Sample records for aau-cubesat student satellite

  1. Educational Pico-Satellite Project CUBESAT - University of Tokyo's CUBESAT XI and its Operation Plan

    NASA Astrophysics Data System (ADS)

    Tsuda, Y.; Sako, N.; Eishima, T.; Ito, T.; Arikawa, Y.; Miyamura, N.

    2002-01-01

    University of Tokyo ISSL (Intelligent Space Systems Laboratory) has been developing a pico-satellite called "CubeSat" as an international joint program. In CubeSat project, 10cm cubic satellites have been developed by several universities and launched to the low-earth orbit altogether by Russian rocket "Dnepr". ISSL has developed "XI" series ([sai]: X-factor Investigator) satellites, and the flight model is already fabricated and ready for delivery. The mission of XI satellite is the on-orbit technology demonstration of the ultra-small satellite bus system with an extensive use of commercial-off-the-shelf components. XI transmits the Morse beacon and FM packet telemetry which provides the health data of the satellite. Additionally, XI has a CMOS camera which provides 15,000 pixels panchromatic images as an advanced mission. Ground operation is one of the key issues for CubeSats. Now we are promoting international ground station network in which several universities' ground stations connected by internet collaboratively operate university-built small satellites, which enlarges the link opportunity. Collaboration with amateur HAM engineers is also indispensable for search for the satellite or get beacon signal to estimate the satellite orbit. We are now developing operation concept based on these ideas. As the launch is scheduled in this fall, the operation plan will be fixed at the time of this conference. In this presentation the final design of ISSL's CubeSat XI and operation plan will be presented.

  2. A CubeSat Mission for Mapping Spot Beams of Geostationary Communications Satellites

    DTIC Science & Technology

    2015-03-26

    A CUBESAT MISSION FOR MAPPING SPOT BEAMS OF GEOSTATIONARY COMMUNICATIONS SATELLITES THESIS...copyright protection in the United States A CUBESAT MISSION FOR MAPPING SPOT BEAMS OF GEOSTATIONARY COMMUNICATIONS SATELLITES THESIS...PUBLIC RELEASE; DISTRIBUTION UNLIMTED AFIT-ENY-MS-15-M-247 A CUBESAT MISSION FOR MAPPING SPOT BEAMS OF GEOSTATIONARY COMMUNICATIONS

  3. CubeSat Launch Initiative Overview and CubeSat 101

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott

    2017-01-01

    The National Aeronautics and Space Administration (NASA) recognizes the tremendous potential that CubeSats (very small satellites) have to inexpensively demonstrate advanced technologies, collect scientific data, and enhance student engagement in Science, Technology, Engineering, and Mathematics (STEM). The CubeSat Launch Initiative (CSLI) was created to provide launch opportunities for CubeSats developed by academic institutions, non-profit entities, and NASA centers. This presentation will provide an overview of the CSLI, its benefits, and its results. This presentation will also provide high level CubeSat 101 information for prospective CubeSat developers, describing the development process from concept through mission operations while highlighting key points that developers need to be mindful of.

  4. CubeSat Launch Initiative

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott

    2016-01-01

    The National Aeronautics and Space Administration (NASA) recognizes the tremendous potential that CubeSats (very small satellites) have to inexpensively demonstrate advanced technologies, collect scientific data, and enhance student engagement in Science, Technology, Engineering, and Mathematics (STEM). The CubeSat Launch Initiative (CSLI) was created to provide launch opportunities for CubeSats developed by academic institutions, non-profit entities, and NASA centers. This presentation will provide an overview of the CSLI, its benefits, and its results.

  5. Smallsats, Cubesats and Scientific Exploration

    NASA Astrophysics Data System (ADS)

    Stofan, E. R.

    2015-12-01

    Smallsats (including Cubesats) have taken off in the aerospace research community - moving beyond simple tools for undergraduate and graduate students and into the mainstream of science research. Cubesats started the "smallsat" trend back in the late 1990's early 2000's, with the first Cubesats launching in 2003. NASA anticipates a number of future benefits from small satellite missions, including lower costs, more rapid development, higher risk tolerance, and lower barriers to entry for universities and small businesses. The Agency's Space Technology Mission Directorate is currently addressing technology gaps in small satellite platforms, while the Science Mission Directorate pursues miniaturization of science instruments. Launch opportunities are managed through the Cubesat Launch Initiative, and the Agency manages these projects as sub-orbital payloads with little program overhead. In this session we bring together scientists and technologists to discuss the current state of the smallsat field. We explore ideas for new investments, new instruments, or new applications that NASA should be investing in to expand the utility of smallsats. We discuss the status of a NASA-directed NRC study on the utility of small satellites. Looking to the future, what does NASA need to invest in now, to enable high impact ("decadal survey" level) science with smallsats? How do we push the envelope? We anticipate smallsats will contribute significantly to a more robust exploration and science program for NASA and the country.

  6. CubeSat Material Limits For Design for Demise

    NASA Technical Reports Server (NTRS)

    Kelley, R. L.; Jarkey, D. R.

    2014-01-01

    The CubeSat form factor of nano-satellite (a satellite with a mass between one and ten kilograms) has grown in popularity due to their ease of construction and low development and launch costs. In particular, their use as student led payload design projects has increased due to the growing number of launch opportunities. CubeSats are often deployed as secondary or tertiary payloads on most US launch vehicles or they may be deployed from the ISS. The focus of this study will be on CubeSats launched from the ISS. From a space safety standpoint, the development and deployment processes for CubeSats differ significantly from that of most satellites. For large satellites, extensive design reviews and documentation are completed, including assessing requirements associated with reentry survivability. Typical CubeSat missions selected for ISS deployment have a less rigorous review process that may not evaluate aspects beyond overall design feasibility. CubeSat design teams often do not have the resources to ensure their design is compliant with reentry risk requirements. A study was conducted to examine methods to easily identify the maximum amount of a given material that can be used in the construction of a CubeSats without posing harm to persons on the ground. The results demonstrate that there is not a general equation or relationship that can be used for all materials; instead a limiting value must be defined for each unique material. In addition, the specific limits found for a number of generic materials that have been previously used as benchmarking materials for reentry survivability analysis tool comparison will be discussed.

  7. CubeSat Material Limits for Design for Demise

    NASA Technical Reports Server (NTRS)

    Kelley, R. L.; Jarkey, D. R.

    2014-01-01

    The CubeSat form factor of nano-satellite (a satellite with a mass between one and ten kilograms) has grown in popularity due to their ease of construction and low development and launch costs. In particular, their use as student led payload design projects has increased due to the growing number of launch opportunities. CubeSats are often deployed as secondary or tertiary payloads on most US launch vehicles or they may be deployed from the ISS. The focus of this study will be on CubeSats launched from the ISS. From a space safety standpoint, the development and deployment processes for CubeSats differ significantly from that of most satellites. For large satellites, extensive design reviews and documentation are completed, including assessing requirements associated with re-entry survivability. Typical CubeSat missions selected for ISS deployment have a less rigorous review process that may not evaluate aspects beyond overall design feasibility. CubeSat design teams often do not have the resources to ensure their design is compliant with re-entry risk requirements. A study was conducted to examine methods to easily identify the maximum amount of a given material that can be used in the construction of a CubeSats without posing harm to persons on the ground. The results demonstrate that there is not a general equation or relationship that can be used for all materials; instead a limiting value must be defined for each unique material. In addition, the specific limits found for a number of generic materials that have been previously used as benchmarking materials for re-entry survivability analysis tool comparison will be discussed.

  8. ASPECT spectral imaging satellite proposal to AIDA/AIM CubeSat payload

    NASA Astrophysics Data System (ADS)

    Kohout, Tomas; Näsilä, Antti; Tikka, Tuomas; Penttilä, Antti; Muinonen, Karri; Kestilä, Antti; Granvik, Mikael; Kallio, Esa

    2016-04-01

    ASPECT (Asteroid Spectral Imaging Mission) is a part of AIDA/AIM project and aims to study the composition of the Didymos binary asteroid and the effects of space weathering and shock metamorphism in order to gain understanding of the formation and evolution of the Solar System. The joint ESA/NASA AIDA (Asteroid Impact & Deflection Assessment) mission to binary asteroid Didymos consists of AIM (Asteroid Impact Mission, ESA) and DART (Double Asteroid Redirection Test, NASA). DART is targeted to impact Didymos secondary component (Didymoon) and serve as a kinetic impactor to demonstrate deflection of potentially hazardous asteroids. AIM will serve as an observational spacecraft to evaluate the effects of the impact and resulting changes in the Didymos dynamic parameters. The AIM mission will also carry two CubeSat miniaturized satellites, released in Didymoon proximity. This arrangement opens up a possibility for secondary scientific experiments. ASPECT is one of the proposed CubeSat payloads. Whereas Didymos is a space-weathered binary asteroid, the DART impactor is expected to produce a crater and excavate fresh material from the secondary component (Didymoon). Spectral comparison of the mature surface to the freshly exposed material will allow to directly deter-mine space weathering effects. It will be also possible to study spectral shock effects within the impact crater. ASPECT will also demonstrate for the first time the joint spacecraft - CubeSat operations in asteroid proximity and miniature spectral imager operation in deep-space environment. Science objectives: 1. Study of the surface composition of the Didymos system. 2. Photometric observations (and modeling) under varying phase angle and distance. 3. Study of space weathering effects on asteroids (comparison of mature / freshly exposed material). 4. Study of shock effects (spectral properties of crater interior). 5. Observations during the DART impact. Engineering objectives: 1. Demonstration of CubeSat

  9. Nanoracks CUBESAT launcher

    NASA Image and Video Library

    2014-08-20

    ISS040-E-102420 (20 Aug. 2014) --- In the grasp of the Japanese robotic arm, the CubeSat deployer releases a pair of NanoRacks CubeSat miniature satellites. The Planet Labs Dove satellites that were carried to the International Space Station aboard the Orbital Sciences Cygnus commercial cargo craft are being deployed between Aug. 19 and Aug. 25. A section of the station solar array wings is at left.

  10. Nanoracks CUBESAT launcher

    NASA Image and Video Library

    2014-08-20

    ISS040-E-102425 (20 Aug. 2014) --- In the grasp of the Japanese robotic arm, the CubeSat deployer releases a pair of NanoRacks CubeSat miniature satellites. The Planet Labs Dove satellites that were carried to the International Space Station aboard the Orbital Sciences Cygnus commercial cargo craft are being deployed between Aug. 19 and Aug. 25. A section of the station solar array wings is at left.

  11. Nanoracks CUBESAT launcher

    NASA Image and Video Library

    2014-08-20

    ISS040-E-102410 (20 Aug. 2014) --- In the grasp of the Japanese robotic arm, the CubeSat deployer is about to release a pair of NanoRacks CubeSat miniature satellites. The Planet Labs Dove satellites that were carried to the International Space Station aboard the Orbital Sciences Cygnus commercial cargo craft are being deployed between Aug. 19 and Aug. 25. A section of the station solar array wings is at left.

  12. Nanoracks CUBESAT launcher operations

    NASA Image and Video Library

    2014-08-19

    ISS040-E-102490 (19 Aug. 2014) --- In the grasp of the Japanese robotic arm, the CubeSat deployer releases a pair of NanoRacks CubeSat miniature satellites. The Planet Labs Dove satellites that were carried to the International Space Station aboard the Orbital Sciences Cygnus commercial cargo craft are being deployed between Aug. 19 and Aug. 25. A section of the station solar array wings is at left.

  13. Expanding CubeSat Capabilities with a Low Cost Transceiver

    NASA Technical Reports Server (NTRS)

    Palo, Scott; O'Connor, Darren; DeVito, Elizabeth; Kohnert, Rick; Schaire, Scott H.; Bundick, Steve; Crum, Gary; Altunc, Serhat; Winkert, Thomas

    2014-01-01

    CubeSats have developed rapidly over the past decade with the advent of a containerized deployer system and ever increasing launch opportunities. These satellites have moved from an educational tool to teach students about engineering challenges associated with satellite design, to systems that are conducting cutting edge earth, space and solar science. Early variants of the CubeSat had limited functionality and lacked sophisticated attitude control, deployable solar arrays and propulsion. This is no longer the case and as CubeSats mature, such systems are becoming commercially available. The result is a small satellite with sufficient power and pointing capabilities to support a high rate communication system. Communications systems have matured along with other CubeSat subsystems. Originally developed from amateur radio systems, CubeSats have generally operated in the VHF and UHF bands at data rates below 10 kbps (kilobits per second). More recently higher rate UHF systems have been developed, however these systems require a large collecting area on the ground to close the communications link at 3 Mbps (megabits per second). Efforts to develop systems that operate with similar throughput at S-Band (2-4 GHz (gigaherz)) and C-Band (4-8 GHz (gigaherz)) have also recently evolved. In this paper we outline an effort to develop a high rate CubeSat communication system that is compatible with the NASA Near Earth Network and can be accommodated by a CubeSat. The system will include a 200 kbps (kilobits per second) S-Band receiver and a 12.5 Mbps (megabits per second).X-Band transmitter. This paper will focus on our design approach and initial results associated with the 12.5 Mbps (megabits per second) X-band transmitter.

  14. The NUTS CubeSat Project: Spin-Offs and Technology Development

    NASA Astrophysics Data System (ADS)

    Birkeland, R.; Stein, T. A.; Tommer, M.; Beermann, B.; Petrasch, J.; Gjersvik, A.

    2015-09-01

    The development of CubeSats allows for the conception and implementation of new approaches and technologies. In this paper we present a spin-off and technology innovation resulting from the NTNU Test Satellite (NUTS). NUTS is a 2U CubeSat under development by students of the Norwegian University of Science and Technology (NTNU) in Trondheim, Norway. The satellite is due to launch in 2017 and is based upon in-house developments. We will describe the innovative carbon-fibre frame, radio systems and proposals for an infrared camera for atmospheric gravity waves observations. A NUTS spinoff, the Cosmic Particle Telescope (CPT-SCOPE), will be presented in greater detail since it has been selected for the BEXUS 20 campaign in autumn 2015. CPT-SCOPE is a Norwegian-German compact radiation monitor prototype developed by students.

  15. Nanoracks CUBESAT launcher

    NASA Image and Video Library

    2014-08-19

    ISS040-E-103506 (19 Aug. 2014) --- In the grasp of the Japanese robotic arm, the CubeSat deployer is about to release a pair of NanoRacks CubeSat miniature satellites. The Planet Labs Dove satellites that were carried to the International Space Station aboard the Orbital Sciences Cygnus commercial cargo craft are being deployed between Aug. 19 and Aug. 25. The station?s Kibo laboratory is at top right. A blue and white part of Earth and the blackness of space provide the backdrop for the scene.

  16. CubeSat Initiatives at KSC

    NASA Technical Reports Server (NTRS)

    Berg, Jared J.

    2014-01-01

    Even though the Small PayLoad Integrated Testing Services or SPLITS line of business is newly established, KSC has been involved in a variety of CubeSat projects and programs. CubeSat development projects have been initiated through educational outreach partnerships with schools and universities, commercial partnerships and internal training initiatives. KSC has also been involved in CubeSat deployment through programs to find launch opportunities to fly CubeSats as auxiliary payloads on previously planned missions and involvement in the development of new launch capabilities for small satellites. This overview will highlight the CubeSat accomplishments at KSC and discuss planning for future projects and opportunities.

  17. CubeSat constellations for disaster management in remote areas

    NASA Astrophysics Data System (ADS)

    Santilli, Giancarlo; Vendittozzi, Cristian; Cappelletti, Chantal; Battistini, Simone; Gessini, Paolo

    2018-04-01

    In recent years, CubeSats have considerably extended their range of possible applications, from a low cost means to train students and young researchers in space related activities up to possible complementary solutions to larger missions. Increasingly popular, whereas CubeSats are still not a solution for all types of missions, they offer the possibility of performing ambitious scientific experiments. Especially worth considering is the possibility of performing Distributed Space Missions, in which CubeSat systems can be used to increase observation sampling rates and resolutions, as well as to perform tasks that a single satellite is unable to handle. The cost of access to space for traditional Earth Observation (EO) missions is still quite high. Efficient architecture design would allow reducing mission costs by employing CubeSat systems, while maintaining a level of performance that, for some applications, could be close to that provided by larger platforms, and decreasing the time needed to design and deploy a fully functional constellation. For these reasons many countries, including developing nations, agencies and organizations are looking to CubeSat platforms to access space cheaply with, potentially, tens of remote sensing satellites. During disaster management, real-time, fast and continuous information broadcast is a fundamental requirement. In this sense, a constellation of small satellites can considerably decrease the revisit time (defined as the time elapsed between two consecutive observations of the same point on Earth by a satellite) over remote areas, by increasing the number of spacecraft properly distributed in orbit. This allows collecting as much data as possible for the use by Disaster Management Centers. This paper describes the characteristics of a constellation of CubeSats built to enable access over the most remote regions of Brazil, supporting an integrated system for mitigating environmental disasters in an attempt to prevent the

  18. Nanoracks CUBESAT launcher operations

    NASA Image and Video Library

    2014-08-20

    ISS040-E-103327 (20 Aug. 2014) --- In the grasp of the Japanese robotic arm, the CubeSat deployer (upper right) is about to release a pair of NanoRacks CubeSat miniature satellites. The Planet Labs Dove satellites that were carried to the International Space Station aboard the Orbital Sciences Cygnus commercial cargo craft are being deployed between Aug. 19 and Aug. 25. A section of the station solar array wings is at center. A blue and white part of Earth and the blackness of space provide the backdrop for the scene.

  19. Nanoracks CUBESAT launcher operations

    NASA Image and Video Library

    2014-08-20

    ISS040-E-103340 (20 Aug. 2014) --- In the grasp of the Japanese robotic arm, the CubeSat deployer (upper right) releases a pair of NanoRacks CubeSat miniature satellites. The Planet Labs Dove satellites that were carried to the International Space Station aboard the Orbital Sciences Cygnus commercial cargo craft are being deployed between Aug. 19 and Aug. 25. A section of the station solar array wings is at center. A blue and white part of Earth and the blackness of space provide the backdrop for the scene.

  20. University of Colorado CubeSat Student Projects as Successful Model for Teaching Students about Engineering Practices

    NASA Astrophysics Data System (ADS)

    Palo, S. E.; Li, X.; Woods, T. N.; Kohnert, R.

    2014-12-01

    There is a long history of cooperation between students at the University of Colorado, Boulder and professional engineers and scientists at LASP, which has led to many successful space missions with direct student involvement. The recent student-led missions include the Student Nitric Oxide Explorer (SNOE, 1998 - 2002), the Student Dust Counter (SDC) on New Horizons (2006 - present), the Colorado Student Space Weather Experiment (CSSWE), being a very successful NSF CubeSat that launched in September 2012, and the NASA Miniature X-ray Solar Spectrometer (MinXSS) CubeSat (launch will be in early 2015). Students are involved in all aspects of the design, and they experience the full scope of the mission process from concept, to fabrication and test, and mission operations. A significant part of the student involvement in the CubeSat projects is gained by using the CubeSat development as a focal point for an existing two-semester course sequence in CU's Aerospace Engineering Sciences (AES) Department: the Space Hardware Design section of Graduate Projects I & II (ASEN 5018 & ASEN 6028). The goal of these courses is to teach graduate students how to design and build systems using a requirement-based approach and fundamental systems engineering practices. The two-semester sequence takes teams of about 15 students from requirements definition and preliminary design through manufacturing, integration, and testing. In addition to the design process, students learn key professional skills such as working effectively in groups, finding solutions to open-ended problems, and actually building a system to their own set of specifications. The partnership between AES and LASP allows us to include engineering professionals in the mix, thus more effectively training science and engineering students for future roles in the civilian or commercial space industry. The mentoring process with LASP engineers helps to mitigate risk of the inexperience of the students and ensures consistent

  1. Development of an Experimental Board in the Nanaosatellite CUBESAT3

    NASA Astrophysics Data System (ADS)

    Cresciucci, Laetitia

    first component studied is an analog to digital converter, the AD670. It has been choose by Alcatel because it is used on a satellite and doesn't work properly. Many tests have been performed to determine why this component fails, and CUBESAT is the experience which can prove if those ground results correspond to the results we will obtain during the flight. The two other components on the board are a mosfet transistor, the IRF450, and an optocoupler, the SFH610A. These devices have been studied in the CEM2 with a new space degradation prediction method called the Isochronal Annealing. With CUBESAT, the CEM2 wants to show that the results obtained with this method are reliable. In order to prove that the results match the predictions, we had to include a dosimeter, which measure the amount of radiation received and a temperature sensor. If this is a success, this method could be recognized by the aerospace industry. conception. After this prototype was done, we were asked to make a space qualified board, which included the study of the environment for CUBESAT's orbit (650 km, 65° inclination),as well as the thermal study in order to justify the choices of the components which measure the degradation of the 3 devices under test. Most parts had to undergo testing to prove their reliability when exposed to space radiations. The final payload board includes the different measurements' electronics and a microcontroller that controls the tests, collects the data and communicate with the platform. The last part of our work was to perform the integration of the payload board in the CUBESAT structure. This included solving mechanical problems and programming the communication interface between our board and the satellite's control board. We spent two weeks in Arizona working on this integration, in collaboration with the American students involved in this project. Now the payload design is complete, CUBESAT is ready to fly.

  2. NanoRacks CubeSat Deployment

    NASA Image and Video Library

    2014-02-11

    ISS038-E-044916 (11 Feb. 2014) --- A set of NanoRacks CubeSats is photographed by an Expedition 38 crew member after the deployment by the Small Satellite Orbital Deployer (SSOD). The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.

  3. Nanoracks CUBESAT launcher operations

    NASA Image and Video Library

    2014-08-19

    ISS040-E-103545 (19 Aug. 2014) --- In the grasp of the Japanese robotic arm, the CubeSat deployer (mostly out of frame, upper right) releases a pair of NanoRacks CubeSat miniature satellites (center). The Planet Labs Dove satellites that were carried to the International Space Station aboard the Orbital Sciences Cygnus commercial cargo craft are being deployed between Aug. 19 and Aug. 25. A section of the station solar array wings is at top right. A blue and white part of Earth and the blackness of space provide the backdrop for the scene.

  4. Evaluation of the Impact of an Additive Manufacturing Enhanced CubeSat Architecture on the CubeSat Development Process

    DTIC Science & Technology

    2016-09-15

    Investigative Questions This research will quantitatively address the impact of proposed benefits of a 3D printed satellite architecture on the...subsystems of a CubeSat. The objective of this research is to bring a quantitative analysis to the discussion of whether a fully 3D printed satellite...manufacturers to quantitatively address what impact the architecture would have on the subsystems of a CubeSat. Summary of Research Gap, Research Questions, and

  5. NanoRack Cubesat Deployer (NRCSD) Operations

    NASA Image and Video Library

    2014-08-19

    ISS040-E-100890 (19 Aug. 2014) --- Through a window in the International Space Station?s Kibo laboratory, an Expedition 40 crew member photographed the CubeSat deployer mechanism in the grasp of the Japanese robotic arm prior to a series of NanoRacks CubeSat miniature satellite deployments.

  6. NanoRacks CubeSat Deployment

    NASA Image and Video Library

    2014-02-11

    ISS038-E-044887 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it deploys a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.

  7. NanoRacks CubeSat Deployment

    NASA Image and Video Library

    2014-02-11

    ISS038-E-044889 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it deploys a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.

  8. NanoRacks CubeSat Deployment

    NASA Image and Video Library

    2014-02-11

    ISS038-E-044890 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it deploys a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.

  9. A Satellite Data Analysis and CubeSat Instrument Simulator Tool for Simultaneous Multi-spacecraft Measurements of Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Vannitsen, Jordan; Rizzitelli, Federico; Wang, Kaiti; Segret, Boris; Juang, Jyh-Ching; Miau, Jiun-Jih

    2017-12-01

    This paper presents a Multi-satellite Data Analysis and Simulator Tool (MDAST), developed with the original goal to support the science requirements of a Martian 3-Unit CubeSat mission profile named Bleeping Interplanetary Radiation Determination Yo-yo (BIRDY). MDAST was firstly designed and tested by taking into account the positions, attitudes, instruments field of view and energetic particles flux measurements from four spacecrafts (ACE, MSL, STEREO A, and STEREO B). Secondly, the simulated positions, attitudes and instrument field of view from the BIRDY CubeSat have been adapted for input. And finally, this tool can be used for data analysis of the measurements from the four spacecrafts mentioned above so as to simulate the instrument trajectory and observation capabilities of the BIRDY CubeSat. The onset, peak and end time of a solar particle event is specifically defined and identified with this tool. It is not only useful for the BIRDY mission but also for analyzing data from the four satellites aforementioned and can be utilized for other space weather missions with further customization.

  10. NanoRacks CubeSat Deployment

    NASA Image and Video Library

    2014-02-11

    ISS038-E-044883 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it begins the deployment of a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.

  11. NanoRacks CubeSat Deployment

    NASA Image and Video Library

    2014-02-11

    ISS038-E-044994 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station prior to the deployment of a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.

  12. Florida Tech CubeSat Experiment Feasibility Study

    NASA Technical Reports Server (NTRS)

    Arrasmith, William W.; Bucaille, Stephane; Rusovici, Razvan; Platt, Don; Guidry, Todd; Bandar, Deepika; Coots, Everett; Davidson, Russ

    2010-01-01

    CubeSats are a relatively new type of satellite. Smaller than long-term (5+ year life expectancy) satellites, these pico-satellites are comparatively cheap, small (10x10x10 cm), and are very versatile. Universities world-wide are using CubeSats to conduct a variety of experiments in space without the need for a large experimental platform. Today CubeSats are considered to be one of the most effective ways to send a small payload into space and has attracted the attention of many educational and non-profit organizations. As this pico-satellite model continues to gain penetration into the satellite build and launch industry, it is expected that more governmental, educational, and commercial interests will emerge. As an example, more of the space-related items of high interest to the National Science Foundation may be tackled with a CubeSat platform resulting in lower life cycle costs than traditional satellite options. NASA LSP, in cooperation with the Florida Institute of Technology, has initiated a feasibility study to investigate the technical aspects of measuring and transferring vibration, acceleration, temperature, and video data from a CubeSat to NASA Hanger AE on Cape Canaveral Air Force Station (CCAFS) a.k.a. Kennedy Space Center (KSC). This report provides a technical feasibility analysis to determine whether-or-not a specific set of NASA/LSP requirements can be accomplished. Our approach has been to provide a "notional" component layout to determine the feasibility of the NASA/LSP stakeholder requirements. The notional layout is used to consider component level technical issues such as size, weight, & power (SWaP), bandwidth, and other critical technical parameters. Even though the notional components may satisfy the stated requirements and thereby demonstrate feasibility, the notional layout is NOT considered a design since no component optimization and design trade-off analysis has taken place. This activity should be accomplished in an appropriate

  13. CubeSat evolution: Analyzing CubeSat capabilities for conducting science missions

    NASA Astrophysics Data System (ADS)

    Poghosyan, Armen; Golkar, Alessandro

    2017-01-01

    Traditionally, the space industry produced large and sophisticated spacecraft handcrafted by large teams of engineers and budgets within the reach of only a few large government-backed institutions. However, over the last decade, the space industry experienced an increased interest towards smaller missions and recent advances in commercial-off-the-shelf (COTS) technology miniaturization spurred the development of small spacecraft missions based on the CubeSat standard. CubeSats were initially envisioned primarily as educational tools or low cost technology demonstration platforms that could be developed and launched within one or two years. Recently, however, more advanced CubeSat missions have been developed and proposed, indicating that CubeSats clearly started to transition from being solely educational and technology demonstration platforms to offer opportunities for low-cost real science missions with potential high value in terms of science return and commercial revenue. Despite the significant progress made in CubeSat research and development over the last decade, some fundamental questions still habitually arise about the CubeSat capabilities, limitations, and ultimately about their scientific and commercial value. The main objective of this review is to evaluate the state of the art CubeSat capabilities with a special focus on advanced scientific missions and a goal of assessing the potential of CubeSat platforms as capable spacecraft. A total of over 1200 launched and proposed missions have been analyzed from various sources including peer-reviewed journal publications, conference proceedings, mission webpages as well as other publicly available satellite databases and about 130 relatively high performance missions were downselected and categorized into six groups based on the primary mission objectives including "Earth Science and Spaceborne Applications", "Deep Space Exploration", "Heliophysics: Space Weather", "Astrophysics", "Spaceborne In Situ

  14. Xatcobeo: Small Mechanisms for CubeSat Satellites - Antenna and Solar Array Deployment

    NASA Technical Reports Server (NTRS)

    EncinasPlaza, Jose Miguel; VilanVilan, Jose Antonio; AquadoAgelet, Fernando; BrandiaranMancheno, Javier; LopezEstevez, Miguel; MartinezFernandez, Cesar; SarmientoAres, Fany

    2010-01-01

    The Xatcobeo project, which includes the mechanisms dealt with here, is principally a university project to design and construct a CubeSat 1U-type satellite. This work describes the design and operational features of the system for antenna storage and deployment, and the design and simulations of the solar array deployment system. It explains the various problems faced and solutions adopted, with a view to providing valid data for any other applications that could find them useful, be they of a similar nature or not.

  15. Development of Cooperative Communication Techniques for a Network of Small Satellites and Cubesats in Deep Space

    NASA Technical Reports Server (NTRS)

    Babuscia, Alessandra; Cheung, Kar-Ming; Divsalar, Dariush; Lee, Charles

    2014-01-01

    This paper aims to address this problem by proposing cooperative communication approaches in which multiple CubeSats communicate cooperatively together to improve the link performance with respect to the case of a single satellite transmitting. Three approaches are proposed: a beam-forming approach, a coding approach, and a network approach. The approaches are applied to the specific case of a proposed constellation of CubeSats at the Lunar Lagrangian point L1 which aims to perform radio astronomy at very low frequencies (30 KHz -3 MHz). The paper describes the development of the approaches, the simulation and a graphical user interface developed in Matlab which allows to perform trade-offs across multiple constellation's configurations.

  16. CubeSats for Astrophysics: The Current Perspective

    NASA Astrophysics Data System (ADS)

    Ardila, David R.; Shkolnik, Evgenya; Gorjian, Varoujan

    2017-01-01

    Cubesats are small satellites built to multiples of 1U (1000 cm3). The 2016 NRC Report “Achieving Science with CubeSats” indicates that between 2013 and 2018 NASA and NSF sponsored 104 CubeSats. Of those, only one is devoted to astrophysics: HaloSat (PI: P. Kaaret), a 6U CubeSat with an X-ray payload to study the hot galactic halo.Despite this paucity of missions, CubeSats have a lot of potential for astrophysics. To assess the science landscape that a CubeSat astrophysics mission may occupy, we consider the following parameters:1-Wavelength: CubeSats are not competitive in the visible, unless the application (e.g. high precision photometry) is difficult to do from the ground. Thermal IR science is limited by the lack of low-power miniaturized cryocoolers and by the large number of infrared astrophysical missions launched or planned. In the UV, advances in δ-doping processes result in larger sensitivity with smaller apertures. Commercial X-ray detectors also allow for competitive science.2-Survey vs. Pointed observations: All-sky surveys have been done at most wavelengths from X-rays to Far-IR and CubeSats will not be able to compete in sensitivity with them. CubeSat science should then center on specific objects or object classes. Due to poor attitude control, unresolved photometry is scientifically more promising that extended imaging.3-Single-epoch vs. time domain: CubeSat apertures cannot compete in sensitivity with big satellites when doing single-epoch observations. However, time-domain astrophysics is an area in which CubeSats can provide very valuable science return.Technologically, CubeSat astrophysics is limited by:1-Lack of large apertures: The largest aperture CubeSat launched is ~10 cm, although deployable apertures as large as 20 cm could be fitted to 6U buses.2-Poor attitude control: State-of-the-art systems have demonstrated jitter of ~10” on timescales of seconds. Jitter imposes limits on image quality and, coupled with detector errors

  17. Space micropropulsion systems for Cubesats and small satellites: From proximate targets to furthermost frontiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levchenko, Igor; Bazaka, Kateryna; Ding, Yongjie

    Rapid evolution of miniaturized, automatic, robotized, function-centered devices has redefined space technology, bringing closer the realization of most ambitious interplanetary missions and intense near-Earth space exploration. Small unmanned satellites and probes are now being launched in hundreds at a time, resurrecting a dream of satellite constellations, i.e., wide, all-covering networks of small satellites capable of forming universal multifunctional, intelligent platforms for global communication, navigation, ubiquitous data mining, Earth observation, and many other functions, which was once doomed by the extraordinary cost of such systems. The ingression of novel nanostructured materials provided a solid base that enabled the advancement of thesemore » affordable systems in aspects of power, instrumentation, and communication. However, absence of efficient and reliable thrust systems with the capacity to support precise maneuvering of small satellites and CubeSats over long periods of deployment remains a real stumbling block both for the deployment of large satellite systems and for further exploration of deep space using a new generation of spacecraft. The last few years have seen tremendous global efforts to develop various miniaturized space thrusters, with great success stories. Yet, there are critical challenges that still face the space technology. These have been outlined at an inaugural International Workshop on Micropropulsion and Cubesats, MPCS-2017, a joint effort between Plasma Sources and Application Centre/Space Propulsion Centre (Singapore) and the Micropropulsion and Nanotechnology Lab, the G. Washington University (USA) devoted to miniaturized space propulsion systems, and hosted by CNR-Nanotec—P.Las.M.I. lab in Bari, Italy. This focused review aims to highlight the most promising developments reported at MPCS-2017 by leading world-reputed experts in miniaturized space propulsion systems. Recent advances in several major types of small

  18. Space micropropulsion systems for Cubesats and small satellites: From proximate targets to furthermost frontiers

    DOE PAGES

    Levchenko, Igor; Bazaka, Kateryna; Ding, Yongjie; ...

    2018-02-22

    Rapid evolution of miniaturized, automatic, robotized, function-centered devices has redefined space technology, bringing closer the realization of most ambitious interplanetary missions and intense near-Earth space exploration. Small unmanned satellites and probes are now being launched in hundreds at a time, resurrecting a dream of satellite constellations, i.e., wide, all-covering networks of small satellites capable of forming universal multifunctional, intelligent platforms for global communication, navigation, ubiquitous data mining, Earth observation, and many other functions, which was once doomed by the extraordinary cost of such systems. The ingression of novel nanostructured materials provided a solid base that enabled the advancement of thesemore » affordable systems in aspects of power, instrumentation, and communication. However, absence of efficient and reliable thrust systems with the capacity to support precise maneuvering of small satellites and CubeSats over long periods of deployment remains a real stumbling block both for the deployment of large satellite systems and for further exploration of deep space using a new generation of spacecraft. The last few years have seen tremendous global efforts to develop various miniaturized space thrusters, with great success stories. Yet, there are critical challenges that still face the space technology. These have been outlined at an inaugural International Workshop on Micropropulsion and Cubesats, MPCS-2017, a joint effort between Plasma Sources and Application Centre/Space Propulsion Centre (Singapore) and the Micropropulsion and Nanotechnology Lab, the G. Washington University (USA) devoted to miniaturized space propulsion systems, and hosted by CNR-Nanotec—P.Las.M.I. lab in Bari, Italy. This focused review aims to highlight the most promising developments reported at MPCS-2017 by leading world-reputed experts in miniaturized space propulsion systems. Recent advances in several major types of small

  19. Space micropropulsion systems for Cubesats and small satellites: From proximate targets to furthermost frontiers

    NASA Astrophysics Data System (ADS)

    Levchenko, Igor; Bazaka, Kateryna; Ding, Yongjie; Raitses, Yevgeny; Mazouffre, Stéphane; Henning, Torsten; Klar, Peter J.; Shinohara, Shunjiro; Schein, Jochen; Garrigues, Laurent; Kim, Minkwan; Lev, Dan; Taccogna, Francesco; Boswell, Rod W.; Charles, Christine; Koizumi, Hiroyuki; Shen, Yan; Scharlemann, Carsten; Keidar, Michael; Xu, Shuyan

    2018-03-01

    Rapid evolution of miniaturized, automatic, robotized, function-centered devices has redefined space technology, bringing closer the realization of most ambitious interplanetary missions and intense near-Earth space exploration. Small unmanned satellites and probes are now being launched in hundreds at a time, resurrecting a dream of satellite constellations, i.e., wide, all-covering networks of small satellites capable of forming universal multifunctional, intelligent platforms for global communication, navigation, ubiquitous data mining, Earth observation, and many other functions, which was once doomed by the extraordinary cost of such systems. The ingression of novel nanostructured materials provided a solid base that enabled the advancement of these affordable systems in aspects of power, instrumentation, and communication. However, absence of efficient and reliable thrust systems with the capacity to support precise maneuvering of small satellites and CubeSats over long periods of deployment remains a real stumbling block both for the deployment of large satellite systems and for further exploration of deep space using a new generation of spacecraft. The last few years have seen tremendous global efforts to develop various miniaturized space thrusters, with great success stories. Yet, there are critical challenges that still face the space technology. These have been outlined at an inaugural International Workshop on Micropropulsion and Cubesats, MPCS-2017, a joint effort between Plasma Sources and Application Centre/Space Propulsion Centre (Singapore) and the Micropropulsion and Nanotechnology Lab, the G. Washington University (USA) devoted to miniaturized space propulsion systems, and hosted by CNR-Nanotec—P.Las.M.I. lab in Bari, Italy. This focused review aims to highlight the most promising developments reported at MPCS-2017 by leading world-reputed experts in miniaturized space propulsion systems. Recent advances in several major types of small

  20. CubeSat Artist Rendering and NASA M-Cubed/COVE

    NASA Image and Video Library

    2012-02-14

    The image on the left is an artist rendering of Montana State University Explorer 1 CubeSat; at right is a CubeSat created by the University of Michigan designated the Michigan Mulitpurpose Mini-satellite, or M-Cubed.

  1. NASA Near Earth Network (NEN) and Space Network (SN) CubeSat Communications

    NASA Technical Reports Server (NTRS)

    Schaire, Scott H.; Shaw, Harry; Altunc, Serhat; Bussey, George; Celeste, Peter; Kegege, Obadiah; Wong, Yen; Zhang, Yuwen; Patel, Chitra; Raphael, David; hide

    2016-01-01

    There has been a recent trend to increase capability and drive down the Size, Weight and Power (SWAP) of satellites. NASA scientists and engineers across many of NASA's Mission Directorates and Centers are developing exciting CubeSat concepts and welcome potential partnerships for CubeSat endeavors. From a "Telemetry, Tracking and Command (TT&C) Systems and Flight Operations for Small Satellites" point of view, small satellites including CubeSats are a challenge to coordinate because of existing small spacecraft constraints, such as limited SWAP and attitude control, and the potential for high numbers of operational spacecraft. The NASA Space Communications and Navigation (SCaN) Program's Near Earth Network (NEN) and Space Network (SN) are customer driven organizations that provide comprehensive communications services for space assets including data transport between a mission's orbiting satellite and its Mission Operations Center (MOC). This paper presents how well the SCaN networks, SN and NEN, are currently positioned to support the emerging small small satellite and CubeSat market as well as planned enhancements for future support.

  2. NanoRacks CubeSat Deployment

    NASA Image and Video Library

    2014-02-11

    ISS038-E-045009 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it deploys a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing. Station solar array panels, Earth's horizon and the blackness of space provide the backdrop for the scene.

  3. Lunar magnetic field measurements with a cubesat

    NASA Astrophysics Data System (ADS)

    Garrick-Bethell, Ian; Lin, Robert P.; Sanchez, Hugo; Jaroux, Belgacem A.; Bester, Manfred; Brown, Patrick; Cosgrove, Daniel; Dougherty, Michele K.; Halekas, Jasper S.; Hemingway, Doug; Lozano, Paulo C.; Martel, Francois; Whitlock, Caleb W.

    2013-05-01

    We have developed a mission concept that uses 3-unit cubesats to perform new measurements of lunar magnetic fields, less than 100 meters above the Moon's surface. The mission calls for sending the cubesats on impact trajectories to strongly magnetic regions on the surface, and transmitting measurements in real-time to a nearby spacecraft, or directly to the Earth, up until milliseconds before impact. The cubesats and their instruments are partly based on the NSF-funded CINEMA cubesat now in Earth orbit. Two methods of reaching the Moon as a secondary payload are discussed: 1) After launching into geostationary transfer orbit with a communication satellite, a small mother-ship travels into lunar orbit and releases the cubesats on impact trajectories, and 2) The cubesats travel to the Moon using their own propulsion after release into geosynchronous orbit. This latter version would also enable other near-Earth missions, such as constellations for studying magnetospheric processes, and observations of close-approaching asteroids.

  4. LEDsats: LEO CubeSats with LEDs for Optical Tracking

    NASA Astrophysics Data System (ADS)

    Seitzer, P.; Cutler, J.; Piergentili, F.; Santoni, F.; Arena, L.; Cardona, T.; Cowardin, H.; Lee, C.; Sharma, S.

    2016-09-01

    We describe a project to launch 1U CubeSats equipped with Light Emitting Diodes (LEDs) into Low Earth Orbit (LEO) for optical tracking with ground-based telescopes. Active illumination on the satellites increases tremendously the number of passes where the LEO satellite is visible when the ground-based telescope is in darkness. The restriction that the satellite is in direct Sun is removed, and so tracking can take place all night long rather than just in twilight. The inspiration for this project came from the Japanese CubeSat FITSAT-1 that carried red and green high-powered LED arrays, and was clearly visible from the ground with small telescopes. There are two goals: 1) increase the accuracy and precision of LEO orbits by increasing the number and length of passes that satellite is visible, and 2) minimize the confusion between objects in the case of multiple CubeSats being launched at the same time. Technical issues to be discussed include the power level required for detection by small (20 - 40 cm) ground based telescopes, the optimum flash pattern for astrometry against star fields, and the timing of the flash pattern to millisecond or better accuracy and precision. We propose to deploy two such LEDsats simultaneously from the International Space Station: the first to be built at the University of Michigan, and the second to be built at Sapienza University Rome. One experiment is to see how we can distinguish these two CubeSats shortly after deployment solely from optical tracking, and so the CubeSats will have different flash patterns.

  5. Improved Orbit Determination of LEO CubeSats: Project LEDsat

    NASA Astrophysics Data System (ADS)

    Cutler, J.; Seitzer, P.; Lee, C. H.; Washabaugh, P.; Sharma, S.; Gitten, R.; Piergentili, F.; Santoni, F.; Cardona, T.; Cialone, G.; Frezza, L.; Gianfermo, A.; Marzioli, P.; Masillo, S.; Pellegrino, A.; Schildknecht, T.; Bedard, D.; Cowardin, H.

    Project LEDsat is an international project (USA, Italy, and Canada) designed to improve the identification and orbit determination of CubeSats in low Earth orbit (LEO). The goal is to fly CubeSats with multiple methods of measuring positions on the same spacecraft: GPS, optical tracking, satellite laser ranging (SLR), and radio tracking. These satellites will be equipped with light emitting diodes (LEDs) for optical tracking while the satellite is in Earth shadow. It will be possible to compare the orbits determined from different methods to examine the systematic and random errors associated with each method. Furthermore, if each LEDsat has a different flash pattern, then it will be possible to distinguish closely spaced satellites shortly after deployment. The Sapienza University of Rome 3U CubeSat URSA MAIOR with LEDs and retro-reflectors was launched in June 2017 and is working on orbit. Sapienza has designed a 1U CubeSat follow-on mission dedicated to LED tracking, which was selected for possible launch in 2018 in the European Space Agency's (ESA) 'Fly Your Satellite' program. The University of Michigan is designing a 3U version with LEDs, GPS receiver, SLR, and radio tracking. The Royal Military College of Canada (RMC) is leading a Canadian effort for a LEDsat mission as well. All three organizations have a program of testing LEDs for space use to predict the effects of the LEO space environment.

  6. Using Additive Manufacturing to Print a CubeSat Propulsion System

    NASA Technical Reports Server (NTRS)

    Marshall, William M.

    2015-01-01

    CubeSats are increasingly being utilized for missions traditionally ascribed to larger satellites CubeSat unit (1U) defined as 10 cm x 10 cm x 11 cm. Have been built up to 6U sizes. CubeSats are typically built up from commercially available off-the-shelf components, but have limited capabilities. By using additive manufacturing, mission specific capabilities (such as propulsion), can be built into a system. This effort is part of STMD Small Satellite program Printing the Complete CubeSat. Interest in propulsion concepts for CubeSats is rapidly gaining interest-Numerous concepts exist for CubeSat scale propulsion concepts. The focus of this effort is how to incorporate into structure using additive manufacturing. End-use of propulsion system dictates which type of system to develop-Pulse-mode RCS would require different system than a delta-V orbital maneuvering system. Team chose an RCS system based on available propulsion systems and feasibility of printing using a materials extrusion process. Initially investigated a cold-gas propulsion system for RCS applications-Materials extrusion process did not permit adequate sealing of part to make this a functional approach.

  7. NASAs EDSN Aims to Overcome the Operational Challenges of CubeSat Constellations and Demonstrate an Economical Swarm of 8 CubeSats Useful for Space Science Investigations

    NASA Technical Reports Server (NTRS)

    Smith, Harrison Brodsky; Hu, Steven Hung Kee; Cockrell, James J.

    2013-01-01

    Operators of a constellation of CubeSats have to confront a number of daunting challenges that can be cost prohibitive, or operationally prohibitive, to missions that could otherwise be enabled by a satellite constellation. Challenges including operations complexity, intersatellite communication, intersatellite navigation, and time sharing tasks between satellites are all complicated by operating with the usual CubeSat size, power, and budget constraints. EDSN pioneers innovative solutions to these problems as they are presented on the nano-scale satellite platform.

  8. Radio frequency diagnostics on board of Cubesat as a tool for planetary Space Weather monitoring

    NASA Astrophysics Data System (ADS)

    Rothkaehl, H.; Morawski, M.; Szewczyk, T.

    2014-04-01

    CubeSat pico-satellite standard was developed recently to allow easy access to space for projects with limited funds. Due to relatively cheap yet professional development process, CubeSats have also great educational impact. This allows the students to learn about all crucial aspects of space engineering and project management. Since all the basic steps for developing CubeSat are similar to those performed on bigger satellites (i.e. designing, testing, operating in space), this gives possibility to develop all the necessary skills and experience for future work at space industries. Space Research Center, together with its collaborators from University of Warmia and Mazury in Olsztyn and others, would like to design and build double unit CubeSat as an opportunity to perform scientific experiments in space together with technological demonstrators of subsystems. In order to monitor the Earth's and planetary space environment and obtain a much more complete picture of magnetosphere and ionosphere coupling and particularly waves-particle interaction in this system than those available hitherto new mission of clustered Cubesat mission can be propose. Moreover to enhance our understanding of the rich plasma physical processes that drive the Solar Terrestrial space environment, we need to increase our ability to perform multi-point measurements by means of different sensors. Therefore, new technologies radio frequency radio analyser RFA instrument will gave the possibility for diagnostics 3D electric field component (spectra and wave forms) with extremely high time resolution. Additional technological challenges regarding size, computational power and energy constraints are imposed by the design of CubeSat.

  9. NASA Near Earth Network (NEN) and Space Network (SN) Support of CubeSat Communications

    NASA Technical Reports Server (NTRS)

    Schaire, Scott H.; Shaw, Harry C.; Altunc, Serhat; Bussey, George; Celeste, Peter; Kegege, Obadiah; Wong, Yen; Zhang, Yuwen; Patel, Chitra; Raphael, David; hide

    2016-01-01

    There has been a historical trend to increase capability and drive down the Size, Weight and Power (SWAP) of satellites and that trend continues today. NASA scientists and engineers across many of NASAs Mission Directorates and Centers are developing exciting CubeSat concepts and welcome potential partnerships for CubeSat endeavors. From a Telemetry, Tracking and Command (TTC) Systems and Flight Operations for Small Satellites point of view, small satellites including CubeSats are a challenge to coordinate because of existing small spacecraft constraints, such as limited SWAP and attitude control, and the potential for high numbers of operational spacecraft. The NASA Space Communications and Navigation (SCaN) Programs Near Earth Network (NEN) and Space Network (SN) are customer driven organizations that provide comprehensive communications services for space assets including data transport between a missions orbiting satellite and its Mission Operations Center (MOC). This paper presents how well the SCaN networks, SN and NEN, are currently positioned to support the emerging small small satellite and CubeSat market as well as planned enhancements for future support.

  10. Fluxgate Magnetometry on the Experimental Albertan Satellite #1 (Ex-Alta-1) CubeSat Mission: Steps Toward a Magnetospheric Constellation Mission

    NASA Astrophysics Data System (ADS)

    Mann, I. R.; Miles, D.; Nokes, C.; Cupido, C.; Elliott, D.; Ciurzynski, M.; Barona, D.; Narod, B. B.; Bennest, J.; Pakhotin, I.; Kale, A.; Bruner, B.; Haluza-DeLay, T.; Forsyth, C.; Rae, J.; Lange, C.; Sameoto, D.; Milling, D. K.

    2017-12-01

    Making low noise magnetic measurements is a significant challenge to the use of cube-satellite (CubeSat) platforms for scientific constellation class missions for studies of geospace. We describe the design, validation, and test, and initial on-orbit results from a miniature, low-mass, low-power, and low-magnetic noise boom-mounted fluxgate magnetometer flown on the University of Alberta Experimental Albertan Satellite #1 (Ex-Alta-1) Cube Satellite, launched in 2017 from the International Space Station as part of the QB50 constellation mission. The miniature instrument achieves a magnetic noise floor of 150-200 pT/√Hz at 1 Hz, consumes 400 mW of power, has a mass of 121 g (sensor and boom), stows on the hull, and deploys on a 60 cm boom from a three-unit CubeSat reducing the noise from the onboard reaction wheel to less than 1.5 nT at the sensor. The instrument's capabilities are being demonstrated and validated in space with flight on Ex-Alta-1. We present on-orbit data from the boom-deployment and initial operations of the fluxgate sensor and illustrate the potential scientific returns and utility of using CubeSats carrying such fluxgate magnetometers to constitute a magnetospheric constellation mission. We further illustrate the value of scientific constellations using example data from the low-Earth orbit European Space Agency Swarm mission. Swarm data reveal significant changes in the spatiotemporal characteristics of the magnetic fields in the coupled magnetosphere-ionosphere system, even when the spacecraft are separated by only approximately 10 s along track and approximately 1.4° in longitude. This indicates the likely energetic significance of Alfven wave dynamics, and we use Swarm measurements to illustrate the value of satellite constellations for diagnosing magnetosphere-ionosphere coupling even in low-Earth orbit.

  11. New opportunities offered by Cubesats for space research in Latin America: The SUCHAI project case

    NASA Astrophysics Data System (ADS)

    Diaz, M. A.; Zagal, J. C.; Falcon, C.; Stepanova, M.; Valdivia, J. A.; Martinez-Ledesma, M.; Diaz-Peña, J.; Jaramillo, F. R.; Romanova, N.; Pacheco, E.; Milla, M.; Orchard, M.; Silva, J.; Mena, F. P.

    2016-11-01

    During the last decade, a very small-standardized satellite, the Cubesat, emerged as a low-cost fast-development tool for space and technology research. Although its genesis is related to education, the change in paradigm presented by this satellite platform has motivated several countries, institutions, and companies to invest in a variety of technologies, aimed at improving Cubesat capabilities, while lowering costs of space missions. Following that trend, Latin American institutions, mostly universities, has started to develop Cubesat missions. This article describes some of the Latin American projects in this area. In particular, we discuss the achievements and scientific grounds upon which the first Cubesat projects in Chile were based and the implications that those projects have had on pursuing satellite-based research in the country and in collaboration with other countries of the region.

  12. CubeSat Nighttime Earth Observations

    NASA Astrophysics Data System (ADS)

    Pack, D. W.; Hardy, B. S.; Longcore, T.

    2017-12-01

    Satellite monitoring of visible emissions at night has been established as a useful capability for environmental monitoring and mapping the global human footprint. Pioneering work using Defense Meteorological Support Program (DMSP) sensors has been followed by new work using the more capable Visible Infrared Imaging Radiometer Suite (VIIRS). Beginning in 2014, we have been investigating the ability of small visible light cameras on CubeSats to contribute to nighttime Earth science studies via point-and-stare imaging. This paper summarizes our recent research using a common suite of simple visible cameras on several AeroCube satellites to carry out nighttime observations of urban areas and natural gas flares, nighttime weather (including lighting), and fishing fleet lights. Example results include: urban image examples, the utility of color imagery, urban lighting change detection, and multi-frame sequences imaging nighttime weather and large ocean areas with extensive fishing vessel lights. Our results show the potential for CubeSat sensors to improve monitoring of urban growth, light pollution, energy usage, the urban-wildland interface, the improvement of electrical power grids in developing countries, light-induced fisheries, and oil industry flare activity. In addition to orbital results, the nighttime imaging capabilities of new CubeSat sensors scheduled for launch in October 2017 are discussed.

  13. Advanced Technology in Small Packages Enables Space Science Research Nanosatellites: Examples from the NASA Miniature X-ray Solar Spectrometer CubeSat

    NASA Astrophysics Data System (ADS)

    Woods, T. N.

    2017-12-01

    Nanosatellites, including the CubeSat class of nanosatellites, are about the size of a shoe box, and the CubeSat modular form factor of a Unit (1U is 10 cm x 10 cm x 10 cm) was originally defined in 1999 as a standardization for students developing nanosatellites. Over the past two decades, the satellite and instrument technologies for nanosatellites have progressed to the sophistication equivalent to the larger satellites, but now available in smaller packages through advanced developments by universities, government labs, and space industries. For example, the Blue Canyon Technologies (BCT) attitude determination and control system (ADCS) has demonstrated 3-axis satellite control from a 0.5-Unit system with 8 arc-second stability using reaction wheels, torque rods, and a star tracker. The first flight demonstration of the BCT ADCS was for the NASA Miniature X-ray Solar Spectrometer (MinXSS) CubeSat. The MinXSS CubeSat mission, which was deployed in May 2016 and had its re-entry in May 2017, provided space weather measurements of the solar soft X-rays (SXR) variability using low-power, miniaturized instruments. The MinXSS solar SXR spectra have been extremely useful for exploring flare energetics and also for validating the broadband SXR measurements from the NOAA GOES X-Ray Sensor (XRS). The technology used in the MinXSS CubeSat and summary of science results from the MinXSS-1 mission will be presented. Web site: http://lasp.colorado.edu/home/minxss/

  14. Time-Resolved CubeSat Photometry with a Low Cost Electro-Optics System

    NASA Astrophysics Data System (ADS)

    Gasdia, F.; Barjatya, A.; Bilardi, S.

    2016-09-01

    Once the orbits of small debris or CubeSats are determined, optical rate-track follow-up observations can provide information for characterization or identification of these objects. Using the Celestron 11" RASA telescope and an inexpensive CMOS machine vision camera, we have obtained time-series photometry from dozens of passes of small satellites and CubeSats over sites in Florida and Massachusetts. The fast readout time of the CMOS detector allows temporally resolved sampling of glints from small wire antennae and structural facets of rapidly tumbling objects. Because the shape of most CubeSats is known, these light curves can be used in a mission support function for small satellite operators to diagnose or verify the proper functioning of an attitude control system or deployed antenna or instrument. We call this telescope system and the accompanying analysis tools OSCOM for Optical tracking and Spectral characterization of CubeSats for Operational Missions. We introduce the capability of OSCOM for space object characterization, and present photometric observations demonstrating the potential of high frame rate small satellite photometry.

  15. NanoRacks CubeSat Deployment

    NASA Image and Video Library

    2015-02-27

    ISS042E290579 (02/27/2015) --- On Feb. 27 2015, a series of CubeSats, small experimental satellites, were deployed via a special device mounted on the Japanese Experiment Module (JEM) Remote Manipulator System (JEMRMS). Deployed satellites included twelve Dove sats, one TechEdSat-4, one GEARRSat, one LambdaSat, one MicroMas. These satellites perform a variety of functions from capturing new Earth imagery, to using microwave scanners to create 3D images of hurricanes, to even developing new methods for returning science samples back to Earth from space. The small satellites were deployed through the first week in March.

  16. Porting the Core Flight System to the Dellingr Cubesat

    NASA Technical Reports Server (NTRS)

    Cudmore, Alan

    2017-01-01

    Dellingr is a 6U Cubesat developed by NASA Goddard Space Flight Center. It was delivered to the International Space Station in August 2017, and is scheduled to be deployed in November 2017. Compared to a typical NASA satellite, the Dellingr Cubesat had an extremely low budget and short schedule. Although the Dellingr Cubesat has minimal hardware resources, the cFS was ultimately chosen for the flight software. Using the cFS on the Dellingr Cubesat presented a few challenges, but also offered opportunities to help speed up development and verify the ACS flight software. This presentation will cover the lessons learned in porting the cFS to the Dellingr Cubesat, including working with the limited hardware resources, porting the cFS to FreeRTOS, and overcoming limitations related to data storage and file transfer. This presentation will also cover how hardware abstraction was used to run the flight software on multiple platforms and interface with the 42 dynamic simulator.

  17. CubeSat Attitude Determination and Helmholtz Cage Design

    DTIC Science & Technology

    2012-03-01

    4.2.2. 3.6 CubeSat Components The CubeSat used in this experiment is commanded and controlled via the Arduino Mega board that is based on the ATmel...UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base , Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED The views...ENY/12-M03 Abstract A method of 3-axis satellite attitude determination utilizing six body-fixed light sensors and a 3-axis magnetometer is analyzed. A

  18. The Colorado Student Space Weather Experiment : A CubeSat for Space Physics

    NASA Astrophysics Data System (ADS)

    Palo, Scott; Li, Xinlin; Gerhardt, David; Turner, Drew; Hoxie, V.; Kohnert, Rick; Batiste, Susan

    Energetic particles, electrons and protons either directly associated with solar flares or trapped in the terrestrial radiation belt, have a profound space weather impact. A National Science Foundation supported 3U CubeSat mission with a single instrument, Relativistic Electrons and Proton Telescope integrated little experiment (REPTile), is proposed to address fundamental scientific questions relating to these high energy particles. Of key importance are the relation-ship between solar flares and energetic particles and the acceleration and loss mechanism of outer radiation belt electrons. REPTile, operating in a highly inclined low earth orbit, will measure differential fluxes of relativistic electrons in the energy range of 0.5-3.5 MeV and pro-tons in 10-40 MeV. The Colorado Student Space Weather Experiment cubesat will be designed, integrated and testing by students at the University of Colorado under the oversight of pro-fessional engineers with the Laboratory of Atmospheric and Space Physics who have extensive space hardware experience. Our design philosophy is to use commercially off the shelf (COTS) parts where available and only engage in detailed designed where COTS parts cannot meet the system needs. The top level science requirements for the mission have driven the system and subsystem level performance requirements and the specific design choices such as a passive magnetic attitude system and instrument design. In this paper we will present details of the CSSWE design and management approach. Specifically we will discuss the top level science requirements for the mission and show that these measurements are novel and will address open questions in the scientific community. The overall system architecture resulting from a flow-down of these requirements will be presented with a focus on the novel aspects of the system including the instrument design. Finally we will discuss how this project is organized and man-aged as part of the Department of

  19. X-Band CubeSat Communication System Demonstration

    NASA Technical Reports Server (NTRS)

    Altunc, Serhat; Kegege, Obadiah; Bundick, Steve; Shaw, Harry; Schaire, Scott; Bussey, George; Crum, Gary; Burke, Jacob C.; Palo, Scott; O'Conor, Darren

    2015-01-01

    Today's CubeSats mostly operate their communications at UHF- and S-band frequencies. UHF band is presently crowded, thus downlink communications are at lower data rates due to bandwidth limitations and are unreliable due to interference. This research presents an end-to-end robust, innovative, compact, efficient and low cost S-band uplink and X-band downlink CubeSat communication system demonstration between a balloon and a Near Earth Network (NEN) ground system. Since communication systems serve as umbilical cords for space missions, demonstration of this X-band communication system is critical for successfully supporting current and future CubeSat communication needs. This research has three main objectives. The first objective is to design, simulate, and test a CubeSat S- and X-band communication system. Satellite Tool Kit (STK) dynamic link budget calculations and HFSS Simulations and modeling results have been used to trade the merit of various designs for small satellite applications. S- and X-band antennas have been tested in the compact antenna test range at Goddard Space Flight Center (GSFC) to gather radiation pattern data. The second objective is simulate and test a CubeSat compatible X-band communication system at 12.5Mbps including S-band antennas, X-band antennas, Laboratory for Atmospheric and Space Physics (LASP) /GSFC transmitter and an S-band receiver from TRL-5 to TRL-8 by the end of this effort. Different X-band communication system components (antennas, diplexers, etc.) from GSFC, other NASA centers, universities, and private companies have been investigated and traded, and a complete component list for the communication system baseline has been developed by performing analytical and numerical analysis. This objective also includes running simulations and performing trades between different X-band antenna systems to optimize communication system performance. The final objective is to perform an end-to-end X-band CubeSat communication system

  20. Near Earth Network (NEN) CubeSat Communications

    NASA Technical Reports Server (NTRS)

    Schaire, Scott

    2017-01-01

    The NASA Near Earth Network (NEN) consists of globally distributed tracking stations, including NASA, commercial, and partner ground stations, that are strategically located to maximize the coverage provided to a variety of orbital and suborbital missions, including those in LEO (Low Earth Orbit), GEO (Geosynchronous Earth Orbit), HEO (Highly Elliptical Orbit), lunar and L1-L2 orbits. The NEN's future mission set includes and will continue to include CubeSat missions. The first NEN-supported CubeSat mission will be the Cubesat Proximity Operations Demonstration (CPOD) launching into LEO in 2017. The majority of the CubeSat missions destined to fly on EM-1, launching in late 2018, many in a lunar orbit, will communicate with ground-based stations via X-band and will utilize the NASA Jet Propulsion Laboratory (JPL)-developed IRIS (Satellite Communication for Air Traffic Management) radio. The NEN recognizes the important role CubeSats are beginning to play in carrying out NASAs mission and is therefore investigating the modifications needed to provide IRIS radio compatibility. With modification, the NEN could potentially expand support to the EM-1 (Exploration Mission-1) lunar CubeSats. The NEN could begin providing significant coverage to lunar CubeSat missions utilizing three to four of the NEN's mid-latitude sites. This coverage would supplement coverage provided by the JPL Deep Space Network (DSN). The NEN, with smaller apertures than DSN, provides the benefit of a larger beamwidth that could be beneficial in the event of uncertain ephemeris data. In order to realize these benefits the NEN would need to upgrade stations targeted based on coverage ability and current configuration ease of upgrade, to ensure compatibility with the IRIS radio. In addition, the NEN is working with CubeSat radio developers to ensure NEN compatibility with alternative CubeSat radios for Lunar and L1-L2 CubeSats. The NEN has provided NEN compatibility requirements to several radio

  1. Microwave Atmospheric Sounder on CubeSat

    NASA Astrophysics Data System (ADS)

    Padmanabhan, S.; Brown, S. E.; Kangaslahti, P.; Cofield, R.; Russell, D.; Stachnik, R. A.; Su, H.; Wu, L.; Tanelli, S.; Niamsuwan, N.

    2014-12-01

    To accurately predict how the distribution of extreme events may change in the future we need to understand the mechanisms that influence such events in our current climate. Our current observing system is not well-suited for observing extreme events globally due to the sparse sampling and in-homogeneity of ground-based in-situ observations and the infrequent revisit time of satellite observations. Observations of weather extremes, such as extreme precipitation events, temperature extremes, tropical and extra-tropical cyclones among others, with temporal resolution on the order of minutes and spatial resolution on the order of few kms (<10 kms), are required for improved forecasting of extreme weather events. We envision a suite of low-cost passive microwave sounding and imaging sensors on CubeSats that would work in concert with traditional flagship observational systems, such as those manifested on large environmental satellites (i.e. JPSS,WSF,GCOM-W), to monitor weather extremes. A 118/183 GHz sensor would enable observations of temperature and precipitation extremes over land and ocean as well as tropical and extra-tropical cyclones. This proposed project would enable low cost, compact radiometer instrumentation at 118 and 183 GHz that would fit in a 6U Cubesat with the objective of mass-producing this design to enable a suite of small satellites to image the key geophysical parameters needed to improve prediction of extreme weather events. We take advantage of past and current technology developments at JPL viz. HAMSR (High Altitude Microwave Scanning Radiometer), Advanced Component Technology (ACT'08) to enable low-mass, low-power high frequency airborne radiometers. In this paper, we will describe the design and implementation of the 118 GHz temperature sounder and 183 GHz humidity sounder on the 6U CubeSat. In addition, a summary of radiometer calibration and retrieval techniques of temperature and humidity will be discussed. The successful demonstration of

  2. Using Additive Manufacturing to Print a CubeSat Propulsion System

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Zemba, Michael; Shemelya, Corey; Wicker, Ryan; Espalin, David; MacDonald, Eric; Keif, Craig; Kwas, Andrew

    2015-01-01

    Small satellites, such as CubeSats, are increasingly being called upon to perform missions traditionally ascribed to larger satellite systems. However, the market of components and hardware for small satellites, particularly CubeSats, still falls short of providing the necessary capabilities required by ever increasing mission demands. One way to overcome this shortfall is to develop the ability to customize every build. By utilizing fabrication methods such as additive manufacturing, mission specific capabilities can be built into a system, or into the structure, that commercial off-the-shelf components may not be able to provide. A partnership between the University of Texas at El Paso, COSMIAC at the University of New Mexico, Northrop Grumman, and the NASA Glenn Research Center is looking into using additive manufacturing techniques to build a complete CubeSat, under the Small Spacecraft Technology Program. The W. M. Keck Center at the University of Texas at El Paso has previously demonstrated the ability to embed electronics and wires into the addtively manufactured structures. Using this technique, features such as antennas and propulsion systems can be included into the CubeSat structural body. Of interest to this paper, the team is investigating the ability to take a commercial micro pulsed plasma thruster and embed it into the printing process. Tests demonstrating the dielectric strength of the printed material and proof-of-concept demonstration of the printed thruster will be shown.

  3. Development of a hardware-in-loop attitude control simulator for a CubeSat satellite

    NASA Astrophysics Data System (ADS)

    Tapsawat, Wittawat; Sangpet, Teerawat; Kuntanapreeda, Suwat

    2018-01-01

    Attitude control is an important part in satellite on-orbit operation. It greatly affects the performance of satellites. Testing of an attitude determination and control subsystem (ADCS) is very challenging since it might require attitude dynamics and space environment in the orbit. This paper develops a low-cost hardware-in-loop (HIL) simulator for testing an ADCS of a CubeSat satellite. The simulator consists of a numerical simulation part, a hardware part, and a HIL interface hardware unit. The numerical simulation part includes orbital dynamics, attitude dynamics and Earth’s magnetic field. The hardware part is the real ADCS board of the satellite. The simulation part outputs satellite’s angular velocity and geomagnetic field information to the HIL interface hardware. Then, based on this information, the HIL interface hardware generates I2C signals mimicking the signals of the on-board rate-gyros and magnetometers and consequently outputs the signals to the ADCS board. The ADCS board reads the rate-gyro and magnetometer signals, calculates control signals, and drives the attitude actuators which are three magnetic torquers (MTQs). The responses of the MTQs sensed by a separated magnetometer are feedback to the numerical simulation part completing the HIL simulation loop. Experimental studies are conducted to demonstrate the feasibility and effectiveness of the simulator.

  4. Effects of CubeSat Deployments in Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Matney, M. J.; Vavrin, A. B.; Manis, A. P.

    2017-01-01

    Long-term models, such as NASA's LEGEND (LEO (Low-Earth Orbit)-to-GEO (Geosynchrous Earth Orbit) Environment Debris) model, are used to make predictions about how space activities will affect the long-term evolution of the debris environment. Part of this process is to predict how spacecraft and rocket bodies will be launched and left in the environment in the future. This has usually been accomplished by repeating past launch history to simulate future launches. It was partially upon the basis of the results of such models that both national and international orbital debris mitigation guidelines - especially the "25-year rule" for post-mission disposal - were determined. The proliferation of Cubesat launches in recent years, however, has raised concerns that we are seeing a fundamental shift in how humans launch satellites into space that may alter the assumptions upon which our current mitigation guidelines are based. The large number of Cubesats, and their short lifetime and general inability to perform collision avoidance, potentially makes them an important new source of debris. The NASA Orbital Debris Program Office (ODPO) has conducted a series of LEGEND computations to investigate the long-term effects of adding Cubesats to the environment. Several possible future scenarios were simulated to investigate the effects of the size of future Cubesat launches and the efficiency of post-mission disposal on the proliferation of catastrophic collisions over the next 200 years. These results are compared to a baseline "business-as-usual" scenario where launches are assumed to continue as in the past without major Cubesat deployments. Using these results, we make observations about the continued use of the 25-year rule and the importance of the universal application of post-mission disposal. We also discuss how the proliferation of Cubesats may affect satellite traffic at lower altitudes.

  5. Power generation and solar panels for an MSU CubeSat

    NASA Astrophysics Data System (ADS)

    Sassi, Soundouss

    This thesis is a power generation study of a proposed CubeSat at Mississippi State University (MSU). CubeSats are miniaturized satellites of 10 x 10 x 10 cm in dimension. Their power source once in orbit is the sun during daylight and the batteries during eclipse. MSU CubeSat is equipped with solar panels. This effort will discuss two types of cells: Gallium Arsenide and Silicon; and which one will suit MSU CubeSat best. Once the cell type is chosen, another decision regarding the electrical power subsystem will be made. Solar array design can only be done once the choice of the electrical power subsystem and the solar cells is made. Then the power calculation for different mission durations will start along with the sizing of the solar arrays. In the last part the batteries are introduced and discussed in order to choose one type of batteries for MSU CubeSat.

  6. Achieving Science with CubeSats: Thinking Inside the Box

    NASA Astrophysics Data System (ADS)

    Zurbuchen, Thomas H.; Lal, Bhavya

    2017-01-01

    We present the results of a study conducted by the National Academies of Sciences, Engineering, and Medicine. The study focused on the scientific potential and technological promise of CubeSats. We will first review the growth of the CubeSat platform from an education-focused technology toward a platform of importance for technology development, science, and commercial use, both in the United States and internationally. The use has especially exploded in recent years. For example, of the over 400 CubeSats launched since 2000, more than 80% of all science-focused ones have been launched just in the past four years. Similarly, more than 80% of peer-reviewed papers describing new science based on CubeSat data have been published in the past five years.We will then assess the technological and science promise of CubeSats across space science disciplines, and discuss a subset of priority science goals that can be achieved given the current state of CubeSat capabilities. Many of these goals address targeted science, often in coordination with other spacecraft, or by using sacrificial or high-risk orbits that lead to the demise of the satellite after critical data have been collected. Other goals relate to the use of CubeSats as constellations or swarms, deploying tens to hundreds of CubeSats that function as one distributed array of measurements.Finally, we will summarize our conclusions and recommendations from this study; especially those focused on nearterm investment that could improve the capabilities of CubeSats toward increased science and technological return and enable the science communities’ use of CubeSats.

  7. Achieving Science with CubeSats: Thinking Inside the Box

    NASA Astrophysics Data System (ADS)

    Lal, B.; Zurbuchen, T.

    2016-12-01

    In this paper, we present a study conducted by the National Academies of Sciences, Engineering, and Medicine. The study focused on the scientific potential and technological promise of CubeSats. We will first review the growth of the CubeSat platform from an education-focused technology toward a platform of importance for technology development, science, and commercial use, both in the United States and internationally. The use has especially exploded in recent years. For example, of the over 400 CubeSats launched since 2000, more than 80% of all science-focused ones have been launched just in the past four years. Similarly, more than 80% of peer-reviewed papers describing new science based on CubeSat data have been published in the past five years. We will then assess the technological and science promise of CubeSats across space science disciplines, and discuss a subset of priority science goals that can be achieved given the current state of CubeSat capabilities. Many of these goals address targeted science, often in coordination with other spacecraft, or by using sacrificial or high-risk orbits that lead to the demise of the satellite after critical data have been collected. Other goals relate to the use of CubeSats as constellations or swarms, deploying tens to hundreds of CubeSats that function as one distributed array of measurements. Finally, we will summarize our conclusions and recommendations from this study; especially those focused on near-term investment that could improve the capabilities of CubeSats toward increased science and technological return and enable the science communities' use of CubeSats.

  8. Cubic Satellites, Vanguard Technology Integration, an Educational Opportunity of Modernization in Mexico

    NASA Astrophysics Data System (ADS)

    Moreno-Franco, Olmo A.; Muñoz-Ubando, L. A.; Moreno-Moreno, Prudenciano; Vargas-Méndez, Eduardo E.

    This paper provides a theoretical approach on the CubeSat standard making a cost-benefit analysis in the use of pico-satellites at the education and technology integration model for educational modernization. With the CubeSat format is planned to develop an orbit LEO pico-satellite as part of a multidisciplinary project led by the Robotics Institute of Yucatan (TRIY), assisted with previous experience in Mexico and Colombia, to build a satellite capable of stabilizing through a robotic device, which will be a training model for human resources in Mexico. The CubeSat initiative represents a technological development of more than 10 years who is still alive and growing, attracting new participants from different educational institutions and global business, which has proven to be a project that would be made and successful results with a significant low budget compared to other space missions, and finally is an opportunity to bring students and teachers to the aerospace industry, through a convergence of technology, and academic discipline.

  9. Hardware and software implementation of a low power attitude control and determination system for cubesats

    NASA Astrophysics Data System (ADS)

    Frey, Jesse

    In recent years there has been a growing interest in smaller satellites. Smaller satellites are cheaper to build and launch than larger satellites. One form factor, the CubeSat, is especially popular with universities and is a 10~cm cube. Being smaller means that the mass and power budgets are tighter and as such new ways must be developed to cope with these constraints. Traditional attitude control systems often use reaction wheels with gas thrusters which present challenges on a CubeSat. Many CubeSats use magnetic attitude control which uses the Earth's magnetic field to torque the satellite into the proper orientation. Magnetic attitude control systems fall into two main categories: active and passive. Active control is often achieved by running current through a coil to produce a dipole moment, while passive control uses the dipole moment from permanent magnets that consume no power. This thesis describes a system that uses twelve hard magnetic torquers along with a magnetometer. The torquers only consume current when their dipole moment is flipped, thereby significantly reducing power requirements compared with traditional active control. The main focus of this thesis is on the design, testing and fabrication of CubeSat hardware and software in preparation for launch.

  10. A Complete Cubesat Magnetometer System Project

    NASA Technical Reports Server (NTRS)

    Zesta, Eftyhia

    2014-01-01

    The objective of this work is to provide the center with a fully tested, flexible, low cost, miniaturized science magnetometer system applicable to small satellite programs, like Cubesats, and to rides of opportunity that do not lend themselves to the high integration costs a science magnetometer on a boom necessitates.

  11. One of 50: Challenger, the University of Colorado Boulder QB50 Constellation Satellite

    NASA Astrophysics Data System (ADS)

    Palo, S. E.; Rainville, N.; Dahir, A.; Rouleau, C.; Stark, J.; Nell, N.; Fukushima, J.; Antunes de Sa, A.

    2015-12-01

    QB50 is a bold project lead by the Von Karman Institute of Fluid Dynamics as part of the European Union FP7 program to launch fifty cubesats from a single launch vehicle. With a planned deployment altitude of 380km, the QB50 constellation will stay below the space station and deorbit within 9-12 months, depending upon solar conditions. Forty of the QB50 satellites are flying specified scientific sensors which include an ion-neutral mass spectrometer, a Langmuir probe or a FIPEX oxygen sensor. This constellation of cubesats will yield an unprecedented set of distributed measurements of the lower-thermosphere. The University of Colorado Boulder was selected as part of a four team consortium of US cubesat providers to participate in the QB50 mission and is supported by the National Science Foundation. The Challenger cubesat, designed and built by a multidisciplinary team of students at the University of Colorado Boulder will carry the ion-neutral mass spectrometer as a science instrument and has heritage from the Colorado Student Space Weather Experiment (CSSWE) and Miniature X-Ray Spectrometer (MinXSS) cubesats. Many of the cubesat subsystems were designed, built and tested by students in the Space Technology Integration (STIg) lab. This paper will provide an overview and a status update of the QB50 program in addition to details of the Challenger cubesat.

  12. NPS Cubesat Launcher-Lite Sequencer

    DTIC Science & Technology

    2009-06-01

    AND SUBTITLE NPS Cubesat Launcher-Lite Sequencer 6. AUTHOR(S) Harris, Anthony D. 5. FUNDING NUMBERS RSPXL 7. PERFORMING ORGANIZATION NAME(S) AND...ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY...international nanosatellite manufacturers. On April 28, 2009, Indian Space Research Organization launched 8 nanosatellites on the Polar Satellite Launch

  13. An Optimum Space-to-Ground Communication Concept for CubeSat Platform Utilizing NASA Space Network and Near Earth Network

    NASA Technical Reports Server (NTRS)

    Wong, Yen F.; Kegege, Obadiah; Schaire, Scott H.; Bussey, George; Altunc, Serhat; Zhang, Yuwen; Patel Chitra

    2016-01-01

    National Aeronautics and Space Administration (NASA) CubeSat missions are expected to grow rapidly in the next decade. Higher data rate CubeSats are transitioning away from Amateur Radio bands to higher frequency bands. A high-level communication architecture for future space-to-ground CubeSat communication was proposed within NASA Goddard Space Flight Center. This architecture addresses CubeSat direct-to-ground communication, CubeSat to Tracking Data Relay Satellite System (TDRSS) communication, CubeSat constellation with Mothership direct-to-ground communication, and CubeSat Constellation with Mothership communication through K-Band Single Access (KSA). A study has been performed to explore this communication architecture, through simulations, analyses, and identifying technologies, to develop the optimum communication concepts for CubeSat communications. This paper presents details of the simulation and analysis that include CubeSat swarm, daughter ship/mother ship constellation, Near Earth Network (NEN) S and X-band direct to ground link, TDRSS Multiple Access (MA) array vs Single Access mode, notional transceiver/antenna configurations, ground asset configurations and Code Division Multiple Access (CDMA) signal trades for daughter ship/mother ship CubeSat constellation inter-satellite cross link. Results of space science X-band 10 MHz maximum achievable data rate study are summarized. CubeSat NEN Ka-Band end-to-end communication analysis is provided. Current CubeSat communication technologies capabilities are presented. Compatibility test of the CubeSat transceiver through NEN and SN is discussed. Based on the analyses, signal trade studies and technology assessments, the desired CubeSat transceiver features and operation concepts for future CubeSat end-to-end communications are derived.

  14. Gerst depressurized Kibo for Cubesat deployment

    NASA Image and Video Library

    2014-08-18

    ISS040-E-096126 (18 Aug. 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, depressurizes the Kibo airlock in preparation for a series of NanoRacks CubeSat miniature satellite deployments. The first two pairs of nanosatellites are scheduled for deployment on Aug. 19. The Planet Labs Dove satellites that were carried to the station aboard the Orbital Sciences Cygnus commercial cargo craft are being deployed between Aug. 19 and Aug. 25.

  15. Gerst depressurized Kibo for Cubesat deployment

    NASA Image and Video Library

    2014-08-18

    ISS040-E-096122 (18 Aug. 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, depressurizes the Kibo airlock in preparation for a series of NanoRacks CubeSat miniature satellite deployments. The first two pairs of nanosatellites are scheduled for deployment on Aug. 19. The Planet Labs Dove satellites that were carried to the station aboard the Orbital Sciences Cygnus commercial cargo craft are being deployed between Aug. 19 and Aug. 25.

  16. The Impact of Administrative Academic Units (AAU) Grants on the Family Medicine Research Enterprise in the United States.

    PubMed

    Morley, Christopher P; Cameron, Brianna J; Bazemore, Andrew W

    2016-06-01

    The Health Resources and Services Administration (HRSA) awards funding to primary care departments-or "Academic Administrative Units" (AAUs) at US medical schools-to strengthen or grow these departments and ultimately increase the output of primary care physicians into the US workforce. One aspect of these AAU grants that is often overlooked is the fact that they support research infrastructure for these departments. This study used multiple methods, including content analysis of current AAU grant abstracts (n=23), publications resulting from AAU funding (n=79), and survey responses from AAU project directors (n=19) to explore and describe the impact of current AAU grants on family medicine research in the United States. Federal support for family medicine departments remains very low compared to other disciplines. Several AAU grants have provided direct support for research activities as stipulated in the grant abstracts (6/23). However, most grants appear to have facilitated scholarly activity of some sort, including evaluation and quality improvement activities. Two practice-based research networks are supported with AAU funds, and at least 79 publications over the past 10 years, representing a wide variety of methodological approaches and topics, have been produced and indexed in PubMed with explicit acknowledgment of AAU funding. In the absence of substantial NIH support for family medicine departments, the AAU funding mechanism remains a crucial, but often overlooked, factor in facilitating scholarly activity in departments of family medicine.

  17. On the verge of an astronomy CubeSat revolution

    NASA Astrophysics Data System (ADS)

    Shkolnik, Evgenya L.

    2018-05-01

    CubeSats are small satellites built in standard sizes and form factors, which have been growing in popularity but have thus far been largely ignored within the field of astronomy. When deployed as space-based telescopes, they enable science experiments not possible with existing or planned large space missions, filling several key gaps in astronomical research. Unlike expensive and highly sought after space telescopes such as the Hubble Space Telescope, whose time must be shared among many instruments and science programs, CubeSats can monitor sources for weeks or months at time, and at wavelengths not accessible from the ground such as the ultraviolet, far-infrared and low-frequency radio. Science cases for CubeSats being developed now include a wide variety of astrophysical experiments, including exoplanets, stars, black holes and radio transients. Achieving high-impact astronomical research with CubeSats is becoming increasingly feasible with advances in technologies such as precision pointing, compact sensitive detectors and the miniaturization of propulsion systems. CubeSats may also pair with the large space- and ground-based telescopes to provide complementary data to better explain the physical processes observed.

  18. Big Software for SmallSats: Adapting CFS to CubeSat Missions

    NASA Technical Reports Server (NTRS)

    Cudmore, Alan P.; Crum, Gary; Sheikh, Salman; Marshall, James

    2015-01-01

    Expanding capabilities and mission objectives for SmallSats and CubeSats is driving the need for reliable, reusable, and robust flight software. While missions are becoming more complicated and the scientific goals more ambitious, the level of acceptable risk has decreased. Design challenges are further compounded by budget and schedule constraints that have not kept pace. NASA's Core Flight Software System (cFS) is an open source solution which enables teams to build flagship satellite level flight software within a CubeSat schedule and budget. NASA originally developed cFS to reduce mission and schedule risk for flagship satellite missions by increasing code reuse and reliability. The Lunar Reconnaissance Orbiter, which launched in 2009, was the first of a growing list of Class B rated missions to use cFS. Large parts of cFS are now open source, which has spurred adoption outside of NASA. This paper reports on the experiences of two teams using cFS for current CubeSat missions. The performance overheads of cFS are quantified, and the reusability of code between missions is discussed. The analysis shows that cFS is well suited to use on CubeSats and demonstrates the portability and modularity of cFS code.

  19. Scheduling algorithms for rapid imaging using agile Cubesat constellations

    NASA Astrophysics Data System (ADS)

    Nag, Sreeja; Li, Alan S.; Merrick, James H.

    2018-02-01

    Distributed Space Missions such as formation flight and constellations, are being recognized as important Earth Observation solutions to increase measurement samples over space and time. Cubesats are increasing in size (27U, ∼40 kg in development) with increasing capabilities to host imager payloads. Given the precise attitude control systems emerging in the commercial market, Cubesats now have the ability to slew and capture images within short notice. We propose a modular framework that combines orbital mechanics, attitude control and scheduling optimization to plan the time-varying, full-body orientation of agile Cubesats in a constellation such that they maximize the number of observed images and observation time, within the constraints of Cubesat hardware specifications. The attitude control strategy combines bang-bang and PD control, with constraints such as power consumption, response time, and stability factored into the optimality computations and a possible extension to PID control to account for disturbances. Schedule optimization is performed using dynamic programming with two levels of heuristics, verified and improved upon using mixed integer linear programming. The automated scheduler is expected to run on ground station resources and the resultant schedules uplinked to the satellites for execution, however it can be adapted for onboard scheduling, contingent on Cubesat hardware and software upgrades. The framework is generalizable over small steerable spacecraft, sensor specifications, imaging objectives and regions of interest, and is demonstrated using multiple 20 kg satellites in Low Earth Orbit for two case studies - rapid imaging of Landsat's land and coastal images and extended imaging of global, warm water coral reefs. The proposed algorithm captures up to 161% more Landsat images than nadir-pointing sensors with the same field of view, on a 2-satellite constellation over a 12-h simulation. Integer programming was able to verify that

  20. Survey on the implementation and reliability of CubeSat electrical bus interfaces

    NASA Astrophysics Data System (ADS)

    Bouwmeester, Jasper; Langer, Martin; Gill, Eberhard

    2017-06-01

    This paper provides results and conclusions on a survey on the implementation and reliability aspects of CubeSat bus interfaces, with an emphasis on the data bus and power distribution. It provides recommendations for a future CubeSat bus standard. The survey is based on a literature study and a questionnaire representing 60 launched CubeSats and 44 to be launched CubeSats. It is found that the bus interfaces are not the main driver for mission failures. However, it is concluded that the Inter Integrated Circuit (I2C) data bus, as implemented in a great majority of the CubeSats, caused some catastrophic satellite failures and a vast amount of bus lockups. The power distribution may lead to catastrophic failures if the power lines are not protected against overcurrent. A connector and wiring standard widely implemented in CubeSats is based on the PC/104 standard. Most participants find the 104 pin connector of this standard too large. For a future CubeSat bus interface standard, it is recommended to implement a reliable data bus, a power distribution with overcurrent protection and a wiring harness with smaller connectors compared with PC/104.

  1. Star of AOXiang: An innovative 12U CubeSat to demonstrate polarized light navigation and microgravity measurement

    NASA Astrophysics Data System (ADS)

    Yu, Xiaozhou; Zhou, Jun; Zhu, Peijie; Guo, Jian

    2018-06-01

    Most of the CubeSats have a volume range from 1U to 3U, which limits their applications due to the difficulty of miniaturizing payloads. To facilitate the needs on a larger but low-cost satellite platform, the AOXiang (AOX) project has been developed by Northwestern Polytechnical University (NPU). The primary objectives of AOX project are four-folds: 1) To demonstrate the world first 12U CubeSat Star of AOXiang and 12U orbit deployer which uses an innovative electromagnetic unlocking technology. 2) To investigate the feasibility of using polarized sunlight for spacecraft attitude determination and navigation, and perform microgravity research using a miniaturized gravimeter. 3) To test a fault tolerant on-board computer using the System On the Programmable Chip (SOPC) technology, and 4) To gain the experience from developing the CubeSat and the subsystems. The CubeSat was launched in June 2016. Now, the mission has achieved all the goals. This paper provides the detail information of the AOX project, with a focus on the introduction of the subsystems of the 12U CubeSat, the orbit deployer and the payloads. The recent in-orbit results of the first NPU are also presented. In addition to the educational objective that has been reached with more than 50 young scholars and students participated in the project.

  2. An Optimum Space-to-Ground Communication Concept for CubeSat Platform Utilizing NASA Space Network and Near Earth Network

    NASA Technical Reports Server (NTRS)

    Wong, Yen F.; Kegege, Obadiah; Schaire, Scott H.; Bussey, George; Altunc, Serhat; Zhang, Yuwen; Patel, Chitra

    2016-01-01

    National Aeronautics and Space Administration (NASA) CubeSat missions are expected to grow rapidly in the next decade. Higher data rate CubeSats are transitioning away from Amateur Radio bands to higher frequency bands. A high-level communication architecture for future space-to-ground CubeSat communication was proposed within NASA Goddard Space Flight Center. This architecture addresses CubeSat direct-to-ground communication, CubeSat to Tracking Data Relay Satellite System (TDRSS) communication, CubeSat constellation with Mothership direct-to-ground communication, and CubeSat Constellation with Mothership communication through K-Band Single Access (KSA).A Study has been performed to explore this communication architecture, through simulations, analyses, and identifying technologies, to develop the optimum communication concepts for CubeSat communications. This paper will present details of the simulation and analysis that include CubeSat swarm, daughter shipmother ship constellation, Near Earth Network (NEN) S and X-band direct to ground link, TDRS Multiple Access (MA) array vs Single Access mode, notional transceiverantenna configurations, ground asset configurations and Code Division Multiple Access (CDMA) signal trades for daughter mother CubeSat constellation inter-satellite crosslink. Results of Space Science X-band 10 MHz maximum achievable data rate study will be summarized. Assessment of Technology Readiness Level (TRL) of current CubeSat communication technologies capabilities will be presented. Compatibility test of the CubeSat transceiver through NEN and Space Network (SN) will be discussed. Based on the analyses, signal trade studies and technology assessments, the functional design and performance requirements as well as operation concepts for future CubeSat end-to-end communications will be derived.

  3. CubeSat Integration into the Space Situational Awareness Architecture

    NASA Astrophysics Data System (ADS)

    Morris, K.; Wolfson, M.; Brown, J.

    2013-09-01

    Lockheed Martin Space Systems Company has recently been involved in developing GEO Space Situational Awareness architectures, which allows insights into how cubesats can augment the current national systems. One hole that was identified in the current architecture is the need for timelier metric track observations to aid in the chain of custody. Obtaining observations of objects at GEO can be supported by CubeSats. These types of small satellites are increasing being built and flown by government agencies like NASA and SMDC. CubeSats are generally mass and power constrained allowing for only small payloads that cannot typically mimic traditional flight capability. CubeSats do not have a high reliability and care must be taken when choosing mission orbits to prevent creating more debris. However, due to the low costs, short development timelines, and available hardware, CubeSats can supply very valuable benefits to these complex missions, affordably. For example, utilizing CubeSats for advanced focal plane demonstrations to support technology insertion into the next generation situational awareness sensors can help to lower risks before the complex sensors are developed. CubeSats can augment the planned ground and space based assets by creating larger constellations with more access to areas of interest. To aid in maintaining custody of objects, a CubeSat constellation at 500 km above GEO would provide increased point of light tracking that can augment the ground SSA assets. Key features of the Cubesat include a small visible camera looking along the GEO belt, a small propulsion system that allows phasing between CubeSats, and an image processor to reduce the data sent to the ground. An elegant communications network will also be used to provide commands to and data from multiple CubeSats. Additional CubeSats can be deployed on GSO launches or through ride shares to GEO, replenishing or adding to the constellation with each launch. Each CubeSat would take images of

  4. A review of MEMS micropropulsion technologies for CubeSats and PocketQubes

    NASA Astrophysics Data System (ADS)

    Silva, Marsil A. C.; Guerrieri, Daduí C.; Cervone, Angelo; Gill, Eberhard

    2018-02-01

    CubeSats have been extensively used in the past decade as scientific tools, technology demonstrators and for education. Recently, PocketQubes have emerged as an interesting and even smaller alternative to CubeSats. However, both satellite types often lack some key capabilities, such as micropropulsion, in order to further extend the range of applications of these small satellites. This paper reviews the current development status of micropropulsion systems fabricated with MEMS (micro electro-mechanical systems) and silicon technology intended to be used in CubeSat or PocketQube missions and compares different technologies with respect to performance parameters such as thrust, specific impulse, and power as well as in terms of operational complexity. More than 30 different devices are analyzed and divided into 7 main categories according to the working principle. A specific outcome of the research is the identification of the current status of MEMS technologies for micropropulsion including key opportunities and challenges.

  5. Temporal Experiment for Storms and Tropical Systems (TEMPEST) CubeSat Constellation

    NASA Astrophysics Data System (ADS)

    Reising, S. C.; Todd, G.; Padmanabhan, S.; Brown, S. T.; Lim, B.; Kummerow, C. D.; Chandra, C. V.; van den Heever, S. C.; L'Ecuyer, T. S.; Luo, Z. J.; Haddad, Z. S.; Munchak, S. J.; Ruf, C. S.; Berg, G.; Koch, T.; Boukabara, S. A.

    2014-12-01

    TEMPEST addresses key science needs related to cloud and precipitation processes using a constellation of five CubeSats with identical five-frequency millimeter-wave radiometers spaced 5-10 minutes apart in orbit. The deployment of CubeSat constellations on satellite launches of opportunity allows Earth system observations to be accomplished with greater robustness, shorter repeat times and at a small fraction of the cost of typical Earth Science missions. The current suite of Earth-observing satellites is capable of measuring precipitation parameters using radar or radiometric observations. However, these low Earth-orbiting satellites provide only a snapshot of each storm, due to their repeat-pass times of many hours to days. With typical convective events lasting 1-2 hours, it is highly unlikely that the time evolution of clouds through the onset of precipitation will be observed with current assets. The TEMPEST CubeSat constellation directly observes the time evolution of clouds and identifies changes in time to detect the moment of the onset of precipitation. The TEMPEST millimeter-wave radiometers penetrate into the cloud to directly observe changes as the cloud begins to precipitate or ice accumulates inside the storm. The evolution of ice formation in clouds is important for climate prediction because it largely drives Earth's radiation budget. TEMPEST improves understanding of cloud processes and helps to constrain one of the largest sources of uncertainty in climate models. TEMPEST provides observations at five millimeter-wave frequencies from 90 to 183 GHz using a single compact instrument that is well suited for a 6U CubeSat architecture and fits well within the NASA CubeSat Launch Initiative (CSLI) capabilities. Five identical CubeSats deployed in the same orbital plane with 5-10 minute spacing at 390-450 km altitude and 50-65 degree inclination capture 3 million observations of precipitation, including 100,000 deep convective events in a one

  6. Electrospray Thrusters for Attitude Control of a 1-U CubeSat

    NASA Astrophysics Data System (ADS)

    Timilsina, Navin

    With a rapid increase in the interest in use of nanosatellites in the past decade, finding a precise and low-power-consuming attitude control system for these satellites has been a real challenge. In this thesis, it is intended to design and test an electrospray thruster system that could perform the attitude control of a 1-unit CubeSat. Firstly, an experimental setup is built to calculate the conductivity of different liquids that could be used as propellants for the CubeSat. Secondly, a Time-Of-Flight experiment is performed to find out the thrust and specific impulse given by these liquids and hence selecting the optimum propellant. On the other hand, a colloidal thruster system for a 1-U CubeSat is designed in Solidworks and fabricated using Lathe and CNC Milling Machine. Afterwards, passive propellant feeding is tested in this thruster system. Finally, the electronic circuit and wireless control system necessary to remotely control the CubeSat is designed and the final testing is performed. Among the propellants studied, Ethyl ammonium nitrate (EAN) was selected as the best propellant for the CubeSat. Theoretical design and fabrication of the thruster system was performed successfully and so was the passive propellant feeding test. The satellite was assembled for the final experiment but unfortunately the microcontroller broke down during the first test and no promising results were found out. However, after proving that one thruster works with passive feeding, it could be said that the ACS testing would have worked if we had performed vacuum compatibility tests for other components beforehand.

  7. Hyperspectral Cubesat Constellation for Rapid Natural Hazard Response

    NASA Astrophysics Data System (ADS)

    Mandl, D.; Huemmrich, K. F.; Ly, V. T.; Handy, M.; Ong, L.; Crum, G.

    2015-12-01

    With the advent of high performance space networks that provide total coverage for Cubesats, the paradigm for low cost, high temporal coverage with hyperspectral instruments becomes more feasible. The combination of ground cloud computing resources, high performance with low power consumption onboard processing, total coverage for the cubesats and social media provide an opprotunity for an architecture that provides cost-effective hyperspectral data products for natural hazard response and decision support. This paper provides a series of pathfinder efforts to create a scalable Intelligent Payload Module(IPM) that has flown on a variety of airborne vehicles including Cessna airplanes, Citation jets and a helicopter and will fly on an Unmanned Aerial System (UAS) hexacopter to monitor natural phenomena. The IPM's developed thus far were developed on platforms that emulate a satellite environment which use real satellite flight software, real ground software. In addition, science processing software has been developed that perform hyperspectral processing onboard using various parallel processing techniques to enable creation of onboard hyperspectral data products while consuming low power. A cubesat design was developed that is low cost and that is scalable to larger consteallations and thus can provide daily hyperspectral observations for any spot on earth. The design was based on the existing IPM prototypes and metrics that were developed over the past few years and a shrunken IPM that can perform up to 800 Mbps throughput. Thus this constellation of hyperspectral cubesats could be constantly monitoring spectra with spectral angle mappers after Level 0, Level 1 Radiometric Correction, Atmospheric Correction processing. This provides the opportunity daily monitoring of any spot on earth on a daily basis at 30 meter resolution which is not available today.

  8. Massively Clustered CubeSats NCPS Demo Mission

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.; Young, David; Kim, Tony; Houts, Mike

    2013-01-01

    Technologies under development for the proposed Nuclear Cryogenic Propulsion Stage (NCPS) will require an un-crewed demonstration mission before they can be flight qualified over distances and time frames representative of a crewed Mars mission. In this paper, we describe a Massively Clustered CubeSats platform, possibly comprising hundreds of CubeSats, as the main payload of the NCPS demo mission. This platform would enable a mechanism for cost savings for the demo mission through shared support between NASA and other government agencies as well as leveraged commercial aerospace and academic community involvement. We believe a Massively Clustered CubeSats platform should be an obvious first choice for the NCPS demo mission when one considers that cost and risk of the payload can be spread across many CubeSat customers and that the NCPS demo mission can capitalize on using CubeSats developed by others for its own instrumentation needs. Moreover, a demo mission of the NCPS offers an unprecedented opportunity to invigorate the public on a global scale through direct individual participation coordinated through a web-based collaboration engine. The platform we describe would be capable of delivering CubeSats at various locations along a trajectory toward the primary mission destination, in this case Mars, permitting a variety of potential CubeSat-specific missions. Cameras on various CubeSats can also be used to provide multiple views of the space environment and the NCPS vehicle for video monitoring as well as allow the public to "ride along" as virtual passengers on the mission. This collaborative approach could even initiate a brand new Science, Technology, Engineering and Math (STEM) program for launching student developed CubeSat payloads beyond Low Earth Orbit (LEO) on future deep space technology qualification missions. Keywords: Nuclear Propulsion, NCPS, SLS, Mars, CubeSat.

  9. A Low Cost Inflatable CubeSat Drag Brake Utilizing Sublimation

    NASA Astrophysics Data System (ADS)

    Horn, Adam Charles

    The United Nations Inter-Agency Debris Coordination Committee has adopted a 25-year post-mission lifetime requirement for any satellite orbiting below 2000 km in order to mitigate the growing orbital debris threat. Low-cost CubeSats have become important satellite platforms with startling capabilities, but this guideline restricts them to altitudes below 600 km because they remain in orbit too long. In order to enable CubeSat deployments at higher release altitudes, a low-cost, ultra-reliable deorbit device is needed. This thesis reports on efforts to develop a deployable and passively inflatable drag brake that can deorbit from higher orbital altitudes, thereby complying with the 25-year orbital lifetime guideline. On the basis of concepts first implemented during the NASA Echo Satellite Project, this study investigated the design of an inflatable CubeSat drag device that utilizes sublimating benzoic acid powder as the inflation propellant. Testing has focused on demonstrating the functionality of charging a Mylar drag brake bladder with appropriate quantities of benzoic acid powder, and the exposure to a controlled-temperature vacuum chamber causing the bladder to inflate. Although results show a measureable increase in internal pressure when introduced to anticipated orbital temperatures, a significant air-derived expansion prior to sublimation was encountered due to the undetectable volume of ambient residual air in the fabricated membrane bladders. These tests have demonstrated the feasibility of this approach, thereby demonstrating that this concept can create a potentially smaller and less expensive drag device, eliminating inflation gas tanks and valves. In that way, this system can provide a low-cost, miniaturized system that reduces a CubeSat's orbital lifetime to less than 25 years, when placed at higher orbital altitude.

  10. Applications of Nano-Satellites and Cube-Satellites in Microwave and RF Domain

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Goverdhanam, Kavita

    2015-01-01

    This paper presents an overview of microwave technologies for Small Satellites including NanoSats and CubeSats. In addition, examples of space communication technology demonstration projects using CubeSats are presented. Furthermore, examples of miniature instruments for Earth science measurements are discussed.

  11. Applications of Nano-satellites and Cube-satellites in Microwave and RF Domain

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Goverdhanam, Kavita

    2015-01-01

    This paper presents an overview of microwave technologies for Small Satellites including NanoSats and CubeSats. In addition, examples of space communication technology demonstration projects using CubeSats are presented. Furthermore, examples of miniature instruments for Earth science measurements are discussed.

  12. An innovative deployable solar panel system for Cubesats

    NASA Astrophysics Data System (ADS)

    Santoni, Fabio; Piergentili, Fabrizio; Donati, Serena; Perelli, Massimo; Negri, Andrea; Marino, Michele

    2014-02-01

    One of the main Cubesat bus limitations is the available on-board power. The maximum power obtained using body mounted solar panels and advanced triple junction solar cells on a triple unit Cubesat is typically less than 10 W. The Cubesat performance and the mission scenario opened to these small satellite systems could be greatly enhanced by an increase of the available power. This paper describes the design and realization of a modular deployable solar panel system for Cubesats, consisting of a modular hinge and spring system that can be potentially used on-board single (1U), double(2U), triple (3U) and six units (6U) Cubesats. The size of each solar panels is the size of a lateral Cubesat surface. The system developed is the basis for a SADA (Solar Array Drive Assembly), in which a maneuvering capability is added to the deployed solar array in order to follow the apparent motion of the sun. The system design trade-off is discussed, comparing different deployment concepts and architectures, leading to the final selection for the modular design. A prototype of the system has been realized for a 3U Cubesat, consisting of two deployable solar panel systems, made of three solar panels each, for a total of six deployed solar panels. The deployment system is based on a plastic fiber wire and thermal cutters, guaranteeing a suitable level of reliability. A test-bed for the solar panel deployment testing has been developed, supporting the solar array during deployment reproducing the dynamical situation in orbit. The results of the deployment system testing are discussed, including the design and realization of the test-bed, the mechanical stress given to the solar cells by the deployment accelerations and the overall system performance. The maximum power delivered by the system is about 50.4 W BOL, greatly enhancing the present Cubesat solar array performance.

  13. Hyperspectral Cubesat Constellation for Natural Hazard Response

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Crum, Gary; Ly, Vuong; Handy, Matthew; Huemmrich, Karl F.; Ong, Lawrence; Holt, Ben; Maharaja, Rishabh

    2016-01-01

    The authors on this paper are team members of the Earth Observing 1 (E0-1) mission which has flown an imaging spectrometer (hyperspectral) instrument called Hyperion for the past 15+ years. The satellite is able to image any spot on Earth in the nadir looking direction every 16 days and with slewing, of the satellite for up to a 23 degree view angle, any spot on the Earth can be imaged approximately every 2 to 3 days. EO-1 has been used to track many natural hazards such as wildfires, volcanoes and floods. An enhanced capability that has been sought is the ability to image natural hazards in a daily time series for space-based imaging spectrometers. The Hyperion cannot provide this capability on EO-1 with the present polar orbit. However, a constellation of cubesats, each with the same imaging spectrometer, positioned strategically can be used to provide daily coverage or even diurnal coverage, cost-effectively. This paper sought to design a cubesat constellation mission that would accomplish this goal and then to articulate the key tradeoffs.

  14. CubeSat: Colorado Student Space Weather Experiment

    NASA Astrophysics Data System (ADS)

    Li, X.; Palo, S. E.; Turner, D. L.; Gerhardt, D.; Redick, T.; Tao, J.

    2009-12-01

    Energetic particles, electrons and protons either directly associated with solar flares or trapped in the terrestrial radiation belt, have a profound space weather impact. A 3U CubeSat mission with a single instrument, Relativistic Electrons and Proton Telescope integrated little experiment (REPTile), is proposed to address fundamental questions relating to the relationship between solar flares and energetic particles and the acceleration and loss mechanism of outer radiation belt electrons. REPTile, in a highly inclined low earth orbit, will measure differential fluxes of relativistic electrons in the energy range of 0.5-3.5 MeV and protons in 10-40 MeV. This project is a collaborative effort between the Laboratory for Atmospheric and Space Physics and the Department of Aerospace Engineering Sciences at the University of Colorado, which includes the integration of students, faculty, and professional engineers.

  15. Using CubeSats to Monitor Debris Flux

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2016-01-01

    Recent updates to NASA's Orbital Debris Engineering Model (ORDEM 3.0) include a population of small particles (1-2 mm in size) composed of high-density materials (e.g., steel) that drive much of the predicted risk for satellites in the 700-1000 km altitude regime. This modeled population was based on the analysis of returned surfaces of the Shuttle, which flew below 600 km altitude. The cessation of Shuttle missions, plus the lack of in situ data above 600 km means that a data source is being sought to either confirm or modify this high-density population. One possible data source would be a database of anomalous sporadic changes in spacecraft orbit/orientation that might be due to momentum transfer from small particles too small to seriously damage the spacecraft. Because the momentum imparted from an impact would be tiny, it would most likely show up in the orbital behavior of cubesats and other small satellites. While such small satellites were few in number, this was not a particularly attractive option, but now with the proliferation of cubesats in multiple orbit planes and altitudes, the possible collecting area has increased significantly. This presentation will discuss the physics of momentum-transferring impacts from hypervelocity collisions, and make predictions about rates, directions, and locations of such impacts. In addition, it will include recommendations for satellite users on what kind of data might be worth archiving and investigating.

  16. BIRDY - Interplanetary CubeSat for planetary geodesy of Small Solar System Bodies (SSSB).

    NASA Astrophysics Data System (ADS)

    Hestroffer, D.; Agnan, M.; Segret, B.; Quinsac, G.; Vannitsen, J.; Rosenblatt, P.; Miau, J. J.

    2017-12-01

    We are developing the Birdy concept of a scientific interplanetary CubeSat, for cruise, or proximity operations around a Small body of the Solar System (asteroid, comet, irregular satellite). The scientific aim is to characterise the body's shape, gravity field, and internal structure through imaging and radio-science techniques. Radio-science is now of common use in planetary science (flybys or orbiters) to derive the mass of the scientific target and possibly higher order terms of its gravity field. Its application to a nano-satellite brings the advantage of enabling low orbits that can get closer to the body's surface, hence increasing the SNR for precise orbit determination (POD), with a fully dedicated instrument. Additionally, it can be applied to two or more satellites, on a leading-trailing trajectory, to improve the gravity field determination. However, the application of this technique to CubeSats in deep space, and inter-satellite link has to be proven. Interplanetary CubeSats need to overcome a few challenges before reaching successfully their deep-space objectives: link to ground-segment, energy supply, protection against radiation, etc. Besides, the Birdy CubeSat — as our basis concept — is designed to be accompanying a mothercraft, and relies partly on the main mission for reaching the target, as well as on data-link with the Earth. However, constraints to the mothercraft needs to be reduced, by having the CubeSat as autonomous as possible. In this respect, propulsion and auto-navigation are key aspects, that we are studying in a Birdy-T engineering model. We envisage a 3U size CubeSat with radio link, object-tracker and imaging function, and autonomous ionic propulsion system. We are considering two case studies for autonomous guidance, navigation and control, with autonomous propulsion: in cruise and in proximity, necessitating ΔV up to 2m/s for a total budget of about 50m/s. In addition to the propulsion, in-flight orbit determination (IFOD

  17. The Brazilian INPE-UFSM NANOSATC-BR CubeSat Development Capacity Building Program

    NASA Astrophysics Data System (ADS)

    Schuch, Nelson Jorge; Cupertino Durao, Otavio S.

    The Brazilian INPE-UFSM NANOSATC-BR CubeSat Development Capacity Building Program (CBP) and the results of the NANOSATC-BR1, the first Brazilian CubeSat launching, expected for 2014's first semester, are presented. The CBP consists of two CubeSats, NANOSATC-BR 1 (1U) & 2 (2U) and is expected operate in orbit for at least 12 months each, with capacity building in space science, engineering and computer sciences for the development of space technologies using CubeSats satellites. The INPE-UFSM’s CBP Cooperation is basically among: (i) the Southern Regional Space Research Center (CRS), from the Brazilian INPE/MCTI, where acts the Program's General Coordinator and Projects NANOSATC-BR 1 & 2 Manager, having technical collaboration and management of the Mission’s General Coordinator for Engineering and Space Technology at INPE’s Headquarter (HQ), in São José dos Campos, São Paulo; (ii) the Santa Maria Space Science Laboratory (LACESM/CT) from the Federal University of Santa Maria - (UFSM); (iii) the Santa Maria Design House (SMDH); (iv) the Graduate Program in Microelectronics from the Federal University of Rio Grande do Sul (MG/II/UFRGS); and (v) the Aeronautic Institute of Technology (ITA/DCTA/CA-MD). The INPE-UFSM’s CBP has the involvement of UFSM' undergraduate students and graduate students from: INPE/MCTI, MG/II/UFRGS and ITA/DCTA/CA-MD. The NANOSATC-BR 1 & 2 Projects Ground Stations (GS) capacity building operation with VHF/UHF band and S-band antennas, are described in two specific papers at this COSPAR-2014. This paper focuses on the development of NANOSATC-BR 1 & 2 and on the launching of NANOSATC-BR1. The Projects' concepts were developed to: i) monitor, in real time, the Geospace, the Ionosphere, the energetic particle precipitation and the disturbances at the Earth's Magnetosphere over the Brazilian Territory, and ii) the determination of their effects on regions such as the South American Magnetic Anomaly (SAMA) and the Brazilian sector of the

  18. Small Cube Satellite Deploy

    NASA Image and Video Library

    2013-11-19

    ISS038-E-003876 (19 Nov. 2013) --- Three nanosatellites, known as Cubesats, are featured in this image photographed by an Expedition 38 crew member on the International Space Station. The satellites were released outside the Kibo laboratory using a Small Satellite Orbital Deployer attached to the Japanese module's robotic arm on Nov. 19, 2013. Japan Aerospace Exploration Agency astronaut Koichi Wakata, flight engineer, monitored the satellite deployment while operating the Japanese robotic arm from inside Kibo. The Cubesats were delivered to the International Space Station Aug. 9, aboard Japan’s fourth H-II Transfer Vehicle, Kounotori-4.

  19. Design and Functional Validation of a Mechanism for Dual-Spinning CubeSats

    NASA Technical Reports Server (NTRS)

    Peters, Eric; Dave, Pratik; Kingsbury, Ryan; Marinan, Anne; Wise, Evan; Pong, Chris; Prinkey, Meghan; Cahoy, Kerri; Miller, David W.; Sklair, Devon

    2014-01-01

    The mission of the Micro-sized Microwave Atmospheric Satellite (MicroMAS) is to collect useful atmospheric images using a miniature passive microwave radiometer payload hosted on a low-cost CubeSat platform. In order to collect this data, the microwave radiometer payload must rotate to scan the ground-track perpendicular to the satellite's direction of travel. A custom motor assembly was developed to facilitate the rotation of the payload while allowing the spacecraft bus to remained fixed in the local-vertical, local-horizontal (LVLH) frame for increased pointing accuracy. This paper describes the mechanism used to enable this dual-spinning operation for CubeSats, and the lessons learned during the design, fabrication, integration, and testing phases of the mechanism's development lifecycle.

  20. A survey and assessment of the capabilities of Cubesats for Earth observation

    NASA Astrophysics Data System (ADS)

    Selva, Daniel; Krejci, David

    2012-05-01

    In less than a decade, Cubesats have evolved from purely educational tools to a standard platform for technology demonstration and scientific instrumentation. The use of COTS (Commercial-Off-The-Shelf) components and the ongoing miniaturization of several technologies have already led to scattered instances of missions with promising scientific value. Furthermore, advantages in terms of development cost and development time with respect to larger satellites, as well as the possibility of launching several dozens of Cubesats with a single rocket launch, have brought forth the potential for radically new mission architectures consisting of very large constellations or clusters of Cubesats. These architectures promise to combine the temporal resolution of GEO missions with the spatial resolution of LEO missions, thus breaking a traditional trade-off in Earth observation mission design. This paper assesses the current capabilities of Cubesats with respect to potential employment in Earth observation missions. A thorough review of Cubesat bus technology capabilities is performed, identifying potential limitations and their implications on 17 different Earth observation payload technologies. These results are matched to an exhaustive review of scientific requirements in the field of Earth observation, assessing the possibilities of Cubesats to cope with the requirements set for each one of 21 measurement categories. Based on this review, several Earth observation measurements are identified that can potentially be compatible with the current state-of-the-art of Cubesat technology although some of them have actually never been addressed by any Cubesat mission. Simultaneously, other measurements are identified which are unlikely to be performed by Cubesats in the next few years due to insuperable constraints. Ultimately, this paper is intended to supply a box of ideas for universities to design future Cubesat missions with high scientific payoff.

  1. NASA Near Earth Network (NEN), Deep Space Network (DSN) and Space Network (SN) Support of CubeSat Communications

    NASA Technical Reports Server (NTRS)

    Schaire, Scott H.; Altunc, Serhat; Bussey, George; Shaw, Harry; Horne, Bill; Schier, Jim

    2015-01-01

    There has been a historical trend to increase capability and drive down the Size, Weight and Power (SWAP) of satellites and that trend continues today. Small satellites, including systems conforming to the CubeSat specification, because of their low launch and development costs, are enabling new concepts and capabilities for science investigations across multiple fields of interest to NASA. NASA scientists and engineers across many of NASAs Mission Directorates and Centers are developing exciting CubeSat concepts and welcome potential partnerships for CubeSat endeavors. From a communications and tracking point of view, small satellites including CubeSats are a challenge to coordinate because of existing small spacecraft constraints, such as limited SWAP and attitude control, low power, and the potential for high numbers of operational spacecraft. The NASA Space Communications and Navigation (SCaN) Programs Near Earth Network (NEN), Deep Space Network (DSN) and the Space Network (SN) are customer driven organizations that provide comprehensive communications services for space assets including data transport between a missions orbiting satellite and its Mission Operations Center (MOC). The NASA NEN consists of multiple ground antennas. The SN consists of a constellation of geosynchronous (Earth orbiting) relay satellites, named the Tracking and Data Relay Satellite System (TDRSS). The DSN currently makes available 13 antennas at its three tracking stations located around the world for interplanetary communication. The presentation will analyze how well these space communication networks are positioned to support the emerging small satellite and CubeSat market. Recognizing the potential support, the presentation will review the basic capabilities of the NEN, DSN and SN in the context of small satellites and will present information about NEN, DSN and SN-compatible flight radios and antenna development activities at the Goddard Space Flight Center (GSFC) and across

  2. Student and faculty perceptions on the rapid scale-up of medical students in Ethiopia.

    PubMed

    Mengistu, Brittney S; Vins, Holly; Kelly, Caitrin M; McGee, Daphne R; Spicer, Jennifer O; Derbew, Miliard; Bekele, Abebe; Mariam, Damen Haile; Del Rio, Carlos; Blumberg, Henry M; Comeau, Dawn L

    2017-01-13

    Ethiopia is a country of over 94 million people that has a severe physician shortage with approximately only 2.5 physicians per 100,000 persons. Recently, the Ethiopian government implemented a "flood and retain" initiative to rapidly increase the quantity of physicians in Ethiopia. Consequently, medical student enrollment at Addis Ababa University (AAU) School of Medicine increased from 100 to approximately 300-400 students per class. This study evaluated the impact of the rapid scale-up in the number of medical students on the quality of medical education at AAU and the impact of the U.S. government-funded Medical Education Partnership Initiative (MEPI) grant awarded to AAU to provide resources to strengthen the quality of medical education at AAU. Qualitative, semi-structured, in-depth interviews were conducted with 22 key informants including faculty members, administrators and medical students at AAU. The audio recordings were transcribed verbatim and interview data were analyzed with thematic analysis. Four key themes emerged from the data. Overall, participants perceived a decrease in the quality of medical education at AAU due to challenges created by the rapid scale-up in the number of medical students. Positive learning environments were described as difficult to achieve due to overcrowding in classrooms and the limited numbers of textbooks. Overall, participants stated that infrastructure improvement is needed to provide adequate medical student training. The medical education initiatives implemented and funded by MEPI have provided significant resources to support the medical student curriculum but additional resources are required to accommodate a large student body. The unprecedented rapid scale-up of medical students has impacted multiple facets of medical education at AAU. It is important to consider the perspectives of students and faculty in order to focus future medical education policies, MEPI programming and the allocation of resources.

  3. Small Cube Satellite Deploy

    NASA Image and Video Library

    2013-11-19

    ISS038-E-003874 (19 Nov. 2013) --- Three nanosatellites, known as Cubesats, are deployed from a Small Satellite Orbital Deployer (SSOD) attached to the Kibo laboratory's robotic arm at 7:10 a.m. (EST) on Nov. 19, 2013. Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, monitored the satellite deployment while operating the Japanese robotic arm from inside Kibo. The Cubesats were delivered to the International Space Station Aug. 9, aboard Japan's fourth H-II Transfer Vehicle, Kounotori-4.

  4. Cubesats: Cost-effective science and technology platforms for emerging and developing nations

    NASA Astrophysics Data System (ADS)

    Woellert, Kirk; Ehrenfreund, Pascale; Ricco, Antonio J.; Hertzfeld, Henry

    2011-02-01

    The development, operation, and analysis of data from cubesats can promote science education and spur technology utilization in emerging and developing nations. This platform offers uniquely low construction and launch costs together with a comparative ubiquity of launch providers; factors that have led more than 80 universities and several emerging nations to develop programs in this field. Their small size and weight enables cubesats to “piggyback” on rocket launches and accompany orbiters travelling to Moon and Mars. It is envisaged that constellations of cubesats will be used for larger science missions. We present a brief history, technology overview, and summary of applications in science and industry for these small satellites. Cubesat technical success stories are offered along with a summary of pitfalls and challenges encountered in both developed and emerging nations. A discussion of economic and public policy issues aims to facilitate the decision-making process for those considering utilization of this unique technology.

  5. Terrestrial gamma-ray flashes monitor demonstrator on CubeSat

    NASA Astrophysics Data System (ADS)

    Dániel, V.; Pína, L.; Inneman, A.; Zadražil, V.; Báča, T.; Platkevič, M.; Stehlíková, V.; Nentvich, O.; Urban, M.

    2016-09-01

    The CubeSat mission with the demonstrator of miniaturized X-ray telescope is presented. The paper presents one of the mission objectives of using the instrument for remote sensing of the Terrestrial Gamma-ray Flashes (TGFs). TGFs are intense sources of gamma-rays associated with lightning bolt activity and tropical thunderstorms. The measurement of TGFs exists and was measured by sounding rockets, high altitude balloons or several satellite missions. Past satellite missions were equipped with different detectors working from 10 keV up to 10 MeV. The RHESSI mission spectrum measurement of TGFs shows the maximum counts per second around 75 keV. The used detectors were in general big in volume and cannot be utilized by the CubeSat mission. The presented CubeSat is equipped with miniaturized X-ray telescope using the Timepix non-cooled pixel detector. The detector works between 3 and 60 keV in counting mode (dosimetry) or in spectrum mode with resolution 5 keV. The wide-field X-ray "Lobster-eye" optics/collimator (depending on energy) is used with a view angle of 3 degrees for the source location definition. The UV detectors with FOV 30 degrees and 1.5 degrees are added parallel with the optic as a part of the telescope. The telescope is equipped with software distinguishing between the photons and other particles. Using this software the TGF's detection is possible also in the field of South Atlantic anomaly. For the total ionization dose, the additional detector is used based on Silicone (12-60 keV) and CdTe (20 keV - 1 MeV). The presented instruments are the demonstrators suitable also for the astrophysical, sun and moon observation. The paper shows the details of TGF's observation modes, detectors details, data processing and handling system and mission. The CubeSat launch is planned to summer 2016.

  6. CubeSat mission design software tool for risk estimating relationships

    NASA Astrophysics Data System (ADS)

    Gamble, Katharine Brumbaugh; Lightsey, E. Glenn

    2014-09-01

    In an effort to make the CubeSat risk estimation and management process more scientific, a software tool has been created that enables mission designers to estimate mission risks. CubeSat mission designers are able to input mission characteristics, such as form factor, mass, development cycle, and launch information, in order to determine the mission risk root causes which historically present the highest risk for their mission. Historical data was collected from the CubeSat community and analyzed to provide a statistical background to characterize these Risk Estimating Relationships (RERs). This paper develops and validates the mathematical model based on the same cost estimating relationship methodology used by the Unmanned Spacecraft Cost Model (USCM) and the Small Satellite Cost Model (SSCM). The RER development uses general error regression models to determine the best fit relationship between root cause consequence and likelihood values and the input factors of interest. These root causes are combined into seven overall CubeSat mission risks which are then graphed on the industry-standard 5×5 Likelihood-Consequence (L-C) chart to help mission designers quickly identify areas of concern within their mission. This paper is the first to document not only the creation of a historical database of CubeSat mission risks, but, more importantly, the scientific representation of Risk Estimating Relationships.

  7. Small Cube Satellite Deploy

    NASA Image and Video Library

    2013-11-19

    ISS038-E-003870 (19 Nov. 2013) --- Three nanosatellites, known as Cubesats, are deployed from a Small Satellite Orbital Deployer (SSOD) attached to the Kibo laboratory’s robotic arm at 7:10 a.m. (EST) on Nov. 19, 2013. Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, monitored the satellite deployment while operating the Japanese robotic arm from inside Kibo. The Cubesats were delivered to the International Space Station Aug. 9, aboard Japan’s fourth H-II Transfer Vehicle, Kounotori-4.

  8. Small Cube Satellite Deploy

    NASA Image and Video Library

    2013-11-19

    ISS038-E-003869 (19 Nov. 2013) --- Three nanosatellites, known as Cubesats, are deployed from a Small Satellite Orbital Deployer (SSOD) attached to the Kibo laboratory’s robotic arm at 7:10 a.m. (EST) on Nov. 19, 2013. Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, monitored the satellite deployment while operating the Japanese robotic arm from inside Kibo. The Cubesats were delivered to the International Space Station Aug. 9, aboard Japan’s fourth H-II Transfer Vehicle, Kounotori-4.

  9. Small Cube Satellite Deploy

    NASA Image and Video Library

    2013-11-19

    ISS038-E-003871 (19 Nov. 2013) --- Three nanosatellites, known as Cubesats, are deployed from a Small Satellite Orbital Deployer (SSOD) attached to the Kibo laboratory’s robotic arm at 7:10 a.m. (EST) on Nov. 19, 2013. Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, monitored the satellite deployment while operating the Japanese robotic arm from inside Kibo. The Cubesats were delivered to the International Space Station Aug. 9, aboard Japan’s fourth H-II Transfer Vehicle, Kounotori-4.

  10. Small Cube Satellite Deploy

    NASA Image and Video Library

    2013-11-19

    ISS038-E-003872 (19 Nov. 2013) --- Three nanosatellites, known as Cubesats, are deployed from a Small Satellite Orbital Deployer (SSOD) attached to the Kibo laboratory’s robotic arm at 7:10 a.m. (EST) on Nov. 19, 2013. Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, monitored the satellite deployment while operating the Japanese robotic arm from inside Kibo. The Cubesats were delivered to the International Space Station Aug. 9, aboard Japan’s fourth H-II Transfer Vehicle, Kounotori-4.

  11. Big Software for SmallSats: Adapting cFS to CubeSat Missions

    NASA Technical Reports Server (NTRS)

    Cudmore, Alan P.; Crum, Gary Alex; Sheikh, Salman; Marshall, James

    2015-01-01

    Expanding capabilities and mission objectives for SmallSats and CubeSats is driving the need for reliable, reusable, and robust flight software. While missions are becoming more complicated and the scientific goals more ambitious, the level of acceptable risk has decreased. Design challenges are further compounded by budget and schedule constraints that have not kept pace. NASA's Core Flight Software System (cFS) is an open source solution which enables teams to build flagship satellite level flight software within a CubeSat schedule and budget. NASA originally developed cFS to reduce mission and schedule risk for flagship satellite missions by increasing code reuse and reliability. The Lunar Reconnaissance Orbiter, which launched in 2009, was the first of a growing list of Class B rated missions to use cFS.

  12. Development of a Solar Array Drive Assembly for CubeSat

    NASA Technical Reports Server (NTRS)

    Passaretti, Mike; Hayes, Ron

    2010-01-01

    Small satellites and in particular CubeSats, have increasingly become more viable as platforms for payloads typically requiring much larger bus structures. As advances in technology make payloads and instruments for space missions smaller, lighter and more power efficient, a niche market is emerging from the university community to perform rapidly developed, low-cost missions on very small spacecraft - micro, nano, and picosatellites. In just the last few years, imaging, biological and new technology demonstration missions have been either proposed or have flown using variations of the CubeSat structure as a basis. As these missions have become more complex, and the CubeSat standard has increased in both size (number of cubes) and mass, available power has become an issue. Body-mounted solar cells provide a minimal amount of power; deployable arrays improve on that baseline but are still limited. To truly achieve maximum power, deployed tracked arrays are necessary. To this end, Honeybee Robotics Spacecraft Mechanisms Corporation, along with MMA of Nederland Colorado, has developed a solar array drive assembly (SADA) and deployable solar arrays specifically for CubeSat missions. In this paper, we discuss the development of the SADA.

  13. Cubesats and drones: bridging the spatio-temporal divide for enhanced earth observation

    NASA Astrophysics Data System (ADS)

    McCabe, M. F.; Aragon, B.; Parkes, S. D.; Mascaro, J.; Houborg, R.

    2017-12-01

    In just the last few years, a range of advances in remote sensing technologies have enabled an unprecedented opportunity in earth observation. Parallel developments in cubesats and unmanned aerial vehicles (UAVs) have overcome one of the outstanding challenges in observing the land surface: the provision of timely retrievals at a spatial resolution that is sufficiently detailed to make field-level decisions. Planet cubesats have revolutionized observing capacity through their objective of near daily global retrieval. These nano-satellite systems provide high resolution (approx. 3 m) retrievals in red-green-blue and near-infrared wavelengths, offering capacity to develop vegetation metrics for both hydrological and precision agricultural applications. Apart from satellite based advances, nearer to earth technology is being exploited for a range of observation needs. UAVs provide an adaptable platform from which a variety of sensing systems can be deployed. Combinations of optical, thermal, multi- and hyper-spectral systems allow for the estimation of a range of land surface variables, including vegetation structure, vegetation health, land surface temperature and evaporation. Here we explore some of these exciting developments in the context of agricultural hydrology, providing examples of cubesat and UAV imagery that has been used to inform upon crop health and water use. An investigation of the spatial and temporal advantage of these complementary systems is undertaken, with examples of multi-day high-resolution vegetation dynamics from cubesats presented alongside diurnal-cycle responses derived from multiple within-day UAV flights.

  14. Government-owned CubeSat Next Generation Bus Reference Architecture

    DTIC Science & Technology

    2014-08-02

    satellites placed in orbit has been growing exponentially since 1999 as demonstrated by more than 40 CubeSats being launched in the last quarter of 2013...Emhart Helicoil #2(.086)-56 x 0.172 inch long, Nitronic 60 stainless steel. A trade-study was conducted regarding the choice of metric versus SAE

  15. Catalyzing Institutional Transformation: Insights from the AAU STEM Initiative

    ERIC Educational Resources Information Center

    Miller, Emily R.; Fairweather, James S.; Slakey, Linda; Smith, Tobin; King, Tara

    2017-01-01

    In 2011, the Association of American Universities (AAU) embarked on an ambitious effort to improve the instructional quality and effectiveness of undergraduate introductory Science, Technology, Engineering, and Mathematics (STEM) courses. The primary focus was on sustainable implementation of evidence-based methods of instruction in courses that…

  16. Potential and Limitations of Photometric Reconstruction Through a Flock of Dove Cubesats

    NASA Astrophysics Data System (ADS)

    Altena, B.; Mousivand, A.; Mascaro, J.; Kääb, A.

    2017-10-01

    When Earth observation satellite systems are designed, one typically prefers a sun-synchronous orbit. However, the first generations of cubesats from Planet were deployed out of the International Space Station (ISS) and therefore do not obey such an orbit. Their configuration samples at different local times within the mid-latitudes. Consequently, it is in theory possible to exploit photometric techniques and extract highly detailed topographic information. In this study we demonstrate and explore photometry based on Planet cubesat images for Tyndall glacier at the Southern Patagonian icefield, and Zhadang glacier situated on the Tibetan plateau.

  17. Evolution from education to practical use in University of Tokyo's nano-satellite activities

    NASA Astrophysics Data System (ADS)

    Nakasuka, Shinichi; Sako, Nobutada; Sahara, Hironori; Nakamura, Yuya; Eishima, Takashi; Komatsu, Mitsuhito

    2010-04-01

    The paper overviews recent nano-satellite development activities of University of Tokyo, Intelligent Space Systems Laboratory (ISSL). Development of real satellites and actually launching them provides excellent materials for space engineering education as well as project management, which is rather difficult to teach in usual class lectures. In addition, it may lead to a new way of space development with its cheap and quick access to space. Two educational CubeSats were launched successfully in 2003 and 2005, and they have been surviving in space more than 5 years, which showed that the COTS (commercial off the shelf) can be reliably used in space if the system is designed appropriately. Based on the experiences and technologies obtained in CubeSat projects, ISSL initiated practical applications of nano-satellite, starting with PRISM, 8 kg remote sensing satellite aiming for 30 m ground resolution and Nano-JASMINE, 20 kg astrometry satellite, which will be launched in 2009 and 2010, respectively. In order to support these kinds of student-oriented activities in Japan, University Space Engineering Consortium (UNISEC) was founded in 2002 by the author's group, which has had large effect of further facilitating students' space-related activities in Japan. Significance and history of such activities are reviewed briefly, followed by the objectives and future vision of such nano-satellite activities.

  18. Ionosphere research with a HF/MF cubesat radio instrument

    NASA Astrophysics Data System (ADS)

    Kallio, Esa; Aikio, Anita; Alho, Markku; Fontell, Mathias; Harri, Ari-Matti; Kauristie, Kirsti; Kestilä, Antti; Koskimaa, Petri; Mäkelä, Jakke; Mäkelä, Miika; Turunen, Esa; Vanhamäki, Heikki; Verronen, Pekka

    2017-04-01

    New technology provides new possibilities to study geospace and 3D ionosphere by using spacecraft and computer simulations. A type of nanosatellites, CubeSats, provide a cost effective possibility to provide in-situ measurements in the ionosphere. Moreover, combined CubeSat observations with ground-based observations gives a new view on auroras and associated electromagnetic phenomena. Especially joint and active CubeSat - ground based observation campaigns enable the possibility of studying the 3D structure of the ionosphere. Furthermore using several CubeSats to form satellite constellations enables much higher temporal resolution. At the same time, increasing computation capacity has made it possible to perform simulations where properties of the ionosphere, such as propagation of the electromagnetic waves in the medium frequency, MF (0.3-3 MHz) and high frequency, HF (3-30 MHz), ranges is based on a 3D ionospheric model and on first-principles modelling. Electromagnetic waves at those frequencies are strongly affected by ionospheric electrons and, consequently, those frequencies can be used for studying the plasma. On the other hand, even if the ionosphere originally enables long-range telecommunication at MF and HF frequencies, the frequent occurrence of spatiotemporal variations in the ionosphere disturbs communication channels, especially at high latitudes. Therefore, study of the MF and HF waves in the ionosphere has both a strong science and technology interests. We introduce recently developed simulation models as well as measuring principles and techniques to investigate the arctic ionosphere by a polar orbiting CubeSat whose novel AM radio instrument measures HF and MF waves. The cubesat, which contains also a white light aurora camera, is planned to be launched in late 2017 (http://www.suomi100satelliitti.fi/eng). The new models are (1) a 3D ray tracing model and (2) a 3D full kinetic electromagnetic simulation. We also introduce how combining of the

  19. CubeSats in Hydrology: Ultrahigh-Resolution Insights Into Vegetation Dynamics and Terrestrial Evaporation

    NASA Astrophysics Data System (ADS)

    McCabe, M. F.; Aragon, B.; Houborg, R.; Mascaro, J.

    2017-12-01

    Satellite-based remote sensing has generally necessitated a trade-off between spatial resolution and temporal frequency, affecting the capacity to observe fast hydrological processes and rapidly changing land surface conditions. An avenue for overcoming these spatiotemporal restrictions is the concept of using constellations of satellites, as opposed to the mission focus exemplified by the more conventional space-agency approach to earth observation. Referred to as CubeSats, these platforms offer the potential to provide new insights into a range of earth system variables and processes. Their emergence heralds a paradigm shift from single-sensor launches to an operational approach that envisions tens to hundreds of small, lightweight, and comparatively inexpensive satellites placed into a range of low earth orbits. Although current systems are largely limited to sensing in the optical portion of the electromagnetic spectrum, we demonstrate the opportunity and potential that CubeSats present the hydrological community via the retrieval of vegetation dynamics and terrestrial evaporation and foreshadow future sensing capabilities.

  20. CubeSat Packaged Electrospray Thruster Evaluation for Enhanced Operationally Responsive Space Capabilities

    DTIC Science & Technology

    2011-03-24

    These satellites can perform many missions including: close formation flying with other CubeSats, and possible docking with a large satellite to...in 2008 to fly on the NASA LISA mission. LISA, the Laser Interferometer Space Antenna, is a joint NASA–ESA mission to observe astrophysical and...for mass spectrometry of large organic molecules popularized the technology and made components such as needles or other components readily

  1. Drag De-Orbit Device (D3): A Retractable Device for CubeSat Attitude and Orbit Control using Aerodynamic Forces

    NASA Technical Reports Server (NTRS)

    Guglielmo, David; Omar, Sanny R.; Bevilacqua, Riccardo

    2017-01-01

    The increasing number of CubeSats being launched has raised concerns about orbital debris since most of these satellites have no means of active orbit control. Some technologies exist to increase the surface area of a CubeSat and expedite de-orbit due to aerodynamic drag in low Earth orbit, but most of these devices cannot be retracted and hence cannot be used for orbital maneuvering. This paper discusses the De-Orbit Drag Device (D3) module that is capable of de-orbiting a 12U, 15kg CubeSat from a 700 km circular orbit in under 25 years and can be deployed and retracted to modulate the aerodynamic drag force experienced by the satellite. This facilitates orbital maneuvering using aerodynamic drag and the active targeting of a de-orbit location. In addition, the geometry of this drag device provides 3-axis attitude stabilization of the host CubeSat using aerodynamic and gravity gradient torques which is useful for many missions and provides a predictable aerodynamic profile for use in orbital maneuvering algorithms.

  2. A deorbiter CubeSat for active orbital debris removal

    NASA Astrophysics Data System (ADS)

    Hakima, Houman; Bazzocchi, Michael C. F.; Emami, M. Reza

    2018-05-01

    This paper introduces a mission concept for active removal of orbital debris based on the utilization of the CubeSat form factor. The CubeSat is deployed from a carrier spacecraft, known as a mothership, and is equipped with orbital and attitude control actuators to attach to the target debris, stabilize its attitude, and subsequently move the debris to a lower orbit where atmospheric drag is high enough for the bodies to burn up. The mass and orbit altitude of debris objects that are within the realms of the CubeSat's propulsion capabilities are identified. The attitude control schemes for the detumbling and deorbiting phases of the mission are specified. The objective of the deorbiting maneuver is to decrease the semi-major axis of the debris orbit, at the fastest rate, from its initial value to a final value of about 6471 km (i.e., 100 km above Earth considering a circular orbit) via a continuous low-thrust orbital transfer. Two case studies are investigated to verify the performance of the deorbiter CubeSat during the detumbling and deorbiting phases of the mission. The baseline target debris used in the study are the decommissioned KOMPSAT-1 satellite and the Pegasus rocket body. The results show that the deorbiting times for the target debris are reduced significantly, from several decades to one or two years.

  3. ENTRYSAT: A 3U Cubesat to Study the Re-Entry Atmospheric Environment

    NASA Astrophysics Data System (ADS)

    Garcia, R. F.; Chaix, J.; Mimoun, D.; EntrySat student Team

    2014-04-01

    The EntrySat is a 3U CubeSat designed to study the uncontrolled atmospheric re-entry. The project, developed by ISAE in collaboration with ONERA, is funded by CNES and is intended to be launched in January 2016, in the context of the QB50 network. The scientific goal is to relate the kinematics of the satellite with the aerothermodynamic environment during re-entry. In particular, data will be compared with the computations of MUSIC/FAST, a new 6-degree of freedom code developed by ONERA to predict the trajectory of space debris. According to these requirements, the satellite will measure the temperature, pressure, heat flux, and drag force during re-entry, as well as the trajectory and attitude of the satellite. One of the major technological challenges is the retrieval of data during the re-entry phase, which will be based on the Iridium satellite network. The system design is based on the use of commercial COTS components, and is mostly developed by students from ISAE. As such, the EntrySat has an important educational value in the formation of young engineers.

  4. TechEdSat - An Educational 1U CubeSat Architecture Using Plug-and-Play Avionics

    NASA Technical Reports Server (NTRS)

    Frost, Chad

    2015-01-01

    Mission Objectives: build a 1U cubesat within 6 months from kickoff to launch. Demonstrate and evaluate the Space Plug-and-Play avionics hardware and software from ÅAC Microtec; investigate both Iridium and Orbcomm intersatellite communication as a method of eliminating the requirement for a physical ground station in Nano satellite missions; demonstrate the capabilities of the JAXA J-SSOD aboard the ISS, and be one of the first cubesats to be deployed from the ISS.

  5. Hosting a Fourier Transform Spectrometer (FTS) on CubeSat Spacecraft Platforms for Global Measurements of Three-Dimensional Winds

    NASA Astrophysics Data System (ADS)

    Scott, D. K.; Neilsen, T. L.; Weston, C.; Frazier, C.; Smith, T.; Shumway, A.

    2015-12-01

    Global measurements of vertically-resolved atmospheric wind profiles offer the potential for improved weather forecasts and superior predictions of atmospheric wind patterns. A small-satellite constellation that uses a Fourier Transform Spectrometer (FTS) instrument onboard 12U CubeSats can provide measurements of global tropospheric wind profiles from space at a very low cost. These small satellites are called FTS CubeSats. This presentation will describe a spacecraft concept that provides a stable, robust platform to host the FTS payload. Of importance to the payload are power, data, station keeping, thermal, and accommodations that enable high spectral measurements to be made from a LEO orbit. The spacecraft concept draws on Space Dynamics Laboratory (SDL) heritage and the recent success of the Dynamic Ionosphere Cubesat Experiment (DICE) and HyperAngular Rainbow Polarimeter (HARP) missions. Working with team members, SDL built a prototype observatory (spacecraft and payload) for testing and proof of concept.

  6. Hands on Education Through Student-Industry Partnerships

    NASA Astrophysics Data System (ADS)

    Brown, J.; Wolfson, M.; Morris, K.

    2013-09-01

    Lockheed Martin Space Systems Company has invested in the future generation of engineers by partially funding and mentoring CubeSat projects around the country. One CubeSat in particular, ALL-STAR, has shown how this industry/university partnership benefits both the students and their mentors. Students gain valuable insight into aspects of spacecraft design that aren't taught in classes. They also start learning about industry processes for designing, building, and testing satellites before ever working in that environment. Because of this experience, industry is getting more qualified engineers starting fresh out of college. In addition Lockheed Martin's partnership with the university will allow them to use the students to help build affordable CubeSats for internal and customer's research and development projects. The mentoring also challenges the engineers to think differently about similar problems they face every day with their larger programs in order to make the solution simple and affordable.

  7. Miniature scientific-grade induction magnetometer for cubesats

    NASA Astrophysics Data System (ADS)

    Pronenko, Vira

    2017-04-01

    One of the main areas of space research is the study and forecasting of space weather. The society is more and more depending nowadays on satellite technology and communications, so it is vital to understand the physical process in the solar-terrestrial system which may disturb them. Besides the solar radiation and Space Weather effects, the Earth's ionosphere is also modified by the ever increasing industrial activity. There have been also multiple reports relating VLF and ELF wave activity to atmospheric storms and geological processes, such as earthquakes and volcanic activity. For advancing in these fields, the AC magnetic field permanent monitoring is crucial. Using the cubesat technology would allow increasing the number of measuring points dramatically. It is necessary to mention that the cubesats use for scientific research requires the miniaturization of scientific sensors what is a serious problem because the reduction of their dimensions leads, as a rule, to the parameters degradation, especially of sensitivity threshold. Today, there is no basic model of a sensitive miniature induction magnetometer. Even the smallest one of the known - for the Bepi-Colombo mission to Mercury - is too big for cubesats. The goal of the present report is to introduce the new design of miniature three-component sensor for measurement of alternative vector magnetic fields - induction magnetometer (IM). The study directions were concentrated on the ways and possibilities to create the miniature magnetometer with best combination of parameters. For this a set of scientific and technological problems, mostly aimed at the sensor construction improvement, was solved. The most important parameter characterizing magnetometer quality is its own magnetic noise level (NL). The analysis of the NL influencing factors is made and the ways to decrease it are discussed in the report. Finally, the LEMI-151 IM was developed for the SEAM cubesat mission with optimal performances within the

  8. RADIOISOTOPE-DRIVEN DUAL-MODE PROPULSION SYSTEM FOR CUBESAT-SCALE PAYLOADS TO THE OUTER PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. D. Jerred; T. M. Howe; S. D. Howe

    It is apparent the cost of planetary exploration is rising as mission budgets declining. Currently small scientific beds geared to performing limited tasks are being developed and launched into low earth orbit (LEO) in the form of small-scale satellite units, i.e., CubeSats. These micro- and nano-satellites are gaining popularity among the university and science communities due to their relatively low cost and design flexibility. To date these small units have been limited to performing tasks in LEO utilizing solar-based power. If a reasonable propulsion system could be developed, these CubeSat platforms could perform exploration of various extra-terrestrial bodies within themore » solar system engaging a broader range of researchers. Additionally, being mindful of mass, smaller cheaper launch vehicles (approximately 1,000 kgs to LEO) can be targeted. Thus, in effect, allows for beneficial exploration to be conducted within limited budgets. Researchers at the Center for Space Nuclear Research (CSNR) are proposing a low mass, radioisotope-based, dual-mode propulsion system capable of extending the exploration realm of these CubeSats out of LEO.« less

  9. A multifunctional solar panel antenna for cube satellites

    NASA Astrophysics Data System (ADS)

    Fawole, Olutosin C.

    The basic cube satellite (CubeSat) is a modern small satellite that has a standard size of about one liter (the 1U CubeSat). Three 1U CubeSats could be stacked to form a 3U CubeSat. Their low-cost, short development time, and ease of deployment make CubeSats popular for space research, geographical information gathering, and communication applications. An antenna is a key part of the CubeSat communication subsystem. Traditionally, antennas used on CubeSats are wrapped-up wire dipole antennas, which are deployed after satellite launch. Another antenna type used on CubeSats is the patch antenna. In addition to their low gain and efficiency, deployable dipole antennas may also fail to deploy on satellite launch. On the other hand, a solid patch antenna will compete for space with solar cells when placed on a CubeSat face, interfering with satellite power generation. Slot antennas are promising alternatives to dipole and patch antennas on CubeSats. When excited, a thin slot aperture etched on a conductive sheet (ground plane) is an efficient bidirectional radiator. This open slot antenna can be backed by a reflector or cavity for unidirectional radiation, and solar cells can be placed in spaces on the ground plane not occupied by the slot. The large surface areas of 3U CubeSats can be exploited for a multifunctional antenna by integrating multiple thin slot radiators, which are backed by a thin cavity on the CubeSat surfaces. Solar cells can then be integrated on the antenna surface. Polarization diversity and frequency diversity improve the overall performance of a communication system. Having a single radiating structure that could provide these diversities is desired. It has been demonstrated that when a probe excites a square cavity with two unequal length crossed-slots, the differential radiation from the two slots combines in the far-field to yield circular polarization. In addition, it has been shown that two equal-length proximal slots, when both fed with a

  10. Pi-Sat: A Low Cost Small Satellite and Distributed Spacecraft Mission System Test Platform

    NASA Technical Reports Server (NTRS)

    Cudmore, Alan

    2015-01-01

    Current technology and budget trends indicate a shift in satellite architectures from large, expensive single satellite missions, to small, low cost distributed spacecraft missions. At the center of this shift is the SmallSatCubesat architecture. The primary goal of the Pi-Sat project is to create a low cost, and easy to use Distributed Spacecraft Mission (DSM) test bed to facilitate the research and development of next-generation DSM technologies and concepts. This test bed also serves as a realistic software development platform for Small Satellite and Cubesat architectures. The Pi-Sat is based on the popular $35 Raspberry Pi single board computer featuring a 700Mhz ARM processor, 512MB of RAM, a flash memory card, and a wealth of IO options. The Raspberry Pi runs the Linux operating system and can easily run Code 582s Core Flight System flight software architecture. The low cost and high availability of the Raspberry Pi make it an ideal platform for a Distributed Spacecraft Mission and Cubesat software development. The Pi-Sat models currently include a Pi-Sat 1U Cube, a Pi-Sat Wireless Node, and a Pi-Sat Cubesat processor card.The Pi-Sat project takes advantage of many popular trends in the Maker community including low cost electronics, 3d printing, and rapid prototyping in order to provide a realistic platform for flight software testing, training, and technology development. The Pi-Sat has also provided fantastic hands on training opportunities for NASA summer interns and Pathways students.

  11. CubeSat Batteries

    NASA Image and Video Library

    2017-01-11

    Daniel Perez, Ph.D., a graduate student from the University of Miami, displays a piece of the prototype structure for a new solid-state battery in the Prototype Laboratory at NASA's Kennedy Space Center in Florida. The size of the battery is so small that it could be a prime candidate for use in microsatellites, including CubeSats. Researchers at Kennedy are collaborating with experts at the University of Miami. The university partnership is funded through the Small Spacecraft Technology Program, in NASA's Space Technology Mission Directorate.

  12. CubeSat Batteries

    NASA Image and Video Library

    2017-01-11

    Daniel Perez, Ph.D., a graduate student from the University of Miami, prepares layers of the prototype structure for a new solid-state battery in the Prototype Laboratory at NASA's Kennedy Space Center in Florida. The size of the battery is so small that it could be a prime candidate for use in microsatellites, including CubeSats. Researchers at Kennedy are collaborating with experts at the University of Miami. The university partnership is funded through the Small Spacecraft Technology Program, in NASA's Space Technology Mission Directorate.

  13. Modular Pulsed Plasma Electric Propulsion System for Cubesats

    NASA Technical Reports Server (NTRS)

    Perez, Andres Dono; Gazulla, Oriol Tintore; Teel, George Lewis; Mai, Nghia; Lukas, Joseph; Haque, Sumadra; Uribe, Eddie; Keidar, Michael; Agasid, Elwood

    2014-01-01

    Current capabilities of CubeSats must be improved in order to perform more ambitious missions. Electric propulsion systems will play a key role due to their large specific impulse. Compared to other propulsion alternatives, their simplicity allows an easier miniaturization and manufacturing of autonomous modules into the nano and pico-satellite platform. Pulsed Plasma Thrusters (PPTs) appear as one of the most promising technologies for the near term. The utilization of solid and non-volatile propellants, their low power requirements and their proven reliability in the large scale make them great candidates for rapid implementation. The main challenges are the integration and miniaturization of all the electronic circuitry into a printed circuit board (PCB) that can satisfy the strict requirements that CubeSats present. NASA Ames and the George Washington University have demonstrated functionality and control of three discrete Micro-Cathode Arc Thrusters (CAT) using a bench top configuration that was compatible with the ARC PhoneSat Bus. This demonstration was successfully conducted in a vaccum chamber at the ARC Environmental Test Laboratory. A new effort will integrate a low power Plasma Processing Unit and two plasma thrusters onto a single printed circuit board that will utilize less than 13 U of Bus volume. The target design will be optimized for the accommodation into the PhoneSatEDISON Demonstration of SmallSatellite Networks (EDSN) bus as it uses the same software interface application, which was demonstrated in the previous task. This paper describes the design, integration and architecture of the proposed propulsion subsystem for a planned Technology Demonstration Mission. In addition, a general review of the Pulsed Plasma technology available for CubeSats is presented in order to assess the necessary challenges to overcome further development.

  14. Plastic Cubesat: An innovative and low-cost way to perform applied space research and hands-on education

    NASA Astrophysics Data System (ADS)

    Piattoni, Jacopo; Candini, Gian Paolo; Pezzi, Giulio; Santoni, Fabio; Piergentili, Fabrizio

    2012-12-01

    This paper describes the design and the manufacturing of a Cubesat platform based on a plastic structure. The Cubesat structure has been realized in plastic material (ABS) using a "rapid prototyping" technique. The "rapid prototyping" technique has several advantages including fast implementation, accuracy in manufacturing small parts and low cost. Moreover, concerning the construction of a small satellite, this technique is very useful thanks to the accuracy achievable in details, which are sometimes difficult and expensive to realize with the use of tools machine. The structure must be able to withstand the launch loads. For this reason, several simulations using an FEM simulation and an intensive vibration test campaign have been performed in the system development and test phase. To demonstrate that this structure is suitable for hosting a complete satellite system, offering innovative integrated solutions, other subsystems have been developed and assembled. Despite its small size, this single unit (1U) Cubesat has a system for active attitude control, a redundant telecommunication system, a payload camera and a photovoltaic system based on high efficiency solar cells. The developed communication subsystem has small dimensions, low power consumption and low cost. An example of the innovations introduced is the antenna system, which has been manufactured inside the ABS structure. The communication protocol which has been implemented, the AX.25 protocol, is mainly used by radio amateurs. The communication system has the capability to transmit both telemetry and data from the payload, in this case a microcamera. The attitude control subsystem is based on an active magnetic system with magnetorquers for detumbling and momentum dumping and three reaction wheels for fine control. It has a total dimension of about 50×50×50 mm. A microcontroller implements the detumbling control law autonomously taking data from integrated magnetometers and executes pointing

  15. Interplanetary CubeSat Navigational Challenges

    NASA Technical Reports Server (NTRS)

    Martin-Mur, Tomas J.; Gustafson, Eric D.; Young, Brian T.

    2015-01-01

    CubeSats are miniaturized spacecraft of small mass that comply with a form specification so they can be launched using standardized deployers. Since the launch of the first CubeSat into Earth orbit in June of 2003, hundreds have been placed into orbit. There are currently a number of proposals to launch and operate CubeSats in deep space, including MarCO, a technology demonstration that will launch two CubeSats towards Mars using the same launch vehicle as NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) Mars lander mission. The MarCO CubeSats are designed to relay the information transmitted by the InSight UHF radio during Entry, Descent, and Landing (EDL) in real time to the antennas of the Deep Space Network (DSN) on Earth. Other CubeSatts proposals intend to demonstrate the operation of small probes in deep space, investigate the lunar South Pole, and visit a near Earth object, among others. Placing a CubeSat into an interplanetary trajectory makes it even more challenging to pack the necessary power, communications, and navigation capabilities into such a small spacecraft. This paper presents some of the challenges and approaches for successfully navigating CubeSats and other small spacecraft in deep space.

  16. Radio diagnostics and analysis on the Puerto Rico CubeSat

    NASA Astrophysics Data System (ADS)

    Bergman, J. E. S.; Bruhn, F.; Isham, B.; Rincon-Charris, A.

    2014-04-01

    The Puerto Rico CubeSat is a collaboration between Interamerican University of Puerto Rico, the University of Puerto Rico, the Ana G. Ḿendez University System, NASA Marshal Space Flight Center, the University of Alabama at Huntsville, the Swedish Institute of Space Physics, and M¨alardalens University. Principle goals include providing aerospace and systems engineering experiences to students at the participating institutions. Mission objectives include the acquisition of space weather data to aid in better understanding the Sun to Earth connection. The Puerto Rico Cube- Sat is a 3U configuration, 10 × 10 × 30 cm. Active attitude control will be used to align the long (3U) axis along the orbital path, and the satellite will rotate along the 3U axis to assist in thermal management. The Puerto Rico CubeSat will carry two scientific payloads. One is CARLO (Charge Analyzer Responsive to Local Oscillation), which is designed to measure ion turbulence from 0 to 10 kHz. CARLO will operate in a ram configuration, thus giving it the ability to distinguish between ambient and spacecraftinduced irregularities in plasma density. The second payload is GIMMERF, a 0 to 30 MHz radio instrument, consisting of a digital 4-channel direct sampling receiver board, atmospheric-noise-limited preamplifiers, and four electrically short monopole antennas. The antennas are connected electronically, as dipoles, to enable measurements of the full 3-dimensional electric field vector signal, which, in turn makes it possible to characterize the radio emissions in terms of Stokes parameters and to perform direction finding. GIMME-RF will use artificial neural network technology to automatically identify radio data of interest. All radio data will be downloaded at 1% time resolution, and radio data of special interest (automatically identified or human selected) will be downloaded at full time and frequency resolution. CARLO and GIMME-RF are complementary instruments, as CARLO will measure low

  17. The QBito CubeSat: Applications in Space Engineering Education at Technical University of Madrid

    NASA Astrophysics Data System (ADS)

    Fernandez Fraile, Jose Javier; Laverón-Simavilla, Ana; Calvo, Daniel; Moreno Benavides, Efren

    The QBito CubeSat is one of the 50 CubeSats that is being developed for the QB50 project. The project is funded by the 7 (th) Frame Program to launch 50 CubeSats in a ‘string-of-pearls’ configuration for multi-point, in-situ measurements in the lower thermosphere and re-entry research. The 50 CubeSats, developed by an international network of universities and research institutions, will comprise 40 double CubeSats with atmospheric sensors and 10 double or triple CubeSats for science and technology demonstration. It will be the first large-scale CubeSat constellation in orbit; a concept that has been under discussion for several years but not implemented up to now. This project has a high educational interest for universities; beyond the scientific and technological results, being part of an international group of over 90 universities all over the world working and sharing knowledge to achieve a successful mission represents an exciting opportunity. The QBito project main educational motivation is to educate students in space technologies and in space systems engineering. The Universidad Politécnica de Madrid (UPM) is designing, developing, building and testing one of the double CubeSats carrying as payload a kit of atmospheric sensors from the consortium, and other payloads developed by the team such as an IR non-refrigerated sensor, a Phase Change Material (PCM) for thermal control applications, a Fuzzy Logic Attitude Control System and other technological developments such as an optimized antenna deployment mechanism, a lightweight multi-mission configurable structure, and an efficient Electric Power System (EPS) with a Maximum Peak Power Tracker (MPPT). This project has been integrated in the training of the Aerospatiale Engineering, Master and PhD degree students by involving them in the complete engineering process, from its conceptual design to the post-flight conclusions. Three subsystems have been selected for being developed from the conceptual design

  18. South Atlantic anomaly and CubeSat design considerations

    NASA Astrophysics Data System (ADS)

    Fennelly, Judy A.; Johnston, William R.; Ober, Daniel M.; Wilson, Gordon R.; O'Brien, T. Paul; Huston, Stuart L.

    2015-09-01

    Effects of the South Atlantic Anomaly (SAA) on spacecraft in low Earth orbit (LEO) are well known and documented. The SAA exposes spacecraft in LEO to high dose of ionizing radiation as well as higher than normal rates of Single Event Upsets (SEU) and Single Event Latch-ups (SEL). CubeSats, spacecraft built around 10 x 10 x 10 cm cubes, are even more susceptible to SEUs and SELs due to the use of commercial off-the-shelf components for electronics and payload instrumentation. Examination of the SAA using both data from the Defense Meteorological Satellite Program (DMSP) and a new set of models for the flux of particles is presented. The models, AE9, AP9, and SPM for energetic electrons, energetic protons and space plasma, were developed for use in space system design. These models introduce databased statistical constraints on the uncertainties from measurements and climatological variability. Discussion of the models' capabilities and limitations with regard to LEO CubeSat design is presented.

  19. Uncooled emissive infrared imagers for CubeSats

    NASA Astrophysics Data System (ADS)

    Puschell, Jeffery J.; Masini, Paolo

    2014-09-01

    still operating successfully onboard Mars Odyssey 2001, new classes of low cost, uncooled TIR Earth instruments will be enabled that are suitable for use as primary and hosted payloads in LEO, GEO and HEO or in constellations of small satellites as small as CubeSats to support Earth science measurement objectives in weather forecasting, land imaging and climate variability and change.

  20. Hyperspectral Cubesat Constellation for Rapid Natural Hazard Response

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Huemmrich, Karl; Crum, Gary; Ly, Vuong; Handy, Matthew; Ong, Lawrence

    2015-01-01

    Earth Observing 1 (E0-1) satellite has an imaging spectrometer (hyperspectral) instrument called Hyperion. The satellite is able to image any spot on Earth in the nadir looking direction every 16 days. With slewing of the satellite and allowing for up to a 23 degree view angle, any spot on the Earth can be imaged approximately every 2 to 3 days. EO-1 has been used to track many natural hazards such as wildfires, volcanoes and floods. An enhanced capability that is sought is the ability to image natural hazards in a daily time series for space based imaging spectrometers. The Hyperion can not provide this capability on EO-1 with the present polar orbit. However, a constellation of cubesats, each with the same imaging spectrometer, positioned strategically in the same orbit, can be used to provide daily coverage, cost-effectively.

  1. Miniature X-Ray Solar Spectrometer: A Science-Oriented, University 3U CubeSat

    NASA Technical Reports Server (NTRS)

    Mason, James P.; Woods, Thomas N.; Caspi, Amir; Chamberlin, Phillip C.; Moore, Christopher; Jones, Andrew; Kohnert, Rick; Li, Xinlin; Palo, Scott; Solomon, Stanley C.

    2016-01-01

    The miniature x-ray solar spectrometer is a three-unit CubeSat developed at the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder. Over 40 students contributed to the project with professional mentorship and technical contributions from professors in the Aerospace Engineering Sciences Department at University of Colorado, Boulder and from Laboratory for Atmospheric and Space Physics scientists and engineers. The scientific objective of the miniature x-ray solar spectrometer is to study processes in the dynamic sun, from quiet sun to solar flares, and to further understand how these changes in the sun influence the Earth's atmosphere by providing unique spectral measurements of solar soft x-rays. The enabling technology providing the advanced solar soft x-ray spectral measurements is the Amptek X123, a commercial off-the-shelf silicon drift detector. The Amptek X123 has a low mass (approx. 324 g after modification), modest power consumption (approx. 2.50 W), and small volume (6.86 x 9.91 x 2.54 cm), making it ideal for a CubeSat. This paper provides an overview of the miniature x-ray solar spectrometer mission: the science objectives, project history, subsystems, and lessons learned, which can be useful for the small-satellite community.

  2. Integration of CubeSat Systems with Europa Surface Exploration Missions

    NASA Astrophysics Data System (ADS)

    Erdoǧan, Enes; Inalhan, Gokhan; Kemal Üre, Nazım

    2016-07-01

    Recent studies show that there is a high probability that a liquid ocean exists under thick icy surface of Jupiter's Moon Europa. The findings also show that Europa has features that are similar to Earth, such as geological activities. As a result of these studies, Europa has promising environment of being habitable and currently there are many missions in both planning and execution level that target Europa. However, these missions usually involve extremely high budgets over extended periods of time. The objective of this talk is to argue that the mission costs can be reduced significantly by integrating CubeSat systems within Europa exploration missions. In particular, we introduce an integrated CubeSat-micro probe system, which can be used for measuring the size and depth of the hypothetical liquid ocean under the icy surface of Europa. The systems consist of an entry module that houses a CubeSat combined with driller measurement probes. Driller measurement probes deploy before the system hits the surface and penetrate the surface layers of Europa. Moreover, a micro laser probe could be used to examine the layers. This process enables investigation of the properties of the icy layer and the environment beneath the surface. Through examination of different scenarios and cost analysis of the components, we show that the proposed CubeSat systems has a significant potential to reduce the cost of the overall mission. Both subsystem requirements and launch prices of CubeSats are dramatically cheaper than currently used satellites. In addition, multiple CubeSats may be used to dominate wider area in space and they are expandable in face of potential failures. In this talk we discuss both the mission design and cost reduction aspects.

  3. The Impact of an Interdisciplinary Space Program on Computer Science Student Learning

    ERIC Educational Resources Information Center

    Straub, Jeremy; Marsh, Ronald; Whalen, David

    2015-01-01

    Project-based learning and interdisciplinary projects present an opportunity for students to learn both technical skills and other skills which are relevant to their workplace success. This paper presents an assessment of the educational impact of the OpenOrbiter program, a student-run, interdisciplinary CubeSat (a type of small satellite with…

  4. Construction of a Thermal Vacuum Chamber for Environment Test of Triple CubeSat Mission TRIO-CINEMA

    NASA Astrophysics Data System (ADS)

    Jeon, Jeheon; Lee, Seongwhan; Yoon, Seyoung; Seon, Jongho; Jin, Ho; Lee, Donghun; Lin, Robert P.

    2013-12-01

    TRiplet Ionospheric Observatory-CubeSat for Ion, Neutron, Electron & MAgnetic fields (TRIO-CINEMA) is a CubeSat with 3.14 kg in weight and 3-U (10 × 10 × 30 cm) in size, jointly developed by Kyung Hee University and UC Berkeley to measure magnetic fields of near Earth space and detect plasma particles. When a satellite is launched into orbit, it encounters ultrahigh vacuum and extreme temperature. To verify the operation and survivability of the satellite in such an extreme space environment, experimental tests are conducted on the ground using thermal vacuum chamber. This paper describes the temperature control device and monitoring system suitable for CubeSat test environment using the thermal vacuum chamber of the School of Space Research, Kyung Hee University. To build the chamber, we use a general purpose thermal analysis program and NX 6.0 TMG program. We carry out thermal vacuum tests on the two flight models developed by Kyung Hee University based on the thermal model of the TRIO-CINEMA satellite. It is expected from this experiment that proper operation of the satellite in the space environment will be achieved.

  5. Design of an adaptive CubeSat transmitter for achieving optimum signal-to-noise ratio (SNR)

    NASA Astrophysics Data System (ADS)

    Jaswar, F. D.; Rahman, T. A.; Hindia, M. N.; Ahmad, Y. A.

    2017-12-01

    CubeSat technology has opened the opportunity to conduct space-related researches at a relatively low cost. Typical approach to maintain an affordable cubeSat mission is to use a simple communication system, which is based on UHF link with fixed-transmit power and data rate. However, CubeSat in the Low Earth Orbit (LEO) does not have relative motion with the earth rotation, resulting in variable propagation path length that affects the transmission signal. A transmitter with adaptive capability to select multiple sets of data rate and radio frequency (RF) transmit power is proposed to improve and optimise the link. This paper presents the adaptive UHF transmitter design as a solution to overcome the variability of the propagation path. The transmitter output power is adjustable from 0.5W to 2W according to the mode of operations and satellite power limitations. The transmitter is designed to have four selectable modes to achieve the optimum signal-to-noise ratio (SNR) and efficient power consumption based on the link budget analysis and satellite requirement. Three prototypes are developed and tested for space-environment conditions such as the radiation test. The Total Ionizing Dose measurements are conducted in the radiation test done at Malaysia Nuclear Agency Laboratory. The results from this test have proven that the adaptive transmitter can perform its operation with estimated more than seven months in orbit. This radiation test using gamma source with 1.5krad exposure is the first one conducted for a satellite program in Malaysia.

  6. Fusing Cubesat and Landsat 8 data for near-daily mapping of leaf area index at 3 m resolution

    NASA Astrophysics Data System (ADS)

    McCabe, M.; Houborg, R.

    2017-12-01

    Constellations of small cubesats are emerging as a relatively inexpensive observational resource with the potential to overcome spatio-temporal constraints of traditional single-sensor satellite missions. With more than 130 compact 3U (i.e., 10 x 10 x 30 cm) cubesats currently in orbit, the company "Planet" has realized near-daily image capture in RGB and the near-infrared (NIR) at 3 m resolution for every location on the earth. However cross-sensor inconsistencies can be a limiting factor, which result from relatively low signal-to-noise ratios, varying overpass times, and sensor-specific spectral response functions. In addition, the sensor radiometric information content is more limited compared to conventional satellite systems such as Landsat. In this study, a synergistic machine-learning framework utilizing Planet, Landsat 8, and MODIS data is developed to produce Landsat 8 consistent LAI with a factor of 10 increase in spatial resolution and a daily observing potential, globally. The Cubist machine-learning technique is used to establish scene-specific links between scale-consistent cubesat RGB+NIR imagery and Landsat 8 LAI. The scheme implements a novel LAI target sampling technique for model training purposes, which accounts for changes in cover conditions over the cubesat and Landsat acquisition timespans. Results over an agricultural region in Saudi Arabia highlight the utility of the approach for detecting high frequency (i.e., near-daily) and fine-scale (i.e., 3 m) intra-field dynamics in LAI with demonstrated potential for timely identification of developing crop risks. The framework maximizes the utility of ultra-high resolution cubesat data for agricultural management and resource efficiency optimization at the precision scale.

  7. Airborne Deployment and Calibration of Microwave Atmospheric Sounder on 6U CubeSat

    NASA Astrophysics Data System (ADS)

    Padmanabhan, S.; Brown, S. T.; Lim, B.; Kangaslahti, P.; Russell, D.; Stachnik, R. A.

    2015-12-01

    To accurately predict how the distribution of extreme events may change in the future we need to understand the mechanisms that influence such events in our current climate. Our current observing system is not well-suited for observing extreme events globally due to the sparse sampling and in-homogeneity of ground-based in-situ observations and the infrequent revisit time of satellite observations. Observations of weather extremes, such as extreme precipitation events, temperature extremes, tropical and extra-tropical cyclones among others, with temporal resolution on the order of minutes and spatial resolution on the order of few kms (<10 kms), are required for improved forecasting of extreme weather events. We envision a suite of low-cost passive microwave sounding and imaging sensors on CubeSats that would work in concert with traditional flagship observational systems, such as those manifested on large environmental satellites (i.e. JPSS,WSF,GCOM-W), to monitor weather extremes. A 118/183 GHz sensor would enable observations of temperature and precipitation extremes over land and ocean as well as tropical and extra-tropical cyclones. This proposed project would enable low cost, compact radiometer instrumentation at 118 and 183 GHz that would fit in a 6U Cubesat with the objective of mass-producing this design to enable a suite of small satellites to image the key geophysical parameters needed to improve prediction of extreme weather events. We take advantage of past and current technology developments at JPL viz. HAMSR (High Altitude Microwave Scanning Radiometer), Advanced Component Technology (ACT'08) to enable low-mass, low-power high frequency airborne radiometers. In this paper, we will describe the design and implementation of the 118 GHz temperature sounder and 183 GHz humidity sounder on the 6U CubeSat. In addition, we will discuss the maiden airborne deployment of the instrument during the Plain Elevated Convection at Night (PECAN) experiment. The

  8. NASA Launches CubeSat to Study Bacteria in Space

    NASA Image and Video Library

    2017-11-08

    Ever wonder what would happen if you got sick in space? NASA is sending samples of bacteria into low-Earth orbit to find out. One of the latest small satellite missions from NASA’s Ames Research Center in California’s Silicon Valley is the E. coli Anti-Microbial Satellite, or EcAMSat for short. This CubeSat – a spacecraft the size of a shoebox built from cube-shaped units – will explore how effectively antibiotics can combat E. coli bacteria in the low gravity of space. This information will help us improve how we fight infections, providing safer journeys for astronauts on their future voyages, and offer benefits for medicine here on Earth.

  9. Planetary cubesats - mission architectures

    NASA Astrophysics Data System (ADS)

    Bousquet, Pierre W.; Ulamec, Stephan; Jaumann, Ralf; Vane, Gregg; Baker, John; Clark, Pamela; Komarek, Tomas; Lebreton, Jean-Pierre; Yano, Hajime

    2016-07-01

    Miniaturisation of technologies over the last decade has made cubesats a valid solution for deep space missions. For example, a spectacular set 13 cubesats will be delivered in 2018 to a high lunar orbit within the frame of SLS' first flight, referred to as Exploration Mission-1 (EM-1). Each of them will perform autonomously valuable scientific or technological investigations. Other situations are encountered, such as the auxiliary landers / rovers and autonomous camera that will be carried in 2018 to asteroid 1993 JU3 by JAXA's Hayabusas 2 probe, and will provide complementary scientific return to their mothership. In this case, cubesats depend on a larger spacecraft for deployment and other resources, such as telecommunication relay or propulsion. For both situations, we will describe in this paper how cubesats can be used as remote observatories (such as NEO detection missions), as technology demonstrators, and how they can perform or contribute to all steps in the Deep Space exploration sequence: Measurements during Deep Space cruise, Body Fly-bies, Body Orbiters, Atmospheric probes (Jupiter probe, Venus atmospheric probes, ..), Static Landers, Mobile landers (such as balloons, wheeled rovers, small body rovers, drones, penetrators, floating devices, …), Sample Return. We will elaborate on mission architectures for the most promising concepts where cubesat size devices offer an advantage in terms of affordability, feasibility, and increase of scientific return.

  10. Enhancing STEM Education through Cubesats: Using Satellite Integration as a Teaching Tool at a Non-Tech School

    NASA Astrophysics Data System (ADS)

    Bernardes, S.; Cotten, D. L.

    2016-12-01

    University-based satellite programs have been successfully used as a platform for teaching STEM related fields, bringing tremendous benefits to graduate and undergraduate education. Considering their infrastructure and curricula, tech schools have traditionally been considered logical candidates for hosting such programs. More recently, with the dissemination of small satellites initiatives, non-tech schools have been presented the opportunity of developing satellite design and implementation programs. This work reports on the experiences and challenges associated with implementing a satellite program at the University of Georgia (UGA), a non-tech university. With funding from the Air Force Research Laboratory's (AFRL) University Nanosat Program (UNP) and NASA's Undergraduate Student Instrument Project (USIP) a team of undergraduates at UGA has recently been tasked with building two small satellites and helping to create a Small Satellite Research Laboratory (SSRL) at the university. Unique features of the satellite program at UGA include its team of students from a broad range of backgrounds and departments (Engineering, Computer Science, Art, Business, and Geography) and the previous exposure of many of these students to synergistic technologies, including arduino and unmanned aerial systems. We show how informal exposure to those technologies and willingness of students to focus on areas outside of their field of study can benefit from the implementation of satellite programs. In this regard, we report on methods and techniques used to find and recruit driven and knowledgeable students to work in a high paced field such as satellite system integration. We show how students and faculty from multiple departments have collaborated to reach a common, far reaching goal and describe our proposed methods to evaluate and measure educational goals based around SSRL and its projects. We also present the challenges associated with the lack of a developed engineering

  11. OPTEC: A Cubesat for Solar Cell Calibration

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey; Hepp, Aloysius; Arutyunov, Dennis; White, Kelsey; Witsberger, Paul

    2014-01-01

    A new type of small spacecraft, the cubesat, has introduced a new concept for extremely small, low-cost missions into space. Cubesats are designed to be launched as secondary payloads on other missions, and are made up of unit elements (U) of size 10 cm by 10 cm by 10 cm, with a nominal mass of no more than 1.33 kg per U. We have designed a cubesat, OPTEC (Orbital Photovoltaic Testbed Cubesat) as a low-cost testbed to demonstrate, calibrate, and test solar cell technologies in space. Size of the cubesat is 2U (10x10x20cm, and the mass 2.66 kg. The cubesat deploys from the International Space Station into Low Earth Orbit at an altitude of about 420 km. Up to two 4x8cm test solar panels can be flown, with full I-V curves and temperature measurements taken.

  12. NPS CubeSat Launcher Program Management

    DTIC Science & Technology

    2009-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited NPS CUBESAT LAUNCHER ...CubeSat Launcher Program Management 6. AUTHOR(S) Christina M. Hicks 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...article in support of the NPS CubeSat Launcher (NPSCuL) project. This thesis will describe the process, experience, and results of managing the NPSCuL

  13. Propulsion for CubeSats

    NASA Astrophysics Data System (ADS)

    Lemmer, Kristina

    2017-05-01

    At present, very few CubeSats have flown in space featuring propulsion systems. Of those that have, the literature is scattered, published in a variety of formats (conference proceedings, contractor websites, technical notes, and journal articles), and often not available for public release. This paper seeks to collect the relevant publically releasable information in one location. To date, only two missions have featured propulsion systems as part of the technology demonstration. The IMPACT mission from the Aerospace Corporation launched several electrospray thrusters from Massachusetts Institute of Technology, and BricSAT-P from the United States Naval Academy had four micro-Cathode Arc Thrusters from George Washington University. Other than these two missions, propulsion on CubeSats has been used only for attitude control and reaction wheel desaturation via cold gas propulsion systems. As the desired capability of CubeSats increases, and more complex missions are planned, propulsion is required to accomplish the science and engineering objectives. This survey includes propulsion systems that have been designed specifically for the CubeSat platform and systems that fit within CubeSat constraints but were developed for other platforms. Throughout the survey, discussion of flight heritage and results of the mission are included where publicly released information and data have been made available. Major categories of propulsion systems that are in this survey are solar sails, cold gas propulsion, electric propulsion, and chemical propulsion systems. Only systems that have been tested in a laboratory or with some flight history are included.

  14. The open prototype for educational NanoSats: Fixing the other side of the small satellite cost equation

    NASA Astrophysics Data System (ADS)

    Berk, Josh; Straub, Jeremy; Whalen, David

    Government supported nano-satellite launch programs and emerging commercial small satellite launch services are reducing the cost of access to space for educational and other CubeSat projects. The cost and complexity of designing and building these satellites remains a vexing complication for many would be CubeSat aspirants. The Open Prototype for Educational NanoSats (OPEN), a proposed nano-satellite development platform, is described in this paper. OPEN endeavors to reduce the costs and risks associated with educational, government and commercial nano-satellite development. OPEN provides free and publicly available plans for building, testing and operating a versatile, low-cost satellite, based on the standardized CubeSat form-factor. OPEN consists of public-domain educational reference plans, complete with engineering schematics, CAD files, construction and test instructions as well as ancillary reference materials relevant to satellite building and operation. By making the plan, to produce a small but capable spacecraft freely available, OPEN seeks to lower the barriers to access on the other side (non-launch costs) of the satellite cost equation.

  15. Leveraging CubeSat Technology to Address Nighttime Imagery Requirements over the Arctic

    NASA Astrophysics Data System (ADS)

    Pereira, J. J.; Mamula, D.; Caulfield, M.; Gallagher, F. W., III; Spencer, D.; Petrescu, E. M.; Ostroy, J.; Pack, D. W.; LaRosa, A.

    2017-12-01

    The National Oceanic and Atmospheric Administration (NOAA) has begun planning for the future operational environmental satellite system by conducting the NOAA Satellite Observing System Architecture (NSOSA) study. In support of the NSOSA study, NOAA is exploring how CubeSat technology funded by NASA can be used to demonstrate the ability to measure three-dimensional profiles of global temperature and water vapor. These measurements are critical for the National Weather Service's (NWS) weather prediction mission. NOAA is conducting design studies on Earth Observing Nanosatellites (EON) for microwave (EON-MW) and infrared (EON-IR) soundings, with MIT Lincoln Laboratory and NASA JPL, respectively. The next step is to explore the technology required for a CubeSat mission to address NWS nighttime imagery requirements over the Arctic. The concept is called EON-Day/Night Band (DNB). The DNB is a 0.5-0.9 micron channel currently on the operational Visible Infrared Imaging Radiometer Suite (VIIRS) instrument, which is part of the Suomi-National Polar-orbiting Partnership and Joint Polar Satellite System satellites. NWS has found DNB very useful during the long periods of darkness that occur during the Alaskan cold season. The DNB enables nighttime imagery products of fog, clouds, and sea ice. EON-DNB will leverage experiments carried out by The Aerospace Corporation's CUbesat MULtispectral Observation System (CUMULOS) sensor and other related work. CUMULOS is a DoD-funded demonstration of COTS camera technology integrated as a secondary mission on the JPL Integrated Solar Array and Reflectarray Antenna mission. CUMULOS is demonstrating a staring visible Si CMOS camera. The EON-DNB project will leverage proven, advanced compact visible lens and focal plane camera technologies to meet NWS user needs for nighttime visible imagery. Expanding this technology to an operational demonstration carries several areas of risk that need to be addressed prior to an operational mission

  16. Autonomous Scheduling Requirements for Agile Cubesat Constellations in Earth Observation

    NASA Astrophysics Data System (ADS)

    Nag, S.; Li, A. S. X.; Kumar, S.

    2017-12-01

    Distributed Space Missions such as formation flight and constellations, are being recognized as important Earth Observation solutions to increase measurement samples over space and time. Cubesats are increasing in size (27U, 40 kg) with increasing capabilities to host imager payloads. Given the precise attitude control systems emerging commercially, Cubesats now have the ability to slew and capture images within short notice. Prior literature has demonstrated a modular framework that combines orbital mechanics, attitude control and scheduling optimization to plan the time-varying orientation of agile Cubesats in a constellation such that they maximize the number of observed images, within the constraints of hardware specs. Schedule optimization is performed on the ground autonomously, using dynamic programming with two levels of heuristics, verified and improved upon using mixed integer linear programming. Our algorithm-in-the-loop simulation applied to Landsat's use case, captured up to 161% more Landsat images than nadir-pointing sensors with the same field of view, on a 2-satellite constellation over a 12-hour simulation. In this paper, we will derive the requirements for the above algorithm to run onboard small satellites such that the constellation can make time-sensitive decisions to slew and capture images autonomously, without ground support. We will apply the above autonomous algorithm to a time critical use case - monitoring of precipitation and subsequent effects on floods, landslides and soil moisture, as quantified by the NASA Unified Weather Research and Forecasting Model. Since the latency between these event occurrences is quite low, they make a strong case for autonomous decisions among satellites in a constellation. The algorithm can be implemented in the Plan Execution Interchange Language - NASA's open source technology for automation, used to operate the International Space Station and LADEE's in flight software - enabling a controller

  17. Lunar Flashlight and Other Lunar Cubesats

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara

    2017-01-01

    Water is a human-exploitable resource. Lunar Flashlight is a Cubesat mission to detect and map lunar surface ice in permanently-shadowed regions of the lunar south pole. EM-1 will carry 13 Cubesat-class missions to further smallsat science and exploration capabilities; much room to infuse LEO cubesat methodology, models, and technology. Exploring the value of concurrent measurements to measure dynamical processes of water sources and sinks.

  18. Simulation-To-Flight (STF-1): A Mission to Enable CubeSat Software-Based Validation and Verification

    NASA Technical Reports Server (NTRS)

    Morris, Justin; Zemerick, Scott; Grubb, Matt; Lucas, John; Jaridi, Majid; Gross, Jason N.; Ohi, Nicholas; Christian, John A.; Vassiliadis, Dimitris; Kadiyala, Anand; hide

    2016-01-01

    The Simulation-to-Flight 1 (STF-1) CubeSat mission aims to demonstrate how legacy simulation technologies may be adapted for flexible and effective use on missions using the CubeSat platform. These technologies, named NASA Operational Simulator (NOS), have demonstrated significant value on several missions such as James Webb Space Telescope, Global Precipitation Measurement, Juno, and Deep Space Climate Observatory in the areas of software development, mission operations/training, verification and validation (V&V), test procedure development and software systems check-out. STF-1 will demonstrate a highly portable simulation and test platform that allows seamless transition of mission development artifacts to flight products. This environment will decrease development time of future CubeSat missions by lessening the dependency on hardware resources. In addition, through a partnership between NASA GSFC, the West Virginia Space Grant Consortium and West Virginia University, the STF-1 CubeSat will hosts payloads for three secondary objectives that aim to advance engineering and physical-science research in the areas of navigation systems of small satellites, provide useful data for understanding magnetosphere-ionosphere coupling and space weather, and verify the performance and durability of III-V Nitride-based materials.

  19. CAPE-2 Cubesat - ELaNa IV

    NASA Image and Video Library

    2016-07-25

    CAPE-2: Cajun Advanced Picosatellite Experiment – ELaNa IV CAPE-2 was developed by students from the University of Louisiana Lafayette to engage, inspire and educate K-12 students to encourage them to pursue STEM careers. The secondary focus is the technology demonstration of deployed solar panels to support the following payloads: text to speech, voice repeater, tweeting, email, file transfer and data collection from buoys. Launched by NASA’s CubeSat Launch Initiative on the ELaNa IV mission as an auxiliary payload aboard the U.S. Air Force-led Operationally Responsive Space (ORS-3) Mission on November 19, 2013.

  20. Risk-based SMA for Cubesats

    NASA Technical Reports Server (NTRS)

    Leitner, Jesse

    2016-01-01

    This presentation conveys an approach for risk-based safety and mission assurance applied to cubesats. This presentation accompanies a NASA Goddard standard in development that provides guidance for building a mission success plan for cubesats based on the risk tolerance and resources available.

  1. 8 CFR 1244.10 - Decision by the director or Administrative Appeals Unit (AAU).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Appeals Unit (AAU). 1244.10 Section 1244.10 Aliens and Nationality EXECUTIVE OFFICE FOR IMMIGRATION REVIEW, DEPARTMENT OF JUSTICE IMMIGRATION REGULATIONS TEMPORARY PROTECTED STATUS FOR NATIONALS OF DESIGNATED STATES... presently filed with the Immigration Court. (3) If a charging document has previously been filed or is...

  2. HaloSat- A CubeSat to Study the Hot Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kaaret, Philip

    We propose to develop, build, and fly HaloSat, a CubeSat capable of measuring the oxygen line emission from the hot Galactic halo. A dedicated CubeSat enables an instrument design and observing strategy to maximize the halo signal while minimizing foregrounds from solar wind charge exchange interactions within the solar system. We will use HaloSat to map the distribution of hot gas in the Milky Way and determine whether it fills an extended, and thus massive halo, or whether the halo is compact, and thus does not contribute significantly to the total mass of the Milky Way. HaloSat can be accomplished at modest cost using a CubeSat, a novel platform for space astrophysics missions. We will use a commercially available CubeSat bus and commercially available X-ray detectors to reduce development risk and minimize overall mission cost. HaloSat builds on the initiatives of GSFC/Wallops Flight Facility (WFF) in the development of CubeSats for low cost access to space and relies on the technical expertise of WFF personnel for spacecraft and mission design and operations. The team, from University of Iowa (UI), GSFC, Johns Hopkins, and CNRS (France), contains experts in X-ray detector development and data analysis and the astrophysics of hot plasmas and Galactic structure. The UI team will include a number of junior researchers (undergraduates, graduate students, and a postdoc) and help train them for future leadership roles on NASA space flight missions.

  3. CubeSat on an Earth-Mars Free-Return Trajectory to study radiation hazards in the future manned mission

    NASA Astrophysics Data System (ADS)

    Vannitsen, J.; Segret, B.; Miau, J. J.; Juang, J.-C.

    2013-09-01

    In order to prepare the Human Mission to Mars, few aspects of the mission still have to be known. During a transit to the Red Planet, future crews will be exposed to potentially hazardous radiations [1]. By using a CubeSat, we can then have a relatively cheap and easy way to improve the radiations environment knowledge for a Mars manned mission. A 1 Unit CubeSat is a type of miniaturized satellite for space research that usually has a volume of exactly one litre (10 cm cube), has a mass of no more than 1.33 kilograms and typically uses commercial off-the-shelf components for its electronics [2]. In this project, it is planned to use a 3 Unit CubeSat having the following dimensions: 10 cm x 10 cm x 30 cm and a maximum mass of 4kg.

  4. Two cubesat mission to study the Didymos asteroid system

    NASA Astrophysics Data System (ADS)

    Wahlund, J.-E.; Vinterhav, E.; Trigo-Rodríguez, J. M.; Hallmann, M.; Barabash, S.; Ivchenko, N.

    2015-10-01

    Among the growing interest about asteroid impact hazard mitigation in our community the Asteroid Impact & Deflection Assessment (AIDA) mission will be the first space experiment to use a kinetic impactor to demonstrate its capability as reliable deflection system [1]. As a part of the AIDA mission, we have proposed a set of two three-axis stabilized 3U CubeSats (with up to 5 science sensors) to simultaneously rendezvous at close range (<500m) with both the primary and the secondary component of the Didymos asteroid system. The CubeSats will be hosted on the ESA component of the AIDA mission, the monitoring satellite AIM (Asteroid Impact Mission). The CubeSats will characterise the magnetization, the main bulk chemical composition and presence of volatiles as well as do superresolution surface imaging of the Didymos components. The CubeSats will also support the plume characterisation resulting from the DART impact (Double Asteroid Redirection Test, a NASA component of the AIDA mission) at much closer range than the AIM main spacecraft, and provide imaging, composition, and temperature of the plume material. At end of the mission, the two CubeSats can optionally land on one of the asteroids for continued science operation. The science sensors consist of a dual fluxgate magnetometer (MAG), one miniaturized volatile composition analyser (VCA), a narrow angle camera (NAC) and a Video Emission Spectrometer (VES) with a diffraction grating for allowing a sequential chemical study of the emission spectra associated with the impact flare and the expanding plume. Consequently, the different envisioned instruments onboard the CubeSats can provide significant insight into the complex response of asteroid materials during impacts that has been theoretically studied using different techniques [2]. The two CubeSats will remain stowed in CubeSat dispensers aboard the main AIM spacecraft. They will be deployed and commissioned before the AIM impactor reaches the secondary and

  5. AAU and ARL: The Role of Partnerships and Collective Advocacy in Policy Development

    ERIC Educational Resources Information Center

    Vaughn, John C.

    2009-01-01

    This paper briefly describes the structure of the national higher education association community, discusses the role of coalitions in collective advocacy, and reviews collaborations between the Association of American Universities (AAU) and the Association of Research Libraries (ARL) carried out during the tenure of ARL Executive Director Duane…

  6. Integration of a MicroCAT Propulsion System and a PhoneSat Bus into a 1.5U CubeSat

    NASA Technical Reports Server (NTRS)

    Agasid, Elwood Floyd; Perez, Andres Dono; Gazulla, Oriol Tintore; Trinh, Greenfield Tran; Uribe, Eddie Anthony; Keidar, Michael; Haque, Samudra; Teel, George

    2014-01-01

    NASA Ames Research Center and the George Washington University have developed an electric propulsion subsystem that can be integrated into the PhoneSat bus. Experimental tests have shown a reliable performance by firing three different thrusters at various frequencies in vacuum conditions. The three thrusters were controlled by a SmartPhone that was running the PhoneSat software. The subsystem is fully operational and it requires low average power to function (about 0.1 W). The interface consists of a microcontroller that sends a trigger pulses to the PPU (Plasma Processing Unit), which is responsible for the thruster operation. Frequencies ranging from 1 to 50Hz have been tested, showing a strong flexibility. A SmartPhone acts as the main user interface for the selection of commands that control the entire system. The micro cathode arc thruster MicroCAT provides a high 1(sub sp) of 3000s that allows a 4kg satellite to obtain a (delta)V of 300m/s. The system mass is only 200g with a total of volume of 200(cu cm). The propellant is based on a solid cylinder made of Titanium, which is the cathode at the same time. This simplicity in the design avoids miniaturization and manufacturing problems. The characteristics of this thruster allow an array of MicroCATs to perform attitude control and orbital correcton maneuvers that will open the door for the implementation of an extensive collection of new mission concepts and space applications for CubeSats. NASA Ames is currently working on the integration of the system to fit the thrusters and PPU inside a 1.5U CubeSat together with the PhoneSat bus into a 1.5U CubeSat. This satellite is intended to be deployed from the ISS in 2015 and test the functionality of the thrusters by spinning the satellite around its long axis and measure the rotational speed with the phone byros. This test flight will raise the TRL of the propulsion system from 5 to 7 and will be a first test for further CubeSats with propulsion systems, a key

  7. Model predictive and reallocation problem for CubeSat fault recovery and attitude control

    NASA Astrophysics Data System (ADS)

    Franchi, Loris; Feruglio, Lorenzo; Mozzillo, Raffaele; Corpino, Sabrina

    2018-01-01

    In recent years, thanks to the increase of the know-how on machine-learning techniques and the advance of the computational capabilities of on-board processing, expensive computing algorithms, such as Model Predictive Control, have begun to spread in space applications even on small on-board processor. The paper presents an algorithm for an optimal fault recovery of a 3U CubeSat, developed in MathWorks Matlab & Simulink environment. This algorithm involves optimization techniques aiming at obtaining the optimal recovery solution, and involves a Model Predictive Control approach for the attitude control. The simulated system is a CubeSat in Low Earth Orbit: the attitude control is performed with three magnetic torquers and a single reaction wheel. The simulation neglects the errors in the attitude determination of the satellite, and focuses on the recovery approach and control method. The optimal recovery approach takes advantage of the properties of magnetic actuation, which gives the possibility of the redistribution of the control action when a fault occurs on a single magnetic torquer, even in absence of redundant actuators. In addition, the paper presents the results of the implementation of Model Predictive approach to control the attitude of the satellite.

  8. NanoRacks CubeSat

    NASA Image and Video Library

    2014-02-14

    ISS038-E-047232 (14 Feb. 2014) --- A set of NanoRacks CubeSats is photographed by an Expedition 38 crew member after the deployment by the NanoRacks Launcher attached to the end of the Japanese robotic arm. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing. International Space Station solar array panels provide the backdrop for the scene.

  9. CubeSat Remote Sensing: A Survey of Current Capabilities

    NASA Astrophysics Data System (ADS)

    Hegel, D.

    2014-12-01

    Recent years have seen dramatic growth in the availability and capability of very small satellites for atmospheric sensing, and other space-based science, as the simplicity of integration and low cost of these platforms enables projects that would otherwise be prohibitively expensive, or demand excessive expertise/infrastructure to execute. This paper surveys the current state-of-the-art for CubeSat performance, including pointing accuracy, geolocation, available power, and data downlink capacity. Applications for up-coming missions, such as CeREs, MinXSS, and HARP will also be discussed.

  10. CSUNSat-1 CubeSat – ELaNa XVII

    NASA Image and Video Library

    2017-04-04

    The primary mission of CSUNSat1 is to space test an innovative low temperature capable energy storage system developed by the Jet Propulsion Laboratory, raising its TRL level to 7 from 4 to 5. The success of this energy storage system will enable future missions, especially those in deep space to do more science while requiring less energy, mass and volume. This CubeSat was designed, built, programmed, and tested by a team of over 70 engineering and computer science students at CSUN.  The primary source of funding for CSUNSat1 comes from NASA’s Smallest Technology Partnership program. Launched by NASA’s CubeSat Launch Initiative on the NET April 18, 2017 ELaNa XVII mission on the seventh Orbital-ATK Cygnus Commercial Resupply Services (OA-7) to the International Space Station and deployed on tbd.

  11. Analysis and design of Cubesat constellation for the Mediterranean south costal monitoring against illegal immigration

    NASA Astrophysics Data System (ADS)

    Lazreg, Nissen; Ben Bahri, Omar; Besbes, Kamel

    2018-02-01

    Costal monitoring is focused on fast response to illegal immigration and illegal ship traffic. Especially, the illegal ship traffic has been present in media since April 2015, as the number of reported deaths of immigrants crossing the Mediterranean significantly increased. Satellite images provide a possibility to at least partially control both types of events. This paper defines the principal criteria to select the best satellite constellation architecture for maritime and coastal monitoring, filling the gaps of imagery techniques in term of real-time control. The primary purpose of a constellation is to obtain global measurement improving the temporal resolution. The small size and low-cost are the main factors, which make CubeSats ideal for use in constellations. We propose a constellation of 9 Cubesats distributed evenly in 3 different planes. This reduces the revisit time enhancing the coverage duration. In addition, it also allows observing fire, damage on building and similar disasters. In this analysis, the performance criteria were reported such as the revisit time, the vision duration and the area coverage.

  12. Prelaunch Performance of the 118 GHz Polarcube 3U Cubesat Temperature Sounding Radiometer

    NASA Astrophysics Data System (ADS)

    Periasamy, L.; Gasiewski, A. J.; Gallaher, D. W.; Sanders, B. T.; Belter, R.; Kraft, D.; Castillo, J.; Gordon, J. A.; Hurowitz, M.

    2017-12-01

    The low cost PolarCube 3U CubeSat supports a 118.75 GHz imaging spectrometer for temperature profiling of the troposphere and surface temperature. It is a demonstrator for a constellation of LEO passive microwave sensors at V-band and other frequencies using 3U/6U CubeSats. Such a satellite constellation for weather forecasting will provide data at high spatial and temporal resolution to observe rapidly evolving mesoscale weather. The satellite's payload is an eight channel, double sideband passive microwave temperature sounder with cross-track scanning and will provide 18 km surface resolution from a 400 km orbit. The radiometer implements a two-point calibration using an internal PIN switch and view of cold space. Although the instrument is based on a well established classical design, the challenges lie in developing a sensitive spectrometer that fits in a 1.5U volume, is low cost, consumes 4 W power and satisfies the CubeSat weight and envelope constraints. PolarCube is scheduled for launch on a Virgin Galactic flight in summer, 2018. The estimated radiometer sensitivity, ΔTrms varies from 0.3 to 2 K across the eight channels. The 50 MHz to 7 GHz 8-channel filter bank (designed with surface mount capacitors and inductors) fits on a 9x5 cm2 RO4350B PCB and includes 2-stage amplification and detector circuitry. The scanning reflector with an 8 cm2 main aperture uses a 3D printed corrugated feed that includes a WR8 to WC8 waveguide transition with a 17° bend. Initial performance results from the instrument using the 3D printed feed and IF/VA board obtained from airborne measurements over Antarctica on the NASA DC8 in early November 2016 indicate a well-functioning radiometer. The end-to-end characterization of the payload with the satellite bus, performance results from vibration and thermal-vacuum tests and roof-top measurements will be presented.

  13. Pre- to Post- CubeSats

    NASA Astrophysics Data System (ADS)

    Cutler, J.

    2015-12-01

    CubeSats sprung from a formative picosatellite effort at a university in the heart of Silicon Valley, took root in a university-led university environment, and have grown into complex-shaped explorers in both near and soon-to-be deep space. Private citizens, businesses, government are building and launching a variety of science, technology demonstration, and service missions. A new generation of space explorers is gaining first hand experience in space missions at all educational levels. There is new life and new energy in the space program. However, space is still difficult. The environment is harsh. Funding is sparse. This talk explores this history and the future of CubeSats from the context of a university-centric laboratory that emphasizes teaching, research, and entrepreneurial impact. It will explore the following questions: What sparked the CubeSat innovation? What are longer lasting lessons of this community? Where are places we can go next? What does it take to get there? The talk will draw on lessons learned from building over six on-orbit CubeSat missions and training hundreds of space engineers.

  14. NanoRacks CubeSat Deployment

    NASA Image and Video Library

    2014-02-13

    ISS038-E-046586 (13 Feb. 2014) --- A set of NanoRacks CubeSats is photographed by an Expedition 38 crew member after the deployment by the NanoRacks Launcher attached to the end of the Japanese robotic arm. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.

  15. NanoRacks CubeSat Deployment

    NASA Image and Video Library

    2014-02-13

    ISS038-E-046579 (13 Feb. 2014) --- A set of NanoRacks CubeSats is photographed by an Expedition 38 crew member after the deployment by the NanoRacks Launcher attached to the end of the Japanese robotic arm. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.

  16. Geospace ionosphere research with a MF/HF radio instrument on a cubesat

    NASA Astrophysics Data System (ADS)

    Kallio, E. J.; Aikio, A. T.; Alho, M.; Fontell, M.; van Gijlswijk, R.; Kauristie, K.; Kestilä, A.; Koskimaa, P.; Makela, J. S.; Mäkelä, M.; Turunen, E.; Vanhamäki, H.

    2016-12-01

    Modern technology provides new possibilities to study geospace and its ionosphere, using spacecraft and and computer simulations. A type of nanosatellites, CubeSats, provide a cost effective possibility to provide in-situ measurements in the ionosphere. Moreover, combined CubeSat observations with ground-based observations gives a new view on auroras and associated electromagnetic phenomena. Especially joint and active CubeSat - ground based observation campaigns enable the possibility of studying the 3D structure of the ionosphere. Furthermore using several CubeSats to form satellite constellations enables much higher temporal resolution. At the same time, increasing computation capacity has made it possible to perform simulations where properties of the ionosphere, such as propagation of the electromagnetic waves in the medium frequency, MF (0.3-3 MHz) and high frequency, HF (3-30 MHz), ranges is based on a 3D ionospheric model and on first-principles modelling. Electromagnetic waves at those frequencies are strongly affected by ionospheric electrons and, consequently, those frequencies can be used for studying the plasma. On the other hand, even if the ionosphere originally enables long-range telecommunication at MF and HF frequencies, the frequent occurrence of spatiotemporal variations in the ionosphere disturbs communication channels, especially at high latitudes. Therefore, study of the MF and HF waves in the ionosphere has both a strong science and technology interests. We present computational simulation results and measuring principles and techniques to investigate the arctic ionosphere by a polar orbiting CubeSat whose novel AM radio instrument measures HF and MF waves. The cubesat, which contains also a white light aurora camera, is planned to be launched in 2017 (http://www.suomi100satelliitti.fi/eng). We have modelled the propagation of the radio waves, both ground generated man-made waves and space formed space weather related waves, through the 3D

  17. Visual attitude propagation for small satellites

    NASA Astrophysics Data System (ADS)

    Rawashdeh, Samir A.

    As electronics become smaller and more capable, it has become possible to conduct meaningful and sophisticated satellite missions in a small form factor. However, the capability of small satellites and the range of possible applications are limited by the capabilities of several technologies, including attitude determination and control systems. This dissertation evaluates the use of image-based visual attitude propagation as a compliment or alternative to other attitude determination technologies that are suitable for miniature satellites. The concept lies in using miniature cameras to track image features across frames and extracting the underlying rotation. The problem of visual attitude propagation as a small satellite attitude determination system is addressed from several aspects: related work, algorithm design, hardware and performance evaluation, possible applications, and on-orbit experimentation. These areas of consideration reflect the organization of this dissertation. A "stellar gyroscope" is developed, which is a visual star-based attitude propagator that uses relative motion of stars in an imager's field of view to infer the attitude changes. The device generates spacecraft relative attitude estimates in three degrees of freedom. Algorithms to perform the star detection, correspondence, and attitude propagation are presented. The Random Sample Consensus (RANSAC) approach is applied to the correspondence problem to successfully pair stars across frames while mitigating falsepositive and false-negative star detections. This approach provides tolerance to the noise levels expected in using miniature optics and no baffling, and the noise caused by radiation dose on orbit. The hardware design and algorithms are validated using test images of the night sky. The application of the stellar gyroscope as part of a CubeSat attitude determination and control system is described. The stellar gyroscope is used to augment a MEMS gyroscope attitude propagation

  18. Development of Novel Integrated Antennas for CubeSats

    NASA Technical Reports Server (NTRS)

    Jackson, David; Fink, Patrick W.; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Development of Novel Integrated Antennas for CubeSats project is directed at the development of novel antennas for CubeSats to replace the bulky and obtrusive antennas (e.g., whip antennas) that are typically used. The integrated antennas will not require mechanical deployment and thus will allow future CubeSats to avoid potential mechanical problems and therefore improve mission reliability. Furthermore, the integrated antennas will have improved functionality and performance, such as circular polarization for improved link performance, compared with the conventional antennas currently used on CubeSats.

  19. The CuSPED Mission: CubeSat for GNSS Sounding of the Ionosphere-Plasmasphere Electron Density

    NASA Technical Reports Server (NTRS)

    Gross, Jason N.; Keesee, Amy M.; Christian, John A.; Gu, Yu; Scime, Earl; Komjathy, Attila; Lightsey, E. Glenn; Pollock, Craig J.

    2016-01-01

    The CubeSat for GNSS Sounding of Ionosphere-Plasmasphere Electron Density (CuSPED) is a 3U CubeSat mission concept that has been developed in response to the NASA Heliophysics program's decadal science goal of the determining of the dynamics and coupling of the Earth's magnetosphere, ionosphere, and atmosphere and their response to solar and terrestrial inputs. The mission was formulated through a collaboration between West Virginia University, Georgia Tech, NASA GSFC and NASA JPL, and features a 3U CubeSat that hosts both a miniaturized space capable Global Navigation Satellite System (GNSS) receiver for topside atmospheric sounding, along with a Thermal Electron Capped Hemispherical Spectrometer (TECHS) for the purpose of in situ electron precipitation measurements. These two complimentary measurement techniques will provide data for the purpose of constraining ionosphere-magnetosphere coupling models and will also enable studies of the local plasma environment and spacecraft charging; a phenomenon which is known to lead to significant errors in the measurement of low-energy, charged species from instruments aboard spacecraft traversing the ionosphere. This paper will provide an overview of the concept including its science motivation and implementation.

  20. CSUNSat-1 Team working on their CubeSat at California State University Northridge

    NASA Image and Video Library

    2015-03-02

    CSUNSat-1 Team (Adam Kaplan, James Flynn, Donald Eckels) working on their CubeSat at California State University Northridge. The primary mission of CSUNSat1 is to space test an innovative low temperature capable energy storage system developed by the Jet Propulsion Laboratory, raising its TRL level to 7 from 4 to 5. The success of this energy storage system will enable future missions, especially those in deep space to do more science while requiring less energy, mass and volume. This CubeSat was designed, built, programmed, and tested by a team of over 70 engineering and computer science students at CSUN.  The primary source of funding for CSUNSat1 comes from NASA’s Smallest Technology Partnership program. Launched by NASA’s CubeSat Launch Initiative NET April 18, 2017 ELaNa XVII mission on the seventh Orbital-ATK Cygnus Commercial Resupply Services (OA-7) to the International Space Station and deployed on tbd.

  1. A Cubesat Asteroid Mission: Propulsion Trade-offs

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Oleson, Steven R.; McGuire, Melissa L.; Bur, Michael J.; Burke, Laura M.; Fittje, James E.; Kohout, Lisa L.; Fincannon, James; Packard, Thomas W.; Martini, Michael C.

    2014-01-01

    A conceptual design was performed for a 6-U cubesat for a technology demonstration to be launched on the NASA Space Launch System (SLS) test launch EM-1, to be launched into a free-return translunar trajectory. The mission purpose was to demonstrate use of electric propulsion systems on a small satellite platform. The candidate objective chosen was a mission to visit a Near-Earth asteroid. Both asteroid fly-by and asteroid rendezvous missions were analyzed. Propulsion systems analyzed included cold-gas thruster systems, Hall and ion thrusters, incorporating either Xenon or Iodine propellant, and an electrospray thruster. The mission takes advantage of the ability of the SLS launch to place it into an initial trajectory of C3=0.

  2. CubeSat Mission- Near-Earth Asteroid Scout (animation only, no audio)

    NASA Image and Video Library

    2016-09-21

    The Near-Earth Asteroid Scout, or NEA Scout, is a robotic reconnaissance mission that will deploy a 6U CubeSat to fly by and return data from an asteroid representative of possible human destinations. Using a solar sail for its propulsion system, it will perform reconnaissance of an asteroid, take pictures and observe its position in space. Launching on NASA's Space Launch System rocket, the CubeSat deployment animation starts at the 1:25 timecode with the solar sail deployment animation beginning at the 2:54 timecode. The NEA Scout team is currently evaluating a range of targets, and is continually updating the candidate pool based on new discoveries and expected performance. NEA Scout is one of three payloads selected by NASA’s Human Exploration and Operations Mission Directorate. These small satellites were chosen to address Strategic Knowledge Gaps (SKGs) and help inform research strategies and prioritize technology development for future human and robotic exploration. It is being developed at NASA’s Marshall Space Flight Center in Huntsville, Alabama. Learn more by visiting http://www.nasa.gov/content/nea-scout

  3. Differential Drag Analysis to Infer the Geometrical Configuration of a Cubesat

    NASA Astrophysics Data System (ADS)

    Bussy-Virat, C.; Ridley, A. J.; Cutler, J.; Sharma, S.; Judd, E.

    2016-12-01

    On May 16th, 2016, the Miniature X-ray Solar Spectrometer (MinXSS) and the CubeSat investigating Atmospheric Density Response to Extreme driving (CADRE) were deployed from the International Space Station. While communication with MinXSS was quickly established, it has been impossible to interact with CADRE thus far. A likely reason could be that its solar panels did not open, preventing the antenna from fully functioning and eliminating communication with the ground stations. An orbit propagator that was developed for mission design and analysis was used to model the trajectories of the satellites. By comparing the drag accelerations on the two CubeSats, we are attempting to infer the number of solar panels that CADRE deployed. Ensemble simulations allow the modeling of uncertainties on its attitude, as it is likely to tumble if no solar panel was deployed. This technique introduces many challenges, as there are many unknowns, including the drag coefficient, the attitude, and the thermospheric density. We present results of this study, as well as these challenges that were encountered.

  4. Maximizing photovoltaic power generation of a space-dart configured satellite

    NASA Astrophysics Data System (ADS)

    Lee, Dae Young; Cutler, James W.; Mancewicz, Joe; Ridley, Aaron J.

    2015-06-01

    Many small satellites are power constrained due to their minimal solar panel area and the eclipse environment of low-Earth orbit. As with larger satellites, these small satellites, including CubeSats, use deployable power arrays to increase power production. This presents a design opportunity to develop various objective functions related to energy management and methods for optimizing these functions over a satellite design. A novel power generation model was created, and a simulation system was developed to evaluate various objective functions describing energy management for complex satellite designs. The model uses a spacecraft-body-fixed spherical coordinate system to analyze the complex geometry of a satellite's self-induced shadowing with computation provided by the Open Graphics Library. As an example design problem, a CubeSat configured as a space-dart with four deployable panels is optimized. Due to the fast computation speed of the solution, an exhaustive search over the design space is used to find the solar panel deployment angles which maximize total power generation. Simulation results are presented for a variety of orbit scenarios. The method is extendable to a variety of complex satellite geometries and power generation systems.

  5. Radio Frequency Emitter Geolocation Using Cubesats

    DTIC Science & Technology

    2014-03-27

    CUBESATS Andrew J. Small, B.S.E.E. Captain, USAF Approved: //signed// Maj Marshall Haker , PhD (Chairman) //signed// Jonathan Black, PhD (Member) //signed...Cubesat, Direct Position Determination, Angle of Arrival, Time Difference of Arrival, Instantaneous Received Frequency U U U UU 101 Maj Marshall Haker (ENG) (937) 255-3636 x4603 marshall.haker@afit.edu

  6. SWEET CubeSat - Water detection and water quality monitoring for the 21st century

    NASA Astrophysics Data System (ADS)

    Antonini, Kelly; Langer, Martin; Farid, Ahmed; Walter, Ulrich

    2017-11-01

    Water scarcity and contamination of clean water have been identified as major challenges of the 21st century, in particular for developing countries. According to the International Water Management Institute, about 30% of the world's population does not have reliable access to clean water. Consequently, contaminated water contributes to the death of about 3 million people every year, mostly children. Access to potable water has been proven to boost education, equality and health, reduce hunger, as well as help the economy of the developing world. Currently used in-situ water monitoring techniques are sparse, and often difficult to execute. Space-based instruments will help to overcome these challenges by providing means for water level and water quality monitoring of medium-to-large sweet (fresh) water reservoirs. Data from hyperspectral imaging instruments on past and present governmental missions, such as Envisat and Aqua, has been used for this purpose. However, the high cost of large multi-purpose space vessels, and the lack of dedicated missions limits the continuous monitoring of inland and coastal water quality. The proposed CubeSat mission SWEET (Sweet Water Earth Education Technologies) will try to fill this gap. The SWEET concept is a joint effort between the Technical University of Munich, the German Space Operations Center and the African Steering Committee of the IAF. By using a novel Fabry-Perot interferometer-based hyperspectral imager, the mission will deliver critical data directly to national water resource centers in Africa with an unmatched cost per pixel ratio and high temporal resolution. Additionally, SWEET will incorporate education of students in CubeSat design and water management. Although the aim of the mission is to deliver local water quality and water level data to African countries, further coverage could be achieved with subsequent satellites. Finally, a constellation of SWEET-like CubeSats would extend the coverage to the whole

  7. FIREFLY: A cubesat mission to study terrestrial gamma-ray flashes

    NASA Astrophysics Data System (ADS)

    Klenzing, J. H.; Rowland, D. E.; Hill, J.; Weatherwax, A. T.

    2009-12-01

    FIREFLY is small satellite mission to investigate the link between atmospheric lightning and terrestrial gamma-ray flashes scheduled to launch in late 2010. The instrumentation includes a Gamma-Ray Detector (GRD), VLF receiver, and photometer. GRD will measure the energy and arrival time of x-ray and gamma-ray photons, as well as the energetic electron flux by using a phoswitch-style layered scintillator. The current status of the instrumentation will be discussed, including laboratory tests and simulations of the GRD. FIREFLY is the second in a series of NSF-funded cubesats designed to study the upper atmosphere.

  8. CURIE: Cubesat Radio Interferometry Experiment

    NASA Astrophysics Data System (ADS)

    Sundkvist, D. J.; Saint-Hilaire, P.; Bain, H. M.; Bale, S. D.; Bonnell, J. W.; Hurford, G. J.; Maruca, B.; Martinez Oliveros, J. C.; Pulupa, M.

    2016-12-01

    The CUbesat Radio Interferometry Experiment (CURIE) is a proposed two-element radio interferometer, based on proven and developed digital radio receivers and designed to fit within a Cubesat platform. CURIE will launch as a 6U Cubesat and then separate into two 3U Cubesats once in orbit. CURIE measures radio waves from 0.1-19MHz, which must be measured from space, as those frequencies fall below the cutoff imposed by Earth's ionosphere. The principal science objective for CURIE is to use radio interferometry to study radio burst emissions from solar eruptive events such as flares and coronal mass ejections (CMEs) in the inner heliosphere, providing observations important for our understanding of the heliospheric space weather environment. The influence of space weather can be felt at Earth and other planets, as radiation levels increase and lead to auroral activity and geomagnetic effects. CURIE will be able to determine the location and size of radio burst source regions and then to track their movement outward from the Sun. In addition to the primary objective CURIE will measure the gradients of the local ionospheric density and electron temperature on the spatial scale of a few kilometers, as well as create an improved map of the radio sky at these unexplored frequencies. A space based radio interferometry observatory has long been envisioned, in orbit around the Earth or the Moon, or on the far side of the Moon. Beyond its important science objectives, CURIE will prove that the concept of a dedicated space-based interferometer can be realized by using relatively cheap Cubesats. CURIE will therefore not only provide new important science results but also serve as a pathfinder in the development of new space-based radio observation techniques for helio- and astro-physics.

  9. 3D Printing the Complete CubeSat

    NASA Technical Reports Server (NTRS)

    Kief, Craig

    2015-01-01

    The 3D Printing the Complete CubeSat project is designed to advance the state-of-the-art in 3D printing for CubeSat applications. Printing in 3D has the potential to increase reliability, reduce design iteration time and provide greater design flexibility in the areas of radiation mitigation, communications, propulsion, and wiring, among others. This project is investigating the possibility of including propulsion systems into the design of printed CubeSat components. One such concept, an embedded micro pulsed plasma thruster (mPPT), could provide auxiliary reaction control propulsion for a spacecraft as a means to desaturate momentum wheels.

  10. NPS CubeSat Launcher Design, Process and Requirements

    DTIC Science & Technology

    2009-06-01

    Soviet era ICBM. The first Dnepr launch in July 2006 consisted of fourteen CubeSats in five P-PODs, while the second in April 2007 consisted of...Regulations (ITAR). ITAR restricts the export of defense-related products and technology on the United States Munitions List. Although one might not...think that CubeSat technology would fall under ITAR, in fact a large amount of Aerospace technology , including some that could be used on CubeSats is

  11. TechEdSat Nano-Satellite Series Fact Sheet

    NASA Technical Reports Server (NTRS)

    Murbach, Marcus; Martinez, Andres; Guarneros Luna, Ali

    2014-01-01

    TechEdSat-3p is the second generation in the TechEdSat-X series. The TechEdSat Series uses the CubeSat standards established by the California Polytechnic State University Cal Poly), San Luis Obispo. With typical blocks being constructed from 1-unit (1U 10x10x10 cm) increments, the TechEdSat-3p has a 3U volume with a 30 cm length. The project uniquely pairs advanced university students with NASA researchers in a rapid design-to-flight experience lasting 1-2 semesters.The TechEdSat Nano-Satellite Series provides a rapid platform for testing technologies for future NASA Earth and planetary missions, as well as providing students with an early exposure to flight hardware development and management.

  12. CUBES Project Support

    NASA Technical Reports Server (NTRS)

    Jenkins, Kenneth T., Jr.

    2012-01-01

    CUBES stands for Creating Understanding and Broadening Education through Satellites. The goal of the project is to allow high school students to build a small satellite, or CubeSat. Merritt Island High School (MIHS) was selected to partner with NASA, and California Polytechnic State University (Cal-Poly}, to build a CubeSat. The objective of the mission is to collect flight data to better characterize maximum predicted environments inside the CubeSat launcher, Poly-Picosatellite Orbital Deplorer (P-POD), while attached to the launch vehicle. The MIHS CubeSat team will apply to the NASA CubeSat Launch Initiative, which provides opportunities for small satellite development teams to secure launch slots on upcoming expendable launch vehicle missions. The MIHS team is working to achieve a test launch, or proof of concept flight aboard a suborbital launch vehicle in early 2013.

  13. MEMS for pico- to micro-satellites

    NASA Astrophysics Data System (ADS)

    Shea, H. R.

    2009-02-01

    MEMS sensors, actuators, and sub-systems can enable an important reduction in the size and mass of spacecrafts, first by replacing larger and heavier components, then by replacing entire subsystems, and finally by enabling the microfabrication of highly integrated picosats. Very small satellites (1 to 100 kg) stand to benefit the most from MEMS technologies. These small satellites are typically used for science or technology demonstration missions, with higher risk tolerance than multi-ton telecommunication satellites. While MEMS are playing a growing role on Earth in safety-critical applications, in the harsh and remote environment of space, reliability is still the crucial issue, and the absence of an accepted qualification methodology is holding back MEMS from wider use. An overview is given of the range of MEMS applications in space. An effective way to prove that MEMS can operate reliably in space is to use them in space: we illustrate how Cubesats (1 kg, 1 liter, cubic satellites in a standardized format to reduce launch costs) can serve as low-cost vectors for MEMS technology demonstration in space. The Cubesat SwissCube developed in Switzerland is used as one example of a rapid way to fly new microtechnologies, and also as an example of a spacecraft whose performance is only possible thanks to MEMS.

  14. Science Results and Lessons Learned from CubeSat: Colorado Space Weather Experiment (CSSWE)

    NASA Astrophysics Data System (ADS)

    Li, Xinlin

    The Relativistic Electron and Proton Telescope integrated little experiment (REPTile) is a loaded-disc collimated solid-state particle telescope, designed, built, tested, and operated by a team of students at the University of Colorado. It is the only science payload onboard the Colorado Student Space Weather Experiment (CSSWE), a 3U CubeSat (10cm x 10cm x 30cm) launched into a low-Earth, 480km x 780km, and highly inclined (65 deg) orbit on 13 September 2012. REPTile measures differential fluxes of 0.58 to >3.8 MeV electrons and 9-40 MeV protons. These measurements, by themselves and in conjunction with other larger missions, are critical to understand the dynamics of these energetic particles. Miniaturizing a power- and mass-hungry particle telescope to return clean measurements from a CubeSat platform is challenging. To overcome these challenges, REPTile underwent a rigorous design and testing phase. Despite the limitations inherent with CubeSats, REPTile to date (still in operation) has returned more than 300 days of valuable science data, more than tripling its nominal mission lifetime of 90 days. The data are clean, as REPTile is able to clearly distinguish between particle species. Important science results using REPTile data, some of which have been published in peer-reviewed journals, will be presented in this presentation.

  15. Design and Development of the WVU Advanced Technology Satellite for Optical Navigation

    NASA Astrophysics Data System (ADS)

    Straub, Miranda

    In order to meet the demands of future space missions, it is beneficial for spacecraft to have the capability to support autonomous navigation. This is true for both crewed and uncrewed vehicles. For crewed vehicles, autonomous navigation would allow the crew to safely navigate home in the event of a communication system failure. For uncrewed missions, autonomous navigation reduces the demand on ground-based infrastructure and could allow for more flexible operation. One promising technique for achieving these goals is through optical navigation. To this end, the present work considers how camera images of the Earth's surface could enable autonomous navigation of a satellite in low Earth orbit. Specifically, this study will investigate the use of coastlines and other natural land-water boundaries for navigation. Observed coastlines can be matched to a pre-existing coastline database in order to determine the location of the spacecraft. This paper examines how such measurements may be processed in an on-board extended Kalman filter (EKF) to provide completely autonomous estimates of the spacecraft state throughout the duration of the mission. In addition, future work includes implementing this work on a CubeSat mission within the WVU Applied Space Exploration Lab (ASEL). The mission titled WVU Advanced Technology Satellite for Optical Navigation (WATSON) will provide students with an opportunity to experience the life cycle of a spacecraft from design through operation while hopefully meeting the primary and secondary goals defined for mission success. The spacecraft design process, although simplified by CubeSat standards, will be discussed in this thesis as well as the current results of laboratory testing with the CubeSat model in the ASEL.

  16. A relative navigation sensor for CubeSats based on LED fiducial markers

    NASA Astrophysics Data System (ADS)

    Sansone, Francesco; Branz, Francesco; Francesconi, Alessandro

    2018-05-01

    Small satellite platforms are becoming very appealing both for scientific and commercial applications, thanks to their low cost, short development times and availability of standard components and subsystems. The main disadvantage with such vehicles is the limitation of available resources to perform mission tasks. To overcome this drawback, mission concepts are under study that foresee cooperation between autonomous small satellites to accomplish complex tasks; among these, on-orbit servicing and on-orbit assembly of large structures are of particular interest and the global scientific community is putting a significant effort in the miniaturization of critical technologies that are required for such innovative mission scenarios. In this work, the development and the laboratory testing of an accurate relative navigation package for nanosatellites compliant to the CubeSat standard is presented. The system features a small camera and two sets of LED fiducial markers, and is conceived as a standard package that allows small spacecraft to perform mutual tracking during rendezvous and docking maneuvers. The hardware is based on off-the-shelf components assembled in a compact configuration that is compatible with the CubeSat standard. The image processing and pose estimation software was custom developed. The experimental evaluation of the system allowed to determine both the static and dynamic performances. The system is capable to determine the close range relative position and attitude faster than 10 S/s, with errors always below 10 mm and 2 deg.

  17. Solder joint aging characteristics from the MC2918 firing set of a B61 accelerated aging unit (AAU)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vianco, P.T.; Rejent, J.A.

    1997-10-01

    The B61 accelerated aging unit (AAU) provided a unique opportunity to document the effects of a controlled, long-term thermal cycling environment on the aging of materials used in the device. This experiment was of particular interest to solder technologists because thermal cycling environments are a predominant source of solder joint failures in electronic assemblies. Observations of through hole solder joints in the MC2918 Firing Set from the B61 AAU did not reveal signs of catastrophic failure. Quantitative analyses of the microstructural metrics of intermetallic compound layer thickness and Pb-rich phase particle distributions indicated solder joint aging that was commensurate withmore » the accelerated aging environment. The effects of stress-enhanced coarsening of the Pb-rich phase were also documented.« less

  18. Vision Based Navigation for Autonomous Cooperative Docking of CubeSats

    NASA Astrophysics Data System (ADS)

    Pirat, Camille; Ankersen, Finn; Walker, Roger; Gass, Volker

    2018-05-01

    A realistic rendezvous and docking navigation solution applicable to CubeSats is investigated. The scalability analysis of the ESA Autonomous Transfer Vehicle Guidance, Navigation & Control (GNC) performances and the Russian docking system, shows that the docking of two CubeSats would require a lateral control performance of the order of 1 cm. Line of sight constraints and multipath effects affecting Global Navigation Satellite System (GNSS) measurements in close proximity prevent the use of this sensor for the final approach. This consideration and the high control accuracy requirement led to the use of vision sensors for the final 10 m of the rendezvous and docking sequence. A single monocular camera on the chaser satellite and various sets of Light-Emitting Diodes (LEDs) on the target vehicle ensure the observability of the system throughout the approach trajectory. The simple and novel formulation of the measurement equations allows differentiating unambiguously rotations from translations between the target and chaser docking port and allows a navigation performance better than 1 mm at docking. Furthermore, the non-linear measurement equations can be solved in order to provide an analytic navigation solution. This solution can be used to monitor the navigation filter solution and ensure its stability, adding an extra layer of robustness for autonomous rendezvous and docking. The navigation filter initialization is addressed in detail. The proposed method is able to differentiate LEDs signals from Sun reflections as demonstrated by experimental data. The navigation filter uses a comprehensive linearised coupled rotation/translation dynamics, describing the chaser to target docking port motion. The handover, between GNSS and vision sensor measurements, is assessed. The performances of the navigation function along the approach trajectory is discussed.

  19. Evaluation of the Impact of an Additive Manufacturing Enhanced CubeSat Architecture on the CubeSat Development Process

    DTIC Science & Technology

    2016-09-15

    EVALUATION OF THE IMPACT OF AN ADDITIVE MANUFACTURING ENHANCED CUBESAT ARCHITECTURE ON THE CUBESAT...DEVELOPMENT PROCESS THESIS Rachel E. Sharples AFIT-ENV-MS-16-S-049 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF...The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force

  20. CubeSat mechanical design: creating low mass and durable structures

    NASA Astrophysics Data System (ADS)

    Fiedler, Gilbert; Straub, Jeremy

    2017-05-01

    This paper considers the mechanical design of a low-mass, low-cost spacecraft for use in a multi-satellite sensing constellation. For a multi-spacecraft mission, aggregated small mass and cost reductions can have significant impact. One approach to mass reduction is to make cuts into the structure, removing material. Stress analysis is used to determine the level of material reduction possible. Focus areas for this paper include determining areas to make cuts to ensure that a strong shape remains, while considering the comparative cost and skill level of each type of cut. Real-world results for a CubeSat and universally applicable analysis are presented.

  1. Spherical Occulter Coronagraph Cubesat

    NASA Technical Reports Server (NTRS)

    Davila, Joseph M. (Inventor); Rabin, Douglas M. (Inventor); Reginald, Nelson (Inventor); Gong, Qian (Inventor); Shah, Neerav (Inventor); Chamberlin, Phillip C. (Inventor)

    2018-01-01

    The present invention relates to a space-based instrument which provides continuous coronal electron temperature and velocity images, for a predetermined period of time, thereby improving the understanding of coronal evolution and how the solar wind and Coronal Mass Ejection transients evolve from the low solar atmosphere through the heliosphere for an entire solar rotation. Specifically, the present invention relates to using a 6U spherical occulter coronagraph CubeSat, and a relative navigational system (RNS) that controls the position of the spacecraft relative to the occulting sphere. The present invention innovatively deploys a free-flying spherical occulter, and after deployment, the actively controlled CubeSat will provide an inertial formation flying with the spherical occulter and Sun.

  2. Cross Comparison of Electron Density and Electron Temperature Observations from the DICE CubeSat Langmuir Probes and the Millstone Hill Incoherent Scatter Radar.

    NASA Astrophysics Data System (ADS)

    Swenson, C.; Erickson, P. J.; Crowley, G.; Pilinski, M.; Barjatya, A.; Fish, C. S.

    2014-12-01

    The Dynamic Ionosphere CubeSat Experiment (DICE) consists of two identical 1.5U CubeSats deployed simultaneously from a single P-POD (Poly Picosatellite Orbital Deployer) into the same orbit. Several observational campaigns were planned between the DICE CubeSats and the mid-latitude Millstone Hill Incoherent Scatter Radar (ISR) in order to calibrate the DICE measurements of electron density and electron temperature. In this presentation, we compare in-situ observations from the Dynamic Ionosphere CubeSat Experiment (DICE) and from the Millstone Hill ISR. Both measurements are cross-calibrated against an assimilative model of the global ionospheric electron density. The electron density and electron temperature were obtained for three Millstone Hill DICE overflights (2013-03-12, 2013-03-15, 2013-03-17). We compare the data during quiet and geomagnetically disturbed conditions and find evidence of an storm enhanced density (SED) plume in the topside ionosphere on 2013-03-17 at 19? UTC. During this disturbed interval, American longitude sector high density plasma was convected near 15 SLT towards the noontime cusp. DICE was selected for flight under the NSF "CubeSat-based Science Mission for Space Weather and Atmospheric Research" program. The DICE twin satellites were launched on a Delta II rocket on October 28, 2011. The satellites are flying in a "leader-follower" formation in an elliptical orbit which ranges from 820 to 400 km in altitude. Each satellite carries a fixed-bias DC Langmuir Probe (DCP) to measure in-situ ionospheric plasma densities and a science grade magnetometer to measure DC and AC geomagnetic fields. The purpose of these measurements was to permit accurate identification of storm-time features such as the SED bulge and plume. The mission team combines expertise from ASTRA, Utah State University/Space Dynamics Laboratory (USU/SDL), and Embry-Riddle Aeronautical University. In this paper we present a comparison of data from DICE and Millstone Hill

  3. Professional Organizations for Pharmacy Students on Satellite Campuses.

    PubMed

    Scott, Mollie Ashe; McLaughlin, Jacqueline; Shepherd, Greene; Williams, Charlene; Zeeman, Jackie; Joyner, Pamela

    2016-06-25

    Objective. To evaluate the structure and impact of student organizations on pharmacy school satellite campuses. Methods. Primary administrators from satellite campuses received a 20-question electronic survey. Quantitative data analysis was conducted on survey responses. Results. The most common student organizations on satellite campuses were the American Pharmacists Association (APhA) (93.1%), American Society of Health-System Pharmacists (ASHP) (89.7%), Christian Pharmacists Fellowship International (CPFI) (60.0%), state organizations (51.7%), and local organizations (58.6%). Perceived benefits of satellite campus organizations included opportunities for professional development, student engagement, and service. Barriers to success included small enrollment, communication between campuses, finances, and travel. Conclusion. Student organizations were an important component of the educational experience on pharmacy satellite campuses and allowed students to develop professionally and engage with communities. Challenges included campus size, distance between campuses, and communication.

  4. University Satellite Consortium and Space Education in Japan Centered on Micro-Nano Satellites

    NASA Astrophysics Data System (ADS)

    Nakasuka, S.; Kawashima, R.

    2002-01-01

    in Japan especially centered on micro or nano class satellites. Hands-on training using micro-nano satellites provide unique opportunity of space education to university level students, by giving them a chance to experience the whole space project cycle from mission creation, satellite design, fabrication, test, launch, operation through analysis of the results. Project management and team working are other important skills that can be trained in these projects. include 1) low cost, which allows one laboratory in university to carry out a project, 2) short development period such as one or two year, which enables students to obtain the results of their projects before they graduate, and 3) small size and weight, which enables fabrication and test within usually very narrow university laboratory areas. In Japan, several projects such as CanSat, CubeSat or Whale Observation Satellite have been carried out, proving that micro-nano satellites provide very unique and valuable educational opportunity. with the objective to make a university student and staff community of these micro-nano satellite related activities in Japan. This consortium aims for many activities including facilitating information and skills exchange and collaborations between member universities, helping students to use ground test facilities of national laboratories, consulting them on political or law related matters, coordinating joint development of equipments or projects, and bridging between these university activities and the needs or interests of the people in general. This kind of outreach activity is essential because how to create missions of micro-nano satellites should be pursued in order for this field to grow larger than a merely educational enterprise. The final objectives of the consortium is to make a huge community of the users, mission creators, investors and manufactures(i.e., university students) of micro-nano satellites, and provide a unique contribution to the activation of

  5. Science in 60 – Tiny Satellites, Big Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Erica

    2016-05-05

    When cube satellites first sprung on the scene in the late 1990s, they were seen as cheap, cute and novel. But today, these lunch-box-sized orbiters are heralded as powerful, cost-effective tools that help strengthen our national security presence in space. Los Alamos National Laboratory developed, built and tested CubeSats that are easily programmable from the ground, making them responsive to up-to-the-minute, mission-critical needs. While CubeSats are still the new kid on the celestial block, that’s about to change. These small, agile pieces of technology hold a universe of promise.

  6. CUTIE: Cubesat Ultraviolet Transient Imaging Experiment

    NASA Astrophysics Data System (ADS)

    Cenko, Stephen B.; Bellm, Eric Christopher; Gal-Yam, Avishay; Gezari, Suvi; Gorjian, Varoujan; Jewell, April; Kruk, Jeffrey W.; Kulkarni, Shrinivas R.; Mushotzky, Richard; Nikzad, Shouleh; Piro, Anthony; Waxman, Eli; Ofek, Eran Oded

    2017-01-01

    We describe a mission concept for the Cubesat Ultraviolet Transient Imaging Experiment (CUTIE). CUTIE will image an area on the sky of ~ 1700 square degrees every ~ 95 min at near-UV wavelengths (260-320 nm) to a depth of 19.0 mag (AB). These capabilities represent orders of magnitude improvement over past UV imagers, allowing CUTIE to conduct the first true synoptic survey of the transient and variable sky in the UV bandpass. CUTIE will uniquely address key Decadal Survey science questions such as how massive stars end their lives, how super-massive black holes accrete material and influence their surroundings, and how suitable habitable-zone planets around low-mass stars are for hosting life. By partnering with upcoming ground-based time-domain surveys, CUTIE will further leverage its low-Earth orbit to provide a multi-wavelength view of the dynamic universe that can only be achieved from space. The remarkable sensitivity for such a small payload is achieved via the use of large format delta-doped CCDs; space qualifying this technology will serve as a key milestone towards the development of future large missions (Explorers and Surveyors). Finally, our innovative design in a 6U cubesat form factor will enable significant cost savings, accelerating the timeline from conception to on-sky operation (5 years; well matched for graduate student participation).

  7. Guidelines for CubeSat's Thermal Design

    NASA Technical Reports Server (NTRS)

    Rodriguez-Ruiz, Juan; Patel, Deepak

    2015-01-01

    Thermal and Fluids Analysis Workshop 2015, Silver Spring, MD. NCTS 19104-15. What does it take to thermally designlow cost, low mass cubesats? What are the differences in the approach when you compare with large scale missions?What additional risk is acceptable? What is the approach to hardware? How is the testing campaign run? These aresome of the questions that will be addressed in this course, which is designed to equip the attendees to support thedevelopment of cubesats at their organization.

  8. RainCube 6U CubeSat

    NASA Image and Video Library

    2018-05-17

    The RainCube 6U CubeSat with fully-deployed antenna. RainCube, CubeRRT and TEMPEST-D are currently integrated aboard Orbital ATKs Cygnus spacecraft and are awaiting launch on an Antares rocket. After the CubeSats have arrived at the station, they will be deployed into low-Earth orbit and will begin their missions to test these new technologies useful for predicting weather, ensuring data quality, and helping researchers better understand storms. https://photojournal.jpl.nasa.gov/catalog/PIA22457

  9. Increasing Small Satellite Reliability- A Public-Private Initiative

    NASA Technical Reports Server (NTRS)

    Johnson, Michael A.; Beauchamp, Patricia; Schone, Harald; Sheldon, Doug; Fuhrman, Linda; Sullivan, Erica; Fairbanks, Tom; Moe, Miquel; Leitner, Jesse

    2017-01-01

    At present, CubeSat components and buses are generally not appropriate for missions where significant risk of failure, or the inability to quantify risk or confidence, is acceptable. However, in the future we anticipate that CubeSats will be used for missions requiring reliability of 1-3 years for Earth-observing missions and even longer for Planetary, Heliophysics, and Astrophysics missions. Their growing potential utility is driving an interagency effort to improve and quantify CubeSat reliability, and more generally, small satellite mission risk. The Small Satellite Reliability Initiative (SSRI)—an ongoing activity with broad collaborative participation from civil, DoD, and commercial space systems providers and stakeholders—targets this challenge. The Initiative seeks to define implementable and broadly-accepted approaches to achieve reliability and acceptable risk postures associated with several SmallSat mission risk classes—from “do no harm” missions, to those associated with missions whose failure would result in loss or delay of key national objectives. These approaches will maintain, to the extent practical, cost efficiencies associated with small satellite missions and consider constraints associated with supply chain elements, as appropriate. The SSRI addresses this challenge from two architectural levels—the mission- or system-level, and the component- or subsystem-level. The mission- or system-level scope targets assessment approaches that are efficient and effective, with mitigation strategies that facilitate resiliency to mission or system anomalies while the component- or subsystem-level scope addresses the challenge at lower architectural levels. The initiative does not limit strategies and approaches to proven and traditional methodologies, but is focused on fomenting thought on novel and innovative solutions. This paper discusses the genesis of and drivers for this initiative, how the public-private collaboration is being executed

  10. NASA Operational Simulator for Small Satellites (NOS3)

    NASA Technical Reports Server (NTRS)

    Zemerick, Scott

    2015-01-01

    The Simulation-to-Flight 1 (STF-1) CubeSat mission aims to demonstrate how legacy simulation technologies may be adapted for flexible and effective use on missions using the CubeSat platform. These technologies, named NASA Operational Simulator (NOS), have demonstrated significant value on several missions such as James Webb Space Telescope, Global Precipitation Measurement, Juno, and Deep Space Climate Observatory in the areas of software development, mission operationstraining, verification and validation (VV), test procedure development and software systems check-out. STF-1 will demonstrate a highly portable simulation and test platform that allows seamless transition of mission development artifacts to flight products. This environment will decrease development time of future CubeSat missions by lessening the dependency on hardware resources. In addition, through a partnership between NASA GSFC, the West Virginia Space Grant Consortium and West Virginia University, the STF-1 CubeSat will hosts payloads for three secondary objectives that aim to advance engineering and physical-science research in the areas of navigation systems of small satellites, provide useful data for understanding magnetosphere-ionosphere coupling and space weather, and verify the performance and durability of III-V Nitride-based materials.

  11. The Paving Stones: initial feed-back on an attempt to apply the AGILE principles for the development of a CubeSat space mission to Mars

    NASA Astrophysics Data System (ADS)

    Segret, Boris; Semery, Alain; Vannitsen, Jordan; Mosser, Benoît.; Miau, Jiun-Jih; Juang, Jyh-Ching; Deleflie, Florent

    2014-08-01

    The AGILE principles in the software industry seems well adapted to the paradigm of CubeSat missions that involve students for the development of space missions. Some of well-known engineering and program processes are revisited on the example of an interplanetary CubeSat mission profile that has been developed by several teams of students in various countries and at various educational levels since 02/2013. The lessons learned at adapting traditional space mission methods are emphasized and they produce a metaphoric image of paving stones.

  12. Quasi-thermal noise and shot noise spectroscopy using a CubeSat in Earth's ionosphere

    NASA Astrophysics Data System (ADS)

    Maj, R.; Cairns, I.

    2017-12-01

    We investigate the practicality of using quasi-thermal noise (QTN) and shot noisespectroscopy on a CubeSat in the Earth's ionosphere and constrain the satellite antennalength for optimal detection of these signals. The voltage spectra predicted for thermalLangmuir waves (QTN) and particle "shot noise" are modeled, and it is shown that thesignals detected can provide two very good, independent, passive, in situ methods ofmeasuring the plasma density and temperature in the ionosphere. The impact of theantenna potential φ is also discussed, and we show that the negative potential calculatedfor the ionosphere due to natural current flows has a significant impact on the voltagepower level of the shot noise spectrum. The antenna configuration is also shown to playan important role in the shot noise, with a monopole configuration enhancing thespectrum significantly compared with a dipole. Antenna lengths on the order of 20-40cm are found to be ideal for ionospheric plasma conditions, nicely matching CubeSatsizes and producing detectable thermal Langmuir waves and shot noise at the microvoltlevel. Further, with a continuous stream of data points at different latitudes andlongitudes an orbiting CubeSat can produce a global picture for the ionospheric plasmadensity and temperature using QTN and shot noise signals. If implemented, especiallyin a constellation, these data would be more frequent and cover a much greater domainthan current ground-based or single-satellite methods. This could lead to improvedionospheric models, such as the empirically based International Reference Ionosphere.

  13. Pushing the Limits of Cubesat Attitude Control: A Ground Demonstration

    NASA Technical Reports Server (NTRS)

    Sanders, Devon S.; Heater, Daniel L.; Peeples, Steven R.; Sules. James K.; Huang, Po-Hao Adam

    2013-01-01

    A cubesat attitude control system (ACS) was designed at the NASA Marshall Space Flight Center (MSFC) to provide sub-degree pointing capabilities using low cost, COTS attitude sensors, COTS miniature reaction wheels, and a developmental micro-propulsion system. The ACS sensors and actuators were integrated onto a 3D-printed plastic 3U cubesat breadboard (10 cm x 10 cm x 30 cm) with a custom designed instrument board and typical cubesat COTS hardware for the electrical, power, and data handling and processing systems. In addition to the cubesat development, a low-cost air bearing was designed and 3D printed in order to float the cubesat in the test environment. Systems integration and verification were performed at the MSFC Small Projects Rapid Integration & Test Environment laboratory. Using a combination of both the miniature reaction wheels and the micro-propulsion system, the open and closed loop control capabilities of the ACS were tested in the Flight Robotics Laboratory. The testing demonstrated the desired sub-degree pointing capability of the ACS and also revealed the challenges of creating a relevant environment for development testin

  14. Solar and Space Physics Science Enabled by Pico and Nano Satellites

    NASA Astrophysics Data System (ADS)

    Swenson, C.; Fish, C. S.

    2012-12-01

    The most significant advances in solar and space physics, or Heliophysics, over the next decade are most likely to derive from new observational techniques. The connection between advances in scientific understanding and technology has historically been demonstrated across many disciplines and time. Progress on some of the most compelling scientific problems will most likely occur through multipoint observations within the space environment to understand the coupling between disparate regions: Heliosphere, magnetosphere, ionosphere, thermosphere and mesosphere. Multipoint measurements are also needed to develop understanding of the various scalars or vector field signatures (i.e gradients, divergence) that arise from coupling processes that occur across temporal and spatial scales or within localized regions. The resources that are available over the next decades for all areas of Heliophysics research have limits and it is therefore important that the community be innovative in developing new observational techniques to advance science. One of the most promising new observational techniques becoming available are miniaturized sensors and satellite systems called pico- or nano-satellites and CubeSats. These are enabled by the enormous investment of the commercial, medical, and defense industries in producing highly capable, portable and low-power battery-operated consumer electronics, in-situ composition probes, and novel reconnaissance sensors. The advancements represented by these technologies have direct application in developing pico- or nano-satellites and CubeSats system for Heliophysics research. In this talk we overview the current environment and technologies surrounding these novel small satellites and discuss the types and capabilities of the miniature sensors that are being developed. We discuss how pico- or nano-satellites and CubeSats can be used to address highest priority science identified in the Decadal Survey and the innovations and advancements

  15. Science in 60 – Tiny Satellites, Big Science

    ScienceCinema

    Sullivan, Erica

    2018-05-31

    When cube satellites first sprung on the scene in the late 1990s, they were seen as cheap, cute and novel. But today, these lunch-box-sized orbiters are heralded as powerful, cost-effective tools that help strengthen our national security presence in space. Los Alamos National Laboratory developed, built and tested CubeSats that are easily programmable from the ground, making them responsive to up-to-the-minute, mission-critical needs. While CubeSats are still the new kid on the celestial block, that’s about to change. These small, agile pieces of technology hold a universe of promise.

  16. Determining the Cost Effectiveness of Nano-Satellites

    DTIC Science & Technology

    2014-09-01

    program. She helped me talk through a number of issues throughout the entire process. She also went out of her way to give me the time needed to complete...imagery satellites WorldView-2 and GeoEye-2 are both 1.1 meters in diameter( Franklin 2012) and cannot fit into a 0.3 meter 3U CubeSat. Another major...modulated retro-reflectors can enable one- way high speed transfer at a very low power cost to the nano-satellite (Wayne, Lovern and Obukhov 2014). 5

  17. A CubeSat Asteroid Mission: Design Study and Trade-Offs

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Oleson, Steven R.; McGuire, Melissa; Hepp, Aloysius; Stegeman, James; Bur, Mike; Burke, Laura; Martini, Michael; Fittje, James E.; Kohout, Lisa; hide

    2014-01-01

    There is considerable interest in expanding the applicability of cubesat spacecraft into lightweight, low cost missions beyond Low Earth Orbit. A conceptual design was done for a 6-U cubesat for a technology demonstration to demonstrate use of electric propulsion systems on a small satellite platform. The candidate objective was a mission to be launched on the SLS test launch EM-1 to visit a Near-Earth asteroid. Both asteroid fly-by and asteroid rendezvous missions were analyzed. Propulsion systems analyzed included cold-gas thruster systems, Hall and ion thrusters, incorporating either Xenon or Iodine propellant, and an electrospray thruster. The mission takes advantage of the ability of the SLS launch to place it into an initial trajectory of C3=0. Targeting asteroids that fly close to earth minimizes the propulsion required for fly-by/rendezvous. Due to mass constraints, high specific impulse is required, and volume constraints mean the propellant density was also of great importance to the ability to achieve the required deltaV. This improves the relative usefulness of the electrospray salt, with higher propellant density. In order to minimize high pressure tanks and volatiles, the salt electrospray and iodine ion propulsion systems were the optimum designs for the fly-by and rendezvous missions respectively combined with a thruster gimbal and wheel system For the candidate fly-by mission, with a mission deltaV of about 400 m/s, the mission objectives could be accomplished with a 800s electrospray propulsion system, incorporating a propellant-less cathode and a bellows salt tank. This propulsion system is planned for demonstration on 2015 LEO and 2016 GEO DARPA flights. For the rendezvous mission, at a ?V of 2000 m/s, the mission could be accomplished with a 50W miniature ion propulsion system running iodine propellant. This propulsion system is not yet demonstrated in space. The conceptual design shows that an asteroid mission is possible using a cubesat

  18. An active attitude control system for a drag sail satellite

    NASA Astrophysics Data System (ADS)

    Steyn, Willem Herman; Jordaan, Hendrik Willem

    2016-11-01

    The paper describes the development and simulation results of a full ADCS subsystem for the deOrbitSail drag sail mission. The deOrbitSail satellite was developed as part of an European FP7 collaboration research project. The satellite was launched and commissioning started on 10th July 2015. Various new actuators and sensors designed for this mission will be presented. The deOrbitSail satellite is a 3U CubeSat to deploy a 4 by 4 m drag sail from an initial 650 km circular polar low earth orbit. With an active attitude control system it will be shown that by maximising the drag force, the expected de-orbiting period from the initial altitude will be less than 50 days. A future application of this technology will be the use of small drag sails as low-cost devices to de-orbit LEO satellites, when they have reached their end of life, without having to use expensive propulsion systems. Simulation and Hardware-in-Loop experiments proved the feasibility of the proposed attitude control system. A magnetic-only control approach using a Y-Thomson spin, is used to detumble the 3U Cubesat with stowed sail and subsequently to 3-axis stabilise the satellite to be ready for the final deployment phase. Minituarised torquer rods, a nano-sized momentum wheel, attitude sensor hardware (magnetometer, sun, earth) developed for this phase will be presented. The final phase will be to deploy and 3-axis stabilise the drag sail normal to the satellite's velocity vector, using a combined Y-momentum wheel and magnetic controller. The design and performance improvements when using a 2-axis translation stage to adjust the sail centre-of-pressure to satellite centre-of-mass offset, will also be discussed, although for launch risk reasons this stage was not included in the final flight configuration. To accurately determine the drag sail's attitude during the sunlit part of the orbit, an accurate wide field of view dual sensor to measure both the sun and nadir vector direction was developed for

  19. Lunar Ice Cube: Development of a Deep Space Cubesat Mission

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Malphrus, B.; McElroy, D.; Schabert, J.; Wilczewski, S.; Farrell, W.; Brambora, C.; Macdowall, R.; Folta, D.; Hurford, T.; Patel, D.; Banks, S.; Reuter, D.; Brown, K.; Angkasa, K.; Tsay, M.

    2017-10-01

    Lunar Ice Cube, a 6U deep space cubesat mission, will be deployed by EM1. It will demonstrate cubesat propulsion, the Busek BIT 3 RF Ion engine, and a compact instrument capable of addressing HEOMD Strategic Knowledge Gaps related to lunar volatiles.

  20. How CubeSats contribute to Science and Technology in Astronomy and Astrophysics

    NASA Astrophysics Data System (ADS)

    Cahoy, Kerri Lynn; Douglas, Ewan; Carlton, Ashley; Clark, James; Haughwout, Christian

    2017-01-01

    CubeSats are nanosatellites, spacecraft typically the size of a shoebox or backpack. CubeSats are made up of one or more 10 cm x 10 cm x 10 cm units weighing 1.33 kg (each cube is called a “U”). CubeSats benefit from relatively easy and inexpensive access to space because they are designed to slide into fully enclosed spring-loaded deployer pods before being attached as an auxiliary payload to a larger vehicle, without adding risk to the vehicle or its primary payload(s). Even though CubeSats have inherent resource and aperture limitations due to their small size, over the past fifteen years, researchers and engineers have miniaturized components and subsystems, greatly increasing the capabilities of CubeSats. We discuss how state of the art CubeSats can address both science objectives and technology objectives in Astronomy and Astrophysics. CubeSats can contribute toward science objectives such as cosmic dawn, galactic evolution, stellar evolution, extrasolar planets and interstellar exploration.CubeSats can contribute to understanding how key technologies for larger missions, like detectors, microelectromechanical systems, and integrated optical elements, can not only survive launch and operational environments (which can often be simulated on the ground), but also meet performance specifications over long periods of time in environments that are harder to simulate properly, such as ionizing radiation, the plasma environment, spacecraft charging, and microgravity. CubeSats can also contribute to both science and technology advancements as multi-element space-based platforms that coordinate distributed measurements and use formation flying and large separation baselines to counter their restricted individual apertures.

  1. A review of planetary and space science projects presented at iCubeSat, the Interplanetary CubeSat Workshop

    NASA Astrophysics Data System (ADS)

    Johnson, Michael

    2015-04-01

    iCubeSat, the Interplanetary CubeSat Workshop, is an annual technical workshop for researchers working on an exciting new standardised platform and opportunity for planetary and space scientists. The first workshop was held in 2012 at MIT, 2013 at Cornell, 2014 at Caltech with the 2015 workshop scheduled to take place on the 26-27th May 2015 at Imperial College London. Mission concepts and flight projects presented since 2012 have included orbiters and landers targeting asteroids, the moon, Mars, Venus, Saturn and their satellites to perform science traditionally reserved for flagship missions at a fraction of their cost. Some of the first missions proposed are currently being readied for flight in Europe, taking advantage of multiple ride share launch opportunities and technology providers. A review of these and other interplanetary CubeSat projects will be presented, covering details of their science objectives, instrument capabilities, technology, team composition, budget, funding sources, and the other programattic elements required to implement this potentially revolutionary new class of mission.

  2. A Potential Role for smallsats and Cubesats in Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Carpenter, James; Fisackerly, Richard; Houdou, Bérengère; De Rosa, Diego; Schiemann, Jens D.; Walker, Roger; Zeppenfeldt, Frank

    2015-04-01

    The Moon is an important exploration destination for ESA, which is currently engaged in activities to access and exploit the Moon through developments in future human exploration systems and precursor robotic surface missions. However, recent major advancements in Smallsat and Cubesat technologies, and their application to fields such as Earth imaging and atmospheric science, has opened the possibility of utilising these smaller, lower cost platforms beyond LEO and potentially at the Moon. ESA is interested in understanding how emerging Smallsat & Cubesat instrument and platform technology could be applied to Lunar Exploration, particularly in the fields of technology demonstration and investigations which can be precursors to longer term l exploration activies. Lunar Cubesats can offer an means of access to the Moon, which complements larger ESA-led opportunities on international surface missions and via future human exploration systems. In this talk ESA will outline its current objectives in Lunar Exploration and highlight potential future opportunities for Smallsat and Cubesat platforms to play a role.

  3. Lunar and Lagrangian Point L1 L2 CubeSat Communication and Navigation Considerations

    NASA Technical Reports Server (NTRS)

    Schaire, Scott; Wong, Yen F.; Altunc, Serhat; Bussey, George D.; Shelton, Marta; Folta, Dave; Gramling, Cheryl; Celeste, Peter; Anderson, Mike; Perrotto, Trish; hide

    2017-01-01

    CubeSats have grown in sophistication to the point that relatively low-cost mission solutions could be undertaken for planetary exploration. There are unique considerations for Lunar and L1L2 CubeSat communication and navigation compared with low earth orbit CubeSats. This paper explores those considerations as they relate to the MoreheadGSFC Lunar IceCube Mission. The Lunar IceCube is a CubeSat mission led by Morehead State University with participation from NASA Goddard Space Flight Center, JPL, the Busek Company and Vermont Tech. It will search for surface water ice and other resources from a high inclination lunar orbit. Lunar IceCube is one of a select group of CubeSats designed to explore beyond low-earth orbit that will fly on NASAs Space Launch System (SLS) as secondary payloads for Exploration Mission (EM) 1. Lunar IceCube and the EM-1 CubeSats will lay the groundwork for future lunar and L1L2 CubeSat missions. This paper discusses communication and navigation needs for the Lunar IceCube mission and navigation and radiation tolerance requirements related to lunar and L1L2 orbits. Potential CubeSat radio and antennas for such missions are investigated and compared. Ground station coverage, link analysis, and ground station solutions are also discussed. There are currently modifications in process for the Morehead ground station. Further enhancement of the Morehead ground station and the NASA Near Earth Network (NEN) are being examined. This paper describes how the NEN may support Lunar and L1L2 CubeSats without any enhancements and potential expansion of NEN to better support such missions in the future. The potential NEN enhancements include upgrading current NEN Cortex receiver with Forward Error Correction (FEC) Turbo Code, providing X-band Uplink capability, and adding ranging options. The benefits of ground station enhancements for CubeSats flown on NASA Exploration Missions (EM) are presented. The paper also discusses other initiatives that the NEN is

  4. A Cubesat to Image Comet Wirtanen at its 2018 Close Approach?

    NASA Astrophysics Data System (ADS)

    Dunham, David W.; Stakkestad, Kjell; Hardgrove, Craig; Vedder, Peter W.; Gaylor, David; Kidd, John; Hergenrother, Carl W.

    2016-10-01

    In Dec. 2018, Comet Wirtanen will pass 0.077 AU from Earth, the best opportunity for a fly by of an active comet on a low-energy orbit in the next 40 years. In 2013, the late Robert Farquhar presented a paper, "A Unique Multi-Comet Mission Opportunity for China in 2018" [1]. He used a 1.4-year-Earth-return orbit with launch C3 <3 km^2/s^2 that, after flying by Wirtanen, would use an Earth swingby to fly by SW3C in 2022. While at the 2013 conference, Dr. Farquhar visited the China National Space Administration, which said that all of their funds were committed to their lunar program, precluding a new mission. Other agencies Farquhar approached had similar views.NASA announced its SIMPLEx opportunity in 2014 for cubesats deployed from the second stage of the 1st SLS mission (EM-1) to the Moon. We are on the Arizona State Univ. team that is developing the Lunar Polar Hydrogen Mapper (LunaH-Map) cubesat selected for EM-1. LunaH-Map will use an iodine solar electric propulsion system by Busek (Natick, MA) to enter an elliptical lunar orbit with periselene over the lunar south pole. The 1st launch date for EM-1 was in Dec. 2017, but in May 2016, NASA changed it to October 7, 2018. That's 2 months before Wirtanen's closest approach, so we looked into sending a cubesat with LunaH-Map's propulsion system to Wirtanen. The lunar swingby that might send a cubesat to Wirtanen would occur on Oct. 12 when the Earth C3 to reach Wirtanen is 2.25 km^2/s^2. We tried realistic simulations, finding that a LunaH-Map-like cubesat could not reach Wirtanen, but a spacecraft with 4 times the thrust could. Another cubesat with a more capable propulsion system might reach Wirtanen from EM-1. EM-1 can deploy 13 cubesats, all taken except for 3 for foreign partners. If EM-1 launches a month earlier, then a LunaH-Map-like cubesat could reach Wirtanen; the lowest C3 is 0.95 km^2/s^2 with an Earth departure on Sept. 5. If there is another launch with the possibility of carrying a cubesat then, the

  5. Miniaturized Ion and Neutral Mass Spectrometer for CubeSat Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Rodriguez, M.; Paschalidis, N.; Jones, S.; Sittler, E.; Chornay, D.; Uribe, P.; Cameron, T.

    2016-01-01

    To increase the number of single point in-situ measurements of thermosphere and exosphere ion and neutral composition and density, miniaturized instrumentation is in high demand to take advantage of the increasing platform opportunities available in the smallsat/cubesat industry. The INMS (Ion-Neutral Mass Spectrometer) addresses this need by providing simultaneous measurements of both the neutral and ion environment, essentially providing two instruments in one compact model. The 1.3U volume, 570 gram, 1.8W nominal power INMS instrument makes implementation into cubesat designs (3U and above) practical and feasible. With high dynamic range (0.1-500eV), mass dynamic range of 1-40amu, sharp time resolution (0.1s), and mass resolution of MdM16, the INMS instrument addresses the atmospheric science needs that otherwise would have required larger more expensive instrumentation. INMS-v1 (version 1) launched on Exocube (CalPoly 3U cubesat) in 2015 and INMS-v2 (version 2) is scheduled to launch on Dellingr (GSFC 6U cubesat) in 2017. New versions of INMS are currently being developed to increase and add measurement capabilities, while maintaining its smallsat/cubesat form.

  6. NASA Near Earth Network (NEN) Support for Lunar and L1/L2 CubeSats

    NASA Technical Reports Server (NTRS)

    Schaire, Scott H.

    2017-01-01

    The NASA Near Earth Network (NEN) consists of globally distributed tracking stations, including NASA, commercial, and partner ground stations, that are strategically located to maximize the coverage provided to a variety of orbital and suborbital missions, including those in LEO, GEO, HEO, lunar and L1/L2 orbits. The NENs future mission set includes and will continue to include CubeSat missions. The first NEN supported CubeSat mission will be the Cubesat Proximity Operations Demonstration (CPOD) launching into low earth orbit (LEO) in early 2017. The majority of the CubeSat missions destined to fly on EM-1, launching in late 2018, many in a lunar orbit, will communicate with ground based stations via X-band and will utilize the NASA Jet Propulsion Laboratory (JPL) developed IRIS radio. The NEN recognizes the important role CubeSats are beginning to play in carrying out NASAs mission and is therefore investigating the modifications needed to provide IRIS radio compatibility. With modification, the NEN could potentially expand support to the EM-1 lunar CubeSats. The NEN could begin providing significant coverage to lunar CubeSat missions utilizing three to four of the NENs mid-latitude sites. This coverage would supplement coverage provided by the JPL Deep Space Network (DSN). The NEN, with smaller apertures than DSN, provides the benefit of a larger beamwidth that could be beneficial in the event of uncertain ephemeris data. In order to realize these benefits the NEN would need to upgrade stations targeted based on coverage ability and current configurationease of upgrade, to ensure compatibility with the IRIS radio.In addition, the NEN is working with CubeSat radio developers to ensure NEN compatibility with alternative CubeSat radios for Lunar and L1/L2 CubeSats. The NEN has provided NEN compatibility requirements to several radio developers who are developing radios that offer lower cost and, in some cases, more capabilities with fewer constraints. The NEN is

  7. Interplanetary CubeSat for Technology Demonstration at Mars Artist Concept

    NASA Image and Video Library

    2015-06-12

    NASA's two MarCO CubeSats will be flying past Mars in September 2016 just as NASA's next Mars lander, InSight, is descending through the Martian atmosphere and landing on the surface. MarCO, for Mars Cube One, will provide an experimental communications relay to inform Earth quickly about the landing. This illustration depicts a moment during the lander's descent when it is transmitting data in the UHF radio band, and the twin MarCO craft are receiving those transmissions while simultaneously relaying the data to Earth in a different radio band. Each of the MarCO twins carries two solar panels for power, and both UHF-band and X-band radio antennas. As a technology demonstration, MarCO could lead to other "bring-your-own-relay" mission designs and also to use of miniature spacecraft for a wide diversity of interplanetary missions. MarCO is the first interplanetary use of CubeSat technologies for small spacecraft. CubeSats are a class of spacecraft based on a standardized small size and modular use of off-the-shelf technologies to streamline development. Many have been made by university students, and dozens have been launched into Earth orbit using extra payload mass available on launches of larger spacecraft. The two briefcase-size MarCO CubeSats will ride along with InSight on an Atlas V launch vehicle lifting off in March 2016 from Vandenberg Air Force Base, California. MarCO is a technology demonstration aspect of the InSight mission and not needed for that mission's success. InSight, an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, will investigate the deep interior of Mars to advance understanding of how rocky planets, including Earth, formed and evolved. After launch, the MarCO twins and InSight will be navigated separately to Mars. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport

  8. Lunar and Lagrangian Point L1 L2 CubeSat Communication and Navigation Considerations

    NASA Technical Reports Server (NTRS)

    Schaire, Scott; Wong, Yen F.; Altunc, Serhat; Bussey, George; Shelton, Marta; Folta, Dave; Gramling, Cheryl; Celeste, Peter; Anderson, Mile; Perrotto, Trish; hide

    2017-01-01

    CubeSats have grown in sophistication to the point that relatively low-cost mission solutions could be undertaken for planetary exploration. There are unique considerations for lunar and L1/L2 CubeSat communication and navigation compared with low earth orbit CubeSats. This paper explores those considerations as they relate to the Lunar IceCube Mission. The Lunar IceCube is a CubeSat mission led by Morehead State University with participation from NASA Goddard Space Flight Center, Jet Propulsion Laboratory, the Busek Company and Vermont Tech. It will search for surface water ice and other resources from a high inclination lunar orbit. Lunar IceCube is one of a select group of CubeSats designed to explore beyond low-earth orbit that will fly on NASA’s Space Launch System (SLS) as secondary payloads for Exploration Mission (EM) 1. Lunar IceCube and the EM-1 CubeSats will lay the groundwork for future lunar and L1/L2 CubeSat missions. This paper discusses communication and navigation needs for the Lunar IceCube mission and navigation and radiation tolerance requirements related to lunar and L1/L2 orbits. Potential CubeSat radios and antennas for such missions are investigated and compared. Ground station coverage, link analysis, and ground station solutions are also discussed. This paper will describe modifications in process for the Morehead ground station, as well as further enhancements of the Morehead ground station and NASA Near Earth Network (NEN) that are being considered. The potential NEN enhancements include upgrading current NEN Cortex receiver with Forward Error Correction (FEC) Turbo Code, providing X-band uplink capability, and adding ranging options. The benefits of ground station enhancements for CubeSats flown on NASA Exploration Missions (EM) are presented. This paper also describes how the NEN may support lunar and L1/L2 CubeSats without any enhancements. In addition, NEN is studying other initiatives to better support the CubeSat community

  9. Conducting Science with a CubeSat: The Colorado Student Space Weather Experiment (CSSWE)

    NASA Astrophysics Data System (ADS)

    Palo, Scott; Li, Xinlin; Gerhardt, David; Blum, Lauren; Schiller, Quintin; Kohnert, Rick

    2014-06-01

    The Colorado Student Space Weather Experiment is a 3-unit (10cm x 10cm x 30cm) CubeSat funded by the National Science Foundation and constructed at the University of Colorado (CU). The CSSWE science instrument, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), provides directional differential flux measurements of 0.5 to >3.3 MeV electrons and 9 to 40 MeV protons. Though a collaboration of 60+ multidisciplinary graduate and undergraduate students working with professors and professional engineers, CSSWE was designed, built, tested, and delivered in 3 years. On September 13, 2012, CSSWE was inserted to a 477 x 780 km, 65° orbit as a secondary payload on an Atlas V through the NASA Educational Launch of Nanosatellites (ELaNa) program.The first successful contact with CSSWE was made within a few hours of launch. CSSWE then completed a 20 day system commissioning phase which validated the performance of the communications, power, and attitude control systems. This was immediately followed by an accelerated 24 hour REPTile commissioning period in time for a geomagnetic storm. The high quality, low noise science data return from REPTile is complementary to the NASA Van Allen Probes mission, which launched two weeks prior to CSSWE. On January 5, 2013, CSSWE completed 90 days of on-orbit science operations, achieving the baseline goal for full mission success and has been operating since. An overview of the CSSWE system, on-orbit performance and lessons learned will be presented.

  10. The Use of Additive Manufacturing for Fabrication of Multi-Function Small Satellite Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horais, Brian J; Love, Lonnie J; Dehoff, Ryan R

    2013-01-01

    The use of small satellites in constellations is limited only by the growing functionality of smallsats themselves. Additive manufacturing provides exciting new design opportunities for development of multifunction CubeSat structures that integrate such functions as propulsion and thermal control into the satellite structures themselves. Manufacturing of these complex multifunction structures is now possible in lightweight, high strength, materials such as titanium by using existing electron beam melting additive manufacturing processes. However, the use of today's additive manufacturing capabilities is often cost-prohibitive for small companies due to the large capital investments required. To alleviate this impediment the U.S. Department of Energymore » has established a Manufacturing Demonstration Facility (MDF) at their Oak Ridge National Laboratory (ORNL) in Tennessee that provides industry access to a broad range of energy-efficient additive manufacturing equipment for collaborative use by both small and large organizations. This paper presents a notional CubeSat multifunction design that integrates the propulsion system into a three-unit (3U) CubeSat structure. The full-scale structure has been designed and fabricated at the ORNL MDF. The use of additive manufacturing for spacecraft fabrication is opening up many new possibilities in design and fabrication capabilities for what had previously been impossible structures to fabricate.« less

  11. The SIGMA CubeSat Mission for Space Research and Technology Demonstration

    NASA Astrophysics Data System (ADS)

    Lee, S.; Lee, J. K.; Lee, H.; Shin, J.; Jeong, S.; Jin, H.; Nam, U. W.; Kim, H.; Lessard, M.; Lee, R.

    2016-12-01

    The Scientific cubesat with Instrument for Global Magnetic field and rAdiation (SIGMA) is the 3U standard CubeSat measuring the space radiation and magnetic field on a 450 × 720 km sun-synchronous orbit. Its mass is 2.95 kg and the communication system consists of Very High Frequency (VHF) uplink and Ultra High Frequency (UHF) downlink. The SIGMA mission has two academic purposes which are space research and technology demonstration. For the space research, SIGMA has two instruments such as Tissue Equivalent Proportional Counter (TEPC) and a miniaturized fluxgate MAGnetometer (MAG). The TEPC primary instrument measures the Linear Energy Transfer (LET) spectrum and calculates the equivalent dose in the range from 0.3 to 1,000 keV/μm with a single Multi-Channel Analyzer. The secondary is a miniaturized fluxgate magnetometer which have 1 nT resolution with the dynamic range of ±42000 nT. The MAG is deployed by 0.7 m folding boom to avoid CubeSat body's Electromagnetic Interference (EMI). This boom is one of our mechanical technology demonstrations. After launch, we expect that the SIGMA give us new scientific data and technologic verification. This CubeSat is supported by Korean CubeSat contest program.

  12. Pulsed Plasma Propulsion - Making CubeSat Missions Beyond Low Earth Orbit Possible

    NASA Astrophysics Data System (ADS)

    Northway, P.

    2015-12-01

    As CubeSat missions become more and more popular means of scientific exploration of space, the current direction of interest is to utilize them in areas beyond low earth orbit. The University of Washington CubeSat program focuses on examining possible mission scenarios in addition to technology development and integration. Specifically, we are developing an inert CubeSat propulsion system in the form of a pulsed plasma thruster (PPT) capable of orbit maneuvers. Such a system would allow for missions at the Earth beyond LEO, extended missions at the Moon, and even missions at Europa, when assisted to the Jovian system. We will discuss how starting with a CubeSat design using PPTs for orbital maneuvers, other developing compact technology can be adapted to create a full suite of systems that would meet the requirements for a mission traveling outside low earth orbit.

  13. NASA Near Earth Network (NEN) Support for Lunar and L1/L2 CubeSats

    NASA Technical Reports Server (NTRS)

    Schaire, Scott; Altunc, Serhat; Wong, Yen; Shelton, Marta; Celeste, Peter; Anderson, Michael; Perrotto, Trish

    2017-01-01

    The NASA Near Earth Network (NEN) consists of globally distributed tracking stations, including NASA, commercial, and partner ground stations, that are strategically located to maximize the coverage provided to a variety of orbital and suborbital missions, including those in LEO, GEO, HEO, lunar and L1/L2 orbits. The NENs future mission set includes and will continue to include CubeSat missions. The majority of the CubeSat missions destined to fly on EM-1, launching in late 2018, many in a lunar orbit, will communicate with ground based stations via X-band and will utilize the NASA Jet Propulsion Laboratory (JPL) developed IRIS radio. The NEN recognizes the important role CubeSats are beginning to play in carrying out NASAs mission and is therefore investigating the modifications needed to provide IRIS radio compatibility. With modification, the NEN could potentially expand support to the EM-1 lunar CubeSats.The NEN could begin providing significant coverage to lunar CubeSat missions utilizing three to four of the NENs mid-latitude sites. This coverage would supplement coverage provided by the JPL Deep Space Network (DSN). The NEN, with smaller apertures than DSN, provides the benefit of a larger beamwidth that could be beneficial in the event of uncertain ephemeris data. In order to realize these benefits the NEN would need to upgrade stations targeted based on coverage ability and current configuration/ease of upgrade, to ensure compatibility with the IRIS radio. In addition, the NEN is working with CubeSat radio developers to ensure NEN compatibility with alternative CubeSat radios for Lunar and L1/L2 CubeSats. The NEN has provided NEN compatibility requirements to several radio developers who are developing radios that offer lower cost and, in some cases, more capabilities with fewer constraints. The NEN is ready to begin supporting CubeSat missions. The NEN is considering network upgrades to broaden the types of CubeSat missions that can be supported and is

  14. UWE-3, in-orbit performance and lessons learned of a modular and flexible satellite bus for future pico-satellite formations

    NASA Astrophysics Data System (ADS)

    Busch, S.; Bangert, P.; Dombrovski, S.; Schilling, K.

    2015-12-01

    Formations of small satellites offer promising perspectives due to improved temporal and spatial coverage and resolution at reasonable costs. The UWE-program addresses in-orbit demonstrations of key technologies to enable formations of cooperating distributed spacecraft at pico-satellite level. In this context, the CubeSat UWE-3 addresses experiments for evaluation of real-time attitude determination and control. UWE-3 introduces also a modular and flexible pico-satellite bus as a robust and extensible base for future missions. Technical objective was a very low power consumption of the COTS-based system, nevertheless providing a robust performance of this miniature satellite by advanced microprocessor redundancy and fault detection, identification and recovery software. This contribution addresses the UWE-3 design and mission results with emphasis on the operational experiences of the attitude determination and control system.

  15. The CubeSat Imaging X-ray Solar Spectrometer (CubIXSS) Mission Concept

    NASA Astrophysics Data System (ADS)

    Caspi, Amir; Shih, Albert Y.; Warren, Harry; DeForest, Craig; Laurent, Glenn Thomas; Schwartz, Richard A.; Woods, Thomas N.; Mason, James; Palo, Scott; Steslicki, Marek; Sylwester, Janusz; Gburek, Szymon; Mrozek, Tomasz; Kowalinski, Miroslaw; Torre, Gabriele; Crowley, Geoffrey; Schattenburg, Mark

    2017-08-01

    Solar soft X-ray (SXR) observations provide important diagnostics of plasma heating, during solar flares and quiescent times. Spectrally- and temporally-resolved measurements are crucial for understanding the dynamics, origins, and evolution of these energetic processes, providing probes both into the temperature distributions and elemental compositions of hot plasmas; spatially-resolved measurements are critical for understanding energy transport and mass flow. A better understanding of the thermal plasma improves our understanding of the relationships between particle acceleration, plasma heating, and the underlying release of magnetic energy during reconnection. We introduce a new proposed small satellite mission, the CubeSat Imaging X-ray Solar Spectrometer (CubIXSS), to measure spectrally- and spatially-resolved SXRs from the quiescent and flaring Sun from a 6U CubeSat platform in low-Earth orbit during a nominal 1-year mission. CubIXSS includes the Amptek X123-FastSDD silicon drift detector, a low-noise, commercial off-the-shelf (COTS) instrument enabling solar SXR spectroscopy from ~0.5 to ~30 keV with ~0.15 keV FWHM spectral resolution with low power, mass, and volume requirements. Multiple detectors and tailored apertures provide sensitivity to a wide range of solar conditions, optimized for a launch during solar minimum. The precise spectra from these instruments will provide detailed measurements of the coronal temperature distribution and elemental abundances from the quiet Sun to active regions and flares. CubIXSS also includes a novel spectro-spatial imager -- the first ever solar imager on a CubeSat -- utilizing a custom pinhole camera and Chandra-heritage X-ray transmission diffraction grating to provide spatially- resolved, full-Sun imaging spectroscopy from ~0.1 to ~10 keV, with ~25 arcsec and ~0.1 Å FWHM spatial and spectral resolutions, respectively. MOXSI’s unique capabilities enable SXR spectroscopy and temperature diagnostics of individual

  16. The MicroMAS CubeSat Mission

    NASA Astrophysics Data System (ADS)

    Cahoy, K.; Blackwell, W. J.; Allen, G.; Bury, M.; Efromson, R.; Galbraith, C.; Hancock, T.; Leslie, V.; Osaretin, I.; Retherford, L.; Scarito, M.; Shields, M.; Toher, D.; Wight, K.; Miller, D.; Marinan, A.; Paek, S.; Peters, E.; Schmidt, F. H.; Alvisio, B.; Wise, E.; Masterson, R.; Franzim Miranda, D.; Crail, C.; Kingsbury, R.; Souffrant, A.; Orrego, L.; Eslinger, G.; Nicholas, A.; Pong, C.

    2012-12-01

    The recently published Midterm Assessment of NASA's Implementation of the Decadal Survey finds that, "The nation's Earth observing system is beginning a rapid decline in capability as long-running missions end and key new missions are delayed, lost, or canceled. The projected loss of observing capability could have significant adverse consequences for science and society." In this presentation, we explore low-cost, mission-flexible, and rapidly deployable spaceborne sensors that can meet stringent performance requirements pervading the NASA Earth Science measurement programs, including especially the recommended NRC Decadal Survey missions. New technologies have enabled a novel approach toward this science observational goal, and in this paper we describe recent technology develop efforts to address the challenges above through the use of CubeSat radiometers. The Micro-sized Microwave Atmospheric Satellite (MicroMAS) is a 3U cubesat (30x10x10 cm, ~4kg) hosting a passive microwave spectrometer operating near the 118.75-GHz oxygen absorption line. The focus of the first MicroMAS mission (hereafter, MicroMAS-1) is to observe convective thunderstorms, tropical cyclones, and hurricanes from a near-equatorial orbit at approximately 500-km altitude. A MicroMAS flight unit is currently being developed in anticipation of a 2014 launch to be provided by NASA. A parabolic reflector is mechanically rotated as the spacecraft orbits the earth, thus directing a cross-track scanned beam with FWHM beamwidth of 2.4-degrees, yielding an approximately 25-km diameter footprint from a nominal altitude of 500 km. Radiometric calibration is carried out using observations of cold space, the earth's limb, and an internal noise diode that is weakly coupled through the RF front-end electronics. A key technology feature is the development of an ultra-compact intermediate frequency processor module for channelization, detection, and A-to-D conversion. The antenna system and RF front

  17. CHARM: A CubeSat Water Vapor Radiometer for Earth Science

    NASA Technical Reports Server (NTRS)

    Lim, Boon; Mauro, David; DeRosee, Rodolphe; Sorgenfrei, Matthew; Vance, Steve

    2012-01-01

    The Jet Propulsion Laboratory (JPL) and Ames Research Center (ARC) are partnering in the CubeSat Hydrometric Atmospheric Radiometer Mission (CHARM), a water vapor radiometer integrated on a 3U CubeSat platform, selected for implementation under NASA Hands-On Project Experience (HOPE-3). CHARM will measure 4 channels at 183 GHz water vapor line, subsets of measurements currently performed by larger and more costly spacecraft (e.g. ATMS, AMSU-B and SSMI/S). While flying a payload that supports SMD science objectives, CHARM provides a hands-on opportunity to develop technical, leadership, and project skills. CHARM will furthermore advance the technology readiness level (TRL) of the 183 GHz receiver subsystem from TRL 4 to TRL 6 and the CubeSat 183 GHz radiometer system from TRL 4 to TRL 7.

  18. ELaNa - Educational Launch of Nanosatellite Enhance Education Through Space Flight

    NASA Technical Reports Server (NTRS)

    Skrobot, Garrett Lee

    2011-01-01

    One of NASA's missions is to attract and retain students in the science, technology, engineering and mathematics (STEM) disciplines. Creating missions or programs to achieve this important goal helps strengthen NASA and the nation's future work force as well as engage and inspire Americans and the rest of the world. During the last three years, in an attempt to revitalize educational space flight, NASA generated a new and exciting initiative. This initiative, NASA's Educational Launch of Nanosatellite (ELaNa), is now fully operational and producing exciting results. Nanosatellites are small secondary satellite payloads called CubeSats. One of the challenges that the CubeSat community faced over the past few years was the lack of rides into space. Students were building CubeSats but they just sat on the shelf until an opportunity arose. In some cases, these opportunities never developed and so the CubeSat never made it to orbit. The ELaNa initiative is changing this by providing sustainable launch opportunities for educational CubeSats. Across America, these CubeSats are currently being built by students in high school all the way through graduate school. Now students know that if they build their CubeSat, submit their proposal and are selected for an ELaNa mission, they will have the opportunity to fly their satellite. ELaNa missions are the first educational cargo to be carried on expendable launch vehicles (ELY) for NASA's Launch Services Program (LSP). The first ELaNa CubeSats were slated to begin their journey to orbit in February 2011 with NASA's Glory mission. Due to an anomaly with the launch vehicle, ELaNa II and Glory failed to reach orbit. This first ELaNa mission was comprised of three IU CubeSats built by students at Montana State University (Explorer Prime Flight 1), the University of Colorado (HERMES), and Kentucky Space, a consortium of state universities (KySat). The interface between the launch vehicle and the CubeSat, the Poly

  19. Integrated Solar-Panel Antenna Array for CubeSats

    NASA Technical Reports Server (NTRS)

    Baktur, Reyhan

    2016-01-01

    The goal of the Integrated Solar-Panel Antenna Array for CubeSats (ISAAC) project is to design and demonstrate an effective and efficien toptically transparent, high-gain, lightweight, conformal X-band antenna array that is integrated with the solar panels of a CubeSat. The targeted demonstration is for a Near Earth Network (NEN)radio at X-band, but the design can be easilyscaled to other network radios for higher frequencies. ISAAC is a less expensive and more flexible design for communication systemscompared to a deployed dish antenna or the existing integrated solar panel antenna design.

  20. Advantages of Science Cubesat and Microsat Deployment Using DSG Deep Space Exploration Robotics

    NASA Astrophysics Data System (ADS)

    Shaw, A.; Rembala, R.; Fulford, P.

    2018-02-01

    Important scientific missions can be accomplished with cubesats/microsats. These missions would benefit from advantages offered by having an independent cubesat/microsat deployment capability as part of Deep Space Gateway's Deep Space Exploration Robotics system.

  1. Interplanetary CubeSats system for space weather evaluations and technology demonstration

    NASA Astrophysics Data System (ADS)

    Viscio, Maria Antonietta; Viola, Nicole; Corpino, Sabrina; Stesina, Fabrizio; Fineschi, Silvano; Fumenti, Federico; Circi, Christian

    2014-11-01

    The paper deals with the mission analysis and conceptual design of an interplanetary 6U CubeSats system to be implemented in the L1 Earth-Sun Lagrangian Point mission for solar observation and in-situ space weather measurements. Interplanetary CubeSats could be an interesting alternative to big missions, to fulfill both scientific and technological tasks in deep space, as proved by the growing interest in this kind of application in the scientific community and most of all at NASA. Such systems allow less costly missions, due to their reduced sizes and volumes, and consequently less demanding launches requirements. The CubeSats mission presented in this paper is aimed at supporting measurements of space weather. The mission envisages the deployment of a 6U CubeSats system in the L1 Earth-Sun Lagrangian Point, where solar observations for in situ measurements of space weather to provide additional warning time to Earth can be carried out. The proposed mission is also intended as a technology validation mission, giving the chance to test advanced technologies, such as telecommunications and solar sails, envisaged as propulsion system. Furthermore, traveling outside the Van Allen belts, the 6U CubeSats system gives the opportunity to further investigate the space radiation environment: radiation dosimeters and advanced materials are envisaged to be implemented, in order to test their response to the harsh space environment, even in view of future implementation on other spacecrafts (e.g. manned spacecrafts). The main issue related to CubeSats is how to fit big science within a small package - namely power, mass, volume, and data limitations. One of the objectives of the work is therefore to identify and size the required subsystems and equipment, needed to accomplish specific mission objectives, and to investigate the most suitable configuration, in order to be compatible with the typical CubeSats (multi units) standards. The work has been developed as collaboration

  2. Integration and Environmental Qualification Testing of Spacecraft Structures in Support of the Naval Postgraduate School CubeSat Launcher Program

    DTIC Science & Technology

    2009-06-01

    2 3. Space Access Challenges to the CubeSat Community........ 3 B. NPSCUL/NPSCUL-LITE PROGRAM HISTORY TO DATE...Astronautics, AIAA Space 2008 Conference and Exhibition, 2008. 3 3. Space Access Challenges to the CubeSat Community In less than ten years since... challenges to space access for CubeSats.5 Launch of a CubeSat aboard US launch vehicles from US launch facilities would allow CubeSats of a sensitive nature

  3. CUVE - Cubesat UV Experiment: Unveil Venus' UV Absorber with Cubesat UV Mapping Spectrometer

    NASA Astrophysics Data System (ADS)

    Cottini, V.; Aslam, S.; D'Aversa, E.; Glaze, L.; Gorius, N.; Hewagama, T.; Ignatiev, N.; Piccioni, G.

    2017-09-01

    Our Venus mission concept Cubesat UV Experiment (CUVE) is one of ten proposals selected for funding by the NASA PSDS3 Program - Planetary Science Deep Space SmallSat Studies. CUVE concept is to insert a CubeSat spacecraft into a Venusian orbit and perform remote sensing of the UV spectral region using a high spectral resolution point spectrometer to resolve UV molecular bands, observe nightglow, and characterize the unidentified main UV absorber. The UV spectrometer is complemented by an imaging UV camera with multiple bands in the UV absorber main band range for contextual imaging. CUVE Science Objectives are: the nature of the "Unknown" UV-absorber; the abundances and distributions of SO2 and SO at and above Venus's cloud tops and their correlation with the UV absorber; the atmospheric dynamics at the cloud tops, structure of upper clouds and wind measurements from cloud-tracking; the nightglow emissions: NO, CO, O2. This mission will therefore be an excellent platform to study Venus' cloud top atmospheric properties where the UV absorption drives the planet's energy balance. CUVE would complement past, current and future Venus missions with conventional spacecraft, and address critical science questions cost effectively.

  4. InSight MARCO Installation Cubesats

    NASA Image and Video Library

    2018-03-17

    At Vandenberg Air Force Base in California, twin communications-relay CubeSats, called Mars Cube One (MarCO) are installed on an Atlas V rocket. MarCO constitutes a technology demonstration being built by NASA's Jet Propulsion Laboratory, Pasadena in California. They will launch in on the same United Launch Alliance Atlas V rocket as NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. CubeSats are a class of spacecraft based on a standardized small size and modular use of off-the-shelf technologies. Many have been made by university students, and dozens have been launched into Earth orbit using extra payload mass available on launches of larger spacecraft. InSight is the first mission to explore the Red Planet's deep interior. InSight is scheduled for liftoff May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.

  5. System and Method for an Integrated Satellite Platform

    NASA Technical Reports Server (NTRS)

    Starin, Scott R. (Inventor); Sheikh, Salman I. (Inventor); Hesse, Michael (Inventor); Clagett, Charles E. (Inventor); Santos Soto, Luis H. (Inventor); Hesh, Scott V. (Inventor); Paschalidis, Nikolaos (Inventor); Ericsson, Aprille J. (Inventor); Johnson, Michael A. (Inventor)

    2018-01-01

    A system, method, and computer-readable storage devices for a 6U CubeSat with a magnetometer boom. The example 6U CubeSat can include an on-board computing device connected to an electrical power system, wherein the electrical power system receives power from at least one of a battery and at least one solar panel, a first fluxgate sensor attached to an extendable boom, a release mechanism for extending the extendable boom, at least one second fluxgate sensor fixed within the satellite, an ion neutral mass spectrometer, and a relativistic electron/proton telescope. The on-board computing device can receive data from the first fluxgate sensor, the at least one second fluxgate sensor, the ion neutral mass spectrometer, and the relativistic electron/proton telescope via the bus, and can then process the data via an algorithm to deduce a geophysical signal.

  6. Integrated Solar Array and Reflectarray Antenna for High Bandwidth Cubesats

    NASA Technical Reports Server (NTRS)

    Lewis, Dorothy; Agasid, Elwood Floyd; Ardila, David R.; Hunter, Roger C.; Baker, Christopher E.

    2017-01-01

    The Integrated Solar Array and Reflectarray Antenna (ISARA) mission will demonstrate a reflectarray antenna that increases downlink data rates for CubeSats from the existing baseline rate of 9.6 kilobits per second (kbps) to more than100 megabits per second (Mbps). A secondary payload called the CubeSat Multispectral Observation System (CUMULOS), is an experimental remote sensing payload also being demonstrated on this mission. A launch date for the ISARA spacecraft is currently pending.

  7. RAVAN CubeSat Results: Technologies and Science Demonstrated On Orbit

    NASA Astrophysics Data System (ADS)

    Swartz, W. H.; Lorentz, S. R.; Huang, P. M.; Smith, A. W.; Yu, Y.; Briscoe, J. S.; Reilly, N.; Reilly, S.; Reynolds, E.; Carvo, J.; Wu, D.

    2017-12-01

    Elucidating Earth's energy budget is vital to understanding and predicting climate, particularly the small imbalance between the incident solar irradiance and Earth-leaving fluxes of total and solar-reflected energy. Accurately quantifying the spatial and temporal variation of Earth's outgoing energy from space is a challenge—one potentially rendered more tractable with the advent of multipoint measurements from small satellite or hosted payload constellations. The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) 3U CubeSat, launched November 11, 2016, is a pathfinder for a constellation to measure the Earth's energy imbalance. The objective of RAVAN is to establish that compact, broadband radiometers absolutely calibrated to high accuracy can be built and operated in space for low cost. RAVAN demonstrates two key technologies: (1) vertically aligned carbon nanotubes as spectrally flat radiometer absorbers and (2) gallium phase-change cells for on-board calibration and degradation monitoring of RAVAN's radiometer sensors. We show on-orbit results, including calibrated irradiance measurements at both shortwave, solar-reflected wavelengths and in the thermal infrared. These results are compared with both modeled upwelling fluxes and those measured by independent Earth energy instruments in low-Earth orbit. Further, we show the performance of two gallium phase-change cells that are used to monitor the degradation of RAVAN's radiometer sensors. In addition to Earth energy budget technology and science, RAVAN also demonstrates partnering with a commercial vendor for the CubeSat bus, payload integration and test, and mission operations. We conclude with a discussion of how a RAVAN-type constellation could enable a breakthrough in the measurement of Earth's energy budget and lead to superior predictions of future climate.

  8. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSats: instrument capabilities and early science analysis on the quiet Sun, active regions, and flares.

    NASA Astrophysics Data System (ADS)

    Moore, Christopher S.; Woods, Tom; Caspi, Amir; Dennis, Brian R.; MinXSS Instrument Team, NIST-SURF Measurement Team

    2018-01-01

    Detection of soft X-rays (sxr) from the Sun provide direct information on coronal plasma at temperatures in excess of ~1 MK, but there have been relatively few solar spectrally resolved measurements from 0.5 – 10. keV. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSat is the first solar science oriented CubeSat mission flown for the NASA Science Mission Directorate, and has provided measurements from 0.8 -12 keV, with resolving power ~40 at 5.9 keV, at a nominal ~10 second time cadence. MinXSS design and development has involved over 40 graduate students supervised by professors and professionals at the University of Colorado at Boulder. Instrument radiometric calibration was performed at the National Institute for Standard and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF) and spectral resolution determined from radioactive X-ray sources. The MinXSS spectra allow for determining coronal abundance variations for Fe, Mg, Ni, Ca, Si, S, and Ar in active regions and during flares. Measurements from the first of the twin CubeSats, MinXSS-1, have proven to be consistent with the Geostationary Operational Environmental Satellite (GOES) 0.1 – 0.8 nm energy flux. Simultaneous MinXSS-1 and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations have provided the most complete sxr spectral coverage of flares in recent years. These combined measurements are vital in estimating the heating flare loops by non-thermal accelerated electrons. MinXSS-1 measurements have been combined with the Hinode X-ray Telescope (XRT) and Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO-AIA) to further constrain the coronal temperature distribution during quiescent times. The structure of the temperature distribution (especially for T > 5 MK) is important for deducing heating processes in the solar atmosphere. MinXSS-1 observations yield some of the tightest constraints on the high temperature component of the coronal plasma, in the

  9. NASA's Space Launch System: A New Opportunity for CubeSats

    NASA Technical Reports Server (NTRS)

    Hitt, David; Robinson, Kimberly F.; Creech, Stephen D.

    2016-01-01

    Designed for human exploration missions into deep space, NASA's Space Launch System (SLS) represents a new spaceflight infrastructure asset, enabling a wide variety of unique utilization opportunities. Together with the Orion crew vehicle and ground operations at NASA's Kennedy Space Center in Florida, SLS is a foundational capability for NASA's Journey to Mars. From the beginning of the SLS flight program, utilization of the vehicle will also include launching secondary payloads, including CubeSats, to deep-space destinations. Currently, SLS is making rapid progress toward readiness for its first launch in 2018, using the initial configuration of the vehicle, which is capable of delivering 70 metric tons (t) to Low Earth Orbit (LEO). On its first flight, Exploration Mission-1, SLS will launch an uncrewed test flight of the Orion spacecraft into distant retrograde orbit around the moon. Accompanying Orion on SLS will be 13 CubeSats, which will deploy in cislunar space. These CubeSats will include not only NASA research, but also spacecraft from industry and international partners and potentially academia. Following its first flight and potentially as early as its second, which will launch a crewed Orion spacecraft into cislunar space, SLS will evolve into a more powerful configuration with a larger upper stage. This configuration will initially be able to deliver 105 t to LEO and will continue to be upgraded to a performance of greater than 130 t to LEO. While the addition of the more powerful upper stage will mean a change to the secondary payload accommodations from Block 1, the SLS Program is already evaluating options for future secondary payload opportunities. Early discussions are also already underway for the use of SLS to launch spacecraft on interplanetary trajectories, which could open additional opportunities for CubeSats. This presentation will include an overview of the SLS vehicle and its capabilities, including the current status of progress toward

  10. Achievements and Future Plan of Interplanetary CubeSats and Micro-Sats in Japan

    NASA Astrophysics Data System (ADS)

    Funase, Ryu

    2016-07-01

    This paper introduces Japanese achievements and future plans of CubeSats and Micro-Sats for deep space exploration. As the first step toward deep space mission by such tiny spacecraft, University of Tokyo and Japan Aerospace Exploration Agency (JAXA) developed the world's first deep space micro-spacecraft PROCYON (Proximate Object Close flYby with Optical Navigation). Its mission objective is to demonstrate a micro-spacecraft bus technology for deep space exploration and proximity flyby to asteroids performing optical measurements. PROCYON was launched into the Earth departure trajectory on December 3, 2014 together with Japanese asteroid sample return mission Hayabusa-2. PROCYON successfully completed the bus system demonstration mission in its interplanetary flight. Currently, Japan is not only pursuing the improvement and utilization of the demonstrated micro-sat deep space bus system with a weight of tens of kg or more for more practical scientific deep space missions, but also trying to develop smaller spacecraft with a weight of less than tens of kg, namely CubeSats, for deep space exploration. We are proposing a self-contained 6U CubeSat mission for the rideshare opportunity on the USA's SLS EM-1 mission, which will fly to a libration orbit around Earth-Moon L2 point and perform scientific observations of the Earth and the Moon. We are also seeking the possibility of CubeSats which is carried by a larger spacecraft to the destination and supports the mission by taking advantage of its low-cost and risk-tolerable feature. As an example of such style of CubeSat missions, we are studying a CubeSat for close observations of an asteroid, which will be carried to the target asteroid by a larger mother spacecraft. This CubeSat is released from the mother spacecraft to make a close flyby for scientific observations, which is difficult to be performed by the mother spacecraft if we consider the risk of the collision to the target asteroid or dust particles ejected

  11. Planetary CubeSats Come of Age

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent; Spangelo, Sara; Frick, Andreas; Castillo-Rogez, Julie; Klesh, Andrew; Wyatt, E. Jay; Reh, Kim; Baker, John

    2015-01-01

    Jet Propulsion Laboratory initiatives in developing and formulating planetary CubeSats are described. Six flight systems already complete or underway now at JPL for missions to interplanetary space, the Moon, a near-Earth asteroid, and Mars are described at the subsystem level. Key differences between interplanetary nanospacecraft and LEO CubeSats are explained, as well as JPL's adaptation of vendor components and development of system solutions to meet planetary-mission needs. Feasible technology-demonstration and science measurement objectives are described for multiple modes of planetary mission implementation. Seven planetary-science demonstration mission concepts, already proposed to NASA by Discovery-2014 PIs partnered with JPL, are described for investigations at Sun-Earth L5, Venus, NEA 1999 FG3, comet Tempel 2, Phobos, main-belt asteroid 24 Themis, and metal asteroid 16 Psyche. The JPL staff and facilities resources available to PIs for analysis, design, and development of planetary nanospacecraft are catalogued.

  12. Students as Ground Observers for Satellite Cloud Retrieval Validation

    NASA Technical Reports Server (NTRS)

    Chambers, Lin H.; Costulis, P. Kay; Young, David F.; Rogerson, Tina M.

    2004-01-01

    The Students' Cloud Observations On-Line (S'COOL) Project was initiated in 1997 to obtain student observations of clouds coinciding with the overpass of the Clouds and the Earth's Radiant Energy System (CERES) instruments on NASA's Earth Observing System satellites. Over the past seven years we have accumulated more than 9,000 cases worldwide where student observations are available within 15 minutes of a CERES observation. This paper reports on comparisons between the student and satellite data as one facet of the validation of the CERES cloud retrievals. Available comparisons include cloud cover, cloud height, cloud layering, and cloud visual opacity. The large volume of comparisons allows some assessment of the impact of surface cover, such as snow and ice, reported by the students. The S'COOL observation database, accessible via the Internet at http://scool.larc.nasa.gov, contains over 32,000 student observations and is growing by over 700 observations each month. Some of these observations may be useful for assessment of other satellite cloud products. In particular, some observing sites have been making hourly observations of clouds during the school day to learn about the diurnal cycle of cloudiness.

  13. Flight Testing of a Low Cost De-Orbiting Device for Small Satellites

    NASA Technical Reports Server (NTRS)

    Turse, Dana; Keller, Phil; Taylor, Robert; Reavis, Mark; Tupper, Mike; Koehler, Chris

    2014-01-01

    Use of small and very small spacecraft is rapidly becoming more common. Methods to intentionally deorbit these spacecraft at the end of useful satellite life are required. A family of mass efficient Roll-Out De- Orbiting devices (RODEO"TM") was developed by Composite Technology Development, Inc. (CTD). RODEO"TM" consists of lightweight film attached to a simple, ultra-lightweight, roll-out composite boom structure. This system is rolled to stow within a lightweight launch canister, allowing easy integration to the small satellite bus. The device is released at the end of useful lifetime and the RODEO"TM" composite boom unrolls the drag sail in a matter of seconds. This dramatically increases the deployed surface area, resulting in the higher aerodynamic drag that significantly reduces the time until reentry. A RODEO"TM" flight demonstration was recently conducted as part of the Colorado Space Grant Consortium's (COSGC) RocketSat-8 program, a program to provide students hands-on experience in developing experiments for space flight. The experiment was ultimately a success and RODEO (trademark) is now ready for future CubeSat missions.

  14. Possibility to study ionospheric earthquakes precursors using CubeSats

    NASA Astrophysics Data System (ADS)

    Korepanov, Valery; Lappas, Vaios

    values may be advisable to measure to study them: if for FWC - electrons density and temperature and electric field variations, if for AGW - neutral particles concentration and magnetic fields variations, and TEC variations and thermal anomalies at the Earth’s surface and in the atmosphere for both. Also it became clear that the monitoring has to be made minimum in two, better in three points, preferably with the possibility to control the distance between them. This will increase the possibility to extract the seismogenic variations, being mostly local, at the background of the variations of other nature, being mostly enough spacious or even global. Taking into account the present and predictable reduction of the expenses for space scientific research, it would be extremely important to realize such a multi-point mission using the cheapest carriers - nanosatellites, especially cubesats. The analysis of both aspects of this problem - FWC and AGW mechanisms validation and the availability of miniaturized but enough sensitive scientific instrumentation, able to operate onboard cubesats, is made in the report. It shows that the scientific payload creation to realize the given task with the cubesats swarm is possible, including mini-thrusters able realizing the cubesats maneuvers on the orbit to control the distance between satellites. This allows us to come to conclusion that the realization of the cubesat project dedicated to the further study of important problem - detection of EQ precursors from space - may be put into practice at the present step of space science and technology development. Both necessary conditions - existence of scientific and experimental substantiation and of corresponding nanosatellite technology - are fulfilled. These works were partially supported by SSAU Contract No 1-16/12 and EC Framework 7 funded project 312993.

  15. Propulsion System and Orbit Maneuver Integration in CubeSats: Trajectory Control Strategies Using Micro Ion Propulsion

    NASA Technical Reports Server (NTRS)

    Hudson, Jennifer; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Propulsion System and Orbit Maneuver Integration in CubeSats project aims to solve the challenges of integrating a micro electric propulsion system on a CubeSat in order to perform orbital maneuvers and control attitude. This represents a fundamentally new capability for CubeSats, which typically do not contain propulsion systems and cannot maneuver far beyond their initial orbits.

  16. Exploring Our Solar System with CubeSats and NanoSats

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony; Norton, Charles

    2015-01-01

    The Jet Propulsion Laboratory (JPL) is NASA's lead center for robotic exploration of our solar system. We are known for our large, flagship missions, such as Voyager, which gave humanity its first close look at Jupiter and Saturn; and the Mars Rovers, which have excited millions worldwide with their daring landing exploits. Less familiar to those outside NASA may be our role in developing the Kepler mission, which has discovered more than 2000 planets around other stars; or the recently launched Soil Moisture Active Passive (SMAP) mission, one of many JPL Earth Science missions. A recent JPL initiative has emphasized low cost missions that use rapidly evolving technology developed for CubeSats and NanoSat s to explore our solar system. Costs are significantly lower (by one or two orders of magnitude) than for conventional JPL missions, and development time is also significantly shorter. At present 21 such CubeSat flight projects are under way at the laboratory with various partners : some in flight, some in development, some in advanced formulation. Four are planned as deep space missions. To succeed in exploring deep space CubeSat/NanoSat missions have to address several challenges: the more severe radiation environment, communications and navigation at a distance, propulsion, and packaging of instruments that can return valuable science into a compact volume/mass envelope. Instrument technologies, including cameras, magnetometers, spectrometers, radiometers, and even radars are undergoing miniaturization to fit on these smaller platforms. Other key technologies are being matured for smallsats and NanoSats in deep space, including micro -electric propulsion, compact radio (and optical) communications, and onboard data reduction. This paper will describe missions that utilize these developments including the first two deep space CubeSats (INSPIRE), planned for launch in 2017; the first pair of CubeSats to be sent to another planet (MARCO), manifested with the In

  17. E-st@r-I experience: Valuable knowledge for improving the e-st@r-II design

    NASA Astrophysics Data System (ADS)

    Corpino, S.; Obiols-Rabasa, G.; Mozzillo, R.; Nichele, F.

    2016-04-01

    Many universities all over the world have now established hands-on education programs based on CubeSats. These small and cheap platforms are becoming more and more attractive also for other-than-educational missions, such as technology demonstration, science applications, and Earth observation. This new paradigm requires the development of adequate technology to increase CubeSat performance and mission reliability, because educationally-driven missions have often failed. In 2013 the ESA Education Office launched the Fly Your Satellite! Programme which aims at increasing CubeSat mission reliability through several actions: to improve design implementation, to define best practices for conducting the verification process, and to make the CubeSat community aware of the importance of verification. Within this framework, the CubeSat team at Politecnico di Torino developed the e-st@r-II CubeSat as follow-on of the e-st@r-I satellite, launched in 2012 on the VEGA Maiden Flight. E-st@r-I and e-st@r-II are both 1U satellites with educational and technology demonstration objectives: to give hands-on experience to university students and to test an active attitude determination and control system based on inertial and magnetic measurements with magnetic actuation. This paper describes the know-how gained thanks to the e-st@r-I mission, and how this heritage has been translated into the improvement of the new CubeSat in several areas and lifecycle phases. The CubeSat design has been reviewed to reduce the complexity of the assembly procedure and to deal with possible failures of the on-board computer, for example re-coding the software in the communications subsystem. New procedures have been designed and assessed for the verification campaign accordingly to ECSS rules and with the support of ESA specialists. Different operative modes have been implemented to handle some anomalies observed during the operations of the first satellite. A new version of the on-board software is

  18. MarCO CubeSat Engineers 3

    NASA Image and Video Library

    2016-01-20

    Engineers for NASA's MarCO (Mars Cube One) technology demonstration inspect one of the two MarCO CubeSats. Joel Steinkraus, MarCO lead mechanical engineer, left, and Andy Klesh, MarCO chief engineer, are on the team at NASA's Jet Propulsion Laboratory, Pasadena, California, preparing twin MarCO CubeSats. The briefcase-size MarCO twins were designed to ride along with NASA's next Mars lander, InSight. Its planned March 2016 launch was suspended. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20343

  19. Larger Optics and Improved Calibration Techniques for Small Satellite Observations with the ERAU OSCOM System

    NASA Astrophysics Data System (ADS)

    Bilardi, S.; Barjatya, A.; Gasdia, F.

    OSCOM, Optical tracking and Spectral characterization of CubeSats for Operational Missions, is a system capable of providing time-resolved satellite photometry using commercial-off-the-shelf (COTS) hardware and custom tracking and analysis software. This system has acquired photometry of objects as small as CubeSats using a Celestron 11” RASA and an inexpensive CMOS machine vision camera. For satellites with known shapes, these light curves can be used to verify a satellite’s attitude and the state of its deployed solar panels or antennae. While the OSCOM system can successfully track satellites and produce light curves, there is ongoing improvement towards increasing its automation while supporting additional mounts and telescopes. A newly acquired Celestron 14” Edge HD can be used with a Starizona Hyperstar to increase the SNR for small objects as well as extend beyond the limiting magnitude of the 11” RASA. OSCOM currently corrects instrumental brightness measurements for satellite range and observatory site average atmospheric extinction, but calibrated absolute brightness is required to determine information about satellites other than their spin rate, such as surface albedo. A calibration method that automatically detects and identifies background stars can use their catalog magnitudes to calibrate the brightness of the satellite in the image. We present a photometric light curve from both the 14” Edge HD and 11” RASA optical systems as well as plans for a calibration method that will perform background star photometry to efficiently determine calibrated satellite brightness in each frame.

  20. An Investigation into Establishing a Formation of Small Satellites in a Lunar Flower Constellation

    NASA Astrophysics Data System (ADS)

    McManus, Lauren

    Lunar science missions such as LADEE and GRAIL achieved unprecedented measurements of the Lunar exosphere and gravity field. These missions were performed with one (LADEE) or two (GRAIL) traditional satellites. The global coverage achieved by these missions could have been greatly enhanced with the use of a constellation of satellites. A constellation of communication satellites at the Moon would also be necessary if a Lunar human base were to be established. Constellations with many satellites are expensive with traditional technology, but have become feasible through the technological advancements and affordability of cubesats. Cubesat constellations allow for full surface coverage in science or communication missions at a reasonable mission cost. Repeat ground track orbits offer interesting options for science or communication constellations, since they provide repeat coverage of the surface at a fixed time between sequential visits. Flower constellations are a family of constellations being studied primarily by Daniele Mortari at Texas A&M; University that make use of repeat ground tracks. Orbital parameters are selected such that the nodal period of the orbit matches the nodal period of the primary body by a factor dependent on the number of days and the number of revolutions to repeat the ground track. All orbits in a flower constellation have identical orbital elements, with the exception of the right ascension of the ascending node (RAAN) and the initial mean anomaly, which are determined based on the desired phasing scheme desired. Flower constellations have thus far primarily been studied at Earth. A flower constellation at the Moon could be quite useful for science or communication purposes. In this scenario, the flower constellation satellites would be small satellites, which introduces many unique challenges. The cubesats would have limited propulsion capability and would need to be deployed from a mothercraft. Orbital maintenance would then be

  1. Coseismic displacements of the 14 November 2016 Mw 7.8 Kaikoura, New Zealand, earthquake using the Planet optical cubesat constellation

    NASA Astrophysics Data System (ADS)

    Kääb, Andreas; Altena, Bas; Mascaro, Joseph

    2017-05-01

    Satellite measurements of coseismic displacements are typically based on synthetic aperture radar (SAR) interferometry or amplitude tracking, or based on optical data such as from Landsat, Sentinel-2, SPOT, ASTER, very high-resolution satellites, or air photos. Here, we evaluate a new class of optical satellite images for this purpose - data from cubesats. More specific, we investigate the PlanetScope cubesat constellation for horizontal surface displacements by the 14 November 2016 Mw 7.8 Kaikoura, New Zealand, earthquake. Single PlanetScope scenes are 2-4 m-resolution visible and near-infrared frame images of approximately 20-30 km × 9-15 km in size, acquired in continuous sequence along an orbit of approximately 375-475 km height. From single scenes or mosaics from before and after the earthquake, we observe surface displacements of up to almost 10 m and estimate matching accuracies from PlanetScope data between ±0.25 and ±0.7 pixels (˜ ±0.75 to ±2.0 m), depending on time interval and image product type. Thereby, the most optimistic accuracy estimate of ±0.25 pixels might actually be typical for the final, sun-synchronous, and near-polar-orbit PlanetScope constellation when unrectified data are used for matching. This accuracy, the daily revisit anticipated for the PlanetScope constellation for the entire land surface of Earth, and a number of other features, together offer new possibilities for investigating coseismic and other Earth surface displacements and managing related hazards and disasters, and complement existing SAR and optical methods. For comparison and for a better regional overview we also match the coseismic displacements by the 2016 Kaikoura earthquake using Landsat 8 and Sentinel-2 data.

  2. Structural Stability Assessment of the High Frequency Antenna for Use on the Buccaneer CubeSat in Low Earth Orbit

    DTIC Science & Technology

    2014-05-01

    UNCLASSIFIED UNCLASSIFIED Structural Stability Assessment of the High Frequency Antenna for Use on the Buccaneer CubeSat in Low Earth...DSTO-TN-1295 ABSTRACT The Buccaneer CubeSat will be fitted with a high frequency antenna made from spring steel measuring tape. The geometry...High Frequency Antenna for Use on the Buccaneer CubeSat in Low Earth Orbit Executive Summary The Buccaneer CubeSat will be fitted with a

  3. Satellite Power System (SPS) student participation

    NASA Technical Reports Server (NTRS)

    Ladwig, A.; David, L.

    1978-01-01

    A assessment of methods which are appropriate to initiate student participation in the discussion of a satellite power system (SPS) is presented. Methods which are incorporated into the campus environment and the on-going learning experience are reported. The discussion of individual methods for student participation includes a description of the technique, followed by comments on its enhancing and limiting factors, references to situations where the method has been demonstrated, and a brief consideration of cost factors. The two categories of recommendations presented are: an outline of fourteen recommendations addressing specific activities related to student participation in the discussion of SPS, and three recommendations pertaining to student participation activities in general.

  4. Force Limited Vibration Testing and Subsequent Redesign of the Naval Postgraduate School CubeSat Launcher

    DTIC Science & Technology

    2014-06-01

    release is controlled by a non-explosive actuator (NEA). Once the NEA is actuated, it releases the P-POD door, which springs open due to torsion ...deemed to be undesirable to OSL as it limited flexibility in final CubeSat position choices on NPSCuL. 24 Building on the lessons learned from the...OUTSat mission that included maintaining flexibility of CubeSat positions on NPSCuL, it was decided that the option to proto-qualify a CubeSat on the

  5. Revisiting the configuration of small satellites structures in the framework of 3D Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Gaudenzi, P.; Atek, S.; Cardini, V.; Eugeni, M.; Graterol Nisi, G.; Lampani, L.; Pasquali, M.; Pollice, L.

    2018-05-01

    In this paper the AM-induced evolution of the design process for small satellites is investigated, leading to the identification of optimal design strategies and the definition of a new MAIT concept. A review of the open literature is presented and some introductory concepts are exposed to highlight the effect of the introduction of AM technologies in the development of new satellites systems. In particular, an innovative structural configuration for the CubeSat class of satellites is proposed, with the ultimate goal of minimizing system complexity via parts reduction and the integration of subsystems through an innovative assembly configuration, as an example to be considered for larger satellites.

  6. The use of a cubesat to validate technological bricks in space

    NASA Astrophysics Data System (ADS)

    Rakotonimbahy, E.; Vives, S.; Dohlen, K.; Savini, G.; Iafolla, V.

    2017-11-01

    In the framework of the FP7 program FISICA (Far Infrared Space Interferometer Critical Assessment), we are developing a cubesat platform which will be used for the validation in space of two technological bricks relevant for FIRI. The first brick is a high-precision accelerometer which could be used in a future space mission as fundamental element for the dynamic control loop of the interferometer. The second brick is a miniaturized version of an imaging multi-aperture telescope. Ultimately, such an instrument could be composed of numerous space-born mirror segments flying in precise formation on baselines of hundreds or thousands of meters, providing high-resolution glimpses of distant worlds. We are proposing to build a very first space-born demonstrator of such an instrument which will fit into the limited resources of one cubesat. In this paper, we will describe the detailed design of the cubesat hosting the two payloads.

  7. Advanced Power Technology Development Activities for Small Satellite Applications

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.; Landis, Geoffrey A.; Miller, Thomas B.; Taylor, Linda M.; Hernandez-Lugo, Dionne; Raffaelle, Ryne; Landi, Brian; Hubbard, Seth; Schauerman, Christopher; Ganter, Mathew; hide

    2017-01-01

    NASA Glenn Research Center (GRC) has a long history related to the development of advanced power technology for space applications. This expertise covers the breadth of energy generation (photovoltaics, thermal energy conversion, etc.), energy storage (batteries, fuel cell technology, etc.), power management and distribution, and power systems architecture and analysis. Such advanced technology is now being developed for small satellite and cubesat applications and could have a significant impact on the longevity and capabilities of these missions. A presentation during the Pre-Conference Workshop will focus on various advanced power technologies being developed and demonstrated by NASA, and their possible application within the small satellite community.

  8. Aircraft monitoring by the fusion of satellite and ground ADS-B data

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Zhang, Jingjing; Wu, Shufan; Cheng, Qian; Zhu, Rui

    2018-02-01

    The Automatic Dependent Surveillance- Broadcast (ADS-B) system is today a standard equipment on civil aircraft, transmitting periodically data packages containing information of key data such as aircraft ID, position, altitude and intention. It is designed for terrestrial based ground station to monitor air traffic flow in certain regions. Space based ADS-B is the idea to place sensitive receivers on board satellites in orbit, which can receive ADS-B packages and relay them the relevant ground stations. The terrestrial ADS-B receiver has been widely applied for airport information system, help monitor and control traffic flow, etc. However, its coverage is strongly limited by sea or mountain conditions. This paper first introduces the CubeSat mission, then discusses the integrated application of ADS-B data received from ground stations and from satellites, analyze their characteristics with statistical results of comparison, and explore the technologies to fuse these two different data resources for an integrated application. The satellite data is based on a Chinese CubeSat, STU-2C, being launched into space on Sept 25th 2015. The ADS-B data received from two different resources have shown a good complementary each other, such as to increase the coverage of space for air traffic, and to monitor the whole space in a better and complete way.

  9. MarCO CubeSat Engineers 2

    NASA Image and Video Library

    2016-01-20

    Engineers for NASA's MarCO (Mars Cube One) technology demonstration inspect one of the two MarCO CubeSats. Cody Colley, MarCO integration and test deputy, left, and Andy Klesh, MarCO chief engineer, are on the team at NASA's Jet Propulsion Laboratory, Pasadena, California, preparing twin MarCO CubeSats. The briefcase-size MarCO twins were designed to ride along with NASA's next Mars lander, InSight. Its planned March 2016 launch was suspended. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20342

  10. Design and Development of VHF Antennas for Space Borne Signal of Opportunity Receivers for Cubesat Platforms

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar; Piepmeier, Jeffrey

    2015-01-01

    Design and Development of VHF Antennas for Space Borne Signal of Opportunity Receivers for Cubesat Platforms. Space borne microwave remote sensors at VHF/UHF frequencies are important instruments to observe reflective properties of land surfaces through thick and heavy forestation on a global scale. One of the most cost effective ways of measuring land reflectivity at VHF/UHF frequencies is to use signals transmitted by existing communication satellites (operating at VHF/UHF band) as a signal of opportunity (SoOp) signal and passive receivers integrated with airborne/space borne platforms operating in the Low Earth Orbit (LEO). One of the critical components of the passive receiver is two antennas (one to receive only direct signal and other to receive only reflected signal) which need to have ideally high (>30dB) isolation. However, because of small size of host platforms and broad beam width of dipole antennas, achieving adequate isolation between two channels is a challenging problem and need to be solved for successful implementation of space borne SoOp technology for remote sensing. In this presentation a novel enabling VHF antenna technology for Cubesat platforms is presented to receive direct as well as reflected signal with needed isolation. The novel scheme also allows enhancing the gain of individual channels by factor of 2 without use of reflecting ground plane

  11. KSC-2010-5779

    NASA Image and Video Library

    2010-11-16

    San Luis Obispo, Calif. -- 101116-F-8290C-059 -- Roland Coelho and Ryan Nugent, students at California Polytechnic State University Cal Poly, integrate miniature research satellites called CubeSats into a Poly Picosatellite Orbital Deployer PPOD container. The PPOD and CubeSat Project were developed by Cal Poly and Stanford University’s Space Systems Development Lab for use on NASA’s Educational Launch of Nanosatellite ELaNa missions. Each CubeSat measures about 4-inches cubed and is about the same volume as a quart. The CubeSats weigh about 2.2 pounds, must conform to standard aerospace materials and must operate without propulsion. The satellites are being prepared to launch with NASA's Glory spacecraft aboard an Orbital Sciences Corp. Taurus XL rocket, targeted to lift off Feb. 23, 2011, from Vandenberg's Space Launch Complex 576-E. Glory is scheduled to collect data on the properties of aerosols and black carbon from its place in low Earth orbit. It also will help scientists understand how the sun's irradiance affects Earth's climate. Photo credit: U.S. Air Force/Jerry E. Clemens Jr.

  12. KSC-2010-5777

    NASA Image and Video Library

    2010-11-16

    San Luis Obispo, Calif. -- 101116-F-8290C-045 -- Students at California Polytechnic State University Cal Poly prepare to integrate miniature research satellites called CubeSats into a Poly Picosatellite Orbital Deployer PPOD container. The PPOD and CubeSat Project were developed by Cal Poly and Stanford University’s Space Systems Development Lab for use on NASA’s Educational Launch of Nanosatellite ELaNa missions. Each CubeSat measures about 4-inches cubed and is about the same volume as a quart. The CubeSats weigh about 2.2 pounds, must conform to standard aerospace materials and must operate without propulsion. The satellites are being prepared to launch with NASA's Glory spacecraft aboard an Orbital Sciences Corp. Taurus XL rocket, targeted to lift off Feb. 23, 2011, from Vandenberg's Space Launch Complex 576-E. Glory is scheduled to collect data on the properties of aerosols and black carbon from its place in low Earth orbit. It also will help scientists understand how the sun's irradiance affects Earth's climate. Photo credit: U.S. Air Force/Jerry E. Clemens Jr.

  13. KSC-2010-5778

    NASA Image and Video Library

    2010-11-16

    San Luis Obispo, Calif. -- 101116-F-8290C-054 -- Roland Coelho and Ryan Nugent, students at California Polytechnic State University Cal Poly, integrate miniature research satellites called CubeSats into a Poly Picosatellite Orbital Deployer PPOD container. The PPOD and CubeSat Project were developed by Cal Poly and Stanford University’s Space Systems Development Lab for use on NASA’s Educational Launch of Nanosatellite ELaNa missions. Each CubeSat measures about 4-inches cubed and is about the same volume as a quart. The CubeSats weigh about 2.2 pounds, must conform to standard aerospace materials and must operate without propulsion. The satellites are being prepared to launch with NASA's Glory spacecraft aboard an Orbital Sciences Corp. Taurus XL rocket, targeted to lift off Feb. 23, 2011, from Vandenberg's Space Launch Complex 576-E. Glory is scheduled to collect data on the properties of aerosols and black carbon from its place in low Earth orbit. It also will help scientists understand how the sun's irradiance affects Earth's climate. Photo credit: U.S. Air Force/Jerry E. Clemens Jr.

  14. A miniature, low-power scientific fluxgate magnetometer: A stepping-stone to cube-satellite constellation missions

    NASA Astrophysics Data System (ADS)

    Miles, D. M.; Mann, I. R.; Ciurzynski, M.; Barona, D.; Narod, B. B.; Bennest, J. R.; Pakhotin, I. P.; Kale, A.; Bruner, B.; Nokes, C. D. A.; Cupido, C.; Haluza-DeLay, T.; Elliott, D. G.; Milling, D. K.

    2016-12-01

    Difficulty in making low noise magnetic measurements is a significant challenge to the use of cube-satellite (CubeSat) platforms for scientific constellation class missions to study the magnetosphere. Sufficient resolution is required to resolve three-dimensional spatiotemporal structures of the magnetic field variations accompanying both waves and current systems of the nonuniform plasmas controlling dynamic magnetosphere-ionosphere coupling. This paper describes the design, validation, and test of a flight-ready, miniature, low-mass, low-power, and low-magnetic noise boom-mounted fluxgate magnetometer for CubeSat applications. The miniature instrument achieves a magnetic noise floor of 150-200 pT/√Hz at 1 Hz, consumes 400 mW of power, has a mass of 121 g (sensor and boom), stows on the hull, and deploys on a 60 cm boom from a three-unit CubeSat reducing the noise from the onboard reaction wheel to less than 1.5 nT at the sensor. The instrument's capabilities will be demonstrated and validated in space in late 2016 following the launch of the University of Alberta Ex-Alta 1 CubeSat, part of the QB50 constellation mission. We illustrate the potential scientific returns and utility of using a CubeSats carrying such fluxgate magnetometers to constitute a magnetospheric constellation using example data from the low-Earth orbit European Space Agency Swarm mission. Swarm data reveal significant changes in the spatiotemporal characteristics of the magnetic fields in the coupled magnetosphere-ionosphere system, even when the spacecraft are separated by only approximately 10 s along track and approximately 1.4° in longitude.

  15. Measurement approach and design of the CubeSat Infrared Atmospheric Sounder (CIRAS)

    NASA Astrophysics Data System (ADS)

    Pagano, Thomas S.; Rider, David; Rud, Mayer; Ting, David; Yee, Karl

    2016-09-01

    The CubeSat Infrared Atmospheric Sounder (CIRAS) will measure upwelling infrared radiation of the Earth in the MWIR region of the spectrum from space on a CubeSat. The observed radiances have information of potential value to weather forecasting agencies and can be used to retrieve lower tropospheric temperature and water vapor globally for weather and climate science investigations. Multiple units can be flown to improve temporal coverage or in formation to provide new data products including 3D atmospheric motion vector winds. CIRAS incorporates key new instrument technologies including a 2D array of High Operating Temperature Barrier Infrared Detector (HOT-BIRD) material, selected for its high uniformity, low cost, low noise and higher operating temperatures than traditional materials. The detectors are hybridized to a commercial ROIC and commercial camera electronics. The second key technology is an MWIR Grating Spectrometer (MGS) designed to provide imaging spectroscopy for atmospheric sounding in a CubeSat volume. The MGS has no moving parts and includes an immersion grating to reduce the volume and reduce distortion. The third key technology is an infrared blackbody fabricated with black silicon to have very high emissivity in a flat plate construction. JPL will also develop the mechanical, electronic and thermal subsystems for CIRAS, while the spacecraft will be a commercially available CubeSat. The integrated system will be a complete 6U CubeSat capable of measuring temperature and water vapor profiles with good lower tropospheric sensitivity. The CIRAS is the first step towards the development of an Earth Observation Nanosatellite Infrared (EON-IR) capable of operational readiness to mitigate a potential loss of CrIS on JPSS or complement the current observing system with different orbit crossing times.

  16. Ka-Band Parabolic Deployable Antenna (KaPDA) Enabling High Speed Data Communication for CubeSats

    NASA Technical Reports Server (NTRS)

    Sauder, Jonathan F.; Chahat, Nacer; Hodges, Richard; Thomson, Mark W.; Rahmat-Samii, Yahya

    2015-01-01

    CubeSats are at a very exciting point as their mission capabilities and launch opportunities are increasing. But as instruments become more advanced and operational distances between CubeSats and earth increase communication data rate becomes a mission-limiting factor. Improving data rate has become critical enough for NASA to sponsor the Cube Quest Centennial Challenge when: one of the key metrics is transmitting as much data as possible from the moon and beyond Currently, many CubeSats communicate on UHF bands and those that have high data rate abilities use S-band or X-band patch antennas. The CubeSat Aneas, which was launched in September 2012, pushed the envelope with a half-meter S-band dish which could achieve 100x the data rate of patch antennas. A half-meter parabolic antenna operating at Ka-band would increase data rates by over 100x that of the AMOS antenM and 10,000 that of X-band patch antennas.

  17. Programmable Ultra-Lightweight System Adaptable Radio Satellite Base Station

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta; Sims, Herb

    2015-01-01

    With the explosion of the CubeSat, small sat, and nanosat markets, the need for a robust, highly capable, yet affordable satellite base station, capable of telemetry capture and relay, is significant. The Programmable Ultra-Lightweight System Adaptable Radio (PULSAR) is NASA Marshall Space Flight Center's (MSFC's) software-defined digital radio, developed with previous Technology Investment Programs and Technology Transfer Office resources. The current PULSAR will have achieved a Technology Readiness Level-6 by the end of FY 2014. The extensibility of the PULSAR will allow it to be adapted to perform the tasks of a mobile base station capable of commanding, receiving, and processing satellite, rover, or planetary probe data streams with an appropriate antenna.

  18. High Data Rates for AubieSat-2 A & B, Two CubeSats Performing High Energy Science in the Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Sims, William H.

    2015-01-01

    This paper will discuss a proposed CubeSat size (3 Units / 6 Units) telemetry system concept being developed at Marshall Space Flight Center (MSFC) in cooperation with Auburn University. The telemetry system incorporates efficient, high-bandwidth communications by developing flight-ready, low-cost, PROTOFLIGHT software defined radio (SDR) payload for use on CubeSats. The current telemetry system is slightly larger in dimension of footprint than required to fit within a 0.75 Unit CubeSat volume. Extensible and modular communications for CubeSat technologies will provide high data rates for science experiments performed by two CubeSats flying in formation in Low Earth Orbit. The project is a collaboration between the University of Alabama in Huntsville and Auburn University to study high energy phenomena in the upper atmosphere. Higher bandwidth capacity will enable high-volume, low error-rate data transfer to and from the CubeSats, while also providing additional bandwidth and error correction margin to accommodate more complex encryption algorithms and higher user volume.

  19. ELROI Extremely Low Resource Optical Identifier. A license plate for your satellite, and more.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, David

    ELROI (Extremely Low Resource Optical Identifier) is a license plate for your satellite; a small tag that flashes an optical identification code that can be read by a small telescope on the ground. The final version of the tag will be the size of a thick postage stamp and fully autonomous: you can attach it to everything that goes into space, including small cubesats and inert debris like rocket stages, and it will keep blinking even after the satellite is shut down, reliably identifying the object from launch until re-entry.

  20. Analysis of Students Attrition in the Sciences Subjects Areas in Ambrose Alli University, Ekpoma

    ERIC Educational Resources Information Center

    Olusi, F. I.; Akahomen, D. O.; Otete, C. O.

    2013-01-01

    The study, analysis of student's attrition in Ambrose Alli University (AAU) Ekpoma Nigeria was carried out to determine the exact number of students who attrite from selected faculties of the university. The study employed the descriptive survey design. Three hypotheses were stated and tested. On the hypothesis which tested the general attrition…

  1. InSight Atlas V MARCO Cubesats Installation

    NASA Image and Video Library

    2018-03-17

    At Vandenberg Air Force Base in California, twin communications-relay CubeSats, called Mars Cube One (MarCO) are prepared for installation on an Atlas V rocket. MarCO constitutes a technology demonstration being built by NASA's Jet Propulsion Laboratory, Pasadena in California. They will launch in on the same United Launch Alliance Atlas V rocket as NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. CubeSats are a class of spacecraft based on a standardized small size and modular use of off-the-shelf technologies. Many have been made by university students, and dozens have been launched into Earth orbit using extra payload mass available on launches of larger spacecraft. InSight is the first mission to explore the Red Planet's deep interior. InSight is scheduled for liftoff May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for

  2. InSight Atlas V MARCO Cubesats Installation

    NASA Image and Video Library

    2018-03-17

    At Vandenberg Air Force Base in California, twin communications-relay CubeSats, called Mars Cube One (MarCO) are installed on an Atlas V rocket. MarCO constitutes a technology demonstration being built by NASA's Jet Propulsion Laboratory, Pasadena in California. They will launch in on the same United Launch Alliance Atlas V rocket as NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. CubeSats are a class of spacecraft based on a standardized small size and modular use of off-the-shelf technologies. Many have been made by university students, and dozens have been launched into Earth orbit using extra payload mass available on launches of larger spacecraft. InSight is the first mission to explore the Red Planet's deep interior. InSight is scheduled for liftoff May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.

  3. Thermal Performance of a Cryogenic Fluid Management Cubesat Mission

    NASA Technical Reports Server (NTRS)

    Berg, J. J.; Oliveira, J. M.; Congiardo, J. F.; Walls, L. K.; Putman, P. T.; Haberbusch, M. S.

    2013-01-01

    Development for an in-space demonstration of a CubeS at as a Cryogenic Fluid Management (CFM) test bed is currently underway. The favorable economics of CubeSats make them appealing for technology development activity. While their size limits testing to smaller scales, many of the regimes relevant to CFM can still be achieved. The first demo flight of this concept, CryoCube®-1, will focus on oxygen liquefaction and low-gravity level sensing using Reduced Gravity CryoTracker®. An extensive thermal modeling effort has been underway to both demonstrate concept feasibility and drive the prototype design. The satellite will utilize both a sun- and earth-shield to passively cool its experimental tank below 115 K. An on-board gas generator will create high pressure gaseous oxygen, which will be throttled into a bottle in the experimental node and condensed. The resulting liquid will be used to perform various experiments related to level sensing. Modeling efforts have focused on the spacecraft thermal performance and its effects on condensation in the experimental node. Parametric analyses for both optimal and suboptimal conditions have been considered and are presented herein.

  4. A Constellation of CubeSat InSAR Sensors for Rapid-Revisit Surface Deformation Studies

    NASA Astrophysics Data System (ADS)

    Wye, L.; Lee, S.; Yun, S. H.; Zebker, H. A.; Stock, J. D.; Wicks, C. W., Jr.; Doe, R.

    2016-12-01

    The 2007 NRC Decadal Survey for Earth Sciences highlights three major Earth surface deformation themes: 1) solid-earth hazards and dynamics; 2) human health and security; and 3) land-use change, ecosystem dynamics and biodiversity. Space-based interferometric synthetic aperture radar (InSAR) is a key change detection tool for addressing these themes. Here, we describe the mission and radar payload design for a constellation of S-band InSAR sensors specifically designed to provide the global, high temporal resolution, sub-cm level deformation accuracy needed to address some of the major Earth system goals. InSAR observations with high temporal resolution are needed to properly monitor certain nonlinearly time-varying features (e.g., unstable volcanoes, active fault lines, and heavily-used groundwater or hydrocarbon reservoirs). Good temporal coverage is also needed to reduce atmospheric artifacts by allowing multiple acquisitions to be averaged together, since each individual SAR measurement is corrupted by up to several cm of atmospheric noise. A single InSAR platform is limited in how often it can observe a given scene without sacrificing global spatial coverage. Multiple InSAR platforms provide the spatial-temporal flexibility required to maximize the science return. However, building and launching multiple InSAR platforms is cost-prohibitive for traditional satellites. SRI International (SRI) and our collaborators are working to exploit developments in nanosatellite technology, in particular the emergence of the CubeSat standard, to provide high-cadence InSAR capabilities in an affordable package. The CubeSat Imaging Radar for Earth Science (CIRES) subsystem, a prototype SAR elec­tronics package developed by SRI with support from a 2014 NASA ESTO ACT award, is specifically scaled to be a drop-in radar solution for resource-limited delivery systems like CubeSats and small airborne vehicles. Here, we present our mission concept and flow-down requirements for a

  5. Propulsion Technology Demonstrator. [Demonstrating Novel CubeSat Technologies in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Marmie, John; Martinez, Andres; Petro, Andrew

    2015-01-01

    NASA's Pathfinder Technology Demonstrator (PTD) project will test the operation of a variety of novel CubeSat technologies in low- Earth orbit, providing significant enhancements to the performance of these small and effective spacecraft. Each Pathfinder Technology Demonstrator mission consists of a 6-unit (6U) CubeSat weighing approximately 26 pounds (12 kilograms) and measuring 12 inches x 10 inches x 4 inches (30 centimeters x 25 centimeters x 10 centimeters), comparable in size to a common shoebox. CubeSats are a class of nanosatellites that use a standard size and form factor. The standard Cube- Sat size uses a "one unit" or "1U" measuring 4 inches x 4 inches x 4 inches (10x10x10 centimeters) and is extendable to larger sizes by "stacking" a number of the 1U blocks to form a larger spacecraft. Each PTD spacecraft will also be equipped with deployable solar arrays that provide an average of 44 watts of power while in orbit.

  6. Space-Based Optical Communications with CubeSats

    NASA Technical Reports Server (NTRS)

    Ebert, Monica L.; Nguyen, Anh Ngoc; Frost, Chad

    2017-01-01

    Optical communication systems use lasers to encode and transmit data with higher speed and density than traditional radio frequency (RF)-based communications. Smaller antennas, lower power requirements, and increased spectrum availability enable optical communications to be integrated into CubeSats more easily than radios, enabling afford-able communications solutions for future NASA missions.

  7. Iodine Satellite

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Dankanich, John; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Iodine Satellite (iSat) spacecraft will be the first CubeSat to demonstrate high change in velocity from a primary propulsion system by using Hall thruster technology and iodine as a propellant. The mission will demonstrate CubeSat maneuverability, including plane change, altitude change and change in its closest approach to Earth to ensure atmospheric reentry in less than 90 days. The mission is planned for launch in fall 2017. Hall thruster technology is a type of electric propulsion. Electric propulsion uses electricity, typically from solar panels, to accelerate the propellant. Electric propulsion can accelerate propellant to 10 times higher velocities than traditional chemical propulsion systems, which significantly increases fuel efficiency. To enable the success of the propulsion subsystem, iSat will also demonstrate power management and thermal control capabilities well beyond the current state-of-the-art for spacecraft of its size. This technology is a viable primary propulsion system that can be used on small satellites ranging from about 22 pounds (10 kilograms) to more than 1,000 pounds (450 kilograms). iSat's fuel efficiency is ten times greater and its propulsion per volume is 100 times greater than current cold-gas systems and three times better than the same system operating on xenon. iSat's iodine propulsion system consists of a 200 watt (W) Hall thruster, a cathode, a tank to store solid iodine, a power processing unit (PPU) and the feed system to supply the iodine. This propulsion system is based on a 200 W Hall thruster developed by Busek Co. Inc., which was previously flown using xenon as the propellant. Several improvements have been made to the original system to include a compact PPU, targeting greater than 80 percent reduction in mass and volume of conventional PPU designs. The cathode technology is planned to enable heaterless cathode conditioning, significantly increasing total system efficiency. The feed system has been designed to

  8. Innovative power management, attitude determination and control tile for CubeSat standard NanoSatellites

    NASA Astrophysics Data System (ADS)

    Ali, Anwar; Mughal, M. Rizwan; Ali, Haider; Reyneri, Leonardo

    2014-03-01

    Electric power supply (EPS) and attitude determination and control subsystem (ADCS) are the most essential elements of any aerospace mission. Efficient EPS and precise ADCS are the core of any spacecraft mission. So keeping in mind their importance, they have been integrated and developed on a single tile called CubePMT module. Modular power management tiles (PMTs) are already available in the market but they are less efficient, heavier in weight, consume more power and contain less number of subsystems. Commercial of the shelf (COTS) components have been used for CubePMT implementation which are low cost and easily available from the market. CubePMT is developed on the design approach of AraMiS architecture: a project developed at Politecnico di Torino that provides low cost and higher performance space missions with dimensions larger than CubeSats. The feature of AraMiS design approach is its modularity. These modules can be reused for multiple missions which helps in significant reduction of the overall budget, development and testing time. One has just to reassemble the required subsystems to achieve the targeted specific mission.

  9. Size Contrast for Mars CubeSat

    NASA Image and Video Library

    2015-06-12

    The full-scale mock-up of NASA's MarCO CubeSat held by Farah Alibay, a systems engineer at NASA's Jet Propulsion Laboratory, is dwarfed by the one-half-scale model of NASA's Mars Reconnaissance Orbiter behind her. MarCO, short for Mars Cube One, is the first interplanetary use of CubeSat technologies for small spacecraft. JPL is preparing two MarCO twins for launch in March 2016. They will ride along on an Atlas V launch vehicle lifting off from Vandenberg Air Force Base, California, with NASA's next Mars lander, InSight. MarCO is a technology demonstration aspect of the InSight mission. The mock-up in the photo is in a configuration to show the deployed position of components that correspond to MarCO's two solar panels and two antennas. During launch, those components will be stowed for a total vehicle size of about 14.4 inches (36.6 centimeters) by 9.5 inches (24.3 centimeters) by 4.6 inches (11.8 centimeters). After launch, the two MarCO CubeSats and InSight will be navigated separately to Mars. The MarCO twins will fly past the planet in September 2016 just as InSight is descending through the atmosphere and landing on the surface. MarCO is a technology demonstration to relay communications from InSight to Earth during InSight's descent and landing. InSight communications during that critical period will also be recorded by NASA's Mars Reconnaissance Orbiter for delayed transmission to Earth. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http

  10. Cubesat Application for Planetary Entry (CAPE) Missions: Micro-Reentry Capsule (MIRCA)

    NASA Technical Reports Server (NTRS)

    Esper, Jaime

    2014-01-01

    The Cubesat Application for Planetary Entry Missions (CAPE) concept describes a high-performing Cubesat system which includes a propulsion module and miniaturized technologies capable of surviving atmospheric entry heating, while reliably transmitting scientific and engineering data. The Micro Return Capsule (MIRCA) is CAPEs first planetary entry probe flight prototype. Within this context, this paper briefly describes CAPEs configuration and typical operational scenario, and summarizes ongoing work on the design and basic aerodynamic characteristics of the prototype MIRCA vehicle. CAPE not only opens the door to new planetary mission capabilities, it also offers relatively low-cost opportunities especially suitable to university participation.

  11. An Ad-hoc Satellite Network to Measure Filamentary Current Structures in the Auroral Zone

    NASA Astrophysics Data System (ADS)

    Nabong, C.; Fritz, T. A.; Semeter, J. L.

    2014-12-01

    An ad-hoc cubesat-based satellite network project known as ANDESITE is under development at Boston University. It aims to develop a dense constellation of easy-to-use, rapidly-deployable low-cost wireless sensor nodes in space. The objectives of the project are threefold: 1) Demonstrate viability of satellite based sensor networks by deploying an 8-node miniature sensor network to study the filamentation of the field aligned currents in the auroral zones of the Earth's magnetosphere. 2) Test the scalability of proposed protocols, including localization techniques, tracking, data aggregation, and routing, for a 3 dimensional wireless sensor network using a "flock" of nodes. 3) Construct a 6U Cube-sat running the Android OS as an integrated constellation manager, data mule and sensor node deplorer. This small network of sensor nodes will resolve current densities at different spatial resolutions in the near-Earth magnetosphere using measurements from magnetometers with 1-nT sensitivities and 0.2 nT/√Hz self-noise. Mapping of these currents will provide new constraints for models of auroral particle acceleration, wave-particle interactions, ionospheric destabilization, and other kinetic processes operating in the low-beta plasma of the near Earth magnetosphere.

  12. Cyber security with radio frequency interferences mitigation study for satellite systems

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Wei, Sixiao; Chen, Genshe; Tian, Xin; Shen, Dan; Pham, Khanh; Nguyen, Tien M.; Blasch, Erik

    2016-05-01

    Satellite systems including the Global Navigation Satellite System (GNSS) and the satellite communications (SATCOM) system provide great convenience and utility to human life including emergency response, wide area efficient communications, and effective transportation. Elements of satellite systems incorporate technologies such as navigation with the global positioning system (GPS), satellite digital video broadcasting, and information transmission with a very small aperture terminal (VSAT), etc. The satellite systems importance is growing in prominence with end users' requirement for globally high data rate transmissions; the cost reduction of launching satellites; development of smaller sized satellites including cubesat, nanosat, picosat, and femtosat; and integrating internet services with satellite networks. However, with the promising benefits, challenges remain to fully develop secure and robust satellite systems with pervasive computing and communications. In this paper, we investigate both cyber security and radio frequency (RF) interferences mitigation for satellite systems, and demonstrate that they are not isolated. The action space for both cyber security and RF interferences are firstly summarized for satellite systems, based on which the mitigation schemes for both cyber security and RF interferences are given. A multi-layered satellite systems structure is provided with cross-layer design considering multi-path routing and channel coding, to provide great security and diversity gains for secure and robust satellite systems.

  13. Constellation of CubeSats for Realtime Ionospheric E-field Measurements for Global Space Weather

    NASA Astrophysics Data System (ADS)

    Crowley, G.; Swenson, C.; Pilinski, M.; Fish, C. S.; Neilsen, T. L.; Stromberg, E. M.; Azeem, I.; Barjatya, A.

    2014-12-01

    Inexpensive and robust space-weather monitoring instruments are needed to fill upcoming gaps in the Nation's ability to meet requirements for space weather specification and forecasting. Foremost among the needed data are electric fields, since they drive global ionospheric and thermospheric behavior, and because there are relatively few ground-based measurements. We envisage a constellation of CubeSats to provide global coverage of the electric field and its variability. The DICE (Dynamic Ionosphere CubeSat Experiment) mission was a step towards this goal, with two identical 1.5U CubeSats, each carrying three space weather instruments: (1) double probe instruments to measure AC and DC electric fields; (2) Langmuir probes to measure ionospheric electron density, and; (3) a magnetometer to measure field-aligned currents. DICE launched in October 2011. DICE was the first CubeSat mission to observe a Storm Enhanced Density event, fulfilling a major goal of the mission. Due to attitude control anomalies encountered in orbit, the DICE electric field booms have not yet been deployed. Important lessons have been learned for the implementation of a spin-stabilized CubeSat, and the design and performance of the Attitude Determination & Control System (ADCS). These lessons are now being applied to the DIME SensorSat, a risk-reduction mission that is capable of deploying flexible electric field booms up to a distance of 10-m tip-to-tip from a 1.5U CubeSat. DIME will measure AC and DC electric fields, and will exceed several IORD-2 threshold requirements. Ion densities, and magnetic fields will also be measured to characterize the performance of the sensor in different plasma environments. We show the utility of a constellation of electric field measurements, describe the DIME SensorSat, and demonstrate how the measurement will meet or exceed IORD requirements. The reduced cost of these sensors will enable constellations that can, for the first time, adequately resolve the

  14. Ground Demonstration on the Autonomous Docking of Two 3U CubeSats Using a Novel Permanent-Magnet Docking Mechanism

    NASA Technical Reports Server (NTRS)

    Pei, Jing; Murchison, Luke; BenShabat, Adam; Stewart, Victor; Rosenthal, James; Follman, Jacob; Branchy, Mark; Sellers, Drew; Elandt, Ryan; Elliott, Sawyer; hide

    2017-01-01

    Small spacecraft autonomous rendezvous and docking is an essential technology for future space structure assembly missions. A novel magnetic capture and latching mechanism is analyzed that allows for docking of two CubeSats without precise sensors and actuators. The proposed magnetic docking hardware not only provides the means to latch the CubeSats but it also significantly increases the likelihood of successful docking in the presence of relative attitude and position errors. The simplicity of the design allows it to be implemented on many CubeSat rendezvous missions. A CubeSat 3-DOF ground demonstration effort is on-going at NASA Langley Research Center that enables hardware-in-the loop testing of the autonomous approach and docking of a follower CubeSat to an identical leader CubeSat. The test setup consists of a 3 meter by 4 meter granite table and two nearly frictionless air bearing systems that support the two CubeSats. Four cold-gas on-off thrusters are used to translate the follower towards the leader, while a single reaction wheel is used to control the attitude of each CubeSat. An innovative modified pseudo inverse control allocation scheme was developed to address interactions between control effectors. The docking procedure requires relatively high actuator precision, a novel minimal impulse bit mitigation algorithm was developed to minimize the undesirable deadzone effects of the thrusters. Simulation of the ground demonstration shows that the Guidance, Navigation, and Control system along with the docking subsystem leads to successful docking under 3-sigma dispersions for all key system parameters. Extensive simulation and ground testing will provide sufficient confidence that the proposed docking mechanism along with the choosen suite of sensors and actuators will perform successful docking in the space environment.

  15. Instruments for Planetary Exploration with CubeSats and SmallSats

    NASA Astrophysics Data System (ADS)

    Raymond, Carol; Jaumann, Ralf; Vane, Gregg; Baker, John; Castillo-Rogez, Julie; Yano, Hajime

    2016-07-01

    Planetary sensors and instruments are undergoing a revolutionary transformation as solid-state electronics and advanced detectors allow drastic reductions in size, mass and power relative to instruments flown in the past. Given their reduced resource needs, these capable new systems are potentially compatible with use on smallsats. New built-in processing techniques further enable increased science return in constrained resource environments. In the summer of 2014 an international group of scientists, engineers, and technologists started a study to define investigations to be carried out by nano-spacecraft, and instruments that would enable breakthrough science from these small platforms were identified. The possibilities include passive remote sensing instruments such as imagers, spectrometers, magnetometers, dust analyzers; active instruments such as radar, lidar, laser-induced breakdown spectroscopy (LIBS), muonography, projectiles; and landed packages and in-situ probes such as instrumented penetrators, seismometers, and in-situ sample analysis packages. Many of the passive and active instruments could be used in-situ for very high-resolution measurements over limited areas. Smallsats lend themselves to observing strategies that allow dense spatial and temporal sampling using multiple flight system elements, covering a range of observing conditions, and multi-scale measurements with concurrent surface and remote observations. The lower cost of smallsats allows visiting a large range of targets and provides an architecture for cooperating distributed networks of sensors. The current state-of-the-art in smallsat payloads includes instrument suites on the Philae lander (Rosetta), and the MINERVA-II rovers and MASCOT on Hayabusa-2. Many Cubesat form factor instruments are either built or in development, including impactors and penetrators, and several new technologies are making their debut in the smallsat arena. The Philae payload included the CONSERT active radar

  16. New results from the Colorado CubeSat and comparison with Van Allen Probes data

    NASA Astrophysics Data System (ADS)

    Li, X.

    2013-05-01

    The Colorado Student Space Weather Experiment (CSSWE) is a 3-unit (10cm x 10cm x 30cm) CubeSat mission funded by the NSF, launched into a highly inclined (650) low-Earth (490km x 790km) orbit on 09/13/12 as a secondary payload under NASA's Educational Launch of Nanosatellites (ELaNa) program. CSSWE contains a single science payload, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), which is a simplified and miniaturized version of the Relativistic Electron and Proton Telescope (REPT) built at the Laboratory for Atmospheric and Space Physics (LASP) of University of Colorado for NASA/Van Allen Probes mission, which consists of two identical spacecraft, launched on 08/30/12, that traverse the heart of the radiation belts in a low inclination (100) orbit. REPTile is designed to measure the directional differential flux of protons ranging from 9 to 40 MeV and electrons from 0.5 to >3.3 MeV. Three-month science mission (full success) was completed on 1/05/13. We are now into the extended mission phase, focusing on data analysis and modeling. REPTile measures a fraction of the total population that has small enough equatorial pitch angles to reach the altitude of CSSWE, thus measuring the precipitating population as well as the trapped population. These measurements are critical for understanding the loss of outer radiation belt electrons. New results from CSSWE and comparison with Van Allen Probes data will be presented. The CSSWE is also an ideal class project, involving over 65 graduate and undergraduate students and providing training for the next generation of engineers and scientists over the full life-cycle of a satellite project.

  17. Performance Comparisons and Down Selection of Small Motors for Two-Blade Heliogyro Solar Sail 6U CubeSat

    NASA Technical Reports Server (NTRS)

    Wiwattananon, Peerawan; Bryant, Robert G.

    2015-01-01

    This report compiles a review of 130 commercial small scale motors (piezoelectric and electric motors) and almost 20 researched-type small scale piezoelectricmotors for potential use in a 2 blades Heliogyro Solar Sail 6U CubeSat. In this application, a motor and gearhead (drive system) will deploy a roll of solar sailthin film (2 um thick)accommodated in a 2U CubeSat (100 x 200 x 100 mm) housing. The application requirements are: space rated, output torque at fulldeployment of 0.8 Nm, reel speed of 3 rpm, drive system weight limited to 150 grams, diameter limited to 50 mm, and the length not to exceed 40 mm. The 50mm diameter limit was imposed as motors with larger diameters would likely weigh too much and use more space on the satellite wall. This would limit theamount of the payload. The motors performance are compared between small scale, volume within 3x102 cm3 (3x105 mm3), commercial electric DC motors,commercial piezoelectric motors, and researched-type (non-commercial) piezoelectric motors extracted from scientific and product literature. The comparisonssuggest that piezoelectric motors without a gearhead exhibit larger output torque with respect to their volume and weight and require less input power toproduce high torque. A commercially available electric motor plus a gearhead was chosen through a proposed selection process to meet the applications designrequirements.

  18. Detecting negative ions on board small satellites

    NASA Astrophysics Data System (ADS)

    Lepri, S. T.; Raines, J. M.; Gilbert, J. A.; Cutler, J.; Panning, M.; Zurbuchen, T. H.

    2017-04-01

    Recent measurements near comets, planets, and their satellites have shown that heavy ions, energetic neutral atoms, molecular ions, and charged dust contain a wealth of information about the origin, evolution, and interaction of celestial bodies with their space environment. Using highly sensitive plasma instruments, positively charged heavy ions have been used to trace exospheric and surface composition of comets, planets, and satellites as well as the composition of interplanetary and interstellar dust. While positive ions dominate throughout the heliosphere, negative ions are also produced from surface interactions. In fact, laboratory experiments have shown that oxygen released from rocky surfaces is mostly negatively charged. Negative ions and negatively charged nanograins have been detected with plasma electron analyzers in several different environments (e.g., by Cassini and Rosetta), though more extensive studies have been challenging without instrumentation dedicated to negative ions. We discuss an adaptation of the Fast Imaging Plasma Spectrometer (FIPS) flown on MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) for the measurement of negatively charged particles. MESSENGER/FIPS successfully measured the plasma environment of Mercury from 2011 until 2015, when the mission ended, and has been used to map multiple ion species (H+ through Na+ and beyond) throughout Mercury's space environment. Modifications to the existing instrument design fits within a 3U CubeSat volume and would provide a low mass, low power instrument, ideal for future CubeSat or distributed sensor missions seeking, for the first time, to characterize the contribution of negative particles in the heliospheric plasmas near the planets, moons, comets, and other sources.

  19. CXBN-2 CubeSat – ELaNa XVII

    NASA Image and Video Library

    2016-12-08

    The Cosmic X-Ray Background NanoSat-2 (CXBN-2) CubeSat Mission developed by Morehead State University and its partners the Keldysh Institute (Moscow, Russia), the Maysville Community and Technical College (Morehead, KY) and KYSpace LLC (Lexington, KY) will increase the precision of measurements of the Cosmic X-Ray Background in the 30-50 keV range to a precision of <5%, thereby constraining models that attempt to explain the relative contribution of proposed sources lending insight into the underlying physics of the early universe. The mission addresses a fundamental science question that is central to our understanding of the structure, origin, and evolution of the universe by potentially lending insight into both the high-energy background radiation and into the evolution of primordial galaxies. Launched by NASA’s CubeSat Launch Initiative NET April 18, 2017 ELaNa XVII mission on the seventh Orbital-ATK Cygnus Commercial Resupply Services (OA-7) to the International Space Station and deployed on tbd.

  20. A Cubesat Payload for Exoplanet Detection

    PubMed Central

    Iuzzolino, Marcella; Accardo, Domenico; Rufino, Giancarlo; Oliva, Ernesto; Tozzi, Andrea; Schipani, Pietro

    2017-01-01

    The search for undiscovered planets outside the solar system is a scientific topic that is rapidly spreading into the astrophysical and engineering communities. In this framework, the design of an innovative payload to detect exoplanets from a nano-sized space platform, like a 3U cubesat, is presented. The selected detection method is photometric transit, and the payload aims to detect flux decrements down to ~0.01% with a precision of 12 ppm. The payload design is also aimed at false positive recognition. The solution consists of a four-facets pyramid on the top of the payload, to allow for measurement redundancy and low-resolution spectral dispersion of the star images. The innovative concept is the use of a small and cheap platform for a relevant astronomical mission. The faintest observable target star has V-magnitude equal to 3.38. Despite missions aimed at ultra-precise photometry from microsatellites (e.g., MOST, BRITE), the transit of exoplanets orbiting very bright stars has not yet been surveyed photometrically from space, since any observation from a small/medium sized (30 cm optical aperture) telescope would saturate the detector. This cubesat mission can provide these missing measurements. This work is set up as a demonstrative project to verify the feasibility of the payload concept. PMID:28257111

  1. A Cubesat Payload for Exoplanet Detection.

    PubMed

    Iuzzolino, Marcella; Accardo, Domenico; Rufino, Giancarlo; Oliva, Ernesto; Tozzi, Andrea; Schipani, Pietro

    2017-03-02

    The search for undiscovered planets outside the solar system is a scientific topic that is rapidly spreading into the astrophysical and engineering communities. In this framework, the design of an innovative payload to detect exoplanets from a nano-sized space platform, like a 3U cubesat, is presented. The selected detection method is photometric transit, and the payload aims to detect flux decrements down to ~0.01% with a precision of 12 ppm. The payload design is also aimed at false positive recognition. The solution consists of a four-facets pyramid on the top of the payload, to allow for measurement redundancy and low-resolution spectral dispersion of the star images. The innovative concept is the use of a small and cheap platform for a relevant astronomical mission. The faintest observable target star has V-magnitude equal to 3.38. Despite missions aimed at ultra-precise photometry from microsatellites (e.g., MOST, BRITE), the transit of exoplanets orbiting very bright stars has not yet been surveyed photometrically from space, since any observation from a small/medium sized (30 cm optical aperture) telescope would saturate the detector. This cubesat mission can provide these missing measurements. This work is set up as a demonstrative project to verify the feasibility of the payload concept.

  2. A Cubesat Payload for Exoplanet Detection

    NASA Astrophysics Data System (ADS)

    Iuzzolino, M.; Accardo, D.; Rufino, G.; Oliva, E.; Tozzi, A.; Schipani, P.

    2017-03-01

    The search for undiscovered planets outside the solar system is a scientific topic that is rapidly spreading into the astrophysical and engineering communities. In this framework, the design of an innovative payload to detect exoplanets from a nano-sized space platform, like a 3U cubesat, is presented. The selected detection method is photometric transit, and the payload aims to detect flux decrements down to 0.01% with a precision of 12 ppm. The payload design is also aimed at false positive recognition. The solution consists of a four-facets pyramid on the top of the payload, to allow for measurement redundancy and low-resolution spectral dispersion of the star images. The innovative concept is the use of a small and cheap platform for a relevant astronomical mission. The faintest observable target star has V-magnitude equal to 3.38. Despite missions aimed at ultra-precise photometry from microsatellites (e.g., MOST, BRITE), the transit of exoplanets orbiting very bright stars has not yet been surveyed photometrically from space, since any observation from a small/medium sized (30 cm optical aperture) telescope would saturate the detector. This cubesat mission can provide these missing measurements. This work is set up as a demonstrative project to verify the feasibility of the payload concept.

  3. Iodine Satellite

    NASA Technical Reports Server (NTRS)

    Dankanich, John; Kamhawi, Hani; Szabo, James

    2015-01-01

    This project is a collaborative effort to mature an iodine propulsion system while reducing risk and increasing fidelity of a technology demonstration mission concept. 1 The FY 2014 tasks include investments leveraged throughout NASA, from multiple mission directorates, as a partnership with NASA Glenn Research Center (GRC), a NASA Marshall Space Flight Center (MSFC) Technology Investment Project, and an Air Force partnership. Propulsion technology is often a critical enabling technology for space missions. NASA is investing in technologies to enable high value missions with very small and low-cost spacecraft, even CubeSats. However, these small spacecraft currently lack any appreciable propulsion capability. CubeSats are typically deployed and drift without any ability to transfer to higher value orbits, perform orbit maintenance, or deorbit. However, the iodine Hall system can allow the spacecraft to transfer into a higher value science orbit. The iodine satellite (iSAT) will be able to achieve a (Delta)V of >500 m/s with <1 kg of solid iodine propellant, which can be stored in an unpressurized benign state prior to launch. The iSAT propulsion system consists of the 200 W Hall thruster, solid iodine propellant tank, a power processing unit, and the necessary valves and tubing to route the iodine vapor. The propulsion system is led by GRC, with critical hardware provided by the Busek Co. The propellant tank begins with solid iodine unpressurized on the ground and in-flight before operations, which is then heated via tank heaters to a temperature at which solid iodine sublimates to iodine vapor. The vapor is then routed through tubing and custom valves to control mass flow to the thruster and cathode assembly. 2 The thruster then ionizes the vapor and accelerates it via magnetic and electrostatic fields, resulting in thrust with a specific impulse >1,300 s. The iSAT spacecraft, illustrated in figure 1, is currently a 12U CubeSat. The spacecraft chassis will be

  4. KSC-2010-5780

    NASA Image and Video Library

    2010-11-16

    San Luis Obispo, Calif. -- 101116-F-8290C-060 -- Roland Coelho, a student at California Polytechnic State University Cal Poly, inspects the integration alignment of miniature research satellites called a CubeSats into a Poly Picosatellite Orbital Deployer PPOD container. The PPOD and CubeSat Project were developed by Cal Poly and Stanford University’s Space Systems Development Lab for use on NASA’s Educational Launch of Nanosatellite ELaNa missions. Each CubeSat measures about 4-inches cubed and is about the same volume as a quart. The CubeSats weigh about 2.2 pounds, must conform to standard aerospace materials and must operate without propulsion. The satellites are being prepared to launch with NASA's Glory spacecraft aboard an Orbital Sciences Corp. Taurus XL rocket, targeted to lift off Feb. 23, 2011, from Vandenberg's Space Launch Complex 576-E. Glory is scheduled to collect data on the properties of aerosols and black carbon from its place in low Earth orbit. It also will help scientists understand how the sun's irradiance affects Earth's climate. Photo credit: U.S. Air Force/Jerry E. Clemens Jr.

  5. Reconfigurable phased antenna array for extending cubesat operations to Ka-band: Design and feasibility

    NASA Astrophysics Data System (ADS)

    Buttazzoni, G.; Comisso, M.; Cuttin, A.; Fragiacomo, M.; Vescovo, R.; Vincenti Gatti, R.

    2017-08-01

    Started as educational tools, CubeSats have immediately encountered the favor of the scientific community, subsequently becoming viable platforms for research and commercial applications. To ensure competitive data rates, some pioneers have started to explore the usage of the Ka-band beside the conventional amateur radio frequencies. In this context, this study proposes a phased antenna array design for Ka-band downlink operations consisting of 8×8 circularly polarized subarrays of microstrip patches filling one face of a single CubeSat unit. The conceived structure is developed to support 1.5 GHz bandwidth and dual-task missions, whose feasibility is verified by proper link budgets. The dual-task operations are enabled by a low-complexity phase-only control algorithm that provides pattern reconfigurability in order to satisfy both orbiting and intersatellite missions, while remaining adherent to the cost-effective CubeSat paradigm.

  6. Growing Minority Student Interest in Earth and Space Science with Suborbital and Space-related Investigations

    NASA Astrophysics Data System (ADS)

    Austin, S. A.

    2009-12-01

    This presentation describes the transformative impact of student involvement in suborbital and Cubesat investigations under the MECSAT program umbrella at Medgar Evers College (MEC). The programs evolved from MUSPIN, a NASA program serving minority institutions. The MUSPIN program supported student internships for the MESSENGER and New Horizons missions at the Applied Physics Lab at John Hopkins University. The success of this program motivated the formation of smaller-scale programs at MEC to engage a wider group of minority students using an institutional context. The programs include an student-instrument BalloonSAT project, ozone investigations using sounding vehicles and a recently initiated Cubesat program involving other colleges in the City University of New York (CUNY). The science objectives range from investigations of atmospheric profiles, e.g. temperature, humidity, pressure, and CO2 to ozone profiles in rural and urban areas including comparisons with Aura instrument retrievals to ionospheric scintillation experiments for the Cubesat project. Through workshops and faculty collaborations, the evolving programs have mushroomed to include the development of parallel programs with faculty and students at other minority institutions both within and external to CUNY. The interdisciplinary context of these programs has stimulated student interest in Earth and Space Science and includes the use of best practices in retention and pipelining of underrepresented minority students in STEM disciplines. Through curriculum integration initiatives, secondary impacts are also observed supported by student blogs, social networking sites, etc.. The program continues to evolve including related student internships at Goddard Space Flight Center and the development of a CUNY-wide interdisciplinary team of faculty targeting research opportunities for undergraduate and graduate students in Atmospheric Science, Space Weather, Remote Sensing and Astrobiology primarily for

  7. CubeSat Measurement and Demonstration of Coulomb Drag Effect for Deorbiting

    NASA Astrophysics Data System (ADS)

    2013-08-01

    Deorbiting satellites by passive or active electrodynamic tether Lorentz force effect is well known. Probably less well known is that a charged conducting tether also interacts with the streaming ionospheric plasma by electrostatic Coulomb drag. Especially for the case of small satellites deorbited by thin tethers, the Coulomb drag effect can be larger than the Lorentz force effect. When a tether is optimised for Coulomb drag, the goal is only to keep it charged. The fact that the charged tether gathers current is then a side effect which can be minimised by using negative voltage and by making the tether very thin. Using negative voltage in most cases implies that one can use the satellite's conducting surface as the other electrode so that no electron or ion emitter is needed on the spacecraft for closing the circuit. Thinness of the tether is a large benefit not only from the mass saving and power consumption minimisation points of view, but also because a sufficiently thin tether (made e.g. four 25-50 micrometre thin aluminium wires) poses nearly no threat to other space assets in the even of an unwanted collision. ESTCube-1 is an Estonian 1U CubeSat which is scheduled for Vega launch in May 2013 to 680 km polar orbit. The payload of ESTCube-1 is a 10 m long Heytether made of 25-50 aluminium wires which can be charged to plus orminus 500 V by onboard voltage sources and electron gun. The mission of ESTCube-1 is to demonstrate deployment of very thin multiline (and thus micrometeoroid tolerant) tether and to measure the Coulomb drag effect on the charged tether by ionospheric plasma ram flow. The Coulomb drag has not been measured before and besides useful for deorbiting the effect can also be used to propel interplanetary spacecraft by the fast moving solar wind plasma stream. The measurement of the micronewton scale force is carried out by turning the voltage on and off in a synchronous way with the satellite's rotation and by measuring the cumulative change

  8. CubeSat Form Factor Thermal Control Louvers

    NASA Technical Reports Server (NTRS)

    Evans, Allison L. (Inventor)

    2018-01-01

    Thermal control louvers for CubeSats or small spacecraft may include a plurality of springs attached to a back panel of the thermal control louvers. The thermal control louvers may also include a front panel, which includes at least two end panels interlocked with one or more middle panels. The front panel may secure the springs, shafts, and flaps to the back panel.

  9. DUAL-MODE PROPULSION SYSTEM ENABLING CUBESAT EXPLORATION OF THE SOLAR SYSTEM NASA Innovative Advanced Concepts (NIAC) Phase I Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nathan Jerred; Troy Howe; Adarsh Rajguru

    It is apparent the cost of planetary exploration is rising as mission budgets declining. Currently small scientific beds geared to performing limited tasks are being developed and launched into low earth orbit (LEO) in the form of small-scale satellite units, i.e., CubeSats. These micro- and nano-satellites are gaining popularity among the university and science communities due to their relatively low cost and design flexibility. To date these small units have been limited to performing tasks in LEO utilizing solar-based power. If a reasonable propulsion system could be developed, these CubeSat platforms could perform exploration of various extra-terrestrial bodies within themore » solar system engaging a broader range of researchers. Additionally, being mindful of mass, smaller cheaper launch vehicles (~1,000 kgs to LEO) can be targeted. This, in effect, allows for beneficial explora-tion to be conducted within limited budgets. Researchers at the Center for Space Nuclear Re-search (CSNR) are proposing a low mass, radioisotope-based, dual-mode propulsion system capable of extending the exploration realm of these CubeSats out of LEO. The proposed radioisotope-based system would leverage the high specific energies [J/kg] associated with radioisotope materials and enhance their inherent low specific powers [W/g]. This is accomplished by accumulating thermal energy from nuclear decay within a central core over time. This allows for significant amounts of power to be transferred to a flowing gas over short periods of time. In the proposed configuration the stored energy can be utilized in two ways: (1) with direct propellant injection to the core, the energy can be converted into thrust through the use of a converging-diverging nozzle and (2) by flowing a working fluid through the core and subsequent Brayton engine, energy within the core can be converted to electrical energy. The first scenario achieves moderate ranges of thrust, but at a higher Isp than traditional

  10. Advanced Deployable Shell-Based Composite Booms for Small Satellite Structural Applications Including Solar Sails

    NASA Technical Reports Server (NTRS)

    Fernandez, Juan M.

    2017-01-01

    State of the art deployable structures are mainly being designed for medium to large size satellites. The lack of reliable deployable structural systems for low cost, small volume, rideshare-class spacecraft severely constrains the potential for using small satellite platforms for affordable deep space science and exploration precursor missions that could be realized with solar sails. There is thus a need for reliable, lightweight, high packaging efficiency deployable booms that can serve as the supporting structure for a wide range of small satellite systems including solar sails for propulsion. The National Air and Space Administration (NASA) is currently investing in the development of a new class of advanced deployable shell-based composite booms to support future deep space small satellite missions using solar sails. The concepts are being designed to: meet the unique requirements of small satellites, maximize ground testability, permit the use of low-cost manufacturing processes that will benefit scalability, be scalable for use as elements of hierarchical structures (e.g. trusses), allow long duration storage, have high deployment reliability, and have controlled deployment behavior and predictable deployed dynamics. This paper will present the various rollable boom concepts that are being developed for 5-20 m class size deployable structures that include solar sails with the so-called High Strain Composites (HSC) materials. The deployable composite booms to be presented are being developed to expand the portfolio of available rollable booms for small satellites and maximize their length for a given packaged volume. Given that solar sails are a great example of volume and mass optimization, the booms were designed to comply with nominal solar sail system requirements for 6U CubeSats, which are a good compromise between those of smaller form factors (1U, 2U and 3U CubeSats) and larger ones (12 U and 27 U future CubeSats, and ESPA-class microsatellites). Solar

  11. AAuAl (A = Ca, Sc, and Ti): Peierls Distortion, Atomic Coloring, and Structural Competition

    DOE PAGES

    Pham, Joyce; Miller, Gordon J.

    2018-04-02

    Using density functional theory, the crystal structure variation of AAuAl (A = Ca, Sc, and Ti) from orthorhombic Co 2Si-type to distorted hexagonal Fe 2P-type and then Ni 2In-type structures is shown to correlate with their electronic structures and valence electron counts, sizes of the active metals A, and site preferences for Au and Al atoms, which are arranged to maximize Au–Al nearest neighbor contacts. An evaluation of chemical pressure imposed by the varying A metals using total energy vs volume calculations indicates that larger unit cell volumes favor the orthorhombic structure, whereas smaller volumes favor the hexagonal structures. Themore » electronic origin of the Mg 2Ga-type crystal structure of ScAuAl, refined as a distorted Fe 2P-type supercell doubled along the c-axis, indicates a Peierls-type distortion mechanism of the Au chains along the c-axis.« less

  12. AAuAl (A = Ca, Sc, and Ti): Peierls Distortion, Atomic Coloring, and Structural Competition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Joyce; Miller, Gordon J.

    Using density functional theory, the crystal structure variation of AAuAl (A = Ca, Sc, and Ti) from orthorhombic Co 2Si-type to distorted hexagonal Fe 2P-type and then Ni 2In-type structures is shown to correlate with their electronic structures and valence electron counts, sizes of the active metals A, and site preferences for Au and Al atoms, which are arranged to maximize Au–Al nearest neighbor contacts. An evaluation of chemical pressure imposed by the varying A metals using total energy vs volume calculations indicates that larger unit cell volumes favor the orthorhombic structure, whereas smaller volumes favor the hexagonal structures. Themore » electronic origin of the Mg 2Ga-type crystal structure of ScAuAl, refined as a distorted Fe 2P-type supercell doubled along the c-axis, indicates a Peierls-type distortion mechanism of the Au chains along the c-axis.« less

  13. New Science Enabled by the NASA TROPICS CubeSat Constellation Mission

    NASA Astrophysics Data System (ADS)

    Blackwell, W. J.; Braun, S. A.; Bennartz, R.; Velden, C.; Demaria, M.; Atlas, R. M.; Dunion, J. P.; Marks, F.; Rogers, R. F.; Annane, B.

    2017-12-01

    Recent technology advances in miniature microwave radiometers that can be hosted on very small satellites has made possible a new class of affordable constellation missions that provide very high revisit rates of tropical cyclones and other severe weather. The Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission was selected by NASA as part of the Earth Venture-Instrument (EVI-3) program and is now in development with planned launch readiness in late 2019. The overarching goal for TROPICS is to provide nearly all-weather observations of 3-D temperature and humidity, as well as cloud ice and precipitation horizontal structure, at high temporal resolution to conduct high-value science investigations of tropical cyclones, including: (1) relationships of rapidly evolving precipitation and upper cloud structures to upper-level warm-core intensity and associated storm intensity changes; (2) the evolution of precipitation structure and storm intensification in relationship to environmental humidity fields; and (3) the impact of rapid-update observations on numerical and statistical intensity forecasts of tropical cyclones. TROPICS will provide rapid-refresh microwave measurements (median refresh rate better than 60 minutes for the baseline mission) over the tropics that can be used to observe the thermodynamics of the troposphere and precipitation structure for storm systems at the mesoscale and synoptic scale over the entire storm lifecycle. TROPICS comprises a constellation of six CubeSats in three low-Earth orbital planes. Each CubeSat will host a high performance radiometer to provide temperature profiles using seven channels near the 118.75 GHz oxygen absorption line, water vapor profiles using 3 channels near the 183 GHz water vapor absorption line, imagery in a single channel near 90 GHz for precipitation measurements (when combined with higher resolution water vapor channels), and a single

  14. Effects of CubeSat Deployments in Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Matney, Mark; Vavrin, Andrew; Manis, Alyssa

    2017-01-01

    Long-term models, such as NASA's LEGEND (LEO-to- GEO Environment Debris) model, are used to make predictions about how space activities will affect the manner in which the debris environment evolves over time. Part of this process predicts how spacecraft and rocket bodies will be launched and remain in the future environment. This has usually been accomplished by repeating past launch history to simulate future launches. The NASA Orbital Debris Program Office (ODPO) has conducted a series of LEGEND computations to investigate the long-term effects of adding CubeSats to the environment. These results are compared to a baseline "business-as-usual" scenario where launches are assumed to continue as in the past without major CubeSat deployments. Using these results, we make observations about the continued use of the 25-year rule and the importance of the universal application of postmission disposal.

  15. Design and development of the CubeSat Infrared Atmospheric Sounder (CIRAS)

    NASA Astrophysics Data System (ADS)

    Pagano, Thomas S.; Abesamis, Carlo; Andrade, Andres; Aumann, Hartmut; Gunapala, Sarath; Heneghan, Cate; Jarnot, Robert; Johnson, Dean; Lamborn, Andy; Maruyama, Yuki; Rafol, Sir; Raouf, Nasrat; Rider, David; Ting, Dave; Wilson, Dan; Yee, Karl; Cole, Jerold; Good, Bill; Kampe, Tom; Soto, Juancarlos; Adams, Arn; Buckley, Matt; Nicol, Fred; Vengel, Tony

    2017-09-01

    The CubeSat Infrared Atmospheric Sounder (CIRAS) is a NASA Earth Science Technology Office (ESTO) sponsored mission to demonstrate key technologies used in very high spectral resolution infrared remote sensing of Earth's atmosphere from space. CIRAS was awarded under the ESTO In-flight Validation of Earth Science Technologies (InVEST) program in 2015 and is currently under development at NASA JPL with key subsystems being developed by industry. CIRAS incorporates key new instrument technologies including a 2D array of High Operating Temperature Barrier Infrared Detector (HOT-BIRD) material, selected for its high uniformity, low cost, low noise and higher operating temperatures than traditional materials. The second key technology is an MWIR Grating Spectrometer (MGS) designed to provide imaging spectroscopy for atmospheric sounding in a CubeSat volume. The MGS is under development by Ball Aerospace with the grating and slit developed by JPL. The third key technology is a blackbody fabricated with JPL's black silicon to have very high emissivity in a flat plate construction. JPL will also develop the mechanical, electronic and thermal subsystems for CIRAS, while the spacecraft will be a 6U CubeSat developed by Blue Canyon Technologies. This paper provides an overview of the design and acquisition approach, and provides a status of the current development.

  16. Exploiting artificial intelligence for in-situ analysis of high-resolution radio emission measurements on a CubeSat

    NASA Astrophysics Data System (ADS)

    Isham, Brett; Bergman, Jan; Krause, Linda; Rincon-Charris, Amilcar; Bruhn, Fredrik; Funk, Peter; Stramkals, Arturs

    2016-07-01

    CubeSat missions are intentionally constrained by the limitations of their small platform. Mission payloads designed for low volume, mass, and power, may however be disproportionally limited by available telemetry allocations. In many cases, it is the data delivered to the ground which determines the value of the mission. However, transmitting more data does not necessarily guarantee high value, since the value also depends on data quality. By exploiting fast on-board computing and efficient artificial intelligence (AI) algorithms for analysis and data selection, the usage of the telemetry link can be optimized and value added to the mission. This concept is being implemented on the Puerto Rico CubeSat, which will make measurements of ambient ionospheric radio waves and ion irregularities and turbulence. Principle project goals include providing aerospace and systems engineering experiences to students. Science objectives include the study of natural space plasma processes to aid in better understanding of space weather and the Sun to Earth connection, and in-situ diagnostics of ionospheric modification experiments using high-power ground-based radio transmitters. We hope that this project might point the way to the productive use of AI in space and other remote, low-data-bandwidth environments.

  17. Concept, Design, and Prototyping of XSAS: A High Power Extendable Solar Array for CubeSat Applications

    NASA Technical Reports Server (NTRS)

    Senatore, Patrick; Klesh, Andrew; Zurbuchen, Thomas H.; McKague, Darren; Cutler, James

    2010-01-01

    CubeSats have proven themselves as a reliable and cost-effective method to perform experiments in space, but they are highly constrained by their specifications and size. One such constraint is the average continuous power, about 5 W, which is available to the typical CubeSat. To improve this constraint, we have developed the eXtendable Solar Array System (XSAS), a deployable solar array prototype in a CubeSat package, which can provide an average 23 W of continuous power. The prototype served as a technology demonstrator for the high risk mechanisms needed to release, deploy, and control the solar array. Aside from this drastic power increase, it is in the integration of each mechanism, their application within the small CubeSat form-factor, and the inherent passive control benefit of the deployed geometry that make XSAS a novel design. In this paper, we discuss the requirements and design process for the XSAS system and mechanical prototype, and provide qualitative and quantitative results from numerical simulations and prototype tests. We also discuss future work, including an upcoming NASA zero-gravity flight campaign, to further improve on XSAS and prepare it for future launch opportunities.

  18. Preliminary Analysis of Delta-V Requirements for a Lunar CubeSat Impactor with Deployment Altitude Variations

    NASA Astrophysics Data System (ADS)

    Song, Young-Joo; Ho, Jin; Kim, Bang-Yeop

    2015-09-01

    Characteristics of delta-V requirements for deploying an impactor from a mother-ship at different orbital altitudes are analyzed in order to prepare for a future lunar CubeSat impactor mission. A mother-ship is assumed to be orbiting the moon with a circular orbit at a 90 deg inclination and having 50, 100, 150, 200 km altitudes. Critical design parameters that are directly related to the success of the impactor mission are also analyzed including deploy directions, CubeSat flight time, impact velocity, and associated impact angles. Based on derived delta-V requirements, required thruster burn time and fuel mass are analyzed by adapting four different miniaturized commercial onboard thrusters currently developed for CubeSat applications. As a result, CubeSat impact trajectories as well as thruster burn characteristics deployed at different orbital altitudes are found to satisfy the mission objectives. It is concluded that thrust burn time should considered as the more critical design parameter than the required fuel mass when deducing the onboard propulsion system requirements. Results provided through this work will be helpful in further detailed system definition and design activities for future lunar missions with a CubeSat-based payload.

  19. Small Satellites for Secondary Students

    NASA Astrophysics Data System (ADS)

    Zack, Kevin; Cominsky, Lynn

    2012-11-01

    Small Satellites for Secondary Students is a program funded by a three-year grant from NASA to bridge the gap in STEM education for secondary-school students. This is accomplished by creating the educational resources that are needed to support the development of a small scientific payload in alignment with scientific and technological education standards. The prototype payloads are flexible multi-experiment platforms designed to accommodate a wide range of student abilities with minimal resource requirements. The heart of each payload is an Arduino microcontroller which communicates with components that provide sensor data, Global Positioning System information, and which offer on-board data storage. The payload is built with off-the-shelf components and a pre-etched, custom-designed connector board. The platform also supports real-time telemetry updates through the use of Wi-Fi. To date, the prototype payloads have been tested on both high-powered rockets reaching over 3km and weather balloons tethered at 300m. Multiple successful rocket test runs reaching 1km have been conducted in partnership with amateur rocket clubs including the Association of Experimental Rocketry of the Pacific. From these flights, we are continuing to improve the payload design in order to increase the likelihood of student success.

  20. SMARD-REXUS-18: Development and Verification of an SMA Based CubeSat Solar Panel Deployment Mechanism

    NASA Astrophysics Data System (ADS)

    Grulich, M.; Koop, A.; Ludewig, P.; Gutsmiedl, J.; Kugele, J.; Ruck, T.; Mayer, I.; Schmid, A.; Dietmann, K.

    2015-09-01

    SMARD (Shape Memory Alloy Reusable Deployment Mechanism) is an experiment for a sounding rocket developed by students at Technische Universität MUnchen (TUM). It was launched in March 2015 on REXUS 18 (Rocket Experiments for University Students). The goal of SMARD was to develop a solar panel holddown and release mechanism (HDRM) for a CubeSat using shape memory alloys (SMA) for repeatable actuation and the ability to be quickly resettable. This paper describes the technical approach as well as the technological development and design of the experiment platform, which is capable of proving the functionality of the deployment mechanism. Furthermore, the realization of the experiment as well as the results of the flight campaign are presented. Finally, the future applications of the developed HDRM and its possible further developments are discussed.

  1. Kalman filter implementation for small satellites using constraint GPS data

    NASA Astrophysics Data System (ADS)

    Wesam, Elmahy M.; Zhang, Xiang; Lu, Zhengliang; Liao, Wenhe

    2017-06-01

    Due to the increased need for autonomy, an Extended Kalman Filter (EKF) has been designed to autonomously estimate the orbit using GPS data. A propagation step models the satellite dynamics as a two body with J2 (second zonal effect) perturbations being suitable for orbits in altitudes higher than 600 km. An onboard GPS receiver provides continuous measurement inputs. The continuity of measurements decreases the errors of the orbit determination algorithm. Power restrictions are imposed on small satellites in general and nanosatellites in particular. In cubesats, the GPS is forced to be shut down most of the mission’s life time. GPS is turned on when experiments like atmospheric ones are carried out and meter level accuracy for positioning is required. This accuracy can’t be obtained by other autonomous sensors like magnetometer and sun sensor as they provide kilometer level accuracy. Through simulation using Matlab and satellite tool kit (STK) the position accuracy is analyzed after imposing constrained conditions suitable for small satellites and a very tight one suitable for nanosatellite missions.

  2. Young students, satellites aid understanding of climate-biosphere link

    NASA Astrophysics Data System (ADS)

    White, Michael A.; Schwartz, Mark D.; Running, Steven W.

    Data collected by young students from kindergarten through high school are being combined with satellite data to develop a more consistent understanding of the intimate connection between climate dynamics and the terrestrial biosphere. Comparison of the two sets of data involving the onset of budburst among trees and other vegetation has been extremely encouraging.Surface-atmosphere interactions involving exchanges of carbon, water, and energy are strongly affected by interannual variability in the timing and length of the vegetation growing season, and satellite remote sensing has the unique ability to consistently monitor global spatiotemporal variability in growing season dynamics. But without a clear picture of how satellite information (Figure 1) relates to ground conditions, the application of satellite growing season estimates for monitoring of climate-vegetation interactions, calculation of energy budgets, and large-scale ecological modeling is extremely limited.The integrated phenological analysis of field data, satellite observations, and climate advocated by Schwartz [1998], for example, has been primarily limited by the lack of geographically extensive and consistently measured phenology databases.

  3. Asteroid Origins Satellite (AOSAT) I: An On-orbit Centrifuge Science Laboratory

    NASA Astrophysics Data System (ADS)

    Lightholder, Jack; Thoesen, Andrew; Adamson, Eric; Jakubowski, Jeremy; Nallapu, Ravi; Smallwood, Sarah; Raura, Laksh; Klesh, Andrew; Asphaug, Erik; Thangavelautham, Jekan

    2017-04-01

    Exploration of asteroids, comets and small moons (small bodies) can answer fundamental questions relating to the formation of the solar system, the availability of resources, and the nature of impact hazards. Near-earth asteroids and the small moons of Mars are potential targets of human exploration. But as illustrated by recent missions, small body surface exploration remains challenging, expensive, and fraught with risk. Despite their small size, they are among the most extreme planetary environments, with low and irregular gravity, loosely bound regolith, extreme temperature variation, and the presence of electrically charged dust. Here we describe the Asteroid Origins Satellite (AOSAT-I), an on-orbit, 3U CubeSat centrifuge using a sandwich-sized bed of crushed meteorite fragments to replicate asteroid surface conditions. Demonstration of this CubeSat will provide a low-cost pathway to physical asteroid model validation, shed light on the origin and geophysics of asteroids, and constrain the design of future landers, rovers, resource extractors, and human missions. AOSAT-I will conduct scientific experiments within its payload chamber while operating in two distinct modes: (1) as a nonrotating microgravity laboratory to investigate primary accretion, and (2) as a rotating centrifuge producing artificial milligravity to simulate surface conditions on asteroids, comets and small moons. AOSAT-I takes advantage of low-cost, off-the-shelf components, modular design, and the rapid assembly and instrumentation of the CubeSat standard, to answer fundamental questions in planetary science and reduce cost and risk of future exploration.

  4. Pharmacy Student Engagement, Performance, and Perception in a Flipped Satellite Classroom

    PubMed Central

    McLaughlin, Jacqueline E.; Griffin, LaToya M.; Esserman, Denise A.; Davidson, Christopher A.; Glatt, Dylan M.; Roth, Mary T.; Gharkholonarehe, Nastaran

    2013-01-01

    Objective. To determine whether “flipping” a traditional basic pharmaceutics course delivered synchronously to 2 satellite campuses would improve student academic performance, engagement, and perception. Design. In 2012, the basic pharmaceutics course was flipped and delivered to 22 satellite students on 2 different campuses. Twenty-five condensed, recorded course lectures were placed on the course Web site for students to watch prior to class. Scheduled class periods were dedicated to participating in active-learning exercises. Students also completed 2 course projects, 3 midterm examinations, 8 graded quizzes, and a cumulative and comprehensive final examination. Assessment. Results of a survey administered at the beginning and end of the flipped course in 2012 revealed an increase in students’ support for learning content prior to class and using class time for more applied learning (p=0.01) and in the belief that learning key foundational content prior to coming to class greatly enhanced in-class learning (p=0.001). Significantly more students preferred the flipped classroom format after completing the course (89.5%) than before completing the course (34.6%). Course evaluation responses and final examination performance did not differ significantly for 2011 when the course was taught using a traditional format and the 2012 flipped-course format. Qualitative findings suggested that the flipped classroom promoted student empowerment, development, and engagement. Conclusion. The flipped pharmacy classroom can enhance the quality of satellite students’ experiences in a basic pharmaceutics course through thoughtful course design, enriched dialogue, and promotion of learner autonomy. PMID:24249858

  5. Project ELaNa and NASA's CubeSat Initiative

    NASA Technical Reports Server (NTRS)

    Skrobot, Garrett Lee

    2010-01-01

    This slide presentation reviews the NASA program to use expendable lift vehicles (ELVs) to launch nanosatellites for the purpose of enhancing educational research. The Education Launch of Nanosatellite (ELaNa) project, run out of the Launch Services Program is requesting proposals for CubeSat type payload to provide information that will aid or verify NASA Projects designs while providing higher educational research

  6. Onboard Processing and Autonomous Operations on the IPEX Cubesat

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Doubleday, Joshua; Ortega, Kevin; Flatley, Tom; Crum, Gary; Geist, Alessandro; Lin, Michael; Williams, Austin; Bellardo, John; Puig-Suari, Jordi; hide

    2012-01-01

    IPEX is a 1u Cubesat sponsored by NASA Earth Science Technology Office (ESTO), the goals or which are: (1) Flight validate high performance flight computing, (2) Flight validate onboard instrument data processing product generation software, (3) flight validate autonomous operations for instrument processing, (4) enhance NASA outreach and university ties.

  7. CubeSat infrared atmospheric sounder (CIRAS) NASA InVEST technology demonstration

    NASA Astrophysics Data System (ADS)

    Pagano, Thomas S.

    2017-02-01

    Infrared sounders measure the upwelling radiation of the Earth in the Midwave Infrared (MWIR) and Longwave Infrared (LWIR) region of the spectrum with global daily coverage from space. The observed radiances are assimilated into weather forecast models and used to retrieve lower tropospheric temperature and water vapor for climate studies. There are several operational sounders today including the Atmospheric Infrared Sounder (AIRS) on Aqua, the Crosstrack Infrared Sounder (CrIS) on Suomi NPP and JPSS, and the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp spacecraft. The CubeSat Infrared Atmospheric Sounder (CIRAS) is a NASA In-flight Validation of Earth Science Technologies (InVEST) program to demonstrate three new instrument technologies in an imaging sounder configuration. The first is a 2D array of High Operating Temperature Barrier Infrared Detector (HOT-BIRD) material, selected for its high uniformity, low cost, low noise and higher operating temperatures than traditional materials. The detectors are hybridized to a commercial ROIC and commercial camera electronics. The second technology is a MWIR Grating Spectrometer (MGS) designed to provide imaging spectroscopy for atmospheric sounding in a CubeSat volume. The MGS employs an immersion grating or grism, has no moving parts, and is based on heritage spectrometers including the OCO- 2. The third technology is a Black Silicon infrared blackbody calibration target. The Black Silicon offers very low reflectance over a broad spectral range on a flat surface and is more robust than carbon nanotubes. JPL will also develop the mechanical, electronic and thermal subsystems for the CIRAS payload. The spacecraft will be a commercially available CubeSat. The integrated system will be a complete 6U CubeSat capable of measuring temperature and water vapor profiles with good lower tropospheric sensitivity. The low cost of CIRAS enables multiple units to be flown to improve temporal coverage or measure 3D

  8. The First Deep Space Cubesat Broadband IR Spectrometer, Lunarcubes, and the Search for Lunar Volatiles

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Malphrus, Ben; Reuter, Dennis; MacDowall, Robert; Folta, David; Hurford, Terry; Brambora, Cliff; Farrell, William

    2017-01-01

    BIRCHES is the compact broadband IR spectrometer of the Lunar Ice Cube mission. Lunar Ice Cube is one of 13 6U cubesats that will be deployed by EM1 in cislunar space, qualifying as lunarcubes. The LunarCube paradigm is a proposed approach for extending the affordable CubeSat standard to support access to deep space via cis-lunar/lunar missions. Because the lunar environment contains analogs of most solar system environments, the Moon is an ideal target for both testing critical deep space capabilities and understanding solar system formation and processes. Effectively, as developments are occurring in parallel, 13 prototype deep space cubesats are being flown for EM1. One useful outcome of this 'experiment' will be to determine to what extent it is possible to develop a lunarcube 'bus' with standardized interfaces to all subsystems using reasonable protocols for a variety of payloads. The lunar ice cube mission was developed as the test case in a GSFC R&D study to determine whether the cubesat paradigm could be applied to deep space, science requirements driven missions, and BIRCHES was its payload. JPL's Lunar Flashlight, and Arizona State University's LunaH-Map, both also EM1 lunar orbiters, will also be deployed from EM1 and provide complimentary observations to be used in understanding volatile dynamics in the same time frame.

  9. Student Achievement and Attitude in a Satellite-Delivered High School Science Course.

    ERIC Educational Resources Information Center

    Martin, Elaine D.; Rainey, Larry

    1993-01-01

    Discusses results of a study of high school students that was conducted to determine, through measures of student achievement, the educational effectiveness of interactive satellite delivery compared with traditional classroom instruction in anatomy and physiology and to compare the attitudes toward anatomy and physiology of distance students and…

  10. Developing Printed Supplementary Materials to Accompany Satellite Programming for Junior High School Students. Satellite Technology Demonstration, Technical Report No. 0508.

    ERIC Educational Resources Information Center

    Lonsdale, Helen C.; O'Neill, Donald W.

    To implement a career education program for junior high school students in the rural, isolated areas of the Rocky Mountain States, Satellite Technology Demonstration (STD) tested the use of a satellite-assisted communications system for the delivery of social services. A magazine was designed to promote acceptance of the television programing and…

  11. LVGEMS Time-of-Flight Mass Spectrometry on Satellites

    NASA Technical Reports Server (NTRS)

    Herrero, Federico

    2013-01-01

    NASA fs investigations of the upper atmosphere and ionosphere require measurements of composition of the neutral air and ions. NASA is able to undertake these observations, but the instruments currently in use have their limitations. NASA has extended the scope of its research in the atmosphere and now requires more measurements covering more of the atmosphere. Out of this need, NASA developed multipoint measurements using miniaturized satellites, also called nanosatellites (e.g., CubeSats), that require a new generation of spectrometers that can fit into a 4 4 in. (.10 10 cm) cross-section in the upgraded satellites. Overall, the new mass spectrometer required for the new depth of atmospheric research must fulfill a new level of low-voltage/low-power requirements, smaller size, and less risk of magnetic contamination. The Low-Voltage Gated Electrostatic Mass Spectrometer (LVGEMS) was developed to fulfill these requirements. The LVGEMS offers a new spectrometer that eliminates magnetic field issues associated with magnetic sector mass spectrometers, reduces power, and is about 1/10 the size of previous instruments. LVGEMS employs the time of flight (TOF) technique in the GEMS mass spectrometer previously developed. However, like any TOF mass spectrometer, GEMS requires a rectangular waveform of large voltage amplitude, exceeding 100 V -- that means that the voltage applied to one of the GEMS electrodes has to change from 0 to 100 V in a time of only a few nanoseconds. Such electronic speed requires more power than can be provided in a CubeSat. In the LVGEMS, the amplitude of the rectangular waveform is reduced to about 1 V, compatible with digital electronics supplies and requiring little power.

  12. Versatile Satellite Architecture and Technology: A New Architecture for Low Cost Satellite Missions for Solar-Terrestrial Studies

    NASA Astrophysics Data System (ADS)

    Cook, T. A.; Chakrabarti, S.; Polidan, R.; Jaeger, T.; Hill, L.

    2011-12-01

    Early in the 20th century, automobiles appeared as extraordinary vehicles - and now they are part of life everywhere. Late in the 20th century, internet and portable phones appeared as innovations - and now omni-present requirements. At mid-century, the first satellites were launched into space - and now 50 years later - "making a satellite" remains in the domain of highly infrequent events. Why do all universities and companies not have their own satellites? Why is the work force capable of doing so remarkably small? Why do highly focused science objectives that require just a glimpse from space never get a chance to fly? Historically, there have been two primary impediments to place an experiment in orbit - high launch costs and the high cost of spacecraft systems and related processes. The first problem appears to have been addressed through the availability of several low-cost (< $10M) commercial launch opportunities. The Versatile Satellite Architecture and Technology (VerSAT) will address the second. Today's space missions are often large, complex and require development times typically a decade from conception to execution. In present risk-averse scenario, the huge expense of these one-of-a-kind mission architecture can only be justified if the technology required to make orders of magnitude gains is flight-proven at the time mission conception. VerSAT will complement these expensive missions which are "too large to fail" and the CUBESATs. A number of Geospace science experiments that could immediately take advantage of VerSAT have been identified. They range from the study of fundamental questions of the "ignorosphere" from a single satellite lasting a few days - a region of space that was probed once about 40 years ago, to a constellation of satellites which will disentangle the space and time ambiguity of the variability of ionospheric structures and their link to the storms in the Sun to long-term studies of the Sun-Earth system. VerSAT is a true

  13. NOAA Interest in Small Satellite Solutions for Mitigation of Data Gaps

    NASA Astrophysics Data System (ADS)

    Caulfield, M.; Tewey, K.; John, P.

    2016-12-01

    The National Oceanic and Atmospheric Administration (NOAA) is undertaking a strategy to achieve satellite constellation robustness by 2023 to maintain continuity of polar satellite observations, which are central to NOAA's weather forecast capability. NOAA's plans include mitigation activities in the event of a loss of polar observations. In 2017, NOAA will begin development of the Earth Observing Nanosatellite - Microwave (EON-MW). EON-MW is a miniature microwave sounder that approximates the atmospheric profiling capabilities of the Advanced Technology Microwave Sounder (ATMS) instrument on the NOAA Joint Polar Satellite System (JPSS). NOAA is collaborating with the Massachusetts Institute of Technology's Lincoln Laboratory (MIT / LL) on EON-MW, which includes 2 years of risk reduction efforts to further define the EON-MW mission and identify and manage key technical risks. These studies will refine designs and evaluate system trades for operational earth observations from a U-class satellite platform, as well as examine microwave sensor concepts and investigated payload architecture to support microwave frequencies for atmospheric remote sensing. Similar to EON-MW, NOAA is also investigating the potential to mitigate against the loss of the JPSS Cross Track Infrared Sounder (CrIS) data with a CubeSat based mid-wave Infrared sounder. NOAA is collaborating with the Jet Propulsion Laboratory (JPL) to design the Earth Observation Nanosatellite-Infrared (EON-IR). EON-IR will leverage the NASA-JPL CubSat based infrared sounder CubSat Infrared Atmospheric Sounder (CIRAS) mission. In FY 2015 NOAA funded a study to analyze the feasibility of meeting the essential requirements of the CrIS from a CubeSat platform and began exploring the basic design of the EON-IR payload and bus. NOAA will continue to study EON-IR in 2016 by examining ways to modify the CIRAS design to better meet NOAA's observational and operational needs. These modifications will aim to increase mission

  14. Development Of VHF (240-270 MHz) Antennas For SoOp (Signal Of Opportunity) Receiver For 6u Cubesat Platforms

    NASA Technical Reports Server (NTRS)

    Joseph, A. T.; Deshpande, M.; O'Neill, P. E.; Miles, L.

    2016-01-01

    The main goal of this research is to design, fabricate, and test deployable VHF antennas for 6U Cubesat platforms to enable validation of root zone soil moisture (RZSM) estimation algorithms for signal of opportunity (SoOp) remote sensing over the 240-270 MHz frequency band. The proposed work provides a strong foundation for establishing a technology development path for maturing a truly global direct surface soil moisture (SM) and RZSM measurement system (Figure 1) over a variety of land covers with limited density restrictions. In SoOp methodology, signals transmitted by already existing transmitters (known as transmitters of opportunity, in this case the Military Satellite Communication (MilSatCom) System's UHF Follow-On program) are utilized to measure properties of reflecting targets by recording reflected signals using a simple passive microwave receiver.

  15. Inflatable Antenna for CubeSat: Extension of the Previously Developed S-Band Design to the X-Band

    NASA Technical Reports Server (NTRS)

    Babuscia, Alessandra; Choi, Thomas; Cheung, Kar-Ming; Thangavelautham, Jekan; Ravichandran, Mithun; Chandra, Aman

    2015-01-01

    The inflatable antenna for CubeSat is a 1 meter antenna reflector designed with one side reflective Mylar, another side clear Mylar with a patch antenna at the focus. The development of this technology responds to the increasing need for more capable communication systems to allow CubeSats to operate autonomously in interplanetary missions. An initial version of the antenna for the S-Band was developed and tested in both anechoic chamber and vacuum chamber. Recent developments in transceivers and amplifiers for CubeSat at X-band motivated the extension from the S-Band to the X-Band. This paper describes the process of extending the design of the antenna to the X-Band focusing on patch antenna redesign, new manufacturing challenges and initial results of experimental tests.

  16. NASA Operational Simulator for Small Satellites: Tools for Software Based Validation and Verification of Small Satellites

    NASA Technical Reports Server (NTRS)

    Grubb, Matt

    2016-01-01

    The NASA Operational Simulator for Small Satellites (NOS3) is a suite of tools to aid in areas such as software development, integration test (IT), mission operations training, verification and validation (VV), and software systems check-out. NOS3 provides a software development environment, a multi-target build system, an operator interface-ground station, dynamics and environment simulations, and software-based hardware models. NOS3 enables the development of flight software (FSW) early in the project life cycle, when access to hardware is typically not available. For small satellites there are extensive lead times on many of the commercial-off-the-shelf (COTS) components as well as limited funding for engineering test units (ETU). Considering the difficulty of providing a hardware test-bed to each developer tester, hardware models are modeled based upon characteristic data or manufacturers data sheets for each individual component. The fidelity of each hardware models is such that FSW executes unaware that physical hardware is not present. This allows binaries to be compiled for both the simulation environment, and the flight computer, without changing the FSW source code. For hardware models that provide data dependent on the environment, such as a GPS receiver or magnetometer, an open-source tool from NASA GSFC (42 Spacecraft Simulation) is used to provide the necessary data. The underlying infrastructure used to transfer messages between FSW and the hardware models can also be used to monitor, intercept, and inject messages, which has proven to be beneficial for VV of larger missions such as James Webb Space Telescope (JWST). As hardware is procured, drivers can be added to the environment to enable hardware-in-the-loop (HWIL) testing. When strict time synchronization is not vital, any number of combinations of hardware components and software-based models can be tested. The open-source operator interface used in NOS3 is COSMOS from Ball Aerospace. For

  17. Scientific Objectives of Electron Losses and Fields INvestigation Onboard Lomonosov Satellite

    NASA Astrophysics Data System (ADS)

    Shprits, Y. Y.; Angelopoulos, V.; Russell, C. T.; Strangeway, R. J.; Runov, A.; Turner, D.; Caron, R.; Cruce, P.; Leneman, D.; Michaelis, I.; Petrov, V.; Panasyuk, M.; Yashin, I.; Drozdov, A.; Russell, C. L.; Kalegaev, V.; Nazarkov, I.; Clemmons, J. H.

    2018-02-01

    The objective of the Electron Losses and Fields INvestigation on board the Lomonosov satellite (ELFIN-L) project is to determine the energy spectrum of precipitating energetic electrons and ions and, together with other polar-orbiting and equatorial missions, to better understand the mechanisms responsible for scattering these particles into the atmosphere. This mission will provide detailed measurements of the radiation environment at low altitudes. The 400-500 km sun-synchronous orbit of Lomonosov is ideal for observing electrons and ions precipitating into the atmosphere. This mission provides a unique opportunity to test the instruments. Similar suite of instruments will be flown in the future NSF- and NASA-supported spinning CubeSat ELFIN satellites which will augment current measurements by providing detailed information on pitch-angle distributions of precipitating and trapped particles.

  18. The CubeSat Infrared Atmospheric Sounder (CIRAS): Demonstrating key technologies for a future constellation to improve temporal sampling

    NASA Astrophysics Data System (ADS)

    Pagano, T. S.

    2016-12-01

    Hyperspectral infrared sounding of the atmosphere has become a vital element in the observational system for weather forecast prediction at National Weather Prediction (NWP) centers worldwide. The NASA Atmospheric Infrared Sounder (AIRS) instrument was the pathfinder for the hyperspectral infrared observations and was designed to provide accurate atmospheric temperature and water vapor profile information in support of weather prediction. AIRS was launched in 2002 and continues to operate well. The Cross-track Infrared Sounder (CrIS) on the Suomi NPP satellite was launched in 2011 to continue the AIRS measurement record. CrIS also continues to operate well and additional sensors are planned for launch promising to continue the hyperspectral infrared measurements in support of NWP into the late 2030's. The high cost of IR sounders makes it costly to launch them into multiple orbits to improve temporal sampling, or into GEO, although EUMETSAT is planning a GEO IR Sounder to launch in the early 2020's. JPL NASA is offering an alternate hyperspectral IR sounder architecture for the future involving CubeSats. The latest technology in large format focal plane assemblies, wide field optics and active cryocoolers enables a reduction in size, mass and cost of the legacy sounders and offer new configurations. Lessons learned from AIRS and CrIS indicate that temperature and water vapor sounding in the lower troposphere can be achieved with only the MWIR portion of the spectrum. The CubeSat Infrared Atmospheric Sounder (CIRAS) employs only an MWIR spectrometer to achieve lower tropospheric temperature and water vapor profiles, but with comparable spatial, spectral and radiometric sensitivity in this band as AIRS and CrIS. CIRAS operates from 4.08-5.13 µm with 625 channels and spectral resolution of 1.2-2.0 cm-1. CIRAS employs an immersion grating spectrometer making the optics incredibly compact, and HOT-BIRD detectors enabling good uniformity and operability over the large

  19. Monitoring the High-Energy Radiation Environment of Exoplanets around Lowmass Stars with SPARCS (Star-Planet Activity Research CubeSat)

    NASA Astrophysics Data System (ADS)

    Shkolnik, Evgenya

    . - Photometry of nearby sources is an efficient use of a small aperture. - Unlike the HST, whose time is shared among many instruments and programs, a CubeSat can provide dedicated space-based long-term monitoring in the UV. Technology: SPARCS will advance UV detector technology by flying high quantum efficiency (QE), UV-optimized detectors developed at JPL. These “delta-doped” detectors have a long history of deployment demonstrating greater than 5x the sensitivity of the detectors used by GALEX. SPARCS will pave the way for their application in missions like LUVOIR or HabEx. Education: The SPARCS research program will train future scientists and mission leaders by mentoring five undergraduate students, three graduate students, and two post-doctoral scholars throughout all aspects of the mission, including engineering, science, data management and outreach. Relevance to NASA: The SPARCS mission will address NASA’s goals of identifying the characteristics and distribution of potentially habitable environments, including HZ planet hosts like Proxima and TRAPPIST-1. SPARCS will also be capable of ‘targetofopportunity’ UV observations of NASA’s TESS yield of rocky planets in M dwarf HZs, some of the first HZ planets to be spectroscopically characterized by JWST. SPARCS can provide the needed UV context for the interpretation of transmission and emission spectra of these potentially habitable planets. Further into the future, SPARCS results will inform the target strategy for the enormous telescopic investments in exoplanet science of LUVOIR or HabEx. SPARCS’ technology will fill a gap in NASA’s capabilities to observe low-mass stellar/planetary systems in the FUV and NUV. HST’s UV capabilities will not last much later than 2019, with future opportunities (e.g., LUVOIR) not arriving until sometime after 2035. The detector technology of this CubeSat will play a crucial role in these and interim UV-capable missions.

  20. NEUDOSE: A CubeSat Mission for Dosimetry of Charged Particles and Neutrons in Low-Earth Orbit.

    PubMed

    Hanu, A R; Barberiz, J; Bonneville, D; Byun, S H; Chen, L; Ciambella, C; Dao, E; Deshpande, V; Garnett, R; Hunter, S D; Jhirad, A; Johnston, E M; Kordic, M; Kurnell, M; Lopera, L; McFadden, M; Melnichuk, A; Nguyen, J; Otto, A; Scott, R; Wagner, D L; Wiendels, M

    2017-01-01

    During space missions, astronauts are exposed to a stream of energetic and highly ionizing radiation particles that can suppress immune system function, increase cancer risks and even induce acute radiation syndrome if the exposure is large enough. As human exploration goals shift from missions in low-Earth orbit (LEO) to long-duration interplanetary missions, radiation protection remains one of the key technological issues that must be resolved. In this work, we introduce the NEUtron DOSimetry & Exploration (NEUDOSE) CubeSat mission, which will provide new measurements of dose and space radiation quality factors to improve the accuracy of cancer risk projections for current and future space missions. The primary objective of the NEUDOSE CubeSat is to map the in situ lineal energy spectra produced by charged particles and neutrons in LEO where most of the preparatory activities for future interplanetary missions are currently taking place. To perform these measurements, the NEUDOSE CubeSat is equipped with the Charged & Neutral Particle Tissue Equivalent Proportional Counter (CNP-TEPC), an advanced radiation monitoring instrument that uses active coincidence techniques to separate the interactions of charged particles and neutrons in real time. The NEUDOSE CubeSat, currently under development at McMaster University, provides a modern approach to test the CNP-TEPC instrument directly in the unique environment of outer space while simultaneously collecting new georeferenced lineal energy spectra of the radiation environment in LEO.

  1. Lightweight Solar Power for Small Satellites

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    The innovation targets small satellites or CubeSats for which conventional deployable arrays are not feasible due to their size, weight and complexity. This novel solar cell array includes a thin and flexible photovoltaic cell applied to an inflatable structure to create a high surface area array for collecting solar energy in a lightweight, simple and deployable structure. The inflatable array, with its high functional surface area, eliminates the need and the mechanisms required to point the system toward the sun. The power density achievable in these small arrays is similar to that of conventional high-power deployable/pointable arrays used on large satellites or space vehicles. Although inflatable solar arrays have been previously considered by others, the arrays involved the use of traditional rigid solar cells. Researchers are currently working with thin film photovoltaics from various suppliers so that the NASA innovation is not limited to any particular solar cell technology. NASA has built prototypes and tested functionality before and after inflation. As shown in the current-voltage currents below, deployment does not damage the cell performance.

  2. Ultra-Compact Ka-Band Parabolic Deployable Antenna for RADAR and Interplanetary CubeSats

    NASA Technical Reports Server (NTRS)

    Sauder, Jonathan; Chahat, Nacer; Thomson, Mark; Hodges, Richard; Peral, Eva; Rahmat-Samii, Yahya

    2015-01-01

    Over the past several years, technology and launch opportunities for CubeSats have exploded, enabling a wide variety of missions. However, as instruments become more complex and CubeSats travel deeper into space, data communication rates become an issue. To solve this challenge, JPL has initiated a research and technology development effort to design a 0.5 meter Ka-band parabolic deployable antenna (KaPDA) which would stow in 1.5U (10 x 10 x 15 cu cm) and provide 42dB of gain (50% efficiency). A folding rib architecture and dual reflector Cassegrainian design was selected as it best balances RF gain and stowed size. The design implements an innovative telescoping waveguide and gas powered deployment. RF simulations show that after losses, the antenna would have over 42 dB gain, supported by preliminary test results. KaPDA would create opportunities for a host of new CubeSat missions by allowing high data rate communication which would enable using high fidelity instruments or venturing further into deep space, including potential interplanetary missions. Additionally KaPDA would provide a solution for other small antenna needs and the opportunity to obtain Earth science data. This paper discusses the design challenges encountered, the architecture of the solution, and the antennas expected performance capabilities.

  3. Small- and Large-scale Morphology of the Near-Earth Energetic Charged Particle Environment from a Ten-element CubeSat Constellation

    NASA Astrophysics Data System (ADS)

    Klumpar, D. M.; Gunderson, A.

    2014-12-01

    A 10-satellite constellation placed in Low Earth Orbit (LEO) will carry high geometric factor omnidirectional integrating energetic particle detectors responsive to electrons greater than ~500 keV to characterize the near-Earth distribution of Van Allen Belt electrons precipitating or mirroring at altitudes between ~350 and ~500 km. The full constellation will be constructed by two deployments of identical 1.5U CubeSats into LEO. The first launch will deploy eight satellites into a polar sun-synchronous orbit from the Island of Kauai in the Hawaiian Islands to form the NASA/Ames Research Center "Edison Demonstration of Smallsat Networks" (EDSN) swarm of satellites. The on-board Energetic Particle Integrating Space Environment Monitor (EPISEM) instrument built by the Space Science and Engineering Laboratory at Montana State University consists of a cylindrical 12 cm*2-ster omnidirectional Geiger counter sensitive to electrons above about 500 keV. The eight EDSN satellites are expected to deploy in late November 2014 into an 410 x 485 km orbit at ~92 degrees inclination forming two slowly-separating groups of four measurement platforms each to set up the initial 8-satellite swarm. Separately, two additional copies of the EDSN satellites will deploy from the International Space Station as elements of the NODES mission into a 52 degree inclination orbit at about 375 km altitude. Together the 10 satellites will characterize the distribution of low altitude penetrating electrons over spatial scales from 10's to thousands of km. The paper will describe the mission concept, the implementation of the spacecraft, and the unusual operations concept that allows stored science data to be collected from all eight satellites of the EDSN swarm through an intersatellite communications link and transferred to the ground by a single member of the swarm. The EDSN satellites operate completely autonomously without ground uplink. The paper will also include early scientific results if

  4. Using a Very Big Rocket to take Very Small Satellites to Very Far Places

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara

    2017-01-01

    Planetary science cubesats are being built. Insight (2018) will carry 2 cubesats to provide communication links to Mars. EM-1 (2019) will carry 13 cubesat-class missions to further smallsat science and exploration capabilities. Planetary science cubesats have more in common with large planetary science missions than LEO cubesats- need to work closely with people who have deep-space mission experience

  5. The Ability of Grade 5 Students To Use Radarsat Satellite Images.

    ERIC Educational Resources Information Center

    Kirman, Joseph M.; Busby, Stephanie

    2000-01-01

    A study examined the ability of 32 grade-5 students in Alberta (Canada) to interpret Radarsat satellite radar images. The students were able to interpret most elements of the images, but working directly with the CD-ROM proved too difficult for them. The Radarsat images have limited value as a geographic resource at the grade-5 level. (TD)

  6. LighSail Students Testing - ELaNa XI

    NASA Image and Video Library

    2014-09-23

    Students Alex Diaz and Riki Munakata of California Polytechnic State University testing the LightSail CubeSat. LightSail is a citizen-funded technology demonstration mission sponsored by the Planetary Society using solar propulsion for CubeSats. The spacecraft is designed to “sail” on the energy of solar photons striking the thin, reflective sail material. The first LightSail mission is designed to test the spacecraft’s critical systems, including the sequence to autonomously deploy a Mylar solar sail with an area of 32 square meters (344 square feet). The Planetary Society is planning a second, full solar sailing demonstration flight for 2016. Light is made of packets of energy called photons. While photons have no mass, they have energy and momentum. Solar sails use this momentum as a method of propulsion, creating flight by light. LightSail’s solar sail is packaged into a three-unit CubeSat about the size of a loaf of bread. Launched by NASA’s CubeSat Launch Initiative on the ELaNa XI mission as an auxiliary payload aboard the U.S. Air Force X-37B space plane mission on May 20, 2015.

  7. Laser Guidestar Satellite for Ground-based Adaptive Optics Imaging of Geosynchronous Satellites and Astronomical Targets

    NASA Astrophysics Data System (ADS)

    Marlow, W. A.; Cahoy, K.; Males, J.; Carlton, A.; Yoon, H.

    2015-12-01

    Real-time observation and monitoring of geostationary (GEO) satellites with ground-based imaging systems would be an attractive alternative to fielding high cost, long lead, space-based imagers, but ground-based observations are inherently limited by atmospheric turbulence. Adaptive optics (AO) systems are used to help ground telescopes achieve diffraction-limited seeing. AO systems have historically relied on the use of bright natural guide stars or laser guide stars projected on a layer of the upper atmosphere by ground laser systems. There are several challenges with this approach such as the sidereal motion of GEO objects relative to natural guide stars and limitations of ground-based laser guide stars; they cannot be used to correct tip-tilt, they are not point sources, and have finite angular sizes when detected at the receiver. There is a difference between the wavefront error measured using the guide star compared with the target due to cone effect, which also makes it difficult to use a distributed aperture system with a larger baseline to improve resolution. Inspired by previous concepts proposed by A.H. Greenaway, we present using a space-based laser guide starprojected from a satellite orbiting the Earth. We show that a nanosatellite-based guide star system meets the needs for imaging GEO objects using a low power laser even from 36,000 km altitude. Satellite guide star (SGS) systemswould be well above atmospheric turbulence and could provide a small angular size reference source. CubeSatsoffer inexpensive, frequent access to space at a fraction of the cost of traditional systems, and are now being deployed to geostationary orbits and on interplanetary trajectories. The fundamental CubeSat bus unit of 10 cm cubed can be combined in multiple units and offers a common form factor allowing for easy integration as secondary payloads on traditional launches and rapid testing of new technologies on-orbit. We describe a 6U CubeSat SGS measuring 10 cm x 20 cm x

  8. Investigating the Efficacy of CubeSats for Asteroid Detection

    NASA Technical Reports Server (NTRS)

    O'Toole, Conor

    2015-01-01

    A simulation to examine the potential of a network of CubeSats for detecting Near Earth Objects is discussed, in terms of goals, methods used and initial results obtained. By designing a basic optical system and the orbital parameters of the satellites in this network, their effectiveness for detecting asteroids is examined, with a small sample of cataloged asteroids considered.The conditions to be satisfied for detection cover both the geometrical aspects of astronomy such as field of view and line of sight, along with more technical optics-based conditions such as resolution and sensitivity of our telescopes. Of special interest to us in this work is the region of the sky between 45 deg. and 90 deg. from the Sun, as seen from the Earth. This part of the sky is currently unobservable by ground-based surveys and so provides the primary reason to consider a space-based one. There exist a number of issues with the simulation which call these results into question, but an eort has been made to remove those results which exceed the possible capabilities of the satellite network, and identify those aspects of the mission which should be examined in order to provide an in-depth assessment of it's performance. With these filters applied to the overall data, a tentative result of 1458 total detections over an 85 year period has been obtained, with 14 of the 22 asteroids in the sample being detected at least once. A number of ways in which the simulation could be improved are also proposed, both in-terms of addressing the aforementioned issues, as well as how to improve on the accuracy of the simulation and capture as many aspects of a space-based optical astronomy mission as possible,with the possible nal form of the simulation being a tool for assessing the performance of any space-based optical mission to detect asteroids.

  9. Making every gram count - Big measurements from tiny platforms (Invited)

    NASA Astrophysics Data System (ADS)

    Fish, C. S.; Neilsen, T. L.; Stromberg, E. M.

    2013-12-01

    The most significant advances in Earth, solar, and space physics over the next decades will originate from new, system-level observational techniques. The most promising technique to still be fully developed and exploited requires conducting multi-point or distributed constellation-based observations. This system-level observational approach is required to understand the 'big picture' coupling between disparate regions such as the solar-wind, magnetosphere, ionosphere, upper atmosphere, land, and ocean. The national research council, NASA science mission directorate, and the larger heliophysics community have repeatedly identified the pressing need for multipoint scientific investigations to be implemented via satellite constellations. The NASA Solar Terrestrial Probes Magnetospheric Multiscale (MMS) mission and NASA Earth Science Division's 'A-train', consisting of the AQUA, CloudSat, CALIPSO and AURA satellites, are examples of such constellations. However, the costs to date of these and other similar proposed constellations have been prohibitive given the 'large satellite' architectures and the multiple launch vehicles required for implementing the constellations. Financially sustainable development and deployment of multi-spacecraft constellations can only be achieved through the use of small spacecraft that allow for multiple hostings per launch vehicle. The revolution in commercial mobile and other battery powered consumer technology has helped enable researchers in recent years to build and fly very small yet capable satellites, principally CubeSats. A majority of the CubeSat activity and development to date has come from international academia and the amateur radio satellite community, but several of the typical large-satellite vendors have developed CubeSats as well. Recent government-sponsored CubeSat initiatives, such as the NRO Colony, NSF CubeSat Space Weather, NASA Office of Chief Technologist Edison and CubeSat Launch Initiative (CSLI) Educational

  10. MiniCOR: A miniature coronagraph for an interplanetary CUBESAT

    NASA Astrophysics Data System (ADS)

    Vourlidas, A.; Korendyke, C.; Liewer, P. C.; Cutler, J.; Howard, R.; Plunkett, S. P.; Thernisien, A. F.

    2015-12-01

    Coronagraphs occupy a unique place in Heliophysics, critical to both NAA and NOAA programs. They are the primary means for the study of the extended solar coorna and its short/long term activity. In addition coronagraphs are the only instrument that can image coronal mass ejections (CMEs) leaving the Sun and provide ciritical information for space weather forecasting. We descirbe a low cost miniaturzied CubeSat coronagraph, MiniCOR, designed to operate in deep space which will returndata with higher cadence and sensitivity than that from the SOHO/LASCO coronagraphs. MiniCOR is a six unit (6U) science craft with a tightly integrated, single instrument interplanetary flight system optiized for science. MiniCOR fully exploits recent technology advance in CubeSat technology and active pixel sensors. With a factor of 2.9 improvement in light gathering power over SOHO and quasi-continuous data collection, MiniCOR can observe the slow solar wind, CMEs and shocks with sufficient signal-to-noise ratio (SNR) to open new windows on our understanding of the inner Heliosphere. An operating Minic'OR would prvide coornagraphic observations in support of the upcoming Solar Probe Plus (SPP) and Solar Orbiter (SO) missions.

  11. Cubesat-Based Dtv Receiver Constellation for Ionospheric Tomography

    NASA Astrophysics Data System (ADS)

    Bahcivan, H.; Leveque, K.; Doe, R. A.

    2013-12-01

    The Radio Aurora Explorer mission, funded by NSF's Space Weather and Atmospheric Research program, has demonstrated the utility of CubeSat-based radio receiver payloads for ionospheric research. RAX has primarily been an investigation of microphysics of meter-scale ionospheric structures; however, the data products are also suitable for research on ionospheric effects on radio propagation. To date, the spacecraft has acquired (1) ground-based UHF radar signals that are backscattered from meter-scale ionospheric irregularities, which have been used to measure the dispersion properties of meter-scale plasma waves and (2) ground-based signals, directly on the transmitter-spacecraft path, which have been used to measure radio propagation disturbances (scintillations). Herein we describe the application of a CubeSat constellation of UHF receivers to expand the latter research topic for global-scale ionospheric tomography. The enabling factor for this expansion is the worldwide availability of ground-based digital television (DTV) broadcast signals whose characteristics are optimal for scintillation analysis. A significant part of the populated world have transitioned, or soon to be transitioned, to DTV. The DTV signal has a standard format that contains a highly phase-stable pilot carrier that can be readily adapted for propagation diagnostics. A multi-frequency software-defined radar receiver, similar to the RAX payload, can measure these signals at a large number of pilot carrier frequencies to make radio ray and diffraction tomographic measurements of the ionosphere and the irregularities contained in it. A constellation of CubeSats, launched simultaneously, or in sequence over years, similar to DMSPs, can listen to the DTV stations, providing a vast and dense probing of the ionosphere. Each spacecraft can establish links to a preprogrammed list of DTV stations and cycle through them using time-division frequency multiplexing (TDFM) method. An on board program can

  12. Model of Mars-Bound MarCO CubeSat

    NASA Image and Video Library

    2015-06-12

    Engineers for NASA's MarCO technology demonstration display a full-scale mechanical mock-up of the small craft in development as part of NASA's next mission to Mars. Mechanical engineer Joel Steinkraus and systems engineer Farah Alibay are on the team at NASA's Jet Propulsion Laboratory, Pasadena, California, preparing twin MarCO (Mars Cube One) CubeSats for a March 2016 launch. MarCO is the first interplanetary mission using CubeSat technologies for small spacecraft. The briefcase-size MarCO twins will ride along on an Atlas V launch vehicle lifting off from Vandenberg Air Force Base, California, with NASA's next Mars lander, InSight. The mock-up in the photo is in a configuration to show the deployed position of components that correspond to MarCO's two solar panels and two antennas. During launch, those components will be stowed for a total vehicle size of about 14.4 inches (36.6 centimeters) by 9.5 inches (24.3 centimeters) by 4.6 inches (11.8 centimeters). After launch, the two MarCO CubeSats and InSight will be navigated separately to Mars. The MarCO twins will fly past the planet in September 2016 just as InSight is descending through the atmosphere and landing on the surface. MarCO is a technology demonstration mission to relay communications from InSight to Earth during InSight's descent and landing. InSight communications during that critical period will also be recorded by NASA's Mars Reconnaissance Orbiter for delayed transmission to Earth. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. After launch, the MarCO twins and InSight will be navigated separately to Mars. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission

  13. The design and implementation of the Dynamic Ionosphere Cubesat Experiment (DICE) science instruments

    NASA Astrophysics Data System (ADS)

    Burr, Steven Reed

    Dynamic Ionosphere Cubesat Experiment (DICE) is a satellite project funded by the National Science Foundation (NSF) to study the ionosphere, more particularly Storm Enhanced Densities (SED) with a payload consisting of plasma diagnostic instrumentation. Three instruments onboard DICE include an Electric Field Probe (EFP), Ion Langmuir Probe (ILP), and Three Axis Magnetometer (TAM). The EFP measures electric fields from +/-8V and consists of three channels a DC to 40Hz channel, a Floating Potential Probe (FPP), and an spectrographic channel with four bands from 16Hz to 512Hz. The ILP measures plasma densities from 1x104 cm--3 to 2x107 cm--3. The TAM measures magnetic field strength with a range +/-0.5 Gauss with a sensitivity of 2nT. To achieve desired mission requirements careful selection of instrument requirements and planning of the instrumentation design to achieve mission success. The analog design of each instrument is described in addition to the digital framework required to sample the science data at a 70Hz rate and prepare the data for the Command and Data Handing (C&DH) system. Calibration results are also presented and show fulfillment of the mission and instrumentation requirements.

  14. Feasibility for Orbital Life Extension of a CubeSat in the Lower Thermosphere

    NASA Technical Reports Server (NTRS)

    Blandino, John J.; Martinez-Baquero, Nicolas; Demetriou, Michael A.; Gatsonis, Nikolaos A.; Paschalidis, Nicholas

    2016-01-01

    Orbital flight of CubeSats at altitudes between 150 and 250 km has the potential to enable a new class of scientific, commercial, and defense-related missions. A study is presented to demonstrate the feasibility of extending the orbital lifetime of a CubeSat in a 210 km orbit. Propulsion consists of an electrospray thruster operating at a 2 W, 0.175 mN thrust, and an specific impulse (Isp) of 500 s. The mission consists of two phases. In phase 1, the CubeSat is deployed from a 414 km orbit and uses the thruster to deorbit to the target altitude of 210 km. In phase 2, the propulsion system is used to extend the mission lifetime until propellant is fully expended. A control algorithm based on maintaining a target orbital energy is presented that uses an extended Kalman filter to generate estimates of the orbital dynamic state, which are periodically updated by Global Positioning System measurements. For phase 1, the spacecraft requires 25.21 days to descend from 414 to 210 km, corresponding to a delta V = 96.25 m/s and a propellant consumption of 77.8 g. Phase 2 lasts 57.83 days, corresponding to a delta V = 119.15 m/s, during which the remaining 94.2 g of propellant are consumed.

  15. Micropulsed Plasma Thrusters for Attitude Control of a Low-Earth-Orbiting CubeSat

    NASA Technical Reports Server (NTRS)

    Gatsonis, Nikolaos A.; Lu, Ye; Blandino, John; Demetriou, Michael A.; Paschalidis, Nicholas

    2016-01-01

    This study presents a 3-Unit CubeSat design with commercial-off-the-shelf hardware, Teflon-fueled micropulsed plasma thrusters, and an attitude determination and control approach. The micropulsed plasma thruster is sized by the impulse bit and pulse frequency required for continuous compensation of expected maximum disturbance torques at altitudes between 400 and 1000 km, as well as to perform stabilization of up to 20 deg /s and slew maneuvers of up to 180 deg. The study involves realistic power constraints anticipated on the 3-Unit CubeSat. Attitude estimation is implemented using the q method for static attitude determination of the quaternion using pairs of the spacecraft-sun and magnetic-field vectors. The quaternion estimate and the gyroscope measurements are used with an extended Kalman filter to obtain the attitude estimates. Proportional-derivative control algorithms use the static attitude estimates in order to calculate the torque required to compensate for the disturbance torques and to achieve specified stabilization and slewing maneuvers or combinations. The controller includes a thruster-allocation method, which determines the optimal utilization of the available thrusters and introduces redundancy in case of failure. Simulation results are presented for a 3-Unit CubeSat under detumbling, pointing, and pointing and spinning scenarios, as well as comparisons between the thruster-allocation and the paired-firing methods under thruster failure.

  16. Advances in Ka-Band Communication System for CubeSats and SmallSats

    NASA Technical Reports Server (NTRS)

    Kegege, Obadiah; Wong, Yen F.; Altunc, Serhat

    2016-01-01

    A study was performed that evaluated the feasibility of Ka-band communication system to provide CubeSat/SmallSat high rate science data downlink with ground antennas ranging from the small portable 1.2m/2.4m to apertures 5.4M, 7.3M, 11M, and 18M, for Low Earth Orbit (LEO) to Lunar CubeSat missions. This study included link analysis to determine the data rate requirement, based on the current TRL of Ka-band flight hardware and ground support infrastructure. Recent advances in Ka-band transceivers and antennas, options of portable ground stations, and various coverage distances were included in the analysis. The link/coverage analysis results show that Cubesat/Smallsat missions communication requirements including frequencies and data rates can be met by utilizing Near Earth Network (NEN) Ka-band support with 2 W and high gain (>6 dBi) antennas.

  17. Staff Training by Satellite: An Experiment in Student-Directed Learning

    ERIC Educational Resources Information Center

    Barker, Glenn; McCoy, Terry

    1978-01-01

    The Canadian Public Service Commission conducted an experimental course using the communication technology satellite for the experimental group and a conventional classroom for the control group. Both groups of forty managers had the same subject matter and used the same student-directed learning methodology. The article contains observations on…

  18. Global Precipitation Measurement (GPM) and International Space Station (ISS) Coordination for Cubesat Deployments

    NASA Technical Reports Server (NTRS)

    Pawloski, James H.; Aviles, Jorge; Myers, Ralph; Parris, Joshua; Corley, Bryan; Hehn, Garrett; Pascucci, Joseph

    2016-01-01

    This paper describes the specific problem of collision threat to GPM and risk to ISS CubeSat deployment and the process that was implemented to keep both missions safe from collision and maximize their project goals.

  19. Nanosatellite Launch Adapter System (NLAS)

    NASA Technical Reports Server (NTRS)

    Chartres, James; Cappuccio, Gelsomina

    2015-01-01

    The Nanosatellite Launch Adapter System (NLAS) was developed to increase access to space while simplifying the integration process of miniature satellites, called nanosats or CubeSats, onto launch vehicles. A standard CubeSat measures about 10 cm square, and is referred to as a 1-unit (1U) CubeSat. A single NLAS provides the capability to deploy 24U of CubeSats. The system is designed to accommodate satellites measuring 1U, 1.5U, 2U, 3U and 6U sizes for deployment into orbit. The NLAS may be configured for use on different launch vehicles. The system also enables flight demonstrations of new technologies in the space environment.

  20. BurstCube: A CubeSat for Gravitational Wave Counterparts

    NASA Astrophysics Data System (ADS)

    Perkins, Jeremy S.; Racusin, Judith; Briggs, Michael; de Nolfo, Georgia; Caputo, Regina; Krizmanic, John; McEnery, Julie E.; Shawhan, Peter; Morris, David; Connaughton, Valerie; Kocevski, Dan; Wilson-Hodge, Colleen A.; Hui, Michelle; Mitchell, Lee; McBreen, Sheila

    2018-01-01

    We present BurstCube, a novel CubeSat that will detect and localize Gamma-ray Bursts (GRBs). BurstCube is a selected mission that will detect long GRBs, attributed to the collapse of massive stars, short GRBs (sGRBs), resulting from binary neutron star mergers, as well as other gamma-ray transients in the energy range 10-1000 keV. sGRBs are of particular interest because they are predicted to be the counterparts of gravitational wave (GW) sources soon to be detectable by LIGO/Virgo. BurstCube contains 4 CsI scintillators coupled with arrays of compact low-power Silicon photomultipliers (SiPMs) on a 6U Dellingr bus, a flagship modular platform that is easily modifiable for a variety of 6U CubeSat architectures. BurstCube will complement existing facilities such as Swift and Fermi in the short term, and provide a means for GRB detection, localization, and characterization in the interim time before the next generation future gamma-ray mission flies, as well as space-qualify SiPMs and test technologies for future use on larger gamma-ray missions. The ultimate configuration of BurstCube is to have a set of ~10 BurstCubes to provide all-sky coverage to GRBs for substantially lower cost than a full-scale mission.

  1. CeREs_VCLS_CubeSat_0002

    NASA Image and Video Library

    2018-04-10

    A host of CubeSats, or small satellites, are undergoing the final stages of processing at Rocket Lab USA’s facility in Huntington Beach, California, for NASA’s first mission dedicated solely to spacecraft of their size. This will be the first launch under the agency’s new Venture Class Launch Services. Scientists, including those from NASA and various universities, began arriving at the facility in early April with spacecraft small enough to be a carry-on to be prepared for launch. A team from NASA’s Goddard Spaceflight Center in Greenbelt, Maryland, completed final checkouts of a CubeSat called the Compact Radiation Belt Explorer (CeREs), before placing the satellite into a dispenser to hold the spacecraft during launch inside the payload fairing. Among its missions, the satellite will examine the radiation belt and how electrons are energized and lost, particularly during events called microbursts — when sudden swarms of electrons stream into the atmosphere. This facility is the final stop for designers and builders of the CubeSats, but the journey will continue for the spacecraft. Rocket Lab will soon ship the satellites to New Zealand for launch aboard the company’s Electron orbital rocket on the Mahia Peninsula this summer. The CubeSats will be flown on an Educational Launch of Nanosatellites (ELaNa) mission to space through NASA’s CubeSat Launch Initiative. CeREs is one of the 10 ELaNa CubeSats scheduled to be a part of this mission.

  2. Development of an IVE/EVA Compatible Prototype Cold-Gas Cubesat Propulsion System at NASA/JSC

    NASA Technical Reports Server (NTRS)

    Radke, Christopher; Studak, Joseph

    2017-01-01

    Cold-gas propulsion systems are well suited for some applications because they are simple to design and build, have low operating costs, and are non-toxic. The inherent tradeoff, however, is their relatively low impulse density. Nevertheless, a modest propulsion system, sized for Cubesats and designed for affordability, presents an attractive system solution for some missions, such as an on-orbit inspection free-flyer. NASA has a long-standing effort to develop propulsion systems appropriate for very high delta-V cubesat missions, such as geo transfer orbits, and there are commercially available Cubesat propulsion systems with considerably more impulse capability, but, these are both prohibitively expensive for some development customers and face compatibility constraints for crewed applications, such as operation within ISS. A relatively conventional cold-gas system has been developed at NASA/JSC taking advantage of existing miniature industrial components, additive manufacturing techniques and in-house qualification of the system. The result is a nearly modular system with a 1U form factor. Compressed nitrogen is stored in a small high-pressure tank, then regulated and distributed to 12 thrusters. Maneuvering thrust can be adjusted, with a typical value of 40 mN, and the delta-V delivered to a 3U Cubesat would be approximately 7 m/s. These values correspond to the performance parameters for an inspection mission previously established at JSC for inspection of the orbiter prior to reentry. Environmental testing was performed to meet ISS launch and workmanship standards, along with the expected thermal environment for an inspection mission. Functionality has been demonstrated, and performance in both vacuum and relevant blow down scenarios was completed. Several avenues for further improvement are also explored. Details of the system, components, integration, tests, and test data are presented in this paper.

  3. The Instruments and Capabilities of the Miniature X-Ray Solar Spectrometer (MinXSS) CubeSats

    NASA Astrophysics Data System (ADS)

    Moore, Christopher S.; Caspi, Amir; Woods, Thomas N.; Chamberlin, Phillip C.; Dennis, Brian R.; Jones, Andrew R.; Mason, James P.; Schwartz, Richard A.; Tolbert, Anne K.

    2018-02-01

    The Miniature X-ray Solar Spectrometer (MinXSS) CubeSat is the first solar science oriented CubeSat mission flown for the NASA Science Mission Directorate, with the main objective of measuring the solar soft X-ray (SXR) flux and a science goal of determining its influence on Earth's ionosphere and thermosphere. These observations can also be used to investigate solar quiescent, active region, and flare properties. The MinXSS X-ray instruments consist of a spectrometer, called X123, with a nominal 0.15 keV full-width at half-maximum (FWHM) resolution at 5.9 keV and a broadband X-ray photometer, called XP. Both instruments are designed to obtain measurements from 0.5 - 30 keV at a nominal time cadence of 10 s. A description of the MinXSS instruments, performance capabilities, and relation to the Geostationary Operational Environmental Satellite (GOES) 0.1 - 0.8 nm flux is given in this article. Early MinXSS results demonstrate the capability of measuring variations of the solar spectral soft X-ray (SXR) flux between 0.8 - 12 keV from at least GOES A5-M5 (5 × 10^{-8} - 5 ×10^{-5} W m^{-2}) levels and of inferring physical properties (temperature and emission measure) from the MinXSS data alone. Moreover, coronal elemental abundances can be inferred, specifically for Fe, Ca, Si, Mg, S, Ar, and Ni, when the count rate is sufficiently high at each elemental spectral feature. Additionally, temperature response curves and emission measure loci demonstrate the MinXSS sensitivity to plasma emission at different temperatures. MinXSS observations coupled with those from other solar observatories can help address some of the most compelling questions in solar coronal physics. Finally, simultaneous observations by MinXSS and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) can provide the most spectrally complete soft X-ray solar flare photon flux measurements to date.

  4. Operations of a Radioisotope-based Propulsion System Enabling CubeSat Exploration of the Outer Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Steven Howe; Nathan Jerred; Troy Howe

    Exploration to the outer planets is an ongoing endeavor but in the current economical environment, cost reduction is the forefront of all concern. The success of small satellites such as CubeSats launched to Near-Earth Orbit has lead to examine their potential use to achieve cheaper science for deep space applications. However, to achieve lower cost missions; hardware, launch and operations costs must be minimized. Additionally, as we push towards smaller exploration beds with relative limited power sources, allowing for adequate communication back to Earth is imperative. Researchers at the Center for Space Nuclear Research are developing the potential of utilizingmore » an advanced, radioisotope-based system. This system will be capable of providing both the propulsion power needed to reach the destination and the additional requirements needed to maintain communication while at location. Presented here are a basic trajectory analysis, communication link budget and concept of operations of a dual-mode (thermal and electric) radioisotope-based propulsion system, for a proposed mission to Enceladus (Saturnian icy moon) using a 6U CubeSat payload. The radioisotope system being proposed will be the integration of three sub-systems working together to achieve the overall mission. At the core of the system, stored thermal energy from radioisotope decay is transferred to a passing propellant to achieve high thrust – useful for quick orbital maneuvering. An auxiliary closed-loop Brayton cycle can be operated in parallel to the thrusting mode to provide short bursts of high power for high data-rate communications back to Earth. Additionally, a thermal photovoltaic (TPV) energy conversion system will use radiation heat losses from the core. This in turn can provide the electrical energy needed to utilize the efficiency of ion propulsion to achieve quick interplanetary transit times. The intelligent operation to handle all functions of this system under optimized

  5. Multidirectional Cosmic Ray Ion Detector for Deep Space CubeSats

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.

    2016-01-01

    Understanding the nature of anisotropy of solar energetic protons (SEPs) and galactic cosmic ray (GCR) fluxes in the interplanetary medium is crucial in characterizing time-dependent radiation exposure in interplanetary space for future exploration missions. NASA Glenn Research Center has proposed a CubeSat-based instrument to study solar and cosmic ray ions in lunar orbit or deep space. The objective of Solar Proton Anisotropy and Galactic cosmic ray High Energy Transport Instrument (SPAGHETI) is to provide multi-directional ion data to further understand anisotropies in SEP and GCR flux. The instrument is to be developed using large area detectors fabricated from high density, high purity silicon carbide (SiC) to measure linear energy transfer (LET) of ions. Stacks of these LET detectors are arranged in a CubeSat at orthogonal directions to provide multidirectional measurements. The low-noise, thermally-stable nature of silicon carbide and its radiation tolerance allows the multidirectional array of detector stacks to be packed in a 6U CubeSat without active cooling. A concept involving additional coincidence/anticoincidence detectors and a high energy Cherenkov detector is possible to further expand ion energy range and sensitivity.

  6. Direct Geolocation of Satellite Images with the EO-CFI Libraries

    NASA Astrophysics Data System (ADS)

    de Miguel, Eduardo; Prado, Elena; Estebanez, Monica; Martin, Ana I.; Gonzalez, Malena

    2016-08-01

    The INTA Remote Sensing Laboratory has implemented a tool for the direct geolocation of satellite images. The core of the tool is a C code based on the "Earth Observation Mission CFI SW" from ESA. The tool accepts different types of inputs for satellite attitude (euler angles, quaternions, default attitude models). Satellite position can be provided either in ECEF or ECI coordinates. The line of sight of each individual detector is imported from an external file or is generated by the tool from camera parameters. Global DEM ACE2 is used to define ground intersection of the LOS.The tool has been already tailored for georeferencing images from the forthcoming Spanish Earth Observation mission SEOSat/Ingenio, and for the camera APIS onboard the INTA cubesat OPTOS. The next step is to configure it for the geolocation of Sentinel 2 L1b images.The tool has been internally validated by different means. This validation shows that the tool is suitable for georeferencing images from high spatial resolution missions. As part of the validation efforts, a code for simulating orbital info for LEO missions using EO-CFI has been produced.

  7. My Summer Internship at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Philpott, Hobert Leon

    2011-01-01

    During my summer internship at Kennedy Space Center, I worked on several projects with my mentor Grace Johnson in the Education Programs Office. My primary project was the CubeSat project in which my job was to help mentor Merritt Island High School students in the building of a CubeSat. CubeSats are picosatellites that are used to carry out auxiliary missions; they "piggy back" into orbit on launch vehicles launching primary missions. CubeSats come in the sizes of 1U (10 by 10 by 10 cm) 2U (1Ux2) and 3U (1Ux3). The Cube Sats are housed in a protective deploying device called a Poly Picosatellite Orbital Deplored (P-POD). I also participated in a Balloon Workshop with the MIHS students. This was an intense 4-day project in which we constructed a balloon satellite equipped with a camera whose main goal was to obtain video images of the curvature of the earth at high altitudes and relay it back down to our ground station. I also began developing my own science research program for minority serving institutions to be implemented when funding becomes available. In addition to the projects that I completed during my internship, I got the opportunity to go on various tours of the technological facilities here at Kennedy Space Center.

  8. Evaporation Using Planet Cubesats and the PT-JPL Model: A Precision Agriculture Application

    NASA Astrophysics Data System (ADS)

    Aragon, B.; Houborg, R.; Tu, K. P.; Fisher, J.; McCabe, M.

    2017-12-01

    With an increasing demand to feed growing populations, coupled with the overexploitation of aquifers that supply water to irrigated agriculture, we require an improved understanding of the availability and use of water resources: particularly in arid and semi-arid environments. Remote sensing techniques can provide detail into farm-scale hydrological systems by computing the crop-water use via estimating the evaporation and transpiration (ET). However, remote sensing driven ET retrievals have often been limited by spatial and temporal scales. The launches of Sentinel-2A/B provide some of the best satellite data platforms for optical imagery, with 10m pixel resolution and a 5-day revisit time. However, even with the considerable improvements that these provide over comparable systems such as Landsat, cloud cover and other atmospheric influences can reduce image availability. CubeSats, such as those from Planet, are relaxing such constraints by offering daily global coverage at 3m spatial resolution. Here we examine the performance of the first ET retrievals derived from Planet data using the Priestly-Taylor Jet Propulsion Lab (PT-JPL) model, adapted to instantaneous measurements. The retrievals were assessed across a range of crop-cover, moisture and meteorological conditions using an eddy covariance flux tower installed over an irrigated farmland in Saudi Arabia.

  9. The Iodine Satellite (iSat) Project Development Towards Critical Design Review

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Calvert, Derek; Kamhawi, Hani; Hickman, Tyler; Szabo, James; Byrne, Lawrence

    2015-01-01

    Despite the prevalence of small satellites in recent years, the systems flown to date have very limited propulsion capability. SmallSats are typically secondary payloads and have significant constraints for volume, mass, and power in addition to limitations on the use of hazardous propellants or stored energy. These constraints limit the options for SmallSat maneuverability. NASA's Space Technology Mission Directorate approved the iodine Satellite flight project for a rapid demonstration of iodine Hall thruster technology in a 12U (cubesat units) configuration under the Small Spacecraft Technology Program. The mission is a partnership between NASA MSFC, NASA GRC, and Busek Co, Inc., with the Air Force supporting the propulsion technology maturation. The team is working towards the critical design review in the final design and fabrication phase of the project. The current design shows positive technical performance margins in all areas. The iSat project is planned for launch readiness in the spring of 2017.

  10. A versatile retarding potential analyzer for nano-satellite platforms.

    PubMed

    Fanelli, L; Noel, S; Earle, G D; Fish, C; Davidson, R L; Robertson, R V; Marquis, P; Garg, V; Somasundaram, N; Kordella, L; Kennedy, P

    2015-12-01

    The design of the first retarding potential analyzer (RPA) built specifically for use on resource-limited cubesat platforms is described. The size, mass, and power consumption are consistent with the limitations of a nano-satellite, but the performance specifications are commensurate with those of RPAs flown on much larger platforms. The instrument is capable of measuring the ion density, temperature, and the ram component of the ion velocity in the spacecraft reference frame, while also providing estimates of the ion composition. The mechanical and electrical designs are described, as are the operating modes, command and data structure, and timing scheme. Test data obtained using an ion source inside a laboratory vacuum chamber are presented to validate the performance of the new design.

  11. OWLS as platform technology in OPTOS satellite

    NASA Astrophysics Data System (ADS)

    Rivas Abalo, J.; Martínez Oter, J.; Arruego Rodríguez, I.; Martín-Ortega Rico, A.; de Mingo Martín, J. R.; Jiménez Martín, J. J.; Martín Vodopivec, B.; Rodríguez Bustabad, S.; Guerrero Padrón, H.

    2017-12-01

    The aim of this work is to show the Optical Wireless Link to intraSpacecraft Communications (OWLS) technology as a platform technology for space missions, and more specifically its use within the On-Board Communication system of OPTOS satellite. OWLS technology was proposed by Instituto Nacional de Técnica Aeroespacial (INTA) at the end of the 1990s and developed along 10 years through a number of ground demonstrations, technological developments and in-orbit experiments. Its main benefits are: mass reduction, flexibility, and simplification of the Assembly, Integration and Tests phases. The final step was to go from an experimental technology to a platform one. This step was carried out in the OPTOS satellite, which makes use of optical wireless links in a distributed network based on an OLWS implementation of the CAN bus. OPTOS is the first fully wireless satellite. It is based on the triple configuration (3U) of the popular Cubesat standard, and was completely built at INTA. It was conceived to procure a fast development, low cost, and yet reliable platform to the Spanish scientific community, acting as a test bed for space born science and technology. OPTOS presents a distributed OBDH architecture in which all satellite's subsystems and payloads incorporate a small Distributed On-Board Computer (OBC) Terminal (DOT). All DOTs (7 in total) communicate between them by means of the OWLS-CAN that enables full data sharing capabilities. This collaboration allows them to perform all tasks that would normally be carried out by a centralized On-Board Computer.

  12. Solar Torque Management for the Near Earth Asteroid Scout CubeSat Using Center of Mass Position Control

    NASA Technical Reports Server (NTRS)

    Orphee, Juan; Heaton, Andrew; Diedrich, Ben; Stiltner, Brandon C.

    2018-01-01

    A novel mechanism, the Active Mass Translator (AMT), has been developed for the NASA Near Earth Asteroid (NEA) Scout mission to autonomously manage the spacecraft momentum. The NEA Scout CubeSat will launch as a secondary payload onboard Exploration Mission 1 of the Space Launch System. To accomplish its mission, the CubeSat will be propelled by an 86 square-meter solar sail during its two-year journey to reach asteroid 1991VG. NEA Scout's primary attitude control system uses reaction wheels for holding attitude and performing slew maneuvers, while a cold gas reaction control system performs the initial detumble and early trajectory correction maneuvers. The AMT control system requirements, feedback architecture, and control performance will be presented. The AMT reduces the amount of reaction control propellant needed for momentum management and allows for smaller capacity reaction wheels suitable for the limited 6U spacecraft volume. The reduced spacecraft mass allows higher in-space solar sail acceleration, thus reducing time-of-flight. The reduced time-of-flight opens the range of possible missions, which is limited by the lifetime of typical non-radiation tolerant CubeSat avionics exposed to the deep-space environment.

  13. Cuspp: Cubesat Mission to Study Solar Particles over the Earth's Poles

    NASA Astrophysics Data System (ADS)

    Allegrini, F.; Desai, M. I.; Ebert, R. W.; George, D. E.; Jahn, J. M.; Livi, S. A.; Ogasawara, K.; Christian, E. R.; Kanekal, S. G.

    2014-12-01

    The CubeSat mission to study Solar Particles over the Earth's Poles (CuSPP) has recently been selected by NASA part of the LCAS program. It is a 4-year project to design, develop, and integrate a 3U CubeSat with a miniaturized suprathermal ion spectrograph (SIS) to measure the temporal, spectral, and angular distributions of ~3-70 keV/q suprathermal ions that constitute the source material for solar and interplanetary particle events. SIS is a novel, electrostatic analyzer-microchannel plate based sensor that is the scaled down version of a potential future larger sensor for space weather predictions and suprathermal ion science. CuSPP's technical objective is to increase the technological readiness level (TRL) of SIS so that it can be proposed and flown with significantly reduced risk and cost on future Heliophysics mission. From a ~500 km nearly circular, high inclination (>65°) LEO, CuSPP sweeps through the polar cap regions, where it will measure ion precipitation, and all magnetospheric L-shells at an orbital period of ~95 minutes. We will present the mission concept, the science objectives, the sensor, and report on the status.

  14. The Scintillation Prediction Observations Research Task (SPORT): an International Science Mission Using a Cubesat

    NASA Technical Reports Server (NTRS)

    Spann, James; Swenson, Charles; Durao, Otavio; Loures, Luis; Heelis, Rod; Bishop, Rebecca; Le, Guan; Abdu, Mangalathayil; Krause, Linda; Fry, Craig; hide

    2017-01-01

    The Scintillation Prediction Observations Research Task (SPORT) is a 6U CubeSat mission to address the compelling but difficult problem of understanding the preconditions leading to equatorial plasma bubbles. The scientific literature describes the preconditions in both the plasma drifts and the density profiles related to bubble formations that occur several hours later in the evening. Most of the scientific discovery has resulted from observations at a single site, within a single longitude sector, from Jicamarca, Peru. SPORT will provide a systematic study of the state of the pre-bubble conditions at all longitudes sectors to enhance understanding between geography and magnetic geometry. SPORT is an international partnership between National Aeronautics and Space Administration (NASA), the Brazilian National Institute for Space Research (INPE), and the Technical Aeronautics Institute under the Brazilian Air Force Command Department (DCTA/ITA), and encouraged by U.S. Southern Command. This talk will present an overview of the SPORT mission, observation strategy, and science objectives to improve predictions of ionospheric disturbances that affect radio propagation of telecommunication signals. The science goals will be accomplished by a unique combination of satellite observations from a nearly circular middle inclination orbit and the extensive operation of ground based observations from South America near the magnetic equator.

  15. A new compact and low cost Langmuir Probe and associated onboard data handling system for CubeSat

    NASA Astrophysics Data System (ADS)

    Muralikrishna, Polinaya; Domingos, Sinval; Paredes, Andres; Abrahão Dos Santos, Walter

    2016-07-01

    A new compact and low cost Langmuir Probe and associated onboard data handling system are being developed at Instituto Nacional de Pesquisas Espaciais for launching on board one of the future 2U CubeSat missions. The system is a simplified and compacted version of the Langmuir Probe payloads launched on board several Brazilian SONDA III rockets and also developed for the Brazilian scientific satellites SACI-1 and SACI-2. The onboard data handling system will have the dual functions of preprocessing the data collected by the Langmuir Probe and acting as the interface between the experiment and the on board computer. The Langmuir Probe sensor in the form of two rectangular stainless steel strips of total surface area of approximately 80cm2 will be deployed soon after the injection of the CubeSat into orbit. A sweep voltage varying linearly from 0V to 3.0V in about 1.5 seconds and then remaining fixed at 3.0V for 1 second will be applied to the LP sensor to obtain both the electron density and electron temperature. A high sensitivity preamplifier will be used to convert the sensor current expected to be in the range of a few nano amperes to a few micro amperes into a varying potential. In order to cover the large dynamic range of the expected sensor current the preamplifier output will be further amplified by a logarithmic amplifier before being sampled and sent to the data handling system. The data handling system is projected to handle 8 analog channels and 4 digital words of 8 bits each. The incoming data will be stored in a RAM and later sent to the on board computer using a serial RS422 communication protocol. The interface unit will process the telecommands received from the on board computer. The interface is also projected to do FFT analysis of the LP sensor data and send the averaged FFT spectral amplitudes in place of the original unprocessed data. The system details are presented here.

  16. Global Precipitation Measurement (GPM) and International Space Station (ISS) Coordination for CubeSat Deployments to Minimize Collision Risk

    NASA Technical Reports Server (NTRS)

    Pawloski, James H.; Aviles, Jorge; Myers, Ralph; Parris, Joshua; Corley, Bryan; Hehn, Garrett; Pascucci, Joseph

    2016-01-01

    The Global Precipitation Measurement Mission (GPM) is a joint U.S. and Japan mission to observe global precipitation, extending the Tropical Rainfall Measuring Mission (TRMM), which was launched by H-IIA from Tanegashima in Japan on February 28TH, 2014 directly into its 407km operational orbit. The International Space Station (ISS) is an international human research facility operated jointly by Russia and the USA from NASA's Johnson Space Center (JSC) in Houston Texas. Mission priorities lowered the operating altitude of ISS from 415km to 400km in early 2105, effectively placing both vehicles into the same orbital regime. The ISS has begun a program of deployments of cost effective CubeSats from the ISS that allow testing and validation of new technologies. With a major new asset flying at the same effective altitude as the ISS, CubeSat deployments became a serious threat to GPM and therefore a significant indirect threat to the ISS. This paper describes the specific problem of collision threat to GPM and risk to ISS CubeSat deployment and the process that was implemented to keep both missions safe from collision and maximize their project goals.

  17. Fast-steering solutions for cubesat-scale optical communications

    NASA Astrophysics Data System (ADS)

    Kingsbury, R. W.; Nguyen, T.; Riesing, K.; Cahoy, K.

    2017-11-01

    We describe the design of a compact free-space optical communications module for use on a nanosatellite and present results from a detailed trade study to select an optical fine steering mechanism compatible with our stringent size, weight and power (SWaP) constraints. This mechanism is an integral component of the compact free-space optical communications system that is under development at the MIT Space Systems Laboratory [1]. The overall goal of this project is to develop a laser communications (lasercom) payload that fits within the SWaP constraints of a typical ``3U'' CubeSat. The SWaP constraints for the entire lasercom payload are 5 cm × 10 cm × 10 cm, 600 g and 10W. Although other efforts are underway to qualify MEMS deformable mirrors for use in CubeSats [2], there has been very little work towards qualifying tip-tilt MEMS mirrors [3]. Sec. II provides additional information on how the fast steering mechanism is used in our lasercom system. Performance requirements and desirable traits of the mechanism are given. In Sec. III we describe the various types of compact tip-tilt mirrors that are commercially available as well as the justification for selecting a MEMS-based device for our application. Sec. IV presents an analysis of the device's transfer function characteristics and ways of predicting this behavior that are suitable for use in the control processor. This analysis is based upon manufacturer-provided test data which was collected at standard room conditions. In the final section, we describe on-going work to build a testbed that will be used to measure device performance in a thermal chamber.

  18. Exploiting Artificial Intelligence for Analysis and Data Selection on-board the Puerto Rico CubeSat

    NASA Astrophysics Data System (ADS)

    Bergman, J. E. S.; Bruhn, F.; Funk, P.; Isham, B.; Rincón-Charris, A. A.; Capo-Lugo, P.; Åhlén, L.

    2015-10-01

    CubeSat missions are constrained by the limited resources provided by the platform. Many payload providers have learned to cope with the low mass and power but the poor telemetry allocation remains a bottleneck. In the end, it is the data delivered to ground which determines the value of the mission. However, transmitting more data does not necessarily guarantee high value, since the value also depends on the data quality. By exploiting fast on-board computing and efficient artificial intelligence (AI) algorithms for analysis and data selection one could optimize the usage of the telemetry link and so increase the value of the mission. In a pilot project, we attempt to do this on the Puerto Rico CubeSat, where science objectives include the acquisition of space weather data to aid better understanding of the Sun to Earth connection.

  19. Lunar Flashlight: Mapping Lunar Surface Volatiles Using a Cubesat

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Hayne, P. O.; Banazadeh, P.; Baker, J. D.; Staehle, R. L.; Paine, C..; Paige, D. A.

    2014-01-01

    Water ice and other volatiles may be located in the Moon's polar regions, with sufficient quantities for in situ extraction and utilization by future human and robotic missions. Evidence from orbiting spacecraft and the LCROSS impactor suggests the presence of surface and/or nearsurface volatiles, including water ice. These deposits are of interest to human exploration to understand their potential for use by astronauts. Understanding the composition, quantity, distribution, and form of water/H species and other volatiles associated with lunar cold traps is identified as a NASA Strategic Knowledge Gap (SKG) for Human Exploration. These polar volatile deposits could also reveal important information about the delivery of water to the Earth- Moon system, so are of scientific interest. The scientific exploration of the lunar polar regions was one of the key recommendations of the Planetary Science Decadal Survey. In order to address NASA's SKGs, the Advanced Exploration Systems (AES) program selected three lowcost 6-U CubeSat missions for launch as secondary payloads on the first test flight (EM1) of the Space Launch System (SLS) scheduled for 2017. The Lunar Flashlight mission was selected as one of these missions, specifically to address the SKG associated with lunar volatiles. Development of the Lunar Flashlight CubeSat concept leverages JPL's Interplanetary Nano- Spacecraft Pathfinder In Relevant Environment (INSPIRE) mission, MSFC's intimate knowledge of the Space Launch System and EM-1 mission, small business development of solar sail and electric propulsion hardware, and JPL experience with specialized miniature sensors. The goal of Lunar Flashlight is to determine the presence or absence of exposed water ice and its physical state, and map its concentration at the kilometer scale within the permanently shadowed regions of the lunar south pole. After being ejected in cislunar space by SLS, Lunar Flashlight deploys its solar panels and solar sail and maneuvers

  20. Cubesat Application for Planetary Entry (CAPE) Missions: Micro-Return Capsule (MIRCA)

    NASA Technical Reports Server (NTRS)

    Esper, Jaime

    2016-01-01

    The Cubesat Application for Planetary Entry Missions (CAPE) concept describes a high-performing Cubesat system which includes a propulsion module and miniaturized technologies capable of surviving atmospheric entry heating, while reliably transmitting scientific and engineering data. The Micro Return Capsule (MIRCA) is CAPE's first planetary entry probe flight prototype. Within this context, this paper briefly describes CAPE's configuration and typical operational scenario, and summarizes ongoing work on the design and basic aerodynamic characteristics of the prototype MIRCA vehicle. CAPE not only opens the door to new planetary mission capabilities, it also offers relatively low-cost opportunities especially suitable to university participation. In broad terms, CAPE consists of two main functional components: the "service module" (SM), and "CAPE's entry probe" (CEP). The SM contains the subsystems necessary to support vehicle targeting (propulsion, ACS, computer, power) and the communications capability to relay data from the CEP probe to an orbiting "mother-ship". The CEP itself carries the scientific instrumentation capable of measuring atmospheric properties (such as density, temperature, composition), and embedded engineering sensors for Entry, Descent, and Landing (EDL). The first flight of MIRCA was successfully completed on 10 October 2015 as a "piggy-back" payload onboard a NASA stratospheric balloon launched from Ft. Sumner, NM.

  1. Multi-agent robotic systems and applications for satellite missions

    NASA Astrophysics Data System (ADS)

    Nunes, Miguel A.

    -agent robotic system has a consistent lower CPU load of 0.29 +/- 0.03 compared to 0.35 +/- 0.04 for the monolithic implementation, a 17.1 % reduction. The second contribution of this work is the development of a multi-agent robotic system for the autonomous rendezvous and docking of multiple spacecraft. To compute the maneuvers guidance, navigation and control algorithms are implemented as part of the multi-agent robotic system. The navigation and control functions are implemented using existing algorithms, but one important contribution of this section is the introduction of a new six degrees of freedom guidance method which is part of the guidance, navigation and control architecture. This new method is an explicit solution to the guidance problem, and is particularly useful for real time guidance for attitude and position, as opposed to typical guidance methods which are based on numerical solutions, and therefore are computationally intensive. A simulation scenario is run for docking four CubeSats deployed radially from a launch vehicle. Considering fully actuated CubeSats, the simulations show docking maneuvers that are successfully completed within 25 minutes which is approximately 30% of a full orbital period in low earth orbit. The final section investigates the problem of optimization of satellite constellations for fast revisit time, and introduces a new method to generate different constellation configurations that are evaluated with a genetic algorithm. Two case studies are presented. The first is the optimization of a constellation for rapid coverage of the oceans of the globe in 24 hours or less. Results show that for an 80 km sensor swath width 50 satellites are required to cover the oceans with a 24 hour revisit time. The second constellation configuration study focuses on the optimization for the rapid coverage of the North Atlantic Tracks for air traffic monitoring in 3 hours or less. The results show that for a fixed swath width of 160 km and for a 3 hour

  2. Canyval-x: Cubesat Astronomy by NASA and Yonsei Using Virtual Telescope Alignment Experiment

    NASA Technical Reports Server (NTRS)

    Shah, Neerav

    2016-01-01

    CANYVAL-X is a technology demonstration CubeSat mission with a primary objective of validating technologies that allow two spacecraft to fly in formation along an inertial line-of-sight (i.e., align two spacecraft to an inertial source). Demonstration of precision dual-spacecraft alignment achieving fine angular precision enables a variety of cutting-edge heliophysics and astrophysics science.

  3. NEA Scout and Lunar Flashlight: Two NearTerm Interplanetary CubeSat Missions

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2015-01-01

    NASA is developing two small satellite missions as part of the Advanced Exploration Systems (AES) Program, both of which will use a solar sail to enable their scientific objectives. Solar sails reflect sunlight from a large, mirror-like sail made of a lightweight, highly reflective material to provide thrust. This continuous photon pressure provides propellantless thrust, allowing for very high delta V maneuvers in space. Lunar Flashlight, managed by the NASA Jet Propulsion Laboratory, will search for and map volatiles in permanently shadowed lunar craters using a solar sail as a gigantic mirror to steer sunlight into them, then examine the reflected light with a spectrometer. The Lunar Flashlight spacecraft will also use the solar sail to maneuver into a lunar polar orbit. The mission will demonstrate a low-cost capability to explore, locate and estimate the size and composition of ice deposits on the Moon. The Near Earth Asteroid (NEA) Scout mission, managed by the NASA Marshall Space Flight Center will survey and image a Near Earth Asteroid for possible future human exploration using a smallsat propelled by a solar sail. Detections of NEAs are expected to grow in the near future, offering increasing target opportunities. Obtaining and analyzing relevant data about these bodies via robotic precursors before committing a crew to visit them is essential. The NEA Scout spacecraft is nearly identical to the one being developed for Lunar Flashlight, with the science instrument package being the primary difference. The NEA Scout solar sail will provide the primary propulsion taking the 6U cubesat from near the Earth to its final asteroid destination and the Lunar Flashlight sail will provide the propulsion necessary for its spacecraft to enter lunar orbit. Both projects will use an 85 m2 solar sail developed by NASA MSFC. The NEA Scout and Lunar Flashlight flight systems are based on a 6U cubesat form factor, with a stowed envelope of 10 x 20 x 30 cm and a mass of less

  4. Satellite Communications and High School Education: Perceptions of Students, Teachers, and Administrators.

    ERIC Educational Resources Information Center

    Simonson, Michael R.; And Others

    A series of research studies completed during 1988 examined the efficacy of the use of satellite technology as a delivery system of high school courses for credit from the perspective of three different interest groups: school superintendents, students, and leaders of teacher and school administrator organizations. Data from each of the study…

  5. Highly miniaturized FEEP propulsion system (NanoFEEP) for attitude and orbit control of CubeSats

    NASA Astrophysics Data System (ADS)

    Bock, Daniel; Tajmar, Martin

    2018-03-01

    A highly miniaturized Field Emission Electric Propulsion (FEEP) system is currently under development at TU Dresden, called NanoFEEP [1]. The highly miniaturized thruster heads are very compact and have a volume of less than 3 cm3 and a weight of less than 6 g each. One thruster is able to generate continuous thrust of up to 8 μN with short term peaks of up to 22 μN. The very compact design and low power consumption (heating power demand between 50 and 150 mW) are achieved by using Gallium as metal propellant with its low melting point of approximately 30 °C. This makes it possible to implement an electric propulsion system consisting of four thruster heads, two neutralizers and the necessary electronics on a 1U CubeSat with its strong limitation in space, weight and available power. Even formation flying of 1U CubeSats using an electric propulsion system is possible with this system, which is shown by the example of a currently planned cooperation project between Wuerzburg University, Zentrum fuer Telematik and TU Dresden. It is planned to use the NanoFEEP electric propulsion system on the UWE (University Wuerzburg Experimental) 1U CubeSat platform [2] to demonstrate orbit and two axis attitude control with our electric propulsion system NanoFEEP. We present the latest performance characteristics of the NanoFEEP thrusters and the highly miniaturized electronics. Additionally, the concept and the current status of a novel cold neutralizer chip using Carbon Nano Tubes (CNTs) is presented.

  6. JPSS-1 P-Pod Installation

    NASA Image and Video Library

    2017-10-31

    At Vandenberg Air Force Base in California, a Poly Picosatellite Orbital Deployer, or P-POD, container is installed on the Joint Polar Satellite System-1, or JPSS-1, spacecraft. P-PODS are auxiliary payloads launched aboard NASA expendable launch vehicles carrying up to three small CubeSats. The small cube-shaped satellites are part of NASA’s Educational Launch of Nanosatellite, or ELaNa, missions. The small payloads are designed and built by students from high school-level classes up to college and university students. JPSS is the first in a series of four next-generation environmental satellites in a collaborative program between the NOAA and NASA. Liftoff from Vandenberg's Space Launch Compex-2 atop a United Launch Alliance Delta II rocket is scheduled for 1:47 a.m. PST (4:47 a.m. EST), on Nov. 14, 2017.

  7. JPSS-1 P-Pod Installation

    NASA Image and Video Library

    2017-10-31

    At Vandenberg Air Force Base in California, technicians and engineers prepare to install a Poly Picosatellite Orbital Deployer, or P-POD, container on the Joint Polar Satellite System-1, or JPSS-1, spacecraft. P-PODS are auxiliary payloads launched aboard NASA expendable launch vehicles carrying up to three small CubeSats. The small cube-shaped satellites are part of NASA’s Educational Launch of Nanosatellite, or ELaNa, missions. The small payloads are designed and built by students from high school-level classes up to college and university students. JPSS is the first in a series of four next-generation environmental satellites in a collaborative program between the NOAA and NASA. Liftoff from Vandenberg's Space Launch Compex-2 atop a United Launch Alliance Delta II rocket is scheduled for 1:47 a.m. PST (4:47 a.m. EST), on Nov. 14, 2017.

  8. JPSS-1 P-Pod Installation

    NASA Image and Video Library

    2017-10-31

    At Vandenberg Air Force Base in California, technicians and engineers prepare a Poly Picosatellite Orbital Deployer, or P-POD, container for installation on the Joint Polar Satellite System-1, or JPSS-1, spacecraft. P-PODS are auxiliary payloads launched aboard NASA expendable launch vehicles carrying up to three small CubeSats. The small cube-shaped satellites are part of NASA’s Educational Launch of Nanosatellite, or ELaNa, missions. The small payloads are designed and built by students from high school-level classes up to college and university students. JPSS is the first in a series of four next-generation environmental satellites in a collaborative program between the NOAA and NASA. Liftoff from Vandenberg's Space Launch Compex-2 atop a United Launch Alliance Delta II rocket is scheduled for 1:47 a.m. PST (4:47 a.m. EST), on Nov. 14, 2017.

  9. KSC-2013-3996

    NASA Image and Video Library

    2013-11-17

    CAPE CANAVERAL, Fla. -- At the News Center at NASA's Kennedy Space Center in Florida, Andrew Petro, the agency's acting director of the Early Stage Innovation Division of the Office of the Chief Technologist, discusses the agency’s CubeSat Launch initiative. CubeSats provide opportunities for small satellite payloads to fly on rockets planned for upcoming launches. CubeSats, a class of research spacecraft called nanosatellites, are flown as auxiliary payloads on previously planned missions. The cube-shaped satellites are approximately four inches long, have a volume of about one quart and weigh about three pounds. For more information, visit: http://www.nasa.gov/directorates/heo/home/CubeSats_initiative.html Photo credit: NASA/Kim Shiflett

  10. KSC-2013-3993

    NASA Image and Video Library

    2013-11-17

    CAPE CANAVERAL, Fla. -- At the News Center at NASA's Kennedy Space Center in Florida, Andrew Petro, the agency's acting director of the Early Stage Innovation Division of the Office of the Chief Technologist, discusses the agency’s CubeSat Launch initiative. CubeSats provide opportunities for small satellite payloads to fly on rockets planned for upcoming launches. CubeSats, a class of research spacecraft called nanosatellites, are flown as auxiliary payloads on previously planned missions. The cube-shaped satellites are approximately four inches long, have a volume of about one quart and weigh about three pounds. For more information, visit: http://www.nasa.gov/directorates/heo/home/CubeSats_initiative.html Photo credit: NASA/Kim Shiflett

  11. KSC-2013-3995

    NASA Image and Video Library

    2013-11-17

    CAPE CANAVERAL, Fla. -- At the News Center at NASA's Kennedy Space Center in Florida, Andrew Petro, the agency's acting director of the Early Stage Innovation Division of the Office of the Chief Technologist, discusses the agency’s CubeSat Launch initiative. CubeSats provide opportunities for small satellite payloads to fly on rockets planned for upcoming launches. CubeSats, a class of research spacecraft called nanosatellites, are flown as auxiliary payloads on previously planned missions. The cube-shaped satellites are approximately four inches long, have a volume of about one quart and weigh about three pounds. For more information, visit: http://www.nasa.gov/directorates/heo/home/CubeSats_initiative.html Photo credit: NASA/Kim Shiflett

  12. KSC-2013-3994

    NASA Image and Video Library

    2013-11-17

    CAPE CANAVERAL, Fla. -- At the News Center at NASA's Kennedy Space Center in Florida, Andrew Petro, the agency's acting director of the Early Stage Innovation Division of the Office of the Chief Technologist, discusses the agency’s CubeSat Launch initiative. CubeSats provide opportunities for small satellite payloads to fly on rockets planned for upcoming launches. CubeSats, a class of research spacecraft called nanosatellites, are flown as auxiliary payloads on previously planned missions. The cube-shaped satellites are approximately four inches long, have a volume of about one quart and weigh about three pounds. For more information, visit: http://www.nasa.gov/directorates/heo/home/CubeSats_initiative.html Photo credit: NASA/Kim Shiflett

  13. Demonstrating new technologies to improve atmospheric sounding science using the CubeSat Infrared Atmospheric Sounder (CIRAS).

    NASA Astrophysics Data System (ADS)

    Pagano, T. S.

    2017-12-01

    Hyperspectral infrared sounding of the atmosphere has become a vital element in the observational system for weather forecast prediction at National Weather Prediction (NWP) centers worldwide. The NASA Atmospheric Infrared Sounder (AIRS) instrument was the pathfinder for the hyperspectral infrared observations and was designed to provide accurate atmospheric temperature and water vapor profile information in support of weather prediction, climate processes and weather related applications. AIRS was launched in 2002 and continues to operate well. JPL NASA is offering an alternate hyperspectral IR sounder architecture for the future involving CubeSats under the Earth Science Technology Office (ESTO) In-flight Validation of Earth Science Technologies (InVEST) program. The latest technology in large format focal plane assemblies, wide field optics and active cryocoolers enables a reduction in size, mass and cost of the legacy sounders and offer new orbit configurations. The CubeSat Infrared Atmospheric Sounder (CIRAS) employs an MWIR spectrometer operating from 4.08-5.13 µm with 625 channels and spectral resolution of 1.2-2.0 cm-1 to achieve lower tropospheric temperature and water vapor profiles. The CIRAS is packaged in a 6U CubeSat and uses less than 14 W. CIRAS is under development at NASA JPL and scheduled for launch in 2019. This presentation will discuss the CIRAS measurement approach, development status and the plan to demonstrate, in-orbit, higher spatial resolution IR sounding to support new science involving regional weather prediction, applications and weather process studies.

  14. A Broadband IR Compact High Resolution Spectrometer (BIRCHES) for a Lunar Water Distribution (LWaDi) Cubesat Mission

    NASA Astrophysics Data System (ADS)

    Clark, Pamela E.; Macdowall, Robert J.; Reuter, Dennis; Mauk, Robin

    2014-11-01

    We are in the process of developing the BIRCH (Broadband IR for Cubesats with High Resolution) Spectrometer for characterization of a range of deep space targets. BIRCH is the first extremely compact Broadband IR spectrometer with high spectral resolution designed to measure water type and component distribution for a science-driven cubesat mission, such as the lunar orbital mission LWaDi (Lunar Water Distribution) designed to determine the systematics of lunar water and volatiles as a function of time of day, latitude, and terrain. The development of cubesat form factor instruments, such as BIRCH, capable of providing high priority science goals identified in the decadal survey is critical to achieve low cost planetary exploration promised by the cubesat paradigm by exploring volatile systems via orbiting or landed packages. On the Moon, as well as Mercury, Mars, and the asteroids, the source, distribution, and role of volatiles is a question of major importance, and has implications for formation processes, including interior structure, differentiation, and the origin of life in the early solar system. The form and distribution of water has implications for human exploration, resource exploitation, and sample curation. Recent lunar missions gave unanticipated evidence for the water from NIR instruments not optimized for finding it. Our instrument includes a compact broadband HgCdTe detector with a linear variable filter and a compact cryocooler (for operation below 140K) attached to a compact optical system with 2 off-axis parabolic mirrors and variable field stop operating below 240K. Its 10 nm or better resolution and longer wavelength upper range (1.3 to 3.7 microns) are necessary to identify and separate features associated with water type (adsorbed, bound, ice) and components. Its 4-sided adjustable iris at the field stop enables a constant spot size (10 x 10 km) regardless of altitude. BIRCH will be able to provide systematic and extensive enough

  15. Scientific Performance of a Nano-satellite MeV Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucchetta, Giulio; Berlato, Francesco; Rando, Riccardo

    Over the past two decades, both X-ray and gamma-ray astronomy have experienced great progress. However, the region of the electromagnetic spectrum around ∼1 MeV is not so thoroughly explored. Future medium-sized gamma-ray telescopes will fill this gap in observations. As the timescale for the development and launch of a medium-class mission is ∼10 years, with substantial costs, we propose a different approach for the immediate future. In this paper, we evaluate the viability of a much smaller and cheaper detector: a nano-satellite Compton telescope, based on the CubeSat architecture. The scientific performance of this telescope would be well below thatmore » of the instrument expected for the future larger missions; however, via simulations, we estimate that such a compact telescope will achieve a performance similar to that of COMPTEL.« less

  16. Plug-and-play design approach to smart harness for modular small satellites

    NASA Astrophysics Data System (ADS)

    Mughal, M. Rizwan; Ali, Anwar; Reyneri, Leonardo M.

    2014-02-01

    A typical satellite involves many different components that vary in bandwidth demand. Sensors that require a very low data rate may reside on a simple two- or three-wire interface such as I2C, SPI, etc. Complex sensors that require high data rate and bandwidth may reside on an optical interface. The AraMiS architecture is an enhanced capability architecture with different satellite configurations. Although keeping the low-cost and COTS approach of CubeSats, it extends the modularity concept as it also targets different satellite shapes and sizes. But modularity moves beyond the mechanical structure: the tiles also have thermo-mechanical, harness and signal-processing functionalities. Further modularizing the system, every tile can also host a variable number of small sensors, actuators or payloads, connected using a plug-and-play approach. Every subsystem is housed in a small daughter board and is supplied, by the main tile, with power and data distribution functions, power and data harness, mechanical support and is attached and interconnected with space-grade spring-loaded connectors. The tile software is also modular and allows a quick adaptation to specific subsystems. The basic software for the CPU is properly hardened to guarantee high level of radiation tolerance at very low cost.

  17. Atomic Layer Deposition Re Ective Coatings For Future Astronomical Space Telescopes And The Solar Corona Viewed Through The Minxss (Miniature X-Ray Solar Spectrometer) Cubesats

    NASA Astrophysics Data System (ADS)

    Moore, Christopher Samuel

    2017-11-01

    Advances in technology and instrumentation open new windows for observing astrophysical objects. The first half of my dissertation involves the development of atomic layer deposition (ALD) coatings to create high reflectivity UV mirrors for future satellite astronomical telescopes. Aluminum (Al) has intrinsic reflectance greater than 80% from 90 – 2,000 nm, but develops a native aluminum oxide (Al2O3) layer upon exposure to air that readily absorbs light below 250 nm. Thus, Al based UV mirrors must be protected by a transmissive overcoat. Traditionally, metal-fluoride overcoats such as MgF2 and LiF are used to mitigate oxidation but with caveats. We utilize a new metal fluoride (AlF3) to protect Al mirrors deposited by ALD. ALD allows for precise thickness control, conformal and near stoichiometric thin films. We prove that depositing ultra-thin ( 3 nm) ALD ALF3 to protect Al mirrors after removing the native oxide layer via atomic layer etching (ALE) enhances the reflectance near 90 nm from 5% to 30%.X-ray detector technology with high readout rates are necessary for the relatively bright Sun, particularly during large flares. The hot plasma in the solar corona generates X-rays, which yield information on the physical conditions of the plasma. The second half of my dissertation includes detector testing, characterization and solar science with the Miniature X-ray Solar Spectrometer (MinXSS) CubeSats. The MinXSS CubeSats employ Silicon Drift Diode (SDD) detectors called X123, which generate full sun spectrally resolved ( 0.15 FWHM at 5.9 keV) measurements of the sparsely measured, 0.5 – 12 keV range. The absolute radiometric calibration of the MinXSS instrument suite was performed at the National Institute for Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF) and spectral resolution determined from radioactive sources. I used MinXSS along with data from the Geostationary Operational Environmental Satellites (GOES), Reuven Ramaty

  18. Development of Lightweight CubeSat with Multi-Functional Structural Battery Systems

    NASA Technical Reports Server (NTRS)

    Karkkainen, Ryan L.; Hunter, Roger C.; Baker, Christopher

    2017-01-01

    This collaborative multi-disciplinary effort aims to develop a lightweight, 1-unit (1U) CubeSat (10x10x10 cm) which utilizes improved and fully integrated structural battery materials for mission life extension, larger payload capability, and significantly reduced mass.The electrolytic carbon fiber material serves the multifunctional capacitive energy system as both a lightweight, load bearing structure and an electrochemical battery system. This implementation will improve traditional multifunctional energy storage concepts with a highly effective energy storage capability.

  19. Cold Gas Reaction Control System for the Near Earth Asteroid Scout CubeSat

    NASA Technical Reports Server (NTRS)

    Stiltner, Brandon C.; Diedrich, Ben; Becker, Chris; Bertaska, Ivan; Heaton, Andrew; Orphee, Juan

    2017-01-01

    This paper describes the Attitude Control System (ACS) for the Near Earth Asteroid (NEA) Scout cubesat with particular focus on the Reaction Control System (RCS). NEA Scout is a 6-Unit cubesat with an 86-square-meter solar sail. NEA Scout will launch on Space Launch System (SLS) Exploration Mission 1 (EM-1), currently scheduled to launch in 2019. The spacecraft will rendezvous with an asteroid after a two year journey, and will conduct science imagery. The ACS consists of three major actuating subsystems: a Reaction Wheel (RW) control system, a Reaction Control System (RCS), and an Active Mass Translator (AMT) system. The three subsystems allow for a wide range of spacecraft attitude control capabilities, needed for the different phases of the NEA-Scout mission. The RCS performs a number of critical functions during NEA Scout’s mission. These requirements are described and the performance for achieving these requirements is shown. Moreover, NEA Scout employs a solar sail for long-duration propulsion. Solar sails are large, flexible structures that typically have low bending-mode frequencies. This paper demonstrates a robust performance while avoiding excitation of the sail’s structural modes.

  20. Cold Gas Reaction Control System for the Near Earth Asteroid Scout CubeSat

    NASA Technical Reports Server (NTRS)

    Stiltner, Brandon C.; Diedrich, Ben; Orphee, Juan; Heaton, Andrew; Becker, Chris; Bertaska, Ivan

    2017-01-01

    This paper describes the Attitude Control System (ACS) for the Near Earth Asteroid (NEA) Scout cubesat with particular focus on the Reaction Control System (RCS). NEA Scout is a 6U cubesat with an 86 square-meter solar sail. NEA Scout will launch on Space Launch System (SLS) Exploration Mission 1 (EM-1), currently scheduled to launch in 2018. The spacecraft will rendezvous with an asteroid after a two year journey, and will conduct science imagery. The ACS consists of three major actuating subsystems: a Reaction Wheel (RW) control system, a Reaction Control System (RCS), and an Active Mass Translator (AMT) system. The three subsystems allow for a wide range of spacecraft attitude control capabilities, needed for the different phases of the NEA-Scout mission. The RCS performs a number of critical functions during NEA Scout's mission. These requirements are described and the performance for achieving these requirements is shown. Moreover, NEA Scout employs a solar sail for long-duration propulsion. Solar sails are large, flexible structures that typically have low bending-mode frequencies. This paper demonstrates a robust performance while avoiding excitation of the sail's structural modes.

  1. Small Project Rapid Integration and Test Environment (SPRITE) An Innovation Space for Small Projects Design, Development, Integration, and Test

    NASA Technical Reports Server (NTRS)

    Lee, Ashley; Rackoczy, John; Heater, Daniel; Sanders, Devon; Tashakkor, Scott

    2013-01-01

    Over the past few years interest in the development and use of small satellites has rapidly gained momentum with universities, commercial, and government organizations. In a few years we may see networked clusters of dozens or even hundreds of small, cheap, easily replaceable satellites working together in place of the large, expensive and difficult-to-replace satellites now in orbit. Standards based satellite buses and deployment mechanisms, such as the CubeSat and Poly Pico-satellite Orbital Deployer (P-POD), have stimulated growth in this area. The use of small satellites is also proving to be a cost effective capability in many areas traditionally dominated by large satellites, though many challenges remain. Currently many of these small satellites undergo very little testing prior to flight. As these small satellites move from technology demonstration and student projects toward more complex operational assets, it is expected that the standards for verification and validation will increase.

  2. Small Projects Rapid Integration and Test Environment (SPRITE): Application for Increasing Robutness

    NASA Technical Reports Server (NTRS)

    Lee, Ashley; Rakoczy, John; Heather, Daniel; Sanders, Devon

    2013-01-01

    Over the past few years interest in the development and use of small satellites has rapidly gained momentum with universities, commercial, and government organizations. In a few years we may see networked clusters of dozens or even hundreds of small, cheap, easily replaceable satellites working together in place of the large, expensive and difficult-to-replace satellites now in orbit. Standards based satellite buses and deployment mechanisms, such as the CubeSat and Poly Pico-satellite Orbital Deployer (P-POD), have stimulated growth in this area. The use of small satellites is also proving to be a cost effective capability in many areas traditionally dominated by large satellites, though many challenges remain. Currently many of these small satellites undergo very little testing prior to flight. As these small satellites move from technology demonstration and student projects toward more complex operational assets, it is expected that the standards for verification and validation will increase.

  3. INSPIRE and MarCO - Technology Development for the First Deep Space CubeSats

    NASA Astrophysics Data System (ADS)

    Klesh, Andrew

    2016-07-01

    INSPIRE (Interplanetary NanoSpacecraft Pathfinder In a Relevant Environment) and MarCO (Mars Cube One) will open the door for tiny spacecraft to explore the solar system. INSPIRE serves as a trailblazer, designed to demonstrate new technology needed for deep space. MarCO will open the door for NanoSpacecraft to serve in support roles for much larger primary missions - in this case, providing a real-time relay of for the InSight project and will likely be the first CubeSats to reach deep space. Together, these four spacecraft (two for each mission) enable fundamental science objectives to be met with tiny vehicles. Originally designed for a March, 2016 launch with the InSight mission to Mars, the MarCO spacecraft are now complete and in storage. When launched with the InSight lander from Vandenberg Air Force Base, the spacecraft will begin a 6.5 month cruise to Mars. Soon after InSight itself separates from the upper stage of the launch vehicle, the two MarCO CubeSats will deploy and independently fly to Mars to support telecommunications relay for InSight's entry, descent, and landing sequence. These spacecraft will have onboard capability for deep space trajectory correction maneuvers; high-speed direct-to-Earth & DSN-compatible communications; an advanced navigation transponder; a large deployable reflect-array high gain antenna; and a robust software suite. This talk will present an overview of the INSPIRE and MarCO projects, including a concept of operations, details of the spacecraft and subsystem design, and lessons learned from integration and test. Finally, the talk will outline how lessons from these spacecraft are already being utilized in the next generation of interplanetary CubeSats, as well as a brief vision of their applicability for solar system exploration. The research described here was carried out at the Jet Propulsion Laboratory, Caltech, under a contract with the National Aeronautics and Space Administration (NASA).

  4. LunarCubes: Application of the Cubesat Paradigm to Lunar Missions

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; MacDowall, R.; Reuter, D.; Mauk, R.; Patel, D.; Hudeck, J.; Altunc, S.; Mentzel, E.; Hernandez, A.; Farrell, W.; hide

    2014-01-01

    We have evaluated the application of the CubeSat Paradigm for deep space exploration, often referred to as LunarCube. Over the course of this year, we conducted systems definition and design activities, with focus on enhanced guidance, navigation, and control as well as propulsion requirements for cislunar space operation, thermal requirements and communication as dominant drivers for long duration operation on the lunar surface. The end result is costeffective, generic design(s) for a cross-section of future high priority space or surface payloads for planetary, heliophysics, and astrophysics disciplines, the requirements for which are described.

  5. Energy-driven scheduling algorithm for nanosatellite energy harvesting maximization

    NASA Astrophysics Data System (ADS)

    Slongo, L. K.; Martínez, S. V.; Eiterer, B. V. B.; Pereira, T. G.; Bezerra, E. A.; Paiva, K. V.

    2018-06-01

    The number of tasks that a satellite may execute in orbit is strongly related to the amount of energy its Electrical Power System (EPS) is able to harvest and to store. The manner the stored energy is distributed within the satellite has also a great impact on the CubeSat's overall efficiency. Most CubeSat's EPS do not prioritize energy constraints in their formulation. Unlike that, this work proposes an innovative energy-driven scheduling algorithm based on energy harvesting maximization policy. The energy harvesting circuit is mathematically modeled and the solar panel I-V curves are presented for different temperature and irradiance levels. Considering the models and simulations, the scheduling algorithm is designed to keep solar panels working close to their maximum power point by triggering tasks in the appropriate form. Tasks execution affects battery voltage, which is coupled to the solar panels through a protection circuit. A software based Perturb and Observe strategy allows defining the tasks to be triggered. The scheduling algorithm is tested in FloripaSat, which is an 1U CubeSat. A test apparatus is proposed to emulate solar irradiance variation, considering the satellite movement around the Earth. Tests have been conducted to show that the scheduling algorithm improves the CubeSat energy harvesting capability by 4.48% in a three orbit experiment and up to 8.46% in a single orbit cycle in comparison with the CubeSat operating without the scheduling algorithm.

  6. NPS-SCAT; Communications System Design, Test and Integration of NPS’ First CubeSat

    DTIC Science & Technology

    2010-09-01

    18 c. MHX (Primary Transceiver) Wakeup Task ...19 d. Transmit MHX (Primary Transceiver) Task .20 e. Receive MHX (Primary Transceiver...Beacon Antenna Deploy Task......................17  Figure 8.  Collect Data Task...............................19  Figure 9.  MHX Wakeup Task...to provide education while keeping scheduling and cost minimal, and maintaining a standard for building a launchable spacecraft. The CubeSat

  7. Terrestrial outgoing radiation measurements with small satellite mission

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Dewitte, Steven; Karatekin, Ozgur; Chevalier, André; Conscience, Christian

    2015-04-01

    The solar force is the main driver of the Earth's climate. For a balanced climate system, the incoming solar radiation is equal to the sum of the reflected visible and reemitted thermal radiation at top of the atmosphere (TOA). Thus the energy imbalance plays an important role to diagnose the health of nowadays climate. However it remains a challenge to directly track the small Energy imbalance in Earth's Radiation Budget (EIERB) from space due to the complicities of the Earth's climate system and the limitation on long term stability of space instrument. The terrestrial outgoing radiation (TOR) has been recoded with a Bolometric Oscillation Sensor onboard PICAD microsatellite. In this presentation, we will report the three years TOR observed with PICARD-BOS and its further comparison with the CERES product. However the data acquired from this mission is still not enough to derive the EIERB. But the heritage gained from this experiment shields a light on the EIERB tracking with the small satellite even a cubesat mission.

  8. Feasibility study for near-earth-object tracking by a piggybacked micro-satellite with penetrators

    NASA Astrophysics Data System (ADS)

    Weiss, P.; Leung, W.; Yung, K. L.

    2010-05-01

    As of August 2007, over 5000 near-earth-objects (NEO) have been discovered. Some already represent a potential danger to the Earth while others might become hazards in the future. The Planetary Society organised in 2007 the "Apophis Mission Design Competition" in response to this potential threat with the objective to identify promising concepts to track NEOs; the asteroid 99942 Apophis was taken as the study case. This paper describes the "Houyi" proposal which was evaluated by the competition jury as an innovative approach to this problem. Instead of launching a large satellite for NEO tracking, this novel concept proposes a miniaturized satellite that is piggybacked onto a larger (scientific) mission. Such mission design would drastically reduce the costs for NEO surveillance. The presented scenario uses the ESA's SOLO mission as a design baseline for the piggyback option. This paper summarizes the architecture of this CubeSat towards Apophis and extends the previous study by focusing on the feasibility of a piggybacked mission in terms of propulsion requirements.

  9. Working RideShare for the U Class Payload

    NASA Technical Reports Server (NTRS)

    Skrobot, Garrett L.

    2014-01-01

    Presentation to describe current status of the Launch Services Program's (LSP) education launch of nano satellite project. U class are payloads that are of a form factor of the 1U CubeSats - 10cm Cubed. Over the past three years these small spacecraft have grown in popularity in both the Government and the Commercial market. There is an increase in the number of NASA CubeSats selected and yet a very low launch rate. Why the low launch rate? - Funding, more money = more launches - CubeSat being selective about the orbit - CubeSats not being ready. This trend is expected to continue with current manifesting practices.

  10. MarCO CubeSat Engineers 1

    NASA Image and Video Library

    2016-01-20

    Engineers for NASA's MarCO (Mars Cube One) technology demonstration inspect the MarCO test bed, which contains components that are identical to those built for a flight to Mars. Cody Colley, left, MarCO integration and test deputy, and Shannon Statham, MarCO integration and test lead, are on the team at NASA's Jet Propulsion Laboratory, Pasadena, California, preparing twin MarCO CubeSats. The briefcase-size MarCO twins were designed to ride along with NASA's next Mars lander, InSight. Its planned March 2016 launch was suspended. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20341

  11. Design of the deformable mirror demonstration CubeSat (DeMi)

    NASA Astrophysics Data System (ADS)

    Douglas, Ewan S.; Allan, Gregory; Barnes, Derek; Figura, Joseph S.; Haughwout, Christian A.; Gubner, Jennifer N.; Knoedler, Alex A.; LeClair, Sarah; Murphy, Thomas J.; Skouloudis, Nikolaos; Merck, John; Opperman, Roedolph A.; Cahoy, Kerri L.

    2017-09-01

    The Deformable Mirror Demonstration Mission (DeMi) was recently selected by DARPA to demonstrate in-space operation of a wavefront sensor and Microelectromechanical system (MEMS) deformable mirror (DM) payload on a 6U CubeSat. Space telescopes designed to make high-contrast observations using internal coronagraphs for direct characterization of exoplanets require the use of high-actuator density deformable mirrors. These DMs can correct image plane aberrations and speckles caused by imperfections, thermal distortions, and diffraction in the telescope and optics that would otherwise corrupt the wavefront and allow leaking starlight to contaminate coronagraphic images. DeMi is provide on-orbit demonstration and performance characterization of a MEMS deformable mirror and closed loop wavefront sensing. The DeMi payload has two operational modes, one mode that images an internal light source and another mode which uses an external aperture to images stars. Both the internal and external modes include image plane and pupil plane wavefront sensing. The objectives of the internal measurement of the 140-actuator MEMS DM actuator displacement are characterization of the mirror performance and demonstration of closed-loop correction of aberrations in the optical path. Using the external aperture to observe stars of magnitude 2 or brighter, assuming 3-axis stability with less than 0.1 degree of attitude knowledge and jitter below 10 arcsec RMSE, per observation, DeMi will also demonstrate closed loop wavefront control on an astrophysical target. We present an updated payload design, results from simulations and laboratory optical prototyping, as well as present our design for accommodating high-voltage multichannel drive electronics for the DM on a CubeSat.

  12. ³Cat-3/MOTS Nanosatellite Mission for Optical Multispectral and GNSS-R Earth Observation: Concept and Analysis.

    PubMed

    Castellví, Jordi; Camps, Adriano; Corbera, Jordi; Alamús, Ramon

    2018-01-06

    The ³Cat-3/MOTS (3: Cube, Cat: Catalunya, 3: 3rd CubeSat mission/Missió Observació Terra Satèl·lit) mission is a joint initiative between the Institut Cartogràfic i Geològic de Catalunya (ICGC) and the Universitat Politècnica de Catalunya-BarcelonaTech (UPC) to foster innovative Earth Observation (EO) techniques based on data fusion of Global Navigation Satellite Systems Reflectometry (GNSS-R) and optical payloads. It is based on a 6U CubeSat platform, roughly a 10 cm × 20 cm × 30 cm parallelepiped. Since 2012, there has been a fast growing trend to use small satellites, especially nanosatellites, and in particular those following the CubeSat form factor. Small satellites possess intrinsic advantages over larger platforms in terms of cost, flexibility, and scalability, and may also enable constellations, trains, federations, or fractionated satellites or payloads based on a large number of individual satellites at an affordable cost. This work summarizes the mission analysis of ³Cat-3/MOTS, including its payload results, power budget (PB), thermal budget (TB), and data budget (DB). This mission analysis is addressed to transform EO data into territorial climate variables (soil moisture and land cover change) at the best possible achievable spatio-temporal resolution.

  13. Pathfinder Technology Demonstrator: GlobalStar Testing and Results

    NASA Technical Reports Server (NTRS)

    Kuroda, Vanessa; Limes, Gregory L.; Han, Shi Lei; Hanson, John Eric; Christa, Scott E.

    2016-01-01

    The communications subsystem of a spacecraft is typically a SWaP (size, weight, and power) intensive subsystem in a SWaP constrained environment such as a CubeSat. Use of a satellite-based communication system, such as GlobalStars duplex GSP-1720 radio is a low SWaP potentially game-changing low-cost communication subsystem solution that was evaluated for feasibility for the NASA Pathfinder Technology Demonstrator (PTD) project. The PTD project is a series of 6U CubeSat missions to flight demonstrate and characterize novel small satellite payloads in low Earth orbit. GlobalStar is a low Earth orbit satellite constellation for satellite phone and low-speed data communications, and the GSP-1720 is their single board duplex radio most commonly used in satellite phones and shipment tracking devices. The PTD project tested the GSP-1720 to characterize its viability for flight using NASA GEVS (General Environmental Verification Standard) vibration and thermal vacuum levels, as well as testing the uplink-downlink connectivity, data throughput, and file transfer capabilities. This presentation will present the results of the environmental and capability testing of the GSP-1720 performed at NASA Ames Research Center, as well as the viability for CubeSat use in LEO.

  14. 3Cat-3/MOTS Nanosatellite Mission for Optical Multispectral and GNSS-R Earth Observation: Concept and Analysis

    PubMed Central

    Castellví, Jordi; Corbera, Jordi; Alamús, Ramon

    2018-01-01

    The 3Cat-3/MOTS (3: Cube, Cat: Catalunya, 3: 3rd CubeSat mission/Missió Observació Terra Satèl·lit) mission is a joint initiative between the Institut Cartogràfic i Geològic de Catalunya (ICGC) and the Universitat Politècnica de Catalunya-BarcelonaTech (UPC) to foster innovative Earth Observation (EO) techniques based on data fusion of Global Navigation Satellite Systems Reflectometry (GNSS-R) and optical payloads. It is based on a 6U CubeSat platform, roughly a 10 cm × 20 cm × 30 cm parallelepiped. Since 2012, there has been a fast growing trend to use small satellites, especially nanosatellites, and in particular those following the CubeSat form factor. Small satellites possess intrinsic advantages over larger platforms in terms of cost, flexibility, and scalability, and may also enable constellations, trains, federations, or fractionated satellites or payloads based on a large number of individual satellites at an affordable cost. This work summarizes the mission analysis of 3Cat-3/MOTS, including its payload results, power budget (PB), thermal budget (TB), and data budget (DB). This mission analysis is addressed to transform EO data into territorial climate variables (soil moisture and land cover change) at the best possible achievable spatio-temporal resolution. PMID:29316649

  15. An Analytical Framework for Assessing the Efficacy of Small Satellites in Performing Novel Imaging Missions

    NASA Astrophysics Data System (ADS)

    Weaver, Oesa A.

    In the last two decades, small satellites have opened up the use of space to groups other than governments and large corporations, allowing for increased participation and experimentation. This democratization of space was primarily enabled by two factors: improved technology and reduced launch costs. Improved technology allowed the miniaturization of components and reduced overall cost meaning many of the capabilities of larger satellites could be replicated at a fraction of the cost. In addition, new launcher systems that could host many small satellites as ride-shares on manifested vehicles lowered launch costs and simplified the process of getting a satellite into orbit. The potential of these smaller satellites to replace or augment existing systems has led to a flood of potential satellite and mission concepts, often with little rigorous study of whether the proposed satellite or mission is achievable or necessary. This work proposes an analytical framework to aid system designers in evaluating the ability of an existing concept or small satellite to perform a particular imaging mission, either replacing or augmenting existing capabilities. This framework was developed and then refined by application to the problem of using small satellites to perform a wide area search mission -- a mission not possible with existing imaging satellites, but one that would add to current capabilities. Requirements for a wide area search mission were developed, along with a list of factors that would affect image quality and system performance. Two existing small satellite concepts were evaluated for use by examining image quality from the systems, selecting an algorithm to perform the search function automatically, and then assessing mission feasibility by applying the algorithm to simulated imagery. Finally, a notional constellation design was developed to assess the number of satellites required to perform the mission. It was found that a constellation of 480 CubeSats

  16. On verifying magnetic dipole moment of a magnetic torquer by experiments

    NASA Astrophysics Data System (ADS)

    Kuyyakanont, Aekjira; Kuntanapreeda, Suwat; Fuengwarodsakul, Nisai H.

    2018-01-01

    Magnetic torquers are used for the attitude control of small satellites, such as CubeSats with Low Earth Orbit (LEO). During the design of magnetic torquers, it is necessary to confirm if its magnetic dipole moment is enough to control the satellite attitude. The magnetic dipole moment can affect the detumbling time and the satellite rotation time. In addition, it is also necessary to understand how to design the magnetic torquer for operation in a CubeSat under the space environment at LEO. This paper reports an investigation of the magnetic dipole moment and the magnetic field generated by a circular air-coil magnetic torquer using experimental measurements. The experiment testbed was built on an air-bearing under a magnetic field generated by a Helmholtz coil. This paper also describes the procedure to determine and verify the magnetic dipole moment value of the designed circular air-core magnetic torquer. The experimental results are compared with the design calculations. According to the comparison results, the designed magnetic torquer reaches the required magnetic dipole moment. This designed magnetic torquer will be applied to the attitude control systems of a 1U CubeSat satellite in the project “KNACKSAT.”

  17. New Solar Irradiance Measurements from the Miniature X-Ray Solar Spectrometer Cubesat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, Thomas N.; Jones, Andrew; Kohnert, Richard

    The goal of the Miniature X-ray Solar Spectrometer ( MinXSS ) CubeSat is to explore the energy distribution of soft X-ray (SXR) emissions from the quiescent Sun, active regions, and during solar flares and to model the impact on Earth's ionosphere and thermosphere. The energy emitted in the SXR range (0.1–10 keV) can vary by more than a factor of 100, yet we have limited spectral measurements in the SXRs to accurately quantify the spectral dependence of this variability. The MinXSS primary science instrument is an Amptek, Inc. X123 X-ray spectrometer that has an energy range of 0.5–30 keV withmore » a nominal 0.15 keV energy resolution. Two flight models have been built. The first, MinXSS -1, has been making science observations since 2016 June 9 and has observed numerous flares, including more than 40 C-class and 7 M-class flares. These SXR spectral measurements have advantages over broadband SXR observations, such as providing the capability to derive multiple-temperature components and elemental abundances of coronal plasma, improved irradiance accuracy, and higher resolution spectral irradiance as input to planetary ionosphere simulations. MinXSS spectra obtained during the M5.0 flare on 2016 July 23 highlight these advantages and indicate how the elemental abundance appears to change from primarily coronal to more photospheric during the flare. MinXSS -1 observations are compared to the Geostationary Operational Environmental Satellite ( GOES ) X-ray Sensor (XRS) measurements of SXR irradiance and estimated corona temperature. Additionally, a suggested improvement to the calibration of the GOES XRS data is presented.« less

  18. Drag De-Orbit Device: A New Standard Re-Entry Actuator for CubeSats

    NASA Technical Reports Server (NTRS)

    Guglielmo, David; Omar, Sanny; Bevilacqua, Riccardo

    2017-01-01

    With the advent of CubeSats, research in Low Earth Orbit (LEO) becomes possible for universities and small research groups. Only a handful of launch sites can be used, due to geographical and political restrictions. As a result, common orbits in LEO are becoming crowded due to the additional launches made possible by low-cost access to space. CubeSat design principles require a maximum of a 25-year orbital lifetime in an effort to reduce the total number of spacecraft in orbit at any time. Additionally, since debris may survive re-entry, it is ideal to de-orbit spacecraft over unpopulated areas to prevent casualties. The Drag Deorbit Device (D3) is a self-contained targeted re-entry subsystem intended for CubeSats. By varying the cross-wind area, the atmospheric drag can be varied in such a way as to produce desired maneuvers. The D3 is intended to be used to remove spacecraft from orbit to reach a desired target interface point. Additionally, attitude stabilization is performed by the D3 prior to deployment and can replace a traditional ADACS on many missions.This paper presents the hardware used in the D3 and operation details. Four stepper-driven, repeatedly retractable booms are used to modify the cross-wind area of the D3 and attached spacecraft. Five magnetorquers (solenoids) over three axes are used to damp rotational velocity. This system is expected to be used to improve mission flexibility and allow additional launches by reducing the orbital lifetime of spacecraft.The D3 can be used to effect a re-entry to any target interface point, with the orbital inclination limiting the maximum latitude. In the chance that the main spacecraft fails, a timer will automatically deploy the booms fully, ensuring the spacecraft will at the minimum reenter the atmosphere in the minimum possible time, although not necessarily at the desired target interface point. Although this does not reduce the risk of casualties, the 25-year lifetime limit is still respected, allowing

  19. MarCO CubeSat Model

    NASA Image and Video Library

    2016-01-20

    Joel Steinkraus, lead mechanical engineer for the MarCO (Mars Cube One) CubeSat spacecraft, adjusts a model of one of the two spacecraft. The mock-up in the photo is in a configuration to show the deployed position of components that correspond to MarCO's two solar panels and two antennas. During launch, those components will be stowed for a total vehicle size of about 14.4 inches (36.6 centimeters) by 9.5 inches (24.3 centimeters) by 4.6 inches (11.8 centimeters). The briefcase-size MarCO twins were designed to ride along with NASA's next Mars lander, InSight. Its planned March 2016 launch was suspended. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20344

  20. CubeSat Constellation Cloud Winds(C3Winds) A New Wind Observing System to Study Mesoscale Cloud Dynamics and Processes

    NASA Technical Reports Server (NTRS)

    Wu, D. L.; Kelly, M.A.; Yee, J.-H.; Boldt, J.; Demajistre, R.; Reynolds, E. L.; Tripoli, G. J.; Oman, L. D.; Prive, N.; Heidinger, A. K.; hide

    2016-01-01

    The CubeSat Constellation Cloud Winds (C3Winds) is a NASA Earth Venture Instrument (EV-I) concept with the primary objective to better understand mesoscale dynamics and their structures in severe weather systems. With potential catastrophic damage and loss of life, strong extratropical and tropical cyclones (ETCs and TCs) have profound three-dimensional impacts on the atmospheric dynamic and thermodynamic structures, producing complex cloud precipitation patterns, strong low-level winds, extensive tropopause folds, and intense stratosphere-troposphere exchange. Employing a compact, stereo IR-visible imaging technique from two formation-flying CubeSats, C3Winds seeks to measure and map high-resolution (2 km) cloud motion vectors (CMVs) and cloud geometric height (CGH) accurately by tracking cloud features within 5-15 min. Complementary to lidar wind observations from space, the high-resolution wind fields from C3Winds will allow detailed investigations on strong low-level wind formation in an occluded ETC development, structural variations of TC inner-core rotation, and impacts of tropopause folding events on tropospheric ozone and air quality. Together with scatterometer ocean surface winds, C3Winds will provide a more comprehensive depiction of atmosphere-boundary-layer dynamics and interactive processes. Built upon mature imaging technologies and long history of stereoscopic remote sensing, C3Winds provides an innovative, cost-effective solution to global wind observations with potential of increased diurnal sampling via CubeSat constellation.

  1. System Assessment of a High Power 3-U CubeSat

    NASA Technical Reports Server (NTRS)

    Shaw, Katie

    2016-01-01

    The Advanced eLectrical Bus (ALBus) CubeSat project is a technology demonstration mission of a 3-UCubeSat with an advanced, digitally controlled electrical power system capability and novel use of Shape Memory Alloy (SMA) technology for reliable deployable solar array mechanisms. The objective of the project is to, through an on orbit demonstration, advance the state of power management and distribution (PMAD) capabilities to enable future missions requiring higher power, flexible and reliable power systems. The goals of the mission include demonstration of: 100 Watt distribution to a target electrical load, efficient battery charging in the orbital environment, flexible power system distribution interfaces, adaptation of power system control on orbit, and reliable deployment of solar arrays and antennas utilizing re-settable SMA mechanisms. The power distribution function of the ALBus PMAD system is unique in the total power to target load capability of 100 W, the flexibility to support centralized or point-to-load regulation and ability to respond to fast transient power requirements. Power will be distributed from batteries at 14.8 V, 6.5 A to provide 100 W of power directly to a load. The deployable solar arrays utilize NASA Glenn Research Center superelastic and activated Nitinol(Nickel-Titanium alloy) Shape Memory Alloy (SMA) technology for hinges and a retention and release mechanism. The deployable solar array hinge design features utilization of the SMA material properties for dual purpose. The hinge uses the shape memory properties of the SMA to provide the spring force to deploy the arrays. The electrical conductivity properties of the SMA also enables the design to provide clean conduits for power transfer from the deployable arrays to the power management system. This eliminates the need for electrical harnesses between the arrays and the PMAD system in the ALBus system design. The uniqueness of the SMA retention and release mechanism design is the

  2. Proximity Operations Nano-Satellite Flight Demonstration (PONSFD) Rendezvous Proximity Operations Design and Trade Studies

    NASA Astrophysics Data System (ADS)

    Griesbach, J.; Westphal, J. J.; Roscoe, C.; Hawes, D. R.; Carrico, J. P.

    2013-09-01

    The Proximity Operations Nano-Satellite Flight Demonstration (PONSFD) program is to demonstrate rendezvous proximity operations (RPO), formation flying, and docking with a pair of 3U CubeSats. The program is sponsored by NASA Ames via the Office of the Chief Technologist (OCT) in support of its Small Spacecraft Technology Program (SSTP). The goal of the mission is to demonstrate complex RPO and docking operations with a pair of low-cost 3U CubeSat satellites using passive navigation sensors. The program encompasses the entire system evolution including system design, acquisition, satellite construction, launch, mission operations, and final disposal. The satellite is scheduled for launch in Fall 2015 with a 1-year mission lifetime. This paper provides a brief mission overview but will then focus on the current design and driving trade study results for the RPO mission specific processor and relevant ground software. The current design involves multiple on-board processors, each specifically tasked with providing mission critical capabilities. These capabilities range from attitude determination and control to image processing. The RPO system processor is responsible for absolute and relative navigation, maneuver planning, attitude commanding, and abort monitoring for mission safety. A low power processor running a Linux operating system has been selected for implementation. Navigation is one of the RPO processor's key tasks. This entails processing data obtained from the on-board GPS unit as well as the on-board imaging sensors. To do this, Kalman filters will be hosted on the processor to ingest and process measurements for maintenance of position and velocity estimates with associated uncertainties. While each satellite carries a GPS unit, it will be used sparsely to conserve power. As such, absolute navigation will mainly consist of propagating past known states, and relative navigation will be considered to be of greater importance. For relative observations

  3. Propulsion System Testing for the Iodine Satellite (iSAT) Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Kamhawi, Hani

    2015-01-01

    CUBESATS are relatively new spacecraft platforms that are typically deployed from a launch vehicle as a secondary payload, providing low-cost access to space for a wide range of end-users. These satellites are comprised of building blocks having dimensions of 10x10x10 cm cu and a mass of 1.33 kg (a 1-U size). While providing low-cost access to space, a major operational limitation is the lack of a propulsion system that can fit within a CubeSat and is capable of executing high delta v maneuvers. This makes it difficult to use CubeSats on missions requiring certain types of maneuvers (i.e. formation flying, spacecraft rendezvous). Recently, work has been performed investigating the use of iodine as a propellant for Hall-effect thrusters (HETs) 2 that could subsequently be used to provide a high specific impulse path to CubeSat propulsion. 3, 4 Iodine stores as a dense solid at very low pressures, making it acceptable as a propellant on a secondary payload. It has exceptionally high ?Isp (density times specific impulse), making it an enabling technology for small satellite near-term applications and providing the potential for systems-level advantages over mid-term high power electric propulsion options. Iodine flow can also be thermally regulated, subliming at relatively low temperature (less than 100 C) to yield I2 vapor at or below 50 torr. At low power, the measured performance of an iodine-fed HET is very similar to that of a state-of-the-art xenon-fed thruster. Just as importantly, the current-voltage discharge characteristics of low power iodine-fed and xenon-fed thrusters are remarkably similar, potentially reducing development and qualifications costs by making it possible to use an already-qualified xenon-HET PPU in an iodine-fed system. Finally, a cold surface can be installed in a vacuum test chamber on which expended iodine propellant can deposit. In addition, the temperature doesn't have to be extremely cold to maintain a low vapor pressure in the

  4. The Rocket Investigation of Current Closure in the Ionosphere (RICCI) mission: A novel application of CubeSats from a sounding rocket platform

    NASA Astrophysics Data System (ADS)

    Cohen, I. J.; Anderson, B. J.; Lessard, M.; Bonnell, J. W.; Bounds, S. R.; Lysak, R. L.; Erlandson, R. E.

    2017-12-01

    The transfer of energy and momentum between the terrestrial magnetosphere and ionosphere is substantially mediated by large-scale field-aligned currents (FACs), driven by magnetopause dynamics and magnetospheric pressures and closing through the ionosphere where the dissipation and drag are governed. While significant insight into ionospheric electrodynamics and the nature of magnetosphere-ionosphere (M-I) coupling have been gained by rocket and satellite measurements, in situ measurement of these ionospheric closure currents remains challenging. To date the best estimates of ionospheric current densities are inferred from ground-based radar observations combining electric fields calculated from drifts with conductivities derived from densities. RICCI aims to observe the structure of the ionospheric currents in situ to determine how the altitude structure of these currents is related to precipitation and density cavities, electromagnetic dynamics, and governs energy dissipation in the ionosphere. In situ measurement of the current density using multi-point measurements of the magnetic field requires precise attitude knowledge for which the only demonstrated technique is the use of star camera systems. The low vehicle rotation rates required for miniature commercial off-the-shelf (COTS) star cameras prohibit the use of available rocket sub-payload technologies at Wallops Flight Facility (WFF) which use high rates of spin to stabilize attitude. However, CubeSat attitude systems are already designed to achieve low vehicle rotation rates, so RICCI will use a set of three CubeSat sub-payloads deployed from a main low altitude payload with apogee of 160 km to provide precise current density measurement through the ionospheric closure altitude regime, together with a second rocket with apogee near 320 km to measure the incident input energy flux and convection electric field. The two rocket payloads and CubeSate sub-payloads are all instrumented with star cameras and

  5. Electrical Power Subsystem Integration and Test for the NPS Solar Cell Array Tester CubeSat

    DTIC Science & Technology

    2010-12-01

    Earth’s Gravitational Constant MCU Microcontroller Unit MPPT Maximum Power Point Tracker NiCr Nickel Chromium NPS Naval Postgraduate School P...new testing platform was designed, built, and used to conduct integrated testing on CubeSat Kit (CSK) compatible devices. The power budgets and...acceptance test results obtained from the testing platform were used with a solar array power generation simulation, and a battery state of charge

  6. The Hyper-Angular Rainbow Polarimeter (HARP) CubeSat Observatory and the Characterization of Cloud Properties

    NASA Astrophysics Data System (ADS)

    Neilsen, T. L.; Martins, J. V.; Fernandez Borda, R. A.; Weston, C.; Frazier, C.; Cieslak, D.; Townsend, K.

    2015-12-01

    The Hyper-Angular Rainbow Polarimeter HARP instrument is a wide field-of-view imager that splits three spatially identical images into three independent polarizers and detector arrays.This technique achieves simultaneous imagery of the same ground target in three polarization states and is the key innovation to achieve high polarimetric accuracy with no moving parts. The spacecraft consists of a 3U CubeSat with 3-axis stabilization designed to keep the image optics pointing nadir during data collection but maximizing solar panel sun pointing otherwise. The hyper-angular capability is achieved by acquiring overlapping images at very fast speeds.An imaging polarimeter with hyper-angular capability can make a strong contribution to characterizing cloud properties. Non-polarized multi-angle measurements have been shown to besensitive to thin cirrus and can be used to provide climatology ofthese clouds. Adding polarization and increasing the number ofobservation angles allows for the retrieval of the complete sizedistribution of cloud droplets, including accurate information onthe width of the droplet distribution in addition to the currentlyretrieved effective radius.The HARP mission is funded by the NASA Earth Science Technology Office as part of In-Space Validation of Earth Science Technologies (InVEST) program. The HARP instrument is designed and built by a team of students and professionals lead by Dr. Vanderlei Martines at University of Maryland, Baltimore County. The HARP spacecraft is designed and built by a team of students and professionals and The Space Dynamics Laboratory.

  7. VZLUSAT-1: Nanosatellite with miniature lobster eye X-ray telescope and qualification of the radiation shielding composite for space application

    NASA Astrophysics Data System (ADS)

    Urban, Martin; Nentvich, Ondrej; Stehlikova, Veronika; Baca, Tomas; Daniel, Vladimir; Hudec, Rene

    2017-11-01

    In the upcoming generation of small satellites there is a great potential for testing new sensors, processes and technologies for space and also for the creation of large in situ sensor networks. It plays a significant role in the more detailed examination, modelling and evaluation of the orbital environment. Scientific payloads based on the CubeSat technology are also feasible and the miniature X-ray telescope described in this paper may serve as an example. One of these small satellites from CubeSat family is a Czech CubeSat VZLUSAT-1, which is going to be launched during QB50 mission in 2017. This satellite has dimensions of 100 mm × 100 mm × 230 mm. The VZLUSAT-1 has three main payloads. The tested Radiation Hardened Composites Housing (RHCH) has ambitions to be used as a structural and shielding material to protect electronic devices in space or for constructions of future manned and unmanned spacecraft as well as Moon or Martian habitats. The novel miniaturized X-ray telescope with a Lobster Eye (LE) optics represents an example of CubeSat's scientific payload. The telescope has a wide field of view and such systems may be essential in detecting the X-ray sources of various physical origin. VZLUSAT-1 also carries the FIPEX payload which measures the molecular and atomic oxygen density among part of the satellite group in QB50 mission. The VZLUSAT-1 is one of the constellation in the QB50 mission that create a measuring network around the Earth and provide multipoint, in-situ measurements of the atmosphere.

  8. Science Results from Colorado Student Space Weather Experiment (CSSWE): Energetic Particle Distribution in Near Earth Environment

    NASA Astrophysics Data System (ADS)

    Li, Xinlin

    2013-04-01

    The Colorado Student Space Weather Experiment (CSSWE) is a 3-unit (10cm x 10cm x 30cm) CubeSat mission funded by the National Science Foundation, launched into a low-Earth, polar orbit on 13 September 2012 as a secondary payload under NASA's Educational Launch of Nanosatellites (ELaNa) program. The science objectives of CSSWE are to investigate the relationship of the location, magnitude, and frequency of solar flares to the timing, duration, and energy spectrum of solar energetic particles reaching Earth, and to determine the precipitation loss and the evolution of the energy spectrum of trapped radiation belt electrons. CSSWE contains a single science payload, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), which is a miniaturization of the Relativistic Electron and Proton Telescope (REPT) built at the Laboratory for Atmospheric and Space Physics for NASA/Van Allen Probes mission, which consists of two identical spacecraft, launched 30 August 2012, that traverse the heart of the radiation belts in a low inclination orbit. CSSWE's REPTile is designed to measure the directional differential flux of protons ranging from 10 to 40 MeV and electrons from 0.5 to >3.3 MeV. The commissioning phase was completed and REPTile was activated on 4 October 2012. The data are very clean, far exceeding expectations! A number of engineering challenges had to be overcome to achieve such clean measurements under the mass and power limits of a CubeSat. The CSSWE is also an ideal class project, providing training for the next generation of engineers and scientists over the full life-cycle of a satellite project.

  9. The Cubesat Heliospheric Imaging Experiment for Space Weather Prediction

    NASA Astrophysics Data System (ADS)

    DeForest, Craig; Howard, T.; Dickinson, J.; Epperly, M.; Kief, C.

    2010-05-01

    Heliospheric imaging data have been shown to improve space weather prediction by an order of magnitude, and heliospheric monitoring by the SMEI and STEREO-HI instruments have proven to be extremely useful for understanding heliospheric conditions near Earth. However, SMEI is approaching end-of-life and the STEREOs are drifting away from favorable Earth-viewing geometry just as the new solar cycle begins. CHIME is an innovative, miniaturized, fully functional space weather heliospheric monitor that fits within the 3U CubeSat envelope and can be flown individually (as a scientific or demonstrator mission) or in a swarm (to attain operational-class reliability) at a small fraction of the cost of a conventional mission. Here we describe the CHIME concept and its use with the automated processing pipeline AICMED to improve space weather prediction.

  10. KSC-2013-2330

    NASA Image and Video Library

    2013-05-10

    CAPE CANAVERAL, Fla. – Students from Merritt Island High School in Florida perform integration tests a cubesat called StangSat they will fly on a suborbital mission in the summer. The satellite will work inside a small rocket to measure vibration and other data during launch. NASA engineers are acting as mentors for the project and some of the space agency's labs at Kennedy Space Center, including this one inside the Operations and Checkout Building, are being used by the teams. Photo credit: NASA/Kim Shiflett

  11. New Solar Irradiance Measurements from the Miniature X-Ray Solar Spectrometer CubeSat

    NASA Astrophysics Data System (ADS)

    Woods, Thomas N.; Caspi, Amir; Chamberlin, Phillip C.; Jones, Andrew; Kohnert, Richard; Mason, James Paul; Moore, Christopher S.; Palo, Scott; Rouleau, Colden; Solomon, Stanley C.; Machol, Janet; Viereck, Rodney

    2017-02-01

    The goal of the Miniature X-ray Solar Spectrometer (MinXSS) CubeSat is to explore the energy distribution of soft X-ray (SXR) emissions from the quiescent Sun, active regions, and during solar flares and to model the impact on Earth's ionosphere and thermosphere. The energy emitted in the SXR range (0.1-10 keV) can vary by more than a factor of 100, yet we have limited spectral measurements in the SXRs to accurately quantify the spectral dependence of this variability. The MinXSS primary science instrument is an Amptek, Inc. X123 X-ray spectrometer that has an energy range of 0.5-30 keV with a nominal 0.15 keV energy resolution. Two flight models have been built. The first, MinXSS-1, has been making science observations since 2016 June 9 and has observed numerous flares, including more than 40 C-class and 7 M-class flares. These SXR spectral measurements have advantages over broadband SXR observations, such as providing the capability to derive multiple-temperature components and elemental abundances of coronal plasma, improved irradiance accuracy, and higher resolution spectral irradiance as input to planetary ionosphere simulations. MinXSS spectra obtained during the M5.0 flare on 2016 July 23 highlight these advantages and indicate how the elemental abundance appears to change from primarily coronal to more photospheric during the flare. MinXSS-1 observations are compared to the Geostationary Operational Environmental Satellite (GOES) X-ray Sensor (XRS) measurements of SXR irradiance and estimated corona temperature. Additionally, a suggested improvement to the calibration of the GOES XRS data is presented.

  12. Science Case for Planetary Exploration with Planetary CubeSats and SmallSats

    NASA Astrophysics Data System (ADS)

    Castillo-Rogez, Julie; Raymond, Carol; Jaumann, Ralf; Vane, Gregg; Baker, John

    2016-07-01

    Nano-spacecraft and especially CubeSats are emerging as viable low cost platforms for planetary exploration. Increasing miniaturization of instruments and processing performance enable smart and small packages capable of performing full investigations. While these platforms are limited in terms of payload and lifetime, their form factor and agility enable novel mission architectures and a refreshed relationship to risk. Leveraging a ride with a mothership to access far away destinations can significantly augment the mission science return at relatively low cost. Depending on resources, the mothership may carry several platforms and act as telecom relay for a distributed network or other forms of fractionated architectures. In Summer 2014 an international group of scientists, engineers, and technologists started a study to define investigations to be carried out by nano-spacecrafts. These applications flow down from key science priorities of interest across space agencies: understanding the origin and organization of the Solar system; characterization of planetary processes; assessment of the astrobiological significance of planetary bodies across the Solar system; and retirement of strategic knowledge gaps (SKGs) for Human exploration. This presentation will highlight applications that make the most of the novel architectures introduced by nano-spacecraft. Examples include the low cost reconnaissance of NEOs for science, planetary defense, resource assessment, and SKGs; in situ chemistry measurements (e.g., airless bodies and planetary atmospheres), geophysical network (e.g., magnetic field measurements), coordinated physical and chemical characterization of multiple icy satellites in a giant planet system; and scouting, i.e., risk assessment and site reconnaissance to prepare for close proximity observations of a mothership (e.g., prior to sampling). Acknowledgements: This study is sponsored by the International Academy of Astronautics (IAA). Part of this work is

  13. On-Orbit Ephemeris Determination with Radio Doppler Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dallmann, Nicholas; Proicou, Michael Chris; Seitz, Daniel Nathan

    2016-02-09

    Multiple CubeSats are often released from the same host spacecraft into virtually the same orbit at nearly the same time. A satellite team needs the ability to identify and track its own satellites as soon as possible. However, this can be a difficult and confusing task with a large number of satellites. Los Alamos National Laboratory encountered this issue during a launch of LANL-designed CubeSats that were released with more than 20 other objects. A simple radio Doppler method used shortly after launch by the Los Alamos team to select its satellites of interest from the list of available trackedmore » ephemerides is described. This method can also be used for automated real time ephemeris validation. For future efforts, each LANL-designed CubeSat will automatically perform orbit determination from the position, velocity, and covariance estimates provided by an added on-board GPS receiver. This self-determined ephemeris will be automatically downlinked by ground stations for mission planning, antenna tracking, Doppler-pre-correction, etc. A simple algorithm based on established theory and well suited for embedded on-board processing is presented. The trades examined in selecting the algorithm components and data formats are briefly discussed, as is the expected performance.« less

  14. CXBN-2 CubeSat Integration Team in the Morehead State University Spacecraft Integration and Assembly Facility

    NASA Image and Video Library

    2016-11-09

    CXBN-2 Integration Team in the Morehead State University Spacecraft Integration and Assembly Facility. Left to right: Kein Dant, Yevgeniy Byleborodov, and Nate Richard. The Cosmic X-Ray Background NanoSat-2 (CXBN-2) CubeSat Mission developed by Morehead State University and its partners the Keldysh Institute (Moscow, Russia), the Maysville Community and Technical College (Morehead, KY) and KYSpace LLC (Lexington, KY) will increase the precision of measurements of the Cosmic X-Ray Background in the 30-50 keV range to a precision of <5%, thereby constraining models that attempt to explain the relative contribution of proposed sources lending insight into the underlying physics of the early universe. The mission addresses a fundamental science question that is central to our understanding of the structure, origin, and evolution of the universe by potentially lending insight into both the high-energy background radiation and into the evolution of primordial galaxies. Launched by NASA’s CubeSat Launch Initiative NET April 18, 2017 ELaNa XVII mission on the seventh Orbital-ATK Cygnus Commercial Resupply Services (OA-7) to the International Space Station and deployed on tbd.

  15. A Combined Time Domain Impedance Probe And Plasma Wave Receiver System For Small Satellite Applications.

    NASA Astrophysics Data System (ADS)

    Spencer, E. A.; Clark, D. C.; Vadepu, S. K.; Patra, S.

    2017-12-01

    A Time Domain Impedance Probe (TDIP) measures electron density and electron neutral collision frequencies in the ionosphere. This instrument has been tested on a sounding rocket flight and is now being further developed to fly on a NASA Undergraduate Student Instrument Program (USIP) cubesat to be launched out of the ISS in 2019. Here we report on the development of a new combined TDIP and plasma wave instrument that can be used on cubesat platforms to measure local electron parameters, and also to receive or transmit electron scale waves. This combined instrument can be used to study short time and space scale phenomena in the upper ionosphere using only RF signals. The front end analog circuitry is dual-purposed to perform active or passive probing of the ambient plasma. Two dipole antennas are used, one is optimzed for impedance measurements, while the other is optimized for transmitter-receiver performance. We show our circuit realization, and initial results from laboratory measurements using the TDIP prototype modified for receiver function. We also show Finite Difference Time Domain (FDTD) simulations of an electrically long antenna immersed in a magnetized plasma used to optimize the transmitter receiver performance.

  16. CubeSub - A CubeSat Based Submersible Testbed for Space Technology

    NASA Technical Reports Server (NTRS)

    Slettebo, Christian

    2016-01-01

    This report is a Master's Thesis in Aerospace Engineering, performed at the NASA Ames Research Center. It describes the development of the CubeSub, a submersible testbed compatible with the CubeSat form factor. The CubeSub will be used to mature technology and operational procedures to be used in space exploration, and possibly also as a tool for exploration of Earthly environments. CubeSats are carried as payloads, either containing technology to be tested or experiments and sensors for scientific use. The CubeSub is designed to be built up by modules, which can be assembled in different configurations to fulfill different needs. Each module is powered individually and intermodular communication is wireless, reducing the need for wiring. The inside of the hull is flooded with ambient water to simplify the interaction between payloads and surrounding environment. The overall shape is similar to that of a conventional AUV, slender and smooth. This is to make for a low drag, reduce the risk of snagging on surrounding objects and make it possible to deploy through an ice sheet via a narrow borehole. Rapid prototyping is utilized to a large extent, with full-scale prototypes being constructed through 3D-printing and with COTS (Commercial Off-The-Shelf) components. Arduino boards are used for control and internal communication. Modules required for basic operation have been designed, manufactured and tested. Each module is described with regards to its function, design and manufacturability. By performing tests in a pool it was found that the basic concept is sound and that future improvements include better controllability, course stability and waterproofing of electrical components. Further development is needed to make the CubeSub usable for its intended purposes. The largest gains are expected to be found by developing the software and improving controllability.

  17. NPS-SCAT: Systems Engineering and Payload Subsystem Design, Integration, and Testing of NPS’ First CubeSat

    DTIC Science & Technology

    2010-06-01

    Subsystem Design, Integration, and Testing of NPS’ First CubeSat 6. AUTHOR(S) Jenkins, Robert D. IV 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S...AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING...Experimental Mission SOIC Small Outline Integrated Circuit SOT Small Outline Transistor SpaceX Space Exploration Technologies Corporation SPI

  18. COPPER Students - ELaNa IV

    NASA Image and Video Library

    2013-07-11

    The Close Orbiting Propellant Plume Elemental Recognition (COPPER) was developed by students from St. Louis University as a technology demonstration mission whose objective is to test the suitability of a commercially-available compact uncooled microbolometer (tiny infrared camera) array for scientific imagery of Earth in the long-wave infrared range (LWIR, 7-13 microns). Launched by NASA’s CubeSat Launch Initiative on the ELaNa IV mission as an auxiliary payload aboard the U.S. Air Force-led Operationally Responsive Space (ORS-3) Mission on November 19, 2013.

  19. HaloSat - A CubeSat to Study the Hot Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kaaret, Philip

    2017-01-01

    Observations of the nearby universe fail to locate about half of the baryons observed in the early universe. The missing baryons may be in hot galactic halos. HaloSat is a CubeSat designed to map oxygen line emission (O VII and O VIII) around the Milky Way in order to constrain the mass and spatial distribution of hot gas in the halo. HaloSat has a grasp competitive with current X-ray observatories. Its observing program will be optimized to minimize contributions from solar wind charge exchange (SWCX) emission that limit the accuracy of current measurements. We will describe the HaloSat mission concept, progress towards its implementation, and plans for archiving and distribution of the data.

  20. The Hyper-Angular Rainbow Polarimeter (HARP) CubeSat Observatory and the Characterization of Cloud Properties

    NASA Astrophysics Data System (ADS)

    Neilsen, T. L.; Martins, J. V.; Fish, C. S.; Fernandez Borda, R. A.

    2014-12-01

    The Hyper-Angular Rainbow Polarimeter HARP instrument is a wide field-of-view imager that splits three spatially identical images into three independent polarizers and detector arrays. This technique achieves simultaneous imagery of the same ground target in three polarization states and is the key innovation to achieve high polarimetric accuracy with no moving parts. The spacecraft consists of a 3U CubeSat with 3-axis stabilization designed to keep the image optics pointing nadir during data collection but maximizing solar panel sun pointing otherwise. The hyper-angular capability is achieved by acquiring overlapping images at very fast speeds. An imaging polarimeter with hyper-angular capability can make a strong contribution to characterizing cloud properties. Non-polarized multi-angle measurements have been shown to be sensitive to thin cirrus and can be used to provide climatology of these clouds. Adding polarization and increasing the number of observation angles allows for the retrieval of the complete size distribution of cloud droplets, including accurate information on the width of the droplet distribution in addition to the currently retrieved e­ffective radius. The HARP mission is funded by the NASA Earth Science Technology Office as part of In-Space Validation of Earth Science Technologies (InVEST) program. The HARP instrument is designed and built by a team of students and professionals lead by Dr. Vanderlei Martines at University of Maryland, Baltimore County. The HARP spacecraft is designed and built by a team of students and professionals and The Space Dynamics Laboratory.

  1. State Geography Using NOAA Polar-Orbiting Satellites.

    ERIC Educational Resources Information Center

    Stadler, Stephen J.

    1985-01-01

    NOAA polar-orbiting satellites have the capability of providing views of entire states. This article describes the characteristics of data from these satellites, indicates their advantages and disadvantages, and shows how the satellite data can be used in a statewide representation of physical geography for students at the introductory level. (RM)

  2. Colorado Ultraviolet Transit Experiment: a dedicated CubeSat mission to study exoplanetary mass loss and magnetic fields

    NASA Astrophysics Data System (ADS)

    Fleming, Brian T.; France, Kevin; Nell, Nicholas; Kohnert, Richard; Pool, Kelsey; Egan, Arika; Fossati, Luca; Koskinen, Tommi; Vidotto, Aline A.; Hoadley, Keri; Desert, Jean-Michel; Beasley, Matthew; Petit, Pascal M.

    2018-01-01

    The Colorado Ultraviolet Transit Experiment (CUTE) is a near-UV (2550 to 3300 Å) 6U CubeSat mission designed to monitor transiting hot Jupiters to quantify their atmospheric mass loss and magnetic fields. CUTE will probe both atomic (Mg and Fe) and molecular (OH) lines for evidence of enhanced transit absorption, and to search for evidence of early ingress due to bow shocks ahead of the planet's orbital motion. As a dedicated mission, CUTE will observe ≳100 spectroscopic transits of hot Jupiters over a nominal 7-month mission. This represents the equivalent of >700 orbits of the only other instrument capable of these measurements, the Hubble Space Telescope. CUTE efficiently utilizes the available CubeSat volume by means of an innovative optical design to achieve a projected effective area of ˜28 cm2, low instrumental background, and a spectral resolving power of R˜3000 over the primary science bandpass. These performance characteristics enable CUTE to discern transit depths between 0.1% and 1% in individual spectral absorption lines. We present the CUTE optical and mechanical design, a summary of the science motivation and expected results, and an overview of the projected fabrication, calibration, and launch timeline.

  3. Satellite Imaging in the Study of Pennsylvania's Environmental Issues.

    ERIC Educational Resources Information Center

    Nous, Albert P.

    This document focuses on using satellite images from space in the classroom. There are two types of environmental satellites routinely broadcasting: (1) Polar-Orbiting Operational Environmental Satellites (POES), and (2) Geostationary Operational Environmental Satellites (GOES). Imaging and visualization techniques provide students with a better…

  4. Force Modeling and State Propagation for Navigation and Maneuver Planning for the Proximity Operations Nano-Satellite Flight Demonstration Mission

    NASA Astrophysics Data System (ADS)

    Roscoe, C.; Griesbach, J.; Westphal, J.; Hawes, D.; Carrico, J.

    2013-09-01

    The state propagation accuracy resulting from different choices of gravitational force models and orbital perturbations is investigated for a pair of CubeSats flying in formation in low Earth orbit (LEO). Accurate on-board state propagation is necessary to autonomously plan maneuvers and perform proximity operations and docking safely. The ability to perform high-precision navigation is made especially challenging by the limited computer processing power available on-board the spacecraft. Propagation accuracy is investigated both in terms of the absolute (chief) state and the relative (deputy relative to chief) state. Different perturbing effects are quantified and related directly to important mission factors such as maneuver accuracy, fuel use (mission lifetime), and collision prediction/avoidance (mission safety). The Proximity Operations Nano-Satellite Flight Demonstration (PONSFD) program is to demonstrate rendezvous proximity operations (RPO), formation flying, and docking with a pair of 3U CubeSats. The program is sponsored by NASA Ames via the Office of the Chief Technologist (OCT) in support of its Small Spacecraft Technology Program (SSTP). The goal of the mission is to demonstrate complex RPO and docking operations with a pair of low-cost 3U CubeSat satellites using passive navigation sensors. The primary orbital perturbation affecting spacecraft in low Earth orbit (LEO) is the Earth oblateness, or J2, perturbation. Provided that a spacecraft does not have an extremely high area-to-mass ratio or is not flying at a very low altitude, the effect of J2 will usually be greater than that of atmospheric drag, which will typically be the next largest perturbing force in LEO. After these perturbations, factors such as higher-order Earth gravitational parameters, third-body perturbations, and solar radiation pressure will follow in magnitude but will have much less noticeable effects than J2 and drag. For spacecraft formations, where relative dynamics and not

  5. The role of Vitamin D in immuno-inflammatory responses in Ankylosing Spondylitis patients with and without Acute Anterior Uveitis.

    PubMed

    Mitulescu, T C; Stavaru, C; Voinea, L M; Banica, L M; Matache, C; Predeteanu, D

    2016-01-01

    Hypothesis: Abnormal Vitamin D (Vit D) level could have consequences on the immuno-inflammatory processes in Ankylosing Spondylitis (AS). Aim: The purpose of this study was to analyze the role of Vitamin D in the interplay between immune and inflammation effectors in AS associated-Acute Anterior Uveitis (AAU). Methods and Results: 25-hydroxyvitamin D (Vit D), LL-37 peptide, IL-8 and Serum Amyloid A (SAA) were identified and quantified in the serum/ plasma of thirty-four AS patients [eleven AS patients presenting AAU (AAU AS patients) and twenty-three AS patients without AAU (wAAU AS patients)] and eighteen healthy individuals (Control) using enzyme-linked immunosorbent assay. Acute-phase SAA level was significantly higher in AS patients compared to Controls. Contrary with wAAU AS patients, significantly elevated levels of IL-8, and diminished levels of Vit D characterized AAU AS patients. Regarding LL-37, its level decreased concomitantly with the level of Vit D. When AS patients were subgrouped based on AAU presence or on Vit D level, important associations between immuno-inflammatory assessed markers and AS features were noticed. Generally, Vit D levels were associated indirectly with leukocytes/ neutrophils number or with ESR, CRP, and Fibrinogen levels. The levels of SAA and IL-8 associated directly with AAU or with AAU relapses, especially in AS patients with Vit D insufficiency, while SAA associated directly with infection/ inflammatory markers and with disease activity indexes or with the degree of functional limitation. Discussion: Altered levels of Vit D affect the balance between LL-37, IL-8 and SAA, suggesting an association with AAU, an extra-articular manifestation of AS. Abbreviations: Vit D = Vitamin D, AS = Ankylosing Spondylitis, AAU = Acute Anterior Uveitis, AAU AS = AS patients with AAU, wAAU AS = AS patients without AAU, SSZ = Sulphasalazine, Leu = Leukocytes, Neu = Neutrophils.

  6. The role of Vitamin D in immuno-inflammatory responses in Ankylosing Spondylitis patients with and without Acute Anterior Uveitis

    PubMed Central

    Mitulescu, TC; Stavaru, C; Voinea, LM; Banica, LM; Matache, C; Predeteanu, D

    2016-01-01

    Hypothesis:Abnormal Vitamin D (Vit D) level could have consequences on the immuno-inflammatory processes in Ankylosing Spondylitis (AS). Aim:The purpose of this study was to analyze the role of Vitamin D in the interplay between immune and inflammation effectors in AS associated-Acute Anterior Uveitis (AAU). Methods and Results:25-hydroxyvitamin D (Vit D), LL-37 peptide, IL-8 and Serum Amyloid A (SAA) were identified and quantified in the serum/ plasma of thirty-four AS patients [eleven AS patients presenting AAU (AAU AS patients) and twenty-three AS patients without AAU (wAAU AS patients)] and eighteen healthy individuals (Control) using enzyme-linked immunosorbent assay. Acute-phase SAA level was significantly higher in AS patients compared to Controls. Contrary with wAAU AS patients, significantly elevated levels of IL-8, and diminished levels of Vit D characterized AAU AS patients. Regarding LL-37, its level decreased concomitantly with the level of Vit D. When AS patients were subgrouped based on AAU presence or on Vit D level, important associations between immuno-inflammatory assessed markers and AS features were noticed. Generally, Vit D levels were associated indirectly with leukocytes/ neutrophils number or with ESR, CRP, and Fibrinogen levels. The levels of SAA and IL-8 associated directly with AAU or with AAU relapses, especially in AS patients with Vit D insufficiency, while SAA associated directly with infection/ inflammatory markers and with disease activity indexes or with the degree of functional limitation. Discussion:Altered levels of Vit D affect the balance between LL-37, IL-8 and SAA, suggesting an association with AAU, an extra-articular manifestation of AS. Abbreviations:Vit D = Vitamin D, AS = Ankylosing Spondylitis, AAU = Acute Anterior Uveitis, AAU AS = AS patients with AAU, wAAU AS = AS patients without AAU, SSZ = Sulphasalazine, Leu = Leukocytes, Neu = Neutrophils. PMID:27713770

  7. Satellite communication for public services

    NASA Technical Reports Server (NTRS)

    Cooper, R. S.; Redisch, W. N.

    1977-01-01

    Public service programs using NASA's ATS-6 and CTS satellites are discussed. Examples include the ATS-6 Health and Education Telecommunications experimental program and the use of CTS to enable students in one university to take courses presented at another distant university. Possible applications of satellite communication systems to several areas of public service are described, and economic and political obstacles hindering the implementation of these programs are considered. It is suggested that a federally sponsored program demonstrating the utility of satellites accomodating a large number of small terminals is needed to encourage commercial satellite operations.

  8. Optimizing the Attitude Control of Small Satellite Constellations for Rapid Response Imaging

    NASA Astrophysics Data System (ADS)

    Nag, S.; Li, A.

    2016-12-01

    Distributed Space Missions (DSMs) such as formation flight and constellations, are being recognized as important solutions to increase measurement samples over space and time. Given the increasingly accurate attitude control systems emerging in the commercial market, small spacecraft now have the ability to slew and point within few minutes of notice. In spite of hardware development in CubeSats at the payload (e.g. NASA InVEST) and subsystems (e.g. Blue Canyon Technologies), software development for tradespace analysis in constellation design (e.g. Goddard's TAT-C), planning and scheduling development in single spacecraft (e.g. GEO-CAPE) and aerial flight path optimizations for UAVs (e.g. NASA Sensor Web), there is a gap in open-source, open-access software tools for planning and scheduling distributed satellite operations in terms of pointing and observing targets. This paper will demonstrate results from a tool being developed for scheduling pointing operations of narrow field-of-view (FOV) sensors over mission lifetime to maximize metrics such as global coverage and revisit statistics. Past research has shown the need for at least fourteen satellites to cover the Earth globally everyday using a LandSat-like sensor. Increasing the FOV three times reduces the need to four satellites, however adds image distortion and BRDF complexities to the observed reflectance. If narrow FOV sensors on a small satellite constellation were commanded using robust algorithms to slew their sensor dynamically, they would be able to coordinately cover the global landmass much faster without compensating for spatial resolution or BRDF effects. Our algorithm to optimize constellation satellite pointing is based on a dynamic programming approach under the constraints of orbital mechanics and existing attitude control systems for small satellites. As a case study for our algorithm, we minimize the time required to cover the 17000 Landsat images with maximum signal to noise ratio fall

  9. VZLUSAT-1: verification of new materials and technologies for space

    NASA Astrophysics Data System (ADS)

    Daniel, Vladimir; Urban, Martin; Nentvich, Ondrej; Stehlikova, Veronika

    2016-09-01

    CubeSats are a good opportunity to test new technologies and materials on orbit. These innovations can be later used for improving of properties and life length of Cubesat or other satellites as well. VZLUSAT-1 is a small satellite from the CubeSat family, which will carry a wide scale of payloads with different purposes. The poster is focused on measuring of degradation and properties measurement of new radiation hardened composite material in orbit due to space environment. Material properties changes can be studied by many methods and in many disciplines. One payload measures mechanical changes in dependence on Young's modulus of elasticity which is got from non-destructive testing by mechanical vibrations. The natural frequencies we get using Fast Fourier Transform. The material is tested also by several thermometers which measure heat distribution through the composite, as well as reflectivity in dependence on different coatings. The satellite also will measure the material radiation shielding properties. There are PIN diodes which measure the relative shielding efficiency of composite and how it will change in time in space environment. Last one of material space testing is measurement of outgassing from tested composite material. It could be very dangerous for other parts of satellite, like detectors, when anything was outgassing, for example water steam. There are several humidity sensors which are sensitive to steam and other gases and measures temperatures as well.

  10. Additive Manufacturing: An Enabling Technology for the MoonBEAM 6U CubeSat Missions

    NASA Technical Reports Server (NTRS)

    Hopkins, R. C.; Hickman, R. R.; Cavender, D. P.; Dominquez, A.; Schnell, A. R.; Baysinger, M.; Capizzo, P.; Garcia, J.; Fabisinski, L. L.

    2017-01-01

    The Advanced Concepts Office at the NASA Marshall Space Flight Center completed a mission concept study for the Moon Burst Energetics All-sky Monitor (MoonBEAM). The goal of the concept study was to show the enabling aspects that additive manufacturing can provide to CubeSats. In addition to using the additively manufactured tanks as part of the spacecraft structure, the main propulsion system uses a green propellant, which is denser than hydrazine. Momentum unloading is achieved with electric microthrusters, eliminating much of the propellant plumbing. The science mission, requirements, and spacecraft design are described.

  11. Education and Public Outreach for the PICASSO-CENA Satellite-Based Research Mission: K-12 Students Use Sun Photometers to Assist Scientists in Validating Atmospheric Data

    NASA Astrophysics Data System (ADS)

    Robinson, D. Q.

    2001-05-01

    Hampton University, a historically black university, is leading the Education and Public Outreach (EPO) portion of the PICASSO-CENA satellite-based research mission. Currently scheduled for launch in 2004, PICASSO-CENA will use LIDAR (LIght Detection and Ranging), to study earth's atmosphere. The PICASSO-CENA Outreach program works with scientists, teachers, and students to better understand the effects of clouds and aerosols on earth's atmosphere. This program actively involves students nationwide in NASA research by having them obtain sun photometer measurements from their schools and homes for comparison with data collected by the PICASSO-CENA mission. Students collect data from their classroom ground observations and report the data via the Internet. Scientists will use the data from the PICASSO-CENA research and the student ground-truthing observations to improve predications about climatic change. The two-band passive remote sensing sun photometer is designed for student use as a stand alone instrument to study atmospheric turbidity or in conjunction with satellite data to provide ground-truthing. The instrument will collect measurements of column optical depth from the ground level. These measurements will not only give the students an appreciation for atmospheric turbidity, but will also provide quantitative correlative information to the PICASSO-CENA mission on ground-level optical depth. Student data obtained in this manner will be sufficiently accurate for scientists to use as ground truthing. Thus, students will have the opportunity to be involved with a NASA satellite-based research mission.

  12. Drag-Free Control and Drag Force Recovery of Small Satellites

    NASA Technical Reports Server (NTRS)

    Nguyen, Anh N.; Conklin, John W.

    2017-01-01

    Drag-free satellites provide autonomous precision orbit determination, accurately map the static and time varying components of Earth's mass distribution, aid in our understanding of the fundamental force of gravity, and will ultimately open up a new window to our universe through the detection and observation of gravitational waves. At the heart of this technology is a gravitational reference sensor, which (a) contains and shields a free-floating proof mass from all non-gravitational forces, and (b) precisely measures the position of the test mass inside the sensor. Thus, both test mass and spacecraft follow a pure geodesic in spacetime. By tracking the position of a low Earth orbiting drag-free satellite we can directly determine the detailed shape of geodesics and through analysis, the higher order harmonics of the Earths geopotential. This paper explores two different drag-free control systems on small satellites. The first drag-free control system is a continuously compensated single thruster 3-unit CubeSat with a suspension-free spherical proof-mass. A feedback control system commands the thruster and Attitude and Determination Control System to fly the tender spacecraft with respect to the test mass. The spheres position is sensed with a LED-based differential optical shadow sensor, its electric charge controlled by photoemission using UV LEDs, and the spacecraft position is maintained with respect to the sphere using an ion electrospray propulsion system. This configuration is the most fuel-efficient drag-free system possible today. The second drag-free control system is an electro-statically suspended cubical proof-mass that is operated with a low duty cycle, limiting suspension force noise over brief, known time intervals on a small GRACE-II -like satellite. The readout is performed using a laser interferometer, which is immune to the dynamic range limitations of voltage references. This system eliminates the need for a thruster, enabling drag

  13. Thermal Analysis of Iodine Satellite (iSAT)

    NASA Technical Reports Server (NTRS)

    Mauro, Stephanie

    2015-01-01

    This paper presents the progress of the thermal analysis and design of the Iodine Satellite (iSAT). The purpose of the iSAT spacecraft (SC) is to demonstrate the ability of the iodine Hall Thruster propulsion system throughout a one year mission in an effort to mature the system for use on future satellites. The benefit of this propulsion system is that it uses a propellant, iodine, that is easy to store and provides a high thrust-to-mass ratio. The spacecraft will also act as a bus for an earth observation payload, the Long Wave Infrared (LWIR) Camera. Four phases of the mission, determined to either be critical to achieving requirements or phases of thermal concern, are modeled. The phases are the Right Ascension of the Ascending Node (RAAN) Change, Altitude Reduction, De-Orbit, and Science Phases. Each phase was modeled in a worst case hot environment and the coldest phase, the Science Phase, was also modeled in a worst case cold environment. The thermal environments of the spacecraft are especially important to model because iSAT has a very high power density. The satellite is the size of a 12 unit cubesat, and dissipates slightly more than 75 Watts of power as heat at times. The maximum temperatures for several components are above their maximum operational limit for one or more cases. The analysis done for the first Design and Analysis Cycle (DAC1) showed that many components were above or within 5 degrees Centigrade of their maximum operation limit. The battery is a component of concern because although it is not over its operational temperature limit, efficiency greatly decreases if it operates at the currently predicted temperatures. In the second Design and Analysis Cycle (DAC2), many steps were taken to mitigate the overheating of components, including isolating several high temperature components, removal of components, and rearrangement of systems. These changes have greatly increased the thermal margin available.

  14. Developing a Satellite Educational Program for Deaf and Hard of Hearing Students Residing in a Rural Setting.

    ERIC Educational Resources Information Center

    Witt, Sheree; Howell, Ruth

    The Allegany County School System and the Maryland School for the Deaf (MSD) have collaborated to develop a satellite program that brings MSD educational services to hard-of-hearing and deaf elementary students in rural western Maryland. In the past 5 years, the number of hearing-impaired preschoolers in Allegany and Garrett Counties increased…

  15. DeMi Payload Progress Update and Adaptive Optics (AO) Control Comparisons – Meeting Space AO Requirements on a CubeSat

    NASA Astrophysics Data System (ADS)

    Grunwald, Warren; Holden, Bobby; Barnes, Derek; Allan, Gregory; Mehrle, Nicholas; Douglas, Ewan S.; Cahoy, Kerri

    2018-01-01

    The Deformable Mirror (DeMi) CubeSat mission utilizes an Adaptive Optics (AO) control loop to correct incoming wavefronts as a technology demonstration for space-based imaging missions, such as high contrast observations (Earthlike exoplanets) and steering light into core single mode fibers for amplification. While AO has been used extensively on ground based systems to correct for atmospheric aberrations, operating an AO system on-board a small satellite presents different challenges. The DeMi payload 140 actuator MEMS deformable mirror (DM) corrects the incoming wavefront in four different control modes: 1) internal observation with a Shack-Hartmann Wavefront Sensor (SHWFS), 2) internal observation with an image plane sensor, 3) external observation with a SHWFS, and 4) external observation with an image plane sensor. All modes have wavefront aberration from two main sources, time-invariant launch disturbances that have changed the optical path from the expected path when calibrated in the lab and very low temporal frequency thermal variations as DeMi orbits the Earth. The external observation modes has additional error from: the pointing precision error from the attitude control system and reaction wheel jitter. Updates on DeMi’s mechanical, thermal, electrical, and mission design are also presented. The analysis from the DeMi payload simulations and testing provides information on the design options when developing space-based AO systems.

  16. The Colorado Student Space Weather Experiment: A successful student-run scientific spacecraft mission

    NASA Astrophysics Data System (ADS)

    Schiller, Q.; Li, X.; Palo, S. E.; Blum, L. W.; Gerhardt, D.

    2015-12-01

    The Colorado Student Space Weather Experiment is a spacecraft mission developed and operated by students at the University of Colorado, Boulder. The 3U CubeSat was launched from Vandenberg Air Force Base in September 2012. The massively successful mission far outlived its 4 month estimated lifetime and stopped transmitting data after over two years in orbit in December 2014. CSSWE has contributed to 15 scientific or engineering peer-reviewed journal publications. During the course of the project, over 65 undergraduate and graduate students from CU's Computer Science, Aerospace, and Mechanical Engineering Departments, as well as the Astrophysical and Planetary Sciences Department participated. The students were responsible for the design, development, build, integration, testing, and operations from component- to system-level. The variety of backgrounds on this unique project gave the students valuable experience in their own focus area, but also cross-discipline and system-level involvement. However, though the perseverance of the students brought the mission to fruition, it was only possible through the mentoring and support of professionals in the Aerospace Engineering Sciences Department and CU's Laboratory for Atmospheric and Space Physics.

  17. Laser Photonic Propulsion Force for Station-Keeping Applications

    NASA Technical Reports Server (NTRS)

    Perez, Andres Dono; Yang, Fan Yang; Foster, Cyrus; Faber, Nicolas; Jonsson, Jonas; Stupl, Jan

    2014-01-01

    Small satellites, e.g. cubesats, do not tend to incorporate propulsion subsystems that can compensate for perturbation forces, which causes orbital decay. Cubesats are especially susceptible to the phenomenon of orbital decay, which limits their potential performance, since these effects are more noticeable in Low Earth Orbit (LEO). We postulate that a network of ground-based lasers could extend the operational lifetimes of these satellites by applying a photonic force onto their surfaces. This boosting force would help to counteract the degrading force, which is mainly produced by the drag of the atmosphere. This solution may present an advantage for low cost missions, in that it would enable longer mission durations without the need to incorporate a propulsion system, which comprises a large part of the mass budget and the power constraints of a satellite. This poster presents an analysis of the trade space for both the required network of laser ground stations and the satellite orbits. The analysis is based on simulations of the orbital decay of model satellites.

  18. Implications of contamination and surface area ratios for Langmuir probe diagnostics on CubeSats

    NASA Astrophysics Data System (ADS)

    Suresh, P.; Swenson, C.

    2009-12-01

    Theories describing the current collected by a biased probe under various conditions are necessary for such observation to be used to accurately determine plasma properties. Langmuir probes are routinely used on spacecraft to measure plasma parameters such as density, temperature, and vehicle charging. The collected current is a function of the potential between the surrounding plasma and probe surface. There have been both observations of and concepts for unaccounted variations of this potential which limit the application of Langmuir probe theory for determining plasma properties. These variations occur due to spatial variations of the work function across the probe surface due to non-uniformity of the crystalline surface properties and surface contamination of the probe. Currently we do not have theoretical expressions which consider these factors as first principles in their derivation. In the event of these surface potential variations, the analysis of the plasma using the currently available theories of the Langmuir probe yield erroneous results. We present a theory which models the current as a function of the surface potential variations. Another consideration for Langmuir probes on CubeSats is the ratio of the probe area to the return current collection area. If the area ratio is unfavorable this can also lead to erroneous results in the interpretation of observations. A mathematical formulation of the current collected by the probe for contaminated surfaces is presented and compared with data from a Langmuir probe flown on a sounding rocket mission. The implications of using Langmuir probes on CubeSats given the engineering limitations of probe cleanliness and area ratios are reviewed.

  19. Small Spacecraft System-Level Design and Optimization for Interplanetary Trajectories

    NASA Technical Reports Server (NTRS)

    Spangelo, Sara; Dalle, Derek; Longmier, Ben

    2014-01-01

    The feasibility of an interplanetary mission for a CubeSat, a type of miniaturized spacecraft, that uses an emerging technology, the CubeSat Ambipolar Thruster (CAT) is investigated. CAT is a large delta-V propulsion system that uses a high-density plasma source that has been miniaturized for small spacecraft applications. An initial feasibility assessment that demonstrated escaping Low Earth Orbit (LEO) and achieving Earth-escape trajectories with a 3U CubeSat and this thruster technology was demonstrated in previous work. We examine a mission architecture with a trajectory that begins in Earth orbits such as LEO and Geostationary Earth Orbit (GEO) which escapes Earth orbit and travels to Mars, Jupiter, or Saturn. The goal was to minimize travel time to reach the destinations and considering trade-offs between spacecraft dry mass, fuel mass, and solar power array size. Sensitivities to spacecraft dry mass and available power are considered. CubeSats are extremely size, mass, and power constrained, and their subsystems are tightly coupled, limiting their performance potential. System-level modeling, simulation, and optimization approaches are necessary to find feasible and optimal operational solutions to ensure system-level interactions are modeled. Thus, propulsion, power/energy, attitude, and orbit transfer models are integrated to enable systems-level analysis and trades. The CAT technology broadens the possible missions achievable with small satellites. In particular, this technology enables more sophisticated maneuvers by small spacecraft such as polar orbit insertion from an equatorial orbit, LEO to GEO transfers, Earth-escape trajectories, and transfers to other interplanetary bodies. This work lays the groundwork for upcoming CubeSat launch opportunities and supports future development of interplanetary and constellation CubeSat and small satellite mission concepts.

  20. KSC-2013-2336

    NASA Image and Video Library

    2013-05-10

    CAPE CANAVERAL, Fla. – Students from California Polytechnic Institute, or CalPoly, and Merritt Island High School in Florida perform integration tests on a pair of cubesats they will fly on a suborbital mission in the summer. A team from each school built a satellite and the two will work together inside a small rocket to measure vibration and other data during launch. NASA engineers are acting as mentors for the project and some of the space agency's labs at Kennedy Space Center, including this one inside the Operations and Checkout Building, are being used by the teams. Photo credit: NASA/Kim Shiflett

  1. KSC-2013-2332

    NASA Image and Video Library

    2013-05-10

    CAPE CANAVERAL, Fla. – Students from California Polytechnic Institute, or CalPoly, and Merritt Island High School in Florida perform integration tests on a pair of cubesats they will fly on a suborbital mission in the summer. A team from each school built a satellite and the two will work together inside a small rocket to measure vibration and other data during launch. NASA engineers are acting as mentors for the project and some of the space agency's labs at Kennedy Space Center, including this one inside the Operations and Checkout Building, are being used by the teams. Photo credit: NASA/Kim Shiflett

  2. Integration of a 6LilnSe 2 thermal neutron detector into a CubeSat instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egner, Joanna C.; Groza, Michael; Burger, Arnold

    This paper describes the development of a preliminary compact and lightweight neutron detection system that uses the low power consuming CubeSat platform and will be especially effective for space-based applications. This is made possible using the novel 6LiInSe 2 scintillator crystal and a silicon avalanche photodiode (Si-APD). The schematics of this instrument are presented as well as the response of the instrument to initial testing under alpha radiation. The entire system weighs 670 grams and requires 5 volts direct current at 3 watts.

  3. Integration of a 6LilnSe 2 thermal neutron detector into a CubeSat instrument

    DOE PAGES

    Egner, Joanna C.; Groza, Michael; Burger, Arnold; ...

    2016-11-08

    This paper describes the development of a preliminary compact and lightweight neutron detection system that uses the low power consuming CubeSat platform and will be especially effective for space-based applications. This is made possible using the novel 6LiInSe 2 scintillator crystal and a silicon avalanche photodiode (Si-APD). The schematics of this instrument are presented as well as the response of the instrument to initial testing under alpha radiation. The entire system weighs 670 grams and requires 5 volts direct current at 3 watts.

  4. Onboard Autonomy and Ground Operations Automation for the Intelligent Payload Experiment (IPEX) CubeSat Mission

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Doubleday, Joshua; Ortega, Kevin; Tran, Daniel; Bellardo, John; Williams, Austin; Piug-Suari, Jordi; Crum, Gary; Flatley, Thomas

    2012-01-01

    The Intelligent Payload Experiment (IPEX) is a cubesat manifested for launch in October 2013 that will flight validate autonomous operations for onboard instrument processing and product generation for the Intelligent Payload Module (IPM) of the Hyperspectral Infra-red Imager (HyspIRI) mission concept. We first describe the ground and flight operations concept for HyspIRI IPM operations. We then describe the ground and flight operations concept for the IPEX mission and how that will validate HyspIRI IPM operations. We then detail the current status of the mission and outline the schedule for future development.

  5. The HUMSAT System: a CubeSat-based Constellation for In-situ and Inexpensive Environmental Measurements

    NASA Astrophysics Data System (ADS)

    Tubío-Pardavila, R.; Vigil, S. A.; Puig-Suari, J.; Aguado Agelet, F.

    2014-12-01

    There is a requirement for low cost in-situ measurements of environmental parameters such as air quality, meteorological data, and water quality in remote areas. Currently available solutions for such measurements include remote sensing from satellite and aircraft platforms, and in-situ measurements from mobile and aircraft platforms. Fixed systems such as eddy covariance networks, tall towers, and the Total Carbon Column Observing Network (TCCON) are providing precision greenhouse gas measurements. Within this context, the HUMSAT system designed by the University of Vigo (Spain) will complement existing high-precision measurement systems with low cost in-situ ground based sensors in remote locations using a constellation of CubeSats as a communications relay. The HUMSAT system standardizes radio communications in between deployed sensors and the CubeSats of the constellation, which act as store and forward satellites to ground stations for uploading to the internet. Current ground stations have been established at the University of Vigo (Spain) and California Polytechnic State University (Cal Poly). Users of the system may deploy their own environmental sensors to meet local requirements. The sensors will be linked to a low-cost satellite data transceiver using a standard HUMSAT protocol. The transceiver is capable of receiving data from the HUMSAT constellation to remotely reconfigure sensors without the need of physically going to the sensor location. This transceiver uses a UHF channel around 437 MHz to exchange short data messages with the sensors. These data messages can contain up to 32 bytes of useful information and are transmitted at a speed around 300 bps. The protocol designed for this system handles the access to the channel by all these elements and guarantees a correct transmission of the information in such an scenario. The University of Vigo has launched the first satellite of the constellation, the HUMSAT-D CubeSat in November 2013 and has

  6. Predicting the Orbits of Satellites with a TI-85 Calculator.

    ERIC Educational Resources Information Center

    Papay, Kate; And Others

    1996-01-01

    Describes a project that predicts the orbits of satellites using a TI-85 calculator. Enables students to achieve a richer understanding of longitude, latitude, time zones, orbital mechanics of satellites, and the terms associated with satellite tracking. (JRH)

  7. Satellite-Based Videoconferencing.

    ERIC Educational Resources Information Center

    Distance Education Report, 1997

    1997-01-01

    Educators can broadcast videoconferences to students in different parts of the world at an affordable cost using geostationary satellites. Describes the design and presentation of videoconferences and outlines steps in their development: budgeting, scheduling, selecting presenters and moderators, choosing production and telecast facilities,…

  8. The Potential for Cubesats to Determine Black Holes Masses in Nearby Active Galactic Nuclei and Contribute to Other Time Domain Science

    NASA Astrophysics Data System (ADS)

    Gorjian, Varoujan; Ardila, David R.; Barth, Aaron J.; Janson, Siegfried; Kochanek, Christopher S.; Malkan, Matthew Arnold; Peterson, Bradley M.; Rowen, Darren; Seager, Sara; Shkolnik, Evgenya L.

    2016-01-01

    A 3U (30cmx10cmx10cm) CubeSat with a 9cm diameter aperture telescope can deliver unprecedented time domain coverage in the ultraviolet (UV) for the purposes of Active Galactic Nucleus (AGN) reverberation mapping to determine supermassive black hole (SMBH) masses. SMBH's reside at the centers of most, if not all, massive galaxies and accretion onto those black holes generates a great deal of emission peaking in the UV. These accretion disks are also surrounded by a nearby, fast moving gas region called the Broad Line Region (BLR). As light pulses generated near the black hole spread out, they first illuminate the accretion disk, and then the BLR. For a sample of bright AGN, a dedicated cubesat can follow these changes in brightness on a daily basis for up to 100 days from low Earth orbit. With such monitoring of changes in the accretion disk and then the BLR, an accurate distance between the two regions can be determined. Combining this UV coverage with optical emission-line spectroscopy from the ground allows for a direct measurement of the mass of the central black hole. This exchange of time resolution for spatial resolution can also be used to determine the structure of the central region of the AGN. Ground-based photometric and spectroscopic measurements will complement the UV by tracing the optically emitting and hence cooler regions of the AGN to provide one of the best measurements of supermassive black hole masses.In addition to the primary science mission, the long observing campaigns and the large field of view required to get comparison stars for relative photometry allow for other competitive science. We have identified UV activity in M dwarfs as ancillary science that can be addressed with such a cubesat. This activity will have a strong impact on the habitability of any possible planet around the star.

  9. Development of a Remote Sensing Small Satellite for Temperature Sounding in the Mesosphere/Lower Thermosphere by Measurement of the Oxygen Atmospheric Band Emission

    NASA Astrophysics Data System (ADS)

    Deiml, Michael; Kaufmann, Martin

    2017-04-01

    Coupling processes initiated by gravity waves in the middle atmosphere have increasing importance for the modeling of the climate system and represent one of the larger uncertainties in this field. To support new modeling efforts spatially resolved measurements of wave fields are very beneficial. This contribution proposes a new small satellite mission based on a three unit CubeSat form factor to observe the Oxygen Atmospheric Band emission around 762 nm for temperature derivation in a limb sounding configuration to characterize gravity waves. The satellite instrument resolves individual rotational lines whose intensities follow a Boltzmann law allowing for the derivation of temperature from the relative structure of these lines. The employed Spatial Heterodyne Spectrometer is characterized by its high throughput at a small form factor, allowing to perform scientific remote sensing measurements within a small satellite during day and night. The spectrometer consists of a thermally stabilized solid block and has no moving parts, which increases its reliability in orbit while allowing high precision measurements within a small volume. The instrument is verified in its precursor mission, the Atmospheric Heterodyne Interferometer Test (AtmoHIT), within the REXUS/BEXUS ballistic rocket flight campaign. The description of the flight campaign and the results thereof conclude this contribution.

  10. The Optical Profiling of the Atmospheric Limb (OPAL) CubeSat Experiment

    NASA Astrophysics Data System (ADS)

    Jeppesen, M.; Miller, J.; Cox, W.; Taylor, M. J.; Swenson, C.; Neilsen, T. L.; Fish, C. S.; Scherliess, L.; Christensen, A. B.; Cleave, M.

    2015-12-01

    The Earth's lower thermosphere is an important interface region between the neutral atmosphere and the "space weather" environment. While the high-latitude region of the thermosphere responds promptly to energy inputs, relatively little is known about the global/regional response to these energy inputs. Global temperatures are predicted to respond within 3-6 hours, but the details of the thermal response of the atmosphere as energy transports away from high-latitude source regions is not well understood. The Optical Profiling of the Atmospheric Limb (OPAL) mission aims to characterize this thermal response through observation of the temperature structure of the lower thermosphere at mid- and low-latitudes. The OPAL instrument is designed to map global thermospheric temperature variability over the critical "thermospheric gap" region (~100-140 km altitude) by spectroscopic analysis of molecular oxygen A-band emission (758 - 768 nm). The OPAL instrument is a grating-based imaging spectrometer with refractive optics and a high-efficiency volume holographic grating (VHG). The scene is sampled by 7 parallel slits that form non-overlapping spectral profiles at the focal plane with resolution of 0.5 nm (spectral), 1.5 km (limb profiling), and 60 km (horizontal sampling). A CCD camera at the instrument focal plane delivers low noise and high sensitivity. The instrument is designed to strongly reject stray light from daylight regions of the earth. The OPAL mission is funded by the National Science Foundation (NSF) CubeSat-based Science Missions for Geospace and Atmospheric Research program. The OPAL instrument, CubeSat bus and mission are being designed, built and executed by a team comprised of students and professors from Utah State University, Dixie State University and the University of Maryland Eastern Shore, with support from professional scientists and engineers from the Space Dynamics Laboratory and Hawk Institute for Space Science.

  11. In-orbit results of Delfi-n3Xt: Lessons learned and move forward

    NASA Astrophysics Data System (ADS)

    Guo, Jian; Bouwmeester, Jasper; Gill, Eberhard

    2016-04-01

    This paper provides an update of the Delfi nanosatellite programme of the Delft University of Technology (TU Delft), with a focus on the recent in-orbit results of the second TU Delft satellite Delfi-n3Xt. In addition to the educational objective that has been reached with more than 80 students involved in the project, most of the technological objectives of Delfi-n3Xt have also been fulfilled with successful in-orbit demonstrations of payloads and platform. Among these demonstrations, four are highlighted in this paper, including a solid cool gas micropropulsion system, a new type of solar cell, a more robust Command and Data Handling Subsystem (CDHS), and a highly integrated Attitude Determination and Control Subsystem (ADCS) that performs three-axis active control using reaction wheels. Through the development of Delfi-n3Xt, significant experiences and lessons have been learned, which motivated a further step towards DelFFi, the third Delfi CubeSat mission, to demonstrate autonomous formation flying using two CubeSats named Delta and Phi. A brief update of the DelFFi mission is also provided.

  12. Mars NanoOrbiter: A CubeSat for Mars System Science

    NASA Astrophysics Data System (ADS)

    Ehlmann, Bethany; Klesh, Andrew; Alsedairy, Talal

    2017-10-01

    The Mars NanoOrbiter mission consists of two identical 12U spacecraft, launched simultaneously as secondary payloads on a larger planetary mission launch, and deployed to Earth-escape, as early as with Mars 2020. The nominal mission will last for 1 year, during which time the craft will independently navigate to Mars, enter into elliptical orbit, and achieve close flybys of Phobos and Deimos, obtaining unprecedented coverage of each moon. The craft will additionally provide high temporal resolution data of Mars clouds and atmospheric phenomena at multiple times of day. Two spacecraft provide redundancy to reduce the risk in meeting the science objectives at the Mars moons and enhanced coverage of the dynamic Mars atmosphere. This technology is enabled by recent advances in CubeSat propulsion technology, attitude control systems, guidance, navigation and control. NanoOrbiter builds directly on the systems heritage of the MarCO mission, scheduled to launch with the 2018 Discovery mission Insight.

  13. Optical sensors for mapping temperature and winds in the thermosphere from a CubeSat platform

    NASA Astrophysics Data System (ADS)

    Sullivan, Stephanie Whalen

    The thermosphere is the region between approximately 80 km and 320 or more km above the earth's surface. While many people consider this elevation to be space rather than atmosphere, there is a small quantity of gasses in this region. The behavior of these gasses influences the orbits of satellites, including the International Space Station, causes space weather events, and influences the weather closer to the surface of the earth. Due to the location and characteristics of the thermosphere, even basic properties such as temperature are very difficult to measure. High spatial and temporal resolution data on temperatures and winds in the thermosphere are needed by both the space weather and earth climate modeling communities. To address this need, Space Dynamics Laboratory (SDL) started the Profiling Oxygen Emissions of the Thermosphere (POET) program. POET consists of a series of sensors designed to fly on sounding rockets, CubeSats, or larger platforms, such as IridiumNEXT SensorPODS. While each sensor design is different, they all use characteristics of oxygen optical emissions to measure space weather properties. The POET program builds upon the work of the RAIDS, Odin, and UARS programs. Our intention is to dramatically reduce the costs of building, launching, and operating spectrometers in space, thus allowing for more sensors to be in operation. Continuous long-term data from multiple sensors is necessary to understand the underlying physics required to accurately model and predict weather in the thermosphere. While previous spectrometers have been built to measure winds and temperatures in the thermosphere, they have all been large and expensive. The POET sensors use new focal plane technology and optical designs to overcome these obstacles. This thesis focuses on the testing and calibration of the two POET sensors: the Oxygen Profiling of the Atmospheric Limb (OPAL) temperature sensor and the Split-field Etalon Doppler Imager (SEDI) wind sensor.

  14. Trajectory Design for a Cislunar Cubesat Leveraging Dynamical Systems Techniques: The Lunar Icecube Mission

    NASA Technical Reports Server (NTRS)

    Bosanac, Natasha; Cox, Andrew; Howell, Kathleen C.; Folta, David C.

    2017-01-01

    Lunar IceCube is a 6U CubeSat that is designed to detect and observe lunar volatiles from a highly inclined orbit. This spacecraft, equipped with a low-thrust engine, will be deployed from the upcoming Exploration Mission-1 vehicle in late 2018. However, significant uncertainty in the deployment conditions for secondary payloads impacts both the availability and geometry of transfers that deliver the spacecraft to the lunar vicinity. A framework that leverages dynamical systems techniques is applied to a recently updated set of deployment conditions and spacecraft parameter values for the Lunar IceCube mission, demonstrating the capability for rapid trajectory design.

  15. First Results from Colorado Student Space Weather Experiment (CSSWE): Differential Flux Measurements of Energetic Particles in a Highly Inclined Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Li, X.; Palo, S. E.; Kohnert, R.; Gerhardt, D.; Blum, L. W.; Schiller, Q.; Turner, D. L.; Tu, W.

    2012-12-01

    The Colorado Student Space Weather Experiment (CSSWE) is a 3-unit (10cm x 10cm x 30cm) CubeSat mission funded by the National Science Foundation, scheduled for launch into a low-Earth, polar orbit after August 14th, 2012 as a secondary payload under NASA's Educational Launch of Nanosatellites (ELaNa) program. The science objectives of CSSWE are to investigate the relationship of the location, magnitude, and frequency of solar flares to the timing, duration, and energy spectrum of solar energetic particles (SEP) reaching Earth, and to determine the precipitation loss and the evolution of the energy spectrum of radiation belt electrons. CSSWE contains a single science payload, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), which is a miniaturization of the Relativistic Electron and Proton Telescope (REPT) built at the Laboratory for Atmospheric and Space Physics (LASP). The REPT instrument will fly onboard the NASA/Radiation Belt Storm Probes (RBSP) mission, which consists of two identical spacecraft scheduled to launch after August 23rd, 2012 that will go through the heart of the radiation belts in a low inclination orbit. CSSWE's REPTile is designed to measure the directional differential flux of protons ranging from 10 to 40 MeV and electrons from 0.5 to >3 MeV. Such differential flux measurements have significant science value, and a number of engineering challenges were overcome to enable these clean measurements to be made under the mass and power limits of a CubeSat. The CSSWE is an ideal class project, providing training for the next generation of engineers and scientists over the full life-cycle of a satellite project. We will report the first results from this exciting mission.

  16. LEO to ground optical communications from a small satellite platform

    NASA Astrophysics Data System (ADS)

    Rose, T. S.; Janson, S. W.; LaLumondiere, S.; Werner, N.; Hinkley, D. H.; Rowen, D. W.; Fields, R. A.; Welle, R. P.

    2015-03-01

    A pair of 2.2 kg CubeSats using COTS hardware is being developed for a proof-of-principle optical communications demo from a 450-600 km LEO orbit to ground. The 10x10x15 cm platform incorporates a 25% wall-plug efficient 10-W Yb fiber transmitter emitting at 1.06 μm. Since there are no gimbals on board, the entire spacecraft is body-steered toward the ground station. The pointing accuracy of the LEO craft, which governs the data rate capability, is expected to be ~ 0.1-0.2 deg. Two optical ground stations, located at the Mt. Wilson observatory, have receiver apertures of 30 and 80 cm. Launch of the CubeSat pair is anticipated to be mid to late 2015.

  17. The Colorado Ultraviolet Transit Experiment (CUTE): a dedicated cubesat mission for the study of exoplanetary mass loss and magnetic fields

    NASA Astrophysics Data System (ADS)

    Fleming, Brian T.; France, Kevin; Nell, Nicholas; Kohnert, Richard; Pool, Kelsey; Egan, Arika; Fossati, Luca; Koskinen, Tommi; Vidotto, Aline A.; Hoadley, Keri; Desert, Jean-Michel; Beasley, Matthew; Petit, Pascal

    2017-08-01

    The Colorado Ultraviolet Transit Experiment (CUTE) is a near-UV (2550 - 3300 Å) 6U cubesat mission designed to monitor transiting hot Jupiters to quantify their atmospheric mass loss and magnetic fields. CUTE will probe both atomic (Mg and Fe) and molecular (OH) lines for evidence of enhanced transit absorption, and to search for evidence of early ingress due to bow shocks ahead of the planet's orbital motion. As a dedicated mission, CUTE will observe > 60 spectroscopic transits of hot Jupiters over a nominal seven month mission. This represents the equivalent of > 700 orbits of the only other instrument capable of these measurements, the Hubble Space Telescope. CUTE efficiently utilizes the available cubesat volume by means of an innovative optical design to achieve a projected effective area of ˜ 22 cm2 , low instrumental background, and a spectral resolving power of R ˜ 3000 over the entire science bandpass. These performance characteristics enable CUTE to discern a transit depth of < 1% in individual spectral absorption lines. We present the CUTE optical and mechanical design, a summary of the science motivation and expected results, and an overview of the projected fabrication, calibration and launch timeline.

  18. Plasma metabonomics study of the patients with acute anterior uveitis based on ultra-performance liquid chromatography-mass spectrometry.

    PubMed

    Guo, Junguo; Yan, Tingqin; Bi, Hongsheng; Xie, Xiaofeng; Wang, Xingrong; Guo, Dadong; Jiang, Haiqiang

    2014-06-01

    The identification of the biomarkers of patients with acute anterior uveitis (AAU) may allow for a less invasive and more accurate diagnosis, as well as serving as a predictor in AAU progression and treatment response. The aim of this study was to identify the potential biomarkers and the metabolic pathways from plasma in patients with AAU. Both plasma metabolic biomarkers and metabolic pathways in the AAU patients versus healthy volunteers were investigated using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and a metabonomics approach. The principal component analysis (PCA) was used to separate AAU patients from healthy volunteers as well as to identify the different biomarkers between the two groups. Metabolic compounds were matched to the KEGG, METLIN, and HMDB databases, and metabolic pathways associated with AAU were identified. The PCA for UPLC-MS data shows that the metabolites in AAU patients were significantly different from those of healthy volunteers. Of the 4,396 total features detected by UPLC-MS, 102 features were significantly different between AAU patients and healthy volunteers according to the variable importance plot (VIP) values (greater than two) of partial least squares discriminate analysis (PLS-DA). Thirty-three metabolic compounds were identified and were considered as potential biomarkers. Meanwhile, ten metabolic pathways were found that were related to the AAU according to the identified biomarkers. These data suggest that metabolomics study can identify potential metabolites that differ between AAU patients and healthy volunteers. Based on the PCA, PLS-DA, several potential metabolic biomarkers and pathways in AAU patients were found and identified. In addition, the UPLC-MS technique combined with metabonomics could be a suitable systematic biology tool in research in clinical problems in ophthalmology, and can provide further insight into the pathophysiology of AAU.

  19. TUBSAT-1, satellite technology for educational purposes

    NASA Technical Reports Server (NTRS)

    Ginati, A.

    1988-01-01

    TUBSAT-1 (Technical University of Berlin Satellite) is an experimental low-cost satellite within the NASA Get Away Special (GAS) program. This project is being financed by the German BMFT (Federal Ministry for Research and Technology), mainly for student education. The dimensions and weight are determined by GAS requirements and the satellite will be ejected from the space shuttle into an approximately 300-km circular orbit. It is a sun/star oriented satellite with an additional spin stabilization mode. The first planned payload is to be used for observing flight paths of migratory birds from northern Europe to southern Africa and back.

  20. Local Ionospheric Measurements Satellite (LionSat)

    DTIC Science & Technology

    2005-07-01

    LionSat)," NASA Third Space Internet Workshop, Cleveland, OH, 4-6 June 2003. ** Graduate Student * Undergraduate Student "LionSat PENNSTATE LionSat 2...Measurements Satellite (UonSat)Lý NASA Third Space Internet MINISTATE Workshop, Cleveland, OH, 4-6 June 2003. University Nanosat-3 Flight Competition Review

  1. Iodine Hall Thruster Propellant Feed System for a CubeSat

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.

    2014-01-01

    There has been significant work recently in the development of iodine-fed Hall thrusters for in-space propulsion applications.1 The use of iodine as a propellant provides many advantages over present xenon-gas-fed Hall thruster systems. Iodine is a solid at ambient temperature (no pressurization required) and has no special handling requirements, making it safe for secondary flight opportunities. It has exceptionally high ?I sp (density times specific impulse), making it an enabling technology for small satellite near-term applications and providing system level advantages over mid-term high power electric propulsion options. Iodine provides thrust and efficiency that are comparable to xenonfed Hall thrusters while operating in the same discharge current and voltage regime, making it possible to leverage the development of flight-qualified xenon Hall thruster power processing units for the iodine application. Work at MSFC is presently aimed at designing, integrating, and demonstrating a flight-like iodine feed system suitable for the Hall thruster application. This effort represents a significant advancement in state-of-the-art. Though Iodine thrusters have demonstrated high performance with mission enabling potential, a flight-like feed system has never been demonstrated and iodine compatible components do not yet exist. Presented in this paper is the end-to-end integrated feed system demonstration. The system includes a propellant tank with active feedback-control heating, fill and drain interfaces, latching and proportional flow control valves (PFCV), flow resistors, and flight-like CubeSat power and control electronics. Hardware is integrated into a CubeSat-sized structure, calibrated and tested under vacuum conditions, and operated under under hot-fire conditions using a Busek BHT-200 thruster designed for iodine. Performance of the system is evaluated thorugh accurate measurement of thrust and a calibrated of mass flow rate measurement, which is a function of

  2. Attitude Determination and Control System Design for a 6U Cube Sat for Proximity Operations and Rendezvous

    DTIC Science & Technology

    2014-08-04

    Resident Space Object Proximity Analysis and IMAging) mission is carried out by a 6U Cube Sat class satellite equipped with a warm gas propulsion system... mission . The ARAPAIMA (Application for Resident Space Object Proximity Analysis and IMAging) mission is carried out by a 6 U CubeSat class satellite...attitude determination and control subsystem (ADCS) (or a proximity operation and imaging satellite mission . The ARAP AI MA (Application for

  3. PolarCube: A High Resolution Passive Microwave Satellite for Sounding and Imaging at 118 GHz

    NASA Astrophysics Data System (ADS)

    Weaver, R. L.; Gallaher, D. W.; Gasiewski, A. J.; Sanders, B.; Periasamy, L.; Hwang, K.; Alvarenga, G.; Hickey, A. M.

    2013-12-01

    PolarCube is a 3U CubeSat hosting an eight-channel passive microwave spectrometer operating at the 118.7503 GHz oxygen resonance that is currently in development. The project has an anticipated launch date in early 2015. It is currently being designed to operate for approximately12 months on orbit to provide the first global 118-GHz spectral imagery of the Earth over full seasonal cycle and to sound Arctic vertical temperature structure. The principles used by PolarCube for temperature sounding are well established in number of peer-reviewed papers going back more than two decades, although the potential for sounding from a CubeSat has never before been demonstrated in space. The PolarCube channels are selected to probe atmospheric emission over a range of vertical levels from the surface to lower stratosphere. This capability has been available operationally for over three decades, but at lower frequencies and higher altitudes that do not provide the spatial resolution that will be achieved by PolarCube. While the NASA JPSS ATMS satellite sensor provides global coverage at ~32 km resolution, the PolarCube will improve on this resolution by a factor of two, thus facilitating the primary science goal of determining sea ice concentration and extent while at the same time collecting profile data on atmospheric temperature. Additionally, we seek to correlate freeze-thaw line data from SMAP with our near simultaneously collected atmospheric temperature data. In addition to polar science, PolarCube will provide a first demonstration of a very low cost passive microwave sounder that if operated in a fleet configuration would have the potential to fulfill the goals of the Precipitation Atmospheric Temperature and Humidity (PATH) mission, as defined in the NRC Decadal Survey. PolarCube 118-GHz passive microwave spectrometer in deployed configuration

  4. Structural Dynamics and Data Analysis

    NASA Technical Reports Server (NTRS)

    Luthman, Briana L.

    2013-01-01

    This project consists of two parts, the first will be the post-flight analysis of data from a Delta IV launch vehicle, and the second will be a Finite Element Analysis of a CubeSat. Shock and vibration data was collected on WGS-5 (Wideband Global SATCOM- 5) which was launched on a Delta IV launch vehicle. Using CAM (CAlculation with Matrices) software, the data is to be plotted into Time History, Shock Response Spectrum, and SPL (Sound Pressure Level) curves. In this format the data is to be reviewed and compared to flight instrumentation data from previous flights of the same launch vehicle. This is done to ensure the current mission environments, such as shock, random vibration, and acoustics, are not out of family with existing flight experience. In family means the peaks on the SRS curve for WGS-5 are similar to the peaks from the previous flights and there are no major outliers. The curves from the data will then be compiled into a useful format so that is can be peer reviewed then presented before an engineering review board if required. Also, the reviewed data will be uploaded to the Engineering Review Board Information System (ERBIS) to archive. The second part of this project is conducting Finite Element Analysis of a CubeSat. In 2010, Merritt Island High School partnered with NASA to design, build and launch a CubeSat. The team is now called StangSat in honor of their mascot, the mustang. Over the past few years, the StangSat team has built a satellite and has now been manifested for flight on a SpaceX Falcon 9 launch in 2014. To prepare for the final launch, a test flight was conducted in Mojave, California. StangSat was launched on a Prospector 18D, a high altitude rocket made by Garvey Spacecraft Corporation, along with their sister satellite CP9 built by California Polytechnic University. However, StangSat was damaged during an off nominal landing and this project will give beneficial insights into what loads the CubeSat experienced during the crash

  5. Preparing Students for the Satellite Industry. Resources in Technology and Engineering

    ERIC Educational Resources Information Center

    Ensley, Keith

    2017-01-01

    While the satellite industry is characterized by dynamic innovation, it has steadily matured into a healthy, market-driven model of customers, value generators, and supporting suppliers. Even while the satellite market remains strong, satellite employers are caught squarely in the aerospace talent management paradigm. When a product line is…

  6. IIth AMS Conference on Satellite Meteorology and Oceanography.

    NASA Astrophysics Data System (ADS)

    Velden, Christopher; Digirolamo, Larry; Glackin, Mary; Hawkins, Jeffrey; Jedlovec, Gary; Lee, Thomas; Petty, Grant; Plante, Robert; Reale, Anthony; Zapotocny, John

    2002-11-01

    The American Meteorological Society (AMS) held its 11th Conference on Satellite Meteorology and Oceanography at the Monona Terrace Convention Center in Madison, Wisconsin, during 15-18 October 2001. The purpose of the conference, typically held every 18 months, is to promote a forum for AMS membership, international scientists, and student members to present and discuss the latest advances in satellite remote sensing for meteorological and oceanographical applications. This year, surrounded by inspirational designs by famed architect Frank Lloyd Wright, the meeting focused on several broad topics related to remote sensing from space, including environmental applications of land and oceanic remote sensing, climatology and long-term satellite data studies, operational applications, radiances and retrievals, and new technology and methods. A vision of an increasing convergence of satellite systems emerged that included operational and research satellite programs and interdisciplinary user groups.The conference also hosted NASA's Electronic Theater, which was presented to groups of middle and high school students totaling over 5500. It was truly a successful public outreach event. The conference banquet was held on the final evening, where a short tribute to satellite pioneer Verner Suomi was given by Joanne Simpson. Suomi was responsible for establishing the Space Science and Engineering Center at the University of Wisconsin in Madison.

  7. Small Satellites to Hitchhike on SLS Rocket’s First Flight on This Week @NASA – February 5, 2016

    NASA Image and Video Library

    2016-02-05

    During a Feb. 2 event at NASA’s Marshall Space Flight Center, officials announced the selection of 13 low-cost small satellites to launch as secondary payloads on Exploration Mission-1 (EM-1) -- the first flight of the agency’s Space Launch System (SLS) rocket, targeted for 2018. SLS’ first flight is designed to launch an un-crewed Orion spacecraft to a stable orbit beyond the moon to demonstrate and test systems for both the spacecraft and rocket before the first crewed flight of Orion. The announced CubeSat secondary payloads will carry science and technology investigations to help pave the way for future human exploration in deep space, including the Journey to Mars. Also, New Marshall Space Flight Center Director, Webb Telescope’s final mirror installed, Juno adjusts course to Jupiter, Russian spacewalk on space station and Hangar One’s Super Bowl Redwood!

  8. KSC-2013-2338

    NASA Image and Video Library

    2013-05-10

    CAPE CANAVERAL, Fla. – Students from California Polytechnic Institute, or CalPoly, and Merritt Island High School in Florida perform integration tests on a pair of cubesats they will fly on a suborbital mission in the summer. A team from each school built a satellite and the two will work together inside a small rocket to measure vibration and other data during launch. NASA engineers, including Shaun Daly, in gray shirt, are acting as mentors for the project and some of the space agency's labs at Kennedy Space Center, including this one inside the Operations and Checkout Building, are being used by the teams. Photo credit: NASA/Kim Shiflett

  9. KSC-2013-2333

    NASA Image and Video Library

    2013-05-10

    CAPE CANAVERAL, Fla. – Students from California Polytechnic Institute, or CalPoly, and Merritt Island High School in Florida perform integration tests on a pair of cubesats they will fly on a suborbital mission in the summer. A team from each school built a satellite and the two will work together inside a small rocket to measure vibration and other data during launch. NASA engineers, including Shaun Daly, in gray shirt, are acting as mentors for the project and some of the space agency's labs at Kennedy Space Center, including this one inside the Operations and Checkout Building, are being used by the teams. Photo credit: NASA/Kim Shiflett

  10. KSC-2013-2337

    NASA Image and Video Library

    2013-05-10

    CAPE CANAVERAL, Fla. – Students from California Polytechnic Institute, or CalPoly, and Merritt Island High School in Florida perform integration tests on a pair of cubesats they will fly on a suborbital mission in the summer. A team from each school built a satellite and the two will work together inside a small rocket to measure vibration and other data during launch. NASA engineers, including Shaun Daly, in gray shirt, are acting as mentors for the project and some of the space agency's labs at Kennedy Space Center, including this one inside the Operations and Checkout Building, are being used by the teams. Photo credit: NASA/Kim Shiflett

  11. KSC-2013-2334

    NASA Image and Video Library

    2013-05-10

    CAPE CANAVERAL, Fla. – Students from California Polytechnic Institute, or CalPoly, and Merritt Island High School in Florida perform integration tests on a pair of cubesats they will fly on a suborbital mission in the summer. A team from each school built a satellite and the two will work together inside a small rocket to measure vibration and other data during launch. NASA engineers, including Shaun Daly, in gray shirt, are acting as mentors for the project and some of the space agency's labs at Kennedy Space Center, including this one inside the Operations and Checkout Building, are being used by the teams. Photo credit: NASA/Kim Shiflett

  12. KSC-2013-2339

    NASA Image and Video Library

    2013-05-10

    CAPE CANAVERAL, Fla. – Students from California Polytechnic Institute, or CalPoly, and Merritt Island High School in Florida perform integration tests on a pair of cubesats they will fly on a suborbital mission in the summer. A team from each school built a satellite and the two will work together inside a small rocket to measure vibration and other data during launch. NASA engineers, including Shaun Daly, in gray shirt, are acting as mentors for the project and some of the space agency's labs at Kennedy Space Center, including this one inside the Operations and Checkout Building, are being used by the teams. Photo credit: NASA/Kim Shiflett

  13. KSC-2013-2335

    NASA Image and Video Library

    2013-05-10

    CAPE CANAVERAL, Fla. – Students from California Polytechnic Institute, or CalPoly, and Merritt Island High School in Florida perform integration tests on a pair of cubesats they will fly on a suborbital mission in the summer. A team from each school built a satellite and the two will work together inside a small rocket to measure vibration and other data during launch. NASA engineers, including Shaun Daly, in gray shirt, are acting as mentors for the project and some of the space agency's labs at Kennedy Space Center, including this one inside the Operations and Checkout Building, are being used by the teams. Photo credit: NASA/Kim Shiflett

  14. The RAVAN CubeSat Mission: A Pathfinder for a New Measurement of Earth's Radiation Budget

    NASA Astrophysics Data System (ADS)

    Swartz, W.; Lorentz, S. R.; Huang, P. M.; Smith, A. W.; Deglau, D.; Reynolds, E.; Carvo, J.; Papadakis, S.; Wu, D. L.; Wiscombe, W. J.; Dyrud, L. P.

    2016-12-01

    The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat is a pathfinder for a constellation to measure the Earth's radiation imbalance (ERI), which is the single most important quantity for predicting the course of climate change over the next century. RAVAN demonstrates a small, accurate radiometer that measures top-of-the-atmosphere Earth-leaving fluxes of total and solar-reflected radiation. Coupled with knowledge of the incoming radiation from the Sun, a constellation of such measurements would aim to determine ERI directly. Our objective with RAVAN is to establish that a compact radiometer that is absolutely calibrated to climate accuracy can be built and operated in space for low cost. The radiometer, hosted on a 3U CubeSat, relies on two key technologies. The first is the use of vertically aligned carbon nanotubes (VACNTs) as the radiometer absorber. VACNT forests are some of the blackest materials known and have an extremely flat spectral response over a wide wavelength range. The second key technology is a gallium fixed-point blackbody calibration source, embedded in RAVAN's sensor head contamination cover, that serves as a stable and repeatable reference to track the long-term degradation of the sensor. Absolute calibration is also maintained by regular solar and deep space views. We present the scientific motivation for the NASA-funded mission, design and characterization of the spacecraft, and mission operations concept. Pending a successful launch in fall 2016, we will also present the first results on-orbit. RAVAN will help enable the development of an Earth radiation budget constellation mission that can provide the measurements needed for superior predictions of future climate change.

  15. A modular assembly method of a feed and thruster system for Cubesats

    NASA Astrophysics Data System (ADS)

    Louwerse, Marcus; Jansen, Henri; Elwenspoek, Miko

    2010-11-01

    A modular assembly method for devices based on micro system technology is presented. The assembly method forms the foundation for a miniaturized feed and thruster system as part of a micro propulsion unit working as a simple blow-down system of a rocket engine. The micro rocket is designed to be used for constellation maintenance of Cubesats, which measure 10 × 10 × 10 cm and have a mass less than 1 kg. The feed and thruster system contains an active valve, control electronics, a particle filter and an axisymmetric converging-diverging nozzle, all fabricated as separate modules. A novel method is used to integrate these modules by placing them on or in a glass tube package. The assembly method is shown to be a valid method but the valve module needs to be improved considerably.

  16. Trajectory design for a cislunar CubeSat leveraging dynamical systems techniques: The Lunar IceCube mission

    NASA Astrophysics Data System (ADS)

    Bosanac, Natasha; Cox, Andrew D.; Howell, Kathleen C.; Folta, David C.

    2018-03-01

    Lunar IceCube is a 6U CubeSat that is designed to detect and observe lunar volatiles from a highly inclined orbit. This spacecraft, equipped with a low-thrust engine, is expected to be deployed from the upcoming Exploration Mission-1 vehicle. However, significant uncertainty in the deployment conditions for secondary payloads impacts both the availability and geometry of transfers that deliver the spacecraft to the lunar vicinity. A framework that leverages dynamical systems techniques is applied to a recently updated set of deployment conditions and spacecraft parameter values for the Lunar IceCube mission, demonstrating the capability for rapid trajectory design.

  17. Active Thermal Architecture for Cryogenic Optical Instrumentation (ATACOI)

    NASA Technical Reports Server (NTRS)

    Swenson, Charles; Hunter, Roger C.; Baker, Christopher E.

    2018-01-01

    The Active Thermal Architecture for Cryogenic Optical Instrumentation (ATACOI) project will demonstrate an advanced thermal control system for CubeSats and enable the use of cryogenic electro-optical instrumentation on small satellite platforms. Specifically, the project focuses on the development of a deployable solar tracking radiator, a rotationally flexible rotary union fluid joint, and a thermal/vibrational isolation system for miniature cryogenic detectors. This technology will represent a significant improvement over the current state of the art for CubeSat thermal control, which generally relies on simple passive and conductive methods.

  18. Highly Integrated THz Receiver Systems for Small Satellite Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Groppi, Christopher; Hunter, Roger C.; Baker, Christopher

    2017-01-01

    We are developing miniaturized, highly integrated Schottky receiver systems suitable for use in CubeSats or other small spacecraft platforms, where state-of-the-art performance and ultra-low mass, power, and volume are required. Current traditional Schottky receivers are too large to employ on a CubeSat. We will develop highly integrated receivers operating from 520-600 GHz and 1040-1200 GHz that are based on state-of-the-art receivers already developed at Jet Propulsion Laboratory (JPL) by using novel 3D multi layer packaging. This process will reduce both mass and volume by more than an order of magnitude, while preserving state-of-the-art noise performance. The resulting receiver systems will have a volume of approximately 25 x 25 x 40 millimeters (mm), a mass of 250 grams (g), and power consumption on the order of of 7 watts (W). Using these techniques, we will also integrate both receivers into a single frame, further reducing mass and volume for applications where dual band operation is advantageous. Additionally, as Schottky receivers offer significant gains in noise performance when cooled to 100 K, we will investigate the improvement gained by passively cooling these receivers. Work by Sierra Lobo Inc., with their Cryo Cube technology development program, offers the possibility of passive cooling to 100 K on CubeSat platforms for 1-unit (1U) sized instruments.

  19. Inside NanoSail-D: A Tiny Satellite with Big Ideas

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.; Agasid, Elwood; Casas, Joseph; Adams, Charles; O'Brien, Sue; Laue, Greg; Kitts, Chris

    2011-01-01

    "Small But Mighty" certainly describes the NanoSail-D experiment and mission. Its unique goals and designs were simple, but the implications of this technology are far reaching. From a tiny 3U CubeSat, NanoSail-D deployed a 10 square meter solar sail. This was the first sail vehicle to orbit the earth and was only the second time a sail was unfurled in space. The NanoSail-D team included: two NASA centers, Marshall and Ames, the universities of Alabama in Huntsville and Santa Clara in California, the Air Force Research Laboratory and many contractors including NeXolve, Gray Research and several others. The collaborative nature was imperative to the success of this project. In addition, the Army Space and Missile Defense Command, the Von Braun Center for Science and Innovation and Dynetics Inc. jointly sponsored the NanoSail-D project. This paper presents in-depth insight into the NanoSail-D development. Its design was a combination of left over space hardware coupled with cutting edge technology. Since this NanoSail-D mission was different from the first, several modifications were necessary for the second NanoSail-D unit. Unforeseen problems arose during refurbishment of the second unit and the team had to overcome these obstacles. Simple interfaces, clear responsibilities and division of effort allowed the team members to work independently on the common goal. This endeavor formed working relationships lasting well beyond the end of this mission. NanoSail-D pushed the technology envelop with future applications for all classes of satellites. NanoSail-D is truly a small but mighty satellite, which may cast a very big shadow for years to come.

  20. Cathode-less gridded ion thrusters for small satellites

    NASA Astrophysics Data System (ADS)

    Aanesland, Ane

    2016-10-01

    Electric space propulsion is now a mature technology for commercial satellites and space missions that requires thrust in the order of hundreds of mN, and with available electric power in the order of kW. Developing electric propulsion for SmallSats (1 to 500 kg satellites) are challenging due to the small space and limited available electric power (in the worst case close to 10 W). One of the challenges in downscaling ion and Hall thrusters is the need to neutralize the positive ion beam to prevent beam stalling. This neutralization is achieved by feeding electrons into the downstream space. In most cases hollow cathodes are used for this purpose, but they are fragile and difficult to implement, and in particular for small systems they are difficult to downscale, both in size and electron current. We describe here a new alternative ion thruster that can provide thrust and specific impulse suitable for mission control of satellites as small as 3 kg. The originality of our thruster lies in the acceleration principles and propellant handling. Continuous ion acceleration is achieved by biasing a set of grids with Radio Frequency voltages (RF) via a blocking capacitor. Due to the different mobility of ions and electrons, the blocking capacitor charges up and rectifies the RF voltage. Thus, the ions are accelerated by the self-bias DC voltage. Moreover, due to the RF oscillations, the electrons escape the thruster across the grids during brief instants in the RF period ensuring a full space charge neutralization of the positive ion beam. Due to the RF nature of this system, the space charge limited current increases by almost a factor of 2 compared to classical DC biased grids, which translates into a specific thrust two times higher than for a similar DC system. This new thruster is called Neptune and operates with only one RF power supply for plasma generation, ion acceleration and electron neutralization. We will present the downscaling of this thruster to a 3cm