Science.gov

Sample records for ab initio determination

  1. Ab initio determination of light hadron masses.

    PubMed

    Dürr, S; Fodor, Z; Frison, J; Hoelbling, C; Hoffmann, R; Katz, S D; Krieg, S; Kurth, T; Lellouch, L; Lippert, T; Szabo, K K; Vulvert, G

    2008-11-21

    More than 99% of the mass of the visible universe is made up of protons and neutrons. Both particles are much heavier than their quark and gluon constituents, and the Standard Model of particle physics should explain this difference. We present a full ab initio calculation of the masses of protons, neutrons, and other light hadrons, using lattice quantum chromodynamics. Pion masses down to 190 mega-electron volts are used to extrapolate to the physical point, with lattice sizes of approximately four times the inverse pion mass. Three lattice spacings are used for a continuum extrapolation. Our results completely agree with experimental observations and represent a quantitative confirmation of this aspect of the Standard Model with fully controlled uncertainties. PMID:19023076

  2. DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering

    PubMed Central

    Franke, Daniel; Svergun, Dmitri I.

    2009-01-01

    DAMMIF, a revised implementation of the ab-initio shape-determination program DAMMIN for small-angle scattering data, is presented. The program was fully rewritten, and its algorithm was optimized for speed of execution and modified to avoid limitations due to the finite search volume. Symmetry and anisometry constraints can be imposed on the particle shape, similar to DAMMIN. In equivalent conditions, DAMMIF is 25–40 times faster than DAMMIN on a single CPU. The possibility to utilize multiple CPUs is added to DAMMIF. The application is available in binary form for major platforms.

  3. Ab Initio determination of Cu 3d orbital energies in layered copper oxides

    PubMed Central

    Hozoi, Liviu; Siurakshina, Liudmila; Fulde, Peter; van den Brink, Jeroen

    2011-01-01

    It has long been argued that the minimal model to describe the low-energy physics of the high Tc superconducting cuprates must include copper states of other symmetries besides the canonical one, in particular the orbital. Experimental and theoretical estimates of the energy splitting of these states vary widely. With a novel ab initio quantum chemical computational scheme we determine these energies for a range of copper-oxides and -oxychlorides, determine trends with the apical Cu–ligand distances and find excellent agreement with recent Resonant Inelastic X-ray Scattering measurements, available for La2CuO4, Sr2CuO2Cl2, and CaCuO2. PMID:22355584

  4. Determination of absolute configuration using ab initio calculation of optical rotation.

    PubMed

    Stephens, P J; Devlin, F J; Cheeseman, J R; Frisch, M J; Bortolini, O; Besse, P

    2003-01-01

    Ab initio Density Functional Theory (DFT) calculations of transparent spectral region, discrete frequency specific rotations were used to assign the absolute configurations (ACs) of: 1, 2H-naphtho[1,8-bc]thiophene 1-oxide; 2, m-F-phenyl glycidic acid methyl ester; 3, o-Br-phenyl glycidic acid methyl ester; 4, p-CH(3)-phenyl glycidic acid methyl ester; 5, 2-(1-hydroxyethyl)-chromen-4-one; and 6, 6-Br-2-(1-hydroxyethyl)-chromen-4-one. The ACs of 5 and 6 were previously determined via X-ray crystallography to be: 5, R(-)/S(+); 6, R(+)/S(-). The ACs obtained using [alpha](D) are the same for both 5 and 6: R(+)/S(-). We conclude that the previously reported AC of 5 is incorrect. PMID:12884375

  5. Ab initio determination of the instability growth rate of warm dense beryllium-deuterium interface

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Li, Zi; Li, DaFang; Zhang, Ping

    2015-10-01

    Accurate knowledge about the interfacial unstable growth is of great importance in inertial confinement fusion. During implosions, the deuterium-tritium capsule is driven by laser beams or X-rays to access the strongly coupled and partially degenerated warm dense matter regime. At this stage, the effects of dissipative processes, such as diffusion and viscosity, have significant impact on the instability growth rates. Here, we present ab initio molecular dynamics simulations to determine the equations of state and the transport coefficients. Several models are used to estimate the reduction in the growth rate dispersion curves of Rayleigh-Taylor and Richtmyer-Meshkov instabilities with considering the presence of these dissipative effects. We show that these instability growth rates are effectively reduced when considering diffusion. The findings provide significant insights into the microscopic mechanism of the instability growth at the ablator-fuel interface and will refine the models used in the laser-driven hydrodynamic instability experiments.

  6. Ab initio determination of the instability growth rate of warm dense beryllium-deuterium interface

    SciTech Connect

    Wang, Cong; Zhang, Ping; Li, Zi; Li, DaFang

    2015-10-15

    Accurate knowledge about the interfacial unstable growth is of great importance in inertial confinement fusion. During implosions, the deuterium-tritium capsule is driven by laser beams or X-rays to access the strongly coupled and partially degenerated warm dense matter regime. At this stage, the effects of dissipative processes, such as diffusion and viscosity, have significant impact on the instability growth rates. Here, we present ab initio molecular dynamics simulations to determine the equations of state and the transport coefficients. Several models are used to estimate the reduction in the growth rate dispersion curves of Rayleigh-Taylor and Richtmyer-Meshkov instabilities with considering the presence of these dissipative effects. We show that these instability growth rates are effectively reduced when considering diffusion. The findings provide significant insights into the microscopic mechanism of the instability growth at the ablator-fuel interface and will refine the models used in the laser-driven hydrodynamic instability experiments.

  7. Rotational Energy Transfer of N2 Determined Using a New Ab Initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    A new N2-N2 rigid-rotor surface has been determined using extensive Ab Initio quantum chemistry calculations together with recent experimental data for the second virial coefficient. Rotational energy transfer is studied using the new potential energy surface (PES) employing the close coupling method below 200 cm(exp -1) and coupled state approximation above that. Comparing with a previous calculation based on the PES of van der Avoird et al.,3 it is found that the new PES generally gives larger cross sections for large (delta)J transitions, but for small (delta)J transitions the cross sections are either comparable or smaller. Correlation between the differences in the cross sections and the two PES will be attempted. The computed cross sections will also be compared with available experimental data.

  8. Electronic structure of ScN determined using optical spectroscopy, photoemission, and ab initio calculations

    SciTech Connect

    Gall, D.; Sta''dele, M.; Ja''rrendahl, K.; Petrov, I.; Desjardins, P.; Haasch, R. T.; Lee, T.-Y.; Greene, J. E.

    2001-03-15

    Experimental and ab initio computational methods are employed to conclusively show that ScN is a semiconductor rather than a semimetal; i.e., there is a gap between the N 2p and the Sc 3d bands. Previous experimental investigators reported, in agreement with band structure calculations showing a band overlap of 0.2 eV, that ScN is a semimetal while others concluded that it is a semiconductor with a band gap larger than 2 eV. We have grown high quality, single crystalline ScN layers on MgO(001) and on TiN(001) buffer layers on MgO(001) by ultrahigh vacuum reactive magnetron sputter deposition. ScN optical properties were determined by transmission, reflection, and spectroscopic ellipsometry while in-situ x-ray and ultraviolet valence band photoelectron spectroscopy were used to determine the density of states (DOS) below the Fermi level. The measured DOS exhibits peaks at 3.8 and 5.2 eV stemming from the N 2p bands and at 15.3 eV due to the N 2s bands. The imaginary part of the measured dielectric function {epsilon}{sub 2} consists of two primary features due to direct X- and {Gamma}-point transitions at photon energies of 2.7 and 3.8 eV, respectively. For comparison, the ScN band structure was calculated using an ab initio Kohn--Sham approach which treats the exchange interactions exactly within density-functional theory. Calculated DOS and the complex dielectric function are in good agreement with our ScN valence-band photoelectron spectra and measured optical properties, respectively. We conclude, combining experimental and computational results, that ScN is a semiconductor with an indirect {Gamma}--X bandgap of 1.3{+-}0.3eV and a direct X-point gap of 2.4{+-}0.3eV.

  9. Ab initio Structure Determination of Mg10Ir19B16

    SciTech Connect

    Xu, Qiang; Klimczuk, T.; Gortenmulder, T.; Jansen, J.; McGuire, Michael A; Cava, R. J.; Zandbergen, H

    2009-01-01

    The ab initio structure determination of a novel unconventional noncentro-symmetric superconductor Mg{sub 10}Ir{sub 19}B{sub 16} (T{sub c} = 5 K) has been performed using a method that involves a combination of experimental data and calculations. Electron diffraction, X-ray powder diffraction, phase estimation routines, quantum mechanical calculations, high-resolution electron microscopy, and structural chemistry arguments are used. With the strengths of different methods used to eliminate the ambiguities encountered in others, the complete structure, including a very light B atom, has been determined with a high accuracy from impure polycrystalline powder samples, which suggests that the type of analysis described may be used to successfully address other similar intractable problems. The solved structure of Mg{sub 10}Ir{sub 19}B{sub 16} shows a complex nature that irregular coordination environments preclude a conversional description of compact packing of coordination polyhedra; however, it can be easier understood as ordered in an onion-skin-like series of nested polyhedra.

  10. Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions

    SciTech Connect

    Changlani, Hitesh J.; Zheng, Huihuo; Wagner, Lucas K.

    2015-09-14

    We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U{sup ∗}/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.

  11. Spectroscopic and Ab Initio Determination of the Ring-Twisting Potential Energy Function for 1,3-Cyclohexadiene

    NASA Astrophysics Data System (ADS)

    Autrey, Daniel; Choo, Jaebum; Laane, Jaan

    2000-10-01

    The ring-twisting vibration of 1,3-cyclohexadiene has been studied using Raman and infrared spectroscopy of the molecule in the vapor phase. The Raman spectrum shows five ring-twisting transitions in the 150 - 200 cm-1 region. The far-infrared spectrum shows only two transitions for this vibration, which is infrared forbidden in the C_2v (planar) approximation. Three ring-twisting combination bands were also observed off a fundamental vibration at 926.1 cm-1. A coordinate dependent kinetic energy expansion for the ring-twisting motion was calculated, and this was used to determine the ring-twisting potential function. Ab initio calculations were performed using Moller-Plesset perturbation theory (MP2) using different basis sets. The barrier to planarity of 1150 cm-1 was determined from the spectroscopic data. The various ab initio calculations gave barriers to planarity in the 1197 - 1593 cm-1 range.

  12. Ab initio nuclear structure theory

    NASA Astrophysics Data System (ADS)

    Negoita, Gianina Alina

    Ab initio no core methods have become major tools for understanding the properties of light nuclei based on realistic nucleon-nucleon (NN) and three-nucleon (NNN) interactions. A brief description is provided for the inter-nucleon interactions that fit two-body scattering and bound state data, as well as NNN interactions. Major new progress, including the goal of applying these interactions to solve for properties of nuclei, is limited by convergence issues. That is, with the goal of obtaining high precision solutions of the nuclear many-body Hamiltonian with no core methods (all nucleons treated on the same footing), one needs to proceed to very large basis spaces to achieve a convergence pattern suitable for extrapolation to the exact result. This thesis investigates (1) the similarity renormalization group (SRG) approach to soften the interaction, while preserving its phase shift properties, and (2) adoption of a realistic basis space using Woods-Saxon (WS) single-particle wavefunctions. Both have their advantages and limitations, discussed here. For (1), SRG was demonstrated by applying it to a realistic NN interaction, JISP16, in a harmonic oscillator (HO) representation. The degree of interaction softening achieved through a regulator parameter is examined. For (2), new results are obtained with the realistic JISP16 NN interaction in ab initio calculations of light nuclei 4He, 6He and 12C, using a WS basis optimized to minimize the ground-state energy within the truncated no core shell model. These are numerically-intensive many-body calculations. Finally, to gain insight into the potential for no core investigations of heavier nuclei, an initial investigation was obtained for the odd mass A = 47 - 49 region nuclei straddling 48Ca. The motivation for selecting these nuclei stems from the aim of preparing for nuclear double beta-decay studies of 48Ca. In these heavier systems, phenomenological additions to the realistic NN interaction determined by previous

  13. Ab initio determination of effective electron-phonon coupling factor in copper

    NASA Astrophysics Data System (ADS)

    Ji, Pengfei; Zhang, Yuwen

    2016-04-01

    The electron temperature Te dependent electron density of states g (ε), Fermi-Dirac distribution f (ε), and electron-phonon spectral function α2 F (Ω) are computed as prerequisites before achieving effective electron-phonon coupling factor Ge-ph. The obtained Ge-ph is implemented into a molecular dynamics (MD) and two-temperature model (TTM) coupled simulation of femtosecond laser heating. By monitoring temperature evolutions of electron and lattice subsystems, the result utilizing Ge-ph from ab initio calculation shows a faster decrease of Te and increase of Tl than those using Ge-ph from phenomenological treatment. The approach of calculating Ge-ph and its implementation into MD-TTM simulation is applicable to other metals.

  14. Ab initio determination of the proton affinities of small neutral and anionic molecules

    NASA Technical Reports Server (NTRS)

    DeFrees, D. J.; McLean, A. D.

    1986-01-01

    The proton affinity of a molecule in the gas phase is a fundamental measure of its basicity and is the factor controlling the course of many ion-molecule reactions. In this article, ab initio molecular orbital theory at the MP4/6-311 ++ G(3df, 3pd) level of theory is demonstrated to predict proton affinities (PA's) for small neutral and anionic bases to within 2 kcal mol-1. Furthermore, the errors are random, indicating that there are likely no systematic errors in either the experimental or theoretical PA's. Also, this level of theory is used to calibrate less sophisticated theoretical models which are suitable for larger molecules; the MP4/6-311 ++ G(2d, 2p) and MP2/6-311 ++ G(d, p) theoretical models should be particularly useful. A procedure for predicting the vibrational frequencies for anion is proposed and applied to CH3-, NH2-, OH-, and CN-.

  15. One-Electron Reduction of Substituted Chlorinated Methanes as Determined from Ab Initio Electronic Structure Theory

    SciTech Connect

    Bylaska, Eric J.; Dixon, David A.; Felmy, Andrew R.; Tratnyek, Paul G.

    2002-12-17

    Substituted chloromethyl radicals and anions are potential intermediates in the reduction of substituted chlorinated methanes (CHxCl3-xL, with L- ) F-, OH-, SH-, NO3 -, HCO3 - and (x 0-3). Thermochemical properties, Hf (298.15 K), S(298.15 K,1 bar), and GS(298.15 K, 1 bar), were calculated by using ab initio electronic structure methods for the substituted chloromethyl radicals and anions: CHyCl2-yL and CHyCl2-yL-, for y 0-2. In addition, thermochemical properties were calculated for the aldehyde, ClHCO, and the gemchlorohydrin anions, CCl3O-, CHCl2O-, and CH2ClO-. The thermochemical properties of these additional compounds were calculated because the nitrate-substituted compounds, CHyCl2-y(NO3) and CHyCl2-y(NO3)-,

  16. Ab initio approaches for the determination of heavy element energetics: Ionization energies of trivalent lanthanides (Ln = La-Eu)

    SciTech Connect

    Peterson, Charles; Penchoff, Deborah A.; Wilson, Angela K.

    2015-11-21

    An effective approach for the determination of lanthanide energetics, as demonstrated by application to the third ionization energy (in the gas phase) for the first half of the lanthanide series, has been developed. This approach uses a combination of highly correlated and fully relativistic ab initio methods to accurately describe the electronic structure of heavy elements. Both scalar and fully relativistic methods are used to achieve an approach that is both computationally feasible and accurate. The impact of basis set choice and the number of electrons included in the correlation space has also been examined.

  17. AB INITIO AND CALPHAD THERMODYNAMICS OF MATERIALS

    SciTech Connect

    Turchi, P A

    2004-04-14

    Ab initio electronic structure methods can supplement CALPHAD in two major ways for subsequent applications to stability in complex alloys. The first one is rather immediate and concerns the direct input of ab initio energetics in CALPHAD databases. The other way, more involved, is the assessment of ab initio thermodynamics {acute a} la CALPHAD. It will be shown how these results can be used within CALPHAD to predict the equilibrium properties of multi-component alloys.

  18. Ab initio phasing by molecular averaging in real space with new criteria: application to structure determination of a betanodavirus

    PubMed Central

    Yoshimura, Masato; Chen, Nai-Chi; Guan, Hong-Hsiang; Chuankhayan, Phimonphan; Lin, Chien-Chih; Nakagawa, Atsushi; Chen, Chun-Jung

    2016-01-01

    Molecular averaging, including noncrystallographic symmetry (NCS) averaging, is a powerful method for ab initio phase determination and phase improvement. Applications of the cross-crystal averaging (CCA) method have been shown to be effective for phase improvement after initial phasing by molecular replacement, isomorphous replacement, anomalous dispersion or combinations of these methods. Here, a two-step process for phase determination in the X-ray structural analysis of a new coat protein from a betanodavirus, Grouper nervous necrosis virus, is described in detail. The first step is ab initio structure determination of the T = 3 icosahedral virus-like particle using NCS averaging (NCSA). The second step involves structure determination of the protrusion domain of the viral molecule using cross-crystal averaging. In this method, molecular averaging and solvent flattening constrain the electron density in real space. To quantify these constraints, a new, simple and general indicator, free fraction (ff), is introduced, where ff is defined as the ratio of the volume of the electron density that is freely changed to the total volume of the crystal unit cell. This indicator is useful and effective to evaluate the strengths of both NCSA and CCA. Under the condition that a mask (envelope) covers the target molecule well, an ff value of less than 0.1, as a new rule of thumb, gives sufficient phasing power for the successful construction of new structures. PMID:27377380

  19. Ab initio phasing by molecular averaging in real space with new criteria: application to structure determination of a betanodavirus.

    PubMed

    Yoshimura, Masato; Chen, Nai Chi; Guan, Hong Hsiang; Chuankhayan, Phimonphan; Lin, Chien Chih; Nakagawa, Atsushi; Chen, Chun Jung

    2016-07-01

    Molecular averaging, including noncrystallographic symmetry (NCS) averaging, is a powerful method for ab initio phase determination and phase improvement. Applications of the cross-crystal averaging (CCA) method have been shown to be effective for phase improvement after initial phasing by molecular replacement, isomorphous replacement, anomalous dispersion or combinations of these methods. Here, a two-step process for phase determination in the X-ray structural analysis of a new coat protein from a betanodavirus, Grouper nervous necrosis virus, is described in detail. The first step is ab initio structure determination of the T = 3 icosahedral virus-like particle using NCS averaging (NCSA). The second step involves structure determination of the protrusion domain of the viral molecule using cross-crystal averaging. In this method, molecular averaging and solvent flattening constrain the electron density in real space. To quantify these constraints, a new, simple and general indicator, free fraction (ff), is introduced, where ff is defined as the ratio of the volume of the electron density that is freely changed to the total volume of the crystal unit cell. This indicator is useful and effective to evaluate the strengths of both NCSA and CCA. Under the condition that a mask (envelope) covers the target molecule well, an ff value of less than 0.1, as a new rule of thumb, gives sufficient phasing power for the successful construction of new structures. PMID:27377380

  20. Ab initio RNA folding

    NASA Astrophysics Data System (ADS)

    Cragnolini, Tristan; Derreumaux, Philippe; Pasquali, Samuela

    2015-06-01

    RNA molecules are essential cellular machines performing a wide variety of functions for which a specific three-dimensional structure is required. Over the last several years, the experimental determination of RNA structures through x-ray crystallography and NMR seems to have reached a plateau in the number of structures resolved each year, but as more and more RNA sequences are being discovered, the need for structure prediction tools to complement experimental data is strong. Theoretical approaches to RNA folding have been developed since the late nineties, when the first algorithms for secondary structure prediction appeared. Over the last 10 years a number of prediction methods for 3D structures have been developed, first based on bioinformatics and data-mining, and more recently based on a coarse-grained physical representation of the systems. In this review we are going to present the challenges of RNA structure prediction and the main ideas behind bioinformatic approaches and physics-based approaches. We will focus on the description of the more recent physics-based phenomenological models and on how they are built to include the specificity of the interactions of RNA bases, whose role is critical in folding. Through examples from different models, we will point out the strengths of physics-based approaches, which are able not only to predict equilibrium structures, but also to investigate dynamical and thermodynamical behavior, and the open challenges to include more key interactions ruling RNA folding.

  1. Ab initio RNA folding.

    PubMed

    Cragnolini, Tristan; Derreumaux, Philippe; Pasquali, Samuela

    2015-06-17

    RNA molecules are essential cellular machines performing a wide variety of functions for which a specific three-dimensional structure is required. Over the last several years, the experimental determination of RNA structures through x-ray crystallography and NMR seems to have reached a plateau in the number of structures resolved each year, but as more and more RNA sequences are being discovered, the need for structure prediction tools to complement experimental data is strong. Theoretical approaches to RNA folding have been developed since the late nineties, when the first algorithms for secondary structure prediction appeared. Over the last 10 years a number of prediction methods for 3D structures have been developed, first based on bioinformatics and data-mining, and more recently based on a coarse-grained physical representation of the systems. In this review we are going to present the challenges of RNA structure prediction and the main ideas behind bioinformatic approaches and physics-based approaches. We will focus on the description of the more recent physics-based phenomenological models and on how they are built to include the specificity of the interactions of RNA bases, whose role is critical in folding. Through examples from different models, we will point out the strengths of physics-based approaches, which are able not only to predict equilibrium structures, but also to investigate dynamical and thermodynamical behavior, and the open challenges to include more key interactions ruling RNA folding. PMID:25993396

  2. Ab Initio Study of Polonium

    SciTech Connect

    Zabidi, Noriza Ahmad; Kassim, Hasan Abu; Shrivastava, Keshav N.

    2008-05-20

    Polonium is the only element with a simple cubic (sc) crystal structure. Atoms in solid polonium sit at the corners of a simple cubic unit cell and no where else. Polonium has a valence electron configuration 6s{sup 2}6p{sup 4} (Z = 84). The low temperature {alpha}-phase transforms into the rhombohedral (trigonal) {beta} structure at {approx}348 K. The sc {alpha}-Po unit cell constant is a = 3.345 A. The beta form of polonium ({beta}-Po) has the lattice parameters, a{sub R} = 3.359 A and a rhombohedral angle 98 deg. 13'. We have performed an ab initio electronic structure calculation by using the density functional theory. We have performed the calculation with and without spin-orbit (SO) coupling by using both the LDA and the GGA for the exchange-correlations. The k-points in a simple cubic BZ are determined by R (0.5, 0.5, 0.5), {gamma} (0, 0, 0), X (0.5, 0, 0), M (0.5, 0.5, 0) and {gamma} (0, 0, 0). Other directions of k-points are {gamma} (0, 0, 0), X (0.5, 0, 0), R (0.5, 0.5, 0.5) and {gamma} (0, 0, 0). The SO splittings of p states at the {gamma} point in the GGA+SO scheme for {alpha}-Po are 0.04 eV and 0.02 eV while for the {beta}-Po these are 0.03 eV and 0.97 eV. We have also calculated the vibrational spectra for the unit cells in both the structures. We find that exchanging of a Po atom by Pb atom produces several more bands and destabilizes the {beta} phase.

  3. Determination of a silane intermolecular force field potential model from an ab initio calculation

    SciTech Connect

    Li, Arvin Huang-Te; Chao, Sheng D.; Chang, Chien-Cheng

    2010-12-15

    Intermolecular interaction potentials of the silane dimer in 12 orientations have been calculated by using the Hartree-Fock (HF) self-consistent theory and the second-order Moeller-Plesset (MP2) perturbation theory. We employed basis sets from Pople's medium-size basis sets [up to 6-311++G(3df, 3pd)] and Dunning's correlation consistent basis sets (up to the triply augmented correlation-consistent polarized valence quadruple-zeta basis set). We found that the minimum energy orientations were the G and H conformers. We have suggested that the Si-H attractions, the central silicon atom size, and electronegativity play essential roles in weakly binding of a silane dimer. The calculated MP2 potential data were employed to parametrize a five-site force field for molecular simulations. The Si-Si, Si-H, and H-H interaction parameters in a pairwise-additive, site-site potential model for silane molecules were regressed from the ab initio energies.

  4. Ab initio infrared and Raman spectra

    NASA Astrophysics Data System (ADS)

    Fredkin, Donald R.; Komornicki, Andrew; White, Steven R.; Wilson, Kent R.

    1983-06-01

    mechanically, using gradient techniques step by step along a classical trajectory whose path is determined by these quantum forces. We believe the QFCT method to be a more practical ab initio route to spectral band contours for large molecules, clusters, and solutions, and it can be equally applied to equilibrium and nonequilibrium systems. It is pointed out that a similar ab initio QFCT molecular dynamic approach could be used to compute other types of spectra, e.g., electronic absorption, as well as other parameters such as transport properties and thermodynamic functions and their quantum corrections. For parameters not depending on momenta, a parallel ab initio Monte Carlo approach would use electronic energies and other parameters of interest generated quantum mechanically, and ``classical'' trial moves of the nuclei.

  5. Ab initio Bogoliubov coupled cluster theory

    NASA Astrophysics Data System (ADS)

    Signoracci, Angelo; Hagen, Gaute; Duguet, Thomas

    2014-09-01

    Coupled cluster (CC) theory has become a standard method in nuclear theory for realistic ab initio calculations of medium mass nuclei, but remains limited by its requirement of a Slater determinant reference state which reasonably approximates the nuclear system of interest. Extensions of the method, such as equation-of-motion CC, permit the calculation of nuclei with one or two nucleons added or removed from a doubly magic core, yet still only a few dozen nuclei are accessible with modern computational restrictions. In order to extend the applicability of ab initio methods to open-shell systems, the superfluid nature of nuclei must be taken into account. By utilizing Bogoliubov algebra and employing spontaneous symmetry breaking with respect to particle number conservation, superfluid systems can be treated by a single reference state. An ab initio theory to include correlations on top of a Bogoliubov reference state has been developed in the guise of standard CC theory. The formalism and first results of this Bogoliubov coupled cluster theory will be presented to demonstrate the applicability of the method.

  6. Ab initio derivation of model energy density functionals

    NASA Astrophysics Data System (ADS)

    Dobaczewski, Jacek

    2016-08-01

    I propose a simple and manageable method that allows for deriving coupling constants of model energy density functionals (EDFs) directly from ab initio calculations performed for finite fermion systems. A proof-of-principle application allows for linking properties of finite nuclei, determined by using the nuclear nonlocal Gogny functional, to the coupling constants of the quasilocal Skyrme functional. The method does not rely on properties of infinite fermion systems but on the ab initio calculations in finite systems. It also allows for quantifying merits of different model EDFs in describing the ab initio results.

  7. Collective rotation from ab initio theory

    NASA Astrophysics Data System (ADS)

    Caprio, M. A.; Maris, P.; Vary, J. P.; Smith, R.

    2015-08-01

    Through ab initio approaches in nuclear theory, we may now seek to quantitatively understand the wealth of nuclear collective phenomena starting from the underlying internucleon interactions. No-core configuration interaction (NCCI) calculations for p-shell nuclei give rise to rotational bands, as evidenced by rotational patterns for excitation energies, electromagnetic moments and electromagnetic transitions. In this review, NCCI calculations of 7-9Be are used to illustrate and explore ab initio rotational structure, and the resulting predictions for rotational band properties are compared with experiment. We highlight the robustness of ab initio rotational predictions across different choices for the internucleon interaction.

  8. Ab initio phonon limited transport

    NASA Astrophysics Data System (ADS)

    Verstraete, Matthieu

    We revisit the thermoelectric (TE) transport properties of two champion materials, PbTe and SnSe, using fully first principles methods. In both cases the performance of the material is due to subtle combinations of structural effects, scattering, and phase space reduction. In PbTe anharmonic effects are completely opposite to the predicted quasiharmonic evolution of phonon frequencies and to frequently (and incorrectly) cited extrapolations of experiments. This stabilizes the material at high T, but also tends to enhance its thermal conductivity, in a non linear manner, above 600 Kelvin. This explains why PbTe is in practice limited to room temperature applications. SnSe has recently been shown to be the most efficient TE material in bulk form. This is mainly due to a strongly enhanced carrier concentration and electrical conductivity, after going through a phase transition from 600 to 800 K. We calculate the transport coefficients as well as the defect concentrations ab initio, showing excellent agreement with experiment, and elucidating the origin of the double phase transition as well as the new charge carriers. AH Romero, EKU Gross, MJ Verstraete, and O Hellman PRB 91, 214310 (2015) O. Hellman, IA Abrikosov, and SI Simak, PRB 84 180301 (2011)

  9. Catalytic Reaction Mechanism of Acetylcholinesterase Determined by Born-Oppenheimer ab initio QM/MM Molecular Dynamics Simulations

    PubMed Central

    Zhou, Yanzi; Wang, Shenglong; Zhang, Yingkai

    2010-01-01

    Acetylcholinesterase (AChE) is a remarkably efficient serine hydrolase responsible for the termination of impulse signaling at cholinergic synapses. By employing Born-Oppenheimer molecular dynamics simulations with B3LYP/6-31G(d) QM/MM potential and the umbrella sampling method, we have characterized its complete catalytic reaction mechanism for hydrolyzing neurotransmitter acetylcholine (ACh) and determined its multi-step free energy reaction profiles for the first time. In both acylation and deacylation reaction stages, the first step involves the nucleophilic attack to the carbonyl carbon with the triad His447 serving as the general base, and leads to a tetrahedral covalent intermediate stabilized by the oxyanion hole. From the intermediate to the product, the orientation of His447 ring needs to be adjusted very slightly, and then the proton transfers from His447 to the product and the break of the scissile bond happen spontaneously. For the three-pronged oxyanion hole, it only makes two hydrogen bonds with the carbonyl oxygen at either the initial reactant or the final product state, but the third hydrogen bond is formed and stable at all transition and intermediate states during the catalytic process. At the intermediate state of the acylation reaction, a short and low-barrier hydrogen bond (LBHB) is found to be formed between two catalytic triad residues His447 and Glu334, and the spontaneous proton transfer between two residues has been observed. However, it is only about 1 ~ 2 kcal/mol stronger than the normal hydrogen bond. In comparison with previous theoretical investigations of the AChE catalytic mechanism, our current study clearly demonstrates the power and advantages of employing Born-Oppenheimer ab initio QM/MM MD simulations in characterizing enzyme reaction mechanisms. PMID:20550161

  10. Specific force field parameters determination for the hybrid ab initio QM/MM LSCF method.

    PubMed

    Ferré, Nicolas; Assfeld, Xavier; Rivail, Jean-Louis

    2002-04-30

    The pure quantum mechanics method, called Local Self-Consistent Field (LSCF), that allows to optimize a wave function within the constraint that some predefined spinorbitals are kept frozen, is discussed. These spinorbitals can be of any shape, and their occupation numbers can be 0 or 1. Any post-Hartree-Fock method, based on the restricted or unrestricted Hartree-Fock Slater determinant, and Kohn-Sham-based DFT method are available. The LSCF method is easily applied to hybrid quantum mechanics/molecular mechanics (QM/MM) procedure where the quantum and the classical parts are covalently bonded. The complete methodology of our hybrid QM/MM scheme is detailed for studies of macromolecular systems. Not only the energy but also the gradients are derived; thus, the full geometry optimization of the whole system is feasible. We show that only specific force field parameters are needed for a correct description of the molecule, they are given for some general chemical bonds. A careful analysis of the errors induced by the use of molecular mechanics in hybrid computation show that a general procedure can be derived to obtain accurate results at low computation effort. The methodology is applied to the structure determination of the crambin protein and to Menshutkin reactions between primary amines and chloromethane. PMID:11939595

  11. Ab initio alpha-alpha scattering

    NASA Astrophysics Data System (ADS)

    Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A.; Luu, Thomas; Meißner, Ulf-G.

    2015-12-01

    Processes such as the scattering of alpha particles (4He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei—nuclei with even and equal numbers of protons and neutrons—is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the ‘adiabatic projection method’ to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of

  12. Ab initio alpha-alpha scattering.

    PubMed

    Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G

    2015-12-01

    Processes such as the scattering of alpha particles ((4)He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei--nuclei with even and equal numbers of protons and neutrons--is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the 'adiabatic projection method' to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of

  13. A Nonparametrized Ab Initio Determination of the Heat of Formation of Hydroxylamine, NH2OH

    SciTech Connect

    Feller, David F.; Dixon, David A.

    2003-12-04

    Large basis set coupled cluster calculations through noniterative triple excitations were used to compute optimized structures, harmonic vibrational frequencies, atomization energies at 0 K and heats of formation at 298 K for hydroxylamine (NH2OH) and three related compounds (NH3, HNO and H2O2). The use of basis sets as large as augmented sextuple zeta resulted in small extrapolations to the complete basis set limit in order to achieve chemical accuracy ( 1 kcal/mol) in the thermodynamic properties. Complete basis set estimates were determined from several simple extrapolation formulas. In addition, four other corrections were applied to the frozen core atomization energies, (1) a zero point vibrational correction: (2) a core/valence correlation correction; (3) a Douglas-Kroll-Hess scalar relativistic correction; and (4) a first order atomic spin-orbit correction. For NH3 and HNO we incorporated a fifth correction term intended to approximate the difference between coupled cluster theory and the full configuration interact result. This correction was based on coupled cluster theory through iterative quadruple excitations (CCSDTQ). Excellent agreement with experiment was found for the heats of formation of NH3, HNO and H2O2. For NH2OH the best current estimate of the heat of formation at 298 K is 10.1 0.3 kcal/mol, which falls roughly midway between two experimental values at 12.0 2.4 and 7.9 1.5 kcal/mol.

  14. Ab initio structure determination of novel borate NaSrBO{sub 3}

    SciTech Connect

    Wu, L. . E-mail: lwu@nankai.edu.cn; Chen, X.L. . E-mail: xlchen@aphy.iphy.ac.cn; Zhang, Y.; Kong, Y.F.; Xu, J.J.; Xu, Y.P.

    2006-04-15

    A novel orthoborate, NaSrBO{sub 3}, has been successfully synthesized by standard solid-state reaction, and the crystal structure has been determined from powder X-ray diffraction data. It crystallizes in the monoclinic space group P2{sub 1}/c with lattice parameters: a=5.32446(7)A, b=9.2684(1)A, c=6.06683(8)A, {beta}=100.589(1){sup o}. The fundamental building units are isolated BO{sub 3} groups, which are parallelly distributed along two different directions. Because of the anisotropic polarizations of planar BO{sub 3} groups, a considerable birefringence can be expected in it. The Na atoms are six-coordinated with O atoms to form octahedra, and the Sr atoms are nine-coordinated, forming tri-capped trigonal prisms. Those polyhedra connect with each other by bridging-oxygen atoms, forming infinite three-dimensional network, which indicates that the cleaving problem is expected to be overcome during the course of single-crystal growth. The infrared spectrum has been measured, and the result is consistent with the crystallographic study. Moreover, a comparison of the new structure type with the other known orthoborates is presented here.

  15. Ab initio molecular dynamics determination of competitive O₂ vs. N₂ adsorption at open metal sites of M₂(dobdc).

    PubMed

    Parkes, Marie V; Greathouse, Jeffery A; Hart, David B; Gallis, Dorina F Sava; Nenoff, Tina M

    2016-04-28

    The separation of oxygen from nitrogen using metal-organic frameworks (MOFs) is of great interest for potential pressure-swing adsorption processes for the generation of purified O2 on industrial scales. This study uses ab initio molecular dynamics (AIMD) simulations to examine for the first time the pure-gas and competitive gas adsorption of O2 and N2 in the M2(dobdc) (M = Cr, Mn, Fe) MOF series with coordinatively unsaturated metal centers. Effects of metal, temperature, and gas composition are explored. This unique application of AIMD allows us to study in detail the adsorption/desorption processes and to visualize the process of multiple guests competitively binding to coordinatively unsaturated metal sites of a MOF. PMID:27063148

  16. Argon Interaction with Gold Surfaces: Ab Initio-Assisted Determination of Pair Ar-Au Potentials for Molecular Dynamics Simulations.

    PubMed

    Grenier, Romain; To, Quy-Dong; de Lara-Castells, María Pilar; Léonard, Céline

    2015-07-01

    Global potentials for the interaction between the Ar atom and gold surfaces are investigated and Ar-Au pair potentials suitable for molecular dynamics simulations are derived. Using a periodic plane-wave representation of the electronic wave function, the nonlocal van-der-Waals vdW-DF2 and vdW-OptB86 approaches have been proved to describe better the interaction. These global interaction potentials have been decomposed to produce pair potentials. Then, the pair potentials have been compared with those derived by combining the dispersionless density functional dlDF for the repulsive part with an effective pairwise dispersion interaction. These repulsive potentials have been obtained from the decomposition of the repulsive interaction between the Ar atom and the Au2 and Au4 clusters and the dispersion coefficients have been evaluated by means of ab initio calculations on the Ar+Au2 complex using symmetry adapted perturbation theory. The pair potentials agree very well with those evaluated through periodic vdW-DF2 calculations. For benchmarking purposes, CCSD(T) calculations have also been performed for the ArAu and Ar+Au2 systems using large basis sets and extrapolations to the complete basis set limit. This work highlights that ab initio calculations using very small surface clusters can be used either as an independent cross-check to compare the performance of state-of-the-art vdW-corrected periodic DFT approaches or, directly, to calculate the pair potentials necessary in further molecular dynamics calculations. PMID:26046588

  17. Collective rotation from ab initio theory

    NASA Astrophysics Data System (ADS)

    Caprio, Mark A.; Maris, Pieter; Vary, James P.

    2015-10-01

    The challenge of ab initio nuclear theory is to quantitatively predict the complex and highly-correlated behavior of the nuclear many-body system, starting from the underlying internucleon interactions. We may now seek to understand the wealth of nuclear collective phenomena through ab initio approaches. No-core configuration interaction (NCCI) calculations for p-shell nuclei give rise to rotational bands, as evidenced by rotational patterns for excitation energies, electromagnetic moments, and electromagnetic transitions. In this talk, the intrinsic structure of these bands is discussed, and the predicted rotational bands are compared to experiment. Supported by the US DOE under Award Nos. DE-FG02-95ER-40934, DESC0008485 (SciDAC/NUCLEI), and DE-FG02-87ER40371 and the US NSF under Award No. 0904782. Computational resources provided by NERSC (US DOE Contract No. DE-AC02-05CH11231).

  18. Ab initio infrared and Raman spectra

    NASA Technical Reports Server (NTRS)

    Fredkin, D. R.; White, S. R.; Wilson, K. R.; Komornicki, A.

    1983-01-01

    It is pointed out that with increased computer power and improved computational techniques, such as the gradients developed in recent years, it is becoming practical to compute spectra ab initio, from the fundamental constants of nature, for systems of increasing complexity. The present investigation has the objective to explore several possible ab initio approaches to spectra, giving particular attention to infrared and nonresonance Raman. Two approaches are discussed. The sequential approach, in which first the electronic part and then later the nuclear part of the Born-Oppenheimer approximation is solved, is appropriate for small systems. The simultaneous approach, in which the electronic and nuclear parts are solved at the same time, is more appropriate for many-atom systems. A review of the newer quantum gradient techniques is provided, and the infrared and Raman spectral band contours for the water molecule are computed.

  19. Development of Novel Analytical Method for Ab Initio Powder Structural Analysis

    NASA Astrophysics Data System (ADS)

    Sakata, Makoto; Nishibori, Eiji; Sawa, Hiroshi

    Genetic Algorithm (GA) applied to ab initio structure determination from synchrotron powder diffraction is described. It seems to have an advantage over other real space methods for ab initio structure determination because of the existence of schema theorem. As an example, the case of Prednisolone Succinate is shown in some detail. Future development of GA in crystallography is briefly described.

  20. Ab initio vel ex eventu. II

    NASA Astrophysics Data System (ADS)

    Thiessen, P. A.; Treder, H.-J.

    Jedes initium wird durch experimenta crucis zum eventus. Jedes theoretisch interpretierbare ex-eventu-Resultat führt auf ein neues Initium. Gerade dies ist die gemeinsame Aussage von Atomistik, Quantenmechanik und Relativitätstheorie.Translated AbstractAb initio vel ex eventu. IIEvery initium becomes an eventus by experimenta crucis. Every theoretically interpretable ex-eventu result leads to a new initium. Right this is the joint assertion of atomism, quantum mechanics, and relativity.

  1. Molecular determinants for drug-receptor interactions. Part 2. An ab initio molecular orbital and dipole moment study of the novel nootropic agent piracetam (2-oxopyrrolidin-1-ylacetamide)

    NASA Astrophysics Data System (ADS)

    Lumbroso, H.; Liégeois, C.; Pappalardo, G. C.; Grassi, A.

    From the ab initio molecular energies of the possible conformers and from a classical dipole moment analysis of 2-oxopyrrolidin-l-ylacetamide (μ = 4.02 D in dioxan at 30.0°C), the preferred conformation in solution of this novel nootropic agent has been determined. The exocyclic N-CH 2 bond is rotated in one sense by 90° and the exocyclic CH 2-C bond rotated in the same sense by 120° from the "planar" ( OO)- cis conformation. The structures of the two enantiomers in solution differ from that of the crystalline molecule.

  2. Ab Initio Studies of Calcium Carbonate Hydration.

    PubMed

    Lopez-Berganza, Josue A; Diao, Yijue; Pamidighantam, Sudhakar; Espinosa-Marzal, Rosa M

    2015-11-25

    Ab initio simulations of large hydrated calcium carbonate clusters are challenging due to the existence of multiple local energy minima. Extensive conformational searches around hydrated calcium carbonate clusters (CaCO3·nH2O for n = 1-18) were performed to find low-energy hydration structures using an efficient combination of Monte Carlo searches, density-functional tight binding (DFTB+) method, and density-functional theory (DFT) at the B3LYP level, or Møller-Plesset perturbation theory at the MP2 level. This multilevel optimization yields several low-energy structures for hydrated calcium carbonate. Structural and energetics analysis of the hydration of these clusters revealed a first hydration shell composed of 12 water molecules. Bond-length and charge densities were also determined for different cluster sizes. The solvation of calcium carbonate in bulk water was investigated by placing the explicitly solvated CaCO3·nH2O clusters in a polarizable continuum model (PCM). The findings of this study provide new insights into the energetics and structure of hydrated calcium carbonate and contribute to the understanding of mechanisms where calcium carbonate formation or dissolution is of relevance. PMID:26505205

  3. Hyper-Rayleigh light-scattering spectra determined by ab initio collisional hyperpolarizabilities of He-Ne atomic pairs

    SciTech Connect

    Glaz, W.; Bancewicz, T.; Godet, J.-L.; Maroulis, G.; Haskopoulos, A.

    2006-04-15

    The collision-induced (CI) first hyperpolarizability tensor for the He-Ne pair composed of the lightest noble gas elements has been obtained on the grounds of an ab initio method as a function of the interatomic distance R. Collision-induced hyper-Rayleigh (CIHR) spectra scattered in mixtures of such atoms at temperatures of 95 and 295 K are computed in absolute units both quantum mechanically and classically for the frequency shifts up to 1000 cm{sup -1}. The spectral features of the CIHR profiles due to the vector b{sub 1} and septor b{sub 3} parts of the hyperpolarizability tensor are discussed. The quantum character of computed spectra, especially significant at lower temperatures, has been found out. The integrated intensities of the spectra have been evaluated and used as a criterion of the reliability of the computed profiles. The frequency-dependent depolarization ratio of the CIHR spectra was evaluated and discussed. The properties of the resulting HR profiles have been compared with the depolarized CI Rayleigh spectrum of the He-Ne pair.

  4. Efficient and accurate determination of lattice-vacancy diffusion coefficients via non equilibrium ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Sangiovanni, D. G.; Hellman, O.; Alling, B.; Abrikosov, I. A.

    2016-03-01

    We revisit the color-diffusion algorithm [Aeberhard et al., Phys. Rev. Lett. 108, 095901 (2012), 10.1103/PhysRevLett.108.095901] in non equilibrium ab initio molecular dynamics (NE-AIMD) and propose a simple efficient approach for the estimation of monovacancy jump rates in crystalline solids at temperatures well below melting. Color-diffusion applied to monovacancy migration entails that one lattice atom (colored atom) is accelerated toward the neighboring defect site by an external constant force F. Considering bcc molybdenum between 1000 and 2800 K as a model system, NE-AIMD results show that the colored-atom jump rate kNE increases exponentially with the force intensity F , up to F values far beyond the linear-fitting regime employed previously. Using a simple model, we derive an analytical expression which reproduces the observed kNE(F ) dependence on F . Equilibrium rates extrapolated by NE-AIMD results are in excellent agreement with those of unconstrained dynamics. The gain in computational efficiency achieved with our approach increases rapidly with decreasing temperatures and reaches a factor of 4 orders of magnitude at the lowest temperature considered in the present study.

  5. Accurate ab Initio Spin Densities

    PubMed Central

    2012-01-01

    We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as a basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys.2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CASCI-type wave function provides insight into chemically interesting features of the molecule under study such as the distribution of α and β electrons in terms of Slater determinants, CI coefficients, and natural orbitals. The methodology is applied to an iron nitrosyl complex which we have identified as a challenging system for standard approaches [J. Chem. Theory Comput.2011, 7, 2740]. PMID:22707921

  6. Ab initio no core full configuration approach for light nuclei

    NASA Astrophysics Data System (ADS)

    Kim, Youngman; Shin, Ik Jae; Maris, Pieter; Vary, James P.; Forssén, Christian; Rotureau, Jimmy

    2014-07-01

    Comprehensive understanding of the structure and reactions of light nuclei poses theoretical and computational challenges. Still, a number of ab initio approaches have been developed to calculate the properties of atomic nuclei using fundamental interactions among nucleons. Among them, we work with the ab initio no core full configuration (NCFC) method and ab initio no core Gamow Shell Model (GSM). We first review these approaches and present some recent results.

  7. Ab initio no core full configuration approach for light nuclei

    NASA Astrophysics Data System (ADS)

    Kim, Youngman; Shin, Ik Jae; Maris, Pieter; Vary, James P.; Forssén, Christian; Rotureau, Jimmy

    2015-10-01

    Comprehensive understanding of the structure and reactions of light nuclei poses theoretical and computational challenges. Still, a number of ab initio approaches have been developed to calculate the properties of atomic nuclei using fundamental interactions among nucleons. Among them, we work with the ab initio no core full configuration (NCFC) method and ab initio no core Gamow Shell Model (GSM). We first review these approaches and present some recent results.

  8. Ab initio melting curve of osmium

    NASA Astrophysics Data System (ADS)

    Burakovsky, L.; Burakovsky, N.; Preston, D. L.

    2015-11-01

    The melting curve of osmium up to a pressure P of 500 GPa is obtained from an extensive suite of ab initio quantum molecular dynamics (QMD) simulations using the Z method. The ab initio P =0 melting point of Os is 3370 ±75 K; this range encompasses all of the available data in the literature and corroborates the conclusion of J. W. Arblaster [Platinum Metals Rev. 49, 166 (2005)], 10.1595/147106705X70264 that the melting temperature of pure Os is 3400 ±50 K and that the 3300 K typically quoted in the literature is the melting point of impure Os. The T =0 equation of state (EOS) of Os and the P dependence of the optimized c /a ratio for the hexagonal unit cell, both to pressures ˜900 GPa, are obtained in the ab initio approach as validation of its use. Although excellent agreement with the available experimental data (P ≲80 GPa) is found, it is the third-order Birch-Murnaghan EOS with B0'=5 rather than the more widely accepted B0'=4 that describes the QMD data to higher pressures, in agreement with the more recent experimental EOS by Godwal et al. The theoretical melting curve of Os obtained earlier by Joshi et al. is shown to be inconsistent with our QMD results, and the possible reason for this discrepancy is suggested. Regularities in the melting curves of Os and five other third-row transition metals (Ta, W, Re, Pt, Au) could be used to estimate the currently unknown melting curves of Hf and Ir.

  9. Ab initio quantum chemistry: Methodology and applications

    PubMed Central

    Friesner, Richard A.

    2005-01-01

    This Perspective provides an overview of state-of-the-art ab initio quantum chemical methodology and applications. The methods that are discussed include coupled cluster theory, localized second-order Moller–Plesset perturbation theory, multireference perturbation approaches, and density functional theory. The accuracy of each approach for key chemical properties is summarized, and the computational performance is analyzed, emphasizing significant advances in algorithms and implementation over the past decade. Incorporation of a condensed-phase environment by means of mixed quantum mechanical/molecular mechanics or self-consistent reaction field techniques, is presented. A wide range of illustrative applications, focusing on materials science and biology, are discussed briefly. PMID:15870212

  10. Ab initio non-relativistic spin dynamics

    SciTech Connect

    Ding, Feizhi; Goings, Joshua J.; Li, Xiaosong; Frisch, Michael J.

    2014-12-07

    Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li{sub 3} molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.

  11. Ab initio non-relativistic spin dynamics

    NASA Astrophysics Data System (ADS)

    Ding, Feizhi; Goings, Joshua J.; Frisch, Michael J.; Li, Xiaosong

    2014-12-01

    Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li3 molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.

  12. Ab Initio Neutron Drops with Chiral Hamiltonians

    NASA Astrophysics Data System (ADS)

    Potter, Hugh; Maris, Pieter; Vary, James

    2015-04-01

    Ab initio calculations for neutron drops are of interest for insights into neutron-rich nuclei and neutron star matter, and for examining the neutron-only sector of nucleon-nucleon and 3-nucleon interactions. I present ab initio results calculated using the no-core shell model with 2- and 3-body chiral Hamiltonians for neutron drops up to 20 neutrons confined in a 10 MeV harmonic trap. I discuss ground state energies, internal energies, radii, and evidence for pairing. In addition, excitation energies can be used to investigate the spin-orbit splittings in the p-shell and sd -shell. Prior Green's Function Monte Carlo calculations using the Argonne v8' potential with added 3-nucleon forces serve as a comparison. Supported by DOE Grants DESC0008485 (SciDAC/NUCLEI), DE-FG02-87ER40371, and NSF Grant 0904782; computational resources provided by the Oak Ridge Leadership Computing Facility (DOE Office of Science Contract DE-AC05-00OR22725) under an INCITE award.

  13. The Jahn-Teller effect in the 3pe' Rydberg state of H3: review of experimental and ab initio determinations.

    PubMed

    Jungen, Ch; Jungen, M; Pratt, S T

    2012-11-13

    The dissociative recombination (DR) of H(3)(+) ions with electrons, producing neutral atomic and molecular fragments, is driven primarily by the vibronic Jahn-Teller (JT) interaction between the electronic components of the pe' e(-)-H(3)(+) collision (Rydberg) channel. The JT parameters characterizing this interaction are therefore of great interest as they are required for the theoretical predictions of the DR cross section. In this contribution, we review various determinations of these quantities that have been made previously, based both on spectroscopic studies of 3pe' Rydberg-excited H(3) states, and on the analysis of the corresponding ab initio H(3) Rydberg potential surfaces near the conical intersection (D(3h) symmetry) for n=3-5. The highly correlated theoretical 3pe' potential surfaces of Mistrík et al. are used for a new determination of both the linear and quadratic JT terms. PMID:23028155

  14. Ab-initio calculations on melting of thorium

    NASA Astrophysics Data System (ADS)

    Mukherjee, D.; Sahoo, B. D.; Joshi, K. D.; Kaushik, T. C.; Gupta, Satish C.

    2016-05-01

    Ab-initio molecular dynamics study has been performed on face centered cubic structured thorium to determine its melting temperature at room pressure. The ion-electron interaction potential energy calculated as a function of temperature for three volumes (a0)3 and (1.02a0)3 and (1.04a0)3 increases gradually with temperature and undergoes a sharp jump at ~2200 K, ~2100 K and ~1800 K, respectively. Here, a0 = 5.043 Å is the equilibrium lattice parameter at 0 K obtained from ab-initio calculations. These jumps in interaction energy are treated as due to the onset of melting and corresponding temperatures as melting point. The melting point of 2100 K is close to the experimental value of 2023K. Further, the same has been verified by plotting the atomic arrangement evolved at various temperatures and corresponding pair correlation functions.

  15. Understanding phonon transport in thermoelectric materials using ab initio approaches

    NASA Astrophysics Data System (ADS)

    Broido, David

    Good thermoelectric materials have low phonon thermal conductivity, kph. Accurate theories to describe kph are important components in developing predictive models of thermoelectric efficiency that can help guide synthesis and measurement efforts. We have developed ab initio approaches to calculate kph, in which phonon modes and phonon scattering rates are computed using interatomic force constants determined from density functional theory, and a full solution of the Boltzmann transport equation for phonons is implemented. A recent approach to calculate interatomic force constants using ab initio molecular dynamics has yielded a good description of the thermal properties of Bi2Te3. But, the complexity of new promising candidate thermoelectric materials introduces computational challenges in assessing their thermal properties. An example is germanane, a germanium based hydrogen-terminated layered semiconductor, which we will discuss in this talk.

  16. Exploring complex chemical reactions by ab-initio simulation

    NASA Astrophysics Data System (ADS)

    Parrinello, Michele

    1998-03-01

    Recent progress in the ab-initio molecular dynamics method and the power of parallel computing, allow the detailed study of complex chemical reaction of great industrial relevance. We illustrate this unprecedented capability by investigating the second generation Ziegler-Natta catalytic process. In this inhomogeneous catalyst, a polymerization reaction is induced by TiCl4 molecules deposited on an MgCl2 solid support. A density functional based ab-initio molecular dynamics calculation conducted with a minimum of initial assumption allows to understand the nature of the catalytic center and to determine the reaction path with the associated free energy barrier. Furthermore our calculation can explain in a nontrivial way the stereo-selectivity of the process.

  17. Towards Accurate Ab Initio Predictions of the Spectrum of Methane

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born- Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.

  18. Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector

    PubMed Central

    van Genderen, E.; Clabbers, M. T. B.; Das, P. P.; Stewart, A.; Nederlof, I.; Barentsen, K. C.; Portillo, Q.; Pannu, N. S.; Nicolopoulos, S.; Gruene, T.; Abrahams, J. P.

    2016-01-01

    Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e− Å−2 s−1) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014). PMID:26919375

  19. Ab initio determination of spin Hamiltonians with anisotropic exchange interactions: The case of the pyrochlore ferromagnet Lu2V2O7

    NASA Astrophysics Data System (ADS)

    Riedl, Kira; Guterding, Daniel; Jeschke, Harald O.; Gingras, Michel J. P.; Valentí, Roser

    2016-07-01

    We present a general framework for deriving effective spin Hamiltonians of correlated magnetic systems based on a combination of relativistic ab initio density functional theory calculations, exact diagonalization of a generalized Hubbard Hamiltonian on finite clusters, and spin projections onto the low-energy subspace. A key motivation is to determine anisotropic bilinear exchange couplings in materials of interest. As an example, we apply this method to the pyrochlore Lu2V2O7 where the vanadium ions form a lattice of corner-sharing spin-1/2 tetrahedra. In this compound, anisotropic Dzyaloshinskii-Moriya interactions (DMIs) play an essential role in inducing a magnon Hall effect. We obtain quantitative estimates of the nearest-neighbor Heisenberg exchange, the DMI, and the symmetric part of the anisotropic exchange tensor. Finally, we compare our results with experimental ones on the Lu2V2O7 compound.

  20. Determination of protolytic equilibria for methyl 3-azido-6-iodo-2,3,6-trideoxy-α- D- arabino-hexopyranoside by ab initio and spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Dąbrowska, Aleksandra; Makowski, Mariusz; Jacewicz, Dagmara; Chylewska, Agnieszka; Chmurzyński, Lech

    2008-12-01

    UV absorption spectra of methyl 3-azido-6-iodo-2,3,6-trideoxy-α- D- arabino-hexopyranoside were recorded over a wide pH range. On this basis, a relationship between absorbance and pH was plotted, from which deprotonation equilibrium constants of this compound were determined. Further, quantum-mechanical calculations were performed at the ab initio level both in the gas phase by using the Restricted Hartree Fock (RHF), Møller-Plesset (MP2) methods and under consideration of solvation effects within the Polarizable Continuum Model (PCM), which enabled location of preferred protonation and deprotonation centers of this compound. The results provided the basis for discussion of the influence of substituents in the sugar ring on protolytic equilibria occurring in aqueous solutions of 3-azido-2,3-dideoxy sugars.

  1. Ab Initio No-Core Shell Model

    SciTech Connect

    Barrett, B R; Navratil, P; Vary, J P

    2011-04-11

    A long-standing goal of nuclear theory is to determine the properties of atomic nuclei based on the fundamental interactions among the protons and neutrons (i.e., nucleons). By adopting nucleon-nucleon (NN), three-nucleon (NNN) and higher-nucleon interactions determined from either meson-exchange theory or QCD, with couplings fixed by few-body systems, we preserve the predictive power of nuclear theory. This foundation enables tests of nature's fundamental symmetries and offers new vistas for the full range of complex nuclear phenomena. Basic questions that drive our quest for a microscopic predictive theory of nuclear phenomena include: (1) What controls nuclear saturation; (2) How the nuclear shell model emerges from the underlying theory; (3) What are the properties of nuclei with extreme neutron/proton ratios; (4) Can we predict useful cross sections that cannot be measured; (5) Can nuclei provide precision tests of the fundamental laws of nature; and (6) Under what conditions do we need QCD to describe nuclear structure, among others. Along with other ab initio nuclear theory groups, we have pursued these questions with meson-theoretical NN interactions, such as CD-Bonn and Argonne V18, that were tuned to provide high-quality descriptions of the NN scattering phase shifts and deuteron properties. We then add meson-theoretic NNN interactions such as the Tucson-Melbourne or Urbana IX interactions. More recently, we have adopted realistic NN and NNN interactions with ties to QCD. Chiral perturbation theory within effective field theory ({chi}EFT) provides us with a promising bridge between QCD and hadronic systems. In this approach one works consistently with systems of increasing nucleon number and makes use of the explicit and spontaneous breaking of chiral symmetry to expand the strong interaction in terms of a dimensionless constant, the ratio of a generic small momentum divided by the chiral symmetry breaking scale taken to be about 1 GeV/c. The resulting NN

  2. Ab initio calculation and anharmonic force field of hypochlorous acid, HOCl

    NASA Astrophysics Data System (ADS)

    Halonen, L.; Ha, T.-K.

    1988-03-01

    Ab initio calculations on HOCl have been performed at the third-order Møller-Plesset perturbation theory level to determine the equilibrium structure and the anharmonic force field. An empirical anharmonic force field based on the ab initio results is obtained using available experimental vibration-rotation data. Four of the six harmonic and six of the ten cubic force constants have been determined experimentally, the remaining values being fixed at the ab initio values. A good fit to the experimental vibration-rotation data of four isotopic species is obtained.

  3. Guiding ab initio calculations by alchemical derivatives.

    PubMed

    to Baben, M; Achenbach, J O; von Lilienfeld, O A

    2016-03-14

    We assess the concept of alchemical transformations for predicting how a further and not-tested change in composition would change materials properties. This might help to guide ab initio calculations through multidimensional property-composition spaces. Equilibrium volumes, bulk moduli, and relative lattice stability of fcc and bcc 4d transition metals Zr, Nb, Mo, Tc, Ru, Rh, Pd, and Ag are calculated using density functional theory. Alchemical derivatives predict qualitative trends in lattice stability while equilibrium volumes and bulk moduli are predicted with less than 9% and 28% deviation, respectively. Predicted changes in equilibrium volume and bulk moduli for binary and ternary mixtures of Rh-Pd-Ag are in qualitative agreement even for predicted bulk modulus changes as large as +100% or -50%. Based on these results, it is suggested that alchemical transformations could be meaningful for enhanced sampling in the context of virtual high-throughput materials screening projects. PMID:26979677

  4. Discovering chemistry with an ab initio nanoreactor

    DOE PAGESBeta

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.

    2014-11-02

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis frommore » primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.« less

  5. Ab initio molar volumes and Gaussian radii.

    PubMed

    Parsons, Drew F; Ninham, Barry W

    2009-02-12

    Ab initio molar volumes are calculated and used to derive radii for ions and neutral molecules using a spatially diffuse model of the electron distribution with Gaussian spread. The Gaussian radii obtained can be used for computation of nonelectrostatic ion-ion dispersion forces that underlie Hofmeister specific ion effects. Equivalent hard-sphere radii are also derived, and these are in reasonable agreement with crystalline ionic radii. The Born electrostatic self-energy is derived for a Gaussian model of the electronic charge distribution. It is shown that the ionic volumes used in electrostatic calculations of strongly hydrated cosmotropic ions ought best to include the first hydration shell. Ionic volumes for weakly hydrated chaotropic metal cations should exclude electron overlap (in electrostatic calculations). Spherical radii are calculated as well as nonisotropic ellipsoidal radii for nonspherical ions, via their nonisotropic static polarizability tensors. PMID:19140766

  6. Discovering chemistry with an ab initio nanoreactor

    NASA Astrophysics Data System (ADS)

    Martinez, Todd

    Traditional approaches for modeling chemical reaction networks such as those involved in combustion have focused on identifying individual reactions and using theoretical approaches to explore the underlying mechanisms. Recent advances involving graphical processing units (GPUs), commodity products developed for the videogaming industry, have made it possible to consider a distinct approach wherein one attempts to discover chemical reactions and mechanisms. We provide a brief summary of these developments and then discuss the concept behind the ``ab initio nanoreactor'' which explores the space of possible chemical reactions and molecular species for a given stoichiometry. The nanoreactor concept is exemplified with an example to the Urey-Miller reaction network which has been previously advanced as a potential model for prebiotic chemistry. We briefly discuss some of the future directions envisioned for the development of this nanoreactor concept.

  7. Discovering chemistry with an ab initio nanoreactor

    PubMed Central

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.

    2014-01-01

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. These results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings. PMID:25411881

  8. Guiding ab initio calculations by alchemical derivatives

    NASA Astrophysics Data System (ADS)

    to Baben, M.; Achenbach, J. O.; von Lilienfeld, O. A.

    2016-03-01

    We assess the concept of alchemical transformations for predicting how a further and not-tested change in composition would change materials properties. This might help to guide ab initio calculations through multidimensional property-composition spaces. Equilibrium volumes, bulk moduli, and relative lattice stability of fcc and bcc 4d transition metals Zr, Nb, Mo, Tc, Ru, Rh, Pd, and Ag are calculated using density functional theory. Alchemical derivatives predict qualitative trends in lattice stability while equilibrium volumes and bulk moduli are predicted with less than 9% and 28% deviation, respectively. Predicted changes in equilibrium volume and bulk moduli for binary and ternary mixtures of Rh-Pd-Ag are in qualitative agreement even for predicted bulk modulus changes as large as +100% or -50%. Based on these results, it is suggested that alchemical transformations could be meaningful for enhanced sampling in the context of virtual high-throughput materials screening projects.

  9. Discovering chemistry with an ab initio nanoreactor.

    PubMed

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S; Martínez, Todd J

    2014-12-01

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provide detailed physical insight. Although theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor--a highly accelerated first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor, we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, which provide new insight into the classic Urey-Miller experiment. These results highlight the emergence of theoretical and computational chemistry as a tool for discovery, in addition to its traditional role of interpreting experimental findings. PMID:25411881

  10. Discovering chemistry with an ab initio nanoreactor

    NASA Astrophysics Data System (ADS)

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.

    2014-12-01

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provide detailed physical insight. Although theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor—a highly accelerated first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor, we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, which provide new insight into the classic Urey-Miller experiment. These results highlight the emergence of theoretical and computational chemistry as a tool for discovery, in addition to its traditional role of interpreting experimental findings.

  11. Ab Initio Modeling of Molecular Radiation

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Schwenke, David

    2014-01-01

    Radiative emission from excited states of atoms and molecules can comprise a significant fraction of the total heat flux experienced by spacecraft during atmospheric entry at hypersonic speeds. For spacecraft with ablating heat shields, some of this radiative flux can be absorbed by molecular constituents in the boundary layer that are formed by the ablation process. Ab initio quantum mechanical calculations are carried out to predict the strengths of these emission and absorption processes. This talk will describe the methods used in these calculations using, as examples, the 4th positive emission bands of CO and the 1g+ 1u+ absorption in C3. The results of these calculations are being used as input to NASA radiation modeling codes like NeqAir, HARA and HyperRad.

  12. Discovering chemistry with an ab initio nanoreactor

    SciTech Connect

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.

    2014-11-02

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.

  13. Ab Initio Calculation of the Hoyle State

    SciTech Connect

    Epelbaum, Evgeny; Krebs, Hermann; Lee, Dean; Meissner, Ulf-G.

    2011-05-13

    The Hoyle state plays a crucial role in the helium burning of stars heavier than our Sun and in the production of carbon and other elements necessary for life. This excited state of the carbon-12 nucleus was postulated by Hoyle as a necessary ingredient for the fusion of three alpha particles to produce carbon at stellar temperatures. Although the Hoyle state was seen experimentally more than a half century ago nuclear theorists have not yet uncovered the nature of this state from first principles. In this Letter we report the first ab initio calculation of the low-lying states of carbon-12 using supercomputer lattice simulations and a theoretical framework known as effective field theory. In addition to the ground state and excited spin-2 state, we find a resonance at -85(3) MeV with all of the properties of the Hoyle state and in agreement with the experimentally observed energy.

  14. Potential Dependence of Electrochemical Barriers from ab Initio Calculations.

    PubMed

    Chan, Karen; Nørskov, Jens K

    2016-05-01

    We present a simple and computationally efficient method to determine the potential dependence of the activation energies for proton-electron transfer from a single ab initio barrier calculation. We show that the potential dependence of the activation energy is given by the partial charge transferred at the transition state. The method is evaluated against the potential dependence determined explicitly through multiple calculations at varying potential. We show that the transfer coefficient is given by the charge transferred from the initial to transition state, which has significant implications for electrochemical kinetics. PMID:27088442

  15. Ab Initio: And a New Era of Airline Pilot Training.

    ERIC Educational Resources Information Center

    Gesell, Laurence E.

    1995-01-01

    Expansion of air transportation and decreasing numbers seeking pilot training point to a shortage of qualified pilots. Ab initio training, in which candidates with no flight time are trained to air transport proficiency, could resolve the problem. (SK)

  16. Ab initio vibrational and dielectric properties of Y V O

    NASA Astrophysics Data System (ADS)

    Vali, R.

    2009-10-01

    For the yttrium orthovanadate Y V O with a tetragonal zircon-type structure, the first complete set of Raman-active and IR-active phonon modes has been calculated using ab initio density functional perturbation theory. The calculated IR reflectivity spectra are in good agreement with available experimental data. We report the calculated frequencies of three Raman-active modes that could not be detected experimentally and a new assignment of the experimental Raman data. The contributions of each IR-active phonon modes to static dielectric tensor have been determined.

  17. Phonocatalysis. An ab initio simulation experiment

    NASA Astrophysics Data System (ADS)

    Kim, Kwangnam; Kaviany, Massoud

    2016-06-01

    Using simulations, we postulate and show that heterocatalysis on large-bandgap semiconductors can be controlled by substrate phonons, i.e., phonocatalysis. With ab initio calculations, including molecular dynamic simulations, the chemisorbed dissociation of XeF6 on h-BN surface leads to formation of XeF4 and two surface F/h-BN bonds. The reaction pathway and energies are evaluated, and the sorption and reaction emitted/absorbed phonons are identified through spectral analysis of the surface atomic motion. Due to large bandgap, the atomic vibration (phonon) energy transfer channels dominate and among them is the match between the F/h-BN covalent bond stretching and the optical phonons. We show that the chemisorbed dissociation (the pathway activation ascent) requires absorption of large-energy optical phonons. Then using progressively heavier isotopes of B and N atoms, we show that limiting these high-energy optical phonons inhibits the chemisorbed dissociation, i.e., controllable phonocatalysis.

  18. Ab initio two-component Ehrenfest dynamics

    NASA Astrophysics Data System (ADS)

    Ding, Feizhi; Goings, Joshua J.; Liu, Hongbin; Lingerfelt, David B.; Li, Xiaosong

    2015-09-01

    We present an ab initio two-component Ehrenfest-based mixed quantum/classical molecular dynamics method to describe the effect of nuclear motion on the electron spin dynamics (and vice versa) in molecular systems. The two-component time-dependent non-collinear density functional theory is used for the propagation of spin-polarized electrons while the nuclei are treated classically. We use a three-time-step algorithm for the numerical integration of the coupled equations of motion, namely, the velocity Verlet for nuclear motion, the nuclear-position-dependent midpoint Fock update, and the modified midpoint and unitary transformation method for electronic propagation. As a test case, the method is applied to the dissociation of H2 and O2. In contrast to conventional Ehrenfest dynamics, this two-component approach provides a first principles description of the dynamics of non-collinear (e.g., spin-frustrated) magnetic materials, as well as the proper description of spin-state crossover, spin-rotation, and spin-flip dynamics by relaxing the constraint on spin configuration. This method also holds potential for applications to spin transport in molecular or even nanoscale magnetic devices.

  19. Ab initio two-component Ehrenfest dynamics

    SciTech Connect

    Ding, Feizhi; Goings, Joshua J.; Liu, Hongbin; Lingerfelt, David B.; Li, Xiaosong

    2015-09-21

    We present an ab initio two-component Ehrenfest-based mixed quantum/classical molecular dynamics method to describe the effect of nuclear motion on the electron spin dynamics (and vice versa) in molecular systems. The two-component time-dependent non-collinear density functional theory is used for the propagation of spin-polarized electrons while the nuclei are treated classically. We use a three-time-step algorithm for the numerical integration of the coupled equations of motion, namely, the velocity Verlet for nuclear motion, the nuclear-position-dependent midpoint Fock update, and the modified midpoint and unitary transformation method for electronic propagation. As a test case, the method is applied to the dissociation of H{sub 2} and O{sub 2}. In contrast to conventional Ehrenfest dynamics, this two-component approach provides a first principles description of the dynamics of non-collinear (e.g., spin-frustrated) magnetic materials, as well as the proper description of spin-state crossover, spin-rotation, and spin-flip dynamics by relaxing the constraint on spin configuration. This method also holds potential for applications to spin transport in molecular or even nanoscale magnetic devices.

  20. Theoretical determination of molecular structure and conformation. Part X. Geometry and puckering potential of azetidine, (CH 2) 3NH, combination of electron diffraction and ab initio studies

    NASA Astrophysics Data System (ADS)

    Cremer, Dieter; Dorofeeva, Olga V.; Mastryukov, Vladimir S.

    1981-09-01

    Restricted Hartree—Fock calculations on 21 planar and puckered conformers of azetidine have been done employing a split valence basis augmented by d functions. Complete geometry optimizations have been performed for eight conformers. In this way the puckering potential of azetidine is explored over the range -40° < ø (puckering angle) < 40°, for both sp3 and sp2 hybridization of the nitrogen atom. In its equatorial form, azetidine is slightly more puckered than cyclobutane. This is because of a decrease of van der Waals' repulsion between H atoms. Charge effects lead to destabilization of the axial forms. There is only moderate coupling between puckering and methylene group rocking. Previously published electron diffraction (ED) data are reinvestigated using vibrational corrections and information from the ab initio calculations. On the basis of this MO constrained ED (MOCED) analysis a puckering angle φ = 35.1(1.8)° is found. Observed rg and re bond distances are compared with ab initio values.

  1. New Light on Disordered Ensembles: Ab Initio Structure Determination of One Particle from Scattering Fluctuations of One Particular from Scattering Fluctuatins of Many Copies

    SciTech Connect

    D Saldin; H Poon; M Bogan; S Marchesini; D Sahpiro; R Kirian; U Weierstall; J Spence

    2011-12-31

    We report on the first experimental ab initio reconstruction of an image of a single particle from fluctuations in the scattering from an ensemble of copies, randomly oriented about an axis. The method is applicable to identical particles frozen in space or time (as by snapshot diffraction from an x-ray free electron laser). These fluctuations enhance information obtainable from an experiment such as conventional small angle x-ray scattering.

  2. An ab initio determination of the bending-torsion-torsion spectrum of dimethyl ether, CH3OCH3 and CD3OCD3

    NASA Astrophysics Data System (ADS)

    Senent, M. L.; Moule, D. C.; Smeyers, Y. G.

    1995-04-01

    We have calculated the potential energy hypersurface of dimethyl ether with respect to the COC bending coordinate α and the torsional angles of the two methyl groups, θ1 and θ2. Two sets of ab initio calculations were carried out. The first was made at the level MP2/6-31G(d,p) in which the structural coordinates were fully relaxed except for the grid points on the hypersurface. More extensive calculation were carried out with MP4 corrections for electron correlation with the same molecular structure. The torsional bending Hamiltonian matrix was symmetrized by the operations of the G36 nonrigid group and was solved variationally. The effect of explicitly considering the bending mode in the three-dimensional treatment was determined by a comparison to the two-dimensional model in which the flexibility of the frame was absorbed into the calculation by the fully relaxed method. It was found that the three-dimensional calculation gave a much better account of the sin(3θ1)sin(θ2) intermode coupling than the two-dimensional treatment.

  3. Skutterudites under pressure: An ab initio study

    SciTech Connect

    Ram, Swetarekha; Kanchana, V.; Valsakumar, M. C.

    2014-03-07

    Ab initio results on the band structure, density of states, and Fermi surface (FS) properties of LaRu{sub 4}X{sub 12} (X = P, As, Sb) are presented at ambient pressure as well as under compression. The analysis of density of states reveals the major contribution at the Fermi level to be mainly from the Ru-d and X-p states. We have a complicated Fermi surface with both electron and hole characters for all the three compounds which is derived mainly from the Ru-d and X-p states. There is also a simpler FS with hole character derived from the P-p{sub z} orbital for LaRu{sub 4}P{sub 12} and Ru-d{sub z{sup 2}} orbital in the case of As and Sb containing compounds. More interestingly, Fermi surface nesting feature is observed only in the case of the LaRu{sub 4}P{sub 12}. Under compression, we observe the topology of the complicated FS sheet of LaRu{sub 4}As{sub 12} to change around V/V{sub 0} = 0.85, leading to a behaviour similar to that of a multiband superconductor, and in addition, we have two more hole pockets centered around Γ at V/V{sub 0} = 0.8 for the same compound. Apart from this, we find the hole pocket to vanish at V/V{sub 0} = 0.8 in the case of LaRu{sub 4}Sb{sub 12} and the opening of the complicated FS sheet gets reduced. The de Haas van Alphen calculation shows the number of extremal orbits in the complicated sheet to change in As and Sb containing compounds under compression, where we also observe the FS topology to change.

  4. Ab initio thermodynamic model for magnesium carbonates and hydrates.

    PubMed

    Chaka, Anne M; Felmy, Andrew R

    2014-09-01

    An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first-principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogues of Ca-based hydrated carbonates monohydrocalcite and ikaite, which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation. PMID:24679248

  5. Ab Initio Thermodynamic Model for Magnesium Carbonates and Hydrates

    SciTech Connect

    Chaka, Anne M.; Felmy, Andrew R.

    2014-03-28

    An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogs of Ca-based hydrated carbonates monohydrocalcite and ikaite which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.

  6. AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT

    SciTech Connect

    French, Martin; Becker, Andreas; Lorenzen, Winfried; Nettelmann, Nadine; Bethkenhagen, Mandy; Redmer, Ronald; Wicht, Johannes

    2012-09-15

    We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grueneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.

  7. Development and application of ab initio QM/MM methods for mechanistic simulation of reactions in solution and in enzymes

    PubMed Central

    Hu, Hao; Yang, Weitao

    2013-01-01

    Determining the free energies and mechanisms of chemical reactions in solution and enzymes is a major challenge. For such complex reaction processes, combined quantum mechanics/molecular mechanics (QM/MM) method is the most effective simulation method to provide an accurate and efficient theoretical description of the molecular system. The computational costs of ab initio QM methods, however, have limited the application of ab initio QM/MM methods. Recent advances in ab initio QM/MM methods allowed the accurate simulation of the free energies for reactions in solution and in enzymes and thus paved the way for broader application of the ab initio QM/MM methods. We review here the theoretical developments and applications of the ab initio QM/MM methods, focusing on the determination of reaction path and the free energies of the reaction processes in solution and enzymes. PMID:24146439

  8. Rotation spectrum and infrared fundamental bands of 123SbD3. Determination of molecular geometry and ab initio calculations of spectroscopic parameters

    NASA Astrophysics Data System (ADS)

    Canè, E.; di Lonardo, G.; Fusina, L.; Jerzembeck, W.; Bürger, H.; Breidung, J.; Thiel, W.

    The high resolution infrared spectrum of 123SbD3 has been recorded in the 20-350 cm-1 range and in the regions of the ν1, ν3 and ν2, ν4 fundamental bands centred at 1350 and 600 cm-1, respectively. Splitting of the K'' = 3, 6 lines have been observed both in the rotation and ro-vibration spectra. A large number of 'perturbation allowed' transitions with selection rules Δ(k -l) = ± 3, ± 6, and ± 9 have been identified in all fundamental bands. Accurate ground state molecular parameters have been determined by means of a simultaneous fit of the rotational transitions and about 12 000 ground state combination differences from the infrared bands. The A and B reductions of the rotational Hamiltonian provided almost equivalent results. The molecular parameters of the νi = 1 (i = 1 - 4) states were obtained as a result of the simultaneous analysis of the ν1 (A1)/ν3 (E) stretching and of the ν2 (A1)/ν4 (E) bending dyads. In fact, the corresponding excited states are affected by strong perturbations due to rovibrational interactions of Coriolis and k-type that have been treated explicitly in the model adopted for the analysis. Improved effective ground state and equilibrium geometries were determined for the molecule and compared to those of 123SbH3. Ab initio calculations at the coupled cluster CCSD(T) level with an energy-consistent large-core pseudopotential and large basis sets were carried out to determine the equilibrium structure, the anharmonic force field, and the associated spectroscopic constants of 123SbH3 and 123SbD3. The theoretical results are in good agreement with the experimental data.

  9. Ab Initio Studies of Stratospheric Ozone Depletion Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.

  10. THERMODYNAMICS OF MATERIALS: FROM AB INITIO TO PHENOMENOLOGY

    SciTech Connect

    Turchi, P A

    2004-09-24

    Quantum mechanical-based (or ab initio) methods are used to predict the stability properties of materials although their application is limited to relatively simple systems in terms of structures and number of alloy components. However thermodynamics of complex multi-component alloys requires a more versatile approach afforded within the CALPHAD formalism. Despite its success, the lack of experimental data very often prevents the design of robust thermodynamic databases. After a brief survey of ab initio methodologies and CALPHAD, it will be shown how ab initio electronic structure methods can supplement in two ways CALPHAD for subsequent applications. The first one is rather immediate and concerns the direct input of ab initio energetics in CALPHAD databases. The other way, more involved, is the assessment of ab initio thermodynamics '{acute a} la CALPHAD'. It will be shown how these results can be used within CALPHAD to predict the equilibrium properties of multi-component alloys. Finally, comments will be made on challenges and future prospects.

  11. Ab initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  12. Determination of nuclear quadrupole moments – An example of the synergy of ab initio calculations and microwave spectroscopy

    SciTech Connect

    Kellö, Vladimir

    2015-01-22

    Highly correlated scalar relativistic calculations of electric field gradients at nuclei in diatomic molecules in combination with accurate nuclear quadrupole coupling constants obtained from microwave spectroscopy are used for determination of nuclear quadrupole moments.

  13. XMVB: a program for ab initio nonorthogonal valence bond computations.

    PubMed

    Song, Lingchun; Mo, Yirong; Zhang, Qianer; Wu, Wei

    2005-04-15

    An ab initio nonorthogonal valence bond program, called XMVB, is described in this article. The XMVB package uses Heitler-London-Slater-Pauling (HLSP) functions as state functions, and calculations can be performed with either all independent state functions for a molecule or preferably a few selected important state functions. Both our proposed paired-permanent-determinant approach and conventional Slater determinant expansion algorithm are implemented for the evaluation of the Hamiltonian and overlap matrix elements among VB functions. XMVB contains the capabilities of valence bond self-consistent field (VBSCF), breathing orbital valence bond (BOVB), and valence bond configuration interaction (VBCI) computations. The VB orbitals, used to construct VB functions, can be defined flexibly in the calculations depending on particular applications and focused problems, and they may be strictly localized, delocalized, or bonded-distorted (semidelocalized). The parallel version of XMVB based on MPI (Message Passing Interface) is also available. PMID:15704237

  14. Ab initio simulation of transport phenomena in rarefied gases.

    PubMed

    Sharipov, Felix; Strapasson, José L

    2012-09-01

    Ab initio potentials are implemented into the direct simulation Monte Carlo (DSMC) method. Such an implementation allows us to model transport phenomena in rarefied gases without any fitting parameter of intermolecular collisions usually extracted from experimental data. Applying the method proposed by Sharipov and Strapasson [Phys. Fluids 24, 011703 (2012)], the use of ab initio potentials in the DSMC requires the same computational efforts as the widely used potentials such as hard spheres, variable hard sphere, variable soft spheres, etc. At the same time, the ab initio potentials provide more reliable results than any other one. As an example, the transport coefficients of a binary mixture He-Ar, viz., viscosity, thermal conductivity, and thermal diffusion factor, have been calculated for several values of the mole fraction. PMID:23030889

  15. Ab Initio Determinations of Photoelectron Spectra Including Vibronic Features: An Upper-Level Undergraduate Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Lord, Richard L.; Davis, Lisa; Millam, Evan L.; Brown, Eric; Offerman, Chad; Wray, Paul; Green, Susan M. E.

    2008-01-01

    We present a first-principles determination of the photoelectron spectra of water and hypochlorous acid as a laboratory exercise accessible to students in an undergraduate physical chemistry course. This paper demonstrates the robustness and user-friendliness of software developed for the Franck-Condon factor calculation. While the calculator is…

  16. Ab initio computations of photodissociation products of CFC alternatives

    SciTech Connect

    Tai, S.; Illinger, K.H.; Kenny, J.E.

    1995-12-31

    Ab initio computations, have already been used to examine the energetics of the photodissociation of stratospheric chlorofluorocarbons. Our awn research has investigated the ab initio computation of vibrational frequencies and infrared intensities of CF{sub 3}CH{sub 2}F, CF{sub 3}CF{sub 2}H, and CF{sub 3}CH{sub 3}; continuing research will attempt to expand these computations to the energetics of the photodissociation of these molecules, since sane of the most common types of chlorofluorocarbon substitutes are hydrofluoroethanes.

  17. Ab Initio Structure Analysis Using Laboratory Powder Diffraction Data

    NASA Astrophysics Data System (ADS)

    Sasaki, Akito

    Today, laboratory X-ray diffractometers are seeing increasingly wide use in the ab initio crystal structure analysis of organic powder samples. This is because optics and optical devices have been improved, making it possible to obtain precise integrated intensities of reflections in high 2-theta ranges. Another reason is that one can use direct-space methods, which do not require “high-resolution diffraction data”, much more easily than before. Described here are some key points to remember when performig ab initio crystal structure analysis using powder diffraction data from organic compounds.

  18. Ab initio single and multideterminant methods used in the determination of reduction potentials and magnetic properties of Rieske ferredoxins

    NASA Astrophysics Data System (ADS)

    Powers, Nathan Lee

    2008-10-01

    The [Fe2S2]2+/[Fe2S 2]+ electronic structure of seven Rieske protein active sites (bovine mitochondrial cytochrome bc1 complex, spinach chloroplast cytochrome b6f complex, Rieske-type ferredoxin associated with biphenyl dioxygenase from Burkholderia cepacia, yeast cytochrome bcl complex from Saccharomyces cerevisiae, Rieske subunit of arsenite oxidase from Alcaligenes faecalis, respiratory-type Rieske protein from Thermus thermophilus, and Rieske protein II (soxF) from Sulfolobus acidocaldarius), which lie in a reduction potential range from -150 mV to 375 mV, have been studied by both single and multi-determinant quantum mechanical methods. Calculated reduction potentials and magnetic properties are found comparable to experimental values.

  19. Structural and electronic properties of AlN(0001) surface under partial N coverage as determined by ab initio approach

    SciTech Connect

    Strak, Pawel; Sakowski, Konrad; Kempisty, Pawel

    2015-09-07

    Properties of bare and nitrogen-covered Al-terminated AlN(0001) surface were determined using density functional theory (DFT) calculations. At a low nitrogen coverage, the Fermi level is pinned by Al broken bond states located below conduction band minimum. Adsorption of nitrogen is dissociative with an energy gain of 6.05 eV/molecule at a H3 site creating an overlap with states of three neighboring Al surface atoms. During this adsorption, electrons are transferred from Al broken bond to topmost N adatom states. Accompanying charge transfer depends on the Fermi level. In accordance with electron counting rule (ECR), the DFT results confirm the Fermi level is not pinned at the critical value of nitrogen coverage θ{sub N}(1) = 1/4 monolayer (ML), but it is shifted from an Al-broken bond state to Np{sub z} state. The equilibrium thermodynamic potential of nitrogen in vapor depends drastically on the Fermi level pinning being shifted by about 4 eV for an ECR state at 1/4 ML coverage. For coverage above 1/4 ML, adsorption is molecular with an energy gain of 1.5 eV at a skewed on-top position above an Al surface atom. Electronic states of the admolecule are occupied as in the free molecule, no electron transfer occurs and adsorption of a N{sub 2} molecule does not depend on the Fermi level. The equilibrium pressure of molecular nitrogen above an AlN(0001) surface depends critically on the Fermi level position, being very low and very high for low and high coverage, respectively. From this fact, one can conclude that at typical growth conditions, the Fermi level is not pinned, and the adsorption and incorporation of impurities depend on the position of Fermi level in the bulk.

  20. Development and application of a hybrid method involving interpolation and ab initio calculations for the determination of transition states

    NASA Astrophysics Data System (ADS)

    Goodrow, Anthony; Bell, Alexis T.; Head-Gordon, Martin

    2008-11-01

    Transition state search algorithms, such as the nudged elastic band can fail, if a good initial guess of the transition state structure cannot be provided. The growing string method (GSM) [J. Chem. Phys. 120, 7877 (2004)] eliminates the need for an initial guess of the transition state. While this method only requires knowledge of the reactant and product geometries, it is computationally intensive. To alleviate the bottlenecks in the GSM, several modifications were implemented: Cartesian coordinates were replaced by internal coordinates, the steepest descent method for minimization of orthogonal forces to locate the reaction path was replaced by the conjugate gradient method, and an interpolation scheme was used to estimate the energy and gradient, thereby reducing the calls to the quantum mechanical (QM) code. These modifications were tested to measure the reduction in computational time for four cases of increasing complexity: the Müller-Brown potential energy surface, alanine dipeptide isomerization, H abstraction in methanol oxidation, and C-H bond activation in oxidative carbonylation of toluene to p-toluic acid. These examples show that the modified GSM can achieve two- to threefold speedups (measured in terms of the reduction in actual QM gradients computed) over the original version of the method without compromising accuracy of the geometry and energy of the final transition state. Additional savings in computational effort can be achieved by carrying out the initial search for the minimum energy pathway (MEP) using a lower level of theory (e.g., HF/STO-3G) and then refining the MEP using density functional theory at the B3LYP level with larger basis sets (e.g., 6-31G∗, LANL2DZ). Thus, a general strategy for determining transition state structures is to initiate the modified GSM using a low level of theory with minimal basis sets and then refining the calculation at a higher level of theory with larger basis sets.

  1. Development and application of a hybrid method involving interpolation and ab initio calculations for the determination of transition states.

    PubMed

    Goodrow, Anthony; Bell, Alexis T; Head-Gordon, Martin

    2008-11-01

    Transition state search algorithms, such as the nudged elastic band can fail, if a good initial guess of the transition state structure cannot be provided. The growing string method (GSM) [J. Chem. Phys. 120, 7877 (2004)] eliminates the need for an initial guess of the transition state. While this method only requires knowledge of the reactant and product geometries, it is computationally intensive. To alleviate the bottlenecks in the GSM, several modifications were implemented: Cartesian coordinates were replaced by internal coordinates, the steepest descent method for minimization of orthogonal forces to locate the reaction path was replaced by the conjugate gradient method, and an interpolation scheme was used to estimate the energy and gradient, thereby reducing the calls to the quantum mechanical (QM) code. These modifications were tested to measure the reduction in computational time for four cases of increasing complexity: the Muller-Brown potential energy surface, alanine dipeptide isomerization, H abstraction in methanol oxidation, and C-H bond activation in oxidative carbonylation of toluene to p-toluic acid. These examples show that the modified GSM can achieve two- to threefold speedups (measured in terms of the reduction in actual QM gradients computed) over the original version of the method without compromising accuracy of the geometry and energy of the final transition state. Additional savings in computational effort can be achieved by carrying out the initial search for the minimum energy pathway (MEP) using a lower level of theory (e.g., HF/STO-3G) and then refining the MEP using density functional theory at the B3LYP level with larger basis sets (e.g., 6-31G( *), LANL2DZ). Thus, a general strategy for determining transition state structures is to initiate the modified GSM using a low level of theory with minimal basis sets and then refining the calculation at a higher level of theory with larger basis sets. PMID:19045335

  2. Structural and electronic properties of AlN(0001) surface under partial N coverage as determined by ab initio approach

    NASA Astrophysics Data System (ADS)

    Strak, Pawel; Sakowski, Konrad; Kempisty, Pawel; Krukowski, Stanislaw

    2015-09-01

    Properties of bare and nitrogen-covered Al-terminated AlN(0001) surface were determined using density functional theory (DFT) calculations. At a low nitrogen coverage, the Fermi level is pinned by Al broken bond states located below conduction band minimum. Adsorption of nitrogen is dissociative with an energy gain of 6.05 eV/molecule at a H3 site creating an overlap with states of three neighboring Al surface atoms. During this adsorption, electrons are transferred from Al broken bond to topmost N adatom states. Accompanying charge transfer depends on the Fermi level. In accordance with electron counting rule (ECR), the DFT results confirm the Fermi level is not pinned at the critical value of nitrogen coverage θN(1) = 1/4 monolayer (ML), but it is shifted from an Al-broken bond state to Npz state. The equilibrium thermodynamic potential of nitrogen in vapor depends drastically on the Fermi level pinning being shifted by about 4 eV for an ECR state at 1/4 ML coverage. For coverage above 1/4 ML, adsorption is molecular with an energy gain of 1.5 eV at a skewed on-top position above an Al surface atom. Electronic states of the admolecule are occupied as in the free molecule, no electron transfer occurs and adsorption of a N2 molecule does not depend on the Fermi level. The equilibrium pressure of molecular nitrogen above an AlN(0001) surface depends critically on the Fermi level position, being very low and very high for low and high coverage, respectively. From this fact, one can conclude that at typical growth conditions, the Fermi level is not pinned, and the adsorption and incorporation of impurities depend on the position of Fermi level in the bulk.

  3. Ab initio study of II-(VI)2 dichalcogenides.

    PubMed

    Olsson, P; Vidal, J; Lincot, D

    2011-10-12

    The structural stabilities of the (Zn,Cd)(S,Se,Te)(2) dichalcogenides have been determined ab initio. These compounds are shown to be stable in the pyrite phase, in agreement with available experiments. Structural parameters for the ZnTe(2) pyrite semiconductor compound proposed here are presented. The opto-electronic properties of these dichalcogenide compounds have been calculated using quasiparticle GW theory. Bandgaps, band structures and effective masses are proposed as well as absorption coefficients and refraction indices. The compounds are all indirect semiconductors with very flat conduction band dispersion and high absorption coefficients. The work functions and surface properties are predicted. The Te and Se based compounds could be of interest as absorber materials in photovoltaic applications. PMID:21937783

  4. High-throughput ab-initio dilute solute diffusion database

    PubMed Central

    Wu, Henry; Mayeshiba, Tam; Morgan, Dane

    2016-01-01

    We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world. PMID:27434308

  5. Ab initio calculation of the shock Hugoniot of bulk silicon

    NASA Astrophysics Data System (ADS)

    Strickson, Oliver; Artacho, Emilio

    2016-03-01

    We describe how ab initio molecular dynamics can be used to determine the Hugoniot locus (states accessible by a shock wave) for materials with a number of stable phases, and with an approximate treatment of plasticity and yield, without having to simulate these phenomena directly. We consider the case of bulk silicon, with forces from density-functional theory, up to 70 GPa. The fact that shock waves can split into multiple waves due to phase transitions or yielding is taken into account here by specifying the strength of any preceding waves explicitly based on their yield strain. Points corresponding to uniaxial elastic compression along three crystal axes and a number of postshock phases are given, including a plastically yielded state, approximated by an isotropic stress configuration following an elastic wave of predetermined strength. The results compare well to existing experimental data for shocked silicon.

  6. Ab initio potential energy surface and rovibrational states of HBO

    NASA Astrophysics Data System (ADS)

    Ha, Tae-Kyu; Makarewicz, Jan

    1999-01-01

    The potential energy surface describing the large-amplitude motion of H around the BO core in the HBO molecule has been determined from ab initio calculations. This surface has been sampled by a set of 170 grid points from a two-dimensional space defined by the stretching and the bending coordinates of the H nucleus. At each grid point, the BO bond length has been optimized using the second-order Møller-Plesset perturbation theory with the basis set aug-cc-pVTZ. The surface has a local minimum for the linear as well as the bent configuration of HBO. A low energy barrier to the linear configuration BOH causes a large-amplitude motion and a strong rovibrational interaction in the molecule. Its rovibrational dynamics is different from the dynamics in bent or quasilinear triatomic molecules.

  7. High-throughput ab-initio dilute solute diffusion database.

    PubMed

    Wu, Henry; Mayeshiba, Tam; Morgan, Dane

    2016-01-01

    We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world. PMID:27434308

  8. Ab initio methods for nuclear properties - a computational physics approach

    NASA Astrophysics Data System (ADS)

    Maris, Pieter

    2011-04-01

    A microscopic theory for the structure and reactions of light nuclei poses formidable challenges for high-performance computing. Several ab-initio methods have now emerged that provide nearly exact solutions for some nuclear properties. The ab-initio no-core full configuration (NCFC) approach is based on basis space expansion methods and uses Slater determinants of single-nucleon basis functions to express the nuclear wave function. In this approach, the quantum many-particle problem becomes a large sparse matrix eigenvalue problem. The eigenvalues of this matrix give us the binding energies, and the corresponding eigenvectors the nuclear wave functions. These wave functions can be employed to evaluate experimental quantities. In order to reach numerical convergence for fundamental problems of interest, the matrix dimension often exceeds 1 billion, and the number of nonzero matrix elements may saturate available storage on present-day leadership class facilities. I discuss different strategies for distributing and solving this large sparse matrix on current multicore computer architectures, including methods to deal with with memory bottleneck. Several of these strategies have been implemented in the code MFDn, which is a parallel fortran code for nuclear structure calculations. I will show scaling behavior and compare the performance of the pure MPI version with the hybrid MPI/OpenMP code on Cray XT4 and XT5 platforms. For large core counts (typically 5,000 and above), the hybrid version is more efficient than pure MPI. With this code, we have been able to predict properties of the unstable nucleus 14F, which have since been confirmed by experiments. I will also give an overview of other recent results for nuclei in the A = 6 to 16 range with 2- and 3-body interactions. Supported in part by US DOE Grant DE-FC02-09ER41582.

  9. Motif based Hessian matrixfor ab initio geometry optimization ofnanostructures

    SciTech Connect

    Zhao, Zhengji; Wang, Lin-Wang; Meza, Juan

    2006-04-05

    A simple method to estimate the atomic degree Hessian matrixof a nanosystem is presented. The estimated Hessian matrix, based on themotif decomposition of the nanosystem, can be used to accelerate abinitio atomic relaxations with speedups of 2 to 4 depending on the sizeof the system. In addition, the programing implementation for using thismethod in a standard ab initio package is trivial.

  10. Towards SiC Surface Functionalization: An Ab Initio Study

    SciTech Connect

    Cicero, G; Catellani, A

    2005-01-28

    We present a microscopic model of the interaction and adsorption mechanism of simple organic molecules on SiC surfaces as obtained from ab initio molecular dynamics simulations. Our results open the way to functionalization of silicon carbide, a leading candidate material for bio-compatible devices.

  11. Ab initio pseudopotential band calculation of organic conductors

    SciTech Connect

    Ishibashi, Shoji; Kohyama, Masanori

    1999-12-01

    The authors have calculated the band structures of organic conductors TTF-TCNQ and {beta}-(BEDT-TTF){sub 2}I{sub 3} using the ab initio plane-wave pseudopotential method within the local-density approximation (LDA). The Fermi-surface shape and the origin of bands near the Fermi level are investigated for each compound.

  12. Multiple time step integrators in ab initio molecular dynamics

    SciTech Connect

    Luehr, Nathan; Martínez, Todd J.; Markland, Thomas E.

    2014-02-28

    Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy.

  13. Dialkylimidazolium chloroaluminates: Ab initio calculations, Raman and neutron scattering measurements

    SciTech Connect

    Takahasi, S. ); Curtiss, L.A.; Gosztola, D.; Koura, N. ); Loong, C.K.; Saboungi, M.L. . Materials Science Div.)

    1993-04-01

    The Raman and neutron scattering spectra of 46 mol% AlCl[sub 3] -54 mol% 1-ethyl-3-methyl imidazolium chloride (EMIC) and 67 mol% AlCl[sub 3] - 33 mol% EMIC melts are presented. Ab initio molecular orbital calculations have been carried out on structures of chloroaluminate anion and EMI cation and the interaction between anion and cation.

  14. Ab Initio and Phenomenological Modeling of the Phonon Spectrum of Superhard cp-BC2N

    NASA Astrophysics Data System (ADS)

    Basalaev, Yu. M.; Kopytov, A. V.; Pavlova, T. Yu.; Poplavnoi, A. S.

    2015-11-01

    The phonon spectrum of hypothetical superhard cp-BC2N is calculated based on ab initio method of density functional in the center of the Brillouin zone and interpolated over the entire Brillouin zone using the Keating phenomenological model. The interaction parameters are determined by optimization of the IR- and Ramanactive frequencies for a phenomenological model by their comparison with the results of ab initio calculations. Numerical values of short-range interaction constants and charges are in agreement with the characteristics of the chemical bond calculated ab initio. These parameters have transparent physical meaning and chemical nature and can further be used for both qualitative estimations of any physical and physico-chemical quantities and quantitative calculations of the phonon spectra of a number of isostructural compounds. The Keating phenomenological model is used to study the genesis of the phonon spectrum from the spectra of sublattices.

  15. Exploring the ab initio/classical free energy perturbation method: The hydration free energy of water

    SciTech Connect

    Sakane, Shinichi; Yezdimer, Eric M.; Liu, Wenbin; Barriocanal, Jose A.; Doren, Douglas J.; Wood, Robert H.

    2000-08-15

    The ab initio/classical free energy perturbation (ABC-FEP) method proposed previously by Wood et al. [J. Chem. Phys. 110, 1329 (1999)] uses classical simulations to calculate solvation free energies within an empirical potential model, then applies free energy perturbation theory to determine the effect of changing the empirical solute-solvent interactions to corresponding interactions calculated from ab initio methods. This approach allows accurate calculation of solvation free energies using an atomistic description of the solvent and solute, with interactions calculated from first principles. Results can be obtained at a feasible computational cost without making use of approximations such as a continuum solvent or an empirical cavity formation energy. As such, the method can be used far from ambient conditions, where the empirical parameters needed for approximate theories of solvation may not be available. The sources of error in the ABC-FEP method are the approximations in the ab initio method, the finite sample of configurations, and the classical solvent model. This article explores the accuracy of various approximations used in the ABC-FEP method by comparing to the experimentally well-known free energy of hydration of water at two state points (ambient conditions, and 973.15 K and 600 kg/m3). The TIP4P-FQ model [J. Chem. Phys. 101, 6141 (1994)] is found to be a reliable solvent model for use with this method, even at supercritical conditions. Results depend strongly on the ab initio method used: a gradient-corrected density functional theory is not adequate, but a localized MP2 method yields excellent agreement with experiment. Computational costs are reduced by using a cluster approximation, in which ab initio pair interaction energies are calculated between the solute and up to 60 solvent molecules, while multi-body interactions are calculated with only a small cluster (5 to 12 solvent molecules). Sampling errors for the ab initio contribution to

  16. Ab Initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Patridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- 3 micro E(h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces (25-70 kcal/mol above the H-H2 asymptote) at small interatomic separations; the Boothroyd, Keogh, Martin, and Peterson (BKMP) potential energy surface is found to agree with results of the present calculations within the expected uncertainty (+/- 1 kcal/mol) of the fit. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(0)) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  17. Ab initio molecular dynamics: concepts, recent developments, and future trends.

    PubMed

    Iftimie, Radu; Minary, Peter; Tuckerman, Mark E

    2005-05-10

    The methodology of ab initio molecular dynamics, wherein finite-temperature dynamical trajectories are generated by using forces computed "on the fly" from electronic structure calculations, has had a profound influence in modern theoretical research. Ab initio molecular dynamics allows chemical processes in condensed phases to be studied in an accurate and unbiased manner, leading to new paradigms in the elucidation of microscopic mechanisms, rationalization of experimental data, and testable predictions of new phenomena. The purpose of this work is to give a brief introduction to the technique and to review several important recent developments in the field. Several illustrative examples showing the power of the technique have been chosen. Perspectives on future directions in the field also will be given. PMID:15870204

  18. Recent progress in ab initio density matrix renormalization group methodology

    NASA Astrophysics Data System (ADS)

    Hachmann, Johannes; Dorando, Jonathan J.; Kin-Lic Chan, Garnet

    2008-03-01

    We present some recent developments in the ab initio density matrix renormalization group (DMRG) method for quantum chemical problems, in particular our local, quadratic scaling algorithm [1] for low dimensional systems. This method is particularly suited for the description of strong nondynamic correlation, and allows us to compute numerically exact (FCI) correlated energies for large active spaces, up to one order of magnitude larger then can be done by conventional CASCI techniques. Other features of this method are its inherent multireference nature, compactness, variational results, size-consistency and size-extensivity. In addition we will review the problems (predominantly organic electronic materials) on which we applied the ab initio DMRG: 1) metal-insulator transition in hydrogen chains [1] 2) all-trans polyacetylene [1] 3) acenes [2] 4) polydiacetylenes [3]. References [1] Hachmann, Cardoen, Chan, JCP 125 (2006), 144101. [2] Hachmann, Dorando, Avil'es, Chan, JCP 127 (2007), 134309. [3] unpublished.

  19. Ab Initio Calculations Of Light-Ion Reactions

    SciTech Connect

    Navratil, P; Quaglioni, S; Roth, R; Horiuchi, W

    2012-03-12

    The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of nuclear forces, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD employing Hamiltonians constructed within chiral effective field theory. In this contribution, we present one of such promising techniques capable of describing simultaneously both bound and scattering states in light nuclei. By combining the resonating-group method (RGM) with the ab initio no-core shell model (NCSM), we complement a microscopic cluster approach with the use of realistic interactions and a microscopic and consistent description of the clusters. We discuss applications to light nuclei scattering, radiative capture and fusion reactions.

  20. Spin-orbit decomposition of ab initio nuclear wave functions

    NASA Astrophysics Data System (ADS)

    Johnson, Calvin W.

    2015-03-01

    Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum j , leading to j -j coupling, decades ago phenomenological models suggested that a simpler picture for 0 p -shell nuclides can be realized via coupling of the total spin S and total orbital angular momentum L . I revisit this idea with large-basis, no-core shell-model calculations using modern ab initio two-body interactions and dissect the resulting wave functions into their component L - and S -components. Remarkably, there is broad agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly 50 years and six orders of magnitude in basis dimensions. I suggest that L -S decomposition may be a useful tool for analyzing ab initio wave functions of light nuclei, for example, in the case of rotational bands.

  1. Ab Initio Electronic Relaxation Times and Transport in Noble Metals

    NASA Astrophysics Data System (ADS)

    Mustafa, Jamal I.; Bernardi, Marco; Neaton, Jeffrey B.; Louie, Steven G.

    Relaxation times employed to study electron transport in metals are typically assumed to be constants and obtained empirically using the Drude model. Here, we employ ab initio calculations to compute the electron-phonon relaxation times of Cu, Ag, and Au, and find that they vary significantly on the Fermi surface, spanning ~15 -45 fs. We compute room temperature resistivities in excellent agreement with experiment by combining GW bandstructures, Wannier-interpolated band velocities, and ab initio relaxation times. Our calculations are compared to other approximations used for the relaxation times. Additionally, an importance sampling scheme is introduced to speed up the convergence of resistivity and transport calculations by sampling directly points on the Fermi surface. This work was supported by NSF Grant No. DMR15-1508412 and U.S. DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided by DOE at LBNL's NERSC facility.

  2. Ab initio Monte Carlo investigation of small lithium clusters.

    SciTech Connect

    Srinivas, S.

    1999-06-16

    Structural and thermal properties of small lithium clusters are studied using ab initio-based Monte Carlo simulations. The ab initio scheme uses a Hartree-Fock/density functional treatment of the electronic structure combined with a jump-walking Monte Carlo sampling of nuclear configurations. Structural forms of Li{sub 8} and Li{sub 9}{sup +} clusters are obtained and their thermal properties analyzed in terms of probability distributions of the cluster potential energy, average potential energy and configurational heat capacity all considered as a function of the cluster temperature. Details of the gradual evolution with temperature of the structural forms sampled are examined. Temperatures characterizing the onset of structural changes and isomer coexistence are identified for both clusters.

  3. Towards AB Initio Calculation of the Circular Dichroism of Peptides

    NASA Astrophysics Data System (ADS)

    Molteni, E.; Onida, G.; Tiana, G.

    2012-08-01

    In this work we plan to use ab initio spectroscopy calculations to compute circular dichroism (CD) spectra of peptides. CD provides information on protein secondary structure content; peptides, instead, remain difficult to address, due to their tendency to adopt multiple conformations in equilibrium. Therefore peptides are an interesting test-case for ab initio calculation of CD spectra. As a first application, we focus on the (83-92) fragment of HIV-1 protease, which is known to be involved in the folding and dimerization of this protein. As a preliminary step, we performed classical molecular dynamics (MD) simulations, in order to obtain a set of representative conformers of the peptide. Then, on some of the obtained conformations, we calculated absorption spectra at the independent particle, RPA and TDLDA levels, showing the presence of charge transfer excitations, and their influence on spectral features.

  4. Molecular dynamics investigations of ozone on an ab initio potential energy surface with the utilization of pattern-recognition neural network for accurate determination of product formation.

    PubMed

    Le, Hung M; Dinh, Thach S; Le, Hieu V

    2011-10-13

    The singlet-triplet transformation and molecular dissociation of ozone (O(3)) gas is investigated by performing quasi-classical molecular dynamics (MD) simulations on an ab initio potential energy surface (PES) with visible and near-infrared excitations. MP4(SDQ) level of theory with the 6-311g(2d,2p) basis set is executed for three different electronic spin states (singlet, triplet, and quintet). In order to simplify the potential energy function, an approximation is adopted by ignoring the spin-orbit coupling and allowing the molecule to switch favorably and instantaneously to the spin state that is more energetically stable (lowest in energy among the three spin states). This assumption has previously been utilized to study the SiO(2) system as reported by Agrawal et al. (J. Chem. Phys. 2006, 124 (13), 134306). The use of such assumption in this study probably makes the upper limits of computed rate coefficients the true rate coefficients. The global PES for ozone is constructed by fitting 5906 ab initio data points using a 60-neuron two-layer feed-forward neural network. The mean-absolute error and root-mean-squared error of this fit are 0.0446 eV (1.03 kcal/mol) and 0.0756 eV (1.74 kcal/mol), respectively, which reveal very good fitting accuracy. The parameter coefficients of the global PES are reported in this paper. In order to identify the spin state with high confidence, we propose the use of a pattern-recognition neural network, which is trained to predict the spin state of a given configuration (with a prediction accuracy being 95.6% on a set of testing data points). To enhance the prediction effectiveness, a buffer series of five points are validated to confirm the spin state during the MD process to gain better confidence. Quasi-classical MD simulations from 1.2 to 2.4 eV of total internal energy (including zero-point energy) result in rate coefficients of singlet-triplet transformation in the range of 0.027 ps(-1) to 1.21 ps(-1). Also, we find very

  5. GAUSSIAN 76: An ab initio Molecular Orbital Program

    DOE R&D Accomplishments Database

    Binkley, J. S.; Whiteside, R.; Hariharan, P. C.; Seeger, R.; Hehre, W. J.; Lathan, W. A.; Newton, M. D.; Ditchfield, R.; Pople, J. A.

    1978-01-01

    Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type Gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans.

  6. Thermochemical data for CVD modeling from ab initio calculations

    SciTech Connect

    Ho, P.; Melius, C.F.

    1993-12-31

    Ab initio electronic-structure calculations are combined with empirical bond-additivity corrections to yield thermochemical properties of gas-phase molecules. A self-consistent set of heats of formation for molecules in the Si-H, Si-H-Cl, Si-H-F, Si-N-H and Si-N-H-F systems is presented, along with preliminary values for some Si-O-C-H species.

  7. The study of molecular spectroscopy by ab initio methods

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1991-01-01

    This review illustrates the potential of theory for solving spectroscopic problems. The accuracy of approximate techniques for including electron correlation have been calibrated by comparison with full configuration-interaction calculations. Examples of the application of ab initio calculations to vibrational, rotational, and electronic spectroscopy are given. It is shown that the state-averaged, complete active space self-consistent field, multireference configuration-interaction procedure provides a good approach for treating several electronic states accurately in a common molecular orbital basis.

  8. Ab initio study of the bonding in diatomic nickel

    SciTech Connect

    Noell, J.O.; Newton, M.D.; Hay, P.J.; Martin, R.L.; Bobrowicz, F.W.

    1980-09-01

    Hartree--Fock, GVB, and configuration interaction calculations were performed for diatomic nickel using an ab initio effective core potential. A basis set specifically optimized for the /sup 3/D state of atomic nickel is found to be far superior to the more common basis obtained from the /sup 3/F atomic state. Correlation effects are found to be significant in determining the bond energy. In particular, the two electrons of the s--s bond must be appropriately correlated. In addition, correlation effects which one would interpret as being principally intra-atomic in character are found to have a marked effect on the molecular properties. The theoretically predicted bond dissociation energy (D/sub e/) of 43.4 kcal/mol is significantly lower than the experimental estimate of 55 +- 5 kcal/mol. However, molecular partition functions calculated using the present results indicate that the experimental value should be revised downward to a value of approx.46 +- 5 kcal/mol, in good agreement with our calculations. An interatomic distance of 4.27 bohr is computed and compared with experimental estimates. Spectroscopic parameters for dipole-allowed transitions from the ground state were determined from SCF and GVB calculations and discussed in relation to the experimentally observed visible and ultraviolet spectra attributed to Ni/sub 2/.

  9. Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes

    SciTech Connect

    Draayer, Jerry P.

    2014-09-28

    We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).

  10. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    SciTech Connect

    Makhov, Dmitry V.; Shalashilin, Dmitrii V.; Glover, William J.; Martinez, Todd J.

    2014-08-07

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  11. Ab Initio Study of Defect Properties in YPO4

    SciTech Connect

    Gao, Fei; Xiao, Haiyan Y.; Zhou, Yungang; Devanathan, Ramaswami; Hu, Shenyang Y.; Li, Yulan; Sun, Xin; Khaleel, Mohammad A.

    2012-03-01

    Ab initio methods based on density functional theory have been used to calculate the formation energies of intrinsic defects, including vacancies, interstitials, antisites and Frenkel pairs in YPO4 under the O-rich and Y2O3-rich, and the O-rich and Y-rich conditions. The larger size of the yttrium atom may give rise to higher formation energy of the phosphorus antisite defect. In general, the formation energies of anion interstitials are much smaller than those of cation interstitials for both conditions considered. It is of greatly interest to find that the relative stabilities among the same types of interstitials are independent of the reference states. The most stable configuration for oxygen interstitials is an O-O split interstitial near the Ta site, while the most stable configuration for cation interstitials is a tetrahedral interstitial near the Ta site. The cation split interstitials are unfavorable in YPO4, with much higher formation energies. Furthermore, the properties of Frenkel pairs are compared with those calculated using empirical potentials. The results reveal that both ab initio and empirical potential calculations show a similar trend in the formation energies of Frenkel pairs, but the formation energies obtained by empirical potentials are much larger than those calculated by ab initio method.

  12. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    NASA Astrophysics Data System (ADS)

    Makhov, Dmitry V.; Glover, William J.; Martinez, Todd J.; Shalashilin, Dmitrii V.

    2014-08-01

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  13. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics.

    PubMed

    Makhov, Dmitry V; Glover, William J; Martinez, Todd J; Shalashilin, Dmitrii V

    2014-08-01

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions. PMID:25106573

  14. A Complete and Accurate Ab Initio Repeat Finding Algorithm.

    PubMed

    Lian, Shuaibin; Chen, Xinwu; Wang, Peng; Zhang, Xiaoli; Dai, Xianhua

    2016-03-01

    It has become clear that repetitive sequences have played multiple roles in eukaryotic genome evolution including increasing genetic diversity through mutation, changes in gene expression and facilitating generation of novel genes. However, identification of repetitive elements can be difficult in the ab initio manner. Currently, some classical ab initio tools of finding repeats have already presented and compared. The completeness and accuracy of detecting repeats of them are little pool. To this end, we proposed a new ab initio repeat finding tool, named HashRepeatFinder, which is based on hash index and word counting. Furthermore, we assessed the performances of HashRepeatFinder with other two famous tools, such as RepeatScout and Repeatfinder, in human genome data hg19. The results indicated the following three conclusions: (1) The completeness of HashRepeatFinder is the best one among these three compared tools in almost all chromosomes, especially in chr9 (8 times of RepeatScout, 10 times of Repeatfinder); (2) in terms of detecting large repeats, HashRepeatFinder also performed best in all chromosomes, especially in chr3 (24 times of RepeatScout and 250 times of Repeatfinder) and chr19 (12 times of RepeatScout and 60 times of Repeatfinder); (3) in terms of accuracy, HashRepeatFinder can merge the abundant repeats with high accuracy. PMID:26272474

  15. Ab initio calculations of reactions with light nuclei

    NASA Astrophysics Data System (ADS)

    Quaglioni, Sofia; Hupin, Guillaume; Calci, Angelo; Navrátil, Petr; Roth, Robert

    2016-03-01

    An ab initio (i.e., from first principles) theoretical framework capable of providing a unified description of the structure and low-energy reaction properties of light nuclei is desirable to further our understanding of the fundamental interactions among nucleons, and provide accurate predictions of crucial reaction rates for nuclear astrophysics, fusion-energy research, and other applications. In this contribution we review ab initio calculations for nucleon and deuterium scattering on light nuclei starting from chiral two- and three-body Hamiltonians, obtained within the framework of the ab initio no-core shell model with continuum. This is a unified approach to nuclear bound and scattering states, in which square-integrable energy eigenstates of the A-nucleon system are coupled to (A-a)+a target-plus-projectile wave functions in the spirit of the resonating group method to obtain an efficient description of the many-body nuclear dynamics both at short and medium distances and at long ranges.

  16. Ab initio molecular crystal structures, spectra, and phase diagrams.

    PubMed

    Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni

    2014-09-16

    Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling

  17. CVRQD ab initio ground-state adiabatic potential energy surfaces for the water molecule.

    PubMed

    Barletta, Paolo; Shirin, Sergei V; Zobov, Nikolai F; Polyansky, Oleg L; Tennyson, Jonathan; Valeev, Edward F; Császár, Attila G

    2006-11-28

    The high accuracy ab initio adiabatic potential energy surfaces (PESs) of the ground electronic state of the water molecule, determined originally by Polyansky et al. [Science 299, 539 (2003)] and called CVRQD, are extended and carefully characterized and analyzed. The CVRQD potential energy surfaces are obtained from extrapolation to the complete basis set of nearly full configuration interaction valence-only electronic structure computations, augmented by core, relativistic, quantum electrodynamics, and diagonal Born-Oppenheimer corrections. We also report ab initio calculations of several quantities characterizing the CVRQD PESs, including equilibrium and vibrationally averaged (0 K) structures, harmonic and anharmonic force fields, harmonic vibrational frequencies, vibrational fundamentals, and zero-point energies. They can be considered as the best ab initio estimates of these quantities available today. Results of first-principles computations on the rovibrational energy levels of several isotopologues of the water molecule are also presented, based on the CVRQD PESs and the use of variational nuclear motion calculations employing an exact kinetic energy operator given in orthogonal internal coordinates. The variational nuclear motion calculations also include a simplified treatment of nonadiabatic effects. This sophisticated procedure to compute rovibrational energy levels reproduces all the known rovibrational levels of the water isotopologues considered, H(2) (16)O, H(2) (17)O, H(2) (18)O, and D(2) (16)O, to better than 1 cm(-1) on average. Finally, prospects for further improvement of the ground-state adiabatic ab initio PESs of water are discussed. PMID:17144700

  18. Ab initio simulation of gap discrete breathers in strained graphene

    NASA Astrophysics Data System (ADS)

    Lobzenko, I. P.; Chechin, G. M.; Bezuglova, G. S.; Baimova, Yu. A.; Korznikova, E. A.; Dmitriev, S. V.

    2016-03-01

    The methods of the density functional theory were used for the first time for the simulation of discrete breathers in graphene. It is demonstrated that breathers can exist with frequencies lying in the gap of the phonon spectrum, induced by uniaxial tension of a monolayer graphene sheet in the "zigzag" direction (axis X), polarized in the "armchair" direction (axis Y). The found gap breathers are highly localized dynamic objects, the core of which is formed by two adjacent carbon atoms located on the Y axis. The atoms surrounding the core vibrate at much lower amplitudes along both the axes ( X and Y). The dependence of the frequency of these breathers on amplitude is found, which shows a soft type of nonlinearity. No breathers of this type were detected in the gap induced by stretching along the Y axis. It is shown that the breather vibrations may be approximated by the Morse oscillators, the parameters of which are determined from ab initio calculations. The results are of fundamental importance, as molecular dynamics calculations based on empirical potentials cannot serve as a reliable proof of the existence of breathers in crystals.

  19. An Ab Initio Based Potential Energy Surface for Water

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)

    1996-01-01

    We report a new determination of the water potential energy surface. A high quality ab initio potential energy surface (PES) and dipole moment function of water have been computed. This PES is empirically adjusted to improve the agreement between the computed line positions and those from the HITRAN 92 data base. The adjustment is small, nonetheless including an estimate of core (oxygen 1s) electron correlation greatly improves the agreement with experiment. Of the 27,245 assigned transitions in the HITRAN 92 data base for H2(O-16), the overall root mean square (rms) deviation between the computed and observed line positions is 0.125/cm. However the deviations do not correspond to a normal distribution: 69% of the lines have errors less than 0.05/cm. Overall, the agreement between the line intensities computed in the present work and those contained in the data base is quite good, however there are a significant number of line strengths which differ greatly.

  20. Ab initio modelling of methane hydrate thermophysical properties.

    PubMed

    Jendi, Z M; Servio, P; Rey, A D

    2016-04-21

    The key thermophysical properties of methane hydrate were determined using ab initio modelling. Using density functional theory, the second-order elastic constants, heat capacity, compressibility, and thermal expansion coefficient were calculated. A wide and relevant range of pressure-temperature conditions were considered, and the structures were assessed for stability using the mean square displacement and radial distribution functions. Methane hydrate was found to be elastically isotropic with a linear dependence of the bulk modulus on pressure. Equally significant, multi-body interactions were found to be important in hydrates, and water-water interactions appear to strongly influence compressibility like in ice Ih. While the heat capacity of hydrate was found to be higher than that of ice, the thermal expansion coefficient was significantly lower, most likely due to the lower rigidity of hydrates. The mean square displacement gave important insight into stability, heat capacity, and elastic moduli, and the radial distribution functions further confirmed stability. The presented results provide a much needed atomistic thermoelastic characterization of methane hydrates and are essential input for the large-scale applications of hydrate detection and production. PMID:27019976

  1. Predicting lattice thermal conductivity with help from ab initio methods

    NASA Astrophysics Data System (ADS)

    Broido, David

    2015-03-01

    The lattice thermal conductivity is a fundamental transport parameter that determines the utility a material for specific thermal management applications. Materials with low thermal conductivity find applicability in thermoelectric cooling and energy harvesting. High thermal conductivity materials are urgently needed to help address the ever-growing heat dissipation problem in microelectronic devices. Predictive computational approaches can provide critical guidance in the search and development of new materials for such applications. Ab initio methods for calculating lattice thermal conductivity have demonstrated predictive capability, but while they are becoming increasingly efficient, they are still computationally expensive particularly for complex crystals with large unit cells . In this talk, I will review our work on first principles phonon transport for which the intrinsic lattice thermal conductivity is limited only by phonon-phonon scattering arising from anharmonicity. I will examine use of the phase space for anharmonic phonon scattering and the Grüneisen parameters as measures of the thermal conductivities for a range of materials and compare these to the widely used guidelines stemming from the theory of Liebfried and Schölmann. This research was supported primarily by the NSF under Grant CBET-1402949, and by the S3TEC, an Energy Frontier Research Center funded by the US DOE, office of Basic Energy Sciences under Award No. DE-SC0001299.

  2. Ab initio Hadron structure from lattice QCD

    SciTech Connect

    J.D. Bratt; R.G. Edwards; M. Engelhardt; G.T. Fleming; Ph. Hägler; B. Musch; J.W. Negele; K. Orginos; A.V. Pochinsky; D.B. Renner; D.G. Richards; W. Schroers

    2007-06-01

    Early scattering experiments revealed that the proton was not a point particle but a bound state of many quarks and gluons. Deep inelastic scattering (DIS) experiments have accurately determined the probability of struck quarks carrying a fraction of the proton's momentum. The current generation of experiments and Lattice QCD calculations will provide detailed multi-dimensional pictures of the distributions of quarks and gluons inside the proton.

  3. Ab initio calculations on the magnetic properties of transition metal complexes

    SciTech Connect

    Bodenstein, Tilmann; Fink, Karin

    2015-12-31

    We present a protocol for the ab initio determination of the magnetic properties of mono- and polynuclear transition metal compounds. First, we obtain the low lying electronic states by multireference methods. Then, we include spin-orbit coupling and an external magnetic field for the determination of zero-field splitting and g-tensors. For the polynuclear complexes the magnetic exchange coupling constants are determined by a modified complete active space self consistent field method. Based on the results of the ab initio calculations, magnetic data such as magnetic susceptibility or magnetization are simulated and compared to experimental data. The results obtained for the polynuclear complexes are further analysed by calculations on model complexes where part of the magnetic centers are substituted by diamagnetic ions. The methods are applied to different Co and Ni containing transition metal complexes.

  4. Polysiloxanes: ab initio force field and structural, conformational and thermophysical properties

    NASA Astrophysics Data System (ADS)

    Sun, Huai; Rigby, David

    1997-07-01

    Various levels of ab initio calculation have been performed to determine the optimum strategy for parameterization of the valence parameters of a CFF-type force field for siloxanes and polysiloxanes. Electrostatic nonbond parameters have been determined using scaled electrostatic potential (ESP) charges adjusted for known systematic differences between ab initio and experimental data, while van der Waals nonbond parameters have been determined using a classical approach involving fitting to experimental liquid density and cohesive energy density data measured at atmospheric pressure and a single temperature for a set of four small molecules. Simulations have been performed on molecular crystals, liquids and isolated molecules, yielding results which agree favorably with available experimental data. Properties calculated include unit cell parameters and crystal densities, liquid densities from 303-473 K and 0-1800 bar, dependence of oligomer density and solubility parameters on chain length and temperature, gas-phase geometries and vibrational frequencies, and gas and liquid-phase conformational behavior.

  5. Macromolecular ab initio phasing enforcing secondary and tertiary structure

    PubMed Central

    Millán, Claudia; Sammito, Massimo; Usón, Isabel

    2015-01-01

    Ab initio phasing of macromolecular structures, from the native intensities alone with no experimental phase information or previous particular structural knowledge, has been the object of a long quest, limited by two main barriers: structure size and resolution of the data. Current approaches to extend the scope of ab initio phasing include use of the Patterson function, density modification and data extrapolation. The authors’ approach relies on the combination of locating model fragments such as polyalanine α-helices with the program PHASER and density modification with the program SHELXE. Given the difficulties in discriminating correct small substructures, many putative groups of fragments have to be tested in parallel; thus calculations are performed in a grid or supercomputer. The method has been named after the Italian painter Arcimboldo, who used to compose portraits out of fruit and vegetables. With ARCIMBOLDO, most collections of fragments remain a ‘still-life’, but some are correct enough for density modification and main-chain tracing to reveal the protein’s true portrait. Beyond α-helices, other fragments can be exploited in an analogous way: libraries of helices with modelled side chains, β-strands, predictable fragments such as DNA-binding folds or fragments selected from distant homologues up to libraries of small local folds that are used to enforce nonspecific tertiary structure; thus restoring the ab initio nature of the method. Using these methods, a number of unknown macromolecules with a few thousand atoms and resolutions around 2 Å have been solved. In the 2014 release, use of the program has been simplified. The software mediates the use of massive computing to automate the grid access required in difficult cases but may also run on a single multicore workstation (http://chango.ibmb.csic.es/ARCIMBOLDO_LITE) to solve straightforward cases. PMID:25610631

  6. Ab Initio Computation of the Energies of Circular Quantum Dots

    SciTech Connect

    Lohne, M. Pedersen; Hagen, Gaute; Hjorth-Jensen, M.; Kvaal, S.; Pederiva, F.

    2011-01-01

    We perform coupled-cluster and diffusion Monte Carlo calculations of the energies of circular quantum dots up to 20 electrons. The coupled-cluster calculations include triples corrections and a renormalized Coulomb interaction defined for a given number of low-lying oscillator shells. Using such a renormalized Coulomb interaction brings the coupled-cluster calculations with triples correlations in excellent agreement with the diffusion Monte Carlo calculations. This opens up perspectives for doing ab initio calculations for much larger systems of electrons.

  7. The implementation of ab initio quantum chemistry calculations on transporters.

    PubMed

    Cooper, M D; Hillier, I H

    1991-06-01

    The RHF and geometry optimization sections of the ab initio quantum chemistry code, GAMESS, have been optimized for a network of parallel microprocessors, Inmos T800-20 transputers, using both indirect and direct SCF techniques. The results indicate great scope for implementation of such codes on small parallel computer systems, very high efficiencies having been achieved, particularly in the cases of direct SCF and geometry optimization with large basis sets. The work, although performed upon one particular parallel system, the Meiko Computing Surface, is applicable to a wide range of parallel systems with both shared and distributed memory. PMID:1919615

  8. Ab initio electronic properties of dual phosphorus monolayers in silicon

    PubMed Central

    2014-01-01

    In the midst of the epitaxial circuitry revolution in silicon technology, we look ahead to the next paradigm shift: effective use of the third dimension - in particular, its combination with epitaxial technology. We perform ab initio calculations of atomically thin epitaxial bilayers in silicon, investigating the fundamental electronic properties of monolayer pairs. Quantitative band splittings and the electronic density are presented, along with effects of the layers’ relative alignment and comments on disordered systems, and for the first time, the effective electronic widths of such device components are calculated. PMID:25246862

  9. Ab-Initio Shell Model with a Core

    SciTech Connect

    Lisetskiy, A F; Barrett, B R; Kruse, M; Navratil, P; Stetcu, I; Vary, J P

    2008-06-04

    We construct effective 2- and 3-body Hamiltonians for the p-shell by performing 12{h_bar}{Omega} ab initio no-core shell model (NCSM) calculations for A=6 and 7 nuclei and explicitly projecting the many-body Hamiltonians onto the 0{h_bar}{Omega} space. We then separate these effective Hamiltonians into 0-, 1- and 2-body contributions (also 3-body for A=7) and analyze the systematic behavior of these different parts as a function of the mass number A and size of the NCSM basis space. The role of effective 3- and higher-body interactions for A > 6 is investigated and discussed.

  10. Ab initio Study of He Stability in hcp-Ti

    SciTech Connect

    Dai, Yunya; Yang, Li; Peng, SM; Long, XG; Gao, Fei; Zu, Xiaotao T.

    2010-12-20

    The stability of He in hcp-Ti was studied using ab initio method based on density functional theory. The results indicate that a single He atom prefers to occupy the tetrahedral site rather than the octahedral site. The interaction of He defects with Ti atoms has been used to explain the relative stabilities of He point defects in hcp-Ti. The relative stability of He defects in hcp-Ti is useful for He clustering and bubble nucleation in metal tritides, which provides the basis for development of improved atomistic models.

  11. Ab Initio Calculations Applied to Problems in Metal Ion Chemistry

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry; Arnold, James O. (Technical Monitor)

    1994-01-01

    Electronic structure calculations can provide accurate spectroscopic data (such as molecular structures) vibrational frequencies, binding energies, etc.) that have been very useful in explaining trends in experimental data and in identifying incorrect experimental measurements. In addition, ab initio calculations. have given considerable insight into the many interactions that make the chemistry of transition metal systems so diverse. In this review we focus on cases where calculations and experiment have been used to solve interesting chemical problems involving metal ions. The examples include cases where theory was used to differentiate between disparate experimental values and cases where theory was used to explain unexpected experimental results.

  12. Ab initio study of hydrogen on beryllium surfaces

    NASA Astrophysics Data System (ADS)

    Bachurin, D. V.; Vladimirov, P. V.

    2015-11-01

    Static ab initio calculations were performed for five principal hexagonal close-packed beryllium surfaces: basal, prismatic (type I and II) and pyramidal (type I and II). The basal plane was found to be the most energetically favorable, while the energies of the prismatic (type I) and pyramidal (type I) planes were slightly higher followed by the type II planes. Beryllium is known to show extreme interlayer distance relaxation near the surface. Up to five outermost atomic layers were involved in surface relaxation. The presence of hydrogen on the beryllium surfaces led to a noticeable reduction of the surface energy.

  13. An improved ab initio structure for fluorine peroxide (FOOF)

    NASA Astrophysics Data System (ADS)

    Mack, Hans-Georg; Oberhammer, Heinz

    1988-03-01

    Ab initio calculations with the 6-31G* and Dunning (9s5p/4s2p) basis sets augmented with p and d functions at various levels of theory (RHF, MP2, MP3, and MP4) were carried out on F 2O 2. The best result was obtained at the MP2 level with the Dunning basis plus one set of d functions on fluorine and two sets of d functions on oxygen. These calculations reproduce the experimental bond lengths to within 0.01 Å and the angles to within the experimental uncertainties.

  14. Ab initio study of neutron drops with chiral Hamiltonians

    NASA Astrophysics Data System (ADS)

    Potter, H. D.; Fischer, S.; Maris, P.; Vary, J. P.; Binder, S.; Calci, A.; Langhammer, J.; Roth, R.

    2014-12-01

    We report ab initio calculations for neutron drops in a 10 MeV external harmonic-oscillator trap using chiral nucleon-nucleon plus three-nucleon interactions. We present total binding energies, internal energies, radii and odd-even energy differences for neutron numbers N = 2- 18 using the no-core shell model with and without importance truncation. Furthermore, we present total binding energies for N = 8 , 16 , 20 , 28 , 40 , 50 obtained in a coupled-cluster approach. Comparisons with quantum Monte Carlo results, where available, using Argonne v8‧ with three-nucleon interactions reveal important dependences on the chosen Hamiltonian.

  15. Ab-initio study of transition metal hydrides

    SciTech Connect

    Sharma, Ramesh; Shukla, Seema Dwivedi, Shalini Sharma, Yamini

    2014-04-24

    We have performed ab initio self consistent calculations based on Full potential linearized augmented plane wave (FP-LAPW) method to investigate the optical and thermal properties of yttrium hydrides. From the band structure and density of states, the optical absorption spectra and specific heats have been calculated. The band structure of Yttrium metal changes dramatically due to hybridization of Y sp orbitals with H s orbitals and there is a net charge transfer from metal to hydrogen site. The electrical resistivity and specific heats of yttrium hydrides are lowered but the thermal conductivity is slightly enhanced due to increase in scattering from hydrogen sites.

  16. Experimental measurement of the elastic constants of GdScO3 via resonant ultrasound spectroscopy utilizing ab initio calculations

    NASA Astrophysics Data System (ADS)

    Pestka, K. A.; Maynard, J. D.; Soukiassian, A.; Xi, X. X.; Schlom, D. G.; Le Page, Y.; Bernhagen, M.; Reiche, P.; Uecker, R.

    2008-03-01

    The complete elastic tensor of single crystal GdScO3 was determined using resonant ultrasound spectroscopy (RUS) in combination with ab initio calculations. The experimental determination of all nine elastic constants also provides a method for probing the dynamic lattice properties for this recently developed orthorhombic material. The experimentally determined elastic constants differed from theoretical values on average by 10%, and all but three of the nine elastic constants varied by less than 10%. These results indicate that ab initio calculations are now sufficiently accurate for the precise determination of the elastic tensor using RUS as the sole experimental source.

  17. Ab initio molecular dynamics study of liquid sodium and cesium up to critical point

    SciTech Connect

    Yuryev, Anatoly A.; Gelchinski, Boris R.

    2015-08-17

    Ab initio modeling of liquid metals Na and K is carried out using the program SIESTA. We have determined the parameters of the model (the optimal step, the number of particles, the initial state etc) and calculated a wide range of properties: the total energy, pair correlation function, coefficient of self-diffusion, heat capacity, statistics of Voronoi polyhedra, the density of electronic states up to the critical temperature.

  18. Determination of the vibrational contribution to the entropy change at the martensitic transformation in Ni-Mn-Sn metamagnetic shape memory alloys: a combined approach of time-of-flight neutron spectroscopy and ab initio calculations.

    PubMed

    Recarte, V; Zbiri, M; Jiménez-Ruiz, M; Sánchez-Alarcos, V; Pérez-Landazábal, J I

    2016-05-25

    The different contributions to the entropy change linked to the austenite-martensitic transition in a Ni-Mn-Sn metamagnetic shape memory alloy have been determined by combining different experimental techniques. The vibrational contribution has been inferred from the vibrational density of states of both the martensitic and austenite phases. This has been accomplished by combining time-of-flight neutron scattering measurements and ab initio calculations. Further, the electronic part of the entropy change has also been calculated. Since the martensitic transformation takes place between two paramagnetic phases, the magnetic contribution can be neglected and the entropy change can be reduced to the sum of two terms: vibrational and electronic. The obtained value of the vibrational contribution ([Formula: see text]) nearly provides the total entropy change measured by calorimetry ([Formula: see text]), the difference being the electronic contribution within the experimental error. PMID:27120315

  19. Ab initio study of hot electrons in GaAs.

    PubMed

    Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B; Louie, Steven G

    2015-04-28

    Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation theory. Our computed electron-phonon relaxation times at the onset of the Γ, L, and X valleys are in excellent agreement with ultrafast optical experiments and show that the ultrafast (tens of femtoseconds) hot electron decay times observed experimentally arise from electron-phonon scattering. This result is an important advance to resolve a controversy on hot electron cooling in GaAs. We further find that, contrary to common notions, all optical and acoustic modes contribute substantially to electron-phonon scattering, with a dominant contribution from transverse acoustic modes. This work provides definitive microscopic insight into hot electrons in GaAs and enables accurate ab initio computation of hot carriers in advanced materials. PMID:25870287

  20. Ab initio dynamics of the cytochrome P450 hydroxylation reaction

    PubMed Central

    Elenewski, Justin E.; Hackett, John C

    2015-01-01

    The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis. PMID:25681906

  1. Three-cluster dynamics within an ab initio framework

    DOE PAGESBeta

    Quaglioni, Sofia; Romero-Redondo, Carolina; Navratil, Petr

    2013-09-26

    In this study, we introduce a fully antisymmetrized treatment of three-cluster dynamics within the ab initio framework of the no-core shell model/resonating-group method. Energy-independent nonlocal interactions among the three nuclear fragments are obtained from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with bound-state boundary conditions by means of the hyperspherical-harmonic method on a Lagrange mesh. We discuss the formalism in detail and give algebraic expressions for systems of two single nucleons plus a nucleus. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we apply the method to amore » 4He+n+n description of 6He and compare the results to experiment and to a six-body diagonalization of the Hamiltonian performed within the harmonic-oscillator expansions of the no-core shell model. Differences between the two calculations provide a measure of core (4He) polarization effects.« less

  2. Oxidation of GaN: An ab initio thermodynamic approach

    NASA Astrophysics Data System (ADS)

    Jackson, Adam J.; Walsh, Aron

    2013-10-01

    GaN is a wide-band-gap semiconductor used in high-efficiency light-emitting diodes and solar cells. The solid is produced industrially at high chemical purities by deposition from a vapor phase, and oxygen may be included at this stage. Oxidation represents a potential path for tuning its properties without introducing more exotic elements or extreme processing conditions. In this work, ab initio computational methods are used to examine the energy potentials and electronic properties of different extents of oxidation in GaN. Solid-state vibrational properties of Ga, GaN, Ga2O3, and a single substitutional oxygen defect have been studied using the harmonic approximation with supercells. A thermodynamic model is outlined which combines the results of ab initio calculations with data from experimental literature. This model allows free energies to be predicted for arbitrary reaction conditions within a wide process envelope. It is shown that complete oxidation is favorable for all industrially relevant conditions, while the formation of defects can be opposed by the use of high temperatures and a high N2:O2 ratio.

  3. Ab initio prediction of the critical thickness of a precipitate

    NASA Astrophysics Data System (ADS)

    Sampath, S.; Janisch, R.

    2013-09-01

    Segregation and precipitation of second phases in metals and metallic alloys is an important phenomenon that has a strong influence on the mechanical properties of the material. Models exist that describe the growth of coherent, semi-coherent and incoherent precipitates. One important parameter of these models is the energy of the interface between matrix and precipitate. In this work we apply ab initio density functional theory calculations to obtain this parameter and to understand how it depends on chemical composition and mechanical strain at the interface. Our example is a metastable Mo-C phase, the body-centred tetragonal structure, which exists as a semi-coherent precipitate in body-centred cubic molybdenum. The interface of this precipitate is supposed to change from coherent to semi-coherent during the growth of the precipitate. We predict the critical thickness of the precipitate by calculating the different contributions to a semi-coherent interface energy by means of ab initio density functional theory calculations. The parameters in our model include the elastic strain energy stored in the precipitate, as well as a misfit dislocation energy that depends on the dislocation core width and the dislocation spacing. Our predicted critical thickness agrees well with experimental observations.

  4. Ab initio dynamics of the cytochrome P450 hydroxylation reaction

    NASA Astrophysics Data System (ADS)

    Elenewski, Justin E.; Hackett, John C.

    2015-02-01

    The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.

  5. Ab initio dynamics of the cytochrome P450 hydroxylation reaction

    SciTech Connect

    Elenewski, Justin E.; Hackett, John C

    2015-02-14

    The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.

  6. Entropy of Liquid Water from Ab Initio Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Spanu, Leonardo; Zhang, Cui; Galli, Giulia

    2012-02-01

    The debate on the structural properties of water has been mostly based on the calculation of pair correlation functions. However, the simulation of thermodynamic and spectroscopic quantities may be of great relevance for the characterization of liquid water properties. We have computed the entropy of liquid water using a two-phase thermodynamic model and trajectories generated by ab initio molecular dynamics simulations [1]. In an attempt to better understand the performance of several density functionals in simulating liquid water, we have performed ab initio molecular dynamics using semilocal, hybrid [2] and van der Waals density functionals [3]. We show that in all cases, at the experimental equilibrium density and at temperatures in the vicinity of 300 K, the computed entropies are underestimated, with respect to experiment, and the liquid exhibits a degree of tetrahedral order higher than in experiments. We also discuss computational strategies to simulate spectroscopic properties of water, including infrared and Raman spectra.[4pt] [1] C.Zhang, L.Spanu and G.Galli, J.Phys.Chem. B 2011 (in press)[0pt] [2] C.Zhang, D.Donadio, F.Gygi and G.Galli, J. Chem. Theory Comput. 7, 1443 (2011)[0pt] [3] C.Zhang, J.Wu, G.Galli and F.Gygi, J. Chem. Theory Comput. 7, 3061 (2011)

  7. Unified ab initio approaches to nuclear structure and reactions

    NASA Astrophysics Data System (ADS)

    Navrátil, Petr; Quaglioni, Sofia; Hupin, Guillaume; Romero-Redondo, Carolina; Calci, Angelo

    2016-05-01

    The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches—built upon the no-core shell model—that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the 6He halo nucleus, of five- and six-nucleon scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of 9Be. Further, we discuss applications to the 7Be {({{p}},γ )}8{{B}} radiative capture. Finally, we highlight our efforts to describe transfer reactions including the 3H{({{d}},{{n}})}4He fusion.

  8. Ab initio tight-binding Hamiltonian for transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Fang, Shiang; Kuate Defo, Rodrick; Shirodkar, Sharmila N.; Lieu, Simon; Tritsaris, Georgios A.; Kaxiras, Efthimios

    2015-11-01

    We present an accurate ab initio tight-binding Hamiltonian for the transition metal dichalcogenides, MoS2, MoSe2, WS2, WSe2, with a minimal basis (the d orbitals for the metal atoms and p orbitals for the chalcogen atoms) based on a transformation of the Kohn-Sham density functional theory Hamiltonian to a basis of maximally localized Wannier functions. The truncated tight-binding Hamiltonian, with only on-site, first, and partial second neighbor interactions, including spin-orbit coupling, provides a simple physical picture and the symmetry of the main band-structure features. Interlayer interactions between adjacent layers are modeled by transferable hopping terms between the chalcogen p orbitals. The full-range tight-binding Hamiltonian can be reduced to hybrid-orbital k .p effective Hamiltonians near the band extrema that capture important low-energy excitations. These ab initio Hamiltonians can serve as the starting point for applications to interacting many-body physics including optical transitions and Berry curvature of bands, of which we give some examples.

  9. DFT and ab initio quantum chemical studies on p-cyanobenzoic acid

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Rani, T.; Varalakshmy, L.; Mohan, S.; Tedlamelekot, F.

    2011-05-01

    The Fourier transform infrared (FTIR) and FT-Raman spectra of p-cyanobenzoic acid (CBA) have been recorded in the range 4000-400 and 4000-100 cm -1, respectively. The complete vibrational assignment and analysis of the fundamental modes of the compound were carried out using the observed FTIR and FT-Raman data. The vibrational frequencies determined experimentally were compared with theoretical wavenumbers obtained from ab initio HF and DFT-B3LYP gradient calculations employing 6-31G**, 6-311++G** and cc-pVTZ basis sets for the optimised geometry of the compound. The geometry and normal modes of vibration obtained from the HF and DFT methods are in good agreement with the experimental data. The normal coordinate analysis was also carried out with ab initio force fields utilising Wilson's FG matrix method. The interactions of cyano and carboxylic acid groups with the skeletal vibrational modes were investigated.

  10. Ab initio NMR Confirmed Evolutionary Structure Prediction for Organic Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Pham, Cong-Huy; Kucukbenli, Emine; de Gironcoli, Stefano

    2015-03-01

    Ab initio crystal structure prediction of even small organic compounds is extremely challenging due to polymorphism, molecular flexibility and difficulties in addressing the dispersion interaction from first principles. We recently implemented vdW-aware density functionals and demonstrated their success in energy ordering of aminoacid crystals. In this work we combine this development with the evolutionary structure prediction method to study cholesterol polymorphs. Cholesterol crystals have paramount importance in various diseases, from cancer to atherosclerosis. The structure of some polymorphs (e.g. ChM, ChAl, ChAh) have already been resolved while some others, which display distinct NMR spectra and are involved in disease formation, are yet to be determined. Here we thoroughly assess the applicability of evolutionary structure prediction to address such real world problems. We validate the newly predicted structures with ab initio NMR chemical shift data using secondary referencing for an improved comparison with experiments.

  11. Knockout reactions from p-shell nuclei : tests of ab initio structure models.

    SciTech Connect

    Grinyer, G. F.; Bazin, D.; Gade, A.; Tostevin, J. A.; Adrich, P.; Bowen, M. D.; Brown, B. A.; Campbell, C. M.; Cook, J. M.; Glasmacher, T.; McDaniel, S.; Navratil, P.; Obertelli, A.; Quaglioni, S.; Siwek, K.; Terry, J. R.; Weisshaar, D.; Wiringa, R. B.

    2011-04-22

    Absolute cross sections have been determined following single neutron knockout reactions from {sup 10}Be and {sup 10}C at intermediate energy. Nucleon density distributions and bound-state wave function overlaps obtained from both variational Monte Carlo (VMC) and no core shell model (NCSM) ab initio calculations have been incorporated into the theoretical description of knockout reactions. Comparison to experimental cross sections demonstrates that the VMC approach, with the inclusion of 3-body forces, provides the best overall agreement while the NCSM and conventional shell-model calculations both overpredict the cross sections by 20% to 30% for {sup 10}Be and by 40% to 50% for {sup 10}C, respectively. This study gains new insight into the importance of 3-body forces and continuum effects in light nuclei and provides a sensitive technique to assess the accuracy of ab initio calculations for describing these effects.

  12. Knockout Reactions from p-Shell Nuclei: Tests of Ab Initio Structure Models

    SciTech Connect

    Grinyer, G. F.; Bazin, D.; Adrich, P.; Obertelli, A.; Weisshaar, D.; Gade, A.; Bowen, M. D.; Brown, B. A.; Campbell, C. M.; Cook, J. M.; Glasmacher, T.; McDaniel, S.; Siwek, K.; Terry, J. R.; Tostevin, J. A.; Navratil, P.; Quaglioni, S.; Wiringa, R. B.

    2011-04-22

    Absolute cross sections have been determined following single neutron knockout reactions from {sup 10}Be and {sup 10}C at intermediate energy. Nucleon density distributions and bound-state wave function overlaps obtained from both variational Monte Carlo (VMC) and no core shell model (NCSM) ab initio calculations have been incorporated into the theoretical description of knockout reactions. Comparison to experimental cross sections demonstrates that the VMC approach, with the inclusion of 3-body forces, provides the best overall agreement while the NCSM and conventional shell-model calculations both overpredict the cross sections by 20% to 30% for {sup 10}Be and by 40% to 50% for {sup 10}C, respectively. This study gains new insight into the importance of 3-body forces and continuum effects in light nuclei and provides a sensitive technique to assess the accuracy of ab initio calculations for describing these effects.

  13. Large-scale ab initio configuration interaction calculations for light nuclei

    NASA Astrophysics Data System (ADS)

    Maris, Pieter; Metin Aktulga, H.; Caprio, Mark A.; Çatalyürek, Ümit V.; Ng, Esmond G.; Oryspayev, Dossay; Potter, Hugh; Saule, Erik; Sosonkina, Masha; Vary, James P.; Yang, Chao; Zhou, Zheng

    2012-12-01

    In ab-initio Configuration Interaction calculations, the nuclear wavefunction is expanded in Slater determinants of single-nucleon wavefunctions and the many-body Schrodinger equation becomes a large sparse matrix problem. The challenge is to reach numerical convergence to within quantified numerical uncertainties for physical observables using finite truncations of the infinite-dimensional basis space. We discuss strategies for constructing and solving the resulting large sparse matrix eigenvalue problems on current multicore computer architectures. Several of these strategies have been implemented in the code MFDn, a hybrid MPI/OpenMP Fortran code for ab-initio nuclear structure calculations that can scale to 100,000 cores and more. Finally, we will conclude with some recent results for 12C including emerging collective phenomena such as rotational band structures using SRG evolved chiral N3LO interactions.

  14. Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon.

    PubMed

    Drumm, Daniel W; Budi, Akin; Per, Manolo C; Russo, Salvy P; L Hollenberg, Lloyd C

    2013-01-01

    : The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due to computational tractability. Nonetheless, we provide valuable data for the benchmarking of empirical modelling techniques more capable of extending this discussion to confined disordered systems or actual devices. We then develop a less resource-intensive alternative via localised basis functions in siesta, retaining the physics of the plane-wave description, and extend this model beyond the capability of plane-wave methods to determine the ab initio valley splitting of well-isolated δ-layers. In obtaining an agreement between plane-wave and localised methods, we show that valley splitting has been overestimated in previous ab initio calculations by more than 50%. PMID:23445785

  15. Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon

    PubMed Central

    2013-01-01

    The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due to computational tractability. Nonetheless, we provide valuable data for the benchmarking of empirical modelling techniques more capable of extending this discussion to confined disordered systems or actual devices. We then develop a less resource-intensive alternative via localised basis functions in siesta, retaining the physics of the plane-wave description, and extend this model beyond the capability of plane-wave methods to determine the ab initio valley splitting of well-isolated δ-layers. In obtaining an agreement between plane-wave and localised methods, we show that valley splitting has been overestimated in previous ab initio calculations by more than 50%. PMID:23445785

  16. A coupled channel study of HN2 unimolecular decay based on a global ab initio potential surface

    NASA Technical Reports Server (NTRS)

    Koizumi, Hiroyasu; Schatz, George C.; Walch, Stephen P.

    1991-01-01

    The unimolecular decay lifetimes of several vibrational states of HN2 are determined on the basis of an accurate coupled channel dynamics study using a global analytical potential surface. The surface reproduces the ab initio points with an rms error of 0.08 kcal/mol for energies below 20 kcal/mol. Modifications to the potential that describe the effect of improving the basis set in the ab initio calculations are provided. Converged coupled channel calculations are performed for the ground rotational state of HN2 to determine the lifetimes of the lowest ten vibrational states. Only the ground vibrational state (000) and first excited bend (001) are found to have lifetimes longer than 1 ps. The lifetimes of these states are estimated at 3 x 10 to the -9th and 2 x 10 to the -10th s, respectively. Variation of these results with quality of the ab initio calculations is not more than a factor of 5.

  17. Surface Segregation Energies of BCC Binaries from Ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2003-01-01

    We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy method. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameterization. Quantum approximate segregation energies are computed with and without atomistic relaxation. The ab initio calculations are performed without relaxation for the most part, but predicted relaxations from quantum approximate calculations are used in selected cases to compute approximate relaxed ab initio segregation energies. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with other quantum approximate and ab initio theoretical work, and available experimental results.

  18. Ab initio dipole moment and theoretical rovibrational intensities in the electronic ground state of PH 3

    NASA Astrophysics Data System (ADS)

    Yurchenko, Sergei N.; Carvajal, Miguel; Thiel, Walter; Jensen, Per

    2006-09-01

    We report a six-dimensional CCSD(T)/aug-cc-pVTZ dipole moment surface for the electronic ground state of PH 3 computed ab initio on a large grid of 10 080 molecular geometries. Parameterized, analytical functions are fitted through the ab initio data, and the resulting dipole moment functions are used, together with a potential energy function determined by refining an existing ab initio surface in fittings to experimental wavenumber data, for simulating absorption spectra of the first three polyads of PH 3, i.e., ( ν2, ν4), ( ν1, ν3, 2 ν2, 2 ν4, ν2 + ν4), and ( ν1 + ν2, ν3 + ν2, ν1 + ν4, ν3 + ν4, 2 ν2 + ν4, ν2 + 2 ν4, 3 ν2, 3 ν4). The resulting theoretical transition moments show excellent agreement with experiment. A line-by-line comparison of the simulated intensities of the ν2/ ν4 band system with 955 experimental intensity values reported by Brown et al. [L.R. Brown, R.L. Sams, I. Kleiner, C. Cottaz, L. Sagui, J. Mol. Spectrosc. 215 (2002) 178-203] gives an average absolute percentage deviation of 8.7% (and a root-mean-square deviation of 0.94 cm -1 for the transition wavenumbers). This is very remarkable since the calculations rely entirely on ab initio dipole moment surfaces and do not involve any adjustment of these surfaces to reproduce the experimental intensities. Finally, we predict the line strengths for transitions between so-called cluster levels (near-degenerate levels formed at high rotational excitation) for J up to 60.

  19. Dominant Modes in Light Nuclei - Ab Initio View of Emergent Symmetries

    NASA Astrophysics Data System (ADS)

    Draayer, J. P.; Dytrych, T.; Launey, K. D.; Dreyfuss, A. C.; Langr, D.

    2015-01-01

    An innovative symmetry-guided concept is discussed with a focus on emergent symmetry patterns in complex nuclei. In particular, the ab initio symmetry-adapted no-core shell model (SA-NCSM), which capitalizes on exact as well as partial symmetries that underpin the structure of nuclei, provides remarkable insight into how simple symmetry patterns emerge in the many-body nuclear dynamics from first principles. This ab initio view is complemented by a fully microscopic no-core symplectic shell-model framework (NCSpM), which, in turn, informs key features of the primary physics responsible for the emergent phenomena of large deformation and alpha-cluster substructures in studies of the challenging Hoyle state in Carbon-12 and enhanced collectivity in intermediate-mass nuclei. Furthermore, by recognizing that deformed configurations often dominate the low-energy regime, the SA-NCSM provides a strategy for determining the nature of bound states of nuclei in terms of a relatively small subspace of the symmetry-reorganized complete model space, which opens new domains of nuclei for ab initio investigations, namely, the intermediate-mass region, including isotopes of Ne, Mg, and Si.

  20. The ab-initio density matrix renormalization group in practice

    SciTech Connect

    Olivares-Amaya, Roberto; Hu, Weifeng; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic; Nakatani, Naoki

    2015-01-21

    The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.

  1. Ab initio engineering of materials with stacked hexagonal tin frameworks.

    PubMed

    Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N

    2016-01-01

    The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator. PMID:27387140

  2. Ab Initio Calculations of Excited Carrier Dynamics in Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Jhalani, Vatsal; Bernardi, Marco

    Bulk wurtzite GaN is the primary material for blue light-emission technology. The radiative processes in GaN are regulated by the dynamics of excited (or so-called ``hot'') carriers, through microscopic processes not yet completely understood. We present ab initio calculations of electron-phonon (e-ph) scattering rates for hot carriers in GaN. Our work combines density functional theory to compute the electronic states, and density functional perturbation theory to obtain the phonon dispersions and e-ph coupling matrix elements. These quantities are interpolated on fine Brillouin zone grids with maximally localized Wannier functions, to converge the e-ph scattering rates within 5 eV of the band edges. We resolve the contribution of the different phonon modes to the total scattering rate, and study the impact on the relaxation times of the long-range Fröhlich interaction due to the longitudinal-optical phonon modes.

  3. Highly anisotropic thermal conductivity of arsenene: An ab initio study

    NASA Astrophysics Data System (ADS)

    Zeraati, Majid; Vaez Allaei, S. Mehdi; Abdolhosseini Sarsari, I.; Pourfath, Mahdi; Donadio, Davide

    2016-02-01

    Elemental two-dimensional (2D) materials exhibit intriguing heat transport and phononic properties. Here we have investigated the lattice thermal conductivity of newly proposed arsenene, the 2D honeycomb structure of arsenic, using ab initio calculations. Solving the Boltzmann transport equation for phonons, we predict a highly anisotropic thermal conductivity of 30.4 and 7.8 W/mK along the zigzag and armchair directions, respectively, at room temperature. Our calculations reveal that phonons with mean free paths between 20 nm and 1 μ m provide the main contribution to the large thermal conductivity in the zigzag direction; mean free paths of phonons contributing to heat transport in the armchair directions range between 20 and 100 nm. The obtained anisotropic thermal conductivity and feasibility of synthesis, in addition to high electron mobility reported elsewhere, make arsenene a promising material for nanoelectronic applications and thermal management.

  4. Ab initio study of guanine damage by hydroxyl radical.

    PubMed

    Chaban, Galina M; Wang, Dunyou; Huo, Winifred M

    2015-01-15

    Multiconfigurational ab initio methods are used in this study to examine two initial reactions that take place during the OH radical attack of the DNA base guanine: a ring opening reaction and a hydrogen transfer reaction. The same reactions are also studied in the presence of a single water molecule. The ring opening reaction has a moderate barrier height of ∼20-25 kcal/mol that is relatively insensitive to the presence of water. The barrier of the H-transfer reaction, on the other hand, is lowered from ∼50 to ∼22 kcal/mol when one water molecule is added, thus becoming comparable to the barrier height of the ring opening reaction. PMID:25517252

  5. Vibrational and ab initio molecular dynamics studies of bradykinin

    NASA Astrophysics Data System (ADS)

    Święch, Dominika; Kubisiak, Piotr; Andrzejak, Marcin; Borowski, Piotr; Proniewicz, Edyta

    2016-07-01

    In this study, the comprehensive theoretical and experimental investigations of Raman (RS) and infrared absorption (IR) spectra of bradykinin (BK) are presented. The ab initio Born-Oppenheimer molecular dynamics (BOMD) calculations, in the presence of water molecules that form the first coordination sphere, were used for conformational analysis of the BK structure. Based on the Density Functional Theory (DFT) calculations at the B3LYP/6-311G(d) level the vibrational spectra were interpreted. The calculated frequencies were scaled by means of the effective scaling frequency factor (ESFF) method. The theoretical data, which confirm the compact structure of BK in the presence of the water molecules revealed the remarkable effect of the intermolecular hydrogen bonding on the BK structural properties.

  6. Ab initio water pair potential with flexible monomers.

    PubMed

    Jankowski, Piotr; Murdachaew, Garold; Bukowski, Robert; Akin-Ojo, Omololu; Leforestier, Claude; Szalewicz, Krzysztof

    2015-03-26

    A potential energy surface for the water dimer with explicit dependence on monomer coordinates is presented. The surface was fitted to a set of previously published interaction energies computed on a grid of over a quarter million points in the 12-dimensional configurational space using symmetry-adapted perturbation theory and coupled-cluster methods. The present fit removes small errors in published fits, and its accuracy is critically evaluated. The minimum and saddle-point structures of the potential surface were found to be very close to predictions from direct ab initio optimizations. The computed second virial coefficients agreed well with experimental values. At low temperatures, the effects of monomer flexibility in the virial coefficients were found to be much smaller than the quantum effects. PMID:25687650

  7. Reactive Monte Carlo sampling with an ab initio potential

    NASA Astrophysics Data System (ADS)

    Leiding, Jeff; Coe, Joshua D.

    2016-05-01

    We present the first application of reactive Monte Carlo in a first-principles context. The algorithm samples in a modified NVT ensemble in which the volume, temperature, and total number of atoms of a given type are held fixed, but molecular composition is allowed to evolve through stochastic variation of chemical connectivity. We discuss general features of the method, as well as techniques needed to enhance the efficiency of Boltzmann sampling. Finally, we compare the results of simulation of NH3 to those of ab initio molecular dynamics (AIMD). We find that there are regions of state space for which RxMC sampling is much more efficient than AIMD due to the "rare-event" character of chemical reactions.

  8. Efficient Ab initio Modeling of Random Multicomponent Alloys

    NASA Astrophysics Data System (ADS)

    Jiang, Chao; Uberuaga, Blas P.

    2016-03-01

    We present in this Letter a novel small set of ordered structures (SSOS) method that allows extremely efficient ab initio modeling of random multicomponent alloys. Using inverse II-III spinel oxides and equiatomic quinary bcc (so-called high entropy) alloys as examples, we demonstrate that a SSOS can achieve the same accuracy as a large supercell or a well-converged cluster expansion, but with significantly reduced computational cost. In particular, because of this efficiency, a large number of quinary alloy compositions can be quickly screened, leading to the identification of several new possible high-entropy alloy chemistries. The SSOS method developed here can be broadly useful for the rapid computational design of multicomponent materials, especially those with a large number of alloying elements, a challenging problem for other approaches.

  9. Ab initio H2O in realistic hydrophilic confinement.

    PubMed

    Allolio, Christoph; Klameth, Felix; Vogel, Michael; Sebastiani, Daniel

    2014-12-15

    A protocol for the ab initio construction of a realistic cylindrical pore in amorphous silica, serving as a geometric nanoscale confinement for liquids and solutions, is presented. Upon filling the pore with liquid water at different densities, the structure and dynamics of the liquid inside the confinement can be characterized. At high density, the pore introduces long-range oscillations into the water density profile, which makes the water structure unlike that of the bulk across the entire pore. The tetrahedral structure of water is also affected up to the second solvation shell of the pore wall. Furthermore, the effects of the confinement on hydrogen bonding and diffusion, resulting in a weakening and distortion of the water structure at the pore walls and a slowdown in diffusion, are characterized. PMID:25208765

  10. Ab initio engineering of materials with stacked hexagonal tin frameworks

    PubMed Central

    Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N.

    2016-01-01

    The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator. PMID:27387140

  11. Interatomic Coulombic decay widths of helium trimer: Ab initio calculations

    SciTech Connect

    Kolorenč, Přemysl; Sisourat, Nicolas

    2015-12-14

    We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green’s function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.

  12. Interatomic Coulombic decay widths of helium trimer: Ab initio calculations.

    PubMed

    Kolorenč, Přemysl; Sisourat, Nicolas

    2015-12-14

    We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green's function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states. PMID:26671378

  13. Ab initio calculation of thermodynamic properties of silicon

    NASA Astrophysics Data System (ADS)

    Wei, Siqing; Li, Changlin; Chou, M. Y.

    1994-11-01

    We present a fully ab initio calculation of the thermodynamic properties for silicon within the quasiharmonic approximation, making use of volume-dependent phonon frequencies obtained from pseudopotential local-density calculations. The temperature dependence of the thermal-expansion coefficient, specific heat (at constant volume), and other related quantities are studied. We confirm that the thermal-expansion coefficient behaves differently in three temperature regions: positive for temperature below 15 K, negative between 15 and 125 K, and positive again above 125 K. This finding agrees with experiment. The abnormal (negative) thermal-expansion coefficient at low temperatures is explained through a detailed study of mode Grüneisen parameters. Both specific-heat and thermal-expansion-coefficient values calculated are in excellent agreement with experiment up to a few hundred kelvin.

  14. Ab initio theory of NMR chemical shifts in solids

    SciTech Connect

    Louie, S.G. |

    1997-12-31

    A new formalism for ab initio calculation of the orbital magnetic susceptibility and the NMR chemical shifts in solids and liquids is presented. The approach can be applied to periodic systems such as crystals, surfaces or polymers, and with a supercell technique, to nonperiodic systems such as amorphous materials, liquids, or solids with defects. The formalism is based on the density functional theory in the local density approximation and makes use of a generalized f-sum rule to eliminate the divergent terms that plagued previous theories. Calculations have been successfully carried out for the diamagnetic susceptibility of a number of insulators and for the NMR chemical shifts of a variety of systems including free molecules, ionic crystals, hydrogen-bonded materials and amorphous carbon.

  15. Ab initio calculations of grain boundaries in bcc metals

    NASA Astrophysics Data System (ADS)

    Scheiber, Daniel; Pippan, Reinhard; Puschnig, Peter; Romaner, Lorenz

    2016-03-01

    In this study, we compute grain boundary (GB) properties for a large set of GBs in bcc transition metals with a special focus on W, Mo and Fe using ab initio density functional theory (DFT) and semi-empirical second nearest neighbour modified embedded atom method (2NN-MEAM) potentials. The GB properties include GB energies, surface energies, GB excess volume and work of separation, which we analyse and then compare to experimental data. We find that the used 2NN-MEAM potentials can predict general trends of GB properties, but do not always reproduce the GB ground state structure and energy found with DFT. In particular, our results explain the experimental finding that W and Mo prefer intergranular fracture, while other bcc metals prefer transgranular cleavage.

  16. Transport coefficients in diamond from ab-initio calculations

    NASA Astrophysics Data System (ADS)

    Löfâs, Henrik; Grigoriev, Anton; Isberg, Jan; Ahuja, Rajeev

    2013-03-01

    By combining the Boltzmann transport equation with ab-initio electronic structure calculations, we obtain transport coefficients for boron-doped diamond. We find the temperature dependence of the resistivity and the hall coefficients in good agreement with experimental measurements. Doping in the samples is treated via the rigid band approximation and scattering is treated in the relaxation time approximation. In contrast to previous results, the acoustic phonon scattering is the dominating scattering mechanism for the considered doping range. At room temperature, we find the thermopower, S, in the range 1-1.6 mV/K and the power factor, S2σ, in the range 0.004-0.16 μW /cm K2.

  17. Ab initio engineering of materials with stacked hexagonal tin frameworks

    NASA Astrophysics Data System (ADS)

    Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N.

    2016-07-01

    The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator.

  18. Ab initio electronic stopping power of protons in bulk materials

    NASA Astrophysics Data System (ADS)

    Shukri, Abdullah Atef; Bruneval, Fabien; Reining, Lucia

    2016-01-01

    The electronic stopping power is a crucial quantity for ion irradiation: it governs the deposited heat, the damage profile, and the implantation depth. Whereas experimental data are readily available for elemental solids, the data are much more scarce for compounds. Here we develop a fully ab initio computational scheme based on linear response time-dependent density-functional theory to predict the random electronic stopping power (RESP) of materials without any empirical fitting. We show that the calculated RESP compares well with experimental data, when at full convergence, with the inclusion of the core states and of the exchange correlation. We evaluate the unexpectedly limited magnitude of the nonlinear terms in the RESP by comparing with other approaches based on the time propagation of time-dependent density-functional theory. Finally, we check the validity of a few empirical rules of thumbs that are commonly used to estimate the electronic stopping power.

  19. Isofulminic acid, HONC: Ab initio theory and microwave spectroscopy.

    PubMed

    Mladenović, Mirjana; Lewerenz, Marius; McCarthy, Michael C; Thaddeus, Patrick

    2009-11-01

    Isofulminic acid, HONC, the most energetic stable isomer of isocyanic acid HNCO, higher in energy by 84 kcal/mol, has been detected spectroscopically by rotational spectroscopy supported by coupled cluster electronic structure calculations. The fundamental rotational transitions of the normal, carbon-13, oxygen-18, and deuterium isotopic species have been detected in the centimeter band in a molecular beam by Fourier transform microwave spectroscopy, and rotational constants and nitrogen and deuterium quadrupole coupling constants have been derived. The measured constants agree well with those predicted by ab initio calculations. A number of other electronic and spectroscopic parameters of isofulminic acid, including the dipole moment, vibrational frequencies, infrared intensities, and centrifugal distortion constants have been calculated at a high level of theory. Isofulminic acid is a good candidate for astronomical detection with radio telescopes because it is highly polar and its more stable isomers (HNCO, HOCN, and HCNO) have all been identified in space. PMID:19895013

  20. Ab initio study of helium behavior in titanium tritides

    SciTech Connect

    Liang, J. H.; Dai, Yunya; Yang, Li; Peng, SM; Fan, K. M.; Long, XG; Zhou, X. S.; Zu, Xiaotao; Gao, Fei

    2013-03-01

    Ab initio calculations based on density functional theory have been performed to investigate the relative stability of titanium tritides and the helium behavior in stable titanium tritides. The results show that the β-phase TiT1.5 without two tritium along the [100] direction (TiT1.5[100]) is more stable than other possible structures. The stability of titanium tritides decrease with the increased generation of helium in TiT1.5[100]. In addition, helium generated by tritium decay prefers locating at a tetrahedral site, and favorably migrates between two neighbor vacant tetrahedral sites through an intermediate octahedral site in titanium tritides, with a migration energy of 0.23 eV. Furthermore, helium is easily accumulated on a (100) plane in β-phase TiT1.5[100].

  1. Ab initio quantum dynamics using coupled-cluster.

    PubMed

    Kvaal, Simen

    2012-05-21

    The curse of dimensionality (COD) limits the current state-of-the-art ab initio propagation methods for non-relativistic quantum mechanics to relatively few particles. For stationary structure calculations, the coupled-cluster (CC) method overcomes the COD in the sense that the method scales polynomially with the number of particles while still being size-consistent and extensive. We generalize the CC method to the time domain while allowing the single-particle functions to vary in an adaptive fashion as well, thereby creating a highly flexible, polynomially scaling approximation to the time-dependent Schrödinger equation. The method inherits size-consistency and extensivity from the CC method. The method is dubbed orbital-adaptive time-dependent coupled-cluster, and is a hierarchy of approximations to the now standard multi-configurational time-dependent Hartree method for fermions. A numerical experiment is also given. PMID:22612082

  2. Efficient Ab initio Modeling of Random Multicomponent Alloys.

    PubMed

    Jiang, Chao; Uberuaga, Blas P

    2016-03-11

    We present in this Letter a novel small set of ordered structures (SSOS) method that allows extremely efficient ab initio modeling of random multicomponent alloys. Using inverse II-III spinel oxides and equiatomic quinary bcc (so-called high entropy) alloys as examples, we demonstrate that a SSOS can achieve the same accuracy as a large supercell or a well-converged cluster expansion, but with significantly reduced computational cost. In particular, because of this efficiency, a large number of quinary alloy compositions can be quickly screened, leading to the identification of several new possible high-entropy alloy chemistries. The SSOS method developed here can be broadly useful for the rapid computational design of multicomponent materials, especially those with a large number of alloying elements, a challenging problem for other approaches. PMID:27015491

  3. Ab initio correlated calculations of rare-gas dimer quadrupoles

    NASA Astrophysics Data System (ADS)

    Donchev, Alexander G.

    2007-10-01

    This paper reports ab initio calculations of rare gas ( RG=Kr , Ar, Ne, and He) dimer quadrupoles at the second order of Møller-Plesset perturbation theory (MP2). The study reveals the crucial role of the dispersion contribution to the RG2 quadrupole in the neighborhood of the equilibrium dimer separation. The magnitude of the dispersion quadrupole is found to be much larger than that predicted by the approximate model of Hunt. As a result, the total MP2 quadrupole moment is significantly smaller than was assumed in virtually all previous related studies. An analytical model for the distance dependence of the RG2 quadrupole is proposed. The model is based on the effective-electron approach of Jansen, but replaces the original Gaussian approximation to the electron density in an RG atom by an exponential one. The role of the nonadditive contribution in RG3 quadrupoles is discussed.

  4. Ab Initio Screening of CO2-philic Groups.

    PubMed

    Tian, Ziqi; Saito, Tomonori; Jiang, De-En

    2015-04-23

    Ab initio calculations were used to identify CO2-philic groups. Over 55 neutral molecules were screened for CO2 affinity via binding energetics. It is found that poly(ethylene oxide)s (PEO) oligomers with more than three repeating units are good CO2-binding groups, consistent with the high-performance of PEO-based materials for CO2/N2 separation. More interestingly, two triazole groups linked with a methylene chain are also excellent for CO2 binding with a favorable interaction of more than 28 kJ/mol, indicating that polymers or covalent-organic frameworks (COFs) with triazoles may be utilized for CO2 capture. This work provides a useful guide to introduce promising organic groups into polymeric membranes and COFs for CO2/N2 separation media. PMID:25825811

  5. The ab initio potential energy surface and spectroscopic constants of HOCl

    NASA Astrophysics Data System (ADS)

    Koput, Jacek; Peterson, Kirk A.

    1998-02-01

    The potential energy surface of hypochlorous acid, HOCl, has been determined from large-scale ab initio calculations using the coupled-cluster method CCSD(T), with basis sets of quadruple- and quintuple-zeta quality. The effect of core-electron correlation on the calculated structural parameters has been investigated. The vibrational-rotational energy levels of the three isotopic species of HOCl have then been calculated using the variational method and have been further characterized by the spectroscopic constants determined using the perturbational approach. The spectroscopic constants determined, are found to be in excellent agreement with experimental data.

  6. 4He Thermophysical Properties: New Ab Initio Calculations

    PubMed Central

    Hurly, John J.; Mehl, James B.

    2007-01-01

    Since 2000, atomic physicists have reduced the uncertainty of the helium-helium “ab initio” potential; for example, from approximately 0.6 % to 0.1 % at 4 bohr, and from 0.8 % to 0.1 % at 5.6 bohr. These results led us to: (1) construct a new inter-atomic potential ϕ07, (2) recalculate values of the second virial coefficient, the viscosity, and the thermal conductivity of 4He from 1 K to 10,000 K, and (3), analyze the uncertainties of the thermophysical properties that propagate from the uncertainty of ϕ07 and from the Born-Oppenheimer approximation of the electron-nucleon quantum mechanical system. We correct minor errors in a previous publication [J. J. Hurly and M. R. Moldover, J. Res. Nat. Inst. Standards Technol. 105, 667 (2000)] and compare our results with selected data published after 2000. The ab initio results tabulated here can serve as standards for the measurement of thermophysical properties. PMID:27110456

  7. Operator evolution for ab initio theory of light nuclei

    NASA Astrophysics Data System (ADS)

    Schuster, Micah; Quaglioni, Sofia; Johnson, Calvin; Jurgenson, Eric; Navrátil, Petr

    2014-09-01

    The past two decades have seen a revolution in ab initio calculations of nuclear properties. One key element has been the development of a rigorous effective interaction theory, applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence as a function of the model space size. For consistency, however, one ought to apply the same transformation to other operators when calculating transitions and mean values from the eigenstates of the renormalized Hamiltonian. Working in a translationally invariant harmonic oscillator basis for the two- and three-nucleon systems, we evolve the Hamiltonian, square radius, and total dipole strength operators by the similarity renormalization group (SRG). The inclusion of up to three-body matrix elements in the 4He nucleus all but completely restores the invariance of the expectation values under the transformation. We also consider a Gaussian operator with adjustable range; short ranges have the largest absolute renormalization when including two- and three-body induced terms, while at long ranges the induced three-body contribution takes on increased relative importance. The past two decades have seen a revolution in ab initio calculations of nuclear properties. One key element has been the development of a rigorous effective interaction theory, applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence as a function of the model space size. For consistency, however, one ought to apply the same transformation to other operators when calculating transitions and mean values from the eigenstates of the renormalized Hamiltonian. Working in a translationally invariant harmonic oscillator basis for the two- and three-nucleon systems, we evolve the Hamiltonian, square radius, and total dipole strength operators by the similarity renormalization group (SRG). The inclusion of up to three-body matrix elements in the 4He nucleus all but completely restores

  8. Vibrational energy levels for CH4 from an ab initio potential

    NASA Technical Reports Server (NTRS)

    Schwenke, D. W.; Partridge, H.

    2001-01-01

    Many areas of astronomy and astrophysics require an accurate high temperature spectrum of methane (CH4). The goal of the present research is to determine an accurate ab initio potential energy surface (PES) for CH4. As a first step towards this goal, we have determined a PES including up to octic terms. We compare our results with experiment and to a PES based on a quartic expansion. Our octic PES gives good agreement with experiment for all levels, while the quartic PES only for the lower levels.

  9. Heats of Segregation of BCC Binaries from ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2004-01-01

    We compare dilute-limit heats of segregation for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent LMTO-based parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation, while the ab initio calculations are performed without relaxation. Results are discussed within the context of a segregation model driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  10. Towards an ab initio description of correlated materials

    NASA Astrophysics Data System (ADS)

    Yee, Chuck-Hou

    Strongly-correlated materials are a rich playground for physical phenomena, exhibiting complex phase diagrams with many competing orders. Ab initio insights into materials combined with physical ideas provide the ability to identify the organizing principles driving the correlated electronic behavior and pursue first-principles design of new compounds. Realistic modeling of correlated materials is an active area of research, especially with the recent merger of density functional theory (DFT) with dynamical mean-field theory (DMFT). This thesis is structured in two parts. The first describes the methods and algorithmic developments which drive advances in DFT+DMFT. In Ch. 2 and 3, we provide an overview of the two foundational theories, DMFT and DFT. In the second half of Ch. 3, we describe some of the principles guiding the combination of the two theories to form DFT+DMFT. In Ch. 4, we describe the algorithm lying at the heart of modern DFT+DMFT implementations, the hybridization expansion formulation of continuous-time quantum monte carlo (CTQMC) for the general Anderson impurity problem, as well as a fast rejection algorithm for speeding-up the local trace evaluation. The final chapter in the methods section describes an algorithm for direct sampling of the partition function, and thus the free energy and entropy, of simple Anderson impurity models within CTQMC. The second part of the thesis is a collection of applications of our ab initio approach to key correlated materials. We first apply our method to plutonium binary alloys (Ch. 6), which when supplemented with slave-boson mean-field theory, allows us to understand the observed photoemission spectra. Ch. 7 describes the computation of spectra and optical conductivity for rare-earth nickelates grown as epitaxial thin films. In the final two chapters, we turn our attention to the high-temperature superconductors. In the first, we show that the charge-transfer energy is a key chemical variable which controls

  11. Ab Initio Studies of Halogen and Nitrogen Oxide Species of Interest in Stratospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.

  12. Simple synthesis, structure and ab initio study of 1,4-benzodiazepine-2,5-diones

    NASA Astrophysics Data System (ADS)

    Jadidi, Khosrow; Aryan, Reza; Mehrdad, Morteza; Lügger, Thomas; Ekkehardt Hahn, F.; Ng, Seik Weng

    2004-04-01

    A simple procedure for the synthesis of pyrido[2,1-c][1,4] benzodiazepine-6,12-dione ( 1) and 1,4-benzodiazepine-2,5-diones ( 2a- 2d), using microwave irradiation and/or conventional heating is reported. The configuration of 1 was determined by single-crystal X-ray diffraction. A detailed ab initio B3LYP/6-31G* calculation of structural parameters and substituent effects on ring inversion barriers (Δ G#) and also free energy differences (Δ G0) for benzodiazepines are reported.

  13. Ab initio calculation of excitonic Hamiltonian of light-harvesting complex LH1 of Thermochromatium tepidum

    NASA Astrophysics Data System (ADS)

    Kozlov, Maxim I.; Poddubnyy, Vladimir V.; Glebov, Ilya O.; Belov, Aleksandr S.; Khokhlov, Daniil V.

    2016-02-01

    The electronic properties of light-harvesting complexes determine the efficiency of energy transfer in photosynthetic antennae. Ab initio calculations of the electronic properties of bacteriochlorophylls (composing the LH1 complex of the purple bacteria Thermochromatium tepidum) were performed. Based on these calculations, the excitonic Hamiltonian of a native cyclic complex and the Hamiltonians of open complexes with several removed bacteriochlorophylls were constructed. Absorption spectra calculated based on these Hamiltonians agree well with the experimental data. We found that the parameters of interaction between the neighboring bacteriochlorophylls are significantly larger than the empirical parameters suggested previously.

  14. Ab initio based force field and molecular dynamics simulations of crystalline TATB.

    PubMed

    Gee, Richard H; Roszak, Szczepan; Balasubramanian, Krishnan; Fried, Laurence E

    2004-04-15

    An all-atom force field for 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) is presented. The classical intermolecular interaction potential for TATB is based on single-point energies determined from high-level ab initio calculations of TATB dimers. The newly developed potential function is used to examine bulk crystalline TATB via molecular dynamics simulations. The isobaric thermal expansion and isothermal compression under hydrostatic pressures obtained from the molecular dynamics simulations are in good agreement with experiment. The calculated volume-temperature expansion is almost one dimensional along the c crystallographic axis, whereas under compression, all three unit cell axes participate, albeit unequally. PMID:15267608

  15. Ab Initio Identification of the Nitrogen Diffusion Mechanism in SIlicon

    SciTech Connect

    Stoddard, Nathan; Pichler, Peter; Duscher, Gerd J M; Windl, Wolfgang

    2005-01-01

    In this Letter, we present ab initio results identifying a new diffusion path for the nitrogen pair complex in silicon, resulting in an effective diffusivity of 67exp(-2.38 eV/kT) cm{sup 2}/s. This nudged elastic band result is compared with other nitrogen diffusion paths and mechanisms, and is determined to have unmatched agreement with experimental results. It is also shown that careful consideration of total energy corrections and use of a fully temperature-dependent diffusion prefactor have modest but important effects on the calculation of diffusivity for paired and for interstitial nitrogen.

  16. An ab initio investigation of the structure, vibrational frequencies, and intensities of HO2 and HOCl

    NASA Technical Reports Server (NTRS)

    Komornicki, A.; Jaffe, R. L.

    1979-01-01

    The infrared spectral intensities for HOCl and HO2 have been calculated using a new ab initio technique. Theoretical results for the geometries, vibrational frequencies, and the dipole moments of these species are also reported. All of the calculations were performed at the SCF level using near Hartree-Fock quality basis sets. The results for the molecular geometries and the vibrational frequencies are in good agreement with available experimental data. It is believed that the computed intensities are accurate to at least 50%. The results should be helpful in attempts to determine the stratospheric abundance of HOCl and HO2 by in situ infrared spectroscopic measurements.

  17. Structure and lattice dynamics of PrFe3(BO3)4: Ab initio calculation

    NASA Astrophysics Data System (ADS)

    Chernyshev, V. A.; Nikiforov, A. E.; Petrov, V. P.

    2016-06-01

    The crystal structure and phonon spectrum of PrFe3(BO3)4 are ab initio calculated in the context of the density functional theory. The ion coordinates in the unit cell of a crystal and the lattice parameters are evaluated from the calculations. The types and frequencies of the fundamental vibrations, as well as the line intensities of the IR spectrum, are determined. The elastic constants of the crystal are calculated. A "seed" frequency of the vibration strongly interacting with the electron excitation on the praseodymium ion is obtained for low-frequency A 2 mode. The calculated results are in agreement with the known experimental data.

  18. Determination of the vibrational contribution to the entropy change at the martensitic transformation in Ni–Mn–Sn metamagnetic shape memory alloys: a combined approach of time-of-flight neutron spectroscopy and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Recarte, V.; Zbiri, M.; Jiménez-Ruiz, M.; Sánchez-Alarcos, V.; Pérez-Landazábal, J. I.

    2016-05-01

    The different contributions to the entropy change linked to the austenite-martensitic transition in a Ni–Mn–Sn metamagnetic shape memory alloy have been determined by combining different experimental techniques. The vibrational contribution has been inferred from the vibrational density of states of both the martensitic and austenite phases. This has been accomplished by combining time-of-flight neutron scattering measurements and ab initio calculations. Further, the electronic part of the entropy change has also been calculated. Since the martensitic transformation takes place between two paramagnetic phases, the magnetic contribution can be neglected and the entropy change can be reduced to the sum of two terms: vibrational and electronic. The obtained value of the vibrational contribution (-36+/- 5 \\text{J} \\text{k}{{\\text{g}}-1} {{\\text{K}}-1} ) nearly provides the total entropy change measured by calorimetry (-41~+/- 3 \\text{J} \\text{k}{{\\text{g}}-1} {{\\text{K}}-1} ), the difference being the electronic contribution within the experimental error.

  19. Ab initio studies of niobium defects in uranium

    SciTech Connect

    Xiang, S; Huang, H; Hsiung, L

    2007-06-01

    Uranium (U), with the addition of small amount of niobium (Nb), is stainless. The Nb is fully miscible with the high temperature phase of U and tends to segregate upon cooling below 647 C. The starting point of segregation is the configuration of Nb substitutional or interstitial defects. Using density-functional-theory based ab initio calculations, the authors find that the formation energy of a single vacancy is 1.08 eV, that of Nb substitution is 0.59 eV, that of Nb interstitial at octahedral site is 1.58 eV, and that of Nb interstitial at tetrahedral site is 2.35 eV; all with reference to a reservoir of {gamma} phase U and pure Nb. The formation energy of Nb defects correlates with the local perturbation of electron distribution; higher formation energy to larger perturbation. Based on this study, Nb atoms thermodynamically prefer to occupy substitutional sites in {gamma} phase U, and they prefer to be in individual substitutional defects than clusters.

  20. Melting curves of metals by ab initio calculations

    NASA Astrophysics Data System (ADS)

    Minakov, Dmitry; Levashov, Pavel

    2015-06-01

    In this work we used several ab initio approaches to reproduce melting curves and discussed their abilities, advantages and drawbacks. We used quasiharmonic appoximation and Lindemann criterion to build melting curves in wide region of pressures. This approach allows to calculate the total free energy of electrons and phonons, so it is possible to obtain all thermodynamic properties in the crystalline state. We also used quantum molecular dynamics simulations to investigate melting at various pressures. We explored the size-effect of the heat until it melts (HUM) method in detail. Special attention was paid to resolve the boundaries of the melting region on density. All calculations were performed for aluminum, copper and gold. Results were in good agreement with available experimental data. Also we studied the influence of electronic temperature on melting curves. It turned out that the melting temperature increased with the rise of electron temperature at normal density and had non-monotonic behavior at higher densities. This work is supported by the Ministry of Education and Science of the Russian Federation (Project No. 3.522.2014/K).

  1. Volumic omit maps in ab initio dual-space phasing.

    PubMed

    Oszlányi, Gábor; Sütő, András

    2016-07-01

    Alternating-projection-type dual-space algorithms have a clear construction, but are susceptible to stagnation and, thus, inefficient for solving the phase problem ab initio. To improve this behaviour new omit maps are introduced, which are real-space perturbations applied periodically during the iteration process. The omit maps are called volumic, because they delete some predetermined subvolume of the unit cell without searching for atomic regions or analysing the electron density in any other way. The basic algorithms of positivity, histogram matching and low-density elimination are tested by their solution statistics. It is concluded that, while all these algorithms based on weak constraints are practically useless in their pure forms, appropriate volumic omit maps can transform them to practically useful methods. In addition, the efficiency of the already useful reflector-type charge-flipping algorithm can be further improved. It is important that these results are obtained by using non-sharpened structure factors and without any weighting scheme or reciprocal-space perturbation. The mathematical background of volumic omit maps and their expected applications are also discussed. PMID:27357850

  2. Ab initio study of optical excitations in VO2

    NASA Astrophysics Data System (ADS)

    Coulter, John; Gali, Adam; Manousakis, Efstratios

    2014-03-01

    Motivated by recent experimental efforts to fabricate p-n junctions from transition metal oxides (TMOs) and a recent theoretical study claiming TMOs to be good absorbers and promising materials for efficient carrier multiplication, we study the optical properties of a prototypical TMO, the insulator M1 phase of vanadium dioxide (VO2), by ab initio methods. We applied the Bethe-Salpeter equations (BSE) to calculate the optical properties, starting from self-consistent GW quasi-particle energy levels and states. In contrast to expectations, the exciton binding energy obtained by BSE is in good agreement with the experiment. We find that the electron-electron interaction is very strong which makes this material promising for efficient carrier multiplication that might lead to an enhanced efficiency in photo-voltaics applications. To illustrate this more quantitatively, we calculated the impact ionization rate within the independent quasiparticle approximation, and find that the rate is significantly higher than silicon in the region of highest solar intensity, due to the strong multiple carrier excitations.

  3. Ab initio studies of phoshorene island single electron transistor.

    PubMed

    Ray, S J; Venkata Kamalakar, M; Chowdhury, R

    2016-05-18

    Phosphorene is a newly unveiled two-dimensional crystal with immense potential for nanoelectronic and optoelectronic applications. Its unique electronic structure and two dimensionality also present opportunities for single electron devices. Here we report the behaviour of a single electron transistor (SET) made of a phosphorene island, explored for the first time using ab initio calculations. We find that the band gap and the charging energy decrease monotonically with increasing layer numbers due to weak quantum confinement. When compared to two other novel 2D crystals such as graphene and MoS2, our investigation reveals larger adsorption energies of gas molecules on phosphorene, which indicates better a sensing ability. The calculated charge stability diagrams show distinct changes in the presence of an individual molecule which can be applied to detect the presence of different molecules with sensitivity at a single molecular level. The higher charging energies of the molecules within the SET display operational viability at room temperature, which is promising for possible ultra sensitive detection applications. PMID:27093536

  4. Ab initio studies of phosphorene island single electron transistor

    NASA Astrophysics Data System (ADS)

    Ray, S. J.; Venkata Kamalakar, M.; Chowdhury, R.

    2016-05-01

    Phosphorene is a newly unveiled two-dimensional crystal with immense potential for nanoelectronic and optoelectronic applications. Its unique electronic structure and two dimensionality also present opportunities for single electron devices. Here we report the behaviour of a single electron transistor (SET) made of a phosphorene island, explored for the first time using ab initio calculations. We find that the band gap and the charging energy decrease monotonically with increasing layer numbers due to weak quantum confinement. When compared to two other novel 2D crystals such as graphene and MoS2, our investigation reveals larger adsorption energies of gas molecules on phosphorene, which indicates better a sensing ability. The calculated charge stability diagrams show distinct changes in the presence of an individual molecule which can be applied to detect the presence of different molecules with sensitivity at a single molecular level. The higher charging energies of the molecules within the SET display operational viability at room temperature, which is promising for possible ultra sensitive detection applications.

  5. Ab initio description of the exotic unbound 7He nucleus

    DOE PAGESBeta

    Baroni, Simone; Navratil, Petr; Quaglioni, Sofia

    2013-01-11

    In this study, the neutron-rich unbound 7He nucleus has been the subject of many experimental investigations. While the ground-state 3/2– resonance is well established, there is a controversy concerning the excited 1/2– resonance reported in some experiments as low lying and narrow (ER~1 MeV, Γ≤1 MeV) while in others as very broad and located at a higher energy. This issue cannot be addressed by ab initio theoretical calculations based on traditional bound-state methods. We introduce a new unified approach to nuclear bound and continuum states based on the coupling of the no-core shell model, a bound-state technique, with the no-coremore » shell model combined with the resonating-group method, a nuclear scattering technique. Our calculations describe the ground-state resonance in agreement with experiment and, at the same time, predict a broad 1/2– resonance above 2 MeV.« less

  6. Ab initio investigation of grain boundary cohesion in Al alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Shengjun; Kontsevoi, Oleg Y.; Freeman, A. J.; Olson, G. B.

    2010-03-01

    Strength and hardness of aluminum alloys can be substantially increased by alloying with Mg, Zn, Cu, Si, and other elements. The main drawback of Al alloys is their susceptibility to stress corrosion cracking, which is caused by alloying impurities segregated at grain boundaries. We investigated the embrittling and cohesion-enhancing effects of impurities on a σ5(012)[100] grain boundary in Al by means of the full-potential linearized augmented plane-wave (FLAPW) method within the framework of the Rice-Wang thermodynamic model and within the ab initio tensile test approach. We calculated segregation energies, analyzed local atomic configurations, electronic structures and spatial charge density distributions around segregated impurities, and identified the roles of atomic size and the bonding behavior of the impurity with the surrounding Al atoms. The results show that He, H and Na are strong embrittlers, Zn is a weak embrittler, while Sc, B, Cu and Mg are cohesion enhancers. We further evaluated the effect of co-alloying with two or more elements on grain boundary strength. This work provides a fundamental basis for the design of high strength Al alloys.

  7. Ab Initio Simulation of the Photoelectron Spectrum for Methoxy Radical

    NASA Astrophysics Data System (ADS)

    Cheng, Lan; Weichman, Marissa L.; Kim, Jongjin B.; Ichino, Takatoshi; Neumark, Daniel; Stanton, John F.

    2015-06-01

    A theoretical simulation of the photoelectron spectrum for the ground state of methoxy radical is reported based on the quasidiabatic model Hamiltonian originally proposed by Köppel, Domcke, and Cederbaum. The parameters in the model Hamiltonian have been obtained from ab initio coupled-cluster calculations. The linear and quadratic force constants have been calculated using equation-of-motion coupled-cluster ionization potential method with the singles, doubles, and triples (EOMIP-CCSDT) truncation scheme together with atomic natural orbital basis sets of triple-zeta quality (ANO1). The cubic and quartic force constants have been obtained from EOMIP-CCSD calculations with ANO basis sets of double-zeta quality (ANO0), and the spin-orbit coupling constant has been computed at the EOMIP-CCSD/pCVTZ level. The nuclear Schroedinger equation has been solved using the Lanzcos algorithm to obtain vibronic energy levels as well as the corresponding intensities. The simulated spectrum compares favorably with the recent high-resolution slow electron velocity-map imaging experiment for vibronic levels up to 2000 cm-1.

  8. Exploring the free energy surface using ab initio molecular dynamics.

    PubMed

    Samanta, Amit; Morales, Miguel A; Schwegler, Eric

    2016-04-28

    Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational and algorithmic perspectives. In this regard, schemes that utilize a set of pre-defined order parameters to sample the relevant parts of the configuration space [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006); J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)] have proved useful. Here, we demonstrate how these order-parameter aided temperature accelerated sampling schemes can be used within the Born-Oppenheimer and the Car-Parrinello frameworks of ab initio molecular dynamics to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways. We have used these methods to identify the metastable structures and reaction pathways in SiO2 and Ti. In addition, we have used the string method [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002); L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] within the density functional theory to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hexagonal closed packed to face centered cubic phase transition in Ti. PMID:27131525

  9. TOPICAL REVIEW: Ab initio symplectic no-core shell model

    NASA Astrophysics Data System (ADS)

    Dytrych, T.; Sviratcheva, K. D.; Draayer, J. P.; Bahri, C.; Vary, J. P.

    2008-12-01

    The no-core shell model (NCSM) is a prominent ab initio method that yields a good description of the low-lying states in few-nucleon systems as well as in more complex p-shell nuclei. Nevertheless, its applicability is limited by the rapid growth of the many-body basis with larger model spaces and increasing number of nucleons. The symplectic no-core shell model (Sp-NCSM) aspires to extend the scope of the NCSM beyond the p-shell region by augmenting the conventional spherical harmonic oscillator basis with the physically relevant symplectic \\SpR{3} symmetry-adapted configurations of the symplectic shell model that describe naturally the monopole-quadrupole vibrational and rotational modes, and also partially incorporate α-cluster correlations. In this review, the models underpinning the Sp-NCSM approach, namely, the NCSM, the Elliott SU(3) model and the symplectic shell model, are discussed. Following this, a prescription for constructing translationally invariant symplectic configurations in the spherical harmonic oscillator basis is given. This prescription is utilized to unveil the extent to which symplectic configurations enter into low-lying states in 12C and 16O nuclei calculated within the framework of the NCSM with the JISP16 realistic nucleon-nucleon interaction. The outcomes of this proof-of-principle study are presented in detail.

  10. Microsolvation of methyl hydrogen peroxide: Ab initio quantum chemical approach

    NASA Astrophysics Data System (ADS)

    Kulkarni, Anant D.; Rai, Dhurba; Bartolotti, Libero J.; Pathak, Rajeev K.

    2009-08-01

    Methyl hydrogen peroxide (MHP), one of the simplest organic hydroperoxides, is a strong oxidant, with enhanced activity in aqueous ambience. The present study investigates, at the molecular level, the role of hydrogen bonding that is conducive to cluster formation of MHP with water molecules from its peroxide end, with the methyl group remaining hydrophobic for up to five water molecules. Ab initio quantum chemical computations on MHP⋯(H2O)n, [n =1-5] are performed at second order Møller-Plesset (MP2) perturbation theory employing the basis sets 6-31G(d,p) and 6-311++G(2d,2p) to study the cluster formation of MHP with water molecules from its peroxide end and hydrophobic hydration due to the methyl group. Successive addition of water molecules alters the hydrogen bonding pattern, which leads to changes in overall cluster geometry and in turn to IR vibrational frequency shifts. Molecular co-operativity in these clusters is gauged directly through a detailed many-body interaction energy analysis. Molecular electrostatic potential maps are shown to have a bearing on predicting further growth of these clusters, which is duly corroborated through sample calculations for MHP⋯(H2O)8. Further, a continuum solvation model calculation for energetically stable clusters suggests that this study should serve as a precursor for pathways to aqueous solvation of MHP.

  11. Ab initio study of MoS2 nanotube bundles

    NASA Astrophysics Data System (ADS)

    Verstraete, Matthieu; Charlier, Jean-Christophe

    2003-07-01

    Recently, the synthesis of a new phase of MoS2I1/3 stoichiometry was reported [M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demšar, P. Stadelmann, F. Lévy, and D. Mihailovic, Science 292, 479 (2001)]. Electron microscope images and diffraction data were interpreted to indicate bundles of sub-nanometer-diameter single-wall MoS2 nanotubes. After experimental characterization, the structure was attributed to an assembly of “armchair” nanotubes with interstitial iodine. Using first-principles total-energy calculations, bundles of MoS2 nanotubes with different topologies and stoichiometries are investigated. All of the systems are strongly metallic. Configurations with “zigzag” structures are found to be more stable energetically than the “armchair” ones, though all of the structures have similar stabilities. After relaxation, there remain several candidates which give a lattice parameter in relative agreement with experiment. Further, spin-polarized calculations indicate that a structure with armchair tubes iodine atoms in their center acquires a very large spontaneous magnetic moment of 12μB, while the other structures are nonmagnetic. Our ab initio calculations show that in most of the other structures, the tubes are very strongly bound together, and that the compounds should be considered as a crystal, rather than as a bundle of tubes in the habitual sense.

  12. Engineering Room-temperature Superconductors Via ab-initio Calculations

    NASA Astrophysics Data System (ADS)

    Gulian, Mamikon; Melkonyan, Gurgen; Gulian, Armen

    The BCS, or bosonic model of superconductivity, as Little and Ginzburg have first argued, can bring in superconductivity at room temperatures in the case of high-enough frequency of bosonic mode. It was further elucidated by Kirzhnitset al., that the condition for existence of high-temperature superconductivity is closely related to negative values of the real part of the dielectric function at finite values of the reciprocal lattice vectors. In view of these findings, the task is to calculate the dielectric function for real materials. Then the poles of this function will indicate the existence of bosonic excitations which can serve as a "glue" for Cooper pairing, and if the frequency is high enough, and the dielectric matrix is simultaneously negative, this material is a good candidate for very high-Tc superconductivity. Thus, our approach is to elaborate a methodology of ab-initio calculation of the dielectric function of various materials, and then point out appropriate candidates. We used the powerful codes (TDDF with the DP package in conjunction with ABINIT) for computing dielectric responses at finite values of the wave vectors in the reciprocal lattice space. Though our report is concerned with the particular problem of superconductivity, the application range of the data processing methodology is much wider. The ability to compute the dielectric function of existing and still non-existing (though being predicted!) materials will have many more repercussions not only in fundamental sciences but also in technology and industry.

  13. Ab initio simulations of pseudomorphic silicene and germanene bidimensional heterostructures

    NASA Astrophysics Data System (ADS)

    Debernardi, Alberto; Marchetti, Luigi

    2016-06-01

    Among the novel two-dimensional (2D) materials, silicene and germanene, which are two honeycomb crystal structures composed of a monolayer of Si and Ge, respectively, have attracted the attention of material scientists because they combine the advantages of the new 2D ultimate-scaled electronics with their compatibility with industrial processes presently based on Si and Ge. We envisage pseudomorphic lateral heterostructures based on ribbons of silicene and germanene, which are the 2D analogs of conventional 3D Si/Ge superlattices and quantum wells. In spite of the considerable lattice mismatch (˜4 % ) between free-standing silicene and germanene, our ab initio simulations predict that, considering striped 2D lateral heterostructures made by alternating silicene and germanene ribbons of constant width, the silicene/germanene junction remains pseudomorphic—i.e., it maintains lattice-matched edges—up to critical ribbon widths that can reach some tens of nanometers. Such critical widths are one order of magnitude larger than the critical thickness measured in 3D pseudomorphic Si/Ge heterostructures and the resolution of state-of-the-art lithography, thus enabling the possibility of lithography patterned silicene/germanene junctions. We computed how the strain produced by the pseudomorphic growth modifies the crystal structure and electronic bands of the ribbons, providing a mechanism for band-structure engineering. Our results pave the way for lithography patterned lateral heterostructures that can serve as the building blocks of novel 2D electronics.

  14. Ab Initio Investigation of NH_3-O_2 Exciplex

    NASA Astrophysics Data System (ADS)

    Haupert, L. M.; Simpson, G.; Slipchenko, L. V.

    2010-06-01

    In their recent investigation of fluorescence from poly(amido amine) (PAMAM) dendrimers, Chu and Imae suggested an exciplex composed of tertiary amine and oxygen molecules might be responsible for fluorescence in PAMAM dendrimers. In this work, we present an ab initio investigation of the electronic structure of a possible ammonia-oxygen exciplex model system using equation-of-motion coupled cluster techniques. Geometry optimization of the triplet ground state produced a weakly bound state with an equilibrium separation of ˜ 3.5 Å, and an excited state geometry scan revealed a bound, excited triplet state with an equilibrium separation of 2.02 Å, consistent with results of earlier PM3 work by Juranic et al. The energy gap between the triplet ground state and first triplet excited state of the exciplex at 2.02 Å is 412.8 nm, lending support to the exciplex hypothesis. C.-C. Chu, and T. Imae, Macromol. Rapid. Commun., 30, 89-93 (2009). I. Juranic, H. S. Rzepa, and Y. MinYan, J. Chem. Soc. Perkin Trans., 2 (1990)

  15. Exploring the free energy surface using ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Samanta, Amit; Morales, Miguel A.; Schwegler, Eric

    2016-04-01

    Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational and algorithmic perspectives. In this regard, schemes that utilize a set of pre-defined order parameters to sample the relevant parts of the configuration space [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006); J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)] have proved useful. Here, we demonstrate how these order-parameter aided temperature accelerated sampling schemes can be used within the Born-Oppenheimer and the Car-Parrinello frameworks of ab initio molecular dynamics to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways. We have used these methods to identify the metastable structures and reaction pathways in SiO2 and Ti. In addition, we have used the string method [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002); L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] within the density functional theory to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hexagonal closed packed to face centered cubic phase transition in Ti.

  16. Accurate ab initio vibrational energies of methyl chloride

    SciTech Connect

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2015-06-28

    Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH{sub 3}{sup 35}Cl and CH{sub 3}{sup 37}Cl. The respective PESs, CBS-35{sup  HL}, and CBS-37{sup  HL}, are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY {sub 3}Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35{sup  HL} and CBS-37{sup  HL} PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm{sup −1}, respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH{sub 3}Cl without empirical refinement of the respective PESs.

  17. Ab initio description of p-shell hypernuclei.

    PubMed

    Wirth, Roland; Gazda, Daniel; Navrátil, Petr; Calci, Angelo; Langhammer, Joachim; Roth, Robert

    2014-11-01

    We present the first ab initio calculations for p-shell single-Λ hypernuclei. For the solution of the many-baryon problem, we develop two variants of the no-core shell model with explicit Λ and Σ(+),Σ(0),Σ(-) hyperons including Λ-Σ conversion, optionally supplemented by a similarity renormalization group transformation to accelerate model-space convergence. In addition to state-of-the-art chiral two- and three-nucleon interactions, we use leading-order chiral hyperon-nucleon interactions and a recent meson-exchange hyperon-nucleon interaction. We validate the approach for s-shell hypernuclei and apply it to p-shell hypernuclei, in particular to (Λ)(7)Li, (Λ)(9)Be, and (Λ)(13)C. We show that the chiral hyperon-nucleon interactions provide ground-state and excitation energies that generally agree with experiment within the cutoff dependence. At the same time we demonstrate that hypernuclear spectroscopy provides tight constraints on the hyperon-nucleon interactions. PMID:25415901

  18. Ab initio SCF calculations on hydrogen bonded cresol isomers

    NASA Astrophysics Data System (ADS)

    Pohl, M.; Kleinermanns, K.

    1988-12-01

    Ab initio GAUSSIAN 80 calculations with two different basis sets (STO-3G and 4 31 G*) were performed on hydrogen bonded cresol isomers for comparison with experimental data from free jet fluorescence excitation spectroscopy. For m-cresol, the calculated barriers for hindered internal rotation of the OH-group and the CH3-group are in good agreement with experiment. The calculations show the trans-linear configuration of p-cresol· B-clusters ( B = H2O, CH3OH) to be more stable than the all-planar configuration. This agrees with CI calculations and microwave spectroscopic investigations of the water dimer. Calculations of both the intermolecular stretch and bend frequencies of p-cresol· B-clusters show little dependence on the all-planar or trans-linear configuration but a strong dependence on the choice of the basis set. With the minimal basis set STO-3G, the vibrational energies are generally too high. The agreement between the calculated vibrational frequencies from the 4 31 G* basis set and the experimental values is fair.

  19. Ab initio calculation of double ionization of atoms

    SciTech Connect

    Serov, V. V.

    2013-02-15

    The Solov'ev-Vinitsky method was used to perform an ab initio calculation of the triple-differential cross section for the double single-photon photoionization of helium for the case of equal emitted-electron energies. A Gaussian width {gamma} describing angular electron-electron correlations at the total electron energy E taking values in range between 0.1 and 100 eV was obtained for this cross section. The results agree with available experimental data, but they raise a doubt as to whether the well-known Wannier law {gamma} {proportional_to} E{sup 1/4} is applicable at experimentally accessible energies. The Gaussian width {gamma} was investigated as a function of the total emitted-electron energy for targets that have a strongly asymmetric configuration of the initial state-specifically, a negative atomic-hydrogen ion H{sup -} and heliumin the 1s2s{sup 1}S and 1s3s{sup 1}S excited states. It was found that this function, {gamma}(E), had a maximum at low energies. It was also shown that, at low energies, the dependence of the double-differential cross section on the angle between the emitted-electron momenta for the targets indicated above differed substantially from the Gaussian dependence, featuring maxima whose number was equal to the number of radial nodes in the initial state. This opens new possibilities for a qualitative analysis of the electron structure of targets.

  20. Ab initio calculation of infrared intensities for hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Rogers, J. D.; Hillman, J. J.

    1982-01-01

    Results of an ab initio SCF quantum mechanical study are used to derive estimates for the infrared intensities of the fundamental vibrations of hydrogen peroxide. Atomic polar tensors (APTs) were calculated on the basis of a 4-31G basis set, and used to derive absolute intensities for the vibrational transitions. Comparison of the APTs calculated for H2O2 with those previously obtained for H2O and CH3OH, and of the absolute intensities derived from the H2O2 APTs with those derived from APTs transferred from H2O and CH3OH, reveals the sets of values to differ by no more than a factor of two, supporting the validity of the theoretical calculation. Values of the infrared intensities obtained correspond to A1 = 14.5 km/mol, A2 = 0.91 km/mol, A3 = 0.058 km/mol, A4 = 123 km/mol, A5 = 46.2 km/mol, and A6 = 101 km/mol. Charge, charge flux and overlap contributions to the dipole moment derivatives are also computed.

  1. Ab initio simulations of peptide-mineral interactions

    NASA Astrophysics Data System (ADS)

    Hug, Susanna; Hunter, Graeme K.; Goldberg, Harvey; Karttunen, Mikko

    We performed Car-Parrinello Molecular Dynamics (CPMD) simulations of two amino acids, aspartic acid (Asp) and phophoserine (pSer), on a calcium oxalate monohydrate (COM) surface as a model of the interactions of phosphoproteins with biominerals. In our earlier work using in vitro experiments and classical Molecular Dynamics (MD) simulations we have demonstrated the importance of phosphorylation of serine on the interactions of osteopontin (OPN) with COM. We used configurations from our previous classical MD simulations as a starting point for the ab initio simulations. In the case of Asp we found that the α-carboxyl and amine groups form temporary close contacts with the surface. For the dipeptide Asp-pSer the carboxyl groups form permanent close contacts with the surface and the distances of its other functional groups do not vary much. We show how the interaction of carboxyl groups with COM crystal is established and confirm the importance of phosphorylation in mediating the interactions between COM surfaces and OPN.

  2. Ab initio study of the phenol-water cation radical

    NASA Astrophysics Data System (ADS)

    Hobza, Pavel; Burcl, Rudolf; Špirko, Vladimír; Dopfer, Otto; Müller-Dethlefs, Klaus; Schlag, Edward W.

    1994-07-01

    The phenol-water cation radical has been investigated by ab initio theory using the spin-restricted open-shell Hartree-Fock and spin-restricted open-shell second-order Møller-Plesset theories with 3-21G*(O) and 6-31G* basis sets. The full geometrical optimization was performed for several hydrogen-bonded structures and one hemibonded structure. Clearly, the most stable structure has been found for Cs symmetry with the linear hydrogen bond between the proton of the OH group of the phenol cation radical and the oxygen of the water, and the water hydrogens pointing away from the phenyl ring. For this structure harmonic (and for some intermolecular modes anharmonic) vibrational frequencies have been computed for various isotopic complexes. The computed shifts of phenol-localized intramolecular modes on complexation and on deuteration as well as the calculated intermolecular frequencies of the different isotopic complexes allow for an assignment of vibrational frequencies observed in the experimental zero-kinetic-energy (ZEKE) photoelectron spectra. Five out of a possible six intermolecular vibrations and several intramolecular modes have been assigned, including the 18b vibration which shows a strong blue shift in frequency upon complexation. Structure and properties of the phenol-water cation radical are compared with those of the corresponding neutral complex.

  3. An efficient approach to ab initio Monte Carlo simulation

    SciTech Connect

    Leiding, Jeff; Coe, Joshua D.

    2014-01-21

    We present a Nested Markov chain Monte Carlo (NMC) scheme for building equilibrium averages based on accurate potentials such as density functional theory. Metropolis sampling of a reference system, defined by an inexpensive but approximate potential, was used to substantially decorrelate configurations at which the potential of interest was evaluated, thereby dramatically reducing the number needed to build ensemble averages at a given level of precision. The efficiency of this procedure was maximized on-the-fly through variation of the reference system thermodynamic state (characterized here by its inverse temperature β{sup 0}), which was otherwise unconstrained. Local density approximation results are presented for shocked states of argon at pressures from 4 to 60 GPa, where—depending on the quality of the reference system potential—acceptance probabilities were enhanced by factors of 1.2–28 relative to unoptimized NMC. The optimization procedure compensated strongly for reference potential shortcomings, as evidenced by significantly higher speedups when using a reference potential of lower quality. The efficiency of optimized NMC is shown to be competitive with that of standard ab initio molecular dynamics in the canonical ensemble.

  4. Accurate ab initio vibrational energies of methyl chloride.

    PubMed

    Owens, Alec; Yurchenko, Sergei N; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2015-06-28

    Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH3 (35)Cl and CH3 (37)Cl. The respective PESs, CBS-35( HL), and CBS-37( HL), are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY 3Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35( HL) and CBS-37( HL) PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm(-1), respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH3Cl without empirical refinement of the respective PESs. PMID:26133427

  5. Accurate ab initio vibrational energies of methyl chloride

    NASA Astrophysics Data System (ADS)

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2015-06-01

    Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH335Cl and CH337Cl. The respective PESs, CBS-35 HL, and CBS-37 HL, are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY 3Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35 HL and CBS-37 HL PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm-1, respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH3Cl without empirical refinement of the respective PESs.

  6. Ab initio effective interactions for s d -shell valence nucleons

    NASA Astrophysics Data System (ADS)

    Dikmen, E.; Lisetskiy, A. F.; Barrett, B. R.; Maris, P.; Shirokov, A. M.; Vary, J. P.

    2015-06-01

    We perform ab initio no-core shell-model calculations for A =18 and 19 nuclei in a 4 ℏ Ω , or Nmax=4 , model space by using the effective JISP16 and chiral N3LO nucleon-nucleon potentials and transform the many-body effective Hamiltonians into the 0 ℏ Ω model space to construct the A -body effective Hamiltonians in the s d shell. We separate the A -body effective Hamiltonians with A =18 and A =19 into inert core, one-, and two-body components. Then we use these core, one-, and two-body components to perform standard shell-model calculations for the A =18 and A =19 systems with valence nucleons restricted to the s d shell. Finally, we compare the standard shell-model results in the 0 ℏ Ω model space with the exact no-core shell-model results in the 4 ℏ Ω model space for the A =18 and A =19 systems and find good agreement.

  7. Lead-Chalcogenides Under Pressure: Ab-Initio Study

    NASA Astrophysics Data System (ADS)

    Gupta, Dinesh C.; Hamid, Idris

    ab-initio calculations using fully relativistic pseudo-potential have been performed to investigate the high pressure phase transition, elastic and electronic properties of lead-chalcogenides including the less known lead polonium. The calculated ground state parameters, for the rock-salt structure show good agreement with the experimental data. The enthalpy calculations show that these materials undergo a first-order phase transition from rock-salt to CsCl structure at 19.4, 15.5, 11.5 and 7.3 GPa for PbS, PbSe, PbTe and PbPo, respectively. Present calculations successfully predicted the location of the band gap at L-point of Brillouin zone as well as the value of the band gap in every case at ambient pressure. It is observed that unlike other lead-chalcogenides, PbPo is semi-metal at ambient pressure. The pressure variation of the energy gap indicates that these materials metalized under high pressures. For this purpose, the electronic structure of these materials has also been computed in parent as well as in high pressure phase.

  8. Amide N-oxides: an ab initio molecular orbital study

    NASA Astrophysics Data System (ADS)

    Greenberg, Arthur; DuBois, Thomas D.

    2001-06-01

    There are no known examples of amide N-oxides. The present study employs ab initio molecular orbital calculations at the 6-3G ∗ level to explore potential target molecules in this class. Bridgehead bicyclic lactams appear to be attractive targets for oxidation to form the corresponding N-oxides because they have reduced (or zero) amide resonance energy. The amide N-oxide linkage is predicted to have a ca. 9-10 kcal/mol rotational barrier due to eclipsing of nonbonded oxygen atoms in the transition state. The linkage has a nearly flat conformational ( ΦON-CO) profile in the range 120-240° and this suggests that a very sterically hindered acyclic amide N-oxide may be a practical synthetic target. The oxidation of strained amides is calculated to be highly exothermic if dimethyldioxirane is employed. This reagent is predicted to react appreciably exothermically with normal, stable amides such as N, N-dimethylacetamide, thus offering the potential for generating and studying such relatively unstable amide N-oxides at low temperatures.

  9. FTIR, Raman spectra and ab initio calculations of 2-mercaptobenzothiazole.

    PubMed

    Rai, Amareshwar K; Singh, Rachana; Singh, K N; Singh, V B

    2006-02-01

    FTIR and Raman spectra of a rubber vulcanization accelerator, 2-mercaptobenzothiazole (MBT), were recorded in the solid phase. The harmonic vibrational wavenumbers, for both the toutomeric forms of MBT, as well as for its dimeric complex, have been calculated, using ab initio RHF and density functional B3LYP methods invoking different basis sets upto RHF/6-31G** and B3LYP/6-31G** and the results were compared with the experimental values. Conformational studies have been also carried out regarding its toutomeric monomer forms and its dimer form. With all the basis sets the thione form of MBT (II) is predicted to be more stable than thiol form (I) and dimeric conformation (III) is predicted to be more stable with monomeric conformations (I) and (II). Vibrational assignments have been made, and it has been found that the calculated normal mode frequencies of dimeric conformation (III) are required for the analysis of IR and Raman bands of the MBT. The predicted shift in NH- stretching vibration towards the lower wave number side with the B3LYP/6-31G** calculations for the most stable dimer form (III), is in better agreement with experimental results. The intermolecular sulfur-nitrogen distance in N-H...S hydrogen bond was found to be 3.35 angstroms from these calculations, is also in agreement to the experimental value. PMID:16098806

  10. Ab initio simulations on rutile-based titania nanowires

    NASA Astrophysics Data System (ADS)

    Zhukovskii, Yu F.; Evarestov, R. A.

    2012-08-01

    The rod symmetry groups for monoperiodic (1D) nanostructures have been applied for construction of models for bulk-like TiO2 nanowires (NWs) cut from a rutile-based 3D crystal along the chosen [001] and [110] directions of crystallographic axes. In this study, we have considered nanowires described by both the Ti-atom centered rotation axes as well as the hollow site centered axes passing through the interstitial positions between the Ti and O atoms closest to the axes. The most stable [001]-oriented TiO2 NWs with rhombic cross sections are found to display the energetically preferable {110} facets only while the nanowires with quasi-square sections across the [110] axis are formed by the alternating { 1bar 10 } and {001} facets. For simulations on rutile-based nanowires possessing different diameters for each NW type, we have performed large-scale ab initio Density Functional Theory (DFT) and hybrid DFT-Hartree Fock (DFT-HF) calculations with total geometry optimization within the Generalized Gradient Approximation (GGA) in the form of the Perdew-Becke-Ernzenhof (PBE) exchange-correlation functionals (PBE and PBE0, respectively), using the formalism of linear combination of localized atomic functions (LCAO). We have simulated both structural and electronic properties of TiO2 NWs depending both on orientation and position of symmetry axes as well as on diameter and morphology of nanowires.

  11. Ab initio molecular dynamics calculations of ion hydration free energies

    SciTech Connect

    Leung, Kevin; Rempe, Susan B.; Lilienfeld, O. Anatole von

    2009-05-28

    We apply ab initio molecular dynamics (AIMD) methods in conjunction with the thermodynamic integration or '{lambda}-path' technique to compute the intrinsic hydration free energies of Li{sup +}, Cl{sup -}, and Ag{sup +} ions. Using the Perdew-Burke-Ernzerhof functional, adapting methods developed for classical force field applications, and with consistent assumptions about surface potential ({phi}) contributions, we obtain absolute AIMD hydration free energies ({Delta}G{sub hyd}) within a few kcal/mol, or better than 4%, of Tissandier et al.'s [J. Phys. Chem. A 102, 7787 (1998)] experimental values augmented with the SPC/E water model {phi} predictions. The sums of Li{sup +}/Cl{sup -} and Ag{sup +}/Cl{sup -} AIMD {Delta}G{sub hyd}, which are not affected by surface potentials, are within 2.6% and 1.2 % of experimental values, respectively. We also report the free energy changes associated with the transition metal ion redox reaction Ag{sup +}+Ni{sup +}{yields}Ag+Ni{sup 2+} in water. The predictions for this reaction suggest that existing estimates of {Delta}G{sub hyd} for unstable radiolysis intermediates such as Ni{sup +} may need to be extensively revised.

  12. Ab initio study of ice catalyzation of HOCl + HCl reaction

    SciTech Connect

    Zhou, Y.F.; Liu, C.B.

    2000-06-15

    The observations by Farman et al. revealed remarkable depletions in the total atmospheric ozone content in Antarctica. The observed total ozone decreased smoothing during the spring season from about 1975. Satellite observations have proved Antarctic ozone depletions over a very extended region, in general agreement with the local ground-based data of Farman et al. It was suggested that heterogeneous reactions occurring on particles in polar stratospheric clouds (PSCs) play a central role in the depletion of stratospheric ozone. Experiments proved that the reaction of HOCl + HCl was very slow in the gas phase, but on ice surface it was rapid. In this work the ice catalysis of HOCl + HCl reaction was investigated by using ab initio molecular orbital theory. The authors applied the Hartree-Fock self-consistent field and the second-order Moeller-Plesset perturbation theory with the basis sets of 6-31G* to the model system. The complexes and transition state were obtained along the reaction with and without the presence of ice surface. By comparing the results, a possible catalyzation mechanism of ice on the reaction is proposed.

  13. Ab initio Raman spectroscopy of water under extreme conditions

    NASA Astrophysics Data System (ADS)

    Rozsa, Viktor; Pan, Ding; Wan, Quan; Galli, Giulia

    Water exhibits one of the most complex phase diagrams of any binary compound. Despite extensive studies, the melting lines of high-pressure ice phases remain very controversial, with reports differing by hundreds of Kelvin. The boundary between ice VII and liquid phase is particularly disputed, with recent work exploring plasticity and amorphization mediating the transition. Raman measurements are often used to fingerprint melting, yet their interpretation is difficult without atomistic modeling. Here, we report a study of high P/T water where we computed Raman spectra using a method combining ab initio molecular dynamics and density functional perturbation theory, as implemented in the Qbox code. Spectra were computed for the liquid at 10 and 20 GPa, both at 1000 K, and for solid ice VII (20 GPa, 500 K). Decomposing the spectra into inter and intra molecular contributions provided insight into the dynamics of the hydrogen-bonded network at extreme conditions. The relevance of our simulation results for models of water in Earth, Uranus, and Neptune will be discussed, and an interpretation of existing experiments at high pressure will be presented.

  14. Ab initio modeling of the motional Stark effect on MAST

    SciTech Connect

    De Bock, M. F. M.; Conway, N. J.; Walsh, M. J.; Carolan, P. G.; Hawkes, N. C.

    2008-10-15

    A multichord motional Stark effect (MSE) system has recently been built on the MAST tokamak. In MAST the {pi} and {sigma} lines of the MSE spectrum overlap due to the low magnetic field typical for present day spherical tokamaks. Also, the field curvature results in a large change in the pitch angle over the observation volume. The measured polarization angle does not relate to one local pitch angle but to an integration over all pitch angles in the observation volume. The velocity distribution of the neutral beam further complicates the measurement. To take into account volume effects and velocity distribution, an ab initio code was written that simulates the MSE spectrum on MAST. The code is modular and can easily be adjusted for other tokamaks. The code returns the intensity, polarized fraction, and polarization angle as a function of wavelength. Results of the code are presented, showing the effect on depolarization and wavelength dependence of the polarization angle. The code is used to optimize the design and calibration of the MSE diagnostic.

  15. An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry

    SciTech Connect

    Matthew Neurock; David A. Walthall

    2006-05-07

    One of the greatest societal challenges over the next decade is the production of cheap, renewable energy for the 10 billion people that inhabit the earth. This will require the development of various different energy sources potentially including fuels derived from methane, coal, and biomass and alternatives sources such as solar, wind and nuclear energy. One approach will be to synthesize gasoline and other fuels from simpler hydrocarbons such as CO derived from methane or other U.S. based sources such as coal. Syngas (CO and H{sub 2}) can be readily converted into higher molecular weight hydrocarbons through Fischer-Tropsch synthesis. Fischer-Tropsch synthesis involves the initiation or activation of CO and H{sub 2} bonds, the subsequent propagation steps including hydrogenation and carbon-carbon coupling, followed by chain termination reactions. Commercially viable catalysts include supported Co and Co-alloys. Over the first two years of this project we have used ab initio methods to determine the adsorption energies for all reactants, intermediates, and products along with the overall reaction energies and their corresponding activation barriers over the Co(0001) surface. Over the third year of the project we developed and advanced an ab initio-based kinetic Monte Carlo simulation code to simulate Fischer Tropsch synthesis. This report details our work over the last year which has focused on the derivation of kinetic parameters for the elementary steps involved in FT synthesis from ab initio density functional theoretical calculations and the application of the kinetic Monte Carlo algorithm to simulate the initial rates of reaction for FT over the ideal Co(0001) surface. The results from our simulations over Co(0001) indicate the importance of stepped surfaces for the activation of adsorbed CO. In addition, they demonstrate that the dominant CH{sub x}* surface intermediate under steady state conditions is CH*. This strongly suggests that hydrocarbon coupling

  16. Rotation spectrum and high resolution infrared spectra of the fundamental bands of 121SbD 3. Determination of the ground state and equilibrium structures. Ab initio calculations of the spectroscopic parameters

    NASA Astrophysics Data System (ADS)

    Canè, E.; Di Lonardo, G.; Fusina, L.; Jerzembeck, W.; Bürger, H.; Breidung, J.; Thiel, W.

    2006-01-01

    The high resolution infrared spectrum of 121SbD 3, recorded between 20 and 350 cm -1 and in the regions of bending and stretching fundamental bands, centred at 600 and 1350 cm -1, has been analysed. Splittings of the K″=3, 6 lines have been observed both in the rotation and ro-vibration spectra. A large number of 'perturbation allowed' transitions with selection rules Δ(k-ℓ)=±3, ±6 and ±9 have been identified in all fundamental bands. Accurate ground state molecular parameters have been determined fitting simultaneously the rotational transitions and about 9000 ground state combination differences obtained from lines assigned in the ro-vibrational spectra. The A and B reductions of the rotational Hamiltonian have been applied in the analysis of the ground state. They provided almost equivalent results. The molecular parameters of the 1 1, 2 1, 3 1 and 4 1 states have been obtained from the simultaneous analysis of the ν1 ( A1)/ ν3 ( E) stretching and of the ν2 ( A1)/ ν4 ( E) bending dyads. In fact, the corresponding excited states are affected by strong perturbations due to Coriolis and k-type rovibrational interactions that have been treated explicitly in the model adopted for the analysis. Improved effective ground state and equilibrium geometries have been determined and compared to those of 121SbH 3 and of 123SbD 3. Ab initio calculations at the coupled cluster CCSD(T) level with an energy-consistent large-core pseudopotential and large basis sets have been carried out to determine the equilibrium structure, the anharmonic force field, and the associated spectroscopic constants of 121-stibine. The theoretical constants and structural parameters are in good agreement with the experimental data.

  17. Ab initio calculation of oxygen self-diffusion coefficient in uranium dioxide UO2

    NASA Astrophysics Data System (ADS)

    Dorado, Boris; Garcia, Philippe; Torrent, Marc

    Uranium dioxide UO2 is the most widely used nuclear fuel worldwide and its atomic transport properties are relevant to practically all engineering aspects of the material. Although transport properties have already been studied in UO2 by means of first-principles calculations, the ab initio determination of self-diffusion coefficients has up to now remained unreachable because the relevant computational tools were neither available or adapted. The present work reports our results related to the ab initio calculation of the oxygen self-diffusion coefficient in UO2. We first determine the Gibbs free energies of formation of oxygen charged defects by calculating both the electronic and vibrational (hence entropic) contributions. Then, we use the transition state theory in order to compute the effective jump frequency of the defects, which in turn provides us with the value of the pre-exponential factor. The results are compared to self-diffusion data obtained experimentally with a careful monitoring of the relevant thermodynamic conditions (oxygen partial pressure, temperature, impurity content).

  18. A new ab initio potential energy surface for the Ne-H 2 interaction

    NASA Astrophysics Data System (ADS)

    Lique, François

    2009-03-01

    A new accurate three-dimensional potential energy surface for the Ne-H 2 system, which explicitly takes into account the r-dependence of the H 2 vibration, was determined from ab initio calculations. It was obtained with the single and double excitation coupled-cluster method with noniterative perturbational treatment of triple excitation [CCSD(T)]. Calculations was been performed using the augmented correlation-consistent polarized quintuple zeta basis set (aug-cc-pV5Z) for the three atoms. We checked the accuracy of the present ab initio calculations. We have determined, using the new Ne-H 2 potential energy surface, differential cross-sections for the rotational excitation of the H 2 and D 2 molecules in collision with Ne and we have compared them with experimental results of Faubel et al. [M. Faubel, F.A. Gianturco, F. Ragnetti, L.Y. Rusin, F. Sondermann, U. Tappe, J.P. Toennies, J. Chem. Phys. 101 (1994) 8800]. The overall agreement confirms that the new potential energy surface can be used for the simulation of molecular collisions and/or molecular spectroscopy of the van der Waals complex Ne-H 2.

  19. Ab initio quantum transport calculations using plane waves

    NASA Astrophysics Data System (ADS)

    Garcia-Lekue, A.; Vergniory, M. G.; Jiang, X. W.; Wang, L. W.

    2015-08-01

    We present an ab initio method to calculate elastic quantum transport at the nanoscale. The method is based on a combination of density functional theory using plane wave nonlocal pseudopotentials and the use of auxiliary periodic boundary conditions to obtain the scattering states. The method can be applied to any applied bias voltage and the charge density and potential profile can either be calculated self-consistently, or using an approximated self-consistent field (SCF) approach. Based on the scattering states one can straightforwardly calculate the transmission coefficients and the corresponding electronic current. The overall scheme allows us to obtain accurate and numerically stable solutions for the elastic transport, with a computational time similar to that of a ground state calculation. This method is particularly suitable for calculations of tunneling currents through vacuum, that some of the nonequilibrium Greens function (NEGF) approaches based on atomic basis sets might have difficulty to deal with. Several examples are provided using this method from electron tunneling, to molecular electronics, to electronic devices: (i) On a Au nanojunction, the tunneling current dependence on the electrode-electrode distance is investigated. (ii) The tunneling through field emission resonances (FERs) is studied via an accurate description of the surface vacuum states. (iii) Based on quantum transport calculations, we have designed a molecular conformational switch, which can turn on and off a molecular junction by applying a perpendicular electric field. (iv) Finally, we have used the method to simulate tunnel field-effect transistors (TFETs) based on two-dimensional transition-metal dichalcogenides (TMDCs), where we have studied the performance and scaling limits of such nanodevices and proposed atomic doping to enhance the transistor performance.

  20. Internal dynamics in azetidine: A microwave and ab initio study

    NASA Astrophysics Data System (ADS)

    López, Juan C.; Blanco, Susana; Lesarri, Alberto; Alonso, José L.

    2001-02-01

    The internal dynamics of interconversion between equivalent conformations due to the coupling between ring puckering and NH inversion in azetidine has been investigated by rotational spectroscopy and ab initio computations. Analysis of the rotational spectra in the 8-220 GHz region has been completed for the ground state and first four excited states of the ring-puckering vibration. Rotational transitions exhibit a characteristic doubling originated by tunneling between equivalent conformations through a C2v barrier, which is related to symmetric (A1) and antisymmetric (B1) inversion states. Additionally, nuclear quadrupole hyperfine structure arising from the N nucleus could be resolved for low-J transitions. Accurate rotational and centrifugal distortion parameters together with the energy difference between inversion states derived from μc-type inversion transitions have been derived for each ring-puckering state using a two-state Hamiltonian. An effective monodimensional reduced potential function for the ring-puckering vibration V(X)=10.82(X4+14.29X-8.93X2-0.28X3) has been found consistent with the observed experimental variation of the rotational and centrifugal distortion constants with ring-puckering. This asymmetric single minimum potential function supports the existence of only one stable equatorial form. The barrier to interconversion between equivalent equatorial conformers, related to the C2v conformation of azetidine in which the ring atoms and the NH group are coplanar, has been estimated to range between 1900 and 2600 cm-1. The strong dependence of the dipole moment and quadrupole coupling constants with ring-puckering vibrational state evidence structural changes that occur along the ring-puckering coordinate.

  1. Ab initio cluster study of crystalline NaF

    SciTech Connect

    Temple, D.K.

    1992-01-01

    A highly-accurate ab initio cluster model of crystalline NaF has been constructed to explore the limits of cluster methods in the treatment of ionic solids. The focus of this model was the characterization of the lattice environment and its influence on the easily-polarizable fluorine anion. The model consisted of a central all-electron fluorine anion coordinated by pseudopotentials, to represent the nearest-neighbor sodium cations, and a finite array of point charges chosen to generate the correct crystal field from the surrounding infinite ionic lattice. The wavefunction and properties of the anion were calculated using the restricted Hartree-Fock and configuration interaction techniques from quantum chemistry. An extensive analysis of basis set incompleteness errors in the anion wavefunction was performed. Important features were identified in the embedded anion, such as its distortion under the influence of the lattice compressions, its stabilization from the Madelung potential, and its changes in size due to electron correlations. Bulk properties of the rocksalt-structure (B1) NaF crystal were derived from the total mode energies, calculated as a function of the crystal volume. The properties included the zero-pressure lattice constant, cohesive energy, and bulk modulus, and the pressure-volume equation-of-state. A series of test calculations explored the relationships, and their underlying physical mechanisms, between the features of the embedded anion and the bulk properties of the crystal. These features often produced opposing changes in the properties, demonstrating the importance of a thorough and systematic treatment of the embedded anion. The most thorough test calculation gave bulk properties that were within 1% of experiment. Using an embedded anion model for the high-pressure cesium-chloride (B2) phase of NaF, the B1-to-B2 structural transition was correctly predicted at 25 GPa, in excellent agreement with the experimental values of 23 to 27 GPa.

  2. Cosmic-Ray Modulation: an Ab Initio Approach

    NASA Astrophysics Data System (ADS)

    Engelbrecht, N. E.; Burger, R. A.

    2014-10-01

    A better understanding of cosmic-ray modulation in the heliosphere can only be gained through a proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays. We present an ab initio model for cosmic-ray modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for periods of minimum solar activity, utilizing boundary values chosen so that model results are in fair to good agreement with spacecraft observations of turbulence quantities, not only in the solar ecliptic plane but also along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modelled slab and 2D turbulence energy spectra. The latter spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers commencing at the 2D outerscale. There currently exist no models or observations for this quantity, and it is the only free parameter in this study. The modelled turbulence spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on cosmic-ray drifts are modelled in a self-consistent way, employing a recently developed model for drift along the wavy current sheet. The resulting diffusion coefficients and drift expressions are applied to the study of galactic cosmic-ray protons and antiprotons using a three-dimensional, steady-state cosmic-ray modulation code, and sample solutions in fair agreement with multiple spacecraft observations are presented.

  3. Chiroptical properties of unsubstituted carbohydrates: Ab initio and semiempirical studies

    NASA Astrophysics Data System (ADS)

    Parra C., Alejandro

    Ab initio calculations support assignment of the vacuum ultraviolet circular dichroism (CD) of simple saccharides to 11A 1 --> 21B1 and 11A 1 --> 11A2 transitions centered on the oxygen atoms of the acetal group treated as two weakly coupled ether chromophores. The calculations are consistent with assignments previously made on the basis of a deconvolution of CD spectra. Estimates of the oxygen centered contributions to magnetic transition dipole moments were made. Semiempirical calculations were performed to model the NaD molar optical rotation of 1,6- and 3,6- anhydrosugars. For 1,6-anhydrosugars, current parameters produce reasonable agreement with experimental values. For 3,6-anhydrosugars, modifications to the ether parameters had to be introduced. The most relevant included a reorientation of the bond-centered s-->s* transition dipole charges in the ether chromophore to a C2v orientation, and a shift from prolate polarizability ellipsoids to general ellipsoids. These changes result in good agreement with experimental Na D molar rotations for 3,6-anhydrosugars. A low energy CD band arises in 3,6- and 1,6-anhydrosugars when agreement with the experimental NaD molar rotations is achieved. It is proposed that this band is a real feature in the spectrum. The origin of the band is primarily the interaction between b1 symmetry- oriented transition dipoles in the COC groups with other transition dipoles in the molecule. Comparison with experimental spectra leads to an assignment of this band to 11A1 --> 21B1 transitions centered on the COC groups.

  4. Efficient conformational space exploration in ab initio protein folding simulation.

    PubMed

    Ullah, Ahammed; Ahmed, Nasif; Pappu, Subrata Dey; Shatabda, Swakkhar; Ullah, A Z M Dayem; Rahman, M Sohel

    2015-08-01

    Ab initio protein folding simulation largely depends on knowledge-based energy functions that are derived from known protein structures using statistical methods. These knowledge-based energy functions provide us with a good approximation of real protein energetics. However, these energy functions are not very informative for search algorithms and fail to distinguish the types of amino acid interactions that contribute largely to the energy function from those that do not. As a result, search algorithms frequently get trapped into the local minima. On the other hand, the hydrophobic-polar (HP) model considers hydrophobic interactions only. The simplified nature of HP energy function makes it limited only to a low-resolution model. In this paper, we present a strategy to derive a non-uniform scaled version of the real 20×20 pairwise energy function. The non-uniform scaling helps tackle the difficulty faced by a real energy function, whereas the integration of 20×20 pairwise information overcomes the limitations faced by the HP energy function. Here, we have applied a derived energy function with a genetic algorithm on discrete lattices. On a standard set of benchmark protein sequences, our approach significantly outperforms the state-of-the-art methods for similar models. Our approach has been able to explore regions of the conformational space which all the previous methods have failed to explore. Effectiveness of the derived energy function is presented by showing qualitative differences and similarities of the sampled structures to the native structures. Number of objective function evaluation in a single run of the algorithm is used as a comparison metric to demonstrate efficiency. PMID:26361554

  5. AN AB INITIO MODEL FOR COSMIC-RAY MODULATION

    SciTech Connect

    Engelbrecht, N. E.; Burger, R. A.

    2013-07-20

    A proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays (CRs) is of vital importance for a better understanding of CR modulation in the heliosphere. This study presents an ab initio model for CR modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for solar minimum heliospheric conditions, utilizing boundary values chosen so that model results are in reasonable agreement with spacecraft observations of turbulence quantities in the solar ecliptic plane and along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modeled slab and two-dimensional (2D) turbulence energy spectra. The modeled 2D spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers. There currently exist no models or observations for the wavenumber where this drop-off occurs, and it is considered to be the only free parameter in this study. The modeled spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on CR drifts are modeled in a self-consistent way, also employing a recently developed model for wavy current sheet drift. The resulting diffusion and drift coefficients are applied to the study of galactic CR protons and antiprotons using a 3D, steady-state CR modulation code, and sample solutions in fair to good agreement with multiple spacecraft observations are presented.

  6. Efficient conformational space exploration in ab initio protein folding simulation

    PubMed Central

    Ullah, Ahammed; Ahmed, Nasif; Pappu, Subrata Dey; Shatabda, Swakkhar; Ullah, A. Z. M. Dayem; Rahman, M. Sohel

    2015-01-01

    Ab initio protein folding simulation largely depends on knowledge-based energy functions that are derived from known protein structures using statistical methods. These knowledge-based energy functions provide us with a good approximation of real protein energetics. However, these energy functions are not very informative for search algorithms and fail to distinguish the types of amino acid interactions that contribute largely to the energy function from those that do not. As a result, search algorithms frequently get trapped into the local minima. On the other hand, the hydrophobic–polar (HP) model considers hydrophobic interactions only. The simplified nature of HP energy function makes it limited only to a low-resolution model. In this paper, we present a strategy to derive a non-uniform scaled version of the real 20×20 pairwise energy function. The non-uniform scaling helps tackle the difficulty faced by a real energy function, whereas the integration of 20×20 pairwise information overcomes the limitations faced by the HP energy function. Here, we have applied a derived energy function with a genetic algorithm on discrete lattices. On a standard set of benchmark protein sequences, our approach significantly outperforms the state-of-the-art methods for similar models. Our approach has been able to explore regions of the conformational space which all the previous methods have failed to explore. Effectiveness of the derived energy function is presented by showing qualitative differences and similarities of the sampled structures to the native structures. Number of objective function evaluation in a single run of the algorithm is used as a comparison metric to demonstrate efficiency. PMID:26361554

  7. Ab initio no-core shell model with continuum

    NASA Astrophysics Data System (ADS)

    Navratil, Petr

    2008-04-01

    The ab initio no-core shell model (NCSM) is a many-body approach to nuclear structure of light nuclei. The NCSM adopts an effective interaction theory to transform fundamental inter-nucleon interactions into effective interactions for a specified nucleus in a selected harmonic oscillator basis space [1]. The method is capable of predicting nuclear structure from inter-nucleon forces derived from quantum chromodynamics by means of chiral effective field theory [2]. NCSM extensions to the microscopic description of nuclear reactions are now under development. In my talk, I will first discuss our recent calculations of the ^4He total photo-absorption cross section using two- and three-nucleon interactions from chiral effective field theory [3]. I will then outline our effort to augment the NCSM by the resonating group method (RGM) technique to develop a new method capable of describing simultaneously both bound states and nuclear reactions on light nuclei [4]. This approach, which preserves translational symmetry and the Pauli principle, will allow us to calculate cross sections of reactions important for astrophysics and describe weakly-bound systems from first principles. I will present our first phase shift results for neutron scattering off ^3H, ^4He and ^7Li and proton scattering off ^3He, ^4He and ^7Be using realistic nucleon-nucleon potentials. 3mm [1] P. Navr'atil, J. P. Vary and B. R. Barrett, Phys. Rev. C 62, 054311 (2000). [2] P. Navr'atil and V. G. Gueorguiev and J. P. Vary, W. E. Ormand and A. Nogga, Phys. Rev. Lett. 99, 042501 (2007). [3] S. Quaglioni and P. Navr'atil, Phys. Lett. B 652, 370 (2007). [4] S. Quaglioni and P. Navr'atil, arXiv:0712.0855.

  8. An investigation of ab initio shell-model interactions derived by no-core shell model

    NASA Astrophysics Data System (ADS)

    Wang, XiaoBao; Dong, GuoXiang; Li, QingFeng; Shen, CaiWan; Yu, ShaoYing

    2016-09-01

    The microscopic shell-model effective interactions are mainly based on the many-body perturbation theory (MBPT), the first work of which can be traced to Brown and Kuo's first attempt in 1966, derived from the Hamada-Johnston nucleon-nucleon potential. However, the convergence of the MBPT is still unclear. On the other hand, ab initio theories, such as Green's function Monte Carlo (GFMC), no-core shell model (NCSM), and coupled-cluster theory with single and double excitations (CCSD), have made many progress in recent years. However, due to the increasing demanding of computing resources, these ab initio applications are usually limited to nuclei with mass up to A = 16. Recently, people have realized the ab initio construction of valence-space effective interactions, which is obtained through a second-time renormalization, or to be more exactly, projecting the full-manybody Hamiltonian into core, one-body, and two-body cluster parts. In this paper, we present the investigation of such ab initio shell-model interactions, by the recent derived sd-shell effective interactions based on effective J-matrix Inverse Scattering Potential (JISP) and chiral effective-field theory (EFT) through NCSM. In this work, we have seen the similarity between the ab initio shellmodel interactions and the interactions obtained by MBPT or by empirical fitting. Without the inclusion of three-body (3-bd) force, the ab initio shell-model interactions still share similar defects with the microscopic interactions by MBPT, i.e., T = 1 channel is more attractive while T = 0 channel is more repulsive than empirical interactions. The progress to include more many-body correlations and 3-bd force is still badly needed, to see whether such efforts of ab initio shell-model interactions can reach similar precision as the interactions fitted to experimental data.

  9. Threshold displacement energy in GaN; Ab initio molecular dynamics study

    SciTech Connect

    Xiao, H. Y.; Gao, Fei; Zu, Xiaotao T.; Weber, William J.

    2009-06-25

    Large-scale ab initio molecular dynamics method has been used to determine the threshold displacement energies, Ed, along five specific directions and to determine the defect configurations created during low energy events. The Ed shows a significant dependence on direction. The minimum Ed is determined to be 39 eV along the <-1010> direction for a gallium atom and 17.0 eV along the <-1010> direction for a nitrogen atom, which are in reasonable agreement with the experimental measurements. The average Ed values determined are 73.2 and 32.4 eV for gallium and nitrogen atoms, respectively. The N defects created at low energy events along different crystallographic directions have a similar configuration (a N-N dumbbell configuration), but various configurations for Ga defects are formed in GaN.

  10. Ab Initio simulations of nonstoichiometric CdxTe1-x liquids

    NASA Astrophysics Data System (ADS)

    Ko, Eunjung; Alemany, M. M. G.; Derby, Jeffrey J.; Chelikowsky, James R.

    2005-08-01

    We present ab initio molecular-dynamics simulations for CdxTe1-x liquids where the composition is nonstoichiometric. The simulations are performed following Born-Oppenheimer molecular dynamics. The required forces are obtained from a solution of the Kohn-Sham equation using ab initio pseudopotentials. We consider stoichiometries of the form: CdxTe1-x, where x =0.2, 0.4, 0.6, and 0.8. For each composition of the melt, we consider a range of temperatures near the experimentally determined liquid temperatures. We examine the microstructural properties of the melt, the viscosity, and self-diffusion properties of the liquid as a function of the stoichiometry and temperature. We also perform an analysis of the distribution of the electronic density of states in these liquids. We find that structural changes in the local order, experimentally predicted to occur when the concentration of Cd is increased, are closely related to changes in the electronic properties of the melt.

  11. Can an ab initio three-body virial equation describe the mercury gas phase?

    PubMed

    Wiebke, J; Wormit, M; Hellmann, R; Pahl, E; Schwerdtfeger, P

    2014-03-27

    We report a sixth-order ab initio virial equation of state (EOS) for mercury. The virial coefficients were determined in the temperature range from 500 to 7750 K using a three-body approximation to the N-body interaction potential. The underlying two-body and three-body potentials were fitted to highly accurate Coupled-Cluster interaction energies of Hg2 (Pahl, E.; Figgen, D.; Thierfelder, C.; Peterson, K. A.; Calvo, F.; Schwerdtfeger, P. J. Chem. Phys. 2010, 132, 114301-1) and equilateral-triangular configurations of Hg3. We find the virial coefficients of order four and higher to be negative and to have large absolute values over the entire temperature range considered. The validity of our three-body, sixth-order EOS seems to be limited to small densities of about 1.5 g cm(-3) and somewhat higher densities at higher temperatures. Termwise analysis and comparison to experimental gas-phase data suggest a small convergence radius of the virial EOS itself as well as a failure of the three-body interaction model (i.e., poor convergence of the many-body expansion for mercury). We conjecture that the nth-order term of the virial EOS is to be evaluated from the full n-body interaction potential for a quantitative picture. Consequently, an ab initio three-body virial equation cannot describe the mercury gas phase. PMID:24547987

  12. Vibrational spectroscopic investigations, ab initio and DFT studies on 7-bromo-5-chloro-8-hydroxyquinoline.

    PubMed

    Arjunan, V; Mohan, S; Ravindran, P; Mythili, C V

    2009-05-01

    The Fourier transform infrared (FTIR) and FT-Raman spectra of 7-bromo-5-chloro-8-hydroxyquinoline (BCHQ) have been measured in the range 4000-400 and 4000-100cm(-1), respectively. Complete vibrational assignment and analysis of the fundamental modes of the compound were carried out using the observed FTIR and FT-Raman data. The geometry was optimised without any symmetry constrains using the DFT/B3LYP and HF methods with 6-31G** basis set. The vibrational frequencies which were determined experimentally are compared with those obtained theoretically from ab initio HF and density functional theory (DFT) gradient calculations employing the HF/6-31G** and B3LYP/6-31G** methods for the optimised geometry of the compound. The structural parameters and normal modes of vibration obtained from HF and DFT methods are in good agreement with the experimental data. Normal coordinate analysis was also carried out with ab initio force fields utilising Wilson's FG matrix method. PMID:19112045

  13. Vibrational spectroscopic investigations, ab initio and DFT studies on 7-bromo-5-chloro-8-hydroxyquinoline

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Mohan, S.; Ravindran, P.; Mythili, C. V.

    2009-05-01

    The Fourier transform infrared (FTIR) and FT-Raman spectra of 7-bromo-5-chloro-8-hydroxyquinoline (BCHQ) have been measured in the range 4000-400 and 4000-100 cm -1, respectively. Complete vibrational assignment and analysis of the fundamental modes of the compound were carried out using the observed FTIR and FT-Raman data. The geometry was optimised without any symmetry constrains using the DFT/B3LYP and HF methods with 6-31G** basis set. The vibrational frequencies which were determined experimentally are compared with those obtained theoretically from ab initio HF and density functional theory (DFT) gradient calculations employing the HF/6-31G** and B3LYP/6-31G** methods for the optimised geometry of the compound. The structural parameters and normal modes of vibration obtained from HF and DFT methods are in good agreement with the experimental data. Normal coordinate analysis was also carried out with ab initio force fields utilising Wilson's FG matrix method.

  14. Ab initio study of weakly bound halogen complexes: RX⋯PH3.

    PubMed

    Georg, Herbert C; Fileti, Eudes E; Malaspina, Thaciana

    2013-01-01

    Ab initio calculations were employed to study the role of ipso carbon hybridization in halogenated compounds RX (R=methyl, phenyl, acetyl, H and X=F, Cl, Br and I) and its interaction with a phosphorus atom, as occurs in the halogen bonded complex type RX⋯PH3. The analysis was performed using ab initio MP2, MP4 and CCSD(T) methods. Systematic energy analysis found that the interaction energies are in the range -4.14 to -11.92 kJ mol(-1) (at MP2 level without ZPE correction). Effects of electronic correlation levels were evaluated at MP4 and CCSD(T) levels and a reduction of up to 27% in interaction energy obtained in MP2 was observed. Analysis of the electrostatic maps confirms that the PhCl⋯PH3 and all MeX⋯PH3 complexes are unstable. NBO analysis suggested that the charge transfer between the moieties is bigger when using iodine than bromine and chlorine. The electrical properties of these complexes (dipole and polarizability) were determined and the most important observed aspect was the systematic increase at the dipole polarizability, given by the interaction polarizability. This increase is in the range of 0.7-6.7 u.a. (about 3-7%). PMID:22895850

  15. Toward spectroscopically accurate global ab initio potential energy surface for the acetylene-vinylidene isomerization

    SciTech Connect

    Han, Huixian; Li, Anyang; Guo, Hua

    2014-12-28

    A new full-dimensional global potential energy surface (PES) for the acetylene-vinylidene isomerization on the ground (S{sub 0}) electronic state has been constructed by fitting ∼37 000 high-level ab initio points using the permutation invariant polynomial-neural network method with a root mean square error of 9.54 cm{sup −1}. The geometries and harmonic vibrational frequencies of acetylene, vinylidene, and all other stationary points (two distinct transition states and one secondary minimum in between) have been determined on this PES. Furthermore, acetylene vibrational energy levels have been calculated using the Lanczos algorithm with an exact (J = 0) Hamiltonian. The vibrational energies up to 12 700 cm{sup −1} above the zero-point energy are in excellent agreement with the experimentally derived effective Hamiltonians, suggesting that the PES is approaching spectroscopic accuracy. In addition, analyses of the wavefunctions confirm the experimentally observed emergence of the local bending and counter-rotational modes in the highly excited bending vibrational states. The reproduction of the experimentally derived effective Hamiltonians for highly excited bending states signals the coming of age for the ab initio based PES, which can now be trusted for studying the isomerization reaction.

  16. Ab Initio Potential Energy Surfaces and the Calculation of Accurate Vibrational Frequencies

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.; Martin, Jan M. L.; Taylor, Peter R.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Due to advances in quantum mechanical methods over the last few years, it is now possible to determine ab initio potential energy surfaces in which fundamental vibrational frequencies are accurate to within plus or minus 8 cm(exp -1) on average, and molecular bond distances are accurate to within plus or minus 0.001-0.003 Angstroms, depending on the nature of the bond. That is, the potential energy surfaces have not been scaled or empirically adjusted in any way, showing that theoretical methods have progressed to the point of being useful in analyzing spectra that are not from a tightly controlled laboratory environment, such as vibrational spectra from the interstellar medium. Some recent examples demonstrating this accuracy will be presented and discussed. These include the HNO, CH4, C2H4, and ClCN molecules. The HNO molecule is interesting due to the very large H-N anharmonicity, while ClCN has a very large Fermi resonance. The ab initio studies for the CH4 and C2H4 molecules present the first accurate full quartic force fields of any kind (i.e., whether theoretical or empirical) for a five-atom and six-atom system, respectively.

  17. Electron transport in extended carbon-nanotube/metal contacts: Ab initio based Green function method

    NASA Astrophysics Data System (ADS)

    Fediai, Artem; Ryndyk, Dmitry A.; Cuniberti, Gianaurelio

    2015-04-01

    We have developed a new method that is able to predict the electrical properties of the source and drain contacts in realistic carbon nanotube field effect transistors (CNTFETs). It is based on large-scale ab initio calculations combined with a Green function approach. For the first time, both internal and external parts of a realistic CNT-metal contact are taken into account at the ab initio level. We have developed the procedure allowing direct calculation of the self-energy for an extended contact. Within the method, it is possible to calculate the transmission coefficient through a contact of both finite and infinite length; the local density of states can be determined in both free and embedded CNT segments. We found perfect agreement with the experimental data for Pd and Al contacts. We have explained why CNTFETs with Pd electrodes are p -type FETs with ohmic contacts, which can carry current close to the ballistic limit (provided contact length is large enough), whereas in CNT-Al contacts transmission is suppressed to a significant extent, especially for holes.

  18. Direct phase selection of initial phases from single-wavelength anomalous dispersion (SAD) for the improvement of electron density and ab initio structure determination

    SciTech Connect

    Chen, Chung-De; Huang, Yen-Chieh; Chiang, Hsin-Lin; Hsieh, Yin-Cheng; Guan, Hong-Hsiang; Chuankhayan, Phimonphan; Chen, Chun-Jung

    2014-09-01

    A novel direct phase-selection method to select optimized phases from the ambiguous phases of a subset of reflections to replace the corresponding initial SAD phases has been developed. With the improved phases, the completeness of built residues of protein molecules is enhanced for efficient structure determination. Optimization of the initial phasing has been a decisive factor in the success of the subsequent electron-density modification, model building and structure determination of biological macromolecules using the single-wavelength anomalous dispersion (SAD) method. Two possible phase solutions (ϕ{sub 1} and ϕ{sub 2}) generated from two symmetric phase triangles in the Harker construction for the SAD method cause the well known phase ambiguity. A novel direct phase-selection method utilizing the θ{sub DS} list as a criterion to select optimized phases ϕ{sub am} from ϕ{sub 1} or ϕ{sub 2} of a subset of reflections with a high percentage of correct phases to replace the corresponding initial SAD phases ϕ{sub SAD} has been developed. Based on this work, reflections with an angle θ{sub DS} in the range 35–145° are selected for an optimized improvement, where θ{sub DS} is the angle between the initial phase ϕ{sub SAD} and a preliminary density-modification (DM) phase ϕ{sub DM}{sup NHL}. The results show that utilizing the additional direct phase-selection step prior to simple solvent flattening without phase combination using existing DM programs, such as RESOLVE or DM from CCP4, significantly improves the final phases in terms of increased correlation coefficients of electron-density maps and diminished mean phase errors. With the improved phases and density maps from the direct phase-selection method, the completeness of residues of protein molecules built with main chains and side chains is enhanced for efficient structure determination.

  19. Characterization and ab initio XRPD structure determination of a novel silicate with Vierer single chains: the crystal structure of NaYSi2O6.

    PubMed

    Többens, Daniel M; Kahlenberg, Volker; Kaindl, Reinhard

    2005-12-12

    The crystal structure of a sodium yttrium silicate with composition NaYSi2O6 has been determined from laboratory X-ray powder diffraction data by simulated annealing, and has been subsequently refined with the Rietveld technique. The compound is monoclinic with space group P2(1)/c and unit cell parameters of a=5.40787(2) A, b=13.69784(5) A, c=7.58431(3) A, and beta=109.9140(3) degrees at 23.5 degrees C (Z=4). The structure was found to be a single-chain silicate with a chain periodicity of four. The two symmetry dependent [Si4O12] chains in the unit cell are parallel to c. A prominent feature is the strong folding of the crankshaft-like chains within the b,c-plane resulting in intrachain Si-Si-Si angles close to 90 degrees. The coordination of the Y3+ ions by O2- is 7-fold in the form of slightly irregular pentagonal bipyramids, with oxygen atoms from four different chains contributing to the coordination polyhedron. Na+ ions are irregularly coordinated by 10 oxygens from two neighboring chains. No disorder of Na+ and Y3+ between the two nontetrahedral cation sites could be observed. Furthermore, micro-Raman spectra have been obtained from the polycrystalline material. PMID:16323944

  20. Quantum fluctuations and isotope effects in ab initio descriptions of water

    SciTech Connect

    Wang, Lu; Markland, Thomas E.; Ceriotti, Michele

    2014-09-14

    Isotope substitution is extensively used to investigate the microscopic behavior of hydrogen bonded systems such as liquid water. The changes in structure and stability of these systems upon isotope substitution arise entirely from the quantum mechanical nature of the nuclei. Here, we provide a fully ab initio determination of the isotope exchange free energy and fractionation ratio of hydrogen and deuterium in water treating exactly nuclear quantum effects and explicitly modeling the quantum nature of the electrons. This allows us to assess how quantum effects in water manifest as isotope effects, and unravel how the interplay between electronic exchange and correlation and nuclear quantum fluctuations determine the structure of the hydrogen bond in water.

  1. Ab Initio Calculations of the Electronic Structures and Biological Functions of Protein Molecules

    NASA Astrophysics Data System (ADS)

    Zheng, Haoping

    The self-consistent cluster-embedding (SCCE) calculation method reduces the computational effort from M3 to about M1 (M is the number of atoms in the system) with precise calculations. Thus the ab initio, all-electron calculation of the electronic structure and biological function of protein molecule has become a reality, which will promote new proteomics considerably. The calculated results of two real protein molecules, the trypsin inhibitor from the seeds of squash Cucurbita maxima (CMTI-I, 436 atoms) and the ascaris trypsin inhibitor (912 atoms, two three-dimensional structures), will be presented in this paper. The reactive sites of the inhibitors are determined and explained. The accuracy of structure determination of the inhibitors are tested theoretically.

  2. Ab Initio Calculations of the Electronic Structures and Biological Functions of Protein Molecules

    NASA Astrophysics Data System (ADS)

    Zheng, Haoping

    2003-04-01

    The self-consistent cluster-embedding (SCCE) calculation method reduces the computational effort from M3 to about M1 (M is the number of atoms in the system) with unchanged calculation precision. So the ab initio, all-electron calculation of the electronic structure and biological function of protein molecule becomes a reality, which will promote new proteomics considerably. The calculated results of two real protein molecules, the trypsin inhibitor from the seeds of squash Cucurbita maxima (CMTI-I, 436 atoms) and the Ascaris trypsin inhibitor (912 atoms, two three-dimensional structures), are presented. The reactive sites of the inhibitors are determined and explained. The precision of structure determination of inhibitors are tested theoretically.

  3. Ab initio simulations for the ion-ion structure factor of warm dense aluminum.

    PubMed

    Rüter, Hannes R; Redmer, Ronald

    2014-04-11

    We perform ab initio simulations based on finite-temperature density functional theory in order to determine the static and dynamic ion-ion structure factor in aluminum. We calculate the dynamic structure factor via the intermediate scattering function and extract the dispersion relation for the collective excitations. The results are compared with available experimental x-ray scattering data. Very good agreement is obtained for the liquid metal domain. In addition we perform simulations for warm dense aluminum in order to obtain the ion dynamics in this strongly correlated quantum regime. We determine the sound velocity for both liquid and warm dense aluminum which can be checked experimentally using narrow-bandwidth free electron laser radiation. PMID:24765982

  4. Efficient ab initio free energy calculations by classically assisted trajectory sampling

    NASA Astrophysics Data System (ADS)

    Wilson, Hugh F.

    2015-12-01

    A method for efficiently performing ab initio free energy calculations based on coupling constant thermodynamic integration is demonstrated. By the use of Boltzmann-weighted sums over states generated from a classical ensemble, the free energy difference between the classical and ab initio ensembles is readily available without the need for time-consuming integration over molecular dynamics trajectories. Convergence and errors in this scheme are discussed and characterised in terms of a quantity representing the degree of misfit between the classical and ab initio systems. Smaller but still substantial efficiency gains over molecular dynamics are also demonstrated for the calculation of average properties such as pressure and total energy for systems in equilibrium.

  5. Electron Transport through Polyene Junctions in between Carbon Nanotubes: an Ab Initio Realization

    NASA Astrophysics Data System (ADS)

    Chen, Yiing-Rei; Chen, Kai-Yu; Dou, Kun-Peng; Tai, Jung-Shen; Lee, Hsin-Han; Kaun, Chao-Cheng

    With both ab initio and tight-binding model calculations, we study a system of polyene bridged armchair carbon nanotube electrodes, considering one-polyene and two-polyene cases, to address aspects of quantum transport through junctions with multiple conjugated molecules. The ab initio results of the two-polyene cases not only show the interference effect in transmission, but also the sensitive dependence of such effect on the combination of relative contact sites, which agrees nicely with the tight-binding model. Moreover, we show that the discrepancy mainly brought by ab initio relaxation provides an insight into the influence upon transmission spectra, from the junction's geometry, bonding and effective potential. This work was supported by the Ministry of Science and Technology of the Republic of China under Grant Nos. 99-2112-M-003-012-MY2 and 103-2622-E-002-031, and the National Center for Theoretical Sciences of Taiwan.

  6. Exploring the speed and performance of molecular replacement with AMPLE using QUARK ab initio protein models

    SciTech Connect

    Keegan, Ronan M.; Bibby, Jaclyn; Thomas, Jens; Xu, Dong; Zhang, Yang; Mayans, Olga; Winn, Martyn D.; Rigden, Daniel J.

    2015-02-01

    Two ab initio modelling programs solve complementary sets of targets, enhancing the success of AMPLE with small proteins. AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected.

  7. An ab initio-based Er–He interatomic potential in hcp Er

    SciTech Connect

    Yang, Li; ye, Yeting; Fan, K. M.; Shen, Huahai; Peng, Shuming; Long, XG; Zhou, X. S.; Zu, Xiaotao; Gao, Fei

    2014-09-01

    We have developed an empirical erbium-helium (Er-He) potential by fitting to the results calculated from ab initio method. Based on the electronic hybridization between Er and He atoms, an s-band model, along with a repulsive pair potential, has been derived to describe the Er-He interaction. The atomic configurations and the formation energies of single He defects, small He interstitial clusters (Hen) and He-vacancy (HenV ) clusters obtained by ab initio calculations are used as the fitting database. The binding energies and relative stabilities of the HnVm clusters are studied by the present potential and compared with the ab initio calculations. The Er-He potential is also applied to study the migration of He in hcp-Er at different temperatures, and He clustering is found to occur at 600 K in hcp Er crystal, which may be due to the anisotropic migration behavior of He interstitials.

  8. An Efficient Time-Stepping Scheme for Ab Initio Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Tsuchida, Eiji

    2016-08-01

    In ab initio molecular dynamics simulations of real-world problems, the simple Verlet method is still widely used for integrating the equations of motion, while more efficient algorithms are routinely used in classical molecular dynamics. We show that if the Verlet method is used in conjunction with pre- and postprocessing, the accuracy of the time integration is significantly improved with only a small computational overhead. We also propose several extensions of the algorithm required for use in ab initio molecular dynamics. The validity of the processed Verlet method is demonstrated in several examples including ab initio molecular dynamics simulations of liquid water. The structural properties obtained from the processed Verlet method are found to be sufficiently accurate even for large time steps close to the stability limit. This approach results in a 2× performance gain over the standard Verlet method for a given accuracy. We also show how to generate a canonical ensemble within this approach.

  9. Account of helical and rotational symmetries in the linear augmented cylindrical wave method for calculating the electronic structure of nanotubes: Towards the ab initio determination of the band structure of a (100, 99) tubule

    NASA Astrophysics Data System (ADS)

    D'Yachkov, P. N.; Makaev, D. V.

    2007-11-01

    Every carbon single-walled nanotube (SWNT) can be generated by first mapping only two nearest-neighbor C atoms onto a surface of a cylinder and then using the rotational and helical symmetry operators to determine the remainder of the tubule [C. T. White , Phys. Rev. B 47, 5485 (1993)]. With account of these symmetries, we developed a symmetry-adapted version of a linear augmented cylindrical wave method. In this case, the cells contain only two carbon atoms, and the ab initio theory becomes applicable to any SWNT independent of the number of atoms in a translational unit cell. The approximations are made in the sense of muffin-tin (MT) potentials and local-density-functional theory only. An electronic potential is suggested to be spherically symmetrical in the regions of atoms and constant in an interspherical region up to the two essentially impenetrable cylinder-shaped potential barriers. To construct the basis wave functions, the solutions of the Schrödinger equation for the interspherical and MT regions of the tubule were sewn together using a theorem of addition for cylindrical functions, the resulting basis functions being continuous and differentiable anywhere in the system. With account of analytical equations for these functions, the overlap and Hamiltonian integrals are calculated, which permits determination of electronic structure of nanotube. We have calculated the total band structures and densities of states of the chiral and achiral, semiconducting, semimetallic, and metallic carbon SWNTs (13, 0), (12, 2), (11, 3), (10, 5), (9, 6), (8, 7), (7, 7), (12, 4), and (100, 99) containing up to the 118 804 atoms per translational unit cell. Even for the (100, 99) system with huge unit cell, the band structure can be easily calculated and the results can be presented in the standard form of four curves for the valence band plus one curve for the low-energy states of conduction band. About 150 functions produce convergence of the band structures better then

  10. Quantitative Comparison of a New Ab Initio Micrometeor Ablation Model with an Observationally Verifiable Standard Model

    NASA Astrophysics Data System (ADS)

    Meisel, David D.; Szasz, Csilla; Kero, Johan

    2008-06-01

    The Arecibo UHF radar is able to detect the head-echos of micron-sized meteoroids up to velocities of 75 km/s over a height range of 80 140 km. Because of their small size there are many uncertainties involved in calculating their above atmosphere properties as needed for orbit determination. An ab initio model of meteor ablation has been devised that should work over the mass range 10-16 kg to 10-7 kg, but the faint end of this range cannot be observed by any other method and so direct verification is not possible. On the other hand, the EISCAT UHF radar system detects micrometeors in the high mass part of this range and its observations can be fit to a “standard” ablation model and calibrated to optical observations (Szasz et al. 2007). In this paper, we present a preliminary comparison of the two models, one observationally confirmable. Among the features of the ab initio model that are different from the “standard” model are: (1) uses the experimentally based low pressure vaporization theory of O’Hanlon (A users’s guide to vacuum technology, 2003) for ablation, (2) uses velocity dependent functions fit from experimental data on heat transfer, luminosity and ionization efficiencies measured by Friichtenicht and Becker (NASA Special Publication 319: 53, 1973) for micron sized particles, (3) assumes a density and temperature dependence of the micrometeoroids and ablation product specific heats, (4) assumes a density and size dependent value for the thermal emissivity and (5) uses a unified synthesis of experimental data for the most important meteoroid elements and their oxides through least square fits (as functions of temperature, density, and/or melting point) of the tables of thermodynamic parameters given in Weast (CRC Handbook of Physics and Chemistry, 1984), Gray (American Institute of Physics Handbook, 1972), and Cox (Allen’s Astrophysical Quantities 2000). This utilization of mostly experimentally determined data is the main reason for

  11. Heats of Segregation of BCC Binaries from Ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2003-01-01

    We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  12. Comparison of DFT and ab initio QM/MM methods for modelling reaction in chorismate synthase

    NASA Astrophysics Data System (ADS)

    Lawan, Narin; Ranaghan, Kara E.; Manby, Frederick R.; Mulholland, Adrian J.

    2014-07-01

    Quantum mechanics/molecular mechanics (QM/MM) methods are a popular tool in the investigation of enzyme reactions. Here, we compare B3LYP density functional theory (DFT) and ab initio QM/MM methods for modelling the conversion of 5-enolpyruvylshikimate-3-phosphate to chorismate in chorismate synthase. Good agreement with experimental data is only obtained at the SCS-MP2/CHARMM27 level for a reaction mechanism in which phosphate elimination precedes proton transfer. B3LYP predicts reaction energetics that are qualitatively wrong, stressing the need for ab initio QM/MM methods, and caution in interpretation of DFT results for this enzyme.

  13. Ab initio Ti-Zr-Ni phase diagram predicts stability of icosahedral TiZrNi quasicrystals

    NASA Astrophysics Data System (ADS)

    Hennig, R. G.; Carlsson, A. E.; Kelton, K. F.; Henley, C. L.

    2005-04-01

    The ab initio phase diagram determines the energetic stability of the icosahedral TiZrNi quasicrystal. The complete ab initio zero-temperature ternary phase diagram is constructed from the calculated energies of the elemental, binary and ternary Ti-Zr-Ni phases. For this, the icosahedral i -TiZrNi quasicrystal is approximated by periodic structures of up to 123 atoms/unit cell, based on a decorated-tiling model [R. G. Hennig, K. F. Kelton, A. E. Carlsson, and C. L. Henley, Phys. Rev. B 67, 134202 (2003)]. The approximant structures containing the 45-atom Bergman cluster are nearly degenerate in energy, and are all energetically stable against the competing phases. It is concluded that i -TiZrNi is a ground-state quasicrystal, as it is experimentally the low-temperature phase for its composition.

  14. Theoretical study of ionic liquids based on the cholinium cation. Ab initio simulations of their condensed phases.

    PubMed

    Campetella, Marco; Bodo, Enrico; Montagna, Maria; De Santis, Serena; Gontrani, Lorenzo

    2016-03-14

    We have explored by means of ab initio molecular dynamics the homologue series of 11 different ionic liquids based on the combination of the cholinium cation with deprotonated amino acid anions. We present a structural analysis of the liquid states of these compounds as revealed by accurate ab initio computations of the forces. We highlight the persistent structural motifs that see the ionic couple as the basic building block of the liquid whereby a strong hydrogen bonding network substantially determines the short range structural behavior of the bulk state. Other minor docking features of the interaction network are also discovered and described. Special cases along the series such as Cysteine and Phenylalanine are discussed in the view of their peculiar properties due to zwitterion formation and additional long-range structural organization. PMID:26979694

  15. Theoretical study of ionic liquids based on the cholinium cation. Ab initio simulations of their condensed phases

    NASA Astrophysics Data System (ADS)

    Campetella, Marco; Bodo, Enrico; Montagna, Maria; De Santis, Serena; Gontrani, Lorenzo

    2016-03-01

    We have explored by means of ab initio molecular dynamics the homologue series of 11 different ionic liquids based on the combination of the cholinium cation with deprotonated amino acid anions. We present a structural analysis of the liquid states of these compounds as revealed by accurate ab initio computations of the forces. We highlight the persistent structural motifs that see the ionic couple as the basic building block of the liquid whereby a strong hydrogen bonding network substantially determines the short range structural behavior of the bulk state. Other minor docking features of the interaction network are also discovered and described. Special cases along the series such as Cysteine and Phenylalanine are discussed in the view of their peculiar properties due to zwitterion formation and additional long-range structural organization.

  16. Ab initio investigation of electronic properties of the magnesium hydride molecular ion.

    PubMed

    Khemiri, Noura; Dardouri, Riadh; Oujia, Brahim; Gadéa, Florent Xavier

    2013-09-12

    In this work, adiabatic potential energy curves, spectroscopic constants, dipole moments, and vibrational levels for numerous electronic states of magnesium hydride molecular ion (MgH(+)) are computed. These properties are determined by the use of an ab initio method involving a nonempirical pseudopotential for the magnesium core (Mg), the core polarization potential (CPP), the l-dependent cutoff functions and the full valence configuration interaction (FCI). The molecular ion is thus treated as a two-electron system. Our calculations on the MgH(+) molecular ion extend previous theoretical works to numerous electronic excited states in the various symmetries. A good agreement with the available theoretical and experimental works is obtained for the spectroscopic constants, the adiabatic potential energy curves, and the dipole moments for the lowest states of MgH(+). PMID:23944679

  17. Ab Initio Atomic Simulations of Antisite Pair Recovery in Cubic Silicon Carbide

    SciTech Connect

    Gao, Fei; Du, Jincheng; Bylaska, Eric J.; Posselt, Matthias; Weber, William J.

    2007-05-28

    The thermal stability of an antisite pair in 3C-SiC is studied using ab initio molecular dynamics within the framework of density functional theory. The lifetime of the antisite pair configuration is calculated for temperatures between 1800 and 2250 K, and the effective activation energy for antisite pair recombination is determined to be 2.52 eV. The recombination energy path and static energy barrier are also calculated using the nudged elastic band method, along with the dimer method to accurately locate the transition states. The consistency of the results suggests that the antisite pair cannot be correlated with the DI photoluminescence center, as proposed by previously theoretical interpretations. An extended exchange mechanism is found for the antisite pair recombination, and this may be a dominant mechanism for antisite pair recombination and diffusion of impurities in compound semiconductors.

  18. Ab initio study of the anharmonic lattice dynamics of iron at the γ -δ phase transition

    NASA Astrophysics Data System (ADS)

    Lian, Chao-Sheng; Wang, Jian-Tao; Chen, Changfeng

    2015-11-01

    We report calculations of phonon dispersions of iron (Fe) at its γ -δ phase transition using a self-consistent ab initio lattice dynamical method in conjunction with an effective magnetic force approach via the antiferromagnetic approximation. Our results show that anharmonic phonon-phonon interactions play a crucial role in stabilizing the δ -Fe phase in the open bcc lattice. In contrast, the lattice dynamics of the close-packed fcc γ -Fe phase are dominated by magnetic interactions. Simultaneous considerations of the lattice anharmonic and magnetic interactions produced temperature-dependent phonon dispersions for δ -Fe and γ -Fe phases in excellent agreement with recent experimental measurements. The present results highlight the key role of lattice anharmonicity in determining the structural stability of iron at high temperatures, which has significant implications for other high-temperature paramagnetic metals like Ce and Pu.

  19. Ab initio based investigation of interstitial interactions and Snoek relaxation in Nb-O

    NASA Astrophysics Data System (ADS)

    Dmitriev, V. V.; Blanter, M. S.; Ruban, A. V.; Johansson, B.

    2012-02-01

    Chemical and strain-induced effective pair interactions of interstitial oxygen atoms in bcc Nb have been determined in supercell first-principles calculations using Vienna ab initio simulation package (VASP). The strain-induced interactions are in reasonable agreement with those obtained earlier within a phenomenological microscopic Krivoglaz-Kanzaki-Khachaturyan model (KKKM). At the same time, the chemical interactions, which have been considered to be small in earlier theoretical considerations, turned out to be dominating at the first several coordination shells. The obtained interactions have been used in calculations of the concentration- and temperature-dependence of the internal friction Snoek peak. The theoretical results are found to be in good agreement with the existing experimental data.

  20. Ab initio calculation of the ion feature in x-ray Thomson scattering.

    PubMed

    Plagemann, Kai-Uwe; Rüter, Hannes R; Bornath, Thomas; Shihab, Mohammed; Desjarlais, Michael P; Fortmann, Carsten; Glenzer, Siegfried H; Redmer, Ronald

    2015-07-01

    The spectrum of x-ray Thomson scattering is proportional to the dynamic structure factor. An important contribution is the ion feature which describes elastic scattering of x rays off electrons. We apply an ab initio method for the calculation of the form factor of bound electrons, the slope of the screening cloud of free electrons, and the ion-ion structure factor in warm dense beryllium. With the presented method we can calculate the ion feature from first principles. These results will facilitate a better understanding of x-ray scattering in warm dense matter and an accurate measurement of ion temperatures which would allow determining nonequilibrium conditions, e.g., along shock propagation. PMID:26274290

  1. Ab initio calculations of vacancy interactions with solute atoms in bcc Fe

    NASA Astrophysics Data System (ADS)

    Vincent, E.; Becquart, C. S.; Domain, C.

    2005-01-01

    Solute Cu plays a major role in the embrittlement of reactor pressure vessel (RPV) steels under radiation. In RPV steels and dilute FeCu alloys, the tomographic atom probe has revealed the formation of Cu atmospheres under neutron flux. More recently the role of other solutes such as Ni, Mn and Si which are also within the atmospheres has been put forward. It is thus very important to characterise the interactions of these solutes with radiation-induced point defects in order to understand the elementary mechanisms behind the formation of these atmospheres. We have investigated by ab initio calculations based on the density functional theory the interactions of point defects in dilute FeX alloys (X = Cu, Mn, Ni or Si). The structure of X-vacancy complexes has been determined, as well as their binding energies. Their relative stability is discussed and compared to experimental results obtained with model alloys.

  2. Ab initio study of the effect of vacancies on the thermal conductivity

    NASA Astrophysics Data System (ADS)

    Protik, Nakib; Carrete, Jesus; Mingo, Natalio; Katcho, Nebil; Broido, David

    Point defects and vacancies in particular can have a profound impact on phonon thermal transport. Examples are seen in diamond and cubic boron arsenide where large C and As vacancy concentrations give much lower thermal conductivity than expected. Here, we calculate the phonon-vacancy scattering rates using an ab initioGreen's function approach, which treats the scattering to all orders in contrast to standard perturbation theory approaches. The lattice thermal conductivity, k, is calculated from first principles by solving the Boltzmann transport equation for phonons, with interatomic force constants determined using density functional theory. The reduction in k with vacancy defect density is assessed. The phonon-vacancy scattering can show significant differences using the Green's function method compared to what would be predicted from the perturbative Born approximation, consistent with previous findings for diamond.

  3. Probing Defects and Correlations in the Hydrogen-Bond Network of ab Initio Water.

    PubMed

    Gasparotto, Piero; Hassanali, Ali A; Ceriotti, Michele

    2016-04-12

    The hydrogen-bond network of water is characterized by the presence of coordination defects relative to the ideal tetrahedral network of ice, whose fluctuations determine the static and time-dependent properties of the liquid. Because of topological constraints, such defects do not come alone but are highly correlated coming in a plethora of different pairs. Here we discuss in detail such correlations in the case of ab initio water models and show that they have interesting similarities to regular and defective solid phases of water. Although defect correlations involve deviations from idealized tetrahedrality, they can still be regarded as weaker hydrogen bonds that retain a high degree of directionality. We also investigate how the structure and population of coordination defects is affected by approximations to the interatomic potential, finding that, in most cases, the qualitative features of the hydrogen-bond network are remarkably robust. PMID:26881726

  4. Ab initio spectroscopic characterization of borane, BH, in its X1Σ+ electronic state.

    PubMed

    Koput, Jacek

    2015-11-15

    The accurate potential energy and electric dipole moment functions of borane, BH, in its X1Σ+ electronic state have been determined from ab initio calculations using the multireference averaged coupled-pair functional method in conjunction with the correlation-consistent core-valence basis sets up to septuple-zeta quality. The higher-order electron correlation, scalar relativistic, adiabatic, and nonadiabatic effects were discussed. Vibration-rotation energy levels of the (11)BH, (11)BD, (10)BH, and (10)BD isotopologues were predicted to near "spectroscopic" accuracy. For the main isotopologue (11)BH, the adiabatic dissociation energy D0 and the effective equilibrium internuclear distance r(e) were predicted to be 28,469 ± 10 cm(-1) and 1.23214 ± 0.0001 Å, respectively. PMID:26444679

  5. HEAT: High accuracy extrapolated ab initio thermochemistry. III. Additional improvements and overview.

    SciTech Connect

    Harding, M. E.; Vazquez, J.; Ruscic, B.; Wilson, A. K.; Gauss, J.; Stanton, J. F.; Chemical Sciences and Engineering Division; Univ. t Mainz; The Univ. of Texas; Univ. of North Texas

    2008-01-01

    Effects of increased basis-set size as well as a correlated treatment of the diagonal Born-Oppenheimer approximation are studied within the context of the high-accuracy extrapolated ab initio thermochemistry (HEAT) theoretical model chemistry. It is found that the addition of these ostensible improvements does little to increase the overall accuracy of HEAT for the determination of molecular atomization energies. Fortuitous cancellation of high-level effects is shown to give the overall HEAT strategy an accuracy that is, in fact, higher than most of its individual components. In addition, the issue of core-valence electron correlation separation is explored; it is found that approximate additive treatments of the two effects have limitations that are significant in the realm of <1 kJ mol{sup -1} theoretical thermochemistry.

  6. Ab initio study of intrinsic, H and He point defects in hcp-Er

    SciTech Connect

    Yang, Li; Peng, SM; Long, XG; Gao, Fei; Heinisch, Howard L.; Kurtz, Richard J.; Zu, Xiaotao T.

    2010-03-01

    Ab initio calculations based on density functional theory have been performed to determine the properties of self-interstitial atoms (SIAs), vacancies, and single H and He atoms in hcp-Er. The results show that the most stable configuration for an SIA is a basal octahedral (BO) configuration, while the octahedral (O), basal split (BS) and crowdion (C) interstitial configurations are less stable, followed by the split <0001> dumbbell and tetrahedral configurations. For both H and He defects, the formation energy of an interstitial atom is less than that of a substitutional atom in hcp-Er. Furthermore, the tetrahedral interstitial position is more stable than an octahedral position for both He and H interstitials. The hybridization of the He and H defects with Er atoms has been used to explain the relative stabilities of these defects in hcp-Er.

  7. Hydrogen-water mixtures in giant planet interiors studied with ab initio simulations

    NASA Astrophysics Data System (ADS)

    Soubiran, F.; Militzer, B.

    2015-12-01

    We study water-hydrogen mixtures under planetary interior conditions using ab initio molecular dynamics simulations. We determine the thermodynamic properties of various water-hydrogen mixing ratios at temperatures of 2000 and 6000 K for pressures of a few tens of GPa. These conditions are relevant for ice giant planets and for the outer envelope of the gas giants. We find that at 2000 K the mixture is in a molecular regime, while at 6000 K the dissociation of hydrogen and water is important and affects the thermodynamic properties. We study the structure of the liquid and analyze the radial distribution function. We provide estimates for the transport properties, diffusion and viscosity, based on autocorrelation functions. We obtained viscosity estimates of the order of a few tenths of mPa s for the conditions under consideration. These results are relevant for dynamo simulations of ice giant planets.

  8. High-pressure crystalline polyethylene studied by x-ray diffraction and ab initio simulations

    SciTech Connect

    Fontana, L.; Vinh, Diep Q.; Santoro, M.; Gorelli, F. A.; Hanfland, M.

    2007-05-01

    Crystalline polyethylene was investigated under pressure between 0 and 40 GPa, up to 280 deg. C, by means of synchrotron x-ray powder diffraction and ab initio calculations. A rich polymorphism was unveiled, consisting of two new high-pressure monoclinic phases, in addition to the well-known orthorhombic one, which appear reversibly, although with strong hysteresis, upon increasing pressure above 6 GPa (P2{sub 1}/m, Z{sub chain}=1) and 14-16 GPa (A2/m, Z{sub chain}=2), respectively. The equation of state was determined for the three solid phases. We find that polyethylene is characterized by a sharp separation between strong covalent intrachain and weaker interchain interactions up to the maximum investigated pressure, which, in turn, places the ultimate chemical stability limit of polyethylene far beyond these thermodynamic conditions.

  9. 3,5-Difluorobenzonitrile: ab initio calculations, FTIR and Raman spectra.

    PubMed

    Rastogi, V K; Alcolea Palafox, M; Tanwar, R P; Mittal, Lalit

    2002-07-01

    Geometry, vibrational wavenumbers and several thermodynamic parameters were calculated using ab initio quantum chemical methods for the 3,5-difluorobenzonitrile molecule. The results were compared with the experimental values. With the help of three specific scaling procedures, the observed vibrational wavenumbers in FTIR and Raman spectra were analysed and assigned to different normal modes of the molecule. Most of the modes have wavenumbers in the expected range and the error obtained was in general very low. Using PEDs the contributions were determined for the different modes to each wavenumber. From the PED, it is apparent that the frequency corresponding to C[triple bond]N stretching contains 87% contribution from the C[triple bond]N stretching force constant and it mixes with the C-CN stretching mode 13 to the extent of 12%. Other general conclusions were also deduced. PMID:12164497

  10. Mapping Enzymatic Catalysis Using the Effective Fragment Molecular Orbital Method: Towards all ab initio Biochemistry

    PubMed Central

    Steinmann, Casper; Fedorov, Dmitri G.; Jensen, Jan H.

    2013-01-01

    We extend the Effective Fragment Molecular Orbital (EFMO) method to the frozen domain approach where only the geometry of an active part is optimized, while the many-body polarization effects are considered for the whole system. The new approach efficiently mapped out the entire reaction path of chorismate mutase in less than four days using 80 cores on 20 nodes, where the whole system containing 2398 atoms is treated in the ab initio fashion without using any force fields. The reaction path is constructed automatically with the only assumption of defining the reaction coordinate a priori. We determine the reaction barrier of chorismate mutase to be kcal mol−1 for MP2/cc-pVDZ and for MP2/cc-pVTZ in an ONIOM approach using EFMO-RHF/6-31G(d) for the high and low layers, respectively. PMID:23593259

  11. Ab-initio study of magnetism behavior in TiO2 semiconductor with structural defects

    NASA Astrophysics Data System (ADS)

    Zarhri, Z.; Houmad, M.; Ziat, Y.; El Rhazouani, O.; Slassi, A.; Benyoussef, A.; El Kenz, A.

    2016-05-01

    Magnetic, electronic and structural properties of titanium dioxide material with different structural defects are studied using the first-principles ab-initio calculations and the Korringa-Kohn-Rostoker method (KKR) combined with the coherent potential approximation (CPA) method in connection with the local density approximation (LDA). We investigated all structural defects in rutile TiO2 such as Titanium interstitial (Tii), Titanium anti-sites (Tio), Titanium vacancies (VTi), Oxygen interstitial (Oi), Oxygen anti-sites (OTi) and oxygen vacancies (Vo). Mechanisms of hybridization and interaction between magnetic atoms are investigated. The transition temperature is computed using the Mean Field Approximation (MFA).Magnetic stability energy of ferromagnetic and disordered local moment states is calculated to determine the most stable state. Titanium anti-sites have a half-metallic aspect. We also studied the change type caused by structural defects in this material.

  12. reaxFF Reactive Force Field for Disulfide Mechanochemistry, Fitted to Multireference ab Initio Data.

    PubMed

    Müller, Julian; Hartke, Bernd

    2016-08-01

    Mechanochemistry, in particular in the form of single-molecule atomic force microscopy experiments, is difficult to model theoretically, for two reasons: Covalent bond breaking is not captured accurately by single-determinant, single-reference quantum chemistry methods, and experimental times of milliseconds or longer are hard to simulate with any approach. Reactive force fields have the potential to alleviate both problems, as demonstrated in this work: Using nondeterministic global parameter optimization by evolutionary algorithms, we have fitted a reaxFF force field to high-level multireference ab initio data for disulfides. The resulting force field can be used to reliably model large, multifunctional mechanochemistry units with disulfide bonds as designed breaking points. Explorative calculations show that a significant part of the time scale gap between AFM experiments and dynamical simulations can be bridged with this approach. PMID:27415976

  13. Thermochemistry of Aqueous Hydroxyl Radical from Advances in Photoacoustic Calorimetry and ab Initio Continum Solvation Theory

    SciTech Connect

    Autrey, Thomas; Brown, Aaron K.; Camaioni, Donald M.; Dupuis, Michel; Foster, Nancy S.; Getty, April D.

    2004-03-31

    Photoacoustic signals from dilute ({approx}30 mM) solutions of H{sub 2}O{sub 2} were measured over the temperature range from 10-45 C to obtain the reaction enthalpy and volume change for H{sub 2}O{sub 2}(aq) {yields} 2 OH(aq) from which we ultimately determined {Delta}{sub f}G{sup o}, {Delta}{sub f}H{sup o} and partial molal volume, v{sup o}, of OH (aq). We find {Delta}{sub r}H = 46.8 {+-} 1.4 kcal/mol, which is 4 kcal/mol smaller than the gas phase bond energy, and {Delta}V{sub r} = 6.5 {+-} 0.4 mL/mol. The v{sup o} for OH in water is 14.4 {+-} 0.4 mL/ml: smaller than the v{sup o} of water. Using ab initio continuum theory, the hydration free energy is calculated to be -3.9 {+-} 0.3 kcal/mol (for standard states in number density concentration units) by a novel approach devised to capture in the definition of the solute cavity the strength and specific interactions of the solute with a water solvent molecule. The shape of the cavity is defined by ''rolling'' a 3 dimensional electron density isocontour of water on the ab initio water-OH minimum interaction surface. The value of the contour is selected to reproduce the volume of OH in water. We obtain for OH(aq): {Delta}{sub f}H{sup o} = -0.2 {+-} 1.4 and {Delta}{sub f}G{sup o} = 5.8 {+-} 0.4 kcal/mol that are in agreement with literature values. The results provide confidence in the pulsed PAC technique for measuring aqueous thermochemistry of radicals and open the way to obtaining thermochemistry for most radicals that can be formed by reaction of OH with aqueous substrates while advancing the field of continuum solvation theory towards ab initio-defined solute cavities.

  14. Ab initio study of the hydroxide ion-water clusters: An accurate determination of the thermodynamic properties for the processes nH2O+OH-→HO-(H2O)n (n=1-4)

    NASA Astrophysics Data System (ADS)

    Pliego, Josefredo R.; Riveros, José M.

    2000-03-01

    Clusters of hydroxide ion, HO-(H2O)n=1-4, have been studied by high level ab initio calculations in order to better understand the first coordination shell of OH- ions. Geometry optimizations were performed at Hartree-Fock, density functional theory and second order Møller-Plesset perturbation theory levels using the 6-31+G(d,p) basis set. Single point energy calculations were carried out on the optimized geometries using the more extended 6-311+G(2df,2p) basis set and a higher level of electron correlation, namely fourth-order Møller-Plesset perturbation theory. For the n=1-3 clusters, only structures with the hydroxide ion hydrogen bonded to all waters molecules were considered. For the n=4 cluster, three minima were found; the most stable species has all four waters directly bound to the hydroxide ion, while the other two clusters have only three waters in the first coordination shell. In addition, the transition state connecting the cluster containing four waters in the first coordination shell to the species having three waters in the coordination shell was characterized. The barrier for this rearrangement is very low (1.82 kcal/mol), and we predict this process to occur on the picosecond time scale. The thermodynamic properties (enthalpy, entropy and Gibbs free energy) for the formation of the clusters have been calculated for all the species (including the fully deuterated clusters). Comparison of our calculations with experimental data reveals good agreement in the free energy. Nevertheless, our ab initio results suggest that for the n>1 clusters, both -ΔH0 and -ΔS0 are larger than those reported from experiment and new experiments may be necessary to obtain accurate experimental values.

  15. Effect of electric field on the mechanical properties of bilayer boron nitride with AB stacking order: An ab initio study

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Faghihnasiri, M.; Malakpour, S.; Sahmani, S.

    2015-07-01

    In the current investigation, ab initio calculations are performed to explore the influence of electric field on the mechanical properties of bilayer boron nitride with AB stacking order (AB-2LBN). To accomplish this, density functional theory (DFT) within the framework of generalized gradient approximation (GGA) is implemented. It is demonstrated that the electric field has significant effects on Young's modulus and Poisson's ratio of AB-2LBN when its magnitude is small. With increasing the magnitude of electric field, these effects diminish so that the mechanical properties with and without considering the electric field become approximately identical. Also, it is shown that the equilibrium strain energy decreases linearly by increasing the magnitude of applied electric field.

  16. Deuteron-induced nucleon transfer reactions within an ab initio framework: First application to p -shell nuclei

    NASA Astrophysics Data System (ADS)

    Raimondi, Francesco; Hupin, Guillaume; Navrátil, Petr; Quaglioni, Sofia

    2016-05-01

    Background: Low-energy transfer reactions in which a proton is stripped from a deuteron projectile and dropped into a target play a crucial role in the formation of nuclei in both primordial and stellar nucleosynthesis, as well as in the study of exotic nuclei using radioactive beam facilities and inverse kinematics. Ab initio approaches have been successfully applied to describe the 3H (d ,n )4He and 3He(d ,p )4He fusion processes. Purpose: An ab initio treatment of transfer reactions would also be desirable for heavier targets. In this work, we extend the ab initio description of (d ,p ) reactions to processes with light p -shell nuclei. As a first application, we study the elastic scattering of deuterium on 7Li and the 7Li(d ,p )8Li transfer reaction based on a two-body Hamiltonian. Methods: We use the no-core shell model to compute the wave functions of the nuclei involved in the reaction, and describe the dynamics between targets and projectiles with the help of microscopic-cluster states in the spirit of the resonating group method. Results: The shapes of the excitation functions for deuterons impinging on 7Li are qualitatively reproduced up to the deuteron breakup energy. The interplay between d -7Li and p -8Li particle-decay channels determines some features of the 9Be spectrum above the d +7Li threshold. Our prediction for the parity of the 17.298 MeV resonance is at odds with the experimental assignment. Conclusions: Deuteron stripping reactions with p -shell targets can now be computed ab initio, but calculations are very demanding. A quantitative description of the 7Li(d ,p )8Li reaction will require further work to include the effect of three-nucleon forces and additional decay channels and to improve the convergence rate of our calculations.

  17. Structure and vibrational modes of AgI-doped AsSe glasses: Raman scattering and ab initio calculations

    SciTech Connect

    Kostadinova, O.; Chrissanthopoulos, A.; Petkova, T.; Petkov, P.; Yannopoulos, S.N.

    2011-02-15

    We report an investigation of the structure and vibrational modes of (AgI){sub x} (AsSe){sub 100-x}, bulk glasses using Raman spectroscopy and first principles calculations. The short- and medium-range structural order of the glasses was elucidated by analyzing the reduced Raman spectra, recorded at off-resonance conditions. Three distinct local environments were revealed for the AsSe glass including stoichiometric-like and As-rich network sub-structures, and cage-like molecules (As{sub 4}Se{sub n}, n=3, 4) decoupled from the network. To facilitate the interpretation of the Raman spectra ab initio calculations are employed to study the geometric and vibrational properties of As{sub 4}Se{sub n} molecular units that are parts of the glass structure. The incorporation of AgI causes appreciable structural changes into the glass structure. AgI is responsible for the population reduction of molecular units and for the degradation of the As-rich network-like sub-structure via the introduction of As-I terminal bonds. Ab initio calculations of mixed chalcohalide pyramids AsSe{sub m}I{sub 3-m} provided useful information augmenting the interpretation of the Raman spectra. -- Graphical abstract: Raman scattering and ab initio calculations are employed to study the structure of AgI-AsSe superionic glasses. The role of mixed chalcohalide pyramidal units as illustrated in the figure is elucidated. Display Omitted Research highlights: {yields} Doping binary As-Se glasses with AgI cause dramatic changes in glass structure. {yields} Raman scattering and ab initio calculations determine changes in short- and medium-range order. {yields} Three local environments exist in AsSe glass including a network sub-structure and cage-like molecules. {yields} Mixed chalcohalide pyramids AsSe{sub m}I{sub 3-m} dominate the AgI-doped glass structure.

  18. Reductive half-reaction of aldehyde oxidoreductase toward acetaldehyde: Ab initio and free energy quantum mechanical/molecular mechanical calculations

    NASA Astrophysics Data System (ADS)

    Dieterich, Johannes M.; Werner, Hans-Joachim; Mata, Ricardo A.; Metz, Sebastian; Thiel, Walter

    2010-01-01

    Energy and free energy barriers for acetaldehyde conversion in aldehyde oxidoreductase are determined for three reaction pathways using quantum mechanical/molecular mechanical (QM/MM) calculations on the solvated enzyme. Ab initio single-point QM/MM energies are obtained at the stationary points optimized at the DFT(B3LYP)/MM level. These ab initio calculations employ local correlation treatments [LMP2 and LCCSD(T0)] in combination with augmented triple- and quadruple-zeta basis sets, and the final coupled cluster results include MP2-based corrections for basis set incompleteness and for the domain approximation. Free energy perturbation (FEP) theory is used to generate free energy profiles at the DFT(B3LYP)/MM level for the most important reaction steps by sampling along the corresponding reaction paths using molecular dynamics. The ab initio and FEP QM/MM results are combined to derive improved estimates of the free energy barriers, which differ from the corresponding DFT(B3LYP)/MM energy barriers by about 3 kcal mol-1. The present results confirm the qualitative mechanistic conclusions from a previous DFT(B3LYP)/MM study. Most favorable is a three-step Lewis base catalyzed mechanism with an initial proton transfer from the cofactor to the Glu869 residue, a subsequent nucleophilic attack that yields a tetrahedral intermediate (IM2), and a final rate-limiting hydride transfer. The competing metal center activated pathway has the same final step but needs to overcome a higher barrier in the initial step on the route to IM2. The concerted mechanism has the highest free energy barrier and can be ruled out. While confirming the qualitative mechanistic scenario proposed previously on the basis of DFT(B3LYP)/MM energy profiles, the present ab initio and FEP QM/MM calculations provide corrections to the barriers that are important when aiming at high accuracy.

  19. Quantal Study of the Exchange Reaction for N + N2 using an ab initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Wang, Dunyou; Stallcop, James R.; Huo, Winifred M.; Dateo, Christopher E.; Schwenke, David W.; Partridge, Harry; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The N + N2 exchange rate is calculated using a time-dependent quantum dynamics method on a newly determined ab initio potential energy surface (PES) for the ground A" state. This ab initio PES shows a double barrier feature in the interaction region with the barrier height at 47.2 kcal/mol, and a shallow well between these two barriers, with the minimum at 43.7 kcal/mol. A quantum dynamics wave packet calculation has been carried out using the fitted PES to compute the cumulative reaction probability for the exchange reaction of N + N2(J=O). The J - K shift method is then employed to obtain the rate constant for this reaction. The calculated rate constant is compared with experimental data and a recent quasi-classical calculation using a LEPS PES. Significant differences are found between the present and quasiclassical results. The present rate calculation is the first accurate 3D quantal dynamics study for N + N2 reaction system and the ab initio PES reported here is the first such surface for N3.

  20. Scrutinizing negative thermal expansion in MOF-5 by scattering techniques and ab initio calculations.

    PubMed

    Lock, Nina; Christensen, Mogens; Wu, Yue; Peterson, Vanessa K; Thomsen, Maja K; Piltz, Ross O; Ramirez-Cuesta, Anibal J; McIntyre, Garry J; Norén, Katarina; Kutteh, Ramzi; Kepert, Cameron J; Kearley, Gordon J; Iversen, Bo B

    2013-02-14

    Complementary experimental techniques and ab initio calculations were used to determine the origin and nature of negative thermal expansion (NTE) in the archetype metal-organic framework MOF-5 (Zn(4)O(1,4-benzenedicarboxylate)(3)). The organic linker was probed by inelastic neutron scattering under vacuum and at a gas pressure of 175 bar to distinguish between the pressure and temperature responses of the framework motions, and the local structure of the metal centers was studied by X-ray absorption spectroscopy. Multi-temperature powder- and single-crystal X-ray and neutron diffraction was used to characterize the polymeric nature of the sample and to quantify NTE over the large temperature range 4-400 K. Ab initio calculations complement the experimental data with detailed information on vibrational motions in the framework and their correlations. A uniform and comprehensive picture of NTE in MOF-5 has been drawn, and we provide direct evidence that the main contributor to NTE is translational transverse motion of the aromatic ring, which can be dampened by applying a gas pressure to the sample. The linker motion is highly correlated rather than local in nature. The relative energies of different framework vibrations populated in MOF-5 are suggested by analysis of neutron diffraction data. We note that the lowest-energy motion is a librational motion of the aromatic ring which does not contribute to NTE. The libration is followed by transverse motion of the linker and the carboxylate group. These motions result in unit-cell contraction with increasing temperature. PMID:23044752

  1. Far infrared spectra, conformational equilibria, vibrational assignments, ab initio calculations and structural parameters for 2-bromoethanol

    NASA Astrophysics Data System (ADS)

    Durig, J. R.; Shen, S.; Guirgis, G. A.

    2001-01-01

    The far infrared spectrum from 370 to 50 cm -1 of gaseous 2-bromoethanol, BrCH 2CH 2OH, was recorded at a resolution of 0.10 cm -1. The fundamental O-H torsion of the more stable gauche ( Gg') conformer, where the capital G refers to internal rotation around the C-C bond and the lower case g to the internal rotation around the C-O bond, was observed as a series of Q-branch transitions beginning at 340 cm -1. The corresponding O-H torsional modes were observed for two of the other high energy conformers, Tg (285 cm -1) and Tt (234 cm -1). The heavy atom asymmetric torsion (rotation around C-C bond) for the Gg' conformer has been observed at 140 cm -1. Variable temperature (-63 to -100°C) studies of the infrared spectra (4000-400 cm -1) of the sample dissolved in liquid xenon have been recorded. From these data the enthalpy differences have been determined to be 411±40 cm -1 (4.92±0.48 kJ/mol) for the Gg'/ Tt and 315±40 cm -1 (3.76±0.48 kJ/mol) for the Gg'/ Tg, with the Gg' conformer the most stable form. Additionally, the infrared spectrum of the gas, and Raman spectrum of the liquid phase are reported. The structural parameters, conformational stabilities, barriers to internal rotation and fundamental frequencies have been obtained from ab initio calculations utilizing different basis sets at the restricted Hartree-Fock or with full electron correlation by the perturbation method to second order. The theoretical results are compared to the experimental results when appropriate. Combining the ab initio calculations with the microwave rotational constants, r0 adjusted parameters have been obtained for the three 2-haloethanols (F, Cl and Br) for the Gg' conformers.

  2. SIMPLE: Software for ab initio reconstruction of heterogeneous single-particles.

    PubMed

    Elmlund, Dominika; Elmlund, Hans

    2012-12-01

    The open source software suite SIMPLE: Single-particle IMage Processing Linux Engine provides data analysis methods for single-particle cryo-electron microscopy (cryo-EM). SIMPLE addresses the problem of obtaining 3D reconstructions from 2D projections only, without using an input reference volume for approximating orientations. The SIMPLE reconstruction algorithm is tailored to asymmetrical and structurally heterogeneous single-particles. Its basis is global optimization with the use of Fourier common lines. The advance that enables ab initio reconstruction and heterogeneity analysis is the separation of the tasks of in-plane alignment and projection direction determination via bijective orientation search - a new concept in common lines-based strategies. Bijective orientation search divides the configuration space into two groups of paired parameters that are optimized separately. The first group consists of the rotations and shifts in the plane of the projection; the second group consists of the projection directions and state assignments. In SIMPLE, ab initio reconstruction is feasible because the 3D in-plane alignment is approximated using reference-free 2D rotational alignment. The subsequent common lines-based search hence searches projection directions and states only. Thousands of class averages are analyzed simultaneously in a matter of hours. Novice SIMPLE users get a head start via the well documented front-end. The structured, object-oriented back-end invites advanced users to develop new alignment and reconstruction algorithms. An overview of the package is presented together with benchmarks on simulated data. Executable binaries, source code, and documentation are available at http://simple.stanford.edu. PMID:22902564

  3. Ab initio electronic structure study for TTF-TCNQ under uniaxial compression

    NASA Astrophysics Data System (ADS)

    Ishibashi, Shoji; Hashimoto, Tamotsu; Kohyama, Masanori; Terakura, Kiyoyuki

    2004-04-01

    We have investigated the electronic structure of TTF-TCNQ under uniaxial compression with ab initio plane-wave pseudopotential calculations within the local-density approximation and generalized gradient approximation. Depending on the compression direction, the constituent molecules are deformed in different ways. Along with these structural deformations, quasi-one-dimensional Fermi surfaces show dramatic changes in their shapes and sizes.

  4. Dispersion Interactions between Rare Gas Atoms: Testing the London Equation Using ab Initio Methods

    ERIC Educational Resources Information Center

    Halpern, Arthur M.

    2011-01-01

    A computational chemistry experiment is described in which students can use advanced ab initio quantum mechanical methods to test the ability of the London equation to account quantitatively for the attractive (dispersion) interactions between rare gas atoms. Using readily available electronic structure applications, students can calculate the…

  5. Ab Initio Studies of Chlorine Oxide and Nitrogen Oxide Species of Interest in Stratospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of chlorine oxide and nitrogen oxide species will be demonstrated by presentation of some example studies. In particular the geometrical structures, vibrational spectra, and heats of formation Of ClNO2, CisClONO, and trans-ClONO are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the ab initio results are shown to fill in the gaps and to resolve the experimental controversy. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of ClONO2, HONO2, ClOOC17 ClOOH, and HOOH will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of the experimental studies.

  6. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms

    NASA Astrophysics Data System (ADS)

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  7. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms.

    PubMed

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms. PMID:27394094

  8. Predicting materials for solar energy conversion: ab-initio spectroscopy of heterogeneous interfaces

    NASA Astrophysics Data System (ADS)

    Galli, Giulia

    We will discuss some progress in predicting materials for solar energy conversion using ab initio calculations, in particular we will focus on heterogeneous interfaces between photo-electrodes and water and between nanocomposites. We will also address the problem of building much needed tighter connections between computational and laboratory experiments.

  9. Ab initio charge-carrier mobility model for amorphous molecular semiconductors

    NASA Astrophysics Data System (ADS)

    Massé, Andrea; Friederich, Pascal; Symalla, Franz; Liu, Feilong; Nitsche, Robert; Coehoorn, Reinder; Wenzel, Wolfgang; Bobbert, Peter A.

    2016-05-01

    Accurate charge-carrier mobility models of amorphous organic molecular semiconductors are essential to describe the electrical properties of devices based on these materials. The disordered nature of these semiconductors leads to percolative charge transport with a large characteristic length scale, posing a challenge to the development of such models from ab initio simulations. Here, we develop an ab initio mobility model using a four-step procedure. First, the amorphous morphology together with its energy disorder and intermolecular charge-transfer integrals are obtained from ab initio simulations in a small box. Next, the ab initio information is used to set up a stochastic model for the morphology and transfer integrals. This stochastic model is then employed to generate a large simulation box with modeled morphology and transfer integrals, which can fully capture the percolative charge transport. Finally, the charge-carrier mobility in this simulation box is calculated by solving a master equation, yielding a mobility function depending on temperature, carrier concentration, and electric field. We demonstrate the procedure for hole transport in two important molecular semiconductors, α -NPD and TCTA. In contrast to a previous study, we conclude that spatial correlations in the energy disorder are unimportant for α -NPD. We apply our mobility model to two types of hole-only α -NPD devices and find that the experimental temperature-dependent current density-voltage characteristics of all devices can be well described by only slightly decreasing the simulated energy disorder strength.

  10. Investigation of polarization effects in the gramicidin A channel from ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Timko, Jeff; Kuyucak, Serdar

    2012-11-01

    Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K+ ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K+ ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K+ ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K+ ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.

  11. Coordination modes and bonding of sulfur oxides on transition metal surfaces: combined ab initio and BOC-MP results

    NASA Astrophysics Data System (ADS)

    Seller, Harrell; Shustorovich, Evgeny

    1996-02-01

    Binding energies for sulfur oxides, SO x, x = 1-3, have been determined for several coordination modes on silver, gold and palladium surfaces employing ab initio quantum chemical methods and the bond order conservation Morse potential (BOC-MP) method. SO 2 coordination was studied in the most detail. In general the agreement between the BOC-MP and ab initio binding energies is good for the (111) surfaces of silver and palladium with both methods predicting that, in the zero coverage limit, di-coordination via S,O and O,O will be more favorable energetically than mono-coordination via S. In the case of chemisorption on the Pd (110) surface the two methods agree well for the cases in which there are formulas for the BOC-MP binding energies. In going from the (111) surfaces to the (110) surfaces of silver and palladium the ab initio calculations predict that the preferred chemisorption site shifts from the bridge site to the hollow site. On the silver surfaces the net charge transferred to the adsorbate as judged from the Mulliken populations correlates roughly with the binding energy. No significant charge transfer was found on the palladium surfaces. Our SO 2 chemisorption calculations indicate that the work functions of the metal surfaces examined should increase upon mono-S adsorption, increase to a lesser extent upon di S,O adsorption and may even decrease upon di O,O adsorption. Ab initio calculations provide evidence of the existence of SO 2 surface dimers. The binding energy predicted by the BOC-MP model for SO 3 in the bridging site agrees well with the ab initio result for SO 3 di-coordinated in the long bridge of the Ag(110) surface. The methods yield similar predictions for the case of SO on silver. Our modeling provides a coherent picture consistent with many aspects of the experimental literature. We present some model predictions, particularly the di O,O coordination mode for SO 2, that require verification experimentally.

  12. Combined electron beam imaging and ab initio modeling of T{sub 1} precipitates in Al-Li-Cu alloys

    SciTech Connect

    Dwyer, C.; Weyland, M.; Chang, L. Y.; Muddle, B. C.

    2011-05-16

    Among the many considerable challenges faced in developing a rational basis for advanced alloy design, establishing accurate atomistic models is one of the most fundamental. Here we demonstrate how advanced imaging techniques in a double-aberration-corrected transmission electron microscope, combined with ab initio modeling, have been used to determine the atomic structure of embedded 1 nm thick T{sub 1} precipitates in precipitation-hardened Al-Li-Cu aerospace alloys. The results provide an accurate determination of the controversial T{sub 1} structure, and demonstrate how next-generation techniques permit the characterization of embedded nanostructures in alloys and other nanostructured materials.

  13. Serious Gaming for Test & Evaluation of Clean-Slate (Ab Initio) National Airspace System (NAS) Designs

    NASA Technical Reports Server (NTRS)

    Allen, B. Danette; Alexandrov, Natalia

    2016-01-01

    Incremental approaches to air transportation system development inherit current architectural constraints, which, in turn, place hard bounds on system capacity, efficiency of performance, and complexity. To enable airspace operations of the future, a clean-slate (ab initio) airspace design(s) must be considered. This ab initio National Airspace System (NAS) must be capable of accommodating increased traffic density, a broader diversity of aircraft, and on-demand mobility. System and subsystem designs should scale to accommodate the inevitable demand for airspace services that include large numbers of autonomous Unmanned Aerial Vehicles and a paradigm shift in general aviation (e.g., personal air vehicles) in addition to more traditional aerial vehicles such as commercial jetliners and weather balloons. The complex and adaptive nature of ab initio designs for the future NAS requires new approaches to validation, adding a significant physical experimentation component to analytical and simulation tools. In addition to software modeling and simulation, the ability to exercise system solutions in a flight environment will be an essential aspect of validation. The NASA Langley Research Center (LaRC) Autonomy Incubator seeks to develop a flight simulation infrastructure for ab initio modeling and simulation that assumes no specific NAS architecture and models vehicle-to-vehicle behavior to examine interactions and emergent behaviors among hundreds of intelligent aerial agents exhibiting collaborative, cooperative, coordinative, selfish, and malicious behaviors. The air transportation system of the future will be a complex adaptive system (CAS) characterized by complex and sometimes unpredictable (or unpredicted) behaviors that result from temporal and spatial interactions among large numbers of participants. A CAS not only evolves with a changing environment and adapts to it, it is closely coupled to all systems that constitute the environment. Thus, the ecosystem that

  14. Geometry of an Isolated Dimer of Imidazole Characterised by Rotational Spectroscopy and Ab Initio Calculations.

    PubMed

    Mullaney, John C; Zaleski, Daniel P; Tew, David P; Walker, Nicholas R; Legon, Anthony C

    2016-04-18

    An isolated, gas-phase dimer of imidazole is generated through laser vaporisation of a solid rod containing a 1:1 mixture of imidazole and copper in the presence of an argon buffer gas undergoing supersonic expansion. The complex is characterised through broadband rotational spectroscopy and is shown to have a twisted, hydrogen-bonded geometry. Calculations at the CCSD(T)(F12*)/cc-pVDZ-F12 level of theory confirm this to be the lowest-energy conformer of the imidazole dimer. The distance between the respective centres of mass of the imidazole monomer subunits is determined to be 5.2751(1) Å, and the twist angle γ describing rotation of one monomer with respect to the other about a line connecting the centres of mass of the monomers is determined to be 87.9(4)°. Four out of six intermolecular parameters in the model geometry are precisely determined from the experimental rotational constants and are consistent with results calculated ab initio. PMID:26812549

  15. Melting of sodium under high pressure. An ab-initio study

    SciTech Connect

    González, D. J.; González, L. E.

    2015-08-17

    We report ab-initio molecular dynamics simulations of dense liquid/solid sodium for a pressure range from 0 to 100 GPa. The simulations have been performed with the orbital free ab-initio molecular dynamics method which, by using the electron density as the basic variable, allows to perform simulations with large samples and for long runs. The calculated melting curve shows a maximum at a pressure ≈ 30 GPa and it is followed by a long, steep decrease. These features are in good agreement with the experimental data. For various pressures along the melting curve, we have calculated several liquid static properties (pair distribution functions, static structure factors and short-range order parameters) in order to analyze the structural effects of pressure.

  16. Comparison between ab initio and semiempirical net atomic charges of some nicotinic acetylcholine receptor agonists

    SciTech Connect

    Yadav, J.S.; Hermsmeier, M.; Gund, T. )

    1989-01-01

    We have calculated the net atomic charges and molecular electrostatic potentials of two potent nicotinic acetylcholine receptor agonists, isoarecolone and acetylpiperazine, by three different methods to see how well they correlate and if the simplest method gives the same predictive results. The calculational methods involved calculating net atomic charges by semiempirical (MNDO from MOPAC) and ab initio (Mulliken) and ab initio (potential derived) at STO-3G basis set level. Some deviations were observed when comparisons were made atom by atom, but when group comparisons were made, good correlations were observed. When these partial charges were used to calculate the respective molecular electrostatic potentials on the van der Waals surface, very good correlations were obtained. This study shows that for routine electrostatic calculations, semiempirical MNDO Calculations give similar results and thus lead to similar predictions.

  17. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo

    SciTech Connect

    Zen, Andrea; Luo, Ye Mazzola, Guglielmo Sorella, Sandro; Guidoni, Leonardo

    2015-04-14

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.

  18. B28: the smallest all-boron cage from an ab initio global search

    NASA Astrophysics Data System (ADS)

    Zhao, Jijun; Huang, Xiaoming; Shi, Ruili; Liu, Hongsheng; Su, Yan; King, R. Bruce

    2015-09-01

    Our ab initio global searches reveal the lowest-energy cage for B28, which is built from two B12 units and prevails over the competing structural isomers such as planar, bowl, and tube. This smallest boron cage extends the scope of all-boron fullerene and provides a new structural motif of boron clusters and nanostructures.Our ab initio global searches reveal the lowest-energy cage for B28, which is built from two B12 units and prevails over the competing structural isomers such as planar, bowl, and tube. This smallest boron cage extends the scope of all-boron fullerene and provides a new structural motif of boron clusters and nanostructures. Electronic supplementary information (ESI) available: Planar isomer structures of B28 and spatial distributions of front molecular orbitals. See DOI: 10.1039/c5nr04034e

  19. Ab initio investigation of light-induced relativistic spin-flip effects in magneto-optics

    NASA Astrophysics Data System (ADS)

    Mondal, Ritwik; Berritta, Marco; Carva, Karel; Oppeneer, Peter M.

    2015-05-01

    Excitation of a metallic ferromagnet such as Ni with an intensive femtosecond laser pulse causes an ultrafast demagnetization within approximately 300 fs. It was proposed that the ultrafast demagnetization measured in femtosecond magneto-optical experiments could be due to relativistic light-induced processes. We perform an ab initio investigation of the influence of relativistic effects on the magneto-optical response of Ni. To this end, first, we develop a response theory formulation of the additional appearing ultrarelativistic terms in the Foldy-Wouthuysen transformed Dirac Hamiltonian due to the electromagnetic field, and second, we compute the influence of relativistic light-induced spin-flip transitions on the magneto-optics. Our ab initio calculations of relativistic spin-flip optical excitations predict that these can give only a very small contribution (≤0.1 %) to the laser-induced magnetization change in Ni.

  20. Ab Initio Many-Body Calculations Of Nucleon-Nucleus Scattering

    SciTech Connect

    Quaglioni, S; Navratil, P

    2008-12-17

    We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and Pauli principle. We outline technical details and present phase shift results for neutron scattering on {sup 3}H, {sup 4}He and {sup 10}Be and proton scattering on {sup 3,4}He, using realistic nucleon-nucleon (NN) potentials. Our A = 4 scattering results are compared to earlier ab initio calculations. We find that the CD-Bonn NN potential in particular provides an excellent description of nucleon-{sup 4}He S-wave phase shifts. We demonstrate that a proper treatment of the coupling to the n-{sup 10}Be continuum is successful in explaining the parity-inverted ground state in {sup 11}Be.

  1. Point defect modeling in materials: Coupling ab initio and elasticity approaches

    NASA Astrophysics Data System (ADS)

    Varvenne, Céline; Bruneval, Fabien; Marinica, Mihai-Cosmin; Clouet, Emmanuel

    2013-10-01

    Modeling point defects at an atomic scale requires careful treatment of the long-range atomic relaxations. This elastic field can strongly affect point defect properties calculated in atomistic simulations because of the finite size of the system under study. This is an important restriction for ab initio methods which are limited to a few hundred atoms. We propose an original approach coupling ab initio calculations and linear elasticity theory to obtain the properties of an isolated point defect for reduced supercell sizes. The reliability and benefit of our approach are demonstrated for three problematic cases: the self-interstitial in zirconium, clusters of self-interstitials in iron, and the neutral vacancy in silicon.

  2. Hyperfine Parameters for Aluminum Hydride: An ab Initio Molecular Orbital Study

    NASA Astrophysics Data System (ADS)

    Gee, Myrlene; Wasylishen, Roderick E.

    2001-06-01

    An extensive ab initio molecular orbital study of the 27Al nuclear spin-rotation and nuclear quadrupolar coupling constants in aluminum hydride, AlH, has been performed. The 27Al nuclear spin-rotation constant (C⊥), calculated to be approximately 300 kHz, was neglected in a previous analysis of the hyperfine structure in the microwave spectrum (M. Goto and S. Saito, Astrophys. J.452, L147-148 (1995)). Unfortunately, the ab initio calculations do not provide a definitive value for the aluminum nuclear quadrupolar coupling constant, but suggest a value of -49±4 MHz. It is apparent that the microwave study of AlH should be repeated.

  3. Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics

    SciTech Connect

    Sharma, Nalini; Ahluwalia, P. K.; Thakur, Anil

    2015-05-15

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70}, Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30} and Hg{sub 90}In{sub 10}) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.

  4. Properties of metals during the heating by intense laser irradiation using ab initio simulations

    NASA Astrophysics Data System (ADS)

    Holst, Bastian; Recoules, Vanina; Torrent, Marc; Mazevet, Stephane

    2011-10-01

    Ultrashort laser pulses irradiating a target heat the electrons to very high temperatures. In contrast, the ionic lattice is unaffected on the time scale of the laser pulse since the heat capacity of electrons is much smaller than that of the lattice. This non-equilibrium system can be described as a composition of two subsystems: one consisting of hot electrons and the other of an ionic lattice at low temperature. We studied the effect of this intense electronic excitations on the optical properties of gold using ab initio simulations. We additionally use ab initio linear response to compute the phonon spectrum and the electron-phonon coupling constant within Density Functional Theory for several electronic temperatures of few eV. LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France.

  5. Ab Initio No-Core Shell Model Calculations Using Realistic Two- and Three-Body Interactions

    SciTech Connect

    Navratil, P; Ormand, W E; Forssen, C; Caurier, E

    2004-11-30

    There has been significant progress in the ab initio approaches to the structure of light nuclei. One such method is the ab initio no-core shell model (NCSM). Starting from realistic two- and three-nucleon interactions this method can predict low-lying levels in p-shell nuclei. In this contribution, we present a brief overview of the NCSM with examples of recent applications. We highlight our study of the parity inversion in {sup 11}Be, for which calculations were performed in basis spaces up to 9{Dirac_h}{Omega} (dimensions reaching 7 x 10{sup 8}). We also present our latest results for the p-shell nuclei using the Tucson-Melbourne TM three-nucleon interaction with several proposed parameter sets.

  6. Ab initio studies of equations of state and chemical reactions of reactive structural materials

    NASA Astrophysics Data System (ADS)

    Zaharieva, Roussislava

    subject of studies of the shock or thermally induced chemical reactions of the two solids comprising these reactive materials, from first principles, is a relatively new field of study. The published literature on ab initio techniques or quantum mechanics based approaches consists of the ab initio or ab initio-molecular dynamics studies in related fields that contain a solid and a gas. One such study in the literature involves a gas and a solid. This is an investigation of the adsorption of gasses such as carbon monoxide (CO) on Tungsten. The motivation for these studies is to synthesize alternate or synthetic fuel technology by Fischer-Tropsch process. In this thesis these studies are first to establish the procedure for solid-solid reaction and then to extend that to consider the effects of mechanical strain and temperature on the binding energy and chemisorptions of CO on tungsten. Then in this thesis, similar studies are also conducted on the effect of mechanical strain and temperature on the binding energies of Titanium and hydrogen. The motivations are again to understand the method and extend the method to such solid-solid reactions. A second motivation is to seek strained conditions that favor hydrogen storage and strain conditions that release hydrogen easily when needed. Following the establishment of ab initio and ab initio studies of chemical reactions between a solid and a gas, the next step of research is to study thermally induced chemical reaction between two solids (Ni+Al). Thus, specific new studies of the thesis are as follows: (1) Ab initio Studies of Binding energies associated with chemisorption of (a) CO on W surfaces (111, and 100) at elevated temperatures and strains and (b) adsorption of hydrogen in titanium base. (2) Equations of state of mixtures of reactive material structures from ab initio methods. (3) Ab initio studies of the reaction initiation, transition states and reaction products of intermetallic mixtures of (Ni+Al) at elevated

  7. Explicit Polarization (X-Pol) Potential Using ab Initio Molecular Orbital Theory and Density Functional Theory†

    PubMed Central

    Song, Lingchun; Han, Jaebeom; Lin, Yen-lin; Xie, Wangshen; Gao, Jiali

    2010-01-01

    The explicit polarization (X-Pol) method has been examined using ab initio molecular orbital theory and density functional theory. The X-Pol potential was designed to provide a novel theoretical framework for developing next-generation force fields for biomolecular simulations. Importantly, the X-Pol potential is a general method, which can be employed with any level of electronic structure theory. The present study illustrates the implementation of the X-Pol method using ab initio Hartree—Fock theory and hybrid density functional theory. The computational results are illustrated by considering a set of bimolecular complexes of small organic molecules and ions with water. The computed interaction energies and hydrogen bond geometries are in good accord with CCSD(T) calculations and B3LYP/aug-cc-pVDZ optimizations. PMID:19618944

  8. Ab initio calculations on twisted graphene/hBN: Electronic structure and STM image simulation

    NASA Astrophysics Data System (ADS)

    Correa, J. D.; Cisternas, E.

    2016-09-01

    By performing ab initio calculations we obtained theoretical scanning tunneling microscopy (STM) images and studied the electronic properties of graphene on a hexagonal boron-nitrite (hBN) layer. Three different stack configurations and four twisted angles were considered. All calculations were performed using density functional theory, including van der Waals interactions as implemented in the SIESTA ab initio package. Our results show that the electronic structure of graphene is preserved, although some small changes are induced by the interaction with the hBN layer, particularly in the total density of states at 1.5 eV under the Fermi level. When layers present a twisted angle, the density of states shows several van Hove singularities under the Fermi level, which are associated to moiré patterns observed in theoretical STM images.

  9. Liquid Be, Ca and Ba. An orbital-free ab-initio molecular dynamics study

    SciTech Connect

    Rio, B. G. del; González, L. E.

    2015-08-17

    Several static and dynamic properties of liquid beryllium (l-Be), liquid calcium (l-Ca) and liquid barium (l-Ba) near their triple point have been evaluated by the orbital-free ab initio molecular dynamics method (OF-AIMD), where the interaction between valence electrons and ions is described by means of local pseudopotentials. These local pseudopotentials used were constructed through a force-matching process with those obtained from a Kohn-Sham ab initio molecular dynamics study (KS-AIMD) of a reduced system with non-local pseudopotentials. The calculated static structures show good agreement with the available experimental data, including an asymmetric second peak in the structure factor which has been linked to the existence of a marked icosahedral short-range order in the liquid. As for the dynamic properties, we obtain collective density excitations whose associated dispersion relations exhibit a positive dispersion.

  10. Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.

    2016-05-01

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg10In90, Hg30In70,. Hg50In50, Hg70In30, and Hg90Pb10) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the local arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.

  11. Ultracold mixtures of metastable He and Rb: Scattering lengths from ab initio calculations and thermalization measurements

    NASA Astrophysics Data System (ADS)

    Knoop, S.; Żuchowski, P. S.; KÈ©dziera, D.; Mentel, Ł.; Puchalski, M.; Mishra, H. P.; Flores, A. S.; Vassen, W.

    2014-08-01

    We have investigated the ultracold interspecies scattering properties of metastable triplet He and Rb. We performed state-of-the-art ab initio calculations of the relevant interaction potential, and measured the interspecies elastic cross section for an ultracold mixture of metastable triplet He4 and Rb87 in a quadrupole magnetic trap at a temperature of 0.5 mK. Our combined theoretical and experimental study gives an interspecies scattering length a4+87=+17-4+1a0, which prior to this work was unknown. More general, our work shows the possibility of obtaining accurate scattering lengths using ab initio calculations for a system containing a heavy, many-electron atom, such as Rb.

  12. Implementation of a vector potential method in an ab initio Hartree-Fock code

    NASA Astrophysics Data System (ADS)

    Tevekeliyska, Violina; Springborg, Michael; Champagne, Benoît; Kirtman, Bernard

    2012-12-01

    For extended systems exposed to an external, electrostatic field, the presence of the field leads to an extra term (E⃗. P⃗) to the Hamiltonian, where E⃗ is the field vector and P⃗ is the polarization of the system of interest. In order to find out how a polymer chain responds to an external electric perturbation, a field with a charge and a current term for the polarization is added to an ab initio Hartree-Fock Hamiltonian. The polarization expression is taken from an efficient vector potential approach (VPA) [1] for calculating electronic and nuclear responses of infinite periodic systems to finite electric fields and is implemented in the ab initio LCAO-SCF algorithm [3], which computes band structure of regular or helical polymers, taking into account the one-dimensional translational symmetry. A smoothing procedure for numerical differentiation of the orbital coefficients is used in order to calculate self-consistently the charge flow contribution to the polarization.

  13. Specific interactions between DNA and regulatory protein controlled by ligand-binding: Ab initio molecular simulation

    SciTech Connect

    Matsushita, Y. Murakawa, T. Shimamura, K. Oishi, M. Ohyama, T. Kurita, N.

    2015-02-27

    The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.

  14. Ethanol decomposition on transition metal nanoparticles during carbon nanotube growth: ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Shibuta, Yasushi; Shimamura, Kohei; Oguri, Tomoya; Arifin, Rizal; Shimojo, Fuyuki; Yamaguchi, Shu

    2015-03-01

    The growth mechanism of carbon nanotubes (CNT) has been widely discussed both from experimental and computational studies. Regarding the computational studies, most of the studies focuses on the aggregation of isolate carbon atoms on the catalytic metal nanoparticle, whereas the initial dissociation of carbon source molecules should affect the yield and quality of the products. On the other hand, we have studied the dissociation process of carbon source molecules on the metal surface by the ab initio molecular dynamics simulation. In the study, we investigate the ethanol dissociation on Pt and Ni clusters by ab initio MD simulations to discuss the initial stage of CNT growth by alcohol CVD technique. Part of this research is supported by the Grant-in-Aid for Young Scientists (a) (No. 24686026) from MEXT, Japan.

  15. Hydrogen adsorption in ZIF-7: A DFT and ab-initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Dixit, Mudit; Major, Dan Thomas; Pal, Sourav

    2016-05-01

    Primary H2 adsorption sites in a zeolitic imidazolate framework, ZIF-7, are identified using ab-initio density functional theory (DFT) based molecular dynamics annealing simulations. The simulations suggest several low energy adsorption sites. The effect of light transition metal decoration on hydrogen storage properties was studied. Our ab-intio DFT calculations illustrate that decorating the ZIF with Sc increases both the number of H2 molecules, as well as the H2 binding energy. The binding energy (∼25 kJ/mol per H2) at 8H2 loading in the pore, suggests that Sc-ZIFs can be potential candidates for hydrogen storage.

  16. Ab Initio Many-Electron Calculation of Hyperfast Time-Resolved Coherent Excitation and Decay Of Polyelectronic Atoms

    SciTech Connect

    Nicolaides, Cleanthes A.; Mercouris, Theodoros; Komninos, Yannis

    2007-11-29

    The theoretical quantitative understanding of time-resolved processes of coherent excitation and decay in polyelectronic atoms, induced by hypershort electromagnetic pulses, is a prerequisite for their possible control. We review key elements of an approach to the ab initio determination of perturbative as well as of nonperturbative solutions of the time-dependent Schroedinger equation describing such processes. The essential element of this approach is the development of formalism and methods that utilize physically relevant state-specific wavefunctions of stationary states of the discrete and the continuous spectrum.

  17. Quantum yields and reaction times of photochromic diarylethenes: nonadiabatic ab initio molecular dynamics for normal- and inverse-type.

    PubMed

    Wiebeler, Christian; Schumacher, Stefan

    2014-09-11

    Photochromism is a light-induced molecular process that is likely to find its way into future optoelectronic devices. In further optimization of photochromic materials, light-induced conversion efficiencies as well as reaction times can usually only be determined once a new molecule was synthesized. Here we use nonadiabatic ab initio molecular dynamics to study the electrocyclic reaction of diarylethenes, comparing normal- and inverse-type systems. Our study highlights that reaction quantum yields can be successfully predicted in accord with experimental findings. In particular, we find that inverse-type diarylethenes show a significantly higher reaction quantum yield and cycloreversion on times typically as short as 100 fs. PMID:25140609

  18. Transport coefficients of helium-argon mixture based on ab initio potential

    NASA Astrophysics Data System (ADS)

    Sharipov, Felix; Benites, Victor J.

    2015-10-01

    The viscosity, thermal conductivity, diffusion coefficient, and thermal diffusion factor of helium-argon mixtures are calculated for a wide range of temperature and for various mole fractions up to the 12th order of the Sonine polynomial expansion with an ab initio intermolecular potential. The calculated values for these transport coefficients are compared with other data available in the open literature. The comparison shows that the obtained transport coefficients of helium-argon mixture have the best accuracy for the moment.

  19. Optical and other material properties of SiO2 from ab initio studies

    NASA Astrophysics Data System (ADS)

    Warmbier, Robert; Mohammed, Faris; Quandt, Alexander

    2014-07-01

    The optical properties of photonic devices largely depend on the dielectric properties of the underlying materials. We apply modern ab initio methods to study crystalline SiO2 phases, which serve as toy models for amorphous glass. We discuss the dielectric response from the infrared to the VIS/UV, which is crucial for glass based photonic applications. Low density silica, like cristobalite, may provide a good basis for high transmission optical devices.

  20. On limits of ab initio calculations of pairing gap in nuclei

    SciTech Connect

    Saperstein, E. E.; Baldo, M.; Lombardo, U.; Pankratov, S. S.; Zverev, M. V.

    2011-11-15

    A brief review of recent microscopic calculations of nuclear pairing gap is given. A semi-microscopic model is suggested in which the ab initio effective pairing interaction is supplemented with a small phenomenological addendum. It involves a parameter which is universal for all medium and heavy nuclei. Calculations for several isotopic and isotonic chains of semi-magic nuclei confirm the relevance of the model.

  1. An ab initio MIA study of TIBO derivatives R79882 and R82913

    NASA Astrophysics Data System (ADS)

    Peeters, Anik; Van Alsenoy, C.

    1995-04-01

    The gas phase structure of two TIBO compounds (R79882 and R82913), potent inhibitors of the reverse transcriptase of HIV1, was studied with ab initio Hartree-Fock methods using the MIA approach. For compound R82913 the geometry of a dimer and of the respective monomers was fully optimized and compared with experiment. For compound R79882 a complete geometry optimization of 15 different conformers was performed.

  2. Ab initio study of the ν(CO 2) mode in EDA complexes

    NASA Astrophysics Data System (ADS)

    Jamróz, M. H.; Dobrowolski, J. Cz.; Bajdor, K.; Borowiak, M. A.

    1995-04-01

    Stabilization energy, geometry and ν2 mode of CO 2 molecule in EDA complexes with organic electron donors are ab initio modeled using SPARTAN program. We prove that the splitting of ν2 mode, observed previously in IR spectra, is an effect of removing the double degeneracy of this mode in the complex resulted from the deformation of CO 2 moiety. The dependence of the deformation on complex stabilization energy is discussed.

  3. Ab initio calculation of positron distribution, ACAR and lifetime in TTF-TCNQ

    NASA Astrophysics Data System (ADS)

    Ishibashi, Shoji; Kohyama, Masanori

    2000-06-01

    We have performed ab initio calculations of positron distribution, ACAR and lifetime in the quasi-one-dimensional organic conductor TTF-TCNQ. The electronic structure is obtained within the LDA, while the positron state is calculated either with the LDA or with the GGA. Except the positron lifetime, differences between the LDA and GGA results are rather small. The obtained results are compared with our previous experiments and calculations.

  4. Methylchloride adsorbed on Si(0 0 1): an ab initio study

    NASA Astrophysics Data System (ADS)

    Preuss, M.; Schmidt, W. G.; Seino, K.; Bechstedt, F.

    2004-07-01

    We present ab initio calculations of the adsorption of methylchloride (CH 3Cl) on Si(0 0 1). Among multiple plausible adsorption geometries, we find five thermodynamically favorable configurations. These lead to strong geometrical changes in the Si surface structure as well as to significant charge transfer processes. The stability of the adsorption structures is discussed in terms of electrostatics. The results are compared to recent experimental and theoretical findings.

  5. Electron-ejection cross sections in electron- and ion impact ionization: ab initio and semiempirical calculations

    SciTech Connect

    Manson, S.T.; Miller, J.H.

    1987-01-01

    Ab initio calculations of single and double differential cross sections for ionization by fast, charged particles within the framework of the Born approximation are presented. In addition, a semi-empirical method based on the asymptotic Bethe-Born expansion is also discussed. Both are applied to ionization of helium by electrons and protons in an effort to assess their accuracy and validity. Agreement with experiment is quite good. The implications for other targets is discussed.

  6. Ab initio calculations in a uniform magnetic field using periodic supercells

    SciTech Connect

    Cai, W; Galli, G

    2003-10-21

    We present a formulation of ab initio electronic structure calculations in a finite magnetic field, which retains the simplicity and efficiency of techniques widely used in first principles molecular dynamics simulations, based on plane-wave basis sets and Fourier transforms. In addition we discuss results obtained with this method for the energy spectrum of interacting electrons in quantum wells, and for the electronic properties of dense fluid deuterium in a uniform magnetic field.

  7. Condensed-matter ab initio approach for strongly correlated electrons: Application to a quantum spin liquid candidate

    SciTech Connect

    Yamaji, Youhei

    2015-12-31

    Recently, condensed-matter ab initio approaches to strongly correlated electrons confined in crystalline solids have been developed and applied to transition-metal oxides and molecular conductors. In this paper, an ab initio scheme based on constrained random phase approximations and localized Wannier orbitals is applied to a spin liquid candidate Na{sub 2}IrO{sub 3} and is shown to reproduce experimentally observed specific heat.

  8. Stacking fault energy of face-centered cubic metals: thermodynamic and ab initio approaches.

    PubMed

    Li, Ruihuan; Lu, Song; Kim, Dongyoo; Schönecker, Stephan; Zhao, Jijun; Kwon, Se Kyun; Vitos, Levente

    2016-10-01

    The formation energy of the interface between face-centered cubic (fcc) and hexagonal close packed (hcp) structures is a key parameter in determining the stacking fault energy (SFE) of fcc metals and alloys using thermodynamic calculations. It is often assumed that the contribution of the planar fault energy to the SFE has the same order of magnitude as the bulk part, and thus the lack of precise information about it can become the limiting factor in thermodynamic predictions. Here, we differentiate between the interfacial energy for the coherent fcc(1 1 1)/hcp(0 0 0 1) interface and the 'pseudo-interfacial energy' that enters the thermodynamic expression for the SFE. Using first-principles calculations, we determine the coherent and pseudo-interfacial energies for six elemental metals (Al, Ni, Cu, Ag, Pt, and Au) and three paramagnetic Fe-Cr-Ni alloys. Our results show that the two interfacial energies significantly differ from each other. We observe a strong chemistry dependence for both interfacial energies. The calculated pseudo-interfacial energies for the Fe-Cr-Ni steels agree well with the available literature data. We discuss the effects of strain on the description of planar faults via thermodynamic and ab initio approaches. PMID:27484794

  9. Ab initio study of stability and migration of H and He in hcp-Sc

    SciTech Connect

    Yang, Li; Peng, SM; Long, XG; Gao, Fei; Heinisch, Howard L.; Kurtz, Richard J.; Zu, Xiaotao T.

    2011-01-05

    Ab initio calculations based on density functional theory have been performed to determine the relative stabilities and migration of H and He atoms in hcp-Sc. The results show that the formation energy of an interstitial H or He atom is smaller than that of a corresponding substitutional atom. The tetrahedral (T) interstitial position is more stable than an octahedral (O) position for both He and H interstitials. The nudged elastic band method has been used to study the migration of interstitial H and He atomss in hcp-Sc. It is found that the migration energy barriers for H interstitials in hcp-Sc are significantly different from those for He interstitials, but that their migration mechanisms are similar. In addition, the formation energies of five different configurations of a He-He pair were determined, revealing that the most stable configuration consists of two He atoms located at the second-neighbor tetrahedral interstitial sites along the c axis. The formation and relative stabilities of some small He clusters have also been investigated.

  10. Ab initio study of the O4H(+) novel species: spectroscopic fingerprints to aid its observation.

    PubMed

    Xavier, F George D; Hernández-Lamoneda, Rámon

    2015-06-28

    A detailed ab initio characterization of the structural, energetic and spectroscopic properties of the novel O4H(+) species is presented. The equilibrium structures and relative energies of all multiplet states have been determined systematically by analyzing static and dynamical correlation effects. The two and three body dissociation processes have been studied and indicate the presence of conical intersections in various states including the ground state. Comparison with available thermochemical data is very good, supporting the applied methodology. The reaction, H3(+) + O4→ O4H(+) + H2, was found to be exothermic ΔH = -19.4 kcal mol(-1) and therefore, it is proposed that the product in the singlet state could be formed in the interstellar medium (ISM) via collision processes. To aid in its laboratory or radioastronomy detection in the interstellar medium we determined spectroscopic fingerprints. It is estimated for the most stable geometry of O4H(+) dipole allowed electronic transitions in the visible region at 429 nm and 666 nm, an intense band at 1745 cm(-1) in the infrared and signals at 40.6, 81.2 and 139.2 GHz in the microwave region at 10, 50 and 150 K respectively, relevant for detection in the ISM. PMID:26028209

  11. A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction

    PubMed Central

    Spencer, Matt; Eickholt, Jesse; Cheng, Jianlin

    2014-01-01

    Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80% and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in attempts to stimulate progress. Since neural networks have historically played an important role in SS prediction, we wanted to determine whether deep learning could contribute to the advancement of this field as well. We developed an SS predictor that makes use of the position-specific scoring matrix generated by PSI-BLAST and deep learning network architectures, which we call DNSS. Graphical processing units and CUDA software optimize the deep network architecture and efficiently train the deep networks. Optimal parameters for the training process were determined, and a workflow comprising three separately trained deep networks was constructed in order to make refined predictions. This deep learning network approach was used to predict SS for a fully independent test data set of 198 proteins, achieving a Q3 accuracy of 80.7% and a Sov accuracy of 74.2%. PMID:25750595

  12. Ab initio study of hydrogen migration across n-alkyl radicals.

    PubMed

    Davis, Alexander C; Francisco, Joseph S

    2011-04-14

    A thorough ab initio investigation is conducted on all possible hydrogen migration pathways for the 1-ethyl, 1-propyl, 1-butyl, 1-pentyl, 1-hexyl, 1-heptyl, and 1-octyl radicals in order to determine underlying trends in reaction enthalpies, activation energies, Arrhenius A-factors, tunneling, and rate coefficients. The G4, G2, and CBS-Q composite methods are used to determine the enthalpy of reaction and activation energy barrier for each reaction. Each method shows excellent agreement with eight experimental enthalpy of reaction values, with root mean squared values of 0.8, 0.9, and 0.6 kcal mol(-1) for CBS-Q, G2, and G4, respectively. Differences in barrier heights, A-factors, tunneling, and rate coefficients are observed for axial and equatorial arrangements as well as between secondary hydrogen migration sites, depending on the location of the secondary site relative to the terminal carbon. The validity of using cycloalkane model systems to estimate rate parameters is also assessed. The failure of two key assumptions inherent to the cycloalkane models, resulting in a breakdown in the accuracy of these methods for larger transition states, is discussed. This study has significant ramifications for future theoretical, experimental, and modeling studies involving the decomposition of n-alkanes. PMID:21413772

  13. A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction.

    PubMed

    Spencer, Matt; Eickholt, Jesse; Jianlin Cheng

    2015-01-01

    Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80 percent and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in attempts to stimulate progress. Since neural networks have historically played an important role in SS prediction, we wanted to determine whether deep learning could contribute to the advancement of this field as well. We developed an SS predictor that makes use of the position-specific scoring matrix generated by PSI-BLAST and deep learning network architectures, which we call DNSS. Graphical processing units and CUDA software optimize the deep network architecture and efficiently train the deep networks. Optimal parameters for the training process were determined, and a workflow comprising three separately trained deep networks was constructed in order to make refined predictions. This deep learning network approach was used to predict SS for a fully independent test dataset of 198 proteins, achieving a Q3 accuracy of 80.7 percent and a Sov accuracy of 74.2 percent. PMID:25750595

  14. Ab initio based thermal property predictions at a low cost: An error analysis

    NASA Astrophysics Data System (ADS)

    Lejaeghere, Kurt; Jaeken, Jan; Van Speybroeck, Veronique; Cottenier, Stefaan

    2014-01-01

    Ab initio calculations often do not straightforwardly yield the thermal properties of a material yet. It requires considerable computational efforts, for example, to predict the volumetric thermal expansion coefficient αV or the melting temperature Tm from first principles. An alternative is to use semiempirical approaches. They relate the experimental values to first-principles predictors via fits or approximative models. Before applying such methods, however, it is of paramount importance to be aware of the expected errors. We therefore quantify these errors at the density-functional theory level using the Perdew-Burke-Ernzerhof functional for several semiempirical approximations of αV and Tm, and compare them to the errors from fully ab initio methods, which are computationally more intensive. We base our conclusions on a benchmark set of 71 ground-state elemental crystals. For the thermal expansion coefficient, it appears that simple quasiharmonic theory, in combination with different approximations to the Grüneisen parameter, provides a similar overall accuracy as exhaustive first-principles phonon calculations. For the melting temperature, expensive ab initio molecular-dynamics simulations still outperform semiempirical methods.

  15. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    NASA Astrophysics Data System (ADS)

    Geng, Hua Y.

    2015-02-01

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model-the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of rs = 0.912.

  16. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    SciTech Connect

    Geng, Hua Y.

    2015-02-15

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model—the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of r{sub s}=0.912.

  17. In pursuit of the ab initio limit for conformational energy prototypes

    NASA Astrophysics Data System (ADS)

    Császár, Attila G.; Allen, Wesley D.; Schaefer, Henry F.

    1998-06-01

    The convergence of ab initio predictions to the one- and n-particle limits has been systematically explored for several conformational energy prototypes: the inversion barriers of ammonia, water, and isocyanic acid, the torsional barrier of ethane, the E/Z rotamer separation of formic acid, and the barrier to linearity of silicon dicarbide. Explicit ab initio results were obtained with atomic-orbital basis sets as large as [7s6p5d4f3g2h1i/6s5p4d3f2g1h] and electron correlation treatments as extensive as fifth-order Møller-Plesset perturbation theory (MP5), the full coupled-cluster method through triple excitations (CCSDT), and Brueckner doubles theory including perturbational corrections for both triple and quadruple excitations [BD(TQ)]. Subsequently, basis set and electron correlation extrapolation schemes were invoked to gauge any further variations in arriving at the ab initio limit. Physical effects which are tacitly neglected in most theoretical work have also been quantified by computations of non-Born-Oppenheimer (BODC), relativistic, and core correlation shifts of relative energies. Instructive conclusions are drawn for the pursuit of spectroscopic accuracy in theoretical conformational analyses, and precise predictions for the key energetic quantities of the molecular prototypes are advanced.

  18. Infrared and Raman spectra, conformational analysis, ab initio calculations and vibrational assignment of 2-chloroethylsilyl chloride

    NASA Astrophysics Data System (ADS)

    Pan, Chunhua; Guirgis, Gamil A.; Durig, James R.

    2005-05-01

    The infrared (3100-40 cm -1) spectra of gaseous and solid and Raman (3200-20 cm -1) spectra of liquid 2-chloroethylsilyl chloride, ClCH 2CH 2SiH 2Cl, have been recorded. There are five possible stable conformers, Gg, Tg, Gt, Tt and Gg' for this molecule where the capital letter G ( gauche) or T ( trans) refer to rotation around the C-C bond and the lower case letters to rotation around the Si-C bond. Most ab initio calculations at the MP2(full) level predicted the order of the stability as Tg>Gg>Gt>Tt>Gg' whereas all density function theory calculations with the B3LYP method predicted the stability as Tg>Tt>Gg>Gt>Gg'. The four more stable conformers have been identified in the fluid phases with the Tg rotamer the only form remaining in the solid. Variable temperature (-105 to -150 °C) studies of the infrared spectra of the samples dissolved in liquid krypton have been recorded and the enthalpy differences determined to be: 50±20 (0.59±0.24 kJ/mol), 172±17 (2.06±0.20 kJ/mol) and 290±40 cm -1 (3.45±0.48 kJ/mol) for the Tg/Gg, Tg/Gt and Tg/Tt conformer pairs with the Tg conformer the most stable form. It is estimated that there is 42±2% of the Tg form, 33±1% of the Gg form, 20±2% of the Gt form, and 5±1% of the Tt form present at ambient temperature. A relatively complete vibrational assignment is proposed for the Tg conformer and many of the fundamentals have been identified for the other three (Gg, Gt and Tt) conformers based on the ab initio MP2(full)/6-31G(d) predicted frequencies, the relative infrared and Raman spectral intensities, and infrared band contours which are supported by normal coordinate calculations. Since the predicted energies between Tg and Gg' conformers from all calculations are very large, it is not surprising that no evidence in either the infrared or Raman spectra could be found for the Gg' conformer. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities

  19. On Possible Pitfalls in ab initio QM/MM Minimization Approaches For Studies of Enzymatic Reactions

    PubMed Central

    Klähn, Marco; Braun-Sand, Sonja; Rosta, Edina; Warshel, Arieh

    2006-01-01

    Reliable studies of enzymatic reactions by combined quantum mechanics /molecular mechanics (QM/MM) approaches, with an ab initio description of the quantum region, presents a major challenge to computational chemists. The main problem is the need for a very large computer time for the evaluation of the QM energy, which in turn makes it extremely challenging to perform proper configurational sampling. A seemingly reasonable alternative is to perform energy minimization studies of the type used in gas phase ab initio studies. However, it is hard to see why such an approach should give reliable results in protein active sites. In order to examine the problems with energy minimization QM/MM approaches we chose the hypothetical reaction of a metaphosphate ion with water in the Ras•GAP complex. This hypothetical reaction served as a simple benchmark reaction. The possible problems with the QM/MM minimization were explored by generating several protein configurations from long MD simulations and using energy minimization and scanning of the reaction coordinates to evaluate the corresponding potential energy surfaces of the reaction for each of these different protein configurations. Comparing these potential energy surfaces, we found major variations of the minima of the different total potential energy surfaces. Furthermore, the reaction energies and activation energies also varied significantly even for similar protein configurations. The specific coordination of a magnesium ion, present in the active center of the protein complex, turned out to influence the energetics of the reaction in a major way and a direct coordination to the reactant leads to an increase of the activation energy by 17 kcal/mol. This study demonstrates that energy minimizations starting from a single protein structure could lead to major errors in calculations of activation free energies and binding free energies. Thus we believe that extensive samplings of the configurational space of the

  20. Large scale ab initio calculations of extended defects in materials: screw dislocations in bcc metals

    NASA Astrophysics Data System (ADS)

    Dézerald, Lucile; Ventelon, Lisa; Willaime, François; Clouet, Emmanuel; Rodney, David

    2014-06-01

    Ab initio methods, based on the Density Functional Theory (DFT), have been extensively used to study point defects and defect clusters in materials. Present HPC resources and DFT codes now allow similar investigations to be performed on dislocations. The study of these extended defects requires not only larger simulation cells but also a higher accuracy because the energy differences, which are involved, are rather small, typically 50-to-100 meV for supercells containing 50-to-500 atoms. The topology of the Peierls potential of screw dislocations with 1/2 <111>Burgers vector, i.e. the 2D energy landscape seen by these dislocations, is being completely revisited by DFT calculations. From results obtained in all body-centered cubic (bcc) transition metals, except Cr (V, Nb, Ta, Mo, W and Fe), using the PWSCF code, which is part of the Quantum-Espresso package, we concluded that the 2D Peierls potentials have two common features: the single-hump shape of the barrier between two minima of the potential, and the presence of a maximum - and not a minimum as predicted by most empirical potentials - around the split core. In iron, the topology of the Peierls potential is reversed compared to the classical sinusoidal picture: the location of the saddle point and the maximum are indeed inverted with unexpected flat regions. The first results obtained within the framework of the PRACE project, DIMAIM (DIslocations in Metals using Ab Initio Methods), started at the beginning of 2013, will also be presented. In particular, in order to address the twinning-antitwinning asymmetry often observed in bcc metals and regarded as the major contribution to the breakdown of Schmid's law, we have determined the crystal orientation dependence of the Peierls stress, i.e. the critical stress required for dislocation motion. These computationally most expensive simulations were performed on the PRACE Tier-0 system at Barcelona Supercomputing Center (Marenostrum III). The scalability results

  1. Proton transport in triflic acid pentahydrate studied via ab initio path integral molecular dynamics.

    PubMed

    Hayes, Robin L; Paddison, Stephen J; Tuckerman, Mark E

    2011-06-16

    Trifluoromethanesulfonic acid hydrates provide a well-defined system to study proton dissociation and transport in perfluorosulfonic acid membranes, typically used as the electrolyte in hydrogen fuel cells, in the limit of minimal water. The triflic acid pentahydrate crystal (CF(3)SO(3)H·5H(2)O) is sufficiently aqueous that it contains an extended three-dimensional water network. Despite it being extended, however, long-range proton transport along the network is structurally unfavorable and would require considerable rearrangement. Nevertheless, the triflic acid pentahydrate crystal system can provide a clear picture of the preferred locations of local protonic defects in the water network, which provides insights about related structures in the disordered, low-hydration environment of perfluorosulfonic acid membranes. Ab initio molecular dynamics simulations reveal that the proton defect is most likely to transfer to the closest water that has the expected presolvation and only contains water in its first solvation shell. Unlike the tetrahydrate of triflic acid (CF(3)SO(3)H·4H(2)O), there is no evidence of the proton preferentially transferring to a water molecule bridging two of the sulfonate groups. However, this could be an artifact of the crystal structure since the only such water molecule is separated from the proton by long O-O distances. Hydrogen bonding criteria, using the two-dimensional potential of mean force, are extracted. Radial distribution functions, free energy profiles, radii of gyration, and the root-mean-square displacement computed from ab initio path integral molecular dynamics simulations reveal that quantum effects do significantly extend the size of the protonic defect and increase the frequency of proton transfer events by nearly 15%. The calculated IR spectra confirm that the dominant protonic defect mostly exists as an Eigen cation but contains some Zundel ion characteristics. Chain lengths and ring sizes determined from the

  2. Ab initio DNA synthesis by Bst polymerase in the presence of nicking endonucleases Nt.AlwI, Nb.BbvCI, and Nb.BsmI.

    PubMed

    Antipova, Valeriya N; Zheleznaya, Lyudmila A; Zyrina, Nadezhda V

    2014-08-01

    In the absence of added DNA, thermophilic DNA polymerases synthesize double-stranded DNA from free dNTPs, which consist of numerous repetitive units (ab initio DNA synthesis). The addition of thermophilic restriction endonuclease (REase), or nicking endonuclease (NEase), effectively stimulates ab initio DNA synthesis and determines the nucleotide sequence of reaction products. We have found that NEases Nt.AlwI, Nb.BbvCI, and Nb.BsmI with non-palindromic recognition sites stimulate the synthesis of sequences organized mainly as palindromes. Moreover, the nucleotide sequence of the palindromes appeared to be dependent on NEase recognition/cleavage modes. Thus, the heterodimeric Nb.BbvCI stimulated the synthesis of palindromes composed of two recognition sites of this NEase, which were separated by AT-reach sequences or (A)n (T)m spacers. Palindromic DNA sequences obtained in the ab initio DNA synthesis with the monomeric NEases Nb.BsmI and Nt.AlwI contained, along with the sites of these NEases, randomly synthesized sequences consisted of blocks of short repeats. These findings could help investigation of the potential abilities of highly productive ab initio DNA synthesis for the creation of DNA molecules with desirable sequence. PMID:24965874

  3. A procedure for computing accurate ab initio quartic force fields: Application to HO2+ and H2O

    NASA Astrophysics Data System (ADS)

    Huang, Xinchuan; Lee, Timothy J.

    2008-07-01

    A procedure for the calculation of molecular quartic force fields (QFFs) is proposed and investigated. The goal is to generate highly accurate ab initio QFFs that include many of the so-called ``small'' effects that are necessary to achieve high accuracy. The small effects investigated in the present study include correlation of the core electrons (core correlation), extrapolation to the one-particle basis set limit, correction for scalar relativistic contributions, correction for higher-order correlation effects, and inclusion of diffuse functions in the one-particle basis set. The procedure is flexible enough to allow for some effects to be computed directly, while others may be added as corrections. A single grid of points is used and is centered about an initial reference geometry that is designed to be as close as possible to the final ab initio equilibrium structure (with all effects included). It is shown that the least-squares fit of the QFF is not compromised by the added corrections, and the balance between elimination of contamination from higher-order force constants while retaining energy differences large enough to yield meaningful quartic force constants is essentially unchanged from the standard procedures we have used for many years. The initial QFF determined from the least-squares fit is transformed to the exact minimum in order to eliminate gradient terms and allow for the use of second-order perturbation theory for evaluation of spectroscopic constants. It is shown that this step has essentially no effect on the quality of the QFF largely because the initial reference structure is, by design, very close to the final ab initio equilibrium structure. The procedure is used to compute an accurate, purely ab initio QFF for the H2O molecule, which is used as a benchmark test case. The procedure is then applied to the ground and first excited electronic states of the HO2+ molecular cation. Fundamental vibrational frequencies and spectroscopic

  4. Fourfold Clusters of Rovibrational Energies in H2Te Studied With an Ab Initio Potential Energy Function

    NASA Technical Reports Server (NTRS)

    Jensen, Per; Li, Yan; Hirsch, Gerhard; Buenker, Robert J.; Lee, Timothy J.; Arnold, James O. (Technical Monitor)

    1994-01-01

    We report an ab initio investigation of the cluster effect (i.e., the formation of nearly degenerate, four member groups of rotation-vibration energy levels at higher J and K(sub a). values) in the H2Te molecule. The potential energy function has been calculated ab initio at a total of 334 molecular geometries by means of the CCSD(T) method where the (1s-4f) core electrons of Te were described by an effective core potential. The values of the potential energy function obtained cover the region up to around 10,000/cm above the equilibrium energy. On the basis of the ab initio potential, the rotation-vibration energy spectra of H2Te-130 and its deuterated isotopomers have been calculated with the MORBID (Morse Oscillator Rigid Bender Internal Dynamics) Hamiltonian and computer program. In particular, we have calculated the rotational energy manifolds for J less than or = 40 in the vibrational ground state, the upsilon(sub 2) state, the "first triad" (the upsilon(sub l)/upsilon(sub 3)/2upsilon(sub 2) interacting vibrational states), and the "second triad" (the upsilon(sub 1) + upsilon(sub 2/upsilon(sub 2) + upsilon(sub 3)/3upsilon(sub 2) states) of H2Te-130. We find that the cluster formation in H2Te is very similar to those of of H2Se and H2S, which we have studied previously. However, contrary to semiclassical predictions, we do not determine any significant displacement of the clusters towards lower J values relative to H2Se. Hence the experimental observation of the cluster states in H2Te will be at least as difficult as in H2Se.

  5. Energetics, diffusion, and magnetic properties of cobalt atom in a monolayer graphene: An ab initio study

    SciTech Connect

    Raji, Abdulrafiu T.; Lombardi, Enrico B.

    2015-09-21

    We use ab initio methods to study the binding, diffusion, and magnetic properties of cobalt atom embedded in graphene vacancies. We investigate the diffusion of Co-monovacancy (Co-MV) and Co-divacancy (Co-DV) defect complexes, and determine the minimum energy path (MEP), as well as the activation energy barrier of migration. We obtained similar activation energy barriers, of ∼5.8 eV, for Co-MV and Co-DV diffusion, respectively. Our calculations also suggest that, at electron–irradiation energy of 200 keV as used in a related experiment, the maximum energy transfer to the Co atom, of approximately 9.0 eV is sufficiently high to break metal-carbon bonding. The incident electron energy is also high enough to displace graphene's carbon atoms from their lattice positions. The breaking of metal-carbon bonding and the displacement of graphene atoms may act to facilitate the migration of Co. We conclude therefore that the detrapping and diffusion of cobalt as observed experimentally is likely to be radiation-induced, similar to what has been observed for Au and Fe in electron-irradiated graphene. Furthermore, we show that Co migration in graphene is such that its magnetic moment varies along the diffusion path. The magnetic moment of Co is consistently higher in Co-DV diffusion when compared to that of Co-MV diffusion.

  6. How Is Acetylcholinesterase Phosphonylated by Soman? An Ab Initio QM/MM Molecular Dynamics Study

    PubMed Central

    2015-01-01

    Acetylcholinesterase (AChE) is a crucial enzyme in the cholinergic nerve system that hydrolyzes acetylcholine (ACh) and terminates synaptic signals by reducing the effective concentration of ACh in the synaptic clefts. Organophosphate compounds irreversibly inhibit AChEs, leading to irreparable damage to nerve cells. By employing Born–Oppenheimer ab initio QM/MM molecular dynamics simulations with umbrella sampling, a state-of-the-art approach to simulate enzyme reactions, we have characterized the covalent inhibition mechanism between AChE and the nerve toxin soman and determined its free energy profile for the first time. Our results indicate that phosphonylation of the catalytic serine by soman employs an addition–elimination mechanism, which is highly associative and stepwise: in the initial addition step, which is also rate-limiting, His440 acts as a general base to facilitate the nucleophilic attack of Ser200 on the soman’s phosphorus atom to form a trigonal bipyrimidal pentacovalent intermediate; in the subsequent elimination step, Try121 of the catalytic gorge stabilizes the leaving fluorine atom prior to its dissociation from the active site. Together with our previous characterization of the aging mechanism of soman inhibited AChE, our simulations have revealed detailed molecular mechanistic insights into the damaging function of the nerve agent soman. PMID:24786171

  7. Ab initio cluster studies of La sub 2 CuO sub 4

    SciTech Connect

    Martin, R.L.

    1991-01-01

    In this paper we examine the properties of small cluster models of La{sub 2}CuO{sub 4}. In Section 2, the Madelung/Pauli background potential used to imbed the primary cluster and the basis sets used to expand the cluster wavefunction are discussed. Section 3 presents the results of calculations on CuO{sub 6} in which the optical absorption and the photoemission spectrum are examined. The calculation on CuO{sub 6} and our earlier work on larger clusters suggest that a single-band Pariser-Parr-Pople (PPP) model be developed. Therefore, in Section 4 the PPP model and extensions which relax the zero-differential-overlap (ZDO) approximation upon which it is based are reviewed. Calculations on the states of Cu{sub 2}O{sub 7} necessary to parameterize the PPP model are presented in Section 5 and compared with analogous calculations for Cu{sub 2}O{sub 11}. Section 6 discusses the problems associated with the direct ab initio determination of the anti-ferromagnetic exchange interaction, examines the magnitudes of the occupation-dependent hopping and direct exchange interactions which arise when the ZDO approximation is relaxed, and provides estimates of the uncertainties in the parameters due to electron correlation and polarization effects not recoverable with the present basis sets and finite clusters. A comparison of the parameters with those extracted from constrained LDF theory concludes Section 6. Finally, Section 7 summarizes the conclusions of this research.

  8. Ab initio derivation of multi-orbital extended Hubbard model for molecular crystals

    NASA Astrophysics Data System (ADS)

    Tsuchiizu, Masahisa; Omori, Yukiko; Suzumura, Yoshikazu; Bonnet, Marie-Laure; Robert, Vincent

    2012-01-01

    From configuration interaction (CI) ab initio calculations, we derive an effective two-orbital extended Hubbard model based on the gerade (g) and ungerade (u) molecular orbitals (MOs) of the charge-transfer molecular conductor (TTM-TTP)I3 and the single-component molecular conductor [Au(tmdt)2]. First, by focusing on the isolated molecule, we determine the parameters for the model Hamiltonian so as to reproduce the CI Hamiltonian matrix. Next, we extend the analysis to two neighboring molecule pairs in the crystal and we perform similar calculations to evaluate the inter-molecular interactions. From the resulting tight-binding parameters, we analyze the band structure to confirm that two bands overlap and mix in together, supporting the multi-band feature. Furthermore, using a fragment decomposition, we derive the effective model based on the fragment MOs and show that the staking TTM-TTP molecules can be described by the zig-zag two-leg ladder with the inter-molecular transfer integral being larger than the intra-fragment transfer integral within the molecule. The inter-site interactions between the fragments follow a Coulomb law, supporting the fragment decomposition strategy.

  9. Comparative ab initio study of half-Heusler compounds for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Gruhn, Thomas

    2010-09-01

    For the advancement of optoelectronic applications, such as thin-film solar cells or laser diodes, there is a strong demand for new semiconductor materials with tailored structural and electronic properties. The eight-electron half-Heusler compounds include many promising materials with a big variety of lattice constants and band gaps. So far only a small number of them have been investigated. With the help of ab initio calculations, we have studied all possible configurations of ternary 1:1:1 compounds in the half-Heusler structure. We have investigated 648 half-Heusler materials, including compounds of the types I-I-VI, I-II-V, I-III-IV, II-II-IV, and II-III-III. For all compounds, we have optimized the lattice constant and determined the most stable arrangement of elements on the half-Heusler lattice sites. Preferred configurations and semiconductivities are compared for the different half-Heusler types. A discussion of the lattice geometries provides a parameter-free function for estimating the lattice constants. The calculated band gaps and lattice constants are used to select potential substitute materials for CdS in the buffer layer of CuInSe2 and Cu(In,Ga)Se2 thin-film solar cells.

  10. Ab initio calculation of the electronic absorption spectrum of liquid water

    NASA Astrophysics Data System (ADS)

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa

    2014-04-01

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O-H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  11. Ab initio calculation of the electronic absorption spectrum of liquid water

    SciTech Connect

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa

    2014-04-28

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  12. Electronic structure of silicon nitride according to ab initio quantum-chemical calculations and experimental data

    SciTech Connect

    Nekrashevich, S. S. Gritsenko, V. A.; Klauser, R.; Gwo, S.

    2010-10-15

    Charge transfer {Delta}Q = 0.35e at the Si-N bond in silicon nitride is determined experimentally using photoelectron spectroscopy, and the ionic formula of silicon nitride Si{sub 3}{sup +1.4}N{sub 4}{sup -1.05} is derived. The electronic structure of {alpha}-Si{sub 3}N{sub 4} is studied ab initio using the density functional method. The results of calculations (partial density of states) are compared with experimental data on X-ray emission spectroscopy of amorphous Si{sub 3}N{sub 4}. The electronic structure of the valence band of amorphous Si{sub 3}N{sub 4} is studied using synchrotron radiation at different excitation energies. The electron and hole effective masses m{sub e}{sup *} {approx} m{sub h}{sup *} {approx} 0.5m{sub e} are estimated theoretically. The calculated values correspond to experimental results on injection of electrons and holes into silicon nitride.

  13. Ab initio ro-vibronic spectroscopy of SiCCl (X{sup ~2}Π)

    SciTech Connect

    Brites, Vincent; Mitrushchenkov, Alexander O.; Léonard, Céline; Peterson, Kirk A.

    2014-07-21

    The full dimensional potential energy surfaces of the {sup 2}A{sup ′} and {sup 2}A{sup ′′} electronic components of X{sup ~2}Π SiCCl have been computed using the explicitly correlated coupled cluster method, UCCSD(T)-F12b, combined with a composite approach taking into account basis set incompleteness, core-valence correlation, scalar relativity, and higher order excitations. The spin-orbit and dipole moment surfaces have also been computed ab initio. The ro-vibronic energy levels and absorption spectrum at 5 K have been determined from variational calculations. The influence of each correction on the fundamental frequencies is discussed. An assignment is proposed for bands observed in the LIF experiment of Smith et al. [J. Chem. Phys. 117, 6446 (2002)]. The overall agreement between the experimental and calculated ro-vibronic levels is better than 7 cm{sup −1} which is comparable with the 10–20 cm{sup −1} resolution of the emission spectrum.

  14. Ab initio calculations of phonon properties and spectra in condensed matter

    NASA Astrophysics Data System (ADS)

    Story, Shauna M.

    Phonons, the quantization of atomic vibrations, are important in studying many solid state properties, ranging from Raman, infrared, and neutron scattering to thermal expansion, specific heat, and heat conductivity to electrical resistivity and superconductivity. Generally, modeling the interatomic forces and vibrational modes of a given system require costly computer simulations, though once calculated, they provide the means to a wide variety of phonon properties. Our goal is to enable easy access to these phonon properties and to do this, we have developed a framework for easily automating the workflows involved in interfacing a phonon mode calculation with the analysis tools for determining such physical properties. This was originally implemented with the AI2PS (ab initio to phonon spectra) tool, meant solely for the calculation of vibrational properties. It has since greatly expanded in scope and capabilities to a general scientific workflow tool called Corvus, which was started with the eventual goal of collecting all our various scientific workflow efforts---phonon properties, optical properties, and so on---into a single hub. We present here both the evolution of AI2PS into the Corvus project and the phonon properties simulated, including Debye--Waller factors, phonon contributions the electron self--energy and spectral function, vibrational free energy, thermal expansion, and heat capacity.

  15. Ab initio guided design of bcc Mg-Li alloys for ultra light-weight applications

    NASA Astrophysics Data System (ADS)

    Friák, Martin; Counts, William Art; Raabe, Dierk; Neugebauer, Jörg

    2009-03-01

    Ab initio calculations are becoming increasingly useful to engineers interested in designing new alloys because these calculations are able to accurately predict basic material properties only knowing the atomic composition of the material. In this paper, fundamental physical properties (like formation energies and elastic constants) of 11 bcc Mg-Li compounds are calculated using density-functional theory (DFT) and compared with available experimental data. These DFT-determined properties are in turn used to calculate engineering parameters like (i) specific Young's modulus (Y/ρ) or (ii) bulk over shear modulus ratio (B/G) differentiating between brittle and ductile behavior. The engineering parameters are then used to identify alloys that have optimal mechanical properties needed for a light weight structural material. It was found that the stiffest bcc magnesium-lithium alloys contain about 70 at.% Mg while the most ductile alloys have 0-20 at.% Mg. The specific modulus for alloys with 70 at.% Mg is equal to that of Al-Mg alloys. An Ashby map containing Y/ρ vs. B/G shows that it is not possible to increase both Y/ρ and B/G by changing only the composition or local order of a binary alloy (W. A. Counts, M. Fri'ak, D. Raabe and J. Neugebauer, Acta Mater 57 (2009) 69-76).

  16. Engineering materials-design parameters of the Mg-Li Alloy System from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Counts, William; Friak, Martin; Raabe, Dierk; Neugebauer, Jorg

    2008-03-01

    Ab initio calculations are becoming increasingly useful to engineers interested in designing new alloys because these calculations are able to accurately predict basic material properties only knowing the atomic composition of the material. Fundamental physical properties (like formation energy and elastic constants) of 11 bcc magnesium-lithium alloys were calculated using density-functional theory (DFT) and compared with available experimental data. These DFT determined properties were in turn used to calculate engineering parameters like the bulk modulus/shear modulus (B/G) and Young's modulus/density (E/ρ). From these engineering parameters, alloys with optimal mechanical properties need for a light weight structural material were identified. It was found that the stiffest bcc magnesium-lithium alloys contain about 70 at.% magnesium while the most ductile alloys have 0-20 at.% magnesium. In addition, the specific modulus for alloys with 70 at.% magnesium was found to be equal to that of aluminum-magnesium alloys and slightly lower than that of aluminum-lithium alloys.

  17. New Approach for Investigating Reaction Dynamics and Rates with Ab Initio Calculations.

    PubMed

    Fleming, Kelly L; Tiwary, Pratyush; Pfaendtner, Jim

    2016-01-21

    Herein, we demonstrate a convenient approach to systematically investigate chemical reaction dynamics using the metadynamics (MetaD) family of enhanced sampling methods. Using a symmetric SN2 reaction as a model system, we applied infrequent metadynamics, a theoretical framework based on acceleration factors, to quantitatively estimate the rate of reaction from biased and unbiased simulations. A systematic study of the algorithm and its application to chemical reactions was performed by sampling over 5000 independent reaction events. Additionally, we quantitatively reweighed exhaustive free-energy calculations to obtain the reaction potential-energy surface and showed that infrequent metadynamics works to effectively determine Arrhenius-like activation energies. Exact agreement with unbiased high-temperature kinetics is also shown. The feasibility of using the approach on actual ab initio molecular dynamics calculations is then presented by using Car-Parrinello MD+MetaD to sample the same reaction using only 10-20 calculations of the rare event. Owing to the ease of use and comparatively low-cost of computation, the approach has extensive potential applications for catalysis, combustion, pyrolysis, and enzymology. PMID:26690335

  18. Microwave Spectra and AB Initio Studies of the Ne-Acetone Complex

    NASA Astrophysics Data System (ADS)

    Gao, Jiao; Thomas, Javix; Xu, Yunjie; Jäger, Wolfgang

    2015-06-01

    Microwave spectra of the neon-acetone van der Waals complex were measured using a cavity-based molecular beam Fourier-transform microwave spectrometer in the region from 5 to 18 GHz. Both 20Ne and 22Ne containing isotopologues were studied and both c- and weaker a-type rotational transitions were observed. The transitions are split into multiplets due to the internal rotation of two methyl groups in acetone. Electronic structure calculations were done at the MP2 level of theory with the 6-311++g (2d, p) basis set for all atoms and the internal rotation barrier height of the methyl groups was determined to be about 2.8 kJ/mol. The ab initio rotational constants were the basis for our spectroscopic searches, but the multiplet structures and floppiness of the complex made the quantum number assignment very difficult. The assignment was finally achieved with the aid of constructing closed frequency loops and predicting internal rotation splittings using the XIAM code. Analyses of the spectra yielded rotational and centrifugal distortion constants, as well as internal rotation parameters, which were interpreted in terms of structure and internal dynamics of the complex. H. Hartwig and H. Dreizler, Z. Naturforsch. A 51, 923 (1996).

  19. Ab initio calculations of cooperativity effects on clusters of methanol, ethanol, 1-propanol, and methanethiol

    SciTech Connect

    Sum, A.K.; Sandler, S.I.

    2000-02-17

    The results of ab initio calculations for cyclic clusters of methanol, ethanol, 1-propanol, and methanethiol are presented. Dimer, trimer, and tetramer clusters of all four compounds are studied, as are pentamer and hexamer clusters of methanol. From optimized clusters at HG/6--31G**, total energies and binding energies were calculated with both the HF and MP2 theories using the aug-cc-pVDZ basis set. Accurate binding energies were also calculated for the dimer and trimer of methanol using symmetry-adapted perturbation theory with the same basis set. Intermolecular and intramolecular distances, charge distribution of binding sites, binding energies, and equilibrium constants were computed to determine the hydrogen bond cooperativity effect for each species. The cooperativity effect, exclusive to hydrogen bonding systems, results form specific forces among the molecules, in particular charge-transfer processes and the greater importance of interactions between molecules not directly hydrogen bonded because of the longer range of the interactions. The ratios of equilibrium constants for forming multimer hydrogen bonds to that for dimer hydrogen bond formation increase rapidly with the cluster size, in contrast to the constant value commonly used in thermodynamic models for hydrogen bonding liquids.

  20. Ab initio study of biphenyl chemisorption on Si(001): Configurational stability

    NASA Astrophysics Data System (ADS)

    Mamatkulov, M.; Stauffer, L.; Minot, C.; Sonnet, Ph.

    2006-01-01

    We present an ab initio energetical and structural study of the configurational stability of the biphenyl molecule adsorbed on the Si(001) surface. A number of models in biphenyl tight-bridge, butterfly, twisted, and tilted configurations are considered. For an undissociated biphenyl adsorption, the tight-bridge configuration is found to be the most stable one, slightly favored over the butterfly configuration. The effect on the stability of various parameters is investigated. The position with respect to the surface of the first phenyl ring atom (C1) on which the second ring is bound plays a determinant role. The tilted dimer under the second ring mainly acts in the biphenyl butterfly and tilted configurations, and a second ring location above a silicon down-atom favors stability. The effect of the second ring height above the surface is also discussed. Our results allow us to classify these different contributions by decreasing importance. By the hypothesis of a dissociative biphenyl adsorption, the calculated adsorption energies are clearly lower than in the corresponding undissociated model and the dissociated butterfly configuration is largely favored. Comparing our results to the experimental data, we propose some interpretations relative to the weakly and strongly chemisorbed biphenyl molecule observed in the scanning tunneling microscopy experiments.

  1. Ab initio density-functional calculations in materials science: from quasicrystals over microporous catalysts to spintronics.

    PubMed

    Hafner, Jürgen

    2010-09-29

    During the last 20 years computer simulations based on a quantum-mechanical description of the interactions between electrons and atomic nuclei have developed an increasingly important impact on materials science, not only in promoting a deeper understanding of the fundamental physical phenomena, but also enabling the computer-assisted design of materials for future technologies. The backbone of atomic-scale computational materials science is density-functional theory (DFT) which allows us to cast the intractable complexity of electron-electron interactions into the form of an effective single-particle equation determined by the exchange-correlation functional. Progress in DFT-based calculations of the properties of materials and of simulations of processes in materials depends on: (1) the development of improved exchange-correlation functionals and advanced post-DFT methods and their implementation in highly efficient computer codes, (2) the development of methods allowing us to bridge the gaps in the temperature, pressure, time and length scales between the ab initio calculations and real-world experiments and (3) the extension of the functionality of these codes, permitting us to treat additional properties and new processes. In this paper we discuss the current status of techniques for performing quantum-based simulations on materials and present some illustrative examples of applications to complex quasiperiodic alloys, cluster-support interactions in microporous acid catalysts and magnetic nanostructures. PMID:21386539

  2. Ab initio studies of mechanical, electric, and magnetic properties of functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Milowska, Karolina; Birowska, Magdalena; Majewski, Jacek A.

    2012-02-01

    We present results of extensive theoretical studies of mechanical, electric, and magnetic properties of functionalized carbon nanotubes (CNTs). Our studies are based on the ab initio calculations in the framework of the density functional theory. We have performed calculations for various metallic and semiconductor single wall CNTs, functionalized with simple organic molecules such as OH, COOH, NHn, CHn and metals, Al, Fe, Ni, Cu, Zn, and Pd. We have determined the stability of the functionalized CNTs, their elastic moduli, conductance, and magnetic moments (in the case of CNTs decorated with magnetic ions). These studies shed light on physical mechanisms governing the binding of the adsorbed molecules and also provide valuable quantitative predictions that are of importance for design of novel composite materials and functional devices. In particular, we find out that the Young's modulus of functionalized CNTs is smaller than in the case of bare CNTs, however it is large enough to provide a strong enforcement of composites. The functionalization with molecules leads also to the metallization of semiconducting CNTs, being relevant in the context of CNT interconnects, whereas the functionalization with metals might be used to cut CNTs into ribbons.

  3. Ab initio kinetics for the decomposition of monomethylhydrazine (CH3NHNH2)

    SciTech Connect

    Zhang, P.; Klippenstein, S. J.; Sun, Hongyan; Law, C. K.

    2011-01-01

    The decomposition kinetics of CH{sub 3}NHNH{sub 2} (monomethylhydrazine) is studied with ab initio transition state theory-based master equation analyses. The simple NN and CN bond fissions to produce the radicals CH{sub 3}NH + NH{sub 2} or CH{sub 3} + NHNH{sub 2} are expected to dominate the decomposition kinetics. The transition states for these two bond fissions are studied with variable reaction coordinate transition state theory employing directly determined CASPT2/aug-cc-pVDZ interaction energies. Orientation independent corrections for limitations in the basis set and for the effects of conserved mode geometry relaxation are included. The bond dissociation energies are evaluated at the QCISD(T)/CBS//B3LYP/6-311++G(d,p) level. The transition state theory analysis directly provides high pressure dissociation and recombination rate coefficients. Predictions for the pressure dependence and product branching in the dissociation of CH{sub 3}NHNH{sub 2} are obtained by solving the master equation.

  4. Ab initio calculations of scytonemin derivatives of relevance to extremophile characterization by Raman spectroscopy.

    PubMed

    Varnali, Tereza; Edwards, Howell G M

    2010-07-13

    The recognition that scytonemin, the radiation protectant pigment produced by extremophilic cyanobacterial colonies in stressed terrestrial environments, is a key biomarker for extinct or extant life preserved in geological scenarios is critically important for the detection of life signatures by remote analytical instrumentation on planetary surfaces and subsurfaces. The ExoMars mission to seek life signatures on Mars is just one experiment that will rely upon the detection of molecules such as scytonemin in the Martian regolith. Following a detailed structural analysis of the parent scytonemin, we report here for the first time a similar analysis of several of its methoxy derivatives that have recently been extracted from stressed cyanobacteria. Ab initio calculations have been carried out to determine the most stable molecular configurations, and the implications of the structural changes imposed by the methoxy group additions on the spectral characteristics of the parent molecule are discussed. The calculated electronic absorption bands of the derivative molecules reveal that their capability of removing UVA wavelengths is removed while preserving the ability to absorb the shorter wavelength UVB and UVC radiation, in contrast to scytonemin itself. This is indicative of a special role for these molecules in the protective strategy of the cyanobacterial extremophiles. PMID:20529954

  5. Ab Initio ONIOM-Molecular Dynamics (MD) Study on the Deamination Reaction by Cytidine Deaminase

    SciTech Connect

    Matsubara, Toshiaki; Dupuis, Michel; Aida, Misako

    2007-08-23

    We applied the ONIOM-molecular dynamics (MD) method to the hydrolytic deamination of cytidine by cytidine deaminase, which is an essential step of the activation process of the anticancer drug inside the human body. The direct MD simulations were performed for the realistic model of cytidine deaminase calculating the energy and its gradient by the ab initio ONIOM method on the fly. The ONIOM-MD calculations including the thermal motion show that the neighboring amino acid residue is an important factor of the environmental effects and significantly affects not only the geometry and energy of the substrate trapped in the pocket of the active site but also the elementary step of the catalytic reaction. We successfully simulate the second half of the catalytic cycle, which has been considered to involve the rate-determining step, and reveal that the rate-determing step is the release of the NH3 molecule. TM and MA were supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan. MD was supported by the Division of Chemical Sciences, Office of Basic Energy Sciences, and by the Office of Biological and Environmental Research of the U.S. Department of Energy DOE. Battelle operates Pacific Northwest National Laboratory for DOE.

  6. Combined ab initio molecular dynamics and experimental studies of carbon atom addition to benzene.

    PubMed

    McKee, Michael L; Reisenauer, Hans Peter; Schreiner, Peter R

    2014-04-17

    Car-Parrinello molecular dynamics was used to explore the reactions between triplet and singlet carbon atoms with benzene. The computations reveal that, in the singlet C atom reaction, products are very exothermic where nearly every collision yields a product that is determined by the initial encounter geometry. The singlet C atom reaction does not follow the minimum energy path because the bimolecular reaction is controlled by dynamics (i.e., initial orientation of encounter). On the other hand, in a 10 K solid Ar matrix, ground state C((3)P) atoms do tend to follow RRKM kinetics. Thus, ab initio molecular dynamics (AIMD) results indicate that a significant fraction of C-H insertion occurs to form phenylcarbene whereas, in marked contrast to previous theoretical and experimental conclusions, the Ar matrix isolation studies indicate a large fraction of direct cycloheptatetraene formation, without the intermediacy of phenylcarbene. The AIMD calculations are more consistent with vaporized carbon atom experiments where labeling studies indicate the initial formation of phenylcarbene. This underlines that the availability of thermodynamic sinks can completely alter the observed reaction dynamics. PMID:24661002

  7. Integration of ab-initio nuclear calculation with derivative free optimization technique

    SciTech Connect

    Sharda, Anurag

    2008-01-01

    Optimization techniques are finding their inroads into the field of nuclear physics calculations where the objective functions are very complex and computationally intensive. A vast space of parameters needs searching to obtain a good match between theoretical (computed) and experimental observables, such as energy levels and spectra. Manual calculation defies the scope of such complex calculation and are prone to error at the same time. This body of work attempts to formulate a design and implement it which would integrate the ab initio nuclear physics code MFDn and the VTDIRECT95 code. VTDIRECT95 is a Fortran95 suite of parallel code implementing the derivative-free optimization algorithm DIRECT. Proposed design is implemented for a serial and parallel version of the optimization technique. Experiment with the initial implementation of the design showing good matches for several single-nucleus cases are conducted. Determination and assignment of appropriate number of processors for parallel integration code is implemented to increase the efficiency and resource utilization in the case of multiple nuclei parameter search.

  8. Insights into photodissociation dynamics of acetaldehyde from ab initio calculations and molecular dynamics simulations

    SciTech Connect

    Chen Shilu; Fang Weihai

    2009-08-07

    In the present paper we report a theoretical study on mechanistic photodissociation of acetaldehyde (CH{sub 3}CHO). Stationary structures for H{sub 2} and CO eliminations in the ground state (S{sub 0}) have been optimized with density functional theory method, which is followed by the intrinsic reaction coordinate and ab initio molecular dynamics calculations to confirm the elimination mechanism. Equilibrium geometries, transition states, and intersection structures for the C-C and C-H dissociations in excited states were determined by the complete-active-space self-consistent field (CASSCF) method. Based on the CASSCF optimized structures, the potential energy profiles for the dissociations were refined by performing the single-point calculations using the multireference configuration interaction method. Upon the low-energy irradiation of CH{sub 3}CHO (265 nm<{lambda}<318 nm), the T{sub 1} C-C bond fission following intersystem crossing from the S{sub 1} state is the predominant channel and the minor channel, the ground-state elimination to CH{sub 4}+CO after internal conversion (IC) from S{sub 1} to S{sub 0}, could not be excluded. With the photon energy increasing, another pathway of IC, achieved via an S{sub 1}/S{sub 0} intersection point resulting from the S{sub 1} C-C bond fission, becomes accessible and increases the yield of CH{sub 4}+CO.

  9. Ab initio intermolecular potential energy surface and second pressure virial coefficients of methane.

    PubMed

    Hellmann, Robert; Bich, Eckard; Vogel, Eckhard

    2008-06-01

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid methane molecules was determined from high-level quantum-mechanical ab initio computations. A total of 272 points for 17 different angular orientations on the PES were calculated utilizing the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory with basis sets of aug-cc-pVTZ and aug-cc-pVQZ qualities. The calculated interaction energies were extrapolated to the complete basis set limit. An analytical site-site potential function with nine sites per methane molecule was fitted to the interaction energies. In addition, a semiempirical correction to the analytical potential function was introduced to take into account the effects of zero-point vibrations. This correction includes adjustments of the dispersion coefficients and of a single-parameter within the fit to the measured values of the second virial coefficient B(T) at room temperature. Quantitative agreement was then obtained with the measured B values over the whole temperature range of the measurements. The calculated B values should definitely be more reliable at very low temperatures (T<150 K) than values extrapolated using the currently recommended equation of state. PMID:18537418

  10. Ab initio intermolecular potential energy surface and thermophysical properties of hydrogen sulfide.

    PubMed

    Hellmann, Robert; Bich, Eckard; Vogel, Eckhard; Vesovic, Velisa

    2011-08-14

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid hydrogen sulfide molecules was determined from high-level quantum-mechanical ab initio computations. A total of 4016 points for 405 different angular orientations of two molecules were calculated utilizing the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory and extrapolating the calculated interaction energies to the complete basis set limit. An analytical site-site potential function with eleven sites per hydrogen sulfide molecule was fitted to the interaction energies. The PES has been validated by computing the second pressure virial coefficient, shear viscosity, thermal conductivity and comparing with the available experimental data. The calculated values of volume viscosity were not used to validate the potential as the low accuracy of the available data precluded such an approach. The second pressure virial coefficient was evaluated by means of the Takahashi and Imada approach, while the transport properties, in the dilute limit, were evaluated by utilizing the classical trajectory method. In general, the agreement with the primary experimental data is within the experimental error for temperatures higher than 300 K. For lower temperatures the lack of reliable data indicates that the values of the second pressure virial coefficient and of the transport properties calculated in this work are currently the most accurate estimates for the thermophysical properties of hydrogen sulfide. PMID:21720616

  11. Ab initio construction of interatomic potentials for uranium dioxide across all interatomic distances

    SciTech Connect

    Tiwary, P.; Walle, A. van de; Groenbech-Jensen, N.

    2009-11-01

    We provide a methodology for generating interatomic potentials for use in classical molecular-dynamics simulations of atomistic phenomena occurring at energy scales ranging from lattice vibrations to crystal defects to high-energy collisions. A rigorous method to objectively determine the shape of an interatomic potential over all length scales is introduced by building upon a charged-ion generalization of the well-known Ziegler-Biersack-Littmark universal potential that provides the short- and long-range limiting behavior of the potential. At intermediate ranges the potential is smoothly adjusted by fitting to ab initio data. Our formalism provides a complete description of the interatomic potentials that can be used at any energy scale, and thus, eliminates the inherent ambiguity of splining different potentials generated to study different kinds of atomic-materials behavior. We exemplify the method by developing rigid-ion potentials for uranium dioxide interactions under conditions ranging from thermodynamic equilibrium to very high atomic-energy collisions relevant for fission events.

  12. Molecular spectroscopic studies and ab initio calculations of four alcohols derived from 2,2-dimethylpropane

    NASA Astrophysics Data System (ADS)

    Granzow, B.; Klaeboe, P.; Sablinskas, V.

    1995-04-01

    Four alcohols with the formulas C(CH 2OH) x(CH 3) 4- x (x=1,2,3,4) have been investigated by IR and Raman spectroscopy at different temperatures from the crystalline phases to the plastic phases and the melts. Solution spectra in different solvents have also been obtained. The alcohols with the highest vapour pressures, 2,2-dimethyl-1-propanol and 2,2-dimethyl-1,3-propanediol were studied in argon and nitrogen matrices at 4.5 K using the hot nozzle technique. As observed for the corresponding halogenated compounds, the alcohols are expected to have conformational equilibria due to restricted rotations around the C-C bonds in the plastic phases, the melts and in solution. Additional conformers from rotations around the C-O bonds cannot be excluded. The energies and frequencies of the expected conformations were determined by ab initio calculations using a 3-21 G∗ basis set and compared with the experimental values. The data reveal that the {G}/{G} ( C2) conformer is the most stable in 2,2-dimethyl-1,3-propanediol, while in 2-hydroxymethyl-2-methyl-1,3-propanediol the C1 conformer is more stable than both C3 and Cs with enthalpy differences of 2.9 and 3.7 kJ mol -1, respectively.

  13. Ab initio investigation of the first hydration shell of protonated glycine

    SciTech Connect

    Wei, Zhichao; Chen, Dong E-mail: boliu@henu.edu.cn; Zhao, Huiling; Li, Yinli; Zhu, Jichun; Liu, Bo E-mail: boliu@henu.edu.cn

    2014-02-28

    The first hydration shell of the protonated glycine is built up using Monte Carlo multiple minimum conformational search analysis with the MMFFs force field. The potential energy surfaces of the protonated glycine and its hydration complexes with up to eight water molecules have been scanned and the energy-minimized structures are predicted using the ab initio calculations. First, three favorable structures of protonated glycine were determined, and the micro-hydration processes showed that water can significantly stabilize the unstable conformers, and then their first hydration shells were established. Finally, we found that seven water molecules are required to fully hydrate the first hydration shell for the most stable conformer of protonated glycine. In order to analyse the hydration process, the dominant hydration sites located around the ammonium and carboxyl groups are studied carefully and systemically. The results indicate that, water molecules hydrate the protonated glycine in an alternative dynamic hydration process which is driven by the competition between different hydration sites. The first three water molecules are strongly attached by the ammonium group, while only the fourth water molecule is attached by the carboxyl group in the ultimate first hydration shell of the protonated glycine. In addition, the first hydration shell model has predicted most identical structures and a reasonable accord in hydration energy and vibrational frequencies of the most stable conformer with the conductor-like polarizable continuum model.

  14. Ab initio prediction of electronic, transport and bulk properties of Li2S

    NASA Astrophysics Data System (ADS)

    Malozovsky, Yuriy; Franklin, Lashounda; Ekuma, Chinedu; Bagayoko, Diola

    2015-08-01

    In this paper, we present results from ab initio, self-consistent, local density approximation (LDA) calculations of electronic and related properties of cubic antifluorite (anti-CaF2) lithium sulfide (Li2S). Our nonrelativistic computations implemented the linear combination of atomic orbital (LCAO) formalism following the Bagayoko, Zhao and Williams method, as enhanced by Ekuma and Franklin (BZW-EF). Consequently, using several self-consistent calculations with increasing basis sets, we searched for the smallest basis set that yields the absolute minima of the occupied energies. The outcomes of the calculation with this basis set, called the optimal basis set, have the full physical content of density functional theory (DFT). Our calculated indirect band gap, from Γ to X, is 3.723 eV, for the low temperature experimental lattice constant of 5.689 Å. The predicted indirect band gap of 3.702 eV is obtained for the computationally determined equilibrium lattice constant of 5.651 Å. We have also calculated the total density of states (DOS) and partial densities of states (pDOS), electron and hole effective masses and the bulk modulus of Li2S. Due to a lack of experimental results, most of the calculated ones reported here are predictions for this material suspected of exhibiting a high temperature superconductivity similar to that of MgB2.

  15. Cluster form factor calculation in the ab initio no-core shell model

    SciTech Connect

    Navratil, Petr

    2004-11-01

    We derive expressions for cluster overlap integrals or channel cluster form factors for ab initio no-core shell model (NCSM) wave functions. These are used to obtain the spectroscopic factors and can serve as a starting point for the description of low-energy nuclear reactions. We consider the composite system and the target nucleus to be described in the Slater determinant (SD) harmonic oscillator (HO) basis while the projectile eigenstate to be expanded in the Jacobi coordinate HO basis. This is the most practical case. The spurious center of mass components present in the SD bases are removed exactly. The calculated cluster overlap integrals are translationally invariant. As an illustration, we present results of cluster form factor calculations for <{sup 5}He vertical bar{sup 4}He+n>, <{sup 5}He vertical bar{sup 3}H+d>, <{sup 6}Li vertical bar{sup 4}He+d>, <{sup 6}Be vertical bar{sup 3}He+{sup 3}He>, <{sup 7}Li vertical bar{sup 4}He+{sup 3}H>, <{sup 7}Li vertical bar{sup 6}Li+n>, <{sup 8}Be vertical bar{sup 6}Li+d>, <{sup 8}Be vertical bar{sup 7}Li+p>, <{sup 9}Li vertical bar{sup 8}Li+n>, and <{sup 13}C vertical bar{sup 12}C+n>, with all the nuclei described by multi-({Dirac_h}/2{pi}){omega} NCSM wave functions.

  16. Ab Initio Studies of Shock-Induced Chemical Reactions of Inter-Metallics

    NASA Astrophysics Data System (ADS)

    Zaharieva, Roussislava; Hanagud, Sathya

    2009-06-01

    Shock-induced and shock assisted chemical reactions of intermetallic mixtures are studied by many researchers, using both experimental and theoretical techniques. The theoretical studies are primarily at continuum scales. The model frameworks include mixture theories and meso-scale models of grains of porous mixtures. The reaction models vary from equilibrium thermodynamic model to several non-equilibrium thermodynamic models. The shock-effects are primarily studied using appropriate conservation equations and numerical techniques to integrate the equations. All these models require material constants from experiments and estimates of transition states. Thus, the objective of this paper is to present studies based on ab initio techniques. The ab inito studies, to date, use ab inito molecular dynamics. This paper presents a study that uses shock pressures, and associated temperatures as starting variables. Then intermetallic mixtures are modeled as slabs. The required shock stresses are created by straining the lattice. Then, ab initio binding energy calculations are used to examine the stability of the reactions. Binding energies are obtained for different strain components super imposed on uniform compression and finite temperatures. Then, vibrational frequencies and nudge elastic band techniques are used to study reactivity and transition states. Examples include Ni and Al.

  17. Periodic arrays of intercalated atoms in twisted bilayer graphene: An ab initio investigation

    NASA Astrophysics Data System (ADS)

    Miwa, R. H.; Venezuela, P.; Morell, Eric Suárez

    2015-09-01

    We have performed an ab initio investigation of transition metals (TMs =Mo ,Ru ,Co ,andPt ) embedded in twisted bilayer graphene (tBG) layers. Our total energy results reveal that, triggered by the misalignment between the graphene layers, Mo and Ru atoms may form a quasiperiodic (triangular) array of intercalated atoms. In contrast, the formation of those structures is not expected for the other TMs, the Co and Pt atoms. The net magnetic moment (m ) of Mo and Ru atoms may be quenched upon intercalation, depending on the stacking region (AA or AB). For instance, we find a magnetic moment of 0.3 μB(1.8 μB) for Ru atoms intercalated between the AA (AB) regions of the stacked twisted layers. Through simulated scanning tunneling microscopy (STM) images, we verify that the presence of intercalated TMs can be identified by the formation of bright (hexagonal) spots lying on the graphene surface.

  18. Conformational Characteristics of Poly(tetrafluoroethylene) (PTFE) Based Upon Ab Initio Electronic Structure Calculations on Model Molecules

    NASA Technical Reports Server (NTRS)

    Smith, Grant D.; Jaffe, R. L.; Yoon, D. Y.; Arnold, James O. (Technical Monitor)

    1994-01-01

    Conformational energy contours of perfluoroalkanes, determined from ab initio calculations, confirm the well-known spitting of trans states into two minima at plus or minus 17 degrees but also show that the gauche states split as well, with minima at plus or minus 124 degrees and plus or minus 84 in order to relieve steric crowding. The directions of such split distortions from the perfectly staggered states are strongly coupled for adjacent pairs of bonds in a manner identical to the intradyad pair for poly (isobutylene) chains. These conformational characteristics are fully represented by a six-state rotational isomeric state (RIS) model for PTFE comprised of t(+), t(-), g(sup +)+, g(sup +)-, g(sup -) + and g(sup -)-states, located at the split energy minima. The resultant 6 x 6 statistical weight matrix is described by first-order interaction parameters for the g+(+) (ca. 0.6 kcal/mol) and g+- (ca. 2.0 kcal/mol) states, and second order parameters for the g(sup +)+g(sup +)+ (ca 0.6 kcal/mol) and g(sup +)+g(sup -)+ (ca. 1.0 kcal/mol) states. This six-state RIS model, without adjustment of the geometric or energy parameters as determined from the ab initio calculations, predicts the unperturbed chain dimensions and the fraction of gauche bonds as a function of temperature for PTFE in good agreement with available experimental values.

  19. An ab initio study of complexes between ethylene and ozone

    SciTech Connect

    McKee, M.L. ); Rohlfing, C.M. )

    1989-03-29

    A series of complexes between ethylene and ozone have been examined at the SCF, MP2, and MP4(SDTQ) levels of theory within a split-valence-plus-polarization basis. The conformational nature of the primary ozonide (PO) is determined to be an O-envelope, and the theoretically predicted geometry is in excellent agreement with a recently reported microwave structure. The binding energy of PO at correlated levels is computed to be slightly less than 50 kcal/mol, which is also in very good agreement with thermochemical estimates. Five other weakly bound complexes and the transition state to PO have also been investigated.

  20. AIDA: ab initio domain assembly for automated multi-domain protein structure prediction and domain–domain interaction prediction

    PubMed Central

    Xu, Dong; Jaroszewski, Lukasz; Li, Zhanwen; Godzik, Adam

    2015-01-01

    Motivation: Most proteins consist of multiple domains, independent structural and evolutionary units that are often reshuffled in genomic rearrangements to form new protein architectures. Template-based modeling methods can often detect homologous templates for individual domains, but templates that could be used to model the entire query protein are often not available. Results: We have developed a fast docking algorithm ab initio domain assembly (AIDA) for assembling multi-domain protein structures, guided by the ab initio folding potential. This approach can be extended to discontinuous domains (i.e. domains with ‘inserted’ domains). When tested on experimentally solved structures of multi-domain proteins, the relative domain positions were accurately found among top 5000 models in 86% of cases. AIDA server can use domain assignments provided by the user or predict them from the provided sequence. The latter approach is particularly useful for automated protein structure prediction servers. The blind test consisting of 95 CASP10 targets shows that domain boundaries could be successfully determined for 97% of targets. Availability and implementation: The AIDA package as well as the benchmark sets used here are available for download at http://ffas.burnham.org/AIDA/. Contact: adam@sanfordburnham.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25701568

  1. Microwave spectra and conformational studies of ethylamine from temperature dependent Raman spectra of xenon solutions and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Darkhalil, Ikhlas D.; Nagels, Nick; Herrebout, Wouter A.; van der Veken, Benjamin J.; Gurusinghe, Ranil M.; Tubergen, Michael J.; Durig, James R.

    2014-06-01

    FT-microwave spectroscopy was carried out where the trans conformer was identified to be the most stable conformer. Variable temperature (-60 to -100 °C) studies of the Raman spectra (4000-50 cm-1) of ethylamine, CH3CH2NH2 dissolved in liquefied xenon have been carried out. From these data both conformers have been identified and their relative stabilities obtained. The enthalpy difference has been determined to be 62 ± 6 cm-1 (0.746 ± 0.072 kJ mol-1) with the trans conformer the more stable form. The percentage of the gauche conformer is estimated to be 60% at ambient temperature. The conformational stabilities have been predicted from ab initio calculations with the Møller-Plesset perturbation method to the second order (MP2(full)) and the fourth order (MP4(SDTQ)) as well as with density functional theory by the B3LYP method by utilizing a variety of basis sets. Vibrational assignments have been made for the observed bands which have been predicted by MP2(full)/6-31G(d) ab initio calculations which includes harmonic force fields, frequencies, infrared intensities, Raman activities and depolarization ratios for both conformers. The results are discussed and compared to the corresponding properties of some similar molecule.

  2. Vibrational dynamics of single-crystal YVO4 studied by polarized micro-Raman spectroscopy and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Sanson, Andrea; Giarola, Marco; Rossi, Barbara; Mariotto, Gino; Cazzanelli, Enzo; Speghini, Adolfo

    2012-12-01

    The vibrational properties of yttrium orthovanadate (YVO4) single crystals, with tetragonal zircon structure, have been investigated by means of polarized micro-Raman spectroscopy and ab initio calculations. Raman spectra were taken at different polarizations and orientations carefully set by the use of a micromanipulator, so that all of the twelve Raman-active modes, expected on the basis of the group theory, were selected in turn and definitively assigned in wave number and symmetry. In particular the Eg(4) mode, assigned incorrectly in previous literature, has been observed at 387 cm-1. Moreover, the very weak Eg(1) mode, peaked at about 137 cm-1, was clearly observed only under some excitation wavelengths, and its peculiar Raman excitation profile was measured within a wide region of the visible. Finally, ab initio calculations based on density-functional theory have been performed in order to determine both Raman and infrared vibrational modes and to corroborate the experimental results. The rather good agreement between computational and experimental frequencies is slightly better than in previous computational works and supports our experimental symmetry assignments.

  3. Equilibrium and Dynamics Properties of Poly(oxyethylene) Melts and Related Poly(alkylethers) from Simulations and Ab Initio Calculations

    NASA Technical Reports Server (NTRS)

    Smith, Grant D.; Jaffe, R. L.; Yoon, D. Y.; Arnold, James O. (Technical Monitor)

    1994-01-01

    Molecular dynamics simulations of POE melts have been performed utilizing a potential force field parameterized to reproduce conformer energies and rotational energy barriers in dimethoxyethane as determined from ab initio electronic structure calculations. Chain conformations and dimensions of POE from the simulations were found to be in good agreement with predictions of a rotational isomeric state (RIS) model based upon the ab initio conformational. energies. The melt chains were found to be somewhat extended relative to chains at theta conditions. This effect will be discussed in light of neutron scattering experiments which indicate that POE chains are extended in the melt relative to theta solutions. The conformational characteristics of POE chains will also be compared with those of other poly (alkylethers), namely poly(oxymethylene), poly(oxytrimethylene) and poly(oxytetramethylene). Local conformational dynamics were found to be more rapid than in polymethylene. Calculated C-H vector correlation times were found to be in reasonable agreement with experimental values from C-13 NMR spin-lattice relaxation times. The influence of ionic salts on local conformations and dynamics will also be discussed.

  4. Bhageerath-H: A homology/ab initio hybrid server for predicting tertiary structures of monomeric soluble proteins

    PubMed Central

    2014-01-01

    Background The advent of human genome sequencing project has led to a spurt in the number of protein sequences in the databanks. Success of structure based drug discovery severely hinges on the availability of structures. Despite significant progresses in the area of experimental protein structure determination, the sequence-structure gap is continually widening. Data driven homology based computational methods have proved successful in predicting tertiary structures for sequences sharing medium to high sequence similarities. With dwindling similarities of query sequences, advanced homology/ ab initio hybrid approaches are being explored to solve structure prediction problem. Here we describe Bhageerath-H, a homology/ ab initio hybrid software/server for predicting protein tertiary structures with advancing drug design attempts as one of the goals. Results Bhageerath-H web-server was validated on 75 CASP10 targets which showed TM-scores ≥0.5 in 91% of the cases and Cα RMSDs ≤5Å from the native in 58% of the targets, which is well above the CASP10 water mark. Comparison with some leading servers demonstrated the uniqueness of the hybrid methodology in effectively sampling conformational space, scoring best decoys and refining low resolution models to high and medium resolution. Conclusion Bhageerath-H methodology is web enabled for the scientific community as a freely accessible web server. The methodology is fielded in the on-going CASP11 experiment. PMID:25521245

  5. Ab initio calculation of the neutron-proton mass difference.

    PubMed

    Borsanyi, Sz; Durr, S; Fodor, Z; Hoelbling, C; Katz, S D; Krieg, S; Lellouch, L; Lippert, T; Portelli, A; Szabo, K K; Toth, B C

    2015-03-27

    The existence and stability of atoms rely on the fact that neutrons are more massive than protons. The measured mass difference is only 0.14% of the average of the two masses. A slightly smaller or larger value would have led to a dramatically different universe. Here, we show that this difference results from the competition between electromagnetic and mass isospin breaking effects. We performed lattice quantum-chromodynamics and quantum-electrodynamics computations with four nondegenerate Wilson fermion flavors and computed the neutron-proton mass-splitting with an accuracy of 300 kilo-electron volts, which is greater than 0 by 5 standard deviations. We also determine the splittings in the Σ, Ξ, D, and Ξcc isospin multiplets, exceeding in some cases the precision of experimental measurements. PMID:25814578

  6. The ab initio calculation of molecular electric, magnetic and geometric properties.

    PubMed

    Bast, Radovan; Ekström, Ulf; Gao, Bin; Helgaker, Trygve; Ruud, Kenneth; Thorvaldsen, Andreas J

    2011-02-21

    We give an account of some recent advances in the development of ab initio methods for the calculation of molecular response properties, involving electric, magnetic, and geometric perturbations. Particular attention is given to properties in which the basis functions depend explicitly both on time and on the applied perturbations such as perturbations involving nuclear displacements or external magnetic fields when London atomic orbitals are used. We summarize a general framework based on the quasienergy for the calculation of arbitrary-order molecular properties using the elements of the density matrix in the atomic-orbital basis as the basic variables. We demonstrate that the necessary perturbed density matrices of arbitrary order can be determined from a set of linear equations that have the same formal structure as the set of linear equations encountered when determining the linear response equations (or time-dependent self-consistent-field equations). Additional components needed to calculate properties involving perturbation-dependent basis sets are flexible one- and two-electron integral techniques for geometric or magnetic-field differentiated integrals; in Kohn-Sham density-functional theory (KS-DFT), we also need to calculate derivatives of the exchange-correlation functional. We describe a recent proposal for evaluating these contributions based on automatic differentiation. Within this framework, it is now possible to calculate any molecular property for an arbitrary self-consistent-field reference state, including two- and four-component relativistic self-consistent-field wave functions. Examples of calculations that can be performed with this formulation are presented. PMID:21180690

  7. High-resolution infrared spectroscopy and ab initio studies of the cyclopropane-carbon dioxide interaction.

    PubMed

    Su, Zheng; Tam, Wai Shun; Xu, Yunjie

    2006-01-14

    A jet-cooled high-resolution infrared spectrum of the cyclopropane-carbon dioxide complex was detected for the first time, using a rapid scan infrared spectrometer with an astigmatic multipass sample cell. The spectrum was recorded in the vicinity of the CO2 asymmetric stretching band (nu3) and exhibits a b-dipole selection rule. Altogether, over 200 lines were observed, assigned, and fitted to Watson's S-reduction Hamiltonian. Rotational and quartic distortion constants were obtained. The band origin was located at 2347.6263(2) cm(-1), redshifted by 1.5230(2) cm(-1) from the corresponding frequency of the CO2 monomer. The experimentally determined structure shows that CO2 lies next to a C-C bond edge and is perpendicular to the C3 ring, indicating that the interaction is characterized by the bonding between the carbon atom of CO2 and the pseudo-pi system of cyclopropane. The intermolecular distance between the carbon atom of CO2 and the center of mass of cyclopropane was determined to be 3.667(2) A. Complete ab initio geometry optimizations and harmonic frequency calculations were carried out at the level of second-order Moller-Plesset perturbation theory with four different basis sets: cc-pVDZ, 6-311++G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ. The lowest-energy structure identified with the three larger basis sets is in accord with the experimental finding. In addition, a transition state was identified and the tunneling barrier height was computed. PMID:16422587

  8. Electronic Structures of Anti-Ferromagnetic Tetraradicals: Ab Initio and Semi-Empirical Studies.

    PubMed

    Zhang, Dawei; Liu, Chungen

    2016-04-12

    The energy relationships and electronic structures of the lowest-lying spin states in several anti-ferromagnetic tetraradical model systems are studied with high-level ab initio and semi-empirical methods. The Full-CI method (FCI), the complete active space second-order perturbation theory (CASPT2), and the n-electron valence state perturbation theory (NEVPT2) are employed to obtain reference results. By comparing the energy relationships predicted from the Heisenberg and Hubbard models with ab initio benchmarks, the accuracy of the widely used Heisenberg model for anti-ferromagnetic spin-coupling in low-spin polyradicals is cautiously tested in this work. It is found that the strength of electron correlation (|U/t|) concerning anti-ferromagnetically coupled radical centers could range widely from strong to moderate correlation regimes and could become another degree of freedom besides the spin multiplicity. Accordingly, the Heisenberg-type model works well in the regime of strong correlation, which reproduces well the energy relationships along with the wave functions of all the spin states. In moderately spin-correlated tetraradicals, the results of the prototype Heisenberg model deviate severely from those of multi-reference electron correlation ab initio methods, while the extended Heisenberg model, containing four-body terms, can introduce reasonable corrections and maintains its accuracy in this condition. In the weak correlation regime, both the prototype Heisenberg model and its extended forms containing higher-order correction terms will encounter difficulties. Meanwhile, the Hubbard model shows balanced accuracy from strong to weak correlation cases and can reproduce qualitatively correct electronic structures, which makes it more suitable for the study of anti-ferromagnetic coupling in polyradical systems. PMID:26963572

  9. Ab initio electronic transport model with explicit solution to the linearized Boltzmann transport equation

    NASA Astrophysics Data System (ADS)

    Faghaninia, Alireza; Ager, Joel W.; Lo, Cynthia S.

    2015-06-01

    Accurate models of carrier transport are essential for describing the electronic properties of semiconductor materials. To the best of our knowledge, the current models following the framework of the Boltzmann transport equation (BTE) either rely heavily on experimental data (i.e., semiempirical), or utilize simplifying assumptions, such as the constant relaxation time approximation (BTE-cRTA). While these models offer valuable physical insights and accurate calculations of transport properties in some cases, they often lack sufficient accuracy—particularly in capturing the correct trends with temperature and carrier concentration. We present here a transport model for calculating low-field electrical drift mobility and Seebeck coefficient of n -type semiconductors, by explicitly considering relevant physical phenomena (i.e., elastic and inelastic scattering mechanisms). We first rewrite expressions for the rates of elastic scattering mechanisms, in terms of ab initio properties, such as the band structure, density of states, and polar optical phonon frequency. We then solve the linear BTE to obtain the perturbation to the electron distribution—resulting from the dominant scattering mechanisms—and use this to calculate the overall mobility and Seebeck coefficient. Therefore, we have developed an ab initio model for calculating mobility and Seebeck coefficient using the Boltzmann transport (aMoBT) equation. Using aMoBT, we accurately calculate electrical transport properties of the compound n -type semiconductors, GaAs and InN, over various ranges of temperature and carrier concentration. aMoBT is fully predictive and provides high accuracy when compared to experimental measurements on both GaAs and InN, and vastly outperforms both semiempirical models and the BTE-cRTA. Therefore, we assert that this approach represents a first step towards a fully ab initio carrier transport model that is valid in all compound semiconductors.

  10. A general method for constructing multidimensional molecular potential energy surfaces from {ital ab} {ital initio} calculations

    SciTech Connect

    Ho, T.; Rabitz, H.

    1996-02-01

    A general interpolation method for constructing smooth molecular potential energy surfaces (PES{close_quote}s) from {ital ab} {ital initio} data are proposed within the framework of the reproducing kernel Hilbert space and the inverse problem theory. The general expression for an {ital a} {ital posteriori} error bound of the constructed PES is derived. It is shown that the method yields globally smooth potential energy surfaces that are continuous and possess derivatives up to second order or higher. Moreover, the method is amenable to correct symmetry properties and asymptotic behavior of the molecular system. Finally, the method is generic and can be easily extended from low dimensional problems involving two and three atoms to high dimensional problems involving four or more atoms. Basic properties of the method are illustrated by the construction of a one-dimensional potential energy curve of the He{endash}He van der Waals dimer using the exact quantum Monte Carlo calculations of Anderson {ital et} {ital al}. [J. Chem. Phys. {bold 99}, 345 (1993)], a two-dimensional potential energy surface of the HeCO van der Waals molecule using recent {ital ab} {ital initio} calculations by Tao {ital et} {ital al}. [J. Chem. Phys. {bold 101}, 8680 (1994)], and a three-dimensional potential energy surface of the H{sup +}{sub 3} molecular ion using highly accurate {ital ab} {ital initio} calculations of R{umlt o}hse {ital et} {ital al}. [J. Chem. Phys. {bold 101}, 2231 (1994)]. In the first two cases the constructed potentials clearly exhibit the correct asymptotic forms, while in the last case the constructed potential energy surface is in excellent agreement with that constructed by R{umlt o}hse {ital et} {ital al}. using a low order polynomial fitting procedure. {copyright} {ital 1996 American Institute of Physics.}

  11. Full Dimensional Vibrational Calculations for Methane Using AN Accurate New AB Initio Based Potential Energy Surface

    NASA Astrophysics Data System (ADS)

    Majumder, Moumita; Dawes, Richard; Wang, Xiao-Gang; Carrington, Tucker; Li, Jun; Guo, Hua; Manzhos, Sergei

    2014-06-01

    New potential energy surfaces for methane were constructed, represented as analytic fits to about 100,000 individual high-level ab initio data. Explicitly-correlated multireference data (MRCI-F12(AE)/CVQZ-F12) were computed using Molpro [1] and fit using multiple strategies. Fits with small to negligible errors were obtained using adaptations of the permutation-invariant-polynomials (PIP) approach [2,3] based on neural-networks (PIP-NN) [4,5] and the interpolative moving least squares (IMLS) fitting method [6] (PIP-IMLS). The PESs were used in full-dimensional vibrational calculations with an exact kinetic energy operator by representing the Hamiltonian in a basis of products of contracted bend and stretch functions and using a symmetry adapted Lanczos method to obtain eigenvalues and eigenvectors. Very close agreement with experiment was produced from the purely ab initio PESs. References 1- H.-J. Werner, P. J. Knowles, G. Knizia, 2012.1 ed. 2012, MOLPRO, a package of ab initio programs. see http://www.molpro.net. 2- Z. Xie and J. M. Bowman, J. Chem. Theory Comput 6, 26, 2010. 3- B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577, 2009. 4- J. Li, B. Jiang and Hua Guo, J. Chem. Phys. 139, 204103 (2013). 5- S Manzhos, X Wang, R Dawes and T Carrington, JPC A 110, 5295 (2006). 6- R. Dawes, X-G Wang, A.W. Jasper and T. Carrington Jr., J. Chem. Phys. 133, 134304 (2010).

  12. Carbon dioxide hydrate phase equilibrium and cage occupancy calculations using ab initio intermolecular potentials.

    PubMed

    Velaga, Srinath C; Anderson, Brian J

    2014-01-16

    Gas hydrate deposits are receiving increased attention as potential locations for CO2 sequestration, with CO2 replacing the methane that is recovered as an energy source. In this scenario, it is very important to correctly characterize the cage occupancies of CO2 to correctly assess the sequestration potential as well as the methane recoverability. In order to predict accurate cage occupancies, the guest–host interaction potential must be represented properly. Earlier, these potential parameters were obtained by fitting to experimental equilibrium data and these fitted parameters do not match with those obtained by second virial coefficient or gas viscosity data. Ab initio quantum mechanical calculations provide an independent means to directly obtain accurate intermolecular potentials. A potential energy surface (PES) between H2O and CO2 was computed at the MP2/aug-cc-pVTZ level and corrected for basis set superposition error (BSSE), an error caused due to the lower basis set, by using the half counterpoise method. Intermolecular potentials were obtained by fitting Exponential-6 and Lennard-Jones 6-12 models to the ab initio PES, correcting for many-body interactions. We denoted this model as the “VAS” model. Reference parameters for structure I carbon dioxide hydrate were calculated using the VAS model (site–site ab initio intermolecular potentials) as Δμ(w)(0) = 1206 ± 2 J/mol and ΔH(w)(0) = 1260 ± 12 J/mol. With these reference parameters and the VAS model, pure CO2 hydrate equilibrium pressure was predicted with an average absolute deviation of less than 3.2% from the experimental data. Predictions of the small cage occupancy ranged from 32 to 51%, and the large cage is more than 98% occupied. The intermolecular potentials were also tested by calculating the pure CO2 density and diffusion of CO2 in water using molecular dynamics simulations. PMID:24328234

  13. Ab Initio Calculations of the Interaction between CO 2 and the Acetate Ion

    SciTech Connect

    Steckel, Janice A.

    2012-11-29

    A series of ab initio calculations designed to investigate the interaction of CO{sub 2} with acetate are presented. The lowest energy structure, AC–CO{sub 2}-η{sup 2}, is predicted by CCSD(T)/aVTZ to be bound by -10.6 kcal/mol. Six of the bound complexes have binding energies on the order of -8 kcal/mol, but analysis shows that the η{sup 1}-CT complex is fundamentally different from the others. The η{sup 1}-CT complex is characterized by geometric distortion, large polarization and induction effects and charge transfer whereas the other five complexes have little geometric distortion and negligible charge transfer. The amount of charge that is transferred from the anion to the CO{sub 2} in the η{sup 1}-CT complex is estimated to be about half an electron by NPA, DMA, CHELPG, and Mulliken analyses, whereas the EDA-ALMO-CTA (B3LYP) approach predicts a charge transfer of 75 me{sup –}. However, the transfer of this small amount of charge leads to an energy lowering of -56 kcal/mol, without which the complex would not be bound. The RI-MP2 geometries closely approximate those resulting from the CCSD optimizations, and the optimized second-order opposite spin (O2) method performs well for all the complexes except for the η{sup 1}-CT complex. DFT methods do not reproduce all the ab initio geometries, binding energies and/or energy ordering of these complexes although the range-separated hybrid meta-GGA (M11) and nonlocal (VV10 and vdwDF10) functionals are shown to yield results significantly better than other functionals considered for this system. The fact that there is such variation among DFT methods has implications for DFT-based ab initio molecular dynamics simulations and for the parametrization of classical force fields based on DFT calculations.

  14. Ab initio potentials of F+Li2 accessible at ultracold temperatures

    NASA Astrophysics Data System (ADS)

    Wright, K. W. A.; Lane, Ian C.

    2010-09-01

    Ab initio calculations for the strongly exoergic Li2+F harpoon reaction are presented using density-functional theory, complete active space self-consistent field, and multireference configuration interaction methods to argue that this reaction would be an ideal candidate for investigation with ultracold molecules. The lowest six states are calculated with the aug-correlation-consistent polarized valence triple-zeta basis set and at least two can be accessed by a ground rovibronic Li2 molecule with zero collision energy at all reaction geometries. The large reactive cross section (characteristic of harpoon reactions) and chemiluminescent products are additional attractive features of these reactions.

  15. Temperature-Dependent Diffusion Coefficients from ab initio Computations: Hydrogen in Nickel

    SciTech Connect

    E Wimmer; W Wolf; J Sticht; P Saxe; C Geller; R Najafabadi; G Young

    2006-03-16

    The temperature-dependent mass diffusion coefficient is computed using transition state theory. Ab initio supercell phonon calculations of the entire system provide the attempt frequency, the activation enthalpy, and the activation entropy as a function of temperature. Effects due to thermal lattice expansion are included and found to be significant. Numerical results for the case of hydrogen in nickel demonstrate a strong temperature dependence of the migration enthalpy and entropy. Trapping in local minima along the diffusion path has a pronounced effect especially at low temperatures. The computed diffusion coefficients with and without trapping bracket the available experimental values over the entire temperature range between 0 and 1400 K.

  16. Electronic states of Zn2 - Ab initio calculations of a prototype for Hg2

    NASA Technical Reports Server (NTRS)

    Hay, P. J.; Dunning, T. H., Jr.; Raffenetti, R. C.

    1976-01-01

    The electronic states of Zn2 are investigated by ab initio polarization configuration-interaction calculations. Molecular states dissociating to Zn(1S) + Zn(1S, 3P, 1P) and Zn(3P) + Zn(3P) are treated. Important effects from states arising from Zn(+)(25) + Zn(-)(2P) are found in the potential-energy curves and electronic-transition moments. A model calculation for Hg2 based on the Zn2 curves and including spin-orbit coupling leads to a new interpretation of the emission bands in Hg vapor.

  17. Converging sequences in the ab initio no-core shell model

    SciTech Connect

    Forssen, C.; Vary, J. P.; Caurier, E.; Navratil, P.

    2008-02-15

    We demonstrate the existence of multiple converging sequences in the ab initio no-core shell model. By examining the underlying theory of effective operators, we expose the physical foundations for the alternative pathways to convergence. This leads us to propose a revised strategy for evaluating effective interactions for A-body calculations in restricted model spaces. We suggest that this strategy is particularly useful for applications to nuclear processes in which states of both parities are used simultaneously, such as for transition rates. We demonstrate the utility of our strategy with large-scale calculations in light nuclei.

  18. Ab initio prediction of protein structure with both all-atom and simplified force fields

    NASA Astrophysics Data System (ADS)

    Scheraga, Harold

    2004-03-01

    Using only a physics-based ab initio method, and both all-atom (ECEPP/3) and simplified united-residue (UNRES) force fields, global optimization of both potential functions with Monte Carlo-plus-Minimization (MCM) and Conformational Space Annealing (CSA), respectively, provides predicted structures of proteins without use of knowledge-based information. The all-atom approach has been applied to the 46-residue protein A, and the UNRES approach has been applied to larger CASP targets. The predicted structures will be described.

  19. Atomic structure evolution during solidification of liquid niobium from ab initio molecular dynamics simulations

    SciTech Connect

    Debela, T. T.; Wang, X. D.; Cao, Q. P.; Zhang, D. X.; Wang, S. Y.; Wang, Cai-Zhuang; Jiang, J. Z.

    2013-12-12

    Atomic structure transitions of liquid niobium during solidification, at different temperatures from 3200 to 1500 K, were studied by using ab initio molecular dynamics simulations. The local atomic structure variations with temperature are investigated by using the pair-correlation function, the structure factor, the bond-angle distribution function, the Honeycutt–Anderson index, Voronoi tessellation and the cluster alignment methods. Our results clearly show that, upon quenching, the icosahedral short-range order dominates in the stable liquid and supercooled liquid states before the system transforms to crystalline body-center cubic phase at a temperature of about 1830 K.

  20. Initial oxidation of TiAl: An ab-initio investigation

    SciTech Connect

    Bakulin, Alexander V. Kulkova, Svetlana E.; Hu, Qing-Miao; Yang, Rui

    2014-11-14

    We present ab-initio investigation of oxygen adsorption up to two monolayer coverage on the stoichiometric TiAl(100) surface to illustrate the initial oxidation stage. The formation of band gap near the Fermi level demonstrates the transformation from metal to oxide surface with increasing oxygen coverage. The oxidation of Ti rather than Al is observed from our electronic structure calculations. The energy barriers of oxygen diffusion between different sites on surface as well as in subsurface and bulk region are derived. It is shown that the diffusion of oxygen is much easier on the surface than that into the subsurface region.

  1. A comparative ab initio and DFT study of polyaniline leucoemeraldine base and its oligomers.

    PubMed

    Mishra, Abhishek Kumar; Tandon, Poonam

    2009-11-01

    Ab initio Hartree-Fock (HF) and density functional theory (DFT) calculations are being performed to investigate the geometric, vibrational, and electronic properties of the polyaniline leucoemeraldine base (PANI-LB). Vibrational spectra of PANI-LB have been analyzed using the DFT oligomer approach, and complete assignments are being reported. Lower region spectral assignments of the PANI-LB which were not being reported earlier are being done in the present work. DFT calculations with the 6-31G** basis set produce very good results of not only vibrational modes but also of energy band gap. PMID:19827802

  2. Ab initio study on electronically excited states of lithium isocyanide, LiNC

    NASA Astrophysics Data System (ADS)

    Yasumatsu, Hisato; Jeung, Gwang-Hi

    2014-01-01

    The electronically excited states of the lithium isocyanide molecule, LiNC, were studied by means of ab initio calculations. The bonding nature of LiNC up to ˜10 eV is discussed on the basis of the potential energy surfaces according to the interaction between the ion-pair and covalent states. The ion-pair states are described by Coulomb attractive interaction in the long distance range, while the covalent ones are almost repulsive or bound with a very shallow potential dent. These two states interact each other to form adiabatic potential energy surfaces with non-monotonic change in the potential energy with the internuclear distance.

  3. Ramsdellite-structured LiTiO 2: A new phase predicted from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Koudriachova, M. V.

    2008-06-01

    A new phase of highly lithiated titania with potential application as an anode in Li-rechargeable batteries is predicted on the basis of ab initio calculations. This phase has a composition LiTiO2 and may be accessed through electrochemical lithiation of ramsdellite-structured TiO2 at the lowest potential reported for titanium dioxide based materials. The potential remains constant over a wide range of Li-concentrations. The new phase is metastable with respect to a tetragonally distorted rock salt structure, which hitherto has been the only known polymorph of LiTiO2.

  4. Site occupancy trend of Co in Ni2MnIn: Ab initio approach

    NASA Astrophysics Data System (ADS)

    Pal, Soumyadipta; Mahadevan, Priya; Biswas, C.

    2015-06-01

    The trend of site occupation of Co at Ni sites of Ni2MnIn system is studied in austenitic phase having L21 structure by ab initio density functional theory (DFT) calculation. The Co atoms prefer to be at Ni sites rather than Mn site and are ferromagetically coupled with Ni and Mn. The ground state has tetragonal structure for Ni1.5Co0.5MnIn and Ni1.25Co0.75MnIn. The Co tends to form cluster.

  5. Graph Theory Meets Ab Initio Molecular Dynamics: Atomic Structures and Transformations at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Pietrucci, Fabio; Andreoni, Wanda

    2011-08-01

    Social permutation invariant coordinates are introduced describing the bond network around a given atom. They originate from the largest eigenvalue and the corresponding eigenvector of the contact matrix, are invariant under permutation of identical atoms, and bear a clear signature of an order-disorder transition. Once combined with ab initio metadynamics, these coordinates are shown to be a powerful tool for the discovery of low-energy isomers of molecules and nanoclusters as well as for a blind exploration of isomerization, association, and dissociation reactions.

  6. An ab initio molecular dynamics study of the roaming mechanism of the H2+HOC+ reaction

    NASA Astrophysics Data System (ADS)

    Yu, Hua-Gen

    2011-08-01

    We report here a direct ab initio molecular dynamics study of the p-/o-H2+HOC+ reaction on the basis of the accurate SAC-MP2 potential energy surface. The quasi-classical trajectory method was employed. This work largely focuses on the study of reaction mechanisms. A roaming mechanism was identified for this molecular ion-molecule reaction. The driving forces behind the roaming mechanism were thoroughly investigated by using a trajectory dynamics approach. In addition, the thermal rate coefficients of the H2+HOC+ reaction were calculated in the temperature range [25, 300] K and are in good agreement with experiments.

  7. Ab initio no core calculations of light nuclei and preludes to Hamiltonian quantum field theory

    SciTech Connect

    Vary, J. P.; Maris, P.; Honkanen, H.; Li, J.; Shirokov, A. M.; Brodsky, S. J.; Harindranath, A.

    2009-12-17

    Recent advances in ab initio quantum many-body methods and growth in computer power now enable highly precise calculations of nuclear structure. The precision has attained a level sufficient to make clear statements on the nature of 3-body forces in nuclear physics. Total binding energies, spin-dependent structure effects, and electroweak properties of light nuclei play major roles in pinpointing properties of the underlying strong interaction. Eventually, we anticipate a theory bridge with immense predictive power from QCD through nuclear forces to nuclear structure and nuclear reactions. Light front Hamiltonian quantum field theory offers an attractive pathway and we outline key elements.

  8. Ab initio no core calculations of light nuclei and preludes to Hamiltonian quantum field theory

    SciTech Connect

    Vary, J.P.; Maris, P.; Shirokov, A.M.; Honkanen, H.; li, J.; Brodsky, S.J.; Harindranath, A.; Teramond, G.F.de; /Costa Rica U.

    2009-08-03

    Recent advances in ab initio quantum many-body methods and growth in computer power now enable highly precise calculations of nuclear structure. The precision has attained a level sufficient to make clear statements on the nature of 3-body forces in nuclear physics. Total binding energies, spin-dependent structure effects, and electroweak properties of light nuclei play major roles in pinpointing properties of the underlying strong interaction. Eventually,we anticipate a theory bridge with immense predictive power from QCD through nuclear forces to nuclear structure and nuclear reactions. Light front Hamiltonian quantum field theory offers an attractive pathway and we outline key elements.

  9. Phosphine adsorption and dissociation on the Si(001) surface: An ab initio survey of structures

    NASA Astrophysics Data System (ADS)

    Warschkow, O.; Wilson, H. F.; Marks, N. A.; Schofield, S. R.; Curson, N. J.; Smith, P. V.; Radny, M. W.; McKenzie, D. R.; Simmons, M. Y.

    2005-09-01

    We report a comprehensive ab initio survey of possible dissociation intermediates of phosphine (PH3) on the Si(001) surface. We assign three scanning tunneling microscopy (STM) features, commonly observed in room-temperature dosing experiments, to PH2+H , PH+2H , and P+3H species, respectively, on the basis of calculated energetics and STM simulation. These assignments and a time series of STM images which shows these three STM features converting into another, allow us to outline a mechanism for the complete dissociation of phosphine on the Si(001) surface. This mechanism closes an important gap in the understanding of the doping process of semiconductor devices.

  10. Ab initio predictions on the rotational spectra of carbon-chain carbene molecules

    NASA Technical Reports Server (NTRS)

    Maluendes, S. A.; McLean, A. D.; Loew, G. H. (Principal Investigator)

    1992-01-01

    We predict rotational constants for the carbon-chain molecules H2C=(C=)nC, n=3-8, using ab initio computations, observed values for the earlier members in the series, H2CCC and H2CCCC with n=1 and 2, and empirical geometry corrections derived from comparison of computation and experiment on related molecules. H2CCC and H2CCCC have already been observed by radioastronomy; higher members in the series, because of their large dipole moments, which we have calculated, are candidates for astronomical searches. Our predictions can guide searches and assist in both astronomical and laboratory detection.

  11. Thorium in tungsten: construction of interatomic EAM potentials from ab initio data

    NASA Astrophysics Data System (ADS)

    Eberhard, Bernd; Haider, Ferdinand

    2013-07-01

    The interatomic interaction potential of tungsten and thorium crystals and those of hypothetical tungsten and thorium alloys within the embedded atom approach are considered. The corresponding Ansatz functions are fitted against full potential linear augmented plane wave data of real tungsten- and thorium- and hypothetical tungsten-thorium-crystals. The result is interatomic potentials, ready for use within classical molecular dynamics schemes. A cross check of the resulting force scheme derived by comparison of ab initio and classical molecular dynamics data is provided. Furthermore, we used the potentials to calculate the phonon dispersion relations, which then serve as an additional check.

  12. Ab initio potentials of F+Li{sub 2} accessible at ultracold temperatures

    SciTech Connect

    Wright, K. W. A.; Lane, Ian C.

    2010-09-15

    Ab initio calculations for the strongly exoergic Li{sub 2}+F harpoon reaction are presented using density-functional theory, complete active space self-consistent field, and multireference configuration interaction methods to argue that this reaction would be an ideal candidate for investigation with ultracold molecules. The lowest six states are calculated with the aug-correlation-consistent polarized valence triple-zeta basis set and at least two can be accessed by a ground rovibronic Li{sub 2} molecule with zero collision energy at all reaction geometries. The large reactive cross section (characteristic of harpoon reactions) and chemiluminescent products are additional attractive features of these reactions.

  13. Ab initio pseudopotential calculation for TTF-TCNQ and TSeF-TCNQ

    NASA Astrophysics Data System (ADS)

    Ishibashi, Shoji; Kohyama, Masanori

    2000-09-01

    We have investigated the electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ [at room temperature (RT) and 100 K] and TSeF-TCNQ (RT), which have isomorphic crystal structure, by an ab initio plane-wave pseudopotential band calculation. To express the exchange and correlation energy for electrons, we used both the local density approximation and generalized gradient approximation for comparison. For each case, electronic band dispersions were calculated along several symmetric lines and tight-binding parameters were evaluated. The Fermi surface shape was also obtained. The six sets of results (for three structures and two approximations) were compared systematically.

  14. Fully ab initio finite-size corrections for charged-defect supercell calculations.

    PubMed

    Freysoldt, Christoph; Neugebauer, Jörg; Van de Walle, Chris G

    2009-01-01

    In ab initio theory, defects are routinely modeled by supercells with periodic boundary conditions. Unfortunately, the supercell approximation introduces artificial interactions between charged defects. Despite numerous attempts, a general scheme to correct for these is not yet available. We propose a new and computationally efficient method that overcomes limitations of previous schemes and is based on a rigorous analysis of electrostatics in dielectric media. Its reliability and rapid convergence with respect to cell size is demonstrated for charged vacancies in diamond and GaAs. PMID:19257218

  15. Temperature dependent mechanical properties of Mo-Si-B compounds via ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Dharmawardhana, C. C.; Sakidja, R.; Aryal, S.; Ching, W. Y.

    2013-07-01

    A new method was proposed to obtain high temperature mechanical properties with a combination of ab initio molecular dynamics and stress-strain analyses. It was applied to compounds in the Mo-Si-B ternary system, namely, T1 (Mo5Si3) and T2 (Mo5SiB2) phases. The calculated coefficient of thermal expansion, thermal expansion anisotropy, and elastic constants agree well with those from the available experiments. The method enables us to theoretically access these properties up to 2000 K.

  16. Ab initio calculations of the electronic structure of silicon nanocrystals doped with shallow donors (Li, P)

    SciTech Connect

    Kurova, N. V. Burdov, V. A.

    2013-12-15

    The results of ab initio calculations of the electronic structure of Si nanocrystals doped with shallow donors (Li, P) are reported. It is shown that phosphorus introduces much more significant distortions into the electronic structure of the nanocrystal than lithium, which is due to the stronger central cell potential of the phosphorus ion. It is found that the Li-induced splitting of the ground state in the conduction band of the nanocrystal into the singlet, doublet, and triplet retains its inverse structure typical for bulk silicon.

  17. Ab initio calculations of one-electron-scattering properties of ethyne (acetylene) and ethylene molecules

    SciTech Connect

    Tripathi, A.N.; Smith, V.H. Jr. K7L3N6); Kaijser, P.; Siemens, A.G. ); Diercksen, G.H.F. )

    1990-03-01

    Isotropic scattering functions and Compton profiles together with their directional components for several directions relevant to the molecular structure of C{sub 2}H{sub 2} and C{sub 2}H{sub 4} have been evaluated for {ital ab} {ital initio} self-consistent field and configuration-interaction wave functions. The internally folded density (reciprocal form factor) {ital B}({ital r}) is calculated and discussed as are various momentum expectation values. Comparison is made with available experimental and other theoretical results.

  18. Peculiarities of geminal atom interaction in chloro-containing imidazoles using ab initio calculations

    NASA Astrophysics Data System (ADS)

    Feshin, V. P.; Feshina, E. V.

    2000-07-01

    The results of ab initio calculations at the RHF/6-31G ∗ level of 1-methyl-4-chloro- and -5-chloroimidazoles as well as of 1-methyl-4,5-dichloroimidazoles with total optimization of their geometry were presented. They were used for the interpretation of peculiarities of an influence of the "pyridine" and "pyrrole" N atoms on the electron distribution of the Cl atoms in these molecules and of their 35Cl NQR frequencies. These peculiarities are caused by the different space electron distribution of these N atoms that causes the different polarization of the geminal Cl atom p-electron shell.

  19. Ab Initio Calculations of Singlet and Triplet Excited States of Chlorine Nitrate and Nitric Acid

    NASA Technical Reports Server (NTRS)

    Grana, Ana M.; Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    Ab initio calculations of vertical excitations to singlet and triplet excited states of chlorine nitrate and nitric acid are reported. The nature of the electronic transitions are examined by decomposing the difference density into the sum of detachment and attachment densities. Counterparts for the three lowest singlet excited states of nitric acid survive relatively unperturbed in chlorine nitrate, while other low-lying singlet states of chlorine nitrate appear to be directly dissociative in the ClO chromophore. These results suggest an assignment of the two main peaks in the experimental chlorine nitrate absorption spectrum. In addition, triplet vertical excitations and the lowest optimized triplet geometries of both molecules are studied.

  20. Efficient Use of an Adapting Database of Ab Initio Calculations To Generate Accurate Newtonian Dynamics.

    PubMed

    Shaughnessy, M C; Jones, R E

    2016-02-01

    We develop and demonstrate a method to efficiently use density functional calculations to drive classical dynamics of complex atomic and molecular systems. The method has the potential to scale to systems and time scales unreachable with current ab initio molecular dynamics schemes. It relies on an adapting dataset of independently computed Hellmann-Feynman forces for atomic configurations endowed with a distance metric. The metric on configurations enables fast database lookup and robust interpolation of the stored forces. We discuss mechanisms for the database to adapt to the needs of the evolving dynamics, while maintaining accuracy, and other extensions of the basic algorithm. PMID:26669825

  1. Communication: GAIMS—Generalized Ab Initio Multiple Spawning for both internal conversion and intersystem crossing processes

    NASA Astrophysics Data System (ADS)

    Curchod, Basile F. E.; Rauer, Clemens; Marquetand, Philipp; González, Leticia; Martínez, Todd J.

    2016-03-01

    Full multiple spawning is a formally exact method to describe the excited-state dynamics of molecular systems beyond the Born-Oppenheimer approximation. However, it has been limited until now to the description of radiationless transitions taking place between electronic states with the same spin multiplicity. This Communication presents a generalization of the full and ab initio multiple spawning methods to both internal conversion (mediated by nonadiabatic coupling terms) and intersystem crossing events (triggered by spin-orbit coupling matrix elements) based on a spin-diabatic representation. The results of two numerical applications, a model system and the deactivation of thioformaldehyde, validate the presented formalism and its implementation.

  2. The role of Metals in Amyloid Aggregation: A Test Case for ab initio Simulations

    SciTech Connect

    Minicozzi, V.; Rossi, G. C.; Stellato, F.; Morante, S.

    2007-12-26

    First principle ab initio molecular dynamics simulations of the Car-Parrinello type have proved to be of invaluable help in understanding the microscopic mechanisms of chemical bonding both in solid state physics and in structural biophysics. In this work we present as test cases the study of the Cu coordination mode in two especially important examples: Prion protein and {beta}-amyloids. Using medium size PC-clusters as well as larger parallel platforms, we are able to deal with systems comprising 300 to 500 atoms and 1000 to 1500 electrons for as long as 2-3 ps. We present structural results which confirm indications coming from NMR and XAS data.

  3. Specific interactions between amyloid-β peptide and curcumin derivatives: Ab initio molecular simulations

    NASA Astrophysics Data System (ADS)

    Ishimura, Hiromi; Kadoya, Ryushi; Suzuki, Tomoya; Murakawa, Takeru; Shulga, Sergiy; Kurita, Noriyuki

    2015-07-01

    Alzheimer's disease is caused by accumulation of amyloid-β (Aβ) peptides in a brain. To suppress the production of Aβ peptides, it is effective to inhibit the cleavage of amyloid precursor protein (APP) by secretases. However, because the secretases also play important roles to produce vital proteins for human body, inhibitors for the secretases may have side effects. To propose new agents for protecting the cleavage site of APP from the attacking of the γ-secretase, we have investigated here the specific interactions between a short APP peptide and curcumin derivatives, using protein-ligand docking as well as ab initio molecular simulations.

  4. Experimental and ab initio infrared study of chi-, kappa- and alpha-aluminas formed from gibbsite

    SciTech Connect

    Favaro, L.; Boumaza, A.; Roy, P.; Ledion, J.; Sattonnay, G.; Brubach, J.B.; Huntz, A.M.; Tetot, R.

    2010-04-15

    chi-, kappa- and alpha-alumina phases formed by dehydration of micro-grained gibbsite between 773 and 1573 K are studied using infrared spectroscopy (IR). The structural transitions evidenced by X-ray diffraction (XRD) were interpreted by comparing IR measurements with ab initio simulations (except for the chi form whose complexity does not allow a reliable simulation). For each phase, IR spectrum presents specific bands corresponding to transverse optical (TO) modes of Al-O stretching and bending under 900 cm{sup -1}. The very complex chi phase, obtained at 773 K, provides a distinctive XRD pattern in contrast with the IR absorbance appearing as a broad structure extending between 200 and 900 cm{sup -1} resembling the equivalent spectra for gamma-alumina phase. kappa-alumina is forming at 1173 K and its rich IR spectrum is in good qualitative agreement with ab initio simulations. This complexity reflects the large number of atoms in the kappa-alumina unit cell and the wide range of internuclear distances as well as the various coordinances of both Al and O atoms. Ab initio simulations suggest that this form of transition alumina demonstrates a strong departure from the simple pattern observed for other transition alumina. At 1573 K, the stable alpha-ALPHAl{sub 2}OMICRON{sub 3} develops. Its IR spectra extends in a narrower energy range as compared to transition alumina and presents characteristics features similar to model alpha-ALPHAl{sub 2}OMICRON{sub 3}. Ab initio calculations show again a very good general agreement with the observed IR spectra for this phase. In addition, for both kappa- and alpha-ALPHAl{sub 2}OMICRON{sub 3}, extra modes, measured at high energy (above 790 cm{sup -1} for kappa and above 650 cm{sup -1} for alpha), can originate from either remnant chi-alumina or from surface modes. - Graphical abstract: Infrared spectra of the sequence Gibbsite ->chi->kappa->alpha-Al{sub 2}O{sub 3} obtained from 24 h calcinations of Gibbsite at 773 K, 1173 K

  5. Charge carrier motion in disordered conjugated polymers: a multiscale ab-initio study

    SciTech Connect

    Vukmirovic, Nenad; Wang, Lin-Wang

    2009-11-10

    We developed an ab-initio multiscale method for simulation of carrier transport in large disordered systems, based on direct calculation of electronic states and electron-phonon coupling constants. It enabled us to obtain the never seen before rich microscopic details of carrier motion in conjugated polymers, which led us to question several assumptions of phenomenological models, widely used in such systems. The macroscopic mobility of disordered poly(3- hexylthiophene) (P3HT) polymer, extracted from our simulation, is in agreement with experimental results from the literature.

  6. Ab initio molecular dynamics simulation study of successive hydrogenation reactions of carbon monoxide producing methanol

    NASA Astrophysics Data System (ADS)

    Pham, Thi Nu; Ono, Shota; Ohno, Kaoru

    2016-04-01

    Doing ab initio molecular dynamics simulations, we demonstrate a possibility of hydrogenation of carbon monoxide producing methanol step by step. At first, the hydrogen atom reacts with the carbon monoxide molecule at the excited state forming the formyl radical. Formaldehyde was formed after adding one more hydrogen atom to the system. Finally, absorption of two hydrogen atoms to formaldehyde produces methanol molecule. This study is performed by using the all-electron mixed basis approach based on the time dependent density functional theory within the adiabatic local density approximation for an electronic ground-state configuration and the one-shot GW approximation for an electronic excited state configuration.

  7. Enhancing mechanical toughness of aluminum surfaces by nano-boron implantation: An ab initio study

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen; Kwon, Dae-Gyeon; Kwon, Young-Kyun; Tománek, David

    2015-01-01

    Searching for ways to enhance surface hardness of aluminum, we study the equilibrium structure, stability, elastic properties and formation dynamics of a boron-enriched surface using ab initio density functional calculations. We used molecular dynamics simulations to model the implantation of energetic boron nanoparticles in Al and identify structural arrangements that optimize the formation of strong covalent Bsbnd Al bonds. Nano-indentation simulations based on constrained optimization suggest that presence of boron nanostructures in the subsurface region enhances significantly the mechanical hardness of aluminum surfaces.

  8. Electronic transport coefficients from ab initio simulations and application to dense liquid hydrogen

    SciTech Connect

    Holst, Bastian; French, Martin; Redmer, Ronald

    2011-06-15

    Using Kubo's linear response theory, we derive expressions for the frequency-dependent electrical conductivity (Kubo-Greenwood formula), thermopower, and thermal conductivity in a strongly correlated electron system. These are evaluated within ab initio molecular dynamics simulations in order to study the thermoelectric transport coefficients in dense liquid hydrogen, especially near the nonmetal-to-metal transition region. We also observe significant deviations from the widely used Wiedemann-Franz law, which is strictly valid only for degenerate systems, and give an estimate for its valid scope of application toward lower densities.

  9. Ab initio R-matrix calculations of e+-molecule scattering

    NASA Technical Reports Server (NTRS)

    Danby, Grahame; Tennyson, Jonathan

    1990-01-01

    The adaptation of the molecular R-matrix method, originally developed for electron-molecule collision studies, to positron scattering is discussed. Ab initio R-matrix calculations are presented for collisions of low energy positrons with a number of diatomic systems including H2, HF and N2. Differential elastic cross sections for positron-H2 show a minimum at about 45 deg for collision energies between 0.3 and 0.5 Ryd. The calculations predict a bound state of positronHF. Calculations on inelastic processes in N2 and O2 are also discussed.

  10. Ab initio molecular simulations on specific interactions between amyloid beta and monosaccharides

    NASA Astrophysics Data System (ADS)

    Nomura, Kazuya; Okamoto, Akisumi; Yano, Atsushi; Higai, Shin'ichi; Kondo, Takashi; Kamba, Seiji; Kurita, Noriyuki

    2012-09-01

    Aggregation of amyloid β (Aβ) peptides, which is a key pathogenetic event in Alzheimer's disease, can be caused by cell-surface saccharides. We here investigated stable structures of the solvated complexes of Aβ with some types of monosaccharides using molecular simulations based on protein-ligand docking and classical molecular mechanics methods. Moreover, the specific interactions between Aβ and the monosaccharides were elucidated at an electronic level by ab initio fragment molecular orbital calculations. Based on the results, we proposed which type of monosaccharide prefers to have large binding affinity to Aβ and inhibit the Aβ aggregation.

  11. Transport coefficients of helium-argon mixture based on ab initio potential.

    PubMed

    Sharipov, Felix; Benites, Victor J

    2015-10-21

    The viscosity, thermal conductivity, diffusion coefficient, and thermal diffusion factor of helium-argon mixtures are calculated for a wide range of temperature and for various mole fractions up to the 12th order of the Sonine polynomial expansion with an ab initio intermolecular potential. The calculated values for these transport coefficients are compared with other data available in the open literature. The comparison shows that the obtained transport coefficients of helium-argon mixture have the best accuracy for the moment. PMID:26493894

  12. Electronic and transport properties edge functionalized graphene nanoribbons-An ab initio approach

    SciTech Connect

    Chauhan, Satyendra Singh; Srivastava, Pankaj; Shrivastva, A. K.

    2014-04-24

    With the help of ab initio approach we have investigated the electronic and transport properties of edge functionalized zigzag graphene nanoribbons using density functional theory. We have studied the energetic stability and Fermi energy of ZGNRs. We have reported that the edge functionalization of zigzag graphene nanoribbons can break the degeneracy that can be used to promote the onset of a semiconducting to metal transition or a half metal to semiconducting state. The edge functionalization also promotes a metal-semimetal transition. It has also been observed that the transmission spectrum of the edge functionalized ZGNRs are different from those of pristine.

  13. Improving Li2O2 conductivity via polaron preemption: An ab initio study of Si doping

    NASA Astrophysics Data System (ADS)

    Timoshevskii, Vladimir; Feng, Zimin; Bevan, Kirk H.; Goodenough, John; Zaghib, Karim

    2013-08-01

    We report on ab initio electronic structure simulations of Li2O2, where 1.6% of lithium atoms are substituted by silicon. It is demonstrated that this leads to the formation of conducting impurity states in the band gap of Li2O2. We show that these states originate from the antibonding orbitals of the oxygen pairs and are remarkably stable against possible polaron formation (upon electron injection). Through this polaron preemption mechanism, the proposed compound is expected to show significantly higher electronic mobility than stoichiometric Li2O2, which could have significant applications in lithium-air batteries.

  14. Phonon spectrum of lead oxychloride Pb3O2Cl2: Ab initio calculation and experiment

    NASA Astrophysics Data System (ADS)

    Zakir'yanov, D. O.; Chernyshev, V. A.; Zakir'yanova, I. D.

    2016-02-01

    IR and Raman spectra of Pb3O2Cl2 in the range of 50-600 cm-1 have been detected for the first time. Ab initio calculations of the crystal structure and the phonon spectrum of Pb3O2Cl2 in the framework of LCAO approach have been performed by the Hartree-Fock method and in the framework of the density functional theory with the use of hybrid functionals. The results of calculations have made it possible to interpret the experimental vibration spectra and reveal silent modes, which do not manifest themselves in these spectra but influence the optical properties of the crystal.

  15. Spectroscopic properties with a combined approach of ab initio molecular dynamics and wavelet analysis

    NASA Astrophysics Data System (ADS)

    Pagliai, Marco; Muniz-Miranda, Francesco; Cardini, Gianni; Righini, Roberto; Schettino, Vincenzo

    2011-05-01

    In order to extract spectroscopic information from trajectories obtained by classical or ab initio molecular dynamics simulations, usually Fourier transforms are employed. In recent years wavelet transforms have been shown to be a valid alternative tool to analyze time-series, due to their capability of localizing a signal both in time and frequency. In this article wavelet transforms are applied for the analysis of Car-Parrinello molecular dynamics simulations to the purpose of time-correlating structural and spectroscopic properties of methyl acetate dissolved in water and methanol. The results demonstrate the possibility of obtaining information that may be of valuable help in the interpretation of time-resolved spectroscopic data.

  16. Scalable numerical approach for the steady-state ab initio laser theory

    NASA Astrophysics Data System (ADS)

    Esterhazy, S.; Liu, D.; Liertzer, M.; Cerjan, A.; Ge, L.; Makris, K. G.; Stone, A. D.; Melenk, J. M.; Johnson, S. G.; Rotter, S.

    2014-08-01

    We present an efficient and flexible method for solving the non-linear lasing equations of the steady-state ab initio laser theory. Our strategy is to solve the underlying system of partial differential equations directly, without the need of setting up a parametrized basis of constant flux states. We validate this approach in one-dimensional as well as in cylindrical systems, and demonstrate its scalability to full-vector three-dimensional calculations in photonic-crystal slabs. Our method paves the way for efficient and accurate simulations of microlasers which were previously inaccessible.

  17. Ab initio molecular dynamics simulation of aqueous solution of nitric oxide in different formal oxidation states

    NASA Astrophysics Data System (ADS)

    Venâncio, Mateus F.; Rocha, Willian R.

    2015-10-01

    Ab initio molecular dynamics simulations were used to investigate the early chemical events involved in the dynamics of nitric oxide (NOrad), nitrosonium cation (NO+) and nitroxide anion (NO-) in aqueous solution. The NO+ ion is very reactive in aqueous solution having a lifetime of ∼4 × 10-13 s, which is shorter than the value of 3 × 10-10 s predicted experimentally. The NO+ reacts generating the nitrous acid as an intermediate and the NO2- ion as the final product. The dynamics of NOrad revealed the reversibly formation of a transient anion radical species HONOrad -.

  18. Evaluating high-throughput ab initio gene finders to discover proteins encoded in eukaryotic pathogen genomes missed by laboratory techniques.

    PubMed

    Goodswen, Stephen J; Kennedy, Paul J; Ellis, John T

    2012-01-01

    Next generation sequencing technology is advancing genome sequencing at an unprecedented level. By unravelling the code within a pathogen's genome, every possible protein (prior to post-translational modifications) can theoretically be discovered, irrespective of life cycle stages and environmental stimuli. Now more than ever there is a great need for high-throughput ab initio gene finding. Ab initio gene finders use statistical models to predict genes and their exon-intron structures from the genome sequence alone. This paper evaluates whether existing ab initio gene finders can effectively predict genes to deduce proteins that have presently missed capture by laboratory techniques. An aim here is to identify possible patterns of prediction inaccuracies for gene finders as a whole irrespective of the target pathogen. All currently available ab initio gene finders are considered in the evaluation but only four fulfil high-throughput capability: AUGUSTUS, GeneMark_hmm, GlimmerHMM, and SNAP. These gene finders require training data specific to a target pathogen and consequently the evaluation results are inextricably linked to the availability and quality of the data. The pathogen, Toxoplasma gondii, is used to illustrate the evaluation methods. The results support current opinion that predicted exons by ab initio gene finders are inaccurate in the absence of experimental evidence. However, the results reveal some patterns of inaccuracy that are common to all gene finders and these inaccuracies may provide a focus area for future gene finder developers. PMID:23226328

  19. Probing the Si(001) surface with a Si tip: An ab initio study

    NASA Astrophysics Data System (ADS)

    Kantorovich, Lev; Hobbs, Chris

    2006-06-01

    Topographic noncontact atomic force microscopy (NC-AFM) images of the p(2×1) and c(4×2) reconstructions of the Si(001) surface are simulated for the cases of weak and strong tip-surface interactions and various temperatures using ab initio density functional theory. In the simulations the surface is imaged by a sharp silicon tip with a single dangling bond at its apex. At a very close approach to the surface, the tip flips a surface dimer when positioned close to its lower atom. The energy barriers for an individual flipped surface dimer to regain its initial configuration are calculated to be ˜0.1eV , implying that the surface should be able to “heal” itself at all but extremely low temperatures during one oscillation cycle of the cantilever. Thus, at small enough temperatures, T⩽70K , and large frequency shifts, the imaging process is dominated by tip induced dimer flip events resulting in a permanent deformation of the surface and an apparent p(2×1) symmetric phase to be observed. No dissipation is expected as the tip oscillations are conservative at these conditions. At intermediate temperatures, 70K⩽T⩽200K , the flipped dimers are able to return to the ground state during each tip oscillation, resulting in continuous healing of the surface and thus large dissipation is expected. At T⩾200K dimers flip back and forth easily resulting in an apparent symmetric p(2×1) phase and noticeable dissipation. At small frequency shifts the dimers do not flip, still the upper dimer atoms are imaged as bright so that surface reconstruction can easily be determined. The possibility of manipulating the orientation of dimers at low temperatures and large frequency shifts by means of preprogrammed scan directions, is also discussed.

  20. Structural and electronic properties of organo-halide hybrid perovskites from ab initio molecular dynamics.

    PubMed

    Quarti, Claudio; Mosconi, Edoardo; De Angelis, Filippo

    2015-04-14

    The last two years have seen the unprecedentedly rapid emergence of a new class of solar cells, based on hybrid organic-inorganic halide perovskites. The success of this class of materials is due to their outstanding photoelectrochemical properties coupled to their low cost, mainly solution-based, fabrication techniques. Solution processed materials are however often characterized by an inherent flexible structure, which is hardly mapped into a single local minimum energy structure. In this perspective, we report on the interplay between structural and electronic properties of hybrid lead iodide perovskites investigated using ab initio molecular dynamics (AIMD) simulations, which allow the dynamical simulation of disordered systems at finite temperature. We compare the prototypical MAPbI3 (MA = methylammonium) perovskite in its cubic and tetragonal structure with the trigonal phase of FAPbI3 (FA = formamidinium), investigating different starting arrangements of the organic cations. Despite the relatively short time scale amenable to AIMD, typically a few tens of ps, this analysis demonstrates the sizable structural flexibility of this class of materials, showing that the instantaneous structure could significantly differ from the time and thermal averaged structure. We also highlight the importance of the organic-inorganic interactions in determining the fluxional properties of this class of materials. A peculiar spatial localization of the valence and conduction band edges is also found, with a dynamics in the range of 0.1 ps, which is associated with the positional dynamics of the organic cations within the cubo-octahedral perovskite cage. This asymmetry in the spatial localization of the band edges is expected to ease exciton dissociation and assist the initial stages of charge separation, possibly constituting one of the key factors for the impressive photovoltaic performances of hybrid lead-iodide perovskites. PMID:25766785

  1. Structural stability and thermodynamics of CrN magnetic phases from ab initio calculations and experiment

    NASA Astrophysics Data System (ADS)

    Zhou, Liangcai; Körmann, Fritz; Holec, David; Bartosik, Matthias; Grabowski, Blazej; Neugebauer, Jörg; Mayrhofer, Paul H.

    2014-11-01

    The dynamical and thermodynamic phase stabilities of the stoichiometric compound CrN including different structural and magnetic configurations are comprehensively investigated using a first-principles density functional theory (DFT) plus U (DFT +U ) approach in conjunction with experimental measurements of the thermal expansion. Comparing DFT and DFT +U results with experimental data reveals that the treatment of electron correlations using methods beyond standard DFT is crucial. The nonmagnetic face-centered cubic B1-CrN phase is both elastically and dynamically unstable, even under high pressure, while CrN phases with nonzero local magnetic moments are predicted to be dynamically stable within the framework of the DFT +U scheme. Furthermore, the impact of different treatments for the exchange-correlation (xc)-functional is investigated by carrying out all computations employing the local density approximation and generalized gradient approximation. To address finite-temperature properties, both magnetic and vibrational contributions to the free energy have been computed employing our recently developed spin-space averaging method. The calculated phase transition temperature between low-temperature antiferromagnetic and high-temperature paramagnetic (PM) CrN variants is in excellent agreement with experimental values and reveals the strong impact of the choice of the xc-functional. The temperature-dependent linear thermal expansion coefficient of CrN is experimentally determined by the wafer curvature method from a reactive magnetron sputter deposited single-phase B1-CrN thin film with dense film morphology. A good agreement is found between experimental and ab initio calculated linear thermal expansion coefficients of PM B1-CrN. Other thermodynamic properties, such as the specific heat capacity, have been computed as well and compared to previous experimental data.

  2. Ab initio studies on the spin-forbidden cooling transitions of the LiRb molecule.

    PubMed

    You, Yang; Yang, Chuan-Lu; Zhang, Qing-Qing; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang

    2016-07-20

    The spin-forbidden cooling of the LiRb molecule is investigated based on ab initio quantum chemistry calculations. The multireference configuration interaction method is used to generate the potential energy curves (PECs) of the ground state X(1)Σ(+) and the low-lying excited states a(3)Σ(+), B(1)Π, and b(3)Π. The spin-orbit coupling effects for the PECs and the transition dipole moments (TDMs) between the X(1)Σ(+), b(3)Π and a(3)Σ(+) states are also calculated. The analytical functions for the PECs are deduced. The rovibrational energy levels, the spectroscopic parameters and the Franck-Condon factors (FCF) are determined by solving the Schrödinger equation of nuclear movement with the obtained analytical functions. The b(3)Π0 ↔ X(1)Σ(+) and b(3)Π1 ↔ X(1)Σ(+) transitions have highly diagonal distributed FCFs and non-zero TDMs, demonstrating that the LiRb molecule could be a very promising candidate for laser cooling. Therefore, a three-cycle laser cooling scheme for the molecule has been proposed based on these two spin-forbidden transitions. Using the radiative lifetime and linewidth calculated from the obtained TDM functions, we present further analysis of the cooling of LiRb and the corresponding KRb molecule. The transition b(3)Π0 ↔ X(1)Σ(+) is found to be a practical transition to cool the LiRb molecule, and a sub-microkelvin cool temperature could be reached for the KRb molecule using a similar laser cooling scheme. PMID:27388722

  3. The role of metals in amyloid aggregation - Experiments and ab initio simulations

    NASA Astrophysics Data System (ADS)

    Minicozzi, V.; Morante, S.; Rossi, G. C.; Stellato, F.; Christian, N.; Jansen, K.

    With a combination of modern spectroscopic techniques and numerical first principle simulations it is possible to investigate the physico-chemical basis of the beta-amyloid aggregation phenomenon, which is suspected to be at the basis of the development of the Alzheimer disease. On the experimental side, in fact, X-ray absorption spectroscopy can be successfully used to determine the atomic structure around the metal binding site in samples where beta-amyloid peptides are complexed with either Cu2+ or Zn2+ ions. Exploiting spectroscopic information obtained on a selected set of fragments of the natural Abeta-peptide, the residues that along the sequence are coordinated to the metal are identified. Although copper data can be consistently interpreted assuming that oligopeptides encompassing the minimal 1-16 amino acidic sequence display a metal coordination mode which involves three Histidines (His6, His13, and His14), in complexes with zinc a four Histidines coordination mode is seen to be preferred. Lacking a fourth Histidine in the Abeta1-16 fragment, this geometrical arrangement hints to a Zn2+ promoted inter-peptide aggregation mode. On the theoretical side, first principle ab initio molecular dynamics simulations of the Car-Parrinello type, which have proved to be of invaluable help in understanding the microscopic mechanisms of chemical bonding both in solid-state physics and structural biophysics, have been employed in an effort to give a microscopic basis and find a phenomenological interpretation of the body of available experimental data on Abeta-peptides-metal complexes. Using medium size PC-clusters as well as larger parallel platforms, it is possible to deal with systems comprising 300-500 atoms and 1,000-2,000 electrons for simulation times as long as 2-3 ps. We present structural results that nicely compare with NMR and XAS data.

  4. Red-Shifting versus Blue-Shifting Hydrogen Bonds: Perspective from Ab Initio Valence Bond Theory.

    PubMed

    Chang, Xin; Zhang, Yang; Weng, Xinzhen; Su, Peifeng; Wu, Wei; Mo, Yirong

    2016-05-01

    Both proper, red-shifting and improper, blue-shifting hydrogen bonds have been well-recognized with enormous experimental and computational studies. The current consensus is that there is no difference in nature between these two kinds of hydrogen bonds, where the electrostatic interaction dominates. Since most if not all the computational studies are based on molecular orbital theory, it would be interesting to gain insight into the hydrogen bonds with modern valence bond (VB) theory. In this work, we performed ab initio VBSCF computations on a series of hydrogen-bonding systems, where the sole hydrogen bond donor CF3H interacts with ten hydrogen bond acceptors Y (═NH2CH3, NH3, NH2Cl, OH(-), H2O, CH3OH, (CH3)2O, F(-), HF, or CH3F). This series includes four red-shifting and six blue-shifting hydrogen bonds. Consistent with existing findings in literature, VB-based energy decomposition analyses show that electrostatic interaction plays the dominating role and polarization plays the secondary role in all these hydrogen-bonding systems, and the charge transfer interaction, which denotes the hyperconjugation effect, contributes only slightly to the total interaction energy. As VB theory describes any real chemical bond in terms of pure covalent and ionic structures, our fragment interaction analysis reveals that with the approaching of a hydrogen bond acceptor Y, the covalent state of the F3C-H bond tends to blue-shift, due to the strong repulsion between the hydrogen atom and Y. In contrast, the ionic state F3C(-) H(+) leads to the red-shifting of the C-H vibrational frequency, owing to the attraction between the proton and Y. Thus, the relative weights of the covalent and ionic structures essentially determine the direction of frequency change. Indeed, we find the correlation between the structural weights and vibrational frequency changes. PMID:27074500

  5. ICME for Crashworthiness of TWIP Steels: From Ab Initio to the Crash Performance

    NASA Astrophysics Data System (ADS)

    Güvenç, O.; Roters, F.; Hickel, T.; Bambach, M.

    2015-01-01

    During the last decade, integrated computational materials engineering (ICME) emerged as a field which aims to promote synergetic usage of formerly isolated simulation models, data and knowledge in materials science and engineering, in order to solve complex engineering problems. In our work, we applied the ICME approach to a crash box, a common automobile component crucial to passenger safety. A newly developed high manganese steel was selected as the material of the component and its crashworthiness was assessed by simulated and real drop tower tests. The crashworthiness of twinning-induced plasticity (TWIP) steel is intrinsically related to the strain hardening behavior caused by the combination of dislocation glide and deformation twinning. The relative contributions of those to the overall hardening behavior depend on the stacking fault energy (SFE) of the selected material. Both the deformation twinning mechanism and the stacking fault energy are individually well-researched topics, but especially for high-manganese steels, the determination of the stacking-fault energy and the occurrence of deformation twinning as a function of the SFE are crucial to understand the strain hardening behavior. We applied ab initio methods to calculate the stacking fault energy of the selected steel composition as an input to a recently developed strain hardening model which models deformation twinning based on the SFE-dependent dislocation mechanisms. This physically based material model is then applied to simulate a drop tower test in order to calculate the energy absorption capacity of the designed component. The results are in good agreement with experiments. The model chain links the crash performance to the SFE and hence to the chemical composition, which paves the way for computational materials design for crashworthiness.

  6. Ab initio quantum mechanical studies in electronic and structural properties of carbon nanotubes and silicon nanowires

    NASA Astrophysics Data System (ADS)

    Matsuda, Yuki

    This dissertation focuses on ab-initio quantum mechanical calculations of nanoelectronics in three research topics: contact resistance properties of carbon nanotubes and graphenes (Chapters 1 through 3), electrical properties of carbon nanotubes (Chapter 4) and silicon nanowires (Chapter 5). Through all the chapters, the aim of the research is to provide useful guidelines for experimentalists. Chapter 1 presents the contact resistance of metal electrode-carbon nanotube and metal electrode-graphene interfaces for various deposited metals, based on first-principles quantum mechanical density functional and matrix Green's function methods. Chapters 2 and 3 describe inventive ways to enhance contact resistance properties as well as mechanical stabilities using "molecular anchors" (Chapter 2) or using "end-contacted" (or end-on) electrodes (Chapter 3). Chapters 1 through 3 also provide useful guidelines for nanotube assembly process which is one of the main obstacles in nanoelectronics. Chapter 4 shows accurate and detailed band structure properties of single-walled carbon nanotubes using B3LYP hybrid functional, which are critical parameters in determining the electronic properties such as small band gaps (˜0.1 eV) and effective masses. Chapter 5 details both structural and electronic properties of silicon nanowires. These results lead to the findings controlling the diameter and surface coverage by adsorbates (e.g., hydrogen) of silicon nanowires can be effectively used to optimize their properties for various applications. All the theoretical results are compared with other theoretical studies and experimental data. Notably, electronic studies using B3LYP show excellent agreement with experimental studies quantitatively, which previous quantum mechanical calculations had failed. These studies show how quantum mechanical predictions of complex phenomena can be effectively investigated computationally in nanomaterials and nanodevices. Given the difficulty, expense

  7. Synthesis, crystal structure and ab initio/DFT calculations of a derivative of dithiophosphonates

    NASA Astrophysics Data System (ADS)

    Karakus, M.; Solak, S.; Hökelek, T.; Dal, H.; Bayrakdar, A.; Özdemir Kart, S.; Karabacak, M.; Kart, H. H.

    2014-03-01

    The compound 2 has been synthesized from the reaction of 2,4-Bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2,4-disulfide and (R)-1-[3,5-Bis(trifloromethyl)phenyl]ethanol in toluene. The obtained crude dithiophosphonic acid 1 has been treated with the excess of N(C2H5)3 to give rise to 2, [(+HN(C2H5)3][(O-CH3CH-C6H3(CF3)2)(CH3OC6H4)PS2-]. The compound 2 has been characterized by using the spectroscopic methods such as IR, 1H, 13C, 31P NMR and structural analysing method such as X-ray crystallography. It crystallizes in the orthorhombic system, whose space group is P212121. It consists of a dithiophosphonate bridged methoxyphenyl and bis(triflorophenylethyl) groups and a triethylammonium moiety linked by Nsbnd H⋯S and Csbnd H⋯F hydrogen bonds. In the crystal structure, the C17H14F6O2PS2 molecule is elongated along the b-axis and stacked along the a-axis. The triethylammonium, N(CH2CH3)3, molecule fill in the cavities between the C17H14F6O2PS2 molecule. Moreover, ab initio methods based on Hartree-Fock (HF) and Density Functional Theory (DFT) calculations with the basis set of 6-31G(d) are also carried out to determine the molecular structural properties and to calculate FT-IR and NMR spectrum of the compound 2. The experimental results and theoretical calculations have been compared, and they are found to be in good agreement.

  8. Structural stability of nitrogen-doped ultrathin single-walled boron nanotubes: an ab initio study

    NASA Astrophysics Data System (ADS)

    Jain, Sandeep Kumar; Srivastava, Pankaj

    2012-09-01

    Ab initio calculations have been performed for determining structural stabilities of nitrogen-doped ultrathin single-walled boron nanotube. We have considered ultrathin boron nanotubes of diameters <0.5 nm, which include mainly three conformations of BNTs viz. zigzag (5,0), armchair (3,3) and chiral (4,2) with diameters 4.60, 4.78 and 4.87 Å, respectively. It has been investigated that α-BNTs are highly stable, while hexagonal BNTs are found to be least stable. In view of increasing structural stability of hexagonal BNTs, substitutional doping of foreign atoms, i.e. nitrogen is chosen. The nitrogen atoms substitute the host atoms at the middle of the tubes. The substitution doping is made with all the three conformations. The structural stabilities of BNTs have been investigated by using density functional theory (DFT). Subsequently, the cohesive energy is calculated, which directly measures the structural stability. The cohesive energy of BNTs has been calculated for different nitrogen concentrations. We found that the structures get energetically more stable with increasing nitrogen concentration. Moreover, it is also revealed that all the three BNTs are almost equally stable for single-atom doping, while the armchair BNT (3,3) is highly stable followed by zigzag (5,0) and chiral (4,2) BNTs for two- and three-atom doping. The structural stability is an important factor for realization of any physical device. Thus, these BNTs can be used for field emission, semiconducting and highly conducting devices at nanoscale.

  9. Microsolvation of LiBO2 in water: anion photoelectron spectroscopy and ab initio calculations.

    PubMed

    Zeng, Zhen; Hou, Gao-Lei; Song, Jian; Feng, Gang; Xu, Hong-Guang; Zheng, Wei-Jun

    2015-04-14

    The microsolvation of LiBO2 in water was investigated by conducting anion photoelectron spectroscopy and ab initio studies on the LiBO2(H2O)n(-) (n = 0-5) clusters. By comparing calculations with experiments, the structures of these clusters and their corresponding neutrals were assigned, and their structural evolutions were revealed. During the anionic structural evolution with n increasing to 5, hydroxyborate and metaborate channels were identified and the metaborate channel is more favorable. For the hydroxyborate structures, the anionic Li(+)-BO2(-) ion pair reacts with a water molecule to produce the LiBO(OH)2(-) moiety and three water molecules tend to dissolve this moiety. In the metaborate channel, two types of solvent-separated ion pair (SSIP) geometries were determined as the ring-type and linear-type. The transition from the contact ion pair (CIP) to the ring-type of SSIP starts at n = 3, while that to the linear-type of SSIP occurs at n = 4. In neutral LiBO2(H2O)n clusters, the first water molecule prefers to react with the Li(+)-BO2(-) ion pair to generate the LiBO(OH)2 moiety, analogous to the bulk crystal phase of α-LiBO2 with two O atoms substituted by two OH groups. The Li-O distance in the LiBO(OH)2 moiety increases with the increasing number of water molecules and elongates abruptly at n = 4. Our studies provide new insight into the initial dissolution of LiBO2 salt in water at the molecular level and may be correlated to the bulk state. PMID:25758204

  10. The ab initio calculation of spectra of open shell diatomic molecules

    NASA Astrophysics Data System (ADS)

    Tennyson, Jonathan; Lodi, Lorenzo; McKemmish, Laura K.; Yurchenko, Sergei N.

    2016-05-01

    The spectra (rotational, rotation–vibrational or electronic) of diatomic molecules due to transitions involving only closed-shell (1Σ ) electronic states follow very regular, simple patterns and their theoretical analysis is usually straightforward. On the other hand, open-shell electronic states lead to more complicated spectral patterns and, moreover, often appear as a manifold of closely lying electronic states, leading to perturbed spectra of even greater complexity. This is especially true when at least one of the atoms is a transition metal. Traditionally these complex cases have been analysed using approaches based on perturbation theory, with semi-empirical parameters determined by fitting to spectral data. Recently the needs of two rather diverse scientific areas have driven the demand for improved theoretical models of open-shell diatomic systems based on an ab initio approach; these areas are ultracold chemistry and the astrophysics of ‘cool’ stars, brown dwarfs and most recently extrasolar planets. However, the complex electronic structure of these molecules combined with the accuracy requirements of high-resolution spectroscopy render such an approach particularly challenging. This review describes recent progress in developing methods for directly solving the effective Schrödinger equation for open-shell diatomic molecules, with a focus on molecules containing a transtion metal. It considers four aspects of the problem: (i) the electronic structure problem; (ii) non-perturbative treatments of the curve couplings; (iii) the solution of the nuclear motion Schrödinger equation; (iv) the generation of accurate electric dipole transition intensities. Examples of applications are used to illustrate these issues.

  11. Rotational study of the CH4-CO complex: Millimeter-wave measurements and ab initio calculations.

    PubMed

    Surin, L A; Tarabukin, I V; Panfilov, V A; Schlemmer, S; Kalugina, Y N; Faure, A; Rist, C; van der Avoird, A

    2015-10-21

    The rotational spectrum of the van der Waals complex CH4-CO has been measured with the intracavity OROTRON jet spectrometer in the frequency range of 110-145 GHz. Newly observed and assigned transitions belong to the K = 2-1 subband correlating with the rotationless jCH4 = 0 ground state and the K = 2-1 and K = 0-1 subbands correlating with the jCH4 = 2 excited state of free methane. The (approximate) quantum number K is the projection of the total angular momentum J on the intermolecular axis. The new data were analyzed together with the known millimeter-wave and microwave transitions in order to determine the molecular parameters of the CH4-CO complex. Accompanying ab initio calculations of the intermolecular potential energy surface (PES) of CH4-CO have been carried out at the explicitly correlated coupled cluster level of theory with single, double, and perturbative triple excitations [CCSD(T)-F12a] and an augmented correlation-consistent triple zeta (aVTZ) basis set. The global minimum of the five-dimensional PES corresponds to an approximately T-shaped structure with the CH4 face closest to the CO subunit and binding energy De = 177.82 cm(-1). The bound rovibrational levels of the CH4-CO complex were calculated for total angular momentum J = 0-6 on this intermolecular potential surface and compared with the experimental results. The calculated dissociation energies D0 are 91.32, 94.46, and 104.21 cm(-1) for A (jCH4 = 0), F (jCH4 = 1), and E (jCH4 = 2) nuclear spin modifications of CH4-CO, respectively. PMID:26493903

  12. Accurate ab initio Quartic Force Fields of Cyclic and Bent HC2N Isomers

    NASA Technical Reports Server (NTRS)

    Inostroza, Natalia; Huang, Xinchuan; Lee, Timothy J.

    2012-01-01

    Highly correlated ab initio quartic force field (QFFs) are used to calculate the equilibrium structures and predict the spectroscopic parameters of three HC2N isomers. Specifically, the ground state quasilinear triplet and the lowest cyclic and bent singlet isomers are included in the present study. Extensive treatment of correlation effects were included using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations, denoted CCSD(T). Dunning s correlation-consistent basis sets cc-pVXZ, X=3,4,5, were used, and a three-point formula for extrapolation to the one-particle basis set limit was used. Core-correlation and scalar relativistic corrections were also included to yield highly accurate QFFs. The QFFs were used together with second-order perturbation theory (with proper treatment of Fermi resonances) and variational methods to solve the nuclear Schr dinger equation. The quasilinear nature of the triplet isomer is problematic, and it is concluded that a QFF is not adequate to describe properly all of the fundamental vibrational frequencies and spectroscopic constants (though some constants not dependent on the bending motion are well reproduced by perturbation theory). On the other hand, this procedure (a QFF together with either perturbation theory or variational methods) leads to highly accurate fundamental vibrational frequencies and spectroscopic constants for the cyclic and bent singlet isomers of HC2N. All three isomers possess significant dipole moments, 3.05D, 3.06D, and 1.71D, for the quasilinear triplet, the cyclic singlet, and the bent singlet isomers, respectively. It is concluded that the spectroscopic constants determined for the cyclic and bent singlet isomers are the most accurate available, and it is hoped that these will be useful in the interpretation of high-resolution astronomical observations or laboratory experiments.

  13. Evolution of atomic structure in Al75Cu25 liquid from experimental and ab initio molecular dynamics simulation studies.

    PubMed

    Xiong, L H; Yoo, H; Lou, H B; Wang, X D; Cao, Q P; Zhang, D X; Jiang, J Z; Xie, H L; Xiao, T Q; Jeon, S; Lee, G W

    2015-01-28

    X-ray diffraction and electrostatic levitation measurements, together with the ab initio molecular dynamics simulation of liquid Al(75)Cu(25) alloy have been performed from 800 to 1600 K. Experimental and ab initio molecular dynamics simulation results match well with each other. No abnormal changes were experimentally detected in the specific heat capacity over total hemispheric emissivity and density curves in the studied temperature range for a bulk liquid Al(75)Cu(25) alloy measured by the electrostatic levitation technique. The structure factors gained by the ab initio molecular dynamics simulation precisely coincide with the experimental data. The atomic structure analyzed by the Honeycutt-Andersen index and Voronoi tessellation methods shows that icosahedral-like atomic clusters prevail in the liquid Al(75)Cu(25) alloy and the atomic clusters evolve continuously. All results obtained here suggest that no liquid-liquid transition appears in the bulk liquid Al(75)Cu(25) alloy in the studied temperature range. PMID:25524926

  14. Correlations between ab initio and experimental data for isolated H-bonded complexes of water with nitrogen bases

    NASA Astrophysics Data System (ADS)

    Maes, G.; Smets, J.; Adamowicz, L.; McCarthy, W.; Van Bael, M. K.; Houben, L.; Schoone, K.

    1997-06-01

    Correlations between selected ab initio predicted and experimentally observed properties of 1:1 H-bonded complexes of pyridines, pyrimidines, and imidazoles with water are investigated. Relationships are found between the experimental properties of proton affinity and water frequency shift, and the ab initio calculated bond distances, interaction energies and water frequency shifts. It is also found that well-defined relations can be established between calculated and observed properties for the pyridine complexes, but these cannot be reliably extended to the other N-base systems. The similarities demonstrate that the presently available ab initio methods are useful in predicting the experimental behaviour of H-bonded systems, but only for closely related molecules.

  15. Ground state analytical ab initio intermolecular potential for the Cl{sub 2}-water system

    SciTech Connect

    Hormain, Laureline; Monnerville, Maurice Toubin, Céline; Duflot, Denis; Pouilly, Brigitte; Briquez, Stéphane; Bernal-Uruchurtu, Margarita I.; Hernández-Lamoneda, Ramón

    2015-04-14

    The chlorine/water interface is of crucial importance in the context of atmospheric chemistry. Modeling the structure and dynamics at this interface requires an accurate description of the interaction potential energy surfaces. We propose here an analytical intermolecular potential that reproduces the interaction between the Cl{sub 2} molecule and a water molecule. Our functional form is fitted to a set of high level ab initio data using the coupled-cluster single double (triple)/aug-cc-p-VTZ level of electronic structure theory for the Cl{sub 2} − H{sub 2}O complex. The potential fitted to reproduce the three minima structures of 1:1 complex is validated by the comparison of ab initio results of Cl{sub 2} interacting with an increasing number of water molecules. Finally, the model potential is used to study the physisorption of Cl{sub 2} on a perfectly ordered hexagonal ice slab. The calculated adsorption energy, in the range 0.27 eV, shows a good agreement with previous experimental results.

  16. Ab Initio Values of the Thermophysical Properties of Helium as Standards

    PubMed Central

    Hurly, John J.; Moldover, Michael R.

    2000-01-01

    Recent quantum mechanical calculations of the interaction energy of pairs of helium atoms are accurate and some include reliable estimates of their uncertainty. We combined these ab initio results with earlier published results to obtain a helium-helium interatomic potential that includes relativistic retardation effects over all ranges of interaction. From this potential, we calculated the thermophysical properties of helium, i.e., the second virial coefficients, the dilute-gas viscosities, and the dilute-gas thermal conductivities of 3He, 4He, and their equimolar mixture from 1 K to 104 K. We also calculated the diffusion and thermal diffusion coefficients of mixtures of 3He and 4He. For the pure fluids, the uncertainties of the calculated values are dominated by the uncertainties of the potential; for the mixtures, the uncertainties of the transport properties also include contributions from approximations in the transport theory. In all cases, the uncertainties are smaller than the corresponding experimental uncertainties; therefore, we recommend the ab initio results be used as standards for calibrating instruments relying on these thermophysical properties. We present the calculated thermophysical properties in easy-to-use tabular form.

  17. Novel high-pressure phase of ZrO{sub 2}: An ab initio prediction

    SciTech Connect

    Durandurdu, Murat

    2015-10-15

    The high-pressure behavior of the orthorhombic cotunnite type ZrO{sub 2} is explored using an ab initio constant pressure technique. For the first time, a novel hexagonal phase (Ni{sub 2}In type) within P6{sub 3}/mmc symmetry is predicted through the simulation. The Ni{sub 2}In type crystal is the densest high-pressure phase of ZrO{sub 2} proposed so far and has not been observed in other metal dioxides at high pressure before. The phase transformation is accompanied by a small volume drop and likely to occur around 380 GPa in experiment. - Graphical abstract: Post-cotunnite Ni{sub 2}In type hexagonal phase forms in zirconia at high pressure. - Highlights: • A post-cotunnite phase is predicted for ZrO{sub 2} through an ab initio simulation. • Cotunnite ZrO{sub 2} adopts the Ni{sub 2}In type structure at high pressure. • The Ni{sub 2}In type structure is the densest high-pressure phase of ZrO{sub 2} proposed so far. • The preferred mechanism in ZrO{sub 2} differs from the other metal dioxides.

  18. Towards an ab-initio treatment of nonlocal electronic correlations with dynamical vertex approximation

    NASA Astrophysics Data System (ADS)

    Galler, Anna; Gunacker, Patrik; Tomczak, Jan; Thunström, Patrik; Held, Karsten

    Recently, approaches such as the dynamical vertex approximation (D ΓA) or the dual-fermion method have been developed. These diagrammatic approaches are going beyond dynamical mean field theory (DMFT) by including nonlocal electronic correlations on all length scales as well as the local DMFT correlations. Here we present our efforts to extend the D ΓA methodology to ab-initio materials calculations (ab-initio D ΓA). Our approach is a unifying framework which includes both GW and DMFT-type of diagrams, but also important nonlocal correlations beyond, e.g. nonlocal spin fluctuations. In our multi-band implementation we are using a worm sampling technique within continuous-time quantum Monte Carlo in the hybridization expansion to obtain the DMFT vertex, from which we construct the reducible vertex function using the two particle-hole ladders. As a first application we show results for transition metal oxides. Support by the ERC project AbinitioDGA (306447) is acknowledged.

  19. An ab Initio Benchmark and DFT Validation Study on Gold(I)-Catalyzed Hydroamination of Alkynes.

    PubMed

    Ciancaleoni, Gianluca; Rampino, Sergio; Zuccaccia, Daniele; Tarantelli, Francesco; Belanzoni, Paola; Belpassi, Leonardo

    2014-03-11

    High level ab initio calculations have been carried out on an archetypal gold(I)-catalyzed reaction: hydroamination of ethyne. We studied up to 12 structures of possible gold(I)-coordinated species modeling different intermediates potentially present in a catalytic cycle for the addition of a protic nucleophile to an alkyne. The benchmark is used to evaluate the performances of some popular density functionals for describing geometries and relative energies of stationary points along the reaction profile. Most functionals (including hybrid or meta-hybrid) give accurate structures but large nonsystematic errors (4-12 kcal/mol) along the reaction energy profile. The double hybrid functional B2PLYP outperforms all considered functionals and compares very nicely with our reference ab initio benchmark energies. Moreover, we present an assessment of the accuracy of commonly used approaches to include relativistic effects, such as relativistic effective potentials and a scalar ZORA Hamiltonian, by a comparison with the results obtained using a relativistic all-electron four-component Dirac-Kohn-Sham method. The contribution of nonscalar relativistic effects in gold(I)-catalyzed reactions, as we investigated here, is expected to be on the order of 1 kcal/mol. PMID:26580180

  20. Symmetry-Adapted Ab Initio Shell Model for Nuclear Structure Calculations

    NASA Astrophysics Data System (ADS)

    Draayer, J. P.; Dytrych, T.; Launey, K. D.; Langr, D.

    2012-05-01

    An innovative concept, the symmetry-adapted ab initio shell model, that capitalizes on partial as well as exact symmetries that underpin the structure of nuclei, is discussed. This framework is expected to inform the leading features of nuclear structure and reaction data for light and medium mass nuclei, which are currently inaccessible by theory and experiment and for which predictions of modern phenomenological models often diverge. We use powerful computational and group-theoretical algorithms to perform ab initio CI (configuration-interaction) calculations in a model space spanned by SU(3) symmetry-adapted many-body configurations with the JISP16 nucleon-nucleon interaction. We demonstrate that the results for the ground states of light nuclei up through A = 16 exhibit a strong dominance of low-spin and high-deformation configurations together with an evident symplectic structure. This, in turn, points to the importance of using a symmetry-adapted framework, one based on an LS coupling scheme with the associated spatial configurations organized according to deformation.