasalloti; Kah, Paul; Martikainen, Jukka

    Local reinforcement of aluminum with laser welded patches of zinc-coated steel can effectively contribute to crashworthiness, durability and weight reduction of car body. However, the weld between Zn-coated steel and aluminum is commonly susceptible to defects such as spatter, cavity and crack. The vaporization of Zn is commonly known as the main source of instability in the weld pool and cavity formation, especially in a lap joint configuration. Cracks are mainly due to the brittle intermetallic compounds growing at the weld interface of aluminum and steel. This study provides a review on the main metallurgical and mechanical concerns regarding laser overlap welding of Zn-coated steel on Al-alloy and the methods used by researchers to avoid the weld defects related to the vaporization of Zn and the poor metallurgical compatibility between steel and aluminum.

  6. Performance Comparison of Al-Ti Master Alloys with Different Microstructures in Grain Refinement of Commercial Purity Aluminum.

    PubMed

    Ding, Wanwu; Xia, Tiandong; Zhao, Wenjun

    2014-05-07

    Three types of Al-5Ti master alloys were synthesized by a method of thermal explosion reaction in pure molten aluminum. Performance comparison of Al-5Ti master alloy in grain refinement of commercial purity Al with different additions (0.6%, 1.0%, 1.6%, 2.0%, and 3.0%) and holding time (10, 30, 60 and 120 min) were investigated. The results show that Al-5Ti master alloy with blocky TiAl₃ particles clearly has better refining efficiency than the master alloy with mixed TiAl₃ particles and the master alloy with needle-like TiAl₃ particles. The structures of master alloys, differing by sizes, morphologies and quantities of TiAl₃ crystals, were found to affect the pattern of the grain refining properties with the holding time. The grain refinement effect was revealed to reduce markedly for master alloys with needle-like TiAl₃ crystals and to show the further significant improvement at a longer holding time for the master alloy containing both larger needle-like and blocky TiAl₃ particles. For the master alloy with finer blocky particles, the grain refining effect did not obviously decrease during the whole studied range of the holding time.

  7. Study of Cavitation and Failure Mechanisms of a Superplastic 5083 Aluminum Alloy

    DTIC Science & Technology

    2003-09-01

    Failure Mechanisms of a Superplastic 5083 Aluminum Alloy 6. AUTHOR( S ) Boydon, Juanito F. 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME( S ) AND...NAME( S ) AND ADDRESS(ES) General Motors Corp., Research and Development Center, Warren, MI (Dr. Paul E. Krajewski, Technical Program...of 973931(A3), deformed gauge area 1- region 1. Sample was pulled under uniaxial tension at 450 °C at a strain rate of 3x10-4 s -1 and elongated to

  8. Strength and Formability Improvement of Al-Cu-Mn Aluminum Alloy Complex Parts by Thermomechanical Treatment with Sheet Hydroforming

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Zhe; Liu, Wei; Yuan, Shi-Jian

    2015-05-01

    Normally, the strength and formability of aluminum alloys can be increased largely by severe plastic deformation and heat treatment. However, many plastic deformation processes are more suitable for making raw material, not for formed parts. In this article, an experimental study of the thermomechanical treatment by using the sheet hydroforming process was developed to improve both mechanical strength and formability for aluminum alloys in forming complex parts. The limiting drawing ratio, thickness, and strain distribution of complex parts formed by sheet hydroforming were investigated to study the formability and sheet-deformation behavior. Based on the optimal formed parts, the tensile strength, microhardness, grain structure, and strengthening precipitates were analyzed to identify the strengthening effect of thermomechanical treatment. The results show that in the solution state, the limiting drawing ratio of cylindrical parts could be increased for 10.9% compared with traditional deep drawing process. The peak values of tensile stress and microhardness of formed parts are 18.0% and 12.5% higher than that in T6 state. This investigation shows that the thermomechanical treatment by sheet hydroforming is a potential method for the products manufacturing of aluminum alloy with high strength and good formability.

  9. Simulation of 7050 Wrought Aluminum Alloy Wheel Die Forging and its Defects Analysis based on DEFORM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Shiquan; Yi Youping; Zhang Yuxun

    2010-06-15

    Defects such as folding, intercrystalline cracking and flow lines outcrop are very likely to occur in the forging of aluminum alloy. Moreover, it is difficult to achieve the optimal set of process parameters just by trial and error within an industrial environment. In producing 7050 wrought aluminum alloy wheel, a rigid-plastic finite element method (FEM) analysis has been performed to optimize die forging process. Processing parameters were analyzed, focusing on the effects of punch speed, friction factor and temperature. Meanwhile, mechanism as well as the evolution with respect to the defects of the wrought wheel was studied in details. Frommore » an analysis of the results, isothermal die forging was proposed for producing 7050 aluminum alloy wheel with good mechanical properties. Finally, verification experiment was carried out on hydropress.« less

  10. Effect of Shielding Gas on the Properties of AW 5083 Aluminum Alloy Laser Weld Joints

    NASA Astrophysics Data System (ADS)

    Vyskoč, Maroš; Sahul, Miroslav; Sahul, Martin

    2018-04-01

    The paper deals with the evaluation of the shielding gas influence on the properties of AW 5083 aluminum alloy weld joints produced with disk laser. Butt weld joints were produced under different shielding gas types, namely Ar, He, Ar + 5 vol.% He, Ar + 30 vol.% He and without shielding weld pool. Light and electron microscopy, computed tomography, microhardness measurements and tensile testing were used for evaluation of weld joint properties. He-shielded weld joints were the narrowest ones. On the other hand, Ar-shielded weld joints exhibited largest weld width. The choice of shielding gas had significant influence on the porosity level of welds. The lowest porosity was observed in weld joint produced in Ar with the addition of 5 vol.% He shielding atmosphere (only 0.03%), while the highest level of porosity was detected in weld joint produced in pure He (0.24%). Except unshielded aluminum alloy weld joint, the lowest tensile strength was recorded in He-shielded weld joints. On the contrary, the highest average microhardness was measured in He-shielded weld joints.

  11. Flow and fracture behavior of aluminum alloy 6082-T6 at different tensile strain rates and triaxialities.

    PubMed

    Chen, Xuanzhen; Peng, Yong; Peng, Shan; Yao, Song; Chen, Chao; Xu, Ping

    2017-01-01

    This study aims to investigate the flow and fracture behavior of aluminum alloy 6082-T6 (AA6082-T6) at different strain rates and triaxialities. Two groups of Charpy impact tests were carried out to further investigate its dynamic impact fracture property. A series of tensile tests and numerical simulations based on finite element analysis (FEA) were performed. Experimental data on smooth specimens under various strain rates ranging from 0.0001~3400 s-1 shows that AA6082-T6 is rather insensitive to strain rates in general. However, clear rate sensitivity was observed in the range of 0.001~1 s-1 while such a characteristic is counteracted by the adiabatic heating of specimens under high strain rates. A Johnson-Cook constitutive model was proposed based on tensile tests at different strain rates. In this study, the average stress triaxiality and equivalent plastic strain at facture obtained from numerical simulations were used for the calibration of J-C fracture model. Both of the J-C constitutive model and fracture model were employed in numerical simulations and the results was compared with experimental results. The calibrated J-C fracture model exhibits higher accuracy than the J-C fracture model obtained by the common method in predicting the fracture behavior of AA6082-T6. Finally, the Scanning Electron Microscope (SEM) of fractured specimens with different initial stress triaxialities were analyzed. The magnified fractographs indicate that high initial stress triaxiality likely results in dimple fracture.

  12. Flow and fracture behavior of aluminum alloy 6082-T6 at different tensile strain rates and triaxialities

    PubMed Central

    Chen, Xuanzhen; Peng, Shan; Yao, Song; Chen, Chao; Xu, Ping

    2017-01-01

    This study aims to investigate the flow and fracture behavior of aluminum alloy 6082-T6 (AA6082-T6) at different strain rates and triaxialities. Two groups of Charpy impact tests were carried out to further investigate its dynamic impact fracture property. A series of tensile tests and numerical simulations based on finite element analysis (FEA) were performed. Experimental data on smooth specimens under various strain rates ranging from 0.0001~3400 s-1 shows that AA6082-T6 is rather insensitive to strain rates in general. However, clear rate sensitivity was observed in the range of 0.001~1 s-1 while such a characteristic is counteracted by the adiabatic heating of specimens under high strain rates. A Johnson-Cook constitutive model was proposed based on tensile tests at different strain rates. In this study, the average stress triaxiality and equivalent plastic strain at facture obtained from numerical simulations were used for the calibration of J-C fracture model. Both of the J-C constitutive model and fracture model were employed in numerical simulations and the results was compared with experimental results. The calibrated J-C fracture model exhibits higher accuracy than the J-C fracture model obtained by the common method in predicting the fracture behavior of AA6082-T6. Finally, the Scanning Electron Microscope (SEM) of fractured specimens with different initial stress triaxialities were analyzed. The magnified fractographs indicate that high initial stress triaxiality likely results in dimple fracture. PMID:28759617

  13. Strengthening Aluminum Alloys for High Temperature Applications Using Nanoparticles of Al203 and Al3-X Compounds (X= Ti, V, Zr)

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2007-01-01

    In this paper the effect of nanoparticles A12O3 and A13-X compounds (X= Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their chemical stability and low diffusions rates in aluminum matrix at high temperatures. The strengthening mechanism for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. Samples were prepared from A12O3 nanoparticle preforms, which were produced using ceramic injection molding process and pressure infiltrated by molten aluminum. A12O3 nanoparticles can also be homogeneously mixed with aluminum powder and consolidated into samples through hot pressing and sintering. On the other hand, the Al3-X nanoparticles are produced as precipitates via in situ reactions with molten aluminum alloys using conventional casting techniques. The degree of alloy strengthening using nanoparticles will depend on the materials, particle size, shape, volume fraction, and mean inter-particle spacing.

  14. Methodology for Evaluation of Fatigue Crack-Growth Resistance of Aluminum Alloys under Spectrum Loading.

    DTIC Science & Technology

    1982-04-01

    fatigue life , except for the 2024 - T351 alloy which had a significantly longer spectrum fatigue life than the other alloys and 2) for...OF FATIGUE CRACK GROWTH OF ALUMINUM ALLOYS UNDER SPECTRUM LOADING MATERIALS PRESENT EFFORT FUTURE EFFORT 2024 - T351 2020-T651 2024 -T851 TMT2020-T6X51...the same spectrum fatigue life . The 2024 - T351 alloy had a significantly longer spectrum

  15. Fluxless aluminum brazing

    DOEpatents

    Werner, W.J.

    1974-01-01

    This invention relates to a fluxless brazing alloy for use in forming brazed composites made from members of aluminum and its alloys. The brazing alloy consists of 35-55% Al, 10--20% Si, 25-60% Ge; 65-88% Al, 2-20% Si, 2--18% In; 65--80% Al, 15-- 25% Si, 5- 15% Y. (0fficial Gazette)

  16. Fatigue Resistance of Liquid-assisted Self-repairing Aluminum Alloys Reinforced with Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Wright, M. Clara; Manuel, Michele; Wallace, Terryl

    2013-01-01

    A self-repairing aluminum-based composite system has been developed using a liquid-assisted healing theory in conjunction with the shape memory effect of wire reinforcements. The metal-metal composite was thermodynamically designed to have a matrix with a relatively even dispersion of a low-melting eutectic phase, allowing for repair of cracks at a predetermined temperature. Additionally, shape memory alloy (SMA) wire reinforcements were used within the composite to provide crack closure. Investigators focused the research on fatigue cracks propagating through the matrix in order to show a proof-of-concept Shape Memory Alloy Self-Healing (SMASH) technology for aeronautical applications.

  17. Stress-corrosion behavior of aluminum-lithium alloys in aqueous salt environments

    NASA Technical Reports Server (NTRS)

    Pizzo, P. P.; Galvin, R. P.; Nelson, H. G.

    1984-01-01

    The stress corrosion susceptibility of two powder metallurgy (P/M) alloys, Al-Li-Cu and Al-Li-Cu-Mg; two mechanically attrited (M/A) alloys, Al-Li-Cu and Al-Li-Mg; and two wrought, ingot alloys, X-2020 and AA7475, are compared. Time-dependent fracture in an aqueous sodium chloride environment under alternate immersion condition was found to vary significantly between alloys. The stress corrosion behavior of the two powder metallurgy processed alloys was studied in detail under conditions of crack initiation, static crack growth, and fatigue crack growth. A variety of stress corrosion tests were performed including smooth surface, time-to-failure tests; potentiostatic tests on smooth surfaces exposed to constant applied strain rates; and fracture mechanics-type tests under static and cyclic loads. Both alloys show surface pitting and subsequent intergranular corrosion. Pitting is more severe in the magnesium-bearing alloy and is associated with stringer particles strung along the extrusion direction as a result of P/M processing.

  18. High-Strength Aluminum Casting Alloy for High-Temperature Applications (MSFC Center Director's Discretionary Fund Final Project No. 97-10)

    NASA Technical Reports Server (NTRS)

    Lee, J. A.

    1998-01-01

    A new aluminum-silicon alloy has been successfully developed at Marshall Space Flight Center that has a significant improvement in tensile strength at elevated temperatures (550 to 700 F). For instance, the new alloy shows in average tensile strength of at least 90 percent higher than the current 390 aluminum piston alloy tested at 500 F. Compared to conventional aluminum alloys, automotive engines using the new piston alloy will have improved gas mileage, and may produce less air pollution in order to meet the future U.S. automotive legislative requirements for low hydrocarbon emissions. The projected cost for this alloy is less than $0.95/lb, and it readily allows the automotive components to be cast at a high production volume with a low, fully accounted cost. It is economically produced by pouring molten metal directly into conventional permanent steel molds or die casting.

  19. Thermodynamic investigation of the effect of alkali metal impuries on the processing of aluminum and magnesium alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Shengjun

    2006-12-01

    Aluminum and magnesium alloys are widely used in the automobile and aerospace industries as structural materials due to their light weight, high specific strength and good formability. However, they suffer from the poor hot rolling characteristics due to undesired impurities like calcium, potassium, lithium and sodium. They increase the hydrogen solubility in the melt and promote the formation of porosity in aluminum castings. During fabrication of aluminum alloys, they cause the hot-shortness and embrittlement due to cracking. They also led to "blue haze" corrosion which promotes the discoloration of aluminum under humid condition. The removal of these elements increases overall melt loss of aluminum alloys when aluminum products are remelted and recast. Na is one of the common impurities in the Al and Mg alloys. In industry, primary Al is produced by the Hall-Heroult process, through the electrolysis of the mixture of molten alumina and cryolite (Al2O3+Na 3AlF6), the latter being added to lower the melting point. Therefore, Al inevitably contains some Na (>0.002%) without further treatment. The Na content in Al is influenced by the thermodynamics and kinetics of the electrolysis. Similarly, in the electrolytic production and subsequent processing of Mg, Mg is commonly in contact with molten salt mixtures of NaCl and MgCl 2. Consequently, 2--20 wt. ppm Na is often found in Mg alloys. Besides originating from the industrial production process, Na can be introduced in laboratory experiments from alumina crucibles by the reaction between the molten Al-Mg alloys and the Na2O impurity in the alumina crucible. The trace element K plays a similar role in Al alloys although it is seldom discussed. No systematic theoretic research has been carried out to investigate the behavior of these impurities during the processing of aluminum alloys. The thermodynamic description of the Al-Ca-K-Li-Mg-Na system is needed to understand the effects of Ca, K, Li and Na on phase stability

  20. On the Similarity of Deformation Mechanisms During Friction Stir Welding and Sliding Friction of the AA5056 Alloy

    NASA Astrophysics Data System (ADS)

    Kolubaev, A. V.; Zaikina, A. A.; Sizova, O. V.; Ivanov, K. V.; Filippov, A. V.; Kolubaev, E. A.

    2018-04-01

    A comparative investigation of the structure of an aluminum-manganese alloy is performed after its friction stir welding and sliding friction. Using the methods of optical and electron microscopy, it is shown that during friction identical ultrafine-grained structures are formed in the weld nugget and in the surface layer, in which the grains measure 5 μm irrespective of the initial grain size of the alloy. An assumption is made that the microstructure during both processes under study is formed by the mechanism of rotational plasticity.

  1. Coarsening of AA6013-T6 Precipitates During Sheet Warm Forming Applications

    NASA Astrophysics Data System (ADS)

    Di Ciano, M.; DiCecco, S.; Esmaeili, S.; Wells, M. A.; Worswick, M. J.

    2018-03-01

    The use of warm forming for AA6xxx-T6 sheet is of interest to improve its formability; however, the effect warm forming may have on the coarsening of precipitates and the mechanical strength of these sheets has not been well studied. In this research, the coarsening behavior of AA6013-T6 precipitates has been explored, in the temperature range of 200-300 °C, and time of 30 s up to 50 h. Additionally, the effect of warm deformation on coarsening behavior was explored using: (1) simulated warm forming tests in a Gleeble thermo-mechanical simulator and (2) bi-axial warm deformation tests. Using a strong obstacle model to describe the yield strength (YS) evolution of the AA6013-T6 material, and a Lifshitz, Slyozov, and Wagner (LSW) particle coarsening law to describe the change in precipitate size with time, the coarsening kinetics were modeled for this alloy. The coarsening kinetics in the range of 220-300 °C followed a trend similar to that previously found for AA6111 for the 180-220 °C range. There was strong evidence that coarsening kinetics were not altered due to warm deformation above 220 °C. For warm forming between 200 and 220 °C, the YS of the AA6013-T6 material increased slightly, which could be attributed to strain hardening during warm deformation. Finally, a non-isothermal coarsening model was used to assess the potential reduction in the YS of AA6013-T6 for practical processing conditions related to auto-body manufacturing. The model calculations showed that 90% of the original AA6013-T6 YS could be maintained, for warm forming temperatures up to 280 °C, if the heating schedule used to get the part to the warm forming temperature was limited to 1 min.

  2. Evaluation of Aluminum Alloy 2050-T84 Microstructure and Mechanical Properties at Ambient and Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Hafley, Robert A.; Domack, Marcia S.; Hales, Stephen J.; Shenoy, Ravi N.

    2011-01-01

    Aluminum alloy 2050 is being considered for the fabrication of cryogenic propellant tanks to reduce the mass of future heavy-lift launch vehicles. The alloy is available in section thicknesses greater than that of the incumbent aluminum alloy, 2195, which will enable designs with greater structural efficiency. While ambient temperature design allowable properties are available for alloy 2050, cryogenic properties are not available. To determine its suitability for use in cryogenic propellant tanks, tensile, compression and fracture tests were conducted on 4 inch thick 2050-T84 plate at ambient temperature and at -320degF. Various metallurgical analyses were also performed in order to provide an understanding of the compositional homogeneity and microstructure of 2050.

  3. Theoretical studies of aluminum and aluminide alloys using CALPHAD and first-principles approach

    NASA Astrophysics Data System (ADS)

    Jiang, Chao

    Heat-treatable aluminum alloys have been widely used in the automobile and aerospace industries as structural materials due to their light weight and high strength. To study the age-hardening process in heat-treatable aluminum alloys, the Gibbs energies of the strengthening metastable phases, e.g. theta ' and theta″, are critical. However, those data are not included in the existing thermodynamic databases for aluminum alloys due to the semi-empirical nature of the CALPHAD approach. In the present study, the thermodynamics of the Al-Cu system, the pivotal age-hardening system, is remodeled using a combined CALPHAD and first-principles approach. The formation enthalpies and vibrational formation entropies of the stable and metastable phases in the Al-Cu system are provided by first-principles calculations. Special Quasirandom Structures (SQS's) are applied to model the substitutionally random fee and bee alloys. SQS's for binary bee alloys are developed and tested in the present study. Finally, a self-consistent thermodynamic description of the Al-Cu system including the two metastable theta″ and theta' phases is obtained. During welding of heat-treatable aluminum alloys, a detrimental phenomenon called constitutional liquation, i.e. the local eutectic melting of second-phase particles in a matrix at temperatures above the eutectic temperature but below the solidus of the alloy, may occur in the heat-affected zone (HAZ). In the present study, diffusion code DICTRA coupled with realistic thermodynamic and kinetic databases is used to simulate the constitutional liquation in the model Al-Cu system. The simulated results are in quantitative agreement with experiments. The critical heating rate to avoid constitutional liquation is also determined through computer simulations. Besides the heat-treatable aluminum alloys, intermetallic compounds based on transition metal aluminides, e.g. NiAl and FeAl, are also promising candidates for the next-generation of high

  4. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding.

    PubMed

    Hangai, Yoshihiko; Nakano, Yukiko; Koyama, Shinji; Kuwazuru, Osamu; Kitahara, Soichiro; Yoshikawa, Nobuhiro

    2015-10-23

    Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately t H = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation or reduction in the thickness of the tube.

  5. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding

    PubMed Central

    Hangai, Yoshihiko; Nakano, Yukiko; Koyama, Shinji; Kuwazuru, Osamu; Kitahara, Soichiro; Yoshikawa, Nobuhiro

    2015-01-01

    Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation and minimum reduction in the thickness of the tube. PMID:28793629

  6. Long-term thermal degradation and alloying constituent effects on five boron/aluminum composites

    NASA Technical Reports Server (NTRS)

    Olsen, G. C.

    1982-01-01

    Thermal exposure effects on the properties of five boron/aluminum composite systems were experimentally investigated. The composite systems were 49 volume percent boron fibers (203 micron diameter) in aluminum-alloy matrices 1100 Al, 2024 Al, 3003 Al, 5052 Al, and 6061 Al. Specimens were thermally exposed up to 10,000 hours at 500 K and 590 K, up to 500 hours at 730 K, and up to 10,000 hours at 500 K and 590 K, up to 500 hours at 730 K, and up to 2000 thermal cycles between 200 K and 590 K. Composite longitudinal and transverse tensile strengths, longitudinal compression strength, and in-plane shear strength were determined. None of the systems was severely degraded by exposure at 590 K. The best performing system was B-2024 Al. Effects of matrix alloys on degradation mechanisms were experimentally investigated. Composite specimens and individual fibers were metallurgically analyzed with a scanning electron microscope and an electron microprobe to determine failure characteristics, chemical element distribution, and reaction layer morphology. Alloying constituents were found to be affect the composite degradation mechanisms as follows: alloys containing iron, but without manganese as a stabilizer, caused increased low-temperature degradation; alloys containing magnesium, iron, or manganese caused increased degradation; and alloys containing copper caused increased fiber strength.

  7. Study of constitution diagram aluminum-tantalum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glazov, V.M.; Mal'tsev, M.V.; Chistyakov, Y.D.

    1988-10-20

    Alloys of aluminum with tantalum were for the first time obtained by aluminothermic method in 1868 by Moriniak. Later these alloys were studied in the works of Schirmeister (1915) and Brouwer (1938), moreover Brouwer established that tantalum with aluminum forms the chemical compound TaA1, which has tetragonal crystal lattice with parameters a=5.422 angstroms and c=8.536 angstroms (1). However despite the fact that alloys of aluminum with tantalum long ago are obtained already, constitution diagram of this system is not studied until recently. In connection with the application of tantalum as the modifying additive in aluminum alloys an emergency in themore » construction of this diagram, without the knowledge by which it is not possible to give the correct explanation of the mechanism of the very process of the modification of primary grain. For this purpose was undertaken this work. Russian translations.« less

  8. Multiscale Modeling of Damage Processes in Aluminum Alloys: Grain-Scale Mechanisms

    NASA Technical Reports Server (NTRS)

    Hochhalter, J. D.; Veilleux, M. G.; Bozek, J. E.; Glaessgen, E. H.; Ingraffea, A. R.

    2008-01-01

    This paper has two goals related to the development of a physically-grounded methodology for modeling the initial stages of fatigue crack growth in an aluminum alloy. The aluminum alloy, AA 7075-T651, is susceptible to fatigue cracking that nucleates from cracked second phase iron-bearing particles. Thus, the first goal of the paper is to validate an existing framework for the prediction of the conditions under which the particles crack. The observed statistics of particle cracking (defined as incubation for this alloy) must be accurately predicted to simulate the stochastic nature of microstructurally small fatigue crack (MSFC) formation. Also, only by simulating incubation of damage in a statistically accurate manner can subsequent stages of crack growth be accurately predicted. To maintain fidelity and computational efficiency, a filtering procedure was developed to eliminate particles that were unlikely to crack. The particle filter considers the distributions of particle sizes and shapes, grain texture, and the configuration of the surrounding grains. This filter helps substantially reduce the number of particles that need to be included in the microstructural models and forms the basis of the future work on the subsequent stages of MSFC, crack nucleation and microstructurally small crack propagation. A physics-based approach to simulating fracture should ultimately begin at nanometer length scale, in which atomistic simulation is used to predict the fundamental damage mechanisms of MSFC. These mechanisms include dislocation formation and interaction, interstitial void formation, and atomic diffusion. However, atomistic simulations quickly become computationally intractable as the system size increases, especially when directly linking to the already large microstructural models. Therefore, the second goal of this paper is to propose a method that will incorporate atomistic simulation and small-scale experimental characterization into the existing multiscale

  9. Effect of intermetallic phases on the anodic oxidation and corrosion of 5A06 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Li, Song-mei; Li, Ying-dong; Zhang, You; Liu, Jian-hua; Yu, Mei

    2015-02-01

    Intermetallic phases were found to influence the anodic oxidation and corrosion behavior of 5A06 aluminum alloy. Scattered intermetallic particles were examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) after pretreatment. The anodic film was investigated by transmission electron microscopy (TEM), and its corrosion resistance was analyzed by electrochemical impedance spectroscopy (EIS) and Tafel polarization in NaCl solution. The results show that the size of Al-Fe-Mg-Mn particles gradually decreases with the iron content. During anodizing, these intermetallic particles are gradually dissolved, leading to the complex porosity in the anodic film beneath the particles. After anodizing, the residual particles are mainly silicon-containing phases, which are embedded in the anodic film. Electrochemical measurements indicate that the porous anodic film layer is easily penetrated, and the barrier plays a dominant role in the overall protection. Meanwhile, self-healing behavior is observed during the long immersion time.

  10. Comparative Evaluation of Cast Aluminum Alloys for Automotive Cylinder Heads: Part I—Microstructure Evolution

    NASA Astrophysics Data System (ADS)

    Roy, Shibayan; Allard, Lawrence F.; Rodriguez, Andres; Watkins, Thomas R.; Shyam, Amit

    2017-05-01

    The present study stages a comparative evaluation of microstructure and associated mechanical and thermal response for common cast aluminum alloys that are used for manufacturing automotive cylinder heads. The systems considered are Al-Cu (206-T6), Al-Si-Cu (319-T7), and Al-Si (356-T6, A356-T6, and A356 + 0.5Cu-T6). The focus of the present manuscript is on the evaluation of microstructure at various length scales after aging, while the second manuscript will deal with the mechanical and thermal response of these alloys due to short-term (aging) and long-term (pre-conditioning) heat treatments. At the grain-scale, the Al-Cu alloy possessed an equiaxed microstructure as opposed to the dendritic structure for the Al-Si-Cu or Al-Si alloys which is related to the individual solidification conditions for these alloy systems. The composition and morphology of intermetallic precipitates within the grain and at the grain/dendritic boundary are dictated by the alloy chemistry, solidification, and heat treatment conditions. At the nanoscale, these alloys contain various metastable strengthening precipitates (GPI and θ^'' in Al-Cu alloy, θ^' in Al-Si-Cu alloy, and β^' in Al-Si alloys) with varying size, morphology, coherency, and thermal stability.

  11. Development and study of aluminum-air electrochemical generator and its main components

    NASA Astrophysics Data System (ADS)

    Ilyukhina, A. V.; Kleymenov, B. V.; Zhuk, A. Z.

    2017-02-01

    Aluminum-air power sources are receiving increased attention for applications in portable electronic devices, transportation, and energy systems. This study reports on the development of an aluminum-air electrochemical generator (AA ECG) and provides a technical foundation for the selection of its components, i.e., aluminum anode, gas diffusion cathode, and alkaline electrolyte. A prototype 1.5 kW AA ECG with specific energy of 270 Wh kg-1 is built and tested. The results of this study demonstrate the feasibility of AA ECGs as portable reserve and emergency power sources, as well as power sources for electric vehicles.

  12. Mechanical Performance of Cold-Sprayed A357 Aluminum Alloy Coatings for Repair and Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Petráčková, K.; Kondás, J.; Guagliano, M.

    2017-12-01

    Cold-sprayed coatings made of A357 aluminum alloy, a casting alloy widely used in aerospace, underwent set of standard tests as well as newly developed fatigue test to gain an information about potential of cold spray for repair and additive manufacturing of loaded parts. With optimal spray parameters, coating deposition on substrate with smooth surface resulted in relatively good bonding, which can be further improved by application of grit blasting on substrate's surface. However, no enhancement of adhesion was obtained for shot-peened surface. Process temperature, which was set either to 450 or 550 °C, was shown to have an effect on adhesion and cohesion strength, but it does not influence residual stress in the coating. To assess cold spray perspectives for additive manufacturing, flat tensile specimens were machined from coating and tested in as-sprayed and heat-treated (solution treatment and aging) condition. Tensile properties of the coating after the treatment correspond to properties of the cast A357-T61 aluminum alloy. Finally, fatigue specimen was proposed to test overall performance of the coating and coating's fatigue limit is compared to the results obtained on cast A357-T61 aluminum alloy.

  13. ENVIRONMENTALLY COMPLIANT CORROSION-ACTIVATED INHIBITOR SYSTEM FOR ALUMINUM ALLOYS - PHASE I

    EPA Science Inventory

    The federal government is estimated to spend $1 billion on painting/repainting aircraft annually. Aircraft have surfaces composed of aluminum alloys that are highly susceptible to corrosion and must be protected with corrosion-preventative treatments that typically conta...

  14. Micromechanical models of delamination in aluminum-lithium alloys

    NASA Astrophysics Data System (ADS)

    Messner, Mark Christian

    Aluminum lithium (Al-Li) alloys are lighter, stiffer, and tougher than conventional aerospace aluminum alloys. Replacing conventional aluminums with Al-Li could substantially decrease the weight and cost of aerospace structures. However, Al-Li alloys often fracture intergranularly via a mechanism called delamination cracking. While secondary delamination cracks can improve the effective toughness of a component, no current model accurately predicts the initiation and growth of intergranular cracks. Since simulations cannot incorporate delamination into a structural model, designers cannot quantify the effect of delamination cracking on a particular component. This uncertainty limits the application of Al-Li alloys. Previous experiments identify microstructural features linked to delamination. Fractography of failed surfaces indicates plastic void growth triggers intergranular failure. Furthermore, certain types of soft/stiff grain boundaries tend to localize void growth and nucleate delamination cracks. This dissertation develops a mechanism for the initiation of delamination on the microscale that accounts for these experimental observations. Microscale simulations of grain boundaries near a long primary crack explore the delamination mechanism on the mesoscale. In these simulations, a physically-based crystal plasticity (CP) model represents the constitutive response of individual grains. This CP model incorporates plastic voriticity correction terms into a standard objective stress rate integration, to accurately account for the kinematics of lattice deformation. The CP model implements slip system hardening with a modular approach to facilitate quick testing and calibration of different theories of hardening. The microscale models reveal soft/stiff grain boundaries develop elevated mean stress and plastic strain as a consequence of the mechanics of the interface. These elevated stresses and strain drive plastic void growth. The results indicate plastic void

  15. Characterization of acoustic cavitation in water and molten aluminum alloy.

    PubMed

    Komarov, Sergey; Oda, Kazuhiro; Ishiwata, Yasuo; Dezhkunov, Nikolay

    2013-03-01

    High-intensive ultrasonic vibrations have been recognized as an attractive tool for refining the grain structure of metals in casting technology. However, the practical application of ultrasonics in this area remains rather limited. One of the reasons is a lack of data needed to optimize the ultrasonic treatment conditions, particularly those concerning characteristics of cavitation zone in molten aluminum. The main aim of the present study was to investigate the intensity and spectral characteristics of cavitation noise generated during radiation of ultrasonic waves into water and molten aluminum alloys, and to establish a measure for evaluating the cavitation intensity. The measurements were performed by using a high temperature cavitometer capable of measuring the level of cavitation noise within five frequency bands from 0.01 to 10MHz. The effect of cavitation treatment was verified by applying high-intense ultrasonic vibrations to a DC caster to refine the primary silicon grains of a model Al-17Si alloy. It was found that the level of high frequency noise components is the most adequate parameter for evaluating the cavitation intensity. Based on this finding, it was concluded that implosions of cavitation bubbles play a decisive role in refinement of the alloy structure. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Microstructural characterization of AA5183 aluminum clad AISI 1018 steel prepared by electro spark deposition

    NASA Astrophysics Data System (ADS)

    Rastkerdar, E.; Aghajani, H.; Kianvash, A.; Sorrell, C. C.

    2018-04-01

    The application of a simple and effective technique, electro spark deposition (ESD), to create aluminum clad steel plate has been studied. AA5183 aluminum rods were used as the rotating electrode for cladding of the AISI 1018 steel. The microstructure of the interfacial zone including the intermetallic compounds (IMC) layer and the clad metal have been investigated by scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM and STEM). According to the results sound aluminum clad with thickness up to 25–30 μm can be achieved. Very thin (<4 μm) IMC layer was formed at the Al/Fe interface and the structural (electron diffraction pattern) and chemical analysis (STEM) conducted by TEM confirmed that the layer is constituted of Fe rich phases, both implying a much improved mechanical properties. Investigation of the orientations of phases at the interfacial zone confirmed absence of any preferred orientation.

  17. Electrochemical Behavior and Surface Chemistry of Aluminum Alloys: Solute-Rich Interphase Model

    DTIC Science & Technology

    1993-03-31

    physical vapor deposition ( PVD ). Several different mechanisms have been proposed to explain the passivity of stainless aluminum alloys, including...flat-cell model K0235), which simplified the mounting of the specimens since no lead wire attachment or coating of the specimens were required. The...reasons. First, depending on when the particles were ejected and whether they were subsequently coated with the alloy, their presence could establish

  18. Corrosion resistance of micro-arc oxidation coatings formed on aluminum alloy with addition of Al2O3

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Chen, Y.; Du, H. Q.; Zhao, YW

    2018-03-01

    Micro-arc oxidation (MAO) coatings were formed on the aluminum alloy in silicate-based electrolyte without and with the addition of Al2O3. It is showed that the coating produced in 7 g l‑1 Al2O3-containing electrolyte was of the most superior corrosion resistance. Besides, the corrosion properties of the coatings were studied by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) test in both 0.5 M and 1 M NaCl solution. The results proved that the coating is capable to protect the substrate from the corrosion of aggressive Cl‑ in 0.5 M NaCl after 384 h immersion. However, it can not offer protection to the aluminum alloy substrate after 384 h immersion in 1 M NaCl solution. The schematic diagrams illustrate the corrosion process and matched well with the corrosion test results.

  19. Nano Precipitation and Hardening of Die-Quenched 6061 Aluminum Alloy.

    PubMed

    Utsunomiya, Hiroshi; Tada, Koki; Matsumoto, Ryo; Watanabe, Katsumi; Matsuda, Kenji

    2018-03-01

    Die quenching is applied to an age-hardenable aluminium alloys to obtain super-saturated solid solution. The application is advantageous because it can reduce number of manufacturing processes, and may increase strength by strain aging. If die quenching is realized in forging as well as sheet forming, it may widen industrial applicability further. In this study, Al-Mg-Si alloy AA6061 8 mm-thick billets were reduced 50% in height without cracks by die-quench forging. Supersaturated solid solution was successfully obtained. The die-quenched specimen shows higher hardness with nano precipitates at shorter aging time than the conventional water-quenched specimen.

  20. Analysis and Thermodynamic Prediction of Hydrogen Solution in Solid and Liquid Multicomponent Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Anyalebechi, P. N.

    Reported experimentally determined values of hydrogen solubility in liquid and solid Al-H and Al-H-X (where X = Cu, Si, Zn, Mg, Li, Fe or Ti) systems have been critically reviewed and analyzed in terms of Wagner's interaction parameter. An attempt has been made to use Wagner's interaction parameter and statistic linear regression models derived from reported hydrogen solubility limits for binary aluminum alloys to predict the hydrogen solubility limits in liquid and solid (commercial) multicomponent aluminum alloys. Reasons for the observed poor agreement between the predicted and experimentally determined hydrogen solubility limits are discussed.

  1. Method of Heat Treating Aluminum-Lithium Alloy to Improve Formability

    NASA Technical Reports Server (NTRS)

    Russell, Carolyn Kurgan (Inventor); Chen, Po-Shou (Inventor)

    2016-01-01

    A method is provided for heat treating aluminum-lithium alloys to improve their formability. The alloy is heated to a first temperature, maintained at the first temperature for a first time period, heated at the conclusion of the first time period to a second temperature, maintained at the second temperature for a second time period, actively cooled at the conclusion of the second time period to a third temperature, maintained at the third temperature for a third time period, and then passively cooled at the conclusion of the third time period to room temperature.

  2. Numerical analysis of heat treatment of TiCN coated AA7075 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Srinath, M. K.; Prasad, M. S. Ganesha

    2018-04-01

    The Numerical analysis of heat treatments of TiCN coated AA7075 aluminium alloys is presented in this paper. The Convection-Diffusion-Reaction (CDR) equation with solutions in the Streamlined-Upward Petrov-Galerkin (SUPG) method for different parameters is provided for the understanding of the process. An experimental process to improve the surface properties of AA-7075 aluminium alloy was attempted through the coatings of TiCN and subsequent heat treatments. From the experimental process, optimized temperature and time was obtained which gave the maximum surface hardness and corrosion resistance. The paper gives an understanding and use of the CDR equation for application of the process. Expression to determine convection, diffusion and reaction parameters are provided which is used to obtain the overall expression of the heat treatment process. With the substitution of the optimized temperature and time, the governing equation may be obtained. Additionally, the total energy consumed during the heat treatment process is also developed to give a mathematical formulation of the energy consumed.

  3. Microstructure and Residual Stress Distributions Under the Influence of Welding Speed in Friction Stir Welded 2024 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Moghadam, Danial Ghahremani; Farhangdoost, Khalil; Nejad, Reza Masoudi

    2016-06-01

    Friction stir welding was conducted on 8-mm-thick plates made of AA2024-T351 aluminum alloy at tool traverse speeds between 8 and 31.5 mm/minutes and tool rotational speed between 400 and 800 rpm. Metallographic analyses and mechanical tests including hardness, tensile, residual stress, and fracture toughness tests were carried out to evaluate the microstructural and mechanical properties of the joints as a function of the process parameters. The finite element simulation of the FSW process was also performed using a thermal model. The hardness test results show that the increase in rotational speed or decrease in traverse speed of the tool would cause a decrease in weld zone hardness. The best tensile properties are obtained at rotational/traverse speed ratio between 20 and 32. Also, the longitudinal residual stress profiles were evaluated by employing X-ray diffraction method. The numerical and experimental results showed that the increase in a traverse or rotational speed would increase the residual stress of the weld zone. From the fracture toughness results, it was found that the welding process decreases the joints fracture toughness 18 to 49 pct with respect to the base metal.

  4. Cast Aluminum Alloys for High Temperature Applications Using Nanoparticles Al2O3 and Al3-X Compounds (X = Ti, V, Zr)

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2009-01-01

    In this paper, the effect of nanoparticles Al2O3 and Al3-X compounds (X = Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their low cost, chemical stability and low diffusions rates in aluminum at high temperatures. The strengthening mechanism at high temperature for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. For Al2O3 nanoparticles, the test samples were prepared from special Al2O3 preforms, which were produced using ceramic injection molding process and then pressure infiltrated by molten aluminum. In another method, Al2O3 nanoparticles can also be homogeneously mixed with fine aluminum powder and consolidated into test samples through hot pressing and sintering. With the Al3-X nanoparticles, the test samples are produced as precipitates from in-situ reactions with molten aluminum using conventional permanent mold or die casting techniques. It is found that cast aluminum alloy using nanoparticles Al3-X is the most cost effective method to produce high strength aluminum alloys for high temperature applications in comparison to nanoparticles Al2O3. Furthermore, significant mechanical properties retention in high temperature environment could be achieved with Al3-X nanoparticles, resulting in tensile strength of nearly 3 times higher than most 300- series conventional cast aluminum alloys tested at 600 F.

  5. Study on Microstructure and Electrochemical Corrosion Behavior of PEO Coatings Formed on Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Xiang, N.; Song, R. G.; Li, H.; Wang, C.; Mao, Q. Z.; Xiong, Y.

    2015-12-01

    Plasma electrolytic oxidation (PEO) treated 6063 aluminum alloy was applied in a silicate- and borate-based alkaline solution. The microstructure and electrochemical corrosion behavior were studied by scanning electron microscopy, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization techniques. The results showed that the silicate-based PEO coating was of a denser structure compared with that of borate-based PEO coating. In addition, the silicate-based PEO coating was composed of more phased (Al9Si) than borate-based PEO coating. The results of corrosion test indicated that the silicate-based PEO coating provided a superior protection to 6063 aluminum alloy substrate, while borate-based PEO coating with a porous structure showed an inferior conservancy against corrosive electrolyte. Furthermore, the EIS tests proved that both coatings were capable to resist the aggressive erosion in 0.5 M NaCl solution after 72 h of immersion. However, the borate-based PEO coating could not provide sufficient protection to the substrate after 72-h immersion in 1 M NaCl solution.

  6. Effect of KOH to Na2SiO3 Ratio on Microstructure and Hardness of Plasma Electrolytic Oxidation Coatings on AA 6061 Alloy

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Jang, Yong-Joo; Jung, Jae Pil

    2017-10-01

    In this study, plasma electrolytic oxidation (PEO) process has been employed to fabricate alumina coatings on AA 6061 aluminum alloy from an electrolyte containing water glass (Na2SiO3) and alkali (KOH). The effect of deposition time and the alkali to water glass (KOH: Na2SiO3) composition ratio on the coating morphology and properties are studied. The different phases of the oxide layer and microstructure are investigated by x-ray diffraction, scanning electron microscopy, and atomic force microscopy. The results indicate that initially γ-Al2O3 forms in the coating, and as the processing time is increased from 5 to 60 minutes, α-Al2O3 phase becomes prominent. Further, higher the content of Na2SiO3, higher is the hardness and coating growth rate due to the formation of stable α-Al2O3 and Al-Si-O phase. It has been reported that the optimum properties of the PEO coatings can be obtained at a ratio of KOH: Na2SiO3 ≈ 15:10 followed by 10:10.

  7. Development of Weldable Superplastic Forming Aluminum Alloy Sheet Final Report CRADA No. TC-1086-95

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesuer, D.; Sun, T. C.

    Numerous applications could exist for superplastic formable, weldable aluminum alloys in the automotive, aerospace, architectural, and construction industries. In this project, LLNL and Kaiser worked with the Institute for Metals Superplasticity Problems to develop and evaluate weldable superplastic alloys.

  8. Aging Optimization of Aluminum-Lithium Alloy C458 for Application to Cryotank Structures

    NASA Technical Reports Server (NTRS)

    Sova, B. J.; Sankaran, K. K.; Babel, H. W.; Farahmand, B.; Rioja, R.

    2003-01-01

    This viewgraph report presents an examination of the fracture toughness of aluminum-lithium alloy C458 for use in cryotank structures. Topics cover include: cryogenics, alloy composition, strengthing precipitates in C458, cryogenic fracture toughness improvements, design of experiments for measuring aging optimization of C458 plate and effects of aging of properties of C458 plate.

  9. Determination of Stress-Corrosion Cracking in Aluminum-Lithium Alloy ML377

    NASA Technical Reports Server (NTRS)

    Valek, Bryan C.

    1995-01-01

    The use of aluminum-lithium alloys for aerospace applications is currently being studied at NASA Langley Research Center's Metallic Materials Branch. The alloys in question will operate under stress in a corrosive environment. These conditions are ideal for the phenomena of Stress-Corrosion Cracking (SCC) to occur. The test procedure for SCC calls for alternate immersion and breaking load tests. These tests were optimized for the lab equipment and materials available in the Light Alloy lab. Al-Li alloy ML377 specimens were then subjected to alternate immersion and breaking load tests to determine residual strength and resistance to SCC. Corrosion morphology and microstructure were examined under magnification. Data shows that ML377 is highly resistant to stress-corrosion cracking.

  10. Effect of geometrical stress concentrators on the current-induced suppression of the serrated deformation in an aluminum-magnesium AlMg5 alloy

    NASA Astrophysics Data System (ADS)

    Shibkov, A. A.; Zolotov, A. E.; Zheltov, M. A.; Denisov, A. A.; Gasanov, M. F.; Kochegarov, S. S.

    2016-05-01

    The effect of an electric current on the band formation and the serrated deformation of planar specimens made of an aluminum-magnesium AlMg5 alloy and weakened by holes is experimentally studied. It is found that the concentration of elastic stress fields and the self-localized unstable plastic deformation field near a hole decreases the critical strain of appearance of the first stress drop and hinders the currentinduced suppression of band formation and the serrated Portevin-Le Chatelier deformation. These results are shown not to be related to the concentration of Joule heat near a hole.

  11. Investigation of Flat Clinching Process Combined with Material Forming Technology for Aluminum Alloy.

    PubMed

    Chen, Chao; Zhao, Shengdun; Han, Xiaolan; Wang, Yongfei; Zhao, Xuzhe

    2017-12-15

    In recent years, the use of aluminum alloy has tended to increase for building lightweight automobiles to reduce their automotive weight, which is helpful to save energy and protect the environment. In order to join aluminum alloy, a flat-clinching process combined with material forming technology was investigated to join aluminum alloy sheets using an experimental and a numerical method. Al1060 was chosen as the material of the sheet, and DEFORM-2D software was used to build the numerical model. After the numerical model was validated by the experimental results, the influences of punch diameter and holder force on the materials deforming behavior of the clinched joint were analyzed using the numerical model. Then, the material flow, joining ability, and joining quality were investigated to assess the clinched joint. The results showed that an increase in punch diameter could give rise to an increase in neck thickness and interlocking length, while an increase in blank holder force induced a decrease in interlocking length and an increase in neck thickness. The joining quality could be increased by increasing the forming force. It can be concluded that a clinched joint has better joining quality for joining light-weight sheets onto automotive structures.

  12. Water-soluble metal working fluids additives derived from the esters of acid anhydrides with higher alcohols for aluminum alloy materials.

    PubMed

    Yamamoto, Syutaro; Tomoda, Hideyuki; Watanabe, Shoji

    2007-01-01

    Water-soluble metal working fluids are used for processing of aluminum alloy materials. This short article describes properties of new additives in water-soluble metal working fluids for aluminum alloy materials. Many half esters or diesters were prepared from the reactions of higher alcohols with acid anhydrides. Interestingly, diesters of PTMG (tetrahydrofuran oligomer, MW = 650 and 1000) and polybutylene oxide (MW = 650) with maleic anhydride and succinic anhydride showed both of an excellent anti-corrosion property for aluminum alloy and a good hard water tolerance. The industrial soluble type processing oils including these additives also showed anti-corrosion property and hard water tolerance.

  13. Effect of MWCNT reinforcement on the precipitation-hardening behavior of AA2219

    NASA Astrophysics Data System (ADS)

    Thomas, Shijo; Umasankar, V.

    2018-01-01

    Aluminum alloy matrix composites have found a predominant place in research, and their applications are explored in almost all industries. The aerospace industry has been using precipitation-hardenable alloys in structural applications. However, insufficient literature is available on the influence of multiwalled carbon nanotubes (MWCNTs) on precipitation-hardenable alloy composite materials; thus, this work was designed to elucidate the effect on MWCNT reinforcement on AA2219 with and without precipitation hardening. Reinforcement with MWCNTs has been reported to accelerate precipitation and to achieve greater hardness within a much shorter time. The addition of 0.75wt% MWCNTs resulted in maximal hardness at 90 min, which is approximately 27% of improvement over the maximum hardness achieved by the corresponding monolithic alloy after 10 h of aging. The sample reinforced with 0.75wt% MWCNTs showed an improvement of 82% in hardness by solutionizing and aging compared to that achieved by sintering.

  14. The effect of aluminum alloying on strength properties and deformation mechanisms of the <123> Hadfield steel single crystals

    NASA Astrophysics Data System (ADS)

    Astafurova, E. G.; Tukeev, M. S.; Chumlyakov, Yu. I.

    2007-10-01

    The role of aluminum alloying on strength properties and deformation mechanisms (slip, twinning) of <123> single crystals of Hadfield steel under tensile loading at T = 300 K is demonstrated. It is found out that aluminum alloying suppresses twinning deformation in the <123> single crystals and, during slip, results in a dislocation structure change from a uniform dislocation distribution to a planar dislocation structure.

  15. High Strength Discontinuously Reinforced Aluminum For Rocket Applications

    NASA Technical Reports Server (NTRS)

    Pandey, A. B.; Shah, S. R.; Shadoan, M.

    2003-01-01

    This study presents results on the development of a new aluminum alloy with very high strength and ductility. Five compositions of Al-Mg-Sc-Gd-Zr alloy were selected for this purpose. These alloys were also reinforced with 15 volume percent silicon-carbide and boron-carbide particles to produce Discontinuously Reinforced Aluminum (DRA) materials. Matrix alloys and DRA were processed using a powder metallurgy process. The helium gas atomization produced very fine powder with cellular-dentritic microstructure. The microstructure of matrix alloys showed fine Al3Sc based precipitate which provides significant strengthening in these alloys. DRA showed uniform distribution of reinforcement in aluminum matrix. DRA materials were tested at -320 F, 75 F in air and 7S F in gaseous hydrogen environments and matrix alloys were tested at 75 F in air. DRA showed high strengths in the range of 89-111 ksi (614-697 MPa) depending on alloy compositions and test environments. Matrix alloys had a good combination of strength, 84-89 ksi (579-621 MPa) and ductility, 4.5-6.5%. The properties of these materials can further be improved by proper control of processing parameters.

  16. Performance of AA5052 alloy anode in alkaline ethylene glycol electrolyte with dicarboxylic acids additives for aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Wang, DaPeng; Zhang, DaQuan; Lee, KangYong; Gao, LiXin

    2015-11-01

    Dicarboxylic acid compounds, i.e. succinic acid (SUA), adipic acid (ADA) and sebacic acid (SEA), are used as electrolyte additives in the alkaline ethylene glycol solution for AA5052 aluminium-air batteries. It shows that the addition of dicarboxylic acids lowers the hydrogen gas evolution rate of commercial AA5052 aluminium alloy anode. AA5052 aluminium alloy has wide potential window for electrochemical activity and better discharge performance in alkaline ethylene glycol solution containing dicarboxylic acid additives. ADA has the best inhibition effect for the self-corrosion of AA5052 anode among the three dicarboxylic acid additives. Fourier transform infrared spectroscopy (FT-IR) reveals that dicarboxylic acids and aluminium ions can form coordination complexes. Quantum chemical calculations shows that ADA has a smaller energy gap (ΔE, the energy difference between the lowest unoccupied orbital and the highest occupied orbital), indicating that ADA has the strongest interaction with aluminium ions.

  17. The adhesion performance of epoxy coating on AA6063 treated in Ti/Zr/V based solution

    NASA Astrophysics Data System (ADS)

    Zhu, Wen; Li, Wenfang; Mu, Songlin; Yang, Yunyu; Zuo, Xi

    2016-10-01

    An environment-friendly titanium/zirconium/vanadium-based (Ti/Zr/V) conversion coating was prepared on aluminum alloy 6063 (AA6063). The epoxy powder coatings were applied on the AA6063 samples with/without Ti/Zr/V conversion coatings via electrostatic spraying. The morphology and composition of the conversion coating were studied by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The surface free energy components of AA6063 samples were measured by a static contact angle measuring device with Owens method. The adhesion properties of the epoxy coating on AA6063 treated with different conversion times were evaluated using a pull-off tester. The Ti/Zr/V conversion coating was mainly composed of metal oxide (TiO2, ZrO2, V2O5, Al2O3, etc.), metal fluoride (ZrF4, AlF3, etc.) and metal organic complex. The formation time of this conversion coating was reduced to 50 s. After such surface treatment, the samples' surface roughness was increased and the contact angle with water was decreased. Both the surface free energy and the work of adhesion were increased. The adhesion strength between the epoxy coating and AA6063 was enhanced significantly.

  18. Effect of thermal exposure, forming, and welding on high-temperature, dispersion-strengthened aluminum alloy: Al-8Fe-1V-2Si

    NASA Technical Reports Server (NTRS)

    Kennedy, J. R.; Gilman, P. S.; Zedalis, M. S.; Skinner, D. J.; Peltier, J. M.

    1991-01-01

    The feasibility of applying conventional hot forming and welding methods to high temperature aluminum alloy, Al-8Fe-1V-2Si (FVS812), for structural applications and the effect of thermal exposure on mechanical properties were determined. FVS812 (AA8009) sheet exhibited good hot forming and resistance welding characteristics. It was brake formed to 90 deg bends (0.5T bend radius) at temperatures greater than or equal to 390 C (730 F), indicating the feasibility of fabricating basic shapes, such as angles and zees. Hot forming of simple contoured-flanged parts was demonstrated. Resistance spot welds with good static and fatigue strength at room and elevated temperatures were readily produced. Extended vacuum degassing during billet fabrication reduced porosity in fusion and resistance welds. However, electron beam welding was not possible because of extreme degassing during welding, and gas-tungsten-arc welds were not acceptable because of severely degraded mechanical properties. The FVS812 alloy exhibited excellent high temperature strength stability after thermal exposures up to 315 C (600 F) for 1000 h. Extended billet degassing appeared to generally improve tensile ductility, fatigue strength, and notch toughness. But the effects of billet degassing and thermal exposure on properties need to be further clarified. The manufacture of zee-stiffened, riveted, and resistance-spot-welded compression panels was demonstrated.

  19. A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys.

    PubMed

    Liu, Liming; Ren, Daxin; Liu, Fei

    2014-05-08

    Welding of dissimilar magnesium alloys and aluminum alloys is an important issue because of their increasing applications in industries. In this document, the research and progress of a variety of welding techniques for joining dissimilar Mg alloys and Al alloys are reviewed from different perspectives. Welding of dissimilar Mg and Al is challenging due to the formation of brittle intermetallic compound (IMC) such as Mg 17 Al 12 and Mg₂Al₃. In order to increase the joint strength, three main research approaches were used to eliminate or reduce the Mg-Al intermetallic reaction layer. First, solid state welding techniques which have a low welding temperature were used to reduce the IMCs. Second, IMC variety and distribution were controlled to avoid the degradation of the joining strength in fusion welding. Third, techniques which have relatively controllable reaction time and energy were used to eliminate the IMCs. Some important processing parameters and their effects on weld quality are discussed, and the microstructure and metallurgical reaction are described. Mechanical properties of welds such as hardness, tensile, shear and fatigue strength are discussed. The aim of the report is to review the recent progress in the welding of dissimilar Mg and Al to provide a basis for follow-up research.

  20. A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys

    PubMed Central

    Liu, Liming; Ren, Daxin; Liu, Fei

    2014-01-01

    Welding of dissimilar magnesium alloys and aluminum alloys is an important issue because of their increasing applications in industries. In this document, the research and progress of a variety of welding techniques for joining dissimilar Mg alloys and Al alloys are reviewed from different perspectives. Welding of dissimilar Mg and Al is challenging due to the formation of brittle intermetallic compound (IMC) such as Mg17Al12 and Mg2Al3. In order to increase the joint strength, three main research approaches were used to eliminate or reduce the Mg-Al intermetallic reaction layer. First, solid state welding techniques which have a low welding temperature were used to reduce the IMCs. Second, IMC variety and distribution were controlled to avoid the degradation of the joining strength in fusion welding. Third, techniques which have relatively controllable reaction time and energy were used to eliminate the IMCs. Some important processing parameters and their effects on weld quality are discussed, and the microstructure and metallurgical reaction are described. Mechanical properties of welds such as hardness, tensile, shear and fatigue strength are discussed. The aim of the report is to review the recent progress in the welding of dissimilar Mg and Al to provide a basis for follow-up research. PMID:28788646