Sample records for aapm tg-43 dosimetry

  1. WE-F-201-03: Evaluate Clinical Cases Using Commercially Available Systems and Compare to TG-43 Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaulieu, L.

    With the recent introduction of heterogeneity correction algorithms for brachytherapy, the AAPM community is still unclear on how to commission and implement these into clinical practice. The recently-published AAPM TG-186 report discusses important issues for clinical implementation of these algorithms. A charge of the AAPM-ESTRO-ABG Working Group on MBDCA in Brachytherapy (WGMBDCA) is the development of a set of well-defined test case plans, available as references in the software commissioning process to be performed by clinical end-users. In this practical medical physics course, specific examples on how to perform the commissioning process are presented, as well as descriptions of themore » clinical impact from recent literature reporting comparisons of TG-43 and heterogeneity-based dosimetry. Learning Objectives: Identify key clinical applications needing advanced dose calculation in brachytherapy. Review TG-186 and WGMBDCA guidelines, commission process, and dosimetry benchmarks. Evaluate clinical cases using commercially available systems and compare to TG-43 dosimetry.« less

  2. TH-A-BRC-02: AAPM TG-178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetsch, S.

    AAPM TG-135U1 QA for Robotic Radiosurgery - Sonja Dieterich Since the publication of AAPM TG-135 in 2011, the technology of robotic radiosurgery has rapidly developed. AAPM TG-135U1 will provide recommendations on the clinical practice for using the IRIS collimator, fiducial-less real-time motion tracking, and Monte Carlo based treatment planning. In addition, it will summarize currently available literature about uncertainties. Learning Objectives: Understand the progression of technology since the first TG publication Learn which new QA procedures should be implemented for new technologies Be familiar with updates to clinical practice guidelines AAPM TG-178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance -more » Steven Goetsch Purpose: AAPM Task Group 178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance was formed in August, 2008. The Task Group has 12 medical physicists, two physicians and two consultants. Methods: A round robin dosimetry intercomparison of proposed ionization chambers, electrometer and dosimetry phantoms was conducted over a 15 month period in 2011 and 2012 (Med Phys 42, 11, Nov, 2015). The data obtained at 9 institutions (with ten different Elekta Gamma Knife units) was analyzed by the lead author using several protocols. Results: The most consistent results were obtained using the Elekta ABS 16cm diameter phantom, with the TG-51 protocol modified as recommended by Alfonso et al (Med Phys 35, 11, Nov 2008). A key white paper (Med Phys, in press) sponsored by Elekta Corporation, was used to obtain correction factors for the ionization chambers and phantoms used in this intercomparison. Consistent results were obtained for both Elekta Gamma Knife Model 4C and Gamma Knife Perfexion units as measured with each of two miniature ionization chambers. Conclusion: The full report gives clinical history and background of gamma stereotactic radiosurgery, clinical examples and history, quality assurance recommendations and

  3. SU-F-T-54: Determination of the AAPM TG-43 Brachytherapy Dosimetry Parameters for A New Titanium-Encapsulated Yb-169 Source by Monte Carlo Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynoso, F; Washington University School of Medicine, St. Louis, MO; Munro, J

    2016-06-15

    Purpose: To determine the AAPM TG-43 brachytherapy dosimetry parameters of a new titanium-encapsulated Yb-169 source designed to maximize the dose enhancement during gold nanoparticle-aided radiation therapy (GNRT). Methods: An existing Monte Carlo (MC) model of the titanium-encapsulated Yb-169 source, which was described in the current investigators’ published MC optimization study, was modified based on the source manufacturer’s detailed specifications, resulting in an accurate model of the titanium-encapsulated Yb-169 source that was actually manufactured. MC calculations were then performed using the MCNP5 code system and the modified source model, in order to obtain a complete set of the AAPM TG-43 parametersmore » for the new Yb-169 source. Results: The MC-calculated dose rate constant for the new titanium-encapsulated Yb-169 source was 1.05 ± 0.03 cGy per hr U, indicating about 10% decrease from the values reported for the conventional stainless steel-encapsulated Yb-169 sources. The source anisotropy and radial dose function for the new source were found similar to those reported for the conventional Yb-169 sources. Conclusion: In this study, the AAPM TG-43 brachytherapy dosimetry parameters of a new titanium-encapsulated Yb-169 source were determined by MC calculations. The current results suggested that the use of titanium, instead of stainless steel, to encapsulate the Yb-169 core would not lead to any major change in the dosimetric characteristics of the Yb-169 source, while it would allow more low energy photons being transmitted through the source filter thereby leading to an increased dose enhancement during GNRT. Supported by DOD/PCRP grant W81XWH-12-1-0198 This investigation was supported by DOD/PCRP grant W81XWH-12-1- 0198.« less

  4. A modern Monte Carlo investigation of the TG-43 dosimetry parameters for an {sup 125}I seed already having AAPM consensus data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aryal, Prakash; Molloy, Janelle A.; Rivard, Mark J., E-mail: mark.j.rivard@gmail.com

    2014-02-15

    Purpose: To investigate potential causes for differences in TG-43 brachytherapy dosimetry parameters in the existent literature for the model IAI-125A{sup 125}I seed and to propose new standard dosimetry parameters. Methods: The MCNP5 code was used for Monte Carlo (MC) simulations. Sensitivity of dose distributions, and subsequently TG-43 dosimetry parameters, was explored to reproduce historical methods upon which American Association of Physicists in Medicine (AAPM) consensus data are based. Twelve simulation conditions varying{sup 125}I coating thickness, coating mass density, photon interaction cross-section library, and photon emission spectrum were examined. Results: Varying{sup 125}I coating thickness, coating mass density, photon cross-section library, andmore » photon emission spectrum for the model IAI-125A seed changed the dose-rate constant by up to 0.9%, about 1%, about 3%, and 3%, respectively, in comparison to the proposed standard value of 0.922 cGy h{sup −1} U{sup −1}. The dose-rate constant values by Solberg et al. [“Dosimetric parameters of three new solid core {sup 125}I brachytherapy sources,” J. Appl. Clin. Med. Phys. 3, 119–134 (2002)], Meigooni et al. [“Experimental and theoretical determination of dosimetric characteristics of IsoAid ADVANTAGE™ {sup 125}I brachytherapy source,” Med. Phys. 29, 2152–2158 (2002)], and Taylor and Rogers [“An EGSnrc Monte Carlo-calculated database of TG-43 parameters,” Med. Phys. 35, 4228–4241 (2008)] for the model IAI-125A seed and Kennedy et al. [“Experimental and Monte Carlo determination of the TG-43 dosimetric parameters for the model 9011 THINSeed™ brachytherapy source,” Med. Phys. 37, 1681–1688 (2010)] for the model 6711 seed were +4.3% (0.962 cGy h{sup −1} U{sup −1}), +6.2% (0.98 cGy h{sup −1} U{sup −1}), +0.3% (0.925 cGy h{sup −1} U{sup −1}), and −0.2% (0.921 cGy h{sup −1} U{sup −1}), respectively, in comparison to the proposed

  5. SU-F-P-15: Report On AAPM TG 178 Gamma Knife Dosimetry and Quality Assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetsch, S

    Purpose: AAPM Task Group 178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance was formed in August, 2008. The Task Group has 12 medical physicists, two physicians and two consultants. Methods: A round robin dosimetry intercomparison of proposed ionization chambers, electrometer and dosimetry phantoms was conducted over a 15 month period in 2011 and 2012 (Med Phys 42, 11, Nov, 2015). The data obtained at 9 institutions (with ten different Elekta Gamma Knife units) was analyzed by the lead author using several protocols. Results: The most consistent results were obtained using the Elekta ABS 16cm diameter phantom, with the TG-51 protocolmore » modified as recommended by Alfonso et al (Med Phys 35, 11, Nov 2008). A key white paper (Med Phys, in press) sponsored by Elekta Corporation, was used to obtain correction factors for the ionization chambers and phantoms used in this intercomparison. Consistent results were obtained for both Elekta Gamma Knife Model 4C and Gamma Knife Perfexion units as measured with each of two miniature ionization chambers Conclusion: The full TG 178 report gives clinical history and background of gamma stereotactic radiosurgery, clinical examples and history, quality assurance recommendations and outline of possible dosimetry protocols. The report will be reviewed by the AAPM Working Group on Recommendations for Radiotherapy External Beam Quality Assurance and then by the AAPM Science Council before publication in Medical Physics. Consultant to Elekta, Inc.« less

  6. TH-A-BRC-01: AAPM TG-135U1 QA for Robotic Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieterich, S.

    AAPM TG-135U1 QA for Robotic Radiosurgery - Sonja Dieterich Since the publication of AAPM TG-135 in 2011, the technology of robotic radiosurgery has rapidly developed. AAPM TG-135U1 will provide recommendations on the clinical practice for using the IRIS collimator, fiducial-less real-time motion tracking, and Monte Carlo based treatment planning. In addition, it will summarize currently available literature about uncertainties. Learning Objectives: Understand the progression of technology since the first TG publication Learn which new QA procedures should be implemented for new technologies Be familiar with updates to clinical practice guidelines AAPM TG-178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance -more » Steven Goetsch Purpose: AAPM Task Group 178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance was formed in August, 2008. The Task Group has 12 medical physicists, two physicians and two consultants. Methods: A round robin dosimetry intercomparison of proposed ionization chambers, electrometer and dosimetry phantoms was conducted over a 15 month period in 2011 and 2012 (Med Phys 42, 11, Nov, 2015). The data obtained at 9 institutions (with ten different Elekta Gamma Knife units) was analyzed by the lead author using several protocols. Results: The most consistent results were obtained using the Elekta ABS 16cm diameter phantom, with the TG-51 protocol modified as recommended by Alfonso et al (Med Phys 35, 11, Nov 2008). A key white paper (Med Phys, in press) sponsored by Elekta Corporation, was used to obtain correction factors for the ionization chambers and phantoms used in this intercomparison. Consistent results were obtained for both Elekta Gamma Knife Model 4C and Gamma Knife Perfexion units as measured with each of two miniature ionization chambers. Conclusion: The full report gives clinical history and background of gamma stereotactic radiosurgery, clinical examples and history, quality assurance recommendations and

  7. TH-A-BRC-03: AAPM TG218: Measurement Methods and Tolerance Levels for Patient-Specific IMRT Verification QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miften, M.

    2016-06-15

    AAPM TG-135U1 QA for Robotic Radiosurgery - Sonja Dieterich Since the publication of AAPM TG-135 in 2011, the technology of robotic radiosurgery has rapidly developed. AAPM TG-135U1 will provide recommendations on the clinical practice for using the IRIS collimator, fiducial-less real-time motion tracking, and Monte Carlo based treatment planning. In addition, it will summarize currently available literature about uncertainties. Learning Objectives: Understand the progression of technology since the first TG publication Learn which new QA procedures should be implemented for new technologies Be familiar with updates to clinical practice guidelines AAPM TG-178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance -more » Steven Goetsch Purpose: AAPM Task Group 178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance was formed in August, 2008. The Task Group has 12 medical physicists, two physicians and two consultants. Methods: A round robin dosimetry intercomparison of proposed ionization chambers, electrometer and dosimetry phantoms was conducted over a 15 month period in 2011 and 2012 (Med Phys 42, 11, Nov, 2015). The data obtained at 9 institutions (with ten different Elekta Gamma Knife units) was analyzed by the lead author using several protocols. Results: The most consistent results were obtained using the Elekta ABS 16cm diameter phantom, with the TG-51 protocol modified as recommended by Alfonso et al (Med Phys 35, 11, Nov 2008). A key white paper (Med Phys, in press) sponsored by Elekta Corporation, was used to obtain correction factors for the ionization chambers and phantoms used in this intercomparison. Consistent results were obtained for both Elekta Gamma Knife Model 4C and Gamma Knife Perfexion units as measured with each of two miniature ionization chambers. Conclusion: The full report gives clinical history and background of gamma stereotactic radiosurgery, clinical examples and history, quality assurance recommendations and

  8. SU-G-TeP2-03: Comparison of Standard Dosimetry Protocol in Japan and AAPM TG-51 Addendum in Order to Establish Optimal Dosimetry for FFF Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsunaga, T; Adachi, Y; Hayashi, N

    Purpose: Japan Standard Dosimetry of Absorbed dose to water in external beam radiotherapy (JSDP12) is widely used to measure radiation dose in radiotherapy. However, JSDP12 does not take flattening-filter-free (FFF) beam into consideration. In addition, JSDP12 applied TPR20,10 for dose quality index for photon beam. The purpose of this study is to compare JSDP12 with AAPM TG-51 addendum in order to establish optimal dosimetry procedure for FFF beam. Method: We evaluated the ion-recombination factor (ks) and the correction factor of radial beam profile (Prp) in FFF beam dosimetry. The ks was introduced by 2 voltages method and verified by Jaffe’smore » plot. The Prp was given by both film measurement and calculation of treatment planning system, and compared them. Next, we compared the dose quality indexes (kQ) between TPR20,10 method and PDD(10)x method. Finally we considered optimal dosimetry protocol for FFF photon beam using JSDP12 with referring TG-51 addendum protocols. The FFF photon beams of 6 MV (6X-FFF) and 10 MV (10X-FFF) from TrueBeam were investigated in this study. Results: The ks for 6X-FFF and 10X-FFF beams were 1.005 and 1.010, respectively. The Prp of 0.6 cc ionization chamber for 6X-FFF and 10X-FFF beams (Film, TPS) were (1.004, 1.008) and (1.005, 1.008), respectively. The kQ for 6X-FFF and 10X-FFF beams (JSDP12, TG-51 addendum) were (0.9950, 0.9947) and (0.9851, 0.9845), respectively. The most effective factor for uncertainty in FFF photon beam measurement was Prp for JSDP12 formalism. Total dosimetric differences between JSDP12 and TG-51 addendum for 6X-FFF and 10X-FFF were -0.47% and -0.73%, respectively. Conclusion: The total dosimetric difference between JSDP12 and TG-51 addendum was within 1%. The introduction of kQ given by JSDP is feasible for FFF photon beam dosimetry. However, we think Prp should be considered for optimal dosimetry procedure even if JSDP12 is used for FFF photon beam dosimetry.« less

  9. Comparison of the recommendations of the AAPM TG-51 and TG-51 addendum reference dosimetry protocols.

    PubMed

    McCaw, Travis J; Hwang, Min-Sig; Jang, Si Young; Huq, M Saiful

    2017-07-01

    This work quantified differences between recommendations of the TG-51 and TG-51 addendum reference dosimetry protocols. Reference dosimetry was performed for flattened photon beams with nominal energies of 6, 10, 15, and 23 MV, as well as flattening-filter free (FFF) beam energies of 6 and 10 MV, following the recommendations of both the TG-51 and TG-51 addendum protocols using both a Farmer ® ionization chamber and a scanning ionization chamber with calibration coefficients traceable to absorbed dose-to-water (D w ) standards. Differences in D w determined by the two protocols were 0.1%-0.3% for beam energies with a flattening filter, and up to 0.2% and 0.8% for FFF beams measured with the scanning and Farmer ® ionization chambers, respectively, due to k Q determination, volume-averaging correction, and collimator jaw setting. Combined uncertainty was between 0.91% and 1.2% (k = 1), varying by protocol and detector. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  10. Comparison of AAPM Addendum to TG-51, IAEA TRS-398, and JSMP 12: Calibration of photon beams in water.

    PubMed

    Kinoshita, Naoki; Oguchi, Hiroshi; Nishimoto, Yasuhiro; Adachi, Toshiki; Shioura, Hiroki; Kimura, Hirohiko; Doi, Kunio

    2017-09-01

    The American Association of Physicists in Medicine (AAPM) Working Group on TG-51 published an Addendum to the AAPM's TG-51 protocol (Addendum to TG-51) in 2014, and the Japan Society of Medical Physics (JSMP) published a new dosimetry protocol JSMP 12 in 2012. In this study, we compared the absorbed dose to water determined at the reference depth for high-energy photon beams following the recommendations given in AAPM TG-51 and the Addendum to TG-51, IAEA TRS-398, and JSMP 12. This study was performed using measurements with flattened photon beams with nominal energies of 6 and 10 MV. Three widely used ionization chambers with different compositions, Exradin A12, PTW 30013, and IBA FC65-P, were employed. Fully corrected charge readings obtained for the three chambers according to AAPM TG-51 and the Addendum to TG-51, which included the correction for the radiation beam profile (P rp ), showed variations of 0.2% and 0.3% at 6 and 10 MV, respectively, from the readings corresponding to IAEA TRS-398 and JSMP 12. The values for the beam quality conversion factor k Q obtained according to the three protocols agreed within 0.5%; the only exception was a 0.6% difference between the results obtained at 10 MV for Exradin A12 according to IAEA TRS-398 and AAPM TG-51 and the Addendum to TG-51. Consequently, the values for the absorbed dose to water obtained for the three protocols agreed within 0.4%; the only exception was a 0.6% difference between the values obtained at 10 MV for PTW 30013 according to AAPM TG-51 and the Addendum to TG-51, and JSMP 12. While the difference in the absorbed dose to water determined by the three protocols depends on the k Q and P rp values, the absorbed dose to water obtained according to the three protocols agrees within the relative uncertainties for the three protocols. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  11. Dose calculation for photon-emitting brachytherapy sources with average energy higher than 50 keV: report of the AAPM and ESTRO.

    PubMed

    Perez-Calatayud, Jose; Ballester, Facundo; Das, Rupak K; Dewerd, Larry A; Ibbott, Geoffrey S; Meigooni, Ali S; Ouhib, Zoubir; Rivard, Mark J; Sloboda, Ron S; Williamson, Jeffrey F

    2012-05-01

    Recommendations of the American Association of Physicists in Medicine (AAPM) and the European Society for Radiotherapy and Oncology (ESTRO) on dose calculations for high-energy (average energy higher than 50 keV) photon-emitting brachytherapy sources are presented, including the physical characteristics of specific (192)Ir, (137)Cs, and (60)Co source models. This report has been prepared by the High Energy Brachytherapy Source Dosimetry (HEBD) Working Group. This report includes considerations in the application of the TG-43U1 formalism to high-energy photon-emitting sources with particular attention to phantom size effects, interpolation accuracy dependence on dose calculation grid size, and dosimetry parameter dependence on source active length. Consensus datasets for commercially available high-energy photon sources are provided, along with recommended methods for evaluating these datasets. Recommendations on dosimetry characterization methods, mainly using experimental procedures and Monte Carlo, are established and discussed. Also included are methodological recommendations on detector choice, detector energy response characterization and phantom materials, and measurement specification methodology. Uncertainty analyses are discussed and recommendations for high-energy sources without consensus datasets are given. Recommended consensus datasets for high-energy sources have been derived for sources that were commercially available as of January 2010. Data are presented according to the AAPM TG-43U1 formalism, with modified interpolation and extrapolation techniques of the AAPM TG-43U1S1 report for the 2D anisotropy function and radial dose function.

  12. Reevaluation of the AAPM TG-43 brachytherapy dosimetry parameters for an 125I seed, and the influence of eye plaque design on dose distributions and dose-volume histograms

    NASA Astrophysics Data System (ADS)

    Aryal, Prakash

    The TG-43 dosimetry parameters of the Advantage(TM) 125I model IAI-125A brachytherapy seed were studied. An investigation using modern MCNP radiation transport code with updated cross-section libraries was performed. Twelve different simulation conditions were studied for a single seed by varying the coating thickness, mass density, photon energy spectrum and cross-section library. The dose rate was found to be 6.3% lower at 1 cm in comparison to published results. New TG-43 dosimetry parameters are proposed. The dose distribution for a brachytherapy eye plaque, model EP917, was investigated, including the effects of collimation from high-Z slots. Dose distributions for 26 slot designs were determined using Monte Carlo methods and compared between the published literature, a clinical treatment planning system, and physical measurements. The dosimetric effect of the composition and mass density of the gold backing was shown to be less than 3%. Slot depth, width, and length changed the central axis (CAX) dose distributions by < 1% per 0.1 mm in design variation. Seed shifts in the slot towards the eye and shifts of the 125I-laden silver rod within the seed had the greatest impact on the CAX dose distribution, changing it by 14%, 9%, 4.3%, and 2.7% at 1, 2, 5, and 10 mm, respectively, from the inner scleral surface. The measured, full plaque slot geometry delivered 2.4% +/- 1.1% higher dose along the plaque's CAX than the geometry provided by the manufacturer and 2.2%+/-2.3% higher than Plaque Simulator(TM) (PS) treatment planning software (version 5.7.6). The D10 for the simulated tumor, inner sclera, and outer sclera for the measured slot plaque to manufacturer provided slot design was 9%, 10%, and 19% higher, respectively. In comparison to the measured plaque design, a theoretical plaque having narrow and deep slots delivered 30%, 37%, and 62% lower D 10 doses to the tumor, inner sclera, and outer sclera, respectively. CAX doses at --1, 0, 1, and 2 mm were also

  13. Addendum to the AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McEwen, Malcolm, E-mail: malcolm.mcewen@nrc-cnrc.gc.ca; DeWerd, Larry; Ibbott, Geoffrey

    2014-04-15

    An addendum to the AAPM's TG-51 protocol for the determination of absorbed dose to water in megavoltage photon beams is presented. This addendum continues the procedure laid out in TG-51 but new k{sub Q} data for photon beams, based on Monte Carlo simulations, are presented and recommendations are given to improve the accuracy and consistency of the protocol's implementation. The components of the uncertainty budget in determining absorbed dose to water at the reference point are introduced and the magnitude of each component discussed. Finally, the consistency of experimental determination of N{sub D,w} coefficients is discussed. It is expected thatmore » the implementation of this addendum will be straightforward, assuming that the user is already familiar with TG-51. The changes introduced by this report are generally minor, although new recommendations could result in procedural changes for individual users. It is expected that the effort on the medical physicist's part to implement this addendum will not be significant and could be done as part of the annual linac calibration.« less

  14. A dosimetry study comparing NCS report-5, IAEA TRS-381, AAPM TG-51 and IAEA TRS-398 in three clinical electron beam energies

    NASA Astrophysics Data System (ADS)

    Palmans, Hugo; Nafaa, Laila; de Patoul, Nathalie; Denis, Jean-Marc; Tomsej, Milan; Vynckier, Stefaan

    2003-05-01

    New codes of practice for reference dosimetry in clinical high-energy photon and electron beams have been published recently, to replace the air kerma based codes of practice that have determined the dosimetry of these beams for the past twenty years. In the present work, we compared dosimetry based on the two most widespread absorbed dose based recommendations (AAPM TG-51 and IAEA TRS-398) with two air kerma based recommendations (NCS report-5 and IAEA TRS-381). Measurements were performed in three clinical electron beam energies using two NE2571-type cylindrical chambers, two Markus-type plane-parallel chambers and two NACP-02-type plane-parallel chambers. Dosimetry based on direct calibrations of all chambers in 60Co was investigated, as well as dosimetry based on cross-calibrations of plane-parallel chambers against a cylindrical chamber in a high-energy electron beam. Furthermore, 60Co perturbation factors for plane-parallel chambers were derived. It is shown that the use of 60Co calibration factors could result in deviations of more than 2% for plane-parallel chambers between the old and new codes of practice, whereas the use of cross-calibration factors, which is the first recommendation in the new codes, reduces the differences to less than 0.8% for all situations investigated here. The results thus show that neither the chamber-to-chamber variations, nor the obtained absolute dose values are significantly altered by changing from air kerma based dosimetry to absorbed dose based dosimetry when using calibration factors obtained from the Laboratory for Standard Dosimetry, Ghent, Belgium. The values of the 60Co perturbation factor for plane-parallel chambers (katt . km for the air kerma based and pwall for the absorbed dose based codes of practice) that are obtained from comparing the results based on 60Co calibrations and cross-calibrations are within the experimental uncertainties in agreement with the results from other investigators.

  15. Dosimetric evaluation of IMRT plan for homogenous and inhomogeneous medium using AAPM TG-119 protocol

    NASA Astrophysics Data System (ADS)

    Fatimah, L. A. N.; Wibowo, W. E.; Pawiro, S. A.

    2017-05-01

    The American Association of Physicists in Medicine (AAPM) TG-119 protocol has been applied for dose verification in IMRT technique. However, some criteria in the protocol need to be verified for inhomogeneous medium and small volume targets. Hence, the purpose of this study was to verify the assessment criteria of dose verification in AAPM TG-119 for inhomogeneous medium and small volume targets. The work has been conducted by dose verification for homogeneous (phantom A) and inhomogeneous phantoms (phantom B and C) on two geometrical targets: C-shape and circular targets. The targets were simulated using 7 static dMLC IMRT fields at two different depths of 5 g/cm2 and 10 g/cm2. The dose optimisation and calculation were done by using Pinnacle3 for 6 MV photons beam. The planning objectives were set according to AAPM TG-119 parameters. The plan analysis was conducted by Conformity Index and Homogeneity Index. The point dose measurements were conducted with Exradin A16, Semiflex 0.125cc, and Gafchromic EBT3. The plan results show that CI for C-shape target is in the range of 0.710-0.999 at 10 g/cm2 depth and 0.691-1.613 at 5 g/cm2. In addition, HI for C-shape and circular were in the range of 6.3%-58.7% and 5.4%-87.1% for 10 g/cm2 depth. The measurement results show that the dose measurement at inhomogeneous medium and small volume targets are much lower than the criteria in AAPM TG-119. In conclusion, the criteria in the AAPM TG-119 cannot be fully implemented for inhomogeneous medium and small volume targets.

  16. TU-D-201-03: Results of a Survey On the Implementation of the TG-51 Protocol and Associated Addendum On Reference Dosimetry of External Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, G; Muir, B; Culberson, W

    Purpose: The working group on the review and extension of the TG-51 protocol (WGTG51) collected data from American Association of Physicists in Medicine (AAPM) members with respect to their current TG-51 and associated addendum usage in the interest of considering future protocol addenda and guidance on reference dosimetry best practices. This study reports an overview of this survey on dosimetry of external beams. Methods: Fourteen survey questions were developed by WGTG51 and released in November 2015. The questions collected information on reference dosimetry, beam quality specification, and ancillary calibration equipment. Results: Of the 190 submissions completed worldwide (U.S. 70%), 83%more » were AAPM members. Of the respondents, 33.5% implemented the TG-51 addendum, with the maximum calibration difference for any photon beam, with respect to the original TG-51 protocol, being <1% for 97.4% of responses. One major finding is that 81.8% of respondents used the same cylindrical ionization chamber for photon and electron dosimetry, implying that many clinics are foregoing the use of parallel-plate chambers. Other evidence suggests equivalent dosimetric results can be obtained with both cylindrical and parallel-plate chambers in electron beams. This, combined with users comfort with cylindrical chambers for electrons will likely impact recommendations put forward in an upcoming electron beam addendum to the TG-51 protocol. Data collected on ancillary equipment showed 58.2% (45.0%) of the thermometers (barometers) in use for beam calibration had NIST traceable calibration certificates, but 48.4% (42.7%) were never recalibrated. Conclusion: This survey provides a snapshot of TG-51 external beam reference dosimetry practice in radiotherapy centers. Findings demonstrate the rapid take-up of the TG-51 photon beam addendum and raise issues for the WGTG51 to focus on going forward, including guidelines on ancillary equipment and the choice of chamber for electron

  17. Comparison of TG-43 and TG-186 in breast irradiation using a low energy electronic brachytherapy source.

    PubMed

    White, Shane A; Landry, Guillaume; Fonseca, Gabriel Paiva; Holt, Randy; Rusch, Thomas; Beaulieu, Luc; Verhaegen, Frank; Reniers, Brigitte

    2014-06-01

    The recently updated guidelines for dosimetry in brachytherapy in TG-186 have recommended the use of model-based dosimetry calculations as a replacement for TG-43. TG-186 highlights shortcomings in the water-based approach in TG-43, particularly for low energy brachytherapy sources. The Xoft Axxent is a low energy (<50 kV) brachytherapy system used in accelerated partial breast irradiation (APBI). Breast tissue is a heterogeneous tissue in terms of density and composition. Dosimetric calculations of seven APBI patients treated with Axxent were made using a model-based Monte Carlo platform for a number of tissue models and dose reporting methods and compared to TG-43 based plans. A model of the Axxent source, the S700, was created and validated against experimental data. CT scans of the patients were used to create realistic multi-tissue/heterogeneous models with breast tissue segmented using a published technique. Alternative water models were used to isolate the influence of tissue heterogeneity and backscatter on the dose distribution. Dose calculations were performed using Geant4 according to the original treatment parameters. The effect of the Axxent balloon applicator used in APBI which could not be modeled in the CT-based model, was modeled using a novel technique that utilizes CAD-based geometries. These techniques were validated experimentally. Results were calculated using two dose reporting methods, dose to water (Dw,m) and dose to medium (Dm,m), for the heterogeneous simulations. All results were compared against TG-43-based dose distributions and evaluated using dose ratio maps and DVH metrics. Changes in skin and PTV dose were highlighted. All simulated heterogeneous models showed a reduced dose to the DVH metrics that is dependent on the method of dose reporting and patient geometry. Based on a prescription dose of 34 Gy, the average D90 to PTV was reduced by between ~4% and ~40%, depending on the scoring method, compared to the TG-43 result. Peak

  18. Reference Dosimetry according to the New German Protocol DIN 6800-2 and Comparison with IAEA TRS 398 and AAPM TG 51*

    PubMed Central

    Zakaria, A; Schuette, W; Younan, C

    2011-01-01

    The preceding DIN 6800-2 (1997) protocol has been revised by a German task group and its latest version was published in March 2008 as the national standard dosimetry protocol DIN 6800-2 (2008 March). Since then, in Germany the determination of absorbed dose to water for high-energy photon and electron beams has to be performed according to this new German dosimetry protocol. The IAEA Code of Practice TRS 398 (2000) and the AAPM TG-51 are the two main protocols applied internationally. The new German version has widely adapted the methodology and dosimetric data of TRS-398. This paper investigates systematically the DIN 6800-2 protocol and compares it with the procedures and results obtained by using the international protocols. The investigation was performed with 6 MV and 18 MV photon beams as well as with electron beams from 5 MeV to 21 MeV. While only cylindrical chambers were used for photon beams, the measurements of electron beams were performed by using cylindrical and plane-parallel chambers. It was found that the discrepancies in the determination of absorbed dose to water among the three protocols were 0.23% for photon beams and 1.2% for electron beams. The determination of water absorbed dose was also checked by a national audit procedure using TLDs. The comparison between the measurements following the DIN 6800-2 protocol and the TLD audit-procedure confirmed a difference of less than 2%. The advantage of the new German protocol DIN 6800-2 lies in the renouncement on the cross calibration procedure as well as its clear presentation of formulas and parameters. In the past, the different protocols evoluted differently from time to time. Fortunately today, a good convergence has been obtained in concepts and methods. PMID:22287987

  19. Reference Dosimetry according to the New German Protocol DIN 6800-2 and Comparison with IAEA TRS 398 and AAPM TG 51.

    PubMed

    Zakaria, A; Schuette, W; Younan, C

    2011-04-01

    The preceding DIN 6800-2 (1997) protocol has been revised by a German task group and its latest version was published in March 2008 as the national standard dosimetry protocol DIN 6800-2 (2008 March). Since then, in Germany the determination of absorbed dose to water for high-energy photon and electron beams has to be performed according to this new German dosimetry protocol. The IAEA Code of Practice TRS 398 (2000) and the AAPM TG-51 are the two main protocols applied internationally. The new German version has widely adapted the methodology and dosimetric data of TRS-398. This paper investigates systematically the DIN 6800-2 protocol and compares it with the procedures and results obtained by using the international protocols. The investigation was performed with 6 MV and 18 MV photon beams as well as with electron beams from 5 MeV to 21 MeV. While only cylindrical chambers were used for photon beams, the measurements of electron beams were performed by using cylindrical and plane-parallel chambers. It was found that the discrepancies in the determination of absorbed dose to water among the three protocols were 0.23% for photon beams and 1.2% for electron beams. The determination of water absorbed dose was also checked by a national audit procedure using TLDs. The comparison between the measurements following the DIN 6800-2 protocol and the TLD audit-procedure confirmed a difference of less than 2%. The advantage of the new German protocol DIN 6800-2 lies in the renouncement on the cross calibration procedure as well as its clear presentation of formulas and parameters. In the past, the different protocols evoluted differently from time to time. Fortunately today, a good convergence has been obtained in concepts and methods.

  20. Dosimetric and radiobiological comparison of TG-43 and Monte Carlo calculations in 192Ir breast brachytherapy applications.

    PubMed

    Peppa, V; Pappas, E P; Karaiskos, P; Major, T; Polgár, C; Papagiannis, P

    2016-10-01

    To investigate the clinical significance of introducing model based dose calculation algorithms (MBDCAs) as an alternative to TG-43 in 192 Ir interstitial breast brachytherapy. A 57 patient cohort was used in a retrospective comparison between TG-43 based dosimetry data exported from a treatment planning system and Monte Carlo (MC) dosimetry performed using MCNP v. 6.1 with plan and anatomy information in DICOM-RT format. Comparison was performed for the target, ipsilateral lung, heart, skin, breast and ribs, using dose distributions, dose-volume histograms (DVH) and plan quality indices clinically used for plan evaluation, as well as radiobiological parameters. TG-43 overestimation of target DVH parameters is statistically significant but small (less than 2% for the target coverage indices and 4% for homogeneity indices, on average). Significant dose differences (>5%) were observed close to the skin and at relatively large distances from the implant leading to a TG-43 dose overestimation for the organs at risk. These differences correspond to low dose regions (<50% of the prescribed dose), being less than 2% of the prescribed dose. Detected dosimetric differences did not induce clinically significant differences in calculated tumor control probabilities (mean absolute difference <0.2%) and normal tissue complication probabilities. While TG-43 shows a statistically significant overestimation of most indices used for plan evaluation, differences are small and therefore not clinically significant. Improved MBDCA dosimetry could be important for re-irradiation, technique inter-comparison and/or the assessment of secondary cancer induction risk, where accurate dosimetry in the whole patient anatomy is of the essence. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. A generic high-dose rate {sup 192}Ir brachytherapy source for evaluation of model-based dose calculations beyond the TG-43 formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballester, Facundo, E-mail: Facundo.Ballester@uv.es; Carlsson Tedgren, Åsa; Granero, Domingo

    Purpose: In order to facilitate a smooth transition for brachytherapy dose calculations from the American Association of Physicists in Medicine (AAPM) Task Group No. 43 (TG-43) formalism to model-based dose calculation algorithms (MBDCAs), treatment planning systems (TPSs) using a MBDCA require a set of well-defined test case plans characterized by Monte Carlo (MC) methods. This also permits direct dose comparison to TG-43 reference data. Such test case plans should be made available for use in the software commissioning process performed by clinical end users. To this end, a hypothetical, generic high-dose rate (HDR) {sup 192}Ir source and a virtual watermore » phantom were designed, which can be imported into a TPS. Methods: A hypothetical, generic HDR {sup 192}Ir source was designed based on commercially available sources as well as a virtual, cubic water phantom that can be imported into any TPS in DICOM format. The dose distribution of the generic {sup 192}Ir source when placed at the center of the cubic phantom, and away from the center under altered scatter conditions, was evaluated using two commercial MBDCAs [Oncentra{sup ®} Brachy with advanced collapsed-cone engine (ACE) and BrachyVision ACUROS{sup TM}]. Dose comparisons were performed using state-of-the-art MC codes for radiation transport, including ALGEBRA, BrachyDose, GEANT4, MCNP5, MCNP6, and PENELOPE2008. The methodologies adhered to recommendations in the AAPM TG-229 report on high-energy brachytherapy source dosimetry. TG-43 dosimetry parameters, an along-away dose-rate table, and primary and scatter separated (PSS) data were obtained. The virtual water phantom of (201){sup 3} voxels (1 mm sides) was used to evaluate the calculated dose distributions. Two test case plans involving a single position of the generic HDR {sup 192}Ir source in this phantom were prepared: (i) source centered in the phantom and (ii) source displaced 7 cm laterally from the center. Datasets were independently produced

  2. WE-F-201-00: Practical Guidelines for Commissioning Advanced Brachytherapy Dose Calculation Algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    With the recent introduction of heterogeneity correction algorithms for brachytherapy, the AAPM community is still unclear on how to commission and implement these into clinical practice. The recently-published AAPM TG-186 report discusses important issues for clinical implementation of these algorithms. A charge of the AAPM-ESTRO-ABG Working Group on MBDCA in Brachytherapy (WGMBDCA) is the development of a set of well-defined test case plans, available as references in the software commissioning process to be performed by clinical end-users. In this practical medical physics course, specific examples on how to perform the commissioning process are presented, as well as descriptions of themore » clinical impact from recent literature reporting comparisons of TG-43 and heterogeneity-based dosimetry. Learning Objectives: Identify key clinical applications needing advanced dose calculation in brachytherapy. Review TG-186 and WGMBDCA guidelines, commission process, and dosimetry benchmarks. Evaluate clinical cases using commercially available systems and compare to TG-43 dosimetry.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivard, M.

    With the recent introduction of heterogeneity correction algorithms for brachytherapy, the AAPM community is still unclear on how to commission and implement these into clinical practice. The recently-published AAPM TG-186 report discusses important issues for clinical implementation of these algorithms. A charge of the AAPM-ESTRO-ABG Working Group on MBDCA in Brachytherapy (WGMBDCA) is the development of a set of well-defined test case plans, available as references in the software commissioning process to be performed by clinical end-users. In this practical medical physics course, specific examples on how to perform the commissioning process are presented, as well as descriptions of themore » clinical impact from recent literature reporting comparisons of TG-43 and heterogeneity-based dosimetry. Learning Objectives: Identify key clinical applications needing advanced dose calculation in brachytherapy. Review TG-186 and WGMBDCA guidelines, commission process, and dosimetry benchmarks. Evaluate clinical cases using commercially available systems and compare to TG-43 dosimetry.« less

  4. Absorbed dose to water based dosimetry versus air kerma based dosimetry for high-energy photon beams: an experimental study.

    PubMed

    Palmans, Hugo; Nafaa, Laila; De, Jans Jo; Gillis, Sofie; Hoornaert, Marie-Thérèse; Martens, Chantal; Piessens, Marleen; Thierens, Hubert; Van der Plaetsen, Ann; Vynckier, Stefaan

    2002-02-07

    In recent years, a change has been proposed from air kerma based reference dosimetry to absorbed dose based reference dosimetry for all radiotherapy beams of ionizing radiation. In this paper, a dosimetry study is presented in which absorbed dose based dosimetry using recently developed formalisms was compared with air kerma based dosimetry using older formalisms. Three ionization chambers of each of three different types were calibrated in terms of absorbed dose to water and air kerma and sent to five hospitals. There, reference dosimetry with all the chambers was performed in a total of eight high-energy clinical photon beams. The selected chamber types were the NE2571, the PTW-30004 and the Wellhöfer-FC65G (previously Wellhöfer-IC70). Having a graphite wall, they exhibit a stable volume and the presence of an aluminium electrode ensures the robustness of these chambers. The data were analysed with the most important recommendations for clinical dosimetry: IAEA TRS-398, AAPM TG-51, IAEA TRS-277, NCS report-2 (presently recommended in Belgium) and AAPM TG-21. The necessary conversion factors were taken from those protocols, or calculated using the data in the different protocols if data for a chamber type are lacking. Polarity corrections were within 0.1% for all chambers in all beams. Recombination corrections were consistent with theoretical predictions, did not vary within a chamber type and only slightly between different chamber types. The maximum chamber-to-chamber variations of the dose obtained with the different formalisms within the same chamber type were between 0.2% and 0.6% for the NE2571, between 0.2% and 0.6% for the PTW-30004 and 0.1% and 0.3% for the Wellhöfer-FC65G for the different beams. The absorbed dose results for the NE2571 and Wellhöfer-FC65G chambers were in good agreement for all beams and all formalisms. The PTW-30004 chambers gave a small but systematically higher result compared to the result for the NE2571 chambers (on the

  5. SU-E-T-204: Comparison of Absorbed-Dose to Water in High-Energy Photon Beams Based On Addendum AAPM TG-51, IAEA TRS-398, and JSMP 12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinoshita, N; Kita, A; Yoshioka, C

    Purpose: Several clinical reference dosimetry protocols for absorbed-dose to water have recently been published: The American Association of Physicists in Medicine (AAPM) published an Addendum to the AAPM’s TG-51 (Addendum TG-51) in April 2014, and the Japan Society of Medical Physics (JSMP) published the Japan Society of Medical Physics 12 (JSMP12), a clinical reference dosimetry protocol, in September 2012. This investigation compared and evaluated the absorbed-dose to water of high-energy photon beams according to Addendum TG-51, International Atomic Energy Agency Technical Report Series No. 398 (TRS-398), and JSMP12. Methods: Differences in the respective beam quality conversion factors with Addendum TG-51,more » TRS-398, and JSMP12 were analyzed and the absorbed-dose to water using 6- and 10-MV photon beams was measured according to the protocols recommended in Addendum TG-51, TRS-398, and JSMP12. The measurements were conducted using two Farmer-type ionization chambers, Exradin A12 and PTW 30013. Results: The beam quality conversion factors for both the 6- and 10-MV photon beams with Addendum TG-51 were within 0.6%, in agreement with the beam quality conversion factors with TRS-398 and JSMP12. The Exradin A12 provided an absorbed-dose to water ratio from 1.003 to 1.006 with TRS-398 / Addendum TG-51 and from 1.004 to 1.005 with JSMP 12 / Addendum TG-51, whereas the PTW 30013 provided a ratio of 1.001 with TRS-398 / Addendum TG-51 and a range from 0.997 to 0.999 with JSMP 12 / Addendum TG-51. Conclusion: Despite differences in the beam quality conversion factor, no major differences were seen in the absorbed-dose to water with Addendum TG-51, TRS-398, and JSMP12. However, Addendum TG-51 provides the most recent data for beam quality conversion factors based on Monte Carlo simulation and greater detail for the measurement protocol. Therefore, the absorbed-dose to water measured with Addendum TG-51 is an estimate with less uncertainty.« less

  6. SU-E-T-348: Verification MU Calculation for Conformal Radiotherapy with Multileaf Collimator Using Report AAPM TG 114

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adrada, A; Tello, Z; Medina, L

    Purpose: The purpose of this work was to develop and validate an open source independent MU dose calculation software for 3D conformal radiotherapy with multileaf high and low resolution according to the report of AAPM TG 11 Methods: Treatment plans were done using Iplan v4.5 BrainLAB TPS. A 6MV photon beam produced by Primus and Novalis linear accelerators equipped with an Optifocus MLC and HDMLC, respectively. TPS dose calculation algorithms were pencil beam and Monte Carlo. 1082 treatments plans were selected for the study. The algorithm was written in free and open source CodeBlocks C++ platform. Treatment plans were importedmore » by the software using RTP format. Equivalent size field is obtained from the positions of the leaves; the effective depth of calculation can be introduced by TPS's dosimetry report or automatically calculated starting from SSD. The inverse square law is calculated by the 3D coordinates of the isocenter and normalization point of the treatment plan. The dosimetric parameters TPR, Sc, Sp and WF are linearly interpolated. Results: 1082 plans of both machines were analyzed. The average uncertainty between the TPS and the independent calculation was −0.43% ± 2.42% [−7.90%, 7.50%]. Specifically for the Primus the variation obtained was −0.85% ± 2.53% and for the Novalis 0.00% ± 2.23%. Data show that 94.8% of the cases the uncertainty was less than or equal to 5%, while 98.9% is less than or equal to 6%. Conclusion: The developed software is appropriate for use in calculation of UM. This software can be obtained upon request.« less

  7. SU-G-201-10: Experimental Determination of Modified TG-43 Dosimetry Parameters for the Xoft Axxent® Electronic Brachytherapy Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simiele, S; Palmer, B; DeWerd, L

    Purpose: The establishment of an air kerma rate standard at NIST for the Xoft Axxent{sup ®} electronic brachytherapy source (Axxent{sup ®} source) motivated the establishment of a modified TG-43 dosimetry formalism. This work measures the modified dosimetry parameters for the Axxent{sup ®} source in the absence of a treatment applicator for implementation in Xoft’s treatment planning system. Methods: The dose-rate conversion coefficient (DRCC), radial dose function (RDF) values, and polar anisotropy (PA) were measured using TLD-100 microcubes with NIST-calibrated sources. The DRCC and RDF measurements were performed in liquid water using an annulus of Virtual Water™ designed to align themore » TLDs at the height of the anode at fixed radii from the source. The PA was measured at several distances from the source in a PMMA phantom. MCNP-determined absorbed dose energy dependence correction factors were used to convert from dose to TLD to dose to liquid water for the DRCC, RDF, and PA measurements. The intrinsic energy dependence correction factor from the work of Pike was used. The AKR was determined using a NIST-calibrated HDR1000 Plus well-type ionization chamber. Results: The DRCC was determined to be 8.6 (cGy/hr)/(µGy/min). The radial dose values were determined to be 1.00 (1cm), 0.60 (2cm), 0.42 (3cm), and 0.32 (4cm), with agreement ranging from (5.7% to 10.9%) from the work of Hiatt et al. 2015 and agreement from (2.8% to 6.8%) with internal MCNP simulations. Conclusion: This work presents a complete dataset of modified TG-43 dosimetry parameters for the Axxent{sup ®} source in the absence of an applicator. Prior to this study a DRCC had not been measured for the Axxent{sup ®} source. This data will be used for calculating dose distributions for patients receiving treatment with the Axxent{sup ®} source in Xoft’s breast balloon and vaginal applicators, and for intraoperative radiotherapy. Sources and partial funding for this work were provided

  8. Developing a Treatment Planning Software Based on TG-43U1 Formalism for Cs-137 LDR Brachytherapy.

    PubMed

    Sina, Sedigheh; Faghihi, Reza; Soleimani Meigooni, Ali; Siavashpour, Zahra; Mosleh-Shirazi, Mohammad Amin

    2013-08-01

    The old Treatment Planning Systems (TPSs) used for intracavitary brachytherapy with Cs-137 Selectron source utilize traditional dose calculation methods, considering each source as a point source. Using such methods introduces significant errors in dose estimation. As of 1995, TG-43 is used as the main dose calculation formalism in treatment TPSs. The purpose of this study is to design and establish a treatment planning software for Cs-137 Solectron brachytherapy source, based on TG-43U1 formalism by applying the effects of the applicator and dummy spacers. Two softwares used for treatment planning of Cs-137 sources in Iran (STPS and PLATO), are based on old formalisms. The purpose of this work is to establish and develop a TPS for Selectron source based on TG-43 formalism. In this planning system, the dosimetry parameters of each pellet in different places inside applicators were obtained by MCNP4c code. Then the dose distribution around every combination of active and inactive pellets was obtained by summing the doses. The accuracy of this algorithm was checked by comparing its results for special combination of active and inactive pellets with MC simulations. Finally, the uncertainty of old dose calculation formalism was investigated by comparing the results of STPS and PLATO softwares with those obtained by the new algorithm. For a typical arrangement of 10 active pellets in the applicator, the percentage difference between doses obtained by the new algorithm at 1cm distance from the tip of the applicator and those obtained by old formalisms is about 30%, while the difference between the results of MCNP and the new algorithm is less than 5%. According to the results, the old dosimetry formalisms, overestimate the dose especially towards the applicator's tip. While the TG-43U1 based software perform the calculations more accurately.

  9. Comparison of the IAEA TRS-398 and AAPM TG-51 absorbed dose to water protocols in the dosimetry of high-energy photon and electron beams

    NASA Astrophysics Data System (ADS)

    Saiful Huq, M.; Andreo, Pedro; Song, Haijun

    2001-11-01

    The International Atomic Energy Agency (IAEA TRS-398) and the American Association of Physicists in Medicine (AAPM TG-51) have published new protocols for the calibration of radiotherapy beams. These protocols are based on the use of an ionization chamber calibrated in terms of absorbed dose to water in a standards laboratory's reference quality beam. This paper compares the recommendations of the two protocols in two ways: (i) by analysing in detail the differences in the basic data included in the two protocols for photon and electron beam dosimetry and (ii) by performing measurements in clinical photon and electron beams and determining the absorbed dose to water following the recommendations of the two protocols. Measurements were made with two Farmer-type ionization chambers and three plane-parallel ionization chamber types in 6, 18 and 25 MV photon beams and 6, 8, 10, 12, 15 and 18 MeV electron beams. The Farmer-type chambers used were NE 2571 and PTW 30001, and the plane-parallel chambers were a Scanditronix-Wellhöfer NACP and Roos, and a PTW Markus chamber. For photon beams, the measured ratios TG-51/TRS-398 of absorbed dose to water Dw ranged between 0.997 and 1.001, with a mean value of 0.999. The ratios for the beam quality correction factors kQ were found to agree to within about +/-0.2% despite significant differences in the method of beam quality specification for photon beams and in the basic data entering into kQ. For electron beams, dose measurements were made using direct ND,w calibrations of cylindrical and plane-parallel chambers in a 60Co gamma-ray beam, as well as cross-calibrations of plane-parallel chambers in a high-energy electron beam. For the direct ND,w calibrations the ratios TG-51/TRS-398 of absorbed dose to water Dw were found to lie between 0.994 and 1.018 depending upon the chamber and electron beam energy used, with mean values of 0.996, 1.006, and 1.017, respectively, for the cylindrical, well-guarded and not well-guarded plane

  10. SU-D-19A-05: The Dosimetric Impact of Using Xoft Axxent® Electronic Brachytherapy Source TG-43 Dosimetry Parameters for Treatment with the Xoft 30 Mm Diameter Vaginal Applicator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simiele, S; Micka, J; Culberson, W

    2014-06-01

    Purpose: A full TG-43 dosimetric characterization has not been performed for the Xoft Axxent ® electronic brachytherapy source (Xoft, a subsidiary of iCAD, San Jose, CA) within the Xoft 30 mm diameter vaginal applicator. Currently, dose calculations are performed using the bare-source TG-43 parameters and do not account for the presence of the applicator. This work focuses on determining the difference between the bare-source and sourcein- applicator TG-43 parameters. Both the radial dose function (RDF) and polar anisotropy function (PAF) were computationally determined for the source-in-applicator and bare-source models to determine the impact of using the bare-source dosimetry data. Methods:more » MCNP5 was used to model the source and the Xoft 30 mm diameter vaginal applicator. All simulations were performed using 0.84p and 0.03e cross section libraries. All models were developed based on specifications provided by Xoft. The applicator is made of a proprietary polymer material and simulations were performed using the most conservative chemical composition. An F6 collision-kerma tally was used to determine the RDF and PAF values in water at various dwell positions. The RDF values were normalized to 2.0 cm from the source to accommodate the applicator radius. Source-in-applicator results were compared with bare-source results from this work as well as published baresource results. Results: For a 0 mm source pullback distance, the updated bare-source model and source-in-applicator RDF values differ by 2% at 3 cm and 4% at 5 cm. The largest PAF disagreements were observed at the distal end of the source and applicator with up to 17% disagreement at 2 cm and 8% at 8 cm. The bare-source model had RDF values within 2.6% of the published TG-43 data and PAF results within 7.2% at 2 cm. Conclusion: Results indicate that notable differences exist between the bare-source and source-in-applicator TG-43 simulated parameters. Xoft Inc. provided partial funding for this work.« less

  11. SU-E-J-110: TG 51 Dosimetry : With Or Without Lead

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, M

    TG-51 Dosimetry: With or Without Lead. Purpose: In this project, an analytical method has been introduced for adjustment of the TG-51 recommended KQ in order to produce accurate dosimetric data for high energy photons without the lead foil. Methods: These investigations were performed using a 30 cm × 30 cm × 30 cm CIVCO water tank, A12 EXRADIN Water proof Farmer Chamber, a Standard Imaging MAX 4000 electrometer, and 1 mm thick lead foil from Standard Imaging. Complete TG-51 was performed every month with and without lead. The results were analyzed and an analytical model has been developed for comparingmore » the values of KQ. TG-51 Table I was used to obtain KQ values. Results: The dosimetric evaluations were obtained for Varian Linear accelerators Model 21ix and 21ex. These results indicates that the measured data with lead foil in place as recommended by TG-51 is in excellent agreement (within 0.1%) with the calculated data obtained by the new model, from our dosimetry data without-lead. If equation 15 of the TG-51 report is used without any adjustments, it will lead to differences of about 1.6 % (on the average) in relative data which will Resultin differences of about 0.3 % (on the average) in the KQ Values. The KQ value for 18 MV obtained consistently with the equation of TG-51 “with lead” and “without lead” were 0.971 and 0.974, respectively. The 0.3 % higher results for KQ without lead eventually will lead to 0.3% larger output. However, by considering this model the KQ value was found to be 0.971 for dosimetry without lead. Conclusion: The analytical model that was introduced in this project was able to reproduce the dosimetric data of the high energy linear accelerators to within 0.1% without the use of the lead foil.« less

  12. TU-F-201-00: Radiochromic Film Dosimetry Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to)more » external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.« less

  13. SU-G-201-06: Directional Low-Dose Rate Brachytherapy: Determination of the TG-43 Dose-Rate Constant Analog for a New Pd-103 Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aima, M; Culberson, W; Hammer, C

    Purpose: The aim of this work is to determine the TG-43 dose-rate constant analog for a new directional low-dose rate brachytherapy source based on experimental methods and comparison to Monte Carlo simulations. The CivaSheet™ is a new commercially available planar source array comprised of a variable number of discrete directional source elements called “CivaDots”. Given the directional nature and non-conventional design of the source, modifications to the AAPM TG-43 protocol for dosimetry are required. As a result, various parameters of the TG-43 dosimetric formalism have to be adapted to accommodate this source. This work focuses on the dose-rate constant analogmore » determination for a CivaDot. Methods: Dose to water measurements of the CivaDot were performed in a polymethyl methacrylate phantom (20×20×12 cm{sup 3}) using thermoluminescent dosimeters (TLDs) and Gafchromic EBT3 film. The source was placed in the center of the phantom, and nine TLD micro-cubes were irradiated along its central axis at a distance of 1 cm. For the film measurements, the TLDs were substituted by a (3×3) cm{sup 2} EBT3 film. Primary air-kerma strength measurements of the source were performed using a variable-aperture free-air chamber. Finally, the source was modeled using the Monte Carlo N-Particle Transport Code 6. Results: Dose-rate constant analog observed for a total of eight CivaDots using TLDs and five CivaDots using EBT3 film was within ±7.0% and ±2.9% of the Monte Carlo predicted value respectively. The average difference observed was −4.8% and −0.1% with a standard deviation of 1.7% and 2.1% for the TLD and the film measurements respectively, which are both within the comparison uncertainty. Conclusion: A preliminary investigation to determine the doserate constant analog for a CivaDot was conducted successfully with good agreement between experimental and Monte Carlo based methods. This work will aid in the eventual realization of a clinically

  14. TU-F-201-01: General Aspects of Radiochromic Film Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niroomand-Rad, A.

    Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to)more » external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.« less

  15. Comparison between the TRS-398 code of practice and the TG-51 dosimetry protocol for flattening filter free beams

    NASA Astrophysics Data System (ADS)

    Lye, J. E.; Butler, D. J.; Oliver, C. P.; Alves, A.; Lehmann, J.; Gibbons, F. P.; Williams, I. M.

    2016-07-01

    Dosimetry protocols for external beam radiotherapy currently in use, such as the IAEA TRS-398 and AAPM TG-51, were written for conventional linear accelerators. In these accelerators, a flattening filter is used to produce a beam which is uniform at water depths where the ionization chamber is used to measure the absorbed dose. Recently, clinical linacs have been implemented without the flattening filter, and published theoretical analysis suggested that with these beams a dosimetric error of order 0.6% could be expected for IAEA TRS-398, because the TPR20,10 beam quality index does not accurately predict the stopping power ratio (water to air) for the softer flattening-filter-free (FFF) beam spectra. We measured doses on eleven FFF linacs at 6 MV and 10 MV using both dosimetry protocols and found average differences of 0.2% or less. The expected shift due to stopping powers was not observed. We present Monte Carlo k Q calculations which show a much smaller difference between FFF and flattened beams than originally predicted. These results are explained by the inclusion of the added backscatter plates and build-up filters used in modern clinical FFF linacs, compared to a Monte Carlo model of an FFF linac in which the flattening filter is removed and no additional build-up or backscatter plate is added.

  16. A simple modification of TG-43 based brachytherapy dosimetry with improved fitting functions: application to the selectSeed source.

    PubMed

    Juan-Senabre, Xavier J; Porras, Ignacio; Lallena, Antonio M

    2013-06-01

    A variation of TG-43 protocol for seeds with cylindrical symmetry aiming at a better description of the radial and anisotropy functions is proposed. The TG-43 two dimensional formalism is modified by introducing a new anisotropy function. Also new fitting functions that permit a more robust description of the radial and anisotropy functions than usual polynomials are studied. The relationship between the new anisotropy function and the anisotropy factor included in the one-dimensional TG-43 formalism is analyzed. The new formalism is tested for the (125)I Nucletron selectSeed brachytherapy source, using Monte Carlo simulations performed with PENELOPE. The goodness of the new parameterizations is discussed. The results obtained indicate that precise fits can be achieved, with a better description than that provided by previous parameterizations. Special care has been taken in the description and fitting of the anisotropy factor near the source. The modified formalism shows advantages with respect to the usual one in the description of the anisotropy functions. The new parameterizations obtained can be easily implemented in the clinical planning calculation systems, provided that the ratio between geometry factors is also modified according to the new dose rate expression. Copyright © 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. Optimization of permanent breast seed implant dosimetry incorporating tissue heterogeneity

    NASA Astrophysics Data System (ADS)

    Mashouf, Shahram

    Seed brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose around brachytherapy sources is based on the AAPM TG43 formalism, which generates the dose in homogeneous water medium. Recently, AAPM task group no. 186 (TG186) emphasized the importance of accounting for heterogeneities. In this work we introduce an analytical dose calculation algorithm in heterogeneous media using CT images. The advantages over other methods are computational efficiency and the ease of integration into clinical use. An Inhomogeneity Correction Factor (ICF) is introduced as the ratio of absorbed dose in tissue to that in water medium. ICF is a function of tissue properties and independent of the source structure. The ICF is extracted using CT images and the absorbed dose in tissue can then be calculated by multiplying the dose as calculated by the TG43 formalism times ICF. To evaluate the methodology, we compared our results with Monte Carlo simulations as well as experiments in phantoms with known density and atomic compositions. The dose distributions obtained through applying ICF to TG43 protocol agreed very well with those of Monte Carlo simulations and experiments in all phantoms. In all cases, the mean relative error was reduced by at least a factor of two when ICF correction factor was applied to the TG43 protocol. In conclusion we have developed a new analytical dose calculation method, which enables personalized dose calculations in heterogeneous media using CT images. The methodology offers several advantages including the use of standard TG43 formalism, fast calculation time and extraction of the ICF parameters directly from Hounsfield Units. The methodology was implemented into our clinical treatment planning system where a cohort of 140 patients were processed to study the clinical benefits of a heterogeneity corrected dose.

  18. Comparison between TG-51 and TG-21: Calibration of photon and electron beams in water using cylindrical chambers.

    PubMed

    Cho, S H; Lowenstein, J R; Balter, P A; Wells, N H; Hanson, W F

    2000-01-01

    A new calibration protocol, developed by the AAPM Task Group 51 (TG-51) to replace the TG-21 protocol, is based on an absorbed-dose to water standard and calibration factor (N(D,w)), while the TG-21 protocol is based on an exposure (or air-kerma) standard and calibration factor (N(x)). Because of differences between these standards and the two protocols, the results of clinical reference dosimetry based on TG-51 may be somewhat different from those based on TG-21. The Radiological Physics Center has conducted a systematic comparison between the two protocols, in which photon and electron beam outputs following both protocols were compared under identical conditions. Cylindrical chambers used in this study were selected from the list given in the TG-51 report, covering the majority of current manufacturers. Measured ratios between absorbed-dose and air-kerma calibration factors, derived from the standards traceable to the NIST, were compared with calculated values using the TG-21 protocol. The comparison suggests that there is roughly a 1% discrepancy between measured and calculated ratios. This discrepancy may provide a reasonable measure of possible changes between the absorbed-dose to water determined by TG-51 and that determined by TG-21 for photon beam calibrations. The typical change in a 6 MV photon beam calibration following the implementation of the TG-51 protocol was about 1%, regardless of the chamber used, and the change was somewhat smaller for an 18 MV photon beam. On the other hand, the results for 9 and 16 MeV electron beams show larger changes up to 2%, perhaps because of the updated electron stopping power data used for the TG-51 protocol, in addition to the inherent 1% discrepancy presented in the calibration factors. The results also indicate that the changes may be dependent on the electron energy.

  19. Assessment of display performance for medical imaging systems: Executive summary of AAPM TG18 report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samei, Ehsan; Badano, Aldo; Chakraborty, Dev

    Digital imaging provides an effective means to electronically acquire, archive, distribute, and view medical images. Medical imaging display stations are an integral part of these operations. Therefore, it is vitally important to assure that electronic display devices do not compromise image quality and ultimately patient care. The AAPM Task Group 18 (TG18) recently published guidelines and acceptance criteria for acceptance testing and quality control of medical display devices. This paper is an executive summary of the TG18 report. TG18 guidelines include visual, quantitative, and advanced testing methodologies for primary and secondary class display devices. The characteristics, tested in conjunction withmore » specially designed test patterns (i.e., TG18 patterns), include reflection, geometric distortion, luminance, the spatial and angular dependencies of luminance, resolution, noise, glare, chromaticity, and display artifacts. Geometric distortions are evaluated by linear measurements of the TG18-QC test pattern, which should render distortion coefficients less than 2%/5% for primary/secondary displays, respectively. Reflection measurements include specular and diffuse reflection coefficients from which the maximum allowable ambient lighting is determined such that contrast degradation due to display reflection remains below a 20% limit and the level of ambient luminance (L{sub amb}) does not unduly compromise luminance ratio (LR) and contrast at low luminance levels. Luminance evaluation relies on visual assessment of low contrast features in the TG18-CT and TG18-MP test patterns, or quantitative measurements at 18 distinct luminance levels of the TG18-LN test patterns. The major acceptable criteria for primary/secondary displays are maximum luminance of greater than 170/100 cd/m{sup 2}, LR of greater than 250/100, and contrast conformance to that of the grayscale standard display function (GSDF) of better than 10%/20%, respectively. The angular response

  20. A round-robin gamma stereotactic radiosurgery dosimetry interinstitution comparison of calibration protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drzymala, R. E., E-mail: drzymala@wustl.edu; Alvarez, P. E.; Bednarz, G.

    2015-11-15

    Purpose: Absorbed dose calibration for gamma stereotactic radiosurgery is challenging due to the unique geometric conditions, dosimetry characteristics, and nonstandard field size of these devices. Members of the American Association of Physicists in Medicine (AAPM) Task Group 178 on Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance have participated in a round-robin exchange of calibrated measurement instrumentation and phantoms exploring two approved and two proposed calibration protocols or formalisms on ten gamma radiosurgery units. The objectives of this study were to benchmark and compare new formalisms to existing calibration methods, while maintaining traceability to U.S. primary dosimetry calibration laboratory standards. Methods:more » Nine institutions made measurements using ten gamma stereotactic radiosurgery units in three different 160 mm diameter spherical phantoms [acrylonitrile butadiene styrene (ABS) plastic, Solid Water, and liquid water] and in air using a positioning jig. Two calibrated miniature ionization chambers and one calibrated electrometer were circulated for all measurements. Reference dose-rates at the phantom center were determined using the well-established AAPM TG-21 or TG-51 dose calibration protocols and using two proposed dose calibration protocols/formalisms: an in-air protocol and a formalism proposed by the International Atomic Energy Agency (IAEA) working group for small and nonstandard radiation fields. Each institution’s results were normalized to the dose-rate determined at that institution using the TG-21 protocol in the ABS phantom. Results: Percentages of dose-rates within 1.5% of the reference dose-rate (TG-21 + ABS phantom) for the eight chamber-protocol-phantom combinations were the following: 88% for TG-21, 70% for TG-51, 93% for the new IAEA nonstandard-field formalism, and 65% for the new in-air protocol. Averages and standard deviations for dose-rates over all measurements relative to the TG

  1. Monte Carlo Determination of Dosimetric Parameters of a New (125)I Brachytherapy Source According to AAPM TG-43 (U1) Protocol.

    PubMed

    Baghani, Hamid Reza; Lohrabian, Vahid; Aghamiri, Mahmoud Reza; Robatjazi, Mostafa

    2016-03-01

    (125)I is one of the important sources frequently used in brachytherapy. Up to now, several different commercial models of this source type have been introduced to the clinical radiation oncology applications. Recently, a new source model, IrSeed-125, has been added to this list. The aim of the present study is to determine the dosimetric parameters of this new source model based on the recommendations of TG-43 (U1) protocol using Monte Carlo simulation. The dosimetric characteristics of Ir-125 including dose rate constant, radial dose function, 2D anisotropy function and 1D anisotropy function were determined inside liquid water using MCNPX code and compared to those of other commercially available iodine sources. The dose rate constant of this new source was found to be 0.983+0.015 cGyh-1U-1 that was in good agreement with the TLD measured data (0.965 cGyh-1U-1). The 1D anisotropy function at 3, 5, and 7 cm radial distances were obtained as 0.954, 0.953 and 0.959, respectively. The results of this study showed that the dosimetric characteristics of this new brachytherapy source are comparable with those of other commercially available sources. Furthermore, the simulated parameters were in accordance with the previously measured ones. Therefore, the Monte Carlo calculated dosimetric parameters could be employed to obtain the dose distribution around this new brachytherapy source based on TG-43 (U1) protocol.

  2. A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: Report of AAPM Task Group No. 138 and GEC-ESTRO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.

    2011-02-15

    This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinicmore » for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Europeen de Curietherapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be

  3. A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: Report of AAPM Task Group No. 138 and GEC-ESTRO

    PubMed Central

    DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Mitch, Michael G.; Rivard, Mark J.; Stump, Kurt E.; Thomadsen, Bruce R.; Venselaar, Jack L. M.

    2011-01-01

    This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie–European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used

  4. A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: report of AAPM Task Group No. 138 and GEC-ESTRO.

    PubMed

    DeWerd, Larry A; Ibbott, Geoffrey S; Meigooni, Ali S; Mitch, Michael G; Rivard, Mark J; Stump, Kurt E; Thomadsen, Bruce R; Venselaar, Jack L M

    2011-02-01

    This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as

  5. TU-G-BRD-04: A Round Robin Dosimetry Intercomparison of Gamma Stereotactic Radiosurgery Calibration Protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drzymala, R; Alvarez, P; Bednarz, G

    2015-06-15

    Purpose: The purpose of this multi-institutional study was to compare two new gamma stereotactic radiosurgery (GSRS) dosimetry protocols to existing calibration methods. The ultimate goal was to guide AAPM Task Group 178 in recommending a standard GSRS dosimetry protocol. Methods: Nine centers (ten GSRS units) participated in the study. Each institution made eight sets of dose rate measurements: six with two different ionization chambers in three different 160mm-diameter spherical phantoms (ABS plastic, Solid Water and liquid water), and two using the same ionization chambers with a custom in-air positioning jig. Absolute dose rates were calculated using a newly proposed formalismmore » by the IAEA working group for small and non-standard radiation fields and with a new air-kerma based protocol. The new IAEA protocol requires an in-water ionization chamber calibration and uses previously reported Monte-Carlo generated factors to account for the material composition of the phantom, the type of ionization chamber, and the unique GSRS beam configuration. Results obtained with the new dose calibration protocols were compared to dose rates determined by the AAPM TG-21 and TG-51 protocols, with TG-21 considered as the standard. Results: Averaged over all institutions, ionization chambers and phantoms, the mean dose rate determined with the new IAEA protocol relative to that determined with TG-21 in the ABS phantom was 1.000 with a standard deviation of 0.008. For TG-51, the average ratio was 0.991 with a standard deviation of 0.013, and for the new in-air formalism it was 1.008 with a standard deviation of 0.012. Conclusion: Average results with both of the new protocols agreed with TG-21 to within one standard deviation. TG-51, which does not take into account the unique GSRS beam configuration or phantom material, was not expected to perform as well as the new protocols. The new IAEA protocol showed remarkably good agreement with TG-21. Conflict of Interests: Paula

  6. Sci-Sat AM(2): Brachy-05: Dosimetry effects of the TG-43 approximations for two iodine seeds in LDR brachytherapy.

    PubMed

    Furstoss, C; Bertrand, M J; Poon, E; Reniers, B; Pignol, J P; Carrier, J F; Beaulieu, L; Verhaegen, F

    2008-07-01

    This work consists of studying the interseed and tissue composition effects for two model iodine seeds: the IBt Interseed-125 and the 6711 model seed. Three seeds were modeled with the MCNP MC code in a water sphere to evaluate the interseed effect. The dose calculated at different distances from the centre was compared to the dose summed when the seeds were simulated separately. The tissue composition effect was studied calculating the radial dose function for different tissues. Before carrying out post-implant studies, the absolute dose calculated by MC was compared to experiment results: with LiF TLDs in an acrylic breast phantom and with an EBT Gafchromic film placed in a water tank. Afterwards, the TG-43 approximation effects were studied for a prostate and breast post-implant. The interseed effect study shows that this effect is more important for model 6711 (15%) than for IBt (10%) due to the silver rod in 6711. For both seed models the variations of the radial dose function as a function of the tissue composition are quasi similar. The absolute dose comparisons between MC calculations and experiments give good agreement (inferior to 3% in general). For the prostate and breast post-implant studies, a 10% difference between MC calculations and the TG-43 is found for both models of seeds. This study shows that the differences in dose distributions between TG43 and MC are quite similar for the two models of seeds and are about 10% for the studied post-implant treatments. © 2008 American Association of Physicists in Medicine.

  7. NOTE: Calibration of low-energy electron beams from a mobile linear accelerator with plane-parallel chambers using both TG-51 and TG-21 protocols

    NASA Astrophysics Data System (ADS)

    Beddar, A. S.; Tailor, R. C.

    2004-04-01

    A new approach to intraoperative radiation therapy led to the development of mobile linear electron accelerators that provide lower electron energy beams than the usual conventional accelerators commonly encountered in radiotherapy. Such mobile electron accelerators produce electron beams that have nominal energies of 4, 6, 9 and 12 MeV. This work compares the absorbed dose output calibrations using both the AAPM TG-51 and TG-21 dose calibration protocols for two types of ion chambers: a plane-parallel (PP) ionization chamber and a cylindrical ionization chamber. Our results indicate that the use of a 'Markus' PP chamber causes 2 3% overestimation in dose output determination if accredited dosimetry-calibration laboratory based chamber factors \\big(N_{{\\rm D},{\\rm w}}^{{}^{60}{\\rm Co}}, N_x\\big) are used. However, if the ionization chamber factors are derived using a cross-comparison at a high-energy electron beam, then a good agreement is obtained (within 1%) with a calibrated cylindrical chamber over the entire energy range down to 4 MeV. Furthermore, even though the TG-51 does not recommend using cylindrical chambers at the low energies, our results show that the cylindrical chamber has a good agreement with the PP chamber not only at 6 MeV but also down to 4 MeV electron beams.

  8. ALGEBRA: ALgorithm for the heterogeneous dosimetry based on GEANT4 for BRAchytherapy.

    PubMed

    Afsharpour, H; Landry, G; D'Amours, M; Enger, S; Reniers, B; Poon, E; Carrier, J-F; Verhaegen, F; Beaulieu, L

    2012-06-07

    Task group 43 (TG43)-based dosimetry algorithms are efficient for brachytherapy dose calculation in water. However, human tissues have chemical compositions and densities different than water. Moreover, the mutual shielding effect of seeds on each other (interseed attenuation) is neglected in the TG43-based dosimetry platforms. The scientific community has expressed the need for an accurate dosimetry platform in brachytherapy. The purpose of this paper is to present ALGEBRA, a Monte Carlo platform for dosimetry in brachytherapy which is sufficiently fast and accurate for clinical and research purposes. ALGEBRA is based on the GEANT4 Monte Carlo code and is capable of handling the DICOM RT standard to recreate a virtual model of the treated site. Here, the performance of ALGEBRA is presented for the special case of LDR brachytherapy in permanent prostate and breast seed implants. However, the algorithm is also capable of handling other treatments such as HDR brachytherapy.

  9. Dose comparison between CTDI and the AAPM Report No. 111 methodology in adult, adolescent, and child head phantom

    NASA Astrophysics Data System (ADS)

    Li, Celina L.; Thakur, Yogesh; Ford, Nancy L.

    2017-03-01

    The standard computed tomography dose index (CTDI) metric tends to underestimate scatter radiation in cone beam computed tomography (CBCT) acquisition; therefore, the American Association of Physicists in Medicine (AAPM) Task Group 111 proposed a new dosimetry methodology to measure equilibrium dose at the center of a phantom (z = 0) using a 2-cm thimble ionization chamber. In this study, we implement the CTDI and the AAPM method with a thimble chamber on adult, adolescent, and child head phantoms using the Toshiba Aquilion One CBCT and compare the results to the CTDI measured with a 10-cm pencil chamber. Following the AAPM protocol, the normalized (100 mAs) equilibrium doses (Deq) computed using dose measurements taken in the central hole of the phantom (Deq,c), the peripheral hole of the phantom, (Deq,p), and by the CTDIw equation (Deq,w) are 20.13 +/- 0.19, 21.53 +/- 0.48, and 20.93 +/- 0.40 mGy for adult; 21.55 +/- 0.40, 21.14 +/- 0.43, and 21.08 +/- 0.45 mGy for adolescent; and 24.58 +/- 0.40, 24.92 +/- 0.85, and 24.77 +/- 0.72 mGy for child, respectively. The CTDIw, which measured 17.70, 19.86, and 22.43 mGy for adult, adolescent and child respectively, is about 10% lower than their corresponding Deq's. The extended AAPM method proposed by Deman et al., which estimates the dose profile along the rotational axis (z axis), has demonstrated consistency between theoretical and experimental results for all phantoms. With the introduction of the child and the adolescent head phantoms, we not only have emphasized the practical aspects including relative convenience of the CTDI method and accuracy of the AAPM method, but also proposed a method to approximate Deq for different sized patients.

  10. TH-A-BRC-00: New Task Groups for External Beam QA: An Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2016-06-15

    AAPM TG-135U1 QA for Robotic Radiosurgery - Sonja Dieterich Since the publication of AAPM TG-135 in 2011, the technology of robotic radiosurgery has rapidly developed. AAPM TG-135U1 will provide recommendations on the clinical practice for using the IRIS collimator, fiducial-less real-time motion tracking, and Monte Carlo based treatment planning. In addition, it will summarize currently available literature about uncertainties. Learning Objectives: Understand the progression of technology since the first TG publication Learn which new QA procedures should be implemented for new technologies Be familiar with updates to clinical practice guidelines AAPM TG-178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance -more » Steven Goetsch Purpose: AAPM Task Group 178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance was formed in August, 2008. The Task Group has 12 medical physicists, two physicians and two consultants. Methods: A round robin dosimetry intercomparison of proposed ionization chambers, electrometer and dosimetry phantoms was conducted over a 15 month period in 2011 and 2012 (Med Phys 42, 11, Nov, 2015). The data obtained at 9 institutions (with ten different Elekta Gamma Knife units) was analyzed by the lead author using several protocols. Results: The most consistent results were obtained using the Elekta ABS 16cm diameter phantom, with the TG-51 protocol modified as recommended by Alfonso et al (Med Phys 35, 11, Nov 2008). A key white paper (Med Phys, in press) sponsored by Elekta Corporation, was used to obtain correction factors for the ionization chambers and phantoms used in this intercomparison. Consistent results were obtained for both Elekta Gamma Knife Model 4C and Gamma Knife Perfexion units as measured with each of two miniature ionization chambers. Conclusion: The full report gives clinical history and background of gamma stereotactic radiosurgery, clinical examples and history, quality assurance recommendations and

  11. SU-F-T-248: FMEA Risk Analysis Implementation (AAPM TG-100) in Total Skin Electron Irradiation Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibanez-Rosello, B; Bautista-Ballesteros, J; Bonaque, J

    2016-06-15

    Purpose: Total Skin Electron Irradiation (TSEI) is a radiotherapy treatment which involves irradiating the entire body surface as homogeneously as possible. It is composed of an extensive multi-step technique in which quality management requires high consumption of resources and a fluid communication between the involved staff, necessary to improve the safety of treatment. The TG-100 proposes a new perspective of quality management in radiotherapy, presenting a systematic method of risk analysis throughout the global flow of the stages through the patient. The purpose of this work has been to apply TG-100 approach to the TSEI procedure in our institution. Methods:more » A multidisciplinary team specifically targeting TSEI procedure was formed, that met regularly and jointly developed the process map (PM), following TG-100 guidelines of the AAPM. This PM is a visual representation of the temporal flow of steps through the patient since start until the end of his stay in the radiotherapy service. Results: This is the first stage of the full risk analysis, which is being carried out in the center. The PM provides an overview of the process and facilitates the understanding of the team members who will participate in the subsequent analysis. Currently, the team is implementing the analysis of failure modes and effects (FMEA). The failure modes of each of the steps have been identified and assessors are assigning a value of severity (S), frequency of occurrence (O) and lack of detection (D) individually. To our knowledge, this is the first PM made for the TSEI. The developed PM can be useful for those centers that intend to implement the TSEI technique. Conclusion: The PM of TSEI technique has been established, as the first stage of full risk analysis, performed in a reference center in this treatment.« less

  12. Monte Carlo calculated TG-60 dosimetry parameters for the {beta}{sup -} emitter {sup 153}Sm brachytherapy source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadeghi, Mahdi; Taghdiri, Fatemeh; Hamed Hosseini, S.

    Purpose: The formalism recommended by Task Group 60 (TG-60) of the American Association of Physicists in Medicine (AAPM) is applicable for {beta} sources. Radioactive biocompatible and biodegradable {sup 153}Sm glass seed without encapsulation is a {beta}{sup -} emitter radionuclide with a short half-life and delivers a high dose rate to the tumor in the millimeter range. This study presents the results of Monte Carlo calculations of the dosimetric parameters for the {sup 153}Sm brachytherapy source. Methods: Version 5 of the (MCNP) Monte Carlo radiation transport code was used to calculate two-dimensional dose distributions around the source. The dosimetric parameters ofmore » AAPM TG-60 recommendations including the reference dose rate, the radial dose function, the anisotropy function, and the one-dimensional anisotropy function were obtained. Results: The dose rate value at the reference point was estimated to be 9.21{+-}0.6 cGy h{sup -1} {mu}Ci{sup -1}. Due to the low energy beta emitted from {sup 153}Sm sources, the dose fall-off profile is sharper than the other beta emitter sources. The calculated dosimetric parameters in this study are compared to several beta and photon emitting seeds. Conclusions: The results show the advantage of the {sup 153}Sm source in comparison with the other sources because of the rapid dose fall-off of beta ray and high dose rate at the short distances of the seed. The results would be helpful in the development of the radioactive implants using {sup 153}Sm seeds for the brachytherapy treatment.« less

  13. Evaluation of cassette-based digital radiography detectors using standardized image quality metrics: AAPM TG-150 Draft Image Detector Tests.

    PubMed

    Li, Guang; Greene, Travis C; Nishino, Thomas K; Willis, Charles E

    2016-09-08

    The purpose of this study was to evaluate several of the standardized image quality metrics proposed by the American Association of Physics in Medicine (AAPM) Task Group 150. The task group suggested region-of-interest (ROI)-based techniques to measure nonuniformity, minimum signal-to-noise ratio (SNR), number of anomalous pixels, and modulation transfer function (MTF). This study evaluated the effects of ROI size and layout on the image metrics by using four different ROI sets, assessed result uncertainty by repeating measurements, and compared results with two commercially available quality control tools, namely the Carestream DIRECTVIEW Total Quality Tool (TQT) and the GE Healthcare Quality Assurance Process (QAP). Seven Carestream DRX-1C (CsI) detectors on mobile DR systems and four GE FlashPad detectors in radiographic rooms were tested. Images were analyzed using MATLAB software that had been previously validated and reported. Our values for signal and SNR nonuniformity and MTF agree with values published by other investigators. Our results show that ROI size affects nonuniformity and minimum SNR measurements, but not detection of anomalous pixels. Exposure geometry affects all tested image metrics except for the MTF. TG-150 metrics in general agree with the TQT, but agree with the QAP only for local and global signal nonuniformity. The difference in SNR nonuniformity and MTF values between the TG-150 and QAP may be explained by differences in the calculation of noise and acquisition beam quality, respectively. TG-150's SNR nonuniformity metrics are also more sensitive to detector nonuniformity compared to the QAP. Our results suggest that fixed ROI size should be used for consistency because nonuniformity metrics depend on ROI size. Ideally, detector tests should be performed at the exact calibration position. If not feasible, a baseline should be established from the mean of several repeated measurements. Our study indicates that the TG-150 tests can be

  14. Poster - 19: Investigation of Electron Reference Dosimetry Based on Optimal Chamber Shift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Lixin; Jiang, Runqing; Liu, Baochang

    An addendum/revision to AAPM TG-51 electron reference dosimetry is highly expected to meet the clinical requirement with the increasing usage of new ion chambers not covered in TG-51. A recent study, Med. Phys. 41, 111701, proposed a new fitting equation for the beam quality conversion factor k’{sub Q} to a wide spectrum of chambers. In the study, an optimal Effective Point of Measurement (EPOM) from Monte Carlo calculations was recommended and the fitting parameters to k’{sub Q} was based on it. We investigated the absolute dose obtained based on the optimal EPOM method and the original TG-51 method with k’{submore » R50} determined differently. The results showed that using the Markus curve is a better choice than the well-guarded chamber fitting for an IBA PPC-05 parallel plate chamber if we need to strictly follow the AAPM TG-51 protocol. We also examined the usage of the new fitting equation with measurement performed at the physical EPOM, instead of the optimal EPOM. The former is more readily determined and more practical in clinics. Our study indicated that the k’{sub Q} fitting based on the optimal EPOM can be used to measurement at the physical EPOM with no significant clinical impact. The inclusion of Farmer chamber gradient correction P{sub gr} in k’{sub Q}, as in the mentioned study, asks for the precise positioning of chamber center at dref. It is not recommended in clinics to avoid over-correction for low electron energies, especially for an institute having matching Linacs implemented.« less

  15. Limitations of current dosimetry for intracavitary accelerated partial breast irradiation with high dose rate iridium-192 and electronic brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Raffi, Julie A.

    Intracavitary accelerated partial breast irradiation (APBI) is a method of treating early stage breast cancer using a high dose rate (HDR) brachytherapy source positioned within the lumpectomy cavity. An expandable applicator stretches the surrounding tissue into a roughly spherical or elliptical shape and the dose is prescribed to 1 cm beyond the edge of the cavity. Currently, dosimetry for these treatments is most often performed using the American Association of Physicists in Medicine Task Group No. 43 (TG-43) formalism. The TG-43 dose-rate equation determines the dose delivered to a homogeneous water medium by scaling the measured source strength with standardized parameters that describe the radial and angular features of the dose distribution. Since TG-43 parameters for each source model are measured or calculated in a homogeneous water medium, the dosimetric effects of the patient's dimensions and composition are not accounted for. Therefore, the accuracy of TG-43 calculations for intracavitary APBI is limited by the presence of inhomogeneities in and around the target volume. Specifically, the breast is smaller than the phantoms used to determine TG-43 parameters and is surrounded by air, ribs, and lung tissue. Also, the composition of the breast tissue itself can affect the dose distribution. This dissertation is focused on investigating the limitations of TG-43 dosimetry for intracavitary APBI for two HDR brachytherapy sources: the VariSource TM VS2000 192Ir source and the AxxentRTM miniature x-ray source. The dose for various conditions was determined using thermoluminescent dosimeters (TLDs) and Monte Carlo (MC) calculations. Accurate measurements and calculations were achieved through the implementation of new measurement and simulation techniques and a novel breast phantom was developed to enable anthropomorphic phantom measurements. Measured and calculated doses for phantom and patient geometries were compared with TG-43 calculated doses to

  16. SU-E-I-20: Comprehensive Quality Assurance Test of Second Generation Toshiba Aquilion Large Bore CT Simulator Based On AAPM TG-66 Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, D

    2015-06-15

    Purpose: AAPM radiation therapy committee task group No. 66 (TG-66) published a report which described a general approach to CT simulator QA. The report outlines the testing procedures and specifications for the evaluation of patient dose, radiation safety, electromechanical components, and image quality for a CT simulator. The purpose of this study is to thoroughly evaluate the performance of a second generation Toshiba Aquilion Large Bore CT simulator with 90 cm bore size (Toshiba, Nasu, JP) based on the TG-66 criteria. The testing procedures and results from this study provide baselines for a routine QA program. Methods: Different measurements andmore » analysis were performed including CTDIvol measurements, alignment and orientation of gantry lasers, orientation of the tabletop with respect to the imaging plane, table movement and indexing accuracy, Scanogram location accuracy, high contrast spatial resolution, low contrast resolution, field uniformity, CT number accuracy, mA linearity and mA reproducibility using a number of different phantoms and measuring devices, such as CTDI phantom, ACR image quality phantom, TG-66 laser QA phantom, pencil ion chamber (Fluke Victoreen) and electrometer (RTI Solidose 400). Results: The CTDI measurements were within 20% of the console displayed values. The alignment and orientation for both gantry laser and tabletop, as well as the table movement and indexing and scanogram location accuracy were within 2mm as specified in TG66. The spatial resolution, low contrast resolution, field uniformity and CT number accuracy were all within ACR’s recommended limits. The mA linearity and reproducibility were both well below the TG66 threshold. Conclusion: The 90 cm bore size second generation Toshiba Aquilion Large Bore CT simulator that comes with 70 cm true FOV can consistently meet various clinical needs. The results demonstrated that this simulator complies with the TG-66 protocol in all aspects including electromechanical

  17. A survey of physics and dosimetry practice of permanent prostate brachytherapy in the United States.

    PubMed

    Prete, J J; Prestidge, B R; Bice, W S; Friedland, J L; Stock, R G; Grimm, P D

    1998-03-01

    To obtain data with regard to current physics and dosimetry practice in transperineal interstitial permanent prostate brachytherapy (TIPPB) in the U.S. by conducting a survey of institutions performing this procedure with the greatest frequency. Seventy brachytherapists with the greatest volume of TIPPB cases in 1995 in the U.S. were surveyed. The four-page comprehensive questionnaire included questions on both clinical and physics and dosimetry practice. Individuals not responding initially were sent additional mailings and telephoned. Physics and dosimetry practice summary statistics are reported. Clinical practice data is reported separately. Thirty-five (50%) surveys were returned. Participants included 29 (83%) from the private sector and 6 (17%) from academic programs. Among responding clinicians, 125I (89%) is used with greater frequency than 103Pd (83%). Many use both (71%). Most brachytherapists perform preplans (86%), predominately employing ultrasound imaging (85%). Commercial treatment planning systems are used more frequently (75%) than in-house systems (25%). Preplans take 2.5 h (avg.) to perform and are most commonly performed by a physicist (69%). A wide range of apparent activities (mCi) is used for both 125I (0.16-1.00, avg. 0.41) and 103Pd (0.50-1.90, avg. 1.32). Of those assaying sources (71%), the range in number assayed (1 to all) and maximum accepted difference from vendor stated activity (2-20%) varies greatly. Most respondents feel that the manufacturers criteria for source activity are sufficiently stringent (88%); however, some report that vendors do not always meet their criteria (44%). Most postimplant dosimetry imaging occurs on day 1 (41%) and consists of conventional x-rays (83%), CT (63%), or both (46%). Postimplant dosimetry is usually performed by a physicist (72%), taking 2 h (avg.) to complete. Calculational formalisms and parameters vary substantially. At the time of the survey, few institutions have adopted AAPM TG-43

  18. TU-D-201-02: Medical Physics Practices for Plan and Chart Review: Results of AAPM Task Group 275 Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fong de los Santos, L; Dong, L; Greener, A

    Purpose: AAPM Task Group (TG) 275 is charged with developing riskbased guidelines for plan and chart review clinical processes. As part of this work an AAPM-wide survey was conducted to gauge current practices. Methods: The survey consisted of 103 multiple-choice questions covering the following review processes for external beam including protons: 1) Initial Plan Check, 2) On-Treatment and 3) End-of-Treatment Chart Check. The survey was designed and validated by TG members with the goal of providing an efficient and easy response process. The survey, developed and deployed with the support of AAPM headquarters, was released to all AAPM members whomore » have self-reported as working in the radiation oncology field and it was kept open for 7 weeks. Results: There are an estimated 4700 eligible participants. At the time of writing, 962 completed surveys have been collected with an average completion time of 24 minutes. Participants are mainly from community hospitals (40%), academicaffiliated hospitals (31%) and free-standing clinics (18%). Among many other metrics covered on the survey, results so far indicate that manual review is an important component on the plan and chart review process (>90%) and that written procedures and checklists are widely used (>60%). However, the details of what is reviewed or checked are fairly heterogeneous among the sampled medical physics community. Conclusion: The data gathered from the survey gauging current practices will be used by TG 275 to develop benchmarks and recommendations for the type and extent of checks to perform effective physics plan and chart review processes.« less

  19. Antiangiogenic effects of AA-PMe on HUVECs in vitro and zebrafish in vivo

    PubMed Central

    Xiao, Qi; Zhou, Yachun; Wei, Yingjie; Gong, Zhunan

    2018-01-01

    Angiogenesis plays a vital role in many physiological and pathological processes and several diseases are connected with its dysregulation. Asiatic acid (AA) has demonstrated anticancer properties and we suspect this might be attributable to an effect on angio-genesis. A modified derivative of AA, N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-L-proline methyl ester (AA-PMe), has improved efficacy over its parent compound, but its effect on blood vessel development remains unclear. Methods In this study, we investigated the antiangiogenic activity of AA and AA-PMe in zebrafish embryos and human umbilical vein endothelial cells (HUVECs). First of all, we treated HUVECs with increasing concentrations of AA-PMe or AA, with or without vascular endothelial growth factor (VEGF) present, and assessed cell viability, tube formation, and cell migration and invasion. Quantitative real-time polymerase chain reaction and Western blot analysis were later used to determine the role of vascular endothelial growth factor receptor 2 (VEGFR2)-mediated signaling in AA-PMe inhibition of angiogenesis. We extended these studies to follow angiogenesis using Tg(fli:EGFP) transgenic zebrafish embryos. For these experiments, embryos were treated with varying concentrations of AA-PMe or AA from 24 to 72 hours postfertilization prior to morphological observation, angiogenesis assessment, and endogenous alkaline phosphatase assay. VEGFR2 expression in whole embryos following AA-PMe treatment was also determined. Results We found AA-PMe decreased cell viability and inhibited migration and tube formation in a dose-dependent manner in HUVECs. Similarly, AA-PMe disrupted the formation of intersegmental vessels, the dorsal aorta, and the posterior cardinal vein in zebrafish embryos. Both in vitro and in vivo AA-PMe surpassed AA in its ability to block angiogenesis by suppressing VEGF-induced phosphorylation of VEGFR2 and disrupting downstream extracellular regulated protein kinase and AKT signaling

  20. Antiangiogenic effects of AA-PMe on HUVECs in vitro and zebrafish in vivo.

    PubMed

    Jing, Yue; Wang, Gang; Xiao, Qi; Zhou, Yachun; Wei, Yingjie; Gong, Zhunan

    2018-01-01

    Angiogenesis plays a vital role in many physiological and pathological processes and several diseases are connected with its dysregulation. Asiatic acid (AA) has demonstrated anticancer properties and we suspect this might be attributable to an effect on angio-genesis. A modified derivative of AA, N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-L-proline methyl ester (AA-PMe), has improved efficacy over its parent compound, but its effect on blood vessel development remains unclear. In this study, we investigated the antiangiogenic activity of AA and AA-PMe in zebrafish embryos and human umbilical vein endothelial cells (HUVECs). First of all, we treated HUVECs with increasing concentrations of AA-PMe or AA, with or without vascular endothelial growth factor (VEGF) present, and assessed cell viability, tube formation, and cell migration and invasion. Quantitative real-time polymerase chain reaction and Western blot analysis were later used to determine the role of vascular endothelial growth factor receptor 2 (VEGFR2)-mediated signaling in AA-PMe inhibition of angiogenesis. We extended these studies to follow angiogenesis using Tg(fli:EGFP) transgenic zebrafish embryos. For these experiments, embryos were treated with varying concentrations of AA-PMe or AA from 24 to 72 hours postfertilization prior to morphological observation, angiogenesis assessment, and endogenous alkaline phosphatase assay. VEGFR2 expression in whole embryos following AA-PMe treatment was also determined. We found AA-PMe decreased cell viability and inhibited migration and tube formation in a dose-dependent manner in HUVECs. Similarly, AA-PMe disrupted the formation of intersegmental vessels, the dorsal aorta, and the posterior cardinal vein in zebrafish embryos. Both in vitro and in vivo AA-PMe surpassed AA in its ability to block angiogenesis by suppressing VEGF-induced phosphorylation of VEGFR2 and disrupting downstream extracellular regulated protein kinase and AKT signaling. For the first time

  1. SU-F-T-22: Clinical Implications When Using TG-186 (ACE) Heterogeneity Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Likhacheva, A; Grade, E; Sadeghi, A

    Purpose: The purpose of this study is to compare dosimetric calculations using traditional TG-43 formalism and Oncentra Brachy Advanced Collapsed cone Engine (ACE) TG-186 calculation algorithm in clinical setting. Methods: We analyzed dosimetry of four patients treated with accelerated partial breast irradiation using a multi-channel intracavitary device (SAVI). All patients were treated to 34 Gy in 10 fractions using a high-dose-rate (192) Ir source. The plans were designed and treated using the TG-43 model. ACE was used to assess the effect heterogeneity correction on various dosimetric parameters. Mass density was estimated using Hounsfield units. Results: Compared to TG-43 formalism, ACEmore » estimated lower doses to targets and organs at risk. The mean difference was 19.8% (range 15.3–24.1%) for PTV-eval V200, 12.0% (range 9.7–17.7%) for PTV-eval V150, 4.3% (range 3.3–6.5%) for PTV-eval D95, 3.3% (range 1.4–5.4%) for PTV-eval D90, 5.4% (range 2.9–9.9%) for maximum rib dose, and 5.7% (2.4–7.4%) for maximum skin dose. There was no correlation between the magnitude of the difference and the PTV-eval volume, air volume, or tissue-applicator conformance. Conclusion: Based on our preliminary study, the TG-43 algorithm appears to overestimate the dose to targets and organs at risk when compared to the ACE TG-186 software. We hypothesize that air adjacent to the SAVI struts contributes to lack of scatter thereby contributing a significant difference in dose calculation when using ACE. We believe that ACE calculation provides a more realistic isodose distribution than TG-43. We plan to further investigate the impact of heterogeneity correction on brachytherapy planning for a wide variety of clinical scenarios, include skin, cervix/uterus, prostate, and lung.« less

  2. TH-EF-204-00: AAPM-AMPR (Russia)-SEFM (Spain) Joint Course On Challenges and Advantages of Small Field Radiation Treatment Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Joanna E. Cygler, Jan Seuntjens, J. Daniel Bourland, M. Saiful Huq, Josep Puxeu Vaque, Daniel Zucca Aparicio, Tatiana Krylova, Yuri Kirpichev, Eric Ford, Caridad Borras Stereotactic Radiation Therapy (SRT) utilizes small static and dynamic (IMRT) fields, to successfully treat malignant and benign diseases using techniques such as Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT). SRT is characterized by sharp dose gradients for individual fields and their resultant dose distributions. For appropriate targets, small field radiotherapy offers improved treatment quality by allowing better sparing of organs at risk while delivering the prescribed target dose. Specialized small field treatment deliverymore » systems, such as robotic-controlled linear accelerators, gamma radiosurgery units, and dynamic arc linear accelerators may utilize rigid fixation, image guidance, and tumor tracking, to insure precise dose delivery to static or moving targets. However, in addition to great advantages, small field delivery techniques present special technical challenges for dose calibration due to unique geometries and small field sizes not covered by existing reference dosimetry protocols such as AAPM TG-51 or IAEA TRS 398. In recent years extensive research has been performed to understand small field dosimetry and measurement instrumentation. AAPM, IAEA and ICRU task groups are expected to provide soon recommendations on the dosimetry of small radiation fields. In this symposium we will: 1] discuss the physics, instrumentation, methodologies and challenges for small field radiation dose measurements; 2] review IAEA and ICRU recommendations on prescribing, recording and reporting of small field radiation therapy; 3] discuss selected clinical applications and technical aspects for specialized image-guided, small field, linear accelerator based treatment techniques such as IMRT and SBRT. Learning Objectives: To learn the physics of small fields in

  3. SU-E-T-212: Comparison of TG-43 Dosimetric Parameters of Low and High Energy Brachytherapy Sources Obtained by MCNP Code Versions of 4C, X and 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zehtabian, M; Zaker, N; Sina, S

    2015-06-15

    Purpose: Different versions of MCNP code are widely used for dosimetry purposes. The purpose of this study is to compare different versions of the MCNP codes in dosimetric evaluation of different brachytherapy sources. Methods: The TG-43 parameters such as dose rate constant, radial dose function, and anisotropy function of different brachytherapy sources, i.e. Pd-103, I-125, Ir-192, and Cs-137 were calculated in water phantom. The results obtained by three versions of Monte Carlo codes (MCNP4C, MCNPX, MCNP5) were compared for low and high energy brachytherapy sources. Then the cross section library of MCNP4C code was changed to ENDF/B-VI release 8 whichmore » is used in MCNP5 and MCNPX codes. Finally, the TG-43 parameters obtained using the MCNP4C-revised code, were compared with other codes. Results: The results of these investigations indicate that for high energy sources, the differences in TG-43 parameters between the codes are less than 1% for Ir-192 and less than 0.5% for Cs-137. However for low energy sources like I-125 and Pd-103, large discrepancies are observed in the g(r) values obtained by MCNP4C and the two other codes. The differences between g(r) values calculated using MCNP4C and MCNP5 at the distance of 6cm were found to be about 17% and 28% for I-125 and Pd-103 respectively. The results obtained with MCNP4C-revised and MCNPX were similar. However, the maximum difference between the results obtained with the MCNP5 and MCNP4C-revised codes was 2% at 6cm. Conclusion: The results indicate that using MCNP4C code for dosimetry of low energy brachytherapy sources can cause large errors in the results. Therefore it is recommended not to use this code for low energy sources, unless its cross section library is changed. Since the results obtained with MCNP4C-revised and MCNPX were similar, it is concluded that the difference between MCNP4C and MCNPX is their cross section libraries.« less

  4. SU-E-T-87: A TG-100 Approach for Quality Improvement of Associated Dosimetry Equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manger, R; Pawlicki, T; Kim, G

    2015-06-15

    Purpose: Dosimetry protocols devote so much time to the discussion of ionization chamber choice, use and performance that is easy to forget about the importance of the associated dosimetry equipment (ADE) in radiation dosimetry - barometer, thermometer, electrometer, phantoms, triaxial cables, etc. Improper use and inaccuracy of these devices may significantly affect the accuracy of radiation dosimetry. The purpose of this study is to evaluate the risk factors in the monthly output dosimetry procedure and recommend corrective actions using a TG-100 approach. Methods: A failure mode and effects analysis (FMEA) of the monthly linac output check procedure was performed tomore » determine which steps and failure modes carried the greatest risk. In addition, a fault tree analysis (FTA) was performed to expand the initial list of failure modes making sure that none were overlooked. After determining the failure modes with the highest risk priority numbers (RPNs), 11 physicists were asked to score corrective actions based on their ease of implementation and potential impact. The results were aggregated into an impact map to determine the implementable corrective actions. Results: Three of the top five failure modes were related to the thermometer and barometer. The two highest RPN-ranked failure modes were related to barometric pressure inaccuracy due to their high lack-of-detectability scores. Six corrective actions were proposed to address barometric pressure inaccuracy, and the survey results found the following two corrective actions to be implementable: 1) send the barometer for recalibration at a calibration laboratory and 2) check the barometer accuracy against the local airport and correct for elevation. Conclusion: An FMEA on monthly output measurements displayed the importance of ADE for accurate radiation dosimetry. When brainstorming for corrective actions, an impact map is helpful for visualizing the overall impact versus the ease of implementation.« less

  5. TU-B-304-01: The Aftermath of TG-142

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, E.

    2015-06-15

    Although published in 2009, the AAPM TG-142 report on accelerator quality assurance still proves a challenge for full clinical implementation. The choice of methodologies to satisfy TG-142 requirements is critical to a successful application. Understanding the philosophy of TG-142 can help in creating an institution-specific QA practice that is both efficient and effective. The concept of maintaining commissioned beam profiles is still found confusing. The physicist must also consider technologies not covered by TG-142 (i.e. arc therapy techniques). On the horizon is TG-198 report on implementing TG-142. Although the community still lacks a final TG-100 report, performing a failure-mode -and-effectsmore » analysis and statistical process control analysis to determine the institution-specific clinical impact of each TG-142 test may be useful for identifying trends for pro-active surveillance. Learning Objectives: To better understand the confusing and controversial aspects of TG-142. To understand what is still missing from TG-142 and how to account for these tests in clinical practice To describe which QA tests in TG-142 yield the largest potential clinical result if not discovered.« less

  6. TU-B-304-02: Quantitative FMEA of TG-142

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Daniel, J.

    2015-06-15

    Although published in 2009, the AAPM TG-142 report on accelerator quality assurance still proves a challenge for full clinical implementation. The choice of methodologies to satisfy TG-142 requirements is critical to a successful application. Understanding the philosophy of TG-142 can help in creating an institution-specific QA practice that is both efficient and effective. The concept of maintaining commissioned beam profiles is still found confusing. The physicist must also consider technologies not covered by TG-142 (i.e. arc therapy techniques). On the horizon is TG-198 report on implementing TG-142. Although the community still lacks a final TG-100 report, performing a failure-mode -and-effectsmore » analysis and statistical process control analysis to determine the institution-specific clinical impact of each TG-142 test may be useful for identifying trends for pro-active surveillance. Learning Objectives: To better understand the confusing and controversial aspects of TG-142. To understand what is still missing from TG-142 and how to account for these tests in clinical practice To describe which QA tests in TG-142 yield the largest potential clinical result if not discovered.« less

  7. TU-B-304-00: The Aftermath of TG-142

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    Although published in 2009, the AAPM TG-142 report on accelerator quality assurance still proves a challenge for full clinical implementation. The choice of methodologies to satisfy TG-142 requirements is critical to a successful application. Understanding the philosophy of TG-142 can help in creating an institution-specific QA practice that is both efficient and effective. The concept of maintaining commissioned beam profiles is still found confusing. The physicist must also consider technologies not covered by TG-142 (i.e. arc therapy techniques). On the horizon is TG-198 report on implementing TG-142. Although the community still lacks a final TG-100 report, performing a failure-mode -and-effectsmore » analysis and statistical process control analysis to determine the institution-specific clinical impact of each TG-142 test may be useful for identifying trends for pro-active surveillance. Learning Objectives: To better understand the confusing and controversial aspects of TG-142. To understand what is still missing from TG-142 and how to account for these tests in clinical practice To describe which QA tests in TG-142 yield the largest potential clinical result if not discovered.« less

  8. SU-E-T-580: On the Significance of Model Based Dosimetry for Breast and Head and Neck 192Ir HDR Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peppa, V; Pappas, E; Pantelis, E

    2015-06-15

    Purpose: To assess the dosimetric and radiobiological differences between TG43-based and model-based dosimetry in the treatment planning of {sup 192}Ir HDR brachytherapy for breast and head and neck cancer. Methods: Two cohorts of 57 Accelerated Partial Breast Irradiation (APBI) and 22 head and neck (H&N) patients with oral cavity carcinoma were studied. Dosimetry for the treatment plans was performed using the TG43 algorithm of the Oncentra Brachy v4.4 treatment planning system (TPS). Corresponding Monte Carlo (MC) simulations were performed using MCNP6 with input files automatically prepared by the BrachyGuide software tool from DICOM RT plan data. TG43 and MC datamore » were compared in terms of % dose differences, Dose Volume Histograms (DVHs) and related indices of clinical interest for the Planning Target Volume (PTV) and the Organs-At-Risk (OARs). A radiobiological analysis was also performed using the Equivalent Uniform Dose (EUD), mean survival fraction (S) and Tumor Control Probability (TCP) for the PTV, and the Normal Tissue Control Probability (N TCP) and the generalized EUD (gEUD) for the OARs. Significance testing of the observed differences performed using the Wilcoxon paired sample test. Results: Differences between TG43 and MC DVH indices, associated with the increased corresponding local % dose differences observed, were statistically significant. This is mainly attributed to their consistency however, since TG43 agrees closely with MC for the majority of DVH and radiobiological parameters in both patient cohorts. Differences varied considerably among patients only for the ipsilateral lung and ribs in the APBI cohort, with a strong correlation to target location. Conclusion: While the consistency and magnitude of differences in the majority of clinically relevant DVH indices imply that no change is needed in the treatment planning practice, individualized dosimetry improves accuracy and addresses instances of inter-patient variability observed

  9. Comparison of IPSM 1990 photon dosimetry code of practice with IAEA TRS‐398 and AAPM TG‐51.

    PubMed Central

    Henríquez, Francisco Cutanda

    2009-01-01

    Several codes of practice for photon dosimetry are currently used around the world, supported by different organizations. A comparison of IPSM 1990 with both IAEA TRS‐398 and AAPM TG‐51 has been performed. All three protocols are based on the calibration of ionization chambers in terms of standards of absorbed dose to water, as it is the case with other modern codes of practice. This comparison has been carried out for photon beams of nominal energies: 4 MV, 6 MV, 8 MV, 10 MV and 18 MV. An NE 2571 graphite ionization chamber was used in this study, cross‐calibrated against an NE 2611A Secondary Standard, calibrated in the National Physical Laboratory (NPL). Absolute dose in reference conditions was obtained using each of these three protocols including: beam quality indices, beam quality conversion factors both theoretical and NPL experimental ones, correction factors for influence quantities and absolute dose measurements. Each protocol recommendations have been strictly followed. Uncertainties have been obtained according to the ISO Guide to the Expression of Uncertainty in Measurement. Absorbed dose obtained according to all three protocols agree within experimental uncertainty. The largest difference between absolute dose results for two protocols is obtained for the highest energy: 0.7% between IPSM 1990 and IAEA TRS‐398 using theoretical beam quality conversion factors. PACS number: 87.55.tm

  10. Dose heterogeneity correction for low-energy brachytherapy sources using dual-energy CT images

    NASA Astrophysics Data System (ADS)

    Mashouf, S.; Lechtman, E.; Lai, P.; Keller, B. M.; Karotki, A.; Beachey, D. J.; Pignol, J. P.

    2014-09-01

    Permanent seed implant brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose around brachytherapy sources is based on the AAPM TG-43 formalism, which generates the dose in a homogeneous water medium. Recently, AAPM TG-186 emphasized the importance of accounting for tissue heterogeneities. We have previously reported on a methodology where the absorbed dose in tissue can be obtained by multiplying the dose, calculated by the TG-43 formalism, by an inhomogeneity correction factor (ICF). In this work we make use of dual energy CT (DECT) images to extract ICF parameters. The advantage of DECT over conventional CT is that it eliminates the need for tissue segmentation as well as assignment of population based atomic compositions. DECT images of a heterogeneous phantom were acquired and the dose was calculated using both TG-43 and TG-43 × \\text{ICF} formalisms. The results were compared to experimental measurements using Gafchromic films in the mid-plane of the phantom. For a seed implant configuration of 8 seeds spaced 1.5 cm apart in a cubic structure, the gamma passing score for 2%/2 mm criteria improved from 40.8% to 90.5% when ICF was applied to TG-43 dose distributions.

  11. [Determination of absorbed dose to water for high energy photon and electron beams--comparison of different dosimetry protocols].

    PubMed

    Zakaria, Golam Abu; Schütte, Wilhelm

    2003-01-01

    The determination of absorbed dose to water for high-energy photon and electron beams is performed in Germany according to the dosimetry protocol DIN 6800-2 (1997). At an international level, the main protocols used are the AAPM dosimetry protocol TG-51 (1999) and the IAEA Code of Practice TRS-398 (2000). The present paper systematically compares these three dosimetry protocols, and identifies similarities and differences. The investigations were performed using 4 and 10 MV photon beams, as well as 6, 8, 9, 10, 12 and 14 MeV electron beams. Two cylindrical and two plane-parallel type chambers were used for measurements. In general, the discrepancies among the three protocols were 1.0% for photon beams and 1.6% for electron beams. Comparative measurements in the context of measurement technical control (MTK) with TLD showed a deviation of less than 1.3% between the measurements obtained according to protocols DIN 6800-2 and MTK (exceptions: 4 MV photons with 2.9% and 6 MeV electrons with 2.4%). While only cylindrical chambers were used for photon beams, measurements of electron beams were performed using both cylindrical and plane-parallel chambers (the latter used after a cross-calibration to a cylindrical chamber, as required by the respective dosimetry protocols). Notably, unlike recommended in the corresponding protocols, we found out that cylindrical chambers can be used also for energies from 6 to 10 MeV.

  12. Accuracy Evaluation of Oncentra™ TPS in HDR Brachytherapy of Nasopharynx Cancer Using EGSnrc Monte Carlo Code.

    PubMed

    Hadad, K; Zohrevand, M; Faghihi, R; Sedighi Pashaki, A

    2015-03-01

    HDR brachytherapy is one of the commonest methods of nasopharyngeal cancer treatment. In this method, depending on how advanced one tumor is, 2 to 6 Gy dose as intracavitary brachytherapy is prescribed. Due to high dose rate and tumor location, accuracy evaluation of treatment planning system (TPS) is particularly important. Common methods used in TPS dosimetry are based on computations in a homogeneous phantom. Heterogeneous phantoms, especially patient-specific voxel phantoms can increase dosimetric accuracy. In this study, using CT images taken from a patient and ctcreate-which is a part of the DOSXYZnrc computational code, patient-specific phantom was made. Dose distribution was plotted by DOSXYZnrc and compared with TPS one. Also, by extracting the voxels absorbed dose in treatment volume, dose-volume histograms (DVH) was plotted and compared with Oncentra™ TPS DVHs. The results from calculations were compared with data from Oncentra™ treatment planning system and it was observed that TPS calculation predicts lower dose in areas near the source, and higher dose in areas far from the source relative to MC code. Absorbed dose values in the voxels also showed that TPS reports D90 value is 40% higher than the Monte Carlo method. Today, most treatment planning systems use TG-43 protocol. This protocol may results in errors such as neglecting tissue heterogeneity, scattered radiation as well as applicator attenuation. Due to these errors, AAPM emphasized departing from TG-43 protocol and approaching new brachytherapy protocol TG-186 in which patient-specific phantom is used and heterogeneities are affected in dosimetry.

  13. Accuracy Evaluation of Oncentra™ TPS in HDR Brachytherapy of Nasopharynx Cancer Using EGSnrc Monte Carlo Code

    PubMed Central

    Hadad, K.; Zohrevand, M.; Faghihi, R.; Sedighi Pashaki, A.

    2015-01-01

    Background HDR brachytherapy is one of the commonest methods of nasopharyngeal cancer treatment. In this method, depending on how advanced one tumor is, 2 to 6 Gy dose as intracavitary brachytherapy is prescribed. Due to high dose rate and tumor location, accuracy evaluation of treatment planning system (TPS) is particularly important. Common methods used in TPS dosimetry are based on computations in a homogeneous phantom. Heterogeneous phantoms, especially patient-specific voxel phantoms can increase dosimetric accuracy. Materials and Methods In this study, using CT images taken from a patient and ctcreate-which is a part of the DOSXYZnrc computational code, patient-specific phantom was made. Dose distribution was plotted by DOSXYZnrc and compared with TPS one. Also, by extracting the voxels absorbed dose in treatment volume, dose-volume histograms (DVH) was plotted and compared with Oncentra™ TPS DVHs. Results The results from calculations were compared with data from Oncentra™ treatment planning system and it was observed that TPS calculation predicts lower dose in areas near the source, and higher dose in areas far from the source relative to MC code. Absorbed dose values in the voxels also showed that TPS reports D90 value is 40% higher than the Monte Carlo method. Conclusion Today, most treatment planning systems use TG-43 protocol. This protocol may results in errors such as neglecting tissue heterogeneity, scattered radiation as well as applicator attenuation. Due to these errors, AAPM emphasized departing from TG-43 protocol and approaching new brachytherapy protocol TG-186 in which patient-specific phantom is used and heterogeneities are affected in dosimetry. PMID:25973408

  14. Dosimetric characterization of two radium sources for retrospective dosimetry studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candela-Juan, C., E-mail: ccanjuan@gmail.com; Karlsson, M.; Lundell, M.

    2015-05-15

    Purpose: During the first part of the 20th century, {sup 226}Ra was the most used radionuclide for brachytherapy. Retrospective accurate dosimetry, coupled with patient follow up, is important for advancing knowledge on long-term radiation effects. The purpose of this work was to dosimetrically characterize two {sup 226}Ra sources, commonly used in Sweden during the first half of the 20th century, for retrospective dose–effect studies. Methods: An 8 mg {sup 226}Ra tube and a 10 mg {sup 226}Ra needle, used at Radiumhemmet (Karolinska University Hospital, Stockholm, Sweden), from 1925 to the 1960s, were modeled in two independent Monte Carlo (MC) radiationmore » transport codes: GEANT4 and MCNP5. Absorbed dose and collision kerma around the two sources were obtained, from which the TG-43 parameters were derived for the secular equilibrium state. Furthermore, results from this dosimetric formalism were compared with results from a MC simulation with a superficial mould constituted by five needles inside a glass casing, placed over a water phantom, trying to mimic a typical clinical setup. Calculated absorbed doses using the TG-43 formalism were also compared with previously reported measurements and calculations based on the Sievert integral. Finally, the dose rate at large distances from a {sup 226}Ra point-like-source placed in the center of 1 m radius water sphere was calculated with GEANT4. Results: TG-43 parameters [including g{sub L}(r), F(r, θ), Λ, and s{sub K}] have been uploaded in spreadsheets as additional material, and the fitting parameters of a mathematical curve that provides the dose rate between 10 and 60 cm from the source have been provided. Results from TG-43 formalism are consistent within the treatment volume with those of a MC simulation of a typical clinical scenario. Comparisons with reported measurements made with thermoluminescent dosimeters show differences up to 13% along the transverse axis of the radium needle. It has been

  15. Dose verification of eye plaque brachytherapy using spectroscopic dosimetry.

    PubMed

    Jarema, T; Cutajar, D; Weaver, M; Petasecca, M; Lerch, M; Kejda, A; Rosenfeld, A

    2016-09-01

    Eye plaque brachytherapy has been developed and refined for the last 80 years, demonstrating effective results in the treatment of ocular malignancies. Current dosimetry techniques for eye plaque brachytherapy (such as TLD- and film-based techniques) are time consuming and cannot be used prior to treatment in a sterile environment. The measurement of the expected dose distribution within the eye, prior to insertion within the clinical setting, would be advantageous, as any errors in source loading will lead to an erroneous dose distribution and inferior treatment outcomes. This study investigated the use of spectroscopic dosimetry techniques for real-time quality assurance of I-125 based eye plaques, immediately prior to insertion. A silicon detector based probe, operating in spectroscopy mode was constructed, containing a small (1 mm(3)) silicon detector, mounted within a ceramic holder, all encapsulated within a rubber sheath to prevent water infiltration of the electronics. Preliminary tests of the prototype demonstrated that the depth dose distribution through the central axis of an I-125 based eye plaque may be determined from AAPM Task Group 43 recommendations to a deviation of 6 % at 3 mm depth, 7 % at 5 mm depth, 1 % at 10 mm depth and 13 % at 20 mm depth, with the deviations attributed to the construction of the probe. A new probe design aims to reduce these discrepancies, however the concept of spectroscopic dosimetry shows great promise for use in eye plaque quality assurance in the clinical setting.

  16. SU-E-T-284: Revisiting Reference Dosimetry for the Model S700 Axxent 50 KV{sub p} Electronic Brachytherapy Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiatt, JR; Rivard, MJ

    2014-06-01

    Purpose: The model S700 Axxent electronic brachytherapy source by Xoft was characterized in 2006 by Rivard et al. The source design was modified in 2006 to include a plastic centering insert at the source tip to more accurately position the anode. The objectives of the current study were to establish an accurate Monte Carlo source model for simulation purposes, to dosimetrically characterize the new source and obtain its TG-43 brachytherapy dosimetry parameters, and to determine dose differences between the source with and without the centering insert. Methods: Design information from dissected sources and vendor-supplied CAD drawings were used to devisemore » the source model for radiation transport simulations of dose distributions in a water phantom. Collision kerma was estimated as a function of radial distance, r, and polar angle, θ, for determination of reference TG-43 dosimetry parameters. Simulations were run for 10{sup 10} histories, resulting in statistical uncertainties on the transverse plane of 0.03% at r=1 cm and 0.08% at r=10 cm. Results: The dose rate distribution the transverse plane did not change beyond 2% between the 2006 model and the current study. While differences exceeding 15% were observed near the source distal tip, these diminished to within 2% for r>1.5 cm. Differences exceeding a factor of two were observed near θ=150° and in contact with the source, but diminished to within 20% at r=10 cm. Conclusions: Changes in source design influenced the overall dose rate and distribution by more than 2% over a third of the available solid angle external from the source. For clinical applications using balloons or applicators with tissue located within 5 cm from the source, dose differences exceeding 2% were observed only for θ>110°. This study carefully examined the current source geometry and presents a modern reference TG-43 dosimetry dataset for the model S700 source.« less

  17. Development and testing of a database of NIH research funding of AAPM members: A report from the AAPM Working Group for the Development of a Research Database (WGDRD).

    PubMed

    Whelan, Brendan; Moros, Eduardo G; Fahrig, Rebecca; Deye, James; Yi, Thomas; Woodward, Michael; Keall, Paul; Siewerdsen, Jeff H

    2017-04-01

    To produce and maintain a database of National Institutes of Health (NIH) funding of the American Association of Physicists in Medicine (AAPM) members, to perform a top-level analysis of these data, and to make these data (hereafter referred to as the AAPM research database) available for the use of the AAPM and its members. NIH-funded research dating back to 1985 is available for public download through the NIH exporter website, and AAPM membership information dating back to 2002 was supplied by the AAPM. To link these two sources of data, a data mining algorithm was developed in Matlab. The false-positive rate was manually estimated based on a random sample of 100 records, and the false-negative rate was assessed by comparing against 99 member-supplied PI_ID numbers. The AAPM research database was queried to produce an analysis of trends and demographics in research funding dating from 2002 to 2015. A total of 566 PI_ID numbers were matched to AAPM members. False-positive and -negative rates were respectively 4% (95% CI: 1-10%, N = 100) and 10% (95% CI: 5-18%, N = 99). Based on analysis of the AAPM research database, in 2015 the NIH awarded $USD 110M to members of the AAPM. The four NIH institutes which historically awarded the most funding to AAPM members were the National Cancer Institute, National Institute of Biomedical Imaging and Bioengineering, National Heart Lung and Blood Institute, and National Institute of Neurological Disorders and Stroke. In 2015, over 85% of the total NIH research funding awarded to AAPM members was via these institutes, representing 1.1% of their combined budget. In the same year, 2.0% of AAPM members received NIH funding for a total of $116M, which is lower than the historic mean of $120M (in 2015 USD). A database of NIH-funded research awarded to AAPM members has been developed and tested using a data mining approach, and a top-level analysis of funding trends has been performed. Current funding of AAPM members is lower than

  18. Effect of contrast agent administration on consequences of dosimetry and biology in radiotherapy planning

    NASA Astrophysics Data System (ADS)

    Lo, Ching-Jung; Yang, Pei-Ying; Chao, Tsi-Chian; Tu, Shu-Ju

    2015-06-01

    In the treatment planning of radiation therapy, patients may be administrated with contrast media in CT scanning to assist physicians for accurate delineation of the target or organs. However, contrast media are not used in patients during the treatment delivery. In particular, contrast media contain materials with high atomic numbers and dosimetric variations may occur between scenarios where contrast media are present in treatment planning and absent in treatment delivery. In this study we evaluate the effect of contrast media on the dosimetry and biological consequence. An analytical phantom based on AAPM TG 119 and five sets of CT images from clinical patients are included. Different techniques of treatment planning are considered, including 1-field AP, 2-field AP+PA, 4-field box, 7-field IMRT, and RapidArc. RapidArc is a recent technique of volumetric modulated arc therapy and is used in our study of contrast media in clinical scenarios. The effect of RapidArc on dosimetry and biological consequence for administration of contrast media in radiotherapy is not discussed previously in literature. It is shown that dose difference is reduced as the number of external beams is increased, suggesting RapidArc may be favored to be used in the treatment planning enhanced by contrast media. Linear trend lines are fitted for assessment of percent dose differences in the planning target volume versus concentrations of contrast media between plans where contrast media are present and absent, respectively.

  19. TU-FG-209-04: Testing of Digital Image Receptors Using AAPM TG-150’s Draft Recommendations - Investigating the Impact of Different Processing Parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, C; Dave, J

    Purpose: To evaluate implementation of AAPM TG-150’s draft recommendations via a parameter study for testing the performance of digital image receptors. Methods: Flat field images were acquired from 9 calibrated digital image receptors associated with 9 new portable digital radiography systems (Carestream Health, Inc.) based on the draft recommendations and manufacturer-specified calibration conditions (set of 4 images at input detector air kerma ranging from 1 to 25 µGy). Effects of exposure response function (linearized and logarithmic), ‘Presentation Intent Type’ (‘For Processing’ and ‘For Presentation’), detector orientation with respect to the anode-cathode axis (4 orientations; 900 rotations per iteration), different ROImore » sizes (5×5–40×40 mm{sup 2}) and elimination of varying dimensions of image border (0 mm i.e., without boundary elimination to 150 mm) on signal, noise, signal-to-noise ratio (SNR) and the associated nonuniformities were evaluated. Images were analyzed in Matlab and quantities were compared using ANOVA. Results: Signal, noise and SNR values averaged over 9 systems with default parameter values in draft recommendations were 4837.2±139.4, 19.7±0.9 and 246.4±10.1 (mean ± standard deviation), respectively (at input detector air kerma: 12.5 µGy). Signal, noise and SNR showed characteristic dependency on exposure response function and on ‘Presentation Intent Type’. These values were not affected by ROI size and detector orientation, but analysis showed that eliminating the edge pixels along the boundary was required for the noise parameter (coefficient of variation range for noise: 72%–106% and 3%–4% without and with boundary elimination; respectively). Local and global nonuniformities showed a similar dependence on the need for boundary elimination. Interestingly, computed non-uniformities showed agreement with manufacturer-reported values except for noise non-uniformities in two units; artifacts were seen in

  20. SU-E-T-467: Monte Carlo Dosimetric Study of the New Flexisource Co-60 High Dose Rate Source.

    PubMed

    Vijande, J; Granero, D; Perez-Calatayud, J; Ballester, F

    2012-06-01

    Recently, a new HDR 60Co brachytherapy source, Flexisource Co-60, has been developed (Nucletron B.V.). This study aims to obtain quality dosimetric data for this source for its use in clinical practice as required by AAPM and ESTRO. Penelope2008 and GEANT4 Monte Carlo codes were used to dosimetrically characterize this source. Water composition and mass density was that recommended by AAPM. Due to the high energy of the 60Co, dose for small distances cannot be approximated by collisional kerma. Therefore, we have considered absorbed dose to water for r<0.75 cm and collisional kerma from 0.75AAPM. Mass-energy absorption coefficients in water and air were consistently derived and used to calculate collisional kerma. Along-away tables and TG-43 formalism parameters and functions were derived. Dosimetric data were also provided following the primary and scatter dose separation for the collapsed cone technique. TG-43 dosimetry parameters with L = 0.35 cm were obtained. Results performed with both radiation transport codes showed agreement typically within 0.2% for r > 0.8 cm and up to 2% closer to the source. Using Penelope2008 and GEANT4, an average of Î> = 1.085±0.003 cGy/(h U) (with k = 1, Type A uncertainties) was obtained. Dose rate constant, radial dose function and anisotropy functions for the Flexisource Co-60 are compared with published data for other Co-60 sources. Dosimetric data are provided for the new Flexisource Co-60 source not studied previously in the literature. Using the data provided by this study in the treatment planning systems, it can be used in clinical practice. This project has been funded by Nucletron BV. © 2012 American Association of Physicists in Medicine.

  1. SU-F-T-364: Monte Carlo-Dose Verification of Volumetric Modulated Arc Therapy Plans Using AAPM TG-119 Test Patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onizuka, R; Araki, F; Ohno, T

    2016-06-15

    Purpose: To investigate the Monte Carlo (MC)-based dose verification for VMAT plans by a treatment planning system (TPS). Methods: The AAPM TG-119 test structure set was used for VMAT plans by the Pinnacle3 (convolution/superposition), using a Synergy radiation head of a 6 MV beam with the Agility MLC. The Synergy was simulated with the EGSnrc/BEAMnrc code, and VMAT dose distributions were calculated with the EGSnrc/DOSXYZnrc code by the same irradiation conditions as TPS. VMAT dose distributions of TPS and MC were compared with those of EBT3 film, by 2-D gamma analysis of ±3%/3 mm criteria with a threshold of 30%more » of prescribed doses. VMAT dose distributions between TPS and MC were also compared by DVHs and 3-D gamma analysis of ±3%/3 mm criteria with a threshold of 10%, and 3-D passing rates for PTVs and OARs were analyzed. Results: TPS dose distributions differed from those of film, especially for Head & neck. The dose difference between TPS and film results from calculation accuracy for complex motion of MLCs like tongue and groove effect. In contrast, MC dose distributions were in good agreement with those of film. This is because MC can model fully the MLC configuration and accurately reproduce the MLC motion between control points in VMAT plans. D95 of PTV for Prostate, Head & neck, C-shaped, and Multi Target was 97.2%, 98.1%, 101.6%, and 99.7% for TPS and 95.7%, 96.0%, 100.6%, and 99.1% for MC, respectively. Similarly, 3-D gamma passing rates of each PTV for TPS vs. MC were 100%, 89.5%, 99.7%, and 100%, respectively. 3-D passing rates of TPS reduced for complex VMAT fields like Head & neck because MLCs are not modeled completely for TPS. Conclusion: MC-calculated VMAT dose distributions is useful for the 3-D dose verification of VMAT plans by TPS.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu-Tsao, S.

    Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to)more » external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.« less

  3. SU-F-T-12: Monte Carlo Dosimetry of the 60Co Bebig High Dose Rate Source for Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campos, L T; Almeida, C E V de

    Purpose: The purpose of this work is to obtain the dosimetry parameters in accordance with the AAPM TG-43U1 formalism with Monte Carlo calculations regarding the BEBIG 60Co high-dose-rate brachytherapy. The geometric design and material details of the source was provided by the manufacturer and was used to define the Monte Carlo geometry. Methods: The dosimetry studies included the calculation of the air kerma strength Sk, collision kerma in water along the transverse axis with an unbounded phantom, dose rate constant and radial dose function. The Monte Carlo code system that was used was EGSnrc with a new cavity code, whichmore » is a part of EGS++ that allows calculating the radial dose function around the source. The XCOM photon cross-section library was used. Variance reduction techniques were used to speed up the calculation and to considerably reduce the computer time. To obtain the dose rate distributions of the source in an unbounded liquid water phantom, the source was immersed at the center of a cube phantom of 100 cm3. Results: The obtained dose rate constant for the BEBIG 60Co source was 1.108±0.001 cGyh-1U-1, which is consistent with the values in the literature. The radial dose functions were compared with the values of the consensus data set in the literature, and they are consistent with the published data for this energy range. Conclusion: The dose rate constant is consistent with the results of Granero et al. and Selvam and Bhola within 1%. Dose rate data are compared to GEANT4 and DORZnrc Monte Carlo code. However, the radial dose function is different by up to 10% for the points that are notably near the source on the transversal axis because of the high-energy photons from 60Co, which causes an electronic disequilibrium at the interface between the source capsule and the liquid water for distances up to 1 cm.« less

  4. GGEMS-Brachy: GPU GEant4-based Monte Carlo simulation for brachytherapy applications

    NASA Astrophysics Data System (ADS)

    Lemaréchal, Yannick; Bert, Julien; Falconnet, Claire; Després, Philippe; Valeri, Antoine; Schick, Ulrike; Pradier, Olivier; Garcia, Marie-Paule; Boussion, Nicolas; Visvikis, Dimitris

    2015-07-01

    In brachytherapy, plans are routinely calculated using the AAPM TG43 formalism which considers the patient as a simple water object. An accurate modeling of the physical processes considering patient heterogeneity using Monte Carlo simulation (MCS) methods is currently too time-consuming and computationally demanding to be routinely used. In this work we implemented and evaluated an accurate and fast MCS on Graphics Processing Units (GPU) for brachytherapy low dose rate (LDR) applications. A previously proposed Geant4 based MCS framework implemented on GPU (GGEMS) was extended to include a hybrid GPU navigator, allowing navigation within voxelized patient specific images and analytically modeled 125I seeds used in LDR brachytherapy. In addition, dose scoring based on track length estimator including uncertainty calculations was incorporated. The implemented GGEMS-brachy platform was validated using a comparison with Geant4 simulations and reference datasets. Finally, a comparative dosimetry study based on the current clinical standard (TG43) and the proposed platform was performed on twelve prostate cancer patients undergoing LDR brachytherapy. Considering patient 3D CT volumes of 400  × 250  × 65 voxels and an average of 58 implanted seeds, the mean patient dosimetry study run time for a 2% dose uncertainty was 9.35 s (≈500 ms 10-6 simulated particles) and 2.5 s when using one and four GPUs, respectively. The performance of the proposed GGEMS-brachy platform allows envisaging the use of Monte Carlo simulation based dosimetry studies in brachytherapy compatible with clinical practice. Although the proposed platform was evaluated for prostate cancer, it is equally applicable to other LDR brachytherapy clinical applications. Future extensions will allow its application in high dose rate brachytherapy applications.

  5. MO-FG-BRB-00: AAPM Presidential Debate [medical physics education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Building on the energy and excitement of Washington DC in a presidential election year, AAPM will host its own Presidential Debate to better understand the views of the AAPM membership! Past presidents of the AAPM, Drs. Bayouth, Hazle, Herman, and Seibert, will debate hot topics in medical physics including issues facing education, professional practice, and the advancement of science. The moderators, Drs. Brock and Stern, will also draw in topics from Point-Counterpoint articles from the Medical Physics Journals. Wrapping up the debate, the audience will have the opportunity to question the candidates in a town hall format. At the conclusionmore » of this lively debate, the winner will be decided by the audience, so bring your Audience Response Units! Be part of Medical Physics - Decision 2016! Learning Objectives: Understand AAPM members’ views and opinions on issues facing medical physics education Learn AAPM members’ views and opinions on issues facing professional practice Identify AAPM members’ view and opinions on issues facing the advancement of science in medical physics J. Bayouth, Funding support from NCI;Scientific Advisory Board member - ViewRay.« less

  6. Episcleral eye plaque dosimetry comparison for the Eye Physics EP917 using Plaque Simulator and Monte Carlo simulation

    PubMed Central

    Amoush, Ahmad; Wilkinson, Douglas A.

    2015-01-01

    This work is a comparative study of the dosimetry calculated by Plaque Simulator, a treatment planning system for eye plaque brachytherapy, to the dosimetry calculated using Monte Carlo simulation for an Eye Physics model EP917 eye plaque. Monte Carlo (MC) simulation using MCNPX 2.7 was used to calculate the central axis dose in water for an EP917 eye plaque fully loaded with 17 IsoAid Advantage  125I seeds. In addition, the dosimetry parameters Λ, gL(r), and F(r,θ) were calculated for the IsoAid Advantage model IAI‐125  125I seed and benchmarked against published data. Bebig Plaque Simulator (PS) v5.74 was used to calculate the central axis dose based on the AAPM Updated Task Group 43 (TG‐43U1) dose formalism. The calculated central axis dose from MC and PS was then compared. When the MC dosimetry parameters for the IsoAid Advantage  125I seed were compared with the consensus values, Λ agreed with the consensus value to within 2.3%. However, much larger differences were found between MC calculated gL(r) and F(r,θ) and the consensus values. The differences between MC‐calculated dosimetry parameters are much smaller when compared with recently published data. The differences between the calculated central axis absolute dose from MC and PS ranged from 5% to 10% for distances between 1 and 12 mm from the outer scleral surface. When the dosimetry parameters for the  125I seed from this study were used in PS, the calculated absolute central axis dose differences were reduced by 2.3% from depths of 4 to 12 mm from the outer scleral surface. We conclude that PS adequately models the central dose profile of this plaque using its defaults for the IsoAid model IAI‐125 at distances of 1 to 7 mm from the outer scleral surface. However, improved dose accuracy can be obtained by using updated dosimetry parameters for the IsoAid model IAI‐125  125I seed. PACS number: 87.55.K‐ PMID:26699577

  7. Monte Carlo Investigation on the Effect of Heterogeneities on Strut Adjusted Volume Implant (SAVI) Dosimetry

    NASA Astrophysics Data System (ADS)

    Koontz, Craig

    Breast cancer is the most prevalent cancer for women with more than 225,000 new cases diagnosed in the United States in 2012 (ACS, 2012). With the high prevalence, comes an increased emphasis on researching new techniques to treat this disease. Accelerated partial breast irradiation (APBI) has been used as an alternative to whole breast irradiation (WBI) in order to treat occult disease after lumpectomy. Similar recurrence rates have been found using ABPI after lumpectomy as with mastectomy alone, but with the added benefit of improved cosmetic and psychological results. Intracavitary brachytherapy devices have been used to deliver the APBI prescription. However, inability to produce asymmetric dose distributions in order to avoid overdosing skin and chest wall has been an issue with these devices. Multi-lumen devices were introduced to overcome this problem. Of these, the Strut-Adjusted Volume Implant (SAVI) has demonstrated the greatest ability to produce an asymmetric dose distribution, which would have greater ability to avoid skin and chest wall dose, and thus allow more women to receive this type of treatment. However, SAVI treatments come with inherent heterogeneities including variable backscatter due to the proximity to the tissue-air and tissue-lung interfaces and variable contents within the cavity created by the SAVI. The dose calculation protocol based on TG-43 does not account for heterogeneities and thus will not produce accurate dosimetry; however Acuros, a model-based dose calculation algorithm manufactured by Varian Medical Systems, claims to accurately account for heterogeneities. Monte Carlo simulation can calculate the dosimetry with high accuracy. In this thesis, a model of the SAVI will be created for Monte Carlo, specifically using MCNP code, in order to explore the affects of heterogeneities on the dose distribution. This data will be compared to TG-43 and Acuros calculated dosimetry to explore their accuracy.

  8. A technical evaluation of the Nucletron FIRST system: conformance of a remote afterloading brachytherapy seed implantation system to manufacturer specifications and AAPM Task Group report recommendations.

    PubMed

    Rivard, Mark J; Evans, Dee-Ann Radford; Kay, Ian

    2005-01-01

    The Fully Integrated Real-time Seed Treatment (FIRST) system by Nucletron has been available in Europe since November 2001 and is being used more and more in Canada and the United States. Like the conventional transrectal ultrasound implant procedure, the FIRST system utilizes an ultrasound probe, needles, and brachytherapy seeds. However, this system is unique in that it (1) utilizes a low-dose-rate brachytherapy seed remote afterloader (the seedSelectron), (2) utilizes 3D image reconstruction acquired from electromechanically controlled, nonstepping rotation of the ultrasound probe, (3) integrates the control of a remote afterloader with electromechanical control of the ultrasound probe for integrating the clinical procedure into a single system, and (4) automates the transfer of planning information and seed delivery to improve quality assurance and radiation safety. This automated delivery system is specifically intended to address reproducibility and accuracy of seed positioning during implantation. The FIRST computer system includes two software environments: SPOT PRO and seedSelectron; both are used to facilitate treatment planning and brachytherapy seed implantation from beginning to completion of the entire procedure. In addition to these features, the system is reported to meet certain product specifications for seed delivery positioning accuracy and reproducibility, seed calibration accuracy and reliability, and brachytherapy dosimetry calculations. Consequently, a technical evaluation of the FIRST system was performed to determine adherence to manufacturer specifications and to the American Association of Physicists in Medicine (AAPM) Task Group Reports 43, 53, 56, 59, and 64 and recommendations of the American Brachytherapy Society (ABS). The United States Nuclear Regulatory Commission (NRC) has recently added Licensing Guidance for the seedSelectron system under 10 CFR 35.1000. Adherence to licensing guidance is made by referencing applicable AAPM

  9. The use of new GAFCHROMIC EBT film for 125I seed dosimetry in Solid Water phantom.

    PubMed

    Chiu-Tsao, Sou-Tung; Medich, David; Munro, John

    2008-08-01

    Radiochromic film dosimetry has been extensively used for intravascular brachytherapy applications for near field within 1 cm from the sources. With the recent introduction of new model of radiochromic films, GAFCHROMIC EBT, with higher sensitivity than earlier models, it is promising to extend the distances out to 5 cm for low dose rate (LDR) source dosimetry. In this study, the use of new model GAFCHROMIC EBT film for 125I seed dosimetry in Solid Water was evaluated for radial distances from 0.06 cm out to 5 cm. A multiple film technique was employed for four 125I seeds (Implant Sciences model 3500) with NIST traceable air kerma strengths. Each experimental film was positioned in contact with a 125I seed in a Solid Water phantom. The products of the air kerma strength and exposure time ranged from 8 to 3158 U-h, with the initial air kerma strength of 6 U in a series of 25 experiments. A set of 25 calibration films each was sequentially exposed to one 125I seed at about 0.58 cm distance for doses from 0.1 to 33 Gy. A CCD camera based microdensitometer, with interchangeable green (520 nm) and red (665 nm) light boxes, was used to scan all the films with 0.2 mm pixel resolution. The dose to each 125I calibration film center was calculated using the air kerma strength of the seed (incorporating decay), exposure time, distance from seed center to film center, and TG43U1S1 recommended dosimetric parameters. Based on the established calibration curve, dose conversion from net optical density was achieved for each light source. The dose rate constant was determined as 0.991 cGy U(-1)h(-1) (+/-6.9%) and 1.014 cGy U(-1)h(-1) (+/-6.8%) from films scanned using green and red light sources, respectively. The difference between these two values was within the uncertainty of the measurement. Radial dose function and 2D anisotropy function were also determined. The results obtained using the two light sources corroborated each other. We found good agreement with the TG43U1S1

  10. Report of AAPM Task Group 162: Software for planar image quality metrology.

    PubMed

    Samei, Ehsan; Ikejimba, Lynda C; Harrawood, Brian P; Rong, John; Cunningham, Ian A; Flynn, Michael J

    2018-02-01

    The AAPM Task Group 162 aimed to provide a standardized approach for the assessment of image quality in planar imaging systems. This report offers a description of the approach as well as the details of the resultant software bundle to measure detective quantum efficiency (DQE) as well as its basis components and derivatives. The methodology and the associated software include the characterization of the noise power spectrum (NPS) from planar images acquired under specific acquisition conditions, modulation transfer function (MTF) using an edge test object, the DQE, and effective DQE (eDQE). First, a methodological framework is provided to highlight the theoretical basis of the work. Then, a step-by-step guide is included to assist in proper execution of each component of the code. Lastly, an evaluation of the method is included to validate its accuracy against model-based and experimental data. The code was built using a Macintosh OSX operating system. The software package contains all the source codes to permit an experienced user to build the suite on a Linux or other *nix type system. The package further includes manuals and sample images and scripts to demonstrate use of the software for new users. The results of the code are in close alignment with theoretical expectations and published results of experimental data. The methodology and the software package offered in AAPM TG162 can be used as baseline for characterization of inherent image quality attributes of planar imaging systems. © 2017 American Association of Physicists in Medicine.

  11. Dosimetric considerations for patients with HIP prostheses undergoing pelvic irradiation. Report of the AAPM Radiation Therapy Committee Task Group 63.

    PubMed

    Reft, Chester; Alecu, Rodica; Das, Indra J; Gerbi, Bruce J; Keall, Paul; Lief, Eugene; Mijnheer, Ben J; Papanikolaou, Nikos; Sibata, Claudio; Van Dyk, Jake

    2003-06-01

    This document is the report of a task group of the Radiation Therapy Committee of the AAPM and has been prepared primarily to advise hospital physicists involved in external beam treatment of patients with pelvic malignancies who have high atomic number (Z) hip prostheses. The purpose of the report is to make the radiation oncology community aware of the problems arising from the presence of these devices in the radiation beam, to quantify the dose perturbations they cause, and, finally, to provide recommendations for treatment planning and delivery. Some of the data and recommendations are also applicable to patients having implanted high-Z prosthetic devices such as pins, humeral head replacements. The scientific understanding and methodology of clinical dosimetry for these situations is still incomplete. This report is intended to reflect the current state of scientific understanding and technical methodology in clinical dosimetry for radiation oncology patients with high-Z hip prostheses.

  12. Error Analysis of non-TLD HDR Brachytherapy Dosimetric Techniques

    NASA Astrophysics Data System (ADS)

    Amoush, Ahmad

    The American Association of Physicists in Medicine Task Group Report43 (AAPM-TG43) and its updated version TG-43U1 rely on the LiF TLD detector to determine the experimental absolute dose rate for brachytherapy. The recommended uncertainty estimates associated with TLD experimental dosimetry include 5% for statistical errors (Type A) and 7% for systematic errors (Type B). TG-43U1 protocol does not include recommendation for other experimental dosimetric techniques to calculate the absolute dose for brachytherapy. This research used two independent experimental methods and Monte Carlo simulations to investigate and analyze uncertainties and errors associated with absolute dosimetry of HDR brachytherapy for a Tandem applicator. An A16 MicroChamber* and one dose MOSFET detectors† were selected to meet the TG-43U1 recommendations for experimental dosimetry. Statistical and systematic uncertainty analyses associated with each experimental technique were analyzed quantitatively using MCNPX 2.6‡ to evaluate source positional error, Tandem positional error, the source spectrum, phantom size effect, reproducibility, temperature and pressure effects, volume averaging, stem and wall effects, and Tandem effect. Absolute dose calculations for clinical use are based on Treatment Planning System (TPS) with no corrections for the above uncertainties. Absolute dose and uncertainties along the transverse plane were predicted for the A16 microchamber. The generated overall uncertainties are 22%, 17%, 15%, 15%, 16%, 17%, and 19% at 1cm, 2cm, 3cm, 4cm, and 5cm, respectively. Predicting the dose beyond 5cm is complicated due to low signal-to-noise ratio, cable effect, and stem effect for the A16 microchamber. Since dose beyond 5cm adds no clinical information, it has been ignored in this study. The absolute dose was predicted for the MOSFET detector from 1cm to 7cm along the transverse plane. The generated overall uncertainties are 23%, 11%, 8%, 7%, 7%, 9%, and 8% at 1cm, 2cm, 3cm

  13. MO-A-BRB-01: TG191: Clinical Use of Luminescent Dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kry, S.

    This presentation will highlight the upcoming TG-191 report: Clinical Use of Luminescent Dosimeters. Luminescent dosimetry based on TLD and OSLD is a practical, accurate, and precise technique for point dosimetry in medical physics applications. The charges of Task Group 191 were to detail the methodologies for practical and optimal luminescent dosimetry in a clinical setting. This includes (1) To review the variety of TLD/OSL materials available, including features and limitations of each. (2) To outline the optimal steps to achieve accurate and precise dosimetry with luminescent detectors and to evaluate the uncertainty induced when less rigorous procedures are used. (3)more » To develop consensus guidelines on the optimal use of luminescent dosimeters for clinical practice. (4) To develop guidelines for special medically relevant uses of TLDs/OSLs (e.g., mixed field i.e. photon/neutron dosimetry, particle beam dosimetry, skin dosimetry). While this report provides general guidelines for arbitrary TLD and OSLD processes, the report, and therefore this presentation, provide specific guidance for TLD-100 (LiF:Ti,Mg) and nanoDot (Al2O3:C) dosimeters because of their prevalence in clinical practice. Learning Objectives: Understand the available dosimetry systems, and basic theory of their operation Understand the range of dose determination methodologies and the uncertainties associated with them Become familiar with special considerations for TLD/OSLD relevant for special clinical situations Learn recommended commissioning and QA procedures for these dosimetry systems.« less

  14. MO-A-BRB-00: TG191: Clinical Use of Luminescent Dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This presentation will highlight the upcoming TG-191 report: Clinical Use of Luminescent Dosimeters. Luminescent dosimetry based on TLD and OSLD is a practical, accurate, and precise technique for point dosimetry in medical physics applications. The charges of Task Group 191 were to detail the methodologies for practical and optimal luminescent dosimetry in a clinical setting. This includes (1) To review the variety of TLD/OSL materials available, including features and limitations of each. (2) To outline the optimal steps to achieve accurate and precise dosimetry with luminescent detectors and to evaluate the uncertainty induced when less rigorous procedures are used. (3)more » To develop consensus guidelines on the optimal use of luminescent dosimeters for clinical practice. (4) To develop guidelines for special medically relevant uses of TLDs/OSLs (e.g., mixed field i.e. photon/neutron dosimetry, particle beam dosimetry, skin dosimetry). While this report provides general guidelines for arbitrary TLD and OSLD processes, the report, and therefore this presentation, provide specific guidance for TLD-100 (LiF:Ti,Mg) and nanoDot (Al2O3:C) dosimeters because of their prevalence in clinical practice. Learning Objectives: Understand the available dosimetry systems, and basic theory of their operation Understand the range of dose determination methodologies and the uncertainties associated with them Become familiar with special considerations for TLD/OSLD relevant for special clinical situations Learn recommended commissioning and QA procedures for these dosimetry systems.« less

  15. Calculations of two new dose metrics proposed by AAPM Task Group 111 using the measurements with standard CT dosimetry phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xinhua; Zhang, Da; Liu, Bob

    2013-08-15

    Purpose: AAPM Task Group 111 proposed to measure the equilibrium dose-pitch product D-caret{sub eq} for scan modes involving table translation and the midpoint dose D{sub L}(0) for stationary-table modes on the central and peripheral axes of sufficiently long (e.g., at least 40 cm) phantoms. This paper presents an alternative approach to calculate both metrics using the measurements of scanning the standard computed tomographic (CT) dosimetry phantoms on CT scanners.Methods: D-caret{sub eq} was calculated from CTDI{sub 100} and ε(CTDI{sub 100}) (CTDI{sub 100} efficiency), and D{sub L}(0) was calculated from D-caret{sub eq} and the approach to equilibrium function H(L) =D{sub L}(0)/D{sub eq},more » where D{sub eq} was the equilibrium dose. CTDI{sub 100} may be directly obtained from several sources (such as medical physicist's CT scanner performance evaluation or the IMPACT CT patient dosimetry calculator), or be derived from CTDI{sub Vol} using the central to peripheral CTDI{sub 100} ratio (R{sub 100}). The authors have provided the required ε(CTDI{sub 100}) and H(L) data in two previous papers [X. Li, D. Zhang, and B. Liu, Med. Phys. 39, 901–905 (2012); and ibid. 40, 031903 (10pp.) (2013)]. R{sub 100} was assessed for a series of GE, Siemens, Philips, and Toshiba CT scanners with multiple settings of scan field of view, tube voltage, and bowtie filter.Results: The calculated D{sub L}(0) and D{sub L}(0)/D{sub eq} in PMMA and water cylinders were consistent with the measurements on two GE CT scanners (LightSpeed 16 and VCT) by Dixon and Ballard [Med. Phys. 34, 3399–3413 (2007)], the measurements on a Siemens CT scanner (SOMATOM Spirit Power) by Descamps et al. [J. Appl. Clin. Med. Phys. 13, 293–302 (2012)], and the Monte Carlo simulations by Boone [Med. Phys. 36, 4547–4554 (2009)].Conclusions: D-caret{sub eq} and D{sub L}(0) can be calculated using the alternative approach. The authors have provided the required ε(CTDI{sub 100}) and H(L) data in two

  16. Medical Physicists and AAPM

    NASA Astrophysics Data System (ADS)

    Amols, Howard

    2006-03-01

    The American Association of Physicists in Medicine (AAPM), a member society of the AIP is the largest professional society of medical physicists in the world with nearly 5700 members. Members operate in medical centers, university and community hospitals, research laboratories, industry, and private practice. Medical physics specialties include radiation therapy physics, medical diagnostic and imaging physics, nuclear medicine physics, and medical radiation safety. The majority of AAPM members are based in hospital departments of radiation oncology or radiology and provide technical support for patient diagnosis and treatment in a clinical environment. Job functions include support of clinical care, calibration and quality assurance of medical devices such as linear accelerators for cancer therapy, CT, PET, MRI, and other diagnostic imaging devices, research, and teaching. Pathways into a career in medical physics require an advanced degree in medical physics, physics, engineering, or closely related field, plus clinical training in one or more medical physics specialties (radiation therapy physics, imaging physics, or radiation safety). Most clinically based medical physicists also obtain certification from the American Board of Radiology, and some states require licensure as well.

  17. Determination of recombination and polarity correction factors, kS and kP, for small cylindrical ionization chambers PTW 31021 and PTW 31022 in pulsed filtered and unfiltered beams.

    PubMed

    Bruggmoser, Gregor; Saum, Rainer; Kranzer, Rafael

    2018-01-12

    The aim of this technical communication is to provide correction factors for recombination and polarity effect for two new ionization chambers PTW PinPoint 3D (type 31022) and PTW Semiflex 3D (type 31021). The correction factors provided are for the (based on the) German DIN 6800-2 dosimetry protocol and the AAPM TG51 protocol. The measurements were made in filtered and unfiltered high-energy photon beams in a water equivalent phantom at maximum depth of the PDD and a field size on the surface of 10cm×10cm. The design of the new chamber types leads to an ion collection efficiency and a polarity effect that are well within the specifications requested by pertinent dosimetry protocols including the addendum of TG-51. It was confirmed that the recombination effect of both chambers mainly depends on dose per pulse and is independent of the filtration of the photon beam. Copyright © 2018. Published by Elsevier GmbH.

  18. SU-F-BRA-11: An Experimental Commissioning Test of Brachytherapy MBDCA Dosimetry, Based On a Commercial Radiochromic Gel/optical CT System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pappas, E; Karaiskos, P; Zourari, K

    2015-06-15

    Purpose: To implement a 3D dose verification procedure of Model-Based Dose Calculation Algorithms (MBDCAs) for {sup 192}Ir HDR brachytherapy, based on a novel Ferrous Xylenol-orange gel (FXG) and optical CT read-out. Methods: The TruView gel was employed for absolute dosimetry in conjunction with cone-beam optical CT read-out with the VISTA scanner (both from Modus Medical Inc, London, ON, Canada). A multi-catheter skin flap was attached to a cylindrical PETE jar (d=9.6cm, h=16cm) filled with FXG, which served as both the dosimeter and the water equivalent phantom of bounded dimensions. X- ray CT image series of the jar with flap attachedmore » was imported to Oncentra Brachy v.4.5. A treatment plan consisting of 8 catheters and 56 dwell positions was generated, and Oncentra-ACE MBDCA as well as TG43 dose results were exported for further evaluation. The irradiation was carried out with a microSelecton v2 source. The FXG dose-response, measured via an electron irradiation of a second dosimeter from the same batch, was linear (R2>0.999) at least up to 12Gy. A MCNP6 input file was prepared from the DICOM-RT plan data using BrachyGuide to facilitate Monte Carlo (MC) simulation dosimetry in the actual experimental geometry. Agreement between experimental (reference) and calculated dose distributions was evaluated using the 3D gamma index (GI) method with criteria (5%-2mm applied locally) determined from uncertainty analysis. Results: The TG-43 GI failed, as expected, in the majority of voxels away from the flap (pass rate 59% for D>0.8Gy, corresponding to 10% of prescribed dose). ACE performed significantly better (corresponding pass rate 92%). The GI evaluation for the MC data (corresponding pass rate 97%) failed mainly at low dose points of increased uncertainty. Conclusion: FXG gel/optical CT is an efficient method for level-2 commissioning of brachytherapy MBDCAs. Target dosimetry is not affected from uncertainty introduced by TG43 assumptions in 192Ir skin

  19. Thyroglobulin (Tg) Testing Revisited: Tg Assays, TgAb Assays, and Correlation of Results With Clinical Outcomes.

    PubMed

    Netzel, Brian C; Grebe, Stefan K G; Carranza Leon, B Gisella; Castro, M Regina; Clark, Penelope M; Hoofnagle, Andrew N; Spencer, Carole A; Turcu, Adina F; Algeciras-Schimnich, Alicia

    2015-08-01

    Measurement of thyroglobulin (Tg) by mass spectrometry (Tg-MS) is emerging as a tool for accurate Tg quantification in patients with anti-Tg autoantibodies (TgAbs). The objective of the study was to perform analytical and clinical evaluations of two Tg-MS assays in comparison with immunometric Tg assays (Tg-IAs) and Tg RIAs (Tg-RIAs) in a cohort of thyroid cancer patients. A total of 589 samples from 495 patients, 243 TgAb-/252 TgAb+, were tested by Beckman, Roche, Siemens-Immulite, and Thermo-Brahms Tg and TgAb assays, two Tg-RIAs, and two Tg-MS assays. The frequency of TgAb+ was 58%, 41%, 27%, and 39% for Roche, Beckman, Siemens-Immulite, and Thermo-Brahms, respectively. In TgAb- samples, clinical sensitivities and specificities of 100% and 74%-100%, respectively, were observed across all assays. In TgAb+ samples, all Tg-IAs demonstrated assay-dependent Tg underestimation, ranging from 41% to 86%. In TgAb+ samples, the use of a common cutoff (0.5 ng/mL) for the Tg-MS, three Tg-IAs, and the USC-RIA improved the sensitivity for the Tg-MSs and Tg-RIAs when compared with the Tg-IAs. In up to 20% of TgAb+ cases, Tg-IAs failed to detect Tg that was detectable by Tg-MS. In Tg-RIAs false-high biases were observed in TgAb+ samples containing low Tg concentrations. Tg-IAs remain the method of choice for Tg quantitation in TgAb- patients. In TgAb+ patients with undetectable Tg by immunometric assay, the Tg-MS will detect Tg in up to 20% additional cases. The Tg-RIA will detect Tg in approximately 35% cases, but a significant proportion of these will be clinical false-positive results. The undetectable Tg-MS seen in approximately 40% of TgAb+ cases in patients with disease need further evaluation.

  20. AAPM-RSS Medical Physics Practice Guideline 9.a. for SRS-SBRT.

    PubMed

    Halvorsen, Per H; Cirino, Eileen; Das, Indra J; Garrett, Jeffrey A; Yang, Jun; Yin, Fang-Fang; Fairobent, Lynne A

    2017-09-01

    The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education, and professional practice of medical physics. The AAPM has more than 8,000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized. The following terms are used in the AAPM practice guidelines: Must and Must Not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline. Should and Should Not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances. Approved by AAPM Professional Council 3-31-2017 and Executive Committee 4-4-2017. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  1. WE-AB-213-01: AAPM Projects and Collaborations in Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shulman, A.

    to recruitment of professionals with incomplete education. In most LA countries only one MP responsible for each Center is currently mandated. Currently there is a large disparity among MP training programs and there is significant debate about the standards of MP graduate education in many LA countries. There are no commonly recognized academic programs, not enough clinical training sites and clinical training is not typically considered as part of the MP work. Economic pressures and high workloads also impede the creation of more training centers. The increasing need of qualified MPs require establishing a coordinated system of national Education & Training Centers (ETC), to meet the international standards of education and training in Medical Physics. This shortfall calls for support of organizations such as the IOMP, AAPM, ALFIM, IAEA, etc. Examples from various LA countries, as well as some proposed solutions, will be presented. In particular, we will discuss the resources that the AAPM and its members can offer to support regional programs. The ‘Medical Imaging’ physicist in the emerging world: Challenges and opportunities - Caridad Borrás (WGNIMP Chair) While the role of radiation therapy physicists in the emerging world is reasonably well established, the role of medical imaging physicists is not. The only perceived needs in radiology departments are equipment quality control and radiation protection, tasks that can be done by a technologist or a service engineer. To change the situation, the International Basic Safety Standard, which is adopted/adapted world-wide as national radiation protection regulations, states: “For diagnostic radiological procedures and image guided interventional procedures, the requirements of these Standards for medical imaging, calibration, dosimetry and quality assurance, including the acceptance and commissioning of medical radiological equipment, are fulfilled by or under the oversight of, or with the documented advice of

  2. Dosimetry for 131Cs and 125I seeds in solid water phantom using radiochromic EBT film.

    PubMed

    Chiu-Tsao, Sou-Tung; Napoli, John J; Davis, Stephen D; Hanley, Joseph; Rivard, Mark J

    2014-09-01

    To measure the 2D dose distributions with submillimeter resolution for (131)Cs (model CS-1 Rev2) and (125)I (model 6711) seeds in a Solid Water phantom using radiochromic EBT film for radial distances from 0.06cm to 5cm. To determine the TG-43 dosimetry parameters in water by applying Solid Water to liquid water correction factors generated from Monte Carlo simulations. Each film piece was positioned horizontally above and in close contact with a (131)Cs or (125)I seed oriented horizontally in a machined groove at the center of a Solid Water phantom, one film at a time. A total of 74 and 50 films were exposed to the (131)Cs and (125)I seeds, respectively. Different film sizes were utilized to gather data in different distance ranges. The exposure time varied according to the seed air-kerma strength and film size in order to deliver doses in the range covered by the film calibration curve. Small films were exposed for shorter times to assess the near field, while larger films were exposed for longer times in order to assess the far field. For calibration, films were exposed to either 40kV (M40) or 50kV (M50) x-rays in air at 100.0cm SSD with doses ranging from 0.2Gy to 40Gy. All experimental, calibration and background films were scanned at a 0.02cmpixel resolution using a CCD camera-based microdensitometer with a green light source. Data acquisition and scanner uniformity correction were achieved with Microd3 software. Data analysis was performed using ImageJ, FV, IDL and Excel software packages. 2D dose distributions were based on the calibration curve established for 50kV x-rays. The Solid Water to liquid water medium correction was calculated using the MCNP5 Monte Carlo code. Subsequently, the TG-43 dosimetry parameters in liquid water medium were determined. Values for the dose-rate constants using EBT film were 1.069±0.036 and 0.923±0.031cGyU(-1)h(-1) for (131)Cs and (125)I seed, respectively. The corresponding values determined using the Monte Carlo method

  3. Monte Carol-Based Dosimetry of Beta-Emitters for Intravascular Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, C.K.

    2002-06-25

    Monte Carlo simulations for radiation dosimetry and the experimental verifications of the simulations have been developed for the treatment geometry of intravascular brachytherapy, a form of radionuclide therapy for occluded coronary disease (restenosis). Monte Carlo code, MCNP4C, has been used to calculate the radiation dose from the encapsulated array of B-emitting seeds (Sr/Y-source train). Solid water phantoms have been fabricated to measure the dose on the radiochromic films that were exposed to the beta source train for both linear and curved coronary vessel geometries. While the dose difference for the 5-degree curved vessel at the prescription point of f+2.0 mmmore » is within the 10% guideline set by the AAPM, however, the difference increased dramatically to 16.85% for the 10-degree case which requires additional adjustment for the acceptable dosimetry planning. The experimental dose measurements agree well with the simulation results« less

  4. TU-E-BRB-03: Overview of Proposed TG-132 Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brock, K.

    2015-06-15

    Deformable image registration (DIR) is developing rapidly and is poised to substantially improve dose fusion accuracy for adaptive and retreatment planning and motion management and PET fusion to enhance contour delineation for treatment planning. However, DIR dose warping accuracy is difficult to quantify, in general, and particularly difficult to do so on a patient-specific basis. As clinical DIR options become more widely available, there is an increased need to understand the implications of incorporating DIR into clinical workflow. Several groups have assessed DIR accuracy in clinically relevant scenarios, but no comprehensive review material is yet available. This session will alsomore » discuss aspects of the AAPM Task Group 132 on the Use of Image Registration and Data Fusion Algorithms and Techniques in Radiotherapy Treatment Planning official report, which provides recommendations for DIR clinical use. We will summarize and compare various commercial DIR software options, outline successful clinical techniques, show specific examples with discussion of appropriate and inappropriate applications of DIR, discuss the clinical implications of DIR, provide an overview of current DIR error analysis research, review QA options and research phantom development and present TG-132 recommendations. Learning Objectives: Compare/contrast commercial DIR software and QA options Overview clinical DIR workflow for retreatment To understand uncertainties introduced by DIR Review TG-132 proposed recommendations.« less

  5. On the impact of improved dosimetric accuracy on head and neck high dose rate brachytherapy.

    PubMed

    Peppa, Vasiliki; Pappas, Eleftherios; Major, Tibor; Takácsi-Nagy, Zoltán; Pantelis, Evaggelos; Papagiannis, Panagiotis

    2016-07-01

    To study the effect of finite patient dimensions and tissue heterogeneities in head and neck high dose rate brachytherapy. The current practice of TG-43 dosimetry was compared to patient specific dosimetry obtained using Monte Carlo simulation for a sample of 22 patient plans. The dose distributions were compared in terms of percentage dose differences as well as differences in dose volume histogram and radiobiological indices for the target and organs at risk (mandible, parotids, skin, and spinal cord). Noticeable percentage differences exist between TG-43 and patient specific dosimetry, mainly at low dose points. Expressed as fractions of the planning aim dose, percentage differences are within 2% with a general TG-43 overestimation except for the spine. These differences are consistent resulting in statistically significant differences of dose volume histogram and radiobiology indices. Absolute differences of these indices are however small to warrant clinical importance in terms of tumor control or complication probabilities. The introduction of dosimetry methods characterized by improved accuracy is a valuable advancement. It does not appear however to influence dose prescription or call for amendment of clinical recommendations for the mobile tongue, base of tongue, and floor of mouth patient cohort of this study. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Essentials and guidelines for clinical medical physics residency training programs: executive summary of AAPM Report Number 249.

    PubMed

    Prisciandaro, Joann I; Willis, Charles E; Burmeister, Jay W; Clarke, Geoffrey D; Das, Rupak K; Esthappan, Jacqueline; Gerbi, Bruce J; Harkness, Beth A; Patton, James A; Peck, Donald J; Pizzutiello, Robert J; Sandison, George A; White, Sharon L; Wichman, Brian D; Ibbott, Geoffrey S; Both, Stefan

    2014-05-08

    There is a clear need for established standards for medical physics residency training. The complexity of techniques in imaging, nuclear medicine, and radiation oncology continues to increase with each passing year. It is therefore imperative that training requirements and competencies are routinely reviewed and updated to reflect the changing environment in hospitals and clinics across the country. In 2010, the AAPM Work Group on Periodic Review of Medical Physics Residency Training was formed and charged with updating AAPM Report Number 90. This work group includes AAPM members with extensive experience in clinical, professional, and educational aspects of medical physics. The resulting report, AAPM Report Number 249, concentrates on the clinical and professional knowledge needed to function independently as a practicing medical physicist in the areas of radiation oncology, imaging, and nuclear medicine, and constitutes a revision to AAPM Report Number 90. This manuscript presents an executive summary of AAPM Report Number 249.

  7. Essentials and guidelines for clinical medical physics residency training programs: executive summary of AAPM Report Number 249

    PubMed Central

    Willis, Charles E.; Burmeister, Jay W.; Clarke, Geoffrey D.; Das, Rupak K.; Esthappan, Jacqueline; Gerbi, Bruce J.; Harkness, Beth A.; Patton, James A.; Peck, Donald J.; Pizzutiello, Robert J.; Sandison, George A.; White, Sharon L.; Wichman, Brian D.; Ibbott, Geoffrey S.; Both, Stefan

    2014-01-01

    There is a clear need for established standards for medical physics residency training. The complexity of techniques in imaging, nuclear medicine, and radiation oncology continues to increase with each passing year. It is therefore imperative that training requirements and competencies are routinely reviewed and updated to reflect the changing environment in hospitals and clinics across the country. In 2010, the AAPM Work Group on Periodic Review of Medical Physics Residency Training was formed and charged with updating AAPM Report Number 90. This work group includes AAPM members with extensive experience in clinical, professional, and educational aspects of medical physics. The resulting report, AAPM Report Number 249, concentrates on the clinical and professional knowledge needed to function independently as a practicing medical physicist in the areas of radiation oncology, imaging, and nuclear medicine, and constitutes a revision to AAPM Report Number 90. This manuscript presents an executive summary of AAPM Report Number 249. PACS number: 87.10.‐e PMID:24892354

  8. SU-E-T-275: Dose Verification in a Small Animal Image-Guided Radiation Therapy X-Ray Machine: A Dose Comparison between TG-61 Based Look-Up Table and MOSFET Method for Various Collimator Sizes.

    PubMed

    Rodrigues, A; Nguyen, G; Li, Y; Roy Choudhury, K; Kirsch, D; Das, S; Yoshizumi, T

    2012-06-01

    To verify the accuracy of TG-61 based dosimetry with MOSFET technology using a tissue-equivalent mouse phantom. Accuracy of mouse dose between a TG-61 based look-up table was verified with MOSFET technology. The look-up table followed a TG-61 based commissioning and used a solid water block and radiochromic film. A tissue-equivalent mouse phantom (2 cm diameter, 8 cm length) was used for the MOSFET method. Detectors were placed in the phantom at the head and center of the body. MOSFETs were calibrated in air with an ion chamber and f-factor was applied to derive the dose to tissue. In CBCT mode, the phantom was positioned such that the system isocenter coincided with the center of the MOSFET with the active volume perpendicular to the beam. The absorbed dose was measured three times for seven different collimators, respectively. The exposure parameters were 225 kVp, 13 mA, and an exposure time of 20 s. For a 10 mm, 15 mm, and 20 mm circular collimator, the dose measured by the phantom was 4.3%, 2.7%, and 6% lower than TG-61 based measurements, respectively. For a 10 × 10 mm, 20 × 20 mm, and 40 × 40 mm collimator, the dose difference was 4.7%, 7.7%, and 2.9%, respectively. The MOSFET data was systematically lower than the commissioning data. The dose difference is due to the increased scatter radiation in the solid water block versus the dimension of the mouse phantom leading to an overestimation of the actual dose in the solid water block. The MOSFET method with the use of a tissue- equivalent mouse phantom provides less labor intensive geometry-specific dosimetry and accuracy with better dose tolerances of up to ± 2.7%. © 2012 American Association of Physicists in Medicine.

  9. A simplified analytical dose calculation algorithm accounting for tissue heterogeneity for low-energy brachytherapy sources.

    PubMed

    Mashouf, Shahram; Lechtman, Eli; Beaulieu, Luc; Verhaegen, Frank; Keller, Brian M; Ravi, Ananth; Pignol, Jean-Philippe

    2013-09-21

    The American Association of Physicists in Medicine Task Group No. 43 (AAPM TG-43) formalism is the standard for seeds brachytherapy dose calculation. But for breast seed implants, Monte Carlo simulations reveal large errors due to tissue heterogeneity. Since TG-43 includes several factors to account for source geometry, anisotropy and strength, we propose an additional correction factor, called the inhomogeneity correction factor (ICF), accounting for tissue heterogeneity for Pd-103 brachytherapy. This correction factor is calculated as a function of the media linear attenuation coefficient and mass energy absorption coefficient, and it is independent of the source internal structure. Ultimately the dose in heterogeneous media can be calculated as a product of dose in water as calculated by TG-43 protocol times the ICF. To validate the ICF methodology, dose absorbed in spherical phantoms with large tissue heterogeneities was compared using the TG-43 formalism corrected for heterogeneity versus Monte Carlo simulations. The agreement between Monte Carlo simulations and the ICF method remained within 5% in soft tissues up to several centimeters from a Pd-103 source. Compared to Monte Carlo, the ICF methods can easily be integrated into a clinical treatment planning system and it does not require the detailed internal structure of the source or the photon phase-space.

  10. The Bebig Valencia-type skin applicators: Dosimetric study and implementation of a dosimetric hybrid technique.

    PubMed

    Anagnostopoulos, Georgios; Andrássy, Michael; Baltas, Dimos

    To determine the relative dose rate distribution in water for the Bebig 20 mm and 30 mm skin applicators and report results in a form suitable for potential clinical use. Results for both skin applicators are also provided in the form of a hybrid Task Group 43 (TG-43) dosimetry technique. Furthermore, the radiation leakage around both skin applicators from the radiation protection point of view and the impact of the geometrical source position uncertainties are studied and reported. Monte Carlo simulations were performed using the MCNP 6.1 general purpose code, which was benchmarked against published dosimetry data for the Bebig Ir2.A85-2 high-dose-rate iridium-192 source, as well as the dosimetry data for the two Elekta skin applicators. Both Bebig skin applicators were modeled, and the dose rate distributions in a water phantom were calculated. The dosimetric quantities derived according to a hybrid TG-43 dosimetry technique are provided with their corresponding uncertainty values. The air kerma rate in air was simulated in the vicinity of each skin applicator to assess the radiation leakage. Results from the Monte Carlo simulations of both skin applicators are presented in the form of figures and relative dose rate tables, and additionally with the aid of the quantities defined in the hybrid TG-43 dosimetry technique and their corresponding uncertainty values. Their output factors, flatness, and penumbra values were found comparable to the Elekta skin applicators. The radiation shielding was evaluated to be adequate. The effect of potential uncertainties in source positioning on dosimetry should be investigated as part of applicator commissioning. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  11. The advantages of absorbed-dose calibration factors.

    PubMed

    Rogers, D W

    1992-01-01

    A formalism for clinical external beam dosimetry based on use of ion chamber absorbed-dose calibration factors is outlined in the context and notation of the AAPM TG-21 protocol. It is shown that basing clinical dosimetry on absorbed-dose calibration factors ND leads to considerable simplification and reduced uncertainty in dose measurement. In keeping with a protocol which is used in Germany, a quantity kQ is defined which relates an absorbed-dose calibration factor in a beam of quality Q0 to that in a beam of quality Q. For 38 cylindrical ion chambers, two sets of values are presented for ND/NX and Ngas/ND and for kQ for photon beams with beam quality specified by the TPR20(10) ratio. One set is based on TG-21's protocol to allow the new formalism to be used while maintaining equivalence to the TG-21 protocol. To demonstrate the magnitude of the overall error in the TG-21 protocol, the other set uses corrected versions of the TG-21 equations and the more consistent physical data of the IAEA Code of Practice. Comparisons are made to procedures based on air-kerma or exposure calibration factors and it is shown that accuracy and simplicity are gained by avoiding the determination of Ngas from NX. It is also shown that the kQ approach simplifies the use of plastic phantoms in photon beams since kQ values change by less than 0.6% compared to those in water although an overall correction factor of 0.973 is needed to go from absorbed dose in water calibration factors to those in PMMA or polystyrene. Values of kQ calculated using the IAEA Code of Practice are presented but are shown to be anomalous because of the way the effective point of measurement changes for 60Co beams. In photon beams the major difference between the IAEA Code of Practice and the corrected AAPM TG-21 protocol is shown to be the Prepl correction factor. Calculated kQ curves and three parameter equations for them are presented for each wall material and are shown to represent accurately the kQ curve

  12. Estimating peak skin and eye lens dose from neuroperfusion examinations: use of Monte Carlo based simulations and comparisons to CTDIvol, AAPM Report No. 111, and ImPACT dosimetry tool values.

    PubMed

    Zhang, Di; Cagnon, Chris H; Villablanca, J Pablo; McCollough, Cynthia H; Cody, Dianna D; Zankl, Maria; Demarco, John J; McNitt-Gray, Michael F

    2013-09-01

    CT neuroperfusion examinations are capable of delivering high radiation dose to the skin or lens of the eyes of a patient and can possibly cause deterministic radiation injury. The purpose of this study is to: (a) estimate peak skin dose and eye lens dose from CT neuroperfusion examinations based on several voxelized adult patient models of different head size and (b) investigate how well those doses can be approximated by some commonly used CT dose metrics or tools, such as CTDIvol, American Association of Physicists in Medicine (AAPM) Report No. 111 style peak dose measurements, and the ImPACT organ dose calculator spreadsheet. Monte Carlo simulation methods were used to estimate peak skin and eye lens dose on voxelized patient models, including GSF's Irene, Frank, Donna, and Golem, on four scanners from the major manufacturers at the widest collimation under all available tube potentials. Doses were reported on a per 100 mAs basis. CTDIvol measurements for a 16 cm CTDI phantom, AAPM Report No. 111 style peak dose measurements, and ImPACT calculations were performed for available scanners at all tube potentials. These were then compared with results from Monte Carlo simulations. The dose variations across the different voxelized patient models were small. Dependent on the tube potential and scanner and patient model, CTDIvol values overestimated peak skin dose by 26%-65%, and overestimated eye lens dose by 33%-106%, when compared to Monte Carlo simulations. AAPM Report No. 111 style measurements were much closer to peak skin estimates ranging from a 14% underestimate to a 33% overestimate, and with eye lens dose estimates ranging from a 9% underestimate to a 66% overestimate. The ImPACT spreadsheet overestimated eye lens dose by 2%-82% relative to voxelized model simulations. CTDIvol consistently overestimates dose to eye lens and skin. The ImPACT tool also overestimated dose to eye lenses. As such they are still useful as a conservative predictor of dose for CT

  13. Estimating peak skin and eye lens dose from neuroperfusion examinations: Use of Monte Carlo based simulations and comparisons to CTDIvol, AAPM Report No. 111, and ImPACT dosimetry tool values

    PubMed Central

    Zhang, Di; Cagnon, Chris H.; Villablanca, J. Pablo; McCollough, Cynthia H.; Cody, Dianna D.; Zankl, Maria; Demarco, John J.; McNitt-Gray, Michael F.

    2013-01-01

    Purpose: CT neuroperfusion examinations are capable of delivering high radiation dose to the skin or lens of the eyes of a patient and can possibly cause deterministic radiation injury. The purpose of this study is to: (a) estimate peak skin dose and eye lens dose from CT neuroperfusion examinations based on several voxelized adult patient models of different head size and (b) investigate how well those doses can be approximated by some commonly used CT dose metrics or tools, such as CTDIvol, American Association of Physicists in Medicine (AAPM) Report No. 111 style peak dose measurements, and the ImPACT organ dose calculator spreadsheet. Methods: Monte Carlo simulation methods were used to estimate peak skin and eye lens dose on voxelized patient models, including GSF's Irene, Frank, Donna, and Golem, on four scanners from the major manufacturers at the widest collimation under all available tube potentials. Doses were reported on a per 100 mAs basis. CTDIvol measurements for a 16 cm CTDI phantom, AAPM Report No. 111 style peak dose measurements, and ImPACT calculations were performed for available scanners at all tube potentials. These were then compared with results from Monte Carlo simulations. Results: The dose variations across the different voxelized patient models were small. Dependent on the tube potential and scanner and patient model, CTDIvol values overestimated peak skin dose by 26%–65%, and overestimated eye lens dose by 33%–106%, when compared to Monte Carlo simulations. AAPM Report No. 111 style measurements were much closer to peak skin estimates ranging from a 14% underestimate to a 33% overestimate, and with eye lens dose estimates ranging from a 9% underestimate to a 66% overestimate. The ImPACT spreadsheet overestimated eye lens dose by 2%–82% relative to voxelized model simulations. Conclusions: CTDIvol consistently overestimates dose to eye lens and skin. The ImPACT tool also overestimated dose to eye lenses. As such they are still

  14. Collision-kerma conversion between dose-to-tissue and dose-to-water by photon energy-fluence corrections in low-energy brachytherapy.

    PubMed

    Giménez-Alventosa, Vicent; Antunes, Paula C G; Vijande, Javier; Ballester, Facundo; Pérez-Calatayud, José; Andreo, Pedro

    2017-01-07

    The AAPM TG-43 brachytherapy dosimetry formalism, introduced in 1995, has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations, except in the vicinity of the source capsule. Subsequent dosimetry developments, based on Monte Carlo calculations or analytical solutions of transport equations, do not rely on the CPE assumption and determine directly the dose to different tissues. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seeds is proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences. State-of-the art Monte Carlo calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone), which in all cases include a realistic modelling of low-energy brachytherapy sources in order to benchmark the formalism proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases (e.g. bone tissue).

  15. Collision-kerma conversion between dose-to-tissue and dose-to-water by photon energy-fluence corrections in low-energy brachytherapy

    NASA Astrophysics Data System (ADS)

    Giménez-Alventosa, Vicent; Antunes, Paula C. G.; Vijande, Javier; Ballester, Facundo; Pérez-Calatayud, José; Andreo, Pedro

    2017-01-01

    The AAPM TG-43 brachytherapy dosimetry formalism, introduced in 1995, has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations, except in the vicinity of the source capsule. Subsequent dosimetry developments, based on Monte Carlo calculations or analytical solutions of transport equations, do not rely on the CPE assumption and determine directly the dose to different tissues. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seeds is proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences. State-of-the art Monte Carlo calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone), which in all cases include a realistic modelling of low-energy brachytherapy sources in order to benchmark the formalism proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases (e.g. bone tissue).

  16. AA-PMe, a novel asiatic acid derivative, induces apoptosis and suppresses proliferation, migration, and invasion of gastric cancer cells.

    PubMed

    Jing, Yue; Wang, Gang; Ge, Ying; Xu, Minjie; Tang, Shuainan; Gong, Zhunan

    2016-01-01

    Asiatic acid (AA; 2α,3β,23-trihydroxyurs-12-ene-28-oic acid) is widely used for medicinal purposes in many Asian countries due to its various bioactivities. A series of AA derivatives has been synthesized in attempts to improve its therapeutic potencies. Herein we investigated the anti-tumor activities of N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-l-proline methyl ester (AA-PMe), a novel AA derivative. AA-PMe exhibited a stronger anti-cancer activity than its parent compound AA. AA-PMe inhibited the proliferation of SGC7901 and HGC27 human gastric cancer cells in a dose-dependent manner but had no significant toxicity in human gastric mucosa epithelial cells (GES-1). AA-PMe induced cell cycle arrest in G0/G1 phase and blocked G1-S transition, which correlated well with marked decreases in levels of cyclin D1, cyclin-dependent kinase CKD4, and phosphorylated retinoblastoma protein, and increase in cyclin-dependent kinase inhibitor P15. Further, AA-PMe induced apoptosis of human gastric cancer cells by affecting Bcl-2, Bax, c-Myc, and caspase-3. Moreover, AA-PMe suppressed the migration and invasion of human gastric cancer cells (SGC7901 and HGC27) cells by downregulating the expression of MMP-2 and MMP-9. Overall, this study investigated the potential anti-cancer activities of AA-PMe including inducing apoptosis and suppressing proliferation, migration and invasion of gastric cancer cells, as well as the underlying mechanisms, suggesting that AA-PMe is a promising anti-cancer drug candidate in gastric cancer therapy.

  17. A quantitative three-dimensional dose attenuation analysis around Fletcher-Suit-Delclos due to stainless steel tube for high-dose-rate brachytherapy by Monte Carlo calculations.

    PubMed

    Parsai, E Ishmael; Zhang, Zhengdong; Feldmeier, John J

    2009-01-01

    The commercially available brachytherapy treatment-planning systems today, usually neglects the attenuation effect from stainless steel (SS) tube when Fletcher-Suit-Delclos (FSD) is used in treatment of cervical and endometrial cancers. This could lead to potential inaccuracies in computing dwell times and dose distribution. A more accurate analysis quantifying the level of attenuation for high-dose-rate (HDR) iridium 192 radionuclide ((192)Ir) source is presented through Monte Carlo simulation verified by measurement. In this investigation a general Monte Carlo N-Particles (MCNP) transport code was used to construct a typical geometry of FSD through simulation and compare the doses delivered to point A in Manchester System with and without the SS tubing. A quantitative assessment of inaccuracies in delivered dose vs. the computed dose is presented. In addition, this investigation expanded to examine the attenuation-corrected radial and anisotropy dose functions in a form parallel to the updated AAPM Task Group No. 43 Report (AAPM TG-43) formalism. This will delineate quantitatively the inaccuracies in dose distributions in three-dimensional space. The changes in dose deposition and distribution caused by increased attenuation coefficient resulted from presence of SS are quantified using MCNP Monte Carlo simulations in coupled photon/electron transport. The source geometry was that of the Vari Source wire model VS2000. The FSD was that of the Varian medical system. In this model, the bending angles of tandem and colpostats are 15 degrees and 120 degrees , respectively. We assigned 10 dwell positions to the tandem and 4 dwell positions to right and left colpostats or ovoids to represent a typical treatment case. Typical dose delivered to point A was determined according to Manchester dosimetry system. Based on our computations, the reduction of dose to point A was shown to be at least 3%. So this effect presented by SS-FSD systems on patient dose is of concern.

  18. AA-PMe, a novel asiatic acid derivative, induces apoptosis and suppresses proliferation, migration, and invasion of gastric cancer cells

    PubMed Central

    Jing, Yue; Wang, Gang; Ge, Ying; Xu, Minjie; Tang, Shuainan; Gong, Zhunan

    2016-01-01

    Asiatic acid (AA; 2α,3β,23-trihydroxyurs-12-ene-28-oic acid) is widely used for medicinal purposes in many Asian countries due to its various bioactivities. A series of AA derivatives has been synthesized in attempts to improve its therapeutic potencies. Herein we investigated the anti-tumor activities of N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-l-proline methyl ester (AA-PMe), a novel AA derivative. AA-PMe exhibited a stronger anti-cancer activity than its parent compound AA. AA-PMe inhibited the proliferation of SGC7901 and HGC27 human gastric cancer cells in a dose-dependent manner but had no significant toxicity in human gastric mucosa epithelial cells (GES-1). AA-PMe induced cell cycle arrest in G0/G1 phase and blocked G1-S transition, which correlated well with marked decreases in levels of cyclin D1, cyclin-dependent kinase CKD4, and phosphorylated retinoblastoma protein, and increase in cyclin-dependent kinase inhibitor P15. Further, AA-PMe induced apoptosis of human gastric cancer cells by affecting Bcl-2, Bax, c-Myc, and caspase-3. Moreover, AA-PMe suppressed the migration and invasion of human gastric cancer cells (SGC7901 and HGC27) cells by downregulating the expression of MMP-2 and MMP-9. Overall, this study investigated the potential anti-cancer activities of AA-PMe including inducing apoptosis and suppressing proliferation, migration and invasion of gastric cancer cells, as well as the underlying mechanisms, suggesting that AA-PMe is a promising anti-cancer drug candidate in gastric cancer therapy. PMID:27073325

  19. WE-G-BRB-08: TG-51 Calibration of First Commercial MRI-Guided IMRT System in the Presence of 0.35 Tesla Magnetic Field.

    PubMed

    Goddu, S; Green, O Pechenaya; Mutic, S

    2012-06-01

    The first real-time-MRI-guided radiotherapy system has been installed in a clinic and it is being evaluated. Presence of magnetic field (MF) during radiation output calibration may have implications on ionization measurements and there is a possibility that standard calibration protocols may not be suitable for dose measurements for such devices. In this study, we evaluated whether a standard calibration protocol (AAPM- TG-51) is appropriate for absolute dose measurement in presence of MF. Treatment delivery of the ViewRay (VR) system is via three 15,000Ci Cobalt-60 heads positioned 120-degrees apart and all calibration measurements were done in the presence of 0.35T MF. Two ADCL- calibrated ionization-chambers (Exradin A12, A16) were used for TG-51 calibration. Chambers were positioned at 5-cm depth, (SSD=105cm: VR's isocenter), and the MLC leaves were shaped to a 10.5cm × 10.5 cm field size. Percent-depth-dose (PDD) measurements were performed for 5 and 10 cm depths. Individual output of each head was measured using the AAPM- TG51 protocol. Calibration accuracy for each head was subsequently verified by Radiological Physics Center (RPC) TLD measurements. Measured ion-recombination (Pion) and polarity (Ppol) correction factors were less-than 1.002 and 1.006, respectively. Measured PDDs agreed with BJR-25 within ±0.2%. Maximum dose rates for the reference field size at VR's isocenter for heads 1, 2 and 3 were 1.445±0.005, 1.446±0.107, 1.431±0.006 Gy/minute, respectively. Our calibrations agreed with RPC- TLD measurements within ±1.3%, ±2.6% and ±2.0% for treatment-heads 1, 2 and 3, respectively. At the time of calibration, mean activity of the Co-60 sources was 10,800Ci±0.1%. This study shows that the TG- 51 calibration is feasible in the presence of 0.35T MF and the measurement agreement is within the range of results obtainable for conventional treatment machines. Drs. Green, Goddu, and Mutic served as scientific consultants for ViewRay, Inc. Dr. Mutic

  20. Determination of the Sensibility Factors for TLD-100 Powder on the Energy of X-Ray of 50, 250 kVp; 192Ir, 137Cs and 60Co

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loaiza, Sandra P.; Alvarez, Jose T.

    2006-09-08

    TLD-100 powder is calibrated in terms of absorbed dose to water Dw, using the protocols AAPM TG61, AAPM TG43 and IAEA-TRS 398, for the energy of RX 50, 250 kVp, 137Cs and 60Co respectively. The calibration curves, TLD Response R versus Dw, are fitted by weighted least square by a quadratic polynomials; which are validated with the lack of fit and the Anderson-Darling normality test. The slope of these curves corresponds to the sensibility factor: Fs R/DW, [Fs] = nC Gy-1. The expanded uncertainties U's for these factors are obtained from the ANOVA tables. Later, the Fs' values are interpolatedmore » using the effective energy hvefec for the 192Ir. The SSDL sent a set of capsules with powder TLD-100 for two Hospitals. These irradiated them a nominal dose of Dw = 2 Gy. The results determined at SSDL are: for the Hospital A the Dw is overestimated in order to 4.8% and the Hospital B underestimates it in the range from -1.4% to -17.5%.« less

  1. MO-A-BRC-01: TG167 Report - Introduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nath, R.

    Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used to evaluate innovative radiotherapy devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining equivalence of the innovative device to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of an innovative brachytherapy device or application is a critical part in which physicists are actively involved. The physicist’s role, along with physician colleagues, in this process is highlighted for innovative products or applications and includes evaluation of 1)more » dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, 2) risks and benefits from regulatory and safety perspectives, and 3) resource assessment and preparedness. Further, calibration methods should be traceable to a primary standards dosimetry laboratory such as NIST in the U.S. or to other primary standards dosimetry laboratory located elsewhere. Clinical users should follow standards as approved by their country’s regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the ADCLs is encouraged before a source is introduced into widespread routine clinical use. The AAPM and GEC-ESTRO have developed guidelines for the safe and consistent application of brachytherapy using innovative brachytherapy devices and applications. The current report covers regulatory approvals, calibration, dose calculations, radiobiological issues, and overall safety concerns that should be addressed during the commissioning stage preceding clinical use. These guidelines are based on

  2. AAPM Medical Physics Practice Guideline 3.a: Levels of supervision for medical physicists in clinical training.

    PubMed

    Seibert, J Anthony; Clements, Jessica B; Halvorsen, Per H; Herman, Michael G; Martin, Melissa C; Palta, Jatinder; Pfeiffer, Douglas E; Pizzutiello, Robert J; Schueler, Beth A; Shepard, S Jeff; Fairobrent, Lynne A

    2015-05-08

    The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education and professional practice of medical physics. The AAPM has more than 8,000 members and is the principal organization of medical physicists in the United States.The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner.Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized.The following terms are used in the AAPM practice guidelines:Must and Must Not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline.Should and Should Not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances.

  3. Dosimetric characterization of the M−15 high‐dose‐rate Iridium−192 brachytherapy source using the AAPM and ESTRO formalism

    PubMed Central

    Thanh, Minh‐Tri Ho; Munro, John J.

    2015-01-01

    The Source Production & Equipment Co. (SPEC) model M−15 is a new Iridium−192 brachytherapy source model intended for use as a temporary high‐dose‐rate (HDR) brachytherapy source for the Nucletron microSelectron Classic afterloading system. The purpose of this study is to characterize this HDR source for clinical application by obtaining a complete set of Monte Carlo calculated dosimetric parameters for the M‐15, as recommended by AAPM and ESTRO, for isotopes with average energies greater than 50 keV. This was accomplished by using the MCNP6 Monte Carlo code to simulate the resulting source dosimetry at various points within a pseudoinfinite water phantom. These dosimetric values next were converted into the AAPM and ESTRO dosimetry parameters and the respective statistical uncertainty in each parameter also calculated and presented. The M−15 source was modeled in an MCNP6 Monte Carlo environment using the physical source specifications provided by the manufacturer. Iridium−192 photons were uniformly generated inside the iridium core of the model M−15 with photon and secondary electron transport replicated using photoatomic cross‐sectional tables supplied with MCNP6. Simulations were performed for both water and air/vacuum computer models with a total of 4×109 sources photon history for each simulation and the in‐air photon spectrum filtered to remove low‐energy photons below δ=10%keV. Dosimetric data, including D(r,θ),gL(r),F(r,θ),Φan(r), and φ¯an, and their statistical uncertainty were calculated from the output of an MCNP model consisting of an M−15 source placed at the center of a spherical water phantom of 100 cm diameter. The air kerma strength in free space, SK, and dose rate constant, Λ, also was computed from a MCNP model with M−15 Iridium−192 source, was centered at the origin of an evacuated phantom in which a critical volume containing air at STP was added 100 cm from the source center. The reference dose rate, D˙(r0

  4. AAPM medical physics practice guideline 6.a.: Performance characteristics of radiation dose index monitoring systems.

    PubMed

    Gress, Dustin A; Dickinson, Renee L; Erwin, William D; Jordan, David W; Kobistek, Robert J; Stevens, Donna M; Supanich, Mark P; Wang, Jia; Fairobent, Lynne A

    2017-07-01

    The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education and professional practice of medical physics. The AAPM has more than 8,000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized. The following terms are used in the AAPM practice guidelines: •Must and Must Not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline. •Should and Should Not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  5. MO-PIS-Exhibit Hall-01: Tools for TG-142 Linac Imaging QA I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clements, M; Wiesmeyer, M

    2014-06-15

    Partners in Solutions is an exciting new program in which AAPM partners with our vendors to present practical “hands-on” information about the equipment and software systems that we use in our clinics. The therapy topic this year is solutions for TG-142 recommendations for linear accelerator imaging QA. Note that the sessions are being held in a special purpose room built on the Exhibit Hall Floor, to encourage further interaction with the vendors. Automated Imaging QA for TG-142 with RIT Presentation Time: 2:45 – 3:15 PM This presentation will discuss software tools for automated imaging QA and phantom analysis for TG-142.more » All modalities used in radiation oncology will be discussed, including CBCT, planar kV imaging, planar MV imaging, and imaging and treatment coordinate coincidence. Vendor supplied phantoms as well as a variety of third-party phantoms will be shown, along with appropriate analyses, proper phantom setup procedures and scanning settings, and a discussion of image quality metrics. Tools for process automation will be discussed which include: RIT Cognition (machine learning for phantom image identification), RIT Cerberus (automated file system monitoring and searching), and RunQueueC (batch processing of multiple images). In addition to phantom analysis, tools for statistical tracking, trending, and reporting will be discussed. This discussion will include an introduction to statistical process control, a valuable tool in analyzing data and determining appropriate tolerances. An Introduction to TG-142 Imaging QA Using Standard Imaging Products Presentation Time: 3:15 – 3:45 PM Medical Physicists want to understand the logic behind TG-142 Imaging QA. What is often missing is a firm understanding of the connections between the EPID and OBI phantom imaging, the software “algorithms” that calculate the QA metrics, the establishment of baselines, and the analysis and interpretation of the results. The goal of our brief presentation

  6. Effect of improved TLD dosimetry on the determination of dose rate constants for {sup 125}I and {sup 103}Pd brachytherapy seeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, M., E-mail: manuel.rodriguez@rmp.uhn.ca; Rogers, D. W. O.

    systematic uncertainties from density and composition uncertainties are significant. Using these revised values with the literature’s DRC measurements, the average discrepancies between revised measured values and Monte Carlo values are 1.2% and 0.2% for {sup 125}I and {sup 103}Pd seeds, respectively, compared to average discrepancies for the original measured values of 4.8%. On average, the revised measured values are 4.3% and 5.9% lower than the original measured values for {sup 103}Pd and {sup 125}I seeds, respectively. The average of revised DRCs and Monte Carlo values is 3.8% and 2.8% lower for {sup 125}I and {sup 103}Pd seeds, respectively, than the consensus values in TG-43U1 or TG-43U1S1. Conclusions: This work shows that f{sup rel} is TLD shape and seed model dependent suggesting a need to update the generalized energy response dependence, i.e., relative absorbed-dose sensitivity, measured 25 years ago and applied often to DRC measurements of {sup 125}I and {sup 103}Pd brachytherapy seeds. The intrinsic energy dependence for LiF TLDs deduced here is consistent with previous dosimetry studies and emphasizes the need to revise the DRC consensus values reported by TG-43U1 or TG-43U1S1.« less

  7. MO-A-BRC-02: TG167 Report - Detailed Description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivard, M.

    Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used to evaluate innovative radiotherapy devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining equivalence of the innovative device to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of an innovative brachytherapy device or application is a critical part in which physicists are actively involved. The physicist’s role, along with physician colleagues, in this process is highlighted for innovative products or applications and includes evaluation of 1)more » dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, 2) risks and benefits from regulatory and safety perspectives, and 3) resource assessment and preparedness. Further, calibration methods should be traceable to a primary standards dosimetry laboratory such as NIST in the U.S. or to other primary standards dosimetry laboratory located elsewhere. Clinical users should follow standards as approved by their country’s regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the ADCLs is encouraged before a source is introduced into widespread routine clinical use. The AAPM and GEC-ESTRO have developed guidelines for the safe and consistent application of brachytherapy using innovative brachytherapy devices and applications. The current report covers regulatory approvals, calibration, dose calculations, radiobiological issues, and overall safety concerns that should be addressed during the commissioning stage preceding clinical use. These guidelines are based on

  8. Anniversary Paper: Development of x-ray computed tomography: The role of Medical Physics and AAPM from the 1970s to present

    PubMed Central

    Pan, Xiaochuan; Siewerdsen, Jeffrey; La Riviere, Patrick J.; Kalender, Willi A.

    2008-01-01

    The AAPM, through its members, meetings, and its flagship journal Medical Physics, has played an important role in the development and growth of x-ray tomography in the last 50 years. From a spate of early articles in the 1970s characterizing the first commercial computed tomography (CT) scanners through the “slice wars” of the 1990s and 2000s, the history of CT and related techniques such as tomosynthesis can readily be traced through the pages of Medical Physics and the annals of the AAPM and RSNA/AAPM Annual Meetings. In this article, the authors intend to give a brief review of the role of Medical Physics and the AAPM in CT and tomosynthesis imaging over the last few decades. PMID:18777932

  9. Anniversary paper. Development of x-ray computed tomography: the role of medical physics and AAPM from the 1970s to present.

    PubMed

    Pan, Xiaochuan; Siewerdsen, Jeffrey; La Riviere, Patrick J; Kalender, Willi A

    2008-08-01

    The AAPM, through its members, meetings, and its flagship journal Medical Physics, has played an important role in the development and growth of x-ray tomography in the last 50 years. From a spate of early articles in the 1970s characterizing the first commercial computed tomography (CT) scanners through the "slice wars" of the 1990s and 2000s, the history of CT and related techniques such as tomosynthesis can readily be traced through the pages of Medical Physics and the annals of the AAPM and RSNA/AAPM Annual Meetings. In this article, the authors intend to give a brief review of the role of Medical Physics and the AAPM in CT and tomosynthesis imaging over the last few decades.

  10. AAPM/SNMMI Joint Task Force: report on the current state of nuclear medicine physics training.

    PubMed

    Harkness, Beth A; Allison, Jerry D; Clements, Jessica B; Coffey, Charles W; Fahey, Frederic H; Gress, Dustin A; Kinahan, Paul E; Nickoloff, Edward L; Mawlawi, Osama R; MacDougall, Robert D; Pizzutiello, Robert J

    2015-09-08

    The American Association of Physicists in Medicine (AAPM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI) recognized the need for a review of the current state of nuclear  medicine physics training and the need to explore pathways for improving nuclear medicine physics training opportunities. For these reasons, the two organizations formed a joint AAPM/SNMMI Ad Hoc Task Force on Nuclear Medicine Physics  Training. The mission of this task force was to assemble a representative group of stakeholders to:• Estimate the demand for board-certified nuclear medicine physicists in the next 5-10 years,• Identify the critical issues related to supplying an adequate number of physicists who have received the appropriate level of training in nuclear medicine physics, and• Identify approaches that may be considered to facilitate the training of nuclear medicine physicists.As a result, a task force was appointed and chaired by an active member of both organizations that included representation from the AAPM, SNMMI, the American Board of Radiology (ABR), the American Board of Science in Nuclear Medicine (ABSNM), and the Commission for the Accreditation of Medical Physics Educational Programs (CAMPEP). The Task Force first met at the AAPM Annual Meeting in Charlotte in July 2012 and has met regularly face-to-face, online, and by conference calls. This manuscript reports the findings of the Task Force, as well as recommendations to achieve the stated mission.

  11. AAPM/SNMMI Joint Task Force: report on the current state of nuclear medicine physics training

    PubMed Central

    Allison, Jerry D.; Clements, Jessica B.; Coffey, Charles W.; Fahey, Frederic H.; Gress, Dustin A.; Kinahan, Paul E.; Nickoloff, Edward L.; Mawlawi, Osama R.; MacDougall, Robert D.; Pizzuitello, Robert J.

    2015-01-01

    The American Association of Physicists in Medicine (AAPM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI) recognized the need for a review of the current state of nuclear medicine physics training and the need to explore pathways for improving nuclear medicine physics training opportunities. For these reasons, the two organizations formed a joint AAPM/SNMMI Ad Hoc Task Force on Nuclear Medicine Physics Training. The mission of this task force was to assemble a representative group of stakeholders to: Estimate the demand for board‐certified nuclear medicine physicists in the next 5–10 years,Identify the critical issues related to supplying an adequate number of physicists who have received the appropriate level of training in nuclear medicine physics, andIdentify approaches that may be considered to facilitate the training of nuclear medicine physicists. As a result, a task force was appointed and chaired by an active member of both organizations that included representation from the AAPM, SNMMI, the American Board of Radiology (ABR), the American Board of Science in Nuclear Medicine (ABSNM), and the Commission for the Accreditation of Medical Physics Educational Programs (CAMPEP). The Task Force first met at the AAPM Annual Meeting in Charlotte in July 2012 and has met regularly face‐to‐face, online, and by conference calls. This manuscript reports the findings of the Task Force, as well as recommendations to achieve the stated mission. PACS number: 01.40.G‐ PMID:26699325

  12. Dose distribution verification for GYN brachytherapy using EBT Gafchromic film and TG-43 calculation.

    PubMed

    Gholami, Somayeh; Mirzaei, Hamid Reza; Jabbary Arfaee, Ali; Jaberi, Ramin; Nedaie, Hassan Ali; Rabi Mahdavi, Seied; Rajab Bolookat, Eftekhar; Meigooni, Ali S

    2016-01-01

    Verification of dose distributions for gynecological (GYN) brachytherapy implants using EBT Gafchromic film. One major challenge in brachytherapy is to verify the accuracy of dose distributions calculated by a treatment planning system. A new phantom was designed and fabricated using 90 slabs of 18 cm × 16 cm × 0.2 cm Perspex to accommodate a tandem and Ovoid assembly, which is normally used for GYN brachytherapy treatment. This phantom design allows the use of EBT Gafchromic films for dosimetric verification of GYN implants with a cobalt-60 HDR system or a LDR Cs-137 system. Gafchromic films were exposed using a plan that was designed to deliver 1.5 Gy of dose to 0.5 cm distance from the lateral surface of ovoids from a pair of ovoid assembly that was used for treatment vaginal cuff. For a quantitative analysis of the results for both LDR and HDR systems, the measured dose values at several points of interests were compared with the calculated data from a commercially available treatment planning system. This planning system was utilizing the TG-43 formalism and parameters for calculation of dose distributions around a brachytherapy implant. The results of these investigations indicated that the differences between the calculated and measured data at different points were ranging from 2.4% to 3.8% for the LDR Cs-137 and HDR Co-60 systems, respectively. The EBT Gafchromic films combined with the newly designed phantom could be utilized for verification of the dose distributions around different GYN implants treated with either LDR or HDR brachytherapy procedures.

  13. Comparison and uncertainty evaluation of different calibration protocols and ionization chambers for low-energy surface brachytherapy dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candela-Juan, C., E-mail: ccanjuan@gmail.com; Vijande, J.; García-Martínez, T.

    2015-08-15

    Purpose: A surface electronic brachytherapy (EBT) device is in fact an x-ray source collimated with specific applicators. Low-energy (<100 kVp) x-ray beam dosimetry faces several challenges that need to be addressed. A number of calibration protocols have been published for x-ray beam dosimetry. The media in which measurements are performed are the fundamental difference between them. The aim of this study was to evaluate the surface dose rate of a low-energy x-ray source with small field applicators using different calibration standards and different small-volume ionization chambers, comparing the values and uncertainties of each methodology. Methods: The surface dose rate ofmore » the EBT unit Esteya (Elekta Brachytherapy, The Netherlands), a 69.5 kVp x-ray source with applicators of 10, 15, 20, 25, and 30 mm diameter, was evaluated using the AAPM TG-61 (based on air kerma) and International Atomic Energy Agency (IAEA) TRS-398 (based on absorbed dose to water) dosimetry protocols for low-energy photon beams. A plane parallel T34013 ionization chamber (PTW Freiburg, Germany) calibrated in terms of both absorbed dose to water and air kerma was used to compare the two dosimetry protocols. Another PTW chamber of the same model was used to evaluate the reproducibility between these chambers. Measurements were also performed with two different Exradin A20 (Standard Imaging, Inc., Middleton, WI) chambers calibrated in terms of air kerma. Results: Differences between surface dose rates measured in air and in water using the T34013 chamber range from 1.6% to 3.3%. No field size dependence has been observed. Differences are below 3.7% when measurements with the A20 and the T34013 chambers calibrated in air are compared. Estimated uncertainty (with coverage factor k = 1) for the T34013 chamber calibrated in water is 2.2%–2.4%, whereas it increases to 2.5% and 2.7% for the A20 and T34013 chambers calibrated in air, respectively. The output factors, measured with the PTW

  14. Beam quality corrections for parallel-plate ion chambers in electron reference dosimetry

    NASA Astrophysics Data System (ADS)

    Zink, K.; Wulff, J.

    2012-04-01

    Current dosimetry protocols (AAPM, IAEA, IPEM, DIN) recommend parallel-plate ionization chambers for dose measurements in clinical electron beams. This study presents detailed Monte Carlo simulations of beam quality correction factors for four different types of parallel-plate chambers: NACP-02, Markus, Advanced Markus and Roos. These chambers differ in constructive details which should have notable impact on the resulting perturbation corrections, hence on the beam quality corrections. The results reveal deviations to the recommended beam quality corrections given in the IAEA TRS-398 protocol in the range of 0%-2% depending on energy and chamber type. For well-guarded chambers, these deviations could be traced back to a non-unity and energy-dependent wall perturbation correction. In the case of the guardless Markus chamber, a nearly energy-independent beam quality correction is resulting as the effects of wall and cavity perturbation compensate each other. For this chamber, the deviations to the recommended values are the largest and may exceed 2%. From calculations of type-B uncertainties including effects due to uncertainties of the underlying cross-sectional data as well as uncertainties due to the chamber material composition and chamber geometry, the overall uncertainty of calculated beam quality correction factors was estimated to be <0.7%. Due to different chamber positioning recommendations given in the national and international dosimetry protocols, an additional uncertainty in the range of 0.2%-0.6% is present. According to the IAEA TRS-398 protocol, the uncertainty in clinical electron dosimetry using parallel-plate ion chambers is 1.7%. This study may help to reduce this uncertainty significantly.

  15. Dosimetry for Small and Nonstandard Fields

    NASA Astrophysics Data System (ADS)

    Junell, Stephanie L.

    The proposed small and non-standard field dosimetry protocol from the joint International Atomic Energy Agency (IAEA) and American Association of Physicist in Medicine working group introduces new reference field conditions for ionization chamber based reference dosimetry. Absorbed dose beam quality conversion factors (kQ factors) corresponding to this formalism were determined for three different models of ionization chambers: a Farmer-type ionization chamber, a thimble ionization chamber, and a small volume ionization chamber. Beam quality correction factor measurements were made in a specially developed cylindrical polymethyl methacrylate (PMMA) phantom and a water phantom using thermoluminescent dosimeters (TLDs) and alanine dosimeters to determine dose to water. The TLD system for absorbed dose to water determination in high energy photon and electron beams was fully characterized as part of this dissertation. The behavior of the beam quality correction factor was observed as it transfers the calibration coefficient from the University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) 60Co reference beam to the small field calibration conditions of the small field formalism. TLD-determined beam quality correction factors for the calibration conditions investigated ranged from 0.97 to 1.30 and had associated standard deviations from 1% to 3%. The alanine-determined beam quality correction factors ranged from 0.996 to 1.293. Volume averaging effects were observed with the Farmer-type ionization chamber in the small static field conditions. The proposed small and non-standard field dosimetry protocols new composite-field reference condition demonstrated its potential to reduce or remove ionization chamber volume dependancies, but the measured beam quality correction factors were not equal to the standard CoP's kQ, indicating a change in beam quality in the small and non-standard field dosimetry protocols new composite-field reference condition

  16. MO-E-9A-01: Risk Based Quality Management: TG100 In Action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huq, M; Palta, J; Dunscombe, P

    2014-06-15

    One of the goals of quality management in radiation therapy is to gain high confidence that patients will receive the prescribed treatment correctly. To accomplish these goals professional societies such as the American Association of Physicists in Medicine (AAPM) has published many quality assurance (QA), quality control (QC), and quality management (QM) guidance documents. In general, the recommendations provided in these documents have emphasized on performing device-specific QA at the expense of process flow and protection of the patient against catastrophic errors. Analyses of radiation therapy incidents find that they are most often caused by flaws in the overall therapymore » process, from initial consult through final treatment, than by isolated hardware or computer failures detectable by traditional physics QA. This challenge is shared by many intrinsically hazardous industries. Risk assessment tools and analysis techniques have been developed to define, identify, and eliminate known and/or potential failures, problems, or errors, from a system, process and/or service before they reach the customer. These include, but are not limited to, process mapping, failure modes and effects analysis (FMEA), fault tree analysis (FTA), and establishment of a quality management program that best avoids the faults and risks that have been identified in the overall process. These tools can be easily adapted to radiation therapy practices because of their simplicity and effectiveness to provide efficient ways to enhance the safety and quality of treatment processes. Task group 100 (TG100) of AAPM has developed a risk-based quality management program that uses these tools. This session will be devoted to a discussion of these tools and how these tools can be used in a given radiotherapy clinic to develop a risk based QM program. Learning Objectives: Learn how to design a process map for a radiotherapy process. Learn how to perform a FMEA analysis for a given process

  17. Medical Physics Practice Guidelines - the AAPM's minimum practice recommendations for medical physicists.

    PubMed

    Mills, Michael D; Chan, Maria F; Prisciandaro, Joann I; Shepard, Jeff; Halvorsen, Per H

    2013-11-04

    The AAPM has long advocated a consistent level of medical physics practice, and has published many recommendations and position statements toward that goal, such as Science Council Task Group reports related to calibration and quality assurance, Education Council and Professional Council Task Group reports related to education, training, and peer review, and Board-approved Position Statements related to the Scope of Practice, physicist qualifications, and other aspects of medical physics practice. Despite these concerted and enduring efforts, the profession does not have clear and concise statements of the acceptable practice guidelines for routine clinical medical physics. As accreditation of clinical practices becomes more common, Medical Physics Practice Guidelines (MPPGs) will be crucial to ensuring a consistent benchmark for accreditation programs. To this end, the AAPM has recently endorsed the development of MPPGs, which may be generated in collaboration with other professional societies. The MPPGs are intended to be freely available to the general public. Accrediting organizations, regulatory agencies, and legislators will be encouraged to reference these MPPGs when defining their respective requirements. MPPGs are intended to provide the medical community with a clear description of the minimum level of medical physics support that the AAPM would consider prudent in clinical practice settings. Support includes, but is not limited to, staffing, equipment, machine access, and training. These MPPGs are not designed to replace extensive Task Group reports or review articles, but rather to describe the recommended minimum level of medical physics support for specific clinical services. This article has described the purpose, scope, and process for the development of MPPGs.

  18. AAPM Medical Physics Practice Guideline 5.a.: Commissioning and QA of Treatment Planning Dose Calculations - Megavoltage Photon and Electron Beams.

    PubMed

    Smilowitz, Jennifer B; Das, Indra J; Feygelman, Vladimir; Fraass, Benedick A; Kry, Stephen F; Marshall, Ingrid R; Mihailidis, Dimitris N; Ouhib, Zoubir; Ritter, Timothy; Snyder, Michael G; Fairobent, Lynne

    2015-09-08

    The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education and professional practice of medical physics. The AAPM has more than 8,000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized. The following terms are used in the AAPM practice guidelines:• Must and Must Not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline.• Should and Should Not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances.

  19. Development of a 3D remote dosimetry protocol compatible with MRgIMRT.

    PubMed

    Mein, Stewart; Rankine, Leith; Adamovics, John; Li, Harold; Oldham, Mark

    2017-11-01

    To develop a novel remote 3D dosimetry protocol to verify Magnetic Resonance-guided Radiation Therapy (MRgRT) treatments. The protocol was applied to investigate the accuracy of TG-119 IMRT irradiations delivered by the MRIdian ® system (ViewRay ® , Oakwood Village, OH, USA) allowing for a 48-hour delay between irradiation at a field institution and subsequent readout at a base institution. The 3D dosimetry protocol utilizes a novel formulation of PRESAGE ® radiochromic dosimeters developed for high postirradiation stability and compatibility with optical-CT readout. Optical-CT readout was performed with an in-house system utilizing telecentric lenses affording high-resolution scanning. The protocol was developed from preparatory experiments to characterize PRESAGE ® response in relevant conditions. First, linearity and sensitivity of PRESAGE ® dose-response in the presence of a magnetic field was evaluated in a small volume study (4 ml cuvettes) conducted under MRgRT conditions and irradiated with doses 0-15 Gy. Temporal and spatial stability of the dose-response were investigated in large volume studies utilizing large field-of-view (FOV) 2 kg cylindrical PRESAGE ® dosimeters. Dosimeters were imaged at t = 1 hr and t = 48 hrs enabling the development of correction terms to model any observed spatial and temporal changes postirradiation. Polynomial correction factors for temporal and spatial changes in PRESAGE ® dosimeters (C T and C R respectively) were obtained by numerical fitting to time-point data acquired in six irradiated dosimeters. A remote dosimetry protocol was developed where PRESAGE ® change in optical-density (ΔOD) readings at time t = X (the irradiation to return shipment time interval) were corrected back to a convenient standard time t = 1 hr using the C T and C R corrections. This refined protocol was then applied to TG-119 (American Association of Physicists in Medicine, Task Group 119) plan deliveries on the MRIdian

  20. Absolute dosimetry on a dynamically scanned sample for synchrotron radiotherapy using graphite calorimetry and ionization chambers

    NASA Astrophysics Data System (ADS)

    Lye, J. E.; Harty, P. D.; Butler, D. J.; Crosbie, J. C.; Livingstone, J.; Poole, C. M.; Ramanathan, G.; Wright, T.; Stevenson, A. W.

    2016-06-01

    The absolute dose delivered to a dynamically scanned sample in the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter anticipated to be established as a primary standard for synchrotron dosimetry. The calorimetry was compared to measurements using a free-air chamber (FAC), a PTW 31 014 Pinpoint ionization chamber, and a PTW 34 001 Roos ionization chamber. The IMBL beam height is limited to approximately 2 mm. To produce clinically useful beams of a few centimetres the beam must be scanned in the vertical direction. In practice it is the patient/detector that is scanned and the scanning velocity defines the dose that is delivered. The calorimeter, FAC, and Roos chamber measure the dose area product which is then converted to central axis dose with the scanned beam area derived from Monte Carlo (MC) simulations and film measurements. The Pinpoint chamber measures the central axis dose directly and does not require beam area measurements. The calorimeter and FAC measure dose from first principles. The calorimetry requires conversion of the measured absorbed dose to graphite to absorbed dose to water using MC calculations with the EGSnrc code. Air kerma measurements from the free air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. The two ionization chambers are secondary standards requiring calibration with kilovoltage x-ray tubes. The Roos and Pinpoint chambers were calibrated against the Australian primary standard for air kerma at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Agreement of order 2% or better was obtained between the calorimetry and ionization chambers. The FAC measured a dose 3-5% higher than the calorimetry, within the stated uncertainties.

  1. How feasible is remote 3D dosimetry for MR guided Radiation Therapy (MRgRT)?

    NASA Astrophysics Data System (ADS)

    Mein, S.; Rankine, L.; Miles, D.; Juang, T.; Cai, B.; Curcuru, A.; Mutic, S.; Fenoli, J.; Adamovics, J.; Li, H.; Oldham, M.

    2017-05-01

    To develop and apply a remote dosimetry protocol with PRESAGE® radiochromic plastic and optical-CT readout in the validation of MRI guided radiation therapy (MRgRT) treatments (MRIdian® by ViewRay®). Through multi-institutional collaboration we performed PRESAGE® dosimetry studies in 4ml cuvettes to investigate dose-response linearity, MR-compatibility, and energy-independence. An open calibration field and symmetrical 3-field plans were delivered to 10cm diameter PRESAGE® to examine percent depth dose and response uniformity under a magnetic field. Evidence of non-linear dose response led to a large volume PRESAGE® study where small corrections were developed for temporally- and spatially-dependent behaviors observed between irradiation and delayed readout. TG-119 plans were created in the MRIdian® TPS and then delivered to 14.5cm 2kg PRESAGE® dosimeters. Through the domestic investigation of an off-site MRgRT system, a refined 3D remote dosimetry protocol is presented capable of validation of advanced MRgRT radiation treatments.

  2. On the use of unshielded cables in ionization chamber dosimetry for total-skin electron therapy.

    PubMed

    Chen, Z; Agostinelli, A; Nath, R

    1998-03-01

    The dosimetry of total-skin electron therapy (TSET) usually requires ionization chamber measurements in a large electron beam (up to 120 cm x 200 cm). Exposing the chamber's electric cable, its connector and part of the extension cable to the large electron beam will introduce unwanted electronic signals that may lead to inaccurate dosimetry results. While the best strategy to minimize the cable-induced electronic signal is to shield the cables and its connector from the primary electrons, as has been recommended by the AAPM Task Group Report 23 on TSET, cables without additional shielding are often used in TSET dosimetry measurements for logistic reasons, for example when an automatic scanning dosimetry is used. This paper systematically investigates the consequences and the acceptability of using an unshielded cable in ionization chamber dosimetry in a large TSET electron beam. In this paper, we separate cable-induced signals into two types. The type-I signal includes all charges induced which do not change sign upon switching the chamber polarity, and type II includes all those that do. The type-I signal is easily cancelled by the polarity averaging method. The type-II cable-induced signal is independent of the depth of the chamber in a phantom and its magnitude relative to the true signal determines the acceptability of a cable for use under unshielded conditions. Three different cables were evaluated in two different TSET beams in this investigation. For dosimetry near the depth of maximum buildup, the cable-induced dosimetry error was found to be less than 0.2% when the two-polarity averaging technique was applied. At greater depths, the relative dosimetry error was found to increase at a rate approximately equal to the inverse of the electron depth dose. Since the application of the two-polarity averaging technique requires a constant-irradiation condition, it was demonstrated than an additional error of up to 4% could be introduced if the unshielded cable

  3. AAPM Medical Physics Practice Guideline 5.a.: Commissioning and QA of Treatment Planning Dose Calculations — Megavoltage Photon and Electron Beams

    PubMed Central

    Das, Indra J.; Feygelman, Vladimir; Fraass, Benedick A.; Kry, Stephen F.; Marshall, Ingrid R.; Mihailidis, Dimitris N.; Ouhib, Zoubir; Ritter, Timothy; Snyder, Michael G.; Fairobent, Lynne

    2015-01-01

    The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education and professional practice of medical physics. The AAPM has more than 8,000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized. The following terms are used in the AAPM practice guidelines: Must and Must Not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline.Should and Should Not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances. PMID:26699330

  4. Review of the results of the in vivo dosimetry during total skin electron beam therapy

    PubMed Central

    Guidi, Gabriele; Gottardi, Giovanni; Ceroni, Paola; Costi, Tiziana

    2013-01-01

    This work reviews results of in vivo dosimetry (IVD) for total skin electron beam (TSEB) therapy, focusing on new methods, data emerged within 2012. All quoted data are based on a careful review of the literature reporting IVD results for patients treated by means of TSEB therapy. Many of the reviewed papers refer mainly to now old studies and/or old guidelines and recommendations (by IAEA, AAPM and EORTC), because (due to intrinsic rareness of TSEB-treated pathologies) only a limited number of works and reports with a large set of numerical data and proper statistical analysis is up-to-day available in scientific literature. Nonetheless, a general summary of the results obtained by the now numerous IVD techniques available is reported; innovative devices and methods, together with areas of possible further and possibly multicenter investigations for TSEB therapies are highlighted. PMID:24936333

  5. Electron paramagnetic resonance (EPR) dosimetry using lithium formate in radiotherapy: comparison with thermoluminescence (TL) dosimetry using lithium fluoride rods.

    PubMed

    Vestad, Tor Arne; Malinen, Eirik; Olsen, Dag Rune; Hole, Eli Olaug; Sagstuen, Einar

    2004-10-21

    Solid-state radiation dosimetry by electron paramagnetic resonance (EPR) spectroscopy and thermoluminescence (TL) was utilized for the determination of absorbed doses in the range of 0.5-2.5 Gy. The dosimeter materials used were lithium formate and lithium fluoride (TLD-100 rods) for EPR dosimetry and TL dosimetry, respectively. 60Co gamma-rays and 4, 6, 10 and 15 MV x-rays were employed. The main objectives were to compare the variation in dosimeter reading of the respective dosimetry systems and to determine the photon energy dependence of the two dosimeter materials. The EPR dosimeter sensitivity was constant over the dose range in question, while the TL sensitivity increased by more than 5% from 0.5 to 2.5 Gy, thus displaying a supralinear dose response. The average relative standard deviation in the dosimeter reading per dose was 3.0% and 1.2% for the EPR and TL procedures, respectively. For EPR dosimeters, the relative standard deviation declined significantly from 4.3% to 1.1% over the dose range in question. The dose-to-water energy response for the megavoltage x-ray beams relative to 60Co gamma-rays was in the range of 0.990-0.979 and 0.984-0.962 for lithium formate and lithium fluoride, respectively. The results show that EPR dosimetry with lithium formate provides dose estimates with a precision comparable to that of TL dosimetry (using lithium fluoride) for doses above 2 Gy, and that lithium formate is slightly less dependent on megavoltage photon beam energy than lithium fluoride.

  6. Electron paramagnetic resonance (EPR) dosimetry using lithium formate in radiotherapy: comparison with thermoluminescence (TL) dosimetry using lithium fluoride rods

    NASA Astrophysics Data System (ADS)

    Vestad, Tor Arne; Malinen, Eirik; Rune Olsen, Dag; Olaug Hole, Eli; Sagstuen, Einar

    2004-10-01

    Solid-state radiation dosimetry by electron paramagnetic resonance (EPR) spectroscopy and thermoluminescence (TL) was utilized for the determination of absorbed doses in the range of 0.5-2.5 Gy. The dosimeter materials used were lithium formate and lithium fluoride (TLD-100 rods) for EPR dosimetry and TL dosimetry, respectively. 60Co ggr-rays and 4, 6, 10 and 15 MV x-rays were employed. The main objectives were to compare the variation in dosimeter reading of the respective dosimetry systems and to determine the photon energy dependence of the two dosimeter materials. The EPR dosimeter sensitivity was constant over the dose range in question, while the TL sensitivity increased by more than 5% from 0.5 to 2.5 Gy, thus displaying a supralinear dose response. The average relative standard deviation in the dosimeter reading per dose was 3.0% and 1.2% for the EPR and TL procedures, respectively. For EPR dosimeters, the relative standard deviation declined significantly from 4.3% to 1.1% over the dose range in question. The dose-to-water energy response for the megavoltage x-ray beams relative to 60Co ggr-rays was in the range of 0.990-0.979 and 0.984-0.962 for lithium formate and lithium fluoride, respectively. The results show that EPR dosimetry with lithium formate provides dose estimates with a precision comparable to that of TL dosimetry (using lithium fluoride) for doses above 2 Gy, and that lithium formate is slightly less dependent on megavoltage photon beam energy than lithium fluoride.

  7. Diagnostic value of Tg and TgAb for metastasis following ablation in patients with differentiated thyroid carcinoma coexistent with Hashimoto thyroiditis.

    PubMed

    Chai, Hong; Zhu, Zhao-Jin; Chen, Ze-Quan; Yu, Yong-Li

    2016-08-01

    This study was designed to investigate the clinical value of serum thyroglobulin (Tg) and antithyroglobulin antibody (TgAb) measurements and the cutoff value after ablation in differentiated thyroid carcinoma (DTC) complicated by Hashimoto thyroiditis (HT) with metastasis. We measured serum Tg and TgAb levels and evaluated the disease status in 164 cases of DTC coexistent with HT in pathologically confirmed patients after surgery and post-remnant ablation during a 3-year follow-up. All Tg and TgAb levels were assessed by chemiluminescent immunoassay (IMA). Receiver operating characteristic (ROC) curve analysis was used to evaluate the prognostic value of Tg and TgAb for disease metastasis. The relationship between Tg and TgAb was analyzed using the scatter diagram distribution method. We found that the cutoff values of Tg and TgAb were 1.48 µg/L and 45 kIU/L, respectively. The area under the ROC curve (AUC) of Tg and TgAb was 0.907 and 0.650, respectively. In DTC coexistent with HT patients, the optimal cutoff value correlated with metastasis in Tg and TgAb was 1.48 µg/L and 45 kIU/L, respectively.

  8. Toward a standard for the evaluation of PET-Auto-Segmentation methods following the recommendations of AAPM task group No. 211: Requirements and implementation.

    PubMed

    Berthon, Beatrice; Spezi, Emiliano; Galavis, Paulina; Shepherd, Tony; Apte, Aditya; Hatt, Mathieu; Fayad, Hadi; De Bernardi, Elisabetta; Soffientini, Chiara D; Ross Schmidtlein, C; El Naqa, Issam; Jeraj, Robert; Lu, Wei; Das, Shiva; Zaidi, Habib; Mawlawi, Osama R; Visvikis, Dimitris; Lee, John A; Kirov, Assen S

    2017-08-01

    The aim of this paper is to define the requirements and describe the design and implementation of a standard benchmark tool for evaluation and validation of PET-auto-segmentation (PET-AS) algorithms. This work follows the recommendations of Task Group 211 (TG211) appointed by the American Association of Physicists in Medicine (AAPM). The recommendations published in the AAPM TG211 report were used to derive a set of required features and to guide the design and structure of a benchmarking software tool. These items included the selection of appropriate representative data and reference contours obtained from established approaches and the description of available metrics. The benchmark was designed in a way that it could be extendable by inclusion of bespoke segmentation methods, while maintaining its main purpose of being a standard testing platform for newly developed PET-AS methods. An example of implementation of the proposed framework, named PETASset, was built. In this work, a selection of PET-AS methods representing common approaches to PET image segmentation was evaluated within PETASset for the purpose of testing and demonstrating the capabilities of the software as a benchmark platform. A selection of clinical, physical, and simulated phantom data, including "best estimates" reference contours from macroscopic specimens, simulation template, and CT scans was built into the PETASset application database. Specific metrics such as Dice Similarity Coefficient (DSC), Positive Predictive Value (PPV), and Sensitivity (S), were included to allow the user to compare the results of any given PET-AS algorithm to the reference contours. In addition, a tool to generate structured reports on the evaluation of the performance of PET-AS algorithms against the reference contours was built. The variation of the metric agreement values with the reference contours across the PET-AS methods evaluated for demonstration were between 0.51 and 0.83, 0.44 and 0.86, and 0.61 and 1

  9. TH-CD-BRA-02: 3D Remote Dosimetry for MRI-Guided Radiation Therapy: A Hybrid Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rankine, L; The University of North Carolina at Chapel Hill, Chapel Hill, NC; Mein, S

    2016-06-15

    Purpose: To validate the dosimetric accuracy of a commercially available MR-IGRT system using a combination of 3D dosimetry measurements (with PRESAGE(R) radiochromic plastic and optical-CT readout) and an in-house developed GPU-accelerated PENELOPE Monte-Carlo dose calculation system. Methods: {sup 60}Co IMRT subject to a 0.35T lateral magnetic field has recently been commissioned in our institution following AAPM’s TG-119 recommendations. We performed PRESAGE(R) sensitivity studies in 4ml cuvettes to verify linearity, MR-compatibility, and energy-independence. Using 10cm diameter PRESAGE(R), we delivered an open calibration field to examine the percent depth dose and a symmetrical 3-field plan with three adjacent regions of varying dosemore » to determine uniformity within the dosimeter under a magnetic field. After initial testing, TG-119 plans were created in the TPS and then delivered to 14.5cm 2kg PRESAGE(R) dosimeters. Dose readout was performed via optical-CT at a second institution specializing in remote 3D dosimetry. Absolute dose was measured using an IBA CC01 ion chamber and the institution standard patient-specific QA methods were used to validate plan delivery. Calculated TG-119 plans were then compared with an independent Monte Carlo dose calculation (gPENELOPE). Results: PRESAGE(R) responds linearly (R{sup 2}=0.9996) to {sup 60}Co irradiation, in the presence of a 0.35T magnetic field, with a sensitivity of 0.0305(±0.003)cm{sup −1}Gy{sup −1}, within 1% of a 6MV non-MR linac irradiation (R{sup 2}=0.9991) with a sensitivity of 0.0302(±0.003)cm{sup −1}Gy{sup −1}. Analysis of TG-119 clinical plans using 3D-gamma (3%/3mm, 10% threshold) give passing rates of: HN 99.1%, prostate 98.0%, C-shape 90.8%, and multi-target 98.5%. The TPS agreed with gPENELOPE with a mean gamma passing rate of 98.4±1.5% (2%/2mm) with the z-score distributions following a standard normal distribution. Conclusion: We demonstrate for the first time that 3D remote

  10. WE-G-213-02: The AAPM Award Eponyms: William D. Coolidge, Edith H. Quimby, and Marvin M.D. Williams - Who Were They and What Did They Do?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothenberg, L.

    Quimby was hired by Giacchino Failla as a radiation physicist at Memorial Hospital for Cancer in New York City. Failla had studied with Madame Curie and obtained his doctoral degree in her laboratory. After many groundbreaking medical physics studies from 1919 until 1942, they both moved to Columbia University. Dr. Quimby developed a widely employed dosimetry system for single plane implants with radium and radon seeds, and a dosimetry methodology for internal radionuclides. She was author of more than 75 scientific publications, and of significant textbooks including the first comprehensive physics textbook for radiologists “Physical Foundations of Radiology”, which was co-authored with Otto Glasser, Lauriston Taylor and James Weatherwax in the first edition, with Russell Morgan added for the second edition and Paul Goodwin for the fourth edition. With Sergei Feitelberg, M.D. she published two editions of “Radioactive Isotopes in Medicine and Biology: Basic Physics and Instrumentation”. Quimby became a renowned examiner for the American Board of Radiology when the third ABR examination, given in 1936, added physics. She served as President of the American Radium Society, received the RSNA Gold Medal, and also numerous prestigious awards given to women in science. Edith Quimby was a Charter Member of AAPM. The AAPM Lifetime Achievement Award was renamed the Edith H. Quimby Lifetime Achievement Award in her honor in 2011. Marvin Martin Dixon Williams (1902–1981) Marvin Williams was born in Walla Walla, WA in 1902, and attended the same college as Edith Quimby, graduating from Whitman College in 1926. He was greatly influenced to go into medical physics by her accomplishments. During his early career, Williams worked with James Weatherwax in Philadelphia while he was working toward an M.S. from the University of Pennsylvania. In 1931 Williams was awarded a Ph.D. in Biophysics from the University of Minnesota, with the work actually performed at the Mayo Clinic

  11. SU-E-T-367: Optimization of DLG Using TG-119 Test Cases and a Weighted Mean Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sintay, B; Vanderstraeten, C; Terrell, J

    2014-06-01

    Purpose: Optimization of the dosimetric leaf gap (DLG) is an important step in commissioning the Eclipse treatment planning system for sliding window intensity-modulated radiation therapy (SW-IMRT) and RapidArc. Often the values needed for optimal dose delivery differ markedly from those measured at commissioning. We present a method to optimize this value using the AAPM TG-119 test cases. Methods: For SW-IMRT and RapidArc, TG-119 based test plans were created using a water-equivalent phantom. Dose distributions measured on film and ion chamber (IC) readings taken in low-gradient regions within the targets were analyzed separately. Since DLG is a single value per energy,more » SW-IMRT and RapidArc must be considered simultaneously. Plans were recalculated using a linear sweep from 0.02cm (the minimum DLG) to 0.3 cm. The calculated point doses were compared to the measured doses for each plan, and based on these comparisons an optimal DLG value was computed for each plan. TG-119 cases are designed to push the system in various ways, thus, a weighted mean of the DLG was computed where the relative importance of each type of plan was given a score from 0.0 to 1.0. Finally, SW-IMRT and RapidArc are assigned an overall weight based on clinical utilization. Our routine patient-QA (PQA) process was performed as independent validation. Results: For a Varian TrueBeam, the optimized DLG varied with σ = 0.044cm for SW-IMRT and σ = 0.035cm for RapidArc. The difference between the weighted mean SW-IMRT and RapidArc value was 0.038cm. We predicted utilization of 25% SW-IMRT and 75% RapidArc. The resulting DLG was ~1mm different than that found by commissioning and produced an average error of <1% for SW-IMRT and RapidArc PQA test cases separately. Conclusion: The weighted mean method presented is a useful tool for determining an optimal DLG value for commissioning Eclipse.« less

  12. Involvement of cell surface TG2 in the aggregation of K562 cells triggered by gluten.

    PubMed

    Feriotto, G; Calza, R; Bergamini, C M; Griffin, M; Wang, Z; Beninati, S; Ferretti, V; Marzola, E; Guerrini, R; Pagnoni, A; Cavazzini, A; Casciano, F; Mischiati, C

    2017-03-01

    Gluten-induced aggregation of K562 cells represents an in vitro model reproducing the early steps occurring in the small bowel of celiac patients exposed to gliadin. Despite the clear involvement of TG2 in the activation of the antigen-presenting cells, it is not yet clear in which compartment it occurs. Herein we study the calcium-dependent aggregation of these cells, using either cell-permeable or cell-impermeable TG2 inhibitors. Gluten induces efficient aggregation when calcium is absent in the extracellular environment, while TG2 inhibitors do not restore the full aggregating potential of gluten in the presence of calcium. These findings suggest that TG2 activity is not essential in the cellular aggregation mechanism. We demonstrate that gluten contacts the cells and provokes their aggregation through a mechanism involving the A-gliadin peptide 31-43. This peptide also activates the cell surface associated extracellular TG2 in the absence of calcium. Using a bioinformatics approach, we identify the possible docking sites of this peptide on the open and closed TG2 structures. Peptide docks with the closed TG2 structure near to the GTP/GDP site, by establishing molecular interactions with the same amino acids involved in stabilization of GTP binding. We suggest that it may occur through the displacement of GTP, switching the TG2 structure from the closed to the active open conformation. Furthermore, docking analysis shows peptide binding with the β-sandwich domain of the closed TG2 structure, suggesting that this region could be responsible for the different aggregating effects of gluten shown in the presence or absence of calcium. We deduce from these data a possible mechanism of action by which gluten makes contact with the cell surface, which could have possible implications in the celiac disease onset.

  13. TH-B-204-03: TG-199: Implanted Markers for Radiation Treatment Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Z.

    Implanted markers as target surrogates have been widely used for treatment verification, as they provide safe and reliable monitoring of the inter- and intra-fractional target motion. The rapid advancement of technology requires a critical review and recommendation for the usage of implanted surrogates in current field. The symposium, also reporting an update of AAPM TG 199 - Implanted Target Surrogates for Radiation Treatment Verification, will be focusing on all clinical aspects of using the implanted target surrogates for treatment verification and related issues. A wide variety of markers available in the market will be first reviewed, including radiopaque markers, MRImore » compatible makers, non-migrating coils, surgical clips and electromagnetic transponders etc. The pros and cons of each kind will be discussed. The clinical applications of implanted surrogates will be presented based on different anatomical sites. For the lung, we will discuss gated treatments and 2D or 3D real-time fiducial tracking techniques. For the prostate, we will be focusing on 2D-3D, 3D-3D matching and electromagnetic transponder based localization techniques. For the liver, we will review techniques when patients are under gating, shallow or free breathing condition. We will review techniques when treating challenging breast cancer as deformation may occur. Finally, we will summarize potential issues related to the usage of implanted target surrogates with TG 199 recommendations. A review of fiducial migration and fiducial derived target rotation in different disease sites will be provided. The issue of target deformation, especially near the diaphragm, and related suggestions will be also presented and discussed. Learning Objectives: Knowledge of a wide variety of markers Knowledge of their application for different disease sites Understand of issues related to these applications Z. Wang: Research funding support from Brainlab AG Q. Xu: Consultant for Accuray; Q. Xu, I am a

  14. Fluorescence-guided surgery and intervention - An AAPM emerging technology blue paper.

    PubMed

    Pogue, Brian W; Zhu, Timothy C; Ntziachristos, Vasilis; Paulsen, Keith D; Wilson, Brian C; Pfefer, Joshua; Nordstrom, Robert J; Litorja, Maritoni; Wabnitz, Heidrun; Chen, Yu; Gioux, Sylvain; Tromberg, Bruce J; Yodh, Arjun G

    2018-04-10

    Fluorescence-guided surgery (FGS) and other interventions are rapidly evolving as a class of technologically driven interventional approaches in which many surgical specialties visualize fluorescent molecular tracers or biomarkers through associated cameras or oculars to guide clinical decisions on pathological lesion detection and excision/ablation. The technology has been commercialized for some specific applications, but also presents technical challenges unique to optical imaging that could confound the utility of some interventional procedures where real-time decisions must be made. Accordingly, the AAPM has initiated the publication of this Blue Paper of The Emerging Technology Working Group (TETAWG) and the creation of a Task Group from the Therapy Physics Committee within the Treatment Delivery Subcommittee. In describing the relevant issues, this document outlines the key parameters, stakeholders, impacts, and outcomes of clinical FGS technology and its applications. The presentation is not intended to be conclusive, but rather to inform the field of medical physics and stimulate the discussions needed in the field with respect to a seemingly low-risk imaging technology that has high potential for significant therapeutic impact. This AAPM Task Group is working toward consensus around guidelines and standards for advancing the field safely and effectively. © 2018 American Association of Physicists in Medicine.

  15. A dosimetric comparison of {sup 169}Yb versus {sup 192}Ir for HDR prostate brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lymperopoulou, G.; Papagiannis, P.; Sakelliou, L.

    2005-12-15

    For the purpose of evaluating the use of {sup 169}Yb for prostate High Dose Rate brachytherapy (HDR), a hypothetical {sup 169}Yb source is assumed with the exact same design of the new microSelectron source replacing the {sup 192}Ir active core by pure {sup 169}Yb metal. Monte Carlo simulation is employed for the full dosimetric characterization of both sources and results are compared following the AAPM TG-43 dosimetric formalism. Monte Carlo calculated dosimetry results are incorporated in a commercially available treatment planning system (SWIFT{sup TM}), which features an inverse treatment planning option based on a multiobjective dose optimization engine. The qualitymore » of prostate HDR brachytherapy using the real {sup 192}Ir and hypothetical {sup 169}Yb source is compared in a comprehensive analysis of different prostate implants in terms of the multiobjective dose optimization solutions as well as treatment quality indices such as Dose Volume Histograms (DVH) and the Conformal Index (COIN). Given that scattering overcompensates for absorption in intermediate photon energies and distances in the range of interest to prostate HDR brachytherapy, {sup 169}Yb proves at least equivalent to {sup 192}Ir irrespective of prostate volume. This has to be evaluated in view of the shielding requirements for the {sup 169}Yb energies that are minimal relative to that for {sup 192}Ir.« less

  16. Procedures for establishing and maintaining consistent air-kerma strength standards for low-energy, photon-emitting brachytherapy sources: recommendations of the Calibration Laboratory Accreditation Subcommittee of the American Association of Physicists in Medicine.

    PubMed

    DeWerd, Larry A; Huq, M Saiful; Das, Indra J; Ibbott, Geoffrey S; Hanson, William F; Slowey, Thomas W; Williamson, Jeffrey F; Coursey, Bert M

    2004-03-01

    Low dose rate brachytherapy is being used extensively for the treatment of prostate cancer. As of September 2003, there are a total of thirteen 125I and seven 103Pd sources that have calibrations from the National Institute of Standards and Technology (NIST) and the Accredited Dosimetry Calibration Laboratories (ADCLs) of the American Association of Physicists in Medicine (AAPM). The dosimetry standards for these sources are traceable to the NIST wide-angle free-air chamber. Procedures have been developed by the AAPM Calibration Laboratory Accreditation Subcommittee to standardize quality assurance and calibration, and to maintain the dosimetric traceability of these sources to ensure accurate clinical dosimetry. A description of these procedures is provided to the clinical users for traceability purposes as well as to provide guidance to the manufacturers of brachytherapy sources and ADCLs with regard to these procedures.

  17. AAPM and GEC-ESTRO guidelines for image-guided robotic brachytherapy: report of Task Group 192.

    PubMed

    Podder, Tarun K; Beaulieu, Luc; Caldwell, Barrett; Cormack, Robert A; Crass, Jostin B; Dicker, Adam P; Fenster, Aaron; Fichtinger, Gabor; Meltsner, Michael A; Moerland, Marinus A; Nath, Ravinder; Rivard, Mark J; Salcudean, Tim; Song, Danny Y; Thomadsen, Bruce R; Yu, Yan

    2014-10-01

    In the last decade, there have been significant developments into integration of robots and automation tools with brachytherapy delivery systems. These systems aim to improve the current paradigm by executing higher precision and accuracy in seed placement, improving calculation of optimal seed locations, minimizing surgical trauma, and reducing radiation exposure to medical staff. Most of the applications of this technology have been in the implantation of seeds in patients with early-stage prostate cancer. Nevertheless, the techniques apply to any clinical site where interstitial brachytherapy is appropriate. In consideration of the rapid developments in this area, the American Association of Physicists in Medicine (AAPM) commissioned Task Group 192 to review the state-of-the-art in the field of robotic interstitial brachytherapy. This is a joint Task Group with the Groupe Européen de Curiethérapie-European Society for Radiotherapy & Oncology (GEC-ESTRO). All developed and reported robotic brachytherapy systems were reviewed. Commissioning and quality assurance procedures for the safe and consistent use of these systems are also provided. Manual seed placement techniques with a rigid template have an estimated in vivo accuracy of 3-6 mm. In addition to the placement accuracy, factors such as tissue deformation, needle deviation, and edema may result in a delivered dose distribution that differs from the preimplant or intraoperative plan. However, real-time needle tracking and seed identification for dynamic updating of dosimetry may improve the quality of seed implantation. The AAPM and GEC-ESTRO recommend that robotic systems should demonstrate a spatial accuracy of seed placement ≤1.0 mm in a phantom. This recommendation is based on the current performance of existing robotic brachytherapy systems and propagation of uncertainties. During clinical commissioning, tests should be conducted to ensure that this level of accuracy is achieved. These tests should

  18. AAPM and GEC-ESTRO guidelines for image-guided robotic brachytherapy: Report of Task Group 192

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podder, Tarun K., E-mail: tarun.podder@uhhospitals.org; Beaulieu, Luc; Caldwell, Barrett

    In the last decade, there have been significant developments into integration of robots and automation tools with brachytherapy delivery systems. These systems aim to improve the current paradigm by executing higher precision and accuracy in seed placement, improving calculation of optimal seed locations, minimizing surgical trauma, and reducing radiation exposure to medical staff. Most of the applications of this technology have been in the implantation of seeds in patients with early-stage prostate cancer. Nevertheless, the techniques apply to any clinical site where interstitial brachytherapy is appropriate. In consideration of the rapid developments in this area, the American Association of Physicistsmore » in Medicine (AAPM) commissioned Task Group 192 to review the state-of-the-art in the field of robotic interstitial brachytherapy. This is a joint Task Group with the Groupe Européen de Curiethérapie-European Society for Radiotherapy and Oncology (GEC-ESTRO). All developed and reported robotic brachytherapy systems were reviewed. Commissioning and quality assurance procedures for the safe and consistent use of these systems are also provided. Manual seed placement techniques with a rigid template have an estimated in vivo accuracy of 3–6 mm. In addition to the placement accuracy, factors such as tissue deformation, needle deviation, and edema may result in a delivered dose distribution that differs from the preimplant or intraoperative plan. However, real-time needle tracking and seed identification for dynamic updating of dosimetry may improve the quality of seed implantation. The AAPM and GEC-ESTRO recommend that robotic systems should demonstrate a spatial accuracy of seed placement ≤1.0 mm in a phantom. This recommendation is based on the current performance of existing robotic brachytherapy systems and propagation of uncertainties. During clinical commissioning, tests should be conducted to ensure that this level of accuracy is achieved. These

  19. Skeletal muscle expression of p43, a truncated thyroid hormone receptor α, affects lipid composition and metabolism.

    PubMed

    Casas, François; Fouret, Gilles; Lecomte, Jérome; Cortade, Fabienne; Pessemesse, Laurence; Blanchet, Emilie; Wrutniak-Cabello, Chantal; Coudray, Charles; Feillet-Coudray, Christine

    2018-02-01

    Thyroid hormone is a major regulator of metabolism and mitochondrial function. Thyroid hormone also affects reactions in almost all pathways of lipids metabolism and as such is considered as the main hormonal regulator of lipid biogenesis. The aim of this study was to explore the possible involvement of p43, a 43 Kda truncated form of the nuclear thyroid hormone receptor TRα1 which stimulates mitochondrial activity. Therefore, using mouse models overexpressing p43 in skeletal muscle (p43-Tg) or lacking p43 (p43-/-), we have investigated the lipid composition in quadriceps muscle and in mitochondria. Here, we reported in the quadriceps muscle of p43-/- mice, a fall in triglycerides, an inhibition of monounsaturated fatty acids (MUFA) synthesis, an increase in elongase index and an decrease in desaturase index. However, in mitochondria from p43-/- mice, fatty acid profile was barely modified. In the quadriceps muscle of p43-Tg mice, MUFA content was decreased whereas the unsaturation index was increased. In addition, in quadriceps mitochondria of p43-Tg mice, we found an increase of linoleic acid level and unsaturation index. Last, we showed that cardiolipin content, a key phospholipid for mitochondrial function, remained unchanged both in quadriceps muscle and in its mitochondria whatever the mice genotype. In conclusion, this study shows that muscle lipid content and fatty acid profile are strongly affected in skeletal muscle by p43 levels. We also demonstrate that regulation of cardiolipin biosynthesis by the thyroid hormone does not imply p43.

  20. Three dimensional intensity modulated brachytherapy (IMBT): dosimetry algorithm and inverse treatment planning.

    PubMed

    Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Esquivel, Carlos; Eng, Tony; Papanikolaou, Niko

    2010-07-01

    The feasibility of intensity modulated brachytherapy (IMBT) to improve dose conformity for irregularly shaped targets has been previously investigated by researchers by means of using partially shielded sources. However, partial shielding does not fully explore the potential of IMBT. The goal of this study is to introduce the concept of three dimensional (3D) intensity modulated brachytherapy and solve two fundamental issues regarding the application of 3D IMBT treatment planning: The dose calculation algorithm and the inverse treatment planning method. A 3D IMBT treatment planning system prototype was developed using the MATLAB platform. This system consists of three major components: (1) A comprehensive IMBT source calibration method with dosimetric inputs from Monte Carlo (EGSnrc) simulations; (2) a "modified TG-43" (mTG-43) dose calculation formalism for IMBT dosimetry; and (3) a physical constraint based inverse IMBT treatment planning platform utilizing a simulated annealing optimization algorithm. The model S700 Axxent electronic brachytherapy source developed by Xoft, Inc. (Fremont, CA), was simulated in this application. Ten intracavitary accelerated partial breast irradiation (APBI) cases were studied. For each case, an "isotropic plan" with only optimized source dwell time and a fully optimized IMBT plan were generated and compared to the original plan in various dosimetric aspects, such as the plan quality, planning, and delivery time. The issue of the mechanical complexity of the IMBT applicator is not addressed in this study. IMBT approaches showed superior plan quality compared to the original plans and tht isotropic plans to different extents in all studied cases. An extremely difficult case with a small breast and a small distance to the ribs and skin, the IMBT plan minimized the high dose volume V200 by 16.1% and 4.8%, respectively, compared to the original and the isotropic plans. The conformity index for the target was increased by 0.13 and 0

  1. Assembly of the novel five-component apicomplexan multi-aminoacyl-tRNA synthetase complex is driven by the hybrid scaffold protein Tg-p43.

    PubMed

    van Rooyen, Jason M; Murat, Jean-Benjamin; Hammoudi, Pierre-Mehdi; Kieffer-Jaquinod, Sylvie; Coute, Yohann; Sharma, Amit; Pelloux, Hervé; Belrhali, Hassan; Hakimi, Mohamed-Ali

    2014-01-01

    In Toxoplasma gondii, as in other eukaryotes, a subset of the amino-acyl-tRNA synthetases are arranged into an abundant cytoplasmic multi-aminoacyl-tRNA synthetase (MARS) complex. Through a series of genetic pull-down assays, we have identified the enzymes of this complex as: methionyl-, glutaminyl-, glutamyl-, and tyrosyl-tRNA synthetases, and we show that the N-terminal GST-like domain of a partially disordered hybrid scaffold protein, Tg-p43, is sufficient for assembly of the intact complex. Our gel filtration studies revealed significant heterogeneity in the size and composition of isolated MARS complexes. By targeting the tyrosyl-tRNA synthetases subunit, which was found exclusively in the complete 1 MDa complex, we were able to directly visualize MARS particles in the electron microscope. Image analyses of the negative stain data revealed the observed heterogeneity and instability of these complexes to be driven by the intrinsic flexibility of the domain arrangements within the MARS complex. These studies provide unique insights into the assembly of these ubiquitous but poorly understood eukaryotic complexes.

  2. MO-A-BRC-00: TG167: Clinical Recommendations for Innovative Brachytherapy Devices and Applicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used to evaluate innovative radiotherapy devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining equivalence of the innovative device to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of an innovative brachytherapy device or application is a critical part in which physicists are actively involved. The physicist’s role, along with physician colleagues, in this process is highlighted for innovative products or applications and includes evaluation of 1)more » dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, 2) risks and benefits from regulatory and safety perspectives, and 3) resource assessment and preparedness. Further, calibration methods should be traceable to a primary standards dosimetry laboratory such as NIST in the U.S. or to other primary standards dosimetry laboratory located elsewhere. Clinical users should follow standards as approved by their country’s regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the ADCLs is encouraged before a source is introduced into widespread routine clinical use. The AAPM and GEC-ESTRO have developed guidelines for the safe and consistent application of brachytherapy using innovative brachytherapy devices and applications. The current report covers regulatory approvals, calibration, dose calculations, radiobiological issues, and overall safety concerns that should be addressed during the commissioning stage preceding clinical use. These guidelines are based on

  3. The ACTTION–APS–AAPM Pain Taxonomy (AAAPT) Multidimensional Approach to Classifying Acute Pain Conditions

    PubMed Central

    Kent, Michael L.; Tighe, Patrick J.; Belfer, Inna; Brennan, Timothy J.; Bruehl, Stephen; Brummett, Chad M.; Buckenmaier, Chester C.; Buvanendran, Asokumar; Cohen, Robert I.; Desjardins, Paul; Edwards, David; Fillingim, Roger; Gewandter, Jennifer; Gordon, Debra B.; Hurley, Robert W.; Kehlet, Henrik; Loeser, John D.; Mackey, Sean; McLean, Samuel A.; Polomano, Rosemary; Rahman, Siamak; Raja, Srinivasa; Rowbotham, Michael; Suresh, Santhanam; Schachtel, Bernard; Schreiber, Kristin; Schumacher, Mark; Stacey, Brett; Stanos, Steven; Todd, Knox; Turk, Dennis C.; Weisman, Steven J.; Wu, Christopher; Carr, Daniel B.; Dworkin, Robert H.; Terman, Gregory

    2017-01-01

    Objective. With the increasing societal awareness of the prevalence and impact of acute pain, there is a need to develop an acute pain classification system that both reflects contemporary mechanistic insights and helps guide future research and treatment. Existing classifications of acute pain conditions are limiting, with a predominant focus on the sensory experience (e.g., pain intensity) and pharmacologic consumption. Consequently, there is a need to more broadly characterize and classify the multidimensional experience of acute pain. Setting. Consensus report following expert panel involving the Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks (ACTTION), American Pain Society (APS), and American Academy of Pain Medicine (AAPM). Methods. As a complement to a taxonomy recently developed for chronic pain, the ACTTION public-private partnership with the US Food and Drug Administration, the APS, and the AAPM convened a consensus meeting of experts to develop an acute pain taxonomy using prevailing evidence. Key issues pertaining to the distinct nature of acute pain are presented followed by the agreed-upon taxonomy. The ACTTION-APS-AAPM Acute Pain Taxonomy will include the following dimensions: 1) core criteria, 2) common features, 3) modulating factors, 4) impact/functional consequences, and 5) putative pathophysiologic pain mechanisms. Future efforts will consist of working groups utilizing this taxonomy to develop diagnostic criteria for a comprehensive set of acute pain conditions. Perspective. The ACTTION-APS-AAPM Acute Pain Taxonomy (AAAPT) is a multidimensional acute pain classification system designed to classify acute pain along the following dimensions: 1) core criteria, 2) common features, 3) modulating factors, 4) impact/functional consequences, and 5) putative pathophysiologic pain mechanisms. Conclusions. Significant numbers of patients still suffer from significant acute pain

  4. The ACTTION-APS-AAPM Pain Taxonomy (AAAPT) Multidimensional Approach to Classifying Acute Pain Conditions.

    PubMed

    Kent, Michael L; Tighe, Patrick J; Belfer, Inna; Brennan, Timothy J; Bruehl, Stephen; Brummett, Chad M; Buckenmaier, Chester C; Buvanendran, Asokumar; Cohen, Robert I; Desjardins, Paul; Edwards, David; Fillingim, Roger; Gewandter, Jennifer; Gordon, Debra B; Hurley, Robert W; Kehlet, Henrik; Loeser, John D; Mackey, Sean; McLean, Samuel A; Polomano, Rosemary; Rahman, Siamak; Raja, Srinivasa; Rowbotham, Michael; Suresh, Santhanam; Schachtel, Bernard; Schreiber, Kristin; Schumacher, Mark; Stacey, Brett; Stanos, Steven; Todd, Knox; Turk, Dennis C; Weisman, Steven J; Wu, Christopher; Carr, Daniel B; Dworkin, Robert H; Terman, Gregory

    2017-05-01

    With the increasing societal awareness of the prevalence and impact of acute pain, there is a need to develop an acute pain classification system that both reflects contemporary mechanistic insights and helps guide future research and treatment. Existing classifications of acute pain conditions are limiting, with a predominant focus on the sensory experience (eg, pain intensity) and pharmacologic consumption. Consequently, there is a need to more broadly characterize and classify the multidimensional experience of acute pain. Consensus report following expert panel involving the Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks (ACTTION), American Pain Society (APS), and American Academy of Pain Medicine (AAPM). As a complement to a taxonomy recently developed for chronic pain, the ACTTION public-private partnership with the US Food and Drug Administration, the APS, and the AAPM convened a consensus meeting of experts to develop an acute pain taxonomy using prevailing evidence. Key issues pertaining to the distinct nature of acute pain are presented followed by the agreed-upon taxonomy. The ACTTION-APS-AAPM Acute Pain Taxonomy will include the following dimensions: 1) core criteria, 2) common features, 3) modulating factors, 4) impact/functional consequences, and 5) putative pathophysiologic pain mechanisms. Future efforts will consist of working groups utilizing this taxonomy to develop diagnostic criteria for a comprehensive set of acute pain conditions. The ACTTION-APS-AAPM Acute Pain Taxonomy (AAAPT) is a multidimensional acute pain classification system designed to classify acute pain along the following dimensions: 1) core criteria, 2) common features, 3) modulating factors, 4) impact/functional consequences, and 5) putative pathophysiologic pain mechanisms. Significant numbers of patients still suffer from significant acute pain, despite the advent of modern multimodal analgesic strategies

  5. TH-B-204-00: Implanted Markers for Radiation Therapy and TG 199 Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Implanted markers as target surrogates have been widely used for treatment verification, as they provide safe and reliable monitoring of the inter- and intra-fractional target motion. The rapid advancement of technology requires a critical review and recommendation for the usage of implanted surrogates in current field. The symposium, also reporting an update of AAPM TG 199 - Implanted Target Surrogates for Radiation Treatment Verification, will be focusing on all clinical aspects of using the implanted target surrogates for treatment verification and related issues. A wide variety of markers available in the market will be first reviewed, including radiopaque markers, MRImore » compatible makers, non-migrating coils, surgical clips and electromagnetic transponders etc. The pros and cons of each kind will be discussed. The clinical applications of implanted surrogates will be presented based on different anatomical sites. For the lung, we will discuss gated treatments and 2D or 3D real-time fiducial tracking techniques. For the prostate, we will be focusing on 2D-3D, 3D-3D matching and electromagnetic transponder based localization techniques. For the liver, we will review techniques when patients are under gating, shallow or free breathing condition. We will review techniques when treating challenging breast cancer as deformation may occur. Finally, we will summarize potential issues related to the usage of implanted target surrogates with TG 199 recommendations. A review of fiducial migration and fiducial derived target rotation in different disease sites will be provided. The issue of target deformation, especially near the diaphragm, and related suggestions will be also presented and discussed. Learning Objectives: Knowledge of a wide variety of markers Knowledge of their application for different disease sites Understand of issues related to these applications Z. Wang: Research funding support from Brainlab AG Q. Xu: Consultant for Accuray; Q. Xu, I am a

  6. SU-F-T-488: Comparison of the TG-51 and TG-51 Addendum Calibration Protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaw, T; Hwang, M; Jang, S

    Purpose: To quantify differences between the TG51 and TG51 addendum calibration protocols. Methods: Beam energies of 6X, 6XSRS, 10X, 15X, 23X, 6XFFF, and 10XFFF were calibrated following both the TG51 and TG51 addendum protocols using both a Farmer and a scanning ionization chamber with traceable absorbed dose-to-water calibrations. For the TG51 addendum procedure, the collimating jaws were positioned to define a 10×10cm{sup 2} radiation field, a lead foil was only used for kQ measurements of FFF energies, and a volume-averaging correction was applied based on crossline and inline dose profiles. For the TG51 procedure, the collimating jaws were set tomore » 10×10cm{sup 2} according to the digital readout, and a lead foil was used for kQ measurements of energies greater than 10MV. Results: For beam energies with a flattening filter, absorbed dose-to-water determined by the two protocols differed by 0.1%–0.3%. For FFF beam energies, differences between the protocols were up to 0.2% and 0.8% for the scanning and Farmer ionization chambers, respectively. Differences between the protocols were due to kQ determination, volume-averaging correction, and measurement of raw ionization. Differences in kQ values between the two protocols were up to 0.4% and 0.2% for the scanning and Farmer ionization chambers, respectively. Volume-averaging corrections were less than 0.1% for the scanning ionization chamber, and up to 0.4% and 0.6% for the Farmer ionization chamber in beams with a flattening filter and FFF beams, respectively. Raw ionization measurements differed up to 0.3%±0.07% due to differences in jaw settings. Conclusion: The TG51 and TG51 addendum calibration protocols differed less than 0.3% for the scanning ionization chamber. For the Farmer chamber in FFF energies, volume-averaging corrections of up to 0.6% contributed to calibration differences of up to 0.8%. Failure to verify the radiation field size can produce calibration differences of up to 0.3%.« less

  7. TH-EF-204-04: Experience of IMRT and Other Conformal Techniques in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krylova, T.

    Joanna E. Cygler, Jan Seuntjens, J. Daniel Bourland, M. Saiful Huq, Josep Puxeu Vaque, Daniel Zucca Aparicio, Tatiana Krylova, Yuri Kirpichev, Eric Ford, Caridad Borras Stereotactic Radiation Therapy (SRT) utilizes small static and dynamic (IMRT) fields, to successfully treat malignant and benign diseases using techniques such as Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT). SRT is characterized by sharp dose gradients for individual fields and their resultant dose distributions. For appropriate targets, small field radiotherapy offers improved treatment quality by allowing better sparing of organs at risk while delivering the prescribed target dose. Specialized small field treatment deliverymore » systems, such as robotic-controlled linear accelerators, gamma radiosurgery units, and dynamic arc linear accelerators may utilize rigid fixation, image guidance, and tumor tracking, to insure precise dose delivery to static or moving targets. However, in addition to great advantages, small field delivery techniques present special technical challenges for dose calibration due to unique geometries and small field sizes not covered by existing reference dosimetry protocols such as AAPM TG-51 or IAEA TRS 398. In recent years extensive research has been performed to understand small field dosimetry and measurement instrumentation. AAPM, IAEA and ICRU task groups are expected to provide soon recommendations on the dosimetry of small radiation fields. In this symposium we will: 1] discuss the physics, instrumentation, methodologies and challenges for small field radiation dose measurements; 2] review IAEA and ICRU recommendations on prescribing, recording and reporting of small field radiation therapy; 3] discuss selected clinical applications and technical aspects for specialized image-guided, small field, linear accelerator based treatment techniques such as IMRT and SBRT. Learning Objectives: To learn the physics of small fields in

  8. TH-EF-204-02: Small Field Radiation Therapy: Physics and Recent Recommendations From IAEA and ICRU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seuntjens, J.

    Joanna E. Cygler, Jan Seuntjens, J. Daniel Bourland, M. Saiful Huq, Josep Puxeu Vaque, Daniel Zucca Aparicio, Tatiana Krylova, Yuri Kirpichev, Eric Ford, Caridad Borras Stereotactic Radiation Therapy (SRT) utilizes small static and dynamic (IMRT) fields, to successfully treat malignant and benign diseases using techniques such as Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT). SRT is characterized by sharp dose gradients for individual fields and their resultant dose distributions. For appropriate targets, small field radiotherapy offers improved treatment quality by allowing better sparing of organs at risk while delivering the prescribed target dose. Specialized small field treatment deliverymore » systems, such as robotic-controlled linear accelerators, gamma radiosurgery units, and dynamic arc linear accelerators may utilize rigid fixation, image guidance, and tumor tracking, to insure precise dose delivery to static or moving targets. However, in addition to great advantages, small field delivery techniques present special technical challenges for dose calibration due to unique geometries and small field sizes not covered by existing reference dosimetry protocols such as AAPM TG-51 or IAEA TRS 398. In recent years extensive research has been performed to understand small field dosimetry and measurement instrumentation. AAPM, IAEA and ICRU task groups are expected to provide soon recommendations on the dosimetry of small radiation fields. In this symposium we will: 1] discuss the physics, instrumentation, methodologies and challenges for small field radiation dose measurements; 2] review IAEA and ICRU recommendations on prescribing, recording and reporting of small field radiation therapy; 3] discuss selected clinical applications and technical aspects for specialized image-guided, small field, linear accelerator based treatment techniques such as IMRT and SBRT. Learning Objectives: To learn the physics of small fields in

  9. TH-EF-204-06: Closing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borras, C.

    2016-06-15

    Joanna E. Cygler, Jan Seuntjens, J. Daniel Bourland, M. Saiful Huq, Josep Puxeu Vaque, Daniel Zucca Aparicio, Tatiana Krylova, Yuri Kirpichev, Eric Ford, Caridad Borras Stereotactic Radiation Therapy (SRT) utilizes small static and dynamic (IMRT) fields, to successfully treat malignant and benign diseases using techniques such as Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT). SRT is characterized by sharp dose gradients for individual fields and their resultant dose distributions. For appropriate targets, small field radiotherapy offers improved treatment quality by allowing better sparing of organs at risk while delivering the prescribed target dose. Specialized small field treatment deliverymore » systems, such as robotic-controlled linear accelerators, gamma radiosurgery units, and dynamic arc linear accelerators may utilize rigid fixation, image guidance, and tumor tracking, to insure precise dose delivery to static or moving targets. However, in addition to great advantages, small field delivery techniques present special technical challenges for dose calibration due to unique geometries and small field sizes not covered by existing reference dosimetry protocols such as AAPM TG-51 or IAEA TRS 398. In recent years extensive research has been performed to understand small field dosimetry and measurement instrumentation. AAPM, IAEA and ICRU task groups are expected to provide soon recommendations on the dosimetry of small radiation fields. In this symposium we will: 1] discuss the physics, instrumentation, methodologies and challenges for small field radiation dose measurements; 2] review IAEA and ICRU recommendations on prescribing, recording and reporting of small field radiation therapy; 3] discuss selected clinical applications and technical aspects for specialized image-guided, small field, linear accelerator based treatment techniques such as IMRT and SBRT. Learning Objectives: To learn the physics of small fields in

  10. TH-EF-204-01: Introduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cygler, J.

    2016-06-15

    Joanna E. Cygler, Jan Seuntjens, J. Daniel Bourland, M. Saiful Huq, Josep Puxeu Vaque, Daniel Zucca Aparicio, Tatiana Krylova, Yuri Kirpichev, Eric Ford, Caridad Borras Stereotactic Radiation Therapy (SRT) utilizes small static and dynamic (IMRT) fields, to successfully treat malignant and benign diseases using techniques such as Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT). SRT is characterized by sharp dose gradients for individual fields and their resultant dose distributions. For appropriate targets, small field radiotherapy offers improved treatment quality by allowing better sparing of organs at risk while delivering the prescribed target dose. Specialized small field treatment deliverymore » systems, such as robotic-controlled linear accelerators, gamma radiosurgery units, and dynamic arc linear accelerators may utilize rigid fixation, image guidance, and tumor tracking, to insure precise dose delivery to static or moving targets. However, in addition to great advantages, small field delivery techniques present special technical challenges for dose calibration due to unique geometries and small field sizes not covered by existing reference dosimetry protocols such as AAPM TG-51 or IAEA TRS 398. In recent years extensive research has been performed to understand small field dosimetry and measurement instrumentation. AAPM, IAEA and ICRU task groups are expected to provide soon recommendations on the dosimetry of small radiation fields. In this symposium we will: 1] discuss the physics, instrumentation, methodologies and challenges for small field radiation dose measurements; 2] review IAEA and ICRU recommendations on prescribing, recording and reporting of small field radiation therapy; 3] discuss selected clinical applications and technical aspects for specialized image-guided, small field, linear accelerator based treatment techniques such as IMRT and SBRT. Learning Objectives: To learn the physics of small fields in

  11. TH-EF-204-03: Determination of Small Field Output Factors, Advantages and Limitations of Monte Carlo Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaque, J. Puxeu

    2016-06-15

    Joanna E. Cygler, Jan Seuntjens, J. Daniel Bourland, M. Saiful Huq, Josep Puxeu Vaque, Daniel Zucca Aparicio, Tatiana Krylova, Yuri Kirpichev, Eric Ford, Caridad Borras Stereotactic Radiation Therapy (SRT) utilizes small static and dynamic (IMRT) fields, to successfully treat malignant and benign diseases using techniques such as Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT). SRT is characterized by sharp dose gradients for individual fields and their resultant dose distributions. For appropriate targets, small field radiotherapy offers improved treatment quality by allowing better sparing of organs at risk while delivering the prescribed target dose. Specialized small field treatment deliverymore » systems, such as robotic-controlled linear accelerators, gamma radiosurgery units, and dynamic arc linear accelerators may utilize rigid fixation, image guidance, and tumor tracking, to insure precise dose delivery to static or moving targets. However, in addition to great advantages, small field delivery techniques present special technical challenges for dose calibration due to unique geometries and small field sizes not covered by existing reference dosimetry protocols such as AAPM TG-51 or IAEA TRS 398. In recent years extensive research has been performed to understand small field dosimetry and measurement instrumentation. AAPM, IAEA and ICRU task groups are expected to provide soon recommendations on the dosimetry of small radiation fields. In this symposium we will: 1] discuss the physics, instrumentation, methodologies and challenges for small field radiation dose measurements; 2] review IAEA and ICRU recommendations on prescribing, recording and reporting of small field radiation therapy; 3] discuss selected clinical applications and technical aspects for specialized image-guided, small field, linear accelerator based treatment techniques such as IMRT and SBRT. Learning Objectives: To learn the physics of small fields in

  12. TH-EF-204-05: Application of Small-Field Treatment: The Promises and Pitfalls of SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, E.

    2016-06-15

    Joanna E. Cygler, Jan Seuntjens, J. Daniel Bourland, M. Saiful Huq, Josep Puxeu Vaque, Daniel Zucca Aparicio, Tatiana Krylova, Yuri Kirpichev, Eric Ford, Caridad Borras Stereotactic Radiation Therapy (SRT) utilizes small static and dynamic (IMRT) fields, to successfully treat malignant and benign diseases using techniques such as Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT). SRT is characterized by sharp dose gradients for individual fields and their resultant dose distributions. For appropriate targets, small field radiotherapy offers improved treatment quality by allowing better sparing of organs at risk while delivering the prescribed target dose. Specialized small field treatment deliverymore » systems, such as robotic-controlled linear accelerators, gamma radiosurgery units, and dynamic arc linear accelerators may utilize rigid fixation, image guidance, and tumor tracking, to insure precise dose delivery to static or moving targets. However, in addition to great advantages, small field delivery techniques present special technical challenges for dose calibration due to unique geometries and small field sizes not covered by existing reference dosimetry protocols such as AAPM TG-51 or IAEA TRS 398. In recent years extensive research has been performed to understand small field dosimetry and measurement instrumentation. AAPM, IAEA and ICRU task groups are expected to provide soon recommendations on the dosimetry of small radiation fields. In this symposium we will: 1] discuss the physics, instrumentation, methodologies and challenges for small field radiation dose measurements; 2] review IAEA and ICRU recommendations on prescribing, recording and reporting of small field radiation therapy; 3] discuss selected clinical applications and technical aspects for specialized image-guided, small field, linear accelerator based treatment techniques such as IMRT and SBRT. Learning Objectives: To learn the physics of small fields in

  13. Calibration of helical tomotherapy machine using EPR/alanine dosimetry.

    PubMed

    Perichon, Nicolas; Garcia, Tristan; François, Pascal; Lourenço, Valérie; Lesven, Caroline; Bordy, Jean-Marc

    2011-03-01

    Current codes of practice for clinical reference dosimetry of high-energy photon beams in conventional radiotherapy recommend using a 10 x 10 cm2 square field, with the detector at a reference depth of 10 cm in water and 100 cm source to surface distance (SSD) (AAPM TG-51) or 100 cm source-to-axis distance (SAD) (IAEA TRS-398). However, the maximum field size of a helical tomotherapy (HT) machine is 40 x 5 cm2 defined at 85 cm SAD. These nonstandard conditions prevent a direct implementation of these protocols. The purpose of this study is twofold: To check the absorbed dose in water and dose rate calibration of a tomotherapy unit as well as the accuracy of the tomotherapy treatment planning system (TPS) calculations for a specific test case. Both topics are based on the use of electron paramagnetic resonance (EPR) using alanine as transfer dosimeter between the Laboratoire National Henri Becquerel (LNHB) 60Co-gamma-ray reference beam and the Institut Curie's HT beam. Irradiations performed in the LNHB reference 60Co-gamma-ray beam allowed setting up the calibration method, which was then implemented and tested at the LNHB 6 MV linac x-ray beam, resulting in a deviation of 1.6% (at a 1% standard uncertainty) relative to the reference value determined with the standard IAEA TRS-398 protocol. HT beam dose rate estimation shows a difference of 2% with the value stated by the manufacturer at a 2% standard uncertainty. A 4% deviation between measured dose and the calculation from the tomotherapy TPS was found. The latter was originated by an inadequate representation of the phantom CT-scan values and, consequently, mass densities within the phantom. This difference has been explained by the mass density values given by the CT-scan and used by the TPS which were not the true ones. Once corrected using Monte Carlo N-Particle simulations to validate the accuracy of this process, the difference between corrected TPS calculations and alanine measured dose values was then

  14. WE-G-213-00: History Symposium: Radiological Physics Pioneers: Roentgen and the AAPM Award Eponyms - William Coolidge, Edith Quimby, and Marvin Williams - Who Were They and What Did They Do?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Quimby was hired by Giacchino Failla as a radiation physicist at Memorial Hospital for Cancer in New York City. Failla had studied with Madame Curie and obtained his doctoral degree in her laboratory. After many groundbreaking medical physics studies from 1919 until 1942, they both moved to Columbia University. Dr. Quimby developed a widely employed dosimetry system for single plane implants with radium and radon seeds, and a dosimetry methodology for internal radionuclides. She was author of more than 75 scientific publications, and of significant textbooks including the first comprehensive physics textbook for radiologists “Physical Foundations of Radiology”, which was co-authored with Otto Glasser, Lauriston Taylor and James Weatherwax in the first edition, with Russell Morgan added for the second edition and Paul Goodwin for the fourth edition. With Sergei Feitelberg, M.D. she published two editions of “Radioactive Isotopes in Medicine and Biology: Basic Physics and Instrumentation”. Quimby became a renowned examiner for the American Board of Radiology when the third ABR examination, given in 1936, added physics. She served as President of the American Radium Society, received the RSNA Gold Medal, and also numerous prestigious awards given to women in science. Edith Quimby was a Charter Member of AAPM. The AAPM Lifetime Achievement Award was renamed the Edith H. Quimby Lifetime Achievement Award in her honor in 2011. Marvin Martin Dixon Williams (1902–1981) Marvin Williams was born in Walla Walla, WA in 1902, and attended the same college as Edith Quimby, graduating from Whitman College in 1926. He was greatly influenced to go into medical physics by her accomplishments. During his early career, Williams worked with James Weatherwax in Philadelphia while he was working toward an M.S. from the University of Pennsylvania. In 1931 Williams was awarded a Ph.D. in Biophysics from the University of Minnesota, with the work actually performed at the Mayo Clinic

  15. MO-F-16A-03: AAPM Online Learning Support of New ABR MOC Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloch, C; Ogburn, J; Woodward, M

    2014-06-15

    In 2002 the American Board of Radiology (ABR) discontinued issuing lifetime board certification. After that time diplomates received a timelimited certificate and must participate in the Maintenance of Certification (MOC) program in order to maintain their certification. Initially certificates were issued with a 10 year expiration period and the MOC had requirements to be met over that 10 year period. The goal was to demonstrate continuous maintenance of clinical competency, however some diplomates were attempting to fulfill most or all of the requirements near the end of the 10 year period. This failed to meet the continuous aspect of themore » goal and so the ABR changed to a sliding 3-year window. This was done to recognize that not every year would be the same, but that diplomates should be able to maintain a reasonable average over any 3 year period.A second significant change occurred in 2013. The initial requirements included 20 selfassessment modules (SAMs) over the original 10 year term. SAMs are a special type of continuing education (CE) credit that were an addition to the 250 standard CE credits required over the 10 year period. In 2013, however, the new requirement is 75 CE credits over the previous 3 years, of which 25 must include self-assessment. Effectively this raised the self-assessment requirement from 20 in 10 years to 25 in 3 years. Previously SAMs were an interactive presentation available in limited quantities at live meetings. However, the new requirement is not for SAMs but CE-SA which includes SAMs, but also includes the online quizzes provided at the AAPM online learning center. All credits earned at the AAPM online learning center fulfill the ABR SA requirement.This talk will be an interactive demonstration of the AAPM online learning center along with a discussion of the MOC requirements.« less

  16. Accuracy and calibration of integrated radiation output indicators in diagnostic radiology: A report of the AAPM Imaging Physics Committee Task Group 190

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Pei-Jan P., E-mail: Pei-Jan.Lin@vcuhealth.org; Schueler, Beth A.; Balter, Stephen

    2015-12-15

    Due to the proliferation of disciplines employing fluoroscopy as their primary imaging tool and the prolonged extensive use of fluoroscopy in interventional and cardiovascular angiography procedures, “dose-area-product” (DAP) meters were installed to monitor and record the radiation dose delivered to patients. In some cases, the radiation dose or the output value is calculated, rather than measured, using the pertinent radiological parameters and geometrical information. The AAPM Task Group 190 (TG-190) was established to evaluate the accuracy of the DAP meter in 2008. Since then, the term “DAP-meter” has been revised to air kerma-area product (KAP) meter. The charge of TGmore » 190 (Accuracy and Calibration of Integrated Radiation Output Indicators in Diagnostic Radiology) has also been realigned to investigate the “Accuracy and Calibration of Integrated Radiation Output Indicators” which is reflected in the title of the task group, to include situations where the KAP may be acquired with or without the presence of a physical “meter.” To accomplish this goal, validation test protocols were developed to compare the displayed radiation output value to an external measurement. These test protocols were applied to a number of clinical systems to collect information on the accuracy of dose display values in the field.« less

  17. Initial Characterization of a Gel Patch Dosimeter for In Vivo Dosimetry

    PubMed Central

    Matrosic, C; Culberson, W; Rosen, B; Madsen, E; Frank, G; Bednarz, B

    2016-01-01

    In vivo dosimetry is a greatly underutilized tool for patient safety in clinical external beam radiotherapy treatments, despite being recommended by several national and international organizations (AAPM, ICRU, IAEA, NACP). The reasons for this underutilization mostly relate to the feasibility and cost of in vivo dosimetry methods. Due to the increase in the number of beam angles and dose per fraction in modern treatments, there is a compelling need for a novel dosimeter that is robust and affordable while able to operate properly in these complex conditions. This work presents a gel patch dosimeter as a novel method of in vivo dosimetry. DEFGEL, a 6%T normoxic polyacrylamide gel, was injected into 1-cm thick acrylic molds to create 1-cm thick small cylindrical patch dosimeters. To evaluate the change in optical density due to radiation induced polymerization, dosimeters were scanned before and after irradiation using an in-house developed laser densitometer. The dose-responses of three separate batches of gel were evaluated and compared to check for linearity and repeatability. The response development time was evaluated to ensure that the patch dosimeter could be high throughput. Additionally, the potential of this system to be used as an in vivo dosimeter was tested with a clinically relevant end-to-end in vivo phantom test. All irradiations were performed with a Varian Clinac 21EX at the University of Wisconsin Medical Radiation Research Center (UWMRRC). The dose response of all three batches of gel was found to be linear within the range of 2–20 Gy. At doses below 0.5 Gy the statistical uncertainties were prohibitively large to make quantitative assessments of the results. The three batches demonstrated good repeatability in the range of 2 Gy to up to 10 Gy, with only slight variations in response at higher doses. For low doses the dosimeter fully developed within an hour while at higher doses they fully developed within four hours. During the in vivo

  18. Initial characterization of a gel patch dosimeter for in vivo dosimetry

    NASA Astrophysics Data System (ADS)

    Matrosic, C.; Culberson, W.; Rosen, B.; Madsen, E.; Frank, G.; Bednarz, B.

    2016-05-01

    In vivo dosimetry is a greatly underutilized tool for patient safety in clinical external beam radiotherapy treatments, despite being recommended by several national and international organizations (AAPM, ICRU, IAEA, NACP). The reasons for this underutilization mostly relate to the feasibility and cost of in vivo dosimetry methods. Due to the increase in the number of beam angles and dose per fraction in modern treatments, there is a compelling need for a novel dosimeter that is robust and affordable while able to operate properly in these complex conditions. This work presents a gel patch dosimeter as a novel method of in vivo dosimetry. DEFGEL, a 6% T normoxic polyacrylamide gel, was injected into 1 cm thick acrylic molds to create 1 cm thick small cylindrical patch dosimeters. To evaluate the change in optical density due to radiation induced polymerization, dosimeters were scanned before and after irradiation using an in-house developed laser densitometer. The dose-responses of three separate batches of gel were evaluated and compared to check for linearity and repeatability. The response development time was evaluated to ensure that the patch dosimeter could be high throughput. Additionally, the potential of this system to be used as an in vivo dosimeter was tested with a clinically relevant end-to-end in vivo phantom test. All irradiations were performed with a Varian Clinac 21EX at the University of Wisconsin Medical Radiation Research Center (UWMRRC). The dose-response of all three batches of gel was found to be linear within the range of 2-20 Gy. At doses below 0.5 Gy the statistical uncertainties were prohibitively large to make quantitative assessments of the results. The three batches demonstrated good repeatability in the range of 2 Gy to up to 10 Gy, with only slight variations in response at higher doses. For low doses the dosimeter fully developed within an hour while at higher doses they fully developed within four hours. During the in vivo

  19. SU-F-19A-05: Experimental and Monte Carlo Characterization of the 1 Cm CivaString 103Pd Brachytherapy Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, J; Micka, J; Culberson, W

    Purpose: To determine the in-air azimuthal anisotropy and in-water dose distribution for the 1 cm length of the CivaString {sup 103}Pd brachytherapy source through measurements and Monte Carlo (MC) simulations. American Association of Physicists in Medicine Task Group No. 43 (TG-43) dosimetry parameters were also determined for this source. Methods: The in-air azimuthal anisotropy of the source was measured with a NaI scintillation detector and simulated with the MCNP5 radiation transport code. Measured and simulated results were normalized to their respective mean values and compared. The TG-43 dose-rate constant, line-source radial dose function, and 2D anisotropy function for this sourcemore » were determined from LiF:Mg,Ti thermoluminescent dosimeter (TLD) measurements and MC simulations. The impact of {sup 103}Pd well-loading variability on the in-water dose distribution was investigated using MC simulations by comparing the dose distribution for a source model with four wells of equal strength to that for a source model with strengths increased by 1% for two of the four wells. Results: NaI scintillation detector measurements and MC simulations of the in-air azimuthal anisotropy showed that ≥95% of the normalized data were within 1.2% of the mean value. TLD measurements and MC simulations of the TG-43 dose-rate constant, line-source radial dose function, and 2D anisotropy function agreed to within the experimental TLD uncertainties (k=2). MC simulations showed that a 1% variability in {sup 103}Pd well-loading resulted in changes of <0.1%, <0.1%, and <0.3% in the TG-43 dose-rate constant, radial dose distribution, and polar dose distribution, respectively. Conclusion: The CivaString source has a high degree of azimuthal symmetry as indicated by the NaI scintillation detector measurements and MC simulations of the in-air azimuthal anisotropy. TG-43 dosimetry parameters for this source were determined from TLD measurements and MC simulations. {sup 103}Pd well

  20. Early Cognitive/Social Deficits and Late Motor Phenotype in Conditional Wild-Type TDP-43 Transgenic Mice.

    PubMed

    Alfieri, Julio A; Silva, Pablo R; Igaz, Lionel M

    2016-01-01

    Frontotemporal Dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two neurodegenerative diseases associated to mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43). To investigate in depth the behavioral phenotype associated with this proteinopathy, we used as a model transgenic (Tg) mice conditionally overexpressing human wild-type TDP 43 protein (hTDP-43-WT) in forebrain neurons. We previously characterized these mice at the neuropathological level and found progressive neurodegeneration and other features that evoke human TDP-43 proteinopathies of the FTD/ALS spectrum. In the present study we analyzed the behavior of mice at multiple domains, including motor, social and cognitive performance. Our results indicate that young hTDP-43-WT Tg mice (1 month after post-weaning transgene induction) present a normal motor phenotype compared to control littermates, as assessed by accelerated rotarod performance, spontaneous locomotor activity in the open field test and a mild degree of spasticity shown by a clasping phenotype. Analysis of social and cognitive behavior showed a rapid installment of deficits in social interaction, working memory (Y-maze test) and recognition memory (novel object recognition test) in the absence of overt motor abnormalities. To investigate if the motor phenotype worsen with age, we analyzed the behavior of mice after long-term (up to 12 months) transgene induction. Our results reveal a decreased performance on the rotarod test and in the hanging wire test, indicating a motor phenotype that was absent in younger mice. In addition, long-term hTDP-43-WT expression led to hyperlocomotion in the open field test. In sum, these results demonstrate a time-dependent emergence of a motor phenotype in older hTDP-43-WT Tg mice, recapitulating aspects of clinical FTD presentations with motor involvement in human patients, and providing a complementary animal model for studying TDP-43 proteinopathies.

  1. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... system or source traceable to the National Institute of Standards and Technology (NIST) and published... American Association of Physicists in Medicine (AAPM). The calibration must have been performed within the...

  2. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... system or source traceable to the National Institute of Standards and Technology (NIST) and published... American Association of Physicists in Medicine (AAPM). The calibration must have been performed within the...

  3. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... system or source traceable to the National Institute of Standards and Technology (NIST) and published... American Association of Physicists in Medicine (AAPM). The calibration must have been performed within the...

  4. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... system or source traceable to the National Institute of Standards and Technology (NIST) and published... American Association of Physicists in Medicine (AAPM). The calibration must have been performed within the...

  5. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... system or source traceable to the National Institute of Standards and Technology (NIST) and published... American Association of Physicists in Medicine (AAPM). The calibration must have been performed within the...

  6. A revised dosimetric characterization of the model S700 electronic brachytherapy source containing an anode-centering plastic insert and other components not included in the 2006 model.

    PubMed

    Hiatt, Jessica R; Davis, Stephen D; Rivard, Mark J

    2015-06-01

    The model S700 Axxent electronic brachytherapy source by Xoft, Inc., was characterized by Rivard et al. in 2006. Since then, the source design was modified to include a new insert at the source tip. Current study objectives were to establish an accurate source model for simulation purposes, dosimetrically characterize the new source and obtain its TG-43 brachytherapy dosimetry parameters, and determine dose differences between the original simulation model and the current model S700 source design. Design information from measurements of dissected model S700 sources and from vendor-supplied CAD drawings was used to aid establishment of an updated Monte Carlo source model, which included the complex-shaped plastic source-centering insert intended to promote water flow for cooling the source anode. These data were used to create a model for subsequent radiation transport simulations in a water phantom. Compared to the 2006 simulation geometry, the influence of volume averaging close to the source was substantially reduced. A track-length estimator was used to evaluate collision kerma as a function of radial distance and polar angle for determination of TG-43 dosimetry parameters. Results for the 50 kV source were determined every 0.1 cm from 0.3 to 15 cm and every 1° from 0° to 180°. Photon spectra in water with 0.1 keV resolution were also obtained from 0.5 to 15 cm and polar angles from 0° to 165°. Simulations were run for 10(10) histories, resulting in statistical uncertainties on the transverse plane of 0.04% at r = 1 cm and 0.06% at r = 5 cm. The dose-rate distribution ratio for the model S700 source as compared to the 2006 model exceeded unity by more than 5% for roughly one quarter of the solid angle surrounding the source, i.e., θ ≥ 120°. The radial dose function diminished in a similar manner as for an (125)I seed, with values of 1.434, 0.636, 0.283, and 0.0975 at 0.5, 2, 5, and 10 cm, respectively. The radial dose function ratio between the current

  7. A revised dosimetric characterization of the model S700 electronic brachytherapy source containing an anode-centering plastic insert and other components not included in the 2006 model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiatt, Jessica R.; Davis, Stephen D.; Rivard, Mark J., E-mail: mark.j.rivard@gmail.com

    2015-06-15

    Purpose: The model S700 Axxent electronic brachytherapy source by Xoft, Inc., was characterized by Rivard et al. in 2006. Since then, the source design was modified to include a new insert at the source tip. Current study objectives were to establish an accurate source model for simulation purposes, dosimetrically characterize the new source and obtain its TG-43 brachytherapy dosimetry parameters, and determine dose differences between the original simulation model and the current model S700 source design. Methods: Design information from measurements of dissected model S700 sources and from vendor-supplied CAD drawings was used to aid establishment of an updated Montemore » Carlo source model, which included the complex-shaped plastic source-centering insert intended to promote water flow for cooling the source anode. These data were used to create a model for subsequent radiation transport simulations in a water phantom. Compared to the 2006 simulation geometry, the influence of volume averaging close to the source was substantially reduced. A track-length estimator was used to evaluate collision kerma as a function of radial distance and polar angle for determination of TG-43 dosimetry parameters. Results for the 50 kV source were determined every 0.1 cm from 0.3 to 15 cm and every 1° from 0° to 180°. Photon spectra in water with 0.1 keV resolution were also obtained from 0.5 to 15 cm and polar angles from 0° to 165°. Simulations were run for 10{sup 10} histories, resulting in statistical uncertainties on the transverse plane of 0.04% at r = 1 cm and 0.06% at r = 5 cm. Results: The dose-rate distribution ratio for the model S700 source as compared to the 2006 model exceeded unity by more than 5% for roughly one quarter of the solid angle surrounding the source, i.e., θ ≥ 120°. The radial dose function diminished in a similar manner as for an {sup 125}I seed, with values of 1.434, 0.636, 0.283, and 0.0975 at 0.5, 2, 5, and 10 cm, respectively. The

  8. Praseodymium-142 glass seeds for the brachytherapy of prostate cancer

    NASA Astrophysics Data System (ADS)

    Jung, Jae Won

    A beta-emitting glass seed was proposed for the brachytherapy treatment of prostate cancer. Criteria for seed design were derived and several beta-emitting nuclides were examined for suitability. 142Pr was selected as the isotope of choice. Seeds 0.08 cm in diameter and 0.9 cm long were manufactured for testing. The seeds were activated in the Texas A&M University research reactor. The activity produced was as expected when considering the meta-stable state and epi-thermal neutron flux. The MCNP5 Monte Carlo code was used to calculate the quantitative dosimetric parameters suggested in the American Association of Physicists in Medicine (AAPM) TG-43/60. The Monte Carlo calculation results were compared with those from a dose point kernel code. The dose profiles agree well with each other. The gamma dose of 142Pr was evaluated. The gamma dose is 0.3 Gy at 1.0 cm with initial activity of 5.95 mCi and is insignificant to other organs. Measurements were performed to assess the 2-dimensional axial dose distributions using Gafchromic radiochromic film. The radiochromic film was calibrated using an X-ray machine calibrated against a National Institute of Standards and Technology (NIST) traceable ion chamber. A calibration curve was derived using a least squares fit of a second order polynomial. The measured dose distribution agrees well with results from the Monte Carlo simulation. The dose was 130.8 Gy at 6 mm from the seed center with initial activity of 5.95 mCi. AAPM TG-43/60 parameters were determined. The reference dose rate for 2 mm and 6 mm were 0.67 and 0.02 cGy/s/mCi, respectively. The geometry function, radial dose function and anisotropy function were generated.

  9. Sci-Thur PM: YIS - 07: Monte Carlo simulations to obtain several parameters required for electron beam dosimetry.

    PubMed

    Muir, B; Rogers, D; McEwen, M

    2012-07-01

    When current dosimetry protocols were written, electron beam data were limited and had uncertainties that were unacceptable for reference dosimetry. Protocols for high-energy reference dosimetry are currently being updated leading to considerable interest in accurate electron beam data. To this end, Monte Carlo simulations using the EGSnrc user-code egs_chamber are performed to extract relevant data for reference beam dosimetry. Calculations of the absorbed dose to water and the absorbed dose to the gas in realistic ion chamber models are performed as a function of depth in water for cobalt-60 and high-energy electron beams between 4 and 22 MeV. These calculations are used to extract several of the parameters required for electron beam dosimetry - the beam quality specifier, R 50 , beam quality conversion factors, k Q and k R50 , the electron quality conversion factor, k' R50 , the photon-electron conversion factor, k ecal , and ion chamber perturbation factors, P Q . The method used has the advantage that many important parameters can be extracted as a function of depth instead of determination at only the reference depth as has typically been done. Results obtained here are in good agreement with measured and other calculated results. The photon-electron conversion factors obtained for a Farmer-type NE2571 and plane-parallel PTW Roos, IBA NACP-02 and Exradin A11 chambers are 0.903, 0.896, 0.894 and 0.906, respectively. These typically differ by less than 0.7% from the contentious TG-51 values but have much smaller systematic uncertainties. These results are valuable for reference dosimetry of high-energy electron beams. © 2012 American Association of Physicists in Medicine.

  10. SU-E-T-477: An Efficient Dose Correction Algorithm Accounting for Tissue Heterogeneities in LDR Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashouf, S; Lai, P; Karotki, A

    2014-06-01

    Purpose: Seed brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose surrounding the brachytherapy seeds is based on American Association of Physicist in Medicine Task Group No. 43 (TG-43 formalism) which generates the dose in homogeneous water medium. Recently, AAPM Task Group No. 186 emphasized the importance of accounting for tissue heterogeneities. This can be done using Monte Carlo (MC) methods, but it requires knowing the source structure and tissue atomic composition accurately. In this work we describe an efficient analytical dose inhomogeneity correction algorithm implemented usingmore » MIM Symphony treatment planning platform to calculate dose distributions in heterogeneous media. Methods: An Inhomogeneity Correction Factor (ICF) is introduced as the ratio of absorbed dose in tissue to that in water medium. ICF is a function of tissue properties and independent of source structure. The ICF is extracted using CT images and the absorbed dose in tissue can then be calculated by multiplying the dose as calculated by the TG-43 formalism times ICF. To evaluate the methodology, we compared our results with Monte Carlo simulations as well as experiments in phantoms with known density and atomic compositions. Results: The dose distributions obtained through applying ICF to TG-43 protocol agreed very well with those of Monte Carlo simulations as well as experiments in all phantoms. In all cases, the mean relative error was reduced by at least 50% when ICF correction factor was applied to the TG-43 protocol. Conclusion: We have developed a new analytical dose calculation method which enables personalized dose calculations in heterogeneous media. The advantages over stochastic methods are computational efficiency and the ease of integration into clinical setting as detailed source structure and tissue segmentation are not needed. University of Toronto, Natural

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Y; Lacroix, F; Lavallee, M

    Purpose: To evaluate the commercially released Collapsed Cone convolution-based(CCC) dose calculation module of the Elekta OncentraBrachy(OcB) treatment planning system(TPS). Methods: An allwater phantom was used to perform TG43 benchmarks with single source and seventeen sources, separately. Furthermore, four real-patient heterogeneous geometries (chestwall, lung, breast and prostate) were used. They were selected based on their clinical representativity of a class of clinical anatomies that pose clear challenges. The plans were used as is(no modification). For each case, TG43 and CCC calculations were performed in the OcB TPS, with TG186-recommended materials properly assigned to ROIs. For comparison, Monte Carlo simulation was runmore » for each case with the same material scheme and grid mesh as TPS calculations. Both modes of CCC (standard and high quality) were tested. Results: For the benchmark case, the CCC dose, when divided by that of TG43, yields hot-n-cold spots in a radial pattern. The pattern of the high mode is denser than that of the standard mode and is representative of angular dicretization. The total deviation ((hot-cold)/TG43) is 18% for standard mode and 11% for high mode. Seventeen dwell positions help to reduce “ray-effect”, with the total deviation to 6% (standard) and 5% (high), respectively. For the four patient cases, CCC produces, as expected, more realistic dose distributions than TG43. A close agreement was observed between CCC and MC for all isodose lines, from 20% and up; the 10% isodose line of CCC appears shifted compared to that of MC. The DVH plots show dose deviations of CCC from MC in small volume, high dose regions (>100% isodose). For patient cases, the difference between standard and high modes is almost undiscernable. Conclusion: OncentraBrachy CCC algorithm marks a significant dosimetry improvement relative to TG43 in real-patient cases. Further researches are recommended regarding the clinical implications of the

  12. SU-F-BRE-13: Replacing Pre-Treatment Phantom QA with 3D In-Vivo Portal Dosimetry for IMRT Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stroom, J; Vieira, S; Greco, C

    Purpose: Pre-treatment QA of individual treatment plans requires costly linac time and physics effort. Starting with IMRT breast treatments, we aim to replace pre-treatment QA with in-vivo portal dosimetry. Methods: Our IMRT breast cancer plans are routinely measured using the ArcCheck device (SunNuclear). 2D-Gamma analysis is performed with 3%/3mm criteria and the percentage of points with gamma<1 (nG1) is calculated within the 50% isodose surface. Following AAPM recommendations, plans with nG1<90% are approved; others need further inspection and might be rejected. For this study, we used invivo portal dosimetry (IPD) to measure the 3D back-projected dose of the first threemore » fractions for IMRT breast plans. Patient setup was online corrected before for all measured fractions. To reduce patient related uncertainties, the three IPD results were averaged and 3D-gamma analysis was applied with abovementioned criteria . For a subset of patients, phantom portal dosimetry (PPD) was also performed on a slab phantom. Results: Forty consecutive breast patients with plans that fitted the EPID were analysed. The average difference between planned and IPD dose in the reference point was −0.7+/−1.6% (1SD). Variation in nG1 between the 3 invivo fractions was about 6% (1SD). The average nG1 for IPD was 89+/−6%, worse than ArcCheck (95+/−3%). This can be explained by patient related factors such as changes in anatomy and/or model deficiencies due to e.g. inhomogeneities. For the 20 cases with PPD, mean nG1 was equal to ArcCheck values, which indicates that the two systems are equally accurate. These data therefore suggest that proper criteria for 3D invivo verification of breast treatments should be nG1>80% instead of nG1>90%, which, for our breast cases, would result in 5% (2/40) further inspections. Conclusion: First-fraction in-vivo portal dosimetry using new gamma-evaluation criteria will replace phantom measurements in our institution, saving resources and

  13. Compliance with AAPM Practice Guideline 1.a: CT Protocol Management and Review — from the perspective of a university hospital

    PubMed Central

    Bour, Robert K.; Pozniak, Myron; Ranallo, Frank N.

    2015-01-01

    The purpose of this paper is to describe our experience with the AAPM Medical Physics Practice Guideline 1.a: “CT Protocol Management and Review Practice Guideline”. Specifically, we will share how our institution's quality management system addresses the suggestions within the AAPM practice report. We feel this paper is needed as it was beyond the scope of the AAPM practice guideline to provide specific details on fulfilling individual guidelines. Our hope is that other institutions will be able to emulate some of our practices and that this article would encourage other types of centers (e.g., community hospitals) to share their methodology for approaching CT protocol optimization and quality control. Our institution had a functioning CT protocol optimization process, albeit informal, since we began using CT. Recently, we made our protocol development and validation process compliant with a number of the ISO 9001:2008 clauses and this required us to formalize the roles of the members of our CT protocol optimization team. We rely heavily on PACS‐based IT solutions for acquiring radiologist feedback on the performance of our CT protocols and the performance of our CT scanners in terms of dose (scanner output) and the function of the automatic tube current modulation. Specific details on our quality management system covering both quality control and ongoing optimization have been provided. The roles of each CT protocol team member have been defined, and the critical role that IT solutions provides for the management of files and the monitoring of CT protocols has been reviewed. In addition, the invaluable role management provides by being a champion for the project has been explained; lack of a project champion will mitigate the efforts of a CT protocol optimization team. Meeting the guidelines set forth in the AAPM practice guideline was not inherently difficult, but did, in our case, require the cooperation of radiologists, technologists, physicists, IT

  14. The ACTTION-APS-AAPM Pain Taxonomy (AAAPT) Multidimensional Approach to Classifying Acute Pain Conditions.

    PubMed

    Kent, Michael L; Tighe, Patrick J; Belfer, Inna; Brennan, Timothy J; Bruehl, Stephen; Brummett, Chad M; Buckenmaier, Chester C; Buvanendran, Asokumar; Cohen, Robert I; Desjardins, Paul; Edwards, David; Fillingim, Roger; Gewandter, Jennifer; Gordon, Debra B; Hurley, Robert W; Kehlet, Henrik; Loeser, John D; Mackey, Sean; McLean, Samuel A; Polomano, Rosemary; Rahman, Siamak; Raja, Srinivasa; Rowbotham, Michael; Suresh, Santhanam; Schachtel, Bernard; Schreiber, Kristin; Schumacher, Mark; Stacey, Brett; Stanos, Steven; Todd, Knox; Turk, Dennis C; Weisman, Steven J; Wu, Christopher; Carr, Daniel B; Dworkin, Robert H; Terman, Gregory

    2017-05-01

    With the increasing societal awareness of the prevalence and impact of acute pain, there is a need to develop an acute pain classification system that both reflects contemporary mechanistic insights and helps guide future research and treatment. Existing classifications of acute pain conditions are limiting, with a predominant focus on the sensory experience (e.g., pain intensity) and pharmacologic consumption. Consequently, there is a need to more broadly characterize and classify the multidimensional experience of acute pain. Consensus report following expert panel involving the Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks (ACTTION), American Pain Society (APS), and American Academy of Pain Medicine (AAPM). As a complement to a taxonomy recently developed for chronic pain, the ACTTION public-private partnership with the US Food and Drug Administration, the APS, and the AAPM convened a consensus meeting of experts to develop an acute pain taxonomy using prevailing evidence. Key issues pertaining to the distinct nature of acute pain are presented followed by the agreed-upon taxonomy. The ACTTION-APS-AAPM Acute Pain Taxonomy will include the following dimensions: 1) core criteria, 2) common features, 3) modulating factors, 4) impact/functional consequences, and 5) putative pathophysiologic pain mechanisms. Future efforts will consist of working groups utilizing this taxonomy to develop diagnostic criteria for a comprehensive set of acute pain conditions. The ACTTION-APS-AAPM Acute Pain Taxonomy (AAAPT) is a multidimensional acute pain classification system designed to classify acute pain along the following dimensions: 1) core criteria, 2) common features, 3) modulating factors, 4) impact/functional consequences, and 5) putative pathophysiologic pain mechanisms. Significant numbers of patients still suffer from significant acute pain, despite the advent of modern multimodal analgesic strategies

  15. The impact of water temperature on the measurement of absolute dose

    NASA Astrophysics Data System (ADS)

    Islam, Naveed Mehdi

    To standardize reference dosimetry in radiation therapy, Task Group 51 (TG 51) of American Association of Physicist's in Medicine (AAPM) recommends that dose calibration measurements be made in a water tank at a depth of 10 cm and at a reference geometry. Methodologies are provided for calculating various correction factors to be applied in calculating the absolute dose. However the protocol does not specify the water temperature to be used. In practice, the temperature of water during dosimetry may vary considerably between independent sessions and different centers. In this work the effect of water temperature on absolute dosimetry has been investigated. Density of water varies with temperature, which in turn may impact the beam attenuation and scatter properties. Furthermore, due to thermal expansion or contraction air volume inside the chamber may change. All of these effects can result in a change in the measurement. Dosimetric measurements were made using a Farmer type ion chamber on a Varian Linear Accelerator for 6 MV and 23 MV photon energies for temperatures ranging from 10 to 40 °C. A thermal insulation was designed for the water tank in order to maintain relatively stable temperature over the duration of the experiment. Dose measured at higher temperatures were found to be consistently higher by a very small magnitude. Although the differences in dose were less than the uncertainty in each measurement, a linear regression of the data suggests that the trend is statistically significant with p-values of 0.002 and 0.013 for 6 and 23 MV beams respectively. For a 10 degree difference in water phantom temperatures, which is a realistic deviation across clinics, the final calculated reference dose can differ by 0.24% or more. To address this effect, first a reference temperature (e.g.22 °C) can be set as the standard; subsequently a correction factor can be implemented for deviations from this reference. Such a correction factor is expected to be of similar

  16. TU-EF-210-04: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farahani, K.

    The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imagingmore » Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.« less

  17. Variable (Tg, Ts) Measurements of Alkane Dissociative Sticking Coefficients

    NASA Astrophysics Data System (ADS)

    Valadez, Leticia; Dewitt, Kristy; Abbott, Heather; Kolasinski, Kurt; Harrision, Ian

    2006-03-01

    Dissociative sticking coefficients S(Tg, Ts) for CH4 and C2H6 on Pt(111) have been measured as a function of gas temperature (Tg) and surface temperature (Ts) using an effusive molecular beam. Microcanonical unimolecular rate theory (MURT) was employed to extract transition state characteristics [e.g., E0(CH4) = 52.5±3.5 kJ/mol-1 and E0(C2H6) = 26.5±3 kJ/mol-1]. MURT allows our S(Tg, Ts) values to be directly compared to other supersonic molecular beam and thermal equilibrium sticking measurements. The S(Tg, Ts) depend strongly on Ts, however, only for CH4 is a strong Tg dependence observed. The fairly weak Tg dependence for C2H6 suggests that vibrational mode specific behavior and/or molecular rotations play stronger roles in the dissociative chemisorption of C2H6 than they do for CH4. Interestingly, thermal S(Tg=Ts) predictions based on MURT modeling of our CH4/Pt(111) data are three orders of magnitude higher than recent thermal equilibrium measurements on supported Pt nanocrystallite catalysts [J. M. Wei, E. Iglesia, J. Phys. Chem. B 108, 4094 (2004)].

  18. MO-B-BRB-04: 3D Dosimetry in End-To-End Dosimetry QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibbott, G.

    Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data

  19. Cosmological applications of F (T ,TG) gravity

    NASA Astrophysics Data System (ADS)

    Kofinas, Georgios; Saridakis, Emmanuel N.

    2014-10-01

    We investigate the cosmological applications of F (T ,TG) gravity, which is a novel modified gravitational theory based on the torsion invariant T and the teleparallel equivalent of the Gauss-Bonnet term TG. F (T ,TG) gravity differs from both F (T ) theories as well as from F (R ,G ) class of curvature modified gravity, and thus its corresponding cosmology proves to be very interesting. In particular, it provides a unified description of the cosmological history from early-times inflation to late-times self-acceleration, without the inclusion of a cosmological constant. Moreover, the dark energy equation-of-state parameter can be quintessence or phantomlike, or experience the phantom-divide crossing, depending on the parameters of the model.

  20. Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218.

    PubMed

    Miften, Moyed; Olch, Arthur; Mihailidis, Dimitris; Moran, Jean; Pawlicki, Todd; Molineu, Andrea; Li, Harold; Wijesooriya, Krishni; Shi, Jie; Xia, Ping; Papanikolaou, Nikos; Low, Daniel A

    2018-04-01

    Patient-specific IMRT QA measurements are important components of processes designed to identify discrepancies between calculated and delivered radiation doses. Discrepancy tolerance limits are neither well defined nor consistently applied across centers. The AAPM TG-218 report provides a comprehensive review aimed at improving the understanding and consistency of these processes as well as recommendations for methodologies and tolerance limits in patient-specific IMRT QA. The performance of the dose difference/distance-to-agreement (DTA) and γ dose distribution comparison metrics are investigated. Measurement methods are reviewed and followed by a discussion of the pros and cons of each. Methodologies for absolute dose verification are discussed and new IMRT QA verification tools are presented. Literature on the expected or achievable agreement between measurements and calculations for different types of planning and delivery systems are reviewed and analyzed. Tests of vendor implementations of the γ verification algorithm employing benchmark cases are presented. Operational shortcomings that can reduce the γ tool accuracy and subsequent effectiveness for IMRT QA are described. Practical considerations including spatial resolution, normalization, dose threshold, and data interpretation are discussed. Published data on IMRT QA and the clinical experience of the group members are used to develop guidelines and recommendations on tolerance and action limits for IMRT QA. Steps to check failed IMRT QA plans are outlined. Recommendations on delivery methods, data interpretation, dose normalization, the use of γ analysis routines and choice of tolerance limits for IMRT QA are made with focus on detecting differences between calculated and measured doses via the use of robust analysis methods and an in-depth understanding of IMRT verification metrics. The recommendations are intended to improve the IMRT QA process and establish consistent, and comparable IMRT QA

  1. On the feasibility of comprehensive high-resolution 3D remote dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juang, Titania; Grant, Ryan; Adamovics, John

    2014-07-15

    between the Pinnacle plan and dosimeter readout were observed in PRESAGE® formulation SS2. Under 3%/3 mm 3D gamma passing criteria, passing rates were 91.5% ± 3.6% (SS1) and 97.4% ± 2.2% (SS2) for immediate on-site dosimetry, 96.7% ± 2.4% (SS1) and 97.6% ± 0.6% (SS2) for remote dosimetry. These passing rates are well within TG119 recommendations (88%–90% passing). Under the more stringent criteria of 3%/2 mm, there is a pronounced difference [8.0 percentage points (pp)] between SS1 formulation passing rates for immediate and remote dosimetry while the SS2 formulation maintains both higher passing rates and consistency between immediate and remote results (differences ≤ 1.2 pp) at all metrics. Both PRESAGE® formulations under study maintained high linearity of dose response (R{sup 2} > 0.996) for 1–8 Gy over 14 days with response slope consistency within 4.9% (SS1) and 6.6% (SS2), and a relative dose distribution that remained stable over time was demonstrated in the SS2 dosimeters. Conclusions: Remote 3D dosimetry was shown to be feasible with a PRESAGE® dosimeter formulation (SS2) that exhibited relative temporal stability and high accuracy when read off-site 3 days postirradiation. Characterization of the SS2 dose response demonstrated linearity (R{sup 2} > 0.998) over 14 days and suggests accurate readout over longer periods of time would be possible. This result provides a foundation for future investigations using remote dosimetry to study the accuracy of advanced radiation treatments. Further work is planned to characterize dosimeter reproducibility and dose response over longer periods of time.« less

  2. Monte Carlo calculated doses to treatment volumes and organs at risk for permanent implant lung brachytherapy

    NASA Astrophysics Data System (ADS)

    Sutherland, J. G. H.; Furutani, K. M.; Thomson, R. M.

    2013-10-01

    Iodine-125 (125I) and Caesium-131 (131Cs) brachytherapy have been used with sublobar resection to treat stage I non-small cell lung cancer and other radionuclides, 169Yb and 103Pd, are considered for these treatments. This work investigates the dosimetry of permanent implant lung brachytherapy for a range of source energies and various implant sites in the lung. Monte Carlo calculated doses are calculated in a patient CT-derived computational phantom using the EGsnrc user-code BrachyDose. Calculations are performed for 103Pd, 125I, 131Cs seeds and 50 and 100 keV point sources for 17 implant positions. Doses to treatment volumes, ipsilateral lung, aorta, and heart are determined and compared to those determined using the TG-43 approach. Considerable variation with source energy and differences between model-based and TG-43 doses are found for both treatment volumes and organs. Doses to the heart and aorta generally increase with increasing source energy. TG-43 underestimates the dose to the heart and aorta for all implants except those nearest to these organs where the dose is overestimated. Results suggest that model-based dose calculations are crucial for selecting prescription doses, comparing clinical endpoints, and studying radiobiological effects for permanent implant lung brachytherapy.

  3. Evaluation of a real-time BeO ceramic fiber-coupled luminescence dosimetry system for dose verification of high dose rate brachytherapy.

    PubMed

    Santos, Alexandre M Caraça; Mohammadi, Mohammad; Afshar V, Shahraam

    2015-11-01

    The authors evaluate the capability of a beryllium oxide (BeO) ceramic fiber-coupled luminescence dosimeter, named radioluminescence/optically stimulated luminescence (RL/OSL) BeO FOD, for dosimetric verification of high dose rate (HDR) treatments. The RL/OSL BeO FOD is capable of RL and OSL measurements. The RL/OSL BeO FOD is able to be inserted in 6F proguide needles, used in interstitial HDR treatments. Using a custom built Perspex phantom, 6F proguide needles could be submerged in a water tank at 1 cm separations from each other. A second background fiber was required to correct for the stem effect. The stem effect, dose linearity, reproducibility, depth-dose curves, and angular and temperature dependency of the RL/OSL BeO FOD were characterised using an Ir-192 source. The RL/OSL BeO FOD was also applied to the commissioning of a 10 mm horizontal Leipzig applicator. Both the RL and OSL were found to be reproducible and their percentage depth-dose curves to be in good agreement with those predicted via TG-43. A combined uncertainty of 7.9% and 10.1% (k=1) was estimated for the RL and OSL, respectively. For the 10 mm horizontal Leipzig applicator, measured percentage depth doses were within 5% agreement of the published reference calculations. The output at the 3 mm prescription depth for a 1 Gy delivery was verified to be 0.99±0.08 Gy and 1.01±0.10 Gy by the RL and OSL, respectively. The use of the second background fiber under the current setup means that the two fibers cannot fit into a single 6F needle. Hence, use of the RL is currently not adequate for the purpose of in vivo brachytherapy dosimetry. While not real-time, the OSL is shown to be adequate for in vivo brachytherapy dosimetry.

  4. WE-H-204-02: Part 1: History and Archives Resources at AIP for AAPM and Its Members

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Good, G.

    year old invention is the same basic X-ray tube used today in medicine, research and industry. In 1932 Coolidge became Director of the GE Laboratory, then in 1940 Vice-President and Director of Research. In 1941 he was a member of a small committee, appointed by President Franklin D. Roosevelt, to evaluate the military importance of research on uranium. This committee’s report led to the establishment of the Manhattan Engineering District for nuclear weapons development during WWII. Coolidge lived to be over 100 years old, he had 83 patents to his credit, numerous awards and honorary degrees, and in 1975 was elected to the National Inventor’s Hall of Fame. At the time he was the only inventor to receive this honor in his lifetime. Dr. Coolidge was also the first recipient of the AAPM’s highest science award - named in his honor. From notes of a day-long interview with Coolidge’s son Lawrence in the mid-1990s, previous biographies, publications, books, GE literature, historic photographs, e.g., a wonderful 1874 photo stereoview card with 1 year old baby “Willie Coolidge”, and other artifacts in the author’s collection, this presentation will review Dr. Coolidge’s amazing life, work, accomplishments and awards. “History and Archives Resources at AIP for AAPM and its Members” Gregory A. Good, Ph.D. - Director, AIP Center for History of Physics Melanie J. Mueller, MLIS - Acting Director, AIP Niels Bohr Library & Archives The American Institute of Physics established the Center for History of Physics and the Niels Bohr Library & Archives in the 1960s. Our shared mission is: To preserve and make known the history of the physical sciences. This talk will explore the many ways that AIP’s two history programs support the historical and archival activities of AAPM. Topics will include our ongoing oral history program, web outreach through exhibits and teaching guides, and archiving for AAPM and other Member Societies. We will focus in particular on

  5. WE-H-204-03: Part 2: History and Archives Resources at AIP for AAPM and Its Members

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, M.

    year old invention is the same basic X-ray tube used today in medicine, research and industry. In 1932 Coolidge became Director of the GE Laboratory, then in 1940 Vice-President and Director of Research. In 1941 he was a member of a small committee, appointed by President Franklin D. Roosevelt, to evaluate the military importance of research on uranium. This committee’s report led to the establishment of the Manhattan Engineering District for nuclear weapons development during WWII. Coolidge lived to be over 100 years old, he had 83 patents to his credit, numerous awards and honorary degrees, and in 1975 was elected to the National Inventor’s Hall of Fame. At the time he was the only inventor to receive this honor in his lifetime. Dr. Coolidge was also the first recipient of the AAPM’s highest science award - named in his honor. From notes of a day-long interview with Coolidge’s son Lawrence in the mid-1990s, previous biographies, publications, books, GE literature, historic photographs, e.g., a wonderful 1874 photo stereoview card with 1 year old baby “Willie Coolidge”, and other artifacts in the author’s collection, this presentation will review Dr. Coolidge’s amazing life, work, accomplishments and awards. “History and Archives Resources at AIP for AAPM and its Members” Gregory A. Good, Ph.D. - Director, AIP Center for History of Physics Melanie J. Mueller, MLIS - Acting Director, AIP Niels Bohr Library & Archives The American Institute of Physics established the Center for History of Physics and the Niels Bohr Library & Archives in the 1960s. Our shared mission is: To preserve and make known the history of the physical sciences. This talk will explore the many ways that AIP’s two history programs support the historical and archival activities of AAPM. Topics will include our ongoing oral history program, web outreach through exhibits and teaching guides, and archiving for AAPM and other Member Societies. We will focus in particular on

  6. SU‐C‐105‐05: Reference Dosimetry of High‐Energy Electron Beams with a Farmer‐Type Ionization Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muir, B; Rogers, D

    2013-06-15

    Purpose: To investigate gradient effects and provide Monte Carlo calculated beam quality conversion factors to characterize the Farmer‐type NE2571 ion chamber for high‐energy reference dosimetry of clinical electron beams. Methods: The EGSnrc code system is used to calculate the absorbed dose to water and to the gas in a fully modeled NE2571 chamber as a function of depth in a water phantom. Electron beams incident on the surface of the phantom are modeled using realistic BEAMnrc accelerator simulations and electron beam spectra. Beam quality conversion factors are determined using calculated doses to water and to air in the chamber inmore » high‐energy electron beams and in a cobalt‐60 reference field. Calculated water‐to‐air stopping power ratios are employed for investigation of the overall ion chamber perturbation factor. Results: An upstream shift of 0.3–0.4 multiplied by the chamber radius, r-cav, both minimizes the variation of the overall ion chamber perturbation factor with depth and reduces the difference between the beam quality specifier (R{sub 5} {sub 0}) calculated using ion chamber simulations and that obtained with simulations of dose‐to‐water in the phantom. Beam quality conversion factors are obtained at the reference depth and gradient effects are optimized using a shift of 0.2r-cav. The photon‐electron conversion factor, k-ecal, amounts to 0.906 when gradient effects are minimized using the shift established here and 0.903 if no shift of the data is used. Systematic uncertainties in beam quality conversion factors are investigated and amount to between 0.4 to 1.1% depending on assumptions used. Conclusion: The calculations obtained in this work characterize the use of an NE2571 ion chamber for reference dosimetry of high‐energy electron beams. These results will be useful as the AAPM continues to review their reference dosimetry protocols.« less

  7. Isotropic cosmological models in F(T,TG) theory

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Nazir, Kanwal

    2016-09-01

    This paper is devoted to study evolution of the isotropic universe models in the framework of F(T,TG) gravity (T represents torsion scalar and TG is the teleparallel equivalent of the Gauss-Bonnet (GB) term). We construct F(T,TG) models by taking different eras of the universe like non-relativistic and relativistic matter eras, dark energy (DE) dominated era and their combinations. It is found that the reconstructed models indicate decreasing behavior for DE dominated era and its combination with other eras. We also discuss stability of each reconstructed model. Finally, we evaluate equation of state (EoS) parameter by considering two models and study its behavior graphically.

  8. TG-FTIR analysis on pyrolysis and combustion of marine sediment

    NASA Astrophysics Data System (ADS)

    Oudghiri, Fatiha; Allali, Nabil; Quiroga, José María; Rodríguez-Barroso, María Rocío

    2016-09-01

    In this paper, the pyrolysis and combustion of sediment have been compared using thermogravimetric analysis (TG) coupled with Fourier transform infrared spectrometry (TG-FTIR) analysis. The TG results showed that both the pyrolysis and combustion of sediment presented four weight loss stages, each. The evolving gaseous products during pyrolysis were H2O, CO2 and hydrocarbons, while combustion yielded considerable amounts of CO2, in addition to H2O, CO, Cdbnd C, Cdbnd O and NH3. Comparing the pyrolysis and combustion TG-FTIR curves, it is possible to evaluate the effect of oxygen presence in the temperature range of 200-600 °C, which increases the volatilisation rate of organic matter in sediment. For the better detection of organic and inorganic matter in sediment by TG-FTIR analysis it is recommended to work in combustion mode of sediment.

  9. Accessing Forbidden Glass Regimes through High-Pressure Sub-Tg Annealing

    PubMed Central

    Svenson, Mouritz N.; Mauro, John C.; Rzoska, Sylwester J.; Bockowski, Michal; Smedskjaer, Morten M.

    2017-01-01

    Density and hardness of glasses are known to increase upon both compression at the glass transition temperature (Tg) and ambient pressure sub-Tg annealing. However, a serial combination of the two methods does not result in higher density and hardness, since the effect of compression is countered by subsequent annealing and vice versa. In this study, we circumvent this by introducing a novel treatment protocol that enables the preparation of high-density, high-hardness bulk aluminosilicate glasses. This is done by first compressing a sodium-magnesium aluminosilicate glass at 1 GPa at Tg, followed by sub-Tg annealing in-situ at 1 GPa. Through density, hardness, and heat capacity measurements, we demonstrate that the effects of hot compression and sub-Tg annealing can be combined to access a “forbidden glass” regime that is inaccessible through thermal history or pressure history variation alone. We also study the relaxation behavior of the densified samples during subsequent ambient pressure sub-Tg annealing. Density and hardness are found to relax and approach their ambient condition values upon annealing, but the difference in relaxation time of density and hardness, which is usually observed for hot compressed glasses, vanishes for samples previously subjected to high-pressure sub-Tg annealing. This confirms the unique configurational state of these glasses. PMID:28418017

  10. Thin film tritium dosimetry

    DOEpatents

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  11. Limitations of silicon diodes for clinical electron dosimetry.

    PubMed

    Song, Haijun; Ahmad, Munir; Deng, Jun; Chen, Zhe; Yue, Ning J; Nath, Ravinder

    2006-01-01

    This work investigates the relevance of several factors affecting the response of silicon diode dosemeters in depth-dose scans of electron beams. These factors are electron energy, instantaneous dose rate, dose per pulse, photon/electron dose ratio and electron scattering angle (directional response). Data from the literature and our own experiments indicate that the impact of these factors may be up to +/-15%. Thus, the different factors would have to cancel out perfectly at all depths in order to produce true depth-dose curves. There are reports of good agreement between depth-doses measured with diodes and ionisation chambers. However, our measurements with a Scantronix electron field detector (EFD) diode and with a plane-parallel ionisation chamber show discrepancies both in the build-up and in the low-dose regions, with a ratio up to 1.4. Moreover, the absolute sensitivity of two diodes of the same EFD model was found to differ by a factor of 3, and this ratio was not constant but changed with depth between 5 and 15% in the low-dose regions of some clinical electron beams. Owing to these inhomogeneities among diodes even of the same model, corrections for each factor would have to be diode-specific and beam-specific. All these corrections would have to be determined using parallel plane chambers, as recommended by AAPM TG-25, which would be unrealistic in clinical practice. Our conclusion is that in general diodes are not reliable in the measurement of depth-dose curves of clinical electron beams.

  12. Topical Review: Polymer gel dosimetry

    PubMed Central

    Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J

    2010-01-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687

  13. Thermoluminescent dosimetry in veterinary diagnostic radiology.

    PubMed

    Hernández-Ruiz, L; Jimenez-Flores, Y; Rivera-Montalvo, T; Arias-Cisneros, L; Méndez-Aguilar, R E; Uribe-Izquierdo, P

    2012-12-01

    This paper presents the results of Environmental and Personnel Dosimetry made in a radiology area of a veterinary hospital. Dosimetry was realized using thermoluminescent (TL) materials. Environmental Dosimetry results show that areas closer to the X-ray equipment are safe. Personnel Dosimetry shows important measurements of daily workday in some persons near to the limit established by ICRP. TL results of radiation measurement suggest TLDs are good candidates as a dosimeter to radiation dosimetry in veterinary radiology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. I-125 seed calibration using the SeedSelectron® afterloader: a practical solution to fulfill AAPM-ESTRO recommendations

    PubMed Central

    Perez-Calatayud, Jose; Richart, Jose; Guirado, Damián; Pérez-García, Jordi; Rodríguez, Silvia; Santos, Manuel

    2012-01-01

    Purpose SeedSelectron® v1.26b (Nucletron BV, The Netherlands) is an afterloader system used in prostate interstitial permanent brachytherapy with I-125 selectSeed seeds. It contains a diode array to assay all implanted seeds. Only one or two seeds can be extracted during the surgical procedure and assayed using a well chamber to check the manufacturer air-kerma strength (SK) and to calibrate the diode array. Therefore, it is not feasible to assay 5–10% seeds as required by the AAPM-ESTRO. In this study, we present a practical solution of the SeedSelectron® users to fulfill the AAPM- ESTRO recommendations. Material and methods The method is based on: a) the SourceCheck® well ionization chamber (PTW, Germany) provided with a PTW insert; b) n = 10 selectSeed from the same batch and class as the seeds for the implant; c) the Nucletron insert to accommodate the n = 10 seeds on the SourceCheck® and to measure their averaged SK. Results for 56 implants have been studied comparing the SK value from the manufacturer with the one obtained with the n = 10 seeds using the Nucletron insert prior to the implant and with the SK of just one seed measured with the PTW insert during the implant. Results We are faced with SK deviation for individual seeds up to 7.8%. However, in the majority of cases SK is in agreement with the manufacturer value. With the method proposed using the Nucletron insert, the large deviations of SK are reduced and for 56 implants studied no deviation outside the range of the class were found. Conclusions The new Nucletron insert and the proposed procedure allow to evaluate the SK of the n = 10 seeds prior to the implant, fulfilling the AAPM-ESTRO recommendations. It has been adopted by Nucletron to be extended to seedSelectron® users under request. PMID:23346136

  15. Quantitative imaging for clinical dosimetry

    NASA Astrophysics Data System (ADS)

    Bardiès, Manuel; Flux, Glenn; Lassmann, Michael; Monsieurs, Myriam; Savolainen, Sauli; Strand, Sven-Erik

    2006-12-01

    Patient-specific dosimetry in nuclear medicine is now a legal requirement in many countries throughout the EU for targeted radionuclide therapy (TRT) applications. In order to achieve that goal, an increased level of accuracy in dosimetry procedures is needed. Current research in nuclear medicine dosimetry should not only aim at developing new methods to assess the delivered radiation absorbed dose at the patient level, but also to ensure that the proposed methods can be put into practice in a sufficient number of institutions. A unified dosimetry methodology is required for making clinical outcome comparisons possible.

  16. Fast GPU-based Monte Carlo simulations for LDR prostate brachytherapy.

    PubMed

    Bonenfant, Éric; Magnoux, Vincent; Hissoiny, Sami; Ozell, Benoît; Beaulieu, Luc; Després, Philippe

    2015-07-07

    The aim of this study was to evaluate the potential of bGPUMCD, a Monte Carlo algorithm executed on Graphics Processing Units (GPUs), for fast dose calculations in permanent prostate implant dosimetry. It also aimed to validate a low dose rate brachytherapy source in terms of TG-43 metrics and to use this source to compute dose distributions for permanent prostate implant in very short times. The physics of bGPUMCD was reviewed and extended to include Rayleigh scattering and fluorescence from photoelectric interactions for all materials involved. The radial and anisotropy functions were obtained for the Nucletron SelectSeed in TG-43 conditions. These functions were compared to those found in the MD Anderson Imaging and Radiation Oncology Core brachytherapy source registry which are considered the TG-43 reference values. After appropriate calibration of the source, permanent prostate implant dose distributions were calculated for four patients and compared to an already validated Geant4 algorithm. The radial function calculated from bGPUMCD showed excellent agreement (differences within 1.3%) with TG-43 accepted values. The anisotropy functions at r = 1 cm and r = 4 cm were within 2% of TG-43 values for angles over 17.5°. For permanent prostate implants, Monte Carlo-based dose distributions with a statistical uncertainty of 1% or less for the target volume were obtained in 30 s or less for 1 × 1 × 1 mm(3) calculation grids. Dosimetric indices were very similar (within 2.7%) to those obtained with a validated, independent Monte Carlo code (Geant4) performing the calculations for the same cases in a much longer time (tens of minutes to more than a hour). bGPUMCD is a promising code that lets envision the use of Monte Carlo techniques in a clinical environment, with sub-minute execution times on a standard workstation. Future work will explore the use of this code with an inverse planning method to provide a complete Monte Carlo-based planning solution.

  17. Fast GPU-based Monte Carlo simulations for LDR prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Bonenfant, Éric; Magnoux, Vincent; Hissoiny, Sami; Ozell, Benoît; Beaulieu, Luc; Després, Philippe

    2015-07-01

    The aim of this study was to evaluate the potential of bGPUMCD, a Monte Carlo algorithm executed on Graphics Processing Units (GPUs), for fast dose calculations in permanent prostate implant dosimetry. It also aimed to validate a low dose rate brachytherapy source in terms of TG-43 metrics and to use this source to compute dose distributions for permanent prostate implant in very short times. The physics of bGPUMCD was reviewed and extended to include Rayleigh scattering and fluorescence from photoelectric interactions for all materials involved. The radial and anisotropy functions were obtained for the Nucletron SelectSeed in TG-43 conditions. These functions were compared to those found in the MD Anderson Imaging and Radiation Oncology Core brachytherapy source registry which are considered the TG-43 reference values. After appropriate calibration of the source, permanent prostate implant dose distributions were calculated for four patients and compared to an already validated Geant4 algorithm. The radial function calculated from bGPUMCD showed excellent agreement (differences within 1.3%) with TG-43 accepted values. The anisotropy functions at r = 1 cm and r = 4 cm were within 2% of TG-43 values for angles over 17.5°. For permanent prostate implants, Monte Carlo-based dose distributions with a statistical uncertainty of 1% or less for the target volume were obtained in 30 s or less for 1 × 1 × 1 mm3 calculation grids. Dosimetric indices were very similar (within 2.7%) to those obtained with a validated, independent Monte Carlo code (Geant4) performing the calculations for the same cases in a much longer time (tens of minutes to more than a hour). bGPUMCD is a promising code that lets envision the use of Monte Carlo techniques in a clinical environment, with sub-minute execution times on a standard workstation. Future work will explore the use of this code with an inverse planning method to provide a complete Monte Carlo-based planning solution.

  18. Temperature Control in Radiatively Cooled Plasmas through Autoresonant Drive of TG-waves

    NASA Astrophysics Data System (ADS)

    Kabantsev, A. A.; Driscoll, C. F.

    2013-10-01

    We demonstrate accurate temperature control of pure electron plasmas, using driven wave heating ``autoresonantly'' in balance with cyclotron cooling. The mθ = 0 Trivelpiece-Gould wave frequencies are temperature-dependent, asfTG (T) =fTG (0) * [ 1 + ɛT ] ; and they exhibit a narrow Lorentzian absorption response R (f) with width γ ~10-3fTG . A continuous drive amplitude Adr then produces plasma heating power Ph ~Adr2 R (fdr) , which can exactly balance the cyclotron cooling powerPc ~ T /τc . This balance point is autoresonantly stable when fdr ~fTG (T) - γ : if T increases, then fTG (T) also increases and fdr gets further from resonance, so the heating power decreases and T decreases back to the balance point. (The second power-balance point at fdr ~fTG (T) + γ is unstable.) In practice, we use a mz = 3 TG wave having frequency range 5 . 2 TG < 6 . 2MHz at temperatures 0 . 03 < T < 3 .eV . The plasma temperature can be either ``pegged'' at a desired value; or varied cyclically, with rates limited by τc ~ 2 sec and by chosen drive amplitude. Simultaneously monitoring the mz = 1 TG frequency can serve as a verification of the autoresonant ``lock''. This ``at will'' control of T may be experimentally useful, especially for temperature sensitive processes like recombination, charge exchange and electron impact detachment in e +H- plasmas. Supported by NSF PHY-0903877 and DE-SC0002451.

  19. A new treatment planning formalism for catheter-based beta sources used in intravascular brachytherapy.

    PubMed

    Patel, N S; Chiu-Tsao, S T; Tsao, H S; Harrison, L B

    2001-01-01

    Intravascular brachytherapy (IVBT) is an emerging modality for the treatment of atherosclerotic lesions in the artery. As part of the refinement in this rapidly evolving modality of treatment, the current simplistic dosimetry approach based on a fixed-point prescription must be challenged by future rigorous dosimetry method employing image-based three-dimensional (3D) treatment planning. The goals of 3D IVBT treatment planning calculations include (1) achieving high accuracy in a slim cylindrical region of interest, (2) accounting for the edge effect around the source ends, and (3) supporting multiple dwell positions. The formalism recommended by Task Group 60 (TG-60) of the American Association of Physicists in Medicine (AAPM) is applicable for gamma sources, as well as short beta sources with lengths less than twice the beta particle range. However, for the elongated beta sources and/or seed trains with lengths greater than twice the beta range, a new formalism is required to handle their distinctly different dose characteristics. Specifically, these characteristics consist of (a) flat isodose curves in the central region, (b) steep dose gradient at the source ends, and (c) exponential dose fall-off in the radial direction. In this paper, we present a novel formalism that evolved from TG-60 in maintaining the dose rate as a product of four key quantities. We propose to employ cylindrical coordinates (R, Z, phi), which are more natural and suitable to the slim cylindrical shape of the volume of interest, as opposed to the spherical coordinate system (r, theta, phi) used in the TG-60 formalism. The four quantities used in this formalism include (1) the distribution factor, H(R, Z), (2) the modulation function, M(R, Z), (3) the transverse dose function, h(R), and (4) the reference dose rate at 2 mm along the perpendicular bisector, D(R0=2 mm, Z0=0). The first three are counterparts of the geometry factor, the anisotropy function and the radial dose function in the

  20. Comparison of intraoperative dosimetric implant representation with postimplant dosimetry in patients receiving prostate brachytherapy.

    PubMed

    Stone, Nelson N; Hong, Suzanne; Lo, Yeh-Chi; Howard, Victor; Stock, Richard G

    2003-01-01

    To compare the results of intraoperative dosimetry with those of CT-based postimplant dosimetry in patients undergoing prostate seed implantation. Seventy-seven patients with T1-T3 prostate cancer received an ultrasound-guided permanent seed implant (36 received (125)I, 7 (103)Pd, and 34 a partial (103)Pd implant plus external beam radiation therapy). The implantation was augmented with an intraoperative dosimetric planning system. After the peripheral needles were placed, 5-mm axial images were acquired into the treatment planning system. Soft tissue structures (prostate, urethra, and rectum) were contoured, and exact needle positions were registered. Seeds were placed with an applicator, and their positions were entered into the planning system. The dose distributions for the implant were calculated after interior needle and seed placement. Postimplant dosimetry was performed 1 month later on the basis of CT imaging. Prostate and urethral doses were compared, by using paired t tests, for the real-time dosimetry in the operating room (OR) and the postimplant dosimetry. The mean preimplant prostate volume was 39.8 cm(3), the postneedle planning volume was 41.5 cm(3) (p<0.001), and the 1-month CT volume was 43.6 cm(3) (p<0.001). The mean difference between the OR dose received by 90% of the prostate (D(90)) and the CT D(90) was 3.4% (95% confidence interval, 2.5-6.6%; p=0.034). The mean dose to 30% of the urethra was 120% of prescription in the OR and 138% on CT. The mean difference was 18% (95% confidence interval, 13-24%; p<0.001). Although small differences exist between the OR and CT dosimetry results, these data suggest that this intraoperative implant dosimetric representation system provides a close match to the actual delivered doses. These data support the use of this system to modify the implant during surgery to achieve more consistent dosimetry results.

  1. General Electric TG-180 Turbojet in the Altitude Wind Tunnel

    NASA Image and Video Library

    1947-09-21

    A General Electric TG-180 turbojet installed in the Altitude Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. In 1943 the military asked General Electric to develop an axial-flow jet engine which became the TG-180. The military understood that the TG-180 would not be ready during World War II but recognized the axial-flow compressor’s long-term potential. Although the engine was bench tested in April 1944, it was not flight tested until February 1946. The TG-180 was brought to the Altitude Wind Tunnel in 1945 for a series of investigations. The studies, which continued intermittently into 1948, analyzed an array of performance issues. NACA modifications steadily improved the TG-180’s performance, including the first successful use of an afterburner. The Lewis researchers studied a 29-inch diameter afterburner over a range of altitude conditions using several different types of flameholders and fuel systems. Lewis researchers concluded that a three-stage flameholder with its largest stage upstream was the best burner configuration. Although the TG-180 (also known as the J35) was not the breakthrough engine that the military had hoped for, it did power the Douglas D-558-I Skystreak to a world speed record on August 20, 1947. The engines were also used on the Republic F-84 Thunderjet and the Northrup F-89 Scorpion.

  2. Waist-to-height ratio (WHtR) and triglyceride to HDL-C ratio (TG/HDL-c) as predictors of cardiometabolic risk.

    PubMed

    Weiler Miralles, Clara Silvana; Wollinger, Luana Maria; Marin, Débora; Genro, Julia Pasqualini; Contini, Veronica; Morelo Dal Bosco, Simone

    2015-05-01

    The excessive concentration of fat in the abdominal region is related to a higher risk of developing cardiovascular disease (CVD). Studies have been performed to identify simple and effective indicators of abdominal obesity and associated cardiometabolic risk through the use of simple parameters such as anthropometric and biochemical measures. The Triglyceride / High-density Lipoprotein Cholesterol (TG/HDL-c) has been proposed as a more practical and easy to use atherogenic marker, along with the Waist-to-Height Ratio (WHtR), which makes a superior tool for separating cardiometabolic risk related to overweight/obesity when comparing to Body Mass Index (BMI). To verify the applicability of the WHtR and the TG/HDL-c ratio as predictors of cardiometabolic risk. This cross-sectional study was performed at the Department of Nutrition of the UNIVATES University Center, where the participant's anthropometric and biochemical data were collected. Statistical analysis was performed by the Statistical Package for the Social Sciences software (SPSS) 20.0, with a significance level of 5% (p < 0.05). A total of 498 individuals took part on this research, 77.5% female and with a mean age of 25.5 ± 6.5. A high percentage of fat was found in both men and women (19.9 ± 5.80% and 29.24 ± 5.43%, respectively). The prevalence of overweight/obesity (BMI ≥ 25Kg/m(2)) was 35.05%. The WHtR marker was significantly correlated to Low-density Lipoprotein Cholesterol (LDL-c), Triglyceride (TG) and Anthropometric BMI values, waist circumference (WC) and body fat percentage (BF%). For the TG/HDL-c ratio, there was a positive and significant correlation to the same markers, beyond TC. There was also a correlation between WHtR and TG/HDL-c, and both presented a negative and significant correlation with HDL-c. WHtR and TG/HDL-c values were found to be good markers for the cardiometabolic risk ratio in the studied sample. Several studies, original articles and academic reviews confirm the use

  3. Study of galactic halo F(T,TG) wormhole solutions

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Nazir, Kanwal

    In this paper, we investigate static spherically symmetric wormhole solutions with galactic halo region in the background of F(T,TG) gravity. Here, T represents torsion scalar and TG is teleparallel equivalent Gauss-Bonnet term. For this purpose, we consider a diagonal tetrad and two specific F(T,TG) models. We analyze the wormhole structure through shape function graphically for both models. We also investigate the behavior of null/weak energy conditions. Finally, we evaluate the equilibrium condition to check stability of the wormhole solutions. It is concluded that there exists physically viable wormhole solution only for the first model that turns out to be stable.

  4. Characterising an aluminium oxide dosimetry system.

    PubMed

    Conheady, Clement F; Gagliardi, Frank M; Ackerly, Trevor

    2015-09-01

    In vivo dosimetry is recommended as a defence-in-depth strategy in radiotherapy treatments and is currently employed by clinics around the world. The characteristics of a new optically stimulated luminescence dosimetry system were investigated for the purpose of replacing an aging thermoluminescence dosimetry system for in vivo dosimetry. The stability of the system was not sufficient to satisfy commissioning requirements and therefore it has not been released into clinical service at this time.

  5. SU-F-T-50: Evaluation of Monte Carlo Simulations Performance for Pediatric Brachytherapy Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatzipapas, C; Kagadis, G; Papadimitroulas, P

    Purpose: Pediatric tumors are generally treated with multi-modal procedures. Brachytherapy can be used with pediatric tumors, especially given that in this patient population low toxicity on normal tissues is critical as is the suppression of the probability for late malignancies. Our goal is to validate the GATE toolkit on realistic brachytherapy applications, and evaluate brachytherapy plans on pediatrics for accurate dosimetry on sensitive and critical organs of interest. Methods: The GATE Monte Carlo (MC) toolkit was used. Two High Dose Rate (HDR) 192Ir brachytherapy sources were simulated (Nucletron mHDR-v1 and Varian VS2000), and fully validated using the AAPM and ESTROmore » protocols. A realistic brachytherapy plan was also simulated using the XCAT anthropomorphic computational model .The simulated data were compared to the clinical dose points. Finally, a 14 years old girl with vaginal rhabdomyosarcoma was modelled based on clinical procedures for the calculation of the absorbed dose per organ. Results: The MC simulations resulted in accurate dosimetry in terms of dose rate constant (Λ), radial dose gL(r) and anisotropy function F(r,θ) for both sources.The simulations were executed using ∼1010 number of primaries resulting in statistical uncertainties lower than 2%.The differences between the theoretical values and the simulated ones ranged from 0.01% up to 3.3%, with the largest discrepancy (6%) being observed in the dose rate constant calculation.The simulated DVH using an adult female XCAT model was also compared to a clinical one resulting in differences smaller than 5%. Finally, a realistic pediatric brachytherapy simulation was performed to evaluate the absorbed dose per organ and to calculate DVH with respect to heterogeneities of the human anatomy. Conclusion: GATE is a reliable tool for brachytherapy simulations both for source modeling and for dosimetry in anthropomorphic voxelized models. Our project aims to evaluate a variety of pediatric

  6. [Distribution of IgG subclasses of TgAb and TPOAb in sera from patients with Graves' disease, Graves' disease plus Hashimoto's thyroiditis and Hashimoto's thyrotoxicosis].

    PubMed

    Yuan, Shanshan; Yu, Nan; Gao, Ying; Huang, Wei; He, Yifan; Dong, Bin; Lu, Guizhi; Li, Maorong; Cai, Xiaopin; Peng, Dingqiong; Wang, Yunhong; Li, Ting; Huang, Youyuan; Gao, Yanming; Guo, Xiaohui; Shi, Bingyin

    2014-01-14

    To evaluate the distribution of IgG subclasses of TgAb and TPOAb in sera from patients with Graves' disease (GD), Graves' disease plus Hashimoto's thyroiditis (GH) and Hashimoto's thyrotoxicosis. Patients with GD (n = 33), GH (n = 31) or Hashimoto's thyrotoxicosis (n = 18) diagnosed by fine needle aspiration cytology at Department of Endocrinology of Peking University First Hospital, Beijing Haidian Hospital, China-Japan Friendship Hospital and Civil Aviation General Hospital during the period from January 2010 to May 2013 were enrolled. All of them had TgAb and TPOAb. The total serum IgG and IgG subclasses of TgAb and TPOAb were detected by antigen-specific enzyme-linked immunosorbent assay (ELISA). The prevalence and relative amount of IgG subclasses were calculated and compared among three groups. The levels of TRAb in GD group (21.80(7.53, 40) U/L) were significantly higher than those in GH (7.30(3.10, 25.40) U/L) (P = 0.000) and Hashimoto's thyrotoxicosis groups (4.90(1.69, 16.43) U/L) (P = 0.003). And no significant differences were found in the levels of TgAb and TPOAb. The prevalence of TgAb IgG3 subclass in Hashimoto's thyrotoxicosis group (66.7%) was higher than GD group (35.5%) and GH group (36.4%) and the difference was close to significance (P = 0.066). There were significant differences of relative amount of TgAb IgG2 and TgAb IgG4 among three groups (P = 0.039 and 0.013), and GD patients had higher relative amounts of TgAb IgG2 (0.59(0.34, 0.94)) and TgAb IgG4 (0.57(0.28, 0.97)) than GH patients (TgAb IgG2, 0.31(0.23, 0.34); TgAb IgG4, 0.26(0.09, 0.48)) or patients with Hashimoto's thyrotoxicosis (TgAb IgG2, 0.32(0.24, 0.83); TgAb IgG4, 0.33(0.10, 0.65)) (for TgAb IgG2, P = 0.009 and 0.167; for TgAb IgG4, P = 0.005 and 0.041 respectively). No significant difference was found in the prevalence of each TPOAb IgG subclass. The difference of relative amount of TPOAb IgG2 among three groups was close to significance (P = 0.069). And the relative amount

  7. MO-D-211-01: Medical Physics Practice Guidelines - The Minimum Level of Medical Physics Support in Clinical Practice Settings.

    PubMed

    Chan, M; Fontenot, J; Halvorsen, P

    2012-06-01

    The American Association of Physicists in Medicine (AAPM) has long advocated a consistent level of medical physics practice, and has published many guidelines and position statements toward that goal, such as Science Council Task Group reports related to calibration and quality assurance, Education Council and Professional Council Task Group reports related to education, training, and peer review, and Board-approved Position Statements related to the Scope of Practice, physicist qualifications, and other aspects of medical physicspractice. Despite these concerted and enduring efforts, the profession does not have a clear and concise statement of the acceptable practice guidelines for routine clinical medical physics. As accreditation of clinical practices becomes more common, Medical Physics Practice Guidelines (MPPGs) will be crucial to ensuring a consistent benchmark for accreditation programs. The AAPM will lead the development of MPPGs in collaboration with other professional societies. The MPPGs will be freely available to the general public. Accrediting organizations, regulatory agencies and legislators will be encouraged to reference these MPPGs when defining their respective requirements. MPPGs are intended to provide the medical community with a clear description of the minimum level of medical physics support that the AAPM would consider to be prudent in all clinical practice settings. Support includes but is not limited to staffing, equipment, machine access, and training. These MPPGs are not designed to replace extensive Task Group reports or review articles, but rather to describe the recommended minimum level of medical physics support for specific clinical services. This course will describe the purpose and scope of MPPGs, the procedure for the development of a MPPG, as well as the progress of Therapy MPPG TG #1 on "Evaluation and quality assurance of x-ray based image guided radiotherapy systems" and Diagnostic MPPG TG #2 on "CT Protocol management

  8. Radiation Dosimetry from Intratumoral Injection of Radionuclides in Human Breast Cancer

    DTIC Science & Technology

    2004-07-01

    0.1700 0.0340 Skin 0.0170 0.0085 0.1600 0.0320 Spleen 0.0130 0.0065 0.1100 0.0220 Testes 0.0011 0.0006 0.0053 0.0011 Thymus 0.0530 0.0265 0.5800 0.1160...Lymphatic mapping with intralesional tracer administration in breast carcinoma patients. Cancer. 88(11):2546-52, 2000. 10. Bergqvist L, Strand SE, Persson B...dosimetry in intra- cavitary injection of eight radionuclides in five shell models. J Nucl Med, 43(5):90P, 2002, Suppl. 20. Colombetti LG, Goodwin DA

  9. A brachytherapy photon radiation quality index Q(BT) for probe-type dosimetry.

    PubMed

    Quast, Ulrich; Kaulich, Theodor W; Álvarez-Romero, José T; Carlsson Tedgren, Sa; Enger, Shirin A; Medich, David C; Mourtada, Firas; Perez-Calatayud, Jose; Rivard, Mark J; Zakaria, G Abu

    2016-06-01

    In photon brachytherapy (BT), experimental dosimetry is needed to verify treatment plans if planning algorithms neglect varying attenuation, absorption or scattering conditions. The detector's response is energy dependent, including the detector material to water dose ratio and the intrinsic mechanisms. The local mean photon energy E¯(r) must be known or another equivalent energy quality parameter used. We propose the brachytherapy photon radiation quality indexQ(BT)(E¯), to characterize the photon radiation quality in view of measurements of distributions of the absorbed dose to water, Dw, around BT sources. While the external photon beam radiotherapy (EBRT) radiation quality index Q(EBRT)(E¯)=TPR10(20)(E¯) is not applicable to BT, the authors have applied a novel energy dependent parameter, called brachytherapy photon radiation quality index, defined as Q(BT)(E¯)=Dprim(r=2cm,θ0=90°)/Dprim(r0=1cm,θ0=90°), utilizing precise primary absorbed dose data, Dprim, from source reference databases, without additional MC-calculations. For BT photon sources used clinically, Q(BT)(E¯) enables to determine the effective mean linear attenuation coefficient μ¯(E) and thus the effective energy of the primary photons Eprim(eff)(r0,θ0) at the TG-43 reference position Pref(r0=1cm,θ0=90°), being close to the mean total photon energy E¯tot(r0,θ0). If one has calibrated detectors, published E¯tot(r) and the BT radiation quality correction factor [Formula: see text] for different BT radiation qualities Q and Q0, the detector's response can be determined and Dw(r,θ) measured in the vicinity of BT photon sources. This novel brachytherapy photon radiation quality indexQ(BT) characterizes sufficiently accurate and precise the primary photon's penetration probability and scattering potential. Copyright © 2016. Published by Elsevier Ltd.

  10. Cosmological reconstruction and stability in F(T,TG) gravity

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Nazir, Kanwal

    This study investigates the reconstruction scheme and stability of some well-known cosmological models in F(T,TG) gravity, where T and TG represent the torsion scalar and Gauss-Bonnet invariant torsion term, respectively. For this purpose, we consider isotropic homogeneous universe model and develop the corresponding field equations. It is found that we can reproduce cosmological evolution for power-law, de Sitter solutions, phantom/nonphantom era and Λ cold dark matter by applying reconstruction scheme in this gravity. Finally, we discuss stability of the reconstructed power-law and de Sitter solutions as well as two well-known F(T,TG) models. It is concluded that all these models provide stable solutions for suitable choices of the constants except power-law solutions.

  11. New Agegraphic Pilgrim Dark Energy in f(T, TG) Gravity

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Debnath, Ujjal

    2015-08-01

    In this work, we briefly discuss a novel class of modified gravity like f(T, TG) gravity. In this background, we assume the new agegraphic version of pilgrim dark energy and reconstruct f(T, TG) models for two specific values of s. We also discuss the equation of state parameter, squared speed of sound and wDE-w‧DE plane for these reconstructed f(T, TG) models. The equation of state parameter provides phantom-like behavior of the universe. The wDE-w‧DE plane also corresponds to ΛCDM limit, thawing and freezing regions for both models.

  12. Evaluation of a real-time BeO ceramic fiber-coupled luminescence dosimetry system for dose verification of high dose rate brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, Alexandre M. Caraça, E-mail: alexandre.santos@adelaide.edu.au; Mohammadi, Mohammad; Shahraam, Afshar V.

    Purpose: The authors evaluate the capability of a beryllium oxide (BeO) ceramic fiber-coupled luminescence dosimeter, named radioluminescence/optically stimulated luminescence (RL/OSL) BeO FOD, for dosimetric verification of high dose rate (HDR) treatments. The RL/OSL BeO FOD is capable of RL and OSL measurements. Methods: The RL/OSL BeO FOD is able to be inserted in 6F proguide needles, used in interstitial HDR treatments. Using a custom built Perspex phantom, 6F proguide needles could be submerged in a water tank at 1 cm separations from each other. A second background fiber was required to correct for the stem effect. The stem effect, dosemore » linearity, reproducibility, depth-dose curves, and angular and temperature dependency of the RL/OSL BeO FOD were characterised using an Ir-192 source. The RL/OSL BeO FOD was also applied to the commissioning of a 10 mm horizontal Leipzig applicator. Results: Both the RL and OSL were found to be reproducible and their percentage depth-dose curves to be in good agreement with those predicted via TG-43. A combined uncertainty of 7.9% and 10.1% (k = 1) was estimated for the RL and OSL, respectively. For the 10 mm horizontal Leipzig applicator, measured percentage depth doses were within 5% agreement of the published reference calculations. The output at the 3 mm prescription depth for a 1 Gy delivery was verified to be 0.99 ± 0.08 Gy and 1.01 ± 0.10 Gy by the RL and OSL, respectively. Conclusions: The use of the second background fiber under the current setup means that the two fibers cannot fit into a single 6F needle. Hence, use of the RL is currently not adequate for the purpose of in vivo brachytherapy dosimetry. While not real-time, the OSL is shown to be adequate for in vivo brachytherapy dosimetry.« less

  13. Generalized second law of thermodynamics in f(T,TG) gravity

    NASA Astrophysics Data System (ADS)

    Zubair, M.; Jawad, Abdul

    2015-11-01

    We discuss the equilibrium picture of thermodynamic at the apparent horizon of FRW universe in f(T,TG) gravity, where T represents the torsion invariant and TG is the teleparallel equivalent of the Gauss-Bonnet term. It is found that one can translate the Friedmann equations to the standard form of first law of thermodynamics. We discuss GSLT in the locality of assumption that temperature of matter inside the horizon is similar to that of apparent horizon. Furthermore, we consider particular models in this theory and generate constraints on the coupling parameters for the validity of GSLT. For this purpose we set the present day values of cosmic parameters and find the possible constraints on f(T,TG) models. We also choose the power law cosmology and found that GSLT can be met in accelerated cosmic expansion. We have also presented the cosmological reconstruction of some viable f(T,TG) models and discussed the cosmic evolution and validity of GSLT.

  14. MO-B-BRB-00: Three Dimensional Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data

  15. Environmental radiation dosimetry at Argentine Antarctic Marambio Base (64° 13' S, 56° 43' W): preliminary results.

    PubMed

    Zanini, Alba; Ciancio, Vicente; Laurenza, Monica; Storini, Marisa; Esposito, Adolfo; Terrazas, Juan Carlos; Morfino, Paolo; Liberatore, Alessandro; Di Giovan, Gustavo

    2017-09-01

    The preliminary results obtained in the first environmental radiation dosimetry campaign performed in the Antarctic region are presented. This experiment is carried out in the framework of CORA (COsmic Rays in Antarctica) Project, a collaboration between Argentine and Italian institutions. After a feasibility study performed in the Antarctic summer 2013, a new campaign has been carried out, started in March 2015, to measure various components of cosmic ray induced secondary atmospheric radiation at the Argentine Marambio Base (Antarctica; 196 m a.s.l., 64°13' S, 56°43' W). Due to a very few dosimetric data available in literature at high southern latitudes, accurate measurements are performed by using a set of different active and passive detectors. Special attention is dedicated to measure the neutron ambient dose equivalent in different energy ranges, by using an active detector, the Atomtex Rem Counter, for neutron energy between 0.025 eV-14 MeV and a set of passive bubble dosimeters, sensitive to thermal neutrons and neutrons in the energy range 100 keV-20 MeV. The results obtained in the first six months of measurements for X and γ radiation and for low and intermediate energy neutrons (E n  ≤ 20 MeV) are presented in this paper and show that at high latitude, also at sea level and at distance from the South Magnetic Pole, the ambient dose equivalent is significant, in particular for the high contribution of neutron component. This involves that at higher altitude (i.e. Antarctic Plateau, over 3000 m a.s.l.) the yearly ambient dose equivalent could be higher than the limit of 1 mSv recommended for general public by the International Commission on Radiological Protection (ICRP). Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Fast dose kernel interpolation using Fourier transform with application to permanent prostate brachytherapy dosimetry.

    PubMed

    Liu, Derek; Sloboda, Ron S

    2014-05-01

    Boyer and Mok proposed a fast calculation method employing the Fourier transform (FT), for which calculation time is independent of the number of seeds but seed placement is restricted to calculation grid points. Here an interpolation method is described enabling unrestricted seed placement while preserving the computational efficiency of the original method. The Iodine-125 seed dose kernel was sampled and selected values were modified to optimize interpolation accuracy for clinically relevant doses. For each seed, the kernel was shifted to the nearest grid point via convolution with a unit impulse, implemented in the Fourier domain. The remaining fractional shift was performed using a piecewise third-order Lagrange filter. Implementation of the interpolation method greatly improved FT-based dose calculation accuracy. The dose distribution was accurate to within 2% beyond 3 mm from each seed. Isodose contours were indistinguishable from explicit TG-43 calculation. Dose-volume metric errors were negligible. Computation time for the FT interpolation method was essentially the same as Boyer's method. A FT interpolation method for permanent prostate brachytherapy TG-43 dose calculation was developed which expands upon Boyer's original method and enables unrestricted seed placement. The proposed method substantially improves the clinically relevant dose accuracy with negligible additional computation cost, preserving the efficiency of the original method.

  17. Ethics and professionalism in medical physics: a survey of AAPM members.

    PubMed

    Ozturk, Naim; Armato, Samuel G; Giger, Maryellen L; Serago, Christopher F; Ross, Lainie F

    2013-04-01

    To assess current education, practices, attitudes, and perceptions pertaining to ethics and professionalism in medical physics. A link to a web-based survey was distributed to the American Association of Physicists in Medicine (AAPM) e-mail membership list, with a follow-up e-mail sent two weeks later. The survey included questions about ethics/professionalism education, direct personal knowledge of ethically questionable practices in clinical care, research, education (teaching and mentoring), and professionalism, respondents' assessment of their ability to address ethical/professional dilemmas, and demographics. For analysis, reports of unethical or ethically questionable practices or behaviors by approximately 40% or more of respondents were classified as "frequent." Partial or complete responses were received from 18% (1394/7708) of AAPM members. Overall, 60% (827/1377) of the respondents stated that they had not received ethics/professionalism education during their medical physics training. Respondents currently in training were more likely to state that they received instruction in ethics/professionalism (80%, 127/159) versus respondents who were post-training (35%, 401/1159). Respondents' preferred method of instruction in ethics/professionalism was structured periodic discussions involving both faculty and students/trainees. More than 90% (1271/1384) supported continuing education in ethics/professionalism and 75% (1043/1386) stated they would attend ethics/professionalism sessions at professional/scientific meetings. In the research setting, reports about ethically questionable authorship assignment were frequent (approximately 40%) whereas incidents of ethically questionable practices about human subjects protections were quite infrequent (5%). In the clinical setting, there was frequent recollection of incidents regarding lack of training, resources and skills, and error/incident reporting. In the educational setting, incidents of unethical or ethically

  18. AFRRI Neutron Dosimetry and Radiobiology Conference

    DTIC Science & Technology

    1988-11-09

    Neutron Dosimetry and Radiobiology 8 - 9 November 1988 Sponsored by Defense Nuclear Agency ARMED FORCES RADIOBIOLOGY RESEARCH INSTITUTE...neutron radiation is less amenable to amelioration by chemical radioprotectants and more difficult to assess by means of physical dosimetry . These...neutron dosimetry and radiobiology we have witnessed in the past several years,could not have been possible without the sustained efforts of many

  19. The use of the dicentric assay for biological dosimetry for radiation accidents in Bulgaria.

    PubMed

    Hadjidekova, Valeria; Hristova, Rositsa; Ainsbury, Elizabeth A; Atanasova, Petya; Popova, Ljubomira; Staynova, Albena

    2010-02-01

    This paper details the construction of a 137Cs gamma calibration curve that has been established for dicentric assay and the testing and validation of the curve through biological dosimetry in three situations of suspected workplace overexposure that arose accidentally or through negligence or lack of appropriate safety measures. The three situations were: (1) suspected 137Cs contamination in a factory air supply; (2) suspected exposure to an industrial 192Ir source; and (3) accidental exposure of construction workers to radiation from a 60Co radiotherapy source in a hospital medical physics department. From a total of 24 potentially-exposed subjects, only one worker was found to have a statistically significant dose (0.16 Gy, 95% confidence intervals 0.02-0.43 Gy). In all other cases, the main function of the biological dosimetry was to reassure the subjects that any dose received was low.

  20. Anniversary paper: evolution of ultrasound physics and the role of medical physicists and the AAPM and its journal in that evolution.

    PubMed

    Carson, Paul L; Fenster, Aaron

    2009-02-01

    Ultrasound has been the greatest imaging modality worldwide for many years by equipment purchase value and by number of machines and examinations. It is becoming increasingly the front end imaging modality; serving often as an extension of the physician's fingers. We believe that at the other extreme, high-end systems will continue to compete with all other imaging modalities in imaging departments to be the method of choice for various applications, particularly where safety and cost are paramount. Therapeutic ultrasound, in addition to the physiotherapy practiced for many decades, is just coming into its own as a major tool in the long progression to less invasive interventional treatment. The physics of medical ultrasound has evolved over many fronts throughout its history. For this reason, a topical review, rather than a primarily chronological one is presented. A brief review of medical ultrasound imaging and therapy is presented, with an emphasis on the contributions of medical physicists, the American Association of Physicists in Medicine (AAPM) and its publications, particularly its journal Medical Physics. The AAPM and Medical Physics have contributed substantially to training of physicists and engineers, medical practitioners, technologists, and the public.

  1. SU-D-213-07: Initial Characterization of a Gel Patch Dosimeter for in Vivo Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matrosic, C; Culberson, W; Rosen, B

    Purpose: In vivo dosimetry, despite being the most direct method for monitoring the dose delivered during radiation therapy and being recommended by several national and international organizations (AAPM, ICRU, NACP), is underutilized in the clinic due to issues associated with dose sensitivity, feasibility, and cost. Given the increasing complexity of radiation therapy modern treatments, there is a compelling need for a robust, affordable in vivo dosimetry option. In this work we present the initial characterization of a novel gel patch in vivo dosimeter. Methods: DEFGEL (6%T) was used to make 1-cm thick small cylindrical patch dosimeters. The optical density ofmore » each dosimeter was read before and after irradiation by an in-house laser densitometer. The dosimeters were irradiated using a Varian Clinac EX linac. Three separate batches of gel patches were used to create dose response curves and evaluate repeatability. The development time of the dosimeter was also evaluated. Results: The dose response of the dosimeter was found to be linear from a range of approximately 1-Gy to 20-Gy, which is a larger window of linearity compared to other in vivo dosimeters. At doses below 1-Gy, the cumulative uncertainties were on the order of the measured data. When compared, the three batches demonstrated repeatability from 1-Gy to approximately 13-Gy, with some variation at higher doses. For doses of >8-Gy, the dosimeter reached full optical density after 4-hours, whereas low doses developed within an hour. Conclusion: Initial results indicate that the gel patch dosimeter is a reliable and simple way to measure a large range of doses, including high doses such as those delivered during hypofractionated treatments (e.g. SBRT or MR-guided radiotherapy). The simple fabrication method for the dosimeter and the use of a laser densitometer would allow for the dosimeter to used and read in-house, cheaply and easily.« less

  2. Study of static wormhole solutions in F(T ,TG) gravity

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Nazir, Kanwal

    2018-06-01

    In this paper, we investigate static spherically symmetric wormhole solutions in the background of F(T ,TG) gravity (T is the torsion scalar and TG represents teleparallel equivalent of the Gauss-Bonnet term). We study the wormhole solutions by assuming four different matter contents, a specific redshift function and a particular F(T ,TG) model. The behavior of null/weak energy conditions for these fluids is analyzed graphically. It turns out that wormhole solutions can be obtained in the absence of exotic matter for some particular regions of spacetime. We also explore stability of wormhole solutions through equilibrium condition. It is concluded that there exist physically acceptable wormhole solutions for anisotropic, isotropic and traceless fluids.

  3. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...

  4. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...

  5. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...

  6. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...

  7. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...

  8. SU-E-T-649: Quality Assurances for Proton Therapy Delivery Equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arjomandy, B; Kase, Y; Flanz, J

    2015-06-15

    Purpose: The number of proton therapy centers has increased dramatically over the past decade. Currently, there is no comprehensive set of guidelines that addresses quality assurance (QA) procedures for the different technologies used for proton therapy. The AAPM has charged task group 224 (TG-224) to provide recommendations for QA required for accurate and safe dose delivery, using existing and next generation proton therapy delivery equipment. Methods: A database comprised of QA procedures and tolerance limits was generated from many existing proton therapy centers in and outside of the US. These consist of proton therapy centers that possessed double scattering, uniformmore » scanning, and pencil beams delivery systems. The diversity in beam delivery systems as well as the existing devices to perform QA checks for different beam parameters is the main subject of TG-224. Based on current practice at the clinically active proton centers participating in this task group, consensus QA recommendations were developed. The methodologies and requirements of the parameters that must be verified for consistency of the performance of the proton beam delivery systems are discussed. Results: TG-224 provides procedures and QA checks for mechanical, imaging, safety and dosimetry requirements for different proton equipment. These procedures are categorized based on their importance and their required frequencies in order to deliver a safe and consistent dose. The task group provides daily, weekly, monthly, and annual QA check procedures with their tolerance limits. Conclusions: The procedures outlined in this protocol provide sufficient information to qualified medical physicists to perform QA checks for any proton delivery system. Execution of these procedures should provide confidence that proton therapy equipment is functioning as commissioned for patient treatment and delivers dose safely and accurately within the established tolerance limits. The report will be published

  9. The Latin American Biological Dosimetry Network (LBDNet).

    PubMed

    García, O; Di Giorgio, M; Radl, A; Taja, M R; Sapienza, C E; Deminge, M M; Fernández Rearte, J; Stuck Oliveira, M; Valdivia, P; Lamadrid, A I; González, J E; Romero, I; Mandina, T; Guerrero-Carbajal, C; ArceoMaldonado, C; Cortina Ramírez, G E; Espinoza, M; Martínez-López, W; Di Tomasso, M

    2016-09-01

    Biological Dosimetry is a necessary support for national radiation protection programmes and emergency response schemes. The Latin American Biological Dosimetry Network (LBDNet) was formally founded in 2007 to provide early biological dosimetry assistance in case of radiation emergencies in the Latin American Region. Here are presented the main topics considered in the foundational document of the network, which comprise: mission, partners, concept of operation, including the mechanism to request support for biological dosimetry assistance in the region, and the network capabilities. The process for network activation and the role of the coordinating laboratory during biological dosimetry emergency response is also presented. This information is preceded by historical remarks on biological dosimetry cooperation in Latin America. A summary of the main experimental and practical results already obtained by the LBDNet is also included. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Dosimetry in dentistry.

    PubMed

    Asha, M L; Chatterjee, Ingita; Patil, Preeti; Naveen, S

    2015-01-01

    The purpose of this paper was to review various dosimeters used in dentistry and the cumulative results of various studies done with various dosimeters. Several relevant PubMed indexed articles from 1999 to 2013 were electronically searched by typing "dosimeters", "dosimeters in dentistry", "properties of dosimeters", "thermoluminescent and optically stimulated dosimeters", "recent advancements in dosimetry in dentistry." The searches were limited to articles in English to prepare a concise review on dental dosimetry. Titles and abstracts were screened, and articles that fulfilled the criteria of use of dosimeters in dental applications were selected for a full-text reading. Article was divided into four groups: (1) Biological effects of radiation, (2) properties of dosimeters, (3) types of dosimeters and (4) results of various studies using different dosimeters. The present review on dosimetry based on various studies done with dosimeters revealed that, with the advent of radiographic technique the effective dose delivered is low. Therefore, selection of radiological technique plays an important role in dental dose delivery.

  11. FPGA Implementation of Burst-Mode Synchronization for SOQSPK-TG

    DTIC Science & Technology

    2014-06-01

    is normalized to π. The proposed burst-mode architecture is written in VHDL and verified using Modelsim. The VHDL design is implemented on a Xilinx...Document Number: SET 2014-0043 412TW-PA-14298 FPGA Implementation of Burst-Mode Synchronization for SOQSPK-TG June 2014 Final Report Test...To) 9/11 -- 8/14 4. TITLE AND SUBTITLE FPGA Implementation of Burst-Mode Synchronization for SOQSPK-TG 5a. CONTRACT NUMBER: W900KK-11-C-0032 5b

  12. Internal dosimetry technical basis manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-20

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophicalmore » discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purwaningsih, Anik

    Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result ofmore » calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.« less

  14. Monte Carlo dosimetry for {sup 103}Pd, {sup 125}I, and {sup 131}Cs ocular brachytherapy with various plaque models using an eye phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesperance, Marielle; Martinov, M.; Thomson, R. M., E-mail: rthomson@physics.carleton.ca

    Purpose: To investigate dosimetry for ocular brachytherapy for a range of eye plaque models containing{sup 103}Pd, {sup 125}I, or {sup 131}Cs seeds with model-based dose calculations. Methods: Five representative plaque models are developed based on a literature review and are compared to the standardized COMS plaque, including plaques consisting of a stainless steel backing and acrylic insert, and gold alloy backings with: short collimating lips and acrylic insert, no lips and silicone polymer insert, no lips and a thin acrylic layer, and individual collimating slots for each seed within the backing and no insert. Monte Carlo simulations are performed usingmore » the EGSnrc user-code BrachyDose for single and multiple seed configurations for the plaques in water and within an eye model (including nonwater media). Simulations under TG-43 assumptions are also performed, i.e., with the same seed configurations in water, neglecting interseed and plaque effects. Maximum and average doses to ocular structures as well as isodose contours are compared for simulations of each radionuclide within the plaque models. Results: The presence of the plaque affects the dose distribution substantially along the plaque axis for both single seed and multiseed simulations of each plaque design in water. Of all the plaque models, the COMS plaque generally has the largest effect on the dose distribution in water along the plaque axis. Differences between doses for single and multiple seed configurations vary between plaque models and radionuclides. Collimation is most substantial for the plaque with individual collimating slots. For plaques in the full eye model, average dose in the tumor region differs from those for the TG-43 simulations by up to 10% for{sup 125}I and {sup 131}Cs, and up to 17% for {sup 103}Pd, and in the lens region by up to 29% for {sup 125}I, 34% for {sup 103}Pd, and 28% for {sup 131}Cs. For the same prescription dose to the tumor apex, the lowest doses to

  15. Nuclear accident dosimetry intercomparison studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sims, C.S.

    1989-09-01

    Twenty-two nuclear accident dosimetry intercomparison studies utilizing the fast-pulse Health Physics Research Reactor at the Oak Ridge National Laboratory have been conducted since 1965. These studies have provided a total of 62 different organizations a forum for discussion of criticality accident dosimetry, an opportunity to test their neutron and gamma-ray dosimetry systems under a variety of simulated criticality accident conditions, and the experience of comparing results with reference dose values as well as with the measured results obtained by others making measurements under identical conditions. Sixty-nine nuclear accidents (27 with unmoderated neutron energy spectra and 42 with eight different shieldedmore » spectra) have been simulated in the studies. Neutron doses were in the 0.2-8.5 Gy range and gamma doses in the 0.1-2.0 Gy range. A total of 2,289 dose measurements (1,311 neutron, 978 gamma) were made during the intercomparisons. The primary methods of neutron dosimetry were activation foils, thermoluminescent dosimeters, and blood sodium activation. The main methods of gamma dose measurement were thermoluminescent dosimeters, radiophotoluminescent glass, and film. About 68% of the neutron measurements met the accuracy guidelines (+/- 25%) and about 52% of the gamma measurements met the accuracy criterion (+/- 20%) for accident dosimetry.« less

  16. The IPEM code of practice for determination of the reference air kerma rate for HDR 192Ir brachytherapy sources based on the NPL air kerma standard

    NASA Astrophysics Data System (ADS)

    Bidmead, A. M.; Sander, T.; Locks, S. M.; Lee, C. D.; Aird, E. G. A.; Nutbrown, R. F.; Flynn, A.

    2010-06-01

    This paper contains the recommendations of the high dose rate (HDR) brachytherapy working party of the UK Institute of Physics and Engineering in Medicine (IPEM). The recommendations consist of a Code of Practice (COP) for the UK for measuring the reference air kerma rate (RAKR) of HDR 192Ir brachytherapy sources. In 2004, the National Physical Laboratory (NPL) commissioned a primary standard for the realization of RAKR of HDR 192Ir brachytherapy sources. This has meant that it is now possible to calibrate ionization chambers directly traceable to an air kerma standard using an 192Ir source (Sander and Nutbrown 2006 NPL Report DQL-RD 004 (Teddington: NPL) http://publications.npl.co.uk). In order to use the source specification in terms of either RAKR, \\dot K_R (ICRU 1985 ICRU Report No 38 (Washington, DC: ICRU); ICRU 1997 ICRU Report No 58 (Bethesda, MD: ICRU)), or air kerma strength, SK (Nath et al 1995 Med. Phys. 22 209-34), it has been necessary to develop algorithms that can calculate the dose at any point around brachytherapy sources within the patient tissues. The AAPM TG-43 protocol (Nath et al 1995 Med. Phys. 22 209-34) and the 2004 update TG-43U1 (Rivard et al 2004 Med. Phys. 31 633-74) have been developed more fully than any other protocol and are widely used in commercial treatment planning systems. Since the TG-43 formalism uses the quantity air kerma strength, whereas this COP uses RAKR, a unit conversion from RAKR to air kerma strength was included in the appendix to this COP. It is recommended that the measured RAKR determined with a calibrated well chamber traceable to the NPL 192Ir primary standard is used in the treatment planning system. The measurement uncertainty in the source calibration based on the system described in this COP has been reduced considerably compared to other methods based on interpolation techniques.

  17. Tg and Structural Recovery of Single Ultrathin Films

    NASA Astrophysics Data System (ADS)

    Simon, Sindee

    The behavior of materials confined at the nanoscale has been of considerable interest over the past two decades. Here, the focus is on recent results for single polystyrene ultrathin films studied with ultrafast scanning chip calorimetry. The Tg depression of a 20 nm-thick high-molecular-weight polystyrene film is found to be a function of cooling rate, decreasing with increasing cooling rate; whereas, at high enough cooling rates (e.g., 1000 K/s), Tg is the same as the bulk within the error of the measurements. Structural recovery is also performed with chip calorimetry as a function of aging time and temperature, and the evolution of the fictive temperature is followed. The advantages of the Flash DSC include sufficient sensitivity to measure enthalpy recovery for a single 20 nm-thick film, as well as extension of the measurements to aging temperatures as high as 15 K above nominal Tg and to aging times as short as 0.01 s. The aging behavior and relaxation time-temperature map for single ultrathin films are compared to those for bulk material. Comparison to behavior in other geometries will also be discussed.

  18. Unexplained overexposures on physical dosimetry reported by biological dosimetry.

    PubMed

    Montoro, A; Almonacid, M; Villaescusa, J I; Verdu, G

    2009-01-01

    The Medical Service of the Radiation Protection Service from the University Hospital La Fe (Valencia, Spain), carries out medical examinations of the workers occupationally exposed to ionising radiation. The Biological Dosimetry Laboratory is developing its activity since 2001. Up to now, the activities have been focused in performing biological dosimetry studies of Interventionists workers from La Fe Hospital. Recently, the Laboratory has been authorized by the Health Authority in the Valencian Community. Unexplained overexposures of workers and patients are also studied. Workers suspected of being overexposed to ionising radiation were referred for investigation by cytogenetic analysis. Two of these were from Hospitals of the Valencian Community and one belonged to an uranium mine from Portugal. Hospital workers had a physical dose by thermoluminiscence dosimeters (TLD) that exceeded the established limit. The worker of the uranium mine received a dose from a lost source of Cesium 137 with an activity of 170 mCi. All three cases showed normal values after the hematological analysis. Finally, the aim of this study consist to determine whether the dose showed by the dosimeter is reliable or not. In the case of workers that wore dosimeter, it is concluded that the doses measured by dosimeter are not corresponding to real doses. Hospital worker with a physical dose of 2.6 Sv and 0.269 Sv had an estimated absorbed dose by biological dosimetry of 0.076 Gy (0-0.165 Gy) and 0 Gy (0-0.089 Gy), respectively. In case of the mine worker an estimated absorbed dose of 0.073 Gy (0-0.159 Gy) was obtained by biological dosimetry. In all cases we used the odds ratio to present the results due to a very low frequency of observed aberrations [1].

  19. In vivo dosimetry using a single diode for megavoltage photon beam radiotherapy: implementation and response characterization.

    PubMed

    Colussi, V C; Beddar, A S; Kinsella, T J; Sibata, C H

    2001-01-01

    The AAPM Task Group 40 reported that in vivo dosimetry can be used to identify major deviations in treatment delivery in radiation therapy. In this paper, we investigate the feasibility of using one single diode to perform in vivo dosimetry in the entire radiotherapeutic energy range regardless of its intrinsic buildup material. The only requirement on diode selection would be to choose a diode with the adequate build up to measure the highest beam energy. We have tested the new diodes from Sun Nuclear Corporation (called QED and ISORAD-p--both p-type) for low-, intermediate-, and high-energy range. We have clinically used both diode types to monitor entrance doses. In general, we found that the dose readings from the ISORAD (p-type) are closer of the dose expected than QED diodes in the clinical setting. In this paper we report on the response of these newly available ISORAD (p-type) diode detectors with respect to certain radiation field parameters such as source-to-surface distance, field size, wedge beam modifiers, as well as other parameters that affect detector characteristics (temperature and detector-beam orientation). We have characterized the response of the high-energy ISORAD (p-type) diode in the low- (1-4 MV), intermediate- (6-12 MV), and high-energy (15-25 MV) range. Our results showed that the total variation of the response of high-energy ISORAD (p-type) diodes to all the above parameters are within +/-5% in most encountered clinical patient treatment setups in the megavoltage photon beam radiotherapy. The usage of the high-energy buildup diode has the additional benefit of amplifying the response of the diode reading in case the wrong energy is used for patient treatment. In the light of these findings, we have since then switched to using only one single diode type, namely the "red" diode; manufacturer designation of the ISORAD (p-type) high-energy (15-25 MV) range diode, for all energies in our institution and satellites.

  20. Chemical dosimetry system for criticality accidents.

    PubMed

    Miljanić, Saveta; Ilijas, Boris

    2004-01-01

    Ruder Bosković Institute (RBI) criticality dosimetry system consists of a chemical dosimetry system for measuring the total (neutron + gamma) dose, and a thermoluminescent (TL) dosimetry system for a separate determination of the gamma ray component. The use of the chemical dosemeter solution chlorobenzene-ethanol-trimethylpentane (CET) is based on the radiolytic formation of hydrochloric acid, which protonates a pH indicator, thymolsulphonphthalein. The high molar absorptivity of its red form at 552 nm is responsible for a high sensitivity of the system: doses in the range 0.2-15 Gy can be measured. The dosemeter has been designed as a glass ampoule filled with the CET solution and inserted into a pen-shaped plastic holder. For dose determinations, a newly constructed optoelectronic reader has been used. The RBI team took part in the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002, with the CET dosimetry system. For gamma ray dose determination TLD-700 TL detectors were used. The results obtained with CET dosemeter show very good agreement with the reference values.

  1. The work programme of EURADOS on internal and external dosimetry.

    PubMed

    Rühm, W; Bottollier-Depois, J F; Gilvin, P; Harrison, R; Knežević, Ž; Lopez, M A; Tanner, R; Vargas, A; Woda, C

    2018-01-01

    Since the early 1980s, the European Radiation Dosimetry Group (EURADOS) has been maintaining a network of institutions interested in the dosimetry of ionising radiation. As of 2017, this network includes more than 70 institutions (research centres, dosimetry services, university institutes, etc.), and the EURADOS database lists more than 500 scientists who contribute to the EURADOS mission, which is to promote research and technical development in dosimetry and its implementation into practice, and to contribute to harmonisation of dosimetry in Europe and its conformance with international practices. The EURADOS working programme is organised into eight working groups dealing with environmental, computational, internal, and retrospective dosimetry; dosimetry in medical imaging; dosimetry in radiotherapy; dosimetry in high-energy radiation fields; and harmonisation of individual monitoring. Results are published as freely available EURADOS reports and in the peer-reviewed scientific literature. Moreover, EURADOS organises winter schools and training courses on various aspects relevant for radiation dosimetry, and formulates the strategic research needs in dosimetry important for Europe. This paper gives an overview on the most important EURADOS activities. More details can be found at www.eurados.org .

  2. Physical exercise protects against Alzheimer's disease in 3xTg-AD mice.

    PubMed

    García-Mesa, Yoelvis; López-Ramos, Juan Carlos; Giménez-Llort, Lydia; Revilla, Susana; Guerra, Rafael; Gruart, Agnès; Laferla, Frank M; Cristòfol, Rosa; Delgado-García, José M; Sanfeliu, Coral

    2011-01-01

    Physical exercise is considered to exert a positive neurophysiological effect that helps to maintain normal brain activity in the elderly. Expectations that it could help to fight Alzheimer's disease (AD) were recently raised. This study analyzed the effects of different patterns of physical exercise on the 3xTg-AD mouse. Male and female 3xTg-AD mice at an early pathological stage (4-month-old) have had free access to a running wheel for 1 month, whereas mice at a moderate pathological stage(7-month-old) have had access either during 1 or 6 months. The non-transgenic mouse strain was used as a control. Parallel animal groups were housed in conventional conditions. Cognitive loss and behavioral and psychological symptoms of dementia (BPSD)-like behaviors were present in the 3xTg-AD mice along with alteration in synaptic function and ong-term potentiation impairment in vivo. Brain tissue showed AD-pathology and oxidative-related changes. Disturbances were more severe at the older age tested. Oxidative stress was higher in males but other changes were similar or higher in females. Exercise treatment ameliorated cognitive deterioration and BPSD-like behaviors such as anxiety and the startle response. Synaptic changes were partially protected by exercise. Oxidative stress was reduced. The best neuroprotection was generally obtained after 6 months of exercise in 7-month-old 3xTg-AD mice. Improved sensorimotor function and brain tissue antioxidant defence were induced in both 3xTg-AD and NonTg mice. Therefore, the benefits of aerobic physical exercise on synapse, redox homeostasis, and general brain function demonstrated in the 3xTg-AD mouse further support the value of this healthy life-style against neurodegeneration.

  3. Ocular changes in TgF344-AD rat model of Alzheimer's disease.

    PubMed

    Tsai, Yuchun; Lu, Bin; Ljubimov, Alexander V; Girman, Sergey; Ross-Cisneros, Fred N; Sadun, Alfredo A; Svendsen, Clive N; Cohen, Robert M; Wang, Shaomei

    2014-01-29

    Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by progressive decline in learning, memory, and executive functions. In addition to cognitive and behavioral deficits, vision disturbances have been reported in early stage of AD, well before the diagnosis is clearly established. To further investigate ocular abnormalities, a novel AD transgenic rat model was analyzed. Transgenic (Tg) rats (TgF344-AD) heterozygous for human mutant APPswe/PS1ΔE9 and age-matched wild type (WT) rats, as well as 20 human postmortem retinal samples from both AD and healthy donors were used. Visual function in the rodent was analyzed using the optokinetic response and luminance threshold recording from the superior colliculus. Immunohistochemistry on retinal and brain sections was used to detect various markers including amyloid-β (Aβ) plaques. As expected, Aβ plaques were detected in the hippocampus, cortex, and retina of Tg rats. Plaque-like structures were also found in two AD human whole-mount retinas. The choroidal thickness was significantly reduced in both Tg rat and in AD human eyes when compared with age-matched controls. Tg rat eyes also showed hypertrophic retinal pigment epithelial cells, inflammatory cells, and upregulation of complement factor C3. Although visual acuity was lower in Tg than in WT rats, there was no significant difference in the retinal ganglion cell number and retinal vasculature. In this study, we observed pathological changes in the choroid and in RPE cells in the TgF344-AD rat model; choroidal thinning was observed further in human AD retina. Along with Ab deposition, the inflammatory response was manifested by microglial recruitment and complement activation. Further studies are needed to elucidate the significance and mechanisms of these pathological changes [corrected].

  4. Video-rate optical dosimetry and dynamic visualization of IMRT and VMAT treatment plans in water using Cherenkov radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glaser, Adam K., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M.; Davis, Scott C.

    Purpose: A novel technique for optical dosimetry of dynamic intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) plans was investigated for the first time by capturing images of the induced Cherenkov radiation in water. Methods: A high-sensitivity, intensified CCD camera (ICCD) was configured to acquire a two-dimensional (2D) projection image of the Cherenkov radiation induced by IMRT and VMAT plans, based on the Task Group 119 (TG-119) C-Shape geometry. Plans were generated using the Varian Eclipse treatment planning system (TPS) and delivered using 6 MV x-rays from a Varian TrueBeam Linear Accelerator (Linac) incident on a water tank dopedmore » with the fluorophore quinine sulfate. The ICCD acquisition was gated to the Linac target trigger pulse to reduce background light artifacts, read out for a single radiation pulse, and binned to a resolution of 512 × 512 pixels. The resulting videos were analyzed temporally for various regions of interest (ROI) covering the planning target volume (PTV) and organ at risk (OAR), and summed to obtain an overall light intensity distribution, which was compared to the expected dose distribution from the TPS using a gamma-index analysis. Results: The chosen camera settings resulted in 23.5 frames per second dosimetry videos. Temporal intensity plots of the PTV and OAR ROIs confirmed the preferential delivery of dose to the PTV versus the OAR, and the gamma analysis yielded 95.9% and 96.2% agreement between the experimentally captured Cherenkov light distribution and expected TPS dose distribution based upon a 3%/3 mm dose difference and distance-to-agreement criterion for the IMRT and VMAT plans, respectively. Conclusions: The results from this initial study demonstrate the first documented use of Cherenkov radiation for video-rate optical dosimetry of dynamic IMRT and VMAT treatment plans. The proposed modality has several potential advantages over alternative methods including the real

  5. Ocular Changes in TgF344-AD Rat Model of Alzheimer's Disease

    PubMed Central

    Tsai, Yuchun; Lu, Bin; Ljubimov, Alexander V.; Girman, Sergey; Ross-Cisneros, Fred N.; Sadun, Alfredo A.; Svendsen, Clive N.; Cohen, Robert M.; Wang, Shaomei

    2014-01-01

    Purpose. Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by progressive decline in learning, memory, and executive functions. In addition to cognitive and behavioral deficits, vision disturbances have been reported in early stage of AD, well before the diagnosis is clearly established. To further investigate ocular abnormalities, a novel AD transgenic rat model was analyzed. Methods. Transgenic (Tg) rats (TgF344-AD) heterozygous for human mutant APPswe/PS1ΔE9 and age-matched wild type (WT) rats, as well as 20 human postmortem retinal samples from both AD and healthy donors were used. Visual function in the rodent was analyzed using the optokinetic response. Immunohistochemistry on retinal and brain sections was used to detect various markers including amyloid-β (Aβ) plaques. Results. As expected, Aβ plaques were detected in the hippocampus, cortex, and retina of Tg rats. Plaque-like structures were also found in two AD human whole-mount retinas. The choroidal thickness was significantly reduced in both Tg rat and in AD human eyes when compared with age-matched controls. Tg rat eyes also showed hypertrophic retinal pigment epithelial cells, inflammatory cells, and upregulation of complement factor C3. Although visual acuity was lower in Tg than in WT rats, there was no significant difference in the retinal ganglion cell number and retinal vasculature. Conclusions. Further studies are needed to elucidate the significance and mechanisms of this pathological change and luminance threshold recording from the superior colliculus. PMID:24398104

  6. Ethics and professionalism in medical physics: A survey of AAPM members

    PubMed Central

    Ozturk, Naim; Armato, Samuel G.; Giger, Maryellen L.; Serago, Christopher F.; Ross, Lainie F.

    2013-01-01

    Purpose: To assess current education, practices, attitudes, and perceptions pertaining to ethics and professionalism in medical physics. Methods: A link to a web-based survey was distributed to the American Association of Physicists in Medicine (AAPM) e-mail membership list, with a follow-up e-mail sent two weeks later. The survey included questions about ethics/professionalism education, direct personal knowledge of ethically questionable practices in clinical care, research, education (teaching and mentoring), and professionalism, respondents’ assessment of their ability to address ethical/professional dilemmas, and demographics. For analysis, reports of unethical or ethically questionable practices or behaviors by approximately 40% or more of respondents were classified as “frequent.” Results: Partial or complete responses were received from 18% (1394/7708) of AAPM members. Overall, 60% (827/1377) of the respondents stated that they had not received ethics/professionalism education during their medical physics training. Respondents currently in training were more likely to state that they received instruction in ethics/professionalism (80%, 127/159) versus respondents who were post-training (35%, 401/1159). Respondents’ preferred method of instruction in ethics/professionalism was structured periodic discussions involving both faculty and students/trainees. More than 90% (1271/1384) supported continuing education in ethics/professionalism and 75% (1043/1386) stated they would attend ethics/professionalism sessions at professional/scientific meetings. In the research setting, reports about ethically questionable authorship assignment were frequent (approximately 40%) whereas incidents of ethically questionable practices about human subjects protections were quite infrequent (5%). In the clinical setting, there was frequent recollection of incidents regarding lack of training, resources and skills, and error/incident reporting. In the educational setting

  7. Modified QCD ghost f(T,TG) gravity

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Rani, Shamaila; Chattopadhyay, Surajit

    2015-12-01

    In this paper, we explore the reconstruction scenario of modified QCD ghost dark energy model and newly proposed f(T,TG) gravity in flat FRW universe. We consider the well-known assumption of scale factor, i.e., power law form. We construct the f(T,TG) model and discuss its cosmological consequences through various cosmological parameters such as equation of state parameter, squared speed of sound and ω_{DE}-ω '_{DE}. The equation of state parameter provides the quintom-like behavior of the universe. The squared speed of sound exhibits the stability of model in the later time. Also, ω_{DE}- ω '_{DE} corresponds to freezing as well as thawing regions. It is also interesting to remark here that the results of equation of state parameter and w_{DE}-w'_{DE} coincide with the observational data.

  8. SU-E-T-205: Improving Quality Assurance of HDR Brachytherapy: Verifying Agreement Between Planned and Delivered Dose Distributions Using DICOM RTDose and Advanced Film Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, A L; University of Surrey, Guildford, Surrey; Bradley, D A

    Purpose: HDR brachytherapy is undergoing significant development, and quality assurance (QA) checks must keep pace. Current recommendations do not adequately verify delivered against planned dose distributions: This is particularly relevant for new treatment planning system (TPS) calculation algorithms (non TG-43 based), and an era of significant patient-specific plan optimisation. Full system checks are desirable in modern QA recommendations, complementary to device-centric individual tests. We present a QA system incorporating TPS calculation, dose distribution export, HDR unit performance, and dose distribution measurement. Such an approach, more common in external beam radiotherapy, has not previously been reported in the literature for brachytherapy.more » Methods: Our QA method was tested at 24 UK brachytherapy centres. As a novel approach, we used the TPS DICOM RTDose file export to compare planned dose distribution with that measured using Gafchromic EBT3 films placed around clinical brachytherapy treatment applicators. Gamma analysis was used to compare the dose distributions. Dose difference and distance to agreement were determined at prescription Point A. Accurate film dosimetry was achieved using a glass compression plate at scanning to ensure physically-flat films, simultaneous scanning of known dose films with measurement films, and triple-channel dosimetric analysis. Results: The mean gamma pass rate of RTDose compared to film-measured dose distributions was 98.1% at 3%(local), 2 mm criteria. The mean dose difference, measured to planned, at Point A was -0.5% for plastic treatment applicators and -2.4% for metal applicators, due to shielding not accounted for in TPS. The mean distance to agreement was 0.6 mm. Conclusion: It is recommended to develop brachytherapy QA to include full-system verification of agreement between planned and delivered dose distributions. This is a novel approach for HDR brachytherapy QA. A methodology using advanced film

  9. PREFACE: Third International Conference on Radiotherapy Gel Dosimetry

    NASA Astrophysics Data System (ADS)

    DeDeene, Yves; Baldock, Clive

    2004-01-01

    Gel dosimetry is not merely another dosimetry technique. Gel dosimeters are integrating dosimeters that enable dose verification in three dimensions. The application of a 3D dosimetry technique in the clinic would give a real push to the implementation of advanced high-precision radiotherapy technologies in many institutes. It can be expected that with the recent developments in the field towards more user-friendly gel systems and imaging modalities, gel dosimetry will become a vital link in the chain of high-precision radiation cancer therapy in the near future. Many researchers all over the world have contributed to the emerging technology of gel dosimetry. The research field of gel dosimetry is recognized to be very broad from polymer and analytical chemistry and material research to imaging technologies. The DOSGEL conferences in the past have proven to be an important forum at which material scientists, chemists, medical physicists, magnetic resonance imaging and radiation specialists brought together a critical mass of thoughts, findings and considerations. DOSGEL 2004 has been endorsed by many international, supra-national and national medical physics organizations and publishers. These proceedings contain 51 papers that cover various aspects of gel dosimetry.

  10. Monte Carlo simulations in radiotherapy dosimetry.

    PubMed

    Andreo, Pedro

    2018-06-27

    The use of the Monte Carlo (MC) method in radiotherapy dosimetry has increased almost exponentially in the last decades. Its widespread use in the field has converted this computer simulation technique in a common tool for reference and treatment planning dosimetry calculations. This work reviews the different MC calculations made on dosimetric quantities, like stopping-power ratios and perturbation correction factors required for reference ionization chamber dosimetry, as well as the fully realistic MC simulations currently available on clinical accelerators, detectors and patient treatment planning. Issues are raised that include the necessity for consistency in the data throughout the entire dosimetry chain in reference dosimetry, and how Bragg-Gray theory breaks down for small photon fields. Both aspects are less critical for MC treatment planning applications, but there are important constraints like tissue characterization and its patient-to-patient variability, which together with the conversion between dose-to-water and dose-to-tissue, are analysed in detail. Although these constraints are common to all methods and algorithms used in different types of treatment planning systems, they make uncertainties involved in MC treatment planning to still remain "uncertain".

  11. Two key cathepsins, TgCPB and TgCPL, are targeted by the vinyl sulfone inhibitor K11777 in in vitro and in vivo models of toxoplasmosis

    PubMed Central

    Chaparro, Juan D.; Cheng, Timmy; Tran, Uyen Phuong; Andrade, Rosa M.; Brenner, Sara B. T.; Hwang, Grace; Cohn, Shara; Hirata, Ken; McKerrow, James H.

    2018-01-01

    Although toxoplasmosis is one of the most common parasitic infections worldwide, therapeutic options remain limited. Cathepsins, proteases that play key roles in the pathogenesis of toxoplasmosis and many other protozoan infections, are important potential therapeutic targets. Because both TgCPB and TgCPL play a role in T. gondii invasion, we evaluated the efficacy of the potent, irreversible vinyl sulfone inhibitor, K11777 (N-methyl-piperazine-Phe-homoPhe-vinylsulfone-phenyl). The inhibitor’s toxicity and pharmacokinetic profile have been well-studied because of its in vitro and in vivo activity against a number of parasites. We found that it inhibited both TgCPB (EC50 = 114 nM) and TgCPL (EC50 = 71 nM) in vitro. K11777 also inhibited invasion of human fibroblasts by RH tachyzoites by 71% (p = 0.003) and intracellular replication by >99% (p<0.0001). In vivo, a single dose of K11777 led to 100% survival of chicken embryos in an model of acute toxoplasmosis (p = 0.015 Cox regression analysis). Therefore, K11777 shows promise as a novel therapeutic agent in the treatment of toxoplasmosis, and may prove to be a broadly effective anti-parasitic agent. PMID:29565998

  12. Evaluation of radiochromic gel dosimetry and polymer gel dosimetry in a clinical dose verification

    NASA Astrophysics Data System (ADS)

    Vandecasteele, Jan; De Deene, Yves

    2013-09-01

    A quantitative comparison of two full three-dimensional (3D) gel dosimetry techniques was assessed in a clinical setting: radiochromic gel dosimetry with an in-house developed optical laser CT scanner and polymer gel dosimetry with magnetic resonance imaging (MRI). To benchmark both gel dosimeters, they were exposed to a 6 MV photon beam and the depth dose was compared against a diamond detector measurement that served as golden standard. Both gel dosimeters were found accurate within 4% accuracy. In the 3D dose matrix of the radiochromic gel, hotspot dose deviations up to 8% were observed which are attributed to the fabrication procedure. The polymer gel readout was shown to be sensitive to B0 field and B1 field non-uniformities as well as temperature variations during scanning. The performance of the two gel dosimeters was also evaluated for a brain tumour IMRT treatment. Both gel measured dose distributions were compared against treatment planning system predicted dose maps which were validated independently with ion chamber measurements and portal dosimetry. In the radiochromic gel measurement, two sources of deviations could be identified. Firstly, the dose in a cluster of voxels near the edge of the phantom deviated from the planned dose. Secondly, the presence of dose hotspots in the order of 10% related to inhomogeneities in the gel limit the clinical acceptance of this dosimetry technique. Based on the results of the micelle gel dosimeter prototype presented here, chemical optimization will be subject of future work. Polymer gel dosimetry is capable of measuring the absolute dose in the whole 3D volume within 5% accuracy. A temperature stabilization technique is incorporated to increase the accuracy during short measurements, however keeping the temperature stable during long measurement times in both calibration phantoms and the volumetric phantom is more challenging. The sensitivity of MRI readout to minimal temperature fluctuations is demonstrated which

  13. Detecting spatial memory deficits beyond blindness in tg2576 Alzheimer mice.

    PubMed

    Yassine, Nour; Lazaris, Anelise; Dorner-Ciossek, Cornelia; Després, Olivier; Meyer, Laurence; Maitre, Michel; Mensah-Nyagan, Ayikoe Guy; Cassel, Jean-Christophe; Mathis, Chantal

    2013-03-01

    The retinal degeneration Pde6b(rd1) (rd) mutation can be a major pitfall in behavioral studies using tg2576 mice bred on a B6:SJL genetic background, 1 of the most widely used models of Alzheimer's disease. After a pilot study in wild type mice, performance of 8- and 16-month-old tg2576 mice were assessed in several behavioral tasks with the challenge of selecting 1 or more task(s) showing robust memory deficits on this genetic background. Water maze acquisition was impossible in rd homozygotes, whereas Y-maze alternation, object recognition, and olfactory discrimination were unaffected by both the transgene and the rd mutation. Spatial memory retention of 8- and 16-month-old tg2576 mice, however, was dramatically affected independently of the rd mutation when mice had to recognize a spatial configuration of objects or to perform the Barnes maze. Thus, the latter tasks appear extremely useful to evaluate spatial memory deficits and to test cognitive therapies in tg2576 mice and other mouse models bred on a background susceptible to visual impairment. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Value of IgA tTG in Predicting Mucosal Recovery in Children with Celiac Disease on a Gluten Free Diet

    PubMed Central

    Leonard, Maureen M.; Weir, Dascha C.; DeGroote, Maya; Mitchell, Paul D.; Singh, Prashant; Silvester, Jocelyn A.; Leichtner, Alan M.; Fasano, Alessio

    2017-01-01

    Objective Our objective was to determine the rate of mucosal recovery in pediatric patients with celiac disease on a gluten free diet. We also sought to determine whether IgA tissue transglutaminase (tTG) correlates with mucosal damage at the time of a repeat endoscopy with duodenal biopsy in these patients. Methods We performed a retrospective chart review of one-hundred and three pediatric patients, under 21 years of age, with a diagnosis of celiac disease defined as Marsh 3 histology, and who underwent a repeat endoscopy with duodenal biopsy at least twelve months after initiating a gluten free diet. Results We found that 19% of pediatric patients treated with a gluten free diet had persistent enteropathy. At the time of the repeat biopsy, tTG was elevated in 43% of cases with persistent enteropathy and 32% of cases in which there was mucosal recovery. Overall the positive predictive value of the autoantibody tissue transglutaminase was 25% and the negative predictive value was 83% in patients on a gluten free diet for a median of 2.4 years. Conclusions Nearly one in five children with celiac disease in our population had persistent enteropathy despite maintaining a gluten free diet and IgA tTG was not an accurate marker of mucosal recovery. Neither the presence of symptoms nor positive serology were predictive of a patient’s histology at the time of repeat biopsy. These findings suggest a revisitation of monitoring and management criteria of celiac disease in childhood. PMID:28112686

  15. Changes in Occupational Radiation Exposures after Incorporation of a Real-time Dosimetry System in the Interventional Radiology Suite.

    PubMed

    Poudel, Sashi; Weir, Lori; Dowling, Dawn; Medich, David C

    2016-08-01

    A statistical pilot study was retrospectively performed to analyze potential changes in occupational radiation exposures to Interventional Radiology (IR) staff at Lawrence General Hospital after implementation of the i2 Active Radiation Dosimetry System (Unfors RaySafe Inc, 6045 Cochran Road Cleveland, OH 44139-3302). In this study, the monthly OSL dosimetry records obtained during the eight-month period prior to i2 implementation were normalized to the number of procedures performed during each month and statistically compared to the normalized dosimetry records obtained for the 8-mo period after i2 implementation. The resulting statistics included calculation of the mean and standard deviation of the dose equivalences per procedure and included appropriate hypothesis tests to assess for statistically valid differences between the pre and post i2 study periods. Hypothesis testing was performed on three groups of staff present during an IR procedure: The first group included all members of the IR staff, the second group consisted of the IR radiologists, and the third group consisted of the IR technician staff. After implementing the i2 active dosimetry system, participating members of the Lawrence General IR staff had a reduction in the average dose equivalence per procedure of 43.1% ± 16.7% (p = 0.04). Similarly, Lawrence General IR radiologists had a 65.8% ± 33.6% (p=0.01) reduction while the technologists had a 45.0% ± 14.4% (p=0.03) reduction.

  16. Reactor Dosimetry State of the Art 2008

    NASA Astrophysics Data System (ADS)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    Oral session 1: Retrospective dosimetry. Retrospective dosimetry of VVER 440 reactor pressure vessel at the 3rd unit of Dukovany NPP / M. Marek ... [et al.]. Retrospective dosimetry study at the RPV of NPP Greifswald unit 1 / J. Konheiser ... [et al.]. Test of prototype detector for retrospective neutron dosimetry of reactor internals and vessel / K. Hayashi ... [et al.]. Neutron doses to the concrete vessel and tendons of a magnox reactor using retrospective dosimetry / D. A. Allen ... [et al.]. A retrospective dosimetry feasibility study for Atucha I / J. Wagemans ... [et al.]. Retrospective reactor dosimetry with zirconium alloy samples in a PWR / L. R. Greenwood and J. P. Foster -- Oral session 2: Experimental techniques. Characterizing the Time-dependent components of reactor n/y environments / P. J. Griffin, S. M. Luker and A. J. Suo-Anttila. Measurements of the recoil-ion response of silicon carbide detectors to fast neutrons / F. H. Ruddy, J. G. Seidel and F. Franceschini. Measurement of the neutron spectrum of the HB-4 cold source at the high flux isotope reactor at Oak Ridge National Laboratory / J. L. Robertson and E. B. Iverson. Feasibility of cavity ring-down laser spectroscopy for dose rate monitoring on nuclear reactor / H. Tomita ... [et al.]. Measuring transistor damage factors in a non-stable defect environment / D. B. King ... [et al.]. Neutron-detection based monitoring of void effects in boiling water reactors / J. Loberg ... [et al.] -- Poster session 1: Power reactor surveillance, retrospective dosimetry, benchmarks and inter-comparisons, adjustment methods, experimental techniques, transport calculations. Improved diagnostics for analysis of a reactor pulse radiation environment / S. M. Luker ... [et al.]. Simulation of the response of silicon carbide fast neutron detectors / F. Franceschini, F. H. Ruddy and B. Petrović. NSV A-3: a computer code for least-squares adjustment of neutron spectra and measured dosimeter responses / J. G

  17. Hanford internal dosimetry program manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs.

  18. The extension of total gain (TG) statistic in survival models: properties and applications.

    PubMed

    Choodari-Oskooei, Babak; Royston, Patrick; Parmar, Mahesh K B

    2015-07-01

    The results of multivariable regression models are usually summarized in the form of parameter estimates for the covariates, goodness-of-fit statistics, and the relevant p-values. These statistics do not inform us about whether covariate information will lead to any substantial improvement in prediction. Predictive ability measures can be used for this purpose since they provide important information about the practical significance of prognostic factors. R (2)-type indices are the most familiar forms of such measures in survival models, but they all have limitations and none is widely used. In this paper, we extend the total gain (TG) measure, proposed for a logistic regression model, to survival models and explore its properties using simulations and real data. TG is based on the binary regression quantile plot, otherwise known as the predictiveness curve. Standardised TG ranges from 0 (no explanatory power) to 1 ('perfect' explanatory power). The results of our simulations show that unlike many of the other R (2)-type predictive ability measures, TG is independent of random censoring. It increases as the effect of a covariate increases and can be applied to different types of survival models, including models with time-dependent covariate effects. We also apply TG to quantify the predictive ability of multivariable prognostic models developed in several disease areas. Overall, TG performs well in our simulation studies and can be recommended as a measure to quantify the predictive ability in survival models.

  19. Tg.rasH2 Mice and not CByB6F1 Mice Should Be Used for 28-Day Dose Range Finding Studies Prior to 26-Week Tg.rasH2 Carcinogenicity Studies.

    PubMed

    Paranjpe, Madhav G; Belich, Jessica; Vidmar, Tom J; Elbekai, Reem H; McKeon, Marie; Brown, Caren

    Our recent retrospective analysis of data, collected from 29 Tg.rasH2 mouse carcinogenicity studies, determined how successful the strategy of choosing the high dose for the 26-week studies was based on the estimated maximum tolerated dose (EMTD) derived from earlier 28-day dose range finding (DRF) studies conducted in CByB6F1 mice. Our analysis demonstrated that the high doses applied at EMTD in the 26-week Tg.rasH2 studies failed to detect carcinogenic effects. To investigate why the dose selection process failed in the 26-week carcinogenicity studies, the initial body weights, terminal body weights, body weight gains, food consumption, and mortality from the first 4 weeks of 26-week studies with Tg.rasH2 mice were compared with 28-day DRF studies conducted with CByB6F1 mice. Both the 26-week and the earlier respective 28-day studies were conducted with the exact same vehicle, test article, and similar dose levels. The analysis of our results further emphasizes that the EMTD and subsequent lower doses, determined on the basis of the 28-day studies in CByB6F1 mice, may not be an accurate strategy for selecting appropriate dose levels for the 26-week carcinogenicity studies in Tg.rasH2 mice. Based on the analysis presented in this article, we propose that the Tg.rasH2 mice and not the CByB6F1 mice should be used in future DRF studies. The Tg.rasH2 mice demonstrate more toxicity than the CByB6F1 mice, possibly because of their smaller size compared to CByB6F1 mice. Also, the Tg.rasH2 males appear to be more sensitive than the female Tg.rasH2 mice.

  20. Sixth international radiopharmaceutical dosimetry symposium: Proceedings. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.-Stelson, A.T.; Stabin, M.G.; Sparks, R.B.

    1999-01-01

    This conference was held May 7--10 in Gatlinburg, Tennessee. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on radiopharmaceutical dosimetry. Attention is focused on the following: quantitative analysis and treatment planning; cellular and small-scale dosimetry; dosimetric models; radiopharmaceutical kinetics and dosimetry; and animal models, extrapolation, and uncertainty.

  1. A multi-institutional dosimetry audit of rotational intensity-modulated radiotherapy.

    PubMed

    Clark, Catharine H; Hussein, Mohammad; Tsang, Yatman; Thomas, Russell; Wilkinson, Dean; Bass, Graham; Snaith, Julia; Gouldstone, Clare; Bolton, Steve; Nutbrown, Rebecca; Venables, Karen; Nisbet, Andrew

    2014-11-01

    Rotational IMRT (VMAT and Tomotherapy) has now been implemented in many radiotherapy centres. An audit to verify treatment planning system modelling and treatment delivery has been undertaken to ensure accurate clinical implementation. 34 institutions with 43 treatment delivery systems took part in the audit. A virtual phantom planning exercise (3DTPS test) and a clinical trial planning exercise were planned and independently measured in each institution using a phantom and array combination. Point dose differences and global gamma index (γ) were calculated in regions corresponding to PTVs and OARs. Point dose differences gave a mean (±sd) of 0.1±2.6% and 0.2±2.0% for the 3DTPS test and clinical trial plans, respectively. 34/43 planning and delivery combinations achieved all measured planes with >95% pixels passing γ<1 at 3%/3mm and rose to 42/43 for clinical trial plans. A statistically significant difference in γ pass rates (p<0.01) was seen between planning systems where rotational IMRT modelling had been designed for the manufacturer's own treatment delivery system and those designed independently of rotational IMRT delivery. A dosimetry audit of rotational radiotherapy has shown that TPS modelling and delivery for rotational IMRT can achieve high accuracy of plan delivery. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Fragility of chalcogenide glass in relation to characteristic temperature T0/Tg

    NASA Astrophysics Data System (ADS)

    Shaker, A. M.; Shanker Rao, T.; Lilly Shanker Rao, T.; Venkataraman, K.

    2018-03-01

    The present study reports the mutual relationship between the fragility index m and the characteristic temperature T0/Tg. The fragility of the chalcogenide amorphous glass of Ge10Se50Te40 is calculated by utilizing glass transition temperature (Tg) measured by DSC (Differential Scanning Calorimetry) at different heating rates (β) in the range 5 to 20 K/min. Vogel-Fulcher-Tammann (VFT) equation is fitted to the data of Tg. In addition to the VFT method, three other methods are also used to evaluate m. The fragility index m of the Ge10Se50Te40 system showed the trend of decrease with increasing heating rate but remained stable around 22 for the heating rate 10 K/min. The value of m for the glass is near the lower limit (m ≈ 16) this indicates the alloy is a strong glass forming material in accordance of Angell’s interpretation of fragility. The calculated values of characteristic temperature T0/Tg is very close to 1 which also indicates that clearly the system is most fragile.

  3. SU-E-T-781: Using An Electronic Portal Imaging Device (EPID) for Correlating Linac Photon Beam Energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaddanapudi, S; Cai, B; Sun, B

    2015-06-15

    Purpose: Electronic portal imaging devices (EPIDs) have proven to be useful for measuring several parameters of interest in linear accelerator (linac) quality assurance (QA). The purpose of this project was to evaluate the feasibility of using EPIDs for determining linac photon beam energies. Methods: Two non-clinical Varian TrueBeam linacs (Varian Medical Systems, Palo Alto, CA) with 6MV and 10MV photon beams were used to perform the measurements. The linacs were equipped with an amorphous silicon based EPIDs (aSi1000) that were used for the measurements. We compared the use of flatness versus percent depth dose (PDD) for predicting changes in linacmore » photon beam energy. PDD was measured in 1D water tank (Sun Nuclear Corporation, Melbourne FL) and the profiles were measured using 2D ion-chamber array (IC-Profiler, Sun Nuclear) and the EPID. Energy changes were accomplished by varying the bending magnet current (BMC). The evaluated energies conformed with the AAPM TG142 tolerance of ±1% change in PDD. Results: BMC changes correlating with a ±1% change in PDD corresponded with a change in flatness of ∼1% to 2% from baseline values on the EPID. IC Profiler flatness values had the same correlation. We observed a similar trend for the 10MV beam energy changes. Our measurements indicated a strong correlation between changes in linac photon beam energy and changes in flatness. For all machines and energies, beam energy changes produced change in the uniformity (AAPM TG-142), varying from ∼1% to 2.5%. Conclusions: EPID image analysis of beam profiles can be used to determine linac photon beam energy changes. Flatness-based metrics or uniformity as defined by AAPM TG-142 were found to be more sensitive to linac photon beam energy changes than PDD. Research funding provided by Varian Medical Systems. Dr. Sasa Mutic receives compensation for providing patient safety training services from Varian Medical Systems, the sponsor of this study.« less

  4. Sequence and expression analyses of porcine ISG15 and ISG43 genes.

    PubMed

    Huang, Jiangnan; Zhao, Shuhong; Zhu, Mengjin; Wu, Zhenfang; Yu, Mei

    2009-08-01

    The coding sequences of porcine interferon-stimulated gene 15 (ISG15) and the interferon-stimulated gene (ISG43) were cloned from swine spleen mRNA. The amino acid sequences deduced from porcine ISG15 and ISG43 genes coding sequence shared 24-75% and 29-83% similarity with ISG15s and ISG43s from other vertebrates, respectively. Structural analyses revealed that porcine ISG15 comprises two ubiquitin homologues motifs (UBQ) domain and a conserved C-terminal LRLRGG conjugating motif. Porcine ISG43 contains an ubiquitin-processing proteases-like domain. Phylogenetic analyses showed that porcine ISG15 and ISG43 were mostly related to rat ISG15 and cattle ISG43, respectively. Using quantitative real-time PCR assay, significant increased expression levels of porcine ISG15 and ISG43 genes were detected in porcine kidney endothelial cells (PK15) cells treated with poly I:C. We also observed the enhanced mRNA expression of three members of dsRNA pattern-recognition receptors (PRR), TLR3, DDX58 and IFIH1, which have been reported to act as critical receptors in inducing the mRNA expression of ISG15 and ISG43 genes. However, we did not detect any induced mRNA expression of IFNalpha and IFNbeta, suggesting that transcriptional activations of ISG15 and ISG43 were mediated through IFN-independent signaling pathway in the poly I:C treated PK15 cells. Association analyses in a Landrace pig population revealed that ISG15 c.347T>C (BstUI) polymorphism and the ISG43 c.953T>G (BccI) polymorphism were significantly associated with hematological parameters and immune-related traits.

  5. Off-label use of medical products in radiation therapy: Summary of the Report of AAPM Task Group No. 121

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomadsen, Bruce R.; Thompson, Heaton H. II; Jani, Shirish K.

    of the approval process, along with manufacturers' responsibilities, labeling, marketing and promotion, and off-label use. This is an educational and descriptive report and does not contain prescriptive recommendations. This report addresses the role of the medical physicist in clinical situations involving off-label use. Case studies in radiation therapy are presented. Any mention of commercial products is for identification only; it does not imply recommendations or endorsements of any of the authors or the AAPM. The full report, containing extensive background on off-label use with several appendices, is available on the AAPM website (http://www.aapm.org/pubs/reports/).« less

  6. 3D dosimetry by optical-CT scanning

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2006-12-01

    The need for an accurate, practical, low-cost 3D dosimetry system is becoming ever more critical as modern dose delivery techniques increase in complexity and sophistication. A recent report from the Radiological Physics Center (RPC) (1), revealed that 38% of institutions failed the head-and-neck IMRT phantom credentialing test at the first attempt. This was despite generous passing criteria (within 7% dose-difference or 4mm distance-to-agreement) evaluated at a half-dozen points and a single axial plane. The question that arises from this disturbing finding is - what percentage of institutions would have failed if a comprehensive 3D measurement had been feasible, rather than measurements restricted to the central film-plane and TLD points? This question can only be adequately answered by a comprehensive 3D-dosimetry system, which presents a compelling argument for its development as a clinically viable low cost dosimetry solution. Optical-CT dosimetry is perhaps the closest system to providing such a comprehensive solution. In this article, we review the origins and recent developments of optical-CT dosimetry systems. The principle focus is on first generation systems known to have highest accuracy but longer scan times.

  7. SU-G-BRB-15: Verifications of Absolute and Relative Dosimetry of a Novel Stereotactic Breast Device: GammaPodTM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, S; Mossahebi, S; Yi, B

    Purpose: A dedicated stereotactic breast radiotherapy device, GammaPod, was developed to treat early stage breast cancer. The first clinical unit was installed and commissioned at University of Maryland. We report our methodology of absolute dosimetry in multiple calibration conditions and dosimetric verifications of treatment plans produced by the system. Methods: GammaPod unit is comprised of a rotating hemi-spherical source carrier containing 36 Co-60 sources and a concentric tungsten collimator providing beams of 15 and 25 mm. Absolute dose calibration formalism was developed with modifications to AAPM protocols for unique geometry and different calibration medium (acrylic, polyethylene or liquid water). Breastmore » cup-size specific and collimator output factors were measured and verified with respect to Monte-Carlo simulations for single isocenter plans. Multiple isocenter plans were generated for various target size, location and cup-sizes in phantoms and 20 breast cancer patients images. Stereotactic mini-farmer chamber, OSL and TLD detectors as well as radio-chromic films were used for dosimetric measurements. Results: At the time of calibration (1/14/2016), absolute dose rate of the GammaPod was established to be 2.10 Gy/min in acrylic for 25 mm for sources installed in March 2011. Output factor for 15 mm collimator was measured to be 0.950. Absolute dose calibration was independently verified by IROC-Houston with a TLD/Institution ratio of 0.99. Cup size specific output measurements in liquid water for single isocenter were found to be within 3.0% of MC simulations. Point-dose measurements of multiple isocenter treatment plans were found to be within −1.0 ± 1.2 % of treatment planning system while 2-dimensional gamma analysis yielded a pass rate of 97.9 ± 2.2 % using gamma criteria of 3% and 2mm. Conclusion: The first GammaPod treatment unit for breast stereotactic radiotherapy was successfully installed, calibrated and commissioned for patient

  8. Aged Tg2576 mice are impaired on social memory and open field habituation tests.

    PubMed

    Deacon, R M J; Koros, E; Bornemann, K D; Rawlins, J N P

    2009-02-11

    In a previous publication [Deacon RMJ, Cholerton LL, Talbot K, Nair-Roberts RG, Sanderson DJ, Romberg C, et al. Age-dependent and -independent behavioral deficits in Tg2576 mice. Behav Brain Res 2008;189:126-38] we found that very few cognitive tests were suitable for demonstrating deficits in Tg2576 mice, an amyloid over-expression model of Alzheimer's disease, even at 23 months of age. However, in a retrospective analysis of a separate project on these mice, tests of social memory and open field habituation revealed large cognitive impairments. Controls showed good open field habituation, but Tg2576 mice were hyperactive and failed to habituate. In the test of social memory for a juvenile mouse, controls showed considerably less social investigation on the second meeting, indicating memory of the juvenile, whereas Tg2576 mice did not show this decrement.As a control for olfactory sensitivity, on which social memory relies, the ability to find a food pellet hidden under wood chip bedding was assessed. Tg2576 mice found the pellet as quickly as controls. As this test requires digging ability, this was independently assessed in tests of burrowing and directly observed digging. In line with previous results and the hippocampal dysfunction characteristic of aged Tg2576 mice, they both burrowed and dug less than controls.

  9. TG2 regulates the heat-shock response by the post-translational modification of HSF1.

    PubMed

    Rossin, Federica; Villella, Valeria Rachela; D'Eletto, Manuela; Farrace, Maria Grazia; Esposito, Speranza; Ferrari, Eleonora; Monzani, Romina; Occhigrossi, Luca; Pagliarini, Vittoria; Sette, Claudio; Cozza, Giorgio; Barlev, Nikolai A; Falasca, Laura; Fimia, Gian Maria; Kroemer, Guido; Raia, Valeria; Maiuri, Luigi; Piacentini, Mauro

    2018-05-11

    Heat-shock factor 1 (HSF1) is the master transcription factor that regulates the response to proteotoxic stress by controlling the transcription of many stress-responsive genes including the heat-shock proteins. Here, we show a novel molecular mechanism controlling the activation of HSF1. We demonstrate that transglutaminase type 2 (TG2), dependent on its protein disulphide isomerase activity, triggers the trimerization and activation of HSF1 regulating adaptation to stress and proteostasis impairment. In particular, we find that TG2 loss of function correlates with a defect in the nuclear translocation of HSF1 and in its DNA-binding ability to the HSP70 promoter. We show that the inhibition of TG2 restores the unbalance in HSF1-HSP70 pathway in cystic fibrosis (CF), a human disorder characterized by deregulation of proteostasis. The absence of TG2 leads to an increase of about 40% in CFTR function in a new experimental CF mouse model lacking TG2. Altogether, these results indicate that TG2 plays a key role in the regulation of cellular proteostasis under stressful cellular conditions through the modulation of the heat-shock response. © 2018 The Authors.

  10. Nonuniform Irradiation of the Canine Intestine. 2. Dosimetry

    DTIC Science & Technology

    1990-01-01

    irradiation is accurate assessment In vivo dosimetry was done using Harshaw (Solon, Ohio) TLD - 100 lith- of the injury after either accidental or... vivo TLD dosimetry system allowed measure- 5 and 6. The dose was determined from the median TLD ment of the °Co dose deposited in the canine small...provide replicate measurements. Two separate dosimetry tubes were deveoped (Fig. 1). The first contained 30 TLD cap- doses (1). Nevertheless, current

  11. Dosimetry of ionising radiation in modern radiation oncology

    NASA Astrophysics Data System (ADS)

    Kron, Tomas; Lehmann, Joerg; Greer, Peter B.

    2016-07-01

    Dosimetry of ionising radiation is a well-established and mature branch of physical sciences with many applications in medicine and biology. In particular radiotherapy relies on dosimetry for optimisation of cancer treatment and avoidance of severe toxicity for patients. Several novel developments in radiotherapy have introduced new challenges for dosimetry with small and dynamically changing radiation fields being central to many of these applications such as stereotactic ablative body radiotherapy and intensity modulated radiation therapy. There is also an increasing awareness of low doses given to structures not in the target region and the associated risk of secondary cancer induction. Here accurate dosimetry is important not only for treatment optimisation but also for the generation of data that can inform radiation protection approaches in the future. The article introduces some of the challenges and highlights the interdependence of dosimetric calculations and measurements. Dosimetric concepts are explored in the context of six application fields: reference dosimetry, small fields, low dose out of field, in vivo dosimetry, brachytherapy and auditing of radiotherapy practice. Recent developments of dosimeters that can be used for these purposes are discussed using spatial resolution and number of dimensions for measurement as sorting criteria. While dosimetry is ever evolving to address the needs of advancing applications of radiation in medicine two fundamental issues remain: the accuracy of the measurement from a scientific perspective and the importance to link the measurement to a clinically relevant question. This review aims to provide an update on both of these.

  12. The TG/HDL-C Ratio Might Be a Surrogate for Insulin Resistance in Chinese Nonobese Women.

    PubMed

    He, Jiyun; He, Sen; Liu, Kai; Wang, Yong; Shi, Di; Chen, Xiaoping

    2014-01-01

    Obejective. To examine the discriminatory power of triglyceride (TG) and triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-C) for insulin resistance (IR) in a normoglycaemic Chinese population. Methods. The data were collected from 711 individuals. The normoglycaemic individuals were eventually included in the study (n = 533, age: 62.8 ± 6.6 years, male: 56.8%), who were with a fasting plasma glucose < 6.1 mmol/L and without a history of diabetes. IR was defined as the upper quintile (≥1.6) of homeostasis model assessment of IR. Area under the receiver operating characteristic curve (AROC) was used to examine the discriminatory power. Results. The discriminatory power of TG/HDL-C for IR was acceptable in women with a BMI < 24 kg/m(2) or waist circumference < 80 cm (AROCs: 0.718 and 0.713, resp.); however, the discriminatory power was not acceptable in the obese women. TG/HDL-C was not an acceptable marker of IR in men. The discriminatory power of TG for IR was not acceptable in both men and women. Conclusions. The discriminatory power of TG/HDL-C for IR differs by gender and obesity index in the normoglycaemic Chinese population, and TG/HDL-C could discriminate IR in the nonobese and normoglycaemic women.

  13. In vivo dosimetry using a single diode for megavoltage photon beam radiotherapy: Implementation and response characterization

    PubMed Central

    Beddar, A. Sam; Kinsella, Timothy J.; Sibata, Claudio H.

    2001-01-01

    The AAPM Task Group 40 reported that in vivo dosimetry can be used to identify major deviations in treatment delivery in radiation therapy. In this paper, we investigate the feasibility of using one single diode to perform in vivo dosimetry in the entire radiotherapeutic energy range regardless of its intrinsic buildup material. The only requirement on diode selection would be to choose a diode with the adequate build up to measure the highest beam energy. We have tested the new diodes from Sun Nuclear Corporation (called QED and ISORAD‐p–both p‐type) for low‐, intermediate‐, and high‐energy range. We have clinically used both diode types to monitor entrance doses. In general, we found that the dose readings from the ISORAD (p‐type) are closer of the dose expected than QED diodes in the clinical setting. In this paper we report on the response of these newly available ISORAD (p‐type) diode detectors with respect to certain radiation field parameters such as source‐to‐surface distance, field size, wedge beam modifiers, as well as other parameters that affect detector characteristics (temperature and detector‐beam orientation). We have characterized the response of the high‐energy ISORAD (p‐type) diode in the low‐ (1–4 MV), intermediate‐ (6–12 MV), and high‐energy (15–25 MV) range. Our results showed that the total variation of the response of high‐energy ISORAD (p‐type) diodes to all the above parameters are within ±5% in most encountered clinical patient treatment setups in the megavoltage photon beam radiotherapy. The usage of the high‐energy buildup diode has the additional benefit of amplifying the response of the diode reading in case the wrong energy is used for patient treatment. In the light of these findings, we have since then switched to using only one single diode type, namely the “red” diode; manufacturer designation of the ISORAD (p‐type) high‐energy (15–25 MV) range diode, for all energies in our

  14. Comparative kinetic analysis on thermal degradation of some cephalosporins using TG and DSC data

    PubMed Central

    2013-01-01

    Background The thermal decomposition of cephalexine, cefadroxil and cefoperazone under non-isothermal conditions using the TG, respectively DSC methods, was studied. In case of TG, a hyphenated technique, including EGA, was used. Results The kinetic analysis was performed using the TG and DSC data in air for the first step of cephalosporin’s decomposition at four heating rates. The both TG and DSC data were processed according to an appropriate strategy to the following kinetic methods: Kissinger-Akahira-Sunose, Friedman, and NPK, in order to obtain realistic kinetic parameters, even if the decomposition process is a complex one. The EGA data offer some valuable indications about a possible decomposition mechanism. The obtained data indicate a rather good agreement between the activation energy’s values obtained by different methods, whereas the EGA data and the chemical structures give a possible explanation of the observed differences on the thermal stability. A complete kinetic analysis needs a data processing strategy using two or more methods, but the kinetic methods must also be applied to the different types of experimental data (TG and DSC). Conclusion The simultaneous use of DSC and TG data for the kinetic analysis coupled with evolved gas analysis (EGA) provided us a more complete picture of the degradation of the three cephalosporins. It was possible to estimate kinetic parameters by using three different kinetic methods and this allowed us to compare the Ea values obtained from different experimental data, TG and DSC. The thermodegradation being a complex process, the both differential and integral methods based on the single step hypothesis are inadequate for obtaining believable kinetic parameters. Only the modified NPK method allowed an objective separation of the temperature, respective conversion influence on the reaction rate and in the same time to ascertain the existence of two simultaneous steps. PMID:23594763

  15. LncRNA-TP53TG1 Participated in the Stress Response Under Glucose Deprivation in Glioma.

    PubMed

    Chen, Xin; Gao, Yang; Li, Deheng; Cao, Yiqun; Hao, Bin

    2017-12-01

    Gliomas are the most common brain tumors of the center nervous system. And long non-coding RNAs (lncRNAs) are non-protein coding transcripts, which have been considered as one type of gene expression regulator for cancer development. In this study, we investigated the role of lncRNA-TP53TG1 in response to glucose deprivation in human gliomas. The expression levels of TP53TG1 in glioma tissues and cells were analyzed by qRT-PCR. In addition, the influence of TP53TG1 on glucose metabolism related genes at the mRNA level during both high and low glucose treatment was detected by qRT-PCR. MTT, clonogenicity assays, and flow cytometry were performed to detect the cell proliferation and cell apoptosis. Furthermore, the migration of glioma cells was examined by Transwell assays. The expression of TP53TG1 was significantly higher in human glioma tissues or cell lines compared with normal brain tissue or NHA. Moreover, TP53TG1 and some tumor glucose metabolism related genes, such as GRP78, LDHA, and IDH1 were up-regulated significantly in U87 and LN18 cells under glucose deprivation. In addition, knockdown of TP53TG1 decreased cell proliferation and migration and down-regulated GRP78 and IDH1 expression levels and up-regulated PKM2 levels in U87 cells under glucose deprivation. However, over-expression of TP53TG1 showed the opposite tendency. Moreover, the effects of TP53TG1 were more remarkable in low glucose than that in high glucose. Our data showed that TP53TG1 under glucose deprivation may promote cell proliferation and migration by influencing the expression of glucose metabolism related genes in glioma. J. Cell. Biochem. 118: 4897-4904, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. The physics of small megavoltage photon beam dosimetry.

    PubMed

    Andreo, Pedro

    2018-02-01

    The increased interest during recent years in the use of small megavoltage photon beams in advanced radiotherapy techniques has led to the development of dosimetry recommendations by different national and international organizations. Their requirement of data suitable for the different clinical options available, regarding treatment units and dosimetry equipment, has generated a considerable amount of research by the scientific community during the last decade. The multiple publications in the field have led not only to the availability of new invaluable data, but have also contributed substantially to an improved understanding of the physics of their dosimetry. This work provides an overview of the most important aspects that govern the physics of small megavoltage photon beam dosimetry. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. MO-E-17A-06: Organ Dose in Abdomen-Pelvis CT: Does TG 111 Equilibrium Dose Concept Better Accounts for KVp Dependence Than Conventional CTDI?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X; Morgan, A; Davros, W

    Purpose: In CT imaging, a desirable quality assurance (QA) dose quantity should account for the dose variability across scan parameters and scanner models. Recently, AAPM TG 111 proposed to use equilibrium dose-pitch product, in place of CT dose index (CTDI100), for scan modes involving table translation. The purpose of this work is to investigate whether this new concept better accounts for the kVp dependence of organ dose than the conventional CTDI concept. Methods: The adult reference female extended cardiac-torso (XCAT) phantom was used for this study. A Monte Carlo program developed and validated for a 128-slice CT system (Definition Flash,more » Siemens Healthcare) was used to simulate organ dose for abdomenpelvis scans at five tube voltages (70, 80, 100, 120, 140 kVp) with a pitch of 0.8 and a detector configuration of 2x64x0.6 mm. The same Monte Carlo program was used to simulate CTDI100 and equilibrium dose-pitch product. For both metrics, the central and peripheral values were used together with helical pitch to calculate a volume-weighted average, i.e., CTDIvol and (Deq)vol, respectively. Results: While other scan parameters were kept constant, organ dose depended strongly on kVp; the coefficient of variation (COV) across the five kVp values ranged between 70–75% for liver, spleen, stomach, pancreas, kidneys, colon, small intestine, bladder, and ovaries, all of which were inside the primary radiation beam. One-way analysis of variance (ANOVA) for the effect of kVp was highly significant (p=3e−30). When organ dose was normalized by CTDIvol, the COV across the five kVp values reduced to 7–16%. The effect of kVp was still highly significant (p=4e−4). When organ dose was normalized by (Deq)vol, the COV further reduced to 4−12%. The effect of kVp was borderline significant (p=0.04). Conclusion: In abdomen-pelvis CT, TG 111 equilibrium dose concept better accounts for kVp dependence than the conventional CTDI. This work is supported by a faculty

  18. Modified COMS Plaques for {sup 125}I and {sup 103}Pd Iris Melanoma Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, Rowan M., E-mail: rthomson@physics.carleton.c; Furutani, Keith M.; Pulido, Jose S.

    2010-11-15

    Purpose: Novel plaques are used to treat iris melanoma at the Mayo Clinic Rochester. The plaques are a modification of the Collaborative Ocular Melanoma Study (COMS) 22 mm plaque design with a gold alloy backing, outer lip, and silicone polymer insert. An inner lip surrounds a 10 mm diameter cutout region at the plaque center. Plaques span 360{sup o}, 270{sup o}, and 180{sup o} arcs. This article describes dosimetry for these plaques and others used in the treatment of anterior eye melanomas. Methods and Materials: The EGSnrc user-code BrachyDose is used to perform Monte Carlo simulations. Plaques and seeds aremore » fully modeled. Three-dimensional dose distributions for different plaque models, TG-43 calculations, and {sup 125}I (model 6711) and {sup 103}Pd (model 200) seeds are compared via depth-dose curves, tabulation of doses at points of interest, and isodose contours. Results: Doses at points of interest differ by up to 70% from TG-43 calculations. The inner lip reduces corneal doses. Matching plaque arc length to tumor extent reduces doses to eye regions outside the treatment area. Maintaining the same prescription dose, {sup 103}Pd offers lower doses to critical structures than {sup 125}I, with the exception of the sclera adjacent to the plaque. Conclusion: The Mayo Clinic plaques offer several advantages for anterior eye tumor treatments. Doses to regions outside the treatment area are significantly reduced. Doses differ considerably from TG-43 predictions, illustrating the importance of complete Monte Carlo simulations. Calculations take a few minutes on a single CPU, making BrachyDose sufficiently fast for routine clinical treatment planning.« less

  19. On determining dose rate constants spectroscopically.

    PubMed

    Rodriguez, M; Rogers, D W O

    2013-01-01

    To investigate several aspects of the Chen and Nath spectroscopic method of determining the dose rate constants of (125)I and (103)Pd seeds [Z. Chen and R. Nath, Phys. Med. Biol. 55, 6089-6104 (2010)] including the accuracy of using a line or dual-point source approximation as done in their method, and the accuracy of ignoring the effects of the scattered photons in the spectra. Additionally, the authors investigate the accuracy of the literature's many different spectra for bare, i.e., unencapsulated (125)I and (103)Pd sources. Spectra generated by 14 (125)I and 6 (103)Pd seeds were calculated in vacuo at 10 cm from the source in a 2.7 × 2.7 × 0.05 cm(3) voxel using the EGSnrc BrachyDose Monte Carlo code. Calculated spectra used the initial photon spectra recommended by AAPM's TG-43U1 and NCRP (National Council of Radiation Protection and Measurements) Report 58 for the (125)I seeds, or TG-43U1 and NNDC(2000) (National Nuclear Data Center, 2000) for (103)Pd seeds. The emitted spectra were treated as coming from a line or dual-point source in a Monte Carlo simulation to calculate the dose rate constant. The TG-43U1 definition of the dose rate constant was used. These calculations were performed using the full spectrum including scattered photons or using only the main peaks in the spectrum as done experimentally. Statistical uncertainties on the air kerma/history and the dose rate/history were ≤0.2%. The dose rate constants were also calculated using Monte Carlo simulations of the full seed model. The ratio of the intensity of the 31 keV line relative to that of the main peak in (125)I spectra is, on average, 6.8% higher when calculated with the NCRP Report 58 initial spectrum vs that calculated with TG-43U1 initial spectrum. The (103)Pd spectra exhibit an average 6.2% decrease in the 22.9 keV line relative to the main peak when calculated with the TG-43U1 rather than the NNDC(2000) initial spectrum. The measured values from three different investigations are

  20. Dosimetry with diamond detectors

    NASA Astrophysics Data System (ADS)

    Gervino, G.; Marino, C.; Silvestri, F.; Lavagno, A.; Truc, F.

    2010-05-01

    In this paper we present the dosimetry analysis in terms of stability and repeatability of the signal and dose rate dependence of a synthetic single crystal diamond grown by Chemical Vapor Deposition (CVD) technique. The measurements carried out by 5 MeV X-ray photons beam show very promising results, even if the dose rate detector response points out that the charge trapping centers distribution is not uniform inside the crystal volume. This handicap that affects the detectors performances, must be ascribed to the growing process. Synthetic single crystal diamonds could be a valuable alternative to air ionization chambers for quality beam control and for intensity modulated radiation therapy beams dosimetry.

  1. The TG/HDL-C Ratio Might Be a Surrogate for Insulin Resistance in Chinese Nonobese Women

    PubMed Central

    He, Jiyun; He, Sen; Liu, Kai; Wang, Yong; Shi, Di

    2014-01-01

    Obejective. To examine the discriminatory power of triglyceride (TG) and triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-C) for insulin resistance (IR) in a normoglycaemic Chinese population. Methods. The data were collected from 711 individuals. The normoglycaemic individuals were eventually included in the study (n = 533, age: 62.8 ± 6.6 years, male: 56.8%), who were with a fasting plasma glucose < 6.1 mmol/L and without a history of diabetes. IR was defined as the upper quintile (≥1.6) of homeostasis model assessment of IR. Area under the receiver operating characteristic curve (AROC) was used to examine the discriminatory power. Results. The discriminatory power of TG/HDL-C for IR was acceptable in women with a BMI < 24 kg/m2 or waist circumference < 80 cm (AROCs: 0.718 and 0.713, resp.); however, the discriminatory power was not acceptable in the obese women. TG/HDL-C was not an acceptable marker of IR in men. The discriminatory power of TG for IR was not acceptable in both men and women. Conclusions. The discriminatory power of TG/HDL-C for IR differs by gender and obesity index in the normoglycaemic Chinese population, and TG/HDL-C could discriminate IR in the nonobese and normoglycaemic women. PMID:25136362

  2. Computer Aided Dosimetry and Verification of Exposure to Radiation

    DTIC Science & Technology

    2002-06-01

    Event matrix 2. Hematopoietic * Absolute blood counts * Relative blood counts 3. Dosimetry * TLD * EPDQuantitative * Radiation survey * Whole body...EI1 Defence Research and Recherche et developpement Development Canada pour la d6fense Canada DEFENCE •mI•DEFENSE Computer Aided Dosimetry and...Aided Dosimetry and Verification of Exposure to Radiation Edward Waller SAIC Canada Robert Z Stodilka Radiation Effects Group, Space Systems and

  3. SU-E-T-67: A Quality Assurance Procedure for VMAT Delivery Technique with Multiple Verification Metric Using TG-119 Protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsuta, Y; Kadoya, N; Shimizu, E

    2015-06-15

    Purpose: A successful VMAT plan delivery includes precise modulations of dose rate, gantry rotational and multi-leaf collimator shapes. The purpose of this research is to construct routine QA protocol which focuses on VMAT delivery technique and to obtain a baseline including dose error, fluence distribution and mechanical accuracy during VMAT. Methods: The mock prostate, head and neck (HN) cases supplied from AAPM were used in this study. A VMAT plans were generated in Monaco TPS according to TG-119 protocol. Plans were created using 6 MV and 10 MV photon beams for each case. The phantom based measurement, fluence measurement andmore » log files analysis were performed. The dose measurement was performed using 0.6 cc ion chamber, which located at isocenter. The fluence distribution were acquired using the MapCHECK2 mounted in the MapPHAN. The trajectory log files recorded inner 20 leaf pairs and gantry angle positions at every 0.25 sec interval were exported to in-house software developed by MATLAB and determined those RMS values. Results: The dose difference is expressed as a ratio of the difference between measured and planned doses. The dose difference for 6 MV was 0.91%, for 10 MV was 0.67%. In turn, the fluence distribution using gamma criteria of 2%/2 mm with a 50% minimum dose threshold for 6 MV was 98.8%, for 10 MV was 97.5%, respectively. The RMS values of MLC for 6 MV and 10 MV were 0.32 mm and 0.37 mm, of gantry were 0.33 degree and 0.31 degree. Conclusion: In this study, QA protocol to assess VMAT delivery accuracy is constructed and results acquired in this study are used as a baseline of VMAT delivery performance verification.« less

  4. EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry II. Dosimetry prior to radioiodine therapy of benign thyroid diseases.

    PubMed

    Hänscheid, Heribert; Canzi, Cristina; Eschner, Wolfgang; Flux, Glenn; Luster, Markus; Strigari, Lidia; Lassmann, Michael

    2013-07-01

    The EANM Dosimetry Committee Series "Standard Operational Procedures for Pre-Therapeutic Dosimetry" (SOP) provides advice to scientists and clinicians on how to perform patient-specific absorbed dose assessments. This particular SOP describes how to tailor the therapeutic activity to be administered for radioiodine therapy of benign thyroid diseases such as Graves' disease or hyperthyroidism. Pretherapeutic dosimetry is based on the assessment of the individual (131)I kinetics in the target tissue after the administration of a tracer activity. The present SOP makes proposals on the equipment to be used and guides the user through the measurements. Time schedules for the measurement of the fractional (131)I uptake in the diseased tissue are recommended and it is shown how to calculate from these datasets the therapeutic activity necessary to administer a predefined target dose in the subsequent therapy. Potential sources of error are pointed out and the inherent uncertainties of the procedures depending on the number of measurements are discussed. The theoretical background and the derivation of the listed equations from compartment models of the iodine kinetics are explained in a supplementary file published online only.

  5. The effect of time in use on the display performance of the iPad.

    PubMed

    Caffery, Liam J; Manthey, Kenneth L; Sim, Lawrence H

    2016-07-01

    The aim of this study was to evaluate changes to the luminance, luminance uniformity and conformance to the digital imaging and communication in medicine greyscale standard display function (GSDF) as a function of time in use for the iPad. Luminance measurements of the American Association of Physicists in Medicine (AAPM) Group 18 task group (TG18) luminance uniformity and luminance test patterns (TG18-UNL and TG18-LN8) were performed using a calibrated near-range luminance meter. Nine sets of measurements were taken, where the time in use of the iPad ranged from 0 to 2500 h. The maximum luminance (Lmax) of the display decreased (367-338 cdm(-2)) as a function of time. The minimum luminance remained constant. The maximum non-uniformity coefficient was 11%. Luminance uniformity decreased slightly as a function of time in use. The conformance of the iPad deviated from the GSDF curve at commencement of use. Deviation did not increase as a function of time in use. This study has demonstrated that the iPad display exhibits luminance degradation typical of liquid crystal displays. The Lmax of the iPad fell below the American College of Radiology-AAPM-Society of Imaging Informatics in Medicine recommendations for primary displays (>350 cdm(-2)) at approximately 1000 h in use. The Lmax recommendation for secondary displays (>250 cdm(-2)) was exceeded during the entire study. The maximum non-uniformity coefficient did not exceed the recommendations for either primary or secondary displays. The deviation from the GSDF exceeded the recommendations of the TG18 for use as either a primary or secondary display. The brightness, uniformity and contrast response are reasonably stable over the useful lifetime of the device; however, the device fails to meet the contrast response standard for either a primary or secondary display.

  6. SU-F-T-305: Clinical Effects of Dosimetric Leaf Gap (DLG) Values Between Matched Varian Truebeam (TB) Linacs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihailidis, D; Mallah, J; Zhu, D

    2016-06-15

    Purpose: The dosimetric leaf gap (DLG) is an important parameter to be measured for dynamic beam delivery of modern linacs, like the Varian Truebeam (TB). The clinical effects of DLG-values on IMRT and/or VMAT commissioning of two “matched” TB linacs will be presented.Methods and Materials: The DLG values on two TB linacs were measured for all energy modalities (filtered and FFF-modes) as part of the dynamic delivery mode commissioning (IMRT and/or VMAT. After the standard beam data was modeled in eclipse treatment planning system (TPS) and validated, IMRT validation was performed based on TG1191 benchmark, IROC Head-Neck (H&N) phantom andmore » sample of clinical cases, all measured on both linacs. Although there was a single-set of data entered in the TPS, a noticeable difference was observed for the DLG-values between the linacs. The TG119, IROC phantom and selected patient plans were furnished with DLG-values of TB1 for both linacs and the delivery was performed on both TB linacs for comparison. Results: The DLG values of TB1 was first used for both linacs to perform the testing comparisons. The QA comparison of TG119 plans revealed a great dependence of the results to the DLG-values used for the linac for all energy modalities studied, especially when moving from 3%/3mm to 2%/2mm γ-analysis. Conclusion: The DLG-values have a definite influence on the dynamic dose, delivery that increases with the plan complexity. We recommend that the measured DLG-values are assigned to each of the “matched” linacs, even if a single set of beam data describes multiple linacs. The user should perform a detail test of the dynamic delivery of each linac based on end-to-end benchmark suites like TG119 and IROC phantoms.1Ezzel G., et al., “IMRT commissioning: Multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119.” Med. Phys. 36:5359–5373 (2009). partly supported by CAMC Cancer Center and Alliance Oncology.« less

  7. Spaceflight Influences both Mucosal and Peripheral Cytokine Production in PTN-Tg and Wild Type Mice

    PubMed Central

    Liu, Yi; Kalmokoff, Martin; Brooks, Stephen P. J.; Green-Johnson, Julia M.

    2013-01-01

    Spaceflight is associated with several health issues including diminished immune efficiency. Effects of long-term spaceflight on selected immune parameters of wild type (Wt) and transgenic mice over-expressing pleiotrophin under the human bone-specific osteocalcin promoter (PTN-Tg) were examined using the novel Mouse Drawer System (MDS) aboard the International Space Station (ISS) over a 91 day period. Effects of this long duration flight on PTN-Tg and Wt mice were determined in comparison to ground controls and vivarium-housed PTN-Tg and Wt mice. Levels of interleukin-2 (IL-2) and transforming growth factor-beta1 (TGF-β1) were measured in mucosal and systemic tissues of Wt and PTN-Tg mice. Colonic contents were also analyzed to assess potential effects on the gut microbiota, although no firm conclusions could be made due to constraints imposed by the MDS payload and the time of sampling. Spaceflight-associated differences were observed in colonic tissue and systemic lymph node levels of IL-2 and TGF-β1 relative to ground controls. Total colonic TGF-β1 levels were lower in Wt and PTN-Tg flight mice in comparison to ground controls. The Wt flight mouse had lower levels of IL-2 and TGF-β1 compared to the Wt ground control in both the inguinal and brachial lymph nodes, however this pattern was not consistently observed in PTN-Tg mice. Vivarium-housed Wt controls had higher levels of active TGF-β1 and IL-2 in inguinal lymph nodes relative to PTN-Tg mice. The results of this study suggest compartmentalized effects of spaceflight and on immune parameters in mice. PMID:23874826

  8. Retrospective dosimetry analyses of reactor vessel cladding samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenwood, L. R.; Soderquist, C. Z.; Fero, A. H.

    2011-07-01

    Reactor pressure vessel cladding samples for Ringhals Units 3 and 4 in Sweden were analyzed using retrospective reactor dosimetry techniques. The objective was to provide the best estimates of the neutron fluence for comparison with neutron transport calculations. A total of 51 stainless steel samples consisting of chips weighing approximately 100 to 200 mg were removed from selected locations around the pressure vessel and were sent to Pacific Northwest National Laboratory for analysis. The samples were fully characterized and analyzed for radioactive isotopes, with special interest in the presence of Nb-93m. The RPV cladding retrospective dosimetry results will be combinedmore » with a re-evaluation of the surveillance capsule dosimetry and with ex-vessel neutron dosimetry results to form a comprehensive 3D comparison of measurements to calculations performed with 3D deterministic transport code. (authors)« less

  9. Tumor and red bone marrow dosimetry: comparison of methods for prospective treatment planning in pretargeted radioimmunotherapy.

    PubMed

    Woliner-van der Weg, Wietske; Schoffelen, Rafke; Hobbs, Robert F; Gotthardt, Martin; Goldenberg, David M; Sharkey, Robert M; Slump, Cornelis H; van der Graaf, Winette Ta; Oyen, Wim Jg; Boerman, Otto C; Sgouros, George; Visser, Eric P

    2015-12-01

    Red bone marrow (RBM) toxicity is dose-limiting in (pretargeted) radioimmunotherapy (RIT). Previous blood-based and two-dimensional (2D) image-based methods have failed to show a clear dose-response relationship. We developed a three-dimensional (3D) image-based RBM dosimetry approach using the Monte Carlo-based 3D radiobiological dosimetry (3D-RD) software and determined its additional value for predicting RBM toxicity. RBM doses were calculated for 13 colorectal cancer patients after pretargeted RIT with the two-step administration of an anti-CEA × anti-HSG bispecific monoclonal antibody and a (177)Lu-labeled di-HSG-peptide. 3D-RD RBM dosimetry was based on the lumbar vertebrae, delineated on single photon emission computed tomography (SPECT) scans acquired directly, 3, 24, and 72 h after (177)Lu administration. RBM doses were correlated to hematologic effects, according to NCI-CTC v3 and compared with conventional 2D cranium-based and blood-based dosimetry results. Tumor doses were calculated with 3D-RD, which has not been possible with 2D dosimetry. Tumor-to-RBM dose ratios were calculated and compared for (177)Lu-based pretargeted RIT and simulated pretargeted RIT with (90)Y. 3D-RD RBM doses of all seven patients who developed thrombocytopenia were higher (range 0.43 to 0.97 Gy) than that of the six patients without thrombocytopenia (range 0.12 to 0.39 Gy), except in one patient (0.47 Gy) without thrombocytopenia but with grade 2 leucopenia. Blood and 2D image-based RBM doses for patients with grade 1 to 2 thrombocytopenia were in the same range as in patients without thrombocytopenia (0.14 to 0.29 and 0.11 to 0.26 Gy, respectively). Blood-based RBM doses for two grade 3 to 4 patients were higher (0.66 and 0.51 Gy, respectively) than the others, and the cranium-based dose of only the grade 4 patient was higher (0.34 Gy). Tumor-to-RBM dose ratios would increase by 25% on average when treating with (90)Y instead of (177)Lu. 3D dosimetry identifies

  10. Transglutaminases factor XIII-A and TG2 regulate resorption, adipogenesis and plasma fibronectin homeostasis in bone and bone marrow

    PubMed Central

    Mousa, Aisha; Cui, Cui; Song, Aimei; Myneni, Vamsee D; Sun, Huifang; Li, Jin Jin; Murshed, Monzur; Melino, Gerry; Kaartinen, Mari T

    2017-01-01

    Appropriate bone mass is maintained by bone-forming osteoblast and bone-resorbing osteoclasts. Mesenchymal stem cell (MSC) lineage cells control osteoclastogenesis via expression of RANKL and OPG (receptor activator of nuclear factor κB ligand and osteoprotegerin), which promote and inhibit bone resorption, respectively. Protein crosslinking enzymes transglutaminase 2 (TG2) and Factor XIII-A (FXIII-A) have been linked to activity of myeloid and MSC lineage cells; however, in vivo evidence has been lacking to support their function. In this study, we show in mice that TG2 and FXIII-A control monocyte-macrophage cell differentiation into osteoclasts as well as RANKL production in MSCs and in adipocytes. Long bones of mice lacking TG2 and FXIII-A transglutaminases, show compromised biomechanical properties and trabecular bone loss in axial and appendicular skeleton. This was caused by increased osteoclastogenesis, a cellular phenotype that persists in vitro. The increased potential of TG2 and FXIII-A deficient monocytes to form osteoclasts was reversed by chemical inhibition of TG activity, which revealed the presence of TG1 in osteoclasts and assigned different roles for the TGs as regulators of osteoclastogenesis. TG2- and FXIII-A-deficient mice had normal osteoblast activity, but increased bone marrow adipogenesis, MSCs lacking TG2 and FXIII-A showed high adipogenic potential and significantly increased RANKL expression as well as upregulated TG1 expression. Chemical inhibition of TG activity in the null cells further increased adipogenic potential and RANKL production. Altered differentiation of TG2 and FXIII-A null MSCs was associated with plasma fibronectin (FN) assembly defect in cultures and FN retention in serum and marrow in vivo instead of assembly into bone. Our findings provide new functions for TG2, FXIII-A and TG1 in bone cells and identify them as novel regulators of bone mass, plasma FN homeostasis, RANKL production and myeloid and MSC cell

  11. Specific issues in small animal dosimetry and irradiator calibration

    PubMed Central

    Yoshizumi, Terry; Brady, Samuel L.; Robbins, Mike E.; Bourland, J. Daniel

    2013-01-01

    Purpose In response to the increased risk of radiological terrorist attack, a network of Centers for Medical Countermeasures against Radiation (CMCR) has been established in the United States, focusing on evaluating animal model responses to uniform, relatively homogenous whole- or partial-body radiation exposures at relatively high dose rates. The success of such studies is dependent not only on robust animal models but on accurate and reproducible dosimetry within and across CMCR. To address this issue, the Education and Training Core of the Duke University School of Medicine CMCR organised a one-day workshop on small animal dosimetry. Topics included accuracy in animal dosimetry accuracy, characteristics and differences of cesium-137 and X-ray irradiators, methods for dose measurement, and design of experimental irradiation geometries for uniform dose distributions. This paper summarises the information presented and discussed. Conclusions Without ensuring accurate and reproducible dosimetry the development and assessment of the efficacy of putative countermeasures will not prove successful. Radiation physics support is needed, but is often the weakest link in the small animal dosimetry chain. We recommend: (i) A user training program for new irradiator users, (ii) subsequent training updates, and (iii) the establishment of a national small animal dosimetry center for all CMCR members. PMID:21961967

  12. Dosimetry procedures for an industrial irradiation plant

    NASA Astrophysics Data System (ADS)

    Grahn, Ch.

    Accurate and reliable dosimetry procedures constitute a very important part of process control and quality assurance at a radiation processing plant. γ-Dose measurements were made on the GBS 84 irradiator for food and other products on pallets or in containers. Chemical dosimeters wre exposed in the facility under conditions of the typical plant operation. The choice of the dosimeter systems employed was based on the experience in chemical dosimetry gained over several years. Dose uniformity information was obtained in air, spices, bulbs, feeds, cosmetics, plastics and surgical goods. Most products currently irradiated require dose uniformity which can be efficiently provided by pallet or box irradiators like GBS 84. The radiation performance characteristics and some dosimetry procedures are discussed.

  13. Thermoluminescence Dosimetry (TLD) and its Application in Medical Physics

    NASA Astrophysics Data System (ADS)

    Azorín Nieto, Juan

    2004-09-01

    Radiation dosimetry is fundamental in Medical Physics, involving patients and phantom dosimetry. In both cases thermoluminescence dosimetry (TLD) is the most appropriate technique for measuring the absorbed dose. In this paper thermoluminescence phenomenon as well as the use of TLD in radiodiagnosis and radiotherapy for in vivo or in phantom measurements is discussed. Some results of measurements made in radiotherapy and radiodiagnosis using home made LiF:Mg,Cu,P+PTFE TLD are presented.

  14. General Electric TG-100A Turboprop in the Altitude Wind Tunnel

    NASA Image and Video Library

    1946-12-21

    A General Electric TG-100A seen from the rear in the test section of the Altitude Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory in Cleveland, Ohio. The Altitude Wind Tunnel was used to study almost every model of US turbojet that emerged in the 1940s, as well as some ramjets and turboprops. In the early 1940s the military was interested in an engine that would use less fuel than the early jets but would keep up with them performance-wise. Turboprops seemed like a plausible solution. They could move a large volume of air and thus required less engine speed and less fuel. Researchers at General Electric’s plant in Schenectady, New York worked on the turboprop for several years in the 1930s. They received an army contract in 1941 to design a turboprop engine using an axial-flow compressor. The result was the 14-stage TG-100, the nation's first turboprop aircraft engine. Development of the engine was slow, however, and the military asked NACA Lewis to analyze the engine’s performance. The TG-100A was tested in the Altitude Wind Tunnel and it was determined that the compressors, combustion chamber, and turbine were impervious to changes in altitude. The researchers also established the optimal engine speed and propeller angle at simulated altitudes up to 35,000 feet. Despite these findings, development of the TG-100 was cancelled in May 1947. Twenty-eight of the engines were produced, but they were never incorporated into production aircraft.

  15. The report of Task Group 100 of the AAPM: Application of risk analysis methods to radiation therapy quality management

    PubMed Central

    Huq, M. Saiful; Fraass, Benedick A.; Dunscombe, Peter B.; Gibbons, John P.; Mundt, Arno J.; Mutic, Sasa; Palta, Jatinder R.; Rath, Frank; Thomadsen, Bruce R.; Williamson, Jeffrey F.; Yorke, Ellen D.

    2016-01-01

    The increasing complexity of modern radiation therapy planning and delivery challenges traditional prescriptive quality management (QM) methods, such as many of those included in guidelines published by organizations such as the AAPM, ASTRO, ACR, ESTRO, and IAEA. These prescriptive guidelines have traditionally focused on monitoring all aspects of the functional performance of radiotherapy (RT) equipment by comparing parameters against tolerances set at strict but achievable values. Many errors that occur in radiation oncology are not due to failures in devices and software; rather they are failures in workflow and process. A systematic understanding of the likelihood and clinical impact of possible failures throughout a course of radiotherapy is needed to direct limit QM resources efficiently to produce maximum safety and quality of patient care. Task Group 100 of the AAPM has taken a broad view of these issues and has developed a framework for designing QM activities, based on estimates of the probability of identified failures and their clinical outcome through the RT planning and delivery process. The Task Group has chosen a specific radiotherapy process required for “intensity modulated radiation therapy (IMRT)” as a case study. The goal of this work is to apply modern risk-based analysis techniques to this complex RT process in order to demonstrate to the RT community that such techniques may help identify more effective and efficient ways to enhance the safety and quality of our treatment processes. The task group generated by consensus an example quality management program strategy for the IMRT process performed at the institution of one of the authors. This report describes the methodology and nomenclature developed, presents the process maps, FMEAs, fault trees, and QM programs developed, and makes suggestions on how this information could be used in the clinic. The development and implementation of risk-assessment techniques will make radiation

  16. The report of Task Group 100 of the AAPM: Application of risk analysis methods to radiation therapy quality management.

    PubMed

    Huq, M Saiful; Fraass, Benedick A; Dunscombe, Peter B; Gibbons, John P; Ibbott, Geoffrey S; Mundt, Arno J; Mutic, Sasa; Palta, Jatinder R; Rath, Frank; Thomadsen, Bruce R; Williamson, Jeffrey F; Yorke, Ellen D

    2016-07-01

    The increasing complexity of modern radiation therapy planning and delivery challenges traditional prescriptive quality management (QM) methods, such as many of those included in guidelines published by organizations such as the AAPM, ASTRO, ACR, ESTRO, and IAEA. These prescriptive guidelines have traditionally focused on monitoring all aspects of the functional performance of radiotherapy (RT) equipment by comparing parameters against tolerances set at strict but achievable values. Many errors that occur in radiation oncology are not due to failures in devices and software; rather they are failures in workflow and process. A systematic understanding of the likelihood and clinical impact of possible failures throughout a course of radiotherapy is needed to direct limit QM resources efficiently to produce maximum safety and quality of patient care. Task Group 100 of the AAPM has taken a broad view of these issues and has developed a framework for designing QM activities, based on estimates of the probability of identified failures and their clinical outcome through the RT planning and delivery process. The Task Group has chosen a specific radiotherapy process required for "intensity modulated radiation therapy (IMRT)" as a case study. The goal of this work is to apply modern risk-based analysis techniques to this complex RT process in order to demonstrate to the RT community that such techniques may help identify more effective and efficient ways to enhance the safety and quality of our treatment processes. The task group generated by consensus an example quality management program strategy for the IMRT process performed at the institution of one of the authors. This report describes the methodology and nomenclature developed, presents the process maps, FMEAs, fault trees, and QM programs developed, and makes suggestions on how this information could be used in the clinic. The development and implementation of risk-assessment techniques will make radiation therapy

  17. Confidence limit variation for a single IMRT system following the TG119 protocol.

    PubMed

    Gordon, J D; Krafft, S P; Jang, S; Smith-Raymond, L; Stevie, M Y; Hamilton, R J

    2011-03-01

    To evaluate the robustness of TG119-based quality assurance metrics for an IMRT system. Four planners constructed treatment plans for the five IMRT test cases described in TG119. All plans were delivered to a 30 cm x 30 cm x 15 cm solid water phantom in one treatment session in order to minimize session-dependent variation from phantom setup, film quality, machine performance, etc. Composite measurements utilized film and an ionization chamber. Per-field measurements were collected using a diode array device at an effective depth of 5 cm. All data collected were analyzed using the TG119 specifications to determine the confidence limit values for each planner separately and then compared. The mean variance of ion chamber measurements for each planner was within 1.7% of the planned dose. The resulting confidence limits were 3.13%, 1.98%, 3.65%, and 4.39%. Confidence limit values determined by composite film analysis were 8.06%, 13.4%, 9.30%, and 16.5%. Confidence limits from per-field measurements were 1.55%, 0.00%, 0.00%, and 2.89%. For a single IMRT system, the accuracy assessment provided by TG119-based quality assurance metrics showed significant variations in the confidence limits between planners across all composite and per-field evaluations. This observed variation is likely due to the different levels of modulation between each planner's set of plans. Performing the TG119 evaluation using plans produced by a single planner may not provide an adequate estimation of IMRT system accuracy.

  18. Evaluation and implementation of triple‐channel radiochromic film dosimetry in brachytherapy

    PubMed Central

    Bradley, David; Nisbet, Andrew

    2014-01-01

    The measurement of dose distributions in clinical brachytherapy, for the purpose of quality control, commissioning or dosimetric audit, is challenging and requires development. Radiochromic film dosimetry with a commercial flatbed scanner may be suitable, but careful methodologies are required to control various sources of uncertainty. Triple‐channel dosimetry has recently been utilized in external beam radiotherapy to improve the accuracy of film dosimetry, but its use in brachytherapy, with characteristic high maximum doses, steep dose gradients, and small scales, has been less well researched. We investigate the use of advanced film dosimetry techniques for brachytherapy dosimetry, evaluating uncertainties and assessing the mitigation afforded by triple‐channel dosimetry. We present results on postirradiation film darkening, lateral scanner effect, film surface perturbation, film active layer thickness, film curling, and examples of the measurement of clinical brachytherapy dose distributions. The lateral scanner effect in brachytherapy film dosimetry can be very significant, up to 23% dose increase at 14 Gy, at ± 9 cm lateral from the scanner axis for simple single‐channel dosimetry. Triple‐channel dosimetry mitigates the effect, but still limits the useable width of a typical scanner to less than 8 cm at high dose levels to give dose uncertainty to within 1%. Triple‐channel dosimetry separates dose and dose‐independent signal components, and effectively removes disturbances caused by film thickness variation and surface perturbations in the examples considered in this work. The use of reference dose films scanned simultaneously with brachytherapy test films is recommended to account for scanner variations from calibration conditions. Postirradiation darkening, which is a continual logarithmic function with time, must be taken into account between the reference and test films. Finally, films must be flat when scanned to avoid the Callier

  19. Molecular weight dependence of the intrinsic size effect on Tg in AAO template-supported polymer nanorods: A DSC study

    NASA Astrophysics Data System (ADS)

    Askar, Shadid; Wei, Tong; Tan, Anthony W.; Torkelson, John M.

    2017-05-01

    Many studies have established a major effect of nanoscale confinement on the glass transition temperature (Tg) of polystyrene (PS), most commonly in thin films with one or two free surfaces. Here, we characterize smaller yet significant intrinsic size effects (in the absence of free surfaces or significant attractive polymer-substrate interactions) on the Tg and fragility of PS. Melt infiltration of various molecular weights (MWs) of PS into anodic aluminum oxide (AAO) templates is used to create nanorods supported on AAO with rod diameter (d) ranging from 24 to 210 nm. The Tg (both as Tg,onset and fictive temperature) and fragility values are characterized by differential scanning calorimetry. No intrinsic size effect is observed for 30 kg/mol PS in template-supported nanorods with d = 24 nm. However, effects on Tg are present for PS nanorods with Mn and Mw ≥ ˜175 kg/mol, with effects increasing in magnitude with increasing MW. For example, in 24-nm-diameter template-supported nanorods, Tg, rod - Tg, bulk = -2.0 to -2.5 °C for PS with Mn = 175 kg/mol and Mw = 182 kg/mol, and Tg, rod - Tg, bulk = ˜-8 °C for PS with Mn = 929 kg/mol and Mw = 1420 kg/mol. In general, reductions in Tg occur when d ≤ ˜2Rg, where Rg is the bulk polymer radius of gyration. Thus, intrinsic size effects are significant when the rod diameter is smaller than the diameter (2Rg) associated with the spherical volume pervaded by coils in bulk. We hypothesize that the Tg reduction occurs when chain segment packing frustration is sufficiently perturbed by confinement in the nanorods. This explanation is supported by observed reductions in fragility with the increasing extent of confinement. We also explain why these small intrinsic size effects do not contradict reports that the Tg-confinement effect in supported PS films with one free surface exhibits little or no MW dependence.

  20. A Comparison of Singlet Oxygen Explicit Dosimetry (SOED) and Singlet Oxygen Luminescence Dosimetry (SOLD) for Photofrin-Mediated Photodynamic Therapy

    PubMed Central

    Kim, Michele M.; Penjweini, Rozhin; Gemmell, Nathan R.; Veilleux, Israel; McCarthy, Aongus; Buller, Gerald S.; Hadfield, Robert H.; Wilson, Brian C.; Zhu, Timothy C.

    2016-01-01

    Accurate photodynamic therapy (PDT) dosimetry is critical for the use of PDT in the treatment of malignant and nonmalignant localized diseases. A singlet oxygen explicit dosimetry (SOED) model has been developed for in vivo purposes. It involves the measurement of the key components in PDT—light fluence (rate), photosensitizer concentration, and ground-state oxygen concentration ([3O2])—to calculate the amount of reacted singlet oxygen ([1O2]rx), the main cytotoxic component in type II PDT. Experiments were performed in phantoms with the photosensitizer Photofrin and in solution using phosphorescence-based singlet oxygen luminescence dosimetry (SOLD) to validate the SOED model. Oxygen concentration and photosensitizer photobleaching versus time were measured during PDT, along with direct SOLD measurements of singlet oxygen and triplet state lifetime (τΔ and τt), for various photosensitizer concentrations to determine necessary photophysical parameters. SOLD-determined cumulative [1O2]rx was compared to SOED-calculated [1O2]rx for various photosensitizer concentrations to show a clear correlation between the two methods. This illustrates that explicit dosimetry can be used when phosphorescence-based dosimetry is not feasible. Using SOED modeling, we have also shown evidence that SOLD-measured [1O2]rx using a 523 nm pulsed laser can be used to correlate to singlet oxygen generated by a 630 nm laser during a clinical malignant pleural mesothelioma (MPM) PDT protocol by using a conversion formula. PMID:27929427

  1. A Comparison of Singlet Oxygen Explicit Dosimetry (SOED) and Singlet Oxygen Luminescence Dosimetry (SOLD) for Photofrin-Mediated Photodynamic Therapy.

    PubMed

    Kim, Michele M; Penjweini, Rozhin; Gemmell, Nathan R; Veilleux, Israel; McCarthy, Aongus; Buller, Gerald S; Hadfield, Robert H; Wilson, Brian C; Zhu, Timothy C

    2016-12-06

    Accurate photodynamic therapy (PDT) dosimetry is critical for the use of PDT in the treatment of malignant and nonmalignant localized diseases. A singlet oxygen explicit dosimetry (SOED) model has been developed for in vivo purposes. It involves the measurement of the key components in PDT-light fluence (rate), photosensitizer concentration, and ground-state oxygen concentration ([³ O ₂])-to calculate the amount of reacted singlet oxygen ([¹ O ₂] rx ), the main cytotoxic component in type II PDT. Experiments were performed in phantoms with the photosensitizer Photofrin and in solution using phosphorescence-based singlet oxygen luminescence dosimetry (SOLD) to validate the SOED model. Oxygen concentration and photosensitizer photobleaching versus time were measured during PDT, along with direct SOLD measurements of singlet oxygen and triplet state lifetime ( τ Δ and τ t ), for various photosensitizer concentrations to determine necessary photophysical parameters. SOLD-determined cumulative [¹ O ₂] rx was compared to SOED-calculated [¹ O ₂] rx for various photosensitizer concentrations to show a clear correlation between the two methods. This illustrates that explicit dosimetry can be used when phosphorescence-based dosimetry is not feasible. Using SOED modeling, we have also shown evidence that SOLD-measured [¹ O ₂] rx using a 523 nm pulsed laser can be used to correlate to singlet oxygen generated by a 630 nm laser during a clinical malignant pleural mesothelioma (MPM) PDT protocol by using a conversion formula.

  2. WE-DE-201-07: Measurement of Real-Time Dose for Tandem and Ovoid Brachytherapy Procedures Using a High Precision Optical Fiber Radiation Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belley, MD; Current Address Rhode Island Hospital, Providence, RI; Faught, A

    Purpose: Development of a novel on-line dosimetry tool is needed to move toward patient-specific quality assurance measurements for Ir-192 HDR brachytherapy to verify accurate dose delivery to the intended location. This work describes the development and use of a nano-crystalline yttrium oxide inorganic scintillator based optical-fiber detector capable of acquiring real-time high-precision dose measurements during tandem and ovoid (T&O) gynecological (GYN) applicator Ir-192 HDR brachytherapy procedures. Methods: An optical-fiber detector was calibrated by acquiring light output measurements in liquid water at 3, 5, 7, and 9cm radial source-detector-distances from an Ir-192 HDR source. A regression model was fit to themore » data to describe the relative light output per unit dose (TG-43 derived) as a function of source-detector-distance. Next, the optical-fiber detector was attached to a vaginal balloon fixed to a Varian Fletcher-Suit-Delclos-style applicator (to mimic clinical setup), and localized by acquiring high-resolution computed tomography (CT) images. To compare the physical point dose to the TPS calculated values (TG-43 and Acuros-BV), a phantom measurement was performed, by submerging the T&O applicator in a liquid water bath and delivering a treatment template representative of a clinical T&O procedure. The fiber detector collected scintillation signal as a function of time, and the calibration data was applied to calculate both real-time dose rate, and cumulative dose. Results: Fiber cumulative dose values were 100.0cGy, 94.3cGy, and 348.9cGy from the tandem, left ovoid, and right ovoid dwells, respectively (total of 443.2cGy). A plot of real time dose rate during the treatment was also acquired. The TPS values at the fiber location were 458.4cGy using TG-43, and 437.6cGy using Acuros-BV calculated as Dm,m (per TG-186). Conclusion: The fiber measured dose value agreement was 3% vs TG-43 and −1% vs Acuros-BV. This fiber detector opens up new

  3. ESR dosimetry for atomic bomb survivors and radiologic technologists

    NASA Astrophysics Data System (ADS)

    Tatsumi-Miyajima, Junko

    1987-06-01

    An individual absorbed dose for atomic bomb (A-bomb) survivors and radiologic technologists has been estimated using a new personal dosimetry. This dosimetry is based on the electron spin resonance (ESR) spectroscopy of the CO 33- radicals, which are produced in their teeth by radiation. Measurements were carried out to study the characteristics of the dosimetry; the ESR signals of the CO 33- radicals were stable and increased linearly with the radiation dose. In the evaluation of the absorbed dose, the ESR signals were considered to be a function of photon energy. The absorbed doses in ten cases of A-bomb victims and eight cases of radiologic technologists were determined. For A-bomb survivors, the adsorbed doses, which were estimated using the ESR dosimetry, were consistent with the ones obtained using the calculations of the tissue dose in air of A-bomb, and also with the ones obtained using the chromosome measurements. For radiologic technologists, the absorbed doses, which were estimated using the ESR dosimetry, agreed with the ones calculated using the information on the occupational history and conditions. The advantages of this method are that the absorbed dose can be directly estimated by measuring the ESR signals obtained from the teeth of persons, who are exposed to radiation. Therefore, the ESR dosimetry is useful to estimate the accidental exposure and the long term cumulative dose.

  4. The ENEA neutron personal dosimetry service.

    PubMed

    Morelli, B; Mariotti, F; Fantuzzi, E

    2006-01-01

    The ENEA Radiation Protection Institute has been operating the only neutron personal dosimetry service in Italy since the 1970s. Since the 1980s the service has been based on PADC (poly allyl diglycol carbonate) for fast neutron dosimetry, while thermal neutron dosimetry has been performed using thermoluminescence (TL) dosemeters. Since the service was started, a number of aspects have undergone evolution. The latest and most important changes are as follows: in 1998 a new PADC material was introduced in routine, since 2001 TL thermal dosimetry has been based on LiF(Mg,Cu,P) [GR-200] and (7)LiF(Mg,Cu,P) [GR-207] detectors and since 2003 a new image analysis reading system for the fast neutron dosemeters has been used. Herein an updated summary of how the service operates and performs today is presented. The approaches to calibration and traceability to estimate the quantity of H(p)(10) are mentioned. Results obtained at the performance test of dosimetric services in the EU member states and Switzerland sponsored by the European Commission and organised by Eurados in 1999 are reported. Last but not least, quality assurance (QA) procedures introduced in the routine operation to track the whole process of dose evaluation (i.e. plastic QA, acceptance test, test etching bath reproducibility and 'dummy customer' (blind test) for each issuing monitoring period) are presented and discussed.

  5. TH-EF-BRC-00: TG-100 Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2016-06-15

    This Hands-on Workshop will be focused on providing participants with experience with the principal tools of TG 100 and hence start to build both competence and confidence in the use of risk-based quality management techniques. The three principal tools forming the basis of TG 100’s risk analysis: Process mapping, Failure-Modes and Effects Analysis and fault-tree analysis will be introduced with a 5 minute refresher presentation and each presentation will be followed by a 30 minute small group exercise. An exercise on developing QM from the risk analysis follows. During the exercise periods, participants will apply the principles in 2 differentmore » clinical scenarios. At the conclusion of each exercise there will be ample time for participants to discuss with each other and the faculty their experience and any challenges encountered. Learning Objectives: To review the principles of Process Mapping, Failure Modes and Effects Analysis and Fault Tree Analysis. To gain familiarity with these three techniques in a small group setting. To share and discuss experiences with the three techniques with faculty and participants. Director, TreatSafely, LLC. Director, Center for the Assessment of Radiological Sciences. Occasional Consultant to the IAEA and Varian.« less

  6. Independent association of TG/HDL-C with urinary albumin excretion in normotensive subjects in a rural Korean population.

    PubMed

    Kang, Hee-Taik; Kim, Jong-Koo; Kim, Jang-Young; Linton, John A; Yoon, Jin-Ha; Koh, Sang-Baek

    2012-01-18

    The ratio of triglycerides (TG, mg/dl) to high-density lipoprotein cholesterol (HDL-C, mg/dl) is a reliable indicator of insulin resistance and atherosclerotic diseases in some ethnic groups. This study is performed to examine the association between TG/HDL-C and albuminuria. This cross-sectional study included 9094 adult subjects (4091 men, 5003 women) who were enrolled in the Korean Genomic Rural Cohort (KGRC) and aged 40 years or more. Albuminuria was defined as a urine albumin/creatinine ratio ≥ 30 mg/g. Participants were categorized into TG/HDL-C quartile. Compared to the lowest TG/HDL-C quartile (<1.94 in men, <1.71 in women), the odds ratios (ORs) for albuminuria in participants who were categorized in the highest TG/HDL-C quartile (≥ 4.98 in men, ≥ 4.20 in women) were 1.30 (95% CI: 0.97-1.75) and 1.36 (1.03-1.79) in men and women, respectively, when adjusted for blood pressure and other covariates. In normotensive men and women, the ORs for albuminuria in the highest TG/HDL-C quartile were 1.58 (1.04-2.39) and 1.68 (1.15-2.45), respectively, even after fully adjusted. In contrast, TG/HDL-C was not associated with albuminuria in hypertensive subjects. TG/HDL-C was independently associated with increased prevalence of albuminuria in normotensive rural Korean subjects aged 40 years or more in KGRC. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Analysis of motor function in 6-month-old male and female 3xTg-AD mice.

    PubMed

    Stover, Kurt R; Campbell, Mackenzie A; Van Winssen, Christine M; Brown, Richard E

    2015-03-15

    The 3xTg-AD mouse has high validity as a model of Alzheimer's disease (AD) because it develops both amyloid beta plaques and neurofibrillary tangles. Human patients with AD typically develop motor deficits, which worsen as the disease progresses, but 3xTg-AD mice have been reported to show enhanced motor abilities. We investigated the motor behaviour phenotype of male and female 3xTg-AD and B6129SF2 wildtype mice on a battery of motor behaviours at 6 months of age. Compared to wildtype mice, the 3xTg-AD mice had enhanced motor performance on the Rotarod, but worse performance on the grid suspension task. In gait analysis 3xTg-AD mice had a longer stride length and made more foot slips on the balance beam than wildtype mice. There was no overall difference in voluntary wheel-running activity between genotypes, but there was a disruption in circadian activity rhythm in 3xTg-AD mice. In some motor tasks, such as the Rotarod and balance beam, females appeared to perform better than males, but this sex differences was accounted for by differences in body weight. Our results indicate that while the 3xTg-AD mice show enhanced performance on the Rotarod, they have poorer performance on other motor behaviour tasks, indicating that their motor behaviour phenotype is more complex than previously reported. The presence of the P301L transgene may explain the enhancement of Rotarod performance but the poorer performance on other motor behaviour tasks may be due to other transgenes. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The Impact of CDH13 Polymorphism and Statin Administration on TG/HDL Ratio in Cardiovascular Patients

    PubMed Central

    Choi, Jung Ran; Kim Yoon, Sungjoo; Park, Jong Keun; Sorn, Sungbin Richard; Park, Mi-Young

    2015-01-01

    Purpose Adiponectin is expressed in adipose tissue, and is affected by smoking, obesity, and genetic factors, such as CDH13 polymorphism, contributing to the development of coronary vascular diseases (CVDs). Materials and Methods We investigated the effect of genetic variations of CDH13 (rs3865188) on blood chemistry and adiponectin levels in 345 CVD patients undergoing statin-free or statin treatment. Results Genetic variation in CDH13 was significantly correlated with several clinical factors, including adiponectin, diastolic blood pressure, triglyceride (TG), and insulin levels. Subjects with the T allele (mutant form) had significantly lower adiponectin levels than those with the A allele. Total cholesterol (TC), low-density lipoprotein cholesterol (LDLc), TG/high-density lipoprotein cholesterol (HDLc) ratio, and HDL3b subtype were markedly decreased in statin treated subjects regardless of having the A or T allele. TG and TG/HDL in the statin-free group with TT genotype of the rs3865188 was higher than in the others but they were not different in the statin-treated subjects. We observed a significant difference in adiponectin levels between patients with the A and T alleles in the statin-free group; meanwhile, no difference in adiponectin levels was noted in the statin group. Plasma levels of other cytokines, leptin, visfatin, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), were not different among the CDH13 genotypes according to statin administration. Body mass index (BMI), TG, insulin, HDL3b, and TG/HDL ratio showed negative correlations with adiponectin levels. Conclusion Plasma adiponectin levels and TG/HDL ratio were significantly different according to variants of CDH13 and statin administration in Korean patients with CVD. PMID:26446643

  9. The Impact of CDH13 Polymorphism and Statin Administration on TG/HDL Ratio in Cardiovascular Patients.

    PubMed

    Choi, Jung Ran; Jang, Yangsoo; Kim Yoon, Sungjoo; Park, Jong Keun; Sorn, Sungbin Richard; Park, Mi-Young; Lee, Myoungsook

    2015-11-01

    Adiponectin is expressed in adipose tissue, and is affected by smoking, obesity, and genetic factors, such as CDH13 polymorphism, contributing to the development of coronary vascular diseases (CVDs). We investigated the effect of genetic variations of CDH13 (rs3865188) on blood chemistry and adiponectin levels in 345 CVD patients undergoing statin-free or statin treatment. Genetic variation in CDH13 was significantly correlated with several clinical factors, including adiponectin, diastolic blood pressure, triglyceride (TG), and insulin levels. Subjects with the T allele (mutant form) had significantly lower adiponectin levels than those with the A allele. Total cholesterol (TC), low-density lipoprotein cholesterol (LDLc), TG/high-density lipoprotein cholesterol (HDLc) ratio, and HDL3b subtype were markedly decreased in statin treated subjects regardless of having the A or T allele. TG and TG/HDL in the statin-free group with TT genotype of the rs3865188 was higher than in the others but they were not different in the statin-treated subjects. We observed a significant difference in adiponectin levels between patients with the A and T alleles in the statin-free group; meanwhile, no difference in adiponectin levels was noted in the statin group. Plasma levels of other cytokines, leptin, visfatin, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), were not different among the CDH13 genotypes according to statin administration. Body mass index (BMI), TG, insulin, HDL3b, and TG/HDL ratio showed negative correlations with adiponectin levels. Plasma adiponectin levels and TG/HDL ratio were significantly different according to variants of CDH13 and statin administration in Korean patients with CVD.

  10. Pediatric dosimetry for intrapleural lung injections of 32P chromic phosphate

    NASA Astrophysics Data System (ADS)

    Konijnenberg, Mark W.; Olch, Arthur

    2010-10-01

    Intracavitary injections of 32P chromic phosphate are used in the therapy of pleuropulmonary blastoma and pulmonary sarcomas in children. The lung dose, however, has never been calculated despite the potential risk of lung toxicity from treatment. In this work the dosimetry has been calculated in target tissue and lung for pediatric phantoms. Pleural cavities were modeled in the Monte Carlo code MCNP within the pediatric MIRD phantoms. Both the depth-dose curves in the pleural lining and into the lung as well as 3D dose distributions were calculated for either homogeneous or inhomogeneous 32P activity distributions. Dose-volume histograms for the lung tissue and isodose graphs were generated. The results for the 2D depth-dose curve to the pleural lining and tumor around the pleural cavity correspond well with the point kernel model-based recommendations. With a 2 mm thick pleural lining, one-third of the lung parenchyma volume gets a dose more than 30 Gy (V30) for 340 MBq 32P in a 10 year old. This is close to lung tolerance. Younger children will receive a larger dose to the lung when the lung density remains equal to the adult value; the V30 relative lung volume for a 5 year old is 35% at an activity of 256 MBq and for a 1 year old 165 MBq yields a V30 of 43%. At higher densities of the lung tissue V30 stays below 32%. All activities yield a therapeutic dose of at least 225 Gy in the pleural lining. With a more normal pleural lining thickness (0.5 mm instead of 2 mm) the injected activities will have to be reduced by a factor 5 to obtain tolerable lung doses in pediatric patients. Previous dosimetry recommendations for the adult apply well down to lung surface areas of 400 cm2. Monte Carlo dosimetry quantitates the three-dimensional dose distribution, providing a better insight into the maximum tolerable activity for this therapy.

  11. In vivo thermoluminescence dosimetry for total body irradiation.

    PubMed

    Palkosková, P; Hlavata, H; Dvorák, P; Novotný, J; Novotný, J

    2002-01-01

    An improvement in the clinical results obtained using total body irradiation (TBI) with photon beams requires precise TBI treatment planning, reproducible irradiation, precise in vivo dosimetry, accurate documentation and careful evaluation. In vivo dosimetry using LiF Harshaw TLD-100 chips was used during the TBI treatments performed in our department. The results of in vivo thermoluminescence dosimetry (TLD) show that using TLD measurements and interactive adjustment of some treatment parameters based on these measurements, like monitor unit calculations, lung shielding thickness and patient positioning, it is possible to achieve high precision in absorbed dose delivery (less than 0.5%) as well as in homogeneity of irradiation (less than 6%).

  12. RCT: Module 2.04, Dosimetry, Course 8769

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillmer, Kurt T.

    This course will introduce the types of instruments used to measure external and internal radiation to people. Dosimetry is the quantitative assessment of radiation received by the human body. Several types of dosimeters are used worldwide. This information is valuable to all radiological control personnel because dosimeters are the only direct method to measure and document personnel radiation exposure and ensure regulatory compliance with applicable limits. This course will cover dosimetry terms, Department of Energy (DOE) limits, Los Alamos National Laboratory (LANL) administrative guidelines, thermoluminescent dosimeters (TLDs), LANL dosimetry, and bioassay assessment methods. This course will prepare the student withmore » the skills necessary for radiological control technician (RCT) qualification by passing quizzes, tests, and the RCT Comprehensive Phase 1, Unit 2 Examination (TEST 27566) and providing in-thefield skills.« less

  13. A Novel Form of Compensation in the Tg2576 Amyloid Mouse Model of Alzheimer's Disease.

    PubMed

    Somogyi, Attila; Katonai, Zoltán; Alpár, Alán; Wolf, Ervin

    2016-01-01

    One century after its first description, pathology of Alzheimer's disease (AD) is still poorly understood. Amyloid-related dendritic atrophy and membrane alterations of susceptible brain neurons in AD, and in animal models of AD are widely recognized. However, little effort has been made to study the potential effects of combined morphological and membrane alterations on signal transfer and synaptic integration in neurons that build up affected neural networks in AD. In this study spatial reconstructions and electrophysiological measurements of layer II/III pyramidal neurons of the somatosensory cortex from wild-type (WT) and transgenic (TG) human amyloid precursor protein (hAPP) overexpressing Tg2576 mice were used to build faithful segmental cable models of these neurons. Local synaptic activities were simulated in various points of the dendritic arbors and properties of subthreshold dendritic impulse propagation and predictors of synaptic input pattern recognition ability were quantified and compared in modeled WT and TG neurons. Despite the widespread dendritic degeneration and membrane alterations in mutant mouse neurons, surprisingly little, or no change was detected in steady-state and 50 Hz sinusoidal voltage transfers, current transfers, and local and propagation delays of PSPs traveling along dendrites of TG neurons. Synaptic input pattern recognition ability was also predicted to be unaltered in TG neurons in two different soma-dendritic membrane models investigated. Our simulations predict the way how subthreshold dendritic signaling and pattern recognition are preserved in TG neurons: amyloid-related membrane alterations compensate for the pathological effects that dendritic atrophy has on subthreshold dendritic signal transfer and integration in layer II/III somatosensory neurons of this hAPP mouse model for AD. Since neither propagation of single PSPs nor integration of multiple PSPs (pattern recognition) changes in TG neurons, we conclude that AD

  14. EURADOS strategic research agenda: vision for dosimetry of ionising radiation

    PubMed Central

    Rühm, W.; Fantuzzi, E.; Harrison, R.; Schuhmacher, H.; Vanhavere, F.; Alves, J.; Bottollier Depois, J. F.; Fattibene, P.; Knežević, Ž.; Lopez, M. A.; Mayer, S.; Miljanić, S.; Neumaier, S.; Olko, P.; Stadtmann, H.; Tanner, R.; Woda, C.

    2016-01-01

    Since autumn 2012, the European Radiation Dosimetry Group (EURADOS) has been developing its Strategic Research Agenda (SRA), which is intended to contribute to the identification of future research needs in radiation dosimetry in Europe. The present article summarises—based on input from EURADOS Working Groups (WGs) and Voting Members—five visions in dosimetry and defines key issues in dosimetry research that are considered important for the next decades. The five visions include scientific developments required towards (a) updated fundamental dose concepts and quantities, (b) improved radiation risk estimates deduced from epidemiological cohorts, (c) efficient dose assessment for radiological emergencies, (d) integrated personalised dosimetry in medical applications and (e) improved radiation protection of workers and the public. The SRA of EURADOS will be used as a guideline for future activities of the EURADOS WGs. A detailed version of the SRA can be downloaded as a EURADOS report from the EURADOS website (www.eurados.org). PMID:25752758

  15. Age-related changes in core body temperature and activity in triple-transgenic Alzheimer's disease (3xTgAD) mice.

    PubMed

    Knight, Elysse M; Brown, Timothy M; Gümüsgöz, Sarah; Smith, Jennifer C M; Waters, Elizabeth J; Allan, Stuart M; Lawrence, Catherine B

    2013-01-01

    Alzheimer's disease (AD) is characterised, not only by cognitive deficits and neuropathological changes, but also by several non-cognitive behavioural symptoms that can lead to a poorer quality of life. Circadian disturbances in core body temperature and physical activity are reported in AD patients, although the cause and consequences of these changes are unknown. We therefore characterised circadian patterns of body temperature and activity in male triple transgenic AD mice (3xTgAD) and non-transgenic (Non-Tg) control mice by remote radiotelemetry. At 4 months of age, daily temperature rhythms were phase advanced and by 6 months of age an increase in mean core body temperature and amplitude of temperature rhythms were observed in 3xTgAD mice. No differences in daily activity rhythms were seen in 4- to 9-month-old 3xTgAD mice, but by 10 months of age an increase in mean daily activity and the amplitude of activity profiles for 3xTgAD mice were detected. At all ages (4-10 months), 3xTgAD mice exhibited greater food intake compared with Non-Tg mice. The changes in temperature did not appear to be solely due to increased food intake and were not cyclooxygenase dependent because the temperature rise was not abolished by chronic ibuprofen treatment. No β-amyloid (Aβ) plaques or neurofibrillary tangles were noted in the hypothalamus of 3xTgAD mice, a key area involved in temperature regulation, although these pathological features were observed in the hippocampus and amygdala of 3xTgAD mice from 10 months of age. These data demonstrate age-dependent changes in core body temperature and activity in 3xTgAD mice that are present before significant AD-related neuropathology and are analogous to those observed in AD patients. The 3xTgAD mouse might therefore be an appropriate model for studying the underlying mechanisms involved in non-cognitive behavioural changes in AD.

  16. Ion-kill dosimetry

    NASA Technical Reports Server (NTRS)

    Katz, R.; Cucinotta, F. A.; Fromm, M.; Chambaudet, A.

    2001-01-01

    Unanticipated late effects in neutron and heavy ion therapy, not attributable to overdose, imply a qualitative difference between low and high LET therapy. We identify that difference as 'ion kill', associated with the spectrum of z/beta in the radiation field, whose measurement we label 'ion-kill dosimetry'.

  17. SU-F-T-475: An Evaluation of the Overlap Between the Acceptance Testing and Commissioning Processes for Conventional Medical Linear Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrow, A; Rangaraj, D; Perez-Andujar, A

    2016-06-15

    Purpose: This work’s objective is to determine the overlap of processes, in terms of sub-processes and time, between acceptance testing and commissioning of a conventional medical linear accelerator and to evaluate the time saved by consolidating the two processes. Method: A process map for acceptance testing for medical linear accelerators was created from vendor documentation (Varian and Elekta). Using AAPM TG-106 and inhouse commissioning procedures, a process map was created for commissioning of said accelerators. The time to complete each sub-process in each process map was evaluated. Redundancies in the processes were found and the time spent on each weremore » calculated. Results: Mechanical testing significantly overlaps between the two processes - redundant work here amounts to 9.5 hours. Many beam non-scanning dosimetry tests overlap resulting in another 6 hours of overlap. Beam scanning overlaps somewhat - acceptance tests include evaluating PDDs and multiple profiles but for only one field size while commissioning beam scanning includes multiple field sizes and depths of profiles. This overlap results in another 6 hours of rework. Absolute dosimetry, field outputs, and end to end tests are not done at all in acceptance testing. Finally, all imaging tests done in acceptance are repeated in commissioning, resulting in about 8 hours of rework. The total time overlap between the two processes is about 30 hours. Conclusion: The process mapping done in this study shows that there are no tests done in acceptance testing that are not also recommended to do for commissioning. This results in about 30 hours of redundant work when preparing a conventional linear accelerator for clinical use. Considering these findings in the context of the 5000 linacs in the United states, consolidating acceptance testing and commissioning would have allowed for the treatment of an additional 25000 patients using no additional resources.« less

  18. Personnel neutron dosimetry using electrochemically etched CR-39 foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hankins, D.E.; Homann, S.; Westermark, J.

    1986-09-17

    A personnel neutron dosimetry system has been developed based on the electrochemical etching of CR-39 plastic at elevated temperatures. The doses obtained using this dosimeter system are more accurate than those obtained using other dosimetry systems, especially when varied neutron spectra are encountered. This Cr-39 dosimetry system does not have the severe energy dependence that exists with albedo neutron dosimeters or the fading and reading problems encountered with NTA film. The dosimetry system employs an electrochemical etch procedure that be used to process large numbers of Cr-39 dosimeters. The etch procedure is suitable for operations where the number of personnelmore » requires that many CR-39 dosimeters be processed. Experience shows that one full-time technician can etch and evaluate 2000 foils per month. The energy response to neutrons is fairly flat from about 80 keV to 3.5 MeV, but drops by about a factor of three in the 13 to 16 MeV range. The sensitivity of the dosimetry system is about 7 tracks/cm/sup 2//mrem, with a background equivalent to about 8 mrem for new CR-39 foils. The limit of sensitivity is approximately 10 mrem. The dosimeter has a significant variation in directional dependence, dropping to about 20% at 90/sup 0/. This dosimeter has been used for personnel neutron dosimetry at the Lawrence Livermore National Laboratory for more tha 18 months. 6 refs., 23 figs., 2 tabs.« less

  19. Technical considerations for implementation of x-ray CT polymer gel dosimetry.

    PubMed

    Hilts, M; Jirasek, A; Duzenli, C

    2005-04-21

    Gel dosimetry is the most promising 3D dosimetry technique in current radiation therapy practice. X-ray CT has been shown to be a feasible method of reading out polymer gel dosimeters and, with the high accessibility of CT scanners to cancer hospitals, presents an exciting possibility for clinical implementation of gel dosimetry. In this study we report on technical considerations for implementation of x-ray CT polymer gel dosimetry. Specifically phantom design, CT imaging methods, imaging time requirements and gel dose response are investigated. Where possible, recommendations are made for optimizing parameters to enhance system performance. The dose resolution achievable with an optimized system is calculated given voxel size and imaging time constraints. Results are compared with MRI and optical CT polymer gel dosimetry results available in the literature.

  20. In vivo determination of triglyceride (TG) secretion in rats fed different dietary saturated fats using (2- sup 3 H)-glycerol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, H.C.; Yang, H.; Lasekan, J.

    1990-02-26

    Male, Sprague-Dawley rats (154{plus minus}1 g) were fed diets containing 2% corn oil (CO) + 14% butterfat (BF), beef tallow (BT), olive oil (OO) or coconut oil (CN) vs a 16% CO control diet for 5 weeks. Changes in plasma TG specific activity (dpm/mg TG) were determined in individual unanesthetized rats after injection of 100 {mu}Ci (2-{sup 3}H)-glycerol via a carotid cannula. Fractional rate constants were obtained using a 2-compartment model and nonlinear regression analysis. Results demonstrated no difference in the fractional rate constants among dietary groups; but, differences in the rates of hepatic TG secretion were noted. Rats fedmore » BT showed a higher rate of hepatic TG secretion than rats fed CO. Rats fed BF, OO or CN showed somewhat higher rates of hepatic TG secretion than CO. VLDL TG, phospholipid, and apolipoprotein B and E levels were higher with saturated fats vs CO. The data suggest that the higher plasma TG levels noted in response to feeding saturated fats vs corn oil can be explained, in part, by an increased flux of hepatic TG secretion.« less

  1. Thermo and mechanoluminescence of Dy3+ activated K2Mg2(SO4)3 phosphor

    NASA Astrophysics Data System (ADS)

    Panigrahi, A. K.; Dhoble, S. J.; Kher, R. S.; Moharil, S. V.

    2003-08-01

    A solid state diffusion method for the preparation of (K2 : Dy)Mg2(SO4)3 and (K2 : Dy,P)Mg2(SO4)3 phosphors is reported. Thermoluminescence (TL) and mechanoluminescence (ML) characteristics are studied. TL, shown by the (K2 : Dy,P)Mg2(SO4)3 phosphor is 60% as intense as the conventional CaSO4 : Dy phosphor used in the TLD of ionization radiation. It has a linear TL dose response and a negligible fading. These properties of (K2 : Dy,P)Mg2(SO4)3 should be suitable in dosimetry of ionization radiation using TL technique. ML of (K2 : Dy)Mg2(SO4)3 shows one peak which has been observed in ML intensity versus time curve. The ML peak shows the recombination of electrons with free radicals (anion radicals produced by γ-irradiation) released from traps during the mechanical pressure applied on the Dy activated K2Mg2(SO4)3 phosphor. This ML mechanism is proposed for γ-irradiated sulfate based phosphors. It has been found that the total light output, i.e. ML intensity, increases with concentration of dopant, strain rate and irradiation dose of the phosphor. Mechanoluminescence and ML emission spectra of (K2 : Dy)Mg2(SO4)3 were recorded for better understanding of the ML process. The TL and ML measurements have also been performed to elucidate the mechanism of ML. Some correlation between ML and TL has also been found.

  2. FXIIIA and TGF-beta over-expression produces normal musculo-skeletal phenotype in TG2-/- mice.

    PubMed

    Tarantino, U; Oliva, F; Taurisano, G; Orlandi, A; Pietroni, V; Candi, E; Melino, G; Maffulli, N

    2009-04-01

    Transglutaminase (TGs) enzymes and proteins crosslinking have for long time been implicated in the formation of hard tissue development, matrix maturation and mineralization. Among the TGs family members, in the context of connective tissue formation, TG2 and Factor XIII are expressed in cartilage by hypertrophic chondrocytes. Here, we analyse the morphological consequences of TG2 deficiency, during the development of skeletal elements. When TG2 is absent, there are not gross abnormalities in the development of the skeletal system, probably from compensatory mechanisms resulting in increased expression of FXIIIA and TGF-beta 1. In vivo other TGs may be involved in promoting chondrocytes and osteoblast differentiation and matrix mineralisation.

  3. Recent Progress in Electromagnetic Absorption and Dosimetry in Biological Systems.

    DTIC Science & Technology

    1978-12-21

    AEROSPACE M!DICAL RESEARCH LABORATORY NAVAL AIR STATION PENSACOLA, FLORIDA 32508 L4 oj6L I SUMMARY PAGE Ti9(PROSLEM Dosimetry , as a subset of research In...absonce of sound dosimetry design, lacks credibility. This study provides a usable orientation in present and future dosimetric technology through a...leading experiment; while at other times experimental results lead the way. Progress In absorption and dosimetry Is still urderway, and higher degrees

  4. Sub-Tg process of tert-nitrobutane in o-terphenyl glassy matrix

    NASA Astrophysics Data System (ADS)

    Chandra, Girish

    2017-05-01

    Dielectric spectroscopy (20 Hz - 2 MHz) and Differential Scanning Calorimetry measurement have been done of the o-terphenyl (OTP) - tert-nitrobutane (TNB), Xw=0.15 binary system, down to liquid nitrogen temperature. During measurement a clear dispersion of one primary α- process and two secondary β- (or sub-Tg) processes (β1 & β2) are observed. The β1- process is due to solvent OTP molecules whereas the β2- process is due to solute TNB molecules. Spectral behavior of α- process follows the Havariliak-Negami equation. The Sub-Tg processes are symmetric in nature and follow the Cole-Cole equation. The activation energy of the β2-process is found to be 11.3 kJ/mole.

  5. Czech results at criticality dosimetry intercomparison 2002.

    PubMed

    Frantisek, Spurný; Jaroslav, Trousil

    2004-01-01

    Two criticality dosimetry systems were tested by Czech participants during the intercomparison held in Valduc, France, June 2002. The first consisted of the thermoluminescent detectors (TLDs) (Al-P glasses) and Si-diodes as passive neutron dosemeters. Second, it was studied to what extent the individual dosemeters used in the Czech routine personal dosimetry service can give a reliable estimation of criticality accident exposure. It was found that the first system furnishes quite reliable estimation of accidental doses. For routine individual dosimetry system, no important problems were encountered in the case of photon dosemeters (TLDs, film badge). For etched track detectors in contact with the 232Th or 235U-Al alloy, the track density saturation for the spark counting method limits the upper dose at approximately 1 Gy for neutrons with the energy >1 MeV.

  6. Optically stimulated luminescence (OSL) dosimetry in medicine.

    PubMed

    Yukihara, E G; McKeever, S W S

    2008-10-21

    This paper reviews fundamental and practical aspects of optically stimulated luminescence (OSL) dosimetry pertaining to applications in medicine, having particularly in mind new researchers and medical physicists interested in gaining familiarity with the field. A basic phenomenological model for OSL is presented and the key processes affecting the outcome of an OSL measurement are discussed. Practical aspects discussed include stimulation modalities (continuous-wave OSL, pulsed OSL and linear modulation OSL), basic experimental setup, available OSL readers, optical fiber systems and basic properties of available OSL dosimeters. Finally, results from the recent literature on applications of OSL in radiotherapy, radiodiagnostics and heavy charged particle dosimetry are discussed in light of the theoretical and practical framework presented in this review. Open questions and future challenges in OSL dosimetry are highlighted as a guide to the research needed to further advance the field.

  7. Relationship between student selection criteria and learner success for medical dosimetry students

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Jamie, E-mail: jabaker@mdanderson.org; Tucker, Debra; Raynes, Edilberto

    Medical dosimetry education occupies a specialized branch of allied health higher education. Noted international shortages of health care workers, reduced university funding, limitations on faculty staffing, trends in learner attrition, and increased enrollment of nontraditional students force medical dosimetry educational leadership to reevaluate current admission practices. Program officials wish to select medical dosimetry students with the best chances of successful graduation. The purpose of the quantitative ex post facto correlation study was to investigate the relationship between applicant characteristics (cumulative undergraduate grade point average (GPA), science grade point average (SGPA), prior experience as a radiation therapist, and previous academic degrees)more » and the successful completion of a medical dosimetry program, as measured by graduation. A key finding from the quantitative study was the statistically significant positive correlation between a student's previous degree and his or her successful graduation from the medical dosimetry program. Future research investigations could include a larger research sample, representative of more medical dosimetry student populations, and additional studies concerning the relationship of previous work as a radiation therapist and the effect on success as a medical dosimetry student. Based on the quantitative correlation analysis, medical dosimetry leadership on admissions committees could revise student selection rubrics to place less emphasis on an applicant's undergraduate cumulative GPA and increase the weight assigned to previous degrees.« less

  8. Evaluation of dose from kV cone-beam computed tomography during radiotherapy: a comparison of methodologies

    NASA Astrophysics Data System (ADS)

    Buckley, J.; Wilkinson, D.; Malaroda, A.; Metcalfe, P.

    2017-01-01

    Three alternative methodologies to the Computed-Tomography Dose Index for the evaluation of Cone-Beam Computed Tomography dose are compared, the Cone-Beam Dose Index, IAEA Human Health Report No. 5 recommended methodology and the AAPM Task Group 111 recommended methodology. The protocols were evaluated for Pelvis and Thorax scan modes on Varian® On-Board Imager and Truebeam kV XI imaging systems. The weighted planar average dose was highest for the AAPM methodology across all scans, with the CBDI being the second highest overall. A 17.96% and 1.14% decrease from the TG-111 protocol to the IAEA and CBDI protocols for the Pelvis mode and 18.15% and 13.10% decrease for the Thorax mode were observed for the XI system. For the OBI system, the variation was 16.46% and 7.14% for Pelvis mode and 15.93% to the CBDI protocol in Thorax mode respectively.

  9. DRDC Ottawa Participation in the SILENE Accident Dosimetry Intercomparison Exercise. June 10-21, 2002

    DTIC Science & Technology

    2002-11-01

    of CaF2:Mn and A120 3 TLDs for gamma-ray dosimetry ). In addition, DRDC Ottawa has recently substantially expanded its efforts in radiation dosimetry ...use of any real- time electronic dosimeter. Foils have long been proposed and used for criticality dosimetry (as well as for general monitoring of...ray Dosimetry DRDC Ottawa offers a number (over five) of various thermoluminescence dosimetry ( TLD ) systems. The choice of any particular TLD depends

  10. Student Perceptions of an Online Medical Dosimetry Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenards, Nishele, E-mail: lenards.nish@uwlax.ed

    2011-07-01

    The University of Wisconsin-La Crosse offers the first online medical dosimetry program in the nation. There is no data to research a program of this type. This research consisted of the evaluation of other distance education programs including health profession programs in addition to face-to-face medical dosimetry programs. There was a need to collect and analyze student perceptions of online learning in medical dosimetry. This research provided a guide for future implementation by other programs as well as validated the University of Wisconsin-La Crosse program. Methodology used consisted of an electronic survey sent to all previous and currently enrolled studentsmore » in the University of Wisconsin-La Crosse medical dosimetry program. The survey was both quantitative and qualitative in demonstrating attitudinal perceptions of students in the program. Quantitative data was collected and analyzed using a 5-point Likert scale. Qualitative data was gathered based on the open-ended responses and the identifying themes from the responses. The results demonstrated an overall satisfaction with this program, the instructor, and the online courses. Students felt a sense of belonging to the courses and the program. Considering that a majority of the students had never taken an online course previously, the students felt there were no technology issues. Future research should include an evaluation of board exam statistics for students enrolled in the online and face-to-face medical dosimetry programs.« less

  11. TG wave autoresonant control of plasma temperature

    NASA Astrophysics Data System (ADS)

    Kabantsev, A. A.; Driscoll, C. F.

    2015-06-01

    The thermal correction term in the Trivelpiece-Gould (TG) wave's frequency has been used to accurately control the temperature of electron plasma, by applying a swept-frequency continuous drive autoresonantly locked in balance with the cyclotron cooling. The electron temperature can be either "pegged" at a desired value (by constant drive frequency); or varied cyclically (following the tailored frequency course), with rates limited by the cooling time (on the way down) and by chosen drive amplitude (on the way up).

  12. EURADOS strategic research agenda: vision for dosimetry of ionising radiation.

    PubMed

    Rühm, W; Fantuzzi, E; Harrison, R; Schuhmacher, H; Vanhavere, F; Alves, J; Bottollier Depois, J F; Fattibene, P; Knežević, Ž; Lopez, M A; Mayer, S; Miljanić, S; Neumaier, S; Olko, P; Stadtmann, H; Tanner, R; Woda, C

    2016-02-01

    Since autumn 2012, the European Radiation Dosimetry Group (EURADOS) has been developing its Strategic Research Agenda (SRA), which is intended to contribute to the identification of future research needs in radiation dosimetry in Europe. The present article summarises-based on input from EURADOS Working Groups (WGs) and Voting Members-five visions in dosimetry and defines key issues in dosimetry research that are considered important for the next decades. The five visions include scientific developments required towards (a) updated fundamental dose concepts and quantities, (b) improved radiation risk estimates deduced from epidemiological cohorts, (c) efficient dose assessment for radiological emergencies, (d) integrated personalised dosimetry in medical applications and (e) improved radiation protection of workers and the public. The SRA of EURADOS will be used as a guideline for future activities of the EURADOS WGs. A detailed version of the SRA can be downloaded as a EURADOS report from the EURADOS website (www.eurados.org). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Generalized ghost pilgrim dark energy in F(T,TG) cosmology

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Nazir, Kanwal

    2016-07-01

    This paper is devoted to study the generalized ghost pilgrim dark energy (PDE) model in F(T,TG) gravity with flat Friedmann-Robertson-Walker (FRW) universe. In this scenario, we reconstruct F(T,TG) models and evaluate the corresponding equation of state (EoS) parameter for different choices of the scale factors. We assume power-law scale factor, scale factor for unification of two phases, intermediate and bouncing scale factor. We study the behavior of reconstructed models and EoS parameters graphically. It is found that all the reconstructed models show decreasing behavior for PDE parameter u = -2. On the other hand, the EoS parameter indicates transition from dust-like matter to phantom era for all choices of the scale factor except intermediate for which this is less than - 1. We conclude that all the results are in agreement with PDE phenomenon.

  14. MO-B-BRB-03: 3D Dosimetry in the Clinic: Validating Special Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juang, T.

    Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data

  15. MO-B-BRB-01: 3D Dosimetry in the Clinic: Background and Motivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiner, L.

    Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data

  16. INTEGRATED OPERATIONAL DOSIMETRY SYSTEM AT CERN.

    PubMed

    Dumont, Gérald; Pedrosa, Fernando Baltasar Dos Santos; Carbonez, Pierre; Forkel-Wirth, Doris; Ninin, Pierre; Fuentes, Eloy Reguero; Roesler, Stefan; Vollaire, Joachim

    2017-04-01

    CERN, the European Organization for Nuclear Research, upgraded its operational dosimetry system in March 2013 to be prepared for the first Long Shutdown of CERN's facilities. The new system allows the immediate and automatic checking and recording of the dosimetry data before and after interventions in radiation areas. To facilitate the analysis of the data in context of CERN's approach to As Low As Reasonably Achievable (ALARA), this new system is interfaced to the Intervention Management Planning and Coordination Tool (IMPACT). IMPACT is a web-based application widely used in all CERN's accelerators and their associated technical infrastructures for the planning, the coordination and the approval of interventions (work permit principle). The coupling of the operational dosimetry database with the IMPACT repository allows a direct and almost immediate comparison of the actual dose with the estimations, in addition to enabling the configuration of alarm levels in the dosemeter in function of the intervention to be performed. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. The conserved apicomplexan Aurora kinase TgArk3 is involved in endodyogeny, duplication rate and parasite virulence

    PubMed Central

    Morlon-Guyot, Juliette; Bordat, Yann; Lebrun, Maryse; Gubbels, Marc-Jan; Doerig, Christian; Daher, Wassim

    2016-01-01

    Aurora kinases are eukaryotic serine/threonine protein kinases that regulate key events associated with chromatin condensation, centrosome and spindle function, and cytokinesis. Elucidating the roles of Aurora kinases in apicomplexan parasites is crucial to understand the cell cycle control during Plasmodium schizogony or Toxoplasma endodyogeny. Here, we report on the localization of two previously uncharacterized Toxoplasma Aurora-related kinases (Ark2 and Ark3) in tachyzoites and of the uncharacterized Ark3 orthologue in Plasmodium falciparum erythrocytic stages. In T. gondii, we show that TgArk2 and TgArk3 concentrate at specific sub-cellular structures linked to parasite division: the mitotic spindle and intranuclear mitotic structures (TgArk2), and the outer core of the centrosome and the budding daughter cells cytoskeleton (TgArk3). By tagging the endogenous PfArk3 gene with the green fluorescent protein (GFP) in live parasites, we show that PfArk3 protein expression peaks late in schizogony and localizes at the periphery of budding schizonts. Disruption of the TgArk2 gene reveals no essential function for tachyzoite propagation in vitro, which is surprising giving that the P. falciparum and P. berghei orthologues are essential for erythrocyte schizogony. In contrast, knock-down of TgArk3 protein results in pronounced defects in parasite division and a major growth deficiency. TgArk3-depleted parasites display several defects, such as reduced parasite growth rate, delayed egress and parasite duplication, defect in rosette formation, reduced parasite size and invasion efficiency and lack of virulence in mice. Our study provides new insights into cell cycle control in Toxoplasma and malaria parasites, and highlights Aurora kinase 3 as potential drug target. PMID:26833682

  18. Multichannel film dosimetry with nonuniformity correction.

    PubMed

    Micke, Andre; Lewis, David F; Yu, Xiang

    2011-05-01

    A new method to evaluate radiochromic film dosimetry data scanned in multiple color channels is presented. This work was undertaken to demonstrate that the multichannel method is fundamentally superior to the traditional single channel method. The multichannel method allows for the separation and removal of the nondose-dependent portions of a film image leaving a residual image that is dependent only on absorbed dose. Radiochromic films were exposed to 10 x 10 cm radiation fields (Co-60 and 6 MV) at doses up to about 300 cGy. The films were scanned in red-blue-green (RGB) format on a flatbed color scanner and measured to build calibration tables relating the absorbed dose to the response of the film in each of the color channels. Film images were converted to dose maps using two methods. The first method used the response from a single color channel and the second method used the response from all three color channels. The multichannel method allows for the separation of the scanned signal into one part that is dose-dependent and another part that is dose-independent and enables the correction of a variety of disturbances in the digitized image including nonuniformities in the active coating on the radiochromic film as well as scanner related artifacts. The fundamental mathematics of the two methods is described and the dose maps calculated from film images using the two methods are compared and analyzed. The multichannel dosimetry method was shown to be an effective way to separate out non-dose-dependent abnormalities from radiochromic dosimetry film images. The process was shown to remove disturbances in the scanned images caused by nonhomogeneity of the radiochromic film and artifacts caused by the scanner and to improve the integrity of the dose information. Multichannel dosimetry also reduces random noise in the dose images and mitigates scanner-related artifacts such as lateral position dependence. In providing an ability to calculate dose maps from data in

  19. 43 CFR 43.655 - Individual.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Individual. 43.655 Section 43.655 Public Lands: Interior Office of the Secretary of the Interior GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 43.655 Individual. Individual means a natural person. ...

  20. 43 CFR 43.615 - Conviction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Conviction. 43.615 Section 43.615 Public Lands: Interior Office of the Secretary of the Interior GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 43.615 Conviction. Conviction means a finding of guilt...

  1. Entorhinal cortical defects in Tg2576 mice are present as early as 2–4 months of age

    PubMed Central

    Duffy, Áine M.; Morales-Corraliza, Jose; Bermudez-Hernandez, Keria M.; Schaner, Michael J.; Magagna-Poveda, Alejandra; Mathews, Paul M.; Scharfman, Helen E.

    2014-01-01

    The entorhinal cortex (EC) is one of the first brain areas to display neuropathology in Alzheimer’s disease (AD). A mouse model which simulates amyloid-β (Aβ) neuropathology, the Tg2576 mouse, was used to address these early changes. Here we show EC abnormalities occur in 2–4 month-old Tg2576 mice, an age prior to β-amyloid deposition and where previous studies suggest that there are few behavioral impairments. First we show, using sandwich ELISA, that soluble human Aβ40 and Aβ42 are detectable in the EC of 2-month-old Tg2576 mice prior to β-amyloid deposition. We then demonstrate that 2–4 month-old Tg2576 mice are impaired at object placement, an EC-dependent cognitive task. Next we show that defects in NeuN expression and myelin uptake occur in the superficial layers of the EC in 2–4-month-old Tg2576 mice. In slices from Tg2576 mice that contained the EC, there were repetitive field potentials evoked by a single stimulus to the underlying white matter, and a greater response to reduced extracellular magnesium ([Mg2+]o), suggesting increased excitability. However, deep layer neurons in Tg2576 mice had longer latencies to antidromic activation than wild type mice. The results show changes in the EC at early ages, and suggest that altered excitability occurs before extensive plaque pathology. PMID:25109765

  2. SU-F-T-46: The Effect of Inter-Seed Attenuation and Tissue Composition in Prostate 125I Brachytherapy Dose Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamura, K; Araki, F; Ohno, T

    Purpose: To investigate the difference of dose distributions with/without the effect of inter-seed attenuation and tissue compositions in prostate {sup 125}I brachytherapy dose calculations, using Monte Carlo simulations of Particle and Heavy Ion Transport code System (PHITS). Methods: The dose distributions in {sup 125}I prostate brachytherapy were calculated using PHITS for non-simultaneous and simultaneous alignments of STM1251 sources in water or prostate phantom for six patients. The PHITS input file was created from DICOM-RT file which includes source coordinates and structures for clinical target volume (CTV) and organs at risk (OARs) of urethra and rectum, using in-house Matlab software. Photonmore » and electron cutoff energies were set to 1 keV and 100 MeV, respectively. The dose distributions were calculated with the kerma approximation and the voxel size of 1 × 1 × 1 mm{sup 3}. The number of incident photon was set to be the statistical uncertainty (1σ) of less than 1%. The effect of inter-seed attenuation and prostate tissue compositions was evaluated from dose volume histograms (DVHs) for each structure, by comparing to results of the AAPM TG-43 dose calculation (without the effect of inter-seed attenuation and prostate tissue compositions). Results: The dose reduction due to the inter-seed attenuation by source capsules was approximately 2% for CTV and OARs compared to those of TG-43. In additions, by considering prostate tissue composition, the D{sub 90} and V{sub 100} of CTV reduced by 6% and 1%, respectively. Conclusion: It needs to consider the dose reduction due to the inter-seed attenuation and tissue composition in prostate {sup 125}I brachytherapy dose calculations.« less

  3. Age-related changes in core body temperature and activity in triple-transgenic Alzheimer’s disease (3xTgAD) mice

    PubMed Central

    Knight, Elysse M.; Brown, Timothy M.; Gümüsgöz, Sarah; Smith, Jennifer C. M.; Waters, Elizabeth J.; Allan, Stuart M.; Lawrence, Catherine B.

    2013-01-01

    SUMMARY Alzheimer’s disease (AD) is characterised, not only by cognitive deficits and neuropathological changes, but also by several non-cognitive behavioural symptoms that can lead to a poorer quality of life. Circadian disturbances in core body temperature and physical activity are reported in AD patients, although the cause and consequences of these changes are unknown. We therefore characterised circadian patterns of body temperature and activity in male triple transgenic AD mice (3xTgAD) and non-transgenic (Non-Tg) control mice by remote radiotelemetry. At 4 months of age, daily temperature rhythms were phase advanced and by 6 months of age an increase in mean core body temperature and amplitude of temperature rhythms were observed in 3xTgAD mice. No differences in daily activity rhythms were seen in 4- to 9-month-old 3xTgAD mice, but by 10 months of age an increase in mean daily activity and the amplitude of activity profiles for 3xTgAD mice were detected. At all ages (4–10 months), 3xTgAD mice exhibited greater food intake compared with Non-Tg mice. The changes in temperature did not appear to be solely due to increased food intake and were not cyclooxygenase dependent because the temperature rise was not abolished by chronic ibuprofen treatment. No β-amyloid (Aβ) plaques or neurofibrillary tangles were noted in the hypothalamus of 3xTgAD mice, a key area involved in temperature regulation, although these pathological features were observed in the hippocampus and amygdala of 3xTgAD mice from 10 months of age. These data demonstrate age-dependent changes in core body temperature and activity in 3xTgAD mice that are present before significant AD-related neuropathology and are analogous to those observed in AD patients. The 3xTgAD mouse might therefore be an appropriate model for studying the underlying mechanisms involved in non-cognitive behavioural changes in AD. PMID:22864021

  4. TU-AB-201-11: A Novel Theoretical Framework for MRI-Only Image Guided LDR Prostate and Breast Brachytherapy Implant Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soliman, A; Elzibak, A; Fatemi, A

    Purpose: To propose a novel framework for accurate model-based dose calculations using only MR images for LDR prostate and breast seed implant brachytherapy. Methods: Model-based dose calculation methodologies recommended by TG-186 require further knowledge about specific tissue composition, which is challenging with MRI. However, relying on MRI-only for implant dosimetry would reduce the soft tissue delineation uncertainty, costs, and uncertainties associated with multi-modality registration and fusion processes. We propose a novel framework to address this problem using quantitative MRI acquisitions and reconstruction techniques. The framework includes three steps: (1) Identify the locations of seeds(2) Identify the presence (or absence) ofmore » calcification(s)(3) Quantify the water and fat content in the underlying tissueSteps (1) and (2) consider the sources that limit patient dosimetry, particularly the inter-seed attenuation and the calcified regions; while step (3) targets the quantification of the tissue composition to consider the heterogeneities in the medium. Our preliminary work has shown that the seeds and the calcifications can be identified with MRI using both the magnitude and the phase images. By employing susceptibility-weighted imaging with specific post-processing techniques, the phase images can be further explored to distinguish the seeds from the calcifications. Absolute quantification of tissue, water, and fat content is feasible and was previously demonstrated in phantoms and in-vivo applications, particularly for brain diseases. The approach relies on the proportionality of the MR signal to the number of protons in an image volume. By employing appropriate correction algorithms for T1 - and T2*-related biases, B1 transmit and receive field inhomogeneities, absolute water/fat content can be determined. Results: By considering calcification and interseed attenuation, and through the knowledge of water and fat mass density, accurate

  5. Radiation dosimetry for quality control of food preservation and disinfestation

    NASA Astrophysics Data System (ADS)

    McLaughlin, W. L.; Miller, A.; Uribe, R. M.

    In the use of x and gamma rays and scanned electron beams to extend the shelf life of food by delay of sprouting and ripening, killing of microbes, and control of insect population, quality assurance is provided by standardized radiation dosimetry. By strategic placement of calibrated dosimeters that are sufficiently stable and reproducible, it is possible to monitor minimum and maximum radiation absorbed dose levels and dose uniformity for a given processed foodstuff. The dosimetry procedure is especially important in the commisioning of a process and in making adjustments of process parameters (e.g. conveyor speed) to meet changes that occur in product and source parameters (e.g. bulk density and radiation spectrum). Routine dosimetry methods and certain corrections of dosimetry data may be selected for the radiations used in typical food processes.

  6. Relationship between student selection criteria and learner success for medical dosimetry students.

    PubMed

    Baker, Jamie; Tucker, Debra; Raynes, Edilberto; Aitken, Florence; Allen, Pamela

    2016-01-01

    Medical dosimetry education occupies a specialized branch of allied health higher education. Noted international shortages of health care workers, reduced university funding, limitations on faculty staffing, trends in learner attrition, and increased enrollment of nontraditional students force medical dosimetry educational leadership to reevaluate current admission practices. Program officials wish to select medical dosimetry students with the best chances of successful graduation. The purpose of the quantitative ex post facto correlation study was to investigate the relationship between applicant characteristics (cumulative undergraduate grade point average (GPA), science grade point average (SGPA), prior experience as a radiation therapist, and previous academic degrees) and the successful completion of a medical dosimetry program, as measured by graduation. A key finding from the quantitative study was the statistically significant positive correlation between a student׳s previous degree and his or her successful graduation from the medical dosimetry program. Future research investigations could include a larger research sample, representative of more medical dosimetry student populations, and additional studies concerning the relationship of previous work as a radiation therapist and the effect on success as a medical dosimetry student. Based on the quantitative correlation analysis, medical dosimetry leadership on admissions committees could revise student selection rubrics to place less emphasis on an applicant׳s undergraduate cumulative GPA and increase the weight assigned to previous degrees. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  7. Twenty new ISO standards on dosimetry for radiation processing

    NASA Astrophysics Data System (ADS)

    Farrar, H., IV

    2000-03-01

    Twenty standards on essentially all aspects of dosimetry for radiation processing were published as new ISO standards in December 1998. The standards are based on 20 standard practices and guides developed over the past 14 years by Subcommittee E10.01 of the American Society for Testing and Materials (ASTM). The transformation to ISO standards using the 'fast track' process under ISO Technical Committee 85 (ISO/TC85) commenced in 1995 and resulted in some overlap of technical information between three of the new standards and the existing ISO Standard 11137 Sterilization of health care products — Requirements for validation and routine control — Radiation sterilization. Although the technical information in these four standards was consistent, compromise wording in the scopes of the three new ISO standards to establish precedence for use were adopted. Two of the new ISO standards are specifically for food irradiation applications, but the majority apply to all forms of gamma, X-ray, and electron beam radiation processing, including dosimetry for sterilization of health care products and the radiation processing of fruit, vegetables, meats, spices, processed foods, plastics, inks, medical wastes, and paper. Most of the standards provide exact procedures for using individual dosimetry systems or for characterizing various types of irradiation facilities, but one covers the selection and calibration of dosimetry systems, and another covers the treatment of uncertainties using the new ISO Type A and Type B evaluations. Unfortunately, nine of the 20 standards just adopted by the ISO are not the most recent versions of these standards and are therefore already out of date. To help solve this problem, efforts are being made to develop procedures to coordinate the ASTM and ISO development and revision processes for these and future ASTM-originating dosimetry standards. In the meantime, an additional four dosimetry standards have recently been published by the ASTM but

  8. 43 CFR 43.640 - Employee.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Employee. 43.640 Section 43.640 Public... WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 43.640 Employee. (a) Employee means the employee of a... employees; (2) All indirect charge employees, unless their impact or involvement in the performance of work...

  9. A Novel Form of Compensation in the Tg2576 Amyloid Mouse Model of Alzheimer’s Disease

    PubMed Central

    Somogyi, Attila; Katonai, Zoltán; Alpár, Alán; Wolf, Ervin

    2016-01-01

    One century after its first description, pathology of Alzheimer’s disease (AD) is still poorly understood. Amyloid-related dendritic atrophy and membrane alterations of susceptible brain neurons in AD, and in animal models of AD are widely recognized. However, little effort has been made to study the potential effects of combined morphological and membrane alterations on signal transfer and synaptic integration in neurons that build up affected neural networks in AD. In this study spatial reconstructions and electrophysiological measurements of layer II/III pyramidal neurons of the somatosensory cortex from wild-type (WT) and transgenic (TG) human amyloid precursor protein (hAPP) overexpressing Tg2576 mice were used to build faithful segmental cable models of these neurons. Local synaptic activities were simulated in various points of the dendritic arbors and properties of subthreshold dendritic impulse propagation and predictors of synaptic input pattern recognition ability were quantified and compared in modeled WT and TG neurons. Despite the widespread dendritic degeneration and membrane alterations in mutant mouse neurons, surprisingly little, or no change was detected in steady-state and 50 Hz sinusoidal voltage transfers, current transfers, and local and propagation delays of PSPs traveling along dendrites of TG neurons. Synaptic input pattern recognition ability was also predicted to be unaltered in TG neurons in two different soma-dendritic membrane models investigated. Our simulations predict the way how subthreshold dendritic signaling and pattern recognition are preserved in TG neurons: amyloid-related membrane alterations compensate for the pathological effects that dendritic atrophy has on subthreshold dendritic signal transfer and integration in layer II/III somatosensory neurons of this hAPP mouse model for AD. Since neither propagation of single PSPs nor integration of multiple PSPs (pattern recognition) changes in TG neurons, we conclude that AD

  10. The report of Task Group 100 of the AAPM: Application of risk analysis methods to radiation therapy quality management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huq, M. Saiful, E-mail: HUQS@UPMC.EDU

    The increasing complexity of modern radiation therapy planning and delivery challenges traditional prescriptive quality management (QM) methods, such as many of those included in guidelines published by organizations such as the AAPM, ASTRO, ACR, ESTRO, and IAEA. These prescriptive guidelines have traditionally focused on monitoring all aspects of the functional performance of radiotherapy (RT) equipment by comparing parameters against tolerances set at strict but achievable values. Many errors that occur in radiation oncology are not due to failures in devices and software; rather they are failures in workflow and process. A systematic understanding of the likelihood and clinical impact ofmore » possible failures throughout a course of radiotherapy is needed to direct limit QM resources efficiently to produce maximum safety and quality of patient care. Task Group 100 of the AAPM has taken a broad view of these issues and has developed a framework for designing QM activities, based on estimates of the probability of identified failures and their clinical outcome through the RT planning and delivery process. The Task Group has chosen a specific radiotherapy process required for “intensity modulated radiation therapy (IMRT)” as a case study. The goal of this work is to apply modern risk-based analysis techniques to this complex RT process in order to demonstrate to the RT community that such techniques may help identify more effective and efficient ways to enhance the safety and quality of our treatment processes. The task group generated by consensus an example quality management program strategy for the IMRT process performed at the institution of one of the authors. This report describes the methodology and nomenclature developed, presents the process maps, FMEAs, fault trees, and QM programs developed, and makes suggestions on how this information could be used in the clinic. The development and implementation of risk-assessment techniques will make

  11. 43 CFR 43.665 - State.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false State. 43.665 Section 43.665 Public Lands... (FINANCIAL ASSISTANCE) Definitions § 43.665 State. State means any of the States of the United States, the District of Columbia, the Commonwealth of Puerto Rico, or any territory or possession of the United States. ...

  12. TU-B-19A-01: Image Registration II: TG132-Quality Assurance for Image Registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brock, K; Mutic, S

    2014-06-15

    AAPM Task Group 132 was charged with a review of the current approaches and solutions for image registration in radiotherapy and to provide recommendations for quality assurance and quality control of these clinical processes. As the results of image registration are always used as the input of another process for planning or delivery, it is important for the user to understand and document the uncertainty associate with the algorithm in general and the Result of a specific registration. The recommendations of this task group, which at the time of abstract submission are currently being reviewed by the AAPM, include themore » following components. The user should understand the basic image registration techniques and methods of visualizing image fusion. The disclosure of basic components of the image registration by commercial vendors is critical in this respect. The physicists should perform end-to-end tests of imaging, registration, and planning/treatment systems if image registration is performed on a stand-alone system. A comprehensive commissioning process should be performed and documented by the physicist prior to clinical use of the system. As documentation is important to the safe implementation of this process, a request and report system should be integrated into the clinical workflow. Finally, a patient specific QA practice should be established for efficient evaluation of image registration results. The implementation of these recommendations will be described and illustrated during this educational session. Learning Objectives: Highlight the importance of understanding the image registration techniques used in their clinic. Describe the end-to-end tests needed for stand-alone registration systems. Illustrate a comprehensive commissioning program using both phantom data and clinical images. Describe a request and report system to ensure communication and documentation. Demonstrate an clinically-efficient patient QA practice for efficient evaluation

  13. Quantitative evaluation of patient-specific quality assurance using online dosimetry system

    NASA Astrophysics Data System (ADS)

    Jung, Jae-Yong; Shin, Young-Ju; Sohn, Seung-Chang; Min, Jung-Whan; Kim, Yon-Lae; Kim, Dong-Su; Choe, Bo-Young; Suh, Tae-Suk

    2018-01-01

    In this study, we investigated the clinical performance of an online dosimetry system (Mobius FX system, MFX) by 1) dosimetric plan verification using gamma passing rates and dose volume metrics and 2) error-detection capability evaluation by deliberately introduced machine error. Eighteen volumetric modulated arc therapy (VMAT) plans were studied. To evaluate the clinical performance of the MFX, we used gamma analysis and dose volume histogram (DVH) analysis. In addition, to evaluate the error-detection capability, we used gamma analysis and DVH analysis utilizing three types of deliberately introduced errors (Type 1: gantry angle-independent multi-leaf collimator (MLC) error, Type 2: gantry angle-dependent MLC error, and Type 3: gantry angle error). A dosimetric verification comparison of physical dosimetry system (Delt4PT) and online dosimetry system (MFX), gamma passing rates of the two dosimetry systems showed very good agreement with treatment planning system (TPS) calculation. For the average dose difference between the TPS calculation and the MFX measurement, most of the dose metrics showed good agreement within a tolerance of 3%. For the error-detection comparison of Delta4PT and MFX, the gamma passing rates of the two dosimetry systems did not meet the 90% acceptance criterion with the magnitude of error exceeding 2 mm and 1.5 ◦, respectively, for error plans of Types 1, 2, and 3. For delivery with all error types, the average dose difference of PTV due to error magnitude showed good agreement between calculated TPS and measured MFX within 1%. Overall, the results of the online dosimetry system showed very good agreement with those of the physical dosimetry system. Our results suggest that a log file-based online dosimetry system is a very suitable verification tool for accurate and efficient clinical routines for patient-specific quality assurance (QA).

  14. Detection of c. -32T>G (IVS1-13T>G) mutation of Pompe disease by real-time PCR in dried blood spot specimen.

    PubMed

    Bobillo Lobato, Joaquin; Sánchez Peral, Blas A; Durán Parejo, Pilar; Jiménez Jiménez, Luis M

    2013-03-15

    Pompe disease, or acid maltase deficiency, is a genetic muscle disorder caused by mutations in the gene encoding the acid alpha-glucosidase (GAA) enzyme, which is essential for the degradation of glycogen to glucose in lysosomes. The wide clinical variability is resulted from genetic heterogeneity, and many different mutations of the GAA gene have been reported. Some of these mutations are associated with specific phenotypes, such as the c. -32T>G (IVS1-13T>G) mutation seen in late-onset Pompe disease. We used a real-time PCR, after genomic DNA extraction isolated from DBS (dried blood spots) and PCR amplification. Our results successfully detected in controls and patients have been 100% concordant with sequencing results. This assay combines simple sample processing and rapid analysis and it allows to detect the patients with a milder form and slower progression of this disease with a high reliability. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Dual inhibition of Mcl-1 by the combination of carfilzomib and TG02 in multiple myeloma.

    PubMed

    Ponder, Katelyn G; Matulis, Shannon M; Hitosugi, Sadae; Gupta, Vikas A; Sharp, Cathy; Burrows, Francis; Nooka, Ajay K; Kaufman, Jonathan L; Lonial, Sagar; Boise, Lawrence H

    2016-07-02

    Carfilzomib (Kyprolis®), a second generation proteasome inhibitor, is FDA approved for single-agent use among relapsed/refractory multiple myeloma (MM). To enhance the therapeutic efficacy of carfilzomib, we sought to combine carfilzomib with other novel agents. TG02, a multi-kinase inhibitor, targets JAK2 and CDK9. The rationale for co-treatment with carfilzomib and TG02 is that both independently target Mcl-1 and most myeloma cells are dependent on this anti-apoptotic protein for survival. We observed at least additive effects using the combination treatment in MM cell lines and patient samples. To determine how the bone marrow environment affects the efficacy of the combination we conducted co-culture experiments with Hs-5 stromal cells. We also examined the mechanism of increased apoptosis by determining the affect on expression of the Bcl-2 family of proteins. We found that carfilzomib increases NOXA mRNA expression, as expected, and TG02 treatment caused a decrease in Mcl-1 protein but not mRNA levels. Consistent with this possibility, we find silencing CDK9 does not change carfilzomib sensitivity in the same manner as addition of TG02. Since changes in Mcl-1 protein occur in the presence of a proteasome inhibitor we hypothesize that regulation of Mcl-1 translation is the most likely mechanism. Taken together our data suggest that dual inhibition of Mcl-1 via decreased expression and the induction of its antagonist NOXA by the combination of carfilzomib and TG02 is active in myeloma and warrants further testing preclinically and in clinical trials. Moreover, regulation of Mcl-1 by TG02 is more complex than initially appreciated.

  16. Evaluation of Dosimetry Check software for IMRT patient-specific quality assurance.

    PubMed

    Narayanasamy, Ganesh; Zalman, Travis; Ha, Chul S; Papanikolaou, Niko; Stathakis, Sotirios

    2015-05-08

    The purpose of this study is to evaluate the use of the Dosimetry Check system for patient-specific IMRT QA. Typical QA methods measure the dose in an array dosimeter surrounded by homogenous medium for which the treatment plan has been recomputed. With the Dosimetry Check system, fluence measurements acquired on a portal dosimeter is applied to the patient's CT scans. Instead of making dose comparisons in a plane, Dosimetry Check system produces isodose lines and dose-volume histograms based on the planning CT images. By exporting the dose distribution from the treatment planning system into the Dosimetry Check system, one is able to make a direct comparison between the calculated dose and the planned dose. The versatility of the software is evaluated with respect to the two IMRT techniques - step and shoot and volumetric arc therapy. The system analyzed measurements made using EPID, PTW seven29, and IBA MatriXX, and an intercomparison study was performed. Plans from patients previously treated at our institution with treated anatomical site on brain, head & neck, liver, lung, and prostate were analyzed using Dosimetry Check system for any anatomical site dependence. We have recommendations and possible precautions that may be necessary to ensure proper QA with the Dosimetry Check system.

  17. SU-F-J-100: Standardized Biodistribution Template for Nuclear Medicine Dosimetry Collection and Reporting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesner, A; Poli, G; Beykan, S

    Purpose: As the field of Nuclear Medicine moves forward with efforts to integrate radiation dosimetry into clinical practice we can identify the challenge posed by the lack of standardized dose calculation methods and protocols. All personalized internal dosimetry is derived by projecting biodistribution measurements into dosimetry calculations. In an effort to standardize organization of data and its reporting, we have developed, as a sequel to the EANM recommendation of “Good Dosimetry Reporting”, a freely available biodistribution template, which can be used to create a common point of reference for dosimetry data. It can be disseminated, interpreted, and used for methodmore » development widely across the field. Methods: A generalized biodistribution template was built in a comma delineated format (.csv) to be completed by users performing biodistribution measurements. The template is available for free download. The download site includes instructions and other usage details on the template. Results: This is a new resource developed for the community. It is our hope that users will consider integrating it into their dosimetry operations. Having biodistribution data available and easily accessible for all patients processed is a strategy for organizing large amounts of information. It may enable users to create their own databases that can be analyzed for multiple aspects of dosimetry operations. Furthermore, it enables population data to easily be reprocessed using different dosimetry methodologies. With respect to dosimetry-related research and publications, the biodistribution template can be included as supplementary material, and will allow others in the community to better compare calculations and results achieved. Conclusion: As dosimetry in nuclear medicine become more routinely applied in clinical applications, we, as a field, need to develop the infrastructure for handling large amounts of data. Our organ level biodistribution template can be

  18. Implicit dosimetry of microorganism photodynamic inactivation

    NASA Astrophysics Data System (ADS)

    Tamošiūnas, Mindaugas; Kuliešienė, Neringa; Daugelavičius, Rimantas

    2017-12-01

    Photosensitization based antibacterial treatment is efficient against a broad range of pathogens but it utilizes suboptimal dosimetry with an explicit (and very broad range) determination of sensitizer concentration, light dose and fluence rates. In this study we verified the implicit dosimetry approach for pathogen photodynamic treatment, employing protoporphyrin IX (ppIX) photobleaching to assess the killing efficacy against Staphylococcus aureus and Candida albicans cells. The results show that there was an increased kill of S. aureus and C. albicans at higher degree of ppIX fluorescence decay. Therefore ppIX photobleaching can be incorporated into the PDI dose metric offering to predict the pathogen killing efficacy during photodynamic treatment.

  19. Revision of the dosimetric parameters of the CSM11 LDR Cs-137 source.

    PubMed

    Otal, Antonio; Martínez-Fernández, Juan Manuel; Granero, Domingo

    2011-03-01

    The clinical use of brachytherapy sources requires the existence of dosimetric data with enough of quality for the proper application of treatments in clinical practice. It has been found that the published data for the low dose rate CSM11 Cs-137 source lacks of smoothness in some regions because the data are too noisy. The purpose of this study was to calculate the dosimetric data for this source in order to provide quality dosimetric improvement of the existing dosimetric data of Ballester et al . [1]. In order to obtain the dose rate distributions Monte Carlo simulations were done using the GEANT4 code. A spherical phantom 40 cm in radius with the Cs-137 source located at the centre of the phantom was used. The results from Monte Carlo simulations were applied to derive AAPM Task Group 43 dosimetric parameters: anisotropy function, radial dose function, air kerma strength and dose rate constant. The dose rate constant obtained was 1.094 ± 0.002 cGy h -1 U -1 . The new calculated data agrees within experimental uncertainties with the existing data of Ballester et al . but without the statistical noise of that study. The obtained data presently fulfills all the requirements of the TG-43U1 update and thus it can be used in clinical practice.

  20. Fragile-to-fragile liquid transition at Tg and stable-glass phase nucleation rate maximum at the Kauzmann temperature TK

    NASA Astrophysics Data System (ADS)

    Tournier, Robert F.

    2014-12-01

    An undercooled liquid is unstable. The driving force of the glass transition at Tg is a change of the undercooled-liquid Gibbs free energy. The classical Gibbs free energy change for a crystal formation is completed including an enthalpy saving. The crystal growth critical nucleus is used as a probe to observe the Laplace pressure change Δp accompanying the enthalpy change -Vm×Δp at Tg where Vm is the molar volume. A stable glass-liquid transition model predicts the specific heat jump of fragile liquids at T≤Tg, the Kauzmann temperature TK where the liquid entropy excess with regard to crystal goes to zero, the equilibrium enthalpy between TK and Tg, the maximum nucleation rate at TK of superclusters containing magic atom numbers, and the equilibrium latent heats at Tg and TK. Strong-to-fragile and strong-to-strong liquid transitions at Tg are also described and all their thermodynamic parameters are determined from their specific heat jumps. The existence of fragile liquids quenched in the amorphous state, which do not undergo liquid-liquid transition during heating preceding their crystallization, is predicted. Long ageing times leading to the formation at TK of a stable glass composed of superclusters containing up to 147 atom, touching and interpenetrating, are evaluated from nucleation rates. A fragile-to-fragile liquid transition occurs at Tg without stable-glass formation while a strong glass is stable after transition.

  1. TgTKL1 Is a Unique Plant-Like Nuclear Kinase That Plays an Essential Role in Acute Toxoplasmosis

    PubMed Central

    Varberg, Joseph M.; Coppens, Isabelle; Arrizabalaga, Gustavo

    2018-01-01

    ABSTRACT In the protozoan parasite Toxoplasma gondii, protein kinases have been shown to play key roles in regulating parasite motility, invasion, replication, egress, and survival within the host. The tyrosine kinase-like (TKL) family of proteins are an unexplored set of kinases in Toxoplasma. Of the eight annotated TKLs in the Toxoplasma genome, a recent genome-wide loss-of-function screen showed that six are important for tachyzoite fitness. By utilizing an endogenous tagging approach, we showed that these six T. gondii TKLs (TgTKLs) localize to various subcellular compartments, including the nucleus, the cytosol, the inner membrane complex, and the Golgi apparatus. To gain insight into the function of TKLs in Toxoplasma, we first characterized TgTKL1, which contains the plant-like enhanced disease resistance 1 (EDR1) domain and localizes to the nucleus. TgTKL1 knockout parasites displayed significant defects in progression through the lytic cycle; we show that the defects were due to specific impairment of host cell attachment. Transcriptomics analysis identified over 200 genes of diverse functions that were differentially expressed in TgTKL1 knockout parasites. Importantly, numerous genes implicated in host cell attachment and invasion were among those most significantly downregulated, resulting in defects in microneme secretion and processing. Significantly, all of the mice inoculated intraperitoneally with TgTKL1 knockout parasites survived the infection, suggesting that TgTKL1 plays an essential role in acute toxoplasmosis. Together, these findings suggest that TgTKL1 mediates a signaling pathway that regulates the expression of multiple factors required for parasite virulence, underscoring the potential of this kinase as a novel therapeutic target. PMID:29559568

  2. Asparagus cochinchinensis stimulates release of nerve growth factor and abrogates oxidative stress in the Tg2576 model for Alzheimer's disease.

    PubMed

    Lee, Hyun Ah; Kim, Ji Eun; Sung, Ji Eun; Yun, Woo Bin; Kim, Dong Seob; Lee, Hee Seob; Hong, Jin Tae; Hwang, Dae Youn

    2018-04-06

    Use of multifunctional drugs with neurotrophic supporting and oxidative stress suppressing activity may be considered a therapeutic strategy to protect or repair cellular damage caused during the progression of Alzheimer's disease (AD). In this study, we investigated the therapeutic effects of aqueous extract of A. cochinchinesis root (AEAC), particularly its role as a nerve growth factor (NGF) stimulator and anti-oxidant in Tg2576 mice showing AD phenotypes of human. Tg2576 mice were received 100 mg/kg/day AEAC via oral administration, while mice in the Vehicle treated group received dH 2 O for 4 weeks. Non-Tg littermates were used as a control group. Following AEAC treatment for 4 weeks, NGF function, anti-oxidantive status, Aβ-42 peptide level, γ-secretase expression and neuronal cell functions were analyzed in the brain of Tg2576 mice. AEAC containing flavonoids, phenols, saponins and protodioscin induced enhancement of NGF secretion and decreased intracellular ROS in the neuronal and microglial cell line. These effects as well as enhanced SOD levels were also detected in AEAC treated Tg2576 mice. The expression of p-Akt among downstream effectors of the high affinity NGF receptor was dramatically recovered in AEAC treated Tg2576 mice, while the expression of p75 NTR was slightly recovered in the same group. Significant recovery on the level of Aβ-42 peptides and the expression of γ-secretase members including PS-2, APH-1 and NCT were detected in AEAC treated Tg2576 mice. Furthermore, AEAC treated Tg2576 mice showed decreased numbers of dead cells and suppressed acetyl choline esterase (AChE) activity. These results suggest that AEAC contribute to improving the deposition of Aβ-42 peptides and neuronal cell injuries during the pathological progression stage of AD in the brain of Tg2576 mice through increased NGF secretion and suppressed oxidative stress.

  3. Influence of age and gender on triglycerides-to-HDL-cholesterol ratio (TG/HDL ratio) and its association with adiposity index.

    PubMed

    Wakabayashi, Ichiro

    2012-01-01

    TG/HDL ratio has been proposed to be a good predictor of cardiovascular disease. The aim of this study was to determine whether TG/HDL ratio and its association with adiposity index are modified by age and gender. Subjects were younger (35-40 years) and older (60-70 years) Japanese men and women (n=16,825) receiving health checkup examinations. TG/HDL ratio and its relationship with adiposity index such as waist-to-height ratio (WHtR) were compared between the age pair and between the gender pair. Log-transformed TG/HDL ratio was significantly higher in older women than in younger women, while log-transformed TG/HDL ratio was comparable in younger and older men. The odds ratio (OR) for high TG/HDL ratio in subjects with vs. subjects without high WHtR was significantly lower in older men and women than in younger men and women, respectively. The OR was significantly lower in younger men than in younger women [4.08 (3.63-4.58) (younger men) vs. 8.42 (5.55-12.78) (younger women), p<0.01], whereas the OR was significantly lower in older women than in older men [3.36 (2.87-3.93) (older men) vs. 1.93 (1.31-2.85) (older women), p<0.01]. The results suggest that TG/HDL ratio is comparable in younger and older men but that TG/HDL ratio is higher in older women than in younger women and that the association between obesity and high TG/HDL ratio declines with age and is stronger in younger women than in younger men, while the association is weaker in older women than in older men. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Evidence for a gene influencing the TG/HDL-C ratio on chromosome 7q32.3-qter: a genome-wide scan in the Framingham study.

    PubMed

    Shearman, A M; Ordovas, J M; Cupples, L A; Schaefer, E J; Harmon, M D; Shao, Y; Keen, J D; DeStefano, A L; Joost, O; Wilson, P W; Housman, D E; Myers, R H

    2000-05-22

    Some studies show that plasma triglyceride (TG) levels are a significant independent risk factor for cardiovascular disease (CVD). TG levels are inversely correlated with high density lipoprotein cholesterol (HDL-C) levels, and their metabolism may be closely interrelated. Therefore, the TG/HDL-C ratio may be a relevant CVD risk factor. Our analysis of families in the Framingham Heart Study gave a genetic heritability estimate for log(TG) of 0.40 and for log(TG/HDL-C) of 0.49, demonstrating an important genetic component for both. A 10 cM genome-wide scan for log(TG) level and log(TG/HDL-C) was carried out for the largest 332 extended families of the Framingham Heart Study (1702 genotyped individuals). The highest multipoint variance component LOD scores obtained for both log(TG) and log(TG/HDL-C) were on chromosome 7 (at 155 cM), where the results for the two phenotypes were 1.8 and 2.5, respectively. The 7q32.3-qter region contains several candidate genes. Four other regions with multipoint LOD scores greater than one were identified on chromosome 3 [LOD score for log(TG/HDL-C) = 1.8 at 140 cM], chromosome 11 [LOD score for log(TG/HDL-C) = 1.1 at 125 cM], chromosome 16 [LOD score for log(TG) = 1.5 at 70 cM, LOD score for log(TG/HDL-C) = 1.1 at 75 cM] and chromosome 20 [LOD score for log(TG/HDL-C) = 1.7 at 35 cM, LOD score for log(TG) = 1.3 at 40 cM]. These results identify loci worthy of further study.

  5. Development of independent MU/treatment time verification algorithm for non-IMRT treatment planning: A clinical experience

    NASA Astrophysics Data System (ADS)

    Tatli, Hamza; Yucel, Derya; Yilmaz, Sercan; Fayda, Merdan

    2018-02-01

    The aim of this study is to develop an algorithm for independent MU/treatment time (TT) verification for non-IMRT treatment plans, as a part of QA program to ensure treatment delivery accuracy. Two radiotherapy delivery units and their treatment planning systems (TPS) were commissioned in Liv Hospital Radiation Medicine Center, Tbilisi, Georgia. Beam data were collected according to vendors' collection guidelines, and AAPM reports recommendations, and processed by Microsoft Excel during in-house algorithm development. The algorithm is designed and optimized for calculating SSD and SAD treatment plans, based on AAPM TG114 dose calculation recommendations, coded and embedded in MS Excel spreadsheet, as a preliminary verification algorithm (VA). Treatment verification plans were created by TPSs based on IAEA TRS 430 recommendations, also calculated by VA, and point measurements were collected by solid water phantom, and compared. Study showed that, in-house VA can be used for non-IMRT plans MU/TT verifications.

  6. Energetic basis for selective recognition of T*G mismatched base pairs in DNA by imidazole-rich polyamides.

    PubMed

    Lacy, Eilyn R; Nguyen, Binh; Le, Minh; Cox, Kari K; OHare, Caroline; Hartley, John A; Lee, Moses; Wilson, W David

    2004-01-01

    To complement available structure and binding results and to develop a detailed understanding of the basis for selective molecular recognition of T.G mismatches in DNA by imidazole containing polyamides, a full thermodynamic profile for formation of the T.G-polyamide complex has been determined. The amide-linked heterocycles f-ImImIm and f-PyImIm (where f is formamido group, Im is imidazole and Py is pyrrole) were studied by using biosensor-surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) with a T.G mismatch containing DNA hairpin duplex and a similar DNA with only Watson-Crick base pairs. Large negative binding enthalpies for all of the polyamide-DNA complexes indicate that the interactions are enthalpically driven. SPR results show slower complex formation and stronger binding of f-ImImIm to the T.G than to the match site. The thermodynamic analysis indicates that the enhanced binding to the T.G site is the result of better entropic contributions. Negative heat capacity changes for the complex are correlated with calculated solvent accessible surface area changes and indicate hydrophobic contributions to complex formation. DNase I footprinting analysis in a long DNA sequence provided supporting evidence that f-ImImIm binds selectively to T.G mismatch sites.

  7. Technical basis for external dosimetry at the Waste Isolation Pilot Plant (WIPP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, E.W.; Wu, C.F.; Goff, T.E.

    1993-12-31

    The WIPP External Dosimetry Program, administered by Westinghouse Electric Corporation, Waste Isolation Division, for the US Department of Energy (DOE), provides external dosimetry support services for operations at the Waste Isolation Pilot Plant (WIPP) Site. These operations include the receipt, experimentation with, storage, and disposal of transuranic (TRU) wastes. This document describes the technical basis for the WIPP External Radiation Dosimetry Program. The purposes of this document are to: (1) provide assurance that the WIPP External Radiation Dosimetry Program is in compliance with all regulatory requirements, (2) provide assurance that the WIPP External Radiation Dosimetry Program is derived from amore » sound technical base, (3) serve as a technical reference for radiation protection personnel, and (4) aid in identifying and planning for future needs. The external radiation exposure fields are those that are documented in the WIPP Final Safety Analysis Report.« less

  8. 43 CFR 43.620 - Cooperative agreement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Cooperative agreement. 43.620 Section 43... DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 43.620 Cooperative agreement. Cooperative... activity contemplated by the award. The term does not include cooperative research and development...

  9. Local lymph node assay: how testing laboratories apply OECD TG 429 for REACH purposes.

    PubMed

    Rovida, Costanza

    2011-01-01

    The Local Lymph Node Assay (LLNA) is the official method for assessing the allergic contact dermatitis potential of chemicals for the purposes of REACH regulation. The LLNA went through a validation process that allowed the delineation of a robust protocol for performing new tests. The OECD accepted this method in 2002 and published OECD TG 429. The European Chemical Agency (ECHA) recently published data that were submitted in the registration dossiers of chemicals. This database was analysed to determine how testing laboratories apply OECD TG 429. This analysis comes after a detailed analysis of four full study reports that were also prepared for REACH purposes. Although the majority of the tests are fully compliant with OECD TG 429, some showed major deviations, and a number of others used more animals than necessary. This suggests that in vivo tests need to be planned more carefully and consciously to obtain meaningful results with the minimum animal number necessary.

  10. [Automatic Extraction and Analysis of Dosimetry Data in Radiotherapy Plans].

    PubMed

    Song, Wei; Zhao, Di; Lu, Hong; Zhang, Biyun; Ma, Jun; Yu, Dahai

    To improve the efficiency and accuracy of extraction and analysis of dosimetry data in radiotherapy plans for a batch of patients. With the interface function provided in Matlab platform, a program was written to extract the dosimetry data exported from treatment planning system in DICOM RT format and exported the dose-volume data to an Excel file with the SPSS compatible format. This method was compared with manual operation for 14 gastric carcinoma patients to validate the efficiency and accuracy. The output Excel data were compatible with SPSS in format, the dosimetry data error for PTV dose interval of 90%-98%, PTV dose interval of 99%-106% and all OARs were -3.48E-5 ± 3.01E-5, -1.11E-3 ± 7.68E-4, -7.85E-5 ± 9.91E-5 respectively. Compared with manual operation, the time required was reduced from 5.3 h to 0.19 h and input error was reduced from 0.002 to 0. The automatic extraction of dosimetry data in DICOM RT format for batch patients, the SPSS compatible data exportation, quick analysis were achieved in this paper. The efficiency of clinical researches based on dosimetry data analysis of large number of patients will be improved with this methods.

  11. Behavioral and SCN neurophysiological disruption in the Tg-SwDI mouse model of Alzheimer's disease.

    PubMed

    Paul, Jodi R; Munir, Hira A; van Groen, Thomas; Gamble, Karen L

    2018-06-01

    Disruption of circadian rhythms is commonly reported in individuals with Alzheimer's disease (AD). Neurons in the primary circadian pacemaker, the suprachiasmatic nucleus (SCN), exhibit daily rhythms in spontaneous neuronal activity which are important for maintaining circadian behavioral rhythms. Disruption of SCN neuronal activity has been reported in animal models of other neurodegenerative disorders; however, the effect of AD on SCN neurophysiology remains unknown. In this study we examined circadian behavioral and electrophysiological changes in a mouse model of AD, using male mice from the Tg-SwDI line which expresses human amyloid precursor protein with the familial Swedish (K670N/M671L), Dutch (E693Q), Iowa (D694N) mutations. The free-running period of wheel-running behavior was significantly shorter in Tg-SwDI mice compared to wild-type (WT) controls at all ages examined (3, 6, and 10 months). At the SCN level, the day/night difference in spike rate was significantly dampened in 6-8 month-old Tg-SwDI mice, with decreased AP firing during the day and an increase in neuronal activity at night. The dampening of SCN excitability rhythms in Tg-SwDI mice was not associated with changes in input resistance, resting membrane potential, or action potential afterhyperpolarization amplitude; however, SCN neurons from Tg-SwDI mice had significantly reduced A-type potassium current (I A ) during the day compared to WT cells. Taken together, these results provide the first evidence of SCN neurophysiological disruption in a mouse model of AD, and highlight I A as a potential target for AD treatment strategies in the future. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. On determining dose rate constants spectroscopically

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, M.; Rogers, D. W. O.

    2013-01-15

    Purpose: To investigate several aspects of the Chen and Nath spectroscopic method of determining the dose rate constants of {sup 125}I and {sup 103}Pd seeds [Z. Chen and R. Nath, Phys. Med. Biol. 55, 6089-6104 (2010)] including the accuracy of using a line or dual-point source approximation as done in their method, and the accuracy of ignoring the effects of the scattered photons in the spectra. Additionally, the authors investigate the accuracy of the literature's many different spectra for bare, i.e., unencapsulated {sup 125}I and {sup 103}Pd sources. Methods: Spectra generated by 14 {sup 125}I and 6 {sup 103}Pd seedsmore » were calculated in vacuo at 10 cm from the source in a 2.7 Multiplication-Sign 2.7 Multiplication-Sign 0.05 cm{sup 3} voxel using the EGSnrc BrachyDose Monte Carlo code. Calculated spectra used the initial photon spectra recommended by AAPM's TG-43U1 and NCRP (National Council of Radiation Protection and Measurements) Report 58 for the {sup 125}I seeds, or TG-43U1 and NNDC(2000) (National Nuclear Data Center, 2000) for {sup 103}Pd seeds. The emitted spectra were treated as coming from a line or dual-point source in a Monte Carlo simulation to calculate the dose rate constant. The TG-43U1 definition of the dose rate constant was used. These calculations were performed using the full spectrum including scattered photons or using only the main peaks in the spectrum as done experimentally. Statistical uncertainties on the air kerma/history and the dose rate/history were Less-Than-Or-Slanted-Equal-To 0.2%. The dose rate constants were also calculated using Monte Carlo simulations of the full seed model. Results: The ratio of the intensity of the 31 keV line relative to that of the main peak in {sup 125}I spectra is, on average, 6.8% higher when calculated with the NCRP Report 58 initial spectrum vs that calculated with TG-43U1 initial spectrum. The {sup 103}Pd spectra exhibit an average 6.2% decrease in the 22.9 keV line relative to the main peak

  13. Modelling and Dosimetry for Alpha-Particle Therapy

    PubMed Central

    Sgouros, George; Hobbs, Robert F.; Song, Hong

    2015-01-01

    As a consequence of the high potency and short range of alpha-particles, radiopharmaceutical therapy with alpha-particle emitting radionuclides is a promising treatment approach that is under active pre-clinical and clinical investigation. To understand and predict the biological effects of alpha-particle radiopharmaceuticals, dosimetry is required at the micro or multi-cellular scale level. At such a scale, highly non-uniform irradiation of the target volume may be expected and the utility of a single absorbed dose value to predict biological effects comes into question. It is not currently possible to measure the pharmacokinetic input required for micro scale dosimetry in humans. Accordingly, pre-clinical studies are required to provide the pharmacokinetic data for dosimetry calculations. The translation of animal data to the human requires a pharmacokinetic model that links macro- and micro-scale pharmacokinetics thereby enabling the extrapolation of micro-scale kinetics from macroscopic measurements. These considerations along with a discussion of the appropriate physical quantity and related units for alpha-particle radiopharmaceutical therapy are examined in this review. PMID:22201712

  14. Hanford Internal Dosimetry Project manual. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, E.H.; Bihl, D.E.; MacLellan, J.A.

    1994-07-01

    This document describes the Hanford Internal Dosimetry Project, as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy and its Hanford contractors. Project services include administrating the bioassay monitoring program, evaluating and documenting assessment of potential intakes and internal dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. Specific chapters deal with the following subjects: practices of the project, including interpretation of applicable DOE Orders, regulations, andmore » guidance into criteria for assessment, documentation, and reporting of doses; assessment of internal dose, including summary explanations of when and how assessments are performed; recording and reporting practices for internal dose; selection of workers for bioassay monitoring and establishment of type and frequency of bioassay measurements; capability and scheduling of bioassay monitoring services; recommended dosimetry response to potential internal exposure incidents; quality control and quality assurance provisions of the program.« less

  15. SU-E-T-93: Activation of Psoralen at Depth Using Kilovoltage X-Rays: Physics Considerations in Implementing a New Teletherapy Paradigm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, J; Yoon, P; Liu, L

    2015-06-15

    Purpose: Psoralen is a UV-light activated anti-cancer biotherapeutic used for treating skin lesions (PUVA) and advanced cutaneous T-cell lymphoma (ECP). To date psoralen has not been used to treat deep seated tumors due to difficulty in generating UV-light at depth. We recently demonstrated psoralen activation at depth by introducing energy converting particles that absorb kV x-ray radiation and re-emit UV-light. Our in-vitro work found that 0.2–1Gy using 40–100kVp x-rays combined with psoralen and particles can induce a substantial apoptotic response beyond that expected from the sum of individual components. In preparation for a phase I clinical trial of canine companionmore » animals, we address the physics and dosimetry considerations for applying this new teletherapy paradigm to an in-vivo setting. Methods: The kV on-board imaging (OBI) system mounted on a medical linear accelerator (Varian) was commissioned to deliver the prescribed dose (0.6Gy) using 80 and 100kVp. Dosimetric measurements included kVp, HVL, depth dose, backscatter factors, collimator and phantom scatter factors, field size factors, and blade leakage. Absolute dosimetry was performed following AAPM TG61 recommendations and verified with an independent kV dose meter. We also investigated collimated rotational delivery to minimize skin dose using simple dose calculations on homogeneous cylindrical phantoms. Results: Single beam delivery is feasible for shallow targets (<5cm) without exceeding skin tolerance, while a rotational delivery may be utilized for deeper targets; skin dose is ∼75% of target dose for 80kVp collimated rotational delivery to a 3cm target within a 20cm phantom. Heat loading was tolerable; 0.6Gy to 5cm can be delivered before the anode reaches 75% capacity. Conclusion: KV teletherapy for Psoralen activation in deep seated tissue was successfully commissioned for a Varian OBI machine for use in a phase I clinical trial in canines. Future work will use Monte Carlo

  16. Criticality accident dosimetry with ESR spectroscopy.

    PubMed

    d'Errico, F; Fattibene, P; Onori, S; Pantaloni, M

    1996-01-01

    The suitability of the ESR alanine and sugar detectors for criticality accident dosimetry was experimentally investigated during an intercomparison of dosimetry techniques. Tests were performed irradiating detectors both free-in-air and on-phantom during controlled critcality excursions at the SILENE reactor in Valduc, France. Several grays of absorbed dose were imparted in neutron gamma-ray fields of various relative intensities and spectral distributions. Analysed results confirmed the potential of these systems which can immediately provide an acute dose assessment with an average underestimate of 30%in the various fields. This performance allows for the screening of severely exposed individuals and meets the IAEA recommendations on the early estimate of accident absorbed doses.

  17. A novel mutation in the TG gene (G2322S) causing congenital hypothyroidism in a Sudanese family: a case report.

    PubMed

    Watanabe, Y; Sharwood, E; Goodwin, B; Creech, M K; Hassan, H Y; Netea, M G; Jaeger, M; Dumitrescu, A; Refetoff, S; Huynh, T; Weiss, R E

    2018-05-02

    Congenital hypothyroidism (CH) has an incidence of approximately 1:3000, but only 15% have mutations in the thyroid hormone synthesis pathways. Genetic analysis allows for the precise diagnosis. A 3-week old girl presented with a large goiter, serum TSH > 100 mIU/L (reference range: 0.7-5.9 mIU/L); free T 4  < 3.2 pmol/L (reference range: 8.7-16 pmol/L); thyroglobulin (TG) 101 μg/L. Thyroid Tc-99 m scan showed increased radiotracer uptake. One brother had CH and both affected siblings have been clinically and biochemically euthyroid on levothyroxine replacement. Another sibling had normal thyroid function. Both Sudanese parents reported non-consanguinity. Peripheral blood DNA from the proposita was subjected to whole exome sequencing (WES). WES identified a novel homozygous missense mutation of the TG gene: c.7021G > A, p.Gly2322Ser, which was subsequently confirmed by Sanger sequencing and present in one allele of both parents. DNA samples from 354 alleles in four Sudanese ethnic groups (Nilotes, Darfurians, Nuba, and Halfawien) failed to demonstrate the presence of the mutant allele. Haplotyping showed a 1.71 centiMorgans stretch of homozygosity in the TG locus suggesting that this mutation occurred identical by descent and the possibility of common ancestry of the parents. The mutation is located in the cholinesterase-like (ChEL) domain of TG. A novel rare missense mutation in the TG gene was identified. The ChEL domain is critical for protein folding and patients with CH due to misfolded TG may present without low serum TG despite the TG gene mutations.

  18. Relationship between TG/HDL-C ratio and metabolic syndrome risk factors with chronic kidney disease in healthy adult population.

    PubMed

    Ho, Chih-I; Chen, Jau-Yuan; Chen, Shou-Yen; Tsai, Yi-Wen; Weng, Yi-Ming; Tsao, Yu-Chung; Li, Wen-Cheng

    2015-10-01

    The triglycerides-to-high-density lipoprotein-cholesterol (TG/HDL-C) ratio has been identified as a biomarker of insulin resistance and a predictor for atherosclerosis. The objectives of this study were to investigate which the TG/HDL-C ratio is useful to detect metabolic syndrome (MS) risk factors and subclinical chronic kidney disease (CKD) in general population without known CKD or renal impairment and to compare predictive accuracy of MS risk factors. This was a cross-sectional study. A total 46,255 subjects aged ≥18 years undergoing health examination during 2010-2011 in Taiwan. The independent associations between TG/HDL-C ratio quartiles, waist circumstance (WC) waist-to-height ratio (WHtR), mean atrial pressure (MAP), and CKD prevalence was analyzed by using logistic regression models. Analyses of the areas under receiver operating characteristic (ROC) were performed to determine the accuracy of MS risk factors in predicting CKD. A dose-response manner was observed for the prevalence of CKD and measurements of MS risk factors, showing increases from the lowest to the highest quartile of the TG/HDL-C ratio. Males and females in the highest TG/HDL-C ratio quartile (>2.76) had a 1.4-fold and 1.74-fold greater risk of CKD than those in the lowest quartile (≤1.04), independent of confounding factors. Mean arterial pressure (MAP) had the highest AUC for predicting CKD among MS risk factors. The TG/HDL-C ratio was an independent risk factor for CKD, but it showed no superiority over MAP in predicting CKD. A TG/HDL-C ratio ≥2.76 may be useful in clinical practice to detect subjects with worsened cardiometabolic profile who need monitoring to prevent CKD. TG/HDL-C ratio is an independent risk factor for CKD in adults aged 18-50 years. MAP was the most powerful predictor over other MS risk factors in predicting CKD. However, longitudinal and comparative studies are required to demonstrate the predictive value of TG/HDL-C on the onset and progression of CKD over

  19. Clinical implementation and rapid commissioning of an EPID based in-vivo dosimetry system.

    PubMed

    Hanson, Ian M; Hansen, Vibeke N; Olaciregui-Ruiz, Igor; van Herk, Marcel

    2014-10-07

    Using an Electronic Portal Imaging Device (EPID) to perform in-vivo dosimetry is one of the most effective and efficient methods of verifying the safe delivery of complex radiotherapy treatments. Previous work has detailed the development of an EPID based in-vivo dosimetry system that was subsequently used to replace pre-treatment dose verification of IMRT and VMAT plans. Here we show that this system can be readily implemented on a commercial megavoltage imaging platform without modification to EPID hardware and without impacting standard imaging procedures. The accuracy and practicality of the EPID in-vivo dosimetry system was confirmed through a comparison with traditional TLD in-vivo measurements performed on five prostate patients.The commissioning time required for the EPID in-vivo dosimetry system was initially prohibitive at approximately 10 h per linac. Here we present a method of calculating linac specific EPID dosimetry correction factors that allow a single energy specific commissioning model to be applied to EPID data from multiple linacs. Using this method reduced the required per linac commissioning time to approximately 30 min.The validity of this commissioning method has been tested by analysing in-vivo dosimetry results of 1220 patients acquired on seven linacs over a period of 5 years. The average deviation between EPID based isocentre dose and expected isocentre dose for these patients was (-0.7  ±  3.2)%.EPID based in-vivo dosimetry is now the primary in-vivo dosimetry tool used at our centre and has replaced nearly all pre-treatment dose verification of IMRT treatments.

  20. Clinical implementation and rapid commissioning of an EPID based in-vivo dosimetry system

    NASA Astrophysics Data System (ADS)

    Hanson, Ian M.; Hansen, Vibeke N.; Olaciregui-Ruiz, Igor; van Herk, Marcel

    2014-10-01

    Using an Electronic Portal Imaging Device (EPID) to perform in-vivo dosimetry is one of the most effective and efficient methods of verifying the safe delivery of complex radiotherapy treatments. Previous work has detailed the development of an EPID based in-vivo dosimetry system that was subsequently used to replace pre-treatment dose verification of IMRT and VMAT plans. Here we show that this system can be readily implemented on a commercial megavoltage imaging platform without modification to EPID hardware and without impacting standard imaging procedures. The accuracy and practicality of the EPID in-vivo dosimetry system was confirmed through a comparison with traditional TLD in-vivo measurements performed on five prostate patients. The commissioning time required for the EPID in-vivo dosimetry system was initially prohibitive at approximately 10 h per linac. Here we present a method of calculating linac specific EPID dosimetry correction factors that allow a single energy specific commissioning model to be applied to EPID data from multiple linacs. Using this method reduced the required per linac commissioning time to approximately 30 min. The validity of this commissioning method has been tested by analysing in-vivo dosimetry results of 1220 patients acquired on seven linacs over a period of 5 years. The average deviation between EPID based isocentre dose and expected isocentre dose for these patients was (-0.7  ±  3.2)%. EPID based in-vivo dosimetry is now the primary in-vivo dosimetry tool used at our centre and has replaced nearly all pre-treatment dose verification of IMRT treatments.

  1. Lighting Up the Thioflavin T by Parallel-Stranded TG(GA) n DNA Homoduplexes.

    PubMed

    Zhu, Jinbo; Yan, Zhiqiang; Zhou, Weijun; Liu, Chuanbo; Wang, Jin; Wang, Erkang

    2018-06-22

    Thioflavin T (ThT) was once regarded to be a specific fluorescent probe for the human telomeric G-quadruplex, but more other kinds of DNA were found that can also bind to ThT in recent years. Herein, we focus on G-rich parallel-stranded DNA and utilize fluorescence, absorbance, circular dichroism, and surface plasmon resonance spectroscopy to investigate its interaction with ThT. Pyrene label and molecular modeling are applied to unveil the binding mechanism. We find a new class of non-G-quadruplex G-rich parallel-stranded ( ps) DNA with the sequence of TG(GA) n can bind to ThT and increase the fluorescence with an enhancement ability superior to G-quadruplex. The optimal binding specificity for ThT is conferred by two parts. The first part is composed of two bases TG at the 5' end, which is a critical domain and plays an important role in the formation of the binding site for ThT. The second part is the rest alternative d(GA) bases, which forms the ps homoduplex and cooperates with the TG bases at the 5' end to bind the ThT.

  2. Dosimetry for audit and clinical trials: challenges and requirements

    NASA Astrophysics Data System (ADS)

    Kron, T.; Haworth, A.; Williams, I.

    2013-06-01

    Many important dosimetry audit networks for radiotherapy have their roots in clinical trial quality assurance (QA). In both scenarios it is essential to test two issues: does the treatment plan conform with the clinical requirements and is the plan a reasonable representation of what is actually delivered to a patient throughout their course of treatment. Part of a sound quality program would be an external audit of these issues with verification of the equivalence of plan and treatment typically referred to as a dosimetry audit. The increasing complexity of radiotherapy planning and delivery makes audits challenging. While verification of absolute dose delivered at a reference point was the standard of external dosimetry audits two decades ago this is often deemed inadequate for verification of treatment approaches such as Intensity Modulated Radiation Therapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT). As such, most dosimetry audit networks have successfully introduced more complex tests of dose delivery using anthropomorphic phantoms that can be imaged, planned and treated as a patient would. The new challenge is to adapt this approach to ever more diversified radiotherapy procedures with image guided/adaptive radiotherapy, motion management and brachytherapy being the focus of current research.

  3. A survey of current in vivo radiotherapy dosimetry practice.

    PubMed

    Edwards, C R; Grieveson, M H; Mountford, P J; Rolfe, P

    1997-03-01

    A questionnaire was sent out to 57 radiotherapy physics departments in the United Kingdom to determine the type of dosemeters used for in vivo measurements inside and outside X-ray treatment fields, and whether any correction is made for energy dependence when the dose to critical organs outside the main beam is estimated. 44 responses were received. 11 centres used a semi-conductor for central axis dosimetry compared with only two centres which used thermoluminescent dosimetry (TLD). 37 centres carried out dosimetry measurements outside the main beam; 25 centres used TLD and 12 centres used a semi-conductor detector. Of the 16 centres measuring the dose at both sites. 11 used a semi-conductor for the central axis measurement, but only four of those 11 changed to TLD for critical organ dosimetry despite the latter's lower variation in energy response. None of the centres stated that they made a correction for the variation in detector energy response when making measurements outside the main beam, indicating a need for a more detailed evaluation of the energy response of these detectors and the energy spectra outside the main beam.

  4. Commentary: exciting new developments in fast neutron cross sections and dosimetry

    NASA Astrophysics Data System (ADS)

    Bielajew, A. F.; Chadwick, M. B.

    1998-12-01

    physics can issue scientific challenges in even the most basic disciplines, and that the basic sciences rise to the challenge with enthusiasm. References Attix F H 1986 Introduction to Radiological Physics and Radiation Dosimetry (New York: Wiley) Benck S, Slypen I, Meulders J P and Corcalciuc V 1998 Experimental double differential cross sections and derived kerma factors for oxygen at incident neutron energies from reaction thresholds to 65 MeV Phys. Med. Biol. 43 3427-47 Binns P J, DeLuca Jr P M, Maughan R L and Kota C 1998 Direct determination of kerma for a d(48.5)+Be therapy beam Phys. Med. Biol. 43 3449-57 Brenner D J and Prael R R 1989 Calculated differential secondary-particle production cross-sections after nonelastic neutron interactions with carbon and oxygen between 15 and 60 MeV Atomic and Nuclear Data Tables 41 71-99 Chadwick M B and Young P G 1996 Calculation and evaluation of cross sections and kerma factors for neutrons up to 100 MeV on and Nucl. Sci. Eng. 123 1-16 ICRU 1989 Clinical neutron dosimetry part I: determination of absorbed dose in a patient treated by external beams of fast neutrons ICRU Report 45 (Washington, DC: ICRU) Subramanian T S et al 1983 Double differential inclusive hydrogen and helium spectra from neutron-induced reactions on carbon at 27.4, 39.7 and 60.7 MeV Phys. Rev. C 28 521-8 Subramanian T S et al 1986 Double differential inclusive hydrogen and helium spectra from neutron-induced reactions on carbon at 27.4, 39.7 and 60.7 MeV: oxygen and nitrogen Phys. Rev. C 34 1580-7

  5. An international dosimetry exchange for BNCT part II: computational dosimetry normalizations.

    PubMed

    Riley, K J; Binns, P J; Harling, O K; Albritton, J R; Kiger, W S; Rezaei, A; Sköld, K; Seppälä, T; Savolainen, S; Auterinen, I; Marek, M; Viererbl, L; Nievaart, V A; Moss, R L

    2008-12-01

    The meaningful sharing and combining of clinical results from different centers in the world performing boron neutron capture therapy (BNCT) requires improved precision in dose specification between programs. To this end absorbed dose normalizations were performed for the European clinical centers at the Joint Research Centre of the European Commission, Petten (The Netherlands), Nuclear Research Institute, Rez (Czech Republic), VTT, Espoo (Finland), and Studsvik, Nyköping (Sweden). Each European group prepared a treatment plan calculation that was bench-marked against Massachusetts Institute of Technology (MIT) dosimetry performed in a large, water-filled phantom to uniformly evaluate dose specifications with an estimated precision of +/-2%-3%. These normalizations were compared with those derived from an earlier exchange between Brookhaven National Laboratory (BNL) and MIT in the USA. Neglecting the uncertainties related to biological weighting factors, large variations between calculated and measured dose are apparent that depend upon the 10B uptake in tissue. Assuming a boron concentration of 15 microg g(-1) in normal tissue, differences in the evaluated maximum dose to brain for the same nominal specification of 10 Gy(w) at the different facilities range between 7.6 and 13.2 Gy(w) in the trials using boronophenylalanine (BPA) as the boron delivery compound and between 8.9 and 11.1 Gy(w) in the two boron sulfhydryl (BSH) studies. Most notably, the value for the same specified dose of 10 Gy(w) determined at the different participating centers using BPA is significantly higher than at BNL by 32% (MIT), 43% (VTT), 49% (JRC), and 74% (Studsvik). Conversion of dose specification is now possible between all active participants and should be incorporated into future multi-center patient analyses.

  6. 43 CFR 43.650 - Grant.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Grant. 43.650 Section 43.650 Public Lands: Interior Office of the Secretary of the Interior GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE... to transfer a thing of value to the recipient to carry out a public purpose of support or stimulation...

  7. Macroscopic to Microscopic Scales of Particulate Dosimetry: From Source to Fate in the Body

    EPA Science Inventory

    Additional perspective with regards to particle dosimetry is achieved by exploring dosimetry across a range of scales from macroscopic to microscopic in scope. Typically, one thinks of dosimetry as what happens when a particle is inhaled, where it is deposited, and how it is clea...

  8. [Staged oncological screening with TG test].

    PubMed

    Bakhlaev, I E; Ageenko, A I; Rolik, I S

    2006-01-01

    The authors present their analysis of screening methods used for early diagnostics of cancer of various localization and for detection of high-risk individuals. They offer a program of step-by-step screening that makes it possible to cover more population with prophylactic examination and to reduce the need for special examination methods. TG-test is a universal and the most informative blastomatous process indicator at any stage, including the preclinical one. The practical screening results double the revealing rate of oncopathology and allow for three-fold reduction in the diagnostic costs compared with standard methods of cancer diagnostics. The medical efficiency of the oncological screening is high; in one third of the examined patients a tumor is diagnosed at the preclinical stage.

  9. Effect of a counterion on the glass transition temperature (T(g)') during lyophilization of ganciclovir salt forms.

    PubMed

    Kumar, Lokesh; Baheti, Ankit; Bansal, Arvind K

    2011-02-07

    This manuscript deals with the effect of a counterion on the glass transition temperature for lyophilization of ganciclovir salts. Salt forms of ganciclovir, namely, sodium, potassium, rubidium, and cesium salts, were prepared by an in situ technique and analyzed by modulated differential scanning calorimetry (MDSC) for the determination of the critical process parameter for lyophilization. Nonionized ganciclovir and its salt forms showed a glass transition (T(g)') in the reversing MDSC signal, confirming their amorphous nature. T(g)' of the nonionized ganciclovir and ganciclovir sodium, potassium, rubidium, and cesium salts followed the order: sodium salt (-34.94°C) > nonionized ganciclovir (-40.15°C) > potassium salt (-46.23°C) > rubidium salt (-49.95°C) > cesium salt (-53.62°C). The analysis of the freezable water content for ganciclovir and its salts showed the trend: pure water > nonionized ganciclovir > potassium salt ∼ sodium salt > rubidium salt > cesium salt. This showed that a majority of water in the salts is present as an unfrozen fraction, thus leading to a lowering of T(g)' because of the plasticizing effect of unfrozen water. Density functional theory (DFT) further suggested a positive contribution of the strength of intra- and intermolecular force of interactions to the T(g)' value, with a higher intramolecular and intermolecular force of interaction leading to a higher T(g)'.

  10. 3xTgAD mice exhibit altered behavior and elevated Aβ after chronic mild social stress

    PubMed Central

    Rothman, Sarah M.; Herdener, Nathan; Camandola, Simonetta; Texel, Sarah J.; Mughal, Mohamed R.; Cong, Wei-Na; Martin, Bronwen; Mattson, Mark P

    2014-01-01

    Chronic stress may be a risk factor for developing Alzheimer’s disease (AD), but most studies of the effects of stress in models of AD utilize acute adverse stressors of questionable clinical relevance. The goal of this work was to determine how chronic psychosocial stress affects behavioral and pathological outcomes in an animal model of AD, and to elucidate underlying mechanisms. A triple-transgenic mouse model of AD (3xTgAD mice) and nontransgenic control mice were used to test for an affect of chronic mild social stress on blood glucose, plasma glucocorticoids, plasma insulin, anxiety and hippocampal Aβ, ptau and BDNF levels. Despite the fact that both control and 3xTgAD mice experienced rises in corticosterone during episodes of mild social stress, at the end of the 6 week stress period 3xTgAD mice displayed increased anxiety, elevated levels of Aβ oligomers and intraneuronal Aβ, and decreased BDNF levels, whereas control mice did not. Findings suggest 3xTgAD mice are more vulnerable than control mice to chronic psychosocial stress, and that such chronic stress exacerbates Aβ accumulation and impairs neurotrophic signaling. PMID:21855175

  11. The Effects of Metal on Size Specific Dose Estimation (SSDE) in CT: A Phantom Study

    NASA Astrophysics Data System (ADS)

    Alsanea, Maram M.

    Over the past number of years there has been a significant increase in the awareness of radiation dose from use of computed tomography (CT). Efforts have been made to reduce radiation dose from CT and to better quantify dose being delivered. However, unfortunately, these dose metrics such as CTDI vol are not a specific patient dose. In 2011, the size-specific dose estimation (SSDE) was introduced by AAPM TG-204 which accounts for the physical size of the patient. However, the approach presented in TG-204 ignores the importance of the attenuation differences in the body. In 2014, a newer methodology that accounted for tissue attenuation was introduced by the AAPM TG-220 based on the concept of water equivalent diameter, Dw. One of the limitation of TG-220 is that there is no estimation of the dose while highly attenuating objects such as metal is present in the body. The purpose of this research is to evaluate the accuracy of size-specific dose estimates in CT in the presence of simulated metal prostheses using a conventional PMMA CTDI phantom at different phantom diameter (body and head) and beam energy. Titanium, Cobalt- chromium and stainless steel alloys rods were used in the study. Two approaches were used as introduced by AAPM TG-204 and 220 utilizing the effective diameter and the Dw calculations. From these calculations, conversion factors have been derived that could be applied to the measured CTDIvol to convert it to specific patient dose, or size specific dose estimate, (SSDE). Radiation dose in tissue (f-factor = 0.94) was measured at various chamber positions with the presence of metal. Following, an average weighted tissue dose (AWTD) was calculated in a manner similar to the weighted CTDI (CTDIw). In general, for the 32 cm body phantom SSDE220 provided more accurate estimates of AWTD than did SSDE204. For smaller patient size, represented by the 16 cm head phantom, the SSDE204 was a more accurate estimate of AWTD that that of SSDE220. However, as the

  12. Innovation and the future of advanced dosimetry: 2D to 5D

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2017-05-01

    Recent years have witnessed a remarkable evolution in the techniques, capabilities and applications of 3D dosimetry. Initially the goal was simple: to innovate new techniques capable of comprehensively measuring and verifying exquisitely intricate dose distributions from a paradigm changing emerging new therapy, IMRT. Basic questions emerged: how well were treatment planning systems modelling the complex delivery, and how could treatments be verified for safe use on patients? Since that time, equally significant leaps of innovation have continued in the technology of treatment delivery. In addition, clinical practice has been transformed by the addition of on-board imaging capabilities, which tend to hypo-fractionation strategies and margin reduction. The net result is a high stakes treatment setting where the clinical morbidity of any unintended treatment deviation is exacerbated by the combination of highly conformal dose distributions given with reduced margins with fractionation regimens unfriendly to healthy tissue. Not surprisingly this scenario is replete with challenges and opportunities for new and improved dosimetry systems. In particular tremendous interest exists in comprehensive 3D dosimetry systems, and systems that can resolve the dose in moving structures (4D) and even in deforming structures (5D). Despite significant progress in the capability of multi-dimensional dosimetry systems, it is striking that true 3D dosimetry systems are today largely found in academic institutions or specialist clinics. The reasons will be explored. We will highlight innovations occurring both in treatment delivery and in advanced dosimetry methods designed to verify them, and explore current and future opportunities for advanced dosimetry tools in clinical practice and translational research.

  13. Applicability of Topaz Composites to Electron Dosimetry

    NASA Astrophysics Data System (ADS)

    Bomfim, K. S.; Souza, D. N.

    2010-11-01

    Thermoluminescent dosimetric topaz properties have been investigated and the results have shown that this mineral presents characteristics of a good dosimeter mainly in doses evaluation in radiotherapy with photons beams in radiotherapy. Typical applications of thermoluminescent dosimeters in radiotherapy are: in vivo dosimetry on patients (either as a routine quality assurance procedure or for dose monitoring in special cases); verification of treatment techniques; dosimetry audits; and comparisons among hospitals. The mean aim of this work was to evaluate the efficiency of topaz-Teflon pellets as thermoluminescent dosimeters in high-energy electron beams used to radiotherapy. Topaz-Teflon pellets were used as TLD.

  14. MO-B-BRB-02: 3D Dosimetry in the Clinic: IMRT Technique Validation in Sweden

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ceberg, S.

    Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data

  15. EPR/PTFE dosimetry for test reactor environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vehar, D.W.; Griffin, P.J.; Quirk, T.J.

    2011-07-01

    The use of Electron Paramagnetic Resonance (EPR) spectroscopy with materials such as alanine is well established as a technique for measurement of ionizing radiation absorbed dose in photon and electron fields such as Co-60, high-energy bremsstrahlung and electron-beam fields [1]. In fact, EPR/Alanine dosimetry has become a routine transfer standard for national standards bodies such as NIST and NPL. In 1992 the Radiation Metrology Laboratory (RML) at Sandia National Laboratories implemented EPR/Alanine capabilities for use in routine and calibration activities at its Co-60 and pulsed-power facilities. At that time it also investigated the usefulness of the system for measurement ofmore » absorbed dose in the mixed neutron/photon environments of reactors such as the Sandia Pulsed Reactor and the Annular Core Research Reactor used for hardness testing of electronics. The RML concluded that the neutron response of alanine was a sufficiently high fraction of the overall dosimeter response that the resulting uncertainties in the photon dose would be unacceptably large for silicon-device testing. However, it also suggested that non-hydrogenous materials such as polytetrafluoroethylene (PTFE) would exhibit smaller neutron response and might be useful in mixed environments. Preliminary research with PTFE in photon environments indicated considerable promise, but further development was not pursued at that time. Because of renewed interest in absorbed dose measurements that could better define the individual contributions of photon and neutron components to the overall dose delivered to a test object, the RML has re-initiated the development of an EPR/PTFE dosimetry system. This effort consists of three stages: 1) Identification of PTFE materials that may be suitable for dosimetry applications. It was speculated that the inconsistency of EPR signatures in the earlier samples may have been due to variability in PTFE manufacturing processes. 2) Characterization of

  16. Hanford Internal Dosimetry Program Manual, PNL-MA-552

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2003-10-10

    This manual is a guide to the services provided by the Hanford Internal Dosimetry Program (IDP). It describes the roles of and relationships between the IDP and site contractors, and provides recommendations and guidance for consideration in implementing bioassay monitoring and internal dosimetry elements of radiation protection programs. Guidance includes identifying conditions under which workers should be placed on bioassay programs, types, descritptions, and capabilities of measurements, suggested routine bioassay programs, limitations on services, and practices for recording and reporting results.

  17. MO-AB-206-02: Testing Gamma Cameras Based On TG177 WG Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halama, J.

    2016-06-15

    This education session will cover the physics and operation principles of gamma cameras and PET scanners. The first talk will focus on PET imaging. An overview of the principles of PET imaging will be provided, including positron decay physics, and the transition from 2D to 3D imaging. More recent advances in hardware and software will be discussed, such as time-of-flight imaging, and improvements in reconstruction algorithms that provide for options such as depth-of-interaction corrections. Quantitative applications of PET will be discussed, as well as the requirements for doing accurate quantitation. Relevant performance tests will also be described. Learning Objectives: Bemore » able to describe basic physics principles of PET and operation of PET scanners. Learn about recent advances in PET scanner hardware technology. Be able to describe advances in reconstruction techniques and improvements Be able to list relevant performance tests. The second talk will focus on gamma cameras. The Nuclear Medicine subcommittee has charged a task group (TG177) to develop a report on the current state of physics testing of gamma cameras, SPECT, and SPECT/CT systems. The report makes recommendations for performance tests to be done for routine quality assurance, annual physics testing, and acceptance tests, and identifies those needed satisfy the ACR accreditation program and The Joint Commission imaging standards. The report is also intended to be used as a manual with detailed instructions on how to perform tests under widely varying conditions. Learning Objectives: At the end of the presentation members of the audience will: Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of gamma cameras for planar imaging. Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of SPECT systems. Be familiar with the tests of a SPECT/CT system that include the CT

  18. Thermal Decomposition Behavior of Hydroxytyrosol (HT) in Nitrogen Atmosphere Based on TG-FTIR Methods.

    PubMed

    Tu, Jun-Ling; Yuan, Jiao-Jiao

    2018-02-13

    The thermal decomposition behavior of olive hydroxytyrosol (HT) was first studied using thermogravimetry (TG). Cracked chemical bond and evolved gas analysis during the thermal decomposition process of HT were also investigated using thermogravimetry coupled with infrared spectroscopy (TG-FTIR). Thermogravimetry-Differential thermogravimetry (TG-DTG) curves revealed that the thermal decomposition of HT began at 262.8 °C and ended at 409.7 °C with a main mass loss. It was demonstrated that a high heating rate (over 20 K·min -1 ) restrained the thermal decomposition of HT, resulting in an obvious thermal hysteresis. Furthermore, a thermal decomposition kinetics investigation of HT indicated that the non-isothermal decomposition mechanism was one-dimensional diffusion (D1), integral form g ( x ) = x ², and differential form f ( x ) = 1/(2 x ). The four combined approaches were employed to calculate the activation energy ( E = 128.50 kJ·mol -1 ) and Arrhenius preexponential factor (ln A = 24.39 min -1 ). In addition, a tentative mechanism of HT thermal decomposition was further developed. The results provide a theoretical reference for the potential thermal stability of HT.

  19. Edema and Seed Displacements Affect Intraoperative Permanent Prostate Brachytherapy Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westendorp, Hendrik, E-mail: r.westendorp@radiotherapiegroep.nl; Nuver, Tonnis T.; Department of Radiation Oncology, Radiotherapiegroep Behandellocatie Deventer, Deventer

    Purpose: We sought to identify the intraoperative displacement patterns of seeds and to evaluate the correlation of intraoperative dosimetry with day 30 for permanent prostate brachytherapy. Methods and Materials: We analyzed the data from 699 patients. Intraoperative dosimetry was acquired using transrectal ultrasonography (TRUS) and C-arm cone beam computed tomography (CBCT). Intraoperative dosimetry (minimal dose to 40%-95% of the volume [D{sub 40}-D{sub 95}]) was compared with the day 30 dosimetry for both modalities. An additional edema-compensating comparison was performed for D{sub 90}. Stranded seeds were linked between TRUS and CBCT using an automatic and fast linking procedure. Displacement patterns weremore » analyzed for each seed implantation location. Results: On average, an intraoperative (TRUS to CBCT) D{sub 90} decline of 10.6% ± 7.4% was observed. Intraoperative CBCT D{sub 90} showed a greater correlation (R{sup 2} = 0.33) with respect to Day 30 than did TRUS (R{sup 2} = 0.17). Compensating for edema, the correlation increased to 0.41 for CBCT and 0.38 for TRUS. The mean absolute intraoperative seed displacement was 3.9 ± 2.0 mm. The largest seed displacements were observed near the rectal wall. The central and posterior seeds showed less caudal displacement than lateral and anterior seeds. Seeds that were implanted closer to the base showed more divergence than seeds close to the apex. Conclusions: Intraoperative CBCT D{sub 90} showed a greater correlation with the day 30 dosimetry than intraoperative TRUS. Edema seemed to cause most of the systematic difference between the intraoperative and day 30 dosimetry. Seeds near the rectal wall showed the most displacement, comparing TRUS and CBCT, probably because of TRUS probe–induced prostate deformation.« less

  20. MO-DE-206-00: Joint AAPM-WMIS Symposium: Metabolic Imaging of Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    In this symposium jointly sponsored by the World Molecular Imaging Society (WMIS) and the AAPM, luminary speakers on imaging metabolism will discuss three impactful topics. The first presentation on Cellular Metabolism of FDG will be given by Guillem Pratx (Stanford). This presentation will detail new work on looking at how the most common molecular imaging agent, fluoro-deoxy-glucose is metabolized at a cellular level. This will be followed by a talk on an improved approach to whole-body PET imaging by Simon Cherry (UC Davis). Simon’s work on a new whole-body PET imaging system promises to have dramatic improvement in our abilitymore » to detect and characterize cancer using PET. Finally, Jim Bankson (MD Anderson) will discuss extremely sophisticated approaches to quantifying hyperpolarized-13-C pyruvate metabolism using MR imaging. This technology promises to compliment the exquisite sensitivity of PET with an ability to measure not just uptake, but tumor metabolism. Learning Objectives: Understand the metabolism of FDG at a cellular level. Appreciate the engineering related to a novel new high-sensitivity whole-body PET imaging system. Understand the process of hyperpolarization, how pyruvate relates to metabolism and how advanced modeling can be used to better quantify this data. G. Pratx, Funding: 5R01CA186275, 1R21CA193001, and Damon Runyon Cancer Foundation. S. Cherry, National Institutes of Health; University of California, Davis; Siemens Medical SolutionsJ. Bankson, GE Healthcare; NCI P30-CA016672; CPRIT PR140021-P5.« less

  1. [The use of polymer gel dosimetry to measure dose distribution around metallic implants].

    PubMed

    Nagahata, Tomomasa; Yamaguchi, Hajime; Monzen, Hajime; Nishimura, Yasumasa

    2014-10-01

    A semi-solid polymer dosimetry system using agar was developed to measure the dose distribution close to metallic implants. Dosimetry of heterogeneous fields where electron density markedly varies is often problematic. This prompted us to develop a polymer gel dosimetry technique using agar to measure the dose distribution near substance boundaries. Varying the concentration of an oxygen scavenger (tetra-hydroxymethyl phosphonium chloride) showed the absorbed dose and transverse relaxation rate of the magnetic resonance signal to be linear between 3 and 12 Gy. Although a change in the dosimeter due to oxidization was observed in room air after 24 hours, no such effects were observed in the first 4 hours. The dose distribution around the metal implants was measured using agar dosimetry. The metals tested were a lead rod, a titanium hip joint, and a metallic stent. A maximum 30% dose increase was observed near the lead rod, but only a 3% increase in the absorbed dose was noted near the surface of the titanium hip joint and metallic stent. Semi-solid polymer dosimetry using agar thus appears to be a useful method for dosimetry around metallic substances.

  2. Assessment of national dosimetry quality audits results for teletherapy machines from 1989 to 2015.

    PubMed

    Muhammad, Wazir; Ullah, Asad; Mahmood, Khalid; Matiullah

    2016-01-01

    The purpose of this study was to ensure accuracy in radiation dose delivery, external dosimetry quality audit has an equal importance with routine dosimetry performed at clinics. To do so, dosimetry quality audit was organized by the Secondary Standard Dosimetry Laboratory (SSDL) of Pakistan Institute of Nuclear Science and Technology (PINSTECH) at the national level to investigate and minimize uncertainties involved in the measurement of absorbed dose, and to improve the accuracy of dose measurement at different radiotherapy hospitals. A total of 181 dosimetry quality audits (i.e., 102 of Co-60 and 79 of linear accelerators) for teletherapy units installed at 22 different sites were performed from 1989 to 2015. The percent deviation between users’ calculated/stated dose and evaluated dose (in the result of on-site dosimetry visits) were calculated and the results were analyzed with respect to the limits of ± 2.5% (ICRU "optimal model") ± 3.0% (IAEA on-site dosimetry visits limit) and ± 5.0% (ICRU minimal or "lowest acceptable" model). The results showed that out of 181 total on-site dosimetry visits, 20.44%, 16.02%, and 4.42% were out of acceptable limits of ± 2.5% ± 3.0%, and ± 5.0%, respectively. The importance of a proper ongoing quality assurance program, recommendations of the followed protocols, and properly calibrated thermometers, pressure gauges, and humidity meters at radiotherapy hospitals are essential in maintaining consistency and uniformity of absorbed dose measurements for precision in dose delivery.

  3. Reduced Tissue Levels of Noradrenaline Are Associated with Behavioral Phenotypes of the TgCRND8 Mouse Model of Alzheimer's Disease

    PubMed Central

    Francis, Beverly M; Yang, Jimao; Hajderi, Enid; Brown, Mary E; Michalski, Bernadeta; McLaurin, JoAnne; Fahnestock, Margaret; Mount, Howard T J

    2012-01-01

    Noradrenergic cell loss is well documented in Alzheimer's disease (AD). We have measured the tissue levels of catecholamines in an amyloid precursor protein-transgenic ‘TgCRND8' mouse model of AD and found reductions in noradrenaline (NA) within hippocampus, temporoparietal and frontal cortices, and cerebellum. An age-related increase in cortical NA levels was observed in non-Tg controls, but not in TgCRND8 mice. In contrast, NA levels declined with aging in the TgCRND8 hippocampus. Dopamine levels were unaffected. Reductions in the tissue content of NA were found to coincide with altered expression of brain-derived neurotrophic factor (BDNF) mRNA and to precede the onset of object memory impairment and behavioral despair. To test whether these phenotypes might be associated with diminished NA, we treated mice with dexefaroxan, an antagonist of presynaptic inhibitory α2-adrenoceptors on noradrenergic and cholinergic terminals. Mice 12 weeks of age were infused systemically for 28 days with dexefaroxan or rivastigmine, a cholinesterase inhibitor. Both dexefaroxan and rivastigmine improved TgCRND8 behavioral phenotypes and increased BDNF mRNA expression without affecting amyloid-β peptide levels. Our results highlight the importance of noradrenergic depletion in AD-like phenotypes of TgCRND8 mice. PMID:22491352

  4. Hanford Internal Dosimetry Program Manual, PNL-MA-552

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2009-09-24

    This manual is a guide to the services provided by the Hanford Internal Dosimetry Program (IDP), which is operated by the Pacific Northwest National Laboratory.( ) for the U.S. Department of Energy Richland Operations Office, Office of River Protection and their Hanford Site contractors. The manual describes the roles of and relationships between the IDP and the radiation protection programs of the Hanford Site contractors. Recommendations and guidance are also provided for consideration in implementing bioassay monitoring and internal dosimetry elements of radiation protection programs.

  5. Performance characteristics of mobile MOSFET dosimeter for kilovoltage X-rays used in image guided radiotherapy.

    PubMed

    Kumar, A Sathish; Singh, I Rabi Raja; Sharma, S D; Ravindran, B Paul

    2015-01-01

    The main objective of this study was to investigate the characteristics of metal oxide semiconductor field effect transistor (MOSFET) dosimeter for kilovoltage (kV) X-ray beams in order to perform the in vivo dosimetry during image guidance in radiotherapy. The performance characteristics of high sensitivity MOSFET dosimeters were investigated for 80, 90, 100, 110, 120, and 125 kV X-ray beams used for imaging in radiotherapy. This study was performed using Clinac 2100 C/D medical electron linear accelerator with on-board imaging and kV cone beam computed tomography system. The characteristics studied in this work include energy dependence, angular dependence, and linearity. The X-ray beam outputs were measured as per American Association of Physicists in Medicine (AAPM) TG 61 recommendations using PTW parallel plate (PP) ionization chamber, which was calibrated in terms of air kerma (Nk) by the National Standard Laboratory. The MOSFET dosimeters were calibrated against the PP ionization chamber for all the kV X-ray beams and the calibration coefficient was found to be 0.11 cGy/mV with a standard deviation of about ±1%. The response of MOSFET was found to be energy independent for the kV X-ray energies used in this study. The response of the MOSFET dosimeter was also found independent of angle of incidence for the gantry angles in the range of 0° to 360° in-air as well as at 3 cm depth in tissue equivalent phantom.

  6. Cotinine improves visual recognition memory and decreases cortical Tau phosphorylation in the Tg6799 mice.

    PubMed

    Grizzell, J Alex; Patel, Sagar; Barreto, George E; Echeverria, Valentina

    2017-08-01

    Alzheimer's disease (AD) is associated with the progressive aggregation of hyperphosphorylated forms of the microtubule associated protein Tau in the central nervous system. Cotinine, the main metabolite of nicotine, reduced working memory deficits, synaptic loss, and amyloid β peptide aggregation into oligomers and plaques as well as inhibited the cerebral Tau kinase, glycogen synthase 3β (GSK3β) in the transgenic (Tg)6799 (5XFAD) mice. In this study, the effect of cotinine on visual recognition memory and cortical Tau phosphorylation at the GSK3β sites Serine (Ser)-396/Ser-404 and phospho-CREB were investigated in the Tg6799 and non-transgenic (NT) littermate mice. Tg mice showed short-term visual recognition memory impairment in the novel object recognition test, and higher levels of Tau phosphorylation when compared to NT mice. Cotinine significantly improved visual recognition memory performance increased CREB phosphorylation and reduced cortical Tau phosphorylation. Potential mechanisms underlying theses beneficial effects are discussed. Copyright © 2017. Published by Elsevier Inc.

  7. Development of the GaAs-based THz Photoconductor and Balloon-borne Experiment Module TG-ZERO

    NASA Astrophysics Data System (ADS)

    Watanabe, Kentaroh; Kataza, Hirokazu; Wada, Takehiko; Murakami, Hiroshi; Kamizuka, Takafumi; Makitsubo, Hironobu; Yamashita, Kyohei; Wakaki, Moriaki; Abe, Osamu

    2009-08-01

    The far-infrared (around 1 terahertz (THz)) extrinsic photoconductor is fabricated by a LPE-grown GaAs semiconductor. This GaAs detector can detect longer wavelength photons than the stressed Ge:Ga conventionally used for astronomical infrared observation. We applied the liquid phase epitaxy to obtain a suitable purity of GaAs crystals, and the test N-GaAs photoconductor device shows spectroscopic response over a wide wavelength range of 150-300 micron. The best sample shows 30 A/W of responsivity and 10-16 W/Hz0.5 of NEP is expected at 295 micron of wavelength and T = 1.6 K. In addition, we constructed the terahertz photometer module (TG-ZERO) using our N-GaAs photoconductors. TG-ZERO has four channel bands with N-GaAs and Ge:Ga photoconductors. The development process, the result of experiments, and the basic specifications of TG-ZERO are all reported in this paper.

  8. A new optimization method using a compressed sensing inspired solver for real-time LDR-brachytherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Guthier, C.; Aschenbrenner, K. P.; Buergy, D.; Ehmann, M.; Wenz, F.; Hesser, J. W.

    2015-03-01

    This work discusses a novel strategy for inverse planning in low dose rate brachytherapy. It applies the idea of compressed sensing to the problem of inverse treatment planning and a new solver for this formulation is developed. An inverse planning algorithm was developed incorporating brachytherapy dose calculation methods as recommended by AAPM TG-43. For optimization of the functional a new variant of a matching pursuit type solver is presented. The results are compared with current state-of-the-art inverse treatment planning algorithms by means of real prostate cancer patient data. The novel strategy outperforms the best state-of-the-art methods in speed, while achieving comparable quality. It is able to find solutions with comparable values for the objective function and it achieves these results within a few microseconds, being up to 542 times faster than competing state-of-the-art strategies, allowing real-time treatment planning. The sparse solution of inverse brachytherapy planning achieved with methods from compressed sensing is a new paradigm for optimization in medical physics. Through the sparsity of required needles and seeds identified by this method, the cost of intervention may be reduced.

  9. A new optimization method using a compressed sensing inspired solver for real-time LDR-brachytherapy treatment planning.

    PubMed

    Guthier, C; Aschenbrenner, K P; Buergy, D; Ehmann, M; Wenz, F; Hesser, J W

    2015-03-21

    This work discusses a novel strategy for inverse planning in low dose rate brachytherapy. It applies the idea of compressed sensing to the problem of inverse treatment planning and a new solver for this formulation is developed. An inverse planning algorithm was developed incorporating brachytherapy dose calculation methods as recommended by AAPM TG-43. For optimization of the functional a new variant of a matching pursuit type solver is presented. The results are compared with current state-of-the-art inverse treatment planning algorithms by means of real prostate cancer patient data. The novel strategy outperforms the best state-of-the-art methods in speed, while achieving comparable quality. It is able to find solutions with comparable values for the objective function and it achieves these results within a few microseconds, being up to 542 times faster than competing state-of-the-art strategies, allowing real-time treatment planning. The sparse solution of inverse brachytherapy planning achieved with methods from compressed sensing is a new paradigm for optimization in medical physics. Through the sparsity of required needles and seeds identified by this method, the cost of intervention may be reduced.

  10. Dosimetric study of GZP6 60 Co high dose rate brachytherapy source.

    PubMed

    Lei, Qin; Xu, Anjian; Gou, Chengjun; Wen, Yumei; He, Donglin; Wu, Junxiang; Hou, Qing; Wu, Zhangwen

    2018-05-28

    The purpose of this study was to obtain dosimetric parameters of GZP6 60 Co brachytherapy source number 3. The Geant4 MC code has been used to obtain the dose rate distribution following the American Association of Physicists in Medicine (AAPM) TG-43U1 dosimetric formalism. In the simulation, the source was centered in a 50 cm radius water phantom. The cylindrical ring voxels were 0.1 mm thick for r ≤ 1 cm, 0.5 mm for 1 cm < r ≤ 5 cm, and 1 mm for r > 5 cm. The kerma-dose approximation was performed for r > 0.75 cm to increase the simulation efficiency. Based on the numerical results, the dosimetric datasets were obtained. These results were compared with the available data of the similar 60 Co high dose rate sources and the detailed dosimetric characterization was discussed. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  11. Dosimetry analyses of the Ringhals 3 and 4 reactor pressure vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulesza, J.A.; Fero, A.H.; Rouden, J.

    2011-07-01

    A comprehensive series of neutron dosimetry measurements consisting of surveillance capsules, reactor pressure vessel cladding samples, and ex-vessel neutron dosimetry has been analyzed and compared to the results of three-dimensional, cycle-specific neutron transport calculations for the Ringhals Unit 3 and Unit 4 reactors in Sweden. The comparisons show excellent agreement between calculations and measurements. The measurements also demonstrate that it is possible to perform retrospective dosimetry measurements using the {sup 93}Nb (n,n') {sup 93m}Nb reaction on samples of 18-8 austenitic stainless steel with only trace amounts of elemental niobium. (authors)

  12. The Importance of Dosimetry Standardization in Radiobiology

    PubMed Central

    Desrosiers, Marc; DeWerd, Larry; Deye, James; Lindsay, Patricia; Murphy, Mark K; Mitch, Michael; Macchiarini, Francesca; Stojadinovic, Strahinja; Stone, Helen

    2013-01-01

    Radiation dose is central to much of radiobiological research. Precision and accuracy of dose measurements and reporting of the measurement details should be sufficient to allow the work to be interpreted and repeated and to allow valid comparisons to be made, both in the same laboratory and by other laboratories. Despite this, a careful reading of published manuscripts suggests that measurement and reporting of radiation dosimetry and setup for radiobiology research is frequently inadequate, thus undermining the reliability and reproducibility of the findings. To address these problems and propose a course of action, the National Cancer Institute (NCI), the National Institute of Allergy and Infectious Diseases (NIAID), and the National Institute of Standards and Technology (NIST) brought together representatives of the radiobiology and radiation physics communities in a workshop in September, 2011. The workshop participants arrived at a number of specific recommendations as enumerated in this paper and they expressed the desirability of creating dosimetry standard operating procedures (SOPs) for cell culture and for small and large animal experiments. It was also felt that these SOPs would be most useful if they are made widely available through mechanism(s) such as the web, where they can provide guidance to both radiobiologists and radiation physicists, be cited in publications, and be updated as the field and needs evolve. Other broad areas covered were the need for continuing education through tutorials at national conferences, and for journals to establish standards for reporting dosimetry. This workshop did not address issues of dosimetry for studies involving radiation focused at the sub-cellular level, internally-administered radionuclides, biodosimetry based on biological markers of radiation exposure, or dose reconstruction for epidemiological studies. PMID:26401441

  13. Progress with the NCT international dosimetry exchange.

    PubMed

    Binns, P J; Riley, K J; Harling, O K; Auterinen, I; Marek, M; Kiger, W S

    2004-11-01

    The international collaboration that was organized to undertake a dosimetry exchange for purposes of combining clinical data from different facilities conducting neutron capture therapy has continued since its founding at the 9th ISNCT symposium in October 2000. The thrust towards accumulating physical dosimetry data for comparison between different participants has broadened to include facilities in Japan and the determination of spectral descriptions of different beams. Retrospective analysis of patient data from the Brookhaven Medical Research Reactor is also being considered for incorporation into this study to increase the pool of available data. Meanwhile the next essential phase of comparing measurements of visiting dosimetry groups with treatment plan calculations from the host institutes has commenced. Host centers from Petten, Finland and the Czech Republic in Europe and MIT in the USA have applied the regular calculations and clinical calibrations from their current clinical studies, to generate treatment plans in the large standard phantom used for measurements by visiting participants. These data have been exchanged between the participants and scaling factors to relate the separate dose components between the different institutes are being determined. Preliminary normalization of measured and calculated dosimetry for patients is nearing completion to enable the physical radiation doses that comprise a treatment prescription at a host institute to be directly related to the corresponding measured doses of a visiting group. This should serve as an impetus for the direct comparison of patient data although the clinical requirements for achieving this need to be clearly defined. This may necessitate more extensive comparisons of treatment planning calculations through the solution of test problems and clarification regarding the question of dose specification from treatment calculations in general.

  14. TH-A-204-00: Key Dosimetry Data - Impact of New ICRU Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The ICRU is currently finalizing a report on key data for radiation dosimetry. This multi-year review has resulted in a number of recommendations regarding “fundamental” data that are used in dosimetry related to radiation therapy. This educational session will explain the background for the ICRU committee’s work, the content and conclusions of the report and the impact on outputs, including NIST primary standards, ADCL calibration coefficients and clinical reference dosimetry. Parameters and beam modalities potentially affected by this report include: The mean excitation energy, I, for graphite, air, and water, The average energy required to create an ion pair inmore » dry air (commonly referred to as W/e), The uncertainty in the determination of air kerma in kV xrays The absolute value of Co-60 and Cs-137 primary standards and the dissemination of calibration coefficients, The determination of air kerma strength for Ir-192 HDR brachytherapy sources Ion chamber kQ factors for linac MV beams Ion chamber kQ factors for proton beams. The changes in reference dosimetry that would result from adoption of the ICRU recommendations are of the order of 0.5% to 1%, an effect that will not impact clinical dose delivery but will be detectable in the clinical setting. This session will also outline how worldwide metrology is coordinated through the Convention of the Meter and therefore how the international dosimetry community will proceed with adopting these recommendations so that uniformity from country to country in reference dosimetry is maintained. Timelines and communications methods will also be discussed to ensure that users, such as clinical medical physicists, are not surprised when their chamber’s calibration coefficient apparently changes. Learning Objectives: Understand the background for the ICRU committee’s work on key dosimetry data. Understand the proposed changes to key data and the impacts on reference dosimetry. Understand the methodology and

  15. TH-A-204-01: Part I - Key Data for Ionizing-Radiation Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seltzer, S.

    The ICRU is currently finalizing a report on key data for radiation dosimetry. This multi-year review has resulted in a number of recommendations regarding “fundamental” data that are used in dosimetry related to radiation therapy. This educational session will explain the background for the ICRU committee’s work, the content and conclusions of the report and the impact on outputs, including NIST primary standards, ADCL calibration coefficients and clinical reference dosimetry. Parameters and beam modalities potentially affected by this report include: The mean excitation energy, I, for graphite, air, and water, The average energy required to create an ion pair inmore » dry air (commonly referred to as W/e), The uncertainty in the determination of air kerma in kV x-rays The absolute value of Co-60 and Cs-137 primary standards and the dissemination of calibration coefficients, The determination of air kerma strength for Ir-192 HDR brachytherapy sources Ion chamber kQ factors for linac MV beams Ion chamber kQ factors for proton beams. The changes in reference dosimetry that would result from adoption of the ICRU recommendations are of the order of 0.5% to 1%, an effect that will not impact clinical dose delivery but will be detectable in the clinical setting. This session will also outline how worldwide metrology is coordinated through the Convention of the Meter and therefore how the international dosimetry community will proceed with adopting these recommendations so that uniformity from country to country in reference dosimetry is maintained. Timelines and communications methods will also be discussed to ensure that users, such as clinical medical physicists, are not surprised when their chamber’s calibration coefficient apparently changes. Learning Objectives: Understand the background for the ICRU committee’s work on key dosimetry data. Understand the proposed changes to key data and the impacts on reference dosimetry. Understand the methodology and

  16. Physical transformation of niclosamide solvates in pharmaceutical suspensions determined by DSC and TG analysis.

    PubMed

    de Villiers, M M; Mahlatji, M D; Malan, S F; van Tonder, E C; Liebenberg, W

    2004-07-01

    This study reports the preparation of four niclosamide solvates and the determination of the stability of the crystal forms in different suspension vehicles by DSC and TG analysis. Thermal analysis showed that the niclosamide solvates were extremely unstable in a PVP-vehicle and rapidly changed to monohydrated crystals. A suspension in propylene glycol was more stable and TG analysis showed that crystal transformation was less rapid. In this vehicle, the crystals transformed to the anhydrate, rather than the monohydrate, since the vehicle was non-aqueous. The TEG-hemisolvate was the most stable in suspension and offered the best possibility of commercial exploitation.

  17. Fundamentals of materials, techniques and instrumentation for OSL and FNTD dosimetry

    NASA Astrophysics Data System (ADS)

    Akselrod, M. S.

    2013-02-01

    The optically stimulated luminescence (OSL) technique has already become a successful commercial tool in personal radiation dosimetry, medical dosimetry, diagnostic imaging, geological and archeological dating. This review briefly describes the history and fundamental principles of OSL materials, methods and instrumentation. The advantages of OSL technology and instrumentation in comparison with thermoluminescent technique are analyzed. Progress in material and detector engineering has allowed new and promising developments regarding OSL applications in the medical field. Special attention is dedicated to Al2O3:C as a material of choice for many dosimetric applications including fiberoptic OSL/RL sensors with diameters as small as 300 μm. A new RL/OSL fiberoptic system has a high potential for in vivo and in vitro dosimetry in both radiation therapy and diagnostic mammography. Different aspects of instrumentation, data processing algorithms, post-irradiation and real-time measurements are described. The next technological breakthrough was done with Fluorescent Nuclear Track detectors (FNTD) that has some important advantages in measuring fast neutron and high energy heavy charge particles that became the latest tool in radiation therapy. New Mg-doped aluminum oxide crystals and novel type of imaging instrumentation for FNTD technology were engineered and successfully demonstrated for occupational and accident dosimetry, for medical dosimetry and radiobiological research.

  18. 43 CFR 43.625 - Criminal drug statute.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Criminal drug statute. 43.625 Section 43.625 Public Lands: Interior Office of the Secretary of the Interior GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 43.625 Criminal drug statute. Criminal drug...

  19. Calibration of a mosfet detection system for 6-MV in vivo dosimetry.

    PubMed

    Scalchi, P; Francescon, P

    1998-03-01

    Metal oxide semiconductor field-effect transistor (MOSFET) detectors were calibrated to perform in vivo dosimetry during 6-MV treatments, both in normal setup and total body irradiation (TBI) conditions. MOSFET water-equivalent depth, dependence of the calibration factors (CFs) on the field sizes, MOSFET orientation, bias supply, accumulated dose, incidence angle, temperature, and spoiler-skin distance in TBI setup were investigated. MOSFET reproducibility was verified. The correlation between the water-equivalent midplane depth and the ratio of the exit MOSFET readout divided by the entrance MOSFET readout was studied. MOSFET midplane dosimetry in TBI setup was compared with thermoluminescent dosimetry in an anthropomorphic phantom. By using ionization chamber measurements, the TBI midplane dosimetry was also verified in the presence of cork as a lung substitute. The water-equivalent depth of the MOSFET is about 0.8 mm or 1.8 mm, depending on which sensor side faces the beam. The field size also affects this quantity; Monte Carlo simulations allow driving this behavior by changes in the contaminating electron mean energy. The CFs vary linearly as a function of the square field side, for fields ranging from 5 x 5 to 30 x 30 cm2. In TBI setup, varying the spoiler-skin distance between 5 mm and 10 cm affects the CFs within 5%. The MOSFET reproducibility is about 3% (2 SD) for the doses normally delivered to the patients. The effect of the accumulated dose on the sensor response is negligible. For beam incidence ranging from 0 degrees to 90 degrees, the MOSFET response varies within 7%. No monotonic correlation between the sensor response and the temperature is apparent. Good correlation between the water-equivalent midplane depth and the ratio of the exit MOSFET readout divided by the entrance MOSFET readout was found (the correlation coefficient is about 1). The MOSFET midplane dosimetry relevant to the anthropomorphic phantom irradiation is in agreement with TLD

  20. High Background Incidence of Spontaneous Subcapsular Adrenal Gland Hyperplasia of Tg.rasH2 Mice Used in 26-week Carcinogenicity Studies.

    PubMed

    Boyle, Molly H; Paranjpe, Madhav G; Creasy, Dianne M

    2018-06-01

    The Tg.rasH2 model was accepted by regulatory agencies worldwide for 26-week carcinogenicity assays as an alternative to the standard 2-year assays in conventional mice in 2003. Several references documenting spontaneous nonneoplastic findings and incidences of spontaneous tumors in the Tg.rasH2 mice have been published. The purpose of this publication is to add adrenal gland subcapsular hyperplasia to the database pertaining to spontaneous lesions noted in Tg.rasH2 mice, review physiology related to this finding, and discuss its significance. The incidence of spontaneous subcapsular adrenal gland hyperplasia was determined in control Tg.rasH2 mice from nine 26-week carcinogenicity studies carried out within the last 5 years at two contract research organizations. Incidence of this finding ranged from 56% to 79% in males and 88% to 100% in females, with an incidence average of 62% in males and 93% in females. Adrenal gland subcapsular hyperplasia is a common finding in male and female Tg.rasH2 mice that did not progress to neoplasia in Tg.rasH2 mice. In general, it tends to be more frequent and severe in females in comparison to males.

  1. Software tool for portal dosimetry research.

    PubMed

    Vial, P; Hunt, P; Greer, P B; Oliver, L; Baldock, C

    2008-09-01

    This paper describes a software tool developed for research into the use of an electronic portal imaging device (EPID) to verify dose for intensity modulated radiation therapy (IMRT) beams. A portal dose image prediction (PDIP) model that predicts the EPID response to IMRT beams has been implemented into a commercially available treatment planning system (TPS). The software tool described in this work was developed to modify the TPS PDIP model by incorporating correction factors into the predicted EPID image to account for the difference in EPID response to open beam radiation and multileaf collimator (MLC) transmitted radiation. The processes performed by the software tool include; i) read the MLC file and the PDIP from the TPS, ii) calculate the fraction of beam-on time that each point in the IMRT beam is shielded by MLC leaves, iii) interpolate correction factors from look-up tables, iv) create a corrected PDIP image from the product of the original PDIP and the correction factors and write the corrected image to file, v) display, analyse, and export various image datasets. The software tool was developed using the Microsoft Visual Studio.NET framework with the C# compiler. The operation of the software tool was validated. This software provided useful tools for EPID dosimetry research, and it is being utilised and further developed in ongoing EPID dosimetry and IMRT dosimetry projects.

  2. Reconstructive dosimetry for cutaneous radiation syndrome

    PubMed Central

    Lima, C.M.A.; Lima, A.R.; Degenhardt, Ä.L.; Valverde, N.J.; Da Silva, F.C.A.

    2015-01-01

    According to the International Atomic Energy Agency (IAEA), a relatively significant number of radiological accidents have occurred in recent years mainly because of the practices referred to as potentially high-risk activities, such as radiotherapy, large irradiators and industrial radiography, especially in gammagraphy assays. In some instances, severe injuries have occurred in exposed persons due to high radiation doses. In industrial radiography, 80 cases involving a total of 120 radiation workers, 110 members of the public including 12 deaths have been recorded up to 2014. Radiological accidents in industrial practices in Brazil have mainly resulted in development of cutaneous radiation syndrome (CRS) in hands and fingers. Brazilian data include 5 serious cases related to industrial gammagraphy, affecting 7 radiation workers and 19 members of the public; however, none of them were fatal. Some methods of reconstructive dosimetry have been used to estimate the radiation dose to assist in prescribing medical treatment. The type and development of cutaneous manifestations in the exposed areas of a person is the first achievable gross dose estimation. This review article presents the state-of-the-art reconstructive dosimetry methods enabling estimation of local radiation doses and provides guidelines for medical handling of the exposed individuals. The review also presents the Chilean and Brazilian radiological accident cases to highlight the importance of reconstructive dosimetry. PMID:26445332

  3. 43 CFR 43.635 - Drug-free workplace.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Drug-free workplace. 43.635 Section 43.635 Public Lands: Interior Office of the Secretary of the Interior GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 43.635 Drug-free workplace. Drug-free workplace means a site...

  4. MO-FG-BRC-00: Joint AAPM-ESTRO Symposium: Advances in Experimental Medical Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Experimental research in medical physics has expanded the limits of our knowledge and provided novel imaging and therapy technologies for patients around the world. However, experimental efforts are challenging due to constraints in funding, space, time and other forms of institutional support. In this joint ESTRO-AAPM symposium, four exciting experimental projects from four different countries are highlighted. Each project is focused on a different aspect of radiation therapy. From the USA, we will hear about a new linear accelerator concept for more compact and efficient therapy devices. From Canada, we will learn about novel linear accelerator target design and themore » implications for imaging and therapy. From France, we will discover a mature translational effort to incorporate theranostic nanoparticles in MR-guided radiation therapy. From Germany, we will find out about a novel in-treatment imaging modality for particle therapy. These examples of high impact, experimental medical physics research are representative of the diversity of such efforts that are on-going around the globe. J. Robar, Research is supported through collaboration with Varian Medical Systems and Brainlab AGD. Westerly, This work is supported by the Department of Radiation Oncology at the University of Colorado School of Medicine. COI: NONEK. Parodi, Part of the presented work is supported by the DFG (German Research Foundation) Cluster of Excellence MAP (Munich-Centre for Advanced Photonics) and has been carried out in collaboration with IBA.« less

  5. Association between Triglyceride to HDL-C Ratio (TG/HDL-C) and Insulin Resistance in Chinese Patients with Newly Diagnosed Type 2 Diabetes Mellitus

    PubMed Central

    Ren, Xingxing; Chen, Zeng.ai; Zheng, Shuang; Han, Tingting; Li, Yangxue; Liu, Wei; Hu, Yaomin

    2016-01-01

    Objectives To explore the association between the triglyceride to HDL-C ratio (TG/HDL-C) and insulin resistance in Chinese patients with newly diagnosed type 2 diabetes mellitus. Methods Patients with newly diagnosed type 2 diabetes mellitus (272 men and 288 women) were enrolled and divided into three groups according to TG/HDL-C tertiles. Insulin resistance was defined by homeostatic model assessment of insulin resistance (HOMA-IR). Demographic information and clinical characteristics were obtained. Spearman’s correlation was used to estimate the association between TG/HDL-C and other variables. Multiple logistic regression analyses were adopted to obtain probabilities of insulin resistance. A receiver operating characteristic analysis was conducted to evaluate the ability of TG/HDL-C to discriminate insulin resistance. Results TG/HDL-C was associated with insulin resistance in Chinese patients with newly diagnosed T2DM (Spearman’s correlation coefficient = 0.21, P < 0.01). Patients in the higher tertiles of TG/HDL-C had significantly higher HOMA-IR values than patients in the lower tertiles [T1: 2.68(1.74–3.70); T2: 2.96(2.29–4.56); T3: 3.09(2.30–4.99)]. Multiple logistic regression analysis showed that TG/HDL-C was significantly associated with HOMA-IR, and patients in the higher TG/HDL-C tertile had a higher OR than those in the lower TG/HDL-C tertile, after adjusting for multiple covariates including indices for central obesity [T1: 1; T2: 4.02(1.86–8.71); T3: 4.30(1.99–9.29)]. Following stratification of waist circumference into quartiles, the effect of TG/HDL-C on insulin resistance remained significant irrespective of waist circumference. Conclusions TG/HDL-C was associated with insulin resistance independent of waist circumference. Whether it could be a surrogate marker for insulin resistance in Chinese patients with newly diagnosed type 2 diabetes mellitus still needs to be confirmed by more researches. PMID:27115999

  6. Association between Triglyceride to HDL-C Ratio (TG/HDL-C) and Insulin Resistance in Chinese Patients with Newly Diagnosed Type 2 Diabetes Mellitus.

    PubMed

    Ren, Xingxing; Chen, Zeng Ai; Zheng, Shuang; Han, Tingting; Li, Yangxue; Liu, Wei; Hu, Yaomin

    2016-01-01

    To explore the association between the triglyceride to HDL-C ratio (TG/HDL-C) and insulin resistance in Chinese patients with newly diagnosed type 2 diabetes mellitus. Patients with newly diagnosed type 2 diabetes mellitus (272 men and 288 women) were enrolled and divided into three groups according to TG/HDL-C tertiles. Insulin resistance was defined by homeostatic model assessment of insulin resistance (HOMA-IR). Demographic information and clinical characteristics were obtained. Spearman's correlation was used to estimate the association between TG/HDL-C and other variables. Multiple logistic regression analyses were adopted to obtain probabilities of insulin resistance. A receiver operating characteristic analysis was conducted to evaluate the ability of TG/HDL-C to discriminate insulin resistance. TG/HDL-C was associated with insulin resistance in Chinese patients with newly diagnosed T2DM (Spearman's correlation coefficient = 0.21, P < 0.01). Patients in the higher tertiles of TG/HDL-C had significantly higher HOMA-IR values than patients in the lower tertiles [T1: 2.68(1.74-3.70); T2: 2.96(2.29-4.56); T3: 3.09(2.30-4.99)]. Multiple logistic regression analysis showed that TG/HDL-C was significantly associated with HOMA-IR, and patients in the higher TG/HDL-C tertile had a higher OR than those in the lower TG/HDL-C tertile, after adjusting for multiple covariates including indices for central obesity [T1: 1; T2: 4.02(1.86-8.71); T3: 4.30(1.99-9.29)]. Following stratification of waist circumference into quartiles, the effect of TG/HDL-C on insulin resistance remained significant irrespective of waist circumference. TG/HDL-C was associated with insulin resistance independent of waist circumference. Whether it could be a surrogate marker for insulin resistance in Chinese patients with newly diagnosed type 2 diabetes mellitus still needs to be confirmed by more researches.

  7. SU-G-TeP2-07: Dosimetric Characterization of a New HDR Multi-Channel Esophageal Applicator for Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, A; Gao, S; Greskovich, J

    2016-06-15

    Purpose: To characterize the dose distribution of a new multi-channel esophageal applicator for brachytherapy HDR treatment, and particularly the effect of the presence of air or water in the applicator’s expansion balloon. Methods: A new multi-channel (6) inflatable applicator for esophageal HDR has been developed in house and tested in a simple water phantom. CT image sets were obtained under several balloon expansions (80ml of air, 50 cc of water), and channel loadings and used with the Oncentra (Elekta) planning system based on TG43 formalism. 400 cGy was prescribed to a plane 1cm away from the applicator. Planar dose distributionsmore » were measured for that plane and one next to the applicator using Gafchromic EBT3 film and scanned by a Vidar VXR-12 film digitizer. Film and TPS generated dose distributions of film were sent to OmniPro I’mRT (iba DOSIMETRY) for analysis. 2D dose profiles in both X and Y directions were compared and gamma analysis performed. Results: Film dose measurement of the air-inflated applicator is lower than the TPS calculated dose by as much as 60%. Only 80.8% of the pixels passed the gamma criteria (3%/3mm). For the water-inflated applicator, the measured film dose is fairly close to the TPS calculated dose (typically within <3%). 99.84% of the pixels passed the gamma criteria (3%/3mm). Conclusion: TG43 based calculations worked well when water was used in the expansion balloon. However, when air is present in that balloon, the neglect of heterogeneity corrections in the TG43 calculation results in large differences between calculated and measured doses. This could result in severe underdosing when used in a patient. This study illustrates the need for a TPS with an advanced algorithm which can account for heterogeneity. Supported by Innovations Department, Cleveland Clinic.« less

  8. Brain and Brown Adipose Tissue Metabolism in Transgenic Tg2576 Mice Models of Alzheimer Disease Assessed Using 18F-FDG PET Imaging

    PubMed Central

    Coleman, Robert A.; Liang, Christopher; Patel, Rima; Ali, Sarah

    2017-01-01

    Objective: Imaging animal models of Alzheimer disease (AD) is useful for the development of therapeutic drugs and understanding AD. Transgenic Swedish hAPPswe Tg2576 mice are a good model of β-amyloid plaques. We report 18F-fluoro-2-deoxyglucose (18F-FDG) positron emission tomography (PET) imaging of brain and intrascapular brown adipose tissue (IBAT) in transgenic mice 2576 (Tg2576) and wild-type (WT) mice. Methods: Transgenic Tg2576 mice and WT mice, >18 months were injected intraperitonally with ≈ 25 to 30 MBq 18F-FDG while awake. After 60 minutes, they were anesthetized with isoflurane (2.5%) and imaged with Inveon MicroPET. Select mice were killed, imaged ex vivo, and 20 µm sections cut for autoradiography. 18F-FDG uptake in brain and IBAT PET and brain autoradiographs were analyzed. Results: Fasting blood glucose levels averaged 120 mg/dL for WT and 100 mg/dL for Tg2576. Compared to WT, Tg2576 mice exhibited a decrease in SUVglc in the various brain regions. Average reductions in the cerebrum regions were as high as −20%, while changes in cerebellum were −3%. Uptake of 18F-FDG in IBAT decreased by −60% in Tg2576 mice and was found to be significant. Intrascapular brown adipose tissue findings in Tg2576 mice are new and not previously reported. Use of blood glucose for PET data analysis and corpus callosum as reference region for autoradiographic analysis were important to detect change in Tg2576 mice. Conclusion: Our results suggest that 18F-FDG uptake in the Tg2576 mice brain show 18F-FDG deficits only when blood glucose is taken into consideration. PMID:28654383

  9. ESR/Alanine gamma-dosimetry in the 10-30 Gy range.

    PubMed

    Fainstein, C; Winkler, E; Saravi, M

    2000-05-01

    We report Alanine Dosimeter preparation, procedures for using the ESR/Dosimetry method, and the resulting calibration curve for gamma-irradiation in the range from 10-30 Gy. We use calibration curve to measure the irradiation dose in gamma-irradiation of human blood, as required in Blood Transfusion Therapy. The ESR/Alanine results are compared against those obtained using the thermoluminescent dosimetry (TLD) method.

  10. Dosimetry quality audit of high energy photon beams in greek radiotherapy centers.

    PubMed

    Hourdakis, Constantine J; Boziari, A

    2008-04-01

    Dosimetry quality audits and intercomparisons in radiotherapy centers is a useful tool in order to enhance the confidence for an accurate therapy and to explore and dissolve discrepancies in dose delivery. This is the first national comprehensive study that has been carried out in Greece. During 2002--2006 the Greek Atomic Energy Commission performed a dosimetry quality audit of high energy external photon beams in all (23) Greek radiotherapy centers, where 31 linacs and 13 Co-60 teletherapy units were assessed in terms of their mechanical performance characteristics and relative and absolute dosimetry. The quality audit in dosimetry of external photon beams took place by means of on-site visits, where certain parameters of the photon beams were measured, calculated and assessed according to a specific protocol and the IAEA TRS 398 dosimetry code of practice. In each radiotherapy unit (Linac or Co-60), certain functional parameters were measured and the results were compared to tolerance values and limits. Doses in water under reference and non reference conditions were measured and compared to the stated values. Also, the treatment planning systems (TPS) were evaluated with respect to irradiation time calculations. The results of the mechanical tests, dosimetry measurements and TPS evaluation have been presented in this work and discussed in detail. This study showed that Co-60 units had worse performance mechanical characteristics than linacs. 28% of all irradiation units (23% of linacs and 42% of Co-60 units) exceeded the acceptance limit at least in one mechanical parameter. Dosimetry accuracy was much worse in Co60 units than in linacs. 61% of the Co60 units exhibited deviations outside +/-3% and 31% outside +/-5%. The relevant percentages for the linacs were 24% and 7% respectively. The results were grouped for each hospital and the sources of errors (functional and human) have been investigated and discussed in details. This quality audit proved to be a

  11. The relationship between the Tg depression and the speeding up of physical aging in polystyrene/gold nanocomposites

    NASA Astrophysics Data System (ADS)

    Boucher, Virginie M.; Cangialosi, Daniele; Alegria, Angel; Colmenero, Juan

    2011-03-01

    The effect of gold nanoparticles on the segmental dynamics, glass transition (Tg) and physical aging of polystyrene (PS) was studied in PS/Gold nanocomposites samples containing 5 and 15 wt.% of 60 nm spherical gold nanoparticles, surface-treated with thiolated-PS. While the segmental dynamics of PS, as assessed by broadband dielectric spectroscopy (BDS), was found to be unchanged in presence of gold nanoparticles, the calorimetric Tg of PS was shown to decrease with increasing the amount of nanoparticles in the samples. Furthermore, the physical aging of PS, monitored by measuring the enthalpy relaxation below Tg by means of DSC, was shown to speed up with increasing the nanoparticles weight fraction, i.e. the amount of PS/Gold interface in the hybrid material. Thus, the main conclusion of our work is that PS molecular mobility and out-of-equilibrium dynamics are decoupled in these nanocomposites. The significant effect of the amount of PS/Gold interface on both the physical aging rate of PS and the calorimetric Tg depression are quantitatively accounted for by a model based on the diffusion of free volume holes towards polymer interfaces, with a diffusion coefficient depending only on the molecular mobility.

  12. History of dose specification in Brachytherapy: From Threshold Erythema Dose to Computational Dosimetry

    NASA Astrophysics Data System (ADS)

    Williamson, Jeffrey F.

    2006-09-01

    This paper briefly reviews the evolution of brachytherapy dosimetry from 1900 to the present. Dosimetric practices in brachytherapy fall into three distinct eras: During the era of biological dosimetry (1900-1938), radium pioneers could only specify Ra-226 and Rn-222 implants in terms of the mass of radium encapsulated within the implanted sources. Due to the high energy of its emitted gamma rays and the long range of its secondary electrons in air, free-air chambers could not be used to quantify the output of Ra-226 sources in terms of exposure. Biological dosimetry, most prominently the threshold erythema dose, gained currency as a means of intercomparing radium treatments with exposure-calibrated orthovoltage x-ray units. The classical dosimetry era (1940-1980) began with successful exposure standardization of Ra-226 sources by Bragg-Gray cavity chambers. Classical dose-computation algorithms, based upon 1-D buildup factor measurements and point-source superposition computational algorithms, were able to accommodate artificial radionuclides such as Co-60, Ir-192, and Cs-137. The quantitative dosimetry era (1980- ) arose in response to the increasing utilization of low energy K-capture radionuclides such as I-125 and Pd-103 for which classical approaches could not be expected to estimate accurate correct doses. This led to intensive development of both experimental (largely TLD-100 dosimetry) and Monte Carlo dosimetry techniques along with more accurate air-kerma strength standards. As a result of extensive benchmarking and intercomparison of these different methods, single-seed low-energy radionuclide dose distributions are now known with a total uncertainty of 3%-5%.

  13. Gamma response characterizations of optically stimulated luminescence (OSL) affects personal dosimetry

    NASA Astrophysics Data System (ADS)

    Monthonwattana, S.; Esor, J.; Rungseesumran, T.; Intang, A.

    2017-06-01

    Optically Stimulated Luminescence (OSL) is the current technique of personal dosimetry changed by Nuclear Technology Service Center instead of Thermoluminescence dosimetry (TLD) because OSL has more advantages, such as repeat reading and elimination of heating process. In this study, OSL was used to test the gamma response characterizations. Detailed OSL investigation on personal dosimetry was carried out in the dose range of 0.2 - 3.0 mSv. The batch homogeneity was 7.66%. R2 value of the linear regression was 0.9997. The difference ratio of angular dependence at ± 60° was 8.7%. Fading of the reading was about 3%.

  14. Revisiting photodynamic therapy dosimetry: reductionist & surrogate approaches to facilitate clinical success

    NASA Astrophysics Data System (ADS)

    Pogue, Brian W.; Elliott, Jonathan T.; Kanick, Stephen C.; Davis, Scott C.; Samkoe, Kimberley S.; Maytin, Edward V.; Pereira, Stephen P.; Hasan, Tayyaba

    2016-04-01

    Photodynamic therapy (PDT) can be a highly complex treatment, with many parameters influencing treatment efficacy. The extent to which dosimetry is used to monitor and standardize treatment delivery varies widely, ranging from measurement of a single surrogate marker to comprehensive approaches that aim to measure or estimate as many relevant parameters as possible. Today, most clinical PDT treatments are still administered with little more than application of a prescribed drug dose and timed light delivery, and thus the role of patient-specific dosimetry has not reached widespread clinical adoption. This disconnect is at least partly due to the inherent conflict between the need to measure and understand multiple parameters in vivo in order to optimize treatment, and the need for expedience in the clinic and in the regulatory and commercialization process. Thus, a methodical approach to selecting primary dosimetry metrics is required at each stage of translation of a treatment procedure, moving from complex measurements to understand PDT mechanisms in pre-clinical and early phase I trials, towards the identification and application of essential dose-limiting and/or surrogate measurements in phase II/III trials. If successful, identifying the essential and/or reliable surrogate dosimetry measurements should help facilitate increased adoption of clinical PDT. In this paper, examples of essential dosimetry points and surrogate dosimetry tools that may be implemented in phase II/III trials are discussed. For example, the treatment efficacy as limited by light penetration in interstitial PDT may be predicted by the amount of contrast uptake in CT, and so this could be utilized as a surrogate dosimetry measurement to prescribe light doses based upon pre-treatment contrast. Success of clinical ALA-based skin lesion treatment is predicted almost uniquely by the explicit or implicit measurements of photosensitizer and photobleaching, yet the individualization of treatment

  15. Poster - 07: Investigations of the Advanced Collapsed-cone Engine for HDR Brachytherapy Scalp Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cawston-Grant, Brie; Morrison, Hali; Sloboda, Ron

    Purpose: To present an investigation of the Advanced Collapsed-cone Engine (ACE) in Oncentraê Brachy (OcB) v4.5 using a tissue equivalent phantom modeling scalp brachytherapy (BT) treatments. Methods: A slab phantom modeling the skin, skull, brain and mold was used. A dose of 400cGy was prescribed to just above the skull layer using TG-43 and was delivered using an HDR afterloader. Measurements were made using Gafchromic™ EBT3 film at four depths within the phantom. The TG-43 planned and film measured doses were compared to the standard (sACE) and high (hACE) accuracy ACE options in OcB between the surface and below themore » skull. Results: The average difference between the TG-43 calculated and film measured doses was −11.25±3.38% when there was no air gap between the mold and skin; sACE and hACE doses were on average lower than TG-43 calculated doses by 3.41±0.03% and 2.45±0.03%, respectively. With a 3mm air gap between the mold and skin, the difference between the TG-43 calculated and measured doses was −8.28±5.76%; sACE and hACE calculations yielded average doses 1.87±0.03% and 1.78±0.04% greater than TG-43, respectively. Conclusions: TG-43, sACE, and hACE were found to overestimate doses below the skull layer compared to film. With a 3mm air gap between the mold and skin, sACE and hACE more accurately predicted the film dose to the skin surface than TG-43. More clinical variations and their implications are currently being investigated.« less

  16. Analysis of tau post-translational modifications in rTg4510 mice, a model of tau pathology.

    PubMed

    Song, Lixin; Lu, Sherry X; Ouyang, Xuesong; Melchor, Jerry; Lee, Julie; Terracina, Giuseppe; Wang, Xiaohai; Hyde, Lynn; Hess, J Fred; Parker, Eric M; Zhang, Lili

    2015-03-26

    Microtubule associated protein tau is the major component of the neurofibrillary tangles (NFTs) found in the brains of patients with Alzheimer's disease and several other neurodegenerative diseases. Tau mutations are associated with frontotemperal dementia with parkinsonism on chromosome 17 (FTDP-17). rTg4510 mice overexpress human tau carrying the P301L FTDP-17 mutation and develop robust NFT-like pathology at 4-5 months of age. The current study is aimed at characterizing the rTg4510 mice to better understand the genesis of tau pathology and to better enable the use of this model in drug discovery efforts targeting tau pathology. Using a panel of immunoassays, we analyzed the age-dependent formation of pathological tau in rTg4510 mice and our data revealed a steady age-dependent accumulation of pathological tau in the insoluble fraction of brain homogenates. The pathological tau was associated with multiple post-translational modifications including aggregation, phosphorylation at a wide variety of sites, acetylation, ubiquitination and nitration. The change of most tau species reached statistical significance at the age of 16 weeks. There was a strong correlation between the different post-translationally modified tau species in this heterogeneous pool of pathological tau. Total tau in the cerebrospinal fluid (CSF) displayed a multiphasic temporal profile distinct from the steady accumulation of pathological tau in the brain. Female rTg4510 mice displayed significantly more aggressive accumulation of pathological tau in the brain and elevation of total tau in CSF than their male littermates. The immunoassays described here were used to generate the most comprehensive description of the changes in various tau species across the lifespan of the rTg4510 mouse model. The data indicate that development of tauopathy in rTg4510 mice involves the accumulation of a pool of pathological tau that carries multiple post-translational modifications, a process that can be

  17. The Mayak Worker Dosimetry System (Mwds-2013): An Introduction to The Documentation

    DOE PAGES

    Napier, B. A.

    2017-03-17

    The reconstruction of radiation doses to Mayak Production Association workers in central Russia supports radiation epidemiological studies for the U.S.-Russian Joint Coordinating Committee on Radiation Effects Research. The most recent version of the dosimetry was performed with the Mayak Worker Dosimetry System-2013. Here, this introduction outlines the logic and general content of the series of articles presented in this issue of Radiation Protection Dosimetry. The articles summarize the models, describe the basis for most of the key decisions made in developing the models and present an overview of the results.

  18. The Mayak Worker Dosimetry System (Mwds-2013): An Introduction to The Documentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napier, B. A.

    The reconstruction of radiation doses to Mayak Production Association workers in central Russia supports radiation epidemiological studies for the U.S.-Russian Joint Coordinating Committee on Radiation Effects Research. The most recent version of the dosimetry was performed with the Mayak Worker Dosimetry System-2013. Here, this introduction outlines the logic and general content of the series of articles presented in this issue of Radiation Protection Dosimetry. The articles summarize the models, describe the basis for most of the key decisions made in developing the models and present an overview of the results.

  19. Celiac anti-type 2 transglutaminase antibodies induce differential effects in fibroblasts from celiac disease patients and from healthy subjects.

    PubMed

    Paolella, Gaetana; Lepretti, Marilena; Barone, Maria Vittoria; Nanayakkara, Merlin; Di Zenzo, Marina; Sblattero, Daniele; Auricchio, Salvatore; Esposito, Carla; Caputo, Ivana

    2017-03-01

    Type 2 transglutaminase (TG2) has an important pathogenic role in celiac disease (CD), an inflammatory intestinal disease that is caused by the ingestion of gluten-containing cereals. Indeed, TG2 deamidates specific gliadin peptides, thus enhancing their immunogenicity. Moreover, the transamidating activity seems to provoke an autoimmune response, where TG2 is the main autoantigen. Many studies have highlighted a possible pathogenetic role of anti-TG2 antibodies, because they modulate TG2 enzymatic activity and they can interact with cell-surface TG2, triggering a wide range of intracellular responses. Autoantibodies also alter the uptake of the alpha-gliadin peptide 31-43 (p31-43), responsible of the innate immune response in CD, thus partially protecting cells from p31-43 damaging effects in an intestinal cell line. Here, we investigated whether anti-TG2 antibodies protect cells from p31-43-induced damage in a CD model consisting of primary dermal fibroblasts. We found that the antibodies specifically reduced the uptake of p31-43 by fibroblasts derived from healthy subjects but not in those derived from CD patients. Analyses of TG2 expression and enzymatic activity did not reveal any significant difference between fibroblasts from healthy and celiac subjects, suggesting that other features related to TG2 may be responsible of such different behaviors, e.g., trafficking or subcellular distribution. Our findings are in line with the concept that a "celiac cellular phenotype" exists and that TG2 may contribute to this phenotype. Moreover, they suggest that the autoimmune response to TG2, which alone may damage the celiac mucosa, also fails in its protective role in celiac cells.

  20. Fiber-coupled Luminescence Dosimetry in Therapeutic and Diagnostic Radiology

    NASA Astrophysics Data System (ADS)

    Andersen, Claus E.

    2011-05-01

    Fiber-coupled luminescence dosimetry is an emerging technology with several potentially attractive features of relevance for uses in therapeutic and diagnostic radiology: direct water equivalence (i.e. no significant perturbation of the radiation field in a water phantom or a patient), sub-mm detector size, high dynamic range (below a mGy to several Gy), microsecond time resolution, and absence of electrical wires or other electronics in the dosimeter probe head. Fiber-coupled luminescence dosimetry systems typically consist of one or more small samples of phosphor, e.g. a mg of plastic scintillator, attached to 10-20 m long optical fiber cables of plastic. During irradiation, each dosimeter probe spontaneously emits radioluminescence (RL) in proportion to the dose rate. The luminescence intensity can be detected with photomultiplier tubes, CCD cameras or other highly sensitive photodetectors. Some crystalline phosphors, such as carbon-doped aluminium oxide (Al2O3:C) have the ability to store charge produced in the crystal during irradiation. The stored charge may later be released by fiber-guided laser light under emission of so-called optically stimulated luminescence (OSL). The OSL signal therefore reflects the passively integrated dose. In contrast to thermoluminescence dosimetry, fiber-coupled OSL dosimetry may be performed in vivo while the dosimeter is still in the patient. Within the last few years, several improvements and new applications of these techniques have been published, and the objective of this review is to provide an introduction to this field and to outline some of these new results. Emphasis will be given to applications in medical dosimetry such as in vivo real-time dose verification in brachytherapy and methods aimed for improved quality assurance of linear accelerators.

  1. Evaluation of the uncertainty in an EBT3 film dosimetry system utilizing net optical density.

    PubMed

    Marroquin, Elsa Y León; Herrera González, José A; Camacho López, Miguel A; Barajas, José E Villarreal; García-Garduño, Olivia A

    2016-09-08

    Radiochromic film has become an important tool to verify dose distributions for intensity-modulated radiotherapy (IMRT) and quality assurance (QA) procedures. A new radiochromic film model, EBT3, has recently become available, whose composition and thickness of the sensitive layer are the same as those of previous EBT2 films. However, a matte polyester layer was added to EBT3 to prevent the formation of Newton's rings. Furthermore, the symmetrical design of EBT3 allows the user to eliminate side-orientation dependence. This film and the flatbed scanner, Epson Perfection V750, form a dosimetry system whose intrinsic characteristics were studied in this work. In addition, uncertainties associated with these intrinsic characteristics and the total uncertainty of the dosimetry system were determined. The analysis of the response of the radiochromic film (net optical density) and the fitting of the experimental data to a potential function yielded an uncertainty of 2.6%, 4.3%, and 4.1% for the red, green, and blue channels, respectively. In this work, the dosimetry system presents an uncertainty in resolving the dose of 1.8% for doses greater than 0.8 Gy and less than 6 Gy for red channel. The films irradiated between 0 and 120 Gy show differences in the response when scanned in portrait or landscape mode; less uncertainty was found when using the portrait mode. The response of the film depended on the position on the bed of the scanner, contributing an uncertainty of 2% for the red, 3% for the green, and 4.5% for the blue when placing the film around the center of the bed of scanner. Furthermore, the uniformity and reproducibility radiochromic film and reproducibility of the response of the scanner contribute less than 1% to the overall uncertainty in dose. Finally, the total dose uncertainty was 3.2%, 4.9%, and 5.2% for red, green, and blue channels, respectively. The above uncertainty values were obtained by mini-mizing the contribution to the total dose uncertainty

  2. EPR-dosimetry of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Popova, Mariia; Vakhnin, Dmitrii; Tyshchenko, Igor

    2017-09-01

    This article discusses the problems that arise during the radiation sterilization of medical products. It is propose the solution based on alanine EPR-dosimetry. The parameters of spectrometer and methods of absorbed dose calculation are given. In addition, the problems that arise during heavy particles irradiation are investigated.

  3. Regulation of TG accumulation and lipid droplet morphology by the novel TLDP1 in Aurantiochytrium limacinum F26-b.

    PubMed

    Watanabe, Takashi; Sakiyama, Ryo; Iimi, Yuya; Sekine, Satomi; Abe, Eriko; Nomura, Kazuko H; Nomura, Kazuya; Ishibashi, Yohei; Okino, Nozomu; Hayashi, Masahiro; Ito, Makoto

    2017-12-01

    Thraustochytrids are marine single-cell protists that produce large amounts of PUFAs, such as DHA. They accumulate PUFAs in lipid droplets (LDs), mainly as constituent(s) of triacylglycerol (TG). We identified a novel protein in the LD fraction of Aurantiochytrium limacinum F26-b using 2D-difference gel electrophoresis. The protein clustered with orthologs of thraustochytrids; however, the cluster was evolutionally different from known PAT family proteins or plant LD protein; thus, we named it thraustochytrid-specific LD protein 1 (TLDP1). TLDP1 surrounded LDs when expressed as a GFP-tagged form. Disruption of the tldp1 gene decreased the content of TG and number of LDs per cell; however, irregular and unusually large LDs were generated in tldp1 -deficient mutants. Although the level of TG synthesis was unchanged by the disruption of tldp1 , the level of TG degradation was higher in tldp1 -deficient mutants than in the WT. These phenotypic abnormalities in tldp1 -deficient mutants were restored by the expression of tldp1 These results indicate that TLDP1 is a thraustochytrid-specific LD protein and regulates the TG accumulation and LD morphology in A. limacinum F26-b. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  4. Physical exercise improves synaptic dysfunction and recovers the loss of survival factors in 3xTg-AD mouse brain.

    PubMed

    Revilla, Susana; Suñol, Cristina; García-Mesa, Yoelvis; Giménez-Llort, Lydia; Sanfeliu, Coral; Cristòfol, Rosa

    2014-06-01

    Physical exercise has become a potentially beneficial therapy for reducing neurodegeneration symptoms in Alzheimer's disease. Previous studies have shown that cognitive deterioration, anxiety and the startle response observed in 7-month-old 3xTg-AD mice were ameliorated after 6 months of free access to a running wheel. Also, alterations in synaptic response to paired-pulse stimulation were improved. The present study further investigated some molecular mechanisms underlying the beneficial effects of 6 months of voluntary exercise on synaptic plasticity in 7-month-old 3xTg-AD mice. Changes in binding parameters of [(3)H]-flunitrazepam to GABAA receptor and of [(3)H]-MK-801 to NMDA receptor in cerebral cortex of 3xTgAD mice were restored by voluntary exercise. In addition, reduced expression levels of NMDA receptor NR2B subunit were reestablished. The synaptic proteins synaptophysin and PSD-95 and the neuroprotective proteins GDNF and SIRT1 were downregulated in 3xTgAD mice and were recovered by exercise treatment. Overall, in this paper we highlight the fact that different interrelated mechanisms are involved in the beneficial effects of exercise on synaptic plasticity alterations in the 3xTg-AD mouse model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Technical basis for internal dosimetry at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1991-07-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ({sup 58}Co, {sup 60}Co, {sup 54}Mn, and {sup 59}Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium,. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation and bioassay follow-up treatment. 78more » refs., 35 figs., 115 tabs.« less

  6. Technical basis for internal dosimetry at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1989-04-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products (/sup 58/Co, /sup 60/Co, /sup 54/Mn, and /sup 59/Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation; and bioassay follow-up treatment. 64more » refs., 42 figs., 118 tabs.« less

  7. Trigeminal neuralgia treatment dosimetry of the Cyberknife

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Anthony; Lo, Anthony T., E-mail: tonyho22003@yahoo.com; Dieterich, Sonja

    2012-04-01

    There are 2 Cyberknife units at Stanford University. The robot of 1 Cyberknife is positioned on the patient's right, whereas the second is on the patient's left. The present study examines whether there is any difference in dosimetry when we are treating patients with trigeminal neuralgia when the target is on the right side or the left side of the patient. In addition, we also study whether Monte Carlo dose calculation has any effect on the dosimetry. We concluded that the clinical and dosimetric outcomes of CyberKnife treatment for trigeminal neuralgia are independent of the robot position. Monte Carlo calculationmore » algorithm may be useful in deriving the dose necessary for trigeminal neuralgia treatments.« less

  8. U. S. Pacific Fleet. Central Pacific Force. Operation Plan Number Cen 1-43

    DTIC Science & Technology

    1943-10-25

    50.2 TG 50.2 CTG 50.3 TG 50.3 CTG 50.4 TG 50.4 CTG 50.5 TG 50.5 CTG 50.6 TG 50.6 Coronet Caucus Anz&e Mqrocco Rugby Tomahawk Anzac • Bluejacket...Ginger snap Maxwell Anzac Rugby Molly Potluck Garfield Rustic 1 Rustic 2 Rustic 3 Rustic 4 Rustic 5 Trigger 1 Trigger 2 Trigger 3 Trigger 4 Trigger 5...Yonkers Scranton LaCrosce Journal De Soto Hardtack I-iiiriot Tripod Stockade Einstein SAGINAW Chicago Glencoe Romeo Morocco GeroniiAo San Jiateo Rugby

  9. INTERSPECIES DOSIMETRY MODELS FOR PULMONARY PHARMACOLOGY

    EPA Science Inventory

    Interspecies Dosimetry Models for Pulmonary Pharmacology

    Ted B. Martonen, Jeffry D. Schroeter, and John S. Fleming

    Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangl...

  10. Is In-Stent Restenosis After a Successful Coronary Stent Implantation Due to Stable Angina Associated With TG/HDL-C Ratio?

    PubMed

    Kundi, Harun; Korkmaz, Ahmet; Balun, Ahmet; Cicekcioglu, Hulya; Kiziltunc, Emrullah; Gursel, Koray; Cetin, Mustafa; Ornek, Ender; Ileri, Mehmet

    2017-10-01

    We examined the impact of the preprocedural triglyceride (TG)/high-density lipoprotein cholesterol (HDL-C) ratio on risk of in-stent restenosis (ISR). Patients with typical anginal symptoms and/or positive treadmill or myocardial perfusion scintigraphy test results who underwent successful coronary stent implantation due to stable angina were examined; 1341 patients were enrolled. The hospital files of the patients were used to gather data. Cox regression analysis showed that the TG/HDL-C ratio was independently associated with the presence of ISR ( P < .001). Moreover, diabetes mellitus ( P = .007), smaller stent diameter ( P = .046), and smoking status ( P = .001) were also independently associated with the presence of ISR. Using a cutoff of 3.8, the TG/HDL-C ratio predicted the presence of ISR with a sensitivity of 71% and a specificity of 68%. Also, the highest quartile of TG/HDL-C ratio had the highest rate of ISR ( P < .001). Measuring preprocedural TG/HDL-C ratio, in fasting or nonfasting samples, could be beneficial for the risk assessment of ISR. However, further large-scale prospective studies are required to establish the exact role of this simple, easily calculated, and reproducible parameter in the pathogenesis of ISR.

  11. Pretreatment TG/HDL-C Ratio Is Superior to Triacylglycerol Level as an Independent Prognostic Factor for the Survival of Triple Negative Breast Cancer Patients.

    PubMed

    Dai, Danian; Chen, Bo; Wang, Bin; Tang, Hailin; Li, Xing; Zhao, Zhiping; Li, Xuan; Xie, Xiaoming; Wei, Weidong

    2016-01-01

    Previous studies have reported that the triacylglycerol (TG) level and high-density lipoprotein cholesterol (HDL-C) are connected with breast cancer. However, the prognostic utility of the TG level and the TG/HDL-C ratio (THR) as conventional biomarkers in patients with triple negative breast cancer (TNBC) has not been elucidated. In this research, we investigate and compare the predictive value of the pretreatment serum TG level and THR in TNBC patients. We evaluated 221 patients with TNBC who had pretreatment conventional blood biochemical examinations and calculated the THR. Univariate and multivariate logistic regression analyses were used to assess the effect of the TG level and the THR on overall survival (OS) and disease-free survival (DFS). The optimal cutoff values of the TG level and the THR were determined to be 0.935 mmol/L and 0.600, respectively. As shown in a Kaplan-Meier analysis, TNBC patients with a high TG level and THR had shorter OS and DFS than patients in the low-level groups ( p < 0.05). The multivariate analysis suggested that the pretreatment THR level is an independent prognostic factor of OS (HR: 1.935; 95%CI: 1.032-3.629; p = 0.040) in TNBC patients. In conclusion, our data indicate that a high THR is an independent predictor and is superior to the TG level for predicting poor clinical outcomes in TNBC patients.

  12. A multicentre 'end to end' dosimetry audit for cervix HDR brachytherapy treatment.

    PubMed

    Palmer, Antony L; Diez, Patricia; Gandon, Laura; Wynn-Jones, Andrea; Bownes, Peter; Lee, Chris; Aird, Edwin; Bidmead, Margaret; Lowe, Gerry; Bradley, David; Nisbet, Andrew

    2015-02-01

    To undertake the first multicentre fully 'end to end' dosimetry audit for HDR cervix brachytherapy, comparing planned and delivered dose distributions around clinical treatment applicators, with review of local procedures. A film-dosimetry audit was performed at 46 centres, including imaging, applicator reconstruction, treatment planning and delivery. Film dose maps were calculated using triple-channel dosimetry and compared to RTDose data from treatment planning systems. Deviations between plan and measurement were quantified at prescription Point A and using gamma analysis. Local procedures were also discussed. The mean difference between planned and measured dose at Point A was -0.6% for plastic applicators and -3.0% for metal applicators, at standard uncertainty 3.0% (k=1). Isodose distributions agreed within 1mm over a dose range 2-16Gy. Mean gamma passing rates exceeded 97% for plastic and metal applicators at 3% (local) 2mm criteria. Two errors were found: one dose normalisation error and one applicator library misaligned with the imaged applicator. Suggestions for quality improvement were also made. The concept of 'end to end' dosimetry audit for HDR brachytherapy has been successfully implemented in a multicentre environment, providing evidence that a high level of accuracy in brachytherapy dosimetry can be achieved. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Develop real-time dosimetry concepts and instrumentation for long term missions

    NASA Technical Reports Server (NTRS)

    Braby, L. A.

    1981-01-01

    The development of a rugged portable dosimetry system, based on microdosimetry techniques, which will measure dose and evaluate dose equivalent in a mixed radiation field is described. Progress in the desired dosimetry system can be divided into three distinct areas: development of the radiation detector, and electron system are presented. The mathematical techniques required are investigated.

  14. Skeletal dosimetry models for alpha-particles for use in molecular radiotherapy

    NASA Astrophysics Data System (ADS)

    Watchman, Christopher J.

    Molecular radiotherapy is a cancer treatment methodology whereby a radionuclide is combined with a biologically active molecule to preferentially target cancer cells. Alpha-particle emitting radionuclides show significant potential for use in molecular radiotherapy due to the short range of the alpha-particles in tissue and their high rates of energy deposition. Current radiation dosimetry models used to assess alpha emitter dose in the skeleton were developed originally for occupational applications. In medical dosimetry, individual variability in uptake, translocation and other biological factors can result in poor correlation of clinical outcome with marrow dose estimates determined using existing skeletal models. Methods presented in this work were developed in response to the need for dosimetry models which account for these biological and patient-specific factors. Dosimetry models are presented for trabecular bone alpha particle dosimetry as well as a model for cortical bone dosimetry. These radiation transport models are the 3D chord-based infinite spongiosa transport model (3D-CBIST) and the chord-based infinite cortical transport model (CBICT), respectively. Absorbed fraction data for several skeletal tissues for several subjects are presented. Each modeling strategy accounts for biological parameters, such as bone marrow cellularity, not previously incorporated into alpha-particle skeletal dosimetry models used in radiation protection. Using these data a study investigating the variability in alpha-particle absorbed fractions in the human skeleton is also presented. Data is also offered relating skeletal tissue masses in individual bone sites for a range of ages. These data are necessary for dose calculations and have previously only been available as whole body tissue masses. A revised 3D-CBIST model is also presented which allows for changes in endosteum thickness to account for revised target cell location of tissues involved in the radiological

  15. Association between ADIPOQ +45T>G Polymorphism and Type 2 Diabetes: A Systematic Review and Meta-Analysis

    PubMed Central

    Fan, Yaofu; Wang, Kun; Xu, Shuhang; Chen, Guofang; Di, Hongjie; Cao, Meng; Liu, Chao

    2014-01-01

    Recently, a number of studies have reported the association between the single nucleotide polymorphisms (SNPs) +45T>G polymorphism in the adiponectin (ADIPOQ) gene and type 2 diabetes mellitus (T2DM) risk, though the results are inconsistent. In order to obtain a more precise estimation of the relationship, a meta-analysis was performed. In this current study, the Medline, Embase, Pubmed, ISI Web of Knowledge, Ovid, Science Citation Index Expanded Database, Wanfang Database, and China National Knowledge Infrastructure were searched for eligible studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to estimate the strength of association. Forty-five publications were included in the final meta-analysis with 9986 T2DM patients and 16,222 controls for ADIPOQ +45T>G polymorphism according to our inclusion and exclusion criteria. The +45T>G polymorphism was associated with an overall significantly increased risk of T2DM (G vs. T: OR = 1.18, 95% CI = 1.06–1.32; The dominant model: OR = 1.18, 95% CI = 1.03–1.33; The recessive model: OR = 1.47, 95% CI = 1.20–1.78; The homozygous model: OR = 1.62, 95% CI = 1.25–2.09; Except the heterozygous model: OR = 1.11, 95% CI = 0.98–1.24). Subgroup analysis revealed a significant association between the +45T>G polymorphism and T2D in an Asian population. Thus, this meta-analysis indicates that the G allele of the ADIPOQ +45T>G polymorphisms associated with a significantly increased risk of T2DM in the Asian population. PMID:25561226

  16. Validation of an improved helical diode array and dose reconstruction software using TG-244 datasets and stringent dose comparison criteria.

    PubMed

    Ahmed, Saeed; Nelms, Benjamin; Kozelka, Jakub; Zhang, Geoffrey; Moros, Eduardo; Feygelman, Vladimir

    2016-11-08

    The original helical ArcCHECK (AC) diode array and associated software for 3D measurement-guided dose reconstruction were characterized and validated; however, recent design changes to the AC required that the subject be revisited. The most important AC change starting in 2014 was a significant reduction in the overresponse of diodes to scattered radiation outside of the direct beam, accom-plished by reducing the amount of high-Z materials adjacent to the diodes. This change improved the diode measurement accuracy, but in the process invalidated the dose reconstruction models that were assembled based on measured data acquired with the older version of the AC. A correction mechanism was intro-duced in the reconstruction software (3DVH) to accommodate this and potential future design changes without requiring updating model parameters. For each permutation of AC serial number and beam model, the user can define in 3DVH a single correction factor which will be used to compensate for the difference in the out-of-field response between the new and original AC designs. The exact value can be determined by minimizing the dose-difference with an ionization chamber or another independent dosimeter. A single value of 1.17, corresponding to the maximum measured out-of-field response difference between the new and old AC, provided satisfactory results for all studied energies (6X, 15X, and flatten-ing filter-free 10XFFF). A library of standard cases recommended by the AAPM TG-244 Report was used for reconstructed dose verification. The overall difference between reconstructed dose and an ion chamber in a water-equivalent phantom in the targets was 0.0% ± 1.4% (1 SD). The reconstructed dose on a homogeneous phantom was also compared to a biplanar diode dosimeter (Delta4) using gamma analysis with 2% (local dose-error normalization) / 2 mm / 10% cutoff criteria. The mean agreement rate was 96.7% ± 3.7%. For the plans common with the previous comparison, the mean agreement

  17. Investigation of practical approaches to evaluating cumulative dose for cone beam computed tomography (CBCT) from standard CT dosimetry measurements: a Monte Carlo study.

    PubMed

    Abuhaimed, Abdullah; Martin, Colin J; Sankaralingam, Marimuthu; Gentle, David J

    2015-07-21

    A function called Gx(L) was introduced by the International Commission on Radiation Units and Measurements (ICRU) Report-87 to facilitate measurement of cumulative dose for CT scans within long phantoms as recommended by the American Association of Physicists in Medicine (AAPM) TG-111. The Gx(L) function is equal to the ratio of the cumulative dose at the middle of a CT scan to the volume weighted CTDI (CTDIvol), and was investigated for conventional multi-slice CT scanners operating with a moving table. As the stationary table mode, which is the basis for cone beam CT (CBCT) scans, differs from that used for conventional CT scans, the aim of this study was to investigate the extension of the Gx(L) function to CBCT scans. An On-Board Imager (OBI) system integrated with a TrueBeam linac was simulated with Monte Carlo EGSnrc/BEAMnrc, and the absorbed dose was calculated within PMMA, polyethylene (PE), and water head and body phantoms using EGSnrc/DOSXYZnrc, where the body PE body phantom emulated the ICRU/AAPM phantom. Beams of width 40-500 mm and beam qualities at tube potentials of 80-140 kV were studied. Application of a modified function of beam width (W) termed Gx(W), for which the cumulative dose for CBCT scans f (0) is normalized to the weighted CTDI (CTDIw) for a reference beam of width 40 mm, was investigated as a possible option. However, differences were found in Gx(W) with tube potential, especially for body phantoms, and these were considered to be due to differences in geometry between wide beams used for CBCT scans and those for conventional CT. Therefore, a modified function Gx(W)100 has been proposed, taking the form of values of f (0) at each position in a long phantom, normalized with respect to dose indices f 100(150)x measured with a 100 mm pencil ionization chamber within standard 150 mm PMMA phantoms, using the same scanning parameters, beam widths and positions within the phantom. f 100(150)x averages the dose resulting from

  18. An Interlaboratory Comparison of Dosimetry for a Multi-institutional Radiobiological

    PubMed Central

    Seed, TM; Xiao, S; Manley, N; Nikolich-Zugich, J; Pugh, J; van den Brink, M; Hirabayashi, Y; Yasutomo, K; Iwama, A; Koyasu, S; Shterev, I; Sempowski, G; Macchiarini, F; Nakachi, K; Kunugi, KC; Hammer, CG; DeWerd, LA

    2016-01-01

    Purpose An interlaboratory comparison of radiation dosimetry was conducted to determine the accuracy of doses being used experimentally for animal exposures within a large multi-institutional research project. The background and approach to this effort are described and discussed in terms of basic findings, problems and solutions. Methods Dosimetry tests were carried out utilizing optically stimulated luminescence (OSL) dosimeters embedded midline into mouse carcasses and thermal luminescence dosimeters (TLD) embedded midline into acrylic phantoms. Results The effort demonstrated that the majority (4/7) of the laboratories was able to deliver sufficiently accurate exposures having maximum dosing errors of ≤ 5%. Comparable rates of ‘dosimetric compliance’ were noted between OSL- and TLD-based tests. Data analysis showed a highly linear relationship between ‘measured’ and ‘target’ doses, with errors falling largely between 0–20%. Outliers were most notable for OSL-based tests, while multiple tests by ‘non-compliant’ laboratories using orthovoltage x-rays contributed heavily to the wide variation in dosing errors. Conclusions For the dosimetrically non-compliant laboratories, the relatively high rates of dosing errors were problematic, potentially compromising the quality of ongoing radiobiological research. This dosimetry effort proved to be instructive in establishing rigorous reviews of basic dosimetry protocols ensuring that dosing errors were minimized. PMID:26857121

  19. JAK2 inhibitor TG101348 overcomes erlotinib-resistance in non-small cell lung carcinoma cells with mutated EGF receptor

    PubMed Central

    Duan, Shan-zhou; Xia, Ying-chen; Zhu, Rong-ying; Chen, Yong-bing

    2015-01-01

    Non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations are responsive to EGFR-tyrosine kinase inhibitor (EGFR-TKI). However, NSCLC patients with secondary somatic EGFR mutations are resistant to EGFR-TKI treatment. In this study, we investigated the effect of TG101348 (a JAK2 inhibitor) on the tumor growth of erlotinib-resistant NSCLC cells. Cell proliferation, apoptosis, gene expression and tumor growth were evaluated by diphenyltetrazolium bromide (MTT) assay, flow cytometry, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining, Western Blot and a xenograft mouse model, respectively. Results showed that erlotinib had a stronger impact on the induction of apoptosis in erlotinib-sensitive PC-9 cells but had a weaker effect on erlotinib-resistant H1975 and H1650 cells than TG101348. TG101348 significantly enhanced the cytotoxicity of erlotinib to erlotinib-resistant NSCLC cells, stimulated erlotinib-induced apoptosis and downregulated the expressions of EGFR, p-EGFR, p-STAT3, Bcl-xL and survivin in erlotinib-resistant NSCLC cells. Moreover, the combined treatment of TG101348 and erlotinib induced apoptosis, inhibited the activation of p-EGFR and p-STAT3, and inhibited tumor growth of erlotinib-resistant NSCLC cells in vivo. Our results indicate that TG101348 is a potential adjuvant for NSCLC patients during erlotinib treatment. PMID:25869210

  20. A practical three-dimensional dosimetry system for radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo Pengyi; Adamovics, John; Oldham, Mark

    2006-10-15

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE trade mark sign ) and a commercial optical computed tomography (CT) scanning system (OCTOPUS trade mark sign ). PRESAGE trade mark sign is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need formore » an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE trade mark sign /OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of {<=}1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R{sup 2} value of 0.9979 and a standard error of estimation of {approx}1%) relative to independent measurement. The overall performance of the PRESAGE trade mark sign /OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC[reg] EBT film and the calculated dose from a commissioned planning system. The 'measured' dose distribution in a cylindrical PRESAGE trade mark sign dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE trade mark sign , EBT and calculated dose distributions, showed

  1. Updating and extending the IRDF-2002 dosimetry library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capote, R.; Zolotarev, K.I.; Pronyaev, V.G.

    The International Reactor Dosimetry File (IRDF)-2002 released in 2004 by the IAEA (see http://www-nds.iaea.org/irdf2002/) contains cross-section data and corresponding uncertainties for 66 dosimetry reactions. New cross-section evaluations have become available recently that re-define some of these dosimetry reactions including: (1) high-fidelity evaluation work undertaken by one of the authors (KIZ); (2) evaluations from the US ENDF/B-VII.0 and candidate evaluations from the US ENDF/B-VII.1 libraries that cover reactions within the International Evaluation of Neutron Cross-Section Standards; (3) European JEFF3.1 library; and (4) Japanese JENDL-4.0 library. Additional high-threshold reactions not included in IRDF-2002 (e.g., {sup 59C}o(n,3n) and {sup 209}Bi(n,3n)) have been alsomore » evaluated to characterize higher-energy neutron fields. Overall, 37 new evaluations of dosimetry reactions have been assessed and intercomparisons made with integral measurements in reference neutron fields to determine whether they should be adopted to update and improve IRDF-2002. Benchmark calculations performed for newly evaluated reactions using the ENDF/B-VII.0 {sup 235}U thermal fission and {sup 252}Cf spontaneous fission neutron spectra show that calculated integral cross sections exhibit improved agreement with evaluated experimental data when compared with the equivalent data from the IRDF-2002 library. Data inconsistencies or deficiencies of new evaluations have been identified for {sup 63}Cu(n,2n), {sup 60}Ni(n,p) {sup 60m+g}Co, {sup 55}Mn(n,{gamma}), and {sup 232}Th(n,f) reactions. Compared with IRDF-2002, the upper neutron energy boundary was formally increased from the actual maximum energy of typically 20 MeV up to 60 MeV by using the TENDL-2010 cross sections and covariance matrices. This extension would allow the updated IRDF library to be also used in fusion dosimetry applications. Uncertainties in the cross sections for all new evaluations are given in the form

  2. SU-C-BRC-01: A Monte Carlo Study of Out-Of-Field Doses From Cobalt-60 Teletherapy Units Intended for Historical Correlations of Dose to Normal Tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petroccia, H; Olguin, E; Culberson, W

    2016-06-15

    Purpose: Innovations in radiotherapy treatments, such as dynamic IMRT, VMAT, and SBRT/SRS, result in larger proportions of low-dose regions where normal tissues are exposed to low doses levels. Low doses of radiation have been linked to secondary cancers and cardiac toxicities. The AAPM TG Committee No.158 entitled, ‘Measurements and Calculations of Doses outside the Treatment Volume from External-Beam Radiation Therapy’, has been formed to review the dosimetry of non-target and out-of-field exposures using experimental and computational approaches. Studies on historical patients can provide comprehensive information about secondary effects from out-of-field doses when combined with long-term patient follow-up, thus providing significantmore » insight into projecting future outcomes of patients undergoing modern-day treatments. Methods: We present a Monte Carlo model of a Theratron-1000 cobalt-60 teletherapy unit, which historically treated patients at the University of Florida, as a means of determining doses located outside the primary beam. Experimental data for a similar Theratron-1000 was obtained at the University of Wisconsin’s ADCL to benchmark the model for out-of-field dosimetry. An Exradin A12 ion chamber and TLD100 chips were used to measure doses in an extended water phantom to 60 cm outside the primary field at 5 and 10 cm depths. Results: Comparison between simulated and experimental measurements of PDDs and lateral profiles show good agreement for in-field and out-of-field doses. At 10 cm away from the edge of a 6×6, 10×10, and 20×20 cm2 field, relative out-of-field doses were measured in the range of 0.5% to 3% of the dose measured at 5 cm depth along the CAX. Conclusion: Out-of-field doses can be as high as 90 to 180 cGy assuming historical prescription doses of 30 to 60 Gy and should be considered when correlating late effects with normal tissue dose.« less

  3. Small field electron beam dosimetry using MOSFET detector

    PubMed Central

    Heaton, Robert; Norrlinger, Bern; Islam, Mohammad K.

    2010-01-01

    The dosimetry of very small electron fields can be challenging due to relative shifts in percent depth‐dose curves, including the location of dmax, and lack of lateral electronic equilibrium in an ion chamber when placed in the beam. Conventionally a small parallel plate chamber or film is utilized to perform small field electron beam dosimetry. Since modern radiotherapy departments are becoming filmless in favor of electronic imaging, an alternate and readily available clinical dosimeter needs to be explored. We have studied the performance of MOSFET as a relative dosimeter in small field electron beams. The reproducibility, linearity and sensitivity of a high‐sensitivity microMOSFET were investigated for clinical electron beams. In addition, the percent depth doses, output factors and profiles have been measured in a water tank with MOSFET and compared with those measured by an ion chamber for a range of field sizes from 1 cm diameter to 10 cm× 10 cm for 6, 12, 16 and 20 MeV beams. Similar comparative measurements were also performed with MOSFET and films in solid water phantom. The MOSFET sensitivity was found to be practically constant over the range of field sizes investigated. The dose response was found to be linear and reproducible (within ±1% for 100 cGy). An excellent agreement was observed among the central axis depth dose curves measured using MOSFET, film and ion chamber. The output factors measured with MOSFET for small fields agreed to within 3% with those measured by film dosimetry. Overall results indicate that MOSFET can be utilized to perform dosimetry for small field electron beam. PACS number: 87.55.Qr

  4. Small field electron beam dosimetry using MOSFET detector.

    PubMed

    Amin, Md Nurul; Heaton, Robert; Norrlinger, Bern; Islam, Mohammad K

    2010-10-04

    The dosimetry of very small electron fields can be challenging due to relative shifts in percent depth-dose curves, including the location of dmax, and lack of lateral electronic equilibrium in an ion chamber when placed in the beam. Conventionally a small parallel plate chamber or film is utilized to perform small field electron beam dosimetry. Since modern radiotherapy departments are becoming filmless in favor of electronic imaging, an alternate and readily available clinical dosimeter needs to be explored. We have studied the performance of MOSFET as a relative dosimeter in small field electron beams. The reproducibility, linearity and sensitivity of a high-sensitivity microMOSFET were investigated for clinical electron beams. In addition, the percent depth doses, output factors and profiles have been measured in a water tank with MOSFET and compared with those measured by an ion chamber for a range of field sizes from 1 cm diameter to 10 cm × 10 cm for 6, 12, 16 and 20 MeV beams. Similar comparative measurements were also per-formed with MOSFET and films in solid water phantom. The MOSFET sensitivity was found to be practically constant over the range of field sizes investigated. The dose response was found to be linear and reproducible (within ± 1% for 100 cGy). An excellent agreement was observed among the central axis depth dose curves measured using MOSFET, film and ion chamber. The output factors measured with MOSFET for small fields agreed to within 3% with those measured by film dosimetry. Overall results indicate that MOSFET can be utilized to perform dosimetry for small field electron beam.

  5. Anxiety-like behavior as an early endophenotype in the TgF344-AD rat model of Alzheimer's disease.

    PubMed

    Pentkowski, Nathan S; Berkowitz, Laura E; Thompson, Shannon M; Drake, Emma N; Olguin, Carlos R; Clark, Benjamin J

    2018-01-01

    Alzheimer's disease (AD) is characterized by progressive cognitive decline and the presence of aggregates of amyloid beta (plaques) and hyperphosphorylated tau (tangles). Early diagnosis through neuropsychological testing is difficult due to comorbidity of symptoms between AD and other types of dementia. As a result, there is a need to identify the range of behavioral phenotypes expressed in AD. In the present study, we utilized a transgenic rat (TgF344-AD) model that bears the mutated amyloid precursor protein as well as presenilin-1 genes, resulting in progressive plaque and tangle pathogenesis throughout the cortex. We tested young adult male and female TgF344-AD rats in a spatial memory task in the Morris water maze and for anxiety-like behavior in the elevated plus-maze. Results indicated that regardless of sex, TgF344-AD rats exhibited increased anxiety-like behavior in the elevated plus-maze, which occurred without significant deficits in the spatial memory. Together, these results indicate that enhanced anxiety-like behavior represents an early-stage behavioral marker in the TgF344-AD rat model. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Dosimetry of gamma chamber blood irradiator using PAGAT gel dosimeter and Monte Carlo simulations

    PubMed Central

    Mohammadyari, Parvin; Zehtabian, Mehdi; Sina, Sedigheh; Tavasoli, Ali Reza

    2014-01-01

    Currently, the use of blood irradiation for inactivating pathogenic microbes in infected blood products and preventing graft‐versus‐host disease (GVHD) in immune suppressed patients is greater than ever before. In these systems, dose distribution and uniformity are two important concepts that should be checked. In this study, dosimetry of the gamma chamber blood irradiator model Gammacell 3000 Elan was performed by several dosimeter methods including thermoluminescence dosimeters (TLD), PAGAT gel dosimetry, and Monte Carlo simulations using MCNP4C code. The gel dosimeter was put inside a glass phantom and the TL dosimeters were placed on its surface, and the phantom was then irradiated for 5 min and 27 sec. The dose values at each point inside the vials were obtained from the magnetic resonance imaging of the phantom. For Monte Carlo simulations, all components of the irradiator were simulated and the dose values in a fine cubical lattice were calculated using tally F6. This study shows that PAGAT gel dosimetry results are in close agreement with the results of TL dosimetry, Monte Carlo simulations, and the results given by the vendor, and the percentage difference between the different methods is less than 4% at different points inside the phantom. According to the results obtained in this study, PAGAT gel dosimetry is a reliable method for dosimetry of the blood irradiator. The major advantage of this kind of dosimetry is that it is capable of 3D dose calculation. PACS number: 87.53.Bn PMID:24423829

  7. Digital Mammography Breast Dosimetry Using Copper-Doped Lithium Fluoride (LiF:MCP) Thermoluminescent Dosimeters (TLDs)

    DTIC Science & Technology

    2003-06-18

    Mammography Breast Dosimetry Using Copper-Doped Lithium Fluoride (LiF:MCP) Thermoluminescent Dosimeters ( TLDs ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...34Digital Mammography Breast Dosimetry Using Copper- Doped Lithium Fluoride (LiF:MCP) Thermoluminescent Dosimeters ( TLDs )" Author: LT John J. Tomon...Title of Thesis: " Digital Mammography Breast Dosimetry Using Copper-Doped Lithium Fluoride (LiF:MCP) Thermoluminescent

  8. Radiation-induced damage analysed by luminescence methods in retrospective dosimetry and emergency response.

    PubMed

    Woda, Clemens; Bassinet, Céline; Trompier, François; Bortolin, Emanuela; Della Monaca, Sara; Fattibene, Paola

    2009-01-01

    The increasing risk of a mass casualty scenario following a large scale radiological accident or attack necessitates the development of appropriate dosimetric tools for emergency response. Luminescence dosimetry has been reliably applied for dose reconstruction in contaminated settlements for several decades and recent research into new materials carried close to the human body opens the possibility of estimating individual doses for accident and emergency dosimetry using the same technique. This paper reviews the luminescence research into materials useful for accident dosimetry and applications in retrospective dosimetry. The properties of the materials are critically discussed with regard to the requirements for population triage. It is concluded that electronic components found within portable electronic devices, such as e.g. mobile phones, are at present the most promising material to function as a fortuitous dosimeter in an emergency response.

  9. Immune responses and protection after DNA vaccination against Toxoplasma gondii calcium-dependent protein kinase 2 (TgCDPK2)

    PubMed Central

    Chen, Kai; Wang, Jin-Lei; Huang, Si-Yang; Yang, Wen-Bin; Zhu, Wei-Ning; Zhu, Xing-Quan

    2017-01-01

    Toxoplasma gondii, an intracellular zoonotic protozoan parasite, is possibly the most widespread parasite of warm-blooded animals and can cause serious public health problems and economic losses worldwide. TgCDPK2, a member of the T. gondii calcium-dependent protein kinase family, was recently identified as an essential regulator for viable cyst development in T. gondii. In the present study, we evaluated the protective immunity induced by DNA vaccination based on a recombinant eukaryotic plasmid, pVAX-TgCDPK2, against acute toxoplasmosis in mice. BALB/c mice were intramuscularly immunized with pVAX-TgCDPK2 plasmid and then challenged by infection with the highly virulent RH strain of T. gondii. The specific immune responses and protective efficacy against T. gondii were analyzed by cytokine and serum antibody measurements, lymphocyte proliferation assays, flow cytometric on lymphocytes and the survival time of mice after challenge. Our results showed that mice immunized with pVAX-TgCDPK2 could elicit special humoral and cellular responses, with higher levels of IgG antibody, and increased levels of Th1-type cytokines IFN-γ, IL-12(p70), and CD3 + CD4 + CD8 − and CD3 + CD8 + CD4 − T cells, and had a prolonged survival time (14.0 ± 2.32 days) compared to control mice. These results demonstrate that pVAX-TgCDPK2 is a potential vaccine candidate against acute toxoplasmosis. PMID:29119944

  10. SU-F-T-562: Validation of EPID-Based Dosimetry for FSRS Commissioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Y; Saleh, Z; Obcemea, C

    Purpose: The prevailing approach to frameless SRS (fSRS) small field dosimetry is Gafchromic film. Though providing continuous information, its intrinsic uncertainties in fabrication, response, scan, and calibration often make film dosimetry subject to different interpretations. In this study, we explored the feasibility of using EPID portal dosimetry as a viable alternative to film for small field dosimetry. Methods: Plans prescribed a dose of 21 Gy were created on a flat solid water phantom with Eclipse V11 and iPlan for small static square fields (1.0 to 3.0 cm). In addition, two clinical test plans were computed by employing iPlan on amore » CIRS Kesler head phantom for target dimensions of 1.2cm and 2.0cm. Corresponding portal dosimetry plans were computed using the Eclipse TPS and delivered on a Varian TrueBeam machine. EBT-XD film dosimetry was performed as a reference. The isocenter doses were measured using EPID, OSLD, stereotactic diode, and CC01 ion chamber. Results: EPID doses at the center of the square field were higher than Eclipse TPS predicted portal doses, with the mean difference being 2.42±0.65%. Doses measured by EBT-XD film, OSLD, stereotactic diode, and CC01 ion chamber revealed smaller differences (except OSLDs), with mean differences being 0.36±3.11%, 4.12±4.13%, 1.7±2.76%, 1.45±2.37% for Eclipse and −1.36±0.85%, 2.38±4.2%, −0.03±0.50%, −0.27±0.78% for iPlan. The profiles measured by EPID and EBT-XD film resembled TPS (Eclipse and iPlan) predicted ones within 3.0%. For the two clinical test plans, the EPID mean doses at the center of field were 2.66±0.68% and 2.33±0.32% higher than TPS predicted doses. Conclusion: We found that results obtained with EPID portal dosimetry were slightly higher (∼2%) than those obtained with EBT-XD film, diode, and CC01 ion chamber with the exception of OSLDs, but well within IROC tolerance (5.0%). Therefore, EPID has the potential to become a viable real-time alternative method to film

  11. TU-E-201-02: Eye Lens Dosimetry From CT Perfusion Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, D.

    Madan M. Rehani, Massachusetts General Hospital and Harvard Medical School, Boston Methods for Eye Lens Dosimetry and Studies On Lens Opacities with Interventionalists Radiation induced cataract is a major threat among staff working in interventional suites. Nearly 16 million interventional procedures are performed annually in USA. Recent studies by the principal investigator’s group, primarily among interventional cardiologists, on behalf of the International Atomic Energy Agency, show posterior subcapsular (PSC) changes in the eye lens in 38–53% of main operators and 21–45% of support staff. These changes have potential to lead to cataract in future years, as per information from A-Bombmore » survivors. The International Commission on Radiological Protection has reduced dose limit for staff by a factor of 7.5 (from 150 mSv/y to 20 mSv/y). With increasing emphasis on radiation induced cataracts and reduction in threshold dose for eye lens, there is a need to implement strategies for estimating eye lens dose. Unfortunately eye lens dosimetry is at infancy when it comes to routine application. Various approaches are being tried namely direct measurement using active or passive dosimeters kept close to eyes, retrospective estimations and lastly correlating patient dose in interventional procedures with staff eye dose. The talk will review all approaches available and ongoing active research in this area, as well as data from surveys done in Europe on status of eye dose monitoring in interventional radiology and nuclear medicine. The talk will provide update on how good is Hp(10) against Hp(3), estimations from CTDI values, Monte Carlo based simulations and current status of eye lens dosimetry in USA and Europe. The cataract risk among patients is in CT examinations of the head. Since radiation induced cataract predominantly occurs in posterior sub-capsular (PSC) region and is thus distinguishable from age or drug related cataracts and is also preventable

  12. TU-E-201-00: Eye Lens Dosimetry for Patients and Staff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Madan M. Rehani, Massachusetts General Hospital and Harvard Medical School, Boston Methods for Eye Lens Dosimetry and Studies On Lens Opacities with Interventionalists Radiation induced cataract is a major threat among staff working in interventional suites. Nearly 16 million interventional procedures are performed annually in USA. Recent studies by the principal investigator’s group, primarily among interventional cardiologists, on behalf of the International Atomic Energy Agency, show posterior subcapsular (PSC) changes in the eye lens in 38–53% of main operators and 21–45% of support staff. These changes have potential to lead to cataract in future years, as per information from A-Bombmore » survivors. The International Commission on Radiological Protection has reduced dose limit for staff by a factor of 7.5 (from 150 mSv/y to 20 mSv/y). With increasing emphasis on radiation induced cataracts and reduction in threshold dose for eye lens, there is a need to implement strategies for estimating eye lens dose. Unfortunately eye lens dosimetry is at infancy when it comes to routine application. Various approaches are being tried namely direct measurement using active or passive dosimeters kept close to eyes, retrospective estimations and lastly correlating patient dose in interventional procedures with staff eye dose. The talk will review all approaches available and ongoing active research in this area, as well as data from surveys done in Europe on status of eye dose monitoring in interventional radiology and nuclear medicine. The talk will provide update on how good is Hp(10) against Hp(3), estimations from CTDI values, Monte Carlo based simulations and current status of eye lens dosimetry in USA and Europe. The cataract risk among patients is in CT examinations of the head. Since radiation induced cataract predominantly occurs in posterior sub-capsular (PSC) region and is thus distinguishable from age or drug related cataracts and is also preventable

  13. Sex differences in β-amyloid accumulation in 3xTg-AD mice: role of neonatal sex steroid hormone exposure.

    PubMed

    Carroll, Jenna C; Rosario, Emily R; Kreimer, Sara; Villamagna, Angela; Gentzschein, Elisabet; Stanczyk, Frank Z; Pike, Christian J

    2010-12-17

    The risk of Alzheimer's disease (AD) is higher in women than in men, a sex difference that likely results from the effects of sex steroid hormones. To investigate this relationship, we first compared progression of β-amyloid (Aβ) pathology in male and female triple transgenic (3xTg-AD) mice. We found that female 3xTg-AD mice exhibit significantly greater Aβ burden and larger behavioral deficits than age-matched males. Next, we evaluated how the organizational effects of sex steroid hormones during postnatal development may affect adult vulnerability to Aβ pathology. We observed that male 3xTg-AD mice demasculinized during early development exhibit significantly increased Aβ accumulation in adulthood. In contrast, female mice defeminized during early development exhibit a more male-like pattern of Aβ pathology in adulthood. Taken together, these results demonstrate significant sex differences in pathology in 3xTg-AD mice and suggest that these differences may be mediated by organizational actions of sex steroid hormones during development. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. In vivo dosimetry in external beam radiotherapy.

    PubMed

    Mijnheer, Ben; Beddar, Sam; Izewska, Joanna; Reft, Chester

    2013-07-01

    In vivo dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of in vivo dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT. These new technologies include the development of electronic portal imaging devices for 2D and 3D patient dosimetry during advanced treatment techniques, such as IMRT and VMAT, and the use of IVD in proton and ion radiotherapy by measuring the decay of radiation-induced radionuclides. In the final analysis, we will show in this Vision 20∕20 paper that in addition to regulatory compliance and reimbursement issues, the rationale for in vivo measurements is to provide an accurate and independent verification of the overall treatment procedure. It will enable the identification of potential errors in dose calculation, data transfer, dose delivery, patient setup, and changes in patient anatomy. It is the authors' opinion that all treatments with curative intent should be verified through in vivo dose measurements in combination with pretreatment checks.

  15. Anthropomorphic Phantom Radiation Dosimetry at the NATO Standard Reference Point at Aberdeen Proving Ground,

    DTIC Science & Technology

    1987-04-01

    and would still be well under 10(C. .% % p., I V a- E p - -12 - IABLE 8 (a) TLD results for phantom dosimetry - all values shown are measured charge...SAI. Conclusions The current DREO dosimetry system-consisting of bubble, CR39 and TLD dosimeters - has proven capable of producing meaningful results at...MC FILE CoPy’ Defence nationale 00 ANTHROPOMORPHIC PHANTOM RADIATION DOSIMETRY AT THE NATO STANDARD OREFERENCE POINT AT ABERDEEN PROVING GROUND by T

  16. New Radiation Dosimetry Estimates for [18F]FLT based on Voxelized Phantoms.

    PubMed

    Mendes, B M; Ferreira, A V; Nascimento, L T C; Ferreira, S M Z M D; Silveira, M B; Silva, J B

    2018-04-25

    3'-Deoxy-3-[ 18 F]fluorothymidine, or [ 18 F]FLT, is a positron emission tomography (PET) tracer used in clinical studies for noninvasive assessment of proliferation activity in several types of cancer. Although the use of this PET tracer is expanding, to date, few studies concerning its dosimetry have been published. In this work, new [ 18 F]FLT dosimetry estimates are determined for human and mice using Monte Carlo simulations. Modern voxelized male and female phantoms and [ 18 F]FLT biokinetic data, both published by the ICRP, were used for simulations of human cases. For most human organs/tissues the absorbed doses were higher than those reported in ICRP Publication 128. An effective dose of 1.70E-02 mSv/MBq to the whole body was determined, which is 13.5% higher than the ICRP reference value. These new human dosimetry estimates obtained using more realistic human phantoms represent an advance in the knowledge of [ 18 F]FLT dosimetry. In addition, mice biokinetic data were obtained experimentally. These data and a previously developed voxelized mouse phantom were used for simulations of animal cases. Concerning animal dosimetry, absorbed doses for organs/tissues ranged from 4.47 ± 0.75 to 155.74 ± 59.36 mGy/MBq. The obtained set of organ/tissue radiation doses for healthy Swiss mice is a useful tool for application in animal experiment design.

  17. Structural relaxation of vitreous albite near Tg and implications for transport properties of the supercooled liquid at high pressure

    NASA Astrophysics Data System (ADS)

    Gaudio, S. J.; Lesher, C. E.

    2012-12-01

    We estimate the glass transition temperature, Tg, for vitreous/amorphous albite between 0 and 7.7 GPa by tracking the progress of densification following high-temperature annealing experiments with run durations equal to 5τ (when τ=100 s). Tg decreases by 54 K/GPa up to 2.6 GPa, and thereafter shows a weak negative pressure dependence. This behavior mimics the negative pressure dependence of viscosity of albite liquid shown by [1]; however, we do not find a change in the sign of ∂Tg/∂P at least up to 7.7 GPa as reported in some isothermal ∂η/∂P, and ∂DO/∂P data sets. Our high field (21.8 T) 27Al MAS NMR measurements of recovered glasses rapidly quenched from super-Tg conditions possess trace amounts of high coordinated Al at 2.6 GPa and only ˜17% by 5.5 GPa. This suggests that the decrease in Tg (and viscosity at low temperature) results dominantly from topological rearrangement of the supercooled melt structure and not changes to Al or Si coordination number and connectivity of the network. In fact, at Tg from 0 to 8 GPa, the XNBO, or network connectivity, is unchanged [2] and at 7.7 GPa, we find the proportion of high coordinated Al is still ˜35%. Convergence in the timescales of relaxation at Tg(P) and the onset of Na mobility to 6 GPa documented by high-pressure electrical conductivity measurements [3] implies that the fragility of albite melt increases with pressure up to ˜4-5 GPa, without changing the effective polymerization of the melt. In contrast, fragility appears to decrease with pressure in partially depolymerized silicate melts. Such differences in fragility can be used for extrapolation of activation energy based models for viscous flow to high pressure. [1] Kushiro, 1978, EPSL, 41; Brearley et al., 1986, GCA, 50; Brearley and Montana, 1989, GCA, 53; Poe et al., 1997, Science, 276; Suzuki et al., 2002, Phys. Chem. Miner., 29; Funakoshi et al., 2002, J. Phys.: Condens. Matter., 14; Behrens and Schulze, 2003, Am. Min., 88. [2] Lee et

  18. Autoimmune Manifestations in the 3xTg-AD Model of Alzheimer's Disease

    PubMed Central

    Marchese, Monica; Cowan, David; Head, Elizabeth; Ma, Donglai; Karimi, Khalil; Ashthorpe, Vanessa; Kapadia, Minesh; Zhao, Hui; Davis, Paulina; Sakic, Boris

    2015-01-01

    Background Immune system activation is frequently reported in patients with Alzheimer's disease (AD). However, it remains unknown whether this is a cause, a consequence, or an epiphenomenon of brain degeneration. Objective The present study examines whether immunological abnormalities occur in a well-established murine AD model and if so, how they relate temporally to behavioral deficits and neuropathology. Methods A broad battery of tests was employed to assess behavioral performance and autoimmune/inflammatory markers in 3xTg-AD (AD) mice and wild type controls from 1.5 to 12 months of age. Results Aged AD mice displayed severe manifestations of systemic autoimmune/inflammatory disease, as evidenced by splenomegaly, hepatomegaly, elevated serum levels of anti-nuclear/anti-dsDNA antibodies, low hematocrit, and increased number of double-negative T splenocytes. However, anxiety-related behavior and altered spleen function were evident as early as 2 months of age, thus preceding typical AD-like brain pathology. Moreover, AD mice showed altered olfaction and impaired “cognitive” flexibility in the first 6 months of life, suggesting mild cognitive impairment-like manifestations before general learning/memory impairments emerged at an older age. Interestingly, all of these features were present in 3xTg-AD mice prior to significant amyloid-β or tau pathology. Conclusion The results indicate that behavioral deficits in AD mice develop in parallel with systemic autoimmune/inflammatory disease. These changes antedate AD-like neuropathology, thus supporting a causal link between autoimmunity and aberrant behavior. Consequently, 3xTg-AD mice may be a useful model in elucidating the role of immune system in the etiology of AD. PMID:24150111

  19. Defective macroautophagic turnover of brain lipids in the TgCRND8 Alzheimer mouse model: prevention by correcting lysosomal proteolytic deficits

    PubMed Central

    Stavrides, Philip; Saito, Mitsuo; Kumar, Asok; Rodriguez-Navarro, Jose A.; Pawlik, Monika; Huo, Chunfeng; Walkley, Steven U.; Saito, Mariko; Cuervo, Ana M.

    2014-01-01

    Autophagy, the major lysosomal pathway for the turnover of intracellular organelles is markedly impaired in neurons in Alzheimer’s disease and Alzheimer mouse models. We have previously reported that severe lysosomal and amyloid neuropathology and associated cognitive deficits in the TgCRND8 Alzheimer mouse model can be ameliorated by restoring lysosomal proteolytic capacity and autophagy flux via genetic deletion of the lysosomal protease inhibitor, cystatin B. Here we present evidence that macroautophagy is a significant pathway for lipid turnover, which is defective in TgCRND8 brain where lipids accumulate as membranous structures and lipid droplets within giant neuronal autolysosomes. Levels of multiple lipid species including several sphingolipids (ceramide, ganglioside GM3, GM2, GM1, GD3 and GD1a), cardiolipin, cholesterol and cholesteryl esters are elevated in autophagic vacuole fractions and lysosomes isolated from TgCRND8 brain. Lipids are localized in autophagosomes and autolysosomes by double immunofluorescence analyses in wild-type mice and colocalization is increased in TgCRND8 mice where abnormally abundant GM2 ganglioside-positive granules are detected in neuronal lysosomes. Cystatin B deletion in TgCRND8 significantly reduces the number of GM2-positive granules and lowers the levels of GM2 and GM3 in lysosomes, decreases lipofuscin-related autofluorescence, and eliminates giant lipid-containing autolysosomes while increasing numbers of normal-sized autolysosomes/lysosomes with reduced content of undigested components. These findings have identified macroautophagy as a previously unappreciated route for delivering membrane lipids to lysosomes for turnover, a function that has so far been considered to be mediated exclusively through the endocytic pathway, and revealed that autophagic-lysosomal dysfunction in TgCRND8 brain impedes lysosomal turnover of lipids as well as proteins. The amelioration of lipid accumulation in TgCRND8 by removing cystatin

  20. Reanalysis of the fragility of glycerol at very high pressures using new Tg data

    NASA Astrophysics Data System (ADS)

    Lyon, Kevin; Oliver, William

    Direct measurements of the glass transition temperature of glycerol between 1 atm and 6.7 GPa from our lab allow reanalysis of high-pressure viscosity data, which were limited to approximately 107 poise. Previous attempts to determine Tg (P) and fragility by extrapolation of the viscosity data by many orders of magnitude led to inconclusive results. Tg (P) data constrain the value of viscosity at the glass transition providing for more accurate determinations of isobaric fragilities. Over most of the pressure range, a constant fragility is found in agreement with analysis of high-pressure dielectric data by Paluch et al.. Discrepancies in the pressure dependence of the fragility of glycerol at very low pressures exist in the literature and will also be discussed.