Sample records for aapl spdr gold

  1. 78 FR 20362 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... (``SPY''), Apple, Inc. (``AAPL''), SPDR Gold Trust (``GLD''), Google Inc. (``GOOG'') and Amazon.com Inc.... Further, the options marketplace has a history of offering preferential pricing to Customers. Finally... or unfairly discriminatory. Also, the options marketplace has a history of offering preferential...

  2. Now is the time for AAPL to demonstrate leadership by advocating positions of social importance.

    PubMed

    Halpern, Abraham L; Halpern, John H; Freedman, Alfred M

    2004-01-01

    The American Academy of Psychiatry and the Law (AAPL) and other medical organizations have not taken a position on the abolition of capital punishment because of a long-standing tradition of remaining neutral on "nonmedical" societal issues that are highly divisive. It is the authors' contention that taking a stand on vital social issues that are clearly in the public interest is wholly consistent with the stated purposes of AAPL and that the time has come for an open and frank discussion by the membership on the merits of altering its policy, with particular focus on eliminating the death penalty. The present article explains why capital punishment can no longer be considered a nonmedical societal issue and why AAPL must awaken to take on controversial matters such as this one. For AAPL to continue to avoid this debate and silence any attempt to organize opposition to the current status quo will only serve to embolden those who argue in favor of the death penalty. Such continued silence betrays any notion of neutrality and is an abdication of the canons of medical ethics we have all sworn to uphold.

  3. An efficient and accurate framework for calculating lattice thermal conductivity of solids: AFLOW—AAPL Automatic Anharmonic Phonon Library

    NASA Astrophysics Data System (ADS)

    Plata, Jose J.; Nath, Pinku; Usanmaz, Demet; Carrete, Jesús; Toher, Cormac; de Jong, Maarten; Asta, Mark; Fornari, Marco; Nardelli, Marco Buongiorno; Curtarolo, Stefano

    2017-10-01

    One of the most accurate approaches for calculating lattice thermal conductivity, , is solving the Boltzmann transport equation starting from third-order anharmonic force constants. In addition to the underlying approximations of ab-initio parameterization, two main challenges are associated with this path: high computational costs and lack of automation in the frameworks using this methodology, which affect the discovery rate of novel materials with ad-hoc properties. Here, the Automatic Anharmonic Phonon Library (AAPL) is presented. It efficiently computes interatomic force constants by making effective use of crystal symmetry analysis, it solves the Boltzmann transport equation to obtain , and allows a fully integrated operation with minimum user intervention, a rational addition to the current high-throughput accelerated materials development framework AFLOW. An "experiment vs. theory" study of the approach is shown, comparing accuracy and speed with respect to other available packages, and for materials characterized by strong electron localization and correlation. Combining AAPL with the pseudo-hybrid functional ACBN0 is possible to improve accuracy without increasing computational requirements.

  4. 75 FR 50015 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... Solar, Inc. (``FSLR''), Market Vectors ETF Gold Miners (``GDX''), SPDR Gold Trust (``GLD''), iShares DJ... still lower than fees charged by other options exchanges. PHLX, For example, currently charges Broker...

  5. 76 FR 25390 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... calculates the CBOE Gold ETF Volatility Index (``GVZ''), which is based on the VIX methodology applied to options on the SPDR Gold Trust (``GLD''). The current filing would permit $0.50 strike price intervals for...

  6. 75 FR 1093 - Self-Regulatory Organizations; The Options Clearing Corporation; Notice of Filing of Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    ... any option or any futures contracts on ETFS Physical Swiss Gold Shares and ETFS Physical Silver Shares... jurisdictional status of options or security futures on ETFS Physical Swiss Gold Shares or ETFS Physical Silver... approving a proposed rule change clarifying that options and securities futures on SPDR Gold Shares are...

  7. 75 FR 41247 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... Rule Change to List and Trade Options on the Sprott Physical Gold Trust July 8, 2010. Pursuant to... Exchange Commission (``SEC'' or ``Commission'') authorized ISE to list and trade options on the SPDR Gold... list and trade options on the Sprott Physical Gold Trust. \\5\\ See Securities Exchange Act Release No...

  8. 76 FR 20779 - Self-Regulatory Organizations; The Options Clearing Corporation; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... Change To Provide Legal Certainty for the Trading of Futures on the CBOE Gold ETF Volatility Index April... CBOE Gold ETF Volatility Index (``GVZ Index''). II. Self-Regulatory Organization's Statement of the..., LLC (``CFE'') as an up-to-the-minute market estimate of the expected volatility of SPDR Gold Shares...

  9. 75 FR 9981 - Self-Regulatory Organizations; The Options Clearing Corporation; Order Approving Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... securities options or the clearing of such futures as security futures constitutes a violation of the CEA. \\3... same as the options and security futures on SPDR Gold Shares, iShares COMEX Gold Shares, and iShares... to help clarify that options and security futures on ETFS Physical Swiss Gold Shares and ETFS...

  10. 76 FR 23632 - Self-Regulatory Organizations; NYSE Amex LLC; Notice of Filing and Immediate Effectiveness of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ..., CBOE calculates the CBOE Gold ETF Volatility Index (``GVZ''), which is based on the VIX methodology applied to options on the SPDR Gold Trust (``GLD''). The current filing would permit $0.50 strike price... other exchange-traded fund (``ETF'') options. See Rule 903, Commentary .05 Volatility indexes are...

  11. 75 FR 24769 - Self-Regulatory Organizations; NYSE Amex LLC; Notice of Filing of Proposed Rule Change Amending...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... Commission (``SEC'' or ``Commission'') authorized the Exchange to list and trade options on the SPDR Gold... ETFS Silver Trust (``SIVR'') and the ETFS Gold Trust (``SGOL'').\\6\\ Now, the Exchange proposes to list... trust or similar entity that holds a specified non-U.S. currency deposited with the trust or similar...

  12. 75 FR 14646 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ... Organizations; International Securities Exchange, LLC; Notice of Filing of Proposed Rule Change To List and... ``Commission'') authorized ISE to list and trade options on the SPDR Gold Trust,\\3\\ the iShares COMEX Gold... Exchange proposes to list and trade options on the ETFS Palladium Trust and the ETFS Platinum Trust. \\3...

  13. 76 FR 33387 - Self-Regulatory Organizations; Notice of Filing and Immediate Effectiveness of Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... calculates the CBOE Gold ETF Volatility Index (``GVZ''), which is based on the VIX methodology applied to options on the SPDR Gold Trust (``GLD''). The current filing would permit $0.50 strike price intervals for... exchange-traded fund (``ETF'') options. See Rule 1012, Commentary .05(a)(iv). To the extent that the CBOE...

  14. 75 FR 13169 - Self-Regulatory Organizations; The Options Clearing Corporation; Notice of Filing of Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... interpretation with respect to the treatment and clearing of options and security futures on SPDR Gold Shares.\\2... amended the interpretation to extend similar treatment to options and security futures on iShares[supreg... rule filing SR-OCC-2009-20, which extended similar treatment to options and security futures on ETFS...

  15. 76 FR 76464 - Self-Regulatory Organizations; NYSE Arca, Inc.; Notice of Filing of Proposed Rule Change Relating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... Global Allocation ETF; SPDR SSgA Global Allocation ETF; and SPDR SSgA Aggressive Global Allocation ETF... Global Allocation ETF; SPDR SSgA Global Allocation ETF; and SPDR SSgA Aggressive Global Allocation ETF... Allocation ETF; SPDR SSgA Global Allocation ETF; and SPDR SSgA Aggressive Global Allocation ETF (each, a...

  16. Arterioarterial Prosthetic Loop as an Alternative Approach for Hemodialysis Access.

    PubMed

    Lei, Wenhui; Ji, Jiansong; Wang, Jian; Jin, Lie; Zou, Hai

    2015-10-01

    In the present study, we performed an arterioarterial prosthetic loop (AAPL) between the femoral artery and deep femoral artery as a new access in patients who did not have adequate vascular conditions for creating an arteriovenous fistula or graft.Between April 2005 and June 2014, 18 patients received AAPL as a vascular access. During the procedure, a polytetrafluoroethylene graft was anastomosed to the femoral artery and deep femoral artery and looped on the thigh. We assessed the reliability and safety of AAPLs by analyzing complication, primary and secondary patency rates, and postoperative blood flow.Eighteen patients (median age, 66 years; range, 43-96 years) underwent AAPL access placement under the general or local anesthesia. All patients were followed up for 3 to 38 months (mean, 24 months). Primary and secondary patency rates at 6 months were 94.5% and 88.8%, respectively, and at 3 years were 61% and 72%, respectively. After operation, one patient had infection, and another one had fat necrosis at the surgical incision site. To maintain the AAPL function, 5 surgical procedures in 4 grafts, including revision, thrombectomy, excision, and repair for bleeding were performed. More than 5000 hemodialyses were performed efficiently in our center.Our study shows that AAPL loop is an unusual but effective and safe procedure that may be a good alternative for the patients who do not allow the conventional hemodialysis access.

  17. Synthesis of gold structures by gold-binding peptide governed by concentration of gold ion and peptide.

    PubMed

    Kim, Jungok; Kim, Dong-Hun; Lee, Sylvia J; Rheem, Youngwoo; Myung, Nosang V; Hur, Hor-Gil

    2016-08-01

    Although biological synthesis methods for the production of gold structures by microorganisms, plant extracts, proteins, and peptide have recently been introduced, there have been few reports pertaining to controlling their size and morphology. The gold ion and peptide concentrations affected on the size and uniformity of gold plates by a gold-binding peptide Midas-11. The higher concentration of gold ions produced a larger size of gold structures reached 125.5 μm, but an increased amount of Midas-11 produced a smaller size of gold platelets and increased the yield percentage of polygonal gold particles rather than platelets. The mechanisms governing factors controlling the production of gold structures were primarily related to nucleation and growth. These results indicate that the synthesis of gold architectures can be controlled by newly isolated and substituted peptides under different reaction conditions.

  18. Gold Rush!

    ERIC Educational Resources Information Center

    Brahier, Daniel J.

    1997-01-01

    Describes a mathematical investigation of gold--how it is weighed, stored, used, and valued. For grades 3-4, children estimate the value of treasure chests filled with gold coins and explore the size and weight of gold bars. Children in grades 5-6 explore how gold is mined and used, and how the value of gold changes over time. (PVD)

  19. Gold

    USGS Publications Warehouse

    Kirkemo, Harold; Newman, William L.; Ashley, Roger P.

    1998-01-01

    Through the ages, men and women have cherished gold, and many have had a compelling desire to amass great quantities of it -- so compelling a desire, in fact, that the frantic need to seek and hoard gold has been aptly named "gold fever." Gold was among the first metals to be mined because it commonly occurs in its native form -- that is, not combined with other elements -- because it is beautiful and imperishable, and because exquisite objects can be made from it.

  20. Gold in minerals and the composition of native gold

    USGS Publications Warehouse

    Jones, Robert Sprague; Fleischer, Michael

    1969-01-01

    Gold occurs in nature mainly as the metal and as various alloys. It forms complete series of solid solutions with silver, copper, nickel, palladium, and platinum. In association with the platinum metals, gold occurs as free gold as well as in solid solution. The native elements contain the most gold, followed by the sulfide minerals. Several gold tellurides are known, but no gold selenides have been reported, and only one sulfide, the telluride-sulfide mineral nagyagite, is known. The nonmetallic minerals carry the least gold, and the light-colored minerals generally contain less gold than the dark minerals. Some conclusions in the literature are conflicting in regard to the relation of fineness of native gold to its position laterally and vertically within a lode, the nature of the country rocks, and the location and size of nuggets in a streambed, as well as to the variation of fineness within an individual nugget.

  1. Derivatized gold clusters and antibody-gold cluster conjugates

    DOEpatents

    Hainfeld, James F.; Furuya, Frederic R.

    1994-11-01

    Antibody- or antibody fragment-gold cluster conjugates are shown wherein the conjugate size can be as small as 5.0 nm. Methods and reagents are disclosed in which antibodies, Fab' or F(ab').sub.2 fragments thereof are covalently bound to a stable cluster of gold atoms. The gold clusters may contain 6, 8, 9, 11, 13, 55 or 67 gold atoms in their inner core. The clusters may also contain radioactive gold. The antibody-cluster conjugates are useful in electron microscopy applications as well as in clinical applications that include imaging, diagnosis and therapy.

  2. Derivatized gold clusters and antibody-gold cluster conjugates

    DOEpatents

    Hainfeld, J.F.; Furuya, F.R.

    1994-11-01

    Antibody- or antibody fragment-gold cluster conjugates are shown wherein the conjugate size can be as small as 5.0 nm. Methods and reagents are disclosed in which antibodies, Fab' or F(ab')[sub 2] fragments are covalently bound to a stable cluster of gold atoms. The gold clusters may contain 6, 8, 9, 11, 13, 55 or 67 gold atoms in their inner core. The clusters may also contain radioactive gold. The antibody-cluster conjugates are useful in electron microscopy applications as well as in clinical applications that include imaging, diagnosis and therapy. 7 figs.

  3. 78 FR 73911 - Self-Regulatory Organizations; BOX Options Exchange LLC; Notice of Filing of Proposed Rule Change...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... 3120 To Extend the Pilot Program That Eliminated the Position Limits for Options on SPDR S&P 500 ETF... extend the pilot program that eliminated the position limits for options on SPDR S&P 500 ETF (``SPY...- regulatory organizations (``SROs'') have adopted similar rules eliminating position limits on SPY and market...

  4. Not All That Glitters is Gold: Gold Imitations in History.

    PubMed

    Karpenko, Vladimír

    2007-07-01

    When gold became considered as a precious metal for decorative purposes and later for coinage, attempts at producing imitations soon began to appear. There were two motives behind this activity: to make a metal that could pass as gold, and to quite openly imitate this precious metal for people who could not afford true gold. Imitation gold was produced by metallurgists, and later also by alchemists. This paper is about gold imitations that did not contain any precious metal. Gold-like alloys of silver are thus excluded. An attempt is further undertaken to classify into separate groups the various gold imitations that have appeared in different cultures throughout time, with an emphasis on brass as a typical imitation of gold.

  5. Phage based green chemistry for gold ion reduction and gold retrieval.

    PubMed

    Setyawati, Magdiel I; Xie, Jianping; Leong, David T

    2014-01-22

    The gold mining industry has taken its toll on the environment, triggering the development of more environmentally benign processes to alleviate the waste load release. Here, we demonstrate the use of bacteriophages (phages) for biosorption and bioreduction of gold ions from aqueous solution, which potentially can be applied to remediate gold ions from gold mining waste effluent. Phage has shown a remarkably efficient sorption of gold ions with a maximum gold adsorption capacity of 571 mg gold/g dry weight phage. The product of this phage mediated process is gold nanocrystals with the size of 30-630 nm. Biosorption and bioreduction processes are mediated by the ionic and covalent interaction between gold ions and the reducing groups on the phage protein coat. The strategy offers a simple, ecofriendly and feasible option to recover of gold ions to form readily recoverable products of gold nanoparticles within 24 h.

  6. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false Gold coin and gold certificates in... MONETARY OFFICES, DEPARTMENT OF THE TREASURY EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued before...

  7. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance: Treasury 1 2013-07-01 2013-07-01 false Gold coin and gold certificates in... MONETARY OFFICES, DEPARTMENT OF THE TREASURY EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued before...

  8. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance: Treasury 1 2012-07-01 2012-07-01 false Gold coin and gold certificates in... MONETARY OFFICES, DEPARTMENT OF THE TREASURY EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued before...

  9. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 1 2014-07-01 2014-07-01 false Gold coin and gold certificates in... MONETARY OFFICES, DEPARTMENT OF THE TREASURY EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued before...

  10. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Gold coin and gold certificates in... EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued before January 30, 1934, are exchangeable, as provided...

  11. Gold and gold working in Late Bronze Age Northern Greece.

    PubMed

    Vavelidis, M; Andreou, S

    2008-04-01

    Numerous objects of gold displaying an impressive variety of types and manufacturing techniques are known from the Late Bronze Age (LBA) contexts of Mycenaean Greece, but very little is known about the origin and processing of gold during the second millennium B.C: . Ancient literature and recent research indicate that northern Greece is probably the richest gold-bearing region in Greece, and yet, very little evidence exists regarding the exploitation of its deposits and the production as well as use of gold in the area during prehistory. The unusual find of a group of small stone crucibles at the prehistoric settlement of Thessaloniki Toumba, one with visible traces of gold melting, proves local production and offers a rare opportunity to examine the process of on-site gold working. Furthermore, the comparison of the chemical composition of prehistoric artefacts from two settlements with those of gold deposits in their immediate areas supports the local extraction of gold and opens up the prospect for some of the Mycenaean gold to have originated in northern Greece. The scarcity of gold items in northern Greek LBA contexts may not represent the actual amount of gold produced and consumed, but could be a result of the local social attitudes towards the circulation and deposition of artefacts from precious metals.

  12. Gold and gold working in Late Bronze Age Northern Greece

    NASA Astrophysics Data System (ADS)

    Vavelidis, M.; Andreou, S.

    2008-04-01

    Numerous objects of gold displaying an impressive variety of types and manufacturing techniques are known from the Late Bronze Age (LBA) contexts of Mycenaean Greece, but very little is known about the origin and processing of gold during the second millennium b.c. Ancient literature and recent research indicate that northern Greece is probably the richest gold-bearing region in Greece, and yet, very little evidence exists regarding the exploitation of its deposits and the production as well as use of gold in the area during prehistory. The unusual find of a group of small stone crucibles at the prehistoric settlement of Thessaloniki Toumba, one with visible traces of gold melting, proves local production and offers a rare opportunity to examine the process of on-site gold working. Furthermore, the comparison of the chemical composition of prehistoric artefacts from two settlements with those of gold deposits in their immediate areas supports the local extraction of gold and opens up the prospect for some of the Mycenaean gold to have originated in northern Greece. The scarcity of gold items in northern Greek LBA contexts may not represent the actual amount of gold produced and consumed, but could be a result of the local social attitudes towards the circulation and deposition of artefacts from precious metals.

  13. 76 FR 805 - Self-Regulatory Organizations; NYSE Arca, Inc.; Notice of Filing of Proposed Rule Change Relating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-06

    ... Trading Shares of the SPDR Nuveen S&P High Yield Municipal Bond ETF December 30, 2010. Pursuant to Section... Change The Exchange proposes to list and trade shares of the SPDR Nuveen S&P High Yield Municipal Bond... for, the Proposed Rule Change 1. Purpose The Exchange proposes to list and trade shares (``Shares...

  14. 75 FR 26828 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... amend [sic] its rules relating to the Penny Pilot Program. The text of the rule proposal is available on... proposed rule change. The text of those statements may be examined at the places specified in Item IV below... Technology Select Sector XME SPDR S&P Metals & Mining SPDR Fund. ETF. AKS AK Steel Holding Corp... KGC...

  15. 76 FR 44969 - Self-Regulatory Organizations; NYSE Arca Inc.; Notice of Filing and Immediate Effectiveness of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ...[supreg] exchange-traded fund (``SPY ETF''),\\4\\ which list and trade under the option symbol SPY, and to.... The SPDR S&P 500 ETF represents ownership in the SPDR S&P 500 Trust, a unit investment trust that... volume of SPY options). \\7\\ QQQ options were formerly known as options on the Nasdaq-100 Tracking Stock...

  16. LOCALIZATION OF GOLD IN MOUSE BRAIN IN RELATION TO GOLD THIOGLUCOSE OBESITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debons, A.F.; Silver, L.; Cronkite, E.P.

    1962-04-01

    Administration of gold thioglucose led to the development of hyperphagia and obesity in mice; this confirmed findings by previous investigators. By employing neutron activation analysis and radioautography, it was observed that this syndrome was associated with focal accumulation of gold in the hypothalamus. Animals treated with gold thiomalate failed to show any hypothalamic Iocalization of gold radioautographically or any evidence of the syndrome of hyperphagla and obesity. In additlon, other foci of gold locallzation were found in gold thioglucose-treated but not in the gold thiomalate-treated animals. Gamma spectroscopy studies made possible quantitative measurements of the gold content ln the brainsmore » of both treated groups. Gold thioglucose-treated as well as gold thiomalate-treated animals had appreciable quantities of gold in the brain proper. Phosphorus-32 generated by neutron activation of the sulfur moiety of gold thioglucose proved to be insigniflcant in its contribution to the radioautographic flndings. Implication of the above findings for the glucostatic theory of appetite regulation is discussed. (auth)« less

  17. Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex.

    PubMed

    Lengke, Maggy F; Ravel, Bruce; Fleet, Michael E; Wanger, Gregory; Gordon, Robert A; Southam, Gordon

    2006-10-15

    The mechanisms of gold bioaccumulation by cyanobacteria (Plectonema boryanum UTEX 485) from gold(III)-chloride solutions have been studied at three gold concentrations (0.8,1.7, and 7.6 mM) at 25 degrees C, using both fixed-time laboratory and real-time synchrotron radiation absorption spectroscopy (XAS) experiments. Interaction of cyanobacteria with aqueous gold(III)-chloride initially promoted the precipitation of nanoparticles of amorphous gold(I)-sulfide at the cell walls, and finally deposited metallic gold in the form of octahedral (111) platelets (approximately 10 nm to 6 microm) near cell surfaces and in solutions. The XAS results confirm that the reduction mechanism of gold(III)-chloride to metallic gold by cyanobacteria involves the formation of an intermediate Au(I) species, gold(I)-sulfide.

  18. Gold and gold-iron oxide magnetic glyconanoparticles: synthesis, characterization and magnetic properties.

    PubMed

    de la Fuente, Jesús M; Alcántara, David; Eaton, Peter; Crespo, Patricia; Rojas, Teresa C; Fernandez, Asunción; Hernando, Antonio; Penadés, Soledad

    2006-07-06

    The preparation, characterization and the magnetic properties of gold and gold-iron oxide glyconanoparticles (GNPs) are described. Glyconanoparticles were prepared in a single step procedure in the presence of aqueous solution of thiol functionalized neoglycoconjugates and either gold salts or both gold and iron salts. Neoglycoconjugates of lactose and maltose disaccharides with different linkers were used. Iron-free gold or gold-iron oxide GNPs with controlled gold-iron ratios were obtained. The average core-size diameters are in the range of 1.5-2.5 nm. The GNPs are fully characterized by (1)H NMR spectrometry, transmission electron microscopy (TEM), and UV-vis and X-ray absorption (XAS) spectroscopies. Inductive plasma-atomic emission spectrometry (ICP) and elemental analysis gave the average number of neoglycoconjugates per cluster. The magnetic properties were measured in a SQUID magnetometer. The most remarkable results was the observation of a permanent magnetism up to room temperature in the iron-free gold GNPs, that was not present in the corresponding gold-iron oxide GNPs.

  19. Origin of the transition voltage in gold-vacuum-gold atomic junctions.

    PubMed

    Wu, Kunlin; Bai, Meilin; Sanvito, Stefano; Hou, Shimin

    2013-01-18

    The origin and the distance dependence of the transition voltage of gold-vacuum-gold junctions are investigated by employing first-principles quantum transport simulations. Our calculations show that atomic protrusions always exist on the electrode surface of gold-vacuum-gold junctions fabricated using the mechanically controllable break junction (MCBJ) method. The transition voltage of these gold-vacuum-gold junctions with atomically sharp electrodes is determined by the local density of states (LDOS) of the apex gold atom on the electrode surface rather than by the vacuum barrier shape. More specifically, the absolute value of the transition voltage roughly equals the rising edge of the LDOS peak contributed by the 6p atomic orbitals of the gold atoms protruding from the electrode surface, whose local Fermi level is shifted downwards when a bias voltage is applied. Since the LDOS of the apex gold atom depends strongly on the exact shape of the electrode, the transition voltage is sensitive to the variation of the atomic configuration of the junction. For asymmetric junctions, the transition voltage may also change significantly depending on the bias polarity. Considering that the occurrence of the transition voltage requires the electrode distance to be larger than a critical value, the interaction between the two electrodes is actually rather weak. Consequently, the LDOS of the apex gold atom is mainly determined by its local atomic configuration and the transition voltage only depends weakly on the electrode distance as observed in the MCBJ experiments.

  20. Is It Real Gold?

    ERIC Educational Resources Information Center

    Harris, Harold H.

    1999-01-01

    Features acid tests for determining whether jewelry is "real" gold or simply gold-plated. Describes the carat system of denoting gold content and explains how alloys are used to create various shades of gold jewelry. Addresses the question of whether gold jewelry can turn a wearer's skin green by considering various oxidation reactions.…

  1. Gold paragenesis and chemistry at Batu Hijau, Indoneisa: implications for gold-rich porphyry copper deposits

    NASA Astrophysics Data System (ADS)

    Arif, J.; Baker, T.

    2004-10-01

    Gold is an important by-product in many porphyry-type deposits but the distribution and chemistry of gold in such systems remains poorly understood. Here we report the results of petrographic, electron microprobe, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and flotation test studies of gold and associated copper sulfides within a paragenetic framework from the world-class Batu Hijau (914 mt @ 0.53% Cu, 0.40 g/t Au) porphyry copper gold deposit, Indonesia. Unlike many other porphyry copper gold deposits, early copper minerals (bornite digenite chalcocite) are well preserved at Batu Hijau and the chalcopyrite pyrite overprint is less developed. Hence, it provides an excellent opportunity to study the entire gold paragenesis of the porphyry system. In 105 polished thin sections, 699 native gold grains were identified. Almost all of the native gold grains occurred either within quartz veins, attached to sulfide, or as free gold along quartz or silicate grain boundaries. The native gold grains are dominantly round in shape and mostly 1 12 μm in size. The majority of gold was deposited during the formation of early ‘A’ veins and is dominantly associated with bornite rather than chalcopyrite. The petrographic and LA-ICP-MS study results indicate that in bornite-rich ores gold mostly occurs within copper sulfide grains as invisible gold (i.e., within the sulfide structure) or as native gold grains. In chalcopyrite-rich ores gold mostly occurs as native gold grains with lesser invisible gold. Petrographic observations also indicate a higher proportion of free gold (native gold not attached to any sulfide) in chalcopyrite-rich ores compared to bornite rich ores. The pattern of free gold distribution appears to correlate with the flotation test data, where the average gold recovery value from chalcopyrite-rich ores is consistently lower than bornite-rich ores. Our data suggest that porphyry copper-gold deposits with chalcopyrite-rich ores

  2. Enhancement of gold recovery using bioleaching from gold concentrate

    NASA Astrophysics Data System (ADS)

    Choi, S. H.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

    2012-04-01

    The gold in refractory ores is encapsulated as fine particles (sometimes at a molecular level) in the crystal structure of the sulfide (typically pyrite with or without arsenopyrite) matrix. This makes it impossible to extract a significant amount of refractory gold by cyanidation since the cyanide solution cannot penetrate the pyrite/arsenopyrite crystals and dissolve gold particles, even after fine grinding. To effectively extract gold from these ores, an oxidative pretreatment is necessary to break down the sulfide matrix. The most popular methods of pretreatment include nitric acid oxidation, roasting, pressure oxidation and biological oxidation by microorganisms. This study investigated the bioleaching efficiency of Au concentrate under batch experimental conditions (adaptation cycles and chemical composition adaptation) using the indigenous acidophilic bacteria collected from gold mine leachate in Sunsin gold mine, Korea. We conducted the batch experiments at two different chemical composition (CuSO4 and ZnSO4), two different adaptation cycles 1'st (3 weeks) and 2'nd (6 weeks). The results showed that the pH in the bacteria inoculating sample decreased than initial condition and Eh increased. In the chemical composition adaptation case, the leached accumulation content of Fe and Pb was exhibited in CuSO4 adaptation bacteria sample more than in ZnSO4 adaptation bacteria samples, possibly due to pre-adaptation effect on chalcopyrite (CuFeS2) in gold concentrate. And after 21 days on the CuSO4 adaptation cycles case, content of Fe and Pb was appeared at 1'st adaptation bacteria sample(Fe - 1.82 and Pb - 25.81 times per control sample) lower than at 2'nd adaptation bacteria sample(Fe - 2.87 and Pb - 62.05 times per control sample). This study indicates that adaptation chemical composition and adaptation cycles can play an important role in bioleaching of gold concentrate in eco-/economic metallurgy process.

  3. Effects of Burning Conditions to the Formation of Gold Layer Photograph and Gold Layer Hologram

    NASA Astrophysics Data System (ADS)

    Kuge, Ken'ichi; Takahashi, Ataru; Harada, Takahito; Doi, Keiji; Sakai, Tomoko

    Burning stage from gold nanoparticles to gold layer in the formation process of gold-layer photograph using gold deposition development was investigated. The gelatin layer holding gold nanoparticles is carbonized at about 400°C and burned out until about 500°C. Because gold nanoparticles would be compressed only to vertical direction and then melt to form the gold layer, the gold-layer photograph still holds the high resolution. Gold nanoparaticles do not melt completely even at 900°C, and form continuous clusters of several hundred nm.

  4. Influence of gold content on copper oxidation from silver-gold-copper alloys

    NASA Astrophysics Data System (ADS)

    Swinbourne, D. R.; Barbante, G. G.; Strahan, A.

    1996-10-01

    In the final stages of the smelting of copper anode slimes, a silver alloy, known as “doré,” is produced. Oxidation refining is used to remove copper since this element interferes with subsequent electroparting of the small amounts of gold and platinum group metals in the doré. The gold content of doré can be greatly increased by gold scrap additions and this may affect the minimum achievable copper content of doré. In this work, silver-gold-copper alloys were oxidized by injecting pure oxygen at 1100 °C in the absence of any slag cover. For the gold contents expected in practice, the equilibrium copper content of the doré did not increase significantly as the gold content increased. However, at the other extreme of composition, the equilibrium copper content was a very strong function of the silver content of the gold bullion. The activity coefficient of copper in silver-gold alloys was calculated and compared to those predicted from a ternary subregular solution model of the system Ag-Au-Cu. Satisfactory agreement was found.

  5. Enrichment of Gold in Antimony Matte by Direct Smelting of Refractory Gold Concentrate

    NASA Astrophysics Data System (ADS)

    Yang, Tianzu; Xie, Boyi; Liu, Weifeng; Zhang, Duchao; Chen, Lin

    2018-04-01

    Conventional cyanidation technology achieves low gold recovery when used to process refractory gold concentrate. Based on the geochemical characteristics of gold deposit mineralization, a new method is proposed herein for gold enrichment in antimony matte by smelting of refractory gold concentrate. The effects of the FeO/SiO2 and CaO/SiO2 ratios, smelting temperature, and smelting time on the gold recovery were investigated in detail. The optimum conditions were determined to be FeO/SiO2 ratio of 1.2, CaO/SiO2 ratio of 0.4, smelting temperature of 1200°C, and smelting time of 45 min. The gold content in antimony matte and smelting slag was 96.68 and 1.13 g/t, respectively. The gold, antimony, and arsenic recovery was 97.72%, 26.89%, and 6.56%, respectively, with most of the antimony and arsenic volatilized into dust. Mineral liberation analyzer results showed that the antimony matte mainly consisted of FeS and FeO, with three phases, viz. FeAs, SbAs, and AuSb, embedded between them, indicating that gold was easily enriched with antimony and arsenic during smelting of refractory gold concentrate.

  6. Enrichment of Gold in Antimony Matte by Direct Smelting of Refractory Gold Concentrate

    NASA Astrophysics Data System (ADS)

    Yang, Tianzu; Xie, Boyi; Liu, Weifeng; Zhang, Duchao; Chen, Lin

    2018-06-01

    Conventional cyanidation technology achieves low gold recovery when used to process refractory gold concentrate. Based on the geochemical characteristics of gold deposit mineralization, a new method is proposed herein for gold enrichment in antimony matte by smelting of refractory gold concentrate. The effects of the FeO/SiO2 and CaO/SiO2 ratios, smelting temperature, and smelting time on the gold recovery were investigated in detail. The optimum conditions were determined to be FeO/SiO2 ratio of 1.2, CaO/SiO2 ratio of 0.4, smelting temperature of 1200°C, and smelting time of 45 min. The gold content in antimony matte and smelting slag was 96.68 and 1.13 g/t, respectively. The gold, antimony, and arsenic recovery was 97.72%, 26.89%, and 6.56%, respectively, with most of the antimony and arsenic volatilized into dust. Mineral liberation analyzer results showed that the antimony matte mainly consisted of FeS and FeO, with three phases, viz. FeAs, SbAs, and AuSb, embedded between them, indicating that gold was easily enriched with antimony and arsenic during smelting of refractory gold concentrate.

  7. Gold Leaching Characteristics and Intensification of a High S and As-Bearing Gold Concentrate

    NASA Astrophysics Data System (ADS)

    Yang, Yong-bin; Liu, Xiao-liang; Jiang, Tao; Li, Qian; Xu, Bin; Zhang, Yan

    Some high sulfur and arsenic-bearing gold concentrate has a gold leaching rate less than 80% by oxidation roasting-pickling-cyanidation process. The characteristics and intensification of gold leaching were studied systemically. By combining chemical composition and phase analysis, the low gold leaching rate was found to lie in the capsulation of gold by iron-containing phases including iron oxides, arsenopyrite and pyrite. 96.66% of gold in the industrial leaching residue was capsulated and 95.88% of the capsulated turned out to be in the iron-containing phases. The results of laboratory pickling-cyanidation experiments on the calcine and industrial leaching residue presented further demonstration for the fact that gold capsulated in the iron-containing phases was hard to be leached. However, the gold cyanide leaching rate of calcine could be raised over 95% by a reduction roasting-pickling pretreatment which played such a significant role in exposing the capsulated gold that gold leaching was intensified remarkably.

  8. Gold in placer deposits

    USGS Publications Warehouse

    Yeend, Warren; Shawe, Daniel R.; Wier, Kenneth L.

    1989-01-01

    Man most likely first obtained gold from placer deposits, more than 6,000 years ago. Placers account for more than two-thirds of the total world gold supply, and roughly half of that mined in the States of California, Alaska, Montana, and Idaho.Placer deposits result from weathering and release of gold from lode deposits, transportation of the gold, and concentration of the gold dominantly in stream gravels. Unless preserved by burial, a placer subsequently may be eroded, and either dispersed or reconcentrated.California has produced more than 40 million troy ounces of gold from placers, both modern and fossil (Tertiary). The source of the great bulk of the gold is numerous quartz veins and mineralized zones of the Mother Lode and related systems in the western Sierra Nevada region. The gold-bearing lodes were emplaced in Carboniferous and Jurassic metamorphic rocks intruded by small bodies of Jurassic and Cretaceous igneous rocks. Mineralization occurred probably in Late Cretaceous time. Significant amounts of placer gold also were mined along the Salmon and Trinity Rivers in northern California. Source of the gold is lode deposits in Paleozoic and Mesozoic metamorphic rocks that were intruded by Mesozoic igneous rocks.Alaska has produced roughly 21 million ounces of gold from placer deposits. Most (about 13 million ounces) has come from the interior region, including 7,600,000 ounces from the Fairbanks district and 1,300,000 ounces from the Iditarod district. Lode sources are believed to be mostly quartz veins in Precambrian or Paleozoic metamorphic rocks intruded by small igneous bodies near Fairbanks, and shear zones in Tertiary(?) quartz monzonite stocks at Iditarod. The Seward Peninsula has produced more than 6 million ounces of placer gold, including about 4,000,000 ounces from the Nome district. Most of the gold was derived from raised beach deposits. Source of the gold probably is Tertiary-mineralized faults and joints in metamorphic rocks of late

  9. Coal-oil gold agglomeration assisted flotation to recover gold from refractory ore

    NASA Astrophysics Data System (ADS)

    Otsuki, A.; Yue, C.

    2017-07-01

    This study aimed to investigate the applicability of coal-oil gold agglomeration (CGA) assisted flotation to recover gold from a refractory ore. The ore with the grade of 2-5 g/t was tested with the CGA-flotation process in six different size fractions from 38 to 300 urn using different collector types and dosages. In addition, the flotation without CGA was performed under the same condition for comparison. The results showed that the higher gold grade and recovery were achieved by applying the CGA-flotation, compared with the flotation without CGA. More than 20-60 times grade increase from the head grade was obtained with CGA-flotation. The elemental analysis of gold and sulphur explained their relationship with gold recovery. The results well indicated the applicability of CGA to upgrade the refractory gold ore.

  10. Preparation of conductive gold nanowires in confined environment of gold-filled polymer nanotubes.

    PubMed

    Mitschang, Fabian; Langner, Markus; Vieker, Henning; Beyer, André; Greiner, Andreas

    2015-02-01

    Continuous conductive gold nanofibers are prepared via the "tubes by fiber templates" process. First, poly(l-lactide) (PLLA)-stabilized gold nanoparticles (AuNP) with over 60 wt% gold are synthesized and characterized, including gel permeation chromatography coupled with a diode array detector. Subsequent electrospinning of these AuNP with template PLLA results in composite nanofibers featuring a high gold content of 57 wt%. Highly homogeneous gold nanowires are obtained after chemical vapor deposition of 345 nm of poly(p-xylylene) (PPX) onto the composite fibers followed by pyrolysis of the polymers at 1050 °C. The corresponding heat-induced transition from continuous gold-loaded polymer tubes to smooth gold nanofibers is studied by transmission electron microscopy and helium ion microscopy using both secondary electrons and Rutherford backscattered ions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Distribution and composition of gold in porphyry gold systems: example from the Biely Vrch deposit, Slovakia

    NASA Astrophysics Data System (ADS)

    Koděra, Peter; Kozák, Jaroslav; Brčeková, Jana; Chovan, Martin; Lexa, Jaroslav; Jánošík, Michal; Biroň, Adrián; Uhlík, Peter; Bakos, František

    2018-03-01

    The Biely Vrch deposit in the Western Carpathians is assigned to the shallow, sulfide-poor porphyry gold deposit type and has an exceptionally low Cu/Au ratio. According to 3-D geochemical models, there is a limited spatial correlation between Au and Cu due to the primary introduction of gold by a salt melt and Cu by low-density vapor. Despite a rough spatial correlation of gold grades with quartz stockwork intensity, gold is hosted mostly by altered rock, exclusively in native form. Three main gold mineral assemblages were recognized here. In the deepest parts of the system, the K- and Ca-Na silicate gold assemblage is associated with minerals of high-temperature alteration (plagioclase, K-feldspar, actinolite), with gold grades and fineness depending on depth and potassium content of the host rock: K-silicate alteration hosts the lowest fineness gold ( 914), whereas Ca-Na silicate alteration has the highest ( 983). The intermediate argillic gold assemblage is the most widespread, with gold hosted mainly by chlorite, illite, smectite, and interstratified illite-chlorite-smectite minerals. The gold fineness is mostly variable (875-990) and inherited from the former gold mineral assemblages. The latest advanced argillic gold assemblage has its gold mostly in kaolinite. The extremely high fineness ( 994) results from gold remobilization by late-stage aqueous magmatic-hydrothermal fluids. Uncommon bonanza-grade appears where the earlier gold mineral assemblages were further enriched by this remobilized gold. Primary precipitation of gold occurred during ascent and cooling of salt melts at 450 to 309 °C, mostly during retrograde quartz solubility.

  12. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    NASA Astrophysics Data System (ADS)

    Mahl, Dirk; Diendorf, Jörg; Ristig, Simon; Greulich, Christina; Li, Zi-An; Farle, Michael; Köller, Manfred; Epple, Matthias

    2012-10-01

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly( N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 μg mL-1 induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  13. GOLD PLATING PROCESS

    DOEpatents

    Seegmiller, R.

    1957-08-01

    An improved bath is reported for plating gold on other metals. The composition of the plating bath is as follows: Gold cyanide from about 15 to about 50 grams, potassium cyanide from about 70 to about 125 grams, and sulfonated castor oil from about 0.1 to about 10 cc. The gold plate produced from this bath is smooth, semi-hard, and nonporous.

  14. Gold deposit styles and placer gold characterisation in northern and east-central Madagascar

    USGS Publications Warehouse

    Pitfield, Peter E. J; Styles, Michael T.; Taylor, Cliff D.; Key, Roger M.; Bauer,; Ralison, A

    2009-01-01

    Microchemical characterisation of bedrock and placer gold grains from six gold districts within the Archaean domains and intervening Neoproterozoic Anaboriana-Manampotsy belt of northern and east-central Madagascar show few opaque inclusions (e.g pyrrhotite, Bi tellurides) but wide range of Ag contents (40wt%). Some districts exhibit multiple source populations of grains. The ‘greenstone belt’ terranes have an orogenic gold signature locally with an intrusion-related to epithermal overprint. Proterozoic metasediments with felsic to ultramafic bodies yield dominantly intrusion-related gold. A high proportion of secondary gold (<0.5wt% Ag) is related to recycling of paleoplacers and erosion of post-Gondwana planation surfaces and indicates that some mesothermal gold systems were already partially to wholly removed by erosion by the PermoTriassic.

  15. Gold-bearing skarns

    USGS Publications Warehouse

    Theodore, Ted G.; Orris, Greta J.; Hammerstrom, Jane M.; Bliss, James D.

    1991-01-01

    In recent years, a significant proportion of the mining industry's interest has been centered on discovery of gold deposits; this includes discovery of additional deposits where gold occurs in skarn, such as at Fortitude, Nevada, and at Red Dome, Australia. Under the classification of Au-bearing skarns, we have modeled these and similar gold-rich deposits that have a gold grade of at least 1 g/t and exhibit distinctive skarn mineralogy. Two subtypes, Au-skarns and byproduct Au-skarns, can be recognized on the basis of gold, silver, and base-metal grades, although many other geological factors apparently are still undistinguishable largely because of a lack of detailed studies of the Au-skarns. Median grades and tonnage for 40 Au-skarn deposits are 8.6 g/t Au, 5.0 g/t Ag, and 213,000 t. Median grades and tonnage for 50 byproduct and Au-skarn deposits are 3.7 g/t Au, 37 g/t Ag, and 330,000 t. Gold-bearing skarns are generally calcic exoskarns associated with intense retrograde hydrosilicate alteration. These skarns may contain economic amounts of numerous other commodities (Cu, Fe, Pb, Zn, As, Bi, W, Sb, Co, Cd, and S) as well as gold and silver. Most Au-bearing skarns are found in Paleozoic and Cenozoic orogenic-belt and island-arc settings and are associated with felsic to intermediate intrusive rocks of Paleozoic to Tertiary age. Native gold, electru, pyrite, pyrrhotite, chalcopyrite, arsenopyrite, sphalerite, galena, bismuth minerals, and magnetite or hematite are the most common opaque minerals. Gangue minerals typically include garnet (andradite-grossular), pyroxene (diopside-hedenbergite), wollastonite, chlorite, epidote, quartz, actinolite-tremolite, and (or) calcite.

  16. Gold Fever! Seattle Outfits the Klondike Gold Rush. Teaching with Historic Places.

    ERIC Educational Resources Information Center

    Blackburn, Marc K.

    This lesson is based on the National Register of Historic Places registration file, "Pioneer Square Historic District," and other sources about Seattle (Washington) and the Klondike Gold Rush. The lesson helps students understand how Seattle exemplified the prosperity of the Klondike Gold Rush after 1897 when news of a gold strike in…

  17. Mammalian sensitivity to elemental gold (Au?)

    USGS Publications Warehouse

    Eisler, R.

    2004-01-01

    There is increasing documentation of allergic contact dermatitis and other effects from gold jewelry, gold dental restorations, and gold implants. These effects were especially pronounced among females wearing body-piercing gold objects. One estimate of the prevalence of gold allergy worldwide is 13%, as judged by patch tests with monovalent organogold salts. Eczema of the head and neck was the most common response of individuals hypersensitive to gold, and sensitivity can last for at least several years. Ingestion of beverages containing flake gold can result in allergic-type reactions similar to those seen in gold-allergic individuals exposed to gold through dermal contact and other routes. Studies with small laboratory mammals and injected doses of colloidal gold showed increased body temperatures, accumulations in reticular cells, and dose enhancement in tumor therapy; gold implants were associated with tissue injuries. It is proposed that Au? toxicity to mammals is associated, in part, with formation of the more reactive Au+ and Au3+ species.

  18. Gold grade distribution within an epithermal quartz vein system, Kestanelik, NW Turkey: implications for gold exploration

    NASA Astrophysics Data System (ADS)

    Gulyuz, Nilay; Shipton, Zoe; Gulyuz, Erhan; Lord, Richard; Kaymakci, Nuretdin; Kuscu, İlkay

    2017-04-01

    Vein-hosted gold deposits contribute a large part to the global gold production. Discovery of these deposits mainly include drilling of hundreds of holes, collecting thousands of soil and rock samples and some geophysical surveys which are expensive and time consuming. Understanding the structures hosting the veins and the variations in gold concentrations within the veins is crucial to constrain a more economic exploration program. The main aim of this study is to investigate the gold grade distribution in the mineralized quartz veins of a well exposed epithermal gold deposit hosted by Paleozoic schist and Eocene quartz-feldspar-hornblende porphyry in Lapseki, NW Turkey. We have constructed 3D architecture of the vein surfaces by mapping their outcrop geometries using a highly sensitive Trimble GPS, collecting detailed field data, well-logs and geochemistry data from 396 drill holes (255 diamond cut and 141 reverse circulation holes). Modelling was performed in MOVE Structural Modelling and Analysis software granted by Midland Valley's Academic Software Initiative, and GIS application softwares Global Mapper and Esri-ArcGIS. We envisaged that while fluid entering the conduit ascents, a sudden thickness increase in the conduit would lead to a drop in the fluid pressure causing boiling (the most dominant gold precipitation mechanism) and associated gold precipitation. Regression analysis was performed between the orthogonal thickness values and gold grades of each vein, and statistical analyses were performed to see if the gold is concentrated at specific structural positions along dip. Gold grades in the alteration zones were compared to those in the adjacent veins to understand the degree of mineralization in alteration zones. A possible correlation was also examined between the host rock type and the gold grades in the veins. These studies indicated that gold grades are elevated in the adjacent alteration zones where high gold grades exist in the veins. Schist

  19. Mineral resource of the month: gold

    USGS Publications Warehouse

    George, Micheal W.

    2009-01-01

    The article presents information on the valuable mineral called gold. It states that early civilizations valued gold because of its scarcity, durability and characteristics yellow color. By the late 20th century, gold was used as an industrial metal because of its unique physicochemical properties. The U.S. has several productive deposits of gold, including placer, gold-quartz lode, epithermal and Carlin-type gold deposits.

  20. Occurrences of dendritic gold at the McLaughlin Mine hot-spring gold deposit

    NASA Astrophysics Data System (ADS)

    Sherlock, R. L.; Lehrman, N. J.

    1995-06-01

    Two styles of gold dendrites are variably developed at the McLaughlin Mine. The most abundant occurrence is hosted by amber-coloured hydrocarbon-rich opal. Silica likely precipitated from a boiling hydrothermal fluid and complexed with immiscible hydrocarbons forming an amorphous hydrocarbon-silica phase. This phase likely scavenged particulate gold by electrostatic attraction to the hydrocarbon-silica phase. The dendritic nature of the gold is secondary and is the result of dewatering of the amorphous hydrocarbon-silica phase and crystallization of gold into syneresis fractures. The second style of dendritic gold is hosted within vein swarms that focused large volumes of fluid flow. The dendrites occur along with hydrocarbon-rich silica at the upper contact of the vein margins which isolated the dendrites allowing sufficient time for them to grow. In a manner similar to the amber-coloured opal, the dendrites may have formed by scavenging particulate gold by electrostatic attraction to the hydrocarbon-silica phase.

  1. Modeling of gold production in Malaysia

    NASA Astrophysics Data System (ADS)

    Muda, Nora; Ainuddeen, Nasihah Rasyiqah; Ismail, Hamizun; Umor, Mohd Rozi

    2013-04-01

    This study was conducted to identify the main factors that contribute to the gold production and hence determine the factors that affect to the development of the mining industry in Malaysia. An econometric approach was used by performing the cointegration analysis among the factors to determine the existence of long term relationship between the gold prices, the number of gold mines, the number of workers in gold mines and the gold production. The study continued with the Granger analysis to determine the relationship between factors and gold production. Results have found that there are long term relationship between price, gold production and number of employees. Granger causality analysis shows that there is only one way relationship between the number of employees with gold production in Malaysia and the number of gold mines in Malaysia.

  2. A Non-Diazo Approach to α-Oxo Gold Carbenes via Gold-Catalyzed Alkyne Oxidation

    PubMed Central

    2015-01-01

    For the past dozen years, homogeneous gold catalysis has evolved from a little known topic in organic synthesis to a fully blown research field of significant importance to synthetic practitioners, due to its novel reactivities and reaction modes. Cationic gold(I) complexes are powerful soft Lewis acids that can activate alkynes and allenes toward efficient attack by nucleophiles, leading to the generation of alkenyl gold intermediates. Some of the most versatile aspects of gold catalysis involve the generation of gold carbene intermediates, which occurs through the approach of an electrophile to the distal end of the alkenyl gold moiety, and their diverse transformations thereafter. On the other hand, α-oxo metal carbene/carbenoids are highly versatile intermediates in organic synthesis and can undergo various synthetically challenging yet highly valuable transformations such as C–H insertion, ylide formation, and cyclopropanation reactions. Metal-catalyzed dediazotizations of diazo carbonyl compounds are the principle and most reliable strategy to access them. Unfortunately, the substrates contain a highly energetic diazo moiety and are potentially explosive. Moreover, chemists need to use energetic reagents to prepare them, putting further constrains on operational safety. In this Account, we show that the unique access to the gold carbene species in homogeneous gold catalysis offers an opportunity to generate α-oxo gold carbenes if both nucleophile and electrophile are oxygen. Hence, this approach would enable readily available and safer alkynes to replace hazardous α-diazo carbonyl compounds as precursors in the realm of gold carbene chemistry. For the past several years, we have demonstrated that alkynes can indeed effectively serve as precursors to versatile α-oxo gold carbenes. In our initial study, we showed that a tethered sulfoxide can be a suitable oxidant, which in some cases leads to the formation of α-oxo gold carbene intermediates. The

  3. A non-diazo approach to α-oxo gold carbenes via gold-catalyzed alkyne oxidation.

    PubMed

    Zhang, Liming

    2014-03-18

    For the past dozen years, homogeneous gold catalysis has evolved from a little known topic in organic synthesis to a fully blown research field of significant importance to synthetic practitioners, due to its novel reactivities and reaction modes. Cationic gold(I) complexes are powerful soft Lewis acids that can activate alkynes and allenes toward efficient attack by nucleophiles, leading to the generation of alkenyl gold intermediates. Some of the most versatile aspects of gold catalysis involve the generation of gold carbene intermediates, which occurs through the approach of an electrophile to the distal end of the alkenyl gold moiety, and their diverse transformations thereafter. On the other hand, α-oxo metal carbene/carbenoids are highly versatile intermediates in organic synthesis and can undergo various synthetically challenging yet highly valuable transformations such as C-H insertion, ylide formation, and cyclopropanation reactions. Metal-catalyzed dediazotizations of diazo carbonyl compounds are the principle and most reliable strategy to access them. Unfortunately, the substrates contain a highly energetic diazo moiety and are potentially explosive. Moreover, chemists need to use energetic reagents to prepare them, putting further constrains on operational safety. In this Account, we show that the unique access to the gold carbene species in homogeneous gold catalysis offers an opportunity to generate α-oxo gold carbenes if both nucleophile and electrophile are oxygen. Hence, this approach would enable readily available and safer alkynes to replace hazardous α-diazo carbonyl compounds as precursors in the realm of gold carbene chemistry. For the past several years, we have demonstrated that alkynes can indeed effectively serve as precursors to versatile α-oxo gold carbenes. In our initial study, we showed that a tethered sulfoxide can be a suitable oxidant, which in some cases leads to the formation of α-oxo gold carbene intermediates. The

  4. Surface-stabilized gold nanocatalysts

    DOEpatents

    Dai, Sheng [Knoxville, TN; Yan, Wenfu [Oak Ridge, TN

    2009-12-08

    A surface-stabilized gold nanocatalyst includes a solid support having stabilizing surfaces for supporting gold nanoparticles, and a plurality of gold nanoparticles having an average particle size of less than 8 nm disposed on the stabilizing surfaces. The surface-stabilized gold nanocatalyst provides enhanced stability, such as at high temperature under oxygen containing environments. In one embodiment, the solid support is a multi-layer support comprising at least a first layer having a second layer providing the stabilizing surfaces disposed thereon, the first and second layer being chemically distinct.

  5. Integrating a high-force optical trap with gold nanoposts and a robust gold-DNA bond.

    PubMed

    Paik, D Hern; Seol, Yeonee; Halsey, Wayne A; Perkins, Thomas T

    2009-08-01

    Gold-thiol chemistry is widely used in nanotechnology but has not been exploited in optical-trapping experiments due to laser-induced ablation of gold. We circumvented this problem by using an array of gold nanoposts (r = 50-250 nm, h approximately 20 nm) that allowed for quantitative optical-trapping assays without direct irradiation of the gold. DNA was covalently attached to the gold via dithiol phosphoramidite (DTPA). By using three DTPAs, the gold-DNA bond was not cleaved in the presence of excess thiolated compounds. This chemical robustness allowed us to reduce nonspecific sticking by passivating the unreacted gold with methoxy-(polyethylene glycol)-thiol. We routinely achieved single beads anchored to the nanoposts by single DNA molecules. We measured DNA's elasticity and its overstretching transition, demonstrating moderate- and high-force optical-trapping assays using gold-thiol chemistry. Force spectroscopy measurements were consistent with the rupture of the strepavidin-biotin bond between the bead and the DNA. This implied that the DNA remained anchored to the surface due to the strong gold-thiol bond. Consistent with this conclusion, we repeatedly reattached the trapped bead to the same individual DNA molecule. Thus, surface conjugation of biomolecules onto an array of gold nanostructures by chemically and mechanically robust bonds provides a unique way to carry out spatially controlled, repeatable measurements of single molecules.

  6. Getting the Gold Treatment

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Epner Technology, Inc., worked with Goddard Space Center to apply gold coating to the Vegetation Canopy Lidar (VCL) mirror. This partnership resulted in new commercial applications for Epner's LaserGold(R) process in the automotive industry. Previously, the company did not have equipment large enough to handle the plating of the stainless steel panels cost effectively. Seeing a chance to renew this effort, Epner Technology and Goddard entered into an agreement by which NASA would fund the facility needed to do the gold-plating, and Epner Technology would cover all other costs as part of their internal research and development. The VCL mirror project proceeded successfully, fulfilling Goddard's needs and leaving Epner Technology with a new facility to provide LaserGold for the automotive industry. The new capability means increased power savings and improvements in both quality and production time for BMW Manufacturing Corporation of Spartanburg, South Carolina, and Cadillac of Detroit, Michigan, as well as other manufacturers who have implemented Epner Technology's LaserGold process. LaserGold(R) is a registered trademark of Epner Technology, Inc.

  7. A porphyrin complex of Gold(I): (Phosphine)gold(I) azides as cation precursors

    PubMed Central

    Partyka, David V.; Robilotto, Thomas J.; Zeller, Matthias; Hunter, Allen D.; Gray, Thomas G.

    2008-01-01

    A silver- and Brönsted acid-free protocol for generating the (tricyclohexylphosphine)gold(I) cation from the corresponding azide complexes is disclosed. The gold(I) cations so liberated are trapped by complexation with octaethylporphyrin. The first structurally authenticated gold(I) porphyrin complex crystallizes with formula C72H112Au2F12N4P2Sb2, space group C2/c, a = 21.388 (4), b = 19.679 (4), c = 19.231 (3) Å; β = 111.030 (3)°. Solution spectroscopic studies indicate that the di-gold complex fragments on dissolution in organic solvents. Approximate density-functional theory calculations find an electrostatic origin for the binding of two gold(I) centers to the unprotonated nitrogen atoms, despite greater orbital density on the porphyrin meso carbons. PMID:18780788

  8. A novel 'Gold on Gold' biosensing scheme for an on-fiber immunoassay

    NASA Astrophysics Data System (ADS)

    Punjabi, N.; Satija, J.; Mukherji, S.

    2015-05-01

    In this paper, we propose a novel „gold on gold‟ biosensing scheme for absorbance based fiber-optic biosensor. First, a self-assembled monolayer of gold nanoparticles is formed at the sensing region of the fiber-optic probe by incubating an amino-silanized probe in a colloidal gold solution. Thereafter, the receptor moieties, i.e. Human immunoglobulin G (HIgG) were immobilized by using standard alkanethiol and classic carbodiimide coupling chemistry. Finally, biosensing experiments were performed with different concentrations of gold nanoparticle-tagged analyte, i.e. Goat anti- Human immunoglobulin G (Nanogold-GaHIgG). The sensor response was observed to be more than five-fold compared to the control bioassay, in which the sensor matrix was devoid of gold nanoparticle film. Also, the response was found to be ~10 times higher compared to the FITC-tagged scheme and ~14.5 times better compared to untagged scheme. This novel scheme also demonstrated the potential in improving the limit of detection for the fiber-optic biosensors.

  9. Analysis of gold(I/III)-complexes by HPLC-ICP-MS demonstrates gold(III) stability in surface waters.

    PubMed

    Ta, Christine; Reith, Frank; Brugger, Joël; Pring, Allan; Lenehan, Claire E

    2014-05-20

    Understanding the form in which gold is transported in surface- and groundwaters underpins our understanding of gold dispersion and (bio)geochemical cycling. Yet, to date, there are no direct techniques capable of identifying the oxidation state and complexation of gold in natural waters. We present a reversed phase ion-pairing HPLC-ICP-MS method for the separation and determination of aqueous gold(III)-chloro-hydroxyl, gold(III)-bromo-hydroxyl, gold(I)-thiosulfate, and gold(I)-cyanide complexes. Detection limits for the gold species range from 0.05 to 0.30 μg L(-1). The [Au(CN)2](-) gold cyanide complex was detected in five of six waters from tailings and adjacent monitoring bores of working gold mines. Contrary to thermodynamic predictions, evidence was obtained for the existence of Au(III)-complexes in circumneutral, hypersaline waters of a natural lake overlying a gold deposit in Western Australia. This first direct evidence for the existence and stability of Au(III)-complexes in natural surface waters suggests that Au(III)-complexes may be important for the transport and biogeochemical cycling of gold in surface environments. Overall, these results show that near-μg L(-1) enrichments of Au in environmental waters result from metastable ligands (e.g., CN(-)) as well as kinetically controlled redox processes leading to the stability of highly soluble Au(III)-complexes.

  10. Structural controls on Carlin-type gold mineralization in the gold bar district, Eureka County, Nevada

    USGS Publications Warehouse

    Yigit, O.; Nelson, E.P.; Hitzman, M.W.; Hofstra, A.H.

    2003-01-01

    The Gold Bar district in the southern Roberts Mountains, 48 km northwest of Eureka, Nevada, contains one main deposit (Gold Bar), five satellite deposits, and other resources. Approximately 0.5 Moz of gold have been recovered from a resource of 1,639,000 oz of gold in Carlin-type gold deposits in lower plate, miogeoclinal carbonate rocks below the Roberts Mountains thrust. Host rocks are unit 2 of the Upper Member of the Devonian Denay Formation and the Bartine Member of the McColley Canyon Formation. Spatial and temporal relations between structures and gold mineralization indicate that both pre-Tertiary and Tertiary structures were important controls on gold mineralization. Gold mineralization occurs primarily along high-angle Tertiary normal faults, some of which are reactivated reverse faults of Paleozoic or Mesozoic age. Most deposits are localized at the intersection of northwest- and northeast-striking faults. Alteration includes decalcification, and to a lesser extent, silicification along high-angle faults. Jasperoid (pervasive silicification), which formed along most faults and in some strata-bound zones, accounts for a small portion of the ore in every deposit. In the Gold Canyon deposit, a high-grade jasperoid pipe formed along a Tertiary normal fault which was localized along a zone of overturned fault-propagation folds and thrust faults of Paleozoic or Mesozoic age.

  11. Gold grade variation and particle microchemistry in exploration pits of the Batouri gold district, SE Cameroon

    NASA Astrophysics Data System (ADS)

    Vishiti, A.; Suh, C. E.; Lehmann, B.; Egbe, J. A.; Shemang, E. M.

    2015-11-01

    The Batouri area hosts lode-gold mineralization under several-m-thick lateritic cover. Pitting to bed rock on a geochemical Au anomaly defined from previous reconnaissance soil sampling identified five horizons ranging from saprock at the base to laterite at the top. Analysis of bulk samples from each horizon by fire assay shows that most of the horizons are barren although 119 ppb and 48 ppb Au values were obtained from one laterite horizon and one saprolite horizon, respectively, from two separate pits. All the horizons were panned and particulate gold was also recovered only from these two horizons. The gold grains from both horizons are morphologically and compositionally indistinguishable with rare quartz, pyrite and galena inclusions. The grains have irregular, sub-rounded, bean to elongated shapes and they show a remarkable core-rim zonation. Electron microprobe analysis of the grains recorded high gold content in the rims (86.3-100 wt%) and along fissures within the grains (95.1-100 wt%). The cores are relatively Ag rich (11.8-14 wt% Ag) while the rims (0.63-13.7 wt% Ag, most of the values fall within the lower limit of this range) and fissures (0.03-5.02 wt% Ag) are poor in Ag. The low Ag concentration in the rims and along fissures is attributed to preferential leaching of Ag; a process recognized in gold grains and platiniferous alloys from alluvia. The core composition of the grains is similar to that of primary gold composition in the bedrock. These results show that gold in the soil is relic particulate gold derived from the primary source with no evidence of secondary gold precipitation in the weathering cycle. In all the pits no horizon was systematically enriched in gold suggesting there has been no chemical remobilization of gold in this environment. Rather the dispersion of gold here is in the particulate form. Therefore combining particulate gold features with assay data is relevant to exploration in such tropical environments.

  12. Thermal stability of supported gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Turba, Timothy Fredrick

    Nanoparticle gold is of interest for a wide array of applications including catalysis, gas sensing, and light absorption for color filters and optical switches. Many of these applications are dependent upon the particles having sizes <5nm. In this paper, the thermal stability of nanoparticle gold is evaluated. Unsupported gold nanoparticles can grow (and in some cases double their size) even at room temperature. An important approach to stabilizing gold nanoparticles is through an interaction with a suitable substrate support material. Semiconductor substrates such as GaN are important supports for gold nanoparticles for applications such as sensors, but GaN does not provide a significant stabilizing effect at high temperatures. This paper covers a number of different substrate materials and in particular shows that for some substrates, such as SiO2, gold nanoparticles can be stable at temperatures up to 500°C, which is significantly above the Tammann temperature for bulk gold (395°C). In this dissertation, gold nanoparticles are shown to have complete stability on aluminum-supported silica nanosprings at 550°C in air. This stability window is one of the highest reported for nanoparticle gold and potentially enables a number of applications for this highly active catalyst. X-ray photoelectron spectroscopy measurements were performed before and after heating to 550°C to determine the nature of the interaction between gold and SiO2. A 1.2 eV drop in gold 4f binding energy after heating signified a shift to anionic gold particles (i.e., Au delta-) indicative of strong bonds to oxygen vacancies with neighboring Sidelta+ atoms. Heating in hydrogen at 550°C resulted in a binding energy decrease of 0.4 eV due to an increased fraction of particles with decreased coordination numbers (i.e., more atoms at edges and corners). Lastly, heating gold nanoparticles in an atmosphere of 10% relative humidity at 550°C resulted in apparent encapsulation of the gold.

  13. Native gold in Hawaiian alkalic magma

    USGS Publications Warehouse

    Sisson, T.W.

    2003-01-01

    Native gold found in fresh basanite glass from the early submarine phase of Kilauea volcano, Hawaii, may be the first documented case of the transport of gold as a distinct precious metal phase in a mantle-derived magma. The gold-bearing glass is a grain in bedded volcanic glass sandstone (Japan Marine Science and Technology Center (JAMSTEC) sample S508-R3) collected by the submersible Shinkai 6500 at 3879 m depth off Kilauea's south flank. Extensive outcrops there expose debris-flow breccias and sandstones containing submarine-erupted alkalic rock fragments and glasses from early Kilauea. Precipitation of an immiscible gold liquid resulted from resorption of magmatic sulfides during crystallization-differentiation, with consequent liberation of sulfide-hosted gold. Elevated whole-rock gold concentrations (to 36 ppb) for fresh lavas and clasts from early Kilauea further show that some magmas erupted at the beginning stages of Hawaiian shield volcanoes were distinctly gold rich, most likely owing to limited residual sulfide in their mantle source. Alkalic magmas at other ocean islands may also be gold rich, and oceanic hot-spot provinces may contain underappreciated gold resources.

  14. Detailed energy distributions in laser-produced plasmas of solid gold and foam gold planar targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Yunsong; Department of Engineering Physics, Tsinghua University, Beijing 100084; Zhang, Lu

    Foam gold was proposed to increase the laser to x-ray conversion efficiency due to its important applications. To understand the mechanism of x-ray enhancement, the detailed energy distributions and plasma profiles for laser-irradiated solid gold and foam gold targets were studied comparatively by hydrodynamic simulations using the code Multi-1D. It is confirmed that the radiation heat wave is subsonic for the normal solid gold target, while supersonic for the foam gold target. The shock wave, which is behind the supersonic radiation heat wave for the foam gold target, generates a plasma temperature gradient with high temperature near the shock wavemore » front to produce an additional net outward radiation for enhancement of the x-ray emission. Much larger inward plasma velocity is also driven by the shock wave as an initial plasma velocity for the laser deposition and electron thermal conduct zone, which decreases the expanding plasma kinetic energy loss and helps to increase the x-ray radiation.« less

  15. 41 CFR 101-45.002 - Gold.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Gold. 101-45.002 Section... PERSONAL PROPERTY § 101-45.002 Gold. (a) Gold will be sold in accordance with this section and part 102-38 of the Federal Management Regulation. (b) Sales of gold shall be processed to— (1) Use the sealed bid...

  16. 41 CFR 101-45.002 - Gold.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Gold. 101-45.002 Section... PERSONAL PROPERTY § 101-45.002 Gold. (a) Gold will be sold in accordance with this section and part 102-38 of the Federal Management Regulation. (b) Sales of gold shall be processed to— (1) Use the sealed bid...

  17. 41 CFR 101-45.002 - Gold.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Gold. 101-45.002 Section... PERSONAL PROPERTY § 101-45.002 Gold. (a) Gold will be sold in accordance with this section and part 102-38 of the Federal Management Regulation. (b) Sales of gold shall be processed to— (1) Use the sealed bid...

  18. 41 CFR 101-45.002 - Gold.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 2 2013-07-01 2012-07-01 true Gold. 101-45.002 Section... PERSONAL PROPERTY § 101-45.002 Gold. (a) Gold will be sold in accordance with this section and part 102-38 of the Federal Management Regulation. (b) Sales of gold shall be processed to— (1) Use the sealed bid...

  19. 41 CFR 101-45.002 - Gold.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Gold. 101-45.002 Section... PERSONAL PROPERTY § 101-45.002 Gold. (a) Gold will be sold in accordance with this section and part 102-38 of the Federal Management Regulation. (b) Sales of gold shall be processed to— (1) Use the sealed bid...

  20. Gold metal liquid-like droplets.

    PubMed

    Smirnov, Evgeny; Scanlon, Micheál D; Momotenko, Dmitry; Vrubel, Heron; Méndez, Manuel A; Brevet, Pierre-Francois; Girault, Hubert H

    2014-09-23

    Simple methods to self-assemble coatings and films encompassing nanoparticles are highly desirable in many practical scenarios, yet scarcely any examples of simple, robust approaches to coat macroscopic droplets with continuous, thick (multilayer), reflective and stable liquid nanoparticle films exist. Here, we introduce a facile and rapid one-step route to form films of reflective liquid-like gold that encase macroscopic droplets, and we denote these as gold metal liquid-like droplets (MeLLDs). The present approach takes advantage of the inherent self-assembly of gold nanoparticles at liquid-liquid interfaces and the increase in rates of nanoparticle aggregate trapping at the interface during emulsification. The ease of displacement of the stabilizing citrate ligands by appropriate redox active molecules that act as a lubricating molecular glue is key. Specifically, the heterogeneous interaction of citrate stabilized aqueous gold nanoparticles with the lipophilic electron donor tetrathiafulvalene under emulsified conditions produces gold MeLLDs. This methodology relies exclusively on electrochemical reactions, i.e., the oxidation of tetrathiafulvalene to its radical cation by the gold nanoparticle, and electrostatic interactions between the radical cation and nanoparticles. The gold MeLLDs are reversibly deformable upon compression and decompression and kinetically stable for extended periods of time in excess of a year.

  1. Gold Coating

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Epner Technology Inc. responded to a need from Goddard Space Flight Center for the ultimate in electroplated reflectivity needed for the Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA). Made of beryllium, the MOLA mirror was coated by Epner Technology Laser Gold process, specially improved for the project. Improved Laser Gold- coated reflectors have found use in an epitaxial reactor built for a large semiconductor manufacturer as well as the waveguide in Braun-Thermoscan tympanic thermometer and lasing cavities in various surgical instruments.

  2. Biorecovery of gold

    USGS Publications Warehouse

    Eisler, R.

    2003-01-01

    Recovery of ionic and metallic gold (Au) from a wide variety of solutions by selected species of bacteria, yeasts, fungi, algae, and higher plants is documented. Gold accumulations were up to 7.0 g/kg dry weight (DW) in various species of bacteria, 25.0 g/kg DW in freshwater algae, 84.0 g/kg DW in peat, and 100.0 g/kg DW in dried fungus mixed with keratinous material. Mechanisms of accumulation include oxidation, dissolution, reduction, leaching, and sorption. Uptake patterns are significantly modified by the physicochemical milieu. Crab exoskeletons accumulate up to 4.9 g Au/kg DW; however, gold accumulations in various tissues of living teleosts, decapod crustaceans, and bivalve molluscs are negligible.

  3. The IGY Gold History Preservation Program

    NASA Astrophysics Data System (ADS)

    Thompson, B. J.; Cliver, E. W.; Gentile, L. C.; Sigsbee, K. M.; Doel, R. E.

    2006-05-01

    An important part of the 2007 International Year activities will be preserving the history and memory of IGY 1957. The "IGY Gold" History initiative has several goals: 1) identifying and recognizing planners of and participants in the first IGY, 2) preserving memoirs, articles, photographs, and all items of historical significance for the IGY, 3) making these items available to historians, researchers, etc., 4) serving as a contact service for these activities, 5) spreading awareness of the history of geophysics, and 6) planning special events and "reunions." The IGY "Gold" Club identifies participants from the first IGY (gold symbolizing the 50th anniversary). "Gold club" participants will be rewarded with a special "IGY Gold Anniversary" certificate of recognition and a special commemorative "IGY Gold" lapel pin. Many IGY participants from around the globe have received IGY Gold Club awards, and many have submitted valuable historical material about the IGY activities. This is a joint program of the IHY, eGY, IPY, IYPE and IUGG.

  4. The Hatu gold anomaly, Xinjiang-Uygur Autonomous Region, China - testing the hypothesis of aeolian transport of gold

    USGS Publications Warehouse

    Smith, D.B.; Theobald, P.K.; Shiquan, S.; Tianxiang, R.; Zhihui, H.

    1993-01-01

    In 1987, a cooperative project between the U.S. Geological Survey and the Institute of Geophysical and Geochemical Exploration was initiated to evaluate the origin of the Hatu gold anomaly. The anomaly is located in the Hatu mining district in the northwest corner of Xinjiang-Uygur Autonomous Region in northwest China. The climate is semiarid to arid and wind erosion predominates. A regional soil survey of the Hatu district, based on samples collected on a 200 by 500 m grid and composited prior to chemical analysis to a density of one sample per square km, delineated a series of south-southeast-trending Au anomalies. Anomalous Au values range from 5 ppb to more than 700 ppb. The Hatu anomaly, the most prominent of these anomalies, is more than 30 km long and about 5 km wide. The mining town of Hatu and the economic gold deposits of Qiqu 1 and Qiqu 2 are at the northern end of this anomaly. The axis of the Hatu anomaly cuts across mapped structure and stratigraphy in the district, but is parallel to the prevailing wind direction. This observation led to the hypothesis that the Hatu anomaly is the result of acolian dispersion of gold from the vicinity of Qiqu 1 and Qiqu 2. The alternative interpretation, that the anomalies reflected additional primary gold occurrences, was not consistent with existing information on the known occurrences and the geology. The investigation led to the identification of three types of gold in heavy-mineral concentrates derived from stream sediments that were collected along the axis of the Hatu anomaly: (1) free gold, (2) gold in pyrite, and (3) gold included in quartz. Gold in quartz was only observed within 2 km of Qiqu 1. The size of the gold particles and the number of gold particles in these samples did not decrease with distance from Qiqu 1 as would be expected from aeolian or fluvial dispersion from a point source. Instead, both the size and amount of gold increased significantly at a distance of 3.5 km from Qiqu 1 and this

  5. The extractive metallurgy of gold

    NASA Astrophysics Data System (ADS)

    Kongolo, K.; Mwema, M. D.

    1998-12-01

    Mössbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Mössbauer spectroscopy could be applied.

  6. New Acoustic Arena Qualified at NASA Glenn's Aero-Acoustic Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Wnuk, Stephen P.

    2004-01-01

    A new acoustic arena has been qualified in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center. This arena is outfitted specifically for conducting fan noise research with the Advanced Noise Control Fan (ANCF) test rig. It features moveable walls with large acoustic wedges (2 by 2 by 1 ft) that create an acoustic environment usable at frequencies as low as 250 Hz. The arena currently uses two dedicated microphone arrays to acquire fan inlet and exhaust far-field acoustic data. It was used successfully in fiscal year 2003 to complete three ANCF tests. It also allowed Glenn to improve the operational efficiency of the four test rigs at AAPL and provided greater flexibility to schedule testing. There were a number of technical challenges to overcome in bringing the new arena to fruition. The foremost challenge was conflicting acoustic requirements of four different rigs. It was simply impossible to construct a static arena anywhere in the facility without intolerably compromising the acoustic test environment of at least one of the test rigs. This problem was overcome by making the wall sections of the new arena movable. Thus, the arena can be reconfigured to meet the operational requirements of any particular rig under test. Other design challenges that were encountered and overcome included structural loads of the large wedges, personnel access requirements, equipment maintenance requirements, and typical time and budget constraints. The new acoustic arena improves operations at the AAPL facility in several significant ways. First, it improves productivity by allowing multiple rigs to operate simultaneously. Second, it improves research data quality by providing a unique test area within the facility that is optimal for conducting fan noise research. Lastly, it reduces labor and equipment costs by eliminating the periodic need to transport the ANCF into and out of the primary AAPL acoustic arena. The investment to design, fabricate, and

  7. Nature vs. nurture: gold perpetuates "stemness".

    PubMed

    Paul, Willi; Sharma, Chandra P; Deb, Kaushik Dilip

    2011-01-01

    Adult tissues contain quiescent reservoirs of multipotent somatic stem cells and pluripotent embryonic-like stem cells (ELSCs). Credited with regenerative properties gold is used across both -contemporary and -ancient medicines. Here, we show that gold exerted these effects by enhancing the pool of pluripotent ELSC while improving their stemness. We used hESCs as an in-vitro model to understand if gold could enhance self-renewal and pluripotency. Swarna-bhasma (SB), an ancient Indian gold microparticulate (41.1 nm), preparation, reduced spontaneous-differentiation, improved self-renewal, pluripotency and proliferation of hESCs. Colloidal gold-nanoparticles (GNP) (15.59 nm) were tested to confirm that the observations were attributable to nanoparticulate-gold. SB and GNP exposure: maintained -stemness, -karyotypic stability, enhanced pluripotency till day-12, increased average colony-sizes, and reduced the number of autonomously-derived differentiated FGFR1 positive fibroblast-niche-cells/colony. Particulate-gold induced upregulation of FGFR1 and IGF2 expression, and decrease in IGF1 secretion indicates IGF1/2 mediated support for enhanced pluripotency and self-renewal in hESCs.

  8. Lichenoid dermatitis after consumption of gold-containing liquor.

    PubMed

    Russell, M A; Langley, M; Truett, A P; King, L E; Boyd, A S

    1997-05-01

    Medicinal gold has a well-known side effect profile that includes mucocutaneous eruptions. We describe three patients with a pruritic dermatitis that began after consumption of a gold-containing alcoholic beverage. Blood and urine gold levels, chemistry panels, hepatitis screens, skin biopsies, and patch tests were performed. The gold-containing liquor was analyzed for the presence and quantity of gold. The liquor consumed by all of the patients was a cinnamon schnapps with free-floating gold-colored flakes. Gold is present in the liquid portion of this liquor and in the solid flakes. Elevated levels of gold in the urine and blood were present in one patient 3 months after last drinking this beverage. Another patient had a positive patch test to gold sodium thiosulfate. All patients experienced improvement of their dermatitis after they stopped drinking the gold-containing liquor.

  9. Antibody-gold cluster conjugates

    DOEpatents

    Hainfeld, J.F.

    1988-06-28

    Antibody- or antibody fragment-gold cluster conjugates are shown wherein the conjugate size can be about 5.0 nm. Methods and reagents are disclosed in which antibodies or Fab' fragments thereof are covalently bound to a stable cluster of gold atoms. 2 figs.

  10. Gold Nanoparticles Cytotoxicity

    NASA Astrophysics Data System (ADS)

    Mironava, Tatsiana

    Over the last two decades gold nanoparticles (AuNPs) have been used for many scientific applications and have attracted attention due to the specific chemical, electronic and optical size dependent properties that make them very promising agents in many fields such as medicine, imagine techniques and electronics. More specifically, biocompatible gold nanoparticles have a huge potential for use as the contrast augmentation agent in X-ray Computed Tomography and Photo Acoustic Tomography for early tumor diagnostic as well these nanoparticles are extensively researched for enhancing the targeted cancer treatment effectiveness such as photo-thermal and radiotherapy. In most biomedical applications biocompatible gold nanoparticles are labeled with specific tumor or other pathology targeting antibodies and used for site specific drug delivery. However, even though gold nanoparticles poses very high level of anti cancer properties, the question of their cytotoxicity ones they are released in normal tissue has to be researched. Moreover, the huge amount of industrially produced gold nanoparticles raises the question of these particles being a health hazard, since the penetration is fairly easy for the "nano" size substances. This study focuses on the effect of AuNPs on a human skin tissue, since it is fall in both categories -- the side effects for biomedical applications and industrial workers and users' exposure during production and handling. Therefore, in the present project, gold nanoparticles stabilized with the biocompatible agent citric acid were generated and characterized by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). The cytotoxic effect of AuNPs release to healthy skin tissue was modeled on 3 different cell types: human keratinocytes, human dermal fibroblasts, and human adipose derived stromal (ADS) cells. The AuNPs localization inside the cell was found to be cell type dependent. Overall cytotoxicity was found to be dependent

  11. Dating native gold by noble gas analyses

    NASA Technical Reports Server (NTRS)

    Niedermann, S.; Eugster, O.; Hofmann, B.; Thalmann, CH.; Reimold, W. U.

    1993-01-01

    Our recent work on He, Ne, and Ar in Alpine gold samples has demonstrated that gold is extremely retentive for He and could thus, in principle, be used for U/Th-He-4 dating. For vein-type gold from Brusson, Northern Italy, we derived a U/Th-He-4 age of 36 Ma, in agreement with the K-Ar formation age of associated muscovites and biotites. However, in placer gold from the Napf area, Central Switzerland, we observed large excesses of both He-4 and radiogenic Ar-40 (Ar-40 sub rad, defined as Ar-40-295.5-Ar-.36). The gas release systematics indicate two distinct noble gas components, one of which is released below about 800 C and the other one at the melting point of gold (1064 C). We now present results of He and Xe measurements in a 1 g placer gold sample from the river Kruempelgraben, as well as He and Ar data for Brusson vein-type gold and for gold from the Lily Gold Mine, South Africa. We calculate reasonable U/Th-He-4 as well as U-Xe ages based on those gases which are released at approximately 800 C. Probably the low-temperature components represent in-situ-produced radiogenic He and fission Xe, whereas the gases evolving when gold melts have been trapped during gold formation. Therefore, only the low-temperature components are relevant for dating purposes.

  12. Alan Stone and the ethics of forensic psychiatry: an overview.

    PubMed

    Miller, Glenn H

    2008-01-01

    In 1982, Alan Stone presented a keynote speech at the Annual Meeting of the American Academy of Psychiatry and the Law (AAPL) on the ethics of forensic psychiatry. That speech was sharply critical of the prevailing ethics standards and led forensic psychiatrists to study his ideas carefully. A quarter-century later, he returned to the AAPL's Annual Meeting to present his current thinking. This overview outlines the development of Stone's thought over 25 years and the dialectic among Stone and three critics: Paul Appelbaum, Ezra Griffith, and Stephen Morse. Stone is now more optimistic about the possibility of developing an ethic for forensic psychiatry.

  13. Fungal Biorecovery of Gold From E-waste.

    PubMed

    Bindschedler, Saskia; Vu Bouquet, Thi Quynh Trang; Job, Daniel; Joseph, Edith; Junier, Pilar

    2017-01-01

    Waste electric and electronic devices (e-waste) represent a source of valuable raw materials of great interest, and in the case of metals, e-waste might become a prized alternative source. Regarding gold, natural ores are difficult to mine due to their refractory nature and the richest ores have almost all been exploited. Additionally, some gold mining areas are present in geopolitically unstable regions. Finally, the gold mining industry produces toxic compounds, such as cyanides. As a result, the gold present in e-waste represents a nonnegligible resource (urban mining). Extraction methods of gold from natural ores (pyro- and hydrometallurgy) have been adapted to this particular type of matrix. However, to propose novel approaches with a lower environmental footprint, biotechnological methods using microorganisms are being developed (biometallurgy). These processes use the extensive metabolic potential of microbes (algae, bacteria, and fungi) to mobilize and immobilize gold from urban and industrial sources. In this review, we focus on the use of fungi for gold biomining. Fungi interact with gold by mobilizing it through mechanical attack as well as through biochemical leaching by the production of cyanides. Moreover, fungi are also able to release Au through the degradation of cyanide from aurocyanide complexes. Finally, fungi immobilize gold through biosorption, bioaccumulation, and biomineralization, in particular, as gold nanoparticles. Overall, the diversity of mechanisms of gold recycling using fungi combined with their filamentous lifestyle, which allows them to thrive in heterogeneous and solid environments such as e-waste, makes fungi an important bioresource to be harnessed for the biorecovery of gold. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Immobilization of gold nanoparticles on cell culture surfaces for safe and enhanced gold nanoparticle-mediated laser transfection.

    PubMed

    Kalies, Stefan; Heinemann, Dag; Schomaker, Markus; Gentemann, Lara; Meyer, Heiko; Ripken, Tammo

    2014-01-01

    In comparison to standard transfection methods, gold nanoparticle-mediated laser transfection has proven to be a versatile alternative. This is based on its minor influence on cell viability and its high efficiency, especially for the delivery of small molecules like small interfering RNA. However, in order to transfer it to routine usage, a safety aspect is of major concern: The avoidance of nanoparticle uptake by the cells is desired. The immobilization of the gold nanoparticles on cell culture surfaces can address this issue. In this study, we achieved this by silanization of the appropriate surfaces and the binding of gold nanoparticles to them. Comparable perforation efficiencies to the previous approaches of gold nanoparticle-mediated laser transfection with free gold nanoparticles are demonstrated. The uptake of the immobilized particles by the cells is unlikely. Consequently, these investigations offer the possibility of bringing gold nanoparticle-mediated laser transfection closer to routine usage.

  15. Enhanced chemiluminescence-based detection on gold substrate after electrografting of diazonium precursor-coated gold nanoparticles.

    PubMed

    Houmed Adabo, Ali; Zeggari, Rabah; Mohamed Saïd, Nasser; Bazzi, Rana; Elie-Caille, Céline; Marquette, Christophe; Martini, Matteo; Tillement, Olivier; Perriat, Pascal; Chaix, Carole; Boireau, Wilfrid; Roux, Stéphane

    2016-04-01

    Since it was demonstrated that nanostructured surfaces are more efficient for the detection based on the specific capture of analytes, there is a real need to develop strategies for grafting nanoparticles onto flat surfaces. Among the different routes for the functionalization of a surface, the reduction of diazonium salts appears very attractive for the covalent immobilization of nanoparticles because this method does not require a pre-treatment of the surface. For achieving this goal, gold nanoparticles coated by precursor of diazonium salts were synthesized by reduction of gold salt in presence of mercaptoaniline. These mercaptoaniline-coated gold nanoparticles (Au@MA) were successfully immobilized onto various conducting substrates (indium tin oxide (ITO), glassy carbon (GC) and gold electrodes with flat terraces) after addition of sodium nitrite at fixed potential. When applied onto the gold electrodes, such a grafting strategy led to an obvious enhancement of the luminescence of luminol used for the biodetection. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Gold(I) Carbenoids: On‐Demand Access to Gold(I) Carbenes in Solution

    PubMed Central

    Sarria Toro, Juan M.; García‐Morales, Cristina; Raducan, Mihai; Smirnova, Ekaterina S.

    2017-01-01

    Abstract Chloromethylgold(I) complexes of phosphine, phosphite, and N‐heterocyclic carbene ligands are easily synthesized by reaction of trimethylsilyldiazomethane with the corresponding gold chloride precursors. Activation of these gold(I) carbenoids with a variety of chloride scavengers promotes reactivity typical of metallocarbenes in solution, namely homocoupling to ethylene, olefin cyclopropanation, and Buchner ring expansion of benzene. PMID:28090747

  17. Synthesis of camptothecin-loaded gold nanomaterials

    NASA Astrophysics Data System (ADS)

    Xing, Zhimin; Liu, Zhiguo; Zu, Yuangang; Fu, Yujie; Zhao, Chunjian; Zhao, Xiuhua; Meng, Ronghua; Tan, Shengnan

    2010-04-01

    Camptothecin-loaded gold nanomaterials have been synthesized by the sodium borohydride reduction method under a strong basic condition. The obtained gold nanomaterials have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-vis absorption spectroscopy. The camptothecin-loaded gold colloidal solution was very stable and can be stored for more than two months at room temperature without obvious changes. The color of the colloidal solution can change from wine red to purple and blue during the acidifying process. It was revealed that the release of camptothecin and the aggregation of gold nanoparticles can be controlled by tuning the solution pH. The present study implied that the gold nanomaterials can be used as the potential carrier for CPT delivery.

  18. Concentration of gold in natural waters

    USGS Publications Warehouse

    McHugh, J.B.

    1988-01-01

    The purpose of this paper is to investigate the amount of gold present in natural waters. One hundred and thirty-two natural water samples were collected from various sources and analyzed for gold by the latest techniques. Background values for gold in natural waters range from <0.001 to 0.005 ppb, and anomalous values range from 0.010 to 2.8 ppb. Waters collected from mineralized areas have a mean gold value of 0.101 ppb, whereas waters collected from unmineralized areas have a mean of 0.002 ppb. Some of the high gold values reported in the earlier literature were probably due to interferences by high salt content in the sample and/or lack of proper filter procedures. ?? 1988.

  19. Gold and its relationship to neurological/glandular conditions.

    PubMed

    Richards, Douglas G; McMillin, David L; Mein, Eric A; Nelson, Carl D

    2002-01-01

    Despite increasing sales of gold supplements, and claims of benefits for neurological and glandular conditions, gold has received little attention in modern medical literature except as a drug for rheumatoid arthritis. Historically, however, gold had a reputation as a "nervine," a therapy for nervous disorders. A review of the historical literature shows gold in use during the 19th century for conditions including depression, epilepsy, migraine, and glandular problems such as amenorrhea and impotence. The most notable use of gold was in a treatment for alcoholism developed by Keeley (1897). In the modern medical literature, gold-containing medicines for rheumatoid arthritis are known to have occasional neurotoxic adverse effects. There are also a few studies suggesting a role for gold as a naturally occurring trace element in the reproductive glands. One small recent study demonstrated a possible positive effect of gold on cognitive ability. There is a need for more experimental and clinical research of the neuropharmacology and neurochemistry of gold, and for the exploration of gold's possible role as a trace element.

  20. Gold - Old Drug with New Potentials.

    PubMed

    Faa, Gavino; Gerosa, Clara; Fanni, Daniela; Lachowicz, Joanna I; Nurchi, Valeria M

    2018-01-01

    Research into gold-based drugs for a range of human diseases has seen a revival in recent years. This article reviews the most important applications of gold products in different fields of human pathology. Au(I) and Au(III) compounds have been re-introduced in clinical practice for targeting the cellular components involved in the onset and progression of viral and parasitic diseases, rheumatoid arthritis and cancer. After some brief historical notes, this article takes into account the applications of gold compounds against Mycobacterium tuberculosis, and also in tuberculosis and in rheumatoid arthritis treatment. The use of gold containing drugs in the cure of cancer are then considered, with special emphasis to the use of nanoparticles and to the photo-thermal cancer therapy. The use of colloidal gold in diagnostics, introduced in the last decade is widely discussed. As a last point a survey on the adverse effects and on the toxicity of the various gold derivatives in use in medicine is presented. In this review, we described the surprisingly broad spectrum of possible uses of gold in diagnostics and in therapeutic approaches to multiple human diseases, ranging from degenerative to infectious diseases, and to cancer. In particular, gold nanoparticles appear as attractive elements in modern clinical medicine, combining high therapeutic properties, high selectivity in targeting cancer cells and low toxicity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Gold ink coating of thermocouple sheaths

    DOEpatents

    Ruhl, H. Kenneth

    1992-01-01

    A method is provided for applying a gold ink coating to a thermocouple sheath which includes the steps of electropolishing and oxidizing the surface of the thermocouple sheath, then dipping the sheath into liquid gold ink, and finally heat curing the coating. The gold coating applied in this manner is highly reflective and does not degrade when used for an extended period of time in an environment having a temperature over 1000.degree. F. Depending on the application, a portion of the gold coating covering the tip of the thermocouple sheath is removed by abrasion.

  2. Directed assembly of gold nanowires on silicon via reorganization and simultaneous fusion of randomly distributed gold nanoparticles.

    PubMed

    Reinhardt, Hendrik M; Bücker, Kerstin; Hampp, Norbert A

    2015-05-04

    Laser-induced reorganization and simultaneous fusion of nanoparticles is introduced as a versatile concept for pattern formation on surfaces. The process takes advantage of a phenomenon called laser-induced periodic surface structures (LIPSS) which originates from periodically alternating photonic fringe patterns in the near-field of solids. Associated photonic fringe patterns are shown to reorganize randomly distributed gold nanoparticles on a silicon wafer into periodic gold nanostructures. Concomitant melting due to optical heating facilitates the formation of continuous structures such as periodic gold nanowire arrays. Generated patterns can be converted into secondary structures using directed assembly or self-organization. This includes for example the rotation of gold nanowire arrays by arbitrary angles or their fragmentation into arrays of aligned gold nanoparticles.

  3. Diazonium-derived aryl films on gold nanoparticles: evidence for a carbon-gold covalent bond.

    PubMed

    Laurentius, Lars; Stoyanov, Stanislav R; Gusarov, Sergey; Kovalenko, Andriy; Du, Rongbing; Lopinski, Gregory P; McDermott, Mark T

    2011-05-24

    Tailoring the surface chemistry of metallic nanoparticles is generally a key step for their use in a wide range of applications. There are few examples of organic films covalently bound to metal nanoparticles. We demonstrate here that aryl films are formed on gold nanoparticles from the spontaneous reduction of diazonium salts. The structure and the bonding of the film is probed with surface-enhanced Raman scattering (SERS). Extinction spectroscopy and SERS show that a nitrobenzene film forms on gold nanoparticles from the corresponding diazonium salt. Comparison of the SERS spectrum with spectra computed from density functional theory models reveals a band characteristic of a Au-C stretch. The observation of this stretch is direct evidence of a covalent bond. A similar band is observed in high-resolution electron energy loss spectra of nitrobenzene layers on planar gold. The bonding of these types of films through a covalent interaction on gold is consistent with their enhanced stability observed in other studies. These findings provide motivation for the use of diazonium-derived films on gold and other metals in applications where high stability and/or strong adsorbate-substrate coupling are required.

  4. New insights into the extraction of invisible gold in a low-grade high-sulfur Carlin-type gold concentrate by bio-pretreatment

    NASA Astrophysics Data System (ADS)

    Qiu, Xiao-bin; Wen, Jian-kang; Huang, Song-tao; Yang, Hong-ying; Liu, Mei-lin; Wu, Biao

    2017-10-01

    To extract gold from a low-grade (13.43 g/t) and high-sulfur (39.94wt% sulfide sulfur) Carlin-type gold concentrate from the Nibao deposit, Guizhou, a bio-pretreatment followed by carbon-in-pulp (CIP) cyanide leaching process was used. Various methods were used to detect the low-grade gold in the concentrate; however, only time-of-flight secondary-ion mass spectrometry (TOF-SIMS) was successful. With bio-pretreatment, the gold recovery rate increased by approximately 70.16% compared with that obtained by direct cyanide leaching of the concentrate. Various attempts were made to increase the final gold recovery rate. However, approximately 20wt% of the gold was non-extractable. To determine the nature of this non-extractable gold, mineralogy liberation analysis (MLA), formation of secondary product during the bio-pretreatment, and the preg-robbing capacity of the carbonaceous matter in the ore were investigated. The results indicated that at least four factors affected the gold recovery rate: gold occurrence, tight junctions of gold-bearing pyrite with gangue minerals, jarosite coating of the ore, and the carbonaceous matter content.

  5. The gold rush 1925-35.

    PubMed Central

    Keers, R Y

    1980-01-01

    Although from the time of Koch onwards there had been desultory experiments with a variety of gold preparations in the management of pulmonary tuberculosis, gold as a recognised and accepted treatment did not emerge until 1925. In that year Holger Mollgaard of Copenhagen introduced sanocrysin, a double thiosulphate of gold and sodium, with which he had conducted an extensive series of animal experiments. The results of these were considered to justify its use in clinical practice and two physicians, Secher and Faber, undeterred by its toxicity, reported enthusiastically in its favour. Other Danish physicians followed but, alarmed by violent reactions, modified the dosage, an example followed by British workers. Encouraging results continued to be reported although each series contained a significant proportion of failures, and toxicity remained high. The first properly planned and fully controlled clinical trial took place in the United States and produced a report which was wholly adverse and which sounded the death knell of gold therapy throughout America. Until 1934-35 gold was used extensively in Europe but thereafter there was a sudden and largely universal cessation of interest and within a few years gold, introduced with such éclat and carrying so many high hopes, had vanished from the therapy of tuberculosis even though, at that point, no better alternative was available. PMID:6791290

  6. Sensitive flotation-spectrophotometric determination of gold, based on the gold(I)-iodide-methylene blue system.

    PubMed

    Marczenko, Z; Jankowski, K

    1985-04-01

    The gold(I)-iodide-Methylene Blue (MB) system is suitable for flotation separation and spectrophotometric determination of gold. Under the optimum conditions [(MB(+))(AuI(2)(-))].3[(MB(+))(I(3)(-))] is formed, and floated with cyclohexane. The product is dissolved in methanol and its absorbance measured. The molar absorptivity is 3.4 x 10(5)1.mole(-1).cm(-1) at 655 nm. The proposed method is more than three times as sensitive as the Rhodamine B method. Pt, Pd, Ag and Hg interfere seriously, and Ir, Rh, Bi and Cd to a smaller extent. Preliminary separation of gold by precipitation with tellurium as a collector is recommended. The method has been applied to determination of gold traces (about 1 x 10(-4)%) in a copper sample.

  7. Bats, cyanide, and gold mining

    USGS Publications Warehouse

    Clark, Donald R.

    1991-01-01

    Although the boom days of prospectors and gold nuggets are long gone, modern technology enables gold to continue to be extracted from ore. Unfortunately, the extraction method has often been disastrous for bats and other wildlife, an issue I first became aware of in early 1989. Phone calls from Drs. Merlin Tuttle and Elizabeth Pierson, a BCI member and bat researcher from Berkeley, California, alerted me that bats were dying from apparent cyanide poisoning at gold mines in the western United States.

  8. Precipitation of lamellar gold nanocrystals in molten polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palomba, M.; Carotenuto, G., E-mail: giancaro@unina.it

    Non-aggregated lamellar gold crystals with regular shape (triangles, squares, pentagons, etc.) have been produced by thermal decomposition of gold chloride (AuCl) molecules in molten amorphous polymers (polystyrene and poly(methyl methacrylate)). Such covalent inorganic gold salt is high soluble into non-polar polymers and it thermally decomposes at temperatures compatible with the polymer thermal stability, producing gold atoms and chlorine radicals. At the end of the gold precipitation process, the polymer matrix resulted chemically modified because of the partial cross-linking process due to the gold atom formation reaction.

  9. Establishment of gold-quartz standard GQS-1

    USGS Publications Warehouse

    Millard, Hugh T.; Marinenko, John; McLane, John E.

    1969-01-01

    A homogeneous gold-quartz standard, GQS-1, was prepared from a heterogeneous gold-bearing quartz by chemical treatment. The concentration of gold in GQS-1 was determined by both instrumental neutron activation analysis and radioisotope dilution analysis to be 2.61?0.10 parts per million. Analysis of 10 samples of the standard by both instrumental neutron activation analysis and radioisotope dilution analysis failed to reveal heterogeneity within the standard. The precision of the analytical methods, expressed as standard error, was approximately 0.1 part per million. The analytical data were also used to estimate the average size of gold particles. The chemical treatment apparently reduced the average diameter of the gold particles by at least an order of magnitude and increased the concentration of gold grains by a factor of at least 4,000.

  10. Gel Electrophoresis of Gold-DNA Nanoconjugates

    DOE PAGES

    Pellegrino, T.; Sperling, R. A.; Alivisatos, A. P.; ...

    2007-01-01

    Gold-DNA conjugates were investigated in detail by a comprehensive gel electrophoresis study based on 1200 gels. A controlled number of single-stranded DNA of different length was attached specifically via thiol-Au bonds to phosphine-stabilized colloidal gold nanoparticles. Alternatively, the surface of the gold particles was saturated with single stranded DNA of different length either specifically via thiol-Au bonds or by nonspecific adsorption. From the experimentally determined electrophoretic mobilities, estimates for the effective diameters of the gold-DNA conjugates were derived by applying two different data treatment approaches. The first method is based on making a calibration curve for the relation between effectivemore » diameters and mobilities with gold nanoparticles of known diameter. The second method is based on Ferguson analysis which uses gold nanoparticles of known diameter as reference database. Our study shows that effective diameters derived from gel electrophoresis measurements are affected with a high error bar as the determined values strongly depend on the method of evaluation, though relative changes in size upon binding of molecules can be detected with high precision. Furthermore, in this study, the specific attachment of DNA via gold-thiol bonds to Au nanoparticles is compared to nonspecific adsorption of DNA. Also, the maximum number of DNA molecules that can be bound per particle was determined.« less

  11. Plastic deformation in nanoscale gold single crystals and open-celled nanoporous gold

    NASA Astrophysics Data System (ADS)

    Lee, Dongyun; Wei, Xiaoding; Zhao, Manhong; Chen, Xi; Jun, Seong C.; Hone, James; Kysar, Jeffrey W.

    2007-01-01

    The results of two sets of experiments to measure the elastic-plastic behaviour of gold at the nanometre length scale are reported. One set of experiments was on free-standing nanoscale single crystals of gold, and the other was on free-standing nanoscale specimens of open-celled nanoporous gold. Both types of specimens were fabricated from commercially available leaf which was either pure Au or a Au/Ag alloy following by dealloying of the Ag. Mechanical testing specimens of a 'dog-bone' shape were fabricated from the leaf using standard lithographic procedures after the leaf had been glued onto a silicon wafer. The thickness of the gauge portion of the specimens was about 100 nm, the width between 250 nm and 300 nm and the length 7 µm. The specimens were mechanically loaded with a nanoindenter (MTS) at the approximate midpoint of the gauge length. The resulting force-displacement curve of the single crystal gold was serrated and it was evident that slip localization occurred on individual slip systems; however, the early stages of the plastic deformation occurred in a non-localized manner. The results of detailed finite element analyses of the specimen suggest that the critical resolved shear stress of the gold single crystal was as high as 135 MPa which would lead to a maximum uniaxial stress of about 500 MPa after several per cent strain. The behaviour of the nanoporous gold was substantially different. It exhibited an apparent elastic behaviour until the point where it failed in an apparently brittle manner, although it is assumed that plastic deformation occurred in the ligaments prior to failure. The average elastic stiffness of three specimens was measured to be Enp = 8.8 GPa and the stress at ultimate failure averaged 190 MPa for the three specimens tested. Scaling arguments suggest that the stress in the individual ligaments could approach the theoretical shear strength. Presented at the IUTAM Symposium on Plasticity at the Micron Scale, Technical

  12. Biophysical characterization of gold nanoparticles-loaded liposomes.

    PubMed

    Mady, Mohsen Mahmoud; Fathy, Mohamed Mahmoud; Youssef, Tareq; Khalil, Wafaa Mohamed

    2012-10-01

    Gold nanoparticles were prepared and loaded into the bilayer of dipalmitoylphosphatidylcholine (DPPC) liposomes, named as gold-loaded liposomes. Biophysical characterization of gold-loaded liposomes was studied by transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy as well as turbidity and rheological measurements. FTIR measurements showed that gold nanoparticles made significant changes in the frequency of the CH(2) stretching bands, revealing that gold nanoparticles increased the number of gauche conformers and create a conformational change within the acyl chains of phospholipids. The transmission electron micrographs (TEM) revealed that gold nanoparticles were loaded in the liposomal bilayer. The zeta potential of DPPC liposomes had a more negative value after incorporating of Au NPs into liposomal membranes. Turbidity studies revealed that the loading of gold nanoparticles into DPPC liposomes results in shifting the temperature of the main phase transition to a lower value. The membrane fluidity of DPPC bilayer was increased by loading the gold nanoparticles as shown from rheological measurements. Knowledge gained in this study may open the door to pursuing liposomes as a viable strategy for Au NPs delivery in many diagnostic and therapeutic applications. Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Functionalization of gold nanoparticles as antidiabetic nanomaterial

    NASA Astrophysics Data System (ADS)

    Venkatachalam, M.; Govindaraju, K.; Mohamed Sadiq, A.; Tamilselvan, S.; Ganesh Kumar, V.; Singaravelu, G.

    2013-12-01

    In the present investigation, functionalization of gold nanoparticles synthesized using propanoic acid 2-(3-acetoxy-4,4,14-trimethylandrost-8-en-17-yl) (PAT) an active biocomponent isolated from Cassia auriculata is studied in detail. On reaction of PAT with aqueous HAuCl4, rapid formation of stable gold nanoparticles was achieved. Formation of gold nanoparticles was confirmed by UV-vis spectroscopy, XRD, GC-MS, FTIR, TEM and SEM with EDAX. Gold nanoparticles mostly were monodisperse, spherical in shape and ranged in size 12-41 nm. Gold nanoparticles synthesised using PAT was administered to alloxan (150 mg/kg body weight) induced diabetic male albino rats at different doses (0.25, 0.5, 0.75 and 1.0 mg/kg body weight) for 28 days. Plasma glucose level, cholesterol and triglyceride were significantly (p < 0.001) reduced in experimental animals treated with gold nanoparticles at dosage of 0.5 mg/kg body weight and plasma insulin increased significantly. The newly genre green gold nanoparticles exhibit remarkable protein tyrosine phosphatase 1B inhibitory activity.

  14. Gold and Iron-Gold Nanoparticles for Intracellular Tracking and in Vivo Medical Applicatons

    NASA Astrophysics Data System (ADS)

    Fu, Wei

    2005-03-01

    We have fabricated Au and Fe-Au nanoparticles for potential use in ex vivo experiments such as intracellular tracking, as well as a variety of in vivo medical applications. In order to improve their targeting potential, circulation time and flexibility, gold NPs were surface modified using a hetero-bifunctional poly(ethylene glycol) (PEG, MW 1,500) spacers. A coumarin-PEG-gold NP complex was formed and cell viability studies and optical fluorescence experiments were carried out demonstrating the use of these surface-modified gold NPs for drug delivery, gene therapy and cell trafficking experiments. Fe-Au nanoparticles were also fabricated and show significant contrast enhancement in MRI studies through a substantial reduction of the T2 relaxation time.

  15. [Biosynthesis of gold nanoparticles by Azospirillum brasilense].

    PubMed

    Kupriashina, M A; Vetchinkina, E P; Burov, A M; Ponomareva, E G; Nikitina, V E

    2014-01-01

    Plant-associated nitrogen-fixing soil bacteria Azospirillum brasilense were shown to reduce the gold of chloroauric acid to elemental gold, resulting in formation of gold nanoparicles. Extracellular phenoloxidizing enzymes (laccases and Mn peroxidases) were shown to participate in reduction of Au+3 (HAuCl4) to Au(0). Transmission electron microscopy revealed accumulation of colloidal gold nanoparticles of diverse shape in the culture liquid of A. brasilense strains Sp245 and Sp7. The size of the electron-dense nanospheres was 5 to 50 nm, and the size of nanoprisms varied from 5 to 300 nm. The tentative mechanism responsible for formation of gold nanoparticles is discussed.

  16. Facile preparation of gold nanocages and hollow gold nanospheres via solvent thermal treatment and their surface plasmon resonance and photothermal properties.

    PubMed

    Wang, Haifei; Han, Jing; Lu, Wensheng; Zhang, Jianping; Li, Jinru; Jiang, Long

    2015-02-15

    Although template etching method is one of the most common ways of preparation of hollow gold nanostructures, this approach still requires further improvements to avoid the collapse of gold shells after the cores were removed. In this work, an improved template etching method, with which hollow gold nanostructure is fabricated by etching Polystyrene (PS) cores from PS@Au core-shell nanospheres with solvent thermal treatment in N,N-Dimethylformamide (DMF), is demonstrated. When PS cores were removed by a thermal treatment process, gold nanoshells reconstruct and the collapse of the nanoshells is avoided. Gold nanocages and hollow gold nanospheres are easily obtained from the various structures of PS@Au core-shell nanospheres. These hollow nanostructures represent special near infrared (NIR) optical property and photothermal property. Compared with hollow gold nanospheres, the gold nanocages show higher temperature increase at the same particle concentration. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Site-specific biomolecule labeling with gold clusters.

    PubMed

    Ackerson, Christopher J; Powell, Richard D; Hainfeld, James F

    2010-01-01

    Site-specific labeling of biomolecules in vitro with gold clusters can enhance the information content of electron cryomicroscopy experiments. This chapter provides a practical overview of well-established techniques for forming biomolecule/gold cluster conjugates. Three bioconjugation chemistries are covered: linker-mediated bioconjugation, direct gold-biomolecule bonding, and coordination-mediated bonding of nickel(II) nitrilotriacetic acid (NTA)-derivatized gold clusters to polyhistidine (His)-tagged proteins. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Protein targets for anticancer gold compounds: mechanistic inferences.

    PubMed

    Gabbiani, Chiara; Messori, Luigi

    2011-12-01

    Gold compounds form an interesting class of antiproliferative agents of potential pharmacological use in cancer treatment. Indeed, a number of gold compounds, either gold(III) or gold(I), were recently described and characterised that manifested remarkable cytotoxic properties in vitro against cultured cancer cells; for some of them encouraging in vivo results were also reported toward a few relevant animal models of cancer. The molecular mechanisms through which gold compounds exert their biological effects are still largely unknown and the subject of intense investigations. Recent studies point out that the modes of action of cytotoxic gold compounds are essentially DNA-independent and cisplatin-unrelated, relying -most likely- on gold interactions with a variety of protein targets. Notably, a few cellular proteins playing relevant functional roles were proposed to represent effective targets for cytotoxic gold compounds but these hypotheses need adequate validation. The state of the art of this research area and the perspectives for future studies are herein critically analysed and discussed.

  19. Molecular Simulations of The Formation of Gold-Molecule-Gold Junctions

    NASA Astrophysics Data System (ADS)

    Wang, Huachuan

    2013-03-01

    We perform classical molecular simulations by combining grand canonical Monte Carlo (GCMC) sampling with molecular dynamics (MD) simulation to explore the dynamic gold nanojunctions in a Alkenedithiol (ADT) solvent. With the aid of a simple driving-spring model, which can reasonably represent the long-range elasticity of the gold electrode, the spring forces are obtained during the dynamic stretching procedure. A specific multi-time-scale double reversible reference system propagator (double-RESPA) algorithm has been designed for the metal-organic complex in MD simulations to identify the detailed metal-molecule bonding geometry at metal-molecule-metal interface. We investigate the variations of bonding sites of ADT molecules on gold nanojunctions at Au (111) surface at a constant chemical potential. Simulation results show that an Au-ADT-Au interface is formed on Au nanojunctions, bond-breaking intersection is at 1-1 bond of the monatomic chain of the cross-section, instead of at the Au-S bond. Breaking force is around 1.5 nN. These are consistent with the experimental measurements.

  20. Gold deposits of the Carolina Slate Belt, southeastern United States--Age and origin of the major gold producers

    USGS Publications Warehouse

    Foley, Nora K.; Ayuso, Robert A.

    2012-01-01

    Gold- and iron sulfide-bearing deposits of the southeastern United States have distinctive mineralogical and geochemical features that provide a basis for constructing models of ore genesis for exploration and assessment of gold resources. The largest (historic) deposits, in approximate million ounces of gold (Moz Au), include those in the Haile (~ 4.2 Moz Au), Ridgeway (~1.5 Moz Au), Brewer (~0.25 Moz Au), and Barite Hill (0.6 Moz Au) mines. Host rocks are Late Proterozoic to early Paleozoic (~553 million years old) metaigneous and metasedimentary rocks of the Carolina Slate Belt that share a geologic affinity with the classic Avalonian tectonic zone. The inferred syngenetic and epithermal-subvolcanic quartz-porphyry settings occur stratigraphically between sequences of metavolcanic rocks of the Persimmon Fork and Uwharrie Formations and overlying volcanic and epiclastic rocks of the Tillery and Richtex Formations (and regional equivalents). The Carolina Slate Belt is highly prospective for many types of gold ore hosted within quartz-sericite-pyrite altered volcanic rocks, juvenile metasedimentary rocks, and in associated shear zones. For example, sheared and deformed auriferous volcanogenic massive sulfide deposits at Barite Hill, South Carolina, and in the Gold Hill trend, North Carolina, are hosted primarily by laminated mudstone and felsic volcanic to volcaniclastic rocks. The high-sulfidation epithermal style of gold mineralization at Brewer and low-sulfidation gold ores of the Champion pit at Haile occur in breccias associated with subvolcanic quartz porphyry and within crystal-rich tuffs, ash flows, and subvolcanic rhyolite. The Ridgeway and Haile deposits are primarily epithermal replacements and feeder zones within (now) metamorphosed crystal-rich tuffs, volcaniclastic sediments, and siltstones originally deposited in a marine volcanic-arc basinal setting. Recent discoveries in the region include (1) extensions of known deposits, such as at Haile where

  1. Gold in the hills: patterns of placer gold accumulation under dynamic tectonic and climatic conditions

    NASA Astrophysics Data System (ADS)

    Roy, Sam; Upton, Phaedra; Craw, Dave

    2018-01-01

    Formation of placer accumulations in fluvial environments requires 103-106 or even greater times concentration of heavy minerals. For this to occur, regular sediment supply from erosion of adjacent topography is required, the river should remain within a single course for an extended period of time and the material must be reworked such that a high proportion of the sediment is removed while a high proportion of the heavy minerals remains. We use numerical modeling, constrained by observations of circum-Pacific placer gold deposits, to explore processes occurring in evolving river systems in dynamic tectonic environments. A fluvial erosion/transport model is used to determine the mobility of placer gold under variable uplift rate, storm intensity, and rock mass strength conditions. Gold concentration is calculated from hydraulic and bedload grain size conditions. Model results suggest that optimal gold concentration occurs in river channels that frequently approach a threshold between detachment-limited and transport-limited hydraulic conditions. Such a condition enables the accumulation of gold particles within the framework of a residual gravel lag. An increase in transport capacity, which can be triggered by faster uplift rates, more resistant bedrock, or higher intensity storm events, will strip all bedload from the channel. Conversely, a reduction in transport capacity, triggered by a reduction in uplift rate, bedrock resistance, or storm intensity, will lead to a greater accumulation of a majority of sediments and a net decrease in gold concentration. For our model parameter range, the optimal conditions for placer gold concentration are met by 103 times difference in strength between bedrock and fault, uplift rates between 1 and 5 mm a-1, and moderate storm intensities. Fault damage networks are shown to be a critical factor for high Au concentrations and should be a target for exploration.

  2. Growth process and anticancer properties of gold nanorods.

    PubMed

    Zhang, Junyan; Wang, Mian; Webster, Thomas J

    2017-09-01

    Gold nanoparticles have been of great interest because of their unique optical properties, facile synthesis and conjugation. Among various shapes of gold nanoparticles, gold nanorods have been widely studied. They can be conjugated with different molecules for biomedical applications, such as tumor imaging and therapy. However, few researchers have studied the antitumor properties of bare gold nanorods. In this study, unfunctionalized gold nanorods were synthesized and tested on breast tumor cells. Results showed that the aspect ratio of gold nanorods could be easily influenced by both reaction time and the amount of silver nitrate in the growth solution. A new growth process is proposed here based on the UV-Vis spectra and TEM images of gold nanorods at different reaction times. More importantly, cell studies showed that within a certain concentration range, the gold nanorods can selectively kill tumor cells while having limited or little influence on healthy mammalian (dermal fibroblast) cells. Thus, this study shows promise for the use of bare gold nanorods for further study alone or in combination with photothermal treatment. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2616-2621, 2017. © 2017 Wiley Periodicals, Inc.

  3. Tailoring surface plasmon resonance and dipole cavity plasmon modes of scattering cross section spectra on the single solid-gold/gold-shell nanorod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou Chau, Yuan-Fong, E-mail: chou.fong@ubd.edu.bn; Lim, Chee Ming; Kumara, N. T. R. N.

    Tunable surface plasmon resonance (SPR) and dipole cavity plasmon modes of the scattering cross section (SCS) spectra on the single solid-gold/gold-shell nanorod have been numerically investigated by using the finite element method. Various effects, such as the influence of SCS spectra under x- and y-polarizations on the surface of the single solid-gold/gold-shell nanorod, are discussed in detail. With the single gold-shell nanorod, one can independently tune the relative SCS spectrum width by controlling the rod length and rod diameter, and the surface scattering by varying the shell thickness and polarization direction, as well as the dipole peak energy. These behaviorsmore » are consistent with the properties of localized SPRs and offer a way to optically control and produce selected emission wavelengths from the single solid-gold/gold-shell nanorod. The electric field and magnetic distributions provide us a qualitative idea of the geometrical properties of the single solid-gold/gold-shell nanorod on plasmon resonance.« less

  4. Tailoring surface plasmon resonance and dipole cavity plasmon modes of scattering cross section spectra on the single solid-gold/gold-shell nanorod

    NASA Astrophysics Data System (ADS)

    Chou Chau, Yuan-Fong; Lim, Chee Ming; Lee, Chuanyo; Huang, Hung Ji; Lin, Chun-Ting; Kumara, N. T. R. N.; Yoong, Voo Nyuk; Chiang, Hai-Pang

    2016-09-01

    Tunable surface plasmon resonance (SPR) and dipole cavity plasmon modes of the scattering cross section (SCS) spectra on the single solid-gold/gold-shell nanorod have been numerically investigated by using the finite element method. Various effects, such as the influence of SCS spectra under x- and y-polarizations on the surface of the single solid-gold/gold-shell nanorod, are discussed in detail. With the single gold-shell nanorod, one can independently tune the relative SCS spectrum width by controlling the rod length and rod diameter, and the surface scattering by varying the shell thickness and polarization direction, as well as the dipole peak energy. These behaviors are consistent with the properties of localized SPRs and offer a way to optically control and produce selected emission wavelengths from the single solid-gold/gold-shell nanorod. The electric field and magnetic distributions provide us a qualitative idea of the geometrical properties of the single solid-gold/gold-shell nanorod on plasmon resonance.

  5. Gold leaf counter electrodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Shimada, Kazuhiro; Toyoda, Takeshi

    2018-03-01

    In this study, a gold leaf 100 nm thin film is used as the counter electrode in dye-sensitized solar cells. The traditional method of hammering gold foil to obtain a thin gold leaf, which requires only small amounts of gold, was employed. The gold leaf was then attached to the substrate using an adhesive to produce the gold electrode. The proposed approach for fabricating counter electrodes is demonstrated to be facile and cost-effective, as opposed to existing techniques. Compared with electrodes prepared with gold foil and sputtered gold, the gold leaf counter electrode demonstrates higher catalytic activity with a cobalt-complex electrolyte and higher cell efficiency. The origin of the improved performance was investigated by surface morphology examination (scanning electron microscopy), various electrochemical analyses (cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy), and crystalline analysis (X-ray diffractometry).

  6. Hydrofluorination of Alkynes Catalysed by Gold Bifluorides.

    PubMed

    Nahra, Fady; Patrick, Scott R; Bello, Davide; Brill, Marcel; Obled, Alan; Cordes, David B; Slawin, Alexandra M Z; O'Hagan, David; Nolan, Steven P

    2015-01-01

    We report the synthesis of nine new N -heterocyclic carbene gold bifluoride complexes starting from the corresponding N -heterocyclic carbene gold hydroxides. A new methodology to access N,N' -bis(2,6-diisopropylphenyl)imidazol-2-ylidene gold(I) fluoride starting from N,N' -bis(2,6-diisopropylphenyl)imidazol-2-ylidene gold(I) hydroxide and readily available potassium bifluoride is also reported. These gold bifluorides were shown to be efficient catalysts in the hydrofluorination of symmetrical and unsymmetrical alkynes, thus affording fluorinated stilbene analogues and fluorovinyl thioethers in good to excellent yields with high stereo- and regioselectivity. The method is exploited further to access a fluorinated combretastatin analogue selectively in two steps starting from commercially available reagents.

  7. Gold, currencies and market efficiency

    NASA Astrophysics Data System (ADS)

    Kristoufek, Ladislav; Vosvrda, Miloslav

    2016-05-01

    Gold and currency markets form a unique pair with specific interactions and dynamics. We focus on the efficiency ranking of gold markets with respect to the currency of purchase. By utilizing the Efficiency Index (EI) based on fractal dimension, approximate entropy and long-term memory on a wide portfolio of 142 gold price series for different currencies, we construct the efficiency ranking based on the extended EI methodology we provide. Rather unexpected results are uncovered as the gold prices in major currencies lay among the least efficient ones whereas very minor currencies are among the most efficient ones. We argue that such counterintuitive results can be partly attributed to a unique period of examination (2011-2014) characteristic by quantitative easing and rather unorthodox monetary policies together with the investigated illegal collusion of major foreign exchange market participants, as well as some other factors discussed in some detail.

  8. Gold-Decorated Supraspheres of Block Copolymer Micelles

    NASA Astrophysics Data System (ADS)

    Kim, M. P.; Kang, D. J.; Kannon, A. G.; Jung, D.-W.; Yi, G. R.; Kim, B. J.

    2012-02-01

    Gold-decorated supraspheres displaying various surface morphologies were prepared by infiltration of gold precursor into polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) supraspheres under acidic condition. The supraspheres were fabricated by emulsifying PS-b-P2VP polymer solution into surfactant solution. Selective swelling of P2VP in the suprasphere by gold precursor under acidic condition resulted in the formation of gold-decorated supraspheres with various surface structures. As evidenced by TEM and SEM images, dot pattern was formed in the case of smaller supraspheres than 800 nm; whereas fingerprint-like pattern was observed in larger supraspheres than 800 nm. Gold nanoparticles were located inside P2VP domains near the surface of prepared supraspheres as confirmed by TEM. The optical property of the supraspheres was characterized using UV-vis absorption spectroscopy and the maximum absorption peak at around 580 nm was observed, which means that gold nanoparticles densely packed into P2VP domain on the suprasphere. Our approach to prepare gold-decorated supraspheres can be extended to other metallic particles such as iron oxide or platinum nanoparticles, and those precursors can be also selectively incorporated into the P2VP domain.

  9. Gold/silver/gold trilayer films on nanostructured polycarbonate substrates for direct and label-free nanoplasmonic biosensing.

    PubMed

    López-Muñoz, Gerardo A; Estévez, M-Carmen; Vázquez-García, Marc; Berenguel-Alonso, Miguel; Alonso-Chamarro, Julián; Homs-Corbera, Antoni; Lechuga, Laura M

    2018-05-01

    Ultrasmooth gold/silver/gold trilayer nanostructured plasmonic sensors were obtained using commercial Blu-ray optical discs as nanoslits-based flexible polymer substrates. A thin gold film was used as an adhesion and nucleation layer to improve the chemical stability and reduce the surface roughness of the overlying silver film, without increasing ohmic plasmon losses. The structures were physically and optically characterized and compared with nanostructures of single gold layer. Ultrasmooth and chemically stable trilayer nanostructures with a surface roughness <0.5 nm were obtained following a simple and reproducible fabrication process. They showed a figure of merit (FOM) value up to 69.2 RIU -1 which is significantly higher (more than 95%) than the gold monolayer counterpart. Their potential for biosensing was demonstrated by employing the trilayer sensor for the direct and refractometric (label-free) detection of C-reactive protein (CRP) biomarker in undiluted urine achieving a Limit of Detection (LOD) in the pM order. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Electrochemical Assay of Gold-Plating Solutions

    NASA Technical Reports Server (NTRS)

    Chiodo, R.

    1982-01-01

    Gold content of plating solution is assayed by simple method that required only ordinary electrochemical laboratory equipment and materials. Technique involves electrodeposition of gold from solution onto electrode, the weight gain of which is measured. Suitable fast assay methods are economically and practically necessary in electronics and decorative-plating industries. If gold content in plating bath is too low, poor plating may result, with consequent economic loss to user.

  11. [Theragnostic approaches using gold nanorods and near infrared light].

    PubMed

    Niidome, Takuro; Shiotani, Atsushi; Akiyama, Yasuyuki; Ohga, Akira; Nose, Keisuke; Pissuwan, Dakrong; Niidome, Yasuro

    2010-12-01

    Gold nanoparticles have unique optical properties such as surface-plasmon and photothermal effects. Such properties have resulted in gold nanoparticles having several clinical applications. Gold nanorods (which are rod-shaped gold nanoparticles) show a surface plasmon band in the near-infrared region. They have therefore been proposed as contrast agents for bioimaging, or as heating devices for photothermal therapy. Polyethylene glycol-modified gold nanorods systemically administrated into mice can be detected with integrating sphere, and the stability of the gold nanorods in blood flow evaluated. After intravenous injection of gold nanorods followed by near-infrared laser irradiation, significant tumor damage triggered by the photothermal effect was observed. To deliver gold nanorods to the target tissue, thermosensitive polymer gel-coated gold nanorods were prepared. After intravenous injection of the gel-modified gold nanorods and irradiation of the tumor, a larger amount of gold was detected in the irradiated tumor than in the non-irradiated tumor. This effect is due to the hydrophobic interaction between the cellular membrane or the extracellular matrix and the gel surfaces induced by the photothermal effect. Furthermore, the photothermal effect enhanced the permeability of the stratum corneum of the skin. As a result of treatment of the skin with ovalbumin and gold nanorods followed by near-infrared light irradiation, a significant amount of protein was detected in the skin. The gold nanorods therefore showed several functions as a photothermal nanodevice for bioimaging, thermal therapy, and a drug delivery system.

  12. Cross-correlations and influence in world gold markets

    NASA Astrophysics Data System (ADS)

    Lin, Min; Wang, Gang-Jin; Xie, Chi; Stanley, H. Eugene

    2018-01-01

    Using the detrended cross-correlation analysis (DCCA) coefficient and the detrended partial cross-correlation analysis (DPCCA) coefficient, we investigate cross-correlations and net cross-correlations among five major world gold markets (London, New York, Shanghai, Tokyo, and Mumbai) at different time scales. We propose multiscale influence measures for examining the influence of individual markets on other markets and on the entire system. We find (i) that the cross-correlations, net cross-correlations, and net influences among the five gold markets vary across time scales, (ii) that the cross-market correlation between London and New York at each time scale is intense and inherent, meaning that the influence of other gold markets on the London-New York market is negligible, (iii) that the remaining cross-market correlations (i.e., those other than London-New York) are greatly affected by other gold markets, and (iv) that the London gold market significantly affects the other four gold markets and dominates the world-wide gold market. Our multiscale findings give market participants and market regulators new information on cross-market linkages in the world-wide gold market.

  13. Gold nanoprobes for theranostics

    PubMed Central

    Panchapakesan, Balaji; Book-Newell, Brittany; Sethu, Palaniappan; Rao, Madhusudhana; Irudayaraj, Joseph

    2011-01-01

    Gold nanoprobes have become attractive diagnostic and therapeutic agents in medicine and life sciences research owing to their reproducible synthesis with atomic level precision, unique physical and chemical properties, versatility of their morphologies, flexibility in functionalization, ease of targeting, efficiency in drug delivery and opportunities for multimodal therapy. This review highlights some of the recent advances and the potential for gold nanoprobes in theranostics. PMID:22122586

  14. The effect of 3 torque delivery systems on gold screw preload at the gold cylinder-abutment screw joint.

    PubMed

    Tan, Keson B; Nicholls, Jack I

    2002-01-01

    This study measured the gold screw preload at the gold cylinder-abutment screw joint interface obtained by 3 torque delivery systems. Using a precalibrated, strain-gauged standard abutment as the load cell, 3 torque delivery systems tested were shown to have significant differences in gold screw preload when a gold cylinder was attached. Mean preloads measured were 291.2 N for hand torque drivers set at 10 Ncm, 340.3 N for electronic torque controllers at low setting/10 Ncm, 384.4 N for electronic torque controllers at high setting/10 Ncm; and 140.8 N for hand-tightening with a prosthetic slot screwdriver. Significant differences in screw preload were also found between operators using a hand torque driver. Hand-tightening delivered insufficient preload and cannot be recommended for final gold screw tightening. Different electronic torque controller units set at 10 Ncm induced mean gold screw preloads that ranged from 264.1 N to as high as 501.2 N. Electronic torque controllers should be regularly recalibrated to ensure optimal output.

  15. Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores.

    PubMed

    Kim, Jun-Hyun; Bryan, William W; Lee, T Randall

    2008-10-07

    This report describes the structural and optical properties of a series of spherical shell/core nanoparticles in which the shell is comprised of a thin layer of gold, silver, or gold-silver alloy, and the core is comprised of a monodispersed silica nanoparticle. The silica core particles were prepared using the Stöber method, functionalized with terminal amine groups, and then seeded with small gold nanoparticles (approximately 2 nm in diameter). The gold-seeded silica particles were coated with a layer of gold, silver, or gold-silver alloy via solution-phase reduction of an appropriate metal ion or mixture of metal ions. The size, morphology, and elemental composition of the composite nanoparticles were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermal gravimetric analysis (TGA), dynamic light scattering (DLS), and transmission electron microscopy (TEM). The optical properties of the nanoparticles were analyzed by UV-vis spectroscopy, which showed strong absorptions ranging from 400 nm into the near-IR region, where the position of the plasmon band reflected not only the thickness of the metal shell, but also the nature of the metal comprising the shell. Importantly, the results demonstrate a new strategy for tuning the position of the plasmon resonance without having to vary the core diameter or the shell thickness.

  16. Structure and reactivity of a mononuclear gold(II) complex

    NASA Astrophysics Data System (ADS)

    Preiß, Sebastian; Förster, Christoph; Otto, Sven; Bauer, Matthias; Müller, Patrick; Hinderberger, Dariush; Hashemi Haeri, Haleh; Carella, Luca; Heinze, Katja

    2017-12-01

    Mononuclear gold(II) complexes are very rare labile species. Transient gold(II) species have been suggested in homogeneous catalysis and in medical applications, but their geometric and electronic structures have remained essentially unexplored: even fundamental data, such as the ionic radius of gold(II), are unknown. Now, an unprecedentedly stable neutral gold(II) complex of a porphyrin derivative has been isolated, and its structural and spectroscopic features determined. The gold atom adopts a 2+2 coordination mode in between those of gold(III) (four-coordinate square planar) and gold(I) (two-coordinate linear), owing to a second-order Jahn-Teller distortion enabled by the relativistically lowered 6s orbital of gold. The reactivity of this gold(II) complex towards dioxygen, nitrosobenzene and acids is discussed. This study provides insight on the ionic radius of gold(II), and allows it to be placed within the homologous series of nd9 Cu/Ag/Au divalent ions and the 5d8/9/10 Pt/Au/Hg 'relativistic' triad in the periodic table.

  17. Synthesis, characterization, cytotoxic and antitubercular activities of new gold(I) and gold(III) complexes containing ligands derived from carbohydrates.

    PubMed

    Chaves, Joana Darc Souza; Damasceno, Jaqueline Lopes; Paula, Marcela Cristina Ferreira; de Oliveira, Pollyanna Francielli; Azevedo, Gustavo Chevitarese; Matos, Renato Camargo; Lourenço, Maria Cristina S; Tavares, Denise Crispim; Silva, Heveline; Fontes, Ana Paula Soares; de Almeida, Mauro Vieira

    2015-10-01

    Novel gold(I) and gold(III) complexes containing derivatives of D-galactose, D-ribose and D-glucono-1,5-lactone as ligands were synthesized and characterized by IR, (1)H, and (13)C NMR, high resolution mass spectra and cyclic voltammetry. The compounds were evaluated in vitro for their cytotoxicity against three types of tumor cells: cervical carcinoma (HeLa) breast adenocarcinoma (MCF-7) and glioblastoma (MO59J) and one non-tumor cell line: human lung fibroblasts (GM07492A). Their antitubercular activity was evaluated as well expressed as the minimum inhibitory concentration (MIC90) in μg/mL. In general, the gold(I) complexes were more active than gold(III) complexes, for example, the gold(I) complex (1) was about 8.8 times and 7.6 times more cytotoxic than gold(III) complex (8) in MO59J and MCF-7 cells, respectively. Ribose and alkyl phosphine derivative complexes were more active than galactose and aryl phosphine complexes. The presence of a thiazolidine ring did not improve the cytotoxicity. The study of the cytotoxic activity revealed effective antitumor activities for the gold(I) complexes, being more active than cisplatin in all the tested tumor cell lines. Gold(I) compounds (1), (2), (3), (4) and (6) exhibited relevant antitubercular activity even when compared with first line drugs such as rifampicin.

  18. Colloidal-gold electrosensor measuring device

    DOEpatents

    Wegner, S.; Harpold, M.A.; McCaffrey, T.M.; Morris, S.E.; Wojciechowski, M.; Zhao, J.; Henkens, R.W.; Naser, N.; O`Daly, J.P.

    1995-11-21

    The present invention provides a new device for use in measuring lead levels in biological and environmental samples. Using square wave coulometry and colloidal gold particles impregnated on carbon electrodes, the present invention provides a rapid, reliable, portable and inexpensive means of detecting low lead levels. The colloidal gold modified electrodes have microelectrode array characteristics and produce significantly higher stripping detection signals for lead than are produced at bulk gold electrode surfaces. The method is effective in determining levels of lead down to at least 5 {micro}g/dL in blood samples as small as 10 {micro}L. 9 figs.

  19. Colloidal-gold electrosensor measuring device

    DOEpatents

    Wegner, Steven; Harpold, Michael A.; McCaffrey, Terence M.; Morris, Susan E.; Wojciechowski, Marek; Zhao, Junguo; Henkens, Robert W.; Naser, Najih; O'Daly, John P.

    1995-01-01

    The present invention provides a new device for use in measuring lead levels in biological and environmental samples. Using square wave coulometry and colloidal gold particles impregnated on carbon electrodes, the present invention provides a rapid, reliable, portable and inexpensive means of detecting low lead levels. The colloidal gold modified electrodes have microelectrode array characteristics and produce significantly higher stripping detection signals for lead than are produced at bulk gold electrode surfaces. The method is effective in determining levels of lead down to at least 5 .mu.g/dL in blood samples as small as 10 .mu.L.

  20. Redbed-type gold mineralisation, Kupferschiefer, south-west Poland

    NASA Astrophysics Data System (ADS)

    Piestrzyński, Adam; Pieczonka, Jadwiga; Głuszek, Adam

    2002-06-01

    A new type of gold mineralisation containing minor amounts of platinum and palladium has been found proximal to the secondary redox interface located below the Cu-Ag Kupferschiefer orebody of the Polkowice-Sieroszowice mine in the south-western part of the Lubin-Sieroszowice district, Poland. This deposit can be classified as redbed-type gold. Our study shows that gold, platinum and palladium occur in secondary red-coloured sections of the basal Zechstein sedimentary rocks and in the uppermost Weissliegendes sandstone. Noble metal mineralisation occurs within an average interval of 0.22 m, which lies directly below the copper ores. The average grade of the horizon is 2.25 ppm Au, 0.138 ppm Pt and 0.082 ppm Pd with a metal content of several tens of tonnes of gold. A transition zone has been recognised between the gold-bearing horizon and the copper deposit. This transition zone is characterised by the presence of low grades of copper (<0.2 wt%) and elevated gold contents (>0.5 ppm). Native gold accompanied by electrum, mercury-bearing gold, haematite, covellite, chalcocite, bornite and chalcopyrite has been identified in the gold-bearing horizon. In some sections, Pd-arsenides, tetra-auricupride, Co-arsenides, clausthalite, tennantite, digenite, yarrowite, spionkopite and galena have also been noted.

  1. Mercury contamination from historical gold mining in California

    USGS Publications Warehouse

    Alpers, Charles N.; Hunerlach, Michael P.; May, Jason T.; Hothem, Roger L.

    2005-01-01

    Mercury contamination from historical gold mines represents a potential risk to human health and the environment. This fact sheet provides background information on the use of mercury in historical gold mining and processing operations in California, with emphasis on historical hydraulic mining areas. It also describes results of recent USGS projects that address the potential risks associated with mercury contamination. Miners used mercury (quicksilver) to recover gold throughout the western United States. Gold deposits were either hardrock (lode, gold-quartz veins) or placer (alluvial, unconsolidated gravels). Underground methods (adits and shafts) were used to mine hardrock gold deposits. Hydraulic, drift, or dredging methods were used to mine the placer gold deposits. Mercury was used to enhance gold recovery in all the various types of mining operations; historical records indicate that more mercury was used and lost at hydraulic mines than at other types of mines. On the basis of USGS studies and other recent work, a better understanding is emerging of mercury distribution, ongoing transport, transformation processes, and the extent of biological uptake in areas affected by historical gold mining. This information has been used extensively by federal, state, and local agencies responsible for resource management and public health in California.

  2. Increased cellular uptake of peptide-modified PEGylated gold nanoparticles.

    PubMed

    He, Bo; Yang, Dan; Qin, Mengmeng; Zhang, Yuan; He, Bing; Dai, Wenbing; Wang, Xueqing; Zhang, Qiang; Zhang, Hua; Yin, Changcheng

    2017-12-09

    Gold nanoparticles are promising drug delivery vehicles for nucleic acids, small molecules, and proteins, allowing various modifications on the particle surface. However, the instability and low bioavailability of gold nanoparticles compromise their clinical application. Here, we functionalized gold nanoparticles with CPP fragments (CALNNPFVYLI, CALRRRRRRRR) through sulfhydryl PEG to increase their stability and bioavailability. The resulting gold nanoparticles were characterized with transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-visible spectrometry and X-ray photoelectron spectroscopy (XPS), and the stability in biological solutions was evaluated. Comparing to PEGylated gold nanoparticles, CPP (CALNNPFVYLI, CALRRRRRRRR)-modified gold nanoparticles showed 46 folds increase in cellular uptake in A549 and B16 cell lines, as evidenced by the inductively coupled plasma atomic emission spectroscopy (ICP-AES). The interactions between gold nanoparticles and liposomes indicated CPP-modified gold nanoparticles bind to cell membrane more effectively than PEGylated gold nanoparticles. Surface plasmon resonance (SPR) was used to measure interactions between nanoparticles and the membrane. TEM and uptake inhibitor experiments indicated that the cellular entry of gold nanoparticles was mediated by clathrin and macropinocytosis. Other energy independent endocytosis pathways were also identified. Our work revealed a new strategy to modify gold nanoparticles with CPP and illustrated the cellular uptake pathway of CPP-modified gold nanoparticles. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The Niassa Gold Belt, northern Mozambique - A segment of a continental-scale Pan-African gold-bearing structure?

    NASA Astrophysics Data System (ADS)

    Bjerkgard, T.; Stein, H. J.; Bingen, B.; Henderson, I. H. C.; Sandstad, J. S.; Moniz, A.

    2009-01-01

    The Niassa Gold Belt, in northernmost Mozambique, is hosted in the Txitonga Group, a Neoproterozoic rift sequence overlying Paleoproterozoic crust of the Congo-Tanzania Craton and deformed during the Pan-African Orogeny. The Txitonga Group is made up of greenschist-facies greywacke and schist and is characterized by bimodal, mainly mafic, magmatism. A zircon U-Pb age for a felsic volcanite dates deposition of the sequence at 714 ± 17 Ma. Gold is mined artisanally from alluvial deposits and primary chalcopyrite-pyrite-bearing quartz veins containing up to 19 ppm Au have been analyzed. In the Cagurué and M'Papa gold fields, dominantly N-S trending quartz veins, hosted in metagabbro and schist, are regarded as tension gashes related to regional strike-slip NE-SW-trending Pan-African shear zones. These gold deposits have been classified as mesozonal and metamorphic in origin. Re-Os isotopic data on sulfides suggest two periods of gold deposition for the Cagurué Gold Field. A coarse-crystalline pyrite-chalcopyrite assemblage yields an imprecise Pan-African age of 483 ± 72 Ma, dating deposition of the quartz veins. Remobilization of early-formed sulfides, particularly chalcopyrite, took place at 112 ± 14 Ma, during Lower Cretaceous Gondwana dispersal. The ˜483 Ma assemblage yields a chondritic initial 187Os/ 188Os ratio of 0.123 ± 0.058. This implies a juvenile source for the ore fluids, possibly involving the hosting Neoproterozoic metagabbro. The Niassa Gold Belt is situated at the eastern end of a SW-NE trending continental-scale lineament defined by the Mwembeshi Shear Zone and the southern end of a NW-SE trending lineament defined by the Rukwa Shear Zone. We offer a review of gold deposits in Zambia and Tanzania associated with these polyphase lineaments and speculate on their interrelation.

  4. Pulling monatomic gold wires with single molecules: an Ab initio simulation.

    PubMed

    Krüger, Daniel; Fuchs, Harald; Rousseau, Roger; Marx, Dominik; Parrinello, Michele

    2002-10-28

    Car-Parrinello molecular dynamics simulations demonstrate that pulling a single thiolate molecule anchored on a stepped gold surface does not preferentially break the sulfur-gold chemical bond. Instead, it is found that this process leads to the formation of a monoatomic gold nanowire, followed by breaking a gold-gold bond with a rupture force of about 1.2 nN. The simulations also indicate that previous single-molecule thiolate-gold and gold-gold rupture experiments both probe the same phenomenon, namely, the breaking of a gold-gold bond within a gold nanowire.

  5. Subchronic inhalation toxicity of gold nanoparticles

    PubMed Central

    2011-01-01

    Background Gold nanoparticles are widely used in consumer products, including cosmetics, food packaging, beverages, toothpaste, automobiles, and lubricants. With this increase in consumer products containing gold nanoparticles, the potential for worker exposure to gold nanoparticles will also increase. Only a few studies have produced data on the in vivo toxicology of gold nanoparticles, meaning that the absorption, distribution, metabolism, and excretion (ADME) of gold nanoparticles remain unclear. Results The toxicity of gold nanoparticles was studied in Sprague Dawley rats by inhalation. Seven-week-old rats, weighing approximately 200 g (males) and 145 g (females), were divided into 4 groups (10 rats in each group): fresh-air control, low-dose (2.36 × 104 particle/cm3, 0.04 μg/m3), middle-dose (2.36 × 105 particle/cm3, 0.38 μg/m3), and high-dose (1.85 × 106 particle/cm3, 20.02 μg/m3). The animals were exposed to gold nanoparticles (average diameter 4-5 nm) for 6 hours/day, 5 days/week, for 90-days in a whole-body inhalation chamber. In addition to mortality and clinical observations, body weight, food consumption, and lung function were recorded weekly. At the end of the study, the rats were subjected to a full necropsy, blood samples were collected for hematology and clinical chemistry tests, and organ weights were measured. Cellular differential counts and cytotoxicity measurements, such as albumin, lactate dehydrogenase (LDH), and total protein were also monitored in a cellular bronchoalveolar lavage (BAL) fluid. Among lung function test measurements, tidal volume and minute volume showed a tendency to decrease comparing control and dose groups during the 90-days of exposure. Although no statistically significant differences were found in cellular differential counts, histopathologic examination showed minimal alveoli, an inflammatory infiltrate with a mixed cell type, and increased macrophages in the high-dose rats. Tissue distribution of gold

  6. Gold-Collar Workers. ERIC Digest.

    ERIC Educational Resources Information Center

    Wonacott, Michael E.

    The gold-collar worker has problem-solving abilities, creativity, talent, and intelligence; performs non-repetitive and complex work difficult to evaluate; and prefers self management. Gold-collar information technology workers learn continually from experience; recognize the synergy of teams; can demonstrate leadership; and are strategic thinkers…

  7. 76 FR 2174 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-12

    ... traders additional opportunities and strategies to hedge high priced securities. Currently, Exchange Rule... example if Apple, Inc. (``AAPL'') would trade at $310 \\6\\ with approximately two months remaining until...

  8. Nanoporous Gold for Enzyme Immobilization.

    PubMed

    Stine, Keith J; Jefferson, Kenise; Shulga, Olga V

    2017-01-01

    Nanoporous gold (NPG) is a material of emerging interest for immobilization of biomolecules, especially enzymes. The material provides a high surface area form of gold that is suitable for physisorption or for covalent modification by self-assembled monolayers. The material can be used as a high surface area electrode and with immobilized enzymes can be used for amperometric detection schemes. NPG can be prepared in a variety of formats from alloys containing between 20 and 50 % atomic composition of gold and less noble element(s) by dealloying procedures. Materials resembling NPG can be prepared by hydrothermal and electrodeposition methods. Related high surface area gold structures have been prepared using templating approaches. Covalent enzyme immobilization can be achieved by first forming a self-assembled monolayer on NPG bearing a terminal reactive functional group followed by conjugation to the enzyme through amide linkages to lysine residues. Enzymes can also be entrapped by physisorption or immobilized by electrostatic interactions.

  9. Detection of squamous carcinoma cells using gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Dai, Wei-Yun; Lee, Sze-tsen; Hsu, Yih-Chih

    2015-03-01

    The goal of this study is to use gold nanoparticle as a diagnostic agent to detect human squamous carcinoma cells. Gold nanoparticles were synthesized and the gold nanoparticle size was 34.3 ± 6.2 nm. Based on the over-expression of epidermal growth factor receptor (EGFR) biomarkers in squamous carcinoma cells, we hypothesized that EGFR could be a feasible biomarker with a target moiety for detection. We further modified polyclonal antibodies of EGFR on the surface of gold nanoparticles. We found selected squamous carcinoma cells can be selectively detected using EGFR antibody-modified gold nanoparticles via receptor-mediated endocytosis. Cell death was also examined to determine the survival status of squamous carcinoma cells with respect to gold nanoparticle treatment and EGFR polyclonal antibody modification.

  10. Precipitation of gold by the reaction of aqueous gold(III)-chloride with cyanobacteria at 25-80{degrees}C, studied by x-ray absorption spectroscopy.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lengke, M. F.; Ravel, B.; Fleet, M. E.

    2007-10-01

    The mechanisms of gold precipitation by the interaction of cyanobacteria (Plectonema boryanum UTEX 485) and gold(III) chloride aqueous solutions (7.6 mmol/L final gold) have been studied at 25, 60, and 80 C, using both laboratory and real-time synchrotron radiation absorption spectroscopy experiments. Addition of aqueous gold(III) chloride to the cyanobacterial culture initially promoted the precipitation of amorphous gold(I) sulfide at the cell walls and finally caused the formation of octahedral (111) platelets (<1 to 6 {micro}m) of gold metal near cell surfaces and in solutions. X-ray absorption spectroscopy results confirmed that the reduction mechanism of gold(III) chloride to elemental goldmore » by cyanobacteria involves the formation of an intermediate Au(I) species, gold(I) sulfide, with sulfur originating from cyanobacterial proteins, presumably cysteine or methionine. Although the bioreduction of gold(III) chloride to gold(I) sulfide was relatively rapid at all temperatures, the reaction rate increased with the increase in temperature. At the completion of the experiments, elemental gold was the major species present at all temperatures.« less

  11. Antifungal activity of gold nanoparticles prepared by solvothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Tokeer, E-mail: tahmad3@jmi.ac.in; Wani, Irshad A.; Lone, Irfan H.

    2013-01-15

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m{sup 2}/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m{sup 2/}g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract:more » Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl{sub 2} and NaBH{sub 4} as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl{sub 2}, however, NaBH{sub 4} produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m{sup 2}/g for 7 nm and 269 m{sup 2}/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H{sup +} efflux of the Candida species than 15 nm sized gold nanoparticles.« less

  12. Orogenic gold and geologic time: A global synthesis

    USGS Publications Warehouse

    Goldfarb, R.J.; Groves, D.I.; Gardoll, S.

    2001-01-01

    Orogenic gold deposits have formed over more than 3 billion years of Earth's history, episodically during the Middle Archean to younger Precambrian, and continuously throughout the Phanerozoic. This class of gold deposit is characteristically associated with deformed and metamorphosed mid-crustal blocks, particularly in spatial association with major crustal structures. A consistent spatial and temporal association with granitoids of a variety of compositions indicates that melts and fluids were both inherent products of thermal events during orogenesis. Including placer accumulations, which are commonly intimately associated with this mineral deposit type, recognized production and resources from economic Phanerozoic orogenic-gold deposits are estimated at just over one billion ounces gold. Exclusive of the still-controversial Witwatersrand ores, known Precambrian gold concentrations are about half this amount. The recent increased applicability of global paleo-reconstructions, coupled with improved geochronology from most of the world's major gold camps, allows for an improved understanding of the distribution pattern of orogenic gold in space and time.

  13. Reconnaissance guidelines for gold exploration in Central Alaska

    USGS Publications Warehouse

    Light, T.D.; Moll, S.H.; Bie, S.W.; Lee, G.K.

    1993-01-01

    Distribution of more than 300 gold-bearing samples from the Livengood (Tolovana) and parts of the Fairbanks and Rampart mining districts in central Alaska, USA, indicate that the concentration of gold in placers is spatially related both to structural features and to Late Cretaceous and (or) Tertiary felsic plutons. The regional consistency of these spatial relationships is demonstrated by proximity analysis using a Geographic Information System (GIS), and suggests a genetic association between faults, felsic plutons, and gold occurrences. The local presence of gold within several of the plutons indicates that these are the source of some of the gold. In addition, some gold occurs proximal to faults where plutons are not present, suggesting that some of the gold was also derived from the country rock. We envision a model whereby weakly mineralized solutions, thermally driven by latent plutonic heat, were enriched by circulation through clastic units that may have had a naturally elevated gold background. The resultant enriched solutions were channeled and reconcentrated along or adjacent to large-scale fault systems. Future exploration to define individual target areas should be directed toward areas where Late Cretaceous and (or) Tertiary felsic plutons occur near major faults. ?? 1993.

  14. Thiosulfate leaching of gold from waste mobile phones.

    PubMed

    Ha, Vinh Hung; Lee, Jae-chun; Jeong, Jinki; Hai, Huynh Trung; Jha, Manis K

    2010-06-15

    The present communication deals with the leaching of gold from the printed circuit boards (PCBs) of waste mobile phones using an effective and less hazardous system, i.e., a copper-ammonia-thiosulfate solution, as an alternative to the conventional and toxic cyanide leaching of gold. The influence of thiosulfate, ammonia and copper sulfate concentrations on the leaching of gold from PCBs of waste mobile phones was investigated. Gold extraction was found to be enhanced with solutions containing 15-20 mM cupric, 0.1-0.14 M thiosulfate, and 0.2-0.3 M ammonia. Similar trends were obtained for the leaching of gold from two different types of scraps and PCBs of waste mobile phones. From the scrap samples, 98% of the gold was leached out using a solution containing 20 mM copper, 0.12 M thiosulfate and 0.2 M ammonia. Similarly, the leaching of gold from the PCBs samples was also found to be good, but it was lower than that of scrap samples in similar experimental conditions. In this case, only 90% of the gold was leached, even with a contact time of 10h. The obtained data will be useful for the development of processes for the recycling of gold from waste mobile phones. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Gold absorbing film for a composite bolometer

    NASA Technical Reports Server (NTRS)

    Dragovan, M.; Moseley, S. H.

    1984-01-01

    The principles governing the design of metal films are reviewed, with attention also given to the choice of metals. A description is then given of the characteristics of a bolometer with a gold absorbing film. It is demonstrated that gold is effective as an absorbing film for a millimeter bolometer operated at 1.5 K. At 1.5 K, gold is significantly better than bismuth since gold has a lower heat capacity for the absorbing film. At 0.3 K, gold and bismuth are both suitable. It is pointed out that at temperatures below 0.3 K, a superconducting absorbing film can have a heat capacity low enough not to dominate the heat capacity of the detector; for this reason, it may give better performance than a nonsuperconducting absorbing film.

  16. 75 FR 71771 - Self-Regulatory Organizations; Notice of Filing of Proposed Rule Change by NASDAQ OMX PHLX, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... provide investors and traders additional opportunities and strategies to hedge high priced securities... varying yields to the investor. For example if Apple, Inc. (``AAPL'') would trade at $310 \\6\\ with...

  17. A Placer-Gold Evaluation Exercise.

    ERIC Educational Resources Information Center

    Tunley, A. Tom

    1984-01-01

    A laboratory exercise allowing students to use drillhole data to simulate the process of locating a placer gold paystreak is presented. As part of the activity students arithmetically compute the value of their gold, mining costs, and personal profits or losses, and decide on development plans for the claim. (BC)

  18. Bottom-up formation of robust gold carbide

    PubMed Central

    Westenfelder, Benedikt; Biskupek, Johannes; Meyer, Jannik C.; Kurasch, Simon; Lin, Xiaohang; Scholz, Ferdinand; Gross, Axel; Kaiser, Ute

    2015-01-01

    A new phenomenon of structural reorganization is discovered and characterized for a gold-carbon system by in-situ atomic-resolution imaging at temperatures up to 1300 K. Here, a graphene sheet serves in three ways, as a quasi transparent substrate for aberration-corrected high-resolution transmission electron microscopy, as an in-situ heater, and as carbon supplier. The sheet has been decorated with gold nanoislands beforehand. During electron irradiation at 80 kV and at elevated temperatures, the accumulation of gold atoms has been observed on defective graphene sites or edges as well as at the facets of gold nanocrystals. Both resulted in clustering, forming unusual crystalline structures. Their lattice parameters and surface termination differ significantly from standard gold nanocrystals. The experimental data, supported by electron energy loss spectroscopy and density-functional theory calculations, suggests that isolated gold and carbon atoms form – under conditions of heat and electron irradiation – a novel type of compound crystal, Au-C in zincblende structure. The novel material is metastable, but surprisingly robust, even under annealing condition. PMID:25772348

  19. Formation of neutral and charged gold carbonyls on highly facetted gold nanostructures

    NASA Astrophysics Data System (ADS)

    Chau, Thoi-Dai; Visart de Bocarmé, Thierry; Kruse, Norbert; Wang, Richard L. C.; Kreuzer, Hans Jürgen

    2003-12-01

    We show that gold mono- and di-carbonyls are formed on gold field emitter tips during interaction with carbon monoxide gas at room temperature and in the presence of high electrostatic fields. The experiments are done in a time-of-flight atom probe to obtain mass spectra. The yield of monocarbonyl cations is about twice that of di-carbonyl ions. Density functional theory calculations are reported that explain the field stabilization of adsorbed carbonyls and the desorption yield of their cations.

  20. Highly active thermally stable nanoporous gold catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biener, Juergen; Wittstock, Arne; Biener, Monika M.

    In one embodiment, a system includes a nanoporous gold structure and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase. In another embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles.

  1. Local density variation of gold nanoparticles in aquatic environments

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, F.; Shirazian, F.; Shahsavari, R.; Khoei, A. R.

    2016-10-01

    Gold (Au) nanoparticles are widely used in diagnosing cancer, imaging, and identification of therapeutic methods due to their particular quantum characteristics. This research presents different types of aqueous models and potentials used in TIP3P, to study the effect of the particle size and density of Au clusters in aquatic environments; so it can be useful to facilitate future investigation of the interaction of proteins with Au nanoparticles. The EAM potential is used to model the structure of gold clusters. It is observed that in the systems with identical gold/water density and different cluster radii, gold particles are distributed in aqueous environment almost identically. Thus, Au particles have identical local densities, and the root mean square displacement (RMSD) increases with a constant slope. However in systems with constant cluster radii and different gold/water densities, Au particle dispersion increases with density; as a result, the local density decreases and the RMSD increases with a larger slope. In such systems, the larger densities result in more blunted second peaks in gold-gold radial distribution functions, owing to more intermixing of the clusters and less FCC crystalline features at longer range, a mechanism that is mediated by the competing effects of gold-water and gold-gold interactions.

  2. Effects of dissolucytotic gold ions on recovering brain lesions.

    PubMed

    Danscher, Gorm; Larsen, Agnete

    2010-04-01

    Recent experimental research has shown that metallic gold releases charged gold atoms when placed intracerebrally and that the liberated gold ions affect inflammation in the brain. The observations suggest that metallic gold can be used as a safe suppressor of inflammation in the central nervous system.

  3. Malaria in gold-mining areas in Colombia

    PubMed Central

    Castellanos, Angélica; Chaparro-Narváez, Pablo; Morales-Plaza, Cristhian David; Alzate, Alberto; Padilla, Julio; Arévalo, Myriam; Herrera, Sócrates

    2016-01-01

    Gold-mining may play an important role in the maintenance of malaria worldwide. Gold-mining, mostly illegal, has significantly expanded in Colombia during the last decade in areas with limited health care and disease prevention. We report a descriptive study that was carried out to determine the malaria prevalence in gold-mining areas of Colombia, using data from the public health surveillance system (National Health Institute) during the period 2010-2013. Gold-mining was more prevalent in the departments of Antioquia, Córdoba, Bolívar, Chocó, Nariño, Cauca, and Valle, which contributed 89.3% (270,753 cases) of the national malaria incidence from 2010-2013 and 31.6% of malaria cases were from mining areas. Mining regions, such as El Bagre, Zaragoza, and Segovia, in Antioquia, Puerto Libertador and Montelíbano, in Córdoba, and Buenaventura, in Valle del Cauca, were the most endemic areas. The annual parasite index (API) correlated with gold production (R2 0.82, p < 0.0001); for every 100 kg of gold produced, the API increased by 0.54 cases per 1,000 inhabitants. Lack of malaria control activities, together with high migration and proliferation of mosquito breeding sites, contribute to malaria in gold-mining regions. Specific control activities must be introduced to control this significant source of malaria in Colombia. PMID:26814645

  4. Malaria in gold-mining areas in Colombia.

    PubMed

    Castellanos, Angélica; Chaparro-Narváez, Pablo; Morales-Plaza, Cristhian David; Alzate, Alberto; Padilla, Julio; Arévalo, Myriam; Herrera, Sócrates

    2016-01-01

    Gold-mining may play an important role in the maintenance of malaria worldwide. Gold-mining, mostly illegal, has significantly expanded in Colombia during the last decade in areas with limited health care and disease prevention. We report a descriptive study that was carried out to determine the malaria prevalence in gold-mining areas of Colombia, using data from the public health surveillance system (National Health Institute) during the period 2010-2013. Gold-mining was more prevalent in the departments of Antioquia, Córdoba, Bolívar, Chocó, Nariño, Cauca, and Valle, which contributed 89.3% (270,753 cases) of the national malaria incidence from 2010-2013 and 31.6% of malaria cases were from mining areas. Mining regions, such as El Bagre, Zaragoza, and Segovia, in Antioquia, Puerto Libertador and Montelíbano, in Córdoba, and Buenaventura, in Valle del Cauca, were the most endemic areas. The annual parasite index (API) correlated with gold production (R2 0.82, p < 0.0001); for every 100 kg of gold produced, the API increased by 0.54 cases per 1,000 inhabitants. Lack of malaria control activities, together with high migration and proliferation of mosquito breeding sites, contribute to malaria in gold-mining regions. Specific control activities must be introduced to control this significant source of malaria in Colombia.

  5. Microbial synthesis of Flower-shaped gold nanoparticles.

    PubMed

    Singh, Priyanka; Kim, Yeon Ju; Wang, Chao; Mathiyalagan, Ramya; Yang, Deok Chun

    2016-09-01

    The shape of nanoparticles has been recognized as an important attribute that determines their applicability in various fields. The flower shape (F-shape) has been considered and is being focused on, because of its enhanced properties when compared to the properties of the spherical shape. The present study proposed the microbial synthesis of F-shaped gold nanoparticles within 48 h using the Bhargavaea indica DC1 strain. The F-shaped gold nanoparticles were synthesized extracellularly by the reduction of auric acid in the culture supernatant of B. indica DC1. The shape, size, purity, and crystalline nature of F-shaped gold nanoparticles were revealed by various instrumental techniques including UV-Vis, FE-TEM, EDX, elemental mapping, XRD, and DLS. The UV-Vis absorbance showed a maximum peak at 536 nm. FE-TEM revealed the F-shaped structure of nanoparticles. The EDX peak obtained at 2.3 keV indicated the purity. The peaks obtained on XRD analysis corresponded to the crystalline nature of the gold nanoparticles. In addition, the results of elemental mapping indicated the maximum distribution of gold elements in the nanoproduct obtained. Particle size analysis revealed that the average diameter of the F-shaped gold nanoparticles was 106 nm, with a polydispersity index (PDI) of 0.178. Thus, the methodology developed for the synthesis of F-shaped gold nanoparticles is completely green and economical.

  6. Gold nanoparticles for photoacoustic imaging

    PubMed Central

    Li, Wanwan; Chen, Xiaoyuan

    2015-01-01

    Photoacoustic (PA) imaging is a biomedical imaging modality that provides functional information regarding the cellular and molecular signatures of tissue by using endogenous and exogenous contrast agents. There has been tremendous effort devoted to the development of PA imaging agents, and gold nanoparticles as exogenous contrast agents have great potential for PA imaging due to their inherent and geometrically induced optical properties. The gold-based nanoparticles that are most commonly employed for PA imaging include spheres, rods, shells, prisms, cages, stars and vesicles. This article provides an overview of the current state of research in utilizing these gold nanomaterials for PA imaging of cancer, atherosclerotic plaques, brain function and image-guided therapy. PMID:25600972

  7. Gold nanoparticles deposited on glass: physicochemical characterization and cytocompatibility

    PubMed Central

    2013-01-01

    Properties of gold films sputtered under different conditions onto borosilicate glass substrate were studied. Mean thickness of sputtered gold film was measured by gravimetry, and film contact angle was determined by goniometry. Surface morphology was examined by atomic force microscopy, and electrical sheet resistance was determined by two-point technique. The samples were seeded with rat vascular smooth muscle cells, and their adhesion and proliferation were studied. Gold depositions lead to dramatical changes in the surface morphology and roughness in comparison to pristine substrate. For sputtered gold structures, the rapid decline of the sheet resistance appears on structures deposited for the times above 100 s. The thickness of deposited gold nanoparticles/layer is an increasing function of sputtering time and current. AFM images prove the creation of separated gold islands in the initial deposition phase and a continuous gold coverage for longer deposition times. Gold deposition has a positive effect on the proliferation of vascular smooth muscle cells. Largest number of cells was observed on sample sputtered with gold for 20 s and at the discharge current of 40 mA. This sample exhibits lowest contact angle, low relative roughness, and only mild increase of electrical conductivity. PMID:23705782

  8. Gold-nickel-titanium brazing alloy

    DOEpatents

    Mizuhara, Howard

    1995-01-03

    A brazing alloy in accordance with this invention has the following composition, by weight: 91 to 99 gold, 0.5 to 7% nickel; 0.10 to 2% titanium. Alternatively, with palladium present, the composition is as follows, by weight: 83 to 96% gold; 3 to 10% palladium; 0.5 to 5% nickel; 0.10 to 2% titanium.

  9. Gold-nickel-titanium brazing alloy

    DOEpatents

    Mizuhara, Howard

    1990-07-03

    A brazing alloy in accordance with this invention has the following composition, by weight: 91 to 99% gold, 0.5 to 7% nickel; 0.10 to 2% titanium. Alternatively, with palladium present, the composition is as follows, by weight: 83 to 96% gold; 3 to 10% palladium; 0.5 to 5% nickel; 0.10 to 2% titanium.

  10. Study on Sumbawa gold recovery using centrifuge

    NASA Astrophysics Data System (ADS)

    Ferdana, A. D.; Petrus, H. T. B. M.; Bendiyasa, I. M.; Prijambada, I. D.; Hamada, F.; Sachiko, T.

    2018-01-01

    The Artisanal Small Gold Mining in Sumbawa has been processing gold with mercury (Hg), which poses a serious threat to the mining and global environment. One method of gold processing that does not use mercury is by gravity method. Before processing the ore first performed an analysis of Mineragraphy and analysis of compound with XRD. Mineragraphy results show that gold is associated with chalcopyrite and covelite and is a single particle (native) on size 58.8 μm, 117 μm up to 294 μm. characterization with XRD shows that the Sumbawa Gold Ore is composed of quartz, pyrite, pyroxene, and sericite compounds. Sentrifugation is one of separation equipment of gravity method to increase concentrate based on difference of specific gravity. The optimum concentration result is influenced by several variables, such as water flow rate and particle size. In this present research, the range of flow rate is 5 lpm and 10 lpm, the particle size - 100 + 200 mesh and -200 +300 mesh. Gold concentration in concentrate is measured by EDX. The result shows that the optimum condition is obtained at a separation with flow rate 5 lpm and a particle size of -100 + 200 mesh.

  11. Acoustic vibrations of single suspended gold nanostructures

    NASA Astrophysics Data System (ADS)

    Major, Todd A.

    The acoustic vibrations for single gold nanowires and gold plates were studied using time-resolved ultrafast transient absorption. The objective of this work was to remove the contribution of the supporting substrate from the damping of the acoustic vibrations of the metal nano-objects. This was achieved by suspending the nano-objects across trenches created by photolithography and reactive ion etching. Transient absorption measurements for single suspended gold nanowires were initially completed in air and water environments. The acoustic vibrations for gold nanowires over the trench in air last typically for several nanoseconds, whereas gold nanowires in water are damped more quickly. Continuum mechanics models suggest that the acoustic impedance mismatch between air and water dominates the damping rate. Later transient absorption studies on single suspended gold nanowires were completed in glycerol and ethylene glycol environments. However, our continuum mechanical model suggests nearly complete damping in glycerol due to its high viscosity, but similar damping rates are seen between the two liquids. The continuum mechanics model thus incorrectly addresses high viscosity effects on the lifetimes of the acoustic vibrations, and more complicated viscoelastic interactions occur for the higher viscosity liquids. (Abstract shortened by UMI.).

  12. Recent Developments in Australian Gold Extraction.

    ERIC Educational Resources Information Center

    Thiele, Rodney B.

    1995-01-01

    Describes new technologies that have greatly improved the extraction efficiency of gold ore, including: altering plant layout to promote efficiency, engaging Filiblast forced oxidation and bioxidation systems, and updating the electrowinning procedure at the gold recovery stage. (JRH)

  13. The Complete Reconfiguration of Dendritic Gold

    NASA Astrophysics Data System (ADS)

    Paneru, Govind; Flanders, Bret

    2014-03-01

    Reconfigurability-by-design is an important strategy in modern materials science, as materials with this capability could potentially be used to confer hydrophobic, lipophobic, or anti-corrosive character to substrates in a regenerative manner. The present work extends the directed electrochemical nanowire assembly (DENA) methodology, which is a technique that employs alternating voltages to grow single crystalline metallic nanowires and nano-dendrites from simple salt solutions, to enable the complete dissolution of macroscopic arrays of metallic dendrites following their growth. Our main finding is that structural reconfiguration of dendritic gold is induced by changes in the MHz-level frequencies of voltages that are applied to the dendrites. Cyclic voltammetry and micro-Raman spectroscopy have been used to show that dendritic gold grows and dissolves by the same chemical mechanisms as bulk gold. Hence, the redox chemistry that occurs at the crystal-solution interface is no different than the established electrochemistry of gold. What differs in this process and allows for reconfiguration to occur is the diffusive behavior of the gold chloride molecules in the solution adjacent to the interface. We will present a simple model that captures the physics of this behavior.

  14. Gold Nanoparticle Microwave Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krantz, Kelsie E.; Christian, Jonathan H.; Coopersmith, Kaitlin

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves formore » gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.« less

  15. 16 CFR 23.4 - Misrepresentation as to gold content.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Misrepresentation as to gold content. 23.4... JEWELRY, PRECIOUS METALS, AND PEWTER INDUSTRIES § 23.4 Misrepresentation as to gold content. (a) It is unfair or deceptive to misrepresent the presence of gold or gold alloy in an industry product, or the...

  16. 16 CFR 23.4 - Misrepresentation as to gold content.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Misrepresentation as to gold content. 23.4... JEWELRY, PRECIOUS METALS, AND PEWTER INDUSTRIES § 23.4 Misrepresentation as to gold content. (a) It is unfair or deceptive to misrepresent the presence of gold or gold alloy in an industry product, or the...

  17. A Comparative XAFS Study of Gold-thiolate Nanoparticles and Nanoclusters

    NASA Astrophysics Data System (ADS)

    Chevrier, D. M.; Chatt, A.; Sham, T. K.; Zhang, P.

    2013-04-01

    Tiopronin-capped gold nanoparticles and gold nanoclusters of sizes 3.0 and 1.5 nm, respectively, were investigated with XAFS at the gold L3-edge. The specific EXAFS fitting procedure is discussed for obtaining reliable fit parameters for each system. The difficulties and challenges faced when analysing EXAFS data for gold nanoparticles and nanoclusters are also mentioned. Fitting results for gold nanoparticles reveal a small amount of surface Au-thiolate interactions with a large Au-Au metal core. For gold nanoclusters, only a one-shell fit was obtainable. Instead of Au-Au metal core, long-range interactions are expected for gold nanoclusters. Tiopronin-capped gold nanoclusters are proposed to be polymeric in nature, which helps explain the observed red luminescence.

  18. Site-Specific Biomolecule Labeling with Gold Clusters

    PubMed Central

    Ackerson, Christopher J.; Powell, Richard D.; Hainfeld, James F.

    2013-01-01

    Site-specific labeling of biomolecules in vitro with gold clusters can enhance the information content of electron cryomicroscopy experiments. This chapter provides a practical overview of well-established techniques for forming biomolecule/gold cluster conjugates. Three bioconjugation chemistries are covered: Linker-mediated bioconjugation, direct gold–biomolecule bonding, and coordination-mediated bonding of nickel(II) nitrilotriacetic acid (NTA)-derivatized gold clusters to polyhistidine (His)-tagged proteins. PMID:20887859

  19. Beneficiation of the gold bearing ore by gravity and flotation

    NASA Astrophysics Data System (ADS)

    Gül, Alim; Kangal, Olgaç; Sirkeci, Ayhan A.; Önal, Güven

    2012-02-01

    Gold concentration usually consists of gravity separation, flotation, cyanidation, or the combination of these processes. The choice among these processes depends on the mineralogical characterization and gold content of the ore. Recently, the recovery of gold using gravity methods has gained attention because of low cost and environmentally friendly operations. In this study, gold pre-concentrates were produced by the stepwise gravity separation and flotation techniques. The Knelson concentrator and conventional flotation were employed for the recovery of gold. Gold bearing ore samples were taken from Gümüşhane Region, northern east part of Turkey. As a result of stepwise Knelson concentration experiments, a gold concentrate assaying around 620 g/t is produced with 41.4wt% recovery. On the other hand, a gold concentrate about 82 g/t is obtained with 89.9wt% recovery from a gold ore assaying 6 g/t Au by direct flotation.

  20. 33 CFR 13.01-10 - Gold and silver bars.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Gold and silver bars. 13.01-10... DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-10 Gold and silver bars. No person shall receive more than one Gold Lifesaving Medal and one...

  1. 33 CFR 13.01-10 - Gold and silver bars.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Gold and silver bars. 13.01-10... DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-10 Gold and silver bars. No person shall receive more than one Gold Lifesaving Medal and one...

  2. 33 CFR 13.01-10 - Gold and silver bars.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Gold and silver bars. 13.01-10... DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-10 Gold and silver bars. No person shall receive more than one Gold Lifesaving Medal and one...

  3. 33 CFR 13.01-10 - Gold and silver bars.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Gold and silver bars. 13.01-10... DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-10 Gold and silver bars. No person shall receive more than one Gold Lifesaving Medal and one...

  4. 33 CFR 13.01-10 - Gold and silver bars.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Gold and silver bars. 13.01-10... DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-10 Gold and silver bars. No person shall receive more than one Gold Lifesaving Medal and one...

  5. Inhibition of HIV Fusion with Multivalent Gold Nanoparticles

    PubMed Central

    Bowman, Mary-Catherine; Ballard, T. Eric; Ackerson, Christopher J.; Feldheim, Daniel L.; Margolis, David M.; Melander, Christian

    2010-01-01

    The design and synthesis of a multivalent gold nanoparticle therapeutic is presented. SDC-1721, a fragment of the potent HIV inhibitor TAK-779, was synthesized and conjugated to 2.0 nm diameter gold nanoparticles. Free SDC-1721 had no inhibitory effect on HIV infection; however, the (SDC-1721)-gold nanoparticle conjugates displayed activity comparable to that of TAK-779. This result suggests that multivalent presentation of small molecules on gold nanoparticle surfaces can convert inactive drugs into potent therapeutics. PMID:18473457

  6. 16 CFR 23.4 - Misrepresentation as to gold content.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... JEWELRY, PRECIOUS METALS, AND PEWTER INDUSTRIES § 23.4 Misrepresentation as to gold content. (a) It is... covered with a base metal (such as nickel), which is covered with a thin wash of gold, unless there is a disclosure that the primary gold coating is covered with a base metal, which is gold washed. (7) Use of the...

  7. 16 CFR 23.4 - Misrepresentation as to gold content.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... JEWELRY, PRECIOUS METALS, AND PEWTER INDUSTRIES § 23.4 Misrepresentation as to gold content. (a) It is... covered with a base metal (such as nickel), which is covered with a thin wash of gold, unless there is a disclosure that the primary gold coating is covered with a base metal, which is gold washed. (7) Use of the...

  8. 16 CFR 23.4 - Misrepresentation as to gold content.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... JEWELRY, PRECIOUS METALS, AND PEWTER INDUSTRIES § 23.4 Misrepresentation as to gold content. (a) It is... covered with a base metal (such as nickel), which is covered with a thin wash of gold, unless there is a disclosure that the primary gold coating is covered with a base metal, which is gold washed. (7) Use of the...

  9. 50 CFR 665.169 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Gold coral harvest moratorium. 665.169... Fisheries § 665.169 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in any precious coral permit area is prohibited through June 30, 2013. ...

  10. 50 CFR 665.169 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gold coral harvest moratorium. 665.169... Fisheries § 665.169 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in any precious coral permit area is prohibited through June 30, 2013. ...

  11. 50 CFR 665.469 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gold coral harvest moratorium. 665.469... Archipelago Fisheries § 665.469 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in any precious coral permit area is prohibited through June 30, 2013. ...

  12. 50 CFR 665.270 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gold coral harvest moratorium. 665.270... Fisheries § 665.270 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in any precious coral permit area is prohibited through June 30, 2013. ...

  13. 50 CFR 665.169 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Gold coral harvest moratorium. 665.169... Fisheries § 665.169 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in any precious coral permit area is prohibited through June 30, 2013. ...

  14. 50 CFR 665.469 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Gold coral harvest moratorium. 665.469... Archipelago Fisheries § 665.469 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in any precious coral permit area is prohibited through June 30, 2013. ...

  15. 50 CFR 665.270 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Gold coral harvest moratorium. 665.270... Fisheries § 665.270 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in any precious coral permit area is prohibited through June 30, 2013. ...

  16. 50 CFR 665.469 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Gold coral harvest moratorium. 665.469... Archipelago Fisheries § 665.469 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in any precious coral permit area is prohibited through June 30, 2013. ...

  17. 50 CFR 665.270 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Gold coral harvest moratorium. 665.270... Fisheries § 665.270 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in any precious coral permit area is prohibited through June 30, 2013. ...

  18. Engineered Gold Nanoparticles and Plant Adaptation Potential

    NASA Astrophysics Data System (ADS)

    Siddiqi, Khwaja Salahuddin; Husen, Azamal

    2016-09-01

    Use of metal nanoparticles in biological system has recently been recognised although little is known about their possible effects on plant growth and development. Nanoparticles accumulation, translocation, growth response and stress modulation in plant system is not well understood. Plants exposed to gold and gold nanoparticles have been demonstrated to exhibit both positive and negative effects. Their growth and yield vary from species to species. Cytoxicity of engineered gold nanoparticles depends on the concentration, particle size and shape. They exhibit increase in vegetative growth and yield of fruit/seed at lower concentration and decrease them at higher concentration. Studies have shown that the gold nanoparticles exposure has improved free radical scavenging potential and antioxidant enzymatic activities and alter micro RNAs expression that regulate different morphological, physiological and metabolic processes in plants. These modulations lead to improved plant growth and yields. Prior to the use of gold nanoparticles, it has been suggested that its cost may be calculated to see if it is economically feasible.

  19. Simple Fabrication of Gold Nanobelts and Patterns

    PubMed Central

    Zhang, Renyun; Hummelgård, Magnus; Olin, Håkan

    2012-01-01

    Gold nanobelts are of interest in several areas; however, there are only few methods available to produce these belts. We report here on a simple evaporation induced self-assembly (EISA) method to produce porous gold nanobelts with dimensions that scale across nanometer (thickness ∼80 nm) and micrometer (width ∼20 µm), to decimeter (length ∼0.15 m). The gold nanobelts are well packed on the beaker wall and can be easily made to float on the surface of the solution for depositing onto other substrates. Microscopy showed that gold nanobelts had a different structure on the two sides of the belt; the density of gold nanowires on one side was greater than on the other side. Electrical measurements showed that these nanobelts were sensitive to compressive or tensile forces, indicating a potential use as a strain sensor. The patterned nanobelts were further used as a template to grow ZnO nanowires for potential use in applications such as piezo-electronics. PMID:22291962

  20. The interaction of gold with gallium arsenide

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1988-01-01

    Gold and gold-based alloys, commonly used as solar-cell contact materials, are known to react readily with gallium arsenide. Experiments designed to identify the mechanisms involved in these GaAs-metal interactions have yielded several interesting results. It is shown that the reaction of GaAs with gold takes place via a dissociative diffusion process. It is shown further that the GaAs-metal reaction rate is controlled to a very great extent by the condition of the free surface of the contact metal, an interesting example of which is the previously unexplained increase in the reaction rate that has been observed for samples annealed in a vacuum environment as compared to those annealed in a gaseous ambient. A number of other hard-to-explain observations, such as the low-temperature formation of voids in the gold lattice and crystallite growth on the gold surface, are also explained by invoking this mechanism.

  1. Crack injection in silver gold alloys

    NASA Astrophysics Data System (ADS)

    Chen, Xiying

    Stress corrosion cracking (SCC) is a materials degradation phenomena resulting from a combination of stress and a corrosive environment. Among the alphabet soup of proposed mechanism of SCC the most important are film-rupture, film-induced cleavage and hydrogen embrittlement. This work examines various aspects of film-induced cleavage in gold alloys for which the operation of hydrogen embrittlement processes can be strictly ruled out on thermodynamic grounds. This is so because in such alloys SCC occurs under electrochemical conditions within which water is stable to hydrogen gas evolution. The alloy system examined in this work is AgAu since the corrosion processes in this system occur by a dealloying mechanism that results in the formation of nanoporous gold. The physics behind the dealloying process as well as the resulting formation of nanoporous gold is today well understood. Two important aspects of the film-induced cleavage mechanism are examined in this work: dynamic fracture in monolithic nanoporous gold and crack injection. In crack injection there is a finite thickness dealloyed layer formed on a AgAu alloy sample and the question of whether or not a crack that nucleates within this layer can travel for some finite distance into the un-corroded parent phase alloy is addressed. Dynamic fracture tests were performed on single edge-notched monolithic nanoporous gold samples as well as "infinite strip" sample configurations for which the stress intensity remains constant over a significant portion of the crack length. High-speed photography was used to measure the crack velocity. In the dynamic fracture experiments cracks were observed to travel at speeds as large as 270 m/s corresponding to about 68% of the Raleigh wave velocity. Crack injection experiments were performed on single crystal Ag77Au23, polycrystalline Ag72Au28 and pure gold, all of which had thin nanoporous gold layers on the surface of samples. Through-thickness fracture was seen in both the

  2. Synthesis of fullerene@gold core-shell nanostructures.

    PubMed

    Ren, Yupeng; Paira, Priyankar; Nayak, Tapas Ranjan; Ang, Wee Han; Pastorin, Giorgia

    2011-07-21

    A "direct encapsulation" method was developed for the synthesis of highly stable water-soluble fullerene@gold core-shell nanostructures, with gold nanoshells showing either closed or porous morphology. This gold nano-shell coating formed a "nano-oven", capable of decomposing encapsulated fullerene molecules rapidly when irradiated by laser. We envisaged this being a useful tool for chemical reactions as well as a novel scaffold for nano-material synthesis.

  3. Classification of Chronic Obstructive Pulmonary Disease (COPD) according to the new Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2017: Comparison with GOLD 2011.

    PubMed

    Marçôa, Raquel; Rodrigues, Daniela Marta; Dias, Margarida; Ladeira, Inês; Vaz, Ana Paula; Lima, Ricardo; Guimarães, Miguel

    2018-02-01

    Chronic Obstructive Pulmonary Disease (COPD) is a major cause of morbidity and mortality worldwide. The Global Initiative for Chronic Obstructive Lung Disease (GOLD) project has been working to improve awareness, prevention and management of this disease. The aim of this study is to evaluate how COPD patients are reclassified by the 2017 GOLD system (versus GOLD 2011), to calculate the level of agreement between these two classifications in allocation to categories and to compare the performance of each classification to predict future exacerbations. Two-hundred COPD patients (>40 years, post bronchodilator forced expiratory volume in one second/forced vital capacity<0.7) followed in pulmonology consultation were recruited into this prospective multicentric study. Approximately half of the patients classified as GOLD D [2011] changed to GOLD B [2017]. The extent of agreement between GOLD 2011 and GOLD 2017 was moderate (Cohen's Kappa = 0.511; p < 0.001) and the ability to predict exacerbations was similar (69.7% and 67.6%, respectively). GOLD B [2017] exacerbated 17% more than GOLD B [2011] and had a lower percent predicted post bronchodilator forced expiratory volume in one second (FEV1). GOLD B [2017] turned to be the predominant category, more heterogeneous and with a higher risk of exacerbation versus GOLD B [2011]. Physicians should be cautious in assessing the GOLD B [2017] patients. The assessment of patients should always be personalized. More studies are needed to evaluate the impact of the 2017 reclassification in predicting outcomes such as future exacerbations and mortality.

  4. Quantum sized gold nanoclusters with atomic precision.

    PubMed

    Qian, Huifeng; Zhu, Manzhou; Wu, Zhikun; Jin, Rongchao

    2012-09-18

    Gold nanoparticles typically have a metallic core, and the electronic conduction band consists of quasicontinuous energy levels (i.e. spacing δ ≪ k(B)T, where k(B)T is the thermal energy at temperature T (typically room temperature) and k(B) is the Boltzmann constant). Electrons in the conduction band roam throughout the metal core, and light can collectively excite these electrons to give rise to plasmonic responses. This plasmon resonance accounts for the beautiful ruby-red color of colloidal gold first observed by Faraday back in 1857. On the other hand, when gold nanoparticles become extremely small (<2 nm in diameter), significant quantization occurs to the conduction band. These quantum-sized nanoparticles constitute a new class of nanomaterial and have received much attention in recent years. To differentiate quantum-sized nanoparticles from conventional plasmonic gold nanoparticles, researchers often refer to the ultrasmall nanoparticles as nanoclusters. In this Account, we chose several typical sizes of gold nanoclusters, including Au(25)(SR)(18), Au(38)(SR)(24), Au(102)(SR)(44), and Au(144)(SR)(60), to illustrate the novel properties of metal nanoclusters imparted by quantum size effects. In the nanocluster size regime, many of the physical and chemical properties of gold nanoparticles are fundamentally altered. Gold nanoclusters have discrete electronic energy levels as opposed to the continuous band in plasmonic nanoparticles. Quantum-sized nanoparticles also show multiple optical absorption peaks in the optical spectrum versus a single surface plasmon resonance (SPR) peak at 520 nm for spherical gold nanocrystals. Although larger nanocrystals show an fcc structure, nanoclusters often have non-fcc atomic packing structures. Nanoclusters also have unique fluorescent, chiral, and magnetic properties. Due to the strong quantum confinement effect, adding or removing one gold atom significantly changes the structure and the electronic and optical

  5. 50 CFR 665.669 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Gold coral harvest moratorium. 665.669... Island Area Fisheries § 665.669 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in any precious coral permit area is prohibited through June 30, 2013. ...

  6. 50 CFR 665.669 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gold coral harvest moratorium. 665.669... Island Area Fisheries § 665.669 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in any precious coral permit area is prohibited through June 30, 2013. ...

  7. 50 CFR 665.669 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Gold coral harvest moratorium. 665.669... Island Area Fisheries § 665.669 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in any precious coral permit area is prohibited through June 30, 2013. ...

  8. Simulation of spectral properties of bundlelike gold nanorods

    NASA Astrophysics Data System (ADS)

    Ozaki, Ryotaro; Nagao, Yoshiki; Kadowaki, Kazunori; Kuwahara, Yutaka

    2016-03-01

    Metal nanoparticles have become increasingly important in fields such as electronics, photonics, and biotechnology. In particular, anisotropic gold nanoparticles, such as gold nanorods, exhibit unique properties owing to their anisotropy. Optical properties of isolated gold nanorods and dimers of gold nanorods have been investigated from both experimental and theoretical points of view. We have reported a method for three-dimensional assembly of anisotropic gold nanoparticles by two-phase transfer in which the morphologies of the assemblies can be controlled by the aspect ratio of nanorods. In this study, we numerically calculate extinction spectra to investigate the plasmonic properties of bundlelike assemblies by the finite-element method. Their plasmonic properties depend on not only the three orthogonal directions but also the alignment of the nanorod assembly.

  9. Spatial-temporal and genetic relationships between gold and antimony mineralization at gold-sulfide deposits of the Ob-Zaisan folded zone

    NASA Astrophysics Data System (ADS)

    Kalinin, Yu. A.; Naumov, E. A.; Borisenko, A. S.; Kovalev, K. R.; Antropova, A. I.

    2015-05-01

    The Ob-Zaisan folded zone is a fragment of a single structure composed of Paleozoic sedimentary and volcanogenic rocks (mainly black shale), which was formed at the margin of the Siberian continent and features a common set of magmatic complexes and mineral systems. However, there are some differences that determine the specific geological and metallogenic features of the Irtysh-Zaisan and Kolyvan-Tomsk fragments of the Ob-Zaisan folded zone. In the gold deposits of the West Kalba and Kolyvan-Tomsk auriferous belt, the main gold-sulfide mineralization is controlled by zones of shearing and dynamic metamorphism in carbonaceous carbonate-terrigenous rocks. This type of mineralization was formed in tectonic blocks in a compressional setting. Antimony mineralization is characterized by brecciated textures and the vein-like morphology of ore bodies, reflecting extensional tectonics. At some deposits (Zherek, Mirazh, Dalny), Sb mineralization is spatially separated from the main gold-sulfide ores and shows cross-cutting relations to the principal ore-controlling structures. In other gold deposits, stibnite is spatially associated with disseminated gold-sulfide ores and forms mineral assemblages with Ni, Co, Au, Pb, and Fe (Alimbet, Zhanan, Legostaevskoe, Semiluzhenskoe, and Kamenskoe deposits). This study reveals no direct correlation between Au and Sb in gold-sulfide ores of these deposits. SEM analysis indicated the absence of free gold in stibnite veins. However, atomic absorption and electron microprobe analysis indicated the presence of "invisible gold" from a few ppm to several tens of ppm in the stibnite. High gold contents in the gold-sulfide ores overprinted by antimony mineralization (Suzdalskoe, Zhanan, and Legostaevskoe deposits) can be explained by the processes of regeneration and redeposition. The results of microstructural observations, isotope geochronology, studies of mineral assemblages and fluid inclusions in the ores from gold deposits of the Ob

  10. Polypeptide-Based Gold Nanoshells for Photothermal Therapy.

    PubMed

    Mayle, Kristine M; Dern, Kathryn R; Wong, Vincent K; Sung, Shijun; Ding, Ke; Rodriguez, April R; Taylor, Zachary; Zhou, Z Hong; Grundfest, Warren S; Deming, Timothy J; Kamei, Daniel T

    2017-02-01

    Targeted killing of cancer cells by engineered nanoparticles holds great promise for noninvasive photothermal therapy applications. We present the design and generation of a novel class of gold nanoshells with cores composed of self-assembled block copolypeptide vesicles with photothermal properties. Specifically, poly(L-lysine) 60 - block-poly(L-leucine) 20 (K 60 L 20 ) block copolypeptide vesicles coated with a thin layer of gold demonstrate enhanced absorption of light due to surface plasmon resonance (SPR) in the near-infrared range. We show that the polypeptide-based K 60 L 20 gold nanoshells have low toxicity in the absence of laser exposure, significant heat generation upon exposure to near-infrared light, and, as a result, localized cytotoxicity within the region of laser irradiation in vitro. To gain a better understanding of our gold nanoshells in the context of photothermal therapy, we developed a comprehensive mathematical model for heat transfer and experimentally validated this model by predicting the temperature as a function of time and position in our experimental setup. This model can be used to predict which parameters of our gold nanoshells can be manipulated to improve heat generation for tumor destruction. To our knowledge, our results represent the first ever use of block copolypeptide vesicles as the core material of gold nanoshells.

  11. Gold-coated nanoparticles for use in biotechnology applications

    DOEpatents

    Berning, Douglas E [Los Alamos, NM; Kraus, Jr., Robert H.; Atcher, Robert W [Los Alamos, NM; Schmidt, Jurgen G [Los Alamos, NM

    2009-07-07

    A process of preparing gold-coated magnetic nanoparticles is disclosed and includes forming a suspension of magnetic nanoparticles within a suitable liquid, adding an amount of a reducible gold compound and a reducing agent to the suspension, and, maintaining the suspension for time sufficient to form gold-coated magnetic nanoparticles.

  12. 47 CFR 3.46 - Use of gold francs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Use of gold francs. 3.46 Section 3.46... AUTHORITIES IN MARITIME AND MARITIME MOBILE-SATELLITE RADIO SERVICES Settlement Operations § 3.46 Use of gold francs. An accounting authority must accept accounts presented to it from foreign administrations in gold...

  13. 47 CFR 3.46 - Use of gold francs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Use of gold francs. 3.46 Section 3.46... AUTHORITIES IN MARITIME AND MARITIME MOBILE-SATELLITE RADIO SERVICES Settlement Operations § 3.46 Use of gold francs. An accounting authority must accept accounts presented to it from foreign administrations in gold...

  14. 21 CFR 872.3580 - Preformed gold denture tooth.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Preformed gold denture tooth. 872.3580 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3580 Preformed gold denture tooth. (a) Identification. A preformed gold denture tooth is a device composed of austenitic alloys or alloys containing 75...

  15. 21 CFR 872.3580 - Preformed gold denture tooth.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Preformed gold denture tooth. 872.3580 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3580 Preformed gold denture tooth. (a) Identification. A preformed gold denture tooth is a device composed of austenitic alloys or alloys containing 75...

  16. 47 CFR 3.46 - Use of gold francs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Use of gold francs. 3.46 Section 3.46... AUTHORITIES IN MARITIME AND MARITIME MOBILE-SATELLITE RADIO SERVICES Settlement Operations § 3.46 Use of gold francs. An accounting authority must accept accounts presented to it from foreign administrations in gold...

  17. 21 CFR 872.3580 - Preformed gold denture tooth.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Preformed gold denture tooth. 872.3580 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3580 Preformed gold denture tooth. (a) Identification. A preformed gold denture tooth is a device composed of austenitic alloys or alloys containing 75...

  18. 21 CFR 872.3580 - Preformed gold denture tooth.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Preformed gold denture tooth. 872.3580 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3580 Preformed gold denture tooth. (a) Identification. A preformed gold denture tooth is a device composed of austenitic alloys or alloys containing 75...

  19. 47 CFR 3.46 - Use of gold francs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Use of gold francs. 3.46 Section 3.46... AUTHORITIES IN MARITIME AND MARITIME MOBILE-SATELLITE RADIO SERVICES Settlement Operations § 3.46 Use of gold francs. An accounting authority must accept accounts presented to it from foreign administrations in gold...

  20. 47 CFR 3.46 - Use of gold francs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Use of gold francs. 3.46 Section 3.46... AUTHORITIES IN MARITIME AND MARITIME MOBILE-SATELLITE RADIO SERVICES Settlement Operations § 3.46 Use of gold francs. An accounting authority must accept accounts presented to it from foreign administrations in gold...

  1. 21 CFR 872.3580 - Preformed gold denture tooth.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Preformed gold denture tooth. 872.3580 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3580 Preformed gold denture tooth. (a) Identification. A preformed gold denture tooth is a device composed of austenitic alloys or alloys containing 75...

  2. Gold-coated nanoparticles for use in biotechnology applications

    DOEpatents

    Berning, Douglas E [Los Alamos, NM; Kraus, Jr., Robert H.; Atcher, Robert W [Los Alamos, NM; Schmidt, Jurgen G [Los Alamos, NM

    2007-06-05

    A process of preparing gold-coated magnetic nanoparticles is disclosed and includes forming a suspension of magnetic nanoparticles within a suitable liquid, adding an amount of a reducible gold compound and a reducing agent to the suspension, and, maintaining the suspension for time sufficient to form gold-coated magnetic nanoparticles.

  3. Gastrointestinal bioavailability of 2.0 nm diameter gold nanoparticles.

    PubMed

    Smith, Candice A; Simpson, Carrie A; Kim, Ganghyeok; Carter, Carly J; Feldheim, Daniel L

    2013-05-28

    The use of gold nanoparticles as imaging agents and therapeutic delivery systems is growing rapidly. However, a significant limitation of gold nanoparticles currently is their low absorption efficiencies in the gastrointestinal (GI) tract following oral administration. In an attempt to identify ligands that facilitate gold nanoparticle absorption in the GI tract, we have studied the oral bioavailability of 2.0 nm diameter gold nanoparticles modified with the small molecules p-mercaptobenzoic acid and glutathione, and polyethylene glycols (PEG) of different lengths and charge (neutral and anionic). We show that GI absorption of gold nanoparticles modified with the small molecules tested was undetectable. However, the absorption of PEGs depended upon PEG length, with the shortest PEG studied yielding gold nanoparticle absorptions that are orders-of-magnitude larger than observed previously. As the oral route is the most convenient one for administering drugs and diagnostic reagents, these results suggest that short-chain PEGs may be useful in the design of gold nanoparticles for the diagnosis and treatment of disease.

  4. Gold Pennies.

    ERIC Educational Resources Information Center

    Dominic, Sheryl

    1995-01-01

    Describes an approach to a demonstration of the Golden Penny Experiment for high school students in which the teacher assumes the disguise of an alchemist and invites the students to devise ways of determining whether the penny has really turned to gold. (DDR)

  5. Radiofrequency Heating Pathways for Gold Nanoparticles

    PubMed Central

    Collins, C. B.; McCoy, R. S.; Ackerson, B. J.; Collins, G. J.

    2015-01-01

    This feature article reviews the thermal dissipation of nanoscopic gold under radiofrequency (RF) irradiation. It also presents previously unpublished data addressing obscure aspects of this phenomenon. While applications in biology motivated initial investigation of RF heating of gold nanoparticles, recent controversy concerning whether thermal effects can be attributed to nanoscopic gold highlight the need to understand the involved mechanism or mechanisms of heating. Both the nature of the particle and the nature of the RF field influence heating. Aspects of nanoparticle chemistry and physics, including the hydrodynamic diameter of the particle, the oxidation state and related magnetism of the core, and the chemical nature of the ligand shell may all strongly influence to what extent a nanoparticle heats in an RF field. Aspects of RF include: power, frequency and antenna designs that emphasize relative strength of magnetic or electric fields, and also influence the extent to which a gold nanoparticle heats in RF. These nanoparticle and RF properties are analysed in the context of three heating mechanisms proposed to explain gold nanoparticle heating in an RF field. This article also makes a critical analysis of the existing literature in the context of the nanoparticle preparations, RF structure, and suggested mechanisms in previously reported experiments. PMID:24962620

  6. 78 FR 60954 - Self-Regulatory Organizations; National Stock Exchange, Inc.; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... Securities, and replace them with Apple Inc. (``AAPL'') and Google Inc. (``GOOG'') \\5\\ AMD and MU will revert... addition to AMD and MU, the Select Securities identified were Bank of America Corp. (``BAC''), Nokia...

  7. Extracellular mycosynthesis of gold nanoparticles using Fusarium solani

    NASA Astrophysics Data System (ADS)

    Gopinath, K.; Arumugam, A.

    2014-08-01

    The development of eco-friendly methods for the synthesis of nanomaterial shape and size is an important area of research in the field of nanotechnology. The present investigation deals with the extracellular rapid biosynthesis of gold nanoparticles using Fusarium solani culture filtrate. The UV-vis spectra of the fungal culture filtrate medium containing gold ion showed peak at 527 nm corresponding to the plasmon absorbance of gold nanoparticles. FTIR spectra provide an evidence for the presence of heterocyclic compound in the culture filtrate, which increases the stability of the synthesized gold nanoparticles. The X-ray analysis respects the Bragg's law and confirmed the crystalline nature of the gold nanoparticles. AFM analysis showed the results of particle sizes (41 nm). Transmission electron microscopy (TEM) showed that the gold nanoparticles are spherical in shape with the size range from 20 to 50 nm. The use of F. solani will offer several advantages since it is considered as a non-human pathogenic organism. The fungus F. solani has a fast growth rate, rapid capacity of metallic ions reduction, NPs stabilization and facile and economical biomass handling. Extracellular biosynthesis of gold nanoparticles could be highly advantageous from the point of view of synthesis in large quantities, time consumption, eco-friendly, non-toxic and easy downstream processing.

  8. 50 CFR 665.469 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Gold coral harvest moratorium. 665.469... Archipelago Fisheries § 665.469 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in any precious coral permit area is prohibited through June 30, 2018. [78 FR 32182, May 29, 2013] ...

  9. 50 CFR 665.270 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Gold coral harvest moratorium. 665.270... Fisheries § 665.270 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in any precious coral permit area is prohibited through June 30, 2018. [78 FR 32182, May 29, 2013] ...

  10. 50 CFR 665.469 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Gold coral harvest moratorium. 665.469... Archipelago Fisheries § 665.469 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in any precious coral permit area is prohibited through June 30, 2018. [78 FR 32182, May 29, 2013] ...

  11. 50 CFR 665.270 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Gold coral harvest moratorium. 665.270... Fisheries § 665.270 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in any precious coral permit area is prohibited through June 30, 2018. [78 FR 32182, May 29, 2013] ...

  12. 50 CFR 665.169 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Gold coral harvest moratorium. 665.169... Fisheries § 665.169 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in any precious coral permit area is prohibited through June 30, 2018. [78 FR 32182, May 29, 2013] ...

  13. 50 CFR 665.169 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Gold coral harvest moratorium. 665.169... Fisheries § 665.169 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in any precious coral permit area is prohibited through June 30, 2018. [78 FR 32182, May 29, 2013] ...

  14. GOLD NANOPARTICLES: A REVIVAL IN PRECIOUS METAL ADMINISTRATION TO PATIENTS

    PubMed Central

    Thakor, AS; Jokerst, J; Zaveleta, C; Massoud, TF; Gambhir, SS

    2011-01-01

    Gold has been used as a therapeutic agent to treat a wide variety of rheumatic diseases including psoriatic arthritis, juvenile arthritis and discoid lupus erythematosus. Although the use of gold has been largely superseded by newer drugs, gold nanoparticles are being used effectively in laboratory based clinical diagnostic methods whilst concurrently showing great promise in vivo either as a diagnostic imaging agent or a therapeutic agent. For these reasons, gold nanoparticles are therefore well placed to enter mainstream clinical practice in the near future. Hence, the present review summarizes the chemistry, pharmacokinetics, bio-distribution, metabolism and toxicity of bulk gold in humans based on decades of clinical observation and experiments in which gold was used to treat patients with rheumatoid arthritis. The beneficial attributes of gold nanoparticles, such as their ease of synthesis, functionalization and shape control are also highlighted demonstrating why gold nanoparticles are an attractive target for further development and optimization. The importance of controlling the size and shape of gold nanoparticles to minimize any potential toxic side effects is also discussed. PMID:21846107

  15. Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film.

    PubMed

    Wang, Kai; Schonbrun, Ethan; Crozier, Kenneth B

    2009-07-01

    We experimentally demonstrate the enhanced propulsion of gold nanoparticles by surface plasmon polaritons (SPPs). Three dimensional finite difference time domain (FDTD) simulations indicate considerably enhanced optical forces due to the field enhancement provided by SPPs and the near-field coupling between the gold particles and the film. This coupling is an important part of the enhanced propulsion phenomenon. Finally, the measured optical force is compared with that predicted by FDTD simulations and proven to be reasonable.

  16. A new route to gold nanoflowers

    NASA Astrophysics Data System (ADS)

    Liebig, Ferenc; Henning, Ricky; Sarhan, Radwan M.; Prietzel, Claudia; Bargheer, Matias; Koetz, Joachim

    2018-05-01

    Catanionic vesicles spontaneously formed by mixing the anionic surfactant bis(2-ethylhexyl) sulfosuccinate sodium salt with the cationic surfactant cetyltrimethylammonium bromide were used as a reducing medium to produce gold clusters, which are embedded and well-ordered into the template phase. The gold clusters can be used as seeds in the growth process that follows by adding ascorbic acid as a mild reducing component. When the ascorbic acid was added very slowly in an ice bath round-edged gold nanoflowers were produced. When the same experiments were performed at room temperature in the presence of Ag+ ions, sharp-edged nanoflowers could be synthesized. The mechanism of nanoparticle formation can be understood to be a non-diffusion-limited Ostwald ripening process of preordered gold nanoparticles embedded in catanionic vesicle fragments. Surface-enhanced Raman scattering experiments show an excellent enhancement factor of 1.7 · 105 for the nanoflowers deposited on a silicon wafer.

  17. Gold Nanoparticle Hyperthermia Reduces Radiotherapy Dose

    PubMed Central

    Lin, Lynn; Slatkin, Daniel N.; Dilmanian, F. Avraham; Vadas, Timothy M.; Smilowitz, Henry M.

    2014-01-01

    Gold nanoparticles can absorb near infrared light, resulting in heating and ablation of tumors. Gold nanoparticles have also been used for enhancing the dose of X-rays in tumors during radiotherapy. The combination of hyperthermia and radiotherapy is synergistic, importantly allowing a reduction in X-ray dose with improved therapeutic results. Here we intratumorally infused small 15 nm gold nanoparticles engineered to be transformed from infrared-transparent to infrared-absorptive by the tumor, which were then heated by infrared followed by X-ray treatment. Synergy was studied using a very radioresistant subcutaneous squamous cell carcinoma (SCCVII) in mice. It was found that the dose required to control 50% of the tumors, normally 55 Gy, could be reduced to <15 Gy (a factor of >3.7). Gold nanoparticles therefore provide a method to combine hyperthermia and radiotherapy to drastically reduce the X-ray radiation needed, thus sparing normal tissue, reducing the side effects, and making radiotherapy more effective. PMID:24990355

  18. The chemistry of gold as an anion.

    PubMed

    Jansen, Martin

    2008-09-01

    Due to relativistic and classical shell structure effects, the 6s orbital of gold is significantly contracted and energetically stabilized. This is reflected by a strikingly high electron affinity, and a distinct tendency to adopt negatively polarized valence states. This tutorial review focuses on the chemistry of gold as an anion, displaying the integral ionic charge number of 1-. Two synthetic approaches to compounds containing monoatomic gold anions have become available: (1) reacting elemental gold with molten caesium and an oxide, e.g. Cs2O; (2) metathesis reactions involving Au- dissolved in liquid ammonia. Both procedures have proven to be rather versatile. Aurides synthesized along these routes are surveyed, in particular with respect to their structures and bonding properties.

  19. Aqueous Black Colloids of Reticular Nanostructured Gold

    NASA Astrophysics Data System (ADS)

    Stanca, S. E.; Fritzsche, W.; Dellith, J.; Froehlich, F.; Undisz, A.; Deckert, V.; Krafft, C.; Popp, J.

    2015-01-01

    Since ancient times, noble gold has continuously contributed to several aspects of life from medicine to electronics. It perpetually reveals its new features. We report the finding of a unique form of gold, reticular nanostructured gold (RNG), as an aqueous black colloid, for which we present a one-step synthesis. The reticules consist of gold crystals that interconnect to form compact strands. RNG exhibits high conductivity and low reflection, and these features, coupled with the high specific surface area of the material, could prove valuable for applications in electronics and catalysis. Due to high absorption throughout the visible and infrared domain, RNG has the potential to be applied in the construction of sensitive solar cells or as a substrate for Raman spectroscopy.

  20. Gold recovery from low concentrations using nanoporous silica adsorbent

    NASA Astrophysics Data System (ADS)

    Aledresse, Adil

    The development of high capacity adsorbents with uniform porosity denoted 5%MP-HMS (5% Mercaptopropyl-Hexagonal Mesoporous Structure) to extract gold from noncyanide solutions is presented. The preliminary studies from laboratory simulated noncyanide gold solutions show that the adsorption capacities of these materials are among the highest reported. The high adsorption saturation level of these materials, up to 1.9 mmol/g (37% of the adsorbent weight) from gold chloride solutions (potassium tetrachloroaurate) and 2.9 mmol/g (57% of the adsorbent weight) from gold bromide solutions (potassium tetrabromoaurate) at pH = 2, is a noteworthy feature of these materials. This gold loading from [AuC4]- and [AuBr4 ]- solutions corresponds to a relative Au:S molar ratio of 2.5:1 and 3.8:1, respectively. These rates are significantly higher than the usual 1:1 (Au:S) ratio expected for metal ion binding with the material. The additional gold ions loaded have been spontaneously reduced to metallic gold in the mesoporous material. Experimental studies indicated high maximum adsorptions of gold as high as 99.9% recovery. Another promising attribute of these materials is their favourable adsorption kinetics. The MP-HMS reaches equilibrium (saturation) in less than 1 minute of exposure in gold bromide and less than 10 minutes in gold chloride. The MP-HMS materials adsorption is significantly improved by agitation and the adsorption capacity of Au (III) ions increases with the decrease in pH. The recovery of adsorbed gold and the regeneration of spent adsorbent were investigated for MP-HMS adsorbent. The regenerated adsorbent (MP-HMS) maintained its adsorption capacity even after repeated use and all the gold was successfully recovered from the spent adsorbent. For the fist time, a promising adsorbent system has been found that is capable of effectively concentrating gold thiosulphate complexes, whereas conventional carbon-inpulp (CIP) and carbon-in-leach (CIL) systems fail. The

  1. Geomorphological control of gold distribution and gold particle evolution in glacial and fluvioglacial placers of the Ancocala-Ananea basin - Southeastern Andes of Peru

    NASA Astrophysics Data System (ADS)

    Hérail, Gérard; Fornari, Michel; Rouhier, Michel

    1989-10-01

    Gold placers are formed as a result of surficial processes but glacial and fluvioglacial systems are generally considered to be unfavourable for placer genesis. Nevertheless, some important glacial and fluvioglacial placers have been discovered and are currently being exploited in the Andes of Peru and Bolivia. In the Plio-Pleistocene Ananea-Ancocala basin (4300-4900 m above sea-level), the gold content of the various formations indicates that only glacial and fluvioglacial sediments related to the Ancocala and Chaquiminas Glaciations (middle and upper Pleistocene) contain gold in any notable quantity. Local concentrations of economic interest occur only where a glacier has cut through a primary mineralized zone. Glacial erosion of dispersed primary mineralizations does not produce high-content placers of the kind found in fluviatile environments. Gold distribution in tills is more irregular than in fluviatile sediments and no marked enrichment at bedrock occurs. The transition from a glacial to a fluvioglacial environment is characterized by an increase in gold content due to a relative concentration of the biggest gold flakes and by the appearance of a gold distribution pattern similar to that found in a fluviatile environment. During their transport by glacial and fluvioglacial processes, gold particles acquire specific features; the size and morphology of a gold flake population are determined by the sedimentological and geomorphological environment in which the flakes are carried.

  2. 50 CFR 665.669 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Gold coral harvest moratorium. 665.669... Island Area Fisheries § 665.669 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in any precious coral permit area is prohibited through June 30, 2018. [78 FR 32182, May 29, 2013] ...

  3. 50 CFR 665.669 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Gold coral harvest moratorium. 665.669... Island Area Fisheries § 665.669 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in any precious coral permit area is prohibited through June 30, 2018. [78 FR 32182, May 29, 2013] ...

  4. A grand unified model for liganded gold clusters

    NASA Astrophysics Data System (ADS)

    Xu, Wen Wu; Zhu, Beien; Zeng, Xiao Cheng; Gao, Yi

    2016-12-01

    A grand unified model (GUM) is developed to achieve fundamental understanding of rich structures of all 71 liganded gold clusters reported to date. Inspired by the quark model by which composite particles (for example, protons and neutrons) are formed by combining three quarks (or flavours), here gold atoms are assigned three `flavours' (namely, bottom, middle and top) to represent three possible valence states. The `composite particles' in GUM are categorized into two groups: variants of triangular elementary block Au3(2e) and tetrahedral elementary block Au4(2e), all satisfying the duet rule (2e) of the valence shell, akin to the octet rule in general chemistry. The elementary blocks, when packed together, form the cores of liganded gold clusters. With the GUM, structures of 71 liganded gold clusters and their growth mechanism can be deciphered altogether. Although GUM is a predictive heuristic and may not be necessarily reflective of the actual electronic structure, several highly stable liganded gold clusters are predicted, thereby offering GUM-guided synthesis of liganded gold clusters by design.

  5. A grand unified model for liganded gold clusters

    PubMed Central

    Xu, Wen Wu; Zhu, Beien; Zeng, Xiao Cheng; Gao, Yi

    2016-01-01

    A grand unified model (GUM) is developed to achieve fundamental understanding of rich structures of all 71 liganded gold clusters reported to date. Inspired by the quark model by which composite particles (for example, protons and neutrons) are formed by combining three quarks (or flavours), here gold atoms are assigned three ‘flavours' (namely, bottom, middle and top) to represent three possible valence states. The ‘composite particles' in GUM are categorized into two groups: variants of triangular elementary block Au3(2e) and tetrahedral elementary block Au4(2e), all satisfying the duet rule (2e) of the valence shell, akin to the octet rule in general chemistry. The elementary blocks, when packed together, form the cores of liganded gold clusters. With the GUM, structures of 71 liganded gold clusters and their growth mechanism can be deciphered altogether. Although GUM is a predictive heuristic and may not be necessarily reflective of the actual electronic structure, several highly stable liganded gold clusters are predicted, thereby offering GUM-guided synthesis of liganded gold clusters by design. PMID:27910848

  6. When the value of gold is zero.

    PubMed

    Chase, J Geoffrey; Moeller, Knut; Shaw, Geoffrey M; Schranz, Christoph; Chiew, Yeong Shiong; Desaive, Thomas

    2014-06-27

    This manuscript presents the concerns around the increasingly common problem of not having readily available or useful "gold standard" measurements. This issue is particularly important in critical care where many measurements used in decision making are surrogates of what we would truly wish to use. However, the question is broad, important and applicable in many other areas.In particular, a gold standard measurement often exists, but is not clinically (or ethically in some cases) feasible. The question is how does one even begin to develop new measurements or surrogates if one has no gold standard to compare with?We raise this issue concisely with a specific example from mechanical ventilation, a core bread and butter therapy in critical care that is also a leading cause of length of stay and cost of care. Our proposed solution centers around a hierarchical validation approach that we believe would ameliorate ethics issues around radiation exposure that make current gold standard measures clinically infeasible, and thus provide a pathway to create a (new) gold standard.

  7. Geostatistical Approach to Estimating the Gold Ore Characteristics and Gold Reserves: A Case Study Daksa Area, Quang Nam Province, Viet Nam

    NASA Astrophysics Data System (ADS)

    Luan Truong, Xuan; Luong Le, Van; Quang Truong, Xuan

    2015-04-01

    Daksa gold deposit is the biggest gold deposits in Vietnam. The Daksa geological structure complicated, distributed mainly metamorphosed sedimentary NuiVu formation (PR3-?1nv2). The sulfide gold ore bodies distributed in quartz schist, quartz - biotite related to faut and distribution wing anticline. The gold ore bodies form circuits, network circuits, circuits lenses; fill the cup surface layer of the developing northeast - southwest; is the less than or west longitude north - SE. The results show that, Au and accompanying elements (Ag, Pb and Zn) have correlated pretty closely. All of its consistent with the logarithmic distribution standard, in accordance with the law of distribution of content mineral rare. The structure functions have nugget effect and spherical models with show that Au and accompanying elements special variation are changes. Au contents shown local anisotropy, no clearly anisotropy (K=1,17) and weakly anisotropy (K=1,4). Intensity mineralization of the ore bodies are quite high with demand spherical conversion coefficient ranging from 0.49 to 0.75 and from 0.66 to 0.97 (for other body). With nugget effects, ore bodies shown that it is consistent with mineralization in the ore bodies study, ore erasable, micro vein, infilling fractures in quartz vein. All of variogram presents local anisotropy, indicated gold mineralization at study area has least two-mineralization stages, consistent with the analysis of mineralography samples. By the results of the structure function study, the authors present the system optimization for exploration deposit and used to evaluate gold reserves by Ordinary Kriging. High accuracy of Kriging estimation results are expressed in the minimum Kriging variance, by compare the results calculated by some other methods (such as distance inverse weighting method, ..) and specially compare to the results of a some blocks have been exploited. Key words: Geostat and gold deposits VN. Daksa and gold mineralization. Geostat

  8. Cytogenetic evaluation of gold nanorods using Allium cepa test.

    PubMed

    Rajeshwari, A; Roy, Barsha; Chandrasekaran, Natarajan; Mukherjee, Amitava

    2016-12-01

    The current study reveals the impact of gold nanorods (NRs) capped with CTAB (cetyltrimethylammonium bromide) or PEG (polyethylene glycol) on Allium cepa. The morphology and surface charge of CTAB- and PEG-capped gold NRs were characterized by electron microscopic and zeta potential analyses. The chromosomal aberrations like clumped chromosome, chromosomal break, chromosomal bridge, diagonal anaphase, disturbed metaphase, laggard chromosome, and sticky chromosome were observed in the root tip cells exposed to different concentrations (0.1, 1, and 10 μg/mL) of CTAB- and PEG-capped gold NRs. We found that both CTAB- and PEG-capped gold NRs were able to induce toxicity in the plant system after 4-h interaction. At a maximum concentration of 10 μg/mL, the mitotic index reduction induced by CTAB-capped gold NRs was 40-fold higher than that induced by PEG-capped gold NRs. The toxicity of gold NRs was further confirmed by lipid peroxidation and oxidative stress analyses. The unbound CTAB also contributed to the toxicity in root tip cells, while PEG alone shows less toxicity to the cells. The vehicle control CTAB contributed to the toxic effects in root tip cells, while PEG alone did not show any toxicity to the cells. The results revealed that even though both the particles have adverse effects on A. cepa, there was a significant difference in the mitotic index and oxidative stress generation in root cells exposed to CTAB-capped gold NRs. Thus, this study concludes that the surface polymerization of gold NRs by PEG can reduce the toxicity of CTAB-capped gold NRs. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Interaction of β-Sheet Folds with a Gold Surface

    PubMed Central

    Hoefling, Martin; Monti, Susanna; Corni, Stefano; Gottschalk, Kay Eberhard

    2011-01-01

    The adsorption of proteins on inorganic surfaces is of fundamental biological importance. Further, biomedical and nanotechnological applications increasingly use interfaces between inorganic material and polypeptides. Yet, the underlying adsorption mechanism of polypeptides on surfaces is not well understood and experimentally difficult to analyze. Therefore, we investigate here the interactions of polypeptides with a gold(111) surface using computational molecular dynamics (MD) simulations with a polarizable gold model in explicit water. Our focus in this paper is the investigation of the interaction of polypeptides with β-sheet folds. First, we concentrate on a β-sheet forming model peptide. Second, we investigate the interactions of two domains with high β-sheet content of the biologically important extracellular matrix protein fibronectin (FN). We find that adsorption occurs in a stepwise mechanism both for the model peptide and the protein. The positively charged amino acid Arg facilitates the initial contact formation between protein and gold surface. Our results suggest that an effective gold-binding surface patch is overall uncharged, but contains Arg for contact initiation. The polypeptides do not unfold on the gold surface within the simulation time. However, for the two FN domains, the relative domain-domain orientation changes. The observation of a very fast and strong adsorption indicates that in a biological matrix, no bare gold surfaces will be present. Hence, the bioactivity of gold surfaces (like bare gold nanoparticles) will critically depend on the history of particle administration and the proteins present during initial contact between gold and biological material. Further, gold particles may act as seeds for protein aggregation. Structural re-organization and protein aggregation are potentially of immunological importance. PMID:21687744

  10. Interaction of β-sheet folds with a gold surface.

    PubMed

    Hoefling, Martin; Monti, Susanna; Corni, Stefano; Gottschalk, Kay Eberhard

    2011-01-01

    The adsorption of proteins on inorganic surfaces is of fundamental biological importance. Further, biomedical and nanotechnological applications increasingly use interfaces between inorganic material and polypeptides. Yet, the underlying adsorption mechanism of polypeptides on surfaces is not well understood and experimentally difficult to analyze. Therefore, we investigate here the interactions of polypeptides with a gold(111) surface using computational molecular dynamics (MD) simulations with a polarizable gold model in explicit water. Our focus in this paper is the investigation of the interaction of polypeptides with β-sheet folds. First, we concentrate on a β-sheet forming model peptide. Second, we investigate the interactions of two domains with high β-sheet content of the biologically important extracellular matrix protein fibronectin (FN). We find that adsorption occurs in a stepwise mechanism both for the model peptide and the protein. The positively charged amino acid Arg facilitates the initial contact formation between protein and gold surface. Our results suggest that an effective gold-binding surface patch is overall uncharged, but contains Arg for contact initiation. The polypeptides do not unfold on the gold surface within the simulation time. However, for the two FN domains, the relative domain-domain orientation changes. The observation of a very fast and strong adsorption indicates that in a biological matrix, no bare gold surfaces will be present. Hence, the bioactivity of gold surfaces (like bare gold nanoparticles) will critically depend on the history of particle administration and the proteins present during initial contact between gold and biological material. Further, gold particles may act as seeds for protein aggregation. Structural re-organization and protein aggregation are potentially of immunological importance.

  11. Designing Hollow Nano Gold Golf Balls

    PubMed Central

    2015-01-01

    Hollow/porous nanoparticles, including nanocarriers, nanoshells, and mesoporous materials have applications in catalysis, photonics, biosensing, and delivery of theranostic agents. Using a hierarchical template synthesis scheme, we have synthesized a nanocarrier mimicking a golf ball, consisting of (i) solid silica core with a pitted gold surface and (ii) a hollow/porous gold shell without silica. The template consisted of 100 nm polystyrene beads attached to a larger silica core. Selective gold plating of the core followed by removal of the polystyrene beads produced a golf ball-like nanostructure with 100 nm pits. Dissolution of the silica core produced a hollow/porous golf ball-like nanostructure. PMID:24937196

  12. Peptide-functionalized iron oxide magnetic nanoparticle for gold mining

    NASA Astrophysics Data System (ADS)

    Shen, Wei-Zheng; Cetinel, Sibel; Sharma, Kumakshi; Borujeny, Elham Rafie; Montemagno, Carlo

    2017-02-01

    Here, we present our work on preparing a novel nanomaterial composed of inorganic binding peptides and magnetic nanoparticles for inorganic mining. Two previously selected and well-characterized gold-binding peptides from cell surface display, AuBP1 and AuBP2, were exploited. This nanomaterial (AuBP-MNP) was designed to fulfill the following two significant functions: the surface conjugated gold-binding peptide will recognize and selectively bind to gold, while the magnetic nano-sized core will respond and migrate according to the applied external magnetic field. This will allow the smart nanomaterial to mine an individual material (gold) from a pool of mixture, without excessive solvent extraction, filtration, and concentration steps. The working efficiency of AuBP-MNP was determined by showing a dramatic reduction of gold nanoparticle colloid concentration, monitored by spectroscopy. The binding kinetics of AuBP-MNP onto the gold surface was determined using surface plasmon resonance (SPR) spectroscopy, which exhibits around 100 times higher binding kinetics than peptides alone. The binding capacity of AuBP-MNP was demonstrated by a bench-top mining test with gold microparticles.

  13. Recovery of Silver and Gold from Copper Anode Slimes

    NASA Astrophysics Data System (ADS)

    Chen, Ailiang; Peng, Zhiwei; Hwang, Jiann-Yang; Ma, Yutian; Liu, Xuheng; Chen, Xingyu

    2015-02-01

    Copper anode slimes, produced from copper electrolytic refining, are important industrial by-products containing several valuable metals, particularly silver and gold. This article provides a comprehensive overview of the development of the extraction processes for recovering silver and gold from conventional copper anode slimes. Existing processes, namely pyrometallurgical processes, hydrometallurgical processes, and hybrid processes involving the combination of pyrometallurgical and hydrometallurgical technologies, are discussed based in part on a review of the form and characteristics of silver and gold in copper anode slimes. The recovery of silver and gold in pyrometallurgical processes is influenced in part by the slag and matte/metal chemistry and related characteristics, whereas the extraction of these metals in hydrometallurgical processes depends on the leaching reagents used to break the structure of the silver- and gold-bearing phases, such as selenides. By taking advantage of both pyrometallurgical and hydrometallurgical techniques, high extraction yields of silver and gold can be obtained using such combined approaches that appear promising for efficient extraction of silver and gold from copper anode slimes.

  14. Sesquicentennial: Gold Rush to Golden Statehood.

    ERIC Educational Resources Information Center

    Sabato, George

    1998-01-01

    Provides an annotated bibliography of educational resources that can be used to support instructional units on the Gold Rush or the sesquicentennial of California's statehood. The materials include workbooks, videos, teacher's guides, monographs, and magazines. Offers a brief history of the Gold Rush and a set of relevant discussion questions.…

  15. Naked Gold Nanoparticles and hot Electrons in Water.

    PubMed

    Ghandi, Khashayar; Wang, Furong; Landry, Cody; Mostafavi, Mehran

    2018-05-08

    The ionizing radiation in aqueous solutions of gold nanoparticles, stabilized by electrostatic non-covalent intermolecular forces and steric interactions, with antimicrobial compounds, are investigated with picosecond pulse radiolysis techniques. Upon pulse radiolysis of an aqueous solution containing very low concentrations of gold nanoparticles with naked surfaces available in water (not obstructed by chemical bonds), a change to Cerenkov spectrum over a large range of wavelengths are observed and pre-solvated electrons are captured by gold nanoparticles exclusively (not by ionic liquid surfactants used to stabilize the nanoparticles). The solvated electrons are also found to decay rapidly compared with the decay kinetics in water. These very fast reactions with electrons in water could provide an enhanced oxidizing zone around gold nanoparticles and this could be the reason for radio sensitizing behavior of gold nanoparticles in radiation therapy.

  16. Radicals are required for thiol etching of gold particles

    PubMed Central

    Dreier, Timothy A.

    2016-01-01

    Etching of gold with excess thiol ligand is used in both synthesis and analysis of gold particles. Mechanistically, the process of etching gold with excess thiol is opaque. Previous studies have obliquely considered the role of oxygen in thiolate etching of gold. Herein, we show that oxygen or a radical initator is a necessary component for efficient etching of gold by thiolates. Attenuation of the etching process by radical scavengers in the presence of oxygen, and the restoration of activity by radical initiators under inert atmosphere, strongly implicate the oxygen radical. These data led us to propose an atomistic mechanism in which the oxygen radical initiates the etching process. PMID:26089294

  17. Gold placers of the historical Fortymile River region, Alaska

    USGS Publications Warehouse

    Yeend, Warren E.

    1996-01-01

    The Fortymile River region in east-central Alaska has a long and colorful history as the site of the first major gold discovery in interior Alaska. Placer gold has been mined in the region nearly every year since its original discovery in 1886. Total gold production is approximately 500,000 troy ounces. Although many of the rich deposits have been mined, there still exist areas that contain gold. Areas of mined and unmined gold-bearing creek and terrace gravels are outlined on the accompanying geologic map. The early history of the Fortymile area centered on the small frontier settlement of Fortymile City located at the junction of the Fortymile and Yukon Rivers in Canadian territory. This was the supply and jumping-off point for prospectors who worked their way into Alaska up the Fortymile River and found gold on many of its tributaries. Hand mining, both underground and surface, using sluice boxes and (or) rockers were the earliest methods; later, hydraulicking, dredging, and draglining methods were used. More recently, bulldozers and elevated trammels have been used, as well as very portable floating suction dredges. The rich mining lore of the area is closely associated with events of the nearby world-famous Klondike District. Bedrock and placer geology and mining history of individual gold-rich creeks are herein updated. The Fortymile area, which is part of the Yukon-Tanana Upland, contains quartzite, schist, gneiss, amphibolite, marble, serpentinite, and granite overlain by basalt, sandstone, conglomerate, shale, tuff, and coal; overlying these rocks are several deposits of varying ages consisting of gold-bearing gravel and colluvium. The close spatial association of creeks containing placer gold and the gneiss, schist, amphibolite, and marble unit strongly suggests this metamorphic unit is the gold source. High terrace gravels record a time from the late Tertiary to early Pleistocene when the ancestral Fortymile River and its major tributaries, the North and

  18. Direct electrodeposition of porous gold nanowire arrays for biosensing applications.

    PubMed

    Zhang, Xinyi; Li, Dan; Bourgeois, Laure; Wang, Huanting; Webley, Paul A

    2009-02-02

    Nanochannel alumina templates are used as templates for fabrication of porous gold nanowire arrays by a direct electrodeposition method. After modification with glucose oxidase, a porous gold nanowire-array electrode is shown to be an excellent electrochemical biosensor for the detection of glucose. The picture shows an SEM image of a nanowire array after removal of the alumina template by acid dissolution. We report the fabrication of porous gold nanowire arrays by means of a one-step electrodeposition method utilizing nanochannel alumina templates. The microstructure of gold nanowires depends strongly on the current density. The formation of porous gold nanowires is attributed to disperse crystallization under conditions of low nucleation rate. Interfacial electron transport through the porous gold nanowires is studied by electrochemical impedance spectroscopy. Cyclic voltammetric studies on the porous gold nanowire arrays reveal a low-potential electrocatalytic response towards hydrogen peroxide. The properties of the glucose oxidase modified porous gold nanowire array electrode are elucidated and compared with those of nonporous enzyme electrodes. The glucose oxidase modified porous gold nanowire-array electrode is shown to be an excellent electrochemical biosensor for the detection of glucose.

  19. Characterization of protein-bound gold in rat urine following aurothiomalate administration and of rat and human albumin-gold-thiomalate.

    PubMed

    Shaw, C F; Schaeffer-Memmel, N; Krawczak, D

    1986-03-01

    The metabolites of gold in the urine of rats given the antiarthritic drug aurothiomalate were investigated by gel permeation chromatography, electrophoresis, and chemical studies. Following a single dose of aurtothiomalate, the excreted gold was protein-bound in the high-molecular-weight (greater than or equal to 150,000 dalton) and serum albumin fractions. Electrophoresis confirmed the presence of albumin, but showed that the other proteins present differ from those in normal or in vitro aurothiomalate-incubated rat sera. The pattern of the proteins establishes that the proteinuria was of the glomerular type. The alterations in the gold distribution produced by incubation of the urine with the low-molecular-weight thiol penicillamine and with exogenously added aurothiomalate indicated the existence of a labile equilibrium of gold among protein binding sites in the urine. Incubation of rat and human sera and commercially prepared serum albumins with aurothiomalate increased the electrophoretic mobility of the albumin. The significance of this change in electrophoretic mobility with respect to two models of gold binding by serum albumin is discussed.

  20. A gold nanoparticle-based immunochromatographic assay: the influence of nanoparticulate size.

    PubMed

    Lou, Sha; Ye, Jia-ying; Li, Ke-qiang; Wu, Aiguo

    2012-03-07

    Four different sized gold nanoparticles (14 nm, 16 nm, 35 nm and 38 nm) were prepared to conjugate an antibody for a gold nanoparticle-based immunochromatographic assay which has many applications in both basic research and clinical diagnosis. This study focuses on the conjugation efficiency of the antibody with different sized gold nanoparticles. The effect of factors such as pH value and concentration of antibody has been quantificationally discussed using spectra methods after adding 1 wt% NaCl which induced gold nanoparticle aggregation. It was found that different sized gold nanoparticles had different conjugation efficiencies under different pH values and concentrations of antibody. Among the four sized gold nanoparticles, the 16 nm gold nanoparticles have the minimum requirement for antibody concentrations to avoid aggregation comparing to other sized gold nanoparticles but are less sensitive for detecting the real sample compared to the 38 nm gold nanoparticles. Consequently, different sized gold nanoparticles should be labeled with antibody under optimal pH value and optimal concentrations of antibody. It will be helpful for the application of antibody-labeled gold nanoparticles in the fields of clinic diagnosis, environmental analysis and so on in future.

  1. Enhancement of radiation effect on cancer cells by gold-pHLIP

    PubMed Central

    Antosh, Michael P.; Wijesinghe, Dayanjali D.; Shrestha, Samana; Lanou, Robert; Huang, Yun Hu; Hasselbacher, Thomas; Fox, David; Neretti, Nicola; Sun, Shouheng; Katenka, Natallia; Cooper, Leon N; Andreev, Oleg A.; Reshetnyak, Yana K.

    2015-01-01

    Previous research has shown that gold nanoparticles can increase the effectiveness of radiation on cancer cells. Improved radiation effectiveness would allow lower radiation doses given to patients, reducing adverse effects; alternatively, it would provide more cancer killing at current radiation doses. Damage from radiation and gold nanoparticles depends in part on the Auger effect, which is very localized; thus, it is important to place the gold nanoparticles on or in the cancer cells. In this work, we use the pH-sensitive, tumor-targeting agent, pH Low-Insertion Peptide (pHLIP), to tether 1.4-nm gold nanoparticles to cancer cells. We find that the conjugation of pHLIP to gold nanoparticles increases gold uptake in cells compared with gold nanoparticles without pHLIP, with the nanoparticles distributed mostly on the cellular membranes. We further find that gold nanoparticles conjugated to pHLIP produce a statistically significant decrease in cell survival with radiation compared with cells without gold nanoparticles and cells with gold alone. In the context of our previous findings demonstrating efficient pHLIP-mediated delivery of gold nanoparticles to tumors, the obtained results serve as a foundation for further preclinical evaluation of dose enhancement. PMID:25870296

  2. Contributions to the gold metallogeny of northern Nevada

    USGS Publications Warehouse

    Tosdal, Richard M.

    1998-01-01

    Nevada is one of the Earth's premier gold producing regions, accounting for approximately 64 percent of the U.S and nine percent of the world total. The impact of these mines on nearby local economies and on our national balance of payments is profound, and will continue well into the next century. Of principal importance in this region are giant sedimentary-rock-hosted (Carlin-type) deposits. These are some of the world's largest deposits, but yet are poorly understood. Other sedimentary-rock hosted deposits in the region, the distal-disseminated Ag-Au type, are genetically related to shallow plutonic complexes. Hot-spring gold-silver systems associated with Tertiary volcanic rocks represent a third type of precious metal deposit in northern Nevada. These deposits, despite being generally smaller than sedimentary-rock-hosted gold deposits, are also important gold-silver resources. Aspects about the geologic and metallogenic setting of gold-silver deposits in northern Nevada are addressed in the twenty-two chapters that compose this volume. The volume is organized along four themes: (1) crustal structure; (2) Carlin-type deposits; (3) pluton-related gold-silver deposits near Battle Mountain; and (4) hot-spring gold-silver deposits. This Open-File Report, the result of ongoing geologic and mineral-resource investigations, provides a basis for mineral exploration, for land-use planning decisions, and for environmental questions in northern Nevada.

  3. 33 CFR 13.01-25 - Description of Gold Lifesaving Medal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Description of Gold Lifesaving... SECURITY GENERAL DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-25 Description of Gold Lifesaving Medal. (a) The Gold Lifesaving Medal is 99.9...

  4. In situ measurement of gold nanoparticle production

    NASA Astrophysics Data System (ADS)

    Affandi, Mohd Syafiq; Bidin, Noriah; Abdullah, Mundzir; Aziz, Muhammad Safuan Abd.; Al-Azawi, Mohammed; Nugroho, Waskito

    2015-01-01

    The closeness of the experimental and theoretical values enables the development of an in situ characterization technique to monitor and analyze the production of gold nanoparticles (NPs), overcoming the use of high-end and expensive instrumentation. Gold NPs below the radius size of 10 nm were successfully synthesized in accordance with a few working parameters of pulse laser ablation in a liquid technique. In this report, the size, shape, concentration, and aggregation properties of gold NPs were estimated by the Mie-Gans model based on a reliable and interactive real-time absorption spectroscopy. The major features can be an important means toward determination of efficient process measures, productivity of gold NPs generated, and efficiency of the mass ablation rate. The accuracy in the measurement is confirmed via transmission electron microscopy analysis.

  5. Biotin-streptavidin-induced aggregation of gold nanorods: tuning rod-rod orientation.

    PubMed

    Gole, Anand; Murphy, Catherine J

    2005-11-08

    We report herein biotin-streptavidin-mediated aggregation studies of long gold nanorods. We have previously demonstrated end-to-end linkages of gold nanorods driven by the biotin-streptavidin interaction (Caswell et al. J. Am. Chem. Soc. 2003, 125, 13914). In that report, the specific binding of biotin disulfide to the gold nanorod edges was achieved due to the preferred binding of thiol molecules to the Au[111] surface (gold nanorod ends) as opposed to the gold nanorod side faces. This led to the end-end linkage of gold nanorods upon subsequent addition of streptavidin. In this report we demonstrate a simple procedure to biotinylate the entire gold nanorod surface and subsequently form a 3-D assembly by addition of streptavidin. Gold nanorods were synthesized by the three-step seeding protocol documented in our previous articles. The surface of gold nanorods was further modified by a layer of a weak polyelectrolyte, poly(acrylic acid), PAA. A biotin molecule which has an amine group at one end (biotin-PEO-amine) was anchored to the carboxylic acid group of the polyelectrolyte using the well-known carbodiimide chemistry. This process biotinylates the entire gold nanorod surface. Addition of streptavidin further leads to aggregation of gold nanorods. A closer look at the aggregates reveals a preferential side-to-side assembly of gold nanorods. The gold nanorods were characterized at each stage by UV-vis spectroscopy, light scattering, and transmission electron microscopy (TEM) measurements.

  6. Geochemistry of placer gold, Koyukuk-Chandalar mining district, Alaska

    USGS Publications Warehouse

    Mosier, E.L.; Cathrall, J.B.; Antweiler, J.C.; Tripp, R.B.

    1989-01-01

    The Koyukuk-Chandalar mining district of the Brooks Range mineral belt in north-central Alaska contains numerous placer gold deposits but few known lode gold sources. Gold grains, collected from 46 placer localities and 6 lode gold sites in the district, were analyzed for Ag and 37 trace elements utilizing direct current-arc optical emission spectroscopy. When possible, several measurements were made on each sample and averaged. Gold content was calculated by the summation of the 38 elements determined and subtracting from 100. The objectives of our study were to characterize the deposits by defining the type and number of distinct geochemical characteristics for the Au, to determine relationships of Au in placer deposits to possible lode sources (placer and lode), to identify possible primary sources of placer gold, and to study processes of placer formation. Interpretation of results emphasize that the Au grains are almost invariably ternary (Au-Ag-Cu) alloys. The average Cu content is 0.040% and the average Ag content and fineness [(Au/Au+Ag)??1,000] are 10.5% and 893 parts per thousand, respectively, for the 46 placer localities. Six geochemically distinct types of placer gold can be identified in the Koyukuk-Chandalar mining district based on Ag and Cu values. One type with an average Ag content of 21.2%, an average Cu content of 0.007%, and 786 average fineness is found only in the eastern part of the district. Placer gold grains that have an average Ag content of 6.0%, an average Cu content of 0.276%, and 940 average fineness were found in the western part of the district. Four intermediate types generally occur in order across the district. Variations in the chemistry of the placer gold can be related to variable depositional environments at the primary gold sources. Placer gold geochemistry is important in determining the origin and depositional environment of the primary Au sources and could add to the knowledge of the thermal history of the southcentral

  7. Chemically functionalized gold nanoparticles: Synthesis, characterization, and applications

    NASA Astrophysics Data System (ADS)

    Daniel, Weston Lewis

    This thesis focuses on the development and application of gold nanoparticle based detection systems and biomimetic structures. Each class of modified nanoparticle has properties that are defined by its chemical moieties that interface with solution and the gold nanoparticle core. In Chapter 2, a comparison of the biomolecular composition and binding properties of various preparations of antibody oligonucleotide gold nanoparticle conjugates is presented. These constructs differed significantly in terms of their structure and binding properties. Chapter 3 reports the use of electroless gold deposition as a light scattering signal enhancer in a multiplexed, microarray-based scanometric immunoassay using the gold nanoparticle probes evaluated in Chapter 2. The use of gold development results in greater signal enhancement than the typical silver development, and multiple rounds of metal development were found to increase the resulting signal compared to one development. Chapter 4 describes an amplified scanometric detection method for human telomerase activity. Gold nanoparticles functionalized with specific oligonucleotide sequences can efficiently capture telomerase enzymes and subsequently be elongated. Both the elongated and unmodified oligonucleotide sequences are simultaneously measured. At low telomerase concentrations, elongated strands cannot be detected, but the unmodified sequences, which come from the same probe particles, can be detected because their concentration is higher, providing a novel form of amplification. Chapter 5 reports the development of a novel colorimetric nitrite and nitrate ion assay based upon gold nanoparticle probes functionalized with Griess reaction reagents. This assay takes advantage of the distance-dependent plasmonic properties of the gold nanoparticles and the ability of nitrite ion to facilitate the cross coupling of novel nanoparticle probes. The assay works on the concept of a kinetic end point and can be triggered at the EPA

  8. Refractory concentrate gold leaching: Cyanide vs. bromine

    NASA Astrophysics Data System (ADS)

    Dadgar, Ahmad

    1989-12-01

    Gold extraction, recovery and economics for two refractory concentrates were investigated using cyanide and bromine reagents. Gold extractions for cyanide leaching (24-48 hours) and bromine leaching (six hours) were the same and ranged from 94 to 96%. Gold recoveries from bromine pregnant solutions using carbon adsorption, ion exchange, solvent extraction, and zinc and aluminum precipitation methods were better than 99.9%. A preliminary economic analysis indicates that chemical costs for cyanidation and bromine process are 11.70 and 11.60 respectively, per tonne of calcine processed.

  9. Use of Soybean Lecithin in Shape Controlled Synthesis of Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ayres, Benjamin Robert

    The work presented in this dissertation is a composite of experiments in the growth of gold nanoparticles with specific optical properties of interest. The goal is to synthesize these gold nanoparticles using soybean extract for not only shape control, but for propensity as a biocompatible delivery system. The optical properties of these nanoparticles has found great application in coloring glass during the Roman empire and, over the centuries, has grown into its own research field in applications of nanoparticulate materials. Many of the current functions include use in biological systems as biosensors and therapeutic applications, thus making biocompatibility a necessity. Current use of cetyltrimethylammonium bromide leads to rod-shaped gold nanoparticles, however, the stability of these gold nanoparticles does not endure for extended periods of time in aqueous media. In my research, two important components were found to be necessary for stable, anisotropic growth of gold nanoparticles. In the first experiments, it was found that bromide played a key role in shape control. Bromide exchange on the gold atoms led to specific packing of the growing crystals, allowing for two-dimensional growth of gold nanoparticles. It was also discerned that soybean lecithin contained ligands that blocked specific gold facets leading to prismatic gold nanoparticle growth. These gold nanoprisms give a near infrared plasmon absorption similar to that of rod-shaped gold nanoparticles. These gold nanoprisms are discovered to be extremely stable in aqueous media and remain soluble for extended periods of time, far longer than that of gold nanoparticles grown using cetyltrimethylammonium bromide. Since soy lecithin has a plethora of compounds present, it became necessary to discover which compound was responsible for the shape control of the gold nanoprisms in order to optimize the synthesis and allow for a maximum yield of the gold nanoprisms. Many of these components were identified

  10. Time series analysis of gold production in Malaysia

    NASA Astrophysics Data System (ADS)

    Muda, Nora; Hoon, Lee Yuen

    2012-05-01

    Gold is a soft, malleable, bright yellow metallic element and unaffected by air or most reagents. It is highly valued as an asset or investment commodity and is extensively used in jewellery, industrial application, dentistry and medical applications. In Malaysia, gold mining is limited in several areas such as Pahang, Kelantan, Terengganu, Johor and Sarawak. The main purpose of this case study is to obtain a suitable model for the production of gold in Malaysia. The model can also be used to predict the data of Malaysia's gold production in the future. Box-Jenkins time series method was used to perform time series analysis with the following steps: identification, estimation, diagnostic checking and forecasting. In addition, the accuracy of prediction is tested using mean absolute percentage error (MAPE). From the analysis, the ARIMA (3,1,1) model was found to be the best fitted model with MAPE equals to 3.704%, indicating the prediction is very accurate. Hence, this model can be used for forecasting. This study is expected to help the private and public sectors to understand the gold production scenario and later plan the gold mining activities in Malaysia.

  11. Antibacterial properties and mechanisms of gold-silver nanocages

    NASA Astrophysics Data System (ADS)

    Wang, Yulan; Wan, Jiangshan; Miron, Richard J.; Zhao, Yanbin; Zhang, Yufeng

    2016-05-01

    Despite the number of antibiotics used in routine clinical practice, bacterial infections continue to be one of the most important challenges faced in humans. The main concerns arise from the continuing emergence of antibiotic-resistant bacteria and the difficulties faced with the pharmaceutical development of new antibiotics. Thus, advancements in the avenue of novel antibacterial agents are essential. In this study, gold (Au) was combined with silver (Ag), a well-known antibacterial material, to form silver nanoparticles producing a gold-silver alloy structure with hollow interiors and porous walls (gold-silver nanocage). This novel material was promising in antibacterial applications due to its better biocompatibility than Ag nanoparticles, potential in photothermal effects and drug delivery ability. The gold-silver nanocage was then tested for its antibacterial properties and the mechanism involved leading to its antibacterial properties. This study confirms that this novel gold-silver nanocage has broad-spectrum antibacterial properties exerting its effects through the destruction of the cell membrane, production of reactive oxygen species (ROS) and induction of cell apoptosis. Therefore, we introduce a novel gold-silver nanocage that serves as a potential nanocarrier for the future delivery of antibiotics.

  12. Chemisorbed monolayers of corannulene penta-thioethers on gold.

    PubMed

    Angelova, Polina; Solel, Ephrath; Parvari, Galit; Turchanin, Andrey; Botoshansky, Mark; Gölzhäuser, Armin; Keinan, Ehud

    2013-02-19

    Penta(tert-butylthio)corannulene and penta(4-dimethylaminophenylthio)corannulene form highly stable monolayers on gold surfaces, as indicated by X-ray photoelectron spectroscopy (XPS). Formation of these homogeneous monolayers involves multivalent coordination of the five sulfur atoms to gold with the peripheral alkyl or aryl substituents pointing away from the surface. No dissociation of C-S bonds upon binding could be observed at room temperature. Yet, the XPS experiments reveal strong chemical bonding between the thioether groups and gold. Temperature-dependent XPS study shows that the thermal stability of the monolayers is higher than the typical stability of self-assembled monolayers (SAMs) of thiolates on gold.

  13. Analyses of gold artifacts from Slovenia

    NASA Astrophysics Data System (ADS)

    Šmit, Ž.; Budnar, M.; Pelicon, P.; Zorko, B.; Knific, T.; Istenič, J.; Trampuž-Orel, N.; Demortier, G.

    2000-03-01

    The method of particle-induced X-ray emission (PIXE) was used for the study of two gold archaeological finds: a Norico-Pannonian brooch, presumably a votive item, and a pair of earrings and a ring from a Slavic female grave. The analysis was performed by an external proton millibeam and aimed to identify the manufacturing techniques. The brooch, including the spring, was made of a rather pure 98% gold. This may indicate that the brooch was produced for votive purposes, as a more flexible spring would suit an object to be worn. The Slavic ring was made of a different alloy than the earrings; moreover, its inhomogeneous alloy reveals the exploitation of local gold sources.

  14. Synthesis and catalytic activity of the metastable phase of gold phosphide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernando, Deshani; Nigro, Toni A.E.; Dyer, I.D.

    Recently, transition metal phosphides have found new applications as catalysts for the hydrogen evolution reaction that has generated an impetus to synthesize these materials at the nanoscale. In this work, Au{sub 2}P{sub 3} was synthesized utilizing the high temperature decomposition of tri-n-octylphosphine as a source of elemental phosphorous. Gold nanorods were used as morphological templates with the aim of controlling the shape and size of the resulting gold phosphide particles. We demonstrate that the surface capping ligand of the gold nanoparticle precursors can influence the purity and extent to which the gold phosphide phase will form. Gold nanorods functionalized withmore » 1-dodecanethiol undergo digestive ripening to produce discrete spherical particles that exhibit reduced reactivity towards phosphorous, resulting in low yields of the gold phosphide. In contrast, gold phosphide was obtained as a phase pure product when cetyltrimethylammonium bromide functionalized gold nanorods are used instead. The Au{sub 2}P{sub 3} nanoparticles exhibited higher activity than polycrystalline gold towards the hydrogen evolution reaction. - Graphical abstract: Au{sub 2}P{sub 3} was synthesized utilizing the high temperature decomposition of tri-n-octylphosphine as a source of elemental phosphorous and gold nanoparticles as reactants. We demonstrate that the surface capping ligand of the gold nanoparticle precursors influence the purity and extent to which the Au{sub 2}P{sub 3} phase will form. Gold nanorods functionalized with 1-dodecanethiol undergo digestive ripening to produce discrete spherical particles that exhibit reduced reactivity towards phosphorous, resulting in low yields of the gold phosphide. In contrast, gold phosphide was obtained as a phase pure product when cetyltrimethylammonium bromide functionalized gold nanoparticles are used instead. The Au{sub 2}P{sub 3} nanoparticles exhibited higher activity than polycrystalline gold towards the hydrogen

  15. Gold and other metals in big sagebrush (Artemisia tridentata Nutt.) as an exploration tool, Gold Run District, Humboldt County, Nevada

    USGS Publications Warehouse

    Erdman, J.A.; Cookro, T.M.; O'Leary, R. M.; Harms, T.F.

    1988-01-01

    Big sagebrush - a cold-desert species that dominates the terrain over large parts of western United States - was sampled along several traverses that crossed thermally metamorphosed limestone, phyllitic shale, and schist of the Middle and Upper Cambrian Preble Formation that host skarn-, disseminated gold and silver-, and hot springs gold-type mineral occurrences. Patterns of detectable levels of gold (8 to 28 ppb or ng g-1) in ash of new growth were consistent with areas affected by known or suspected gold mineralization. Soils collected along one of the traverses where a selenium-indicator plant was common contained no gold above background levels of 2ppb, but were consistently high in As, Sb, and Zn, and several samples were unusually high in Se (maximum 11 ppm or ??g g-1). Sagebrush along this traverse contained Li at levels above norms for this species. We also found a puzzling geochemical anomaly at a site basinward from active hot springs along a range-front fault scarp. Sagebrush at this site contained a trace of gold and an unusually high concentration of Cd (13 ppm) and the soil had anomalous concentrations of Cd and Bi (3.2 and 6 ppm, respectively). The source of this anomaly could be either metal-rich waters from an irrigation ditch or leakage along a buried fault. Despite the limited nature of the study, we conclude that gold in sagebrush could be a cost-effective guide to drilling locations in areas where the geology seems favorable for disseminated and vein precious metals. ?? 1988.

  16. Using mineralogy to optimize gold recovery by direct cyanidation

    NASA Astrophysics Data System (ADS)

    Venter, D.; Chryssoulis, S. L.; Mulpeter, T.

    2004-08-01

    The complete and accurate gold deportments of direct cyanide leach residues provide a clear picture of the occurrence of unrecovered gold and identify causes for poor extraction. Based on the independent measurement of each form and carrier of unleached gold, opportunities for recovery optimization can be assessed more accurately by providing meaningful targets and can help identify the means to achieve such targets. In ten of 14 leach plants surveyed, 23% of the unrecovered gold could be extracted without finer grinding.

  17. Recovering gold from thiosulfate leach pulps via ion exchange

    NASA Astrophysics Data System (ADS)

    Nicol, Michael J.; O'Malley, Glen

    2002-10-01

    Increasing environmental and occupational safety concerns about the use of cyanide in gold processing has increased interest in more acceptable alternative lixiviants, the most promising of which is thiosulfate. However, the thiosulfate process lacks a proven inpulp method of recovering the dissolved gold because activated carbon is not effective for the absorption of the gold-thiosulfate complex. This paper describes work aimed at evaluating the effectiveness of commercially available anion exchange resins for the recovery of gold from thiosulfate leach liquors and pulps.

  18. The graphene-gold interface and its implications for nanoelectronics.

    PubMed

    Sundaram, Ravi S; Steiner, Mathias; Chiu, Hsin-Ying; Engel, Michael; Bol, Ageeth A; Krupke, Ralph; Burghard, Marko; Kern, Klaus; Avouris, Phaedon

    2011-09-14

    We combine optical microspectroscopy and electronic measurements to study how gold deposition affects the physical properties of graphene. We find that the electronic structure, the electron-phonon coupling, and the doping level in gold-plated graphene are largely preserved. The transfer lengths for electrons and holes at the graphene-gold contact have values as high as 1.6 μm. However, the interfacial coupling of graphene and gold causes local temperature drops of up to 500 K in operating electronic devices.

  19. Electrically Conductive Polyimide Films Containing Gold Surface

    NASA Technical Reports Server (NTRS)

    Caplan, Maggie L.; Stoakley, Diane M.; St. Clair, Anne K.

    1994-01-01

    Polyimide films exhibiting high thermo-oxidative stability and including electrically conductive surface layers containing gold made by casting process. Many variations of basic process conditions, ingredients, and sequence of operations possible, and not all resulting versions of process yield electrically conductive films. Gold-containing layer formed on film surface during cure. These metallic gold-containing polyimides used in film and coating applications requiring electrical conductivity, high reflectivity, exceptional thermal stability, and/or mechanical integrity. They also find commercial potential in areas ranging from thin films for satellite antennas to decorative coatings and packaging.

  20. The shape of Au8: gold leaf or gold nugget?

    NASA Astrophysics Data System (ADS)

    Serapian, Stefano A.; Bearpark, Michael J.; Bresme, Fernando

    2013-06-01

    The size at which nonplanar isomers of neutral, pristine gold nanoclusters become energetically favored over planar ones is still debated amongst theoreticians and experimentalists. Spectroscopy confirms planarity is preferred at sizes up to Au7, however, starting with Au8, the uncertainty remains for larger nanoclusters. Au8 computational studies have had different outcomes: the planar D4h ``cloverleaf'' isomer competes with the nonplanar Td, C2v and D2d ``nugget'' isomers for greatest energetic stability. We here examine the 2D vs. 3D preference in Au8 by presenting our own B2PLYP, MP2 and CCSD(T) calculations on these isomers: these methods afford a better treatment of long-range correlation, which is at the root of gold's characteristic aurophilicity. We then use findings from these high-accuracy computations to evaluate two less expensive DFT approaches, applicable to much larger nanoclusters: alongside the standard functional PBE, we consider M06-L (highly parametrized to incorporate long-range dispersive interactions). We find that increasing basis set size within the B2PLYP framework has a greater destabilizing effect on the nuggets than it has on the Au8 cloverleaf. Our CCSD(T) and B2PLYP predictions, replicated by DFT-PBE, all identify the cloverleaf as the most stable isomer; MP2 and DFT-M06-L show overestimation of aurophilicity, and favor, respectively, the nonplanar D2d and Td nuggets in its stead. We conclude that PBE, which more closely reproduces CCSD(T) findings, may be a better candidate density functional for the simulation of gold nanoclusters in this context.The size at which nonplanar isomers of neutral, pristine gold nanoclusters become energetically favored over planar ones is still debated amongst theoreticians and experimentalists. Spectroscopy confirms planarity is preferred at sizes up to Au7, however, starting with Au8, the uncertainty remains for larger nanoclusters. Au8 computational studies have had different outcomes: the planar D4

  1. Potential of Chilopsis Linearis for Gold Phytomining: Using XAS to Determine Gold Reduction And Nanoparticle Formation Within Plant Tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E, Rodriguez; Parsons, J.G.; Peralta-Videa, J.R.

    This study reports on the capability of the desert plant Chilopsis linearis (Cav.) Sweet (desert willow) to uptake gold (Au) from gold-enriched media at different plant-growth stages. Plants were exposed to 20, 40, 80, 160, and 320 mg Au L{sup -1} in agar-based growing media for 13, 18, 23, and 35 d. The Au content and oxidation state of Au in the plants were determined using an inductively coupled plasma/optical emission spectrometer (ICP/OES) and X-ray absorption spectroscopy (XAS), respectively. Gold concentrations ranging from 20 to 80 mg Au L{sup -1} did not significantly affect Chilopsis linearis plant growth. The concentrationmore » of gold in the plants increased as the age of the plant increased. The Au concentrations in leaves for the 20, 40, 80, and 160 mg Au L{sup -1} treatments were 32, 60, 62, and 179 mg Au kg{sup -1} dry weight mass, respectively, demonstrating the gold uptake capability of desert willow. The XAS data indicated that desert willow produced gold nanoparticles within plant tissues. Plants exposed to 160 mg Au L{sup -1} formed nanoparticles that averaged approximately 8, 35, and 18 in root, stem, and leaves, respectively. It was observed that the average size of the Au nanoparticles formed by the plants is related to the total Au concentration in tissues and their location in the plant.« less

  2. Therapeutic gold, silver, and platinum nanoparticles.

    PubMed

    Yamada, Miko; Foote, Matthew; Prow, Tarl W

    2015-01-01

    There are an abundance of nanoparticle technologies being developed for use as part of therapeutic strategies. This review focuses on a narrow class of metal nanoparticles that have therapeutic potential that is a consequence of elemental composition and size. The most widely known of these are gold nanoshells that have been developed over the last two decades for photothermal ablation in superficial cancers. The therapeutic effect is the outcome of the thickness and diameter of the gold shell that enables fine tuning of the plasmon resonance. When these metal nanoparticles are exposed to the relevant wavelength of light, their temperature rapidly increases. This in turn induces a localized photothermal ablation that kills the surrounding tumor tissue. Similarly, gold nanoparticles have been developed to enhance radiotherapy. The high-Z nature of gold dramatically increases the photoelectric cross-section. Thus, the photoelectric effects are significantly increased. The outcome of these interactions is enhanced tumor killing with lower doses of radiation, all while sparing tissue without gold nanoparticles. Silver nanoparticles have been used for their wound healing properties in addition to enhancing the tumor-killing effects of anticancer drugs. Finally, platinum nanoparticles are thought to serve as a reservoir for platinum ions that can induce DNA damage in cancer cells. The future is bright with the path to clinical trials is largely cleared for some of the less complex therapeutic metal nanoparticle systems. © 2014 The Authors. WIREs Nanomedicine and Nanobiotechnology published by Wiley Periodicals, Inc.

  3. Gold Nanoparticle Labels Amplify Ellipsometric Signals

    NASA Technical Reports Server (NTRS)

    Venkatasubbarao, Srivatsa

    2008-01-01

    The ellipsometric method reported in the immediately preceding article was developed in conjunction with a method of using gold nanoparticles as labels on biomolecules that one seeks to detect. The purpose of the labeling is to exploit the optical properties of the gold nanoparticles in order to amplify the measurable ellipsometric effects and thereby to enable ultrasensitive detection of the labeled biomolecules without need to develop more-complex ellipsometric instrumentation. The colorimetric, polarization, light-scattering, and other optical properties of nanoparticles depend on their sizes and shapes. In the present method, these size-and-shape-dependent properties are used to magnify the polarization of scattered light and the diattenuation and retardance of signals derived from ellipsometry. The size-and-shape-dependent optical properties of the nanoparticles make it possible to interrogate the nanoparticles by use of light of various wavelengths, as appropriate, to optimally detect particles of a specific type at high sensitivity. Hence, by incorporating gold nanoparticles bound to biomolecules as primary or secondary labels, the performance of ellipsometry as a means of detecting the biomolecules can be improved. The use of gold nanoparticles as labels in ellipsometry has been found to afford sensitivity that equals or exceeds the sensitivity achieved by use of fluorescence-based methods. Potential applications for ellipsometric detection of gold nanoparticle-labeled biomolecules include monitoring molecules of interest in biological samples, in-vitro diagnostics, process monitoring, general environmental monitoring, and detection of biohazards.

  4. GOFC-GOLD :: Global Observation of Forest and Land Cover Dynamics

    Science.gov Websites

    Validation: Recommendations for Evaluation and Accuracy Assessment of Global Land Cover Maps, A. Strahler et GOFC-GOLD-38: Report of the GOFC-GOLD/CEOS Workshop on Land Cover Change Accuracy Assessment as part of al., March 2006 860 kb GOFC-GOLD-24: A Revised Strategy for GOFC-GOLD, J.R. Townshend and M.A. Brady

  5. 75 FR 26313 - Self-Regulatory Organizations; NASDAQ OMX BX, Inc.; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ... Marvell Technology Group Ltd. EP El Paso Corp. XLP Consumer Staples Select Sector SPDR Fund. SEED Origin... Inc/The. ADBE Adobe Systems Inc. MEE Massey Energy Co. PCX Patriot Coal Corp. CELG Celgene Corp. SPWRA...

  6. Observation of enhanced infrared absorption in silicon supersaturated with gold by pulsed laser melting of nanometer-thick gold films

    NASA Astrophysics Data System (ADS)

    Chow, Philippe K.; Yang, Wenjie; Hudspeth, Quentin; Lim, Shao Qi; Williams, Jim S.; Warrender, Jeffrey M.

    2018-04-01

    We demonstrate that pulsed laser melting (PLM) of thin 1, 5, and 10 nm-thick vapor-deposited gold layers on silicon enhances its room-temperature sub-band gap infrared absorption, as in the case of ion-implanted and PLM-treated silicon. The former approach offers reduced fabrication complexity and avoids implantation-induced lattice damage compared to ion implantation and pulsed laser melting, while exhibiting comparable optical absorptance. We additionally observed strong broadband absorptance enhancement in PLM samples made using 5- and 10-nm-thick gold layers. Raman spectroscopy and Rutherford backscattering analysis indicate that such an enhancement could be explained by absorption by a metastable, disordered and gold-rich surface layer. The sheet resistance and the diode electrical characteristics further elucidate the role of gold-supersaturation in silicon, revealing the promise for future silicon-based infrared device applications.

  7. Radicals Are Required for Thiol Etching of Gold Particles.

    PubMed

    Dreier, Timothy A; Ackerson, Christopher J

    2015-08-03

    Etching of gold with an excess of thiol ligand is used in both synthesis and analysis of gold particles. Mechanistically, the process of etching gold with excess thiol is unclear. Previous studies have obliquely considered the role of oxygen in thiolate etching of gold. Herein, we show that oxygen or a radical initiator is a necessary component for efficient etching of gold by thiolates. Attenuation of the etching process by radical scavengers in the presence of oxygen, and the restoration of activity by radical initiators under inert atmosphere, strongly implicate the oxygen radical. These data led us to propose an atomistic mechanism in which the oxygen radical initiates the etching process. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Metal precursor induced shape controlled synthesis of gold nanostructures

    NASA Astrophysics Data System (ADS)

    Verma, Manoj; Kathy, Annu Dahiya; Kumar, P. Senthil

    2018-05-01

    Anisotropic gold nanoparticles have excellent properties which enables them to utilize in exciting applications in plasmonics as well as in nanophotonics, catalysis etc. In this report we have synthesized/tune shape of gold nanoparticles by utilizing in situ polymer halide interaction. Our quest for achieving shape control of gold nanoparticles succeeded even under ambient conditions by utilizing the mild but effective reducing power of versatile polymer, polyvinyl pyrrolidone(PVP) on different precursor more specifically on Hydrochloroauric acid and Potassiumbromoauric acid. The significant shape dependent optical plasmonic signature agrees in excellent manner with TEM observations as shown below. Moreover, as prepared gold nanocrystals having different morphology were studied with XRD measurements and a beautiful conclusion was drawn between crystallographic facets and shapes of gold nanoparticles.

  9. Altered biodistribution of Ga-67 by intramuscular gold salts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moult, R.G.; Bekerman, C.

    1989-11-01

    The authors observed a deviation from the normal scintigraphic pattern of Ga-67 citrate biodistribution. An 8-year-old black girl with juvenile rheumatoid arthritis, who had been treated with intramuscular injections of gold salts, had a Ga-67 study as part of her workup. The study demonstrated no hepatic uptake, but showed elevated skeletal and renal activity. This characteristic biodistribution of Ga-67 may be due to inhibition of lysosomal enzymes by gold and/or to accumulation of gold in lysosomes. To study these possibilities, the authors reviewed the mechanisms of Ga-67 localization and gold metabolism. Alteration of the Ga-67 citrate scintigraphic pattern due tomore » earlier treatment with gold salts has not been reported previously.« less

  10. Lithogeochemistry of Carlin-type gold mineralization in the Gold Bar district, Battle Mountain-Eureka trend, Nevada

    USGS Publications Warehouse

    Yigit, O.; Hofstra, A.H.

    2003-01-01

    The Gold Bar district contains five Carlin-type gold deposits and four resources for a combined gold endowment of 1.6 M oz [50 t]. The gold deposits are hosted in Devonian carbonate rocks below parautochthonous and allochthonous Paleozoic siliciclastic rocks emplaced during the Early Mississippian Antler orogeny. The district is in the Battle Mountain-Eureka trend, a long-lived structural feature that localized intrusions and ore deposits of different types and ages. The whole-rock geochemistry of four different mineralized and unmineralized Devonian carbonate rock units (two favorable and two unfavorable) were determined and interpreted in the context of the regional geology. A combination of basic statistics, R-mode factor analysis, isocon plots, and alteration diagrams were utilized to (1) identify favorable geochemical attributes of the host rocks, (2) characterize alteration and associated element enrichments and depletions, and (3) identify the mechanism of gold precipitation. This approach also led to the recognition of other types of alteration and mineralization in host rocks previously thought to be solely affected by Carlin-type mineralization. Unit 2 of the Upper Member of the Denay Formation, with the highest Al2O3, Fe2O3 and SiO2 contents and the lowest CaO content, is the most favorable host rock. Based on the high regression coefficients of data arrays on X-Y plots that project toward the origin, Al2O3 and TiO2 were immobile and K2O and Fe2O3 were relatively immobile during alteration and mineralization. Specific element associations identified by factor analysis are also prominent on isocon diagrams that compare the composition of fresh and altered equivalents of the same rock units. The most prominent associations are: Au, As, Sb, SiO2, TI, -CaO and -LOI, the main gold mineralizing event and related silicification and decalcification; Cd, Zn, Ag, P, Ni and Tl, an early base metal event; and MgO, early dolomitization. Alteration diagrams

  11. Method for aqueous gold thiosulfate extraction using copper-cyanide pretreated carbon adsorption

    DOEpatents

    Young, Courtney; Melashvili, Mariam; Gow, Nicholas V

    2013-08-06

    A gold thiosulfate leaching process uses carbon to remove gold from the leach liquor. The activated carbon is pretreated with copper cyanide. A copper (on the carbon) to gold (in solution) ratio of at least 1.5 optimizes gold recovery from solution. To recover the gold from the carbon, conventional elution technology works but is dependent on the copper to gold ratio on the carbon.

  12. Synthesis and catalytic activity of the metastable phase of gold phosphide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernando, Deshani; Nigro, Toni A. E.; Dyer, I. D.

    Recently, transition metal phosphides have found new applications as catalysts for the hydrogen evolution reaction that has generated an impetus to synthesize these materials at the nanoscale. In this work, Au2P3 was synthesized utilizing the high temperature decomposition of tri-n-octylphosphine as a source of elemental phosphorous. Gold nanorods were used as morphological templates with the aim of controlling the shape and size of the resulting gold phosphide particles. We demonstrate that the surface capping ligand of the gold nanoparticle precursors can influence the purity and extent to which the gold phosphide phase will form. Gold nanorods functionalized with 1-dodecanethiol undergomore » digestive ripening to produce discrete spherical particles that exhibit reduced reactivity towards phosphorous, resulting in low yields of the gold phosphide. In contrast, gold phosphide was obtained as a phase pure product when cetyltrimethylammonium bromide functionalized gold nanorods are used instead. The Au2P3 nanoparticles exhibited higher activity than polycrystalline gold towards the hydrogen evolution reaction.« less

  13. Characteristics of pulse gold vapor laser outlined

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Several dozen laser oscillating spectra lines were found within the very broad spectral wavelengths from infrared to ultraviolet. Laser studies of gold vapor were carried out and a pulsed laser of gold atoms of an operating wavelength of 6278 angstroms was obtained.

  14. Morphology-selective synthesis of polyhedral gold nanoparticles: what factors control the size and morphology of gold nanoparticles in a wet-chemical process.

    PubMed

    Lee, Jong-Hee; Kamada, Kai; Enomoto, Naoya; Hojo, Junichi

    2007-12-15

    Polyhedral gold nanoparticles below 100 nm in size were fabricated by continuously delivered HAuCl(4) and PVP starting solutions into l-ascorbic acid aqueous solution in the presence of gold seeds, and under addition of sodium hydroxide (NaOH). By continuously delivered PVP and HAuCl(4) starting solutions in the presence of gold seed, the size and shape of polyhedral gold were achieved in relatively good uniformity (particle size distribution=65-95 nm). Morphological evolution was also attempted using different growth rates of crystal facets with increasing reaction temperature, and selective adsorption of PVP.

  15. The history of gold therapy for tuberculosis.

    PubMed

    Benedek, Thomas G

    2004-01-01

    This is a historical study of the popularization of a medical therapy contrary to pertinent experimental findings. Presumably this circumstance reflects the desperation about tuberculosis: highly prevalent, highly fatal, and lacking any etiologically directed therapy. Gold compounds were introduced, based initially on the reputation of Robert Koch, who had found gold cyanide effective against M. tuberculosis in cultures, but not in experimentally infected animals. Treatment of pulmonary tuberculosis with these compounds was popularized, particularly by Danish physicians, in the mid-1920s, despite consistently negative experimental results, based on Paul Ehrlich's theories of antimicrobial drug effects. Difficulties in the design of interpretable clinical studies were soon recognized but also generally ignored, thus permitting data to be interpreted as favorable to antituberculous gold therapy. Eventually toxicity was considered to outweigh the alleged therapeutic benefit of all gold compounds. This resulted in their discard shortly before the introduction of streptomycin therapy.

  16. Gold Nanoparticle Conjugation Enhances the Antiacanthamoebic Effects of Chlorhexidine

    PubMed Central

    Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Anwar, Ayaz; Shah, Muhammad Raza

    2015-01-01

    Acanthamoeba keratitis is a serious infection with blinding consequences and often associated with contact lens wear. Early diagnosis, followed by aggressive topical application of drugs, is a prerequisite in successful treatment, but even then prognosis remains poor. Several drugs have shown promise, including chlorhexidine gluconate; however, host cell toxicity at physiologically relevant concentrations remains a challenge. Nanoparticles, subcolloidal structures ranging in size from 10 to 100 nm, are effective drug carriers for enhancing drug potency. The overall aim of the present study was to determine whether conjugation with gold nanoparticles enhances the antiacanthamoebic potential of chlorhexidine. Gold-conjugated chlorhexidine nanoparticles were synthesized. Briefly, gold solution was mixed with chlorhexidine and reduced by adding sodium borohydride, resulting in an intense deep red color, indicative of colloidal gold-conjugated chlorhexidine nanoparticles. The synthesis was confirmed using UV-visible spectrophotometry that shows a plasmon resonance peak of 500 to 550 nm, indicative of gold nanoparticles. Further characterization using matrix-assisted laser desorption ionization-mass spectrometry showed a gold-conjugated chlorhexidine complex at m/z 699 ranging in size from 20 to 100 nm, as determined using atomic force microscopy. To determine the amoebicidal and amoebistatic effects, amoebae were incubated with gold-conjugated chlorhexidine nanoparticles. For controls, amoebae also were incubated with gold and silver nanoparticles alone, chlorhexidine alone, neomycin-conjugated nanoparticles, and neomycin alone. The findings showed that gold-conjugated chlorhexidine nanoparticles exhibited significant amoebicidal and amoebistatic effects at 5 μM. Amoebicidal effects were observed by parasite viability testing using a Trypan blue exclusion assay and flow-cytometric analysis using propidium iodide, while amoebistatic effects were observed using growth

  17. Plasmonic Horizon in Gold Nanosponges.

    PubMed

    Vidal, Cynthia; Sivun, Dmitry; Ziegler, Johannes; Wang, Dong; Schaaf, Peter; Hrelescu, Calin; Klar, Thomas A

    2018-02-14

    An electromagnetic wave impinging on a gold nanosponge coherently excites many electromagnetic hot-spots inside the nanosponge, yielding a polarization-dependent scattering spectrum. In contrast, a hole, recombining with an electron, can locally excite plasmonic hot-spots only within a horizon given by the lifetime of localized plasmons and the speed carrying the information that a plasmon has been created. This horizon is about 57 nm, decreasing with increasing size of the nanosponge. Consequently, photoluminescence from large gold nanosponges appears unpolarized.

  18. Polyaspartic acid functionalized gold nanoparticles for tumor targeted doxorubicin delivery.

    PubMed

    Khandekar, Sameera V; Kulkarni, M G; Devarajan, Padma V

    2014-01-01

    In this paper, we present polyaspartic acid, a biodegradable polymer as a reducing and functionalizing agent for the synthesis of doxorubicin loaded gold nanoparticles by a green process. Gold nanoparticles were stable to electrolytes and pH. Secondary amino groups of polyaspartic acid enabled reduction of gold chloride to form gold nanoparticles of size 55 +/-10 nm, with face centered cubic crystalline structure as confirmed by UV, TEM, SAED and XRD studies. Cationic doxorubicin was readily loaded onto anionic polyaspartic acid gold nanoparticles by ionic complexation. Fluorescence studies confirmed doxorubicin loading while FTIR spectra confirmed ionic complexation. Doxorubicin loading onto polyaspartic acid gold nanoparticles was studied at doxorubicin/polyaspartic acid molar ratios 1:10 to 1:1. As the molar ratio tended to unity, although loading up to 60% was achieved, colloidal instability resulted and is attributed to effective covering of negative charges of polyaspartic acid. Stable doxorubicin loaded polyaspartic acid gold nanoparticles of 105 +/- 15.1 nm with doxorubicin loading of 23.85% w/w and zeta potential value of -28 +/- 0.77 mV were obtained at doxorubicin/polyaspartic acid molar ratio 1:10. Higher doxorubicin release rate from the doxorubicin loaded polyaspartic acid gold nanoparticles in an acid medium (i.e., pH 5.5) as compared to that in pH 7.4 and deionized water is a desirable characteristic for tumor targeted delivery. Enhanced cytotoxicity and 3 fold higher uptake of doxorubicin loaded polyaspartic acid gold nanoparticles as compared to doxorubicin solution were seen in MCF-7 breast cancer cells while polyaspartic acid gold nanoparticles revealed no cytotoxicity confirming safety. Prominent regression in tumor size in-vivo in fibrosarcoma tumor induced mouse model was observed upto 59 days with doxorubicin loaded polyaspartic acid gold nanoparticles while doxorubicin solution treated mice showed regrowth beyond 23rd day. Moreover, a

  19. Gold(III) complexes in medicinal chemistry.

    PubMed

    Maia, Pedro Ivo da Silva; Deflon, Victor M; Abram, Ulrich

    2014-09-01

    A number of gold(III) compounds has been designed with the objective of overcoming the disadvantages associated with the platinum-based drugs for cancer treatment. Compounds of a remarkable structural manifold show significant antiproliferative effects in vitro against a number of cancer cells, including cisplatin resistant ones. The target of most of them is, unlike that of cisplatin, not the DNA. Although the mechanisms of action displayed by the gold compounds in biological media are still under investigation, many studies show evidence that the cellular targets are mitochondria-based. Recent advances in gold(III) medicinal chemistry also recommend such compounds for other pharmacological applications such as the treatment of viral or parasitic diseases. The radioactive isotopes (198)Au and (199)Au present potential in radiotherapy.

  20. Micrometeorite penetration effects in gold foil

    NASA Technical Reports Server (NTRS)

    Hallgren, D. S.; Radigan, W.; Hemenway, C. L.

    1976-01-01

    Penetration structures revealed by a Skylab experiment dealing with exposure of single and double layers of 500-800 A thick gold foil to micrometeorites are examined. Examination of all double-layered gold foils revealed that particles producing holes of any type greater than 5 microns in diameter in the first foil break up into many fragments which in turn produce many more holes in the second foil. Evidence of an original particle is not found on any stainless steel plate below the foils, except in one instance. A precise relationship between the size of the event and the mass of the particle producing it could not be determined due to the extreme morphological variety in penetration effects. Fluxes from gold foil and crater experiments are briefly discussed.

  1. 78 FR 72139 - Nevada Gold Corp.; Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1 ] Nevada Gold Corp.; Order of Suspension of... current and accurate information concerning the securities of Nevada Gold Corp. (``Nevada Gold'') because of questions regarding the accuracy of assertions by Nevada Gold, and by others, to investors in...

  2. Enhanced performance of VOx-based bolometer using patterned gold black absorber

    NASA Astrophysics Data System (ADS)

    Smith, Evan M.; Panjwani, Deep; Ginn, James; Warren, Andrew; Long, Christopher; Figuieredo, Pedro; Smith, Christian; Perlstein, Joshua; Walter, Nick; Hirschmugl, Carol; Peale, Robert E.; Shelton, David J.

    2015-06-01

    Patterned highly absorbing gold black film has been selectively deposited on the active surfaces of a vanadium-oxide-based infrared bolometer array. Patterning by metal lift-off relies on protection of the fragile gold black with an evaporated oxide, which preserves gold black's near unity absorption. This patterned gold black also survives the dry-etch removal of the sacrificial polyimide used to fabricate the air-bridge bolometers. Infrared responsivity is substantially improved by the gold black coating without significantly increasing noise. The increase in the time constant caused by the additional mass of gold black is a modest 14%.

  3. Constraining Modern and Historic Mercury Emissions From Gold Mining

    NASA Astrophysics Data System (ADS)

    Strode, S. A.; Jaeglé, L.; Selin, N. E.; Sunderland, E.

    2007-12-01

    Mercury emissions from both historic gold and silver mining and modern small-scale gold mining are highly uncertain. Historic mercury emissions can affect the modern atmosphere through reemission from land and ocean, and quantifying mercury emissions from historic gold and silver mining can help constrain modern mining sources. While estimates of mercury emissions during historic gold rushes exceed modern anthropogenic mercury emissions in North America, sediment records in many regions do not show a strong gold rush signal. We use the GEOS-Chem chemical transport model to determine the spatial footprint of mercury emissions from mining and compare model runs from gold rush periods to sediment and ice core records of historic mercury deposition. Based on records of gold and silver production, we include mercury emissions from North and South American mining of 1900 Mg/year in 1880, compared to modern global anthropogenic emissions of 3400 Mg/year. Including this large mining source in GEOS-Chem leads to an overestimate of the modeled 1880 to preindustrial enhancement ratio compared to the sediment core record. We conduct sensitivity studies to constrain the level of mercury emissions from modern and historic mining that is consistent with the deposition records for different regions.

  4. Multifunctional gold nanoparticles for diagnosis and therapy of disease

    PubMed Central

    Mieszawska, Aneta J.; Mulder, Willem J. M.; Fayad, Zahi A.

    2013-01-01

    Gold nanoparticles (AuNPs) have a number of physical properties that make them appealing for medical applications. For example, the attenuation of X-rays by gold nanoparticles has led to their use in computed tomography imaging and as adjuvants for radiotherapy. AuNPs have numerous other applications in imaging, therapy and diagnostic systems. The advanced state of synthetic chemistry of gold nanoparticles offers precise control over physicochemical and optical properties. Furthermore gold cores are inert and are considered to be biocompatible and non-toxic. The surface of gold nanoparticles can easily be modified for a specific application and ligands for targeting, drugs or biocompatible coatings can be introduced. AuNPs can be incorporated into larger structures such as polymeric nanoparticles or liposomes that deliver large payloads for enhanced diagnostic applications, efficiently encapsulate drugs for concurrent therapy or add additional imaging labels. This array of features has led to the afore-mentioned applications in biomedical fields, but more recently in approaches where multifunctional gold nanoparticles are used for multiple methods, such as concurrent diagnosis and therapy, so called theranostics. The following review covers basic principles and recent findings in gold nanoparticle applications for imaging, therapy and diagnostics, with a focus on reports of multifunctional AuNPs. PMID:23360440

  5. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or alloys...

  6. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or alloys...

  7. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or alloys...

  8. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or alloys...

  9. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or alloys...

  10. New Gold Nanostructures for Sensor Applications: A Review

    PubMed Central

    Zhang, Yuanchao; Chu, Wendy; Foroushani, Alireza Dibaji; Wang, Hongbin; Li, Da; Liu, Jingquan; Barrow, Colin J.; Wang, Xin; Yang, Wenrong

    2014-01-01

    Gold based structures such as nanoparticles (NPs) and nanowires (NWs) have widely been used as building blocks for sensing devices in chemistry and biochemistry fields because of their unusual optical, electrical and mechanical properties. This article gives a detailed review of the new properties and fabrication methods for gold nanostructures, especially gold nanowires (GNWs), and recent developments for their use in optical and electrochemical sensing tools, such as surface enhanced Raman spectroscopy (SERS). PMID:28788124

  11. Gold nanoparticles as novel agents for cancer therapy

    PubMed Central

    Jain, S; Hirst, D G; O'Sullivan, J M

    2012-01-01

    Gold nanoparticles are emerging as promising agents for cancer therapy and are being investigated as drug carriers, photothermal agents, contrast agents and radiosensitisers. This review introduces the field of nanotechnology with a focus on recent gold nanoparticle research which has led to early-phase clinical trials. In particular, the pre-clinical evidence for gold nanoparticles as sensitisers with ionising radiation in vitro and in vivo at kilovoltage and megavoltage energies is discussed. PMID:22010024

  12. Stability of suspended gold and silver alloy monatomic chains

    NASA Astrophysics Data System (ADS)

    Fa, Wei; Dong, Jinming

    2008-06-01

    Using the first-principles plane wave pseudopotential method, we have studied the structures and stability of gold and silver alloy monatomic chains. It is found that minimizing system's enthalpy instead of its energy is critical to identify the stability of stretched alloy chains at zero temperature since the string tension can efficiently suppress the self-purification. Our simulations show that all the gold-containing chains do exhibit a local enthalpy minimum, giving a reasonable interpretation for the experimental observations of gold and silver alloy chains with different Ag concentrations [Bettini et al., Nat. Nanotechnol. 1, 182 (2006)]. These alloy chains are stabilized by the combined actions of the gold's relativistic effect and the string tension applied by the tip contacts, having similar geometrical structures to those of the pure gold chains.

  13. Functionalized Gold Nanorods for Tumor Imaging and Targeted Therapy

    PubMed Central

    Gui, Chen; Cui, Da-xiang

    2012-01-01

    Gold nanorods, as an emerging noble metal nanomaterial with unique properties, have become the new exciting focus of theoretical and experimental studies in the past few years. The structure and function of gold nanorods, especially their biocompatibility, optical property, and photothermal effects, have been attracting more and more attention. Gold nanorods exhibit great potential in applications such as tumor molecular imaging and photothermal therapy. In this article, we review some of the main advances made over the past few years in the application of gold nanorods in surface functionalization, molecular imaging, and photothermal therapy. We also explore other prospective applications and discuss the corresponding concepts, issues, approaches, and challenges, with the aim of stimulating broader interest in gold nanorod-based nanotechnology and improving its practical application. PMID:23691482

  14. Biosynthesis of Gold Nanoparticles Using Pseudomonas Aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abd El-Aziz, M.; Badr, Y.; Mahmoud, M. A.

    2007-02-14

    Pseudomonas aeruginosa were used for extracellular biosynthesis of gold nanoparticles (Au NPs). Consequently, Au NPs were formed due to reduction of gold ion by bacterial cell supernatant of P. aeruginos ATCC 90271, P. aeruginos (2) and P. aeruginos (1). The UV-Vis. and fluorescence spectra of the bacterial as well as chemical prepared Au NPs were recorded. Transmission electron microscopy (TEM) micrograph showed the formation of well-dispersed gold nanoparticles in the range of 15-30 nm. The process of reduction being extracellular and may lead to the development of an easy bioprocess for synthesis of Au NPs.

  15. Genetically modified luminescent bacteria Ralostonia solanacerum, Pseudomonas syringae, Pseudomonas savastanoi, and wild type bacterium Vibrio fischeri in biosynthesis of gold nanoparticles from gold chloride trihydrate.

    PubMed

    Attaran, Neda; Eshghi, Hossein; Rahimizadeh, Mohammad; Mashreghi, Mansour; Bakavoli, Mehdi

    2014-08-04

    The effect of different genetically engineered bacteria, Pseudomonas syringae, Pseudomonas savastanoi, and Ralostonia solanacerum and also a natural marine bacterial species, Vibrio fischeri NRRL B-11177, is studied in producing gold nanoparticles. This is the first report about the biosynthesis of gold nanoparticles by natural and genetically engineered luminescent bacteria. These microorganisms reduced gold ions and produced fairly monodisperse nanoparticles. TEM analysis indicated that spherical nano gold particles in the different diameters and shapes were obtained at pH values of 6.64. In this biosynthesis protocol, the gold nanoparticles with desired shape and size can be prepared.

  16. Radiofrequency heating pathways for gold nanoparticles.

    PubMed

    Collins, C B; McCoy, R S; Ackerson, B J; Collins, G J; Ackerson, C J

    2014-08-07

    This feature article reviews the thermal dissipation of nanoscopic gold under radiofrequency (RF) irradiation. It also presents previously unpublished data addressing obscure aspects of this phenomenon. While applications in biology motivated initial investigation of RF heating of gold nanoparticles, recent controversy concerning whether thermal effects can be attributed to nanoscopic gold highlight the need to understand the involved mechanism or mechanisms of heating. Both the nature of the particle and the nature of the RF field influence heating. Aspects of nanoparticle chemistry which may affect thermal dissipation include the hydrodynamic diameter of the particle, the oxidation state and related magnetism of the core, and the chemical nature of the ligand shell. Aspects of RF which may affect thermal dissipation include power, frequency and antenna designs that emphasize relative strength of magnetic or electric fields. These nanoparticle and RF properties are analysed in the context of three heating mechanisms proposed to explain gold nanoparticle heating in an RF field. This article also makes a critical analysis of the existing literature in the context of the nanoparticle preparations, RF structure, and suggested mechanisms in previously reported experiments.

  17. Gold in Accessory Zircon (the Kozhim Massif, Subpolar Urals)

    NASA Astrophysics Data System (ADS)

    Denisova, Yuliya; Pystin, Aleksandr

    2017-12-01

    The crystals of zircon due to their resistance to external impact of various processes can reveal information about the environment of their formation and the inclusions observed of them. Zircon contains different mineral inclusions: biotite, plagioclase, quartz, apatite, etc. However, there is no information about gold inclusions in the zircons from granites of the Sudpolar Urals. The study results of the inclusions of gold in accessory zircon of the Kozhim granitic massif are presented in this paper. The studied mineral is a dark-brown translucent short-prismatic crystal containing the inclusion of gold and the allocations of quartz. According to studies, the inclusion of gold formed during the growth of zircon and it is the gold covered with a thin film of oxide gold. It was confirmed that the crystallization of the studied zircon occurred at a temperature of 800°C and above on the stage of formation of granites of Kozhim massif. The assumption is made about the additional temperature in the course of which was caused by decreasing of temperature up to 700° C and below during postmagmatic stage.

  18. Surface plasmon resonance sensor based on photonic crystal fiber filled with gold-silica-gold multilayer nanoshells

    NASA Astrophysics Data System (ADS)

    Liu, Baolin; Lu, Ying; Yang, Xianchao; Yao, Jianquan

    2017-12-01

    We present a surface plasmon resonance sensor based on photonic crystal fiber filled with gold-silica-gold (GSG) multilayer nanoshells for measurement of the refractive index of liquid analyte. The GSG multilayer nanoshells, composed of a silica-coated gold nanosphere surrounded by a gold shell layer, are designed to be the functional material of the sensor because of their attractive optical properties. Two resonant peaks are obtained due to the hybridization of nanosphere plasmon modes and nanoshell plasmon modes. It is demonstrated that the resonant wavelength of the two peaks can be precisely tuned in 560-716 nm and 849-2485 nm, respectively, by varying the structural parameters of the GSG multilayer nanoshells in a compact, sub-200 nm size range. The excellent spectral tunability makes the sensor attractive in a wide range of applications, especially in biosensing in near-infrared region. Furthermore, the influences of the parameters on the performance of the sensor are systematically simulated and discussed. It is observed that the spectral sensitivities of 1894.3 nm/RIU and 3011.4 nm/RIU can be achieved respectively by the two resonant peaks in the sensing range of 1.33-1.38. The existence of two loss peaks also provides the possibility to realize self-reference in the sensing process.

  19. Study on gold concentrate leaching by iodine-iodide

    NASA Astrophysics Data System (ADS)

    Wang, Hai-xia; Sun, Chun-bao; Li, Shao-ying; Fu, Ping-feng; Song, Yu-guo; Li, Liang; Xie, Wen-qing

    2013-04-01

    Gold extraction by iodine-iodide solution is an effective and environment-friendly method. In this study, the method using iodine-iodide for gold leaching is proved feasible through thermodynamic calculation. At the same time, experiments on flotation gold concentrates were carried out and encouraging results were obtained. Through optimizing the technological conditions, the attained high gold leaching rate is more than 85%. The optimum process conditions at 25°C are shown as follows: the initial iodine concentration is 1.0%, the iodine-to-iodide mole ratio is 1:8, the solution pH value is 7, the liquid-to-solid mass ratio is 4:1, the leaching time is 4 h, the stirring intensity is 200 r/mim, and the hydrogen peroxide consumption is 1%.

  20. Simulated GOLD Observations of Atmospheric Waves

    NASA Astrophysics Data System (ADS)

    Correira, J.; Evans, J. S.; Lumpe, J. D.; Rusch, D. W.; Chandran, A.; Eastes, R.; Codrescu, M.

    2016-12-01

    The Global-scale Observations of the Limb and Disk (GOLD) mission will measure structures in the Earth's airglow layer due to dynamical forcing by vertically and horizontally propagating waves. These measurements focus on global-scale structures, including compositional and temperature responses resulting from dynamical forcing. Daytime observations of far-UV emissions by GOLD will be used to generate two-dimensional maps of the ratio of atomic oxygen and molecular nitrogen column densities (ΣO/N2 ) as well as neutral temperature that provide signatures of large-scale spatial structure. In this presentation, we use simulations to demonstrate GOLD's capability to deduce periodicities and spatial dimensions of large-scale waves from the spatial and temporal evolution observed in composition and temperature maps. Our simulations include sophisticated forward modeling of the upper atmospheric airglow that properly accounts for anisotropy in neutral and ion composition, temperature, and solar illumination. Neutral densities and temperatures used in the simulations are obtained from global circulation and climatology models that have been perturbed by propagating waves with a range of amplitudes, periods, and sources of excitation. Modeling of airglow emission and predictions of ΣO/N2 and neutral temperatures are performed with the Atmospheric Ultraviolet Radiance Integrated Code (AURIC) and associated derived product algorithms. Predicted structure in ΣO/N2 and neutral temperature due to dynamical forcing by propagating waves is compared to existing observations. Realistic GOLD Level 2 data products are generated from simulated airglow emission using algorithm code that will be implemented operationally at the GOLD Science Data Center.

  1. Silk fibroin/gold nanocrystals: a new example of biopolymer-based nanocomposites

    NASA Astrophysics Data System (ADS)

    Noinville, S.; Garnier, A.; Courty, A.

    2017-05-01

    The dispersion of nanoparticles in ordered polymer nanostructures can provide control over particle location and orientation, and pave the way for tailored nanomaterials that have enhanced mechanical, electrical, or optical properties. Here we used silk fibroin, a natural biopolymer, to embed gold nanocrystals (NCs), so as to obtain well-ordered structures such as nanowires and self-assembled triangular nanocomposites. Monodisperse gold NCs synthesized in organic media are mixed to silk fibroin and the obtained nanocomposites are characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and Infrared spectroscopy. The optical properties study of gold NCs and silk-gold nanocomposites shows that the Surface Plasmon band is blue shifted compared to gold NCs. The size and shape of NCs gold superlattices can be well controlled by the presence of silk fibroin giving nanowires and also self-assembled triangular nanocomposites as characterized by TEM, FE-SEM and AFM. The strong interaction between gold NCs and silk fibroin is also revealed by the conformation change of silk protein in presence of gold NCs, as shown by FTIR analysis. The formation of such ordered nanocomposites (gold NCs/silk fibroin) will provide new nanoplasmonic devices.

  2. Novel Catalysis by Gold: A Modern Alchemy

    NASA Astrophysics Data System (ADS)

    Haruta, Masatake

    Gold has long been neglected as a catalyst because of its chemical inertness. However, when gold is deposited as nanoparticles on carbon and polymer materials as well as on base metal oxides and hydroxides, it exhibits unique catalytic properties for many reactions such as CO oxidation at a temperature as low as 200 K, gas phase direct epoxidation of propylene, and aerobic oxidation of glucose to gluconic acid. The structure-catalytic activity correlations are discussed with emphasis on the contact structure, support selection, and the size control of gold particles. Gold clusters with diameters smaller than 2 nm are expected to exhibit novel properties in catalysis, optics, and electronics depending on the size (number of atoms), shape, and the electronic and chemical interaction with the support materials. The above achievements and attempts can be regarded as a modern alchemy that creates valuables by means of the noblest element with little practical use.

  3. Directing self-assembly of gold nanoparticles in diblock copolymer scaffold

    NASA Astrophysics Data System (ADS)

    Li, Qifang; He, Jinbo; Glogowski, Elizabeth; Emrick, Todd; Russell, Thomas

    2007-03-01

    A versatile hierarchical approach for directing self -assembly of gold nanostructures with size 2-3nm in diblock copolymer scaffolds is found. Diblock copolymer polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) is used to form a regular scaffold of highly anisotropic, stripe-like domains, and controlled differential wetting by dichloromethane and thermal annealing guides gold nanoparticles with half hydrophilic ligand to aggregate selectively along the scaffold, producing highly organized metal nanostructures. In as-cast block-copolymer and gold nanoparticles thin films, micelle structure and gold nanoparticles random distribution on scaffold are typically observed. However, samples annealed in dichloromethane exhibit well-defined short-range ordered nanostructure with gold nanoparticles located at the interface of PS and P2VP nanoscale domain. After annealing at 170 C, the gold nanoparticles at interface migrated into the middle of P2VP phase and exhibited long-range ordered hierarchical structures. Synergistic interactions between the gold nanoparticles and the PS-b-P2VP caused an orientation of the microdomains normal to the film surface.

  4. Gold nanoparticle imaging and radiotherapy of brain tumors in mice

    PubMed Central

    Hainfeld, James F; Smilowitz, Henry M; O'Connor, Michael J; Dilmanian, Farrokh Avraham; Slatkin, Daniel N

    2013-01-01

    Aim To test intravenously injected gold nanoparticles for x-ray imaging and radiotherapy enhancement of large, imminently lethal, intracerebral malignant gliomas. Materials & methods Gold nanoparticles approximately 11 nm in size were injected intravenously and brains imaged using microcomputed tomography. A total of 15 h after an intravenous dose of 4 g Au/kg was administered, brains were irradiated with 30 Gy 100 kVp x-rays. Results Gold uptake gave a 19:1 tumor-to-normal brain ratio with 1.5% w/w gold in tumor, calculated to increase local radiation dose by approximately 300%. Mice receiving gold and radiation (30 Gy) demonstrated 50% long term (>1 year) tumor-free survival, whereas all mice receiving radiation only died. Conclusion Intravenously injected gold nanoparticles cross the blood–tumor barrier, but are largely blocked by the normal blood–brain barrier, enabling high-resolution computed tomography tumor imaging. Gold radiation enhancement significantly improved long-term survival compared with radiotherapy alone. This approach holds promise to improve therapy of human brain tumors and other cancers. PMID:23265347

  5. Colloidal gold-modified optical fiber for chemical and biochemical sensing.

    PubMed

    Cheng, Shu-Fang; Chau, Lai-Kwan

    2003-01-01

    A novel class of fiber-optic evanescent-wave sensor was constructed on the basis of modification of the unclad portion of an optical fiber with self-assembled gold colloids. The optical properties and, hence, the attenuated total reflection spectrum of self-assembled gold colloids on the optical fiber changes with different refractive index of the environment near the colloidal gold surface. With sucrose solutions of increasing refractive index, the sensor response decreases linearly. The colloidal gold surface was also functionalized with glycine, succinic acid, or biotin to enhance the selectivity of the sensor. Results show that the sensor response decreases linearly with increasing concentration of each analyte. When the colloidal gold surface was functionalized with biotin, the detection limit of the sensor for streptavidin was 9.8 x 10(-11) M. Using this approach, we demonstrate proof-of-concept of a class of refractive index sensor that is sensitive to the refractive index of the environment near the colloidal gold surface and, hence, is suitable for label-free detection of molecular or biomolecular binding at the surface of gold colloids.

  6. Fabrication, characterisation and voltammetric studies of gold amalgam nanoparticle modified electrodes.

    PubMed

    Welch, Christine M; Nekrassova, Olga; Dai, Xuan; Hyde, Michael E; Compton, Richard G

    2004-09-20

    The tabrication, characterisation, and electroanalytical application of gold and gold amalgam nanoparticles on glassy carbon electrodes is examined. Once the deposition parameters for gold nanoparticle electrodes were optimised, the analytical utility of the electrodes was examined in CrIII electroanalysis. It was found that gold nanoparticle modified (Au-NM) electrodes possess higher sensitivity than gold macroelectrodes. In addition, gold amalgam nanoparticle modified (AuHg-NM) electrodes were fabricated and characterised. The response of those electrodes was recorded in the presence of important environmental analytes (heavy metal cations). It was found AuHg-NM electrodes demonstrate a unique voltammetric behaviour and can be applied for electroanalysis when enhanced sensitivity is crucial.

  7. Aggregation effect on absorbance spectrum of laser ablated gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Isnaeni; Irmaniar; Herbani, Y.

    2017-04-01

    Plasmon of gold nanoparticles is one of the hot topics nowadays due to various possible applications. The application is determined by plasmon peak in absorbance spectrum. We have fabricated gold nanoparticles using laser ablation technique and studied the influence of CTAB (Cetyl trimethylammonium bromide) effect on the optical characterization of fabricated gold nanoparticles. We ablated a gold plate using NdYAG pulsed laser at 1064 nm wavelength, 10 Hz pulse frequency at low energy density. We found there are two distinctive plasmon peaks, i.e., primary and secondary peaks, where the secondary peak is the main interests of this work. Our simulation results have revealed that the secondary plasmon peak is affected by random aggregation of gold nanoparticles. Our research leads to good techniques on fabrication of colloidal gold nanoparticles in aqueous solution using laser ablation technique.

  8. Gold-Based Medicine: A Paradigm Shift in Anti-Cancer Therapy?

    PubMed

    Yeo, Chien Ing; Ooi, Kah Kooi; Tiekink, Edward R T

    2018-06-11

    A new era of metal-based drugs started in the 1960s, heralded by the discovery of potent platinum-based complexes, commencing with cisplatin [(H₃N)₂PtCl₂], which are effective anti-cancer chemotherapeutic drugs. While clinical applications of gold-based drugs largely relate to the treatment of rheumatoid arthritis, attention has turned to the investigation of the efficacy of gold(I) and gold(III) compounds for anti-cancer applications. This review article provides an account of the latest research conducted during the last decade or so on the development of gold compounds and their potential activities against several cancers as well as a summary of possible mechanisms of action/biological targets. The promising activities and increasing knowledge of gold-based drug metabolism ensures that continued efforts will be made to develop gold-based anti-cancer agents.

  9. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and carlin-style sediment-hosted deposits

    USGS Publications Warehouse

    Large, R.R.; Danyushevsky, L.; Hollit, C.; Maslennikov, V.; Meffre, S.; Gilbert, S.; Bull, S.; Scott, R.; Emsbo, P.; Thomas, H.; Singh, B.; Foster, J.

    2009-01-01

    Laser ablation ICP-MS imaging of gold and other trace elements in pyrite from four different sediment- hosted gold-arsenic deposits has revealed two distinct episodes of gold enrichment in each deposit: an early synsedimentary stage where invisible gold is concentrated in arsenian diagenetic pyrite along with other trace elements, in particular, As, Ni, Pb, Zn, Ag, Mo, Te, V, and Se; and a later hydrothermal stage where gold forms as either free gold grains in cracks in overgrowth metamorphic and/or hydrothermal pyrite or as narrow gold- arsenic rims on the outermost parts of the overgrowth hydrothermal pyrite. Compared to the diagenetic pyrites, the hydrothermal pyrites are commonly depleted in Ni, V, Zn, Pb, and Ag with cyclic zones of Co, Ni, and As concentration. The outermost hydrothermal pyrite rims are either As-Au rich, as in moderate- to high- grade deposits such as Carlin and Bendigo, or Co-Ni rich and As-Au poor as in moderate- to low-grade deposits such as Sukhoi Log and Spanish Mountain. The early enrichment of gold in arsenic-bearing syngenetic to diagenetic pyrite, within black shale facies of sedimentary basins, is proposed as a critical requirement for the later development of Carlin-style and orogenic gold deposits in sedimentary environments. The best grade sediment-hosted deposits appear to have the gold climax event, toward the final stages of deformation-related hydrothermal pyrite growth and fluid flow. ?? 2009 Society of Economic Geologists, Inc.

  10. 75 FR 26310 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ... 273 EP El Paso Corp. Group Ltd. 215 XLP Consumer Staples 274 SEED Origin Agritech Select Sector SPDR.... 223 WMB Williams Cos Inc/The. 280 ADBE Adobe Systems Inc. 225 MEE Massey Energy Co. 281 PCX Patriot...

  11. Sulfur radical species form gold deposits on Earth

    PubMed Central

    Pokrovski, Gleb S.; Kokh, Maria A.; Guillaume, Damien; Borisova, Anastassia Y.; Gisquet, Pascal; Hazemann, Jean-Louis; Lahera, Eric; Del Net, William; Proux, Olivier; Testemale, Denis; Haigis, Volker; Jonchière, Romain; Seitsonen, Ari P.; Ferlat, Guillaume; Vuilleumier, Rodolphe; Saitta, Antonino Marco; Boiron, Marie-Christine; Dubessy, Jean

    2015-01-01

    Current models of the formation and distribution of gold deposits on Earth are based on the long-standing paradigm that hydrogen sulfide and chloride are the ligands responsible for gold mobilization and precipitation by fluids across the lithosphere. Here we challenge this view by demonstrating, using in situ X-ray absorption spectroscopy and solubility measurements, coupled with molecular dynamics and thermodynamic simulations, that sulfur radical species, such as the trisulfur ion S3−, form very stable and soluble complexes with Au+ in aqueous solution at elevated temperatures (>250 °C) and pressures (>100 bar). These species enable extraction, transport, and focused precipitation of gold by sulfur-rich fluids 10–100 times more efficiently than sulfide and chloride only. As a result, S3− exerts an important control on the source, concentration, and distribution of gold in its major economic deposits from magmatic, hydrothermal, and metamorphic settings. The growth and decay of S3− during the fluid generation and evolution is one of the key factors that determine the fate of gold in the lithosphere. PMID:26460040

  12. Compositional Variation of Tourmaline from the Paleoproterozoic Bhukia Gold Prospect of Aravalli Supergroup, Western India: Implications for the Provenance and Gold Metallogeny

    NASA Astrophysics Data System (ADS)

    Mukherjee, R.; Venkatesh, A. S.; Fareeduddin, F.

    2016-12-01

    Bhukia is a unique gold prospect in terms of its host lithologies such as albitite and carbonates with respect to greenstone hosted Archean gold deposits from India. Tourmaline occurs along with apatite, magnetite, graphite, chalcopyrite and gold-sulfide association in Bhukia gold prospect preserve geochemical record of changing physico-chemical conditions during its growth. Tourmalinization is one of the distinct hydrothermal alterations present in the study area. Chemical composition of two varieties of tourmalines presents as significant amounts within albitite and carbonate rocks from Bhukia gold prospect. EPMA analysis of two varieties of tourmalines viz. 1) rounded to sub-rounded, euhedral, green colored tourmalines and 2) elongated, zoned, brown colored tourmalines unlocks their chemical compositions as well as variations from core to rim. In some albitite litho-units, tourmaline occurs as major constituents (>15%), present as layers, termed as tourmalinites. Al-Fe-Mg and Na/ (Na+Ca) vs Fe/ (Fe+Mg) suggests that tourmalines from the Bhukia gold prospect are Mg-rich dravite to Fe-rich schrol in composition. Tourmalines present within the albitite rocks show variations in iron and sodium content from core to rim whereas similarity exist from core to rim in case of carbonate rocks. Presence of albite confirms the role of Na-rich fluids during the formation of tourmalines. Tourmalines present in Bhukia gold prospect is mainly influenced by boron influx and the source may be boron bearing hydrothermal fluid or boron bearing minerals. Dewatering of original un-metamorphosed rock during progressive metamorphism may remove boron from the metasedimentary rocks. Due to the mobile nature of boron, it dispersed and mixed with hydrothermal fluids and alumina that is required for the formation of the tourmaline might have been leached from metasedimentary rocks present in Bhukia gold prospect. Presence of hydrothermal alterations such as tourmalinization and albitization

  13. Emerging advances in nanomedicine with engineered gold nanostructures.

    PubMed

    Webb, Joseph A; Bardhan, Rizia

    2014-03-07

    Gold nanostructures possess unique characteristics that enable their use as contrast agents, as therapeutic entities, and as scaffolds to adhere functional molecules, therapeutic cargo, and targeting ligands. Due to their ease of synthesis, straightforward surface functionalization, and non-toxicity, gold nanostructures have emerged as powerful nanoagents for cancer detection and treatment. This comprehensive review summarizes the progress made in nanomedicine with gold nanostructures (1) as probes for various bioimaging techniques including dark-field, one-photon and two-photon fluorescence, photothermal optical coherence tomography, photoacoustic tomography, positron emission tomography, and surface-enhanced Raman scattering based imaging, (2) as therapeutic components for photothermal therapy, gene and drug delivery, and radiofrequency ablation, and (3) as a theranostic platform to simultaneously achieve both cancer detection and treatment. Distinct from other published reviews, this article also discusses the recent advances of gold nanostructures as contrast agents and therapeutic actuators for inflammatory diseases including atherosclerotic plaque and arthritis. For each of the topics discussed above, the fundamental principles and progress made in the past five years are discussed. The review concludes with a detailed future outlook discussing the challenges in using gold nanostructures, cellular trafficking, and translational considerations that are imperative for rapid clinical viability of plasmonic nanostructures, as well as the significance of emerging technologies such as Fano resonant gold nanostructures in nanomedicine.

  14. Emerging advances in nanomedicine with engineered gold nanostructures

    NASA Astrophysics Data System (ADS)

    Webb, Joseph A.; Bardhan, Rizia

    2014-02-01

    Gold nanostructures possess unique characteristics that enable their use as contrast agents, as therapeutic entities, and as scaffolds to adhere functional molecules, therapeutic cargo, and targeting ligands. Due to their ease of synthesis, straightforward surface functionalization, and non-toxicity, gold nanostructures have emerged as powerful nanoagents for cancer detection and treatment. This comprehensive review summarizes the progress made in nanomedicine with gold nanostructures (1) as probes for various bioimaging techniques including dark-field, one-photon and two-photon fluorescence, photothermal optical coherence tomography, photoacoustic tomography, positron emission tomography, and surface-enhanced Raman scattering based imaging, (2) as therapeutic components for photothermal therapy, gene and drug delivery, and radiofrequency ablation, and (3) as a theranostic platform to simultaneously achieve both cancer detection and treatment. Distinct from other published reviews, this article also discusses the recent advances of gold nanostructures as contrast agents and therapeutic actuators for inflammatory diseases including atherosclerotic plaque and arthritis. For each of the topics discussed above, the fundamental principles and progress made in the past five years are discussed. The review concludes with a detailed future outlook discussing the challenges in using gold nanostructures, cellular trafficking, and translational considerations that are imperative for rapid clinical viability of plasmonic nanostructures, as well as the significance of emerging technologies such as Fano resonant gold nanostructures in nanomedicine.

  15. Intriguing mechanistic labyrinths in gold(i) catalysis

    PubMed Central

    Obradors, Carla

    2014-01-01

    Many mechanistically intriguing reactions have been developed in the last decade using gold(i) as catalyst. Here we review the main mechanistic proposals in gold-catalysed activation of alkynes and allenes, in which this metal plays a central role by stabilising a variety of complex cationic intermediates. PMID:24176910

  16. Nanosecond nonlinear optical and optical limiting properties of hollow gold nanocages

    NASA Astrophysics Data System (ADS)

    Zheng, Chan; Huang, Jiaxin; Lei, Li; Chen, Wenzhe; Wang, Haiyan; Li, Wei

    2018-01-01

    Gold nanocages (NCs) were prepared using the galvanic replacement reaction. Transmission electron microscopy images confirmed the porous morphology and completely hollow interior of the gold NCs. The nanosecond nonlinear optical and optical limiting (OL) properties of the NCs were characterized using the open-aperture Z-scan technique with 8-ns laser pulses at 532 nm. The gold NCs exhibited intensity-dependent transformation from saturable absorption to reverse-saturable absorption. The nonlinear absorption coefficient and saturable energy of the NCs were 5 × 10- 12 m/W and 2.5 × 1010 W/m2, respectively. Meanwhile, the gold NCs were found to display strong OL properties towards nanosecond laser pulses. The OL threshold of the gold NCs was lower than that of solid gold nanoparticles and comparable with that of a carbon nanotube suspension. Input fluence and angle-dependent scattering measurements indicated that nonlinear scattering plays an important role in the OL behavior of the gold nanostructures at high laser excitation. The improved OL response in gold NCs was discussed from the viewpoint of structural characteristic. The ultrathin and highly porous walls of the gold NCs can effectively transfer the photon-induced heat to the surrounding solvent, resulting in enhanced OL properties compared with those of solid gold nanoparticles. The intensity-dependent transformation from saturable absorption to reverse-saturable absorption and excellent OL response indicate that the smart gold NCs with ultrathin and highly porous walls can be considered as potential candidate in pulse shaping, passive mode locking, and eye protection against powerful lasers.

  17. Tiopronin Gold Nanoparticle Precursor Forms Aurophilic Ring Tetramer

    PubMed Central

    Simpson, Carrie A.; Farrow, Christopher L.; Tian, Peng; Billinge, Simon J.L.; Huffman, Brian J.; Harkness, Kellen M.; Cliffel, David E.

    2010-01-01

    In the two step synthesis of thiolate-monolayer protected clusters (MPCs), the first step of the reaction is a mild reduction of gold(III) by thiols that generates gold(I) thiolate complexes as intermediates. Using tiopronin (Tio) as the thiol reductant, the characterization of the intermediate Au4Tio4 complex was accomplished with various analytical and structural techniques. Nuclear magnetic resonance (NMR), elemental analysis, thermogravimetric analysis (TGA), and matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) were all consistent with a cyclic gold(I)-thiol tetramer structure, and final structural analysis was gathered through the use of powder diffraction and pair distribution functions (PDF). Crystallographic data has proved challenging for almost all previous gold(I)-thiolate complexes. Herein, a novel characterization technique when combined with standard analytical assessment to elucidate structure without crystallographic data proved invaluable to the study of these complexes. This in conjunction with other analytical techniques, in particular mass spectrometry, can elucidate a structure when crystallographic data is unavailable. In addition, luminescent properties provided evidence of aurophilicity within the molecule. The concept of aurophilicity has been introduced to describe a select group of gold-thiolate structures, which possess unique characteristics, mainly red photoluminescence and a distinct Au-Au intramolecular distance indicating a weak metal-metal bond as also evidenced by the structural model of the tetramer. Significant features of both the tetrameric and aurophilic properties of the intermediate gold(I) tiopronin complex are retained after borohydride reduction to form the MPC, including gold(I) tiopronin partial rings as capping motifs, or “staples”, and weak red photoluminescence that extends into the Near Infrared region. PMID:21067183

  18. Modification of the rheological properties of screen printing ceramic paints containing gold

    NASA Astrophysics Data System (ADS)

    Izak, P.; Mastalska-Poplawska, J.; Lis, J.; Stempkowska, A.

    2017-01-01

    This work presents the results of modification of rheological properties of screen printing paints containing gold. 15 wt% glossy gold paste and 15 wt% glossy liquid gold were used as modifiers containing gold. The study showed that the gold paint for screen printing can be obtained by evaporation of the 15 wt% liquid gold and the golden luster. The compaction process of liquid gold by evaporation is slow and easy to perform in industrial conditions. The second way to adapt the 15 wt% gold ceramic paint for screen printing application depended on adding the aniseed oil and the pine oil. The course of the flow curve of the gold paste without modification indicates that it is shear thinning and shows the desired effect of thixotropy, and even anti-thixotropy, at low shear rates (<50-1 s-1). The introduction of the essential oils eliminates this phenomenon and the paste converts itself from the non-rheostable to the rheostable liquid.

  19. Site-Specific Attachment of gold Nanoparticles to DNA Templates

    DTIC Science & Technology

    2001-01-01

    1 -ethyl- 3 -( 3 - dimethylaminopropyl ) carbodiimide hydrochloride (Pierce) and -2.0rmg N...functionalized gold nanoparticles. The gold particles were covalently bound to the amino groups on the DNA using standard 1 -ethyl- 3 - ( 3 - dimethylaminopropyl ...nm). The reaction between the amino group on the DNA and the carboxyl group on the gold particle was facilitated by 1 -ethyl- 3 -( 3 - dimethylaminopropyl

  20. Synthesis of gold nanoparticles with graphene oxide.

    PubMed

    Wang, Wenshuo; He, Dawei; Zhang, Xiqing; Duan, Jiahua; Wu, Hongpeng; Xu, Haiteng; Wang, Yongsheng

    2014-05-01

    Single sheets of functionalized graphene oxide are derived through chemical exfoliation of natural flake graphite. We present an effective synthetic method of graphene-gold nanoparticles hybrid nanocomposites. AFM (Atomic Force Microscope) was used to measure the thickness of the individual GO nanosheet. FTIR (Fourier transform infrared) spectroscopy was used to verify the attachment of oxygen functionalities on the surface of graphene oxide. TEM (Transmission Electron Microscope) data revealed the average diameters of the gold colloids and characterized the composite particles situation. Absorption spectroscopy showed that before and after synthesis the gold particle size did not change. Our studies indicate that the hybrid is potential substrates for catalysts and biosensors.

  1. Gold nanoparticle-based plasmonic random fiber laser

    NASA Astrophysics Data System (ADS)

    Hu, Zhijia; Liang, Yunyun; Xie, Kang; Gao, Pengfei; Zhang, Douguo; Jiang, Haiming; Shi, Fan; Yin, Leicheng; Gao, Jiangang; Ming, Hai; Zhang, Qijin

    2015-03-01

    We have reported the realization of a plasmonic random fiber laser based on the localized surface plasmonic resonance of gold nanoparticles (NPs) in the liquid core optical fiber. The liquid core material contains a dispersive solution of gold NPs and laser dye pyrromethene 597 in toluene. It was experimentally proved that the fluorescence quenching of the dye is restrained in the optical fiber, which is considered one of the main sources of loss in the traditional laser system. Meanwhile, the random lasing can be more easily obtained in the random laser system with more overlap between the plasmonic resonance of the gold NPs and the photoluminescence spectrum of the dye molecules.

  2. Electrochemical annealing of nanoporous gold by application of cyclic potential sweeps

    PubMed Central

    Sharma, Abeera; Bhattarai, Jay K.; Alla, Allan J.; Demchenko, Alexei V.; Stine, Keith J.

    2015-01-01

    An electrochemical method for annealing the pore sizes of nanoporous gold is reported. The pore sizes of nanoporous gold can be increased by electrochemical cycling with the upper potential limit being just at the onset of gold oxide formation. This study has been performed in electrolyte solutions including potassium chloride, sodium nitrate and sodium perchlorate. Scanning electron microscopy images have been used for ligament and pore size analysis. We examine the modifications of nanoporous gold due to annealing using electrochemical impedance spectroscopy, and cyclic voltammetry and offer a comparison of the surface coverage using the gold oxide stripping method as well as the method in which electrochemically accessible surface area is determined by using a diffusing redox probe. The effect of additives adsorbed on the nanoporous gold surface when subjected to annealing in different electrolytes as well as the subsequent structural changes in nanoporous gold are also reported. The effect of the annealing process on the application of nanoporous gold as a substrate for glucose electro-oxidation is briefly examined. PMID:25649027

  3. Gold grade of epithermal gold ore at Lamuntet, Brang Rea, West Sumbawa District, West Nusa Tenggara Province, Indonesia

    NASA Astrophysics Data System (ADS)

    Ernawati, Rika; Idrus, Arifudin; TBMP, Himawan

    2017-06-01

    Lamuntet is one of gold ore mining area carried out by the Artisanal Small scale Gold Mining (ASGM) located in West Sumbawa, Indonesia. Most of the miners at this area are not the local miners but also those from other regions. Mineralization of this area is strong identified as low sulfidation epithermal system. There are two blocks of this mining location, namely, Ngelampar block with an area of 0.164 km2 and Song block with an area of 0.067 km2. This study was focused on Ngelampar block. The characteristic of epithermal system is the existence of quartz vein with comb, vuggy, and sugary texture. The aim of this research was to analyze the gold grade and other metals, such as Cu, Ag, Pb, As, Zn, and Hg. The research methods included literature study from previous researches, field work, laboratory work, and interpretation. The literature study was performed on previous researches with similar study area. The field work comprised of direct observation and sampling. Fieldwork was done for a week to obtain gold ore/vein. Sixteen samples were analyzed to obtain the grade of ore/metal. The Hg laboratory analysis was then performed on the six samples with the highest gold grade. Laboratory works were conducted at Intertek Jakarta by using Fire Assay (FA) for gold grade and Atomic Absorption Spectrophotometry (AAS) for Cu, Ag, Pb, As, Zn, and Hg. Results of the analysis showed the range of Au was grade (0.1 ppm - 27.8 ppm), Cu was 26 ppm -1740 ppm, Pb was 101 ppm- >4000 ppm, Zn of 73 ppm- >10,000 ppm, Ag of 3 ppm -185 ppm, As was 150 ppm-6530 ppm, and Hg of 0.08 ppm - 1.89 ppm. L1 and L15 had high grade for all values (Au, Ag, Zn, Cu, As, and Hg). Gold mineralization was formed as electrum because of Ag content is higher than 20%. Associated minerals of the samples in the study area were galena, sphalerite, arsenopyrite, and chalcopyrite which showed the characteristic of rich base metal of Pb, Zn, and Cu at LS epithermal.

  4. Extraction of gold (Au) particles from sea water by Delftia Acidovorans microbes

    NASA Astrophysics Data System (ADS)

    Yusoff, A. H. M.; Nading, M. E.; Salimi, M. N.

    2017-10-01

    Gold-mining activities have been an issue, especially when it involves in contamination of chemicals, for example arsenic and mercury. However, despite of these hazards, gold-mining activities are still being conducted. This is because the gold is worth, regardless of the problems. Gold-mining, as known needs a very large area of land, or site plant. Vast amount of labor force, mechanical force and fund are a must in order for the mining process to be continued. High demand of gold, made gold-mining industries as ones of the most profitable industries in the world. Thus, this has encouraged another alternative way to extract gold. At the mining site, researchers found that biomineralization of gold by Delftia acidovorans can be conducted. How it is done still cannot be understood. It is said that the bacteria secretes secondary metabolites, Delftibactin as a defensive mechanism against the toxicity of the soluble gold. Researchers try to find another source of elemental gold besides of the earth’s core. The options are either lava of a volcano or ocean. Here, the focus is seawater. The problem of seawater is that its composition still not yet to be proved. Dissolve gold existed as gold chloride in seawater, but in a very small amount. So, the gold separation should be focused, in order to make this process to be a successful one. Factors such as depth, climate, region, temperature need to be considered. If this difference affecting the separating process, standardized seawater composition have to be proposed.

  5. Enhanced Mechanical Stability of Gold Nanotips through Carbon Nanocone Encapsulation

    PubMed Central

    Cano-Marquez, Abraham G.; Schmidt, Wesller G.; Ribeiro-Soares, Jenaina; Gustavo Cançado, Luiz; Rodrigues, Wagner N.; Santos, Adelina P.; Furtado, Clascidia A.; Autreto, Pedro A.S.; Paupitz, Ricardo; Galvão, Douglas S.; Jorio, Ado

    2015-01-01

    Gold is a noble metal that, in comparison with silver and copper, has the advantage of corrosion resistance. Despite its high conductivity, chemical stability and biocompatibility, gold exhibits high plasticity, which limits its applications in some nanodevices. Here, we report an experimental and theoretical study on how to attain enhanced mechanical stability of gold nanotips. The gold tips were fabricated by chemical etching and further encapsulated with carbon nanocones via nanomanipulation. Atomic force microscopy experiments were carried out to test their mechanical stability. Molecular dynamics simulations show that the encapsulated nanocone changes the strain release mechanisms at the nanoscale by blocking gold atomic sliding, redistributing the strain along the whole nanostructure. The carbon nanocones are conducting and can induce magnetism, thus opening new avenues on the exploitation of transport, mechanical and magnetic properties of gold covered by sp2 carbon at the nanoscale. PMID:26083864

  6. Formation, structure, and orientation of gold silicide on gold surfaces

    NASA Technical Reports Server (NTRS)

    Green, A. K.; Bauer, E.

    1976-01-01

    The formation of gold silicide on Au films evaporated onto Si(111) surfaces is studied by Auger electron spectroscopy (AES) and low-energy electron diffraction (LEED). Surface condition, film thickness, deposition temperature, annealing temperature, and heating rate during annealing are varied. Several oriented crystalline silicide layers are observed.

  7. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration.

    PubMed

    De Jong, Wim H; Hagens, Werner I; Krystek, Petra; Burger, Marina C; Sips, Adriënne J A M; Geertsma, Robert E

    2008-04-01

    A kinetic study was performed to determine the influence of particle size on the in vivo tissue distribution of spherical-shaped gold nanoparticles in the rat. Gold nanoparticles were chosen as model substances as they are used in several medical applications. In addition, the detection of the presence of gold is feasible with no background levels in the body in the normal situation. Rats were intravenously injected in the tail vein with gold nanoparticles with a diameter of 10, 50, 100 and 250 nm, respectively. After 24 h, the rats were sacrificed and blood and various organs were collected for gold determination. The presence of gold was measured quantitatively with inductively coupled plasma mass spectrometry (ICP-MS). For all gold nanoparticle sizes the majority of the gold was demonstrated to be present in liver and spleen. A clear difference was observed between the distribution of the 10 nm particles and the larger particles. The 10 nm particles were present in various organ systems including blood, liver, spleen, kidney, testis, thymus, heart, lung and brain, whereas the larger particles were only detected in blood, liver and spleen. The results demonstrate that tissue distribution of gold nanoparticles is size-dependent with the smallest 10nm nanoparticles showing the most widespread organ distribution.

  8. Application of gold compositional analyses to mineral exploration in the United States

    USGS Publications Warehouse

    Antweiler, J.C.; Campbell, W.L.

    1977-01-01

    Native gold is a mineral composed of Au, Ag and Cu in solid solution and it usually contains one or more trace metals as lattice impurities, as mineral inclusions, in grain boundaries or in surface coatings. Alloy proportions of Au, Ag and Cu, together with certain other elements, can be thought of as constituting a gold "signature". Gold is associated with a great variety of ore deposits and has characteristic signatures for each of several types of ore deposits. Signatures for gold derived from igneous-metamorphic, hypothermal, mesothermal and epithermal deposits reflect conditions of ore formation by their content of Ag, Cu and characteristic associated elements. At higher temperatures of ore formation, gold has low Ag and high Cu content, and Bi and Pb are the most abundant trace elements. But at lower temperatures of ore formation, Ag is high, Cu is low, and Pb is the most abundant trace element. The same trend in gold signatures is observable in gold mining districts, such as Central City, Colorado, where zoning as shown by mineral assemblages indicates ore deposition at progressively lower temperatures as the distance from a central high-temperature zone increases. The signatures of gold may be useful in searching for porphyry Cu deposits. Signatures from Butte (Montana), Mineral Park (Arizona) and Cala Abajo (Puerto Rico), on the basis of limited sampling, are similar and distinctive. They are characterized by a similar assemblage of trace elements and are relatively high in both Ag and Cu. Another application of gold compositional data is in tracing placer gold to its bedrock source. For example, the Ag content of placer gold in the Tarryall district of Colorado differed from that of nearly all of the bedrock sources of gold found by early prospectors. However, one lightly prospected area peripheral to the Tertiary quartz monzonite stock at Montgomery Gulch contains gold with a Ag content similar to that of the placer gold. This area is the most likely

  9. Catalase coupled gold nanoparticles: Comparison between carbodiimide and biotin-streptavidin methods

    PubMed Central

    Chirra, Hariharasudhan D.; Sexton, Travis; Biswal, Dipti; Hersh, Louis B.; Hilt, J. Zach

    2011-01-01

    The use of proteins for therapeutic applications requires the protein to maintain sufficient activity for the period of in vivo treatment. Many proteins exhibit a short half-life in vivo and, thus, require delivery systems for them to be applied as therapeutics. The relative biocompatibility and the ability to form functionalized bioconjugates via simple chemistry make gold nanoparticles excellent candidates as protein delivery systems. Herein, two protocols for coupling proteins to gold nanoparticles were compared. In the first, the strong biomolecular binding between biotin and streptavidin was used to couple catalase to the surface of gold nanoparticles. In the second protocol, the formation of an amide bond between carboxylic acid coated gold nanoparticles and free surface amines of catalase using carbodiimide chemistry was performed. The stability and kinetics of the different steps involved in these protocols were studied using UV-Visible spectroscopy, dynamic light scattering, and transmission electron microscopy. The addition of mercaptoundecanoic acid in conjugation with (N-(6-(biotinamido)hexyl)-3′-(2′-pyridyldithio)-propionamide increased the stability of biotinylated gold nanoparticles. Although the carbodiimide chemistry based bioconjugation approach exhibited a decrease in catalase activity, the carbodiimide chemistry based bioconjugation approach resulted in more active catalase per gold nanoparticle compared to that of mercaptoundecanoic acid stabilized biotinylated gold nanoparticles. Both coupling protocols resulted in gold nanoparticles loaded with active catalase. Thus, these gold nanoparticle systems and coupling protocols represent promising methods for the application of gold nanoparticles for protein delivery. PMID:21232642

  10. Green Synthesis, Characterization and Application of Proanthocyanidins-Functionalized Gold Nanoparticles

    PubMed Central

    Biao, Linhai; Tan, Shengnan; Meng, Qinghuan; Gao, Jing; Zhang, Xuewei; Liu, Zhiguo; Fu, Yujie

    2018-01-01

    Green synthesis of gold nanoparticles using plant extracts is one of the more promising approaches for obtaining environmentally friendly nanomaterials for biological applications and environmental remediation. In this study, proanthocyanidins-functionalized gold nanoparticles were synthesized via a hydrothermal method. The obtained gold nanoparticles were characterized by ultraviolet and visible spectrophotometry (UV-Vis), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and X-ray diffraction (XRD) measurements. UV-Vis and FTIR results indicated that the obtained products were mainly spherical in shape, and that the phenolic hydroxyl of proanthocyanidins had strong interactions with the gold surface. TEM and XRD determination revealed that the synthesized gold nanoparticles had a highly crystalline structure and good monodispersity. The application of proanthocyanidins-functionalized gold nanoparticles for the removal of dyes and heavy metal ions Ni2+, Cu2+, Cd2+ and Pb2+ in an aqueous solution was investigated. The primary results indicate that proanthocyanidins-functionalized gold nanoparticles had high removal rates for the heavy metal ions and dye, which implies that they have potential applications as a new kind of adsorbent for the removal of contaminants in aqueous solution. PMID:29361727

  11. Absorption Spectra of Gold Nanoparticle Suspensions

    NASA Astrophysics Data System (ADS)

    Anan'eva, M. V.; Nurmukhametov, D. R.; Zverev, A. S.; Nelyubina, N. V.; Zvekov, A. A.; Russakov, D. M.; Kalenskii, A. V.; Eremenko, A. N.

    2018-02-01

    Three gold nanoparticle suspensions are obtained, and mean radii in distributions - (6.1 ± 0.2), (11.9 ± 0.3), and (17.3 ± 0.7) nm - are determined by the transmission electron microscopy method. The optical absorption spectra of suspensions are obtained and studied. Calculation of spectral dependences of the absorption index of suspensions at values of the gold complex refractive index taken from the literature showed a significant deviation of experimental and calculated data in the region of 450-800 nm. Spectral dependences of the absorption of suspensions are simulated within the framework of the Mie-Drude theory taking into account the interband absorption in the form of an additional term in the imaginary part of the dielectric permittivity of the Gaussian type. It is shown that to quantify the spectral dependences in the region of the plasmon absorption band of nanoparticles, correction of the parameters of the interband absorption is necessary in addition to the increase of the relaxation parameter of the Drude theory. Spectral dependences of the dielectric permittivity of gold in nanodimensional state are refined from the solution of the inverse problem. The results of the present work are important for predicting the special features of operation of photonic devices and optical detonators based on gold nanoparticles.

  12. Mercury adsorption to gold nanoparticle and thin film surfaces

    NASA Astrophysics Data System (ADS)

    Morris, Todd Ashley

    Mercury adsorption to gold nanoparticle and thin film surfaces was monitored by spectroscopic techniques. Adsorption of elemental mercury to colloidal gold nanoparticles causes a color change from wine-red to orange that was quantified by UV-Vis absorption spectroscopy. The wavelength of the surface plasmon mode of 5, 12, and 31 nm gold particles blue-shifts 17, 14, and 7.5 nm, respectively, after a saturation exposure of mercury vapor. Colorimetric detection of inorganic mercury was demonstrated by employing 2.5 nm gold nanoparticles. The addition of low microgram quantities of Hg 2+ to these nanoparticles induces a color change from yellow to peach or blue. It is postulated that Hg2+ is reduced to elemental mercury by SCN- before and/or during adsorption to the nanoparticle surface. It has been demonstrated that surface plasmon resonance spectroscopy (SPRS) is sensitive to mercury adsorption to gold and silver surfaces. By monitoring the maximum change in reflectivity as a function of amount of mercury adsorbed to the surface, 50 nm Ag films were shown to be 2--3 times more sensitive than 50 nm Au films and bimetallic 15 nm Au/35 nm Ag films. In addition, a surface coverage of ˜40 ng Hg/cm2 on the gold surface results in a 0.03° decrease in the SPR angle of minimum reflectivity. SPRS was employed to follow Hg exposure to self-assembled monolayers (SAMs) on Au. The data indicate that the hydrophilic or hydrophobic character of the SAM has a significant effect on the efficiency of Hg penetration. Water adsorbed to carboxylic acid end group of the hydrophilic SAMs is believed to slow the penetration of Hg compared to methyl terminated SAMs. Finally, two protocols were followed to remove mercury from gold films: immersion in concentrated nitric acid and thermal annealing up to 200°C. The latter protocol is preferred because it removes all of the adsorbed mercury from the gold surface and does not affect the morphology of the gold surface.

  13. Gold nanocrystals with DNA-directed morphologies.

    PubMed

    Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P; Kwon, Young Jik; Sim, Sang Jun

    2016-09-16

    Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology.

  14. Preparation and characterization of gold nanodumbbells

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Jung; Chiu, Pin-Hsiang; Wang, Yeong-Her; Chen, Wen-Ray; Meen, Teen-Hang; Yang, Cheng-Fu

    2006-11-01

    Well-dispersed gold nanodumbbells (GNDs) in an aqueous phase have been successfully fabricated by an electrochemical method using a micelle template formed by two surfactants with the addition of acetone solvent during electrolysis, the primary surfactant being cetyltrimethylammonium bromide (CTABr) and the cosurfactant being tetradecyltrimethylammonium bromide (TTABr). The role of acetone solvent is found to change the gold nanoparticles' shape from a rod to a dumbbell. The shape of the GNDs is fatter at the two ends and thinner in the middle section. The GNDs have been determined to be pure gold with a single-crystalline face-centred cubic (FCC) structure from selected area electron diffraction (SAED) patterns. Morphology features of GNDs in cross-section have also been investigated by dark field (DF) transmission electron microscopy (TEM) images. These GNDs exhibit octagonal structure in cross-section and an aspect ratio of around 3.

  15. Gold nanocrystals with DNA-directed morphologies

    NASA Astrophysics Data System (ADS)

    Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P.; Kwon, Young Jik; Sim, Sang Jun

    2016-09-01

    Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology.

  16. Hierarchical Nanoporous Gold-Platinum with Heterogeneous Interfaces for Methanol Electrooxidation

    PubMed Central

    Xiao, Shuang; Xiao, Fei; Hu, Yuan; Yuan, Songliu; Wang, Shuai; Qian, Lihua; Liu, Yunqi

    2014-01-01

    The electrocatalysts utilized as the prospective electrodes in fuel cells and high efficient energy conversion devices require both the interconnected channels for efficient electrolyte transportation and the superior catalytic activity with long service life. In this work, nanoporous gold with the rigid skeletons in three dimensions is partially decorated by porous platinum shell containing nanoscale interstitials, aiming to create the heterogeneous gold-platinum interfaces and facilitate the electrolyte transportation as well. In comparison with no catalytic activity of bare nanoporous gold, the catalytic activity of hierarchical nanoporous gold-platinum towards electrochemical oxidation of methanol increases with the loading level of platinum shells, resulting in the highest electrochemical area of 70.4 m2·g−1 after the normalization by the mass of platinum. Heterogeneous gold-platinum interfaces affect the tolerance of the absorbed intermediate species because of the oxidization by the oxygenated species absorbed on the gold surface and the enhanced ion transportation within the porous platinum shell. PMID:24621809

  17. Gas-Phase Synthesis of Gold- and Silica-Coated Nanoparticles

    NASA Astrophysics Data System (ADS)

    Boies, Adam Meyer

    2011-12-01

    Composite nanoparticles consisting of separate core-shell materials are of interest for a variety of biomedical and industrial applications. By combining different materials at the nanoscale, particles can exhibit enhanced or multi-functional behavior such as plasmon resonance combined with superparamagnetism. Gas-phase nanoparticle synthesis processes are promising because they can continuously produce particles with high mass-yield rates. In this dissertation, new methods are investigated for producing gas-phase coatings of nanoparticles in an "assembly-line" fashion. Separate processes are developed to create coatings from silica and gold that can be used with a variety of core-particle chemistries. A photoinduced chemical vapor deposition (photo-CVD) method is used to produce silica coatings from tetraethyl orthosilicate (TEOS) on the surface of nanoparticles (diameter ˜5--70 nm). Tandem differential mobility analysis (TDMA) of the process demonstrates that particle coatings can be produced with controllable thicknesses (˜1--10 nm) by varying system parameters such as precursor flow rate. Electron microscopy and infrared spectroscopy confirm that the photo-CVD films uniformly coat the particles and that the coatings are silica. In order to describe the coating process a chemical mechanism is proposed that includes gas-phase, surface and photochemical reactions. A chemical kinetics model of the mechanism indicates that photo-CVD coating proceeds primarily through the photodecomposition of TEOS which removes ethyl groups, thus creating activated TEOS species. The activated TEOS then adsorbs onto the surface of the particle where a series of subsequent reactions remove the remaining ethyl groups to produce a silica film with an open site for further attachment. The model results show good agreement with the experimentally measured coating trends, where increased TEOS flow increases coating thickness and increased nitrogen flow decreases coating thickness. Gold

  18. Low rate of asymptomatic cerebral embolism and improved procedural efficiency with the novel pulmonary vein ablation catheter GOLD: results of the PRECISION GOLD trial

    PubMed Central

    De Greef, Yves; Dekker, Lukas; Boersma, Lucas; Murray, Stephen; Wieczorek, Marcus; Spitzer, Stefan G.; Davidson, Neil; Furniss, Steve; Hocini, Mélèze; Geller, J. Christoph; Csanádi, Zoltan

    2016-01-01

    Abstract Aims This prospective, multicentre study (PRECISION GOLD) evaluated the incidence of asymptomatic cerebral embolism (ACE) after pulmonary vein isolation (PVI) using a new gold multi-electrode radiofrequency (RF) ablation catheter, pulmonary vein ablation catheter (PVAC) GOLD. Also, procedural efficiency of PVAC GOLD was compared with ERACE. The ERACE study demonstrated that a low incidence of ACE can be achieved with a platinum multi-electrode RF catheter (PVAC) combined with procedural manoeuvres to reduce emboli. Methods and results A total of 51 patients with paroxysmal atrial fibrillation (AF) (age 57 ± 9 years, CHA2DS2-VASc score 1.4 ± 1.4) underwent AF ablation with PVAC GOLD. Continuous oral anticoagulation using vitamin K antagonists, submerged catheter introduction, and heparinization (ACT ≥ 350 s prior to ablation) were applied. Cerebral magnetic resonance imaging (MRI) scans were performed within 48 h before and 16–72 h post-ablation. Cognitive function assessed by the Mini-Mental State Exam at baseline and 30 days post-ablation. New post-procedural ACE occurred in only 1 of 48 patients (2.1%) and was not detectable on MRI after 30 days. The average number of RF applications per patient to achieve PVI was lower in PRECISION GOLD (20.3 ± 10.0) than in ERACE (28.8 ± 16.1; P = 0.001). Further, PVAC GOLD ablations resulted in significantly fewer low-power (<3 W) ablations (15 vs. 23%, 5 vs. 10% and 2 vs. 7% in 4:1, 2:1, and 1:1 bipolar:unipolar energy modes, respectively). Mini-Mental State Exam was unchanged in all patients. Conclusion Atrial fibrillation ablation with PVAC GOLD in combination with established embolic lowering manoeuvres results in a low incidence of ACE. Pulmonary vein ablation catheter GOLD demonstrates improved biophysical efficiency compared with platinum PVAC. Trial registration ClinicalTrials.gov NCT01767558. PMID:26826134

  19. Major brazilian gold deposits - 1982 to 1999

    USGS Publications Warehouse

    Thorman, C.H.; Dewitt, E.; Maron, M.A.; Ladeira, E.A.

    2001-01-01

    Brazil has been a major but intermittent producer of gold since its discovery in 1500. Brazil led the world in gold production during the 18th and early 19th centuries. From the late 19th century to the late 20th century, total mining company and garimpeiro production was small and relatively constant at about 5 to 8 t/year. The discovery of alluvial deposits in the Amazon by garimpeiros in the 1970s and the opening of eight mines by mining companies from 1983 to 1990 fueled a major boom in Brazil's gold production, exceeding 100 t/year in 1988 and 1989. However, garimpeiro alluvial production decreased 'rapidly in the 1990s, to about 10 t/year by 1999. Company production increased about tenfold from about 4 t/year in 1982 to 40 t in 1992. Production from 1992 to the present remained relatively stable, even though several mines were closed or were in the process of closing and no new major mines were put into production during that period. Based on their production history from 1982-1999, 17 gold mines are ranked as major (> 20 t) and minor (3-8 t) mines. From 1982-1999, deposits hosted in Archean rocks produced 66% of the gold in Brazil, whereas deposits in Paleoproterozoic and Neoproterozoic rocks accounted for 19% and 15%, respectively. Deposits in metamorphosed sedimentary rocks, especially carbonate-rich rocks and carbonate iron-formation, yielded the great bulk of the gold. Deposits in igneous rocks were of much less importance. The Archean and Paleoproterozoic terranes of Brazil largely lack base-metal-rich volcanogenic massive sulfide deposits, porphyry deposits, and polymetallic veins and sedimentary exhalative deposits. An exception to this is in the Caraja??s Mineral Province.

  20. Cancer nanomedicine: gold nanoparticle mediated combined cancer therapy

    NASA Astrophysics Data System (ADS)

    Yang, C.; Bromma, Kyle; Chithrani, B. D.

    2018-02-01

    Recent developments in nanotechnology has provided new tools for cancer therapy and diagnosis. Among other nanomaterial systems, gold nanoparticles are being used as radiation dose enhancers and anticancer drug carriers in cancer therapy. Fate of gold nanoparticles within biological tissues can be probed using techniques such as TEM (transmission electron microscopy) and SEM (Scanning Electron Microscopy) due to their high electron density. We have shown for the first time that cancer drug loaded gold nanoparticles can reach the nucleus (or the brain) of cancer cells enhancing the therapeutic effect dramatically. Nucleus of the cancer cells are the most desirable target in cancer therapy. In chemotherapy, smart delivery of highly toxic anticancer drugs through packaging using nanoparticles will reduce the side effects and improve the quality and care of cancer patients. In radiation therapy, use of gold nanoparticles as radiation dose enhancer is very promising due to enhanced localized dose within the cancer tissue. Recent advancement in nanomaterial characterization techniques will facilitate mapping of nanomaterial distribution within biological specimens to correlate the radiobiological effects due to treatment. Hence, gold nanoparticle mediated combined chemoradiation would provide promising tools to achieve personalized and tailored cancer treatments in the near future.

  1. Pulse-voltammetric glucose detection at gold junction electrodes.

    PubMed

    Rassaei, Liza; Marken, Frank

    2010-09-01

    A novel glucose sensing concept based on the localized change or "modulation" in pH within a symmetric gold-gold junction electrode is proposed. A paired gold-gold junction electrode (average gap size ca. 500 nm) is prepared by simultaneous bipotentiostatic electrodeposition of gold onto two closely spaced platinum disk electrodes. For glucose detection in neutral aqueous solution, the potential of the "pH-modulator" electrode is set to -1.5 V vs saturated calomel reference electrode (SCE) to locally increase the pH, and simultaneously, either cyclic voltammetry or square wave voltammetry experiments are conducted at the sensor electrode. A considerable improvement in the sensor electrode response is observed when a normal pulse voltammetry sequence is applied to the modulator electrode (to generate "hydroxide pulses") and the glucose sensor electrode is operated with fixed bias at +0.5 V vs SCE (to eliminate capacitive charging currents). Preliminary data suggest good linearity for the glucose response in the medically relevant 1-10 mM concentration range (corresponding to 0.18-1.8 g L(-1)). Future electroanalytical applications of multidimensional pulse voltammetry in junction electrodes are discussed.

  2. Hardness and Elastic Modulus on Six-Fold Symmetry Gold Nanoparticles

    PubMed Central

    Ramos, Manuel; Ortiz-Jordan, Luis; Hurtado-Macias, Abel; Flores, Sergio; Elizalde-Galindo, José T.; Rocha, Carmen; Torres, Brenda; Zarei-Chaleshtori, Maryam; Chianelli, Russell R.

    2013-01-01

    The chemical synthesis of gold nanoparticles (NP) by using gold (III) chloride trihydrate (HAuCl∙3H2O) and sodium citrate as a reducing agent in aqueous conditions at 100 °C is presented here. Gold nanoparticles areformed by a galvanic replacement mechanism as described by Lee and Messiel. Morphology of gold-NP was analyzed by way of high-resolution transmission electron microscopy; results indicate a six-fold icosahedral symmetry with an average size distribution of 22 nm. In order to understand the mechanical behaviors, like hardness and elastic moduli, gold-NP were subjected to nanoindentation measurements—obtaining a hardness value of 1.72 GPa and elastic modulus of 100 GPa in a 3–5 nm of displacement at the nanoparticle’s surface. PMID:28809302

  3. Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus.

    PubMed

    Mata, Y N; Torres, E; Blázquez, M L; Ballester, A; González, F; Muñoz, J A

    2009-07-30

    In this paper, the bioreduction of Au(III) to Au(0) using biomass of the brown alga Fucus vesiculosus was investigated. The recovery and reduction process took place in two stages with an optimum pH range of 4-9 with a maximum uptake obtained at pH 7. In the first stage, an induction period previous to gold reduction, the variation of pH, redox potential and gold concentration in solution was practically negligible and no color change was observed. In the second stage, the gold reduction was followed by a sharp decrease of gold concentration, pH and redox potential of solution and a color change from yellow to reddish purple. Hydroxyl groups present in the algal polysaccharides were involved in the gold bioreduction. Metallic gold was detected as microprecipitates on the biomass surface and in colloidal form as nanoparticles in the solution. Bioreduction with F. vesiculosus could be an alternative and environmentally friendly process that can be used for recovering gold from dilute hydrometallurgical solutions and leachates of electronic scraps, and for the synthesis of gold nanoparticles of different size and shape.

  4. Bond Strength of Gold Alloys Laser Welded to Cobalt-Chromium Alloy

    PubMed Central

    Watanabe, Ikuya; Wallace, Cameron

    2008-01-01

    The objective of this study was to investigate the joint properties between cast gold alloys and Co-Cr alloy laser-welded by Nd:YAG laser. Cast plates were fabricated from three types of gold alloys (Type IV, Type II and low-gold) and a Co-Cr alloy. Each gold alloy was laser-welded to Co-Cr using a dental laser-welding machine. Homogeneously-welded and non-welded control specimens were also prepared. Tensile testing was conducted and data were statistically analyzed using ANOVA. The homogeneously-welded groups showed inferior fracture load compared to corresponding control groups, except for Co-Cr. In the specimens welded heterogeneously to Co-Cr, Type IV was the greatest, followed by low-gold and Type II. There was no statistical difference (P<0.05) in fracture load between Type II control and that welded to Co-Cr. Higher elongations were obtained for Type II in all conditions, whereas the lowest elongation occurred for low-gold welded to Co-Cr. This study indicated that, of the three gold alloys tested, the Type IV gold alloy was the most suitable alloy for laser-welding to Co-Cr. PMID:19088892

  5. Gold nanoparticles to improve HIV drug delivery.

    PubMed

    Garrido, Carolina; Simpson, Carrie A; Dahl, Noelle P; Bresee, Jamee; Whitehead, Daniel C; Lindsey, Erick A; Harris, Tyler L; Smith, Candice A; Carter, Carly J; Feldheim, Daniel L; Melander, Christian; Margolis, David M

    2015-01-01

    Antiretroviral therapy (ART) has improved lifespan and quality of life of patients infected with the HIV-1. However, ART has several potential limitations, including the development of drug resistance and suboptimal penetration to selected anatomic compartments. Improving the delivery of antiretroviral molecules could overcome several of the limitations of current ART. Two to ten nanometer diameter inorganic gold crystals serve as a base scaffold to combine molecules with an array of properties in its surface. We show entry into different cell types, antiviral activity of an HIV integrase inhibitor conjugated in a gold nanoparticle and penetration into the brain in vivo without toxicity. Herein, gold nanoparticles prove to be a promising tool to use in HIV therapy.

  6. Cellulose-silica/gold nanomaterials for electronic applications.

    PubMed

    Kim, Gwang-Hoon; Ramesh, Sivalingam; Kim, Joo-Hyung; Jung, Dongsoo; Kim, Heung Soo

    2014-10-01

    Cellulose and one dimensional nano-material composite has been investigated for various industrial applications due to their optical, mechanical and electrical properties. In present investigation, cellulose/silica and silica-gold hybrid biomaterials were prepared by sol-gel covalent cross-linking process. The tetraethoxysiliane (TEOS) and gold precursors and γ-aminopropyltriethoxysilane (γ-APTES) as coupling agent were used for sol-gel cross-linking process. The chemical and morphological properties of cellulose/silica and cellulose/silica-gold nano-materials via covalent cross-linking hybrids were confirmed by FTIR, XRD, SEM, and TEM analysis. In the sol-gel process, the inorganic particles were dispersed in the cellulose host matrix at the nanometer scale, bonding to the cellulose through the covalent bonds.

  7. Transmission Measurement of the Third-Order Susceptibility of Gold

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Yoon, Youngkwon; Boyd, Robert W.; Crooks, Richard M.; George, Michael

    1999-01-01

    Gold nanoparticle composites are known to display large optical nonlinearities. In order to assess the validity of generalized effective medium theories (EMT's) for describing the linear and nonlinear optical properties of metal nanoparticle composites, knowledge of the linear and nonlinear susceptibilities of the constituent materials is a prerequisite. In this study the inherent nonlinearity of the metal is measured directly (rather than deduced from a suitable EMT) using a very thin gold film. Specifically, we have used the z-scan technique at a wavelength near the transmission window of bulk gold to measure the third-order susceptibility of a continuous thin gold film deposited on a quartz substrate surface-modified with a self-assembled monolayer to promote adhesion and uniformity without affecting the optical properties. We compare our results with predictions which ascribe the nonlinear response to a Fermi-smearing mechanism. Further, we note that the sign of the nonlinear susceptibility is reversed from that of gold nanoparticle composites.

  8. Utilization of humus-rich forest soil (mull) in geochemical exploration for gold

    USGS Publications Warehouse

    Curtin, Gary C.; Lakin, H.W.; Neuerburg, G.J.; Hubert, A.E.

    1968-01-01

    Distribution of gold in humus-rich forest soil (mull) reflects the known distribution of gold deposits in bedrock in the Empire district, Colorado. Gold from the bedrock is accumulated by pine and aspen trees and is concentrated in the mull by the decay of organic litter from the trees. Anomalies in mull which do not coincide with known gold deposits merit further exploration. The gold anomalies in soil (6- to 12-inch depth) and in float pebbles and cobbles poorly reflect the known distribution of gold deposits in bedrock beneath the extensive cover of colluvium and glacial drift.

  9. Zepto-molar electrochemical detection of Brucella genome based on gold nanoribbons covered by gold nanoblooms

    NASA Astrophysics Data System (ADS)

    Rahi, Amid; Sattarahmady, Naghmeh; Heli, Hossein

    2015-12-01

    Gold nanoribbons covered by gold nanoblooms were sonoelectrodeposited on a polycrystalline gold surface at -1800 mV (vs. AgCl) with the assistance of ultrasound and co-occurrence of the hydrogen evolution reaction. The nanostructure, as a transducer, was utilized to immobilize a Brucella-specific probe and fabrication of a genosensor, and the process of immobilization and hybridization was detected by electrochemical methods, using methylene blue as a redox marker. The proposed method for detection of the complementary sequence, sequences with base-mismatched (one-, two- and three-base mismatches), and the sequence of non-complementary sequence was assayed. The fabricated genosensor was evaluated for the assay of the bacteria in the cultured and human samples without polymerase chain reactions (PCR). The genosensor could detect the complementary sequence with a calibration sensitivity of 0.40 μA dm3 mol-1, a linear concentration range of 10 zmol dm-3 to 10 pmol dm-3, and a detection limit of 1.71 zmol dm-3.

  10. [History of gold--with danish contribution to tuberculosis and rheumatoid arthritis].

    PubMed

    Norn, Svend; Permin, Henrik; Kruse, Poul R; Kruse, Edith

    2011-01-01

    Gold has a long history as a therapeutic agent, first as gold particles and colloidal gold, then as a soluble salt made by the alchemists, and potable gold was recommended almost as a panacea against different diseases. Gold compounds were introduced in the treatment of tuberculosis, based initially on the reputation of Robert Koch, who found gold cyanide effective against Mycobacterium tuberculosis in cultures. Although several investigations of gold salts showed no convincing effect in experimental tuberculosis in guinea pigs, the idea of using gold compounds as chemotherapy was furthermore encouraged from the work of Paul Ehrlich with arsenicals. The enthusiasm and the craving desperately for a remedy for tuberculosis forced Danish physicians, in the mid-1920s to treat tuberculosis with Sanocrysin (gold sodium thiosulfate). Professor Holger Møllgaard, in collaboration with the clinicians the professors Knud Secher and Knud Faber, was the theoretical promoter of the project. He recommended sanocrysin-antiserum therapy, since sanocrysin caused serious reactions in tuberculosis animals, possible by releasing toxins from tubercle bacilli "killed" by sanocrysin. However the enthusiastic response to sanocrysin in Europe declined along by controlled trials and reports on toxicity in the 1930s. The belief that rheumatoid arthritis was a form of tuberculosis caused a renaissance in chrysotherapy. In France Jacques Forestier obtained encouraging results in the treatment of rheumatoid arthritis with myochrysine and other gold salts, and he pointed out the disease modifying effect of chrysotherapy. In Denmark Knud Secher, who was the clinical initiator of Sanocrysin therapy in tuberculosis, now became the founder of chrysotherapy in rheumatoid arthritis. Although new potential agents are now taking over in the treatment of arthritis, it is still believed, that there is a place for the chrysotherapy. However a new future for gold, in the form of nanoparticles, appears on

  11. 12 CFR 250.260 - Miscellaneous interpretations; gold coin and bullion.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 4 2013-01-01 2013-01-01 false Miscellaneous interpretations; gold coin and... Miscellaneous interpretations; gold coin and bullion. The Board has received numerous inquiries from member banks relating to the repeal of the ban on ownership of gold by United States citizens. Listed below are...

  12. 12 CFR 250.260 - Miscellaneous interpretations; gold coin and bullion.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 3 2011-01-01 2011-01-01 false Miscellaneous interpretations; gold coin and... interpretations; gold coin and bullion. The Board has received numerous inquiries from member banks relating to the repeal of the ban on ownership of gold by United States citizens. Listed below are questions and...

  13. 33 CFR 13.01-5 - Gold and Silver Lifesaving Medals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Gold and Silver Lifesaving Medals... GENERAL DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-5 Gold and Silver Lifesaving Medals. Lifesaving Medals may be awarded to any person who...

  14. 12 CFR 250.260 - Miscellaneous interpretations; gold coin and bullion.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 4 2014-01-01 2014-01-01 false Miscellaneous interpretations; gold coin and... Miscellaneous interpretations; gold coin and bullion. The Board has received numerous inquiries from member banks relating to the repeal of the ban on ownership of gold by United States citizens. Listed below are...

  15. 12 CFR 250.260 - Miscellaneous interpretations; gold coin and bullion.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Miscellaneous interpretations; gold coin and... interpretations; gold coin and bullion. The Board has received numerous inquiries from member banks relating to the repeal of the ban on ownership of gold by United States citizens. Listed below are questions and...

  16. 33 CFR 13.01-5 - Gold and Silver Lifesaving Medals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Gold and Silver Lifesaving Medals... GENERAL DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-5 Gold and Silver Lifesaving Medals. Lifesaving Medals may be awarded to any person who...

  17. 33 CFR 13.01-5 - Gold and Silver Lifesaving Medals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Gold and Silver Lifesaving Medals... GENERAL DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-5 Gold and Silver Lifesaving Medals. Lifesaving Medals may be awarded to any person who...

  18. 12 CFR 250.260 - Miscellaneous interpretations; gold coin and bullion.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 4 2012-01-01 2012-01-01 false Miscellaneous interpretations; gold coin and... Miscellaneous interpretations; gold coin and bullion. The Board has received numerous inquiries from member banks relating to the repeal of the ban on ownership of gold by United States citizens. Listed below are...

  19. 33 CFR 13.01-5 - Gold and Silver Lifesaving Medals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Gold and Silver Lifesaving Medals... GENERAL DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-5 Gold and Silver Lifesaving Medals. Lifesaving Medals may be awarded to any person who...

  20. Characteristics and longitudinal progression of chronic obstructive pulmonary disease in GOLD B patients.

    PubMed

    Lawrence, Philip J; Kolsum, Umme; Gupta, Vandana; Donaldson, Gavin; Singh, Richa; Barker, Bethan; George, Leena; Webb, Adam; Brookes, Anthony J; Brightling, Christopher; Wedzicha, Jadwiga; Singh, Dave

    2017-02-20

    The characteristics and natural history of GOLD B COPD patients are not well described. The clinical characteristics and natural history of GOLD B patients over 1 year in a multicentre cohort of COPD patients in the COPDMAP study were assessed. We aimed to identify the subgroup of patients who progressed to GOLD D (unstable GOLD B patients) and identify characteristics associated with progression. Three hundred seventy COPD patients were assessed at baseline and 12 months thereafter. Demographics, lung function, health status, 6 min walk tests and levels of systemic inflammation were assessed. Students t tests and Mann Whitney-U tests were used. One hundred seven (28.9%) of patients were categorised as GOLD B at baseline. These GOLD B patients had similar FEV1 to GOLD A patients (66% predicted). More GOLD B patients were current smokers (p = 0.031), had chronic bronchitis (p = 0.0003) and cardiovascular comorbidities (p = 0.019) compared to GOLD A. At 12 months, 25.3% of GOLD B patients progressed to GOLD D. These patients who progressed (unstable patients) had worse health status and symptoms (SGRQ-C Total, 50.0 v 41.1, p = 0.019 and CAT, 21.0 v 14.0, p = 0.006) and lower FEV 1 (60% v 69% p = 0.014) at baseline compared to stable patients who remained in GOLD B. Unstable GOLD B patients who progressed to GOLD D had a higher level of symptoms at baseline. A high symptom burden may predict an increased likelihood of disease progression in GOLD B patients.

  1. Cyanide hazards to plants and animals from gold mining and related water issues

    USGS Publications Warehouse

    Eisler, R.; Wiemeyer, Stanley N.

    2004-01-01

    Highly toxic sodium cyanide (NaCN) is used by the international mining community to extract gold and other precious metals through milling of high-grade ores and heap leaching of low-grade ores (Korte et al. 2000). The process to concentrate gold using cyanide was developed in Scotland in 1887 and was used almost immediately in the Witwatersrand gold fields of the Republic of South Africa. Heap leaching with cyanide was proposed by the U.S. Bureau of Mines in 1969 as a means of extracting gold from low-grade ores. The gold industry adopted the technique in the 1970s, soon making heap leaching the dominant technology in gold extraction (Da Rosa and Lyon 1997). The heap leach and milling processes, which involve dewatering of gold-bearing ores, spraying of dilute cyanide solutions on extremely large heaps of ores containing low concentrations of gold, or the milling of ores with the use of cyanide and subsequent recovery of the gold-cyanide complex, have created a number of serious environmental problems affecting wildlife and water management. In this account, we review the history of cyanide use in gold mining with emphasis on heap leach gold mining, cyanide hazards to plants and animals, water management issues associated with gold mining, and proposed mitigation and research needs.

  2. Ion plated gold films: Properties, tribological behavior and performance

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis

    1987-01-01

    The glow discharge energizing favorably modifies and controls the coating/substrate adherence and the nucleation and growth sequence of ion plated gold films. As a result the adherence, coherence, internal stresses, and morphology of the films are significantly improved. Gold ion plated films because of their graded coating/substrate interface and fine uniform densely packed microstructure not only improve the tribological properties but also induce a surface strengthening effect which improves the mechanical properties such as yield, tensile, and fatigue strength. Consequently significant improvements in the tribological performance of ion plated gold films as compared to vapor deposited gold films are shown in terms of decreased friction/wear and prolonged endurance life.

  3. Supercapacitive transport of pharmacologic agents using nanoporous gold electrodes.

    PubMed

    Gittard, Shaun D; Pierson, Bonnie E; Ha, Cindy M; Wu, Chung-An Max; Narayan, Roger J; Robinson, David B

    2010-02-01

    In this study, nanoporous gold supercapacitors were produced by electrochemical dealloying of gold-silver alloy. Scanning electron microscopy and energy dispersive X-ray spectroscopy confirmed completion of the dealloying process and generation of a porous gold material with approximately 10 nm diameter pores. Cyclic voltammetry and chronoamperometry of the nanoporous gold electrodes indicated that these materials exhibited supercapacitor behavior. The storage capacity of the electrodes measured by chronoamperometry was approximately 3 mC at 200 mV. Electrochemical storage and voltage-controlled delivery of two model pharmacologic agents, benzylammonium and salicylic acid, was demonstrated. These results suggest that capacitance-based storage and delivery of pharmacologic agents may serve as an alternative to conventional drug delivery methods.

  4. The Applications of Gold Nanoparticle-Initialed Chemiluminescence in Biomedical Detection

    NASA Astrophysics Data System (ADS)

    Liu, Zezhong; Zhao, Furong; Gao, Shandian; Shao, Junjun; Chang, Huiyun

    2016-10-01

    Chemiluminescence technique as a novel detection method has gained much attention in recent years owning to the merits of high sensitivity, wider linear ranges, and low background signal. Similarly, nanotechnology especially for gold nanoparticles has emerged as detection tools due to their unique physical and chemical properties. Recently, it has become increasingly popular to couple gold nanoparticles with chemiluminescence technique in biological agents' detection. In this review, we describe the superiority of both chemiluminescence and gold nanoparticles and conclude the different applications of gold nanoparticle-initialed chemiluminescence in biomedical detection.

  5. Deposition and characterization of far-infrared absorbing gold black films

    NASA Technical Reports Server (NTRS)

    Advena, Donna J.; Bly, Vincent T.; Cox, J. T.

    1993-01-01

    A process is described for producing gold black films with high absorptance in the far IR. The optical and electrical properties of these films have been studied with particular emphasis on the absorptance of films at wavelengths as long as 50 microns. A substantial decrease in absorptance near 50 microns has been observed for pure gold black films on aging in air. This degradation can be largely avoided by alloying the gold with a small percentage of copper during the deposition. Preliminary results on two methods for delineating gold black films are also presented.

  6. Electrodeposition of gold particles on aluminum substrates containing copper.

    PubMed

    Olson, Tim S; Atanassov, Plamen; Brevnov, Dmitri A

    2005-01-27

    Electrodeposition of adhesive metal films on aluminum is traditionally preceded by the zincate process, which activates the aluminum surface. This paper presents an alternative approach for activation of aluminum by using films containing 99.5% aluminum and 0.5% copper. Aluminum/copper films are made amenable for subsequent electrodeposition by anodization followed by chemical etching of aluminum oxide. The electrodeposition of gold is monitored with electrochemical impedance spectroscopy (EIS). Analysis of EIS data suggests that electrodeposition of gold increases the interfacial capacitance from values typical for electrodes with thin oxide layers to values typical for metal electrodes. Scanning electron microscopy examination of aluminum/copper films following gold electrodeposition shows the presence of gold particles with densities of 10(5)-10(7) particles cm(-2). The relative standard deviation of mean particle diameters is approximately 25%. Evaluation of the micrographs suggests that the electrodeposition occurs by instantaneous nucleation followed by growth of three-dimensional semispherical particles. The gold particles, which are electrically connected to the conductive aluminum/copper film, support a reversible faradaic process for a soluble redox couple. The deposited gold particles are suitable for subsequent metallization of aluminum and fabrication of particle-type films with interesting catalytic, electrical, and optical properties.

  7. Inhibition of amyloid peptide fibril formation by gold-sulfur complexes.

    PubMed

    Wang, Wenji; Zhao, Cong; Zhu, Dengsen; Gong, Gehui; Du, Weihong

    2017-06-01

    Amyloid-related diseases are characterized by protein conformational change and amyloid fibril deposition. Metal complexes are potential inhibitors of amyloidosis. Nitrogen-coordinated gold complexes have been used to disaggregate prion neuropeptide (PrP106-126) and human islet amyloid polypeptide (hIAPP). However, the roles of metal complexes in peptide fibril formation and related bioactivity require further exploration. In this work, we investigated the interactions of amyloid peptides PrP106-126 and hIAPP with two tetracoordinated gold-sulfur complexes, namely, dichloro diethyl dithiocarbamate gold complex and dichloro pyrrolidine dithiocarbamate gold complex. We also determined the effects of these complexes on peptide-induced cytotoxicity. Thioflavin T assay, morphological characterization, and particle size analysis indicated that the two gold-sulfur complexes effectively inhibited the fibrillation of the amyloid peptides, which led to the formation of nanoscale particles. The complexes reduced the cytotoxicity induced by the amyloid peptides. Intrinsic fluorescence, nuclear magnetic resonance, and mass spectrometry revealed that the complexes interacted with PrP106-126 and hIAPP via metal coordination and hydrophobic interaction, which improved the inhibition and binding of the two gold-sulfur compounds. Our study provided new insights into the use of tetracoordinated gold-sulfur complexes as drug candidates against protein conformational disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Global demand for gold is another threat for tropical forests

    NASA Astrophysics Data System (ADS)

    Alvarez-Berríos, Nora L.; Aide, T. Mitchell

    2015-01-01

    The current global gold rush, driven by increasing consumption in developing countries and uncertainty in financial markets, is an increasing threat for tropical ecosystems. Gold mining causes significant alteration to the environment, yet mining is often overlooked in deforestation analyses because it occupies relatively small areas. As a result, we lack a comprehensive assessment of the spatial extent of gold mining impacts on tropical forests. In this study, we provide a regional assessment of gold mining deforestation in the tropical moist forest biome of South America. Specifically, we analyzed the patterns of forest change in gold mining sites between 2001 and 2013, and evaluated the proximity of gold mining deforestation to protected areas (PAs). The forest cover maps were produced using the Land Mapper web application and images from the MODIS satellite MOD13Q1 vegetation indices 250 m product. Annual maps of forest cover were used to model the incremental change in forest in ˜1600 potential gold mining sites between 2001-2006 and 2007-2013. Approximately 1680 km2 of tropical moist forest was lost in these mining sites between 2001 and 2013. Deforestation was significantly higher during the 2007-2013 period, and this was associated with the increase in global demand for gold after the international financial crisis. More than 90% of the deforestation occurred in four major hotspots: Guianan moist forest ecoregion (41%), Southwest Amazon moist forest ecoregion (28%), Tapajós-Xingú moist forest ecoregion (11%), and Magdalena Valley montane forest and Magdalena-Urabá moist forest ecoregions (9%). In addition, some of the more active zones of gold mining deforestation occurred inside or within 10 km of ˜32 PAs. There is an urgent need to understand the ecological and social impacts of gold mining because it is an important cause of deforestation in the most remote forests in South America, and the impacts, particularly in aquatic systems, spread well

  9. Electrochemical properties of nanostructured porous gold electrodes in biofouling solutions.

    PubMed

    Patel, Jay; Radhakrishnan, Logudurai; Zhao, Bo; Uppalapati, Badharinadh; Daniels, Rodney C; Ward, Kevin R; Collinson, Maryanne M

    2013-12-03

    The effect of electrode porosity on the electrochemical response of redox active molecules (potassium ferricyanide, ruthenium(III) hexammine, and ferrocene methanol) in the presence of bovine serum albumin or fibrinogen was studied at macroporous (pore diameter: 1200 nm), hierarchical (1200/60 nm), and nanoporous (<50 nm) gold. These electrodes were prepared using standard templating or dealloying techniques, and cyclic voltammetry (CV) was utilized to evaluate the effect of protein adsorption on the electron transfer of the diffusing redox probes. Following exposure to albumin (or fibrinogen) under near neutral pH conditions, planar gold electrodes showed an immediate reduction in Faradaic peak current and increase in peak splitting for potassium ferricyanide. The rate at which the CV curves changed was highly dependent on the morphology of the electrode. For example, the time required for the Faradaic current to drop to one-half of its original value was 3, 12, and 38 min for planar gold, macroporous gold, and hierarchical gold, respectively. Remarkably, for nanoporous gold, only a few percent drop in the peak Faradaic current was observed after an hour in solution. A similar suppression in the voltammetry at planar gold was also noted for ruthenium hexammine at pH 3 after exposure to albumin for several hours. At nanoporous gold, no significant loss in response was observed. The order of performance of the electrodes as judged by their ability to efficiently transfer electrons in the presence of biofouling agents tracked porosity with the electrode having the smallest pore size and largest surface area, providing near ideal results. Nanoporous gold electrodes when immersed in serum or heparinized blood containing potassium ferricyanide showed ideal voltammetry while significant fouling was evident in the electrochemical response at planar gold. The small nanopores in this 3D open framework are believed to restrict the transport of large biomolecules, thus

  10. Gold Veins near Great Falls, Maryland

    USGS Publications Warehouse

    Reed, John Calvin; Reed, John C.

    1969-01-01

    Small deposits of native gold are present along an anastomosing system of quartz veins and shear zones just east of Great Falls, Montgomery County, Md. The deposits were discovered in 1861 and were worked sporadically until 1951, yielding more than 5,000 ounces of gold. The vein system and the principal veins within it strike a few degrees west of north, at an appreciable angle to foliation and fold axial planes in enclosing rocks of the Wissahickon Formation of late Precambrian (?) age. The veins cut granitic rocks of Devonian or pre-Devonian age and may be as young as Triassic. Further development of the deposits is unlikely under present economic conditions because of their generally low gold content and because much of the vein system lies on park property, but study of the Great Falls vein system may be useful in the search for similar deposits elsewhere in the Appalachian Piedmont.

  11. Gold Nanoparticles for Biology and Medicine

    PubMed Central

    Giljohann, David A.; Seferos, Dwight S.; Daniel, Weston L.; Massich, Matthew D.; Patel, Pinal C.

    2014-01-01

    Gold colloids have fascinated scientists for over a century and are now heavily utilized in chemistry, biology, engineering, and medicine. Today these materials can be synthesized reproducibly, modified with seemingly limitless chemical functional groups, and, in certain cases, characterized with atomic-level precision. This Review highlights recent advances in the synthesis, bioconjugation, and cellular uses of gold nanoconjugates. There are now many examples of highly sensitive and selective assays based upon gold nanoconjugates. In recent years, focus has turned to therapeutic possibilities for such materials. Structures which behave as gene-regulating agents, drug carriers, imaging agents, and photoresponsive therapeutics have been developed and studied in the context of cells and many debilitating diseases. These structures are not simply chosen as alternatives to molecule-based systems, but rather for their new physical and chemical properties, which confer substantive advantages in cellular and medical applications. PMID:20401880

  12. Investigating the Toxicity, Uptake, Nanoparticle Formation and Genetic Response of Plants to Gold

    PubMed Central

    Taylor, Andrew F.; Rylott, Elizabeth L.; Anderson, Christopher W. N.; Bruce, Neil C.

    2014-01-01

    We have studied the physiological and genetic responses of Arabidopsis thaliana L. (Arabidopsis) to gold. The root lengths of Arabidopsis seedlings grown on nutrient agar plates containing 100 mg/L gold were reduced by 75%. Oxidized gold was subsequently found in roots and shoots of these plants, but gold nanoparticles (reduced gold) were only observed in the root tissues. We used a microarray-based study to monitor the expression of candidate genes involved in metal uptake and transport in Arabidopsis upon gold exposure. There was up-regulation of genes involved in plant stress response such as glutathione transferases, cytochromes P450, glucosyl transferases and peroxidases. In parallel, our data show the significant down-regulation of a discreet number of genes encoding proteins involved in the transport of copper, cadmium, iron and nickel ions, along with aquaporins, which bind to gold. We used Medicago sativa L. (alfalfa) to study nanoparticle uptake from hydroponic culture using ionic gold as a non-nanoparticle control and concluded that nanoparticles between 5 and 100 nm in diameter are not directly accumulated by plants. Gold nanoparticles were only observed in plants exposed to ionic gold in solution. Together, we believe our results imply that gold is taken up by the plant predominantly as an ionic form, and that plants respond to gold exposure by up-regulating genes for plant stress and down-regulating specific metal transporters to reduce gold uptake. PMID:24736522

  13. Reducing wall plasma expansion with gold foam irradiated by laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lu; Ding, Yongkun, E-mail: ding-yk@vip.sina.com; Jiang, Shaoen, E-mail: jiangshn@vip.sina.com

    The experimental study on the expanding plasma movement of low-density gold foam (∼1% solid density) irradiated by a high power laser is reported in this paper. Experiments were conducted using the SG-III prototype laser. Compared to solid gold with 19.3 g/cc density, the velocities of X-ray emission fronts moving off the wall are much smaller for gold foam with 0.3 g/cc density. Theoretical analysis and MULTI 1D simulation results also show less plasma blow-off, and that the density contour movement velocities of gold foam are smaller than those of solid gold, agreeing with experimental results. These results indicate that foam walls havemore » advantages in symmetry control and lowering plasma fill when used in ignition hohlraum.« less

  14. Advanced mercury removal from gold leachate solutions prior to gold and silver extraction: a field study from an active gold mine in Peru.

    PubMed

    Matlock, Matthew M; Howerton, Brock S; Van Aelstyn, Mike A; Nordstrom, Fredrik L; Atwood, David A

    2002-04-01

    Mercury contamination in the Gold-Cyanide Process (GCP) is a serious health and environmental problem. Following the heap leaching of gold and silver ores with NaCN solutions, portions of the mercury-cyano complexes often adhere to the activated carbon (AC) used to extract the gold. During the electrowinning and retorting steps, mercury can be (and often is) emitted to the air as a vapor. This poses a severe health hazard to plant workers and the local environment. Additional concerns relate to the safety of workers when handling the mercury-laden AC. Currently, mercury treatment from the heap leach solution is nonexistent. This is due to the fact that chelating ligands which can effectively work under the adverse pH conditions (as present in the heap leachate solutions) do not exist. In an effort to economically and effectively treat the leachate solution prior to passing over the AC, a dipotassium salt of 1,3-benzenediamidoethanethiol (BDET2-) has been developed to irreversibly bind and precipitate the mercury. The ligand has proven to be highly effective by selectively reducing mercury levels from average initial concentrations of 34.5 ppm (parts per million) to 0.014 ppm within 10 min and to 0.008 ppm within 15 min. X-ray powder diffraction (XRD), proton nuclear magnetic resonance (1H NMR), Raman, and infrared (IR) spectroscopy demonstrate the formation of a mercury-ligand compound, which remains insoluble over pH ranges of 0.0-14.0. Leachate samples from an active gold mine in Peru have been analyzed using cold vapor atomic fluorescence (CVAF) and inductively coupled plasma optical emission spectroscopy (ICP-OES) for metal concentrations before and after treatment with the BDET2- ligand.

  15. A unique ore-placer area of the Amur region with high-Hg gold

    NASA Astrophysics Data System (ADS)

    Melnikov, A. V.; Stepanov, V. A.; Moiseenko, V. G.

    2017-10-01

    This work presents the geological structure and a description of the gold-ore occurrences and gold placers of the Un'ya-Bom ore-placer cluster of the Amur gold-bearing province. The host rocks are Late Paleozoic and Mesozoic black shales. Intrusive formations occur rarely. The sublatitudinal Un'ya Thrust is the principal ore-controlling structure. Paleozoic sandstones are thrust over Mesozoic flysch deposits along the Un'ya Thrust. The gold-ore occurrences are represented by quartz-vein zones. The ores are gold-quartz, low-sulfide. Ore minerals are arsenopyrite, scheelite, ferberite, galena, and native gold. High-Hg native gold was revealed in the ore occurrences and placers. The high Hg content in native gold is explained by the presence of the frontal part of the gold-bearing column located within the cluster; the rich placers were formed due to crushing of this column.

  16. Synthesis and characterization of pHLIP® coated gold nanoparticles.

    PubMed

    Daniels, Jennifer L; Crawford, Troy M; Andreev, Oleg A; Reshetnyak, Yana K

    2017-07-01

    Novel approaches in synthesis of spherical and multispiked gold nanoparticles coated with polyethylene glycol (PEG) and pH Low Insertion Peptide (pHLIP ® ) were introduced. The presence of a tumor-targeting pHLIP ® peptide in the nanoparticle coating enhances the stability of particles in solution and promotes a pH-dependent cellular uptake. The spherical particles were prepared with sodium citrate as a gold reducing agent to form particles of 7.0±2.5 nm in mean metallic core diameter and ∼43 nm in mean hydrodynamic diameter. The particles that were injected into tumors in mice (21 µg of gold) were homogeneously distributed within a tumor mass with no staining of the muscle tissue adjacent to the tumor. Up to 30% of the injected gold dose remained within the tumor one hour post-injection. The multispiked gold nanoparticles with a mean metallic core diameter of 146.0±50.4 nm and a mean hydrodynamic size of ~161 nm were prepared using ascorbic acid as a reducing agent and disk-like bicelles as a template. Only the presence of a soft template, like bicelles, ensured the appearance of spiked nanoparticles with resonance in the near infrared region. The irradiation of spiked gold nanoparticles by an 805 nm laser led to the time- and concentration-dependent increase of temperature. Both pHLIP ® and PEG coated gold spherical and multispiked nanoparticles might find application in radiation and thermal therapies of tumors.

  17. The origin or the Archean Jardine iron formation-hosted lode gold deposit. Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ping, Liu.

    1992-06-09

    While there is considerable controversy concerning the origin of greenstone-hosted lode gold deposits of Archean age, there is a general consensus that these deposits are epigenetic. By contrast, iron formation-hosted lode gold deposits of Archean or Proterozoic age are considered either epigenetic or syngenetic. At least three genetic models have been proposed for these gold deposits: a syngenetic model involving simultaneous deposition of gold and the iron formation; an epigenetic model involving a later introduction of gold, arsenic, and sulfur into the iron formation; and a multistage model involving primary concentration of gold during deposition of iron formation followed bymore » remobilization and reconcentration of gold during later events. The Jardine district is one of only three Archean lode gold districts in the United States that have reserves of greater than 300,000 ounces of gold. The other two are the South Pass-Atlantic City district, Wyoming, and the Ropes mine, Michigan. The fact that two of the three districts are in the Wyoming province suggests that the province might be an Archean gold province similar to Archean provinces in Canada. Placer gold was discovered near Jardine in 1866, and gold quartz veins were mined in the 1880's at Mineral Hill. Exploration by the Jardine Joint Venture has concentrated on the Jardine area, including Crevasse Mountain, where minor lode gold mineralization occurs in quartz-biotite schists. In order to complement previous geochemical, mineralogical, petrological and structural studies, the present study has concentrated on fluid inclusion, stable isotope, and electron microprobe studies with the intention of determining: (1) the source of the ore-forming fluids and gold, and (2) the genetic relationship between gold mineralization and iron formation, alteration and metamorphism.« less

  18. The origin or the Archean Jardine iron formation-hosted lode gold deposit. Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ping, Liu

    1992-06-09

    While there is considerable controversy concerning the origin of greenstone-hosted lode gold deposits of Archean age, there is a general consensus that these deposits are epigenetic. By contrast, iron formation-hosted lode gold deposits of Archean or Proterozoic age are considered either epigenetic or syngenetic. At least three genetic models have been proposed for these gold deposits: a syngenetic model involving simultaneous deposition of gold and the iron formation; an epigenetic model involving a later introduction of gold, arsenic, and sulfur into the iron formation; and a multistage model involving primary concentration of gold during deposition of iron formation followed bymore » remobilization and reconcentration of gold during later events. The Jardine district is one of only three Archean lode gold districts in the United States that have reserves of greater than 300,000 ounces of gold. The other two are the South Pass-Atlantic City district, Wyoming, and the Ropes mine, Michigan. The fact that two of the three districts are in the Wyoming province suggests that the province might be an Archean gold province similar to Archean provinces in Canada. Placer gold was discovered near Jardine in 1866, and gold quartz veins were mined in the 1880`s at Mineral Hill. Exploration by the Jardine Joint Venture has concentrated on the Jardine area, including Crevasse Mountain, where minor lode gold mineralization occurs in quartz-biotite schists. In order to complement previous geochemical, mineralogical, petrological and structural studies, the present study has concentrated on fluid inclusion, stable isotope, and electron microprobe studies with the intention of determining: (1) the source of the ore-forming fluids and gold, and (2) the genetic relationship between gold mineralization and iron formation, alteration and metamorphism.« less

  19. Effect of surface roughness on substrate-tuned gold nanoparticle gap plasmon resonances.

    PubMed

    Lumdee, Chatdanai; Yun, Binfeng; Kik, Pieter G

    2015-03-07

    The effect of nanoscale surface roughness on the gap plasmon resonance of gold nanoparticles on thermally evaporated gold films is investigated experimentally and numerically. Single-particle scattering spectra obtained from 80 nm diameter gold particles on a gold film show significant particle-to-particle variation of the peak scattering wavelength of ±28 nm. The experimental results are compared with numerical simulations of gold nanoparticles positioned on representative rough gold surfaces, modeled based on atomic force microscopy measurements. The predicted spectral variation and average resonance wavelength show good agreement with the measured data. The study shows that nanometer scale surface roughness can significantly affect the performance of gap plasmon-based devices.

  20. III-V nanowire synthesis by use of electrodeposited gold particles.

    PubMed

    Jafari Jam, Reza; Heurlin, Magnus; Jain, Vishal; Kvennefors, Anders; Graczyk, Mariusz; Maximov, Ivan; Borgström, Magnus T; Pettersson, Håkan; Samuelson, Lars

    2015-01-14

    Semiconductor nanowires are great candidates for building novel electronic devices. Considering the cost of fabricating such devices, substrate reuse and gold consumption are the main concerns. Here we report on implementation of high throughput gold electrodeposition for selective deposition of metal seed particles in arrays defined by lithography for nanowire synthesis. By use of this method, a reduction in gold consumption by a factor of at least 300 was achieved, as compared to conventional thermal evaporation for the same pattern. Because this method also facilitates substrate reuse, a significantly reduced cost of the final device is expected. We investigate the morphology, crystallography, and optical properties of InP and GaAs nanowires grown from electrodeposited gold seed particles and compare them with the properties of nanowires grown from seed particles defined by thermal evaporation of gold. We find that nanowire synthesis, as well as the material properties of the grown nanowires are comparable and quite independent of the gold deposition technique. On the basis of these results, electrodeposition is proposed as a key technology for large-scale fabrication of nanowire-based devices.

  1. Use of near-infrared luminescent gold nanoclusters for detection of macrophages

    PubMed Central

    Sapozhnikova, Veronika; Willsey, Brian; Asmis, Reto; Wang, Tianyi; Jenkins, James Travis; Mancuso, Jacob; Ma, Li Leo; Kuranov, Roman; Milner, Thomas E.; Johnston, Keith

    2012-01-01

    Abstract. We determined the effect of aggregation and coating thickness of gold on the luminescence of nanoparticles engulfed by macrophages and in gelatin phantoms. Thin gold-coated iron oxide nanoclusters (nanoroses) have been developed to target macrophages to provide contrast enhancement for near-infrared optical imaging applications. We compare the brightness of nanoroses luminescent emissions in response to 635 nm laser excitation to other nanoparticles including nanoshells, nanorods, and Cy5 conjugated iron oxide nanoparticles. Luminescent properties of all these nanoparticles were investigated in monomeric and aggregated form in gelatin phantoms and primary macrophage cell cultures using confocal microscopy. Aggregation of the gold nanoparticles increased luminescence emission and correlated with increased surface mass of gold per nanoparticle (nanoshells 37±14.30×10−3 brightness with 1.23×10−4 wt of gold (g)/nanoparticle versus original nanorose 1.45±0.37×10−3 with 2.10×10−16 wt of gold/nanoparticle, p<0.05). Nanoshells showed greater luminescent intensity than original nanoroses or Cy5 conjugated iron oxide nanoparticles when compared as nanoparticles per macrophage (38±10 versus 11±2.8 versus 17±6.5, p<0.05, respectively, ANOVA), but showed relatively poor macrophage uptake (1025±128 versus 7549±236 versus 96,000  nanoparticles/cell, p<0.05, student t-test nanoshells versus nanoroses). Enhancement of gold fluorescent emissions by nanoparticles can be achieved by reducing the thickness of the gold coating, by clustering the gold on the surface of the nanoparticles (nanoshells), and by clustering the gold nanoparticles themselves. PMID:22463038

  2. Anti-trypanosomal activity of cationic N-heterocyclic carbene gold(I) complexes.

    PubMed

    Winter, Isabel; Lockhauserbäumer, Julia; Lallinger-Kube, Gertrud; Schobert, Rainer; Ersfeld, Klaus; Biersack, Bernhard

    2017-06-01

    Two gold(I) N-heterocyclic carbene complexes 1a and 1b were tested for their anti-trypanosomal activity against Trypanosoma brucei parasites. Both gold compounds exhibited excellent anti-trypanosomal activity (IC 50 =0.9-3.0nM). The effects of the gold complexes 1a and 1b on the T. b. brucei cytoskeleton were evaluated. Rapid detachment of the flagellum from the cell body occurred after treatment with the gold complexes. In addition, a quick and complete degeneration of the parasitic cytoskeleton was induced by the gold complexes, only the microtubules of the detached flagellum remained intact. Both gold compounds 1a and 1b feature selective anti-trypanosomal agents and were distinctly more active against T. b. brucei cells than against human HeLa cells. Thus, the gold complexes 1a and 1b feature promising drug candidates for the treatment of trypanosome infections such as sleeping sickness (human African Trypanosomiasis caused by Trypanosoma brucei parasites). Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Size tunable gold nanorods evenly distributed in the channels of mesoporous silica.

    PubMed

    Li, Zhi; Kübel, Christian; Pârvulescu, Vasile I; Richards, Ryan

    2008-06-01

    Uniformly distributed gold nanorods in mesoporous silica were synthesized in situ by performing a seed-mediated growth process in the channels of SBA-15 which functions as a hard-template to confine the diameter of gold nanorods. By changing the amount of gold precursor, gold nanorods were prepared with a fixed diameter (6-7 nm) and tunable aspect ratios from 3 to 30. Transmission electron microscope and electron tomography were utilized to visualize the gold nanorods supported on one piece of SBA-15 segment and showed a fairly uniform 3-dimensional distribution of gold nanorods within the SBA-15 channels. The longitudinal plasmon resonances of the gold nanorods/SBA-15 composites analyzed by diffuse reflectance UV-vis spectra were found to be tunable depending on the length of gold nanorods. No significant decrease in surface area and/or pore size of the composite was found after growth, indicating the growth process did not disrupt the open mesoporous structure of SBA-15. The combination of the tunable size of the nanorods and their 3-dimensional distribution within the open supporting matrix makes the gold nanorods/SBA-15 composites interesting candidates to systematically study the influence of the aspect ratio of gold nanorods on their properties and potential applications, i.e., catalyst, optical polarizer, and ultrasensitive medical imaging technique.

  4. Monitoring the Stimulated Uncapping Process of Gold-Capped Mesoporous Silica Nanoparticles.

    PubMed

    Augspurger, Ashley E; Sun, Xiaoxing; Trewyn, Brian G; Fang, Ning; Stender, Anthony S

    2018-03-06

    To establish a new method for tracking the interaction of nanoparticles with chemical cleaving agents, we exploited the optical effects caused by attaching 5-10 nm gold nanoparticles with molecular linkers to large mesoporous silica nanoparticles (MSN). At low levels of gold loading onto MSN, the optical spectra resemble colloidal suspensions of gold. As the gold is removed, by cleaving agents, the MSN revert to the optical spectra typical of bare silica. Time-lapse images of gold-capped MSN stationed in microchannels reveal that the rate of gold release is dependent on the concentration of the cleaving agent. The uncapping process was also monitored successfully for MSN endocytosed by A549 cancer cells, which produce the cleaving agent glutathione. These experiments demonstrate that the optical properties of MSN can be used to directly monitor cleaving kinetics, even in complex cellular settings.

  5. Heat-induced morphological transformation of gold nanodumbbells in ionic surfactant solutions

    NASA Astrophysics Data System (ADS)

    Wen, Ting-Chun; Lu, Chung-Wen; Hsieh, Wei-Chi; Chang, Sheng-Te; Yang, Ya-Ting; Deng, Jin-Pei

    2018-01-01

    The thermal stability of gold nanodumbbells (NDs) is studied in aqueous solution of ionic surfactants. It is found in aqueous solution of cetyltrimethylammonium bromide that the blue-shift of longitudinal surface plasmon resonance band of gold NDs occurs at 75 °C and the new gold nanorods (NRs) with shortened aspect ratio are formed at the same time. The aspect ratio of the generated gold NRs gradually decreases and finally approaches ∼1.7 after repeated processing. Similarly, the same results are also obtained in aqueous solution of sodium dodecyl sulfate at room temperature. Mechanism is proposed for the shape transformation of gold NDs.

  6. Gold nanoparticles to improve HIV drug delivery

    PubMed Central

    Garrido, Carolina; Simpson, Carrie A; Dahl, Noelle P; Bresee, Jamee; Whitehead, Daniel C; Lindsey, Erick A; Harris, Tyler L; Smith, Candice A; Carter, Carly J; Feldheim, Daniel L; Melander, Christian; Margolis, David M

    2015-01-01

    Background: Antiretroviral therapy (ART) has improved lifespan and quality of life of patients infected with the HIV-1. However, ART has several potential limitations, including the development of drug resistance and suboptimal penetration to selected anatomic compartments. Improving the delivery of antiretroviral molecules could overcome several of the limitations of current ART. Results & Conclusion: Two to ten nanometer diameter inorganic gold crystals serve as a base scaffold to combine molecules with an array of properties in its surface. We show entry into different cell types, antiviral activity of an HIV integrase inhibitor conjugated in a gold nanoparticle and penetration into the brain in vivo without toxicity. Herein, gold nanoparticles prove to be a promising tool to use in HIV therapy. PMID:26132521

  7. Gold recycling in the United States in 1998

    USGS Publications Warehouse

    Amey, Earle B.

    2001-01-01

    In 1998, 175 metric tons (t) of refined gold was recovered by U.S. refiners from old and new scrap. The overall recycling rate was 29 percent when scrap consumption was compared with apparent domestic supply. Sources of old scrap includes discarded jewelry, dental materials, plating solutions, and electronic equipment. A very high old scrap recycling efficiency of 96 percent was reached in 1998, the supply of old scrap peaked, gold prices were at an 18-year low, and substantial amounts of old scrap were exported. U.S. net exports of old scrap had a gold content of 28 t.

  8. Optical trapping gold nanoparticles by a pulse laser

    NASA Astrophysics Data System (ADS)

    Liu, XiaoYu; Wang, Feng

    2010-11-01

    Gold nanoparticles are widely employed in nanomaterials, nanobiotechnology and health care, but generally they are considered difficult to trap stably. Compared with the continuous laser which is popular to the optical trapping, pulse laser has a relatively larger power in its work pulse, which is useful for trap particles. So this paper comprehensively analyzes the forces (the radiation forces, the gravitation, and the Brownian motion) on the gold nanoparticles in the optical tweezers formed by a pulse laser, through building up a mathematical model. Finally gets the dependence relation between the characteristics of the pulse laser and that of the gold nanoparticles.

  9. GOLD Mission Launches to Study Near-Space Environment

    NASA Image and Video Library

    2018-01-25

    On Jan. 25, NASA’s Global-scale Observations of the Limb and Disk, or GOLD mission, launched from French Guiana. GOLD is an instrument launching on a commercial satellite to inspect, from geostationary orbit, the dynamic intermingling of space and Earth’s uppermost atmosphere. GOLD will seek to understand what drives change in this region where terrestrial weather in the lower atmosphere interacts with the tumult of solar activity from above and Earth’s magnetic field. Resulting data will improve forecasting models of space weather events that can impact life on Earth, as well as satellites and astronauts in space.

  10. Gold-magnetite nanoparticle-biomolecule conjugates: Synthesis, properties and toxicity studies

    NASA Astrophysics Data System (ADS)

    Pariti, Akshay

    This thesis study focuses on synthesizing and characterizing gold-magnetite optically active magnetic nanoparticle and its conjugation with biomolecules for biomedical applications, especially magnetic fluid hyperthermia treatment for cancerous tissue. Gold nanoparticles have already displayed their potential in the biomedical field. They exhibit excellent optical properties and possess strong surface chemistry which renders them suitable for various biomolecule attachments. Studies have showed gold nanoparticles to be a perfect biocompatible vector. However, clinical trials for gold mediated drug delivery and treatment studied in rat models identified some problems. Of these problems, the low retention time in bloodstream and inability to maneuver externally has been the consequential. To further enhance their potential applications and overcome the problems faced in using gold nanoparticles alone, many researchers have synthesized multifunctional magnetic materials with gold at one terminal. Magnetite, among the investigated magnetic materials is a promising and reliable candidate because of its high magnetic saturation moment and low toxicity. This thesis showcases a simple and facile one pot synthesis of gold-magnetite nanoparticles with an average particle size of 80 nm through hot injection method. The as-synthesized nanoparticles were characterized by XRD, TEM, Mossbauer spectroscopy, SQUID and MTS toxicity studies. The superparamagnetism of the as-synthesized nanoparticles has an interestingly high saturation magnetization moment and low toxicity than the literature values reported earlier. L-cysteine and (-)-EGCG (epigallacatechin-3-gallate) were attached to this multifunctional nanoparticles through the gold terminal and characterized to show the particles applicability through Raman, FTIR and UV-Vis spectroscopy.

  11. 31 CFR 101.4 - Extraction of gold bullion from the counterfeit coins.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Extraction of gold bullion from the... MITIGATION OF FORFEITURE OF COUNTERFEIT GOLD COINS § 101.4 Extraction of gold bullion from the counterfeit coins. If the petition is approved, the Assistant Secretary shall then forward the gold coins to the...

  12. A nonlinear model of gold production in Malaysia

    NASA Astrophysics Data System (ADS)

    Ramli, Norashikin; Muda, Nora; Umor, Mohd Rozi

    2014-06-01

    Malaysia is a country which is rich in natural resources and one of it is a gold. Gold has already become an important national commodity. This study is conducted to determine a model that can be well fitted with the gold production in Malaysia from the year 1995-2010. Five nonlinear models are presented in this study which are Logistic model, Gompertz, Richard, Weibull and Chapman-Richard model. These model are used to fit the cumulative gold production in Malaysia. The best model is then selected based on the model performance. The performance of the fitted model is measured by sum squares error, root mean squares error, coefficient of determination, mean relative error, mean absolute error and mean absolute percentage error. This study has found that a Weibull model is shown to have significantly outperform compare to the other models. To confirm that Weibull is the best model, the latest data are fitted to the model. Once again, Weibull model gives the lowest readings at all types of measurement error. We can concluded that the future gold production in Malaysia can be predicted according to the Weibull model and this could be important findings for Malaysia to plan their economic activities.

  13. Flash vaporization during earthquakes evidenced by gold deposits

    NASA Astrophysics Data System (ADS)

    Weatherley, Dion K.; Henley, Richard W.

    2013-04-01

    Much of the world's known gold has been derived from arrays of quartz veins. The veins formed during periods of mountain building that occurred as long as 3 billion years ago, and were deposited by very large volumes of water that flowed along deep, seismically active faults. The veins formed under fluctuating pressures during earthquakes, but the magnitude of the pressure fluctuations and their influence on mineral deposition is not known. Here we use a simple thermo-mechanical piston model to calculate the drop in fluid pressure experienced by a fluid-filled fault cavity during an earthquake. The geometry of the model is constrained using measurements of typical fault jogs, such as those preserved in the Revenge gold deposit in Western Australia, and other gold deposits around the world. We find that cavity expansion generates extreme reductions in pressure that cause the fluid that is trapped in the jog to expand to a very low-density vapour. Such flash vaporization of the fluid results in the rapid co-deposition of silica with a range of trace elements to form gold-enriched quartz veins. Flash vaporization continues as more fluid flows towards the newly expanded cavity, until the pressure in the cavity eventually recovers to ambient conditions. Multiple earthquakes progressively build economic-grade gold deposits.

  14. Exposure of Small-Scale Gold Miners in Prestea to Mercury, Ghana, 2012

    PubMed Central

    Mensah, Ebenezer Kofi; Afari, Edwin; Wurapa, Frederick; Sackey, Samuel; Quainoo, Albert; Kenu, Ernest; Nyarko, Kofi Mensah

    2016-01-01

    Introduction Small-scale gold miners in Ghana have been using mercury to amalgamate gold for many years. Mercury is toxic even at low concentration. We assessed occupational exposure of small-scale gold miners to mercury in Prestea, a gold mining town in Ghana. Methods We conducted a cross-sectional study in which we collected morning urine samples from 343 small-scale gold miners and tested for elemental mercury. Data on small-scale gold miner's socio-demographics, adverse health effects and occupational factors for mercury exposure were obtained and analyzed using SPSS Version 16 to determine frequency and percentage. Bivariate analysis was used to determine occupational factors associated with mercury exposure at 95% confidence level. Results The mean age of the small-scale gold miners was 29.5 ±9.6 years, and 323(94.20%) were males. One hundred and sixty (46.65%) of the small-scale gold miners had urine mercury above the recommended exposure limit (<5.0ug/L). Complaints of numbness were significantly associated with mercury exposure among those who have previously worked at other small-scale gold mines (χ2=4.96, p=0.03). The use of personal protective equipment among the small-scale gold miners was low. Retorts, which are globally recommended for burning amalgam, were not found at mining sites. Conclusion A large proportion of small-scale gold miners in Prestea were having mercury exposure in excess of occupational exposure limits, and are at risk of experiencing adverse health related complications. Ghana Environmental Protection Agency should organize training for the miners. PMID:28210374

  15. Lithospheric controls on the formation of provinces hosting giant orogenic gold deposits

    USGS Publications Warehouse

    Bierlein, F.P.; Groves, D.I.; Goldfarb, R.J.; Dube, B.

    2006-01-01

    Ages of giant gold systems (>500 t gold) cluster within well-defined periods of lithospheric growth at continental margins, and it is the orogen-scale processes during these mainly Late Archaean, Palaeoproterozoic and Phanerozoic times that ultimately determine gold endowment of a province in an orogen. A critical factor for giant orogenic gold provinces appears to be thickness of the subcontinental lithospheric mantle (SCLM) beneath a province at the time of gold mineralisation, as giant gold deposits are much more likely to develop in orogens with subducted oceanic or thin continental lithosphere. A proxy for the latter is a short pre-mineralisation crustal history such that thick SCLM was not developed before gold deposition. In constrast, orogens with protracted pre-mineralisation crustal histories are more likely to be characterised by a thick SCLM that is difficult to delaminate, and hence, such provinces will normally be poorly endowed. The nature of the lithosphere also influences the intrinsic gold concentrations of potential source rocks, with back-arc basalts, transitional basalts and basanites enriched in gold relative to other rock sequences. Thus, segments of orogens with thin lithosphere may enjoy the conjunction of giant-scale fluid flux through gold-enriched sequences. Although the nature of the lithosphere plays the crucial role in dictating which orogenic gold provinces will contain one or more giant deposits, the precise siting of those giants depends on the critical conjunction of a number of province-scale factors. Such features control plumbing systems, traps and seals in tectonically and lithospherically suitable terranes within orogens. ?? Springer-Verlag 2006.

  16. Comparison of gold leaf thickness in Namban folding screens using X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Pessanha, Sofia; Madeira, Teresa I.; Manso, Marta; Guerra, Mauro; Le Gac, Agnès; Carvalho, Maria Luisa

    2014-09-01

    In this work, the thickness of the gold leaf applied in six Japanese folding screens is compared using a nondestructive approach. Four screens belonging to the Momoyama period (~1573-1603) and two screens belonging to the early Edo period (~1603-1868) were analyzed in situ using energy dispersive X-ray fluorescence, and the thickness of the applied gold leaf was evaluated using a methodology based on the attenuation of the different characteristic lines of gold in the gold leaf layer. Considering that the leaf may well not be made of pure gold, we established that, for the purpose of comparing the intensity ratios of the Au lines, layers made with gold leaf of high grade can be considered identical. The gold leaf applied in one of the screens from the Edo period was found to be thinner than the gold leaf applied in the other ones. This is consistent with the development of the beating technology to obtain ever more thin gold leafs.

  17. Phase transitions and kinetic properties of gold nanoparticles confined between two-layer graphene nanosheets

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Wu, Nanhua; Chen, Jionghua; Wang, Jinjian; Shao, Jingling; Zhu, Xiaolei; Lu, Xiaohua; Guo, Lucun

    2016-11-01

    The thermodynamic and kinetic behaviors of gold nanoparticles confined between two-layer graphene nanosheets (two-layer-GNSs) are examined and investigated during heating and cooling processes via molecular dynamics (MD) simulation technique. An EAM potential is applied to represent the gold-gold interactions while a Lennard-Jones (L-J) potential is used to describe the gold-GNS interactions. The MD melting temperature of 1345 K for bulk gold is close to the experimental value (1337 K), confirming that the EAM potential used to describe gold-gold interactions is reliable. On the other hand, the melting temperatures of gold clusters supported on graphite bilayer are corrected to the corresponding experimental values by adjusting the εAu-C value. Therefore, the subsequent results from current work are reliable. The gold nanoparticles confined within two-layer GNSs exhibit face center cubic structures, which is similar to those of free gold clusters and bulk gold. The melting points, heats of fusion, and heat capacities of the confined gold nanoparticles are predicted based on the plots of total energies against temperature. The density distribution perpendicular to GNS suggests that the freezing of confined gold nanoparticles starts from outermost layers. The confined gold clusters exhibit layering phenomenon even in liquid state. The transition of order-disorder in each layer is an essential characteristic in structure for the freezing phase transition of the confined gold clusters. Additionally, some vital kinetic data are obtained in terms of classical nucleation theory.

  18. Not all that glitters is gold-Electron microscopy study on uptake of gold nanoparticles in Daphnia magna and related artifacts.

    PubMed

    Jensen, Louise Helene Søgaard; Skjolding, Lars Michael; Thit, Amalie; Sørensen, Sara Nørgaard; Købler, Carsten; Mølhave, Kristian; Baun, Anders

    2017-06-01

    Increasing use of engineered nanoparticles has led to extensive research into their potential hazards to the environment and human health. Cellular uptake from the gut is sparsely investigated, and microscopy techniques applied for uptake studies can result in misinterpretations. Various microscopy techniques were used to investigate internalization of 10-nm gold nanoparticles in Daphnia magna gut lumen and gut epithelial cells following 24-h exposure and outline potential artifacts (i.e., high-contrast precipitates from sample preparation related to these techniques). Light sheet microscopy confirmed accumulation of gold nanoparticles in the gut lumen. Scanning transmission electron microscopy and elemental analysis revealed gold nanoparticles attached to the microvilli of gut cells. Interestingly, the peritrophic membrane appeared to act as a semipermeable barrier between the lumen and the gut epithelium, permitting only single particles through. Structures resembling nanoparticles were also observed inside gut cells. Elemental analysis could not verify these to be gold, and they were likely artifacts from the preparation, such as osmium and iron. Importantly, gold nanoparticles were found inside holocrine cells with disrupted membranes. Thus, false-positive observations of nanoparticle internalization may result from either preparation artifacts or mistaking disrupted cells for intact cells. These findings emphasize the importance of cell integrity and combining elemental analysis with the localization of internalized nanoparticles using transmission electron microscopy. Environ Toxicol Chem 2017;36:1503-1509. © 2016 SETAC. © 2016 SETAC.

  19. Photonics of 2D gold nanolayers on sapphire surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muslimov, A. E., E-mail: amuslimov@mail.ru; Butashin, A. V.; Nabatov, B. V.

    Gold layers with thicknesses of up to several nanometers, including ordered and disordered 2D nanostructures of gold particles, have been formed on sapphire substrates; their morphology is described; and optical investigations are carried out. The possibility of increasing the accuracy of predicting the optical properties of gold layers and 2D nanostructures using quantum-mechanical models based on functional density theory calculation techniques is considered. The application potential of the obtained materials in photonics is estimated.

  20. Features of Inner Structure of Placer Gold of the North-Eastern Part Siberian Platform

    NASA Astrophysics Data System (ADS)

    Gerasimov, Boris; Zhuravlev, Anatolii; Ivanov, Alexey

    2017-12-01

    Mineral and raw material base of placer and ore gold is based on prognosis evaluation, which allows to define promising areas regarding gold-bearing deposit prospecting. But there are some difficulties in gold primary source predicting and prospecting at the North-east Siberian platform, because the studied area is overlapped by thick cover of the Cenozoic deposits, where traditional methods of gold deposit prospecting are ineffective. In this connection, detailed study of typomorphic features of placer gold is important, because it contains key genetic information, necessary for development of mineralogical criteria of prognosis evaluation of ore gold content. Authors studied mineralogical-geochemical features of placer gold of the Anabar placer area for 15 years, with a view to identify indicators of gold, typical for different formation types of primary sources. This article presents results of these works. In placer regions, where primary sources of gold are not identified, there is need to study typomorphic features of placer gold, because it contains important genetic information, necessary for the development of mineralogical criteria of prognosis evaluation of ore gold content. Inner structures of gold from the Anabar placer region are studied, as one of the diagnostic typomorphic criteria as described in prominent method, developed by N.V. Petrovskaya [1980]. Etching of gold was carried out using reagent: HCl + HNO3 + FeCl3 × 6H2O + CrO3 +thioureat + water. Identified inner structures wer studied in details by means of scanning electron microscope JEOL JSM-6480LV. Two types of gold are identified according to the features of inner structure of placer gold of the Anabar region. First type - medium-high karat fine, well processed gold with significantly changed inner structure. This gold is allochthonous, which was redeposited many times from ancient intermediate reservoirs to younger deposits. Second type - low-medium karat, poorly rounded gold with

  1. Biomolecular Assembly of Gold Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micheel, Christine Marya

    2005-05-20

    Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused inmore » three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.« less

  2. Microscopy and certification as tools for environmentally benign, mercury-free small-scale gold mining.

    PubMed

    Hylander, Lars D; Plath, David

    2006-09-01

    Small-scale gold miners lose annually 500-700 tonnes of mercury when amalgamating gold with mercury and subsequent burning. So far, mercury-free alternatives have been demanding more skill, time, or capital investments and the interest from the miners to reduce the mercury emissions has been limited. Recent development of mercury free methods, an increasing mercury price, and increased awareness of health and environmental damages caused by mercury is changing the attitudes. This trend could be spurred by certification of gold with added value due to clean production methods. Our objectives are to present a method to distinguish gold recovered without using mercury or harmful chemicals such as cyanide. Thereby, this gold could be certified and thus obtain a higher market price. The method is based on inspection of the gold grain surfaces with a light microscope. This method separated natural gold grains from gold recovered by amalgamation or cyanidation. The method also demonstrated different characteristics of gold grains from different gold fields and a basis for a catalogue with photomicrographs of gold grains from different gold fields has been established and partly presented in this article. In conclusion, studies of gold grains with a light microscope and photo documentation is an inexpensive but reliable method to distinguish environment-friendly recovered gold, which could be used for certification to get a higher market price.

  3. Low rate of asymptomatic cerebral embolism and improved procedural efficiency with the novel pulmonary vein ablation catheter GOLD: results of the PRECISION GOLD trial.

    PubMed

    De Greef, Yves; Dekker, Lukas; Boersma, Lucas; Murray, Stephen; Wieczorek, Marcus; Spitzer, Stefan G; Davidson, Neil; Furniss, Steve; Hocini, Mélèze; Geller, J Christoph; Csanádi, Zoltan

    2016-05-01

    This prospective, multicentre study (PRECISION GOLD) evaluated the incidence of asymptomatic cerebral embolism (ACE) after pulmonary vein isolation (PVI) using a new gold multi-electrode radiofrequency (RF) ablation catheter, pulmonary vein ablation catheter (PVAC) GOLD. Also, procedural efficiency of PVAC GOLD was compared with ERACE. The ERACE study demonstrated that a low incidence of ACE can be achieved with a platinum multi-electrode RF catheter (PVAC) combined with procedural manoeuvres to reduce emboli. A total of 51 patients with paroxysmal atrial fibrillation (AF) (age 57 ± 9 years, CHA2DS2-VASc score 1.4 ± 1.4) underwent AF ablation with PVAC GOLD. Continuous oral anticoagulation using vitamin K antagonists, submerged catheter introduction, and heparinization (ACT ≥ 350 s prior to ablation) were applied. Cerebral magnetic resonance imaging (MRI) scans were performed within 48 h before and 16-72 h post-ablation. Cognitive function assessed by the Mini-Mental State Exam at baseline and 30 days post-ablation. New post-procedural ACE occurred in only 1 of 48 patients (2.1%) and was not detectable on MRI after 30 days. The average number of RF applications per patient to achieve PVI was lower in PRECISION GOLD (20.3 ± 10.0) than in ERACE (28.8 ± 16.1; P = 0.001). Further, PVAC GOLD ablations resulted in significantly fewer low-power (<3 W) ablations (15 vs. 23%, 5 vs. 10% and 2 vs. 7% in 4:1, 2:1, and 1:1 bipolar:unipolar energy modes, respectively). Mini-Mental State Exam was unchanged in all patients. Atrial fibrillation ablation with PVAC GOLD in combination with established embolic lowering manoeuvres results in a low incidence of ACE. Pulmonary vein ablation catheter GOLD demonstrates improved biophysical efficiency compared with platinum PVAC. ClinicalTrials.gov NCT01767558. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  4. Gold concentrations in abiotic materials, plants, and animals: a synoptic review

    USGS Publications Warehouse

    Eisler, R.

    2004-01-01

    Gold (Au) is ubiquitous in the environment and mined commercially at numerous locations worldwide. It is also an allergen that induces dermatitis in sensitive individuals. Gold concentrations were comparatively elevated in samples collected near gold mining and processing facilities, although no data were found for birds and non-human mammals. Maximum gold concentrations reported in abiotic materials were 0.001 ug/L in rainwater; 0.0015 ug/L in seawater near hydrothermal vents vs. <0.00004-0.0007 ug/L elsewhere; 5.0 ug/kg dry weight (DW) in the Earth's crust; 19.0 ug/L in a freshwater stream near a gold mining site; 440 ug/kg DW in atmospheric dust near a high traffic road; 843 ug/kg DW in alluvial soil near a Nevada gold mine vs. <29 ug/kg DW premining; 2.53 mg/kg DW in snow near a Russian smelter vs. <0.35 mg/kg DW at a reference site; 4.5 mg/kg DW in sewage sludge; 28.7 mg/kg DW in polymetallic sulfides from the ocean floor; and 256.0 mg/kg DW in freshwater sediments near a gold mine tailings pile vs. <5 ug/kg DW prior to mining. In plants, elevated concentrations of 19 ug Au/kg DW were reported in terrestrial vegetation near gold mining operations vs. <4 ug/kg DW at a reference site; 37 ug/kg DW in aquatic bryophytes downstream from a gold mine; 150 ug Au/kg DW in leaves of beans grown in soil containing 170 ug/kg DW; up to 1.06 mg/kg DW in algal mats of rivers receiving gold mine wastes; and 0.1-100 mg/kg DW in selected gold accumulator plants. Fish and aquatic invertebrates contained 0.1-38.0 ug Au/kg DW. In humans, gold concentrations up to 1.1 ug/L were documented in urine of dental technicians vs. 0.002-0.85 ug/L in reference populations; 2.1 ug/L in breast milk, attributed to gold dental fillings and jewelry of mothers; 1.4 mg/kg DW in hair of goldsmiths vs. a normal range of 6-880 ug/kg DW; 2.39 mg/L in whole blood of rheumatoid arthritis patients receiving gold thiol drugs to reduce inflammation (chrysotherapy) vs. a normal range of 0.2-2.0 ug/L; and 60

  5. Size-focusing synthesis of gold nanoclusters with p-mercaptobenzoic acid.

    PubMed

    Tvedte, Laura M; Ackerson, Christopher J

    2014-09-18

    Etching or size-focusing methods are now widespread for preparation of atomically monodisperse thiolate-protected gold nanoparticles. Size-focusing methods are not widespread, however, in the production of water-soluble gold nanoparticles. Reported here is a new method for size-focusing of large gold nanoparticles utilizing p-mercaptobenzoic acid. We observe preferential formation of three large gold nanoparticles with approximate masses of 23, 51, and 88 kDa. On the basis of the stability of these masses against further etching or growth, they appear to be especially stable sizes. These sizes are not prominent after etching challenges with organosoluble ligands, and the 51 and 88 kDa sizes appear to be novel stable thiolate-protected gold cluster sizes. The overall trend in particle size distribution over time is also unusual, with larger sizes dominating at longer time points.

  6. Terminalia chebula mediated green and rapid synthesis of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohan Kumar, Kesarla; Mandal, Badal Kumar; Sinha, Madhulika; Krishnakumar, Varadhan

    2012-02-01

    Biologically inspired experimental process in synthesising nanoparticles is of great interest in present scenario. Biosynthesis of nanoparticles is considered to be one of the best green techniques in synthesising metal nanoparticles. Here, an in situ green biogenic synthesis of gold nanoparticles using aqueous extracts of Terminalia chebula as reducing and stabilizing agent is reported. Gold nanoparticles were confirmed by surface plasmon resonance in the range of 535 nm using UV-visible spectrometry. TEM analysis revealed that the morphology of the particles thus formed contains anisotropic gold nanoparticles with size ranging from 6 to 60 nm. Hydrolysable tannins present in the extract of T. chebula are responsible for reductions and stabilization of gold nanoparticles. Antimicrobial activity of gold nanoparticles showed better activity towards gram positive S. aureus compared to gram negative E. coli using standard well diffusion method.

  7. Optical Properties of Nano-Spherical Gold Doped Dye Solution Hybrid

    NASA Astrophysics Data System (ADS)

    Hoa, D. Q.; Lien, N. T. H.; Ha, C. V.; Nhung, T. H.; Long, P.

    2011-03-01

    Gold nanoparticles with average diameter of 16 nm which are coated with Cetrimonium Bromide (CTAB) by chemical method are dissolved in dye solution at different concentrations. The absorption spectra of the dye mixture appeared almost unchanged at low concentrations of gold nanoparticles (around 1×1014 cm-3) despite its fluorescence intensity increased many-fold. Energy transfer from gold nanoparticles to dye molecules occurs through surface plasmon resonance(SPR). The fluorescence of rhodamine 610 (Rh610) dye molecules co-adsorbed within 16 nm gold nanoparticles assemblies can be useful for enhancing gain in lasing emission. An increase in laser efficiency by a factor of one and half times stronger compared to the single Rh610 dye suggest the potential of using the mixture of rhodamine dye with gold nanoparticles as laser medium in the configuration of quenching distributed feedback dye laser.

  8. In situ gold nanoparticles formation: contrast agent for dental optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Braz, Ana K. S.; Araujo, Renato E. de; Ohulchanskyy, Tymish Y.; Shukla, Shoba; Bergey, Earl J.; Gomes, Anderson S. L.; Prasad, Paras N.

    2012-06-01

    In this work we demonstrate the potential use of gold nanoparticles as contrast agents for the optical coherence tomography (OCT) imaging technique in dentistry. Here, a new in situ photothermal reduction procedure was developed, producing spherical gold nanoparticles inside dentinal layers and tubules. Gold ions were dispersed in the primer of commercially available dental bonding systems. After the application and permeation in dentin by the modified adhesive systems, the dental bonding materials were photopolymerized concurrently with the formation of gold nanoparticles. The gold nanoparticles were visualized by scanning electron microscopy (SEM). The SEM images show the presence of gold nanospheres in the hybrid layer and dentinal tubules. The diameter of the gold nanoparticles was determined to be in the range of 40 to 120 nm. Optical coherence tomography images were obtained in two- and three-dimensions. The distribution of nanoparticles was analyzed and the extended depth of nanosphere production was determined. The results show that the OCT technique, using in situ formed gold nanoparticles as contrast enhancers, can be used to visualize dentin structures in a non-invasive and non-destructive way.

  9. Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp.

    NASA Astrophysics Data System (ADS)

    Du, Liangwei; Xian, Liang; Feng, Jia-Xun

    2011-03-01

    In this work, the fungus Penicillium was used for rapid extra-/intracellular biosynthesis of gold nanoparticles. AuCl4 - ions reacted with the cell filtrate of Penicillium sp. resulting in extracellular biosynthesis of gold nanoparticles within 1 min. Intracellular biosynthesis of gold nanoparticles was obtained by incubating AuCl4 - solution with fungal biomass for 8 h. The gold nanoparticles were characterized by means of visual observation, UV-Vis absorption spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The extracellular nanoparticles exhibited maximum absorbance at 545 nm in UV-Vis spectroscopy. The XRD spectrum showed Bragg reflections corresponding to the gold nanocrystals. TEM exhibited the formed spherical gold nanoparticles in the size range from 30 to 50 nm with an average size of 45 nm. SEM and TEM revealed that the intracellular gold nanoparticles were well dispersed on the cell wall and within the cell, and they are mostly spherical in shape with an average diameter of 50 nm. The presence of gold was confirmed by EDX analysis.

  10. Fano-like resonance in symmetry-broken gold nanotube dimer.

    PubMed

    Wu, DaJian; Jiang, ShuMin; Cheng, Ying; Liu, XiaoJun

    2012-11-19

    The influences of the symmetry-breaking on the plasmon resonance couplings in the isolated gold nanotube and the gold nanotube dimer have been investigated by means of the finite element method. It is found that the core offset of gold nanotubes leads to the red-shifts of the low energy modes and the enhanced near-field on the thin shell side of the symmetry-broken gold nanotube (SBGNT). In the weak coupling model of the SBGNT dimer, the interference of the bonding octupole mode of the dimer with the dipole modes causes a strong Fano-like resonance in scattering spectrum. The Fano dip shows a red-shift and becomes deep with the increase of the offset-value. In the strong coupling model of the SBGNT dimer, the coupling between two SBGNTs induces giant electric field enhancement at the gap of the dimer, which is much larger than that in the symmetry gold nanotube dimer. The SBGNT with larger offset-value exhibits stronger near-field at the "hot spot".

  11. Plasmonic Gold Nanorod Dispersions with Electrical and Optical Tunability

    NASA Astrophysics Data System (ADS)

    Grabowski, Christopher; Mahoney, Clare; Park, Kyoungweon; Jawaid, Ali; White, Timothy; Vaia, Richard

    The transmissive, absorptive, electrical, and thermal properties of plasmonic gold nanorods (NRs) have led to their employment in a broad range of applications. These electro-optical properties - governed by their size, shape, and composition - are widely and precisely tunable during synthesis. Gold NRs show promise for large scale optical elements as they have been demonstrated to align faster than liquid crystal films (μs) at low fields (1 V/ μm). Successfully dispersing a high volume fraction of gold NRs requires a strategy to control particle-particle separation and thus avoid aggregation. Herein, we discuss the role of theta temperature and the ability to swell or collapse the chains of polymer-grafted gold NRs to alter the interaction potential between particles. UV-Vis spectroscopy, scattering, and electrical susceptibility characterization methods were employed to determine nanoparticle dispersion along with the degree of gold NR alignment. The development of new agile photonic materials, controllable with both light and electric fields, will help address emerging needs in laser hardening (agile filters) and variable transmission visors.

  12. Nanostructured gold microelectrodes for extracellular recording from electrogenic cells.

    PubMed

    Brüggemann, D; Wolfrum, B; Maybeck, V; Mourzina, Y; Jansen, M; Offenhäusser, A

    2011-07-01

    We present a new biocompatible nanostructured microelectrode array for extracellular signal recording from electrogenic cells. Microfabrication techniques were combined with a template-assisted approach using nanoporous aluminum oxide to develop gold nanopillar electrodes. The nanopillars were approximately 300-400 nm high and had a diameter of 60 nm. Thus, they yielded a higher surface area of the electrodes resulting in a decreased impedance compared to planar electrodes. The interaction between the large-scale gold nanopillar arrays and cardiac muscle cells (HL-1) was investigated via focused ion beam milling. In the resulting cross-sections we observed a tight coupling between the HL-1 cells and the gold nanostructures. However, the cell membranes did not bend into the cleft between adjacent nanopillars due to the high pillar density. We performed extracellular potential recordings from HL-1 cells with the nanostructured microelectrode arrays. The maximal amplitudes recorded with the nanopillar electrodes were up to 100% higher than those recorded with planar gold electrodes. Increasing the aspect ratio of the gold nanopillars and changing the geometrical layout can further enhance the signal quality in the future.

  13. Interaction of size-selected gold nanoclusters with dopamine

    NASA Astrophysics Data System (ADS)

    Montone, Georgia R.; Hermann, Eric; Kandalam, Anil K.

    2016-12-01

    We present density functional theory based results on the interaction of size-selected gold nanoclusters, Au10 and Au20, with dopamine molecule. The gold clusters interact strongly with the nitrogen site of dopamine, thereby forming stable gold-dopamine complexes. Our calculations further show that there is no site specificity on the planar Au10 cluster with all the edge gold atoms equally preferred. On the other hand, in the pyramidal Au20 cluster, the vertex metal atom is the most active site. As the size increased from Au10 to Au20, the interaction strength has shown a declining trend. The effect of aqueous environment on the interaction strengths were also studied by solvation model. It is found that the presence of solvent water stabilizes the interaction between the metal cluster and dopamine molecule, even though for Au10 cluster the energy ordering of the isomers changed from that of the gas-phase.

  14. Monitoring the Stimulated Uncapping Process of Gold-Capped Mesoporous Silica Nanoparticles

    DOE PAGES

    Augspurger, Ashley E.; Sun, Xiaoxing; Trewyn, Brian G.; ...

    2018-02-05

    To establish a new method for tracking the interaction of nanoparticles with chemical cleaving agents, we exploited the optical effects caused by attaching 5-10 nm gold nanoparticles with molecular linkers to large mesoporous silica nanoparticles (MSN). At low levels of gold loading onto MSN, the optical spectra resemble colloidal suspensions of gold. As the gold is removed, by cleaving agents, the MSN revert to the optical spectra typical of bare silica. Time-lapse images of gold-capped MSN stationed in microchannels reveal that the rate of gold release is dependent on the concentration of the cleaving agent. Finally, the uncapping process wasmore » also monitored successfully for MSN endocytosed by A549 cancer cells, which produce the cleaving agent glutathione. These experiments demonstrate that the optical properties of MSN can be used to directly monitor cleaving kinetics, even in complex cellular settings.« less

  15. Monitoring the Stimulated Uncapping Process of Gold-Capped Mesoporous Silica Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augspurger, Ashley E.; Sun, Xiaoxing; Trewyn, Brian G.

    To establish a new method for tracking the interaction of nanoparticles with chemical cleaving agents, we exploited the optical effects caused by attaching 5-10 nm gold nanoparticles with molecular linkers to large mesoporous silica nanoparticles (MSN). At low levels of gold loading onto MSN, the optical spectra resemble colloidal suspensions of gold. As the gold is removed, by cleaving agents, the MSN revert to the optical spectra typical of bare silica. Time-lapse images of gold-capped MSN stationed in microchannels reveal that the rate of gold release is dependent on the concentration of the cleaving agent. Finally, the uncapping process wasmore » also monitored successfully for MSN endocytosed by A549 cancer cells, which produce the cleaving agent glutathione. These experiments demonstrate that the optical properties of MSN can be used to directly monitor cleaving kinetics, even in complex cellular settings.« less

  16. Tectonics and distribution of gold deposits in China - An overview

    USGS Publications Warehouse

    Zhou, T.; Goldfarb, R.J.; Phillips, G.N.

    2002-01-01

    Gold exploration in China has expanded rapidly during the last two decades since a modern approach to economic development has become a national priority. China currently produces 180 tonnes (t) of gold annually, which is still significantly less than South Africa, USA, and Australia. However, China is now recognized as possessing significant gold resources in a wide range of mineral deposit types. Present estimates of gold resources in China exceed 4,500 t, which comprise 60% in gold-only deposits, more than 25% in base metal-rich skarn, porphyry, and vein deposits, and more than 10% in placer accumulations. The major gold provinces in China formed during the main episodes of Phanerozoic tectonism. Such tectonism involved interaction of China's three major Precambrian cratons, North China, Tarim, and Yangtze (or South China when combined with Cathysia block), with the Angara (or Siberian), Kazakhstan-Kyrgyzstan, and Indian cratons. Resulting collisions included deformation of accreted oceanic sequences between the cratonic blocks. The most important ore-forming orogenies were (1) the late Paleozoic Variscan (405-270 Ma), which led to amalgamation of the Angara, North China and Yangtze cratons, (2) the Indosinian (270-208 Ma), which led to the collision of North China and South China cratons, (3) the Yanshanian (208-90 Ma), which was largely influenced by the subduction of the Izanagi-Pacific plates beneath eastern China, and (4) the Himalayan (<90 Ma) indentation of the Indian continent into Eurasia. No important Precambrian gold systems are recognized in China, mainly because of reworking of exposed Precambrian rocks by these younger orogenies, but there are a few Caledonian (600-405 Ma) gold-bearing system in northern Xinjiang. Most of China's orogenic, epithermal, and Carlinlike gold deposits are in the reworkerd margins of major cratonic blocks and in metasedimentary rock-dominated fold belts adjacent to these margins. Accordingly, the major gold provinces are

  17. The mineralogical phase transformation of invisible gold-concentrate by microwave heating, and enhancement of their gold leaching rate

    NASA Astrophysics Data System (ADS)

    Bak, Geonyoung; Kim, Bongju; Choi, Nagchoul; Park*, Cheonyoung

    2015-04-01

    In this study, in order to obtain the maximum Au leaching rate, an invisible gold concentrate sample was microwave-treated and a thiourea leaching experiment was performed. It is found that gold exists as invisible as a result of observation with an optical microscope and an electron microscope. As the invisible gold concentrate sample was exposed to microwave longer, its temperature and weight loss were increased together and its S content was decreased. The conditions for the maximum Au leaching rate and the fast leaching effect were a particle size of -325×400 mesh, exposure to microwave for 70 minutes, 1.0 g of thiourea, 0.0504 g of sodium sulfite and 0.425 g of ferric sulfate. However, the condition under which Au was leached out to the maximum was applied to the control sample, but its Au leaching rate was just in a range of 78% to 88%. Such results suggest that the effect of sodium sulfite and ferric sulfate was more effective in the microwave-treated sample than in the control sample. Therefore, it was confirmed that the complete and very fast Au leaching can be achieved by means of the microwave pretreatment of invisible gold concentrate.

  18. Preliminary analysis on hybrid Box-Jenkins - GARCH modeling in forecasting gold price

    NASA Astrophysics Data System (ADS)

    Yaziz, Siti Roslindar; Azizan, Noor Azlinna; Ahmad, Maizah Hura; Zakaria, Roslinazairimah; Agrawal, Manju; Boland, John

    2015-02-01

    Gold has been regarded as a valuable precious metal and the most popular commodity as a healthy return investment. Hence, the analysis and prediction of gold price become very significant to investors. This study is a preliminary analysis on gold price and its volatility that focuses on the performance of hybrid Box-Jenkins models together with GARCH in analyzing and forecasting gold price. The Box-Cox formula is used as the data transformation method due to its potential best practice in normalizing data, stabilizing variance and reduces heteroscedasticity using 41-year daily gold price data series starting 2nd January 1973. Our study indicates that the proposed hybrid model ARIMA-GARCH with t-innovation can be a new potential approach in forecasting gold price. This finding proves the strength of GARCH in handling volatility in the gold price as well as overcomes the non-linear limitation in the Box-Jenkins modeling.

  19. Asymmetric statistical features of the Chinese domestic and international gold price fluctuation

    NASA Astrophysics Data System (ADS)

    Cao, Guangxi; Zhao, Yingchao; Han, Yan

    2015-05-01

    Analyzing the statistical features of fluctuation is remarkably significant for financial risk identification and measurement. In this study, the asymmetric detrended fluctuation analysis (A-DFA) method was applied to evaluate asymmetric multifractal scaling behaviors in the Shanghai and New York gold markets. Our findings showed that the multifractal features of the Chinese and international gold spot markets were asymmetric. The gold return series persisted longer in an increasing trend than in a decreasing trend. Moreover, the asymmetric degree of multifractals in the Chinese and international gold markets decreased with the increase in fluctuation range. In addition, the empirical analysis using sliding window technology indicated that multifractal asymmetry in the Chinese and international gold markets was characterized by its time-varying feature. However, the Shanghai and international gold markets basically shared a similar asymmetric degree evolution pattern. The American subprime mortgage crisis (2008) and the European debt crisis (2010) enhanced the asymmetric degree of the multifractal features of the Chinese and international gold markets. Furthermore, we also make statistical tests for the results of multifractatity and asymmetry, and discuss the origin of them. Finally, results of the empirical analysis using the threshold autoregressive conditional heteroskedasticity (TARCH) and exponential generalized autoregressive conditional heteroskedasticity (EGARCH) models exhibited that good news had a more significant effect on the cyclical fluctuation of the gold market than bad news. Moreover, good news exerted a more significant effect on the Chinese gold market than on the international gold market.

  20. Synthesis of icosahedral gold nanocrystals: a thermal process strategy.

    PubMed

    Zhou, Min; Chen, Shenhao; Zhao, Shiyong

    2006-03-16

    We demonstrate a one-step thermal process route to the synthesis of icosahedral gold nanocrystals. By regulating the concentrations of poly(vinyl pyrrolidone) (PVP) and HAuCl4 or changing the temperature, we can readily access the shapes of icosahedral nanocrystals with good uniformity. These gold nanostructures, with unique geometrical shapes, might find use in areas that include photonics, optoelectronics, and optical sensing. We also observed that these gold nanocrystals have a strong tendency to be immobilized spontaneously on the glass substrate.

  1. [Gold salt alveolitis in 3 patients with rheumatoid arthritis].

    PubMed

    Music, E; Tomsic, M; Logar, D

    1995-06-01

    When the characteristic symptoms for an interstitial pulmonary disease arise in patients with rheumatoid arthritis, a drug-induced alveolitis should be considered in the differential diagnosis. In such cases, the administration of the drug and gold salts should be stopped. The cases of three patients with rheumatoid arthritis (RA) who had been treated with gold salts for 2 months (A), 23 months (B), and 36 months (C) are presented. The total dose of sodium aureothiomalate amounted to 280 mg for patient A, 1150 mg for patient B, and 2190 mg for patient C. Clinical signs, X-rays of the lungs, pulmonary function tests, and laboratory tests were evaluated for the three patients while, for patient A BAL as well as provocation tests were additionally performed before and after therapy. In this case, the histological picture of the lungs is presented; biopsies were taken during the first BAL. The clinical complaints of all 3 patients were similar, with the alveolitis being observed as diffuse in one case and above all in the upper regions in two cases on radiology. This led to differing degrees of diffusion disorders in the lungs. In patient A, the diagnosis was made in the stage of progressive fibrotic alveolitis and was treated with D-penicillamine. All 3 patients received steroids over 3-6 months and the gold salts were stopped. Because of the long duration and doubtful differential diagnosis for patient A with either rheumatoid lung or gold salt alveolitis, a provocation test with sodium aureothiomalate was performed. All 3 patients had blood eosinophilia while, in case A, a thrombopenia was also found. A gold salt alveolitis can occur as a side effect of gold salts in addition to skin vasculitis and hematological disorders. When the gold salt administration is not stopped a fibrotic alveolitis can develop. The provocation test can be diagnostically useful to distinguish between a rheumatoid lung and gold salt alveolitis.

  2. PST-Gold nanoparticle as an effective anticancer agent with immunomodulatory properties.

    PubMed

    Joseph, Manu M; Aravind, S R; Varghese, Sheeja; Mini, S; Sreelekha, T T

    2013-04-01

    Polysaccharide PST001, which is isolated from the seed kernels of Tamarindus indica (Ti), is an antitumor and immunomodulatory compound. Gold nanoparticles have been used for various applications in cancer. In the present report, a novel strategy for the synthesis and stabilization of gold nanoparticles using anticancer polysaccharide PST001 was employed and the nanoparticles' antitumor activity was evaluated. PST-Gold nanoparticles were prepared such that PST001 acted both as a reducing agent and as a capping agent. PST-Gold nanoparticles showed high stability, no obvious aggregation for months and a wide range of pH tolerance. PST-Gold nanoparticles not only retained the antitumor effect of PST001 but also showed an enhanced effect even at a low concentration. It was also found that the nanoparticles exerted their antitumor effects through the induction of apoptosis. In vivo assays on BALB/c mice revealed that PST-Gold nanoparticles exhibited immunomodulatory effects. Evaluation of biochemical, hematological and histopathological features of mice revealed that PST-Gold nanoparticles could be administered safely without toxicity. Using the polysaccharide PST001 for the reduction and stabilization of gold nanoparticles does not introduce any environmental toxicity or biological hazards, and these particles are more effective than the parent polysaccharide. Further studies should be employed to exploit these particles as anticancer agents with imaging properties. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Gold(I) and Gold(III) Complexes of Cyclic (Alkyl)(amino)carbenes

    PubMed Central

    2016-01-01

    The chemistry of Au(I) complexes with two types of cyclic (alkyl)(amino)carbene (CAAC) ligands has been explored, using the sterically less demanding dimethyl derivative Me2CAAC and the 2-adamantyl ligand AdCAAC. The conversion of (AdCAAC)AuCl into (AdCAAC)AuOH by treatment with KOH is significantly accelerated by the addition of tBuOH. (AdCAAC)AuOH is a convenient starting material for the high-yield syntheses of (AdCAAC)AuX complexes by acid/base and C–H activation reactions (X = OAryl, CF3CO2, N(Tf)2, C2Ph, C6F5, C6HF4, C6H2F3, CH2C(O)C6H4OMe, CH(Ph)C(O)Ph, CH2SO2Ph), while the cationic complexes [(AdCAAC)AuL]+ (L = CO, CNtBu) and (AdCAAC)AuCN were obtained by chloride substitution from (AdCAAC)AuCl. The reactivity toward variously substituted fluoroarenes suggests that (AdCAAC)AuOH is able to react with C–H bonds with pKa values lower than about 31.5. This, together with the spectroscopic data, confirm the somewhat stronger electron-donor properties of CAAC ligands in comparison to imidazolylidene-type N-heterocyclic carbenes (NHCs). In spite of this, the oxidation of Me2CAAC and AdCAAC gold compounds is much less facile. Oxidations proceed with C–Au cleavage by halogens unless light is strictly excluded. The oxidation of (AdCAAC)AuCl with PhICl2 in the dark gives near-quantitative yields of (AdCAAC)AuCl3, while [Au(Me2CAAC)2]Cl leads to trans-[AuCl2(Me2CAAC)2]Cl. In contrast to the chemistry of imidazolylidene-type gold NHC complexes, oxidation products containing Au–Br or Au–I bonds could not be obtained; whereas the reaction with CsBr3 cleaves the Au–C bond to give mixtures of [AdCAAC-Br]+[AuBr2]− and [(AdCAAC-Br)]+ [AuBr4]−, the oxidation of (AdCAAC)AuI with I2 leads to the adduct (AdCAAC)AuI·I2. Irrespective of the steric demands of the CAAC ligands, their gold complexes proved more resistant to oxidation and more prone to halogen cleavage of the Au–C bonds than gold(I) complexes of imidazole-based NHC ligands. PMID:26146436

  4. Prehospital Emergencies in Illegal Gold Mining Sites in French Guiana.

    PubMed

    Egmann, Gérald; Tattevin, Pierre; Palancade, Renaud; Nacher, Matthieu

    2018-03-01

    Illegal gold mining is flourishing in French Guiana, existing outside the law due to both the high cost of gold mining permits and the challenges of law enforcement within the Amazon forest. We report the characteristics of, and the medical responses to, medical emergencies in illegal gold mining sites. We performed a retrospective study of all medical emergencies reported from illegal gold mining sites to the centralized call office of SAMU 973 from 1998 through 2000 and from 2008 through 2010. According to the national health care system, any medical emergency within the territory is handled by the prehospital emergency medical service (SAMU 973), irrespective of the patients' legal status. Data were extracted from the SAMU 973 notebook registry (1998-2000) or the SAMU 973 computerized database (2008-2010) and werre collected using a standardized questionnaire. Of 71,932 calls for medical emergencies in French Guiana during the study periods, 340 (0.5%) originated from illegal gold mining sites. Of these, 196 (58%) led to medical evacuation by helicopter, whereas the overall rate of evacuation by helicopter after placing a call to SAMU 973 was only 4% (3020/71,932; P<0.0001 for comparison with illegal gold mining sites). Medical emergencies were classified as illness (48%, mostly infectious), trauma (44%, mostly weapon wounds), and miscellaneous (8%). Medical emergencies at illegal gold mining sites in the Amazon forest mostly include infectious diseases, followed by trauma, and often require medical evacuation by helicopter. Our study suggests that implementation of preventive medicine within gold mining sites, irrespective of their legal status, could be cost-effective and reduce morbidity. Copyright © 2017 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  5. Orthogonal chemical functionalization of patterned gold on silica surfaces

    PubMed Central

    Léonard, Didier; Le Mogne, Thierry; Zuttion, Francesca; Chevalier, Céline; Phaner-Goutorbe, Magali; Souteyrand, Éliane

    2015-01-01

    Summary Single-step orthogonal chemical functionalization procedures have been developed with patterned gold on silica surfaces. Different combinations of a silane and a thiol were simultaneously deposited on a gold/silica heterogeneous substrate. The orthogonality of the functionalization (i.e., selective grafting of the thiol on the gold areas and the silane on the silica) was demonstrated by X-ray photoelectron spectroscopy (XPS) as well as time-of-flight secondary ion mass spectrometry (ToF–SIMS) mapping. The orthogonal functionalization was used to immobilize proteins onto gold nanostructures on a silica substrate, as demonstrated by atomic force microscopy (AFM). These results are especially promising in the development of future biosensors where the selective anchoring of target molecules onto nanostructured transducers (e.g., nanoplasmonic biosensors) is a major challenge. PMID:26734519

  6. Polyelectrolyte-modified cowpea mosaic virus for the synthesis of gold nanoparticles.

    PubMed

    Aljabali, Alaa A A; Evans, David J

    2014-01-01

    Polyelectrolyte surface-modified cowpea mosaic virus (CPMV) can be used for the templated synthesis of narrowly dispersed gold nanoparticles. Cationic polyelectrolyte, poly(allylamine) hydrochloride, is electrostatically bound to the external surface of the virus capsid. The polyelectrolyte-coated CPMV promotes adsorption of aqueous gold hydroxide anionic species, prepared from gold(III) chloride and potassium carbonate, that are easily reduced to form CPMV-templated gold nanoparticles. The process is simple and environmentally benign using only water as solvent at ambient temperature.

  7. Gold coatings for cube-corner retro-reflectors

    NASA Astrophysics Data System (ADS)

    Dligatch, Svetlana; Gross, Mark; Netterfield, Roger P.; Pereira, Nathan; Platt, Benjamin C.; Nemati, Bijan

    2005-09-01

    The Space Interferometry Mission (SIM) PlanetQuest is managed by the Jet Propulsion Laboratory for the National Aeronautics and Space Administration. SIM requires, among other things, high precision double cube-corner retroreflectors. A test device has recently been fabricated for this project with demanding specifications on the optical surfaces and gold reflective coatings. Several gold deposition techniques were examined to meet the stringent specifications on uniformity, optical properties, micro-roughness and surface quality. We report on a comparative study of optical performance of gold films deposited by resistive and e-beam pvaporation, including measurements of the scattering from the coated surfaces. The effects of oxygen bombardment and titanium under-layer on optical properties and adhesion were evaluated. The influence of surface preparation on the optical properties was examined also.

  8. Gold thread implantation promotes hair growth in human and mice

    PubMed Central

    Kim, Jong-Hwan; Cho, Eun-Young; Kwon, Euna; Kim, Woo-Ho; Park, Jin-Sung; Lee, Yong-Soon

    2017-01-01

    Thread-embedding therapy has been widely applied for cosmetic purposes such as wrinkle reduction and skin tightening. Particularly, gold thread was reported to support connective tissue regeneration, but, its role in hair biology remains largely unknown due to lack of investigation. When we implanted gold thread and Happy Lift™ in human patient for facial lifting, we unexpectedly found an increase of hair regrowth in spite of no use of hair growth medications. When embedded into the depilated dorsal skin of mice, gold thread or polyglycolic acid (PGA) thread, similarly to 5% minoxidil, significantly increased the number of hair follicles on day 14 after implantation. And, hair re-growth promotion in the gold threadimplanted mice were significantly higher than that in PGA thread group on day 11 after depilation. In particular, the skin tissue of gold thread-implanted mice showed stronger PCNA staining and higher collagen density compared with control mice. These results indicate that gold thread implantation can be an effective way to promote hair re-growth although further confirmatory study is needed for more information on therapeutic mechanisms and long-term safety. PMID:29399026

  9. Preparation and bactericide activity of gallic acid stabilized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Moreno-Álvarez, S. A.; Martínez-Castañón, G. A.; Niño-Martínez, N.; Reyes-Macías, J. F.; Patiño-Marín, N.; Loyola-Rodríguez, J. P.; Ruiz, Facundo

    2010-10-01

    In this work, gold nanoparticles with three different sizes (13.7, 39.4, and 76.7 nm) were prepared using a simple aqueous method with gallic acid as the reducing and stabilizing agent, the different sizes were obtained varying some experimental parameters as the pH of the reaction and the amount of the gallic acid. The prepared nanoparticles were characterized using X-ray diffraction, transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy. Samples were identified as elemental gold and present spherical morphology, a narrow size distribution and good stabilization according to TEM and DLS results. The antibacterial activity of this gallic acid stabilized gold nanoparticles against S. mutans (the etiologic agent of dental caries) was assessed using a microdilution method obtaining a minimum inhibitory concentration of 12.31, 12.31, and 49.25 μg/mL for 13.7, 39.4, and 76.7 nm gold nanoparticles, respectively. The antibacterial assay showed that gold nanoparticles prepared in this work present a bactericide activity by a synergistic action with gallic acid. The MIC found for this nanoparticles are much lower than those reported for mixtures of gold nanoparticles and antibiotics.

  10. Comparison of amino acids interaction with gold nanoparticle.

    PubMed

    Ramezani, Fatemeh; Amanlou, Massoud; Rafii-Tabar, Hashem

    2014-04-01

    The study of nanomaterial/biomolecule interface is an important emerging field in bionanoscience, and additionally in many biological processes such as hard-tissue growth and cell-surface adhesion. To have a deeper understanding of the amino acids/gold nanoparticle assemblies, the adsorption of these amino acids on the gold nanoparticles (GNPs) has been investigated via molecular dynamics simulation. In these simulations, all the constituent atoms of the nanoparticles were considered to be dynamic. The geometries of amino acids, when adsorbed on the nanoparticle, were studied and their flexibilities were compared with one another. The interaction of each of 20 amino acids was considered with 3 and 8 nm gold GNPs.

  11. On the Enhanced Antibacterial Activity of Antibiotics Mixed with Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Burygin, G. L.; Khlebtsov, B. N.; Shantrokha, A. N.; Dykman, L. A.; Bogatyrev, V. A.; Khlebtsov, N. G.

    2009-08-01

    The bacterial action of gentamicin and that of a mixture of gentamicin and 15-nm colloidal-gold particles on Escherichia coli K12 was examined by the agar-well-diffusion method, enumeration of colony-forming units, and turbidimetry. Addition of gentamicin to colloidal gold changed the gold color and extinction spectrum. Within the experimental errors, there were no significant differences in antibacterial activity between pure gentamicin and its mixture with gold nanoparticles (NPs). Atomic absorption spectroscopy showed that upon application of the gentamicin-particle mixture, there were no gold NPs in the zone of bacterial-growth suppression in agar. Yet, free NPs diffused into the agar. These facts are in conflict with the earlier findings indicating an enhancement of the bacterial activity of similar gentamicin-gold nanoparticle mixtures. The possible causes for these discrepancies are discussed, and the suggestion is made that a necessary condition for enhancement of antibacterial activity is the preparation of stable conjugates of NPs coated with the antibiotic molecules.

  12. Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route

    NASA Astrophysics Data System (ADS)

    Wen, Li; Lin, Zhonghua; Gu, Pingying; Zhou, Jianzhang; Yao, Bingxing; Chen, Guoliang; Fu, Jinkun

    2009-02-01

    Monodispersed gold nanoparticles capped with a self-assembled monolayer of dodecanethiol were biosynthesized extracellularly by an efficient, simple, and environmental friendly procedure, which involved the use of Bacillus megatherium D01 as the reducing agent and the use of dodecanethiol as the capping ligand at 26 °C. The kinetics of gold nanoparticle formation was followed by transmission electron microscope (TEM) and UV-vis spectroscopy. It was shown that reaction time was an important parameter in controlling the morphology of gold nanoparticles. The effect of thiol on the shape, size, and dispersity of gold nanoparticles was also studied. The results showed that the presence of thiol during the biosynthesis could induce the formation of small size gold nanoparticles (<2.5 nm), hold the shape of spherical nanoparticles, and promote the monodispersity of nanoparticles. Through the modulation of reaction time and the use of thiol, monodispersed spherical gold nanoparticles capped with thiol of 1.9 ± 0.8 nm size were formed by using Bacillus megatherium D01.

  13. Annealing Effects on the Surface Plasmon of MgO Implanted with Gold

    NASA Technical Reports Server (NTRS)

    Ueda, A.; Mu, R.; Tung, Y. -S.; Henderson, D. O.; White, C. W.; Zuhr, R. A.; Zhu, Jane G.; Wang, P. W.

    1997-01-01

    Gold ion implantation was carried out with the energy of 1.1 MeV into (100) oriented MgO single crystal. Implanted doses are 1, 3, 6, 10 x 10(exp 16) ions/sq cm. The gold irradiation results in the formation of gold ion implanted layer with a thickness of 0.2 microns and defect formation. In order to form gold colloids from the as-implanted samples, we annealed the gold implanted MgO samples in three kinds of atmospheres: (1)Ar only, (2)H2 and Ar, and (3)O2 and Ar. The annealing over 1200 C enhanced the gold colloid formation which shows surface plasmon resonance band of gold. The surface plasmon bands of samples annealed in three kinds of atmospheres were found to be at 535 nm (Ar only), 524 nm(H2+Ar), and 560 nm (02+Ar), The band positions of surface plasmon can be reversibly changed by an additional annealing.

  14. Plasmonic Aptamer-Gold Nanoparticle Sensors for Small Molecule Fingerprint Identification

    DTIC Science & Technology

    2014-08-01

    AFRL-RH-WP-TR-2014-0107 PLASMONIC APTAMER -GOLD NANOPARTICLE SENSORS FOR SMALL MOLECULE FINGERPRINT IDENTIFICATION Jorge Chávez Grant Slusher...Plasmonic Aptamer -Gold Nanoparticle Sensors for Small Molecule Fingerprint Identification 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER 5c. PROGRAM...The utilization of the plasmonic response of aptamer -gold nanoparticle conjugates (Apt-AuNPs) to design cross- reactive arrays for fingerprint

  15. Applications of Gold Nanoparticles in Nanomedicine: Recent Advances in Vaccines.

    PubMed

    Carabineiro, Sónia Alexandra Correia

    2017-05-22

    Nowadays, gold is used in (nano-)medicine, usually in the form of nanoparticles, due to the solid proofs given of its therapeutic effects on several diseases. Gold also plays an important role in the vaccine field as an adjuvant and a carrier, reducing toxicity, enhancing immunogenic activity, and providing stability in storage. An even brighter golden future is expected for gold applications in this area.

  16. Preparation of plasmonic vesicles from amphiphilic gold nanocrystals grafted with polymer brushes

    PubMed Central

    Song, Jibin; Huang, Peng; Chen, Xiaoyuan

    2016-01-01

    Gold nanovesicles contain multiple nanocrystals within a polymeric coating. The strong plasmonic coupling between adjacent nanoparticles in their vesicular shell makes ultrasensitive biosensing and bioimaging possible. In our laboratory, multifunctional plasmonic vesicles are assembled from amphiphilic gold nanocrystals (such as gold nanoparticles and gold nanorods) coated with mixed hydrophilic and hydrophobic polymer brushes or amphiphilic diblock co-polymer brushes. To fulfill the different requirements of biomedical applications, different polymers that are either pH=responsive, photoactive or biodegradable can be used to form the hydrophobic brush, while the hydrophilicity is maintained by polyethylene glycol (PEG). This protocol covers the preparation, surface functionalization and self-assembly of amphiphilic gold nanocrystals grafted covalently with polymer brushes. The protocol can be completed within 2 d. The preparation of amphiphilic gold nanocrystals, coated with amphiphilic diblock polymer brushes using a ‘grafting to’ method or mixed hydrophilic and hydrophobic polymer brushes using tandem ‘grafting to’ and ‘grafting from’ methods, is described. We also provide detailed procedures for the preparation and characterization of pH-responsive plasmonic gold nanovesicles from amphiphilic gold nanocrystals using a film-rehydration method that can be completed within ~3 d. PMID:27763624

  17. Formation of small gold clusters in solution by laser excitation of interband transition

    NASA Astrophysics Data System (ADS)

    Mafuné, Fumitaka; Kondow, Tamotsu

    2003-04-01

    Gold nanoparticles with ˜10 nm in average diameter were prepared by laser ablation of a gold metal plate in an aqueous solution of sodium dodecyl sulfate (SDS) and were fragmented by excitation of an interband transition of gold nanoparticles under irradiation of an intense 355-nm pulsed laser. Fragmentation dynamics was investigated by comparing the fragmentation by excitation of a surface plasmon band of gold nanoparticles by a 532-nm laser. It is found that gold nanoparticles with 1.5-nm average diameter are produced together with small gold clusters by properly optimizing the surfactant concentration.

  18. Formation of gold grating structures on fused silica substrates by femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Takami, Akihiro; Nakajima, Yasutaka; Terakawa, Mitsuhiro

    2017-05-01

    Despite the attractive optical properties of gold nanostructures for emerging applications, the formation of sharp laser-induced periodic gold structures has not been reported. In this study, we experimentally demonstrate the formation of micro- and nanoscale periodic gold grating structures on fused silica substrates using a femtosecond laser. The experimental and calculated results show good agreement, indicating that the gold grating structures were formed by a beat formed in a gold thin film. We also propose that the beat was formed by interference of two surface plasmon polaritons with different periods excited in a gold thin film and calculated their periods.

  19. Gold concentrations in abiotic materials, plants, and animals: a synoptic review.

    PubMed

    Eisler, R

    2004-01-01

    Gold (Au) is ubiquitous in the environment and mined commercially at numerous locations worldwide. It is also an allergen that induces dermatitis in sensitive individuals. Gold concentrations were comparatively elevated in samples collected near gold mining and processing facilities, although no data were found for birds and non-human mammals. Maximum gold concentrations reported in abiotic materials were 0.001 microg L(-1) in rainwater; 0.0015 microg L(-1) in seawater near hydrothermal vents vs. < 0.00004-0.0007 microg L(-1) elsewhere; 5.0 microg kg(-1) dry weight (DW) in the Earth's crust; 19.0 microg L(-1) in a freshwater stream near a gold mining site; 440 microg kg(-1) DW in atmospheric dust near a high traffic road; 843 microg kg(-1) DW in alluvial soil near a Nevada gold mine vs. < 29 microg kg(-1) DW premining; 2.53 mg kg(-1) DW in snow near a Russian smelter vs. < 0.35 mg kg(-1) DW at a reference site; 4.5 mg kg(-1) DW in sewage sludge; 28.7 mg kg(-1) DW in polymetallic sulfides from the ocean floor; and 256.0 mg kg(-1) DW in freshwater sediments near a gold mine tailings pile vs. < 5 microg kg(-1) DW prior to mining. In plants, elevated concentrations of 19 microg Au kg(-1) DW were reported in terrestrial vegetation near gold mining operations vs. < 4 microg kg(-1) DW at a reference site; 37 microg kg(-1) DW in aquatic bryophytes downstream from a gold mine; 150 microg Au kg(-1) DW in leaves of beans grown in soil containing 170 microg kg(-1) DW; up to 1.06 mg kg(-1) DW in algal mats of rivers receiving gold mine wastes; and 0.1-100 mg kg(-1) DW in selected gold accumulator plants. Fish and aquatic invertebrates contained 0.1-38.0 microg Au kg(-1) DW. In humans, gold concentrations up to 1.1 microg L(-1) were documented in urine of dental technicians vs. 0.002-0.85 microg L(-1) in reference populations; 2.1 microg L(-1) in breast milk, attributed to gold dental fillings and jewelry of mothers; 1.4 mg kg(-1) DW in hair of goldsmiths vs. a normal range of 6

  20. Electroanalytical sensing of chromium(III) and (VI) utilising gold screen printed macro electrodes.

    PubMed

    Metters, Jonathan P; Kadara, Rashid O; Banks, Craig E

    2012-02-21

    We report the fabrication of gold screen printed macro electrodes which are electrochemically characterised and contrasted to polycrystalline gold macroelectrodes with their potential analytical application towards the sensing of chromium(III) and (VI) critically explored. It is found that while these gold screen printed macro electrodes have electrode kinetics typically one order of magnitude lower than polycrystalline gold macroelectrodes as is measured via a standard redox probe, in terms of analytical sensing, these gold screen printed macro electrodes mimic polycrystalline gold in terms of their analytical performance towards the sensing of chromium(III) and (VI), whilst boasting additional advantages over the macro electrode due to their disposable one-shot nature and the ease of mass production. An additional advantage of these gold screen printed macro electrodes compared to polycrystalline gold is the alleviation of the requirement to potential cycle the latter to form the required gold oxide which aids in the simplification of the analytical protocol. We demonstrate that gold screen printed macro electrodes allow the low micro-molar sensing of chromium(VI) in aqueous solutions over the range 10 to 1600 μM with a limit of detection (3σ) of 4.4 μM. The feasibility of the analytical protocol is also tested through chromium(VI) detection in environmental samples.

  1. Witwatersrand gold deposits formed by volcanic rain, anoxic rivers and Archaean life

    NASA Astrophysics Data System (ADS)

    Heinrich, Christoph A.

    2015-03-01

    The Witwatersrand Basin in South Africa is one of the best-preserved records of fluvial sedimentation on an Archaean continent. The basin hosts the worlds biggest gold resource in thin pebble beds, but the process for gold enrichment is debated. Mechanical accumulation of gold particles from flowing river water is the prevailing hypothesis, yet there is evidence for hydrothermal mobilization of gold by fluids invading the metasedimentary rocks after their burial. Earth's atmosphere three billion years ago was oxygen free, but already sustained some of the oldest microbial life on land. Here I use thermodynamic modelling and mass-balance calculations to show that these conditions could have led to the chemical transport and precipitation of gold in anoxic surface waters, reconciling the evidence for fluvial deposition with evidence for hydrothermal-like chemical reactions. I suggest that the release of sulphurous gases from large volcanic eruptions created acid rain that enabled the dissolution and transport of gold in surface waters as sulphur complexes. Precipitation of the richest gold deposits could have been triggered by chemical reduction of the dissolved gold onto organic material in shallow lakes and pools. I conclude that the Witwatersrand gold could have formed only during the Archaean, after the emergence of continental life but before the rise of oxygen in the Earth's atmosphere.

  2. Gold Nanostructures as a Platform for Combinational Therapy in Future Cancer Therapeutics

    PubMed Central

    Jelveh, Salomeh; Chithrani, Devika B.

    2011-01-01

    The field of nanotechnology is currently undergoing explosive development on many fronts. The technology is expected to generate innovations and play a critical role in cancer therapeutics. Among other nanoparticle (NP) systems, there has been tremendous progress made in the use of spherical gold NPs (GNPs), gold nanorods (GNRs), gold nanoshells (GNSs) and gold nanocages (GNCs) in cancer therapeutics. In treating cancer, radiation therapy and chemotherapy remain the most widely used treatment options and recent developments in cancer research show that the incorporation of gold nanostructures into these protocols has enhanced tumor cell killing. These nanostructures further provide strategies for better loading, targeting, and controlling the release of drugs to minimize the side effects of highly toxic anticancer drugs used in chemotherapy and photodynamic therapy. In addition, the heat generation capability of gold nanostructures upon exposure to UV or near infrared light is being used to damage tumor cells locally in photothermal therapy. Hence, gold nanostructures provide a versatile platform to integrate many therapeutic options leading to effective combinational therapy in the fight against cancer. In this review article, the recent progress in the development of gold-based NPs towards improved therapeutics will be discussed. A multifunctional platform based on gold nanostructures with targeting ligands, therapeutic molecules, and imaging contrast agents, holds an array of promising directions for cancer research. PMID:24212654

  3. Two-dimensional semiconducting gold

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Jin, Shifeng; Guo, Liwei; Wang, Gang; Shao, Hezhu; Chen, Liang; Chen, Xiaolong

    2017-04-01

    We show that two-dimensional (2D) honeycomb gold (HG) could be thermodynamic and lattice dynamic stable owing in part to the relativistic effect and electronic configuration. HG exhibits a covalent characteristic in its bonding and is a semiconductor with an energy gap of 0.1 eV at the Brillouin zone K point caused by strong spin-orbit coupling. The gap can be further widened to about 0.3 eV if HG is tailored into nanoribbons with the armchair type of edges. In contrast, 2D close-packed gold (CPG) is metallic with a small effective mass. Both HG and CPG are more transparent to visible light than graphene. They are expected to outperform graphene as a semiconducting material in an electronic logic device and as a transparent conducting material in fabricating a display device, respectively.

  4. Laser and radiofrequency-induced hyperthermia treatment via gold-coated magnetic nanocomposites

    PubMed Central

    Elsherbini, Alsayed AM; Saber, Mahmoud; Aggag, Mohamed; El-Shahawy, Ahmed; Shokier, Hesham AA

    2011-01-01

    Introduction The current radiofrequency ablation technique requires invasive needle placement. On the other hand, most of the common photothermal therapeutic methods are limited by lack of accuracy of targeting. Gold and magnetic nanoparticles offer the potential to heat tumor tissue selectively at the cellular level by noninvasive interaction with laser and radiofrequency. Methods Gold nanospheres and gold-coated magnetic nanocomposites were used for inducing hyperthermia to treat subcutaneous Ehrlich carcinoma implanted in female mice. Results In mice treated with gold nanospheres, tumors continued to grow but at a slow rate. In contrast, more than 50% of the tumors treated with gold-coated magnetic nanocomposites completely disappeared. Conclusion This simple and noninvasive method shows great promise as a technique for selective magnetic photothermal treatment. PMID:22114479

  5. Preparation of colloidal gold for staining proteins electrotransferred onto nitrocellulose membranes.

    PubMed

    Yamaguchi, K; Asakawa, H

    1988-07-01

    This paper describes a simple method of preparing colloidal gold for staining protein blots. Colloidal gold was prepared from 0.005 or 0.01% HAuCl4 by the addition of formalin as a reductant and potassium hydroxide. Staining of small cell carcinoma tissue extract blotted onto nitrocellulose membranes with this colloidal gold solution resulted in the appearance of a large number of clear wine-red bands. The sensitivity of gold staining was 60 times higher than that of Coomassie brilliant blue staining and almost comparable to that of silver staining of proteins in polyacrylamide gel. The sensitivity of this method was also satisfactory in comparison with that of enzyme immunoblotting. The colloidal gold prepared by this method is usable for routine work.

  6. Surface Engineering of Triboelectric Nanogenerator with an Electrodeposited Gold Nanoflower Structure.

    PubMed

    Park, Sang-Jae; Seol, Myeong-Lok; Jeon, Seung-Bae; Kim, Daewon; Lee, Dongil; Choi, Yang-Kyu

    2015-09-14

    A triboelectric nanogenerator composed of gold nanoflowers is demonstrated. The proposed triboelectric nanogenerator creates electricity by contact-separation-based electrification between an anodic metal and a cathodic polymer. For the improvement of output power via the enlargement of the effective surface area in the anodic metal, gold nanoflowers that produce a hierarchical morphology at a micro-to-nano scale by electrodeposition are utilized. The hierarchical morphology is controlled by the applied voltage and deposition time. Even though the triboelectric coefficient of gold is inferior to those of other metals, gold is very attractive to make a flower-like structure by electrodeposition. Moreover, gold is stable against oxidation by oxygen in air. From a reliability and practicality point of view, the aforementioned stability against oxidation is preferred.

  7. Adherence to GOLD guideline treatment recommendations among pulmonologists in Turkey.

    PubMed

    Sen, Elif; Guclu, Salih Zeki; Kibar, Isil; Ocal, Ulku; Yilmaz, Veysel; Celik, Onur; Cimen, Filiz; Topcu, Fusun; Orhun, Meltem; Tereci, Hikmet; Konya, Aylin; Ar, Idilhan; Saryal, Sevgi

    2015-01-01

    Low adherence to Global initiative for chronic Obstructive Lung Disease (GOLD) guideline recommendations has been reported worldwide. There has been no study on the adherence to GOLD guidelines for COPD treatment in Turkey. To investigate the rates of adherence to GOLD 2010 guidelines for COPD treatment among pulmonologists. A multi-center, cross-sectional, observational study was carried out in eleven pulmonary outpatient clinics across Turkey. Adherence to GOLD was evaluated through hospital records. Demographic and clinical data were recorded. Study included 719 patients (mean age: 62.9±9.7 years; males 85.4%) of whom 16 was classified as GOLD Stage I, 238 as II, 346 as III, and 119 as IV, and only 59.5% received appropriate treatment. Rates of guideline adherence varied across GOLD stages (I, 6.3%; II, 14.7%; III, 84.4%; and IV, 84%). Causes of inappropriate therapies were overtreatment (Stage I, 100% and Stage II, 91.1%), undertreatment (Stage III, 3.3% and Stage IV, 10.9%) and lack of treatment (Stage II, 3.8%; Stage III, 2.3%; and Stage IV, 5.9%). The most preferred regimen (43.4%) was long-acting β2-agonist-inhaled corticosteroid-long-acting muscarinic antagonist. Overall, 614 patients (89%) received treatment containing inhaled corticosteroid. Pulmonologists in Turkey have low rates of adherence to GOLD guidelines in COPD treatment. Inappropriateness of therapies was due to overtreatment in early stages and excessive use of inhaled corticosteroid (ICS) in all disease stages.

  8. Questioning the efficacy of 'gold' open access to published articles.

    PubMed

    Fredericks, Suzanne

    2015-07-01

    To question the efficacy of 'gold' open access to published articles. Open access is unrestricted access to academic, theoretical and research literature that is scholarly and peer-reviewed. Two models of open access exist: 'gold' and 'green'. Gold open access provides everyone with access to articles during all stages of publication, with processing charges paid by the author(s). Green open access involves placing an already published article into a repository to provide unrestricted access, with processing charges incurred by the publisher. This is a discussion paper. An exploration of the relative benefits and drawbacks of the 'gold' and 'green' open access systems. Green open access is a more economic and efficient means of granting open access to scholarly literature but a large number of researchers select gold open access journals as their first choices for manuscript submissions. This paper questions the efficacy of gold open access models and presents an examination of green open access models to encourage nurse researchers to consider this approach. In the current academic environment, with increased pressures to publish and low funding success rates, it is difficult to understand why gold open access still exists. Green open access enhances the visibility of an academic's work, as increased downloads of articles tend to lead to increased citations. Green open access is the cheaper option, as well as the most beneficial choice, for universities that want to provide unrestricted access to all literature at minimal risk.

  9. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles

    PubMed Central

    Elavazhagan, Tamizhamudu; Arunachalam, Kantha D

    2011-01-01

    We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20–50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10–45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50–90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles. PMID:21753878

  10. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles.

    PubMed

    Elavazhagan, Tamizhamudu; Arunachalam, Kantha D

    2011-01-01

    We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20-50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10-45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50-90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles.

  11. Graphene Oxide-Promoted Reshaping and Coarsening of Gold Nanorods and Nanoparticles

    PubMed Central

    Pan, Hanqing; Low, Serena; Weerasuriya, Nisala; Shon, Young-Seok

    2015-01-01

    This paper describes thermally induced reshaping and coarsening behaviors of gold nanorods and nanoparticles immobilized on the surface of graphene oxide. Cetyltrimethylammonium bromide-stabilized gold nanorods with an aspect ratio of ~3.5 (54:15 nm) and glutathione-capped gold nanoparticles with an average core size of ~3 nm were synthesized and self-assembled onto the surface of graphene oxide. The hybrid materials were then heated at different temperatures ranging from 50 to 300 °C. The effects of heat treatments were monitored using UV–vis spectroscopy and transmission electron microscopy (TEM). These results were directly compared with those of heat-treated free-standing gold nanorods and nanoparticles without graphene oxide to understand the heat-induced morphological changes of the nanohybrids. The obtained results showed that the gold nanorods would undergo a complete reshaping to spherical particles at the temperature of 50 °C when they are assembled on graphene oxide. In comparison, the complete reshaping of free-standing gold nanorods to spherical particles would ultimately require a heating of the samples at 200 °C. In addition, the spherical gold nanoparticles immobilized on graphene oxide would undergo a rapid coarsening at the temperature of 100–150 °C, which was lower than the temperature (150–200 °C) required for visible coarsening of free-standing gold nanoparticles. The results indicated that graphene oxide facilitates the reshaping and coarsening of gold nanorods and nanoparticles, respectively, during the heat treatments. The stripping and spillover of stabilizing ligands promoted by graphene oxide are proposed to be the main mechanism for the enhancements in the heat-induced transformations of nanohybrids. PMID:25611371

  12. Multipole Plasmon Resonances in Gold Nanorods

    PubMed Central

    Payne, Emma Kathryn; Shuford, Kevin L.; Park, Sungho; Schatz, George C.

    2011-01-01

    The optical properties of gold rods electrochemically deposited in anodic aluminum oxide templates have been investigated. Homogeneous suspensions of rods with average diameter of 85 nm and varying lengths of 96, 186, 321, 465, 495, 578, 641, 735, and 1175 nm were fabricated. The purity and dimensions of these rod nanostructures allowed us to observe higher order multipole resonances for the first time in a colloidal suspension. The experimental optical spectra agree with discrete dipole approximation calculations that have been modeled from the dimensions of the gold nanorods. PMID:16471797

  13. Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring.

    PubMed

    Asner, Gregory P; Llactayo, William; Tupayachi, Raul; Luna, Ernesto Ráez

    2013-11-12

    Gold mining has rapidly increased in western Amazonia, but the rates and ecological impacts of mining remain poorly known and potentially underestimated. We combined field surveys, airborne mapping, and high-resolution satellite imaging to assess road- and river-based gold mining in the Madre de Dios region of the Peruvian Amazon from 1999 to 2012. In this period, the geographic extent of gold mining increased 400%. The average annual rate of forest loss as a result of gold mining tripled in 2008 following the global economic recession, closely associated with increased gold prices. Small clandestine operations now comprise more than half of all gold mining activities throughout the region. These rates of gold mining are far higher than previous estimates that were based on traditional satellite mapping techniques. Our results prove that gold mining is growing more rapidly than previously thought, and that high-resolution monitoring approaches are required to accurately quantify human impacts on tropical forests.

  14. Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring

    PubMed Central

    Asner, Gregory P.; Llactayo, William; Tupayachi, Raul; Luna, Ernesto Ráez

    2013-01-01

    Gold mining has rapidly increased in western Amazonia, but the rates and ecological impacts of mining remain poorly known and potentially underestimated. We combined field surveys, airborne mapping, and high-resolution satellite imaging to assess road- and river-based gold mining in the Madre de Dios region of the Peruvian Amazon from 1999 to 2012. In this period, the geographic extent of gold mining increased 400%. The average annual rate of forest loss as a result of gold mining tripled in 2008 following the global economic recession, closely associated with increased gold prices. Small clandestine operations now comprise more than half of all gold mining activities throughout the region. These rates of gold mining are far higher than previous estimates that were based on traditional satellite mapping techniques. Our results prove that gold mining is growing more rapidly than previously thought, and that high-resolution monitoring approaches are required to accurately quantify human impacts on tropical forests. PMID:24167281

  15. Characterization of Pulse Reverses Electroforming on Hard Gold Coating.

    PubMed

    Byoun, Young-Min; Noh, Young-Tai; Kim, Young-Geun; Ma, Seung-Hwan; Kim, Gwan-Hoon

    2018-03-01

    Effect of pulse reverse current (PRC) method on brass coatings electroplated from gold solution was investigated by various plating parameters such as plating duration, the anodic duty cycle, the anodic current density and the cathodic current density. The reversed current results in a significant change in the morphology of electrodeposits, improvement of the overall current efficiency and reduction of deposit porosity. With longer pulses, hemispherical surface features are generated, while larger grains result from shorter pulse widths. The porosity of the plated samples is found to decrease compared with results at the same time-average plating rate obtained from DC or Pulse plating. A major impediment to reducing gold later thickness is the corrosion of the underlying substrate, which is affected by the porosity of the gold layer. Both the morphology and the hydrogen evolution reaction have significant impact on porosity. PRC plating affect hydrogen gold and may oxidize hydrogen produced during the cathodic portion of the waveform. Whether the dissolution of gold and oxidation of hydrogen occur depends on the type of plating bath and the plating conditions adapted. In reversed pulse plating, the amount of excess near-surface cyanide is changed after the cathodic current is applied, and the oxidation of gold under these conditions has not been fully addressed. The effects of the current density, pulse-reverse ratio and brightener concentration of the electroplating process were investigated and optimized for suitable performance.

  16. [Molecular mechanisms of action of gold in treatment of rheumatoid arthritis--an update].

    PubMed

    Burmester, G R

    2001-06-01

    Gold was first used 90 years ago by Robert Koch for the treatment of tuberculosis based on the assumption that rheumatoid arthritis was caused by microbacteria. It soon became clear that this would not explain the action of gold in rheumatoid arthritis, and since then scientists have been struggling to elucidate the mechanisms of gold's action in the treatment of rheumatic diseases. In nearly every area of immunology inhibiting actions of gold could be documented; however, it is still unclear if there is a common denominator or if there are parallel modes of actions which are independent of each other. In any case, also based on recent studies the reactivity of gold compounds with thiol groups appears to the predominant factor. Analyzing the actions of gold in the different phases of an immune reaction suggested that gold plays an important role already in the initiation, namely the uptake and presentation of foreign antigens. Thus, gold is taken up by the macrophages and stored in the lysosomes which are called aureosomes where gold inhibits antigen processing. Especially peptide antigens, which contain sulfur such as cysteine and methionine, are important. Moreover, it could be shown that gold suppresses NF-kappa B binding activity as well as the activation of the I-kappa B-kinase. This mechanism results in a subsequently reduced production of pro-inflammatory cytokines, most notably TNF-alpha, interleukin-1 and interleukin-6. On the subsequent T-cell level, gold has been shown to induce an upregulation of IL-4 mRNA, resulting in a shift of the T-cell population to the Th2 phenotype. Moreover, the activation of T-cells is inhibited. On the effector level, gold inhibits proteolytic enzymes and can result in the destruction of synovial fibroblasts. In conclusion, gold remains one of the most fascinating antirheumatic drugs with multiple modes of actions. The future analysis of molecular mechanisms, especially with regard to signal transduction, will lead to new

  17. 33 CFR 13.01-35 - Description of gold and silver bars.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Description of gold and silver... SECURITY GENERAL DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-35 Description of gold and silver bars. (a) The bar is plain and horizontal...

  18. 33 CFR 13.01-35 - Description of gold and silver bars.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Description of gold and silver... SECURITY GENERAL DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-35 Description of gold and silver bars. (a) The bar is plain and horizontal...

  19. 33 CFR 13.01-35 - Description of gold and silver bars.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Description of gold and silver... SECURITY GENERAL DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-35 Description of gold and silver bars. (a) The bar is plain and horizontal...

  20. 33 CFR 13.01-35 - Description of gold and silver bars.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Description of gold and silver... SECURITY GENERAL DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-35 Description of gold and silver bars. (a) The bar is plain and horizontal...

  1. 33 CFR 13.01-35 - Description of gold and silver bars.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Description of gold and silver... SECURITY GENERAL DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-35 Description of gold and silver bars. (a) The bar is plain and horizontal...

  2. The Case of Carpathian (Transylvanian) Gold and its Use for Archaeological Items

    NASA Astrophysics Data System (ADS)

    Stan, D.; Constantinescu, B.; Vasilescu, A.; Radtke, M.; Reinholz, U.; Pop, D.; Ionescu, C.

    2009-04-01

    Romania was one of Europe's main gold-producing areas since the antiquity, especially through the ore deposits in the "Golden Quadrilateral" of the Western Carpathians. The Babeş-Bolyai University in Cluj-Napoca hosts a gold collection consisting of about 500 samples, most of them from Roşia Montană. The geochemical investigation of Romanian gold by using SR-XRF and micro-PIXE is currently in progress; some preliminary results point to interesting features. The goal of the study is to verify if Transylvanian gold was used to manufacture Romanian archaeological objects. This is realized by using information related to trace elements: Sb, Te, Pb - recognized fingerprints for Carpathian Mountains mines and Sn characteristic for the panned river-bed (alluvional) gold. To solve these issues, samples (grains, nuggets, fine gold "sand") from various Transylvanian mines and rivers and some very small (few milligrams) fragments of archaeological objects are measured. Another outcome of this SR-XRF experiment is to obtain the elemental characterization (Au, Ag and Cu) of representative gold mines, subject of interest for the assignement of any other archaeological artifacts to one of the Central European gold sources. During the experiment, point spectra for 22 natural gold samples and 18 "micronic" samples from archaeological objects were acquired at 34 keV excitation SR energy, using a spatially resolved SR-XRF set-up mounted for analyses at the hard X-ray beam line - BAMline at BESSY, Berlin. A summary for the characterization of Transylvanian native gold is the following: high (8 - 30%) Ag amounts and low (0.2 - 1%) Cu amounts; placer deposits contain as fingerprint Sn (150-300 ppm) - most probably from river bed cassiterite; primary deposits present as fingerprints Te (200-2000 ppm), Sb (150-300 ppm) - however, the samples are very inhomogeneous. The micro-PIXE experiment was performed at the AN 2000 Van de Graaff accelerator of Laboratori Nazionali di Legnaro

  3. Two step continuous method to synthesize colloidal spheroid gold nanorods.

    PubMed

    Chandra, S; Doran, J; McCormack, S J

    2015-12-01

    This research investigated a two-step continuous process to synthesize colloidal suspension of spheroid gold nanorods. In the first step; gold precursor was reduced to seed-like particles in the presence of polyvinylpyrrolidone and ascorbic acid. In continuous second step; silver nitrate and alkaline sodium hydroxide produced various shape and size Au nanoparticles. The shape was manipulated through weight ratio of ascorbic acid to silver nitrate by varying silver nitrate concentration. The specific weight ratio of 1.35-1.75 grew spheroid gold nanorods of aspect ratio ∼1.85 to ∼2.2. Lower weight ratio of 0.5-1.1 formed spherical nanoparticle. The alkaline medium increased the yield of gold nanorods and reduced reaction time at room temperature. The synthesized gold nanorods retained their shape and size in ethanol. The surface plasmon resonance was red shifted by ∼5 nm due to higher refractive index of ethanol than water. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. High photoreactivity in a non-fluorescent photocleavable ligands on gold

    NASA Astrophysics Data System (ADS)

    Robinson, Hans D.; Daengngam, Chalongrat; Stoianov, Stefan V.; Thorpe, Steven B.; Guo, Xi; Santos, Webster L.; Morris, John R.

    2014-03-01

    We report on the photo-patterning of a gold surface functionalized with a self-assembled monolayer of an o-nitrobenzyl-based photocleavable ligand bound to the gold surface with a thiol anchor. We find that the dose of UV light required to induce the photoreaction on gold is very similar to the dose in an alcohol solution, even though many optical phenomena are strongly suppressed on metal surfaces. We attribute this finding to a combination of the large skin depth in gold at UV wavelengths, the high speed of the photoreaction, and the spatially indirect nature of the lowest excited singlet. Any photoreactive compound where the quantum efficiency of fluorescence is sufficiently low, preferably no larger than about 10-5 in the case of gold surfaces, will show a similarly high photoreactivity in metal-surface monolayers. The implications of this result for optically driven self-assembly in plasmonic systems will be discussed. This work was supported by a grant from the National Science Foundation (DMR-106753).

  5. Biosorption of gold from computer microprocessor leachate solutions using chitin.

    PubMed

    Côrtes, Letícia N; Tanabe, Eduardo H; Bertuol, Daniel A; Dotto, Guilherme L

    2015-11-01

    The biosorption of gold from discarded computer microprocessor (DCM) leachate solutions was studied using chitin as a biosorbent. The DCM components were leached with thiourea solutions, and two procedures were tested for recovery of gold from the leachates: (1) biosorption and (2) precipitation followed by biosorption. For each procedure, the biosorption was evaluated considering kinetic, equilibrium, and thermodynamic aspects. The general order model was able to represent the kinetic behavior, and the equilibrium was well represented by the BET model. The maximum biosorption capacities were around 35 mg g(-1) for both procedures. The biosorption of gold on chitin was a spontaneous, favorable, and exothermic process. It was found that precipitation followed by biosorption resulted in the best gold recovery, because other species were removed from the leachate solution in the precipitation step. This method enabled about 80% of the gold to be recovered, using 20 g L(-1) of chitin at 298 K for 4 h. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. 78 FR 69737 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-70878; File No. SR-CBOE-2013-106] Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Filing and Immediate... Position and Exercise Limits for Physically-Settled SPDR S&P 500 ETF Trust (``SPY'') Options November 14...

  7. A unique ore-placer cluster with high-Hg gold mineralization in the Amur region (Russia)

    NASA Astrophysics Data System (ADS)

    Stepanov, V. A.; Moyseenko, V. G.; Melnikov, A. V.

    2017-02-01

    This work presents the geological structure and a description of gold-ore manifestations and gold placers in the Un'ya-Bom ore-placer cluster of the Amur gold-bearing province. The host rocks are Late Paleozoic and Mesozoic black-shale formations. Intrusive formations are rare. The sublatitudinal Un'ya thrust fault, along which Paleozoic sandstones overlap Mesozoic flyschoid deposits, is regarded as an orecontrolling structure. Gold-quartz and low-sulfide ores are confined to quartz-vein zones. Ore minerals are arsenopyrite, scheelite, ferberite, galena, and native gold. Gold-ore manifestations and placers contain high-Hg native gold. The high Hg content in native gold is explained by the occurrence of the eroded frontal part of the gold-ore pipe in the ore cluster, a source of native gold.

  8. Functionalized gold nanorods for molecular optoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Eghtedari, Mohammad; Oraevsky, Alexander; Conjusteau, Andre; Copland, John A.; Kotov, Nicholas A.; Motamedi, Massoud

    2007-02-01

    The development of gold nanoparticles for molecular optoacoustic imaging is a very promising area of research and development. Enhancement of optoacoustic imaging for molecular detection of tumors requires the engineering of nanoparticles with geometrical and molecular features that can enhance selective targeting of malignant cells while optimizing the sensitivity of optoacoustic detection. In this article, cylindrical gold nanoparticles (i.e. gold nanorods) were fabricated with a plasmon resonance frequency in the near infra-red region of the spectrum, where deep irradiation of tissue is possible using an Alexandrite laser. Gold nanorods (Au-NRs) were functionalized by covalent attachment of Poly(ethylene glycol) to enhance their biocompatibility. These particles were further functionalized with the aim of targeting breast cancer cells using monoclonal antibodies that binds to Her2/neu receptors, which are over expressed on the surface of breast cancer cells. A custom Laser Optoacoustic Imaging System (LOIS) was designed and employed to image nanoparticle-targeted cancer cells in a phantom and PEGylated Au-NRs that were injected subcutaneously into a nude mouse. The results of our experiments show that functionalized Au-NRs with a plasmon resonance frequency at near infra-red region of the spectrum can be detected and imaged in vivo using laser optoacoustic imaging system.

  9. Determining gold in water by anion-exchange batch extraction

    USGS Publications Warehouse

    McHugh, J.B.

    1986-01-01

    This paper describes a batch procedure for determining gold in natural waters. It is completely adaptable to field operations. The water samples are filtered and acidified before they are equilibrated with an anion-exchange resin by shaking. The gold is then eluted with acetone-nitric acid solution, and the eluate evaporated to dryness. The residue is taken up in hydrobromic acid-bromine solution and the gold is extracted with methyl isobutyl ketone. The extract is electrothermally atomized in an atomic-absorption spectrophotometer. The limit of determination is 1 ng 1. ?? 1986.

  10. Electrochemical extraction of gold from wastes as nanoparticles stabilized by phospholipids.

    PubMed

    Moriwaki, Hiroshi; Yamada, Kotaro; Usami, Hisanao

    2017-02-01

    A simple one-step method for the extraction of gold from wastes as nanoparticles stabilized by phospholipids is demonstrated. This is achieved by applying an AC voltage for 5s to the gold-containing wastes, which act as the electrodes in a buffer solution containing a dispersed phospholipid (1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC). This is an environmentally friendly and rapid method for recovering gold from wastes. The extracted gold nanoparticles have significant potential as a catalyst or biomedical material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Measurements of Thermospheric O2 Density from GOLD

    NASA Astrophysics Data System (ADS)

    Lumpe, J. D.; Correira, J.; Evans, J. S.; Eastes, R.; McClintock, B.; Beland, S.

    2016-12-01

    The Global-scale Observations of the Limb and Disk (GOLD) instrument, scheduled for launch in 2017, will image the Earth's thermosphere and ionosphere in the far ultraviolet from geostationary orbit. GOLD will measure a number of critical geophysical parameters, including thermospheric temperature and composition, by continuously scanning the Earth's disk and limb 18 hours per day. GOLD will also routinely perform stellar occultation measurements using bright type O and B stars. These provide a direct measurement of the atmospheric slant path transmission profile in the O2 Schumann Runge continuum, which will be used to retrieve O2 density profiles between approximately 120 and 250 km altitude. In nominal operational mode GOLD will measure approximately 12 occultation events per day. These measurements will occur at latitudes ranging from 60S to 60N at two longitudes, corresponding to the east and west limbs as observed from GOLD's fixed orbit position. Depending on timing and availability each target star can be observed twice daily, in both rising and setting mode. Additionally, both daytime and nighttime occultations are possible, which allows for O2 retrievals over a wide range of local times. Results of detailed retrieval simulations show that the precision and accuracy of the retrieved O2 density will be 10-20% depending on star brightness. We present a summary of the expected spatial, temporal and local time sampling of the GOLD Level 2 O2 data products. This data set will shed light on the response of the O2 density profile to geomagnetic disturbances and solar UV variability, and help address the extent to which the O2 distribution is determined by simple diffusive equilibrium as opposed to chemistry, which can operate on much shorter timescales.

  12. Advocacy: Making the Gold Standard School a Reality

    ERIC Educational Resources Information Center

    Roberts, Julia Link; Inman, Tracy Ford

    2011-01-01

    In their last column, the authors described a Gold Standard School--a place in which all children thrive including the gifted and talented. The Checklist for a Gold Standard School, which is included in this article, highlights the main characteristics of such a school including a focus on continuous progress, talent development, policies that…

  13. Gold-implanted shallow conducting layers in polymethylmethacrylate

    NASA Astrophysics Data System (ADS)

    Teixeira, F. S.; Salvadori, M. C.; Cattani, M.; Brown, I. G.

    2009-03-01

    PMMA (polymethylmethacrylate) was ion implanted with gold at very low energy and over a range of different doses using a filtered cathodic arc metal plasma system. A nanometer scale conducting layer was formed, fully buried below the polymer surface at low implantation dose, and evolving to include a gold surface layer as the dose was increased. Depth profiles of the implanted material were calculated using the Dynamic TRIM computer simulation program. The electrical conductivity of the gold-implanted PMMA was measured in situ as a function of dose. Samples formed at a number of different doses were subsequently characterized by Rutherford backscattering spectrometry, and test patterns were formed on the polymer by electron beam lithography. Lithographic patterns were imaged by atomic force microscopy and demonstrated that the contrast properties of the lithography were well maintained in the surface-modified PMMA.

  14. A wavelet analysis of co-movements in Asian gold markets

    NASA Astrophysics Data System (ADS)

    Das, Debojyoti; Kannadhasan, M.; Al-Yahyaee, Khamis Hamed; Yoon, Seong-Min

    2018-02-01

    This study assesses the cross-country co-movements of gold spot returns among the major gold consuming countries in Asia using wavelet-based analysis for a dataset spanning over 26 years. Wavelet-based analysis is used since it allows measuring co-movements in a time-frequency space. The results suggest intense and positive co-movements in Asia after the Asian financial crisis of 1997 at all frequencies. In addition, the Asian gold spot markets depict a state of impending perfect market integration. Finally, Thailand emerges as the potential market leader in all wavelet scales except one, which is led by India. The study has important implications for international diversification of a single-asset (gold) portfolio.

  15. Functional and Selective Bacterial Interfaces Using Cross-Scaffold Gold Binding Peptides

    NASA Astrophysics Data System (ADS)

    Adams, Bryn L.; Hurley, Margaret M.; Jahnke, Justin P.; Stratis-Cullum, Dimitra N.

    2015-11-01

    We investigated the functional and selective activity of three phage-derived gold-binding peptides on the Escherichia coli ( E. coli) bacterial cell surface display scaffold (eCPX) for the first time. Gold-binding peptides, p3-Au12 (LKAHLPPSRLPS), p8#9 (VSGSSPDS), and Midas-2 (TGTSVLIATPYV), were compared side-by-side through experiment and simulation. All exhibited strong binding to an evaporated gold film, with approximately a 4-log difference in binding between each peptide and the control sample. The increased affinity for gold was also confirmed by direct visualization of samples using Scanning Electron Microscopy (SEM). Peptide dynamics in solution were performed to analyze innate structure, and all three were found to have a high degree of flexibility. Preferential binding to gold over silicon for all three peptides was demonstrated, with up to four orders of magnitude selectivity exhibited by p3-Au12. The selectivity was also clearly evident through SEM analysis of the boundary between the gold film and silicon substrate. Functional activity of bound E. coli cells was further demonstrated by stimulating filamentation and all three peptides were characterized as prolific relative to control samples. This work shows great promise towards functional and active bacterial-hybrid gold surfaces and the potential to enable the next generation living material interfaces.

  16. Gold--a controversial sensitizer. European Environmental and Contact Dermatitis Research Group.

    PubMed

    Bruze, M; Andersen, K E

    1999-06-01

    Until recently, gold allergy was considered to be extremely rare. Gold has been used and worshipped for thousands of years without any obvious complaints of skin problems, either in those participating in mining and other ways of prospecting, or in those wearing jewellery. When studies on contact allergy to gold sodium thiosulfate were published at the beginning of the 1990s, the allergic nature of the reported positive patch test reactions to gold was questioned. The major argument for such questioning was the lack of demonstrable clinical relevance in most positive reactors. A major reason for the questioning may have been confusion in differentiating between contact allergy and allergic contact dermatitis. To arrive at a diagnosis of allergic contact dermatitis, 3 steps have, in principle, to be fulfilled: (i) establishment of contact allergy; (ii) demonstration of present exposure; (iii) assessment of clinical relevance, i.e., causing or aggravating a contact dermatitis. In this paper, these steps are discussed with regard to gold. With our present knowledge of contact allergy-allergic contact dermatitis, we do not recommend including gold sodium thiosulfate in the standard series. It should be applied for scientific purposes and when allergic contact dermatitis from gold is suspected.

  17. Alignment of gold nanorods by angular photothermal depletion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Adam B.; Chow, Timothy T. Y.; Chon, James W. M., E-mail: jchon@swin.edu.au

    2014-02-24

    In this paper, we demonstrate that a high degree of alignment can be imposed upon randomly oriented gold nanorod films by angular photothermal depletion with linearly polarized laser irradiation. The photothermal reshaping of gold nanorods is observed to follow quadratic melting model rather than the threshold melting model, which distorts the angular and spectral hole created on 2D distribution map of nanorods to be an open crater shape. We have accounted these observations to the alignment procedures and demonstrated good agreement between experiment and simulations. The use of multiple laser depletion wavelengths allowed alignment criteria over a large range ofmore » aspect ratios, achieving 80% of the rods in the target angular range. We extend the technique to demonstrate post-alignment in a multilayer of randomly oriented gold nanorod films, with arbitrary control of alignment shown across the layers. Photothermal angular depletion alignment of gold nanorods is a simple, promising post-alignment method for creating future 3D or multilayer plasmonic nanorod based devices and structures.« less

  18. Spin orbit coupling in graphene through gold intercalation

    NASA Astrophysics Data System (ADS)

    Mukherjee, Paromita; O'Farrell, Eoin; Tan, Jun You; Yeo, Yuting; Koon, G. K. W.; Özyilmaz, Barbaros; Watanabe, K.; Taniguchi, T.

    Graphene has a very low value of spin orbit coupling. There have been several efforts to enhance the spin orbit interaction in graphene. Our previous work has provided clear evidence that spin orbit coupling can be induced in graphene through Rashba interaction with intercalated gold. By applying an additional electric field, this splitting can be increased or decreased depending on its relative direction with the internal electric field induced by gold in graphene. A large negative magnetoresistance due to an in-plane magnetic field has been observed which can be attributed to the fact that a magnetic moment is induced in gold due to spin-orbit coupling. Anomalous Hall Effect which decreases with an in-plane magnetic field further suggests the formation of a collective magnetic phase. We would like to further elaborate on the spin-orbit coupling in graphene using non local measurements. Hence, by intercalating graphene with gold, we can have a direct electric manipulation of the spin degrees of freedom and lead to its much awaited applications in spintronics, quantum computing. National University of Singapore, Singapore.

  19. Structures of 38-atom gold-platinum nanoalloy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, Yee Pin; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    Bimetallic nanoclusters, such as gold-platinum nanoclusters, are nanomaterials promising wide range of applications. We perform a numerical study of 38-atom gold-platinum nanoalloy clusters, Au{sub n}Pt{sub 38−n} (0 ≤ n ≤ 38), to elucidate the geometrical structures of these clusters. The lowest-energy structures of these bimetallic nanoclusters at the semi-empirical level are obtained via a global-minimum search algorithm known as parallel tempering multi-canonical basin hopping plus genetic algorithm (PTMBHGA), in which empirical Gupta many-body potential is used to describe the inter-atomic interactions among the constituent atoms. The structures of gold-platinum nanoalloy clusters are predicted to be core-shell segregated nanoclusters. Gold atomsmore » are observed to preferentially occupy the surface of the clusters, while platinum atoms tend to occupy the core due to the slightly smaller atomic radius of platinum as compared to gold’s. The evolution of the geometrical structure of 38-atom Au-Pt clusters displays striking similarity with that of 38-atom Au-Cu nanoalloy clusters as reported in the literature.« less

  20. Synthesis of Crooked Gold Nanocrystals by Electrochemical Technique

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Jung; Chiu, Pin-Hsiang; Chen, Ming-Da; Meen, Teen-Hang

    2005-07-01

    In this article, we demonstrate the synthesis of crooked gold nanocrystals (CGNCs) by an electrochemical technique using micelle templates formed by two surfactants with different amounts of isopropanol solvent, the primary surfactant being hexadecyltrimethylammonium bromide (C16TABr) and the cosurfactant being tetradodecylammonium bromide (TC12ABr). To investigate the influence of isopropanol solvent on the CGNCs, the amount of isopropanol was varied in the range from 50 to 300 μL. It was found that the aspect ratios (γ) of CGNCs were in the range from 1.06 to 1.46, and the UV--vis optical absorption measurement revealed a pronounced redshift of the surface plasmon band from 532 to 560 nm. The CGNCs were composed of many large gold grains with small gold nuclei, and it was determined that several grains are present within each of the CGNCs using a dark-field transmission electron microscopy (TEM) image. It is suggested that the CGNCs have a polycrystalline structure. The CGNCs have been determined to be pure gold with a face-centered cubic (fcc) structure by electron diffraction (ED) analysis.