Science.gov

Sample records for ab initio method

  1. Ab initio methods for nuclear properties - a computational physics approach

    NASA Astrophysics Data System (ADS)

    Maris, Pieter

    2011-04-01

    A microscopic theory for the structure and reactions of light nuclei poses formidable challenges for high-performance computing. Several ab-initio methods have now emerged that provide nearly exact solutions for some nuclear properties. The ab-initio no-core full configuration (NCFC) approach is based on basis space expansion methods and uses Slater determinants of single-nucleon basis functions to express the nuclear wave function. In this approach, the quantum many-particle problem becomes a large sparse matrix eigenvalue problem. The eigenvalues of this matrix give us the binding energies, and the corresponding eigenvectors the nuclear wave functions. These wave functions can be employed to evaluate experimental quantities. In order to reach numerical convergence for fundamental problems of interest, the matrix dimension often exceeds 1 billion, and the number of nonzero matrix elements may saturate available storage on present-day leadership class facilities. I discuss different strategies for distributing and solving this large sparse matrix on current multicore computer architectures, including methods to deal with with memory bottleneck. Several of these strategies have been implemented in the code MFDn, which is a parallel fortran code for nuclear structure calculations. I will show scaling behavior and compare the performance of the pure MPI version with the hybrid MPI/OpenMP code on Cray XT4 and XT5 platforms. For large core counts (typically 5,000 and above), the hybrid version is more efficient than pure MPI. With this code, we have been able to predict properties of the unstable nucleus 14F, which have since been confirmed by experiments. I will also give an overview of other recent results for nuclei in the A = 6 to 16 range with 2- and 3-body interactions. Supported in part by US DOE Grant DE-FC02-09ER41582.

  2. Development of Novel Analytical Method for Ab Initio Powder Structural Analysis

    NASA Astrophysics Data System (ADS)

    Sakata, Makoto; Nishibori, Eiji; Sawa, Hiroshi

    Genetic Algorithm (GA) applied to ab initio structure determination from synchrotron powder diffraction is described. It seems to have an advantage over other real space methods for ab initio structure determination because of the existence of schema theorem. As an example, the case of Prednisolone Succinate is shown in some detail. Future development of GA in crystallography is briefly described.

  3. The study of molecular spectroscopy by ab initio methods

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1991-01-01

    This review illustrates the potential of theory for solving spectroscopic problems. The accuracy of approximate techniques for including electron correlation have been calibrated by comparison with full configuration-interaction calculations. Examples of the application of ab initio calculations to vibrational, rotational, and electronic spectroscopy are given. It is shown that the state-averaged, complete active space self-consistent field, multireference configuration-interaction procedure provides a good approach for treating several electronic states accurately in a common molecular orbital basis.

  4. Predicting lattice thermal conductivity with help from ab initio methods

    NASA Astrophysics Data System (ADS)

    Broido, David

    2015-03-01

    The lattice thermal conductivity is a fundamental transport parameter that determines the utility a material for specific thermal management applications. Materials with low thermal conductivity find applicability in thermoelectric cooling and energy harvesting. High thermal conductivity materials are urgently needed to help address the ever-growing heat dissipation problem in microelectronic devices. Predictive computational approaches can provide critical guidance in the search and development of new materials for such applications. Ab initio methods for calculating lattice thermal conductivity have demonstrated predictive capability, but while they are becoming increasingly efficient, they are still computationally expensive particularly for complex crystals with large unit cells . In this talk, I will review our work on first principles phonon transport for which the intrinsic lattice thermal conductivity is limited only by phonon-phonon scattering arising from anharmonicity. I will examine use of the phase space for anharmonic phonon scattering and the Grüneisen parameters as measures of the thermal conductivities for a range of materials and compare these to the widely used guidelines stemming from the theory of Liebfried and Schölmann. This research was supported primarily by the NSF under Grant CBET-1402949, and by the S3TEC, an Energy Frontier Research Center funded by the US DOE, office of Basic Energy Sciences under Award No. DE-SC0001299.

  5. Comparison of DFT and ab initio QM/MM methods for modelling reaction in chorismate synthase

    NASA Astrophysics Data System (ADS)

    Lawan, Narin; Ranaghan, Kara E.; Manby, Frederick R.; Mulholland, Adrian J.

    2014-07-01

    Quantum mechanics/molecular mechanics (QM/MM) methods are a popular tool in the investigation of enzyme reactions. Here, we compare B3LYP density functional theory (DFT) and ab initio QM/MM methods for modelling the conversion of 5-enolpyruvylshikimate-3-phosphate to chorismate in chorismate synthase. Good agreement with experimental data is only obtained at the SCS-MP2/CHARMM27 level for a reaction mechanism in which phosphate elimination precedes proton transfer. B3LYP predicts reaction energetics that are qualitatively wrong, stressing the need for ab initio QM/MM methods, and caution in interpretation of DFT results for this enzyme.

  6. Exploring the ab initio/classical free energy perturbation method: The hydration free energy of water

    SciTech Connect

    Sakane, Shinichi; Yezdimer, Eric M.; Liu, Wenbin; Barriocanal, Jose A.; Doren, Douglas J.; Wood, Robert H.

    2000-08-15

    The ab initio/classical free energy perturbation (ABC-FEP) method proposed previously by Wood et al. [J. Chem. Phys. 110, 1329 (1999)] uses classical simulations to calculate solvation free energies within an empirical potential model, then applies free energy perturbation theory to determine the effect of changing the empirical solute-solvent interactions to corresponding interactions calculated from ab initio methods. This approach allows accurate calculation of solvation free energies using an atomistic description of the solvent and solute, with interactions calculated from first principles. Results can be obtained at a feasible computational cost without making use of approximations such as a continuum solvent or an empirical cavity formation energy. As such, the method can be used far from ambient conditions, where the empirical parameters needed for approximate theories of solvation may not be available. The sources of error in the ABC-FEP method are the approximations in the ab initio method, the finite sample of configurations, and the classical solvent model. This article explores the accuracy of various approximations used in the ABC-FEP method by comparing to the experimentally well-known free energy of hydration of water at two state points (ambient conditions, and 973.15 K and 600 kg/m3). The TIP4P-FQ model [J. Chem. Phys. 101, 6141 (1994)] is found to be a reliable solvent model for use with this method, even at supercritical conditions. Results depend strongly on the ab initio method used: a gradient-corrected density functional theory is not adequate, but a localized MP2 method yields excellent agreement with experiment. Computational costs are reduced by using a cluster approximation, in which ab initio pair interaction energies are calculated between the solute and up to 60 solvent molecules, while multi-body interactions are calculated with only a small cluster (5 to 12 solvent molecules). Sampling errors for the ab initio contribution to

  7. Development and application of ab initio QM/MM methods for mechanistic simulation of reactions in solution and in enzymes

    PubMed Central

    Hu, Hao; Yang, Weitao

    2013-01-01

    Determining the free energies and mechanisms of chemical reactions in solution and enzymes is a major challenge. For such complex reaction processes, combined quantum mechanics/molecular mechanics (QM/MM) method is the most effective simulation method to provide an accurate and efficient theoretical description of the molecular system. The computational costs of ab initio QM methods, however, have limited the application of ab initio QM/MM methods. Recent advances in ab initio QM/MM methods allowed the accurate simulation of the free energies for reactions in solution and in enzymes and thus paved the way for broader application of the ab initio QM/MM methods. We review here the theoretical developments and applications of the ab initio QM/MM methods, focusing on the determination of reaction path and the free energies of the reaction processes in solution and enzymes. PMID:24146439

  8. Dispersion Interactions between Rare Gas Atoms: Testing the London Equation Using ab Initio Methods

    ERIC Educational Resources Information Center

    Halpern, Arthur M.

    2011-01-01

    A computational chemistry experiment is described in which students can use advanced ab initio quantum mechanical methods to test the ability of the London equation to account quantitatively for the attractive (dispersion) interactions between rare gas atoms. Using readily available electronic structure applications, students can calculate the…

  9. AB INITIO AND CALPHAD THERMODYNAMICS OF MATERIALS

    SciTech Connect

    Turchi, P A

    2004-04-14

    Ab initio electronic structure methods can supplement CALPHAD in two major ways for subsequent applications to stability in complex alloys. The first one is rather immediate and concerns the direct input of ab initio energetics in CALPHAD databases. The other way, more involved, is the assessment of ab initio thermodynamics {acute a} la CALPHAD. It will be shown how these results can be used within CALPHAD to predict the equilibrium properties of multi-component alloys.

  10. A general method for constructing multidimensional molecular potential energy surfaces from {ital ab} {ital initio} calculations

    SciTech Connect

    Ho, T.; Rabitz, H.

    1996-02-01

    A general interpolation method for constructing smooth molecular potential energy surfaces (PES{close_quote}s) from {ital ab} {ital initio} data are proposed within the framework of the reproducing kernel Hilbert space and the inverse problem theory. The general expression for an {ital a} {ital posteriori} error bound of the constructed PES is derived. It is shown that the method yields globally smooth potential energy surfaces that are continuous and possess derivatives up to second order or higher. Moreover, the method is amenable to correct symmetry properties and asymptotic behavior of the molecular system. Finally, the method is generic and can be easily extended from low dimensional problems involving two and three atoms to high dimensional problems involving four or more atoms. Basic properties of the method are illustrated by the construction of a one-dimensional potential energy curve of the He{endash}He van der Waals dimer using the exact quantum Monte Carlo calculations of Anderson {ital et} {ital al}. [J. Chem. Phys. {bold 99}, 345 (1993)], a two-dimensional potential energy surface of the HeCO van der Waals molecule using recent {ital ab} {ital initio} calculations by Tao {ital et} {ital al}. [J. Chem. Phys. {bold 101}, 8680 (1994)], and a three-dimensional potential energy surface of the H{sup +}{sub 3} molecular ion using highly accurate {ital ab} {ital initio} calculations of R{umlt o}hse {ital et} {ital al}. [J. Chem. Phys. {bold 101}, 2231 (1994)]. In the first two cases the constructed potentials clearly exhibit the correct asymptotic forms, while in the last case the constructed potential energy surface is in excellent agreement with that constructed by R{umlt o}hse {ital et} {ital al}. using a low order polynomial fitting procedure. {copyright} {ital 1996 American Institute of Physics.}

  11. An hybrid computing approach to accelerating the multiple scattering theory based ab initio methods

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Stocks, G. Malcolm

    2014-03-01

    The multiple scattering theory method, also known as the Korringa-Kohn-Rostoker (KKR) method, is considered an elegant approach to the ab initio electronic structure calculation for solids. Its convenience in accessing the one-electron Green function has led to the development of locally-self consistent multiple scattering (LSMS) method, a linear scaling ab initio method that allows for the electronic structure calculation for complex structures requiring tens of thousands of atoms in unit cell. It is one of the few applications that demonstrated petascale computing capability. In this presentation, we discuss our recent efforts in developing a hybrid computing approach for accelerating the full potential electronic structure calculation. Specifically, in the framework of our existing LSMS code in FORTRAN 90/95, we explore the many core resources on GPGPU accelerators by implementing the compute intensive functions (for the calculation of multiple scattering matrices and the single site solutions) in CUDA, and move the computational tasks to the GPGPUs if they are found available. We explain in details our approach to the CUDA programming and the code structure, and show the speed-up of the new hybrid code by comparing its performances on CPU/GPGPU and on CPU only. The work was supported in part by the Center for Defect Physics, a DOE-BES Energy Frontier Research Center.

  12. Electron transport in extended carbon-nanotube/metal contacts: Ab initio based Green function method

    NASA Astrophysics Data System (ADS)

    Fediai, Artem; Ryndyk, Dmitry A.; Cuniberti, Gianaurelio

    2015-04-01

    We have developed a new method that is able to predict the electrical properties of the source and drain contacts in realistic carbon nanotube field effect transistors (CNTFETs). It is based on large-scale ab initio calculations combined with a Green function approach. For the first time, both internal and external parts of a realistic CNT-metal contact are taken into account at the ab initio level. We have developed the procedure allowing direct calculation of the self-energy for an extended contact. Within the method, it is possible to calculate the transmission coefficient through a contact of both finite and infinite length; the local density of states can be determined in both free and embedded CNT segments. We found perfect agreement with the experimental data for Pd and Al contacts. We have explained why CNTFETs with Pd electrodes are p -type FETs with ohmic contacts, which can carry current close to the ballistic limit (provided contact length is large enough), whereas in CNT-Al contacts transmission is suppressed to a significant extent, especially for holes.

  13. The vibrational problem solution in natural coordinates with the application of ab initio methods and the functional density theory (DFT-methods)

    NASA Astrophysics Data System (ADS)

    Novoselova, Anna V.; Chernavina, Mariya L.; Berezin, Kirill V.; Berezin, Valentin I.

    2015-03-01

    This article describes the algorithm and the creation of programs for the input process automate the scaling factors of quantum mechanical force fields calculated in the natural coordinates using ab initio methods and the density functional theory (DFT-methods).

  14. Mapping Enzymatic Catalysis Using the Effective Fragment Molecular Orbital Method: Towards all ab initio Biochemistry

    PubMed Central

    Steinmann, Casper; Fedorov, Dmitri G.; Jensen, Jan H.

    2013-01-01

    We extend the Effective Fragment Molecular Orbital (EFMO) method to the frozen domain approach where only the geometry of an active part is optimized, while the many-body polarization effects are considered for the whole system. The new approach efficiently mapped out the entire reaction path of chorismate mutase in less than four days using 80 cores on 20 nodes, where the whole system containing 2398 atoms is treated in the ab initio fashion without using any force fields. The reaction path is constructed automatically with the only assumption of defining the reaction coordinate a priori. We determine the reaction barrier of chorismate mutase to be kcal mol−1 for MP2/cc-pVDZ and for MP2/cc-pVTZ in an ONIOM approach using EFMO-RHF/6-31G(d) for the high and low layers, respectively. PMID:23593259

  15. The computation of ionization potentials for second-row elements by ab initio and density functional theory methods

    SciTech Connect

    Jursic, B.S.

    1996-12-31

    Up to four ionization potentials of elements from the second-row of the periodic table were computed using the ab initio (HF, MP2, MP3, MP4, QCISD, GI, G2, and G2MP2) and DFT (B3LY, B3P86, B3PW91, XALPHA, HFS, HFB, BLYP, BP86, BPW91, BVWN, XAPLY, XAP86, XAPW91, XAVWN, SLYR SP86, SPW91 and SVWN) methods. In all of the calculations, the large 6-311++G(3df,3pd) gaussian type of basis set was used. The computed values were compared with the experimental results and suitability of the ab initio and DFF methods were discussed, in regard to reproducing the experimental data. From the computed ionization potentials of the second-row elements, it can be concluded that the HF ab initio computation is not capable of reproducing the experimental results. The computed ionization potentials are too low. However, by using the ab initio methods that include electron correlation, the computed IPs are becoming much closer to the experimental values. In all cases, with the exception of the first ionization potential for oxygen, the G2 computation result produces ionization potentials that are indistinguishable from the experimental results.

  16. Implementation of a vector potential method in an ab initio Hartree-Fock code

    NASA Astrophysics Data System (ADS)

    Tevekeliyska, Violina; Springborg, Michael; Champagne, Benoît; Kirtman, Bernard

    2012-12-01

    For extended systems exposed to an external, electrostatic field, the presence of the field leads to an extra term (E⃗. P⃗) to the Hamiltonian, where E⃗ is the field vector and P⃗ is the polarization of the system of interest. In order to find out how a polymer chain responds to an external electric perturbation, a field with a charge and a current term for the polarization is added to an ab initio Hartree-Fock Hamiltonian. The polarization expression is taken from an efficient vector potential approach (VPA) [1] for calculating electronic and nuclear responses of infinite periodic systems to finite electric fields and is implemented in the ab initio LCAO-SCF algorithm [3], which computes band structure of regular or helical polymers, taking into account the one-dimensional translational symmetry. A smoothing procedure for numerical differentiation of the orbital coefficients is used in order to calculate self-consistently the charge flow contribution to the polarization.

  17. Ab initio no core full configuration approach for light nuclei

    NASA Astrophysics Data System (ADS)

    Kim, Youngman; Shin, Ik Jae; Maris, Pieter; Vary, James P.; Forssén, Christian; Rotureau, Jimmy

    2014-07-01

    Comprehensive understanding of the structure and reactions of light nuclei poses theoretical and computational challenges. Still, a number of ab initio approaches have been developed to calculate the properties of atomic nuclei using fundamental interactions among nucleons. Among them, we work with the ab initio no core full configuration (NCFC) method and ab initio no core Gamow Shell Model (GSM). We first review these approaches and present some recent results.

  18. Ab initio no core full configuration approach for light nuclei

    NASA Astrophysics Data System (ADS)

    Kim, Youngman; Shin, Ik Jae; Maris, Pieter; Vary, James P.; Forssén, Christian; Rotureau, Jimmy

    2015-10-01

    Comprehensive understanding of the structure and reactions of light nuclei poses theoretical and computational challenges. Still, a number of ab initio approaches have been developed to calculate the properties of atomic nuclei using fundamental interactions among nucleons. Among them, we work with the ab initio no core full configuration (NCFC) method and ab initio no core Gamow Shell Model (GSM). We first review these approaches and present some recent results.

  19. Development of a spinor ab initio pseudopotential method and its application to spintronic materials

    NASA Astrophysics Data System (ADS)

    Theurich, Gerhard Jakob

    2001-12-01

    This thesis describes the extension of the density functional ab initio pseudopotential method to include the relativistic effect of spin-orbit coupling and non-collinear spin-polarizations within a generalized local density approximation. In contrast to conventional implementations, that neglect spin-orbit coupling and non-collinearity, the wavefunctions no longer separate into spatial and spin components, and are treated as general spinors. The implementation is applied to non-magnetic and magnetic systems with an emphasis on their spin properties. For GaAs and ZnSe the effects of relativistic corrections are studied focusing on the spin splittings of electronic bands, which are of great importance for spin relaxation in zincblende semiconductors. In the magnetic compounds MnSe and MnAs the reduced symmetry of the fully relativistic problem leads to small non-collinear arrangements of the self-consistent spin moments. Finally, the influence of spin-orbit coupling on the conduction and valence band exchange constants in dilute magnetic semiconductors is investigated, using the fully relativistic pseudopotential method. The results support the use of the scalar-relativistic approximation in such calculations.

  20. Structures and energies of D-galactose and galabiose conformers as calculated by ab initio and semiempirical methods.

    PubMed

    Rahal-Sekkal, Majda; Sekkal, Nezha; Kleb, Dirk C; Bleckmann, Paul

    2003-05-01

    Optimized geometries and total energies of some conformers of alpha- and beta-D-galactose have been calculated using the RHF/6-31G* ab initio method. Vibrational frequencies were computed at the 6-31G* level for the conformers that favor internal hydrogen bonding, in order to evaluate their enthalpies, entropies, Gibbs free energies, and then their structural stabilities. The semiempirical AM1, PM3, MNDO methods have also been performed on the conformers GG, GT, and TG of alpha- and beta-D-galactose. In order to test the reliability of each semiempirical method, the obtained structures and energies from the AM1, PM3, and MNDO methods have been compared to those achieved using the RHF/6-31G* ab initio method. The MNDO method has not been investigated further, because of the large deviation in the structural parameters compared with those obtained by the ab initio method for the galactose. The semiempirical method that has yielded the best results is AM1, and it has been chosen to perform structural and energy calculations on the galabiose molecule (the disaccharides constituted by two galactose units alpha 1,4 linked). The goal of such calculations is to draw the energy surface maps for this disaccharide. To realize each map, 144 different possible conformations resulting from the rotations of the two torsional angles psi and phi of the glycosidic linkage are considered. In each calculation, at each increment of psi and phi, using a step of 30 degrees from 0 to 330 degrees, the energy optimization is employed. In this article, we report also calculations concerning the galabiose molecule using different ab initio levels such as RHF/6-31G*, RHF/6-31G**, and B3Lyp/6-31G*. PMID:12692790

  1. Ab initio nuclear structure theory

    NASA Astrophysics Data System (ADS)

    Negoita, Gianina Alina

    Ab initio no core methods have become major tools for understanding the properties of light nuclei based on realistic nucleon-nucleon (NN) and three-nucleon (NNN) interactions. A brief description is provided for the inter-nucleon interactions that fit two-body scattering and bound state data, as well as NNN interactions. Major new progress, including the goal of applying these interactions to solve for properties of nuclei, is limited by convergence issues. That is, with the goal of obtaining high precision solutions of the nuclear many-body Hamiltonian with no core methods (all nucleons treated on the same footing), one needs to proceed to very large basis spaces to achieve a convergence pattern suitable for extrapolation to the exact result. This thesis investigates (1) the similarity renormalization group (SRG) approach to soften the interaction, while preserving its phase shift properties, and (2) adoption of a realistic basis space using Woods-Saxon (WS) single-particle wavefunctions. Both have their advantages and limitations, discussed here. For (1), SRG was demonstrated by applying it to a realistic NN interaction, JISP16, in a harmonic oscillator (HO) representation. The degree of interaction softening achieved through a regulator parameter is examined. For (2), new results are obtained with the realistic JISP16 NN interaction in ab initio calculations of light nuclei 4He, 6He and 12C, using a WS basis optimized to minimize the ground-state energy within the truncated no core shell model. These are numerically-intensive many-body calculations. Finally, to gain insight into the potential for no core investigations of heavier nuclei, an initial investigation was obtained for the odd mass A = 47 - 49 region nuclei straddling 48Ca. The motivation for selecting these nuclei stems from the aim of preparing for nuclear double beta-decay studies of 48Ca. In these heavier systems, phenomenological additions to the realistic NN interaction determined by previous

  2. Mixed ab initio quantum mechanics/molecular mechanics methods using frozen orbitals with applications to peptides and proteins

    NASA Astrophysics Data System (ADS)

    Philipp, Dean Michael

    Methodology is discussed for mixed ab initio quantum mechanics/molecular mechanics modeling of systems where the quantum mechanics (QM) and molecular mechanics (MM) regions are within the same molecule. The ab initio QM calculations are at the restricted Hartree-Fock level using the pseudospectral method of the Jaguar program while the MM part is treated with the OPLS force fields implemented in the IMPACT program. The interface between the QM and MM regions, in particular, is elaborated upon, as it is dealt with by ``breaking'' bonds at the boundaries and using Boys-localized orbitals found from model molecules in place of the bonds. These orbitals are kept frozen during QM calculations. The mixed modeling presented here can be used for single point energy calculations and geometry optimizations. Results from tests of the method to find relative conformational energies and geometries of alanine tetrapeptides are presented along with comparisons to pure QM and pure MM calculations.

  3. Ab initio phonon limited transport

    NASA Astrophysics Data System (ADS)

    Verstraete, Matthieu

    We revisit the thermoelectric (TE) transport properties of two champion materials, PbTe and SnSe, using fully first principles methods. In both cases the performance of the material is due to subtle combinations of structural effects, scattering, and phase space reduction. In PbTe anharmonic effects are completely opposite to the predicted quasiharmonic evolution of phonon frequencies and to frequently (and incorrectly) cited extrapolations of experiments. This stabilizes the material at high T, but also tends to enhance its thermal conductivity, in a non linear manner, above 600 Kelvin. This explains why PbTe is in practice limited to room temperature applications. SnSe has recently been shown to be the most efficient TE material in bulk form. This is mainly due to a strongly enhanced carrier concentration and electrical conductivity, after going through a phase transition from 600 to 800 K. We calculate the transport coefficients as well as the defect concentrations ab initio, showing excellent agreement with experiment, and elucidating the origin of the double phase transition as well as the new charge carriers. AH Romero, EKU Gross, MJ Verstraete, and O Hellman PRB 91, 214310 (2015) O. Hellman, IA Abrikosov, and SI Simak, PRB 84 180301 (2011)

  4. Predictive Nuclear Many-Body Theory with Ab Initio Methods: A Brief Survey and A Look Ahead

    NASA Astrophysics Data System (ADS)

    Hergert, Heiko

    2015-10-01

    The reach of ab initio many-body techniques has increased tremendously in recent years, owing to new developments in many-body theory as well as advances in their numerical implementation. Coupled Cluster, Self-Consistent Green's Function, and In-Medium Similarity Renormalization Group (IM-SRG) calculations are routinely performed for isotopes in the A ~ 100 region. Moreover, these techniques have been extended to tackle open-shell nuclei, either directly or through the auxiliary step of deriving valence-space interactions for use with existing Shell Model technology. One of the most powerful aspects of ab initio methods is their capability to provide results for energies and other observables with systematic uncertainties. Together with new accurate nuclear forces (and operators) derived from Chiral Effective Field Theory, they provide a consistent framework--and a road map--for a predictive description of nuclei. This will have a critical impact on the search for the limits of nuclear existence, tests of fundamental symmetries (e.g., the search for neutrinoless double beta decay), our understanding of quenching and effective charges in phenomenological Shell Model calculations etc. Using the Multi-Reference IM-SRG as a representative example, I will survey the current capabilities of ab initio methods with an emphasis on uncertainty quantification, highlight successes in the description of ground-state properties and spectra, and preview upcoming developments like the construction of consistent transition operators.

  5. The In-Medium Similarity Renormalization Group: A novel ab initio method for nuclei

    NASA Astrophysics Data System (ADS)

    Hergert, H.; Bogner, S. K.; Morris, T. D.; Schwenk, A.; Tsukiyama, K.

    2016-03-01

    We present a comprehensive review of the In-Medium Similarity Renormalization Group (IM-SRG), a novel ab initio method for nuclei. The IM-SRG employs a continuous unitary transformation of the many-body Hamiltonian to decouple the ground state from all excitations, thereby solving the many-body problem. Starting from a pedagogical introduction of the underlying concepts, the IM-SRG flow equations are developed for systems with and without explicit spherical symmetry. We study different IM-SRG generators that achieve the desired decoupling, and how they affect the details of the IM-SRG flow. Based on calculations of closed-shell nuclei, we assess possible truncations for closing the system of flow equations in practical applications, as well as choices of the reference state. We discuss the issue of center-of-mass factorization and demonstrate that the IM-SRG ground-state wave function exhibits an approximate decoupling of intrinsic and center-of-mass degrees of freedom, similar to Coupled Cluster (CC) wave functions. To put the IM-SRG in context with other many-body methods, in particular many-body perturbation theory and non-perturbative approaches like CC, a detailed perturbative analysis of the IM-SRG flow equations is carried out. We conclude with a discussion of ongoing developments, including IM-SRG calculations with three-nucleon forces, the multi-reference IM-SRG for open-shell nuclei, first non-perturbative derivations of shell-model interactions, and the consistent evolution of operators in the IM-SRG. We dedicate this review to the memory of Gerry Brown, one of the pioneers of many-body calculations of nuclei.

  6. The ab initio model potential method. Second series transition metal elements

    NASA Astrophysics Data System (ADS)

    Barandiarán, Zoila; Seijo, Luis; Huzinaga, Sigeru

    1990-10-01

    The ab initio core method potential model (AIMP) has already been presented in its nonrelativistic version and applied to the main group and first series transition metal elements [J. Chem. Phys. 86, 2132 (1987); 91, 7011 (1989)]. In this paper we extend the AIMP method to include relativistic effects within the Cowan-Griffin approximation and we present relativistic Zn-like core model potentials and valence basis sets, as well as their nonrelativistic Zn-like core and Kr-like core counterparts. The pilot molecular calculations on YO, TcO, AgO, and AgH reveal that the 4p orbital is indeed a core orbital only at the end part of the series, whereas the 4s orbital can be safely frozen from Y to Cd. The all-electron and model potential results agree in 0.01-0.02 Å in Re and 25-50 cm-1 in ν¯e if the same type of valence part of the basis set is used. The comparison of the relativistic results on AgH with those of the all-electron Dirac-Fock calculations by Lee and McLean is satisfactory: the absolute value of Re is reproduced within the 0.01 Å margin and the relativistic contraction of 0.077 Å is also very well reproduced (0.075 Å). Finally, the relative magnitude of the effects of the core orbital change, mass-velocity potential, and Darwin potential on the net relativistic effects are analyzed in the four molecules studied.

  7. The ab initio model potential method. Second series transition metal elements

    SciTech Connect

    Barandiaran, Z.; Seijo, L. ); Huzinaga, S. )

    1990-10-15

    The {ital ab} {ital initio} core method potential model (AIMP) has already been presented in its nonrelativistic version and applied to the main group and first series transition metal elements (J. Chem. Phys. {bold 86}, 2132 (1987); {bold 91}, 7011 (1989)). In this paper we extend the AIMP method to include relativistic effects within the Cowan--Griffin approximation and we present relativistic Zn-like core model potentials and valence basis sets, as well as their nonrelativistic Zn-like core and Kr-like core counterparts. The pilot molecular calculations on YO, TcO, AgO, and AgH reveal that the 4{ital p} orbital is indeed a core orbital only at the end part of the series, whereas the 4{ital s} orbital can be safely frozen from Y to Cd. The all-electron and model potential results agree in 0.01--0.02 A in {ital R}{sub {ital e}} and 25--50 cm{sup {minus}1} in {bar {nu}}{sub {ital e}} if the same type of valence part of the basis set is used. The comparison of the relativistic results on AgH with those of the all-electron Dirac--Fock calculations by Lee and McLean is satisfactory: the absolute value of {ital R}{sub {ital e}} is reproduced within the 0.01 A margin and the relativistic contraction of 0.077 A is also very well reproduced (0.075 A). Finally, the relative magnitude of the effects of the core orbital change, mass--velocity potential, and Darwin potential on the net relativistic effects are analyzed in the four molecules studied.

  8. Ab initio RNA folding

    NASA Astrophysics Data System (ADS)

    Cragnolini, Tristan; Derreumaux, Philippe; Pasquali, Samuela

    2015-06-01

    RNA molecules are essential cellular machines performing a wide variety of functions for which a specific three-dimensional structure is required. Over the last several years, the experimental determination of RNA structures through x-ray crystallography and NMR seems to have reached a plateau in the number of structures resolved each year, but as more and more RNA sequences are being discovered, the need for structure prediction tools to complement experimental data is strong. Theoretical approaches to RNA folding have been developed since the late nineties, when the first algorithms for secondary structure prediction appeared. Over the last 10 years a number of prediction methods for 3D structures have been developed, first based on bioinformatics and data-mining, and more recently based on a coarse-grained physical representation of the systems. In this review we are going to present the challenges of RNA structure prediction and the main ideas behind bioinformatic approaches and physics-based approaches. We will focus on the description of the more recent physics-based phenomenological models and on how they are built to include the specificity of the interactions of RNA bases, whose role is critical in folding. Through examples from different models, we will point out the strengths of physics-based approaches, which are able not only to predict equilibrium structures, but also to investigate dynamical and thermodynamical behavior, and the open challenges to include more key interactions ruling RNA folding.

  9. Ab initio RNA folding.

    PubMed

    Cragnolini, Tristan; Derreumaux, Philippe; Pasquali, Samuela

    2015-06-17

    RNA molecules are essential cellular machines performing a wide variety of functions for which a specific three-dimensional structure is required. Over the last several years, the experimental determination of RNA structures through x-ray crystallography and NMR seems to have reached a plateau in the number of structures resolved each year, but as more and more RNA sequences are being discovered, the need for structure prediction tools to complement experimental data is strong. Theoretical approaches to RNA folding have been developed since the late nineties, when the first algorithms for secondary structure prediction appeared. Over the last 10 years a number of prediction methods for 3D structures have been developed, first based on bioinformatics and data-mining, and more recently based on a coarse-grained physical representation of the systems. In this review we are going to present the challenges of RNA structure prediction and the main ideas behind bioinformatic approaches and physics-based approaches. We will focus on the description of the more recent physics-based phenomenological models and on how they are built to include the specificity of the interactions of RNA bases, whose role is critical in folding. Through examples from different models, we will point out the strengths of physics-based approaches, which are able not only to predict equilibrium structures, but also to investigate dynamical and thermodynamical behavior, and the open challenges to include more key interactions ruling RNA folding. PMID:25993396

  10. From Geometry Optimization to Time Dependent Molecular Structure Modeling: Method Developments, ab initio Theories and Applications

    NASA Astrophysics Data System (ADS)

    Liang, Wenkel

    This dissertation consists of two general parts: (I) developments of optimization algorithms (both nuclear and electronic degrees of freedom) for time-independent molecules and (II) novel methods, first-principle theories and applications in time dependent molecular structure modeling. In the first part, we discuss in specific two new algorithms for static geometry optimization, the eigenspace update (ESU) method in nonredundant internal coordinate that exhibits an enhanced performace with up to a factor of 3 savings in computational cost for large-sized molecular systems; the Car-Parrinello density matrix search (CP-DMS) method that enables direct minimization of the SCF energy as an effective alternative to conventional diagonalization approach. For the second part, we consider the time dependence and first presents two nonadiabatic dynamic studies that model laser controlled molecular photo-dissociation for qualitative understandings of intense laser-molecule interaction, using ab initio direct Ehrenfest dynamics scheme implemented with real-time time-dependent density functional theory (RT-TDDFT) approach developed in our group. Furthermore, we place our special interest on the nonadiabatic electronic dynamics in the ultrafast time scale, and presents (1) a novel technique that can not only obtain energies but also the electron densities of doubly excited states within a single determinant framework, by combining methods of CP-DMS with RT-TDDFT; (2) a solvated first-principles electronic dynamics method by incorporating the polarizable continuum solvation model (PCM) to RT-TDDFT, which is found to be very effective in describing the dynamical solvation effect in the charge transfer process and yields a consistent absorption spectrum in comparison to the conventional linear response results in solution. (3) applications of the PCM-RT-TDDFT method to study the intramolecular charge-transfer (CT) dynamics in a C60 derivative. Such work provides insights into the

  11. Ab initio infrared and Raman spectra

    NASA Astrophysics Data System (ADS)

    Fredkin, Donald R.; Komornicki, Andrew; White, Steven R.; Wilson, Kent R.

    1983-06-01

    We discuss several ways in which molecular absorption and scattering spectra can be computed ab initio, from the fundamental constants of nature. These methods can be divided into two general categories. In the first, or sequential, type of approach, one first solves the electronic part of the Schrödinger equation in the Born-Oppenheimer approximation, mapping out the potential energy, dipole moment vector (for infrared absorption) and polarizability tensor (for Raman scattering) as functions of nuclear coordinates. Having completed the electronic part of the calculation, one then solves the nuclear part of the problem either classically or quantum mechanically. As an example of the sequential ab initio approach, the infrared and Raman rotational and vibrational-rotational spectral band contours for the water molecule are computed in the simplest rigid rotor, normal mode approximation. Quantum techniques are used to calculate the necessary potential energy, dipole moment, and polarizability information at the equilibrium geometry. A new quick, accurate, and easy to program classical technique involving no reference to Euler angles or special functions is developed to compute the infrared and Raman band contours for any rigid rotor, including asymmetric tops. A second, or simultaneous, type of ab initio approach is suggested for large systems, particularly those for which normal mode analysis is inappropriate, such as liquids, clusters, or floppy molecules. Then the curse of dimensionality prevents mapping out in advance the complete potential, dipole moment, and polarizability functions over the whole space of nuclear positions of all atoms, and a solution in which the electronic and nuclear parts of the Born-Oppenheimer approximation are simultaneously solved is needed. A quantum force classical trajectory (QFCT) molecular dynamic method, based on linear response theory, is described, in which the forces, dipole moment, and polarizability are computed quantum

  12. Identification of clustered microRNAs using an ab initio prediction method

    PubMed Central

    Sewer, Alain; Paul, Nicodème; Landgraf, Pablo; Aravin, Alexei; Pfeffer, Sébastien; Brownstein, Michael J; Tuschl, Thomas; van Nimwegen, Erik; Zavolan, Mihaela

    2005-01-01

    Background MicroRNAs (miRNAs) are endogenous 21 to 23-nucleotide RNA molecules that regulate protein-coding gene expression in plants and animals via the RNA interference pathway. Hundreds of them have been identified in the last five years and very recent works indicate that their total number is still larger. Therefore miRNAs gene discovery remains an important aspect of understanding this new and still widely unknown regulation mechanism. Bioinformatics approaches have proved to be very useful toward this goal by guiding the experimental investigations. Results In this work we describe our computational method for miRNA prediction and the results of its application to the discovery of novel mammalian miRNAs. We focus on genomic regions around already known miRNAs, in order to exploit the property that miRNAs are occasionally found in clusters. Starting with the known human, mouse and rat miRNAs we analyze 20 kb of flanking genomic regions for the presence of putative precursor miRNAs (pre-miRNAs). Each genome is analyzed separately, allowing us to study the species-specific identity and genome organization of miRNA loci. We only use cross-species comparisons to make conservative estimates of the number of novel miRNAs. Our ab initio method predicts between fifty and hundred novel pre-miRNAs for each of the considered species. Around 30% of these already have experimental support in a large set of cloned mammalian small RNAs. The validation rate among predicted cases that are conserved in at least one other species is higher, about 60%, and many of them have not been detected by prediction methods that used cross-species comparisons. A large fraction of the experimentally confirmed predictions correspond to an imprinted locus residing on chromosome 14 in human, 12 in mouse and 6 in rat. Our computational tool can be accessed on the world-wide-web. Conclusion Our results show that the assumption that many miRNAs occur in clusters is fruitful for the discovery of

  13. Ab initio Bogoliubov coupled cluster theory

    NASA Astrophysics Data System (ADS)

    Signoracci, Angelo; Hagen, Gaute; Duguet, Thomas

    2014-09-01

    Coupled cluster (CC) theory has become a standard method in nuclear theory for realistic ab initio calculations of medium mass nuclei, but remains limited by its requirement of a Slater determinant reference state which reasonably approximates the nuclear system of interest. Extensions of the method, such as equation-of-motion CC, permit the calculation of nuclei with one or two nucleons added or removed from a doubly magic core, yet still only a few dozen nuclei are accessible with modern computational restrictions. In order to extend the applicability of ab initio methods to open-shell systems, the superfluid nature of nuclei must be taken into account. By utilizing Bogoliubov algebra and employing spontaneous symmetry breaking with respect to particle number conservation, superfluid systems can be treated by a single reference state. An ab initio theory to include correlations on top of a Bogoliubov reference state has been developed in the guise of standard CC theory. The formalism and first results of this Bogoliubov coupled cluster theory will be presented to demonstrate the applicability of the method.

  14. The many-body Wigner Monte Carlo method for time-dependent ab-initio quantum simulations

    SciTech Connect

    Sellier, J.M. Dimov, I.

    2014-09-15

    The aim of ab-initio approaches is the simulation of many-body quantum systems from the first principles of quantum mechanics. These methods are traditionally based on the many-body Schrödinger equation which represents an incredible mathematical challenge. In this paper, we introduce the many-body Wigner Monte Carlo method in the context of distinguishable particles and in the absence of spin-dependent effects. Despite these restrictions, the method has several advantages. First of all, the Wigner formalism is intuitive, as it is based on the concept of a quasi-distribution function. Secondly, the Monte Carlo numerical approach allows scalability on parallel machines that is practically unachievable by means of other techniques based on finite difference or finite element methods. Finally, this method allows time-dependent ab-initio simulations of strongly correlated quantum systems. In order to validate our many-body Wigner Monte Carlo method, as a case study we simulate a relatively simple system consisting of two particles in several different situations. We first start from two non-interacting free Gaussian wave packets. We, then, proceed with the inclusion of an external potential barrier, and we conclude by simulating two entangled (i.e. correlated) particles. The results show how, in the case of negligible spin-dependent effects, the many-body Wigner Monte Carlo method provides an efficient and reliable tool to study the time-dependent evolution of quantum systems composed of distinguishable particles.

  15. Ab initio derivation of model energy density functionals

    NASA Astrophysics Data System (ADS)

    Dobaczewski, Jacek

    2016-08-01

    I propose a simple and manageable method that allows for deriving coupling constants of model energy density functionals (EDFs) directly from ab initio calculations performed for finite fermion systems. A proof-of-principle application allows for linking properties of finite nuclei, determined by using the nuclear nonlocal Gogny functional, to the coupling constants of the quasilocal Skyrme functional. The method does not rely on properties of infinite fermion systems but on the ab initio calculations in finite systems. It also allows for quantifying merits of different model EDFs in describing the ab initio results.

  16. Collective rotation from ab initio theory

    NASA Astrophysics Data System (ADS)

    Caprio, M. A.; Maris, P.; Vary, J. P.; Smith, R.

    2015-08-01

    Through ab initio approaches in nuclear theory, we may now seek to quantitatively understand the wealth of nuclear collective phenomena starting from the underlying internucleon interactions. No-core configuration interaction (NCCI) calculations for p-shell nuclei give rise to rotational bands, as evidenced by rotational patterns for excitation energies, electromagnetic moments and electromagnetic transitions. In this review, NCCI calculations of 7-9Be are used to illustrate and explore ab initio rotational structure, and the resulting predictions for rotational band properties are compared with experiment. We highlight the robustness of ab initio rotational predictions across different choices for the internucleon interaction.

  17. Ambient-Potential Composite Ewald Method for ab Initio Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulation.

    PubMed

    Giese, Timothy J; York, Darrin M

    2016-06-14

    A new approach for performing Particle Mesh Ewald in ab initio quantum mechanical/molecular mechanical (QM/MM) simulations with extended atomic orbital basis sets is presented. The new approach, the Ambient-Potential Composite Ewald (CEw) method, does not perform the QM/MM interaction with Mulliken charges nor electrostatically fit charges. Instead the nuclei and electron density interact directly with the MM environment, but in a manner that avoids the use of dense Fourier transform grids. By performing the electrostatics with the underlying QM density, the CEw method avoids self-consistent field instabilities that have been encountered with simple charge mapping procedures. Potential of mean force (PMF) profiles of the p-nitrophenyl phosphate dissociation reaction in explicit solvent are computed from PBE0/6-31G* QM/MM molecular dynamics simulations with various electrostatic protocols. The CEw profiles are shown to be stable with respect to real-space Ewald cutoff, whereas the PMFs computed from truncated and switched electrostatics produce artifacts. PBE0/6-311G**, AM1/d-PhoT, and DFTB2 QM/MM simulations are performed to generate two-dimensional PMF profiles of the phosphoryl transesterification reactions with ethoxide and phenoxide leaving groups. The semiempirical models incorrectly produce a concerted ethoxide mechanism, whereas PBE0 correctly produces a stepwise mechanism. The ab initio reaction barriers agree more closely to experiment than the semiempirical models. The failure of Mulliken-charge QM/MM-Ewald is analyzed. PMID:27171914

  18. Automated property optimization via ab initio O(N) elongation method: Application to (hyper-)polarizability in DNA

    NASA Astrophysics Data System (ADS)

    Orimoto, Yuuichi; Aoki, Yuriko

    2016-07-01

    An automated property optimization method was developed based on the ab initio O(N) elongation (ELG) method and applied to the optimization of nonlinear optical (NLO) properties in DNA as a first test. The ELG method mimics a polymerization reaction on a computer, and the reaction terminal of a starting cluster is attacked by monomers sequentially to elongate the electronic structure of the system by solving in each step a limited space including the terminal (localized molecular orbitals at the terminal) and monomer. The ELG-finite field (ELG-FF) method for calculating (hyper-)polarizabilities was used as the engine program of the optimization method, and it was found to show linear scaling efficiency while maintaining high computational accuracy for a random sequenced DNA model. Furthermore, the self-consistent field convergence was significantly improved by using the ELG-FF method compared with a conventional method, and it can lead to more feasible NLO property values in the FF treatment. The automated optimization method successfully chose an appropriate base pair from four base pairs (A, T, G, and C) for each elongation step according to an evaluation function. From test optimizations for the first order hyper-polarizability (β) in DNA, a substantial difference was observed depending on optimization conditions between "choose-maximum" (choose a base pair giving the maximum β for each step) and "choose-minimum" (choose a base pair giving the minimum β). In contrast, there was an ambiguous difference between these conditions for optimizing the second order hyper-polarizability (γ) because of the small absolute value of γ and the limitation of numerical differential calculations in the FF method. It can be concluded that the ab initio level property optimization method introduced here can be an effective step towards an advanced computer aided material design method as long as the numerical limitation of the FF method is taken into account.

  19. Automated property optimization via ab initio O(N) elongation method: Application to (hyper-)polarizability in DNA.

    PubMed

    Orimoto, Yuuichi; Aoki, Yuriko

    2016-07-14

    An automated property optimization method was developed based on the ab initio O(N) elongation (ELG) method and applied to the optimization of nonlinear optical (NLO) properties in DNA as a first test. The ELG method mimics a polymerization reaction on a computer, and the reaction terminal of a starting cluster is attacked by monomers sequentially to elongate the electronic structure of the system by solving in each step a limited space including the terminal (localized molecular orbitals at the terminal) and monomer. The ELG-finite field (ELG-FF) method for calculating (hyper-)polarizabilities was used as the engine program of the optimization method, and it was found to show linear scaling efficiency while maintaining high computational accuracy for a random sequenced DNA model. Furthermore, the self-consistent field convergence was significantly improved by using the ELG-FF method compared with a conventional method, and it can lead to more feasible NLO property values in the FF treatment. The automated optimization method successfully chose an appropriate base pair from four base pairs (A, T, G, and C) for each elongation step according to an evaluation function. From test optimizations for the first order hyper-polarizability (β) in DNA, a substantial difference was observed depending on optimization conditions between "choose-maximum" (choose a base pair giving the maximum β for each step) and "choose-minimum" (choose a base pair giving the minimum β). In contrast, there was an ambiguous difference between these conditions for optimizing the second order hyper-polarizability (γ) because of the small absolute value of γ and the limitation of numerical differential calculations in the FF method. It can be concluded that the ab initio level property optimization method introduced here can be an effective step towards an advanced computer aided material design method as long as the numerical limitation of the FF method is taken into account. PMID:27421397

  20. Interfacing the Ab initio multiple spawning method with electronic structure methods in GAMESS: Photodecay of trans-Azomethane

    DOE PAGESBeta

    Gaenko, Alexander; DeFusco, Albert; Varganov, Sergey A.; Martínez, Todd J.; Gordon, Mark S.

    2014-10-20

    This work presents a nonadiabatic molecular dynamics study of the nonradiative decay of photoexcited trans-azomethane, using the ab initio multiple spawning (AIMS) program that has been interfaced with the General Atomic and Molecular Electronic Structure System (GAMESS) quantum chemistry package for on-the-fly electronic structure evaluation. The interface strategy is discussed, and the capabilities of the combined programs are demonstrated with a nonadiabatic molecular dynamics study of the nonradiative decay of photoexcited trans-azomethane. Energies, gradients, and nonadiabatic coupling matrix elements were obtained with the state-averaged complete active space self-consistent field method, as implemented in GAMESS. The influence of initial vibrational excitationmore » on the outcome of the photoinduced isomerization is explored. Increased vibrational excitation in the CNNC torsional mode shortens the excited state lifetime. Depending on the degree of vibrational excitation, the excited state lifetime varies from ~60–200 fs. As a result, these short lifetimes are in agreement with time-resolved photoionization mass spectroscopy experiments.« less

  1. Ab initio quantum chemistry: Methodology and applications

    PubMed Central

    Friesner, Richard A.

    2005-01-01

    This Perspective provides an overview of state-of-the-art ab initio quantum chemical methodology and applications. The methods that are discussed include coupled cluster theory, localized second-order Moller–Plesset perturbation theory, multireference perturbation approaches, and density functional theory. The accuracy of each approach for key chemical properties is summarized, and the computational performance is analyzed, emphasizing significant advances in algorithms and implementation over the past decade. Incorporation of a condensed-phase environment by means of mixed quantum mechanical/molecular mechanics or self-consistent reaction field techniques, is presented. A wide range of illustrative applications, focusing on materials science and biology, are discussed briefly. PMID:15870212

  2. Quantum ring-polymer contraction method: Including nuclear quantum effects at no additional computational cost in comparison to ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    John, Christopher; Spura, Thomas; Habershon, Scott; Kühne, Thomas D.

    2016-04-01

    We present a simple and accurate computational method which facilitates ab initio path-integral molecular dynamics simulations, where the quantum-mechanical nature of the nuclei is explicitly taken into account, at essentially no additional computational cost in comparison to the corresponding calculation using classical nuclei. The predictive power of the proposed quantum ring-polymer contraction method is demonstrated by computing various static and dynamic properties of liquid water at ambient conditions using density functional theory. This development will enable routine inclusion of nuclear quantum effects in ab initio molecular dynamics simulations of condensed-phase systems.

  3. Benchmark ab Initio Conformational Energies for the Proteinogenic Amino Acids through Explicitly Correlated Methods. Assessment of Density Functional Methods.

    PubMed

    Kesharwani, Manoj K; Karton, Amir; Martin, Jan M L

    2016-01-12

    The relative energies of the YMPJ conformer database of the 20 proteinogenic amino acids, with N- and C-termination, have been re-evaluated using explicitly correlated coupled cluster methods. Lower-cost ab initio methods such as MP2-F12 and CCSD-F12b actually are outperformed by double-hybrid DFT functionals; in particular, the DSD-PBEP86-NL double hybrid performs well enough to serve as a secondary standard. Among range-separated hybrids, ωB97X-V performs well, while B3LYP-D3BJ does surprisingly well among traditional DFT functionals. Treatment of dispersion is important for the DFT functionals; for the YMPJ set, D3BJ generally works as well as the NL nonlocal dispersion functional. Basis set sensitivity for DFT calculations on these conformers is weak enough that def2-TZVP is generally adequate. For conformer corrections to heats of formation, B3LYP-D3BJ and especially DSD-PBEP86-D3BJ or DSD-PBEP86-NL are adequate for all but the most exacting applications. The revised geometries and energetics for the YMPJ database have been made available as Supporting Information and should be useful in the parametrization and validation of molecular mechanics force fields and other low-cost methods. The very recent dRPA75 method yields good performance, without resorting to an empirical dispersion correction, but is still outperformed by DSD-PBEP86-D3BJ and particularly DSD-PBEP86-NL. Core-valence corrections are comparable in importance to improvements beyond CCSD(T*)/cc-pVDZ-F12 in the valence treatment. PMID:26653705

  4. Ab initio melting curve of osmium

    NASA Astrophysics Data System (ADS)

    Burakovsky, L.; Burakovsky, N.; Preston, D. L.

    2015-11-01

    The melting curve of osmium up to a pressure P of 500 GPa is obtained from an extensive suite of ab initio quantum molecular dynamics (QMD) simulations using the Z method. The ab initio P =0 melting point of Os is 3370 ±75 K; this range encompasses all of the available data in the literature and corroborates the conclusion of J. W. Arblaster [Platinum Metals Rev. 49, 166 (2005)], 10.1595/147106705X70264 that the melting temperature of pure Os is 3400 ±50 K and that the 3300 K typically quoted in the literature is the melting point of impure Os. The T =0 equation of state (EOS) of Os and the P dependence of the optimized c /a ratio for the hexagonal unit cell, both to pressures ˜900 GPa, are obtained in the ab initio approach as validation of its use. Although excellent agreement with the available experimental data (P ≲80 GPa) is found, it is the third-order Birch-Murnaghan EOS with B0'=5 rather than the more widely accepted B0'=4 that describes the QMD data to higher pressures, in agreement with the more recent experimental EOS by Godwal et al. The theoretical melting curve of Os obtained earlier by Joshi et al. is shown to be inconsistent with our QMD results, and the possible reason for this discrepancy is suggested. Regularities in the melting curves of Os and five other third-row transition metals (Ta, W, Re, Pt, Au) could be used to estimate the currently unknown melting curves of Hf and Ir.

  5. Spin-orbit effect on the magnetic shielding constant using the ab initio UHF method: tin tetrahalides

    NASA Astrophysics Data System (ADS)

    Kaneko, H.; Hada, M.; Nakajima, T.; Nakatsuji, H.

    1996-10-01

    The 119Sn NMR chemical shifts of SnX 4(X=H, Cl, Br and I) and SnBr 4- nI n ( n = 1, 2, 3) are calculated by the ab initio UHF method including the spin-orbit (SO) interaction combined with the finite perturbation method. The calculated Sn chemical shifts are in good agreement with experiment when the SO interaction is included. As the halogen ligand becomes heavier, the SO effect increases and the chemical shift moves to a higher field. The normal halogen dependence by the substitution from Cl to I in tin tetrahalides is reproduced only when the SO interaction is included. The origin of the SO effect is ascribed to the Fermi contact term.

  6. Performance of the major semiempirical, ab initio, and DFT methods for isomerization enthalpies of linear to branched heptanes.

    PubMed

    Rayne, Sierra; Forest, Kaya

    2016-06-01

    The gas phase standard state (298.15 K, 1 atm) isomerization enthalpy (ΔisomH°(g)) prediction performance of the major semiempirical, ab initio, and density functional levels of theory for environmentally relevant transformations was investigated using the linear to branched heptanes as a representative case study. The M062X density functional, MP2 (and higher) levels of Moller-Plesset perturbation theory, and the CBS and Gaussian-n composite methods are well suited for investigating the thermodynamic properties of environmentally interesting isomerizations, although the M062X functional may not be appropriate for all systems. Where large molecular systems prohibit the use of higher levels of theory, the PM6 and PDDG semiempirical methods may offer an appropriate computational cost-accuracy compromise. PMID:26979512

  7. Ab Initio Study of Polonium

    SciTech Connect

    Zabidi, Noriza Ahmad; Kassim, Hasan Abu; Shrivastava, Keshav N.

    2008-05-20

    Polonium is the only element with a simple cubic (sc) crystal structure. Atoms in solid polonium sit at the corners of a simple cubic unit cell and no where else. Polonium has a valence electron configuration 6s{sup 2}6p{sup 4} (Z = 84). The low temperature {alpha}-phase transforms into the rhombohedral (trigonal) {beta} structure at {approx}348 K. The sc {alpha}-Po unit cell constant is a = 3.345 A. The beta form of polonium ({beta}-Po) has the lattice parameters, a{sub R} = 3.359 A and a rhombohedral angle 98 deg. 13'. We have performed an ab initio electronic structure calculation by using the density functional theory. We have performed the calculation with and without spin-orbit (SO) coupling by using both the LDA and the GGA for the exchange-correlations. The k-points in a simple cubic BZ are determined by R (0.5, 0.5, 0.5), {gamma} (0, 0, 0), X (0.5, 0, 0), M (0.5, 0.5, 0) and {gamma} (0, 0, 0). Other directions of k-points are {gamma} (0, 0, 0), X (0.5, 0, 0), R (0.5, 0.5, 0.5) and {gamma} (0, 0, 0). The SO splittings of p states at the {gamma} point in the GGA+SO scheme for {alpha}-Po are 0.04 eV and 0.02 eV while for the {beta}-Po these are 0.03 eV and 0.97 eV. We have also calculated the vibrational spectra for the unit cells in both the structures. We find that exchanging of a Po atom by Pb atom produces several more bands and destabilizes the {beta} phase.

  8. Ab initio non-relativistic spin dynamics

    SciTech Connect

    Ding, Feizhi; Goings, Joshua J.; Li, Xiaosong; Frisch, Michael J.

    2014-12-07

    Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li{sub 3} molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.

  9. Ab initio non-relativistic spin dynamics

    NASA Astrophysics Data System (ADS)

    Ding, Feizhi; Goings, Joshua J.; Frisch, Michael J.; Li, Xiaosong

    2014-12-01

    Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li3 molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.

  10. Grid-based methods for biochemical ab initio quantum chemical applications

    SciTech Connect

    Colvin, M.E.; Nelson, J.S.; Mori, E.

    1997-01-01

    A initio quantum chemical methods are seeing increased application in a large variety of real-world problems including biomedical applications ranging from drug design to the understanding of environmental mutagens. The vast majority of these quantum chemical methods are {open_quotes}spectral{close_quotes}, that is they describe the charge distribution around the nuclear framework in terms of a fixed analytic basis set. Despite the additional complexity they bring, methods involving grid representations of the electron or solvent charge can provide more efficient schemes for evaluating spectral operators, inexpensive methods for calculating electron correlation, and methods for treating the electrostatic energy of salvation in polar solvents. The advantage of mixed or {open_quotes}pseudospectral{close_quotes} methods is that they allow individual non-linear operators in the partial differential equations, such as coulomb operators, to be calculated in the most appropriate regime. Moreover, these molecular grids can be used to integrate empirical functionals of the electron density. These so-called density functional methods (DFT) are an extremely promising alternative to conventional post-Hartree Fock quantum chemical methods. The introduction of a grid at the molecular solvent-accessible surface allows a very sophisticated treatment of a polarizable continuum solvent model (PCM). Where most PCM approaches use a truncated expansion of the solute`s electric multipole expansion, e.g. net charge (Born model) or dipole moment (Onsager model), such a grid-based boundary-element method (BEM) yields a nearly exact treatment of the solute`s electric field. This report describes the use of both DFT and BEM methods in several biomedical chemical applications.

  11. Developing ab initio quality force fields from condensed phase quantum-mechanics/molecular-mechanics calculations through the adaptive force matching method

    NASA Astrophysics Data System (ADS)

    Akin-Ojo, Omololu; Song, Yang; Wang, Feng

    2008-08-01

    A new method called adaptive force matching (AFM) has been developed that is capable of producing high quality force fields for condensed phase simulations. This procedure involves the parametrization of force fields to reproduce ab initio forces obtained from condensed phase quantum-mechanics/molecular-mechanics (QM/MM) calculations. During the procedure, the MM part of the QM/MM is iteratively improved so as to approach ab initio quality. In this work, the AFM method has been tested to parametrize force fields for liquid water so that the resulting force fields reproduce forces calculated using the ab initio MP2 and the Kohn-Sham density functional theory with the Becke-Lee-Yang-Parr (BLYP) and Becke three-parameter LYP (B3LYP) exchange correlation functionals. The AFM force fields generated in this work are very simple to evaluate and are supported by most molecular dynamics (MD) codes. At the same time, the quality of the forces predicted by the AFM force fields rivals that of very expensive ab initio calculations and are found to successfully reproduce many experimental properties. The site-site radial distribution functions (RDFs) obtained from MD simulations using the force field generated from the BLYP functional through AFM compare favorably with the previously published RDFs from Car-Parrinello MD simulations with the same functional. Technical aspects of AFM such as the optimal QM cluster size, optimal basis set, and optimal QM method to be used with the AFM procedure are discussed in this paper.

  12. Atomic Spectral Methods for Ab Initio Molecular Electronic Energy Surfaces: Transitioning From Small-Molecule to Biomolecular-Suitable Approaches.

    PubMed

    Mills, Jeffrey D; Ben-Nun, Michal; Rollin, Kyle; Bromley, Michael W J; Li, Jiabo; Hinde, Robert J; Winstead, Carl L; Sheehy, Jeffrey A; Boatz, Jerry A; Langhoff, Peter W

    2016-08-25

    Continuing attention has addressed incorportation of the electronically dynamical attributes of biomolecules in the largely static first-generation molecular-mechanical force fields commonly employed in molecular-dynamics simulations. We describe here a universal quantum-mechanical approach to calculations of the electronic energy surfaces of both small molecules and large aggregates on a common basis which can include such electronic attributes, and which also seems well-suited to adaptation in ab initio molecular-dynamics applications. In contrast to the more familiar orbital-product-based methodologies employed in traditional small-molecule computational quantum chemistry, the present approach is based on an "ex-post-facto" method in which Hamiltonian matrices are evaluated prior to wave function antisymmetrization, implemented here in the support of a Hilbert space of orthonormal products of many-electron atomic spectral eigenstates familiar from the van der Waals theory of long-range interactions. The general theory in its various forms incorporates the early semiempirical atoms- and diatomics-in-molecules approaches of Moffitt, Ellison, Tully, Kuntz, and others in a comprehensive mathematical setting, and generalizes the developments of Eisenschitz, London, Claverie, and others addressing electron permutation symmetry adaptation issues, completing these early attempts to treat van der Waals and chemical forces on a common basis. Exact expressions are obtained for molecular Hamiltonian matrices and for associated energy eigenvalues as sums of separate atomic and interaction-energy terms, similar in this respect to the forms of classical force fields. The latter representation is seen to also provide a long-missing general definition of the energies of individual atoms and of their interactions within molecules and matter free from subjective additional constraints. A computer code suite is described for calculations of the many-electron atomic eigenspectra and

  13. The ab initio model potential method with the spin-free relativistic scheme by eliminating small components Hamiltonian

    NASA Astrophysics Data System (ADS)

    Motegi, Kyosuke; Nakajima, Takahito; Hirao, Kimihiko; Seijo, Luis

    2001-04-01

    A relativistic ab initio model potential (AIMP) for Pt, Au, and Hg atoms has been developed using a relativistic scheme by eliminating small components (RESC) in which the 5p, 5d, and 6s electrons are treated explicitly. The quality of new RESC-AIMP has been tested by calculating the spectroscopic properties of the hydrides of these elements using the Hartree-Fock and coupled cluster with singles and doubles (CCSD) methods. The agreement with reference all-electron RESC calculations is excellent. The RESC-AIMP method is applied successfully in the investigation of the spectroscopic constants of Au2 and Hg2 using the CCSD method with a perturbative estimate of the contributions of triples. The ground state of Pt2 is also determined by RESC-AIMP with the second-order complete active space perturbation method. The results show that scalar relativistic effects on the valence properties are well described by the RESC-AIMP method. The effect on the basis set superposition error on the spectroscopic constants is also examined.

  14. THERMODYNAMICS OF MATERIALS: FROM AB INITIO TO PHENOMENOLOGY

    SciTech Connect

    Turchi, P A

    2004-09-24

    Quantum mechanical-based (or ab initio) methods are used to predict the stability properties of materials although their application is limited to relatively simple systems in terms of structures and number of alloy components. However thermodynamics of complex multi-component alloys requires a more versatile approach afforded within the CALPHAD formalism. Despite its success, the lack of experimental data very often prevents the design of robust thermodynamic databases. After a brief survey of ab initio methodologies and CALPHAD, it will be shown how ab initio electronic structure methods can supplement in two ways CALPHAD for subsequent applications. The first one is rather immediate and concerns the direct input of ab initio energetics in CALPHAD databases. The other way, more involved, is the assessment of ab initio thermodynamics '{acute a} la CALPHAD'. It will be shown how these results can be used within CALPHAD to predict the equilibrium properties of multi-component alloys. Finally, comments will be made on challenges and future prospects.

  15. Ab Initio Modeling of Molecular Radiation

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Schwenke, David

    2014-01-01

    Radiative emission from excited states of atoms and molecules can comprise a significant fraction of the total heat flux experienced by spacecraft during atmospheric entry at hypersonic speeds. For spacecraft with ablating heat shields, some of this radiative flux can be absorbed by molecular constituents in the boundary layer that are formed by the ablation process. Ab initio quantum mechanical calculations are carried out to predict the strengths of these emission and absorption processes. This talk will describe the methods used in these calculations using, as examples, the 4th positive emission bands of CO and the 1g+ 1u+ absorption in C3. The results of these calculations are being used as input to NASA radiation modeling codes like NeqAir, HARA and HyperRad.

  16. Structure models: From shell model to ab initio methods. A brief introduction to microscopic theories for exotic nuclei

    NASA Astrophysics Data System (ADS)

    Bacca, Sonia

    2016-04-01

    A brief review of models to describe nuclear structure and reactions properties is presented, starting from the historical shell model picture and encompassing modern ab initio approaches. A selection of recent theoretical results on observables for exotic light and medium-mass nuclei is shown. Emphasis is given to the comparison with experiment and to what can be learned about three-body forces and continuum properties.

  17. Ab initio alpha-alpha scattering.

    PubMed

    Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G

    2015-12-01

    Processes such as the scattering of alpha particles ((4)He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei--nuclei with even and equal numbers of protons and neutrons--is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the 'adiabatic projection method' to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of

  18. Ab initio simulation of transport phenomena in rarefied gases.

    PubMed

    Sharipov, Felix; Strapasson, José L

    2012-09-01

    Ab initio potentials are implemented into the direct simulation Monte Carlo (DSMC) method. Such an implementation allows us to model transport phenomena in rarefied gases without any fitting parameter of intermolecular collisions usually extracted from experimental data. Applying the method proposed by Sharipov and Strapasson [Phys. Fluids 24, 011703 (2012)], the use of ab initio potentials in the DSMC requires the same computational efforts as the widely used potentials such as hard spheres, variable hard sphere, variable soft spheres, etc. At the same time, the ab initio potentials provide more reliable results than any other one. As an example, the transport coefficients of a binary mixture He-Ar, viz., viscosity, thermal conductivity, and thermal diffusion factor, have been calculated for several values of the mole fraction. PMID:23030889

  19. Ab initio alpha-alpha scattering

    NASA Astrophysics Data System (ADS)

    Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A.; Luu, Thomas; Meißner, Ulf-G.

    2015-12-01

    Processes such as the scattering of alpha particles (4He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei—nuclei with even and equal numbers of protons and neutrons—is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the ‘adiabatic projection method’ to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of

  20. Structure of ZnCl2 Melt. Part I: Raman Spectroscopy Analysis Driven by Ab Initio Methods.

    PubMed

    Alsayoud, Abduljabar Q; Venkateswara Rao, Manga; Edwards, Angharad N; Deymier, Pierre A; Muralidharan, Krishna; Potter, B G; Runge, Keith; Lucas, Pierre

    2016-05-01

    The structure of molten ZnCl2 is investigated using a combination of computer simulation and experimental methods. Ab initio molecular dynamics (AIMD) is used to model the structure of ZnCl2 at 600 K. The structure factors and pair distribution functions derived from AIMD show a good match with those previously measured by neutron diffraction (ND). In addition, Raman spectroscopy is used to investigate the structure of liquid ZnCl2 and identify the relative fractions of constituent structural units. To ascertain the assignment of each Raman mode, a series of ZnCl2 crystalline prototypes are modeled and the corresponding Raman modes are derived by first-principles calculations. Curve fitting of experimental Raman spectra using these mode assignments shows excellent agreement with both AIMD and ND. These results confirm the presence of significant fractions of edge-sharing tetrahedra in liquid ZnCl2. The presence of these structural motifs has significant impact on the fragility of this tetrahedral glass-forming liquid. The assignment of Raman bands present in molten ZnCl2 is revised and discussed in view of these results. PMID:27070739

  1. Interpolating moving least-squares methods for fitting potential energy surfaces : computing high-density potential energy surface data from low-density ab initio data points.

    SciTech Connect

    Dawes, R.; Thompson, D. L.; Guo, Y.; Wagner, A. F.; Minkoff, M.; Chemistry; Univ. of Missouri-Columbia; Oklahoma State Univ.

    2007-05-11

    A highly accurate and efficient method for molecular global potential energy surface (PES) construction and fitting is demonstrated. An interpolating-moving-least-squares (IMLS)-based method is developed using low-density ab initio Hessian values to compute high-density PES parameters suitable for accurate and efficient PES representation. The method is automated and flexible so that a PES can be optimally generated for classical trajectories, spectroscopy, or other applications. Two important bottlenecks for fitting PESs are addressed. First, high accuracy is obtained using a minimal density of ab initio points, thus overcoming the bottleneck of ab initio point generation faced in applications of modified-Shepard-based methods. Second, high efficiency is also possible (suitable when a huge number of potential energy and gradient evaluations are required during a trajectory calculation). This overcomes the bottleneck in high-order IMLS-based methods, i.e., the high cost/accuracy ratio for potential energy evaluations. The result is a set of hybrid IMLS methods in which high-order IMLS is used with low-density ab initio Hessian data to compute a dense grid of points at which the energy, Hessian, or even high-order IMLS fitting parameters are stored. A series of hybrid methods is then possible as these data can be used for neural network fitting, modified-Shepard interpolation, or approximate IMLS. Results that are indicative of the accuracy, efficiency, and scalability are presented for one-dimensional model potentials as well as for three-dimensional (HCN) and six-dimensional (HOOH) molecular PESs

  2. Ab Initio Structure Analysis Using Laboratory Powder Diffraction Data

    NASA Astrophysics Data System (ADS)

    Sasaki, Akito

    Today, laboratory X-ray diffractometers are seeing increasingly wide use in the ab initio crystal structure analysis of organic powder samples. This is because optics and optical devices have been improved, making it possible to obtain precise integrated intensities of reflections in high 2-theta ranges. Another reason is that one can use direct-space methods, which do not require “high-resolution diffraction data”, much more easily than before. Described here are some key points to remember when performig ab initio crystal structure analysis using powder diffraction data from organic compounds.

  3. NO sub 3 , the study of molecular properties and photodissociation by ab initio method, spectroscopy, and translational spectroscopy

    SciTech Connect

    Kim, B.

    1990-10-01

    This report discusses the following topics: molecular structure of NO{sub 3} radical studied by laser induced fluorescence; photodissociation and fluorescence spectroscopy of NO{sub 3} in molecular beam; vertical electronic spectrum of NO{sub 3}:{sup 2}A{prime}{sub 2}, {sup 2}E{double prime}({sup 2}A{sub 2}{sup 2}B{sub 1}), and {sup 2}E{prime} states; and Ab initio study of the vibrational spectra of NO{sub 3}.

  4. Ab initio pseudopotential band calculation of organic conductors

    SciTech Connect

    Ishibashi, Shoji; Kohyama, Masanori

    1999-12-01

    The authors have calculated the band structures of organic conductors TTF-TCNQ and {beta}-(BEDT-TTF){sub 2}I{sub 3} using the ab initio plane-wave pseudopotential method within the local-density approximation (LDA). The Fermi-surface shape and the origin of bands near the Fermi level are investigated for each compound.

  5. Motif based Hessian matrixfor ab initio geometry optimization ofnanostructures

    SciTech Connect

    Zhao, Zhengji; Wang, Lin-Wang; Meza, Juan

    2006-04-05

    A simple method to estimate the atomic degree Hessian matrixof a nanosystem is presented. The estimated Hessian matrix, based on themotif decomposition of the nanosystem, can be used to accelerate abinitio atomic relaxations with speedups of 2 to 4 depending on the sizeof the system. In addition, the programing implementation for using thismethod in a standard ab initio package is trivial.

  6. Collective rotation from ab initio theory

    NASA Astrophysics Data System (ADS)

    Caprio, Mark A.; Maris, Pieter; Vary, James P.

    2015-10-01

    The challenge of ab initio nuclear theory is to quantitatively predict the complex and highly-correlated behavior of the nuclear many-body system, starting from the underlying internucleon interactions. We may now seek to understand the wealth of nuclear collective phenomena through ab initio approaches. No-core configuration interaction (NCCI) calculations for p-shell nuclei give rise to rotational bands, as evidenced by rotational patterns for excitation energies, electromagnetic moments, and electromagnetic transitions. In this talk, the intrinsic structure of these bands is discussed, and the predicted rotational bands are compared to experiment. Supported by the US DOE under Award Nos. DE-FG02-95ER-40934, DESC0008485 (SciDAC/NUCLEI), and DE-FG02-87ER40371 and the US NSF under Award No. 0904782. Computational resources provided by NERSC (US DOE Contract No. DE-AC02-05CH11231).

  7. Ab initio infrared and Raman spectra

    NASA Technical Reports Server (NTRS)

    Fredkin, D. R.; White, S. R.; Wilson, K. R.; Komornicki, A.

    1983-01-01

    It is pointed out that with increased computer power and improved computational techniques, such as the gradients developed in recent years, it is becoming practical to compute spectra ab initio, from the fundamental constants of nature, for systems of increasing complexity. The present investigation has the objective to explore several possible ab initio approaches to spectra, giving particular attention to infrared and nonresonance Raman. Two approaches are discussed. The sequential approach, in which first the electronic part and then later the nuclear part of the Born-Oppenheimer approximation is solved, is appropriate for small systems. The simultaneous approach, in which the electronic and nuclear parts are solved at the same time, is more appropriate for many-atom systems. A review of the newer quantum gradient techniques is provided, and the infrared and Raman spectral band contours for the water molecule are computed.

  8. Ab initio two-component Ehrenfest dynamics

    NASA Astrophysics Data System (ADS)

    Ding, Feizhi; Goings, Joshua J.; Liu, Hongbin; Lingerfelt, David B.; Li, Xiaosong

    2015-09-01

    We present an ab initio two-component Ehrenfest-based mixed quantum/classical molecular dynamics method to describe the effect of nuclear motion on the electron spin dynamics (and vice versa) in molecular systems. The two-component time-dependent non-collinear density functional theory is used for the propagation of spin-polarized electrons while the nuclei are treated classically. We use a three-time-step algorithm for the numerical integration of the coupled equations of motion, namely, the velocity Verlet for nuclear motion, the nuclear-position-dependent midpoint Fock update, and the modified midpoint and unitary transformation method for electronic propagation. As a test case, the method is applied to the dissociation of H2 and O2. In contrast to conventional Ehrenfest dynamics, this two-component approach provides a first principles description of the dynamics of non-collinear (e.g., spin-frustrated) magnetic materials, as well as the proper description of spin-state crossover, spin-rotation, and spin-flip dynamics by relaxing the constraint on spin configuration. This method also holds potential for applications to spin transport in molecular or even nanoscale magnetic devices.

  9. Ab initio two-component Ehrenfest dynamics

    SciTech Connect

    Ding, Feizhi; Goings, Joshua J.; Liu, Hongbin; Lingerfelt, David B.; Li, Xiaosong

    2015-09-21

    We present an ab initio two-component Ehrenfest-based mixed quantum/classical molecular dynamics method to describe the effect of nuclear motion on the electron spin dynamics (and vice versa) in molecular systems. The two-component time-dependent non-collinear density functional theory is used for the propagation of spin-polarized electrons while the nuclei are treated classically. We use a three-time-step algorithm for the numerical integration of the coupled equations of motion, namely, the velocity Verlet for nuclear motion, the nuclear-position-dependent midpoint Fock update, and the modified midpoint and unitary transformation method for electronic propagation. As a test case, the method is applied to the dissociation of H{sub 2} and O{sub 2}. In contrast to conventional Ehrenfest dynamics, this two-component approach provides a first principles description of the dynamics of non-collinear (e.g., spin-frustrated) magnetic materials, as well as the proper description of spin-state crossover, spin-rotation, and spin-flip dynamics by relaxing the constraint on spin configuration. This method also holds potential for applications to spin transport in molecular or even nanoscale magnetic devices.

  10. Ab initio vel ex eventu. II

    NASA Astrophysics Data System (ADS)

    Thiessen, P. A.; Treder, H.-J.

    Jedes initium wird durch experimenta crucis zum eventus. Jedes theoretisch interpretierbare ex-eventu-Resultat führt auf ein neues Initium. Gerade dies ist die gemeinsame Aussage von Atomistik, Quantenmechanik und Relativitätstheorie.Translated AbstractAb initio vel ex eventu. IIEvery initium becomes an eventus by experimenta crucis. Every theoretically interpretable ex-eventu result leads to a new initium. Right this is the joint assertion of atomism, quantum mechanics, and relativity.

  11. Multiscale Design of Advanced Materials based on Hybrid Ab Initio and Quasicontinuum Methods

    SciTech Connect

    Luskin, Mitchell

    2014-03-12

    This project united researchers from mathematics, chemistry, computer science, and engineering for the development of new multiscale methods for the design of materials. Our approach was highly interdisciplinary, but it had two unifying themes: first, we utilized modern mathematical ideas about change-of-scale and state-of-the-art numerical analysis to develop computational methods and codes to solve real multiscale problems of DOE interest; and, second, we took very seriously the need for quantum mechanics-based atomistic forces, and based our methods on fast solvers of chemically accurate methods.

  12. Ab initio modeling of carbohydrates: on the proper selection of computational methods and basis sets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the development of faster computer hardware and quantum mechanical software it has become more feasible to study large carbohydrate molecules via quantum mechanical methods. In the past, studies of carbohydrates were restricted to empirical/semiempirical methods and Hartree Fock. In the last ...

  13. Are ab initio quantum chemistry methods able to predict vibrational states up to the dissociation limit for multi-electron molecules close to spectroscopic accuracy?

    PubMed

    Szalay, Péter G; Holka, Filip; Fremont, Julien; Rey, Michael; Peterson, Kirk A; Tyuterev, Vladimir G

    2011-03-01

    The aim of the study was to explore the limits of ab initio methods towards the description of excited vibrational levels up to the dissociation limit for molecules having more than two electrons. To this end a high level ab initio potential energy function was constructed for the four-electron LiH molecule in order to accurately predict a complete set of bound vibrational levels corresponding to the electronic ground state. It was composed from: (a) an ab initio non-relativistic potential obtained at the MR-CISD level including size-extensivity corrections and quintuple-sextuple ζ extrapolation of the basis, (b) MVD relativistic corrections obtained at icMR-CISD/cc-pwCV5Z level, and (c) DBOC obtained at the MR-CISD/cc-pwCVTZ level. Finally, the importance of non-adiabatic effects was also tested by using atomic masses in the vibrational kinetic energy operator. The calculated vibrational levels were compared with those obtained from experimental data [J. A. Coxon and C. S. Dickinson, J. Chem. Phys., 2004, 121, 9378]. Our best estimate of the potential curve results in vibrational energies with a RMS deviation of only ∼1 cm(-1) for the entire set of all empirically determined vibrational levels known so far. These results represent a drastic improvement over previous theoretical predictions of vibrational levels of (7)LiH up to dissociation, D(0), which was predicted to be 19,594 cm(-1). PMID:21180724

  14. Ab initio O(N) elongation-counterpoise method for BSSE-corrected interaction energy analyses in biosystems

    NASA Astrophysics Data System (ADS)

    Orimoto, Yuuichi; Yamamoto, Ryohei; Xie, Peng; Liu, Kai; Imamura, Akira; Aoki, Yuriko

    2015-03-01

    An Elongation-counterpoise (ELG-CP) method was developed for performing accurate and efficient interaction energy analysis and correcting the basis set superposition error (BSSE) in biosystems. The method was achieved by combining our developed ab initio O(N) elongation method with the conventional counterpoise method proposed for solving the BSSE problem. As a test, the ELG-CP method was applied to the analysis of the DNAs' inter-strands interaction energies with respect to the alkylation-induced base pair mismatch phenomenon that causes a transition from G⋯C to A⋯T. It was found that the ELG-CP method showed high efficiency (nearly linear-scaling) and high accuracy with a negligibly small energy error in the total energy calculations (in the order of 10-7-10-8 hartree/atom) as compared with the conventional method during the counterpoise treatment. Furthermore, the magnitude of the BSSE was found to be ca. -290 kcal/mol for the calculation of a DNA model with 21 base pairs. This emphasizes the importance of BSSE correction when a limited size basis set is used to study the DNA models and compare small energy differences between them. In this work, we quantitatively estimated the inter-strands interaction energy for each possible step in the transition process from G⋯C to A⋯T by the ELG-CP method. It was found that the base pair replacement in the process only affects the interaction energy for a limited area around the mismatch position with a few adjacent base pairs. From the interaction energy point of view, our results showed that a base pair sliding mechanism possibly occurs after the alkylation of guanine to gain the maximum possible number of hydrogen bonds between the bases. In addition, the steps leading to the A⋯T replacement accompanied with replications were found to be unfavorable processes corresponding to ca. 10 kcal/mol loss in stabilization energy. The present study indicated that the ELG-CP method is promising for

  15. Ab initio O(N) elongation-counterpoise method for BSSE-corrected interaction energy analyses in biosystems

    SciTech Connect

    Orimoto, Yuuichi; Xie, Peng; Liu, Kai; Yamamoto, Ryohei; Imamura, Akira; Aoki, Yuriko

    2015-03-14

    An Elongation-counterpoise (ELG-CP) method was developed for performing accurate and efficient interaction energy analysis and correcting the basis set superposition error (BSSE) in biosystems. The method was achieved by combining our developed ab initio O(N) elongation method with the conventional counterpoise method proposed for solving the BSSE problem. As a test, the ELG-CP method was applied to the analysis of the DNAs’ inter-strands interaction energies with respect to the alkylation-induced base pair mismatch phenomenon that causes a transition from G⋯C to A⋯T. It was found that the ELG-CP method showed high efficiency (nearly linear-scaling) and high accuracy with a negligibly small energy error in the total energy calculations (in the order of 10{sup −7}–10{sup −8} hartree/atom) as compared with the conventional method during the counterpoise treatment. Furthermore, the magnitude of the BSSE was found to be ca. −290 kcal/mol for the calculation of a DNA model with 21 base pairs. This emphasizes the importance of BSSE correction when a limited size basis set is used to study the DNA models and compare small energy differences between them. In this work, we quantitatively estimated the inter-strands interaction energy for each possible step in the transition process from G⋯C to A⋯T by the ELG-CP method. It was found that the base pair replacement in the process only affects the interaction energy for a limited area around the mismatch position with a few adjacent base pairs. From the interaction energy point of view, our results showed that a base pair sliding mechanism possibly occurs after the alkylation of guanine to gain the maximum possible number of hydrogen bonds between the bases. In addition, the steps leading to the A⋯T replacement accompanied with replications were found to be unfavorable processes corresponding to ca. 10 kcal/mol loss in stabilization energy. The present study indicated that the ELG-CP method is promising for

  16. An ab initio study of the C3(+) cation using multireference methods

    NASA Technical Reports Server (NTRS)

    Taylor, Peter R.; Martin, J. M. L.; Francois, J. P.; Gijbels, R.

    1991-01-01

    The energy difference between the linear 2 sigma(sup +, sub u) and cyclic 2B(sub 2) structures of C3(+) has been investigated using large (5s3p2d1f) basis sets and multireference electron correlation treatments, including complete active space self consistent fields (CASSCF), multireference configuration interaction (MRCI), and averaged coupled-pair functional (ACPF) methods, as well as the single-reference quadratic configuration interaction (QCISD(T)) method. Our best estimate, including a correction for basis set incompleteness, is that the linear form lies above the cyclic from by 5.2(+1.5 to -1.0) kcal/mol. The 2 sigma(sup +, sub u) state is probably not a transition state, but a local minimum. Reliable computation of the cyclic/linear energy difference in C3(+) is extremely demanding of the electron correlation treatment used: of the single-reference methods previously considered, CCSD(T) and QCISD(T) perform best. The MRCI + Q(0.01)/(4s2p1d) energy separation of 1.68 kcal/mol should provide a comparison standard for other electron correlation methods applied to this system.

  17. Specific force field parameters determination for the hybrid ab initio QM/MM LSCF method.

    PubMed

    Ferré, Nicolas; Assfeld, Xavier; Rivail, Jean-Louis

    2002-04-30

    The pure quantum mechanics method, called Local Self-Consistent Field (LSCF), that allows to optimize a wave function within the constraint that some predefined spinorbitals are kept frozen, is discussed. These spinorbitals can be of any shape, and their occupation numbers can be 0 or 1. Any post-Hartree-Fock method, based on the restricted or unrestricted Hartree-Fock Slater determinant, and Kohn-Sham-based DFT method are available. The LSCF method is easily applied to hybrid quantum mechanics/molecular mechanics (QM/MM) procedure where the quantum and the classical parts are covalently bonded. The complete methodology of our hybrid QM/MM scheme is detailed for studies of macromolecular systems. Not only the energy but also the gradients are derived; thus, the full geometry optimization of the whole system is feasible. We show that only specific force field parameters are needed for a correct description of the molecule, they are given for some general chemical bonds. A careful analysis of the errors induced by the use of molecular mechanics in hybrid computation show that a general procedure can be derived to obtain accurate results at low computation effort. The methodology is applied to the structure determination of the crambin protein and to Menshutkin reactions between primary amines and chloromethane. PMID:11939595

  18. SIESTA-PEXSI: Massively parallel method for efficient and accurate ab initio materials simulation

    NASA Astrophysics Data System (ADS)

    Lin, Lin; Huhs, Georg; Garcia, Alberto; Yang, Chao

    2014-03-01

    We describe how to combine the pole expansion and selected inversion (PEXSI) technique with the SIESTA method, which uses numerical atomic orbitals for Kohn-Sham density functional theory (KSDFT) calculations. The PEXSI technique can efficiently utilize the sparsity pattern of the Hamiltonian matrix and the overlap matrix generated from codes such as SIESTA, and solves KSDFT without using cubic scaling matrix diagonalization procedure. The complexity of PEXSI scales at most quadratically with respect to the system size, and the accuracy is comparable to that obtained from full diagonalization. One distinct feature of PEXSI is that it achieves low order scaling without using the near-sightedness property and can be therefore applied to metals as well as insulators and semiconductors, at room temperature or even lower temperature. The PEXSI method is highly scalable, and the recently developed massively parallel PEXSI technique can make efficient usage of 10,000 ~100,000 processors on high performance machines. We demonstrate the performance the SIESTA-PEXSI method using several examples for large scale electronic structure calculation including long DNA chain and graphene-like structures with more than 20000 atoms. Funded by Luis Alvarez fellowship in LBNL, and DOE SciDAC project in partnership with BES.

  19. Multiple time step integrators in ab initio molecular dynamics

    SciTech Connect

    Luehr, Nathan; Martínez, Todd J.; Markland, Thomas E.

    2014-02-28

    Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy.

  20. Intrinsic errors in several ab initio methods. The dissociation energy of N{sub 2}

    SciTech Connect

    Peterson, K.A. |; Dunning, T.H. Jr.

    1995-03-23

    Using sequences of correlation consistent basis sets, complete basis set (CBS) limits for the dissociation energy D{sub c} of N{sub 2} have been estimated for a variety of commonly used electron correlation methods. After extrapolation to the CBS limit, the difference between theory and experiment corresponds to the error intrinsic to the chosen theoretical method. Correlated wave functions (valence electrons correlated only) for which intrinsic errors have been estimated include internally contracted multireference configuration interaction (CMRCI), singles and doubles coupled cluster theory with and without perturbative triple excitations [CCSD, CCSD(T)], and second-, third-, and fourth-order Moller-Plesset perturbation theory (MP2, MP3, MP4). For CMRCI and CCSD(T), D{sub c} converges smoothly from below the experimental value and yields the smallest intrinsic errors, -0.8 and -1.6 kcal/mol, respectively. In contrast, for MP2 and MP4, D{sub c} exhibits fortuitously good agreement with experiment for small basis sets but leads to CBS limits that are 11.6 and 3.4 kcal/mol larger than experiment, respectively. Correlation of the 1s core electrons is predicted to yield intrinsic errors of less than 1 kcal/mol for CMRCI and CCSD(T), while those for MP2 and MP4 increase still further. 38 refs., 1 fig., 1 tab.

  1. Methods and Strategies for the Ab Initio Design of Novel Manganese Oxide- Based Water Splitting Photocatalyst Materials

    NASA Astrophysics Data System (ADS)

    Kanan, Dalal K.

    Photoelectrochemical cells (PECs) use sunlight to drive endoergic reactions such as carbon dioxide reduction to fuels or water-splitting for renewable hydrogen production. However, materials that combine both the efficiency and low cost needed to make solar-powered catalysis a practical reality have yet to be discovered. This thesis presents methods and new design strategies for developing novel, efficient, robust, and inexpensive photocatalysts based on transition metal oxides (TMOs). Quantum mechanics methodologies are developed and tested for their ability to predict the properties of known materials and then used to predict how altering the composition by alloying and doping with abundant elements affects optical, electronic, transport, and catalytic properties. The first material considered for photocatalysis is MnO, the bio-inspired solid state analogue of the photosystem II active site. GW theory with input from hybrid DFT and ab initio DFT+U capably predicts the photoemission/inverse photoemission (PE/IPE) band gap and dielectric properties. An ab initio value of U-J = 3.5 eV for Mn2+ was determined using unrestricted Hartree-Fock theory on cluster-size-converged electrostatically embedded clusters. The lowest-lying excitations in MnO, studied using ECW theory, are found to be single Mn d → d ligand field excitations (~2.5 eV, ~108 s lifetime), followed by double d → d excitations (~5.2 eV, ~106 s lifetime), Mn 3d-4s excitations (~6.3 eV, ~10-3 s lifetime), and higher-lying O 2p → Mn 3d ligand-to-metal charge-transfer (LMCT) excitations (~10.1 eV, ~10-4 s lifetime). The longer-lived transitions should exhibit better electron-hole pair separation and enhance photoconductivity depending on ease of carrier transport. While MnO possesses suitable band edge energies, its band gap is too large for efficient sunlight absorption. We predict alloying MnO with ZnO in varying amounts reduces the PE/IPE band gap (to 2.6 eV for the 1:1 alloy) while preserving

  2. Heats of Segregation of BCC Metals Using Ab Initio and Quantum Approximate Methods

    NASA Technical Reports Server (NTRS)

    Good, Brian; Chaka, Anne; Bozzolo, Guillermo

    2003-01-01

    Many multicomponent alloys exhibit surface segregation, in which the composition at or near a surface may be substantially different from that of the bulk. A number of phenomenological explanations for this tendency have been suggested, involving, among other things, differences among the components' surface energies, molar volumes, and heats of solution. From a theoretical standpoint, the complexity of the problem has precluded a simple, unified explanation, thus preventing the development of computational tools that would enable the identification of the driving mechanisms for segregation. In that context, we investigate the problem of surface segregation in a variety of bcc metal alloys by computing dilute-limit heats of segregation using both the quantum-approximate energy method of Bozzolo, Ferrante and Smith (BFS), and all-electron density functional theory. In addition, the composition dependence of the heats of segregation is investigated using a BFS-based Monte Carlo procedure, and, for selected cases of interest, density functional calculations. Results are discussed in the context of a simple picture that describes segregation behavior as the result of a competition between size mismatch and alloying effects

  3. Ab Initio Studies of Calcium Carbonate Hydration.

    PubMed

    Lopez-Berganza, Josue A; Diao, Yijue; Pamidighantam, Sudhakar; Espinosa-Marzal, Rosa M

    2015-11-25

    Ab initio simulations of large hydrated calcium carbonate clusters are challenging due to the existence of multiple local energy minima. Extensive conformational searches around hydrated calcium carbonate clusters (CaCO3·nH2O for n = 1-18) were performed to find low-energy hydration structures using an efficient combination of Monte Carlo searches, density-functional tight binding (DFTB+) method, and density-functional theory (DFT) at the B3LYP level, or Møller-Plesset perturbation theory at the MP2 level. This multilevel optimization yields several low-energy structures for hydrated calcium carbonate. Structural and energetics analysis of the hydration of these clusters revealed a first hydration shell composed of 12 water molecules. Bond-length and charge densities were also determined for different cluster sizes. The solvation of calcium carbonate in bulk water was investigated by placing the explicitly solvated CaCO3·nH2O clusters in a polarizable continuum model (PCM). The findings of this study provide new insights into the energetics and structure of hydrated calcium carbonate and contribute to the understanding of mechanisms where calcium carbonate formation or dissolution is of relevance. PMID:26505205

  4. The S66x8 benchmark for noncovalent interactions revisited: explicitly correlated ab initio methods and density functional theory.

    PubMed

    Brauer, Brina; Kesharwani, Manoj K; Kozuch, Sebastian; Martin, Jan M L

    2016-08-01

    The S66x8 dataset for noncovalent interactions of biochemical relevance has been re-examined by means of MP2-F12 and CCSD(F12*)(T) methods. We deem our revised benchmark data to be reliable to about 0.05 kcal mol(-1) RMS. Most levels of DFT perform quite poorly in the absence of dispersion corrections: somewhat surprisingly, that is even the case for the double hybrids and for dRPA75. Analysis of optimized D3BJ parameters reveals that the main benefit of dRPA75 and DSD double hybrids alike is the treatment of midrange dispersion. dRPA75-D3BJ is the best performer overall at RMSD = 0.10 kcal mol(-1). The nonlocal VV10 dispersion functional is especially beneficial for the double hybrids, particularly in DSD-PBEP86-NL (RMSD = 0.12 kcal mol(-1)). Other recommended dispersion-corrected functionals with favorable price/performance ratios are ωB97X-V, and, surprisingly, B3LYP-D3BJ and BLYP-D3BJ (RMSDs of 0.23, 0.20 and 0.23 kcal mol(-1), respectively). Without dispersion correction (but parametrized for midrange interactions) M06-2X has the lead (RMSD = 0.45 kcal mol(-1)). A collection of three energy-based diagnostics yields similar information to an SAPT analysis about the nature of the noncovalent interaction. Two of those are the percentages of Hartree-Fock and of post-MP2 correlation effects in the interaction energy; the third, CSPI = [IE - IE]/[IE + IE] or its derived quantity DEBC = CSPI/(1 + CSPI(2))(1/2), describes the character of the MP2 correlation contribution, ranging from 0 (purely dispersion) to 1 (purely other effects). In addition, we propose an improved, parameter-free scaling for the (T) contribution based on the Ecorr[CCSD-F12b]/Ecorr[CCSD] and Ecorr[CCSD(F12*)]/Ecorr[CCSD] ratios. For Hartree-Fock and conventional DFT calculations, full counterpoise generally yields the fastest basis set convergence, while for double hybrids, half-counterpoise yields faster convergence, as previously established for correlated ab initio methods. PMID:26950084

  5. Are AB Initio Quantum Chemistry Methods Able to Predict Vibrational States up to the Dissociation Limit for Multi-Electron Molecules Close to Spectroscopic Accuracy?

    NASA Astrophysics Data System (ADS)

    Szalay, Péter G.; Holka, Filip; Fremont, Julien; Rey, Michael; Tyuterev, Vladimir G.

    2011-06-01

    The aim of the study was to explore the limits of initio methods towards the description of excited vibrational levels up to the dissociation limit for molecules having more than two electrons. To this end a high level ab initio potential energy function was constructed for the four-electron LiH molecule in order to accurately predict a complete set of bound vibrational levels corresponding to the electronic ground state. It was composed from: a) an ab initio non-relativistic potential obtained at the MR-CISD level including size-extensivity corrections and quintuple-sextuple ζ extrapolation of the basis, b) MVD (Mass-velocity-Darwin) relativistic corrections obtained at icMR-CISD/cc-pwCV5Z level, and c) DBOC (Diagonal Born-Oppenheimer correction) obtained at the MR-CISD/cc-pwCVTZ level. Finally, the importance of non-adiabatic effects was also tested by using atomic masses in the vibrational kinetic energy operator and by calculation of non-adiabatic coupling by ab initio methods. The calculated vibrational levels were compared with those obtained from experimental data [J.A. Coxon and C.S. Dickinson, J. Chem. Phys., 2004, 121, 9378]. Our best estimate of the potential curve results in vibrational energies with a RMS deviation of only ˜1 wn\\ for the entire set of all empirically determined vibrational levels known so far. These results represent a drastic improvement over previous theoretical predictions of vibrational levels of ^7LiH up to dissociation, D_0, which was predicted to be 19594 Cm-1. In addition, rotational levels have also been calculated. The RMS deviation between our ab initio calculations and empirical results by Coxon and Dickinson for rotational spacings Δ E = E(v, J = 1)-E(v, J = 0) over all available vibrational states of ^7LiH from v = 0 to v= 20 is 0.010 wn (with nuclear masses) and 0.006 wn (with atomic masses). Note that for high vibrational states with v > 6 this falls within the uncertainty of the measurements.

  6. Application of ab-initio Methods to Grain Boundaries and Point Defects for Poly-CdTe Solar Cells

    NASA Astrophysics Data System (ADS)

    Buurma, Christopher

    CdTe is a material well-suited to solar cell applications due to its 1.5 eV direct bandgap and high optical absorption. To meet energy demands, CdTe solar cells must be produced at a low-cost and with high throughput which often demands the use of non-ideal polycrystalline CdTe. As a result of careful process control, current thin-film poly-CdTe cells have been shown to be somewhat defect tolerant with proven industry success. Yet despite this success poly-CdTe cells are still far from their predicted Shockley-Queisser theoretical limits. The next generation cells must demonstrate higher open-circuit voltages, fill factors, and longer minority carrier lifetimes. Playing a major role in doping, defect migration, carrier recombination, and current transport are 2D extended defects both within grains and between grains as grain boundaries (GBs). A further understanding of these defects is needed which exhibit either high symmetry such as the CSL structures or those mixed or random GBs with low symmetry. Their corresponding formation and electronic behavior will be needed to develop methods to mitigate their effects and instead promote higher doping with less minority carrier recombination. Predictions and guidance on electronic and thermodynamic properties can be obtained from model atomic structures within the framework of ab-initio density-functional theory. Bulk point defect formation energies were determined for comparison to calculations of point defects along GB structures. Model atomic structures of GBs can also be created rapidly and over a wide parameter space using the Grain Boundary Genie code developed for this project. Commonly observed low-angle and special coincident grain boundaries structures were created and a subset relaxed to determine their local strain environment and interfacial energy with for comparison to STEM observations. Additionally, a series of random angle or 'mixed' grain boundaries were created and investigated corresponding to

  7. Surface Segregation Energies of BCC Binaries from Ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2003-01-01

    We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy method. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameterization. Quantum approximate segregation energies are computed with and without atomistic relaxation. The ab initio calculations are performed without relaxation for the most part, but predicted relaxations from quantum approximate calculations are used in selected cases to compute approximate relaxed ab initio segregation energies. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with other quantum approximate and ab initio theoretical work, and available experimental results.

  8. Recent progress in ab initio density matrix renormalization group methodology

    NASA Astrophysics Data System (ADS)

    Hachmann, Johannes; Dorando, Jonathan J.; Kin-Lic Chan, Garnet

    2008-03-01

    We present some recent developments in the ab initio density matrix renormalization group (DMRG) method for quantum chemical problems, in particular our local, quadratic scaling algorithm [1] for low dimensional systems. This method is particularly suited for the description of strong nondynamic correlation, and allows us to compute numerically exact (FCI) correlated energies for large active spaces, up to one order of magnitude larger then can be done by conventional CASCI techniques. Other features of this method are its inherent multireference nature, compactness, variational results, size-consistency and size-extensivity. In addition we will review the problems (predominantly organic electronic materials) on which we applied the ab initio DMRG: 1) metal-insulator transition in hydrogen chains [1] 2) all-trans polyacetylene [1] 3) acenes [2] 4) polydiacetylenes [3]. References [1] Hachmann, Cardoen, Chan, JCP 125 (2006), 144101. [2] Hachmann, Dorando, Avil'es, Chan, JCP 127 (2007), 134309. [3] unpublished.

  9. Ab Initio Neutron Drops with Chiral Hamiltonians

    NASA Astrophysics Data System (ADS)

    Potter, Hugh; Maris, Pieter; Vary, James

    2015-04-01

    Ab initio calculations for neutron drops are of interest for insights into neutron-rich nuclei and neutron star matter, and for examining the neutron-only sector of nucleon-nucleon and 3-nucleon interactions. I present ab initio results calculated using the no-core shell model with 2- and 3-body chiral Hamiltonians for neutron drops up to 20 neutrons confined in a 10 MeV harmonic trap. I discuss ground state energies, internal energies, radii, and evidence for pairing. In addition, excitation energies can be used to investigate the spin-orbit splittings in the p-shell and sd -shell. Prior Green's Function Monte Carlo calculations using the Argonne v8' potential with added 3-nucleon forces serve as a comparison. Supported by DOE Grants DESC0008485 (SciDAC/NUCLEI), DE-FG02-87ER40371, and NSF Grant 0904782; computational resources provided by the Oak Ridge Leadership Computing Facility (DOE Office of Science Contract DE-AC05-00OR22725) under an INCITE award.

  10. Towards Accurate Ab Initio Predictions of the Spectrum of Methane

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born- Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.

  11. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    SciTech Connect

    Makhov, Dmitry V.; Shalashilin, Dmitrii V.; Glover, William J.; Martinez, Todd J.

    2014-08-07

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  12. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    NASA Astrophysics Data System (ADS)

    Makhov, Dmitry V.; Glover, William J.; Martinez, Todd J.; Shalashilin, Dmitrii V.

    2014-08-01

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  13. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics.

    PubMed

    Makhov, Dmitry V; Glover, William J; Martinez, Todd J; Shalashilin, Dmitrii V

    2014-08-01

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions. PMID:25106573

  14. Exploring complex chemical reactions by ab-initio simulation

    NASA Astrophysics Data System (ADS)

    Parrinello, Michele

    1998-03-01

    Recent progress in the ab-initio molecular dynamics method and the power of parallel computing, allow the detailed study of complex chemical reaction of great industrial relevance. We illustrate this unprecedented capability by investigating the second generation Ziegler-Natta catalytic process. In this inhomogeneous catalyst, a polymerization reaction is induced by TiCl4 molecules deposited on an MgCl2 solid support. A density functional based ab-initio molecular dynamics calculation conducted with a minimum of initial assumption allows to understand the nature of the catalytic center and to determine the reaction path with the associated free energy barrier. Furthermore our calculation can explain in a nontrivial way the stereo-selectivity of the process.

  15. Ab Initio Calculations Of Light-Ion Reactions

    SciTech Connect

    Navratil, P; Quaglioni, S; Roth, R; Horiuchi, W

    2012-03-12

    The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of nuclear forces, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD employing Hamiltonians constructed within chiral effective field theory. In this contribution, we present one of such promising techniques capable of describing simultaneously both bound and scattering states in light nuclei. By combining the resonating-group method (RGM) with the ab initio no-core shell model (NCSM), we complement a microscopic cluster approach with the use of realistic interactions and a microscopic and consistent description of the clusters. We discuss applications to light nuclei scattering, radiative capture and fusion reactions.

  16. Ab Initio Study of Defect Properties in YPO4

    SciTech Connect

    Gao, Fei; Xiao, Haiyan Y.; Zhou, Yungang; Devanathan, Ramaswami; Hu, Shenyang Y.; Li, Yulan; Sun, Xin; Khaleel, Mohammad A.

    2012-03-01

    Ab initio methods based on density functional theory have been used to calculate the formation energies of intrinsic defects, including vacancies, interstitials, antisites and Frenkel pairs in YPO4 under the O-rich and Y2O3-rich, and the O-rich and Y-rich conditions. The larger size of the yttrium atom may give rise to higher formation energy of the phosphorus antisite defect. In general, the formation energies of anion interstitials are much smaller than those of cation interstitials for both conditions considered. It is of greatly interest to find that the relative stabilities among the same types of interstitials are independent of the reference states. The most stable configuration for oxygen interstitials is an O-O split interstitial near the Ta site, while the most stable configuration for cation interstitials is a tetrahedral interstitial near the Ta site. The cation split interstitials are unfavorable in YPO4, with much higher formation energies. Furthermore, the properties of Frenkel pairs are compared with those calculated using empirical potentials. The results reveal that both ab initio and empirical potential calculations show a similar trend in the formation energies of Frenkel pairs, but the formation energies obtained by empirical potentials are much larger than those calculated by ab initio method.

  17. Electronic State Spectroscopy of Halothane As Studied by ab Initio Calculations, Vacuum Ultraviolet Synchrotron Radiation, and Electron Scattering Methods.

    PubMed

    da Silva, F Ferreira; Duflot, D; Hoffmann, S V; Jones, N C; Rodrigues, F N; Ferreira-Rodrigues, A M; de Souza, G G B; Mason, N J; Eden, S; Limão-Vieira, P

    2015-08-01

    We present the first set of ab initio calculations (vertical energies and oscillator strengths) of the valence and Rydberg transitions of the anaesthetic compound halothane (CF3CHBrCl). These results are complemented by high-resolution vacuum ultraviolet photoabsorption measurements over the wavelength range 115-310 nm (10.8-4.0 eV). The spectrum reveals several new features that were not previously reported in the literature. Spin-orbit effects have been considered in the calculations for the lowest-lying states, allowing us to explain the broad nature of the 6.1 and 7.5 eV absorption bands assigned to σ*(C-Br) ← nBr and σ*(C-Cl) ← n(Cl) transitions. Novel absolute photoabsorption cross sections from electron scattering data were derived in the 4.0-40.0 eV range. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of halothane in the upper stratosphere (20-50 km). PMID:26171941

  18. Fine-grained parallelization of the Car-Parrinello ab initio molecular dynamics method on the IBM Blue Gene/L supercomputer

    SciTech Connect

    E. Bohm A. Bhatele L. V. Kale M. E. Tuckerman S. Kumar J. A. Gunnels G. J. Martyna; Bohm, E.; Bhatele, A.; Kale, L. V.; Tuckerman, M. E.; Kumar, S.; Gunnels, J. A.; Martyna, G. J.

    2008-01-01

    Important scientific problems can be treated via ab initio-based molecular modeling approaches, wherein atomic forces are derived from an energy Junction that explicitly considers the electrons. The Car-Parrinello ab initio molecular dynamics (CPAIMD) method is widely used to study small systems containing on the order of 10 to 103 atoms. However, the impact of CPAIMD has been limited until recently because of difficulties inherent to scaling the technique beyond processor numbers about equal to the number of electronic states. CPAIMD computations involve a large number of interdependent phases with high interprocessor communication overhead. These phases require the evaluation of various transforms and non-square matrix multiplications that require large interprocessor data movement when efficiently parallelized. Using the Charm++ parallel programming language and runtime system, the phases are discretized into a large number of virtual processors, which are, in turn, mapped flexibly onto physical processors, thereby allowing interleaving of work. Algorithmic and IBM Blue Gene/L(tm) system-specific optimizations are employed to scale the CPAIMD method to at least 30 times the number of electronic states in small systems consisting of 24 to 768 atoms (32 to 1,024 electronic states) in order to demonstrate fine-grained parallelism. The largest systems studied scaled well across the entire machine (20,480 nodes).

  19. Discovering chemistry with an ab initio nanoreactor

    DOE PAGESBeta

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.

    2014-11-02

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis frommore » primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.« less

  20. Ab initio molar volumes and Gaussian radii.

    PubMed

    Parsons, Drew F; Ninham, Barry W

    2009-02-12

    Ab initio molar volumes are calculated and used to derive radii for ions and neutral molecules using a spatially diffuse model of the electron distribution with Gaussian spread. The Gaussian radii obtained can be used for computation of nonelectrostatic ion-ion dispersion forces that underlie Hofmeister specific ion effects. Equivalent hard-sphere radii are also derived, and these are in reasonable agreement with crystalline ionic radii. The Born electrostatic self-energy is derived for a Gaussian model of the electronic charge distribution. It is shown that the ionic volumes used in electrostatic calculations of strongly hydrated cosmotropic ions ought best to include the first hydration shell. Ionic volumes for weakly hydrated chaotropic metal cations should exclude electron overlap (in electrostatic calculations). Spherical radii are calculated as well as nonisotropic ellipsoidal radii for nonspherical ions, via their nonisotropic static polarizability tensors. PMID:19140766

  1. Guiding ab initio calculations by alchemical derivatives.

    PubMed

    to Baben, M; Achenbach, J O; von Lilienfeld, O A

    2016-03-14

    We assess the concept of alchemical transformations for predicting how a further and not-tested change in composition would change materials properties. This might help to guide ab initio calculations through multidimensional property-composition spaces. Equilibrium volumes, bulk moduli, and relative lattice stability of fcc and bcc 4d transition metals Zr, Nb, Mo, Tc, Ru, Rh, Pd, and Ag are calculated using density functional theory. Alchemical derivatives predict qualitative trends in lattice stability while equilibrium volumes and bulk moduli are predicted with less than 9% and 28% deviation, respectively. Predicted changes in equilibrium volume and bulk moduli for binary and ternary mixtures of Rh-Pd-Ag are in qualitative agreement even for predicted bulk modulus changes as large as +100% or -50%. Based on these results, it is suggested that alchemical transformations could be meaningful for enhanced sampling in the context of virtual high-throughput materials screening projects. PMID:26979677

  2. Ab initio determination of light hadron masses.

    PubMed

    Dürr, S; Fodor, Z; Frison, J; Hoelbling, C; Hoffmann, R; Katz, S D; Krieg, S; Kurth, T; Lellouch, L; Lippert, T; Szabo, K K; Vulvert, G

    2008-11-21

    More than 99% of the mass of the visible universe is made up of protons and neutrons. Both particles are much heavier than their quark and gluon constituents, and the Standard Model of particle physics should explain this difference. We present a full ab initio calculation of the masses of protons, neutrons, and other light hadrons, using lattice quantum chromodynamics. Pion masses down to 190 mega-electron volts are used to extrapolate to the physical point, with lattice sizes of approximately four times the inverse pion mass. Three lattice spacings are used for a continuum extrapolation. Our results completely agree with experimental observations and represent a quantitative confirmation of this aspect of the Standard Model with fully controlled uncertainties. PMID:19023076

  3. Guiding ab initio calculations by alchemical derivatives

    NASA Astrophysics Data System (ADS)

    to Baben, M.; Achenbach, J. O.; von Lilienfeld, O. A.

    2016-03-01

    We assess the concept of alchemical transformations for predicting how a further and not-tested change in composition would change materials properties. This might help to guide ab initio calculations through multidimensional property-composition spaces. Equilibrium volumes, bulk moduli, and relative lattice stability of fcc and bcc 4d transition metals Zr, Nb, Mo, Tc, Ru, Rh, Pd, and Ag are calculated using density functional theory. Alchemical derivatives predict qualitative trends in lattice stability while equilibrium volumes and bulk moduli are predicted with less than 9% and 28% deviation, respectively. Predicted changes in equilibrium volume and bulk moduli for binary and ternary mixtures of Rh-Pd-Ag are in qualitative agreement even for predicted bulk modulus changes as large as +100% or -50%. Based on these results, it is suggested that alchemical transformations could be meaningful for enhanced sampling in the context of virtual high-throughput materials screening projects.

  4. Discovering chemistry with an ab initio nanoreactor.

    PubMed

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S; Martínez, Todd J

    2014-12-01

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provide detailed physical insight. Although theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor--a highly accelerated first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor, we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, which provide new insight into the classic Urey-Miller experiment. These results highlight the emergence of theoretical and computational chemistry as a tool for discovery, in addition to its traditional role of interpreting experimental findings. PMID:25411881

  5. Discovering chemistry with an ab initio nanoreactor

    NASA Astrophysics Data System (ADS)

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.

    2014-12-01

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provide detailed physical insight. Although theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor—a highly accelerated first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor, we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, which provide new insight into the classic Urey-Miller experiment. These results highlight the emergence of theoretical and computational chemistry as a tool for discovery, in addition to its traditional role of interpreting experimental findings.

  6. Ab Initio Calculation of the Hoyle State

    SciTech Connect

    Epelbaum, Evgeny; Krebs, Hermann; Lee, Dean; Meissner, Ulf-G.

    2011-05-13

    The Hoyle state plays a crucial role in the helium burning of stars heavier than our Sun and in the production of carbon and other elements necessary for life. This excited state of the carbon-12 nucleus was postulated by Hoyle as a necessary ingredient for the fusion of three alpha particles to produce carbon at stellar temperatures. Although the Hoyle state was seen experimentally more than a half century ago nuclear theorists have not yet uncovered the nature of this state from first principles. In this Letter we report the first ab initio calculation of the low-lying states of carbon-12 using supercomputer lattice simulations and a theoretical framework known as effective field theory. In addition to the ground state and excited spin-2 state, we find a resonance at -85(3) MeV with all of the properties of the Hoyle state and in agreement with the experimentally observed energy.

  7. Discovering chemistry with an ab initio nanoreactor

    SciTech Connect

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.

    2014-11-02

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.

  8. Discovering chemistry with an ab initio nanoreactor

    NASA Astrophysics Data System (ADS)

    Martinez, Todd

    Traditional approaches for modeling chemical reaction networks such as those involved in combustion have focused on identifying individual reactions and using theoretical approaches to explore the underlying mechanisms. Recent advances involving graphical processing units (GPUs), commodity products developed for the videogaming industry, have made it possible to consider a distinct approach wherein one attempts to discover chemical reactions and mechanisms. We provide a brief summary of these developments and then discuss the concept behind the ``ab initio nanoreactor'' which explores the space of possible chemical reactions and molecular species for a given stoichiometry. The nanoreactor concept is exemplified with an example to the Urey-Miller reaction network which has been previously advanced as a potential model for prebiotic chemistry. We briefly discuss some of the future directions envisioned for the development of this nanoreactor concept.

  9. Discovering chemistry with an ab initio nanoreactor

    PubMed Central

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.

    2014-01-01

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. These results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings. PMID:25411881

  10. Ab initio calculations of reactions with light nuclei

    NASA Astrophysics Data System (ADS)

    Quaglioni, Sofia; Hupin, Guillaume; Calci, Angelo; Navrátil, Petr; Roth, Robert

    2016-03-01

    An ab initio (i.e., from first principles) theoretical framework capable of providing a unified description of the structure and low-energy reaction properties of light nuclei is desirable to further our understanding of the fundamental interactions among nucleons, and provide accurate predictions of crucial reaction rates for nuclear astrophysics, fusion-energy research, and other applications. In this contribution we review ab initio calculations for nucleon and deuterium scattering on light nuclei starting from chiral two- and three-body Hamiltonians, obtained within the framework of the ab initio no-core shell model with continuum. This is a unified approach to nuclear bound and scattering states, in which square-integrable energy eigenstates of the A-nucleon system are coupled to (A-a)+a target-plus-projectile wave functions in the spirit of the resonating group method to obtain an efficient description of the many-body nuclear dynamics both at short and medium distances and at long ranges.

  11. Heats of Segregation of BCC Binaries from ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2004-01-01

    We compare dilute-limit heats of segregation for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent LMTO-based parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation, while the ab initio calculations are performed without relaxation. Results are discussed within the context of a segregation model driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  12. Vibrational analysis and ionization potentials of XCH 3 (X=Be,Mg,Ca) calculated by hybrid density functional theory and high order ab initio methods

    NASA Astrophysics Data System (ADS)

    Jalbout, Abraham F.

    2001-06-01

    The amount of attention dedicated to the theoretical and experimental investigation of small cationic organometallic systems in the literature is very limited. In this Letter we use the B3LYP method with a variety of basis sets as well as the very advanced CBS-Q, CBS-QB3, G1, G2MP2, G2, G3, and G3B3 ab initio methods in order to analyze the vibrational spectra as well as ionization potentials of BeCH 3,MgCH 3 and CaCH 3. The need for further addition of experimental data to the archives for these systems is discussed, as well as recommendations for which theoretical methods are optimum for a particular result.

  13. Assessment of experimental bond dissociation energies using composite ab initio methods and evaluation of the performances of density functional methods in the calculation of bond dissociation energies.

    PubMed

    Feng, Yong; Liu, Lei; Wang, Jin-Ti; Huang, Hao; Guo, Qing-Xiang

    2003-01-01

    Composite ab initio CBS-Q and G3 methods were used to calculate the bond dissociation energies (BDEs) of over 200 compounds listed in CRC Handbook of Chemistry and Physics (2002 ed.). It was found that these two methods agree with each other excellently in the calculation of BDEs, and they can predict BDEs within 10 kJ/mol of the experimental values. Using these two methods, it was found that among the examined compounds 161 experimental BDEs are valid because the standard deviation between the experimental and theoretical values for them is only 8.6 kJ/mol. Nevertheless, 40 BDEs listed in the Handbook may be highly inaccurate as the experimental and theoretical values for them differ by over 20 kJ/mol. Furthermore, 11 BDEs listed in the Handbook may be seriously flawed as the experimental and theoretical values for them differ by over 40 kJ/mol. Using the 161 cautiously validated experimental BDEs, we then assessed the performances of the standard density functional (DFT) methods including B3LYP, B3P86, B3PW91, and BH&HLYP in the calculation of BDEs. It was found that the BH&HLYP method performed poorly for the BDE calculations. B3LYP, B3P86, and B3PW91, however, performed reasonably well for the calculation of BDEs with standard deviations of about 12.1-18.0 kJ/mol. Nonetheless, all the DFT methods underestimated the BDEs by 4-17 kJ/mol in average. Sometimes, the underestimation by the DFT methods could be as high as 40-60 kJ/mol. Therefore, the DFT methods were more reliable for relative BDE calculations than for absolute BDE calculations. Finally, it was observed that the basis set effects on the BDEs calculated by the DFT methods were usually small except for the heteroatom-hydrogen BDEs. PMID:14632451

  14. Interfacing the Ab initio multiple spawning method with electronic structure methods in GAMESS: Photodecay of trans-Azomethane

    SciTech Connect

    Gaenko, Alexander; DeFusco, Albert; Varganov, Sergey A.; Martínez, Todd J.; Gordon, Mark S.

    2014-10-20

    This work presents a nonadiabatic molecular dynamics study of the nonradiative decay of photoexcited trans-azomethane, using the ab initio multiple spawning (AIMS) program that has been interfaced with the General Atomic and Molecular Electronic Structure System (GAMESS) quantum chemistry package for on-the-fly electronic structure evaluation. The interface strategy is discussed, and the capabilities of the combined programs are demonstrated with a nonadiabatic molecular dynamics study of the nonradiative decay of photoexcited trans-azomethane. Energies, gradients, and nonadiabatic coupling matrix elements were obtained with the state-averaged complete active space self-consistent field method, as implemented in GAMESS. The influence of initial vibrational excitation on the outcome of the photoinduced isomerization is explored. Increased vibrational excitation in the CNNC torsional mode shortens the excited state lifetime. Depending on the degree of vibrational excitation, the excited state lifetime varies from ~60–200 fs. As a result, these short lifetimes are in agreement with time-resolved photoionization mass spectroscopy experiments.

  15. Ab initio-driven nuclear energy density functional method. A proposal for safe/correlated/improvable parametrizations of the off-diagonal EDF kernels

    NASA Astrophysics Data System (ADS)

    Duguet, T.; Bender, M.; Ebran, J.-P.; Lesinski, T.; Somà, V.

    2015-12-01

    This programmatic paper lays down the possibility to reconcile the necessity to resum many-body correlations into the energy kernel with the fact that safe multi-reference energy density functional (EDF) calculations cannot be achieved whenever the Pauli principle is not enforced, as is for example the case when many-body correlations are parametrized under the form of empirical density dependencies. Our proposal is to exploit a newly developed ab initio many-body formalism to guide the construction of safe, explicitly correlated and systematically improvable parametrizations of the off-diagonal energy and norm kernels that lie at the heart of the nuclear EDF method. The many-body formalism of interest relies on the concepts of symmetry breaking and restoration that have made the fortune of the nuclear EDF method and is, as such, amenable to this guidance. After elaborating on our proposal, we briefly outline the project we plan to execute in the years to come.

  16. Potential Dependence of Electrochemical Barriers from ab Initio Calculations.

    PubMed

    Chan, Karen; Nørskov, Jens K

    2016-05-01

    We present a simple and computationally efficient method to determine the potential dependence of the activation energies for proton-electron transfer from a single ab initio barrier calculation. We show that the potential dependence of the activation energy is given by the partial charge transferred at the transition state. The method is evaluated against the potential dependence determined explicitly through multiple calculations at varying potential. We show that the transfer coefficient is given by the charge transferred from the initial to transition state, which has significant implications for electrochemical kinetics. PMID:27088442

  17. Ab Initio: And a New Era of Airline Pilot Training.

    ERIC Educational Resources Information Center

    Gesell, Laurence E.

    1995-01-01

    Expansion of air transportation and decreasing numbers seeking pilot training point to a shortage of qualified pilots. Ab initio training, in which candidates with no flight time are trained to air transport proficiency, could resolve the problem. (SK)

  18. Determination of protolytic equilibria for methyl 3-azido-6-iodo-2,3,6-trideoxy-α- D- arabino-hexopyranoside by ab initio and spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Dąbrowska, Aleksandra; Makowski, Mariusz; Jacewicz, Dagmara; Chylewska, Agnieszka; Chmurzyński, Lech

    2008-12-01

    UV absorption spectra of methyl 3-azido-6-iodo-2,3,6-trideoxy-α- D- arabino-hexopyranoside were recorded over a wide pH range. On this basis, a relationship between absorbance and pH was plotted, from which deprotonation equilibrium constants of this compound were determined. Further, quantum-mechanical calculations were performed at the ab initio level both in the gas phase by using the Restricted Hartree Fock (RHF), Møller-Plesset (MP2) methods and under consideration of solvation effects within the Polarizable Continuum Model (PCM), which enabled location of preferred protonation and deprotonation centers of this compound. The results provided the basis for discussion of the influence of substituents in the sugar ring on protolytic equilibria occurring in aqueous solutions of 3-azido-2,3-dideoxy sugars.

  19. Phonocatalysis. An ab initio simulation experiment

    NASA Astrophysics Data System (ADS)

    Kim, Kwangnam; Kaviany, Massoud

    2016-06-01

    Using simulations, we postulate and show that heterocatalysis on large-bandgap semiconductors can be controlled by substrate phonons, i.e., phonocatalysis. With ab initio calculations, including molecular dynamic simulations, the chemisorbed dissociation of XeF6 on h-BN surface leads to formation of XeF4 and two surface F/h-BN bonds. The reaction pathway and energies are evaluated, and the sorption and reaction emitted/absorbed phonons are identified through spectral analysis of the surface atomic motion. Due to large bandgap, the atomic vibration (phonon) energy transfer channels dominate and among them is the match between the F/h-BN covalent bond stretching and the optical phonons. We show that the chemisorbed dissociation (the pathway activation ascent) requires absorption of large-energy optical phonons. Then using progressively heavier isotopes of B and N atoms, we show that limiting these high-energy optical phonons inhibits the chemisorbed dissociation, i.e., controllable phonocatalysis.

  20. Macromolecular ab initio phasing enforcing secondary and tertiary structure

    PubMed Central

    Millán, Claudia; Sammito, Massimo; Usón, Isabel

    2015-01-01

    Ab initio phasing of macromolecular structures, from the native intensities alone with no experimental phase information or previous particular structural knowledge, has been the object of a long quest, limited by two main barriers: structure size and resolution of the data. Current approaches to extend the scope of ab initio phasing include use of the Patterson function, density modification and data extrapolation. The authors’ approach relies on the combination of locating model fragments such as polyalanine α-helices with the program PHASER and density modification with the program SHELXE. Given the difficulties in discriminating correct small substructures, many putative groups of fragments have to be tested in parallel; thus calculations are performed in a grid or supercomputer. The method has been named after the Italian painter Arcimboldo, who used to compose portraits out of fruit and vegetables. With ARCIMBOLDO, most collections of fragments remain a ‘still-life’, but some are correct enough for density modification and main-chain tracing to reveal the protein’s true portrait. Beyond α-helices, other fragments can be exploited in an analogous way: libraries of helices with modelled side chains, β-strands, predictable fragments such as DNA-binding folds or fragments selected from distant homologues up to libraries of small local folds that are used to enforce nonspecific tertiary structure; thus restoring the ab initio nature of the method. Using these methods, a number of unknown macromolecules with a few thousand atoms and resolutions around 2 Å have been solved. In the 2014 release, use of the program has been simplified. The software mediates the use of massive computing to automate the grid access required in difficult cases but may also run on a single multicore workstation (http://chango.ibmb.csic.es/ARCIMBOLDO_LITE) to solve straightforward cases. PMID:25610631

  1. Ab-initio study of transition metal hydrides

    SciTech Connect

    Sharma, Ramesh; Shukla, Seema Dwivedi, Shalini Sharma, Yamini

    2014-04-24

    We have performed ab initio self consistent calculations based on Full potential linearized augmented plane wave (FP-LAPW) method to investigate the optical and thermal properties of yttrium hydrides. From the band structure and density of states, the optical absorption spectra and specific heats have been calculated. The band structure of Yttrium metal changes dramatically due to hybridization of Y sp orbitals with H s orbitals and there is a net charge transfer from metal to hydrogen site. The electrical resistivity and specific heats of yttrium hydrides are lowered but the thermal conductivity is slightly enhanced due to increase in scattering from hydrogen sites.

  2. Ab initio Study of He Stability in hcp-Ti

    SciTech Connect

    Dai, Yunya; Yang, Li; Peng, SM; Long, XG; Gao, Fei; Zu, Xiaotao T.

    2010-12-20

    The stability of He in hcp-Ti was studied using ab initio method based on density functional theory. The results indicate that a single He atom prefers to occupy the tetrahedral site rather than the octahedral site. The interaction of He defects with Ti atoms has been used to explain the relative stabilities of He point defects in hcp-Ti. The relative stability of He defects in hcp-Ti is useful for He clustering and bubble nucleation in metal tritides, which provides the basis for development of improved atomistic models.

  3. Skutterudites under pressure: An ab initio study

    SciTech Connect

    Ram, Swetarekha; Kanchana, V.; Valsakumar, M. C.

    2014-03-07

    Ab initio results on the band structure, density of states, and Fermi surface (FS) properties of LaRu{sub 4}X{sub 12} (X = P, As, Sb) are presented at ambient pressure as well as under compression. The analysis of density of states reveals the major contribution at the Fermi level to be mainly from the Ru-d and X-p states. We have a complicated Fermi surface with both electron and hole characters for all the three compounds which is derived mainly from the Ru-d and X-p states. There is also a simpler FS with hole character derived from the P-p{sub z} orbital for LaRu{sub 4}P{sub 12} and Ru-d{sub z{sup 2}} orbital in the case of As and Sb containing compounds. More interestingly, Fermi surface nesting feature is observed only in the case of the LaRu{sub 4}P{sub 12}. Under compression, we observe the topology of the complicated FS sheet of LaRu{sub 4}As{sub 12} to change around V/V{sub 0} = 0.85, leading to a behaviour similar to that of a multiband superconductor, and in addition, we have two more hole pockets centered around Γ at V/V{sub 0} = 0.8 for the same compound. Apart from this, we find the hole pocket to vanish at V/V{sub 0} = 0.8 in the case of LaRu{sub 4}Sb{sub 12} and the opening of the complicated FS sheet gets reduced. The de Haas van Alphen calculation shows the number of extremal orbits in the complicated sheet to change in As and Sb containing compounds under compression, where we also observe the FS topology to change.

  4. Three-cluster dynamics within an ab initio framework

    DOE PAGESBeta

    Quaglioni, Sofia; Romero-Redondo, Carolina; Navratil, Petr

    2013-09-26

    In this study, we introduce a fully antisymmetrized treatment of three-cluster dynamics within the ab initio framework of the no-core shell model/resonating-group method. Energy-independent nonlocal interactions among the three nuclear fragments are obtained from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with bound-state boundary conditions by means of the hyperspherical-harmonic method on a Lagrange mesh. We discuss the formalism in detail and give algebraic expressions for systems of two single nucleons plus a nucleus. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we apply the method to amore » 4He+n+n description of 6He and compare the results to experiment and to a six-body diagonalization of the Hamiltonian performed within the harmonic-oscillator expansions of the no-core shell model. Differences between the two calculations provide a measure of core (4He) polarization effects.« less

  5. Ab initio quantum dynamics using coupled-cluster.

    PubMed

    Kvaal, Simen

    2012-05-21

    The curse of dimensionality (COD) limits the current state-of-the-art ab initio propagation methods for non-relativistic quantum mechanics to relatively few particles. For stationary structure calculations, the coupled-cluster (CC) method overcomes the COD in the sense that the method scales polynomially with the number of particles while still being size-consistent and extensive. We generalize the CC method to the time domain while allowing the single-particle functions to vary in an adaptive fashion as well, thereby creating a highly flexible, polynomially scaling approximation to the time-dependent Schrödinger equation. The method inherits size-consistency and extensivity from the CC method. The method is dubbed orbital-adaptive time-dependent coupled-cluster, and is a hierarchy of approximations to the now standard multi-configurational time-dependent Hartree method for fermions. A numerical experiment is also given. PMID:22612082

  6. Ab initio thermodynamic model for magnesium carbonates and hydrates.

    PubMed

    Chaka, Anne M; Felmy, Andrew R

    2014-09-01

    An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first-principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogues of Ca-based hydrated carbonates monohydrocalcite and ikaite, which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation. PMID:24679248

  7. Ab Initio Thermodynamic Model for Magnesium Carbonates and Hydrates

    SciTech Connect

    Chaka, Anne M.; Felmy, Andrew R.

    2014-03-28

    An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogs of Ca-based hydrated carbonates monohydrocalcite and ikaite which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.

  8. Study of gas-phase O-H bond dissociation enthalpies and ionization potentials of substituted phenols - Applicability of ab initio and DFT/B3LYP methods

    NASA Astrophysics Data System (ADS)

    Klein, Erik; Lukeš, Vladimír

    2006-11-01

    In this paper, the study of phenol and 37 compounds representing various ortho-, para-, and meta-substituted phenols is presented. Molecules and their radical structures were studied using ab initio methods with inclusion of correlation energy and DFT in order to calculate the O-H bond dissociation enthalpies (BDEs) and vertical ionization potentials (IPs). Calculated BDEs and IPs were compared with available experimental values to ascertain the suitability of used methods, especially for the description of the substituent induced changes in BDE and IP. MP2, MP3, and MP4 methods do not give reliable results, since they significantly underestimate substituent induced changes in BDE and do not reflect distinct effect of substituents related to para and meta position correctly. DFT/B3LYP method reflects the effect of substituents on BDE satisfactorily, though ΔBDEs are in narrower range than experimental values. BDE of phenol was calculated also using CCSD(T) method in various basis sets. Both, DFT and HF methods describe the effect of substituents on IP identically. However, DFT considerably underestimates individual values. HF method gives IPs in very good agreement with experimental data. Obtained results show that dependences of BDEs and IPs on Hammett constants of the substituents are linear. Linearity of DFT BDE vs. IP dependence is even better than the dependences on Hammett constants and obtained equations allow estimating of O-H BDEs of meta- and para-substituted phenols from calculated IPs.

  9. Oxidation of GaN: An ab initio thermodynamic approach

    NASA Astrophysics Data System (ADS)

    Jackson, Adam J.; Walsh, Aron

    2013-10-01

    GaN is a wide-band-gap semiconductor used in high-efficiency light-emitting diodes and solar cells. The solid is produced industrially at high chemical purities by deposition from a vapor phase, and oxygen may be included at this stage. Oxidation represents a potential path for tuning its properties without introducing more exotic elements or extreme processing conditions. In this work, ab initio computational methods are used to examine the energy potentials and electronic properties of different extents of oxidation in GaN. Solid-state vibrational properties of Ga, GaN, Ga2O3, and a single substitutional oxygen defect have been studied using the harmonic approximation with supercells. A thermodynamic model is outlined which combines the results of ab initio calculations with data from experimental literature. This model allows free energies to be predicted for arbitrary reaction conditions within a wide process envelope. It is shown that complete oxidation is favorable for all industrially relevant conditions, while the formation of defects can be opposed by the use of high temperatures and a high N2:O2 ratio.

  10. Ab Initio Studies of Stratospheric Ozone Depletion Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.

  11. Ab Initio No-Core Shell Model

    SciTech Connect

    Barrett, B R; Navratil, P; Vary, J P

    2011-04-11

    A long-standing goal of nuclear theory is to determine the properties of atomic nuclei based on the fundamental interactions among the protons and neutrons (i.e., nucleons). By adopting nucleon-nucleon (NN), three-nucleon (NNN) and higher-nucleon interactions determined from either meson-exchange theory or QCD, with couplings fixed by few-body systems, we preserve the predictive power of nuclear theory. This foundation enables tests of nature's fundamental symmetries and offers new vistas for the full range of complex nuclear phenomena. Basic questions that drive our quest for a microscopic predictive theory of nuclear phenomena include: (1) What controls nuclear saturation; (2) How the nuclear shell model emerges from the underlying theory; (3) What are the properties of nuclei with extreme neutron/proton ratios; (4) Can we predict useful cross sections that cannot be measured; (5) Can nuclei provide precision tests of the fundamental laws of nature; and (6) Under what conditions do we need QCD to describe nuclear structure, among others. Along with other ab initio nuclear theory groups, we have pursued these questions with meson-theoretical NN interactions, such as CD-Bonn and Argonne V18, that were tuned to provide high-quality descriptions of the NN scattering phase shifts and deuteron properties. We then add meson-theoretic NNN interactions such as the Tucson-Melbourne or Urbana IX interactions. More recently, we have adopted realistic NN and NNN interactions with ties to QCD. Chiral perturbation theory within effective field theory ({chi}EFT) provides us with a promising bridge between QCD and hadronic systems. In this approach one works consistently with systems of increasing nucleon number and makes use of the explicit and spontaneous breaking of chiral symmetry to expand the strong interaction in terms of a dimensionless constant, the ratio of a generic small momentum divided by the chiral symmetry breaking scale taken to be about 1 GeV/c. The resulting NN

  12. Ab Initio Multiple Spawning Method for Intersystem Crossing Dynamics: Spin-Forbidden Transitions between (3)B1 and (1)A1 States of GeH2.

    PubMed

    Fedorov, Dmitry A; Pruitt, Spencer R; Keipert, Kristopher; Gordon, Mark S; Varganov, Sergey A

    2016-05-12

    Dynamics at intersystem crossings are fundamental to many processes in chemistry, physics, and biology. The ab initio multiple spawning (AIMS) method was originally developed to describe internal conversion dynamics at conical intersections where derivative coupling is responsible for nonadiabatic transitions between electronic states with the same spin multiplicity. Here, the applicability of the AIMS method is extended to intersystem crossing dynamics in which transitions between electronic states with different spin multiplicities are mediated by relativistic spin-orbit coupling. In the direct AIMS dynamics, the nuclear wave function is expanded in the basis of frozen multidimensional Gaussians propagating on the coupled electronic potential energy surfaces calculated on the fly. The AIMS method for intersystem crossing is used to describe the nonadiabatic transitions between the (3)B1 and (1)A1 states of GeH2. The potential energies and gradients were obtained at the CASSCF(6,6)/6-31G(d) level of theory. The spin-orbit coupling matrix elements were calculated with the configuration interaction method using the two-electron Breit-Pauli Hamiltonian. The excited (3)B1 state lifetime and intersystem crossing rate constants were estimated by fitting the AIMS state population with the first-order kinetics equation for a reversible unimolecular reaction. The obtained rate constants are compared with the values predicted by the statistical nonadiabatic transition state theory with transition probabilities calculated using the Landau-Zener and weak coupling formulas. PMID:27064356

  13. Electronic coupling calculation and pathway analysis of electron transfer reaction using ab initio fragment-based method. I. FMO-LCMO approach

    NASA Astrophysics Data System (ADS)

    Nishioka, Hirotaka; Ando, Koji

    2011-05-01

    By making use of an ab initio fragment-based electronic structure method, fragment molecular orbital-linear combination of MOs of the fragments (FMO-LCMO), developed by Tsuneyuki et al. [Chem. Phys. Lett. 476, 104 (2009)], 10.1016/j.cplett.2009.05.069, we propose a novel approach to describe long-distance electron transfer (ET) in large system. The FMO-LCMO method produces one-electron Hamiltonian of whole system using the output of the FMO calculation with computational cost much lower than conventional all-electron calculations. Diagonalizing the FMO-LCMO Hamiltonian matrix, the molecular orbitals (MOs) of the whole system can be described by the LCMOs. In our approach, electronic coupling TDA of ET is calculated from the energy splitting of the frontier MOs of whole system or perturbation method in terms of the FMO-LCMO Hamiltonian matrix. Moreover, taking into account only the valence MOs of the fragments, we can considerably reduce computational cost to evaluate TDA. Our approach was tested on four different kinds of model ET systems with non-covalent stacks of methane, non-covalent stacks of benzene, trans-alkanes, and alanine polypeptides as their bridge molecules, respectively. As a result, it reproduced reasonable TDA for all cases compared to the reference all-electron calculations. Furthermore, the tunneling pathway at fragment-based resolution was obtained from the tunneling current method with the FMO-LCMO Hamiltonian matrix.

  14. Efficient on-the-fly ab initio semiclassical method for computing time-resolved nonadiabatic electronic spectra with surface hopping or Ehrenfest dynamics

    SciTech Connect

    Zimmermann, Tomáš; Vaníček, Jiří

    2014-10-07

    We derive a somewhat crude, yet very efficient semiclassical approximation for computing nonadiabatic spectra. The resulting method, which is a generalization of the multiple-surface dephasing representation, includes quantum effects through interference of mixed quantum-classical trajectories and through quantum treatment of the collective electronic degree of freedom. The method requires very little computational effort beyond the fewest-switches surface hopping or Ehrenfest locally mean-field dynamics and is very easy to implement. The proposed approximation is tested by computing the absorption and time-resolved stimulated emission spectra of pyrazine using the four-dimensional three-surface model which allows for comparison with the numerically exact quantum spectra. As expected, the multiple-surface dephasing representation is not suitable for high-resolution linear spectra, yet it seems to capture all the important features of pump-probe spectra. Finally, the method is combined with on-the-fly ab initio evaluation of the electronic structure (i.e., energies, forces, electric-dipole, and nonadiabatic couplings) in order to compute fully dimensional nonadiabatic spectra of pyrazine without approximations inherent to analytical, including vibronic-coupling models. The Appendix provides derivations of perturbative expressions for linear and pump-probe spectra of arbitrary mixed states and for arbitrary laser pulse shapes.

  15. Accuracy of Calculated Chemical Shifts in Carbon 1s Ionization Energies from Single-Reference ab Initio Methods and Density Functional Theory.

    PubMed

    Holme, Alf; Børve, Knut J; Sæthre, Leif J; Thomas, T Darrah

    2011-12-13

    A database of 77 adiabatic carbon 1s ionization energies has been prepared, covering linear and cyclic alkanes and alkenes, linear alkynes, and methyl- or fluoro-substituted benzenes. Individual entries are believed to carry uncertainties of less than 30 meV in ionization energies and less than 20 meV for shifts in ionization energies. The database provides an unprecedented opportunity for assessing the accuracy of theoretical schemes for computing inner-shell ionization energies and their corresponding chemical shifts. Chemical shifts in carbon 1s ionization energies have been computed for all molecules in the database using Hartree-Fock, Møller-Plesset (MP) many-body perturbation theory of order 2 and 3 as well as various approximations to full MP4, and the coupled-cluster approximation with single- and double-excitation operators (CCSD) and also including a perturbational estimate of the energy effect of triple-excitation operators (CCSD(T)). Moreover, a wide range of contemporary density functional theory (DFT) methods are also evaluated with respect to computing experimental shifts in C1s ionization energies. Whereas the top ab initio methods reproduce the observed shifts almost to within the experimental uncertainty, even the best-performing DFT approaches meet with twice the root-mean-squared error and thrice the maximum error compared to CCSD(T). However, a number of different density energy functionals still afford sufficient accuracy to become tools in the analysis of complex C1s photoelectron spectra. PMID:26598356

  16. Electronic structure, thermodynamic properties and hydrogenation of LaPtIn and CePtIn compounds by ab-initio methods

    NASA Astrophysics Data System (ADS)

    Jezierski, Andrzej; Szytuła, Andrzej

    2016-02-01

    The electronic structures and thermodynamic properties of LaPtIn and CePtIn are studied by means of ab-initio full-relativistic full-potential local orbital basis (FPLO) method within densities functional (DFT) methodologies. We have also examined the influence of hydrogen on the electronic structure and stability of CePtInH and LaPtInH systems. The positions of the hydrogen atoms have been found from the minimum of the total energy. Our calculations have shown that band structure and topology of the Fermi surfaces changed significantly during the hydrogenation. The thermodynamic properties (bulk modulus, Debye temperatures, constant pressure heat capacity) calculated in quasi-harmonic Debye-Grüneisen model are in a good agreement with the experimental data. We have applied different methods of the calculation of the equation of states (EOS) (Murnaghan, Birch-Murnaghan, Poirier-Tarantola, Vinet). The thermodynamic properties are presented for the pressure 0

  17. An Efficient Time-Stepping Scheme for Ab Initio Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Tsuchida, Eiji

    2016-08-01

    In ab initio molecular dynamics simulations of real-world problems, the simple Verlet method is still widely used for integrating the equations of motion, while more efficient algorithms are routinely used in classical molecular dynamics. We show that if the Verlet method is used in conjunction with pre- and postprocessing, the accuracy of the time integration is significantly improved with only a small computational overhead. We also propose several extensions of the algorithm required for use in ab initio molecular dynamics. The validity of the processed Verlet method is demonstrated in several examples including ab initio molecular dynamics simulations of liquid water. The structural properties obtained from the processed Verlet method are found to be sufficiently accurate even for large time steps close to the stability limit. This approach results in a 2× performance gain over the standard Verlet method for a given accuracy. We also show how to generate a canonical ensemble within this approach.

  18. Ab initio computations of photodissociation products of CFC alternatives

    SciTech Connect

    Tai, S.; Illinger, K.H.; Kenny, J.E.

    1995-12-31

    Ab initio computations, have already been used to examine the energetics of the photodissociation of stratospheric chlorofluorocarbons. Our awn research has investigated the ab initio computation of vibrational frequencies and infrared intensities of CF{sub 3}CH{sub 2}F, CF{sub 3}CF{sub 2}H, and CF{sub 3}CH{sub 3}; continuing research will attempt to expand these computations to the energetics of the photodissociation of these molecules, since sane of the most common types of chlorofluorocarbon substitutes are hydrofluoroethanes.

  19. Efficient Ab initio Modeling of Random Multicomponent Alloys

    NASA Astrophysics Data System (ADS)

    Jiang, Chao; Uberuaga, Blas P.

    2016-03-01

    We present in this Letter a novel small set of ordered structures (SSOS) method that allows extremely efficient ab initio modeling of random multicomponent alloys. Using inverse II-III spinel oxides and equiatomic quinary bcc (so-called high entropy) alloys as examples, we demonstrate that a SSOS can achieve the same accuracy as a large supercell or a well-converged cluster expansion, but with significantly reduced computational cost. In particular, because of this efficiency, a large number of quinary alloy compositions can be quickly screened, leading to the identification of several new possible high-entropy alloy chemistries. The SSOS method developed here can be broadly useful for the rapid computational design of multicomponent materials, especially those with a large number of alloying elements, a challenging problem for other approaches.

  20. Efficient Ab initio Modeling of Random Multicomponent Alloys.

    PubMed

    Jiang, Chao; Uberuaga, Blas P

    2016-03-11

    We present in this Letter a novel small set of ordered structures (SSOS) method that allows extremely efficient ab initio modeling of random multicomponent alloys. Using inverse II-III spinel oxides and equiatomic quinary bcc (so-called high entropy) alloys as examples, we demonstrate that a SSOS can achieve the same accuracy as a large supercell or a well-converged cluster expansion, but with significantly reduced computational cost. In particular, because of this efficiency, a large number of quinary alloy compositions can be quickly screened, leading to the identification of several new possible high-entropy alloy chemistries. The SSOS method developed here can be broadly useful for the rapid computational design of multicomponent materials, especially those with a large number of alloying elements, a challenging problem for other approaches. PMID:27015491

  1. Does disorder destroy eg' pockets in Na0.3CoO2? A new ab initio method for disorder

    NASA Astrophysics Data System (ADS)

    Berlijn, Tom; Volja, Dimitri; Ku, Wei

    2009-03-01

    Hydrated Na0.3CoO2 shows interesting superconductivity[1], with evidence of a nodal order parameter[2]. One possible origin of the nodal structure is f-wave pairing[3] due to the six eg' pockets predicted by the local density approximation[4]. However, ARPES experiments[5] showed no sign of these hole pockets. In this talk, we will investigate a recent proposal[6] of destruction of the eg' pockets due to disorder. An affordable ab initio Wannier function based method will be presented that takes into account spatial distributions of disorder, beyond existing mean-field approximations (e.g. VCA, CPA). We also use our Wannier functions to analyse the crystal field splitting, the sign of which critically determines the role of correlation in DMFT. [3pt] [1] K. Takada et al, Nature 422, 53 (2003)[0pt] [2] Zheng G. et al, JPCM 18, L63 (2006)[0pt] [3] Kuroki K. et al, PRL 93, 077001-1 (2004)[0pt] [4] D. Singh, PRB 61, 13397 (2000)[0pt] [5] Hasan M.Z. et al, PRL 92, 246402 (2004)[0pt] [6] D. Singh et al PRL 97, 016404 (2006)

  2. Assessing thermochemical properties of materials through ab initio quantum-mechanical methods: the case of α-Al2O3.

    PubMed

    Erba, Alessandro; Maul, Jefferson; Demichelis, Raffaella; Dovesi, Roberto

    2015-05-01

    The thermochemical behavior of α-Al2O3 corundum in the whole temperature range 0-2317 K (melting point) and under pressures up to 12 GPa is predicted by applying ab initio methods based on the density functional theory (DFT), the use of a local basis set and periodic-boundary conditions. Thermodynamic properties are treated both within and beyond the harmonic approximation to the lattice potential. In particular, a recent implementation of the quasi-harmonic approximation, in the Crystal program, is here shown to provide a reliable description of the thermal expansion coefficient, entropy, constant-volume and constant-pressure specific heats, and temperature dependence of the bulk modulus, nearly up to the corundum melting temperature. This is a remarkable outcome suggesting α-Al2O3 to be an almost perfect quasi-harmonic crystal. The effect of using different computational parameters and DFT functionals belonging to different levels of approximations on the accuracy of the thermal properties is tested, providing a reference for further studies involving alumina polymorphs and, more generally, quasi-ionic minerals. PMID:25864537

  3. Vibrational spectroscopic (FTIR and FT Raman) studies, first order hyperpolarizabilities and HOMO, LUMO analysis of p-toluenesulfonyl isocyanate using ab initio HF and DFT methods.

    PubMed

    Parimala, K; Balachandran, V

    2011-10-15

    The Fourier transform infrared (FTIR) and FT Raman spectra of p-toluenesulfonyl isocyanate (p-tosyl isocyanate) have been measured. The molecular geometry, vibrational frequencies, infrared intensities, Raman activities and atomic charges have been calculated by using ab initio HF and density functional theory calculation (B3LYP) with 6-311+G(d,p) basis set. Complete vibrational assignment and analysis of the fundamental modes of the compound were carried out using the observed FTIR and FT Raman data. The thermodynamic functions of the title compound were also performed with the aid of HF/6-311+G(d,p) and B3LYP/6-311+G(d,p) levels of theory. Simulated FTIR and FT Raman spectra for p-tosyl isocyanate showed good agreement with the observed spectra. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The dipole moment (μ), polarizability (α) and the hyperpolarizability (β) values of the investigated molecule have been computed using HF and B3LYP methods. PMID:21795105

  4. Vibrational spectroscopic (FTIR and FT Raman) studies, first order hyperpolarizabilities and HOMO, LUMO analysis of p-toluenesulfonyl isocyanate using ab initio HF and DFT methods

    NASA Astrophysics Data System (ADS)

    Parimala, K.; Balachandran, V.

    2011-10-01

    The Fourier transform infrared (FTIR) and FT Raman spectra of p-toluenesulfonyl isocyanate (p-tosyl isocyanate) have been measured. The molecular geometry, vibrational frequencies, infrared intensities, Raman activities and atomic charges have been calculated by using ab initio HF and density functional theory calculation (B3LYP) with 6-311+G(d,p) basis set. Complete vibrational assignment and analysis of the fundamental modes of the compound were carried out using the observed FTIR and FT Raman data. The thermodynamic functions of the title compound were also performed with the aid of HF/6-311+G(d,p) and B3LYP/6-311+G(d,p) levels of theory. Simulated FTIR and FT Raman spectra for p-tosyl isocyanate showed good agreement with the observed spectra. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The dipole moment ( μ), polarizability ( α) and the hyperpolarizability ( β) values of the investigated molecule have been computed using HF and B3LYP methods.

  5. Vibrational spectrum and assignments of 2-(4-methoxyphenyl)-1 H-benzo[ d]imidazole by ab initio Hartree-Fock and density functional methods

    NASA Astrophysics Data System (ADS)

    Arslan, Hakan; Algül, Öztekin

    2008-06-01

    The room temperature attenuated total reflection Fourier transform infrared spectrum of the 2-(4-methoxyphenyl)-1 H-benzo[ d]imidazole has been recorded with diamond/ZnSe prism. The conformational behaviour, structural stability of optimized geometry, frequency and intensity of the vibrational bands of the title compound were investigated by utilizing ab initio calculations with 6-311G** basis set at HF, B3LYP, BLYP, B3PW91 and mPW1PW91 levels. The harmonic vibrational frequencies were calculated and scaled values have been compared with experimental IR spectrum. The observed and the calculated frequencies are found to be in good agreement. The theoretical vibrational spectra of the title compound were interpreted by means of potential energy distributions using VEDA 4 program. Furthermore, the optimal uniform scaling factors calculated for the title compound are 0.9120, 0.9596, 0.9660, 0.9699, and 0.9993 for HF, mPW1PW91, B3PW91, B3LYP and BLYP methods, respectively.

  6. Assignment of the Fundamental Modes of Hydroxyacetone Using Gas-Phase Infrared, Far-Infrared, Raman, and ab Initio Methods: Band Strengths for Atmospheric Measurements.

    PubMed

    Lindenmaier, Rodica; Tipton, Nicole; Sams, Robert L; Brauer, Carolyn S; Blake, Thomas A; Williams, Stephen D; Johnson, Timothy J

    2016-08-01

    Hydroxyacetone (acetol) is a simple organic molecule of interest in both the astrophysical and atmospheric communities. It has recently been observed in biomass burning events and is a known degradation product of isoprene oxidation. However, its vibrational assignment has never been fully completed, and few quantitative data are available for its detection via infrared spectroscopy. Our recent acquisition of both the pressure-broadened gas-phase data and the far-IR spectra now allow for unambiguous assignment of several (new) bands. In particular, the observed C-type bands of several fundamentals (particularly in the far-infrared) and a few combination bands demonstrate that the monomer is in a planar (Cs) conformation, at least a majority of the time. As suggested by other researchers, the monomer is a cis-cis conformer stabilized by an intramolecular O-H···O═C hydrogen bond forming a five-membered planar ring structure. Band assignments in the Cs point group are justified (at least for a good fraction of the molecules in the ensemble) by the presence of the C-type bands. The results and band assignments are well confirmed by both ab initio MP2-ccpvtz calculations and GAMESS (B3LYP) theoretical calculations. In addition, using vetted methods for quantitative measurements, we report the first IR absorption band strengths of acetol (also in electronic format) that can be used for atmospheric monitoring and other applications. PMID:27397573

  7. High-throughput ab-initio dilute solute diffusion database

    PubMed Central

    Wu, Henry; Mayeshiba, Tam; Morgan, Dane

    2016-01-01

    We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world. PMID:27434308

  8. Interatomic Coulombic decay widths of helium trimer: Ab initio calculations

    SciTech Connect

    Kolorenč, Přemysl; Sisourat, Nicolas

    2015-12-14

    We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green’s function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.

  9. Interatomic Coulombic decay widths of helium trimer: Ab initio calculations.

    PubMed

    Kolorenč, Přemysl; Sisourat, Nicolas

    2015-12-14

    We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green's function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states. PMID:26671378

  10. Ab initio study of guanine damage by hydroxyl radical.

    PubMed

    Chaban, Galina M; Wang, Dunyou; Huo, Winifred M

    2015-01-15

    Multiconfigurational ab initio methods are used in this study to examine two initial reactions that take place during the OH radical attack of the DNA base guanine: a ring opening reaction and a hydrogen transfer reaction. The same reactions are also studied in the presence of a single water molecule. The ring opening reaction has a moderate barrier height of ∼20-25 kcal/mol that is relatively insensitive to the presence of water. The barrier of the H-transfer reaction, on the other hand, is lowered from ∼50 to ∼22 kcal/mol when one water molecule is added, thus becoming comparable to the barrier height of the ring opening reaction. PMID:25517252

  11. Vibrational and ab initio molecular dynamics studies of bradykinin

    NASA Astrophysics Data System (ADS)

    Święch, Dominika; Kubisiak, Piotr; Andrzejak, Marcin; Borowski, Piotr; Proniewicz, Edyta

    2016-07-01

    In this study, the comprehensive theoretical and experimental investigations of Raman (RS) and infrared absorption (IR) spectra of bradykinin (BK) are presented. The ab initio Born-Oppenheimer molecular dynamics (BOMD) calculations, in the presence of water molecules that form the first coordination sphere, were used for conformational analysis of the BK structure. Based on the Density Functional Theory (DFT) calculations at the B3LYP/6-311G(d) level the vibrational spectra were interpreted. The calculated frequencies were scaled by means of the effective scaling frequency factor (ESFF) method. The theoretical data, which confirm the compact structure of BK in the presence of the water molecules revealed the remarkable effect of the intermolecular hydrogen bonding on the BK structural properties.

  12. Ab initio water pair potential with flexible monomers.

    PubMed

    Jankowski, Piotr; Murdachaew, Garold; Bukowski, Robert; Akin-Ojo, Omololu; Leforestier, Claude; Szalewicz, Krzysztof

    2015-03-26

    A potential energy surface for the water dimer with explicit dependence on monomer coordinates is presented. The surface was fitted to a set of previously published interaction energies computed on a grid of over a quarter million points in the 12-dimensional configurational space using symmetry-adapted perturbation theory and coupled-cluster methods. The present fit removes small errors in published fits, and its accuracy is critically evaluated. The minimum and saddle-point structures of the potential surface were found to be very close to predictions from direct ab initio optimizations. The computed second virial coefficients agreed well with experimental values. At low temperatures, the effects of monomer flexibility in the virial coefficients were found to be much smaller than the quantum effects. PMID:25687650

  13. Reactive Monte Carlo sampling with an ab initio potential

    NASA Astrophysics Data System (ADS)

    Leiding, Jeff; Coe, Joshua D.

    2016-05-01

    We present the first application of reactive Monte Carlo in a first-principles context. The algorithm samples in a modified NVT ensemble in which the volume, temperature, and total number of atoms of a given type are held fixed, but molecular composition is allowed to evolve through stochastic variation of chemical connectivity. We discuss general features of the method, as well as techniques needed to enhance the efficiency of Boltzmann sampling. Finally, we compare the results of simulation of NH3 to those of ab initio molecular dynamics (AIMD). We find that there are regions of state space for which RxMC sampling is much more efficient than AIMD due to the "rare-event" character of chemical reactions.

  14. High-throughput ab-initio dilute solute diffusion database.

    PubMed

    Wu, Henry; Mayeshiba, Tam; Morgan, Dane

    2016-01-01

    We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world. PMID:27434308

  15. Ab initio calculations of grain boundaries in bcc metals

    NASA Astrophysics Data System (ADS)

    Scheiber, Daniel; Pippan, Reinhard; Puschnig, Peter; Romaner, Lorenz

    2016-03-01

    In this study, we compute grain boundary (GB) properties for a large set of GBs in bcc transition metals with a special focus on W, Mo and Fe using ab initio density functional theory (DFT) and semi-empirical second nearest neighbour modified embedded atom method (2NN-MEAM) potentials. The GB properties include GB energies, surface energies, GB excess volume and work of separation, which we analyse and then compare to experimental data. We find that the used 2NN-MEAM potentials can predict general trends of GB properties, but do not always reproduce the GB ground state structure and energy found with DFT. In particular, our results explain the experimental finding that W and Mo prefer intergranular fracture, while other bcc metals prefer transgranular cleavage.

  16. Dialkylimidazolium chloroaluminates: Ab initio calculations, Raman and neutron scattering measurements

    SciTech Connect

    Takahasi, S. ); Curtiss, L.A.; Gosztola, D.; Koura, N. ); Loong, C.K.; Saboungi, M.L. . Materials Science Div.)

    1993-04-01

    The Raman and neutron scattering spectra of 46 mol% AlCl[sub 3] -54 mol% 1-ethyl-3-methyl imidazolium chloride (EMIC) and 67 mol% AlCl[sub 3] - 33 mol% EMIC melts are presented. Ab initio molecular orbital calculations have been carried out on structures of chloroaluminate anion and EMI cation and the interaction between anion and cation.

  17. Towards SiC Surface Functionalization: An Ab Initio Study

    SciTech Connect

    Cicero, G; Catellani, A

    2005-01-28

    We present a microscopic model of the interaction and adsorption mechanism of simple organic molecules on SiC surfaces as obtained from ab initio molecular dynamics simulations. Our results open the way to functionalization of silicon carbide, a leading candidate material for bio-compatible devices.

  18. Heats of Segregation of BCC Binaries from Ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2003-01-01

    We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  19. The Nature of Noncovalent Interactions in Catenane Supramolecular Complexes: Calibrating the MM3 Force Field with ab initio, DFT and SAPT Methods

    PubMed Central

    Simeon, Tomekia M.; Ratner, Mark A.; Schatz, George C.

    2013-01-01

    The design and assembly of mechanically interlocked molecules, such as catenanes and rotaxanes, are dictated by various types of noncovalent interactions. In particular, [C-H⋯O] hydrogen-bonding and π-π stacking interactions in these supramolecular complexes have been identified as important noncovalent interactions. With this in mind, we examined the [3] catenane 2·4PF6 using molecular mechanics (MM3), ab initio methods (HF, MP2), several versions of density functional theory (DFT) (B3LYP, M0X), and the dispersion-corrected method DFT-D3. Symmetry adapted perturbation theory (DFT-SAPT) provides the highest level of theory considered, and we use the DFT-SAPT results both to calibrate the other electronic structure methods, and the empirical potential MM3 force field that is often used to describe larger catenane and rotaxane structures where [C-H⋯O] hydrogen-bonding and π-π stacking interactions play a role. Our results indicate that the MM3 calculated complexation energies agree qualitatively with the energetic ordering from DFT-SAPT calculations with an aug-cc-pVTZ basis, both for structures dominated by [C-H⋯O] hydrogen-bonding and π-π stacking interactions. When the DFT-SAPT energies are decomposed into components, and we find that electrostatic interactions dominate the [C-H⋯O] hydrogen-bonding interactions while dispersion makes a significant contribution to π-π stacking. Another important conclusion is that DFT-D3 based on M06 or M06-2X provides interactions energies that are in near-quantitative agreement with DFT-SAPT. DFT results without the D3 correct have important differences compared to DFT-SAPT while HF and even MP2 results are in poor agreement with DFT-SAPT. PMID:23941280

  20. An ab initio-based Er–He interatomic potential in hcp Er

    SciTech Connect

    Yang, Li; ye, Yeting; Fan, K. M.; Shen, Huahai; Peng, Shuming; Long, XG; Zhou, X. S.; Zu, Xiaotao; Gao, Fei

    2014-09-01

    We have developed an empirical erbium-helium (Er-He) potential by fitting to the results calculated from ab initio method. Based on the electronic hybridization between Er and He atoms, an s-band model, along with a repulsive pair potential, has been derived to describe the Er-He interaction. The atomic configurations and the formation energies of single He defects, small He interstitial clusters (Hen) and He-vacancy (HenV ) clusters obtained by ab initio calculations are used as the fitting database. The binding energies and relative stabilities of the HnVm clusters are studied by the present potential and compared with the ab initio calculations. The Er-He potential is also applied to study the migration of He in hcp-Er at different temperatures, and He clustering is found to occur at 600 K in hcp Er crystal, which may be due to the anisotropic migration behavior of He interstitials.

  1. Efficient ab initio free energy calculations by classically assisted trajectory sampling

    NASA Astrophysics Data System (ADS)

    Wilson, Hugh F.

    2015-12-01

    A method for efficiently performing ab initio free energy calculations based on coupling constant thermodynamic integration is demonstrated. By the use of Boltzmann-weighted sums over states generated from a classical ensemble, the free energy difference between the classical and ab initio ensembles is readily available without the need for time-consuming integration over molecular dynamics trajectories. Convergence and errors in this scheme are discussed and characterised in terms of a quantity representing the degree of misfit between the classical and ab initio systems. Smaller but still substantial efficiency gains over molecular dynamics are also demonstrated for the calculation of average properties such as pressure and total energy for systems in equilibrium.

  2. Ab Initio and Phenomenological Modeling of the Phonon Spectrum of Superhard cp-BC2N

    NASA Astrophysics Data System (ADS)

    Basalaev, Yu. M.; Kopytov, A. V.; Pavlova, T. Yu.; Poplavnoi, A. S.

    2015-11-01

    The phonon spectrum of hypothetical superhard cp-BC2N is calculated based on ab initio method of density functional in the center of the Brillouin zone and interpolated over the entire Brillouin zone using the Keating phenomenological model. The interaction parameters are determined by optimization of the IR- and Ramanactive frequencies for a phenomenological model by their comparison with the results of ab initio calculations. Numerical values of short-range interaction constants and charges are in agreement with the characteristics of the chemical bond calculated ab initio. These parameters have transparent physical meaning and chemical nature and can further be used for both qualitative estimations of any physical and physico-chemical quantities and quantitative calculations of the phonon spectra of a number of isostructural compounds. The Keating phenomenological model is used to study the genesis of the phonon spectrum from the spectra of sublattices.

  3. The Effect of Molecular Conformation on the Accuracy of Theoretical (1)H and (13)C Chemical Shifts Calculated by Ab Initio Methods for Metabolic Mixture Analysis.

    PubMed

    Chikayama, Eisuke; Shimbo, Yudai; Komatsu, Keiko; Kikuchi, Jun

    2016-04-14

    NMR spectroscopy is a powerful method for analyzing metabolic mixtures. The information obtained from an NMR spectrum is in the form of physical parameters, such as chemical shifts, and construction of databases for many metabolites will be useful for data interpretation. To increase the accuracy of theoretical chemical shifts for development of a database for a variety of metabolites, the effects of sets of conformations (structural ensembles) and the levels of theory on computations of theoretical chemical shifts were systematically investigated for a set of 29 small molecules in the present study. For each of the 29 compounds, 101 structures were generated by classical molecular dynamics at 298.15 K, and then theoretical chemical shifts for 164 (1)H and 123 (13)C atoms were calculated by ab initio quantum chemical methods. Six levels of theory were used by pairing Hartree-Fock, B3LYP (density functional theory), or second order Møller-Plesset perturbation with 6-31G or aug-cc-pVDZ basis set. The six average fluctuations in the (1)H chemical shift were ±0.63, ± 0.59, ± 0.70, ± 0.62, ± 0.75, and ±0.66 ppm for the structural ensembles, and the six average errors were ±0.34, ± 0.27, ± 0.32, ± 0.25, ± 0.32, and ±0.25 ppm. The results showed that chemical shift fluctuations with changes in the conformation because of molecular motion were larger than the differences between computed and experimental chemical shifts for all six levels of theory. In conclusion, selection of an appropriate structural ensemble should be performed before theoretical chemical shift calculations for development of an accurate database for a variety of metabolites. PMID:26963288

  4. Development of an ab-initio calculation method for 2D layered materials-based optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Kim, Han Seul; Kim, Yong-Hoon

    We report on the development of a novel first-principles method for the calculation of non-equilibrium nanoscale device operation process. Based on region-dependent Δ self-consistent field method beyond the standard density functional theory (DFT), we will introduce a novel method to describe non-equilibrium situations such as external bias and simultaneous optical excitations. In particular, we will discuss the limitation of conventional method and advantage of our scheme in describing 2D layered materials-based devices operations. Then, we investigate atomistic mechanism of optoelectronic effects from 2D layered materials-based devices and suggest the optimal material and architecture for such devices.

  5. Calculating solution redox free energies with ab initio quantum mechanical/molecular mechanical minimum free energy path method

    NASA Astrophysics Data System (ADS)

    Zeng, Xiancheng; Hu, Hao; Hu, Xiangqian; Yang, Weitao

    2009-04-01

    A quantum mechanical/molecular mechanical minimum free energy path (QM/MM-MFEP) method was developed to calculate the redox free energies of large systems in solution with greatly enhanced efficiency for conformation sampling. The QM/MM-MFEP method describes the thermodynamics of a system on the potential of mean force surface of the solute degrees of freedom. The molecular dynamics (MD) sampling is only carried out with the QM subsystem fixed. It thus avoids "on-the-fly" QM calculations and thus overcomes the high computational cost in the direct QM/MM MD sampling. In the applications to two metal complexes in aqueous solution, the new QM/MM-MFEP method yielded redox free energies in good agreement with those calculated from the direct QM/MM MD method. Two larger biologically important redox molecules, lumichrome and riboflavin, were further investigated to demonstrate the efficiency of the method. The enhanced efficiency and uncompromised accuracy are especially significant for biochemical systems. The QM/MM-MFEP method thus provides an efficient approach to free energy simulation of complex electron transfer reactions.

  6. Calculating solution redox free energies with ab initio quantum mechanical/molecular mechanical minimum free energy path method

    SciTech Connect

    Zeng Xiancheng; Hu Hao; Hu Xiangqian; Yang Weitao

    2009-04-28

    A quantum mechanical/molecular mechanical minimum free energy path (QM/MM-MFEP) method was developed to calculate the redox free energies of large systems in solution with greatly enhanced efficiency for conformation sampling. The QM/MM-MFEP method describes the thermodynamics of a system on the potential of mean force surface of the solute degrees of freedom. The molecular dynamics (MD) sampling is only carried out with the QM subsystem fixed. It thus avoids 'on-the-fly' QM calculations and thus overcomes the high computational cost in the direct QM/MM MD sampling. In the applications to two metal complexes in aqueous solution, the new QM/MM-MFEP method yielded redox free energies in good agreement with those calculated from the direct QM/MM MD method. Two larger biologically important redox molecules, lumichrome and riboflavin, were further investigated to demonstrate the efficiency of the method. The enhanced efficiency and uncompromised accuracy are especially significant for biochemical systems. The QM/MM-MFEP method thus provides an efficient approach to free energy simulation of complex electron transfer reactions.

  7. Development and application of a hybrid method involving interpolation and ab initio calculations for the determination of transition states.

    PubMed

    Goodrow, Anthony; Bell, Alexis T; Head-Gordon, Martin

    2008-11-01

    Transition state search algorithms, such as the nudged elastic band can fail, if a good initial guess of the transition state structure cannot be provided. The growing string method (GSM) [J. Chem. Phys. 120, 7877 (2004)] eliminates the need for an initial guess of the transition state. While this method only requires knowledge of the reactant and product geometries, it is computationally intensive. To alleviate the bottlenecks in the GSM, several modifications were implemented: Cartesian coordinates were replaced by internal coordinates, the steepest descent method for minimization of orthogonal forces to locate the reaction path was replaced by the conjugate gradient method, and an interpolation scheme was used to estimate the energy and gradient, thereby reducing the calls to the quantum mechanical (QM) code. These modifications were tested to measure the reduction in computational time for four cases of increasing complexity: the Muller-Brown potential energy surface, alanine dipeptide isomerization, H abstraction in methanol oxidation, and C-H bond activation in oxidative carbonylation of toluene to p-toluic acid. These examples show that the modified GSM can achieve two- to threefold speedups (measured in terms of the reduction in actual QM gradients computed) over the original version of the method without compromising accuracy of the geometry and energy of the final transition state. Additional savings in computational effort can be achieved by carrying out the initial search for the minimum energy pathway (MEP) using a lower level of theory (e.g., HF/STO-3G) and then refining the MEP using density functional theory at the B3LYP level with larger basis sets (e.g., 6-31G( *), LANL2DZ). Thus, a general strategy for determining transition state structures is to initiate the modified GSM using a low level of theory with minimal basis sets and then refining the calculation at a higher level of theory with larger basis sets. PMID:19045335

  8. Development and application of a hybrid method involving interpolation and ab initio calculations for the determination of transition states

    NASA Astrophysics Data System (ADS)

    Goodrow, Anthony; Bell, Alexis T.; Head-Gordon, Martin

    2008-11-01

    Transition state search algorithms, such as the nudged elastic band can fail, if a good initial guess of the transition state structure cannot be provided. The growing string method (GSM) [J. Chem. Phys. 120, 7877 (2004)] eliminates the need for an initial guess of the transition state. While this method only requires knowledge of the reactant and product geometries, it is computationally intensive. To alleviate the bottlenecks in the GSM, several modifications were implemented: Cartesian coordinates were replaced by internal coordinates, the steepest descent method for minimization of orthogonal forces to locate the reaction path was replaced by the conjugate gradient method, and an interpolation scheme was used to estimate the energy and gradient, thereby reducing the calls to the quantum mechanical (QM) code. These modifications were tested to measure the reduction in computational time for four cases of increasing complexity: the Müller-Brown potential energy surface, alanine dipeptide isomerization, H abstraction in methanol oxidation, and C-H bond activation in oxidative carbonylation of toluene to p-toluic acid. These examples show that the modified GSM can achieve two- to threefold speedups (measured in terms of the reduction in actual QM gradients computed) over the original version of the method without compromising accuracy of the geometry and energy of the final transition state. Additional savings in computational effort can be achieved by carrying out the initial search for the minimum energy pathway (MEP) using a lower level of theory (e.g., HF/STO-3G) and then refining the MEP using density functional theory at the B3LYP level with larger basis sets (e.g., 6-31G∗, LANL2DZ). Thus, a general strategy for determining transition state structures is to initiate the modified GSM using a low level of theory with minimal basis sets and then refining the calculation at a higher level of theory with larger basis sets.

  9. Introduction of a fully relativistic capable basis set in the ab initio orthogonalized linear combination of atomic orbitals method

    NASA Astrophysics Data System (ADS)

    Thomas, Patrick Ryan

    Large simulation cell sizes, relativistic effects, and the need to correctly model excited state properties are major impediments to the accurate prediction of the optical properties of candidate materials for solid-state laser crystal and luminescent applications. To overcome these challenges, new methods must be created to improve the electron orbital wavefunction and interactions. In this work, a method has been developed to create new analytical four-component, fully-relativistic and single-component scalar relativistic descriptions of the atomic orbital wave functions from Grasp2K numerically represented atomic orbitals. In addition, adapted theory for the calculation of the relativistic kinetic energy contribution to Hamiltonian which bypasses directly solving the Dirac equation has been explicated. The orbital description improvements are tested against YAG, YBCO, SnO2 and BiF3. The improvements to the basis set reflect an improvement in both computational speed and accuracy.

  10. Ab initio quantum-chemical study on emission spectra of bioluminescent luciferases by fragment molecular orbital method

    NASA Astrophysics Data System (ADS)

    Tagami, Ayumu; Ishibashi, Nobuhiro; Kato, Dai-ichiro; Taguchi, Naoki; Mochizuki, Yuji; Watanabe, Hirofumi; Ito, Mika; Tanaka, Shigenori

    2009-04-01

    Bioluminescence spectra of firefly Luciola cruciata were theoretically analyzed on the basis of the fragment molecular orbital (FMO) method. The CIS(D) and PR-CIS(Ds) methods were employed for the calculations of emission energies of wild-type and mutant luciferase-oxyluciferin systems, and various multi-layer FMO calculations were performed changing the sizes of the luciferase protein and of the chromophore to which the excited-state calculations were applied. We have thus reproduced the experimental emission energies of wild-type and mutant luciferase systems with good accuracy, which provides useful information concerning the roles of protein environment for the color tuning of the bioluminescence spectra of firefly.

  11. The electronic excited states of a model organic endoperoxide: A comparison of TD-DFT and ab initio methods

    NASA Astrophysics Data System (ADS)

    Corral, Inés; González, Leticia

    2007-10-01

    The vertical excited spectrum of a model endoperoxide (cyclohexadieneendoperoxide) has been calculated using time dependent density functional theory (TD-DFT), resolution of the identity second order approximate coupled-cluster theory (RI-CC2), multiconfigurational complete active space self consistent field (CASSCF) and second order multi-state perturbation theory (MS-CASPT2). All theoretical methods predict the charge transfer πOO∗→πCC∗, and the πOO∗→σOO∗ excitation to be the lowest absorbing excited states. CASSCF optimized geometries for these states provide some hints about the photodissociation mechanisms as well as the emission spectrum of the molecule.

  12. The MSRC Ab Initio Methods Benchmark Suite: A measurement of hardware and software performance in the area of electronic structure methods

    SciTech Connect

    Feller, D.F.

    1993-07-01

    This collection of benchmark timings represents a snapshot of the hardware and software capabilities available for ab initio quantum chemical calculations at Pacific Northwest Laboratory`s Molecular Science Research Center in late 1992 and early 1993. The ``snapshot`` nature of these results should not be underestimated, because of the speed with which both hardware and software are changing. Even during the brief period of this study, we were presented with newer, faster versions of several of the codes. However, the deadline for completing this edition of the benchmarks precluded updating all the relevant entries in the tables. As will be discussed below, a similar situation occurred with the hardware. The timing data included in this report are subject to all the normal failures, omissions, and errors that accompany any human activity. In an attempt to mimic the manner in which calculations are typically performed, we have run the calculations with the maximum number of defaults provided by each program and a near minimum amount of memory. This approach may not produce the fastest performance that a particular code can deliver. It is not known to what extent improved timings could be obtained for each code by varying the run parameters. If sufficient interest exists, it might be possible to compile a second list of timing data corresponding to the fastest observed performance from each application, using an unrestricted set of input parameters. Improvements in I/O might have been possible by fine tuning the Unix kernel, but we resisted the temptation to make changes to the operating system. Due to the large number of possible variations in levels of operating system, compilers, speed of disks and memory, versions of applications, etc., readers of this report may not be able to exactly reproduce the times indicated. Copies of the output files from individual runs are available if questions arise about a particular set of timings.

  13. Ab initio single and multideterminant methods used in the determination of reduction potentials and magnetic properties of Rieske ferredoxins

    NASA Astrophysics Data System (ADS)

    Powers, Nathan Lee

    2008-10-01

    The [Fe2S2]2+/[Fe2S 2]+ electronic structure of seven Rieske protein active sites (bovine mitochondrial cytochrome bc1 complex, spinach chloroplast cytochrome b6f complex, Rieske-type ferredoxin associated with biphenyl dioxygenase from Burkholderia cepacia, yeast cytochrome bcl complex from Saccharomyces cerevisiae, Rieske subunit of arsenite oxidase from Alcaligenes faecalis, respiratory-type Rieske protein from Thermus thermophilus, and Rieske protein II (soxF) from Sulfolobus acidocaldarius), which lie in a reduction potential range from -150 mV to 375 mV, have been studied by both single and multi-determinant quantum mechanical methods. Calculated reduction potentials and magnetic properties are found comparable to experimental values.

  14. Structural exploration and properties of (H2O)4+ cluster via ab initio in combination with particle swarm optimization method

    NASA Astrophysics Data System (ADS)

    Lv, Zhen-Long; Cheng, Yan; Chen, Xiang-Rong; Cai, Ling-Cang

    2015-05-01

    As a microscopic model to study ionized water, cationic water clusters are hot research subjects in these days, which also has many unique properties compared with their neutral counterparts. Here, the isomers of (H2O)4+ cluster were searched by using particle swarm optimization method with the help of quantum chemical calculations. Eighteen stable candidates were obtained after optimization performed at the MP2/aug-cc-pVDZ level. Their relative Gibbs free energies below 350 K, the infrared spectra of the five lowest energy isomers and the electronic characteristics of the representative isomers were investigated. For these isomers, the effect of the zero point vibrational energies, the relationship between the schemes of the isomers and their energies, and the constituents of the most important orbitals were studied, which provide us with much information for further studying this kind of clusters.

  15. Raman spectra calculations for Si-Ge core-shell nanocrystals using ab initio real-space methods

    NASA Astrophysics Data System (ADS)

    Bobbitt, N. Scott; Chelikowsky, James R.

    We use a real-space pseudopotential method within density functional theory to calculate Raman spectra for Si-Ge core-shell nanocrystals. We examine the lattice strain induced by the interface of the core and the shell. We calculate how this strain affects the vibrational modes and Raman spectra. We also find that the relative size of the Si and Ge peaks in the Raman spectrum is proportional to the size of the Si core and Ge shell regions, which suggests that Raman spectroscopy can be used to experimentally determine the relative size of the core and the outer shell in these nanocrystals. This work is supported by the DOE under Grant Number DE-FG02-06ER46286. Computations were performed on machines at TACC and NERSC.

  16. Effect of chemical substitutions on photo-switching properties of 3-hydroxy-picolinic acid studied by ab initio methods

    NASA Astrophysics Data System (ADS)

    Rode, Michał F.; Sobolewski, Andrzej L.

    2014-02-01

    Effect of chemical substitutions to the molecular structure of 3-hydroxy-picolinic acid on photo-switching properties of the system operating on excited-state intramolecular double proton transfer (d-ESIPT) process [M. F. Rode and A. L. Sobolewski, Chem. Phys. 409, 41 (2012)] was studied with the aid of electronic structure theory methods. It was shown that simultaneous application of electron-donating and electron-withdrawing substitutions at certain positions of the molecular frame increases the height of the S0-state tautomerization barrier (ensuring thermal stability of isomers) and facilitates a barrierless access to the S1/S0 conical intersection from the Franck-Condon region of the S1 potential-energy surface. Results of study point to the conclusion that the most challenging issue for practical design of a fast molecular photoswitch based on d-ESIPT phenomenon are to ensure a selectivity of optical excitation of a given tautomeric form of the system.

  17. Effect of chemical substitutions on photo-switching properties of 3-hydroxy-picolinic acid studied by ab initio methods

    SciTech Connect

    Rode, Michał F. Sobolewski, Andrzej L.

    2014-02-28

    Effect of chemical substitutions to the molecular structure of 3-hydroxy-picolinic acid on photo-switching properties of the system operating on excited-state intramolecular double proton transfer (d-ESIPT) process [M. F. Rode and A. L. Sobolewski, Chem. Phys. 409, 41 (2012)] was studied with the aid of electronic structure theory methods. It was shown that simultaneous application of electron-donating and electron-withdrawing substitutions at certain positions of the molecular frame increases the height of the S{sub 0}-state tautomerization barrier (ensuring thermal stability of isomers) and facilitates a barrierless access to the S{sub 1}/S{sub 0} conical intersection from the Franck-Condon region of the S{sub 1} potential-energy surface. Results of study point to the conclusion that the most challenging issue for practical design of a fast molecular photoswitch based on d-ESIPT phenomenon are to ensure a selectivity of optical excitation of a given tautomeric form of the system.

  18. Investigation of thermochemistry associated with the carbon-carbon coupling reactions of furan and furfural using ab initio methods.

    PubMed

    Liu, Cong; Assary, Rajeev S; Curtiss, Larry A

    2014-06-26

    Upgrading furan and small oxygenates obtained from the decomposition of cellulosic materials via formation of carbon-carbon bonds is critical to effective conversion of biomass to liquid transportation fuels. Simulation-driven molecular level understanding of carbon-carbon bond formation is required to design efficient catalysts and processes. Accurate quantum chemical methods are utilized here to predict the reaction energetics for conversion of furan (C4H4O) to C5-C8 ethers and the transformation of furfural (C5H6O2) to C13-C26 alkanes. Furan can be coupled with various C1 to C4 low molecular weight carbohydrates obtained from the pyrolysis via Diels-Alder type reactions in the gas phase to produce C5-C8 cyclic ethers. The computed reaction barriers for these reactions (∼25 kcal/mol) are lower than the cellulose activation or decomposition reactions (∼50 kcal/mol). Cycloaddition of C5-C8 cyclo ethers with furans can also occur in the gas phase, and the computed activation energy is similar to that of the first Diels-Alder reaction. Furfural, obtained from biomass, can be coupled with aldehydes or ketones with α-hydrogen atoms to form longer chain aldol products, and these aldol products can undergo vapor phase hydrocycloaddition (activation barrier of ∼20 kcal/mol) to form the precursors of C26 cyclic hydrocarbons. These thermochemical studies provide the basis for further vapor phase catalytic studies required for upgrading of furans/furfurals to longer chain hydrocarbons. PMID:24902118

  19. Ab initio molecular crystal structures, spectra, and phase diagrams.

    PubMed

    Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni

    2014-09-16

    Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling

  20. Ab initio Monte Carlo investigation of small lithium clusters.

    SciTech Connect

    Srinivas, S.

    1999-06-16

    Structural and thermal properties of small lithium clusters are studied using ab initio-based Monte Carlo simulations. The ab initio scheme uses a Hartree-Fock/density functional treatment of the electronic structure combined with a jump-walking Monte Carlo sampling of nuclear configurations. Structural forms of Li{sub 8} and Li{sub 9}{sup +} clusters are obtained and their thermal properties analyzed in terms of probability distributions of the cluster potential energy, average potential energy and configurational heat capacity all considered as a function of the cluster temperature. Details of the gradual evolution with temperature of the structural forms sampled are examined. Temperatures characterizing the onset of structural changes and isomer coexistence are identified for both clusters.

  1. Understanding phonon transport in thermoelectric materials using ab initio approaches

    NASA Astrophysics Data System (ADS)

    Broido, David

    Good thermoelectric materials have low phonon thermal conductivity, kph. Accurate theories to describe kph are important components in developing predictive models of thermoelectric efficiency that can help guide synthesis and measurement efforts. We have developed ab initio approaches to calculate kph, in which phonon modes and phonon scattering rates are computed using interatomic force constants determined from density functional theory, and a full solution of the Boltzmann transport equation for phonons is implemented. A recent approach to calculate interatomic force constants using ab initio molecular dynamics has yielded a good description of the thermal properties of Bi2Te3. But, the complexity of new promising candidate thermoelectric materials introduces computational challenges in assessing their thermal properties. An example is germanane, a germanium based hydrogen-terminated layered semiconductor, which we will discuss in this talk.

  2. Towards AB Initio Calculation of the Circular Dichroism of Peptides

    NASA Astrophysics Data System (ADS)

    Molteni, E.; Onida, G.; Tiana, G.

    2012-08-01

    In this work we plan to use ab initio spectroscopy calculations to compute circular dichroism (CD) spectra of peptides. CD provides information on protein secondary structure content; peptides, instead, remain difficult to address, due to their tendency to adopt multiple conformations in equilibrium. Therefore peptides are an interesting test-case for ab initio calculation of CD spectra. As a first application, we focus on the (83-92) fragment of HIV-1 protease, which is known to be involved in the folding and dimerization of this protein. As a preliminary step, we performed classical molecular dynamics (MD) simulations, in order to obtain a set of representative conformers of the peptide. Then, on some of the obtained conformations, we calculated absorption spectra at the independent particle, RPA and TDLDA levels, showing the presence of charge transfer excitations, and their influence on spectral features.

  3. Ab-initio calculations on melting of thorium

    NASA Astrophysics Data System (ADS)

    Mukherjee, D.; Sahoo, B. D.; Joshi, K. D.; Kaushik, T. C.; Gupta, Satish C.

    2016-05-01

    Ab-initio molecular dynamics study has been performed on face centered cubic structured thorium to determine its melting temperature at room pressure. The ion-electron interaction potential energy calculated as a function of temperature for three volumes (a0)3 and (1.02a0)3 and (1.04a0)3 increases gradually with temperature and undergoes a sharp jump at ~2200 K, ~2100 K and ~1800 K, respectively. Here, a0 = 5.043 Å is the equilibrium lattice parameter at 0 K obtained from ab-initio calculations. These jumps in interaction energy are treated as due to the onset of melting and corresponding temperatures as melting point. The melting point of 2100 K is close to the experimental value of 2023K. Further, the same has been verified by plotting the atomic arrangement evolved at various temperatures and corresponding pair correlation functions.

  4. Ab initio molecular dynamics: concepts, recent developments, and future trends.

    PubMed

    Iftimie, Radu; Minary, Peter; Tuckerman, Mark E

    2005-05-10

    The methodology of ab initio molecular dynamics, wherein finite-temperature dynamical trajectories are generated by using forces computed "on the fly" from electronic structure calculations, has had a profound influence in modern theoretical research. Ab initio molecular dynamics allows chemical processes in condensed phases to be studied in an accurate and unbiased manner, leading to new paradigms in the elucidation of microscopic mechanisms, rationalization of experimental data, and testable predictions of new phenomena. The purpose of this work is to give a brief introduction to the technique and to review several important recent developments in the field. Several illustrative examples showing the power of the technique have been chosen. Perspectives on future directions in the field also will be given. PMID:15870204

  5. Ab Initio Electronic Relaxation Times and Transport in Noble Metals

    NASA Astrophysics Data System (ADS)

    Mustafa, Jamal I.; Bernardi, Marco; Neaton, Jeffrey B.; Louie, Steven G.

    Relaxation times employed to study electron transport in metals are typically assumed to be constants and obtained empirically using the Drude model. Here, we employ ab initio calculations to compute the electron-phonon relaxation times of Cu, Ag, and Au, and find that they vary significantly on the Fermi surface, spanning ~15 -45 fs. We compute room temperature resistivities in excellent agreement with experiment by combining GW bandstructures, Wannier-interpolated band velocities, and ab initio relaxation times. Our calculations are compared to other approximations used for the relaxation times. Additionally, an importance sampling scheme is introduced to speed up the convergence of resistivity and transport calculations by sampling directly points on the Fermi surface. This work was supported by NSF Grant No. DMR15-1508412 and U.S. DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided by DOE at LBNL's NERSC facility.

  6. Spin-orbit decomposition of ab initio nuclear wave functions

    NASA Astrophysics Data System (ADS)

    Johnson, Calvin W.

    2015-03-01

    Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum j , leading to j -j coupling, decades ago phenomenological models suggested that a simpler picture for 0 p -shell nuclides can be realized via coupling of the total spin S and total orbital angular momentum L . I revisit this idea with large-basis, no-core shell-model calculations using modern ab initio two-body interactions and dissect the resulting wave functions into their component L - and S -components. Remarkably, there is broad agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly 50 years and six orders of magnitude in basis dimensions. I suggest that L -S decomposition may be a useful tool for analyzing ab initio wave functions of light nuclei, for example, in the case of rotational bands.

  7. Towards an ab initio description of correlated materials

    NASA Astrophysics Data System (ADS)

    Yee, Chuck-Hou

    Strongly-correlated materials are a rich playground for physical phenomena, exhibiting complex phase diagrams with many competing orders. Ab initio insights into materials combined with physical ideas provide the ability to identify the organizing principles driving the correlated electronic behavior and pursue first-principles design of new compounds. Realistic modeling of correlated materials is an active area of research, especially with the recent merger of density functional theory (DFT) with dynamical mean-field theory (DMFT). This thesis is structured in two parts. The first describes the methods and algorithmic developments which drive advances in DFT+DMFT. In Ch. 2 and 3, we provide an overview of the two foundational theories, DMFT and DFT. In the second half of Ch. 3, we describe some of the principles guiding the combination of the two theories to form DFT+DMFT. In Ch. 4, we describe the algorithm lying at the heart of modern DFT+DMFT implementations, the hybridization expansion formulation of continuous-time quantum monte carlo (CTQMC) for the general Anderson impurity problem, as well as a fast rejection algorithm for speeding-up the local trace evaluation. The final chapter in the methods section describes an algorithm for direct sampling of the partition function, and thus the free energy and entropy, of simple Anderson impurity models within CTQMC. The second part of the thesis is a collection of applications of our ab initio approach to key correlated materials. We first apply our method to plutonium binary alloys (Ch. 6), which when supplemented with slave-boson mean-field theory, allows us to understand the observed photoemission spectra. Ch. 7 describes the computation of spectra and optical conductivity for rare-earth nickelates grown as epitaxial thin films. In the final two chapters, we turn our attention to the high-temperature superconductors. In the first, we show that the charge-transfer energy is a key chemical variable which controls

  8. Thermochemical data for CVD modeling from ab initio calculations

    SciTech Connect

    Ho, P.; Melius, C.F.

    1993-12-31

    Ab initio electronic-structure calculations are combined with empirical bond-additivity corrections to yield thermochemical properties of gas-phase molecules. A self-consistent set of heats of formation for molecules in the Si-H, Si-H-Cl, Si-H-F, Si-N-H and Si-N-H-F systems is presented, along with preliminary values for some Si-O-C-H species.

  9. GAUSSIAN 76: An ab initio Molecular Orbital Program

    DOE R&D Accomplishments Database

    Binkley, J. S.; Whiteside, R.; Hariharan, P. C.; Seeger, R.; Hehre, W. J.; Lathan, W. A.; Newton, M. D.; Ditchfield, R.; Pople, J. A.

    1978-01-01

    Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type Gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans.

  10. Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes

    SciTech Connect

    Draayer, Jerry P.

    2014-09-28

    We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).

  11. A Complete and Accurate Ab Initio Repeat Finding Algorithm.

    PubMed

    Lian, Shuaibin; Chen, Xinwu; Wang, Peng; Zhang, Xiaoli; Dai, Xianhua

    2016-03-01

    It has become clear that repetitive sequences have played multiple roles in eukaryotic genome evolution including increasing genetic diversity through mutation, changes in gene expression and facilitating generation of novel genes. However, identification of repetitive elements can be difficult in the ab initio manner. Currently, some classical ab initio tools of finding repeats have already presented and compared. The completeness and accuracy of detecting repeats of them are little pool. To this end, we proposed a new ab initio repeat finding tool, named HashRepeatFinder, which is based on hash index and word counting. Furthermore, we assessed the performances of HashRepeatFinder with other two famous tools, such as RepeatScout and Repeatfinder, in human genome data hg19. The results indicated the following three conclusions: (1) The completeness of HashRepeatFinder is the best one among these three compared tools in almost all chromosomes, especially in chr9 (8 times of RepeatScout, 10 times of Repeatfinder); (2) in terms of detecting large repeats, HashRepeatFinder also performed best in all chromosomes, especially in chr3 (24 times of RepeatScout and 250 times of Repeatfinder) and chr19 (12 times of RepeatScout and 60 times of Repeatfinder); (3) in terms of accuracy, HashRepeatFinder can merge the abundant repeats with high accuracy. PMID:26272474

  12. Local probe studies of Fe hyperfine field in CaFe2As2 by time differential perturbed angular distribution (TDPAD) spectroscopy and ab initio methods

    NASA Astrophysics Data System (ADS)

    Mohanta, S. K.; Mishra, S. N.; Davane, S. M.; Kumar, Neeraj; Thamizhavel, A.; Layek, S.; Hossain, Z.; Srivastava, S. K.

    2013-03-01

    Applying the γ-ray perturbed angular distribution technique we have measured the magnetic hyperfine field and spin relaxation time of recoil implanted 54Fe in single and polycrystalline CaFe2As2 over the temperature range 20-360 K, encompassing both tetragonal and orthorhombic structural phases of the material. The magnetic response of Fe in the high temperature tetragonal phase (T ⩾ 180 K), show Curie-Weiss type local susceptibility and Korringa like spin relaxation, reflecting the presence of localized moment on Fe. In the orthorhombic phase, the spin rotation spectra of 54Fe show two magnetic hyperfine field components, both exhibiting quasi two dimensional magnetic ordering. The experimentally measured hyperfine field and Fe moment show good agreement with results obtained from ab initio calculations performed within the frame work of local spin density approximation (LSDA).

  13. Thermochemistry of molecules in the B-N-Cl-H system: Ab initio predictions using the BAC-MP4 method

    SciTech Connect

    Allendorf, M.D.; Melius, C.F.

    1997-04-03

    A self-consistent set of thermochemical data for 33 molecules in the B-N-Cl-H system are obtained from a combination of ab initio electronic structure calculations and empirical corrections. Calculations were performed for both stable and radical species. Good agreement is found between the calculations and experimental heats of formation for most molecules containing B, H, and Cl. In addition, the BAC-MP4 and experimental heats of formation for H{sub 3}B:NH{sub 3} are also in reasonable agreement, suggesting that the bond additivity parameters chosen for B-N bonds will provide reasonably accurate heats of formation for compounds containing this type of bond. Transition-state energies for two reactions involving BCl{sub 3} and NH{sub 3} are also predicted. Polynomial fits of the predicted thermodynamic data over the 300-4000 K temperature range are included in the Supporting Information. 68 refs., 2 figs., 6 tabs.

  14. A package for the ab-initio calculation of one- and two-photon cross sections of two-electron atoms, using a CI B-splines method

    NASA Astrophysics Data System (ADS)

    Nikolopoulos, L. A. A.

    2003-02-01

    A package is presented for the fully ab-initio calculation of one- and two-photon ionization cross sections for two-electron atomic systems (H -, He, Mg, Ca, …) under strong laser fields, within lowest-order perturbation theory (LOPT) and in the dipole approximation. The atomic structure is obtained through configuration interaction (CI) of antisymmetrized two-electron states expanded in a B-spline finite basis. The formulation of the theory and the relevant codes presented here represent the accumulation of work over the last ten years [1-11,13-15]. Extensions to more than two-photon ionization is straightforward. Calculation is possible for both the length and velocity form of the laser-atom interaction operator. The package is mainly, written in standard FORTRAN language and uses the publicly available libraries SLATEC, LAPACK and BLAS.

  15. Exploring the free energy surface using ab initio molecular dynamics.

    PubMed

    Samanta, Amit; Morales, Miguel A; Schwegler, Eric

    2016-04-28

    Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational and algorithmic perspectives. In this regard, schemes that utilize a set of pre-defined order parameters to sample the relevant parts of the configuration space [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006); J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)] have proved useful. Here, we demonstrate how these order-parameter aided temperature accelerated sampling schemes can be used within the Born-Oppenheimer and the Car-Parrinello frameworks of ab initio molecular dynamics to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways. We have used these methods to identify the metastable structures and reaction pathways in SiO2 and Ti. In addition, we have used the string method [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002); L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] within the density functional theory to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hexagonal closed packed to face centered cubic phase transition in Ti. PMID:27131525

  16. Ab initio description of the exotic unbound 7He nucleus

    DOE PAGESBeta

    Baroni, Simone; Navratil, Petr; Quaglioni, Sofia

    2013-01-11

    In this study, the neutron-rich unbound 7He nucleus has been the subject of many experimental investigations. While the ground-state 3/2– resonance is well established, there is a controversy concerning the excited 1/2– resonance reported in some experiments as low lying and narrow (ER~1 MeV, Γ≤1 MeV) while in others as very broad and located at a higher energy. This issue cannot be addressed by ab initio theoretical calculations based on traditional bound-state methods. We introduce a new unified approach to nuclear bound and continuum states based on the coupling of the no-core shell model, a bound-state technique, with the no-coremore » shell model combined with the resonating-group method, a nuclear scattering technique. Our calculations describe the ground-state resonance in agreement with experiment and, at the same time, predict a broad 1/2– resonance above 2 MeV.« less

  17. Ab initio molecular dynamics calculations of ion hydration free energies

    SciTech Connect

    Leung, Kevin; Rempe, Susan B.; Lilienfeld, O. Anatole von

    2009-05-28

    We apply ab initio molecular dynamics (AIMD) methods in conjunction with the thermodynamic integration or '{lambda}-path' technique to compute the intrinsic hydration free energies of Li{sup +}, Cl{sup -}, and Ag{sup +} ions. Using the Perdew-Burke-Ernzerhof functional, adapting methods developed for classical force field applications, and with consistent assumptions about surface potential ({phi}) contributions, we obtain absolute AIMD hydration free energies ({Delta}G{sub hyd}) within a few kcal/mol, or better than 4%, of Tissandier et al.'s [J. Phys. Chem. A 102, 7787 (1998)] experimental values augmented with the SPC/E water model {phi} predictions. The sums of Li{sup +}/Cl{sup -} and Ag{sup +}/Cl{sup -} AIMD {Delta}G{sub hyd}, which are not affected by surface potentials, are within 2.6% and 1.2 % of experimental values, respectively. We also report the free energy changes associated with the transition metal ion redox reaction Ag{sup +}+Ni{sup +}{yields}Ag+Ni{sup 2+} in water. The predictions for this reaction suggest that existing estimates of {Delta}G{sub hyd} for unstable radiolysis intermediates such as Ni{sup +} may need to be extensively revised.

  18. Exploring the free energy surface using ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Samanta, Amit; Morales, Miguel A.; Schwegler, Eric

    2016-04-01

    Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational and algorithmic perspectives. In this regard, schemes that utilize a set of pre-defined order parameters to sample the relevant parts of the configuration space [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006); J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)] have proved useful. Here, we demonstrate how these order-parameter aided temperature accelerated sampling schemes can be used within the Born-Oppenheimer and the Car-Parrinello frameworks of ab initio molecular dynamics to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways. We have used these methods to identify the metastable structures and reaction pathways in SiO2 and Ti. In addition, we have used the string method [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002); L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] within the density functional theory to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hexagonal closed packed to face centered cubic phase transition in Ti.

  19. TOPICAL REVIEW: Ab initio symplectic no-core shell model

    NASA Astrophysics Data System (ADS)

    Dytrych, T.; Sviratcheva, K. D.; Draayer, J. P.; Bahri, C.; Vary, J. P.

    2008-12-01

    The no-core shell model (NCSM) is a prominent ab initio method that yields a good description of the low-lying states in few-nucleon systems as well as in more complex p-shell nuclei. Nevertheless, its applicability is limited by the rapid growth of the many-body basis with larger model spaces and increasing number of nucleons. The symplectic no-core shell model (Sp-NCSM) aspires to extend the scope of the NCSM beyond the p-shell region by augmenting the conventional spherical harmonic oscillator basis with the physically relevant symplectic \\SpR{3} symmetry-adapted configurations of the symplectic shell model that describe naturally the monopole-quadrupole vibrational and rotational modes, and also partially incorporate α-cluster correlations. In this review, the models underpinning the Sp-NCSM approach, namely, the NCSM, the Elliott SU(3) model and the symplectic shell model, are discussed. Following this, a prescription for constructing translationally invariant symplectic configurations in the spherical harmonic oscillator basis is given. This prescription is utilized to unveil the extent to which symplectic configurations enter into low-lying states in 12C and 16O nuclei calculated within the framework of the NCSM with the JISP16 realistic nucleon-nucleon interaction. The outcomes of this proof-of-principle study are presented in detail.

  20. FTIR, Raman spectra and ab initio calculations of 2-mercaptobenzothiazole.

    PubMed

    Rai, Amareshwar K; Singh, Rachana; Singh, K N; Singh, V B

    2006-02-01

    FTIR and Raman spectra of a rubber vulcanization accelerator, 2-mercaptobenzothiazole (MBT), were recorded in the solid phase. The harmonic vibrational wavenumbers, for both the toutomeric forms of MBT, as well as for its dimeric complex, have been calculated, using ab initio RHF and density functional B3LYP methods invoking different basis sets upto RHF/6-31G** and B3LYP/6-31G** and the results were compared with the experimental values. Conformational studies have been also carried out regarding its toutomeric monomer forms and its dimer form. With all the basis sets the thione form of MBT (II) is predicted to be more stable than thiol form (I) and dimeric conformation (III) is predicted to be more stable with monomeric conformations (I) and (II). Vibrational assignments have been made, and it has been found that the calculated normal mode frequencies of dimeric conformation (III) are required for the analysis of IR and Raman bands of the MBT. The predicted shift in NH- stretching vibration towards the lower wave number side with the B3LYP/6-31G** calculations for the most stable dimer form (III), is in better agreement with experimental results. The intermolecular sulfur-nitrogen distance in N-H...S hydrogen bond was found to be 3.35 angstroms from these calculations, is also in agreement to the experimental value. PMID:16098806

  1. Melting curves of metals by ab initio calculations

    NASA Astrophysics Data System (ADS)

    Minakov, Dmitry; Levashov, Pavel

    2015-06-01

    In this work we used several ab initio approaches to reproduce melting curves and discussed their abilities, advantages and drawbacks. We used quasiharmonic appoximation and Lindemann criterion to build melting curves in wide region of pressures. This approach allows to calculate the total free energy of electrons and phonons, so it is possible to obtain all thermodynamic properties in the crystalline state. We also used quantum molecular dynamics simulations to investigate melting at various pressures. We explored the size-effect of the heat until it melts (HUM) method in detail. Special attention was paid to resolve the boundaries of the melting region on density. All calculations were performed for aluminum, copper and gold. Results were in good agreement with available experimental data. Also we studied the influence of electronic temperature on melting curves. It turned out that the melting temperature increased with the rise of electron temperature at normal density and had non-monotonic behavior at higher densities. This work is supported by the Ministry of Education and Science of the Russian Federation (Project No. 3.522.2014/K).

  2. Ab initio simulation of gap discrete breathers in strained graphene

    NASA Astrophysics Data System (ADS)

    Lobzenko, I. P.; Chechin, G. M.; Bezuglova, G. S.; Baimova, Yu. A.; Korznikova, E. A.; Dmitriev, S. V.

    2016-03-01

    The methods of the density functional theory were used for the first time for the simulation of discrete breathers in graphene. It is demonstrated that breathers can exist with frequencies lying in the gap of the phonon spectrum, induced by uniaxial tension of a monolayer graphene sheet in the "zigzag" direction (axis X), polarized in the "armchair" direction (axis Y). The found gap breathers are highly localized dynamic objects, the core of which is formed by two adjacent carbon atoms located on the Y axis. The atoms surrounding the core vibrate at much lower amplitudes along both the axes ( X and Y). The dependence of the frequency of these breathers on amplitude is found, which shows a soft type of nonlinearity. No breathers of this type were detected in the gap induced by stretching along the Y axis. It is shown that the breather vibrations may be approximated by the Morse oscillators, the parameters of which are determined from ab initio calculations. The results are of fundamental importance, as molecular dynamics calculations based on empirical potentials cannot serve as a reliable proof of the existence of breathers in crystals.

  3. Volumic omit maps in ab initio dual-space phasing.

    PubMed

    Oszlányi, Gábor; Sütő, András

    2016-07-01

    Alternating-projection-type dual-space algorithms have a clear construction, but are susceptible to stagnation and, thus, inefficient for solving the phase problem ab initio. To improve this behaviour new omit maps are introduced, which are real-space perturbations applied periodically during the iteration process. The omit maps are called volumic, because they delete some predetermined subvolume of the unit cell without searching for atomic regions or analysing the electron density in any other way. The basic algorithms of positivity, histogram matching and low-density elimination are tested by their solution statistics. It is concluded that, while all these algorithms based on weak constraints are practically useless in their pure forms, appropriate volumic omit maps can transform them to practically useful methods. In addition, the efficiency of the already useful reflector-type charge-flipping algorithm can be further improved. It is important that these results are obtained by using non-sharpened structure factors and without any weighting scheme or reciprocal-space perturbation. The mathematical background of volumic omit maps and their expected applications are also discussed. PMID:27357850

  4. Ab initio study of optical excitations in VO2

    NASA Astrophysics Data System (ADS)

    Coulter, John; Gali, Adam; Manousakis, Efstratios

    2014-03-01

    Motivated by recent experimental efforts to fabricate p-n junctions from transition metal oxides (TMOs) and a recent theoretical study claiming TMOs to be good absorbers and promising materials for efficient carrier multiplication, we study the optical properties of a prototypical TMO, the insulator M1 phase of vanadium dioxide (VO2), by ab initio methods. We applied the Bethe-Salpeter equations (BSE) to calculate the optical properties, starting from self-consistent GW quasi-particle energy levels and states. In contrast to expectations, the exciton binding energy obtained by BSE is in good agreement with the experiment. We find that the electron-electron interaction is very strong which makes this material promising for efficient carrier multiplication that might lead to an enhanced efficiency in photo-voltaics applications. To illustrate this more quantitatively, we calculated the impact ionization rate within the independent quasiparticle approximation, and find that the rate is significantly higher than silicon in the region of highest solar intensity, due to the strong multiple carrier excitations.

  5. Ab initio investigation of grain boundary cohesion in Al alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Shengjun; Kontsevoi, Oleg Y.; Freeman, A. J.; Olson, G. B.

    2010-03-01

    Strength and hardness of aluminum alloys can be substantially increased by alloying with Mg, Zn, Cu, Si, and other elements. The main drawback of Al alloys is their susceptibility to stress corrosion cracking, which is caused by alloying impurities segregated at grain boundaries. We investigated the embrittling and cohesion-enhancing effects of impurities on a σ5(012)[100] grain boundary in Al by means of the full-potential linearized augmented plane-wave (FLAPW) method within the framework of the Rice-Wang thermodynamic model and within the ab initio tensile test approach. We calculated segregation energies, analyzed local atomic configurations, electronic structures and spatial charge density distributions around segregated impurities, and identified the roles of atomic size and the bonding behavior of the impurity with the surrounding Al atoms. The results show that He, H and Na are strong embrittlers, Zn is a weak embrittler, while Sc, B, Cu and Mg are cohesion enhancers. We further evaluated the effect of co-alloying with two or more elements on grain boundary strength. This work provides a fundamental basis for the design of high strength Al alloys.

  6. Ab Initio Simulation of the Photoelectron Spectrum for Methoxy Radical

    NASA Astrophysics Data System (ADS)

    Cheng, Lan; Weichman, Marissa L.; Kim, Jongjin B.; Ichino, Takatoshi; Neumark, Daniel; Stanton, John F.

    2015-06-01

    A theoretical simulation of the photoelectron spectrum for the ground state of methoxy radical is reported based on the quasidiabatic model Hamiltonian originally proposed by Köppel, Domcke, and Cederbaum. The parameters in the model Hamiltonian have been obtained from ab initio coupled-cluster calculations. The linear and quadratic force constants have been calculated using equation-of-motion coupled-cluster ionization potential method with the singles, doubles, and triples (EOMIP-CCSDT) truncation scheme together with atomic natural orbital basis sets of triple-zeta quality (ANO1). The cubic and quartic force constants have been obtained from EOMIP-CCSD calculations with ANO basis sets of double-zeta quality (ANO0), and the spin-orbit coupling constant has been computed at the EOMIP-CCSD/pCVTZ level. The nuclear Schroedinger equation has been solved using the Lanzcos algorithm to obtain vibronic energy levels as well as the corresponding intensities. The simulated spectrum compares favorably with the recent high-resolution slow electron velocity-map imaging experiment for vibronic levels up to 2000 cm-1.

  7. Ab initio Raman spectroscopy of water under extreme conditions

    NASA Astrophysics Data System (ADS)

    Rozsa, Viktor; Pan, Ding; Wan, Quan; Galli, Giulia

    Water exhibits one of the most complex phase diagrams of any binary compound. Despite extensive studies, the melting lines of high-pressure ice phases remain very controversial, with reports differing by hundreds of Kelvin. The boundary between ice VII and liquid phase is particularly disputed, with recent work exploring plasticity and amorphization mediating the transition. Raman measurements are often used to fingerprint melting, yet their interpretation is difficult without atomistic modeling. Here, we report a study of high P/T water where we computed Raman spectra using a method combining ab initio molecular dynamics and density functional perturbation theory, as implemented in the Qbox code. Spectra were computed for the liquid at 10 and 20 GPa, both at 1000 K, and for solid ice VII (20 GPa, 500 K). Decomposing the spectra into inter and intra molecular contributions provided insight into the dynamics of the hydrogen-bonded network at extreme conditions. The relevance of our simulation results for models of water in Earth, Uranus, and Neptune will be discussed, and an interpretation of existing experiments at high pressure will be presented.

  8. Ab initio calculation of double ionization of atoms

    SciTech Connect

    Serov, V. V.

    2013-02-15

    The Solov'ev-Vinitsky method was used to perform an ab initio calculation of the triple-differential cross section for the double single-photon photoionization of helium for the case of equal emitted-electron energies. A Gaussian width {gamma} describing angular electron-electron correlations at the total electron energy E taking values in range between 0.1 and 100 eV was obtained for this cross section. The results agree with available experimental data, but they raise a doubt as to whether the well-known Wannier law {gamma} {proportional_to} E{sup 1/4} is applicable at experimentally accessible energies. The Gaussian width {gamma} was investigated as a function of the total emitted-electron energy for targets that have a strongly asymmetric configuration of the initial state-specifically, a negative atomic-hydrogen ion H{sup -} and heliumin the 1s2s{sup 1}S and 1s3s{sup 1}S excited states. It was found that this function, {gamma}(E), had a maximum at low energies. It was also shown that, at low energies, the dependence of the double-differential cross section on the angle between the emitted-electron momenta for the targets indicated above differed substantially from the Gaussian dependence, featuring maxima whose number was equal to the number of radial nodes in the initial state. This opens new possibilities for a qualitative analysis of the electron structure of targets.

  9. Ab initio quantum transport calculations using plane waves

    NASA Astrophysics Data System (ADS)

    Garcia-Lekue, A.; Vergniory, M. G.; Jiang, X. W.; Wang, L. W.

    2015-08-01

    We present an ab initio method to calculate elastic quantum transport at the nanoscale. The method is based on a combination of density functional theory using plane wave nonlocal pseudopotentials and the use of auxiliary periodic boundary conditions to obtain the scattering states. The method can be applied to any applied bias voltage and the charge density and potential profile can either be calculated self-consistently, or using an approximated self-consistent field (SCF) approach. Based on the scattering states one can straightforwardly calculate the transmission coefficients and the corresponding electronic current. The overall scheme allows us to obtain accurate and numerically stable solutions for the elastic transport, with a computational time similar to that of a ground state calculation. This method is particularly suitable for calculations of tunneling currents through vacuum, that some of the nonequilibrium Greens function (NEGF) approaches based on atomic basis sets might have difficulty to deal with. Several examples are provided using this method from electron tunneling, to molecular electronics, to electronic devices: (i) On a Au nanojunction, the tunneling current dependence on the electrode-electrode distance is investigated. (ii) The tunneling through field emission resonances (FERs) is studied via an accurate description of the surface vacuum states. (iii) Based on quantum transport calculations, we have designed a molecular conformational switch, which can turn on and off a molecular junction by applying a perpendicular electric field. (iv) Finally, we have used the method to simulate tunnel field-effect transistors (TFETs) based on two-dimensional transition-metal dichalcogenides (TMDCs), where we have studied the performance and scaling limits of such nanodevices and proposed atomic doping to enhance the transistor performance.

  10. Investigation of polarization effects in the gramicidin A channel from ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Timko, Jeff; Kuyucak, Serdar

    2012-11-01

    Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K+ ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K+ ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K+ ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K+ ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.

  11. Ab initio yield curve dynamics [rapid communication

    NASA Astrophysics Data System (ADS)

    Hawkins, Raymond J.; Roy Frieden, B.; D'Anna, Joseph L.

    2005-09-01

    We derive an equation of motion for interest-rate yield curves by applying a minimum Fisher information variational approach to the implied probability density. By construction, solutions to the equation of motion recover observed bond prices. More significantly, the form of the resulting equation explains the success of the Nelson Siegel approach to fitting static yield curves and the empirically observed modal structure of yield curves. A practical numerical implementation of this equation of motion is found by using the Karhunen Lòeve expansion and Galerkin's method to formulate a reduced-order model of yield curve dynamics.

  12. Ab-Initio Physics of Electrochemistry

    NASA Astrophysics Data System (ADS)

    Letchworth Weaver, Kendra; Arias, Tomás

    2010-03-01

    We present a Joint Density Functional Theory (JDFT)footnotetextS. A. Petrosyan, A. A. Rigos, and T. A. Arias, J. Phys. Chem. B, 109, 15436-15444 (2005).^,footnotetextJ. Lischner and T. A. Arias, Phys. Rev. Lett. 101, 216401 (2008). capturing the key electrostatic interactions between electronic systems and a fluid environment. This novel theory is relevant to the study of electrochemical systems and includes the dielectric properties of the fluid and charge screening due to the presence of ions in solution. We also demonstrate how DFT calculations can address the fundamental physical issues underlying electrochemistry, including the definition of a consistent reference potential, the treatment of charged surfaces under periodic boundary conditions, and the study of the solid-electrolyte interface as a function of the applied potential. Results for interfacial capacitances and potentials of zero charge calculated using these techniques will be compared to experimental values. Our theory allows simulation of a variety of materials, such as intermetallics and complex oxides, in contact with an ionic liquid environment. This method has a wide range of potential applications including catalysis in fuel cells, batteries, and photoelectrochemical cells.

  13. Ab initio DFT calculations of vibrational properties

    NASA Astrophysics Data System (ADS)

    Story, S. M.; Vila, F. D.; Kas, J. J.; Rehr, J. J.

    2014-03-01

    Vibrational properties such as EXAFS and crystallographic Debye-Waller factors, vibrational free energies, phonon self-energies, and phonon contributions to the electron spectral function, are key to understanding many aspects of materials beyond ground state electronic structure. Thus, their simulation using first principles methods is of particular importance. Many of these vibrational properties can be calculated from the dynamical matrix and electron-phonon coupling coefficients obtained from DFT calculations. Here we present a code DMVP that calculates these properties from the output of electronic structure codes such as ABINIT, Gaussian, Quantum Espresso and VASP. Our modular interfacing tool AI2PS allows us to translate the different outputs into a DMVP compatible format and generate vibrational properties in an automated way. Finally, we present some current applications that take advantage of the modular form of AI2PS to extend its capabilities to the calculation of coefficients of thermal expansion and other properties of interest such as infrared spectra. This work was supported by DOE Grant DE-FG02-97ER45623.

  14. Ab Initio Modelling of Steady Rotating Stars

    NASA Astrophysics Data System (ADS)

    Rieutord, Michel; Espinosa Lara, Francisco

    Modelling isolated rotating stars at any rotation rate is a challenge for the next generation of stellar models. These models will couple dynamical aspects of rotating stars, like angular momentum and chemicals transport, with classical chemical evolution, gravitational contraction or mass-loss. Such modelling needs to be achieved in two dimensions, combining the calculation of the structure of the star, its mean flows and the time-evolution of the whole. We present here a first step in this challenging programme. It leads to the first self-consistent two-dimensional models of rotating stars in a steady state generated by the ESTER code. In these models the structure (pressure, density and temperature) and the flow fields are computed in a self-consistent way allowing the prediction of the differential rotation and the associated meridian circulation of the stars. After a presentation of the physical properties of such models and the numerical methods at work, we give the first grid of such models describing massive and intermediate-mass stars for a selection of rotation rates up to 90 % of the breakup angular velocity.

  15. Ab initio no-core shell model with continuum

    NASA Astrophysics Data System (ADS)

    Navratil, Petr

    2008-04-01

    The ab initio no-core shell model (NCSM) is a many-body approach to nuclear structure of light nuclei. The NCSM adopts an effective interaction theory to transform fundamental inter-nucleon interactions into effective interactions for a specified nucleus in a selected harmonic oscillator basis space [1]. The method is capable of predicting nuclear structure from inter-nucleon forces derived from quantum chromodynamics by means of chiral effective field theory [2]. NCSM extensions to the microscopic description of nuclear reactions are now under development. In my talk, I will first discuss our recent calculations of the ^4He total photo-absorption cross section using two- and three-nucleon interactions from chiral effective field theory [3]. I will then outline our effort to augment the NCSM by the resonating group method (RGM) technique to develop a new method capable of describing simultaneously both bound states and nuclear reactions on light nuclei [4]. This approach, which preserves translational symmetry and the Pauli principle, will allow us to calculate cross sections of reactions important for astrophysics and describe weakly-bound systems from first principles. I will present our first phase shift results for neutron scattering off ^3H, ^4He and ^7Li and proton scattering off ^3He, ^4He and ^7Be using realistic nucleon-nucleon potentials. 3mm [1] P. Navr'atil, J. P. Vary and B. R. Barrett, Phys. Rev. C 62, 054311 (2000). [2] P. Navr'atil and V. G. Gueorguiev and J. P. Vary, W. E. Ormand and A. Nogga, Phys. Rev. Lett. 99, 042501 (2007). [3] S. Quaglioni and P. Navr'atil, Phys. Lett. B 652, 370 (2007). [4] S. Quaglioni and P. Navr'atil, arXiv:0712.0855.

  16. Efficient conformational space exploration in ab initio protein folding simulation

    PubMed Central

    Ullah, Ahammed; Ahmed, Nasif; Pappu, Subrata Dey; Shatabda, Swakkhar; Ullah, A. Z. M. Dayem; Rahman, M. Sohel

    2015-01-01

    Ab initio protein folding simulation largely depends on knowledge-based energy functions that are derived from known protein structures using statistical methods. These knowledge-based energy functions provide us with a good approximation of real protein energetics. However, these energy functions are not very informative for search algorithms and fail to distinguish the types of amino acid interactions that contribute largely to the energy function from those that do not. As a result, search algorithms frequently get trapped into the local minima. On the other hand, the hydrophobic–polar (HP) model considers hydrophobic interactions only. The simplified nature of HP energy function makes it limited only to a low-resolution model. In this paper, we present a strategy to derive a non-uniform scaled version of the real 20×20 pairwise energy function. The non-uniform scaling helps tackle the difficulty faced by a real energy function, whereas the integration of 20×20 pairwise information overcomes the limitations faced by the HP energy function. Here, we have applied a derived energy function with a genetic algorithm on discrete lattices. On a standard set of benchmark protein sequences, our approach significantly outperforms the state-of-the-art methods for similar models. Our approach has been able to explore regions of the conformational space which all the previous methods have failed to explore. Effectiveness of the derived energy function is presented by showing qualitative differences and similarities of the sampled structures to the native structures. Number of objective function evaluation in a single run of the algorithm is used as a comparison metric to demonstrate efficiency. PMID:26361554

  17. Efficient conformational space exploration in ab initio protein folding simulation.

    PubMed

    Ullah, Ahammed; Ahmed, Nasif; Pappu, Subrata Dey; Shatabda, Swakkhar; Ullah, A Z M Dayem; Rahman, M Sohel

    2015-08-01

    Ab initio protein folding simulation largely depends on knowledge-based energy functions that are derived from known protein structures using statistical methods. These knowledge-based energy functions provide us with a good approximation of real protein energetics. However, these energy functions are not very informative for search algorithms and fail to distinguish the types of amino acid interactions that contribute largely to the energy function from those that do not. As a result, search algorithms frequently get trapped into the local minima. On the other hand, the hydrophobic-polar (HP) model considers hydrophobic interactions only. The simplified nature of HP energy function makes it limited only to a low-resolution model. In this paper, we present a strategy to derive a non-uniform scaled version of the real 20×20 pairwise energy function. The non-uniform scaling helps tackle the difficulty faced by a real energy function, whereas the integration of 20×20 pairwise information overcomes the limitations faced by the HP energy function. Here, we have applied a derived energy function with a genetic algorithm on discrete lattices. On a standard set of benchmark protein sequences, our approach significantly outperforms the state-of-the-art methods for similar models. Our approach has been able to explore regions of the conformational space which all the previous methods have failed to explore. Effectiveness of the derived energy function is presented by showing qualitative differences and similarities of the sampled structures to the native structures. Number of objective function evaluation in a single run of the algorithm is used as a comparison metric to demonstrate efficiency. PMID:26361554

  18. Ab initio study of neutron drops with chiral Hamiltonians

    NASA Astrophysics Data System (ADS)

    Potter, H. D.; Fischer, S.; Maris, P.; Vary, J. P.; Binder, S.; Calci, A.; Langhammer, J.; Roth, R.

    2014-12-01

    We report ab initio calculations for neutron drops in a 10 MeV external harmonic-oscillator trap using chiral nucleon-nucleon plus three-nucleon interactions. We present total binding energies, internal energies, radii and odd-even energy differences for neutron numbers N = 2- 18 using the no-core shell model with and without importance truncation. Furthermore, we present total binding energies for N = 8 , 16 , 20 , 28 , 40 , 50 obtained in a coupled-cluster approach. Comparisons with quantum Monte Carlo results, where available, using Argonne v8‧ with three-nucleon interactions reveal important dependences on the chosen Hamiltonian.

  19. Ab initio vibrational and dielectric properties of Y V O

    NASA Astrophysics Data System (ADS)

    Vali, R.

    2009-10-01

    For the yttrium orthovanadate Y V O with a tetragonal zircon-type structure, the first complete set of Raman-active and IR-active phonon modes has been calculated using ab initio density functional perturbation theory. The calculated IR reflectivity spectra are in good agreement with available experimental data. We report the calculated frequencies of three Raman-active modes that could not be detected experimentally and a new assignment of the experimental Raman data. The contributions of each IR-active phonon modes to static dielectric tensor have been determined.

  20. Ab Initio Computation of the Energies of Circular Quantum Dots

    SciTech Connect

    Lohne, M. Pedersen; Hagen, Gaute; Hjorth-Jensen, M.; Kvaal, S.; Pederiva, F.

    2011-01-01

    We perform coupled-cluster and diffusion Monte Carlo calculations of the energies of circular quantum dots up to 20 electrons. The coupled-cluster calculations include triples corrections and a renormalized Coulomb interaction defined for a given number of low-lying oscillator shells. Using such a renormalized Coulomb interaction brings the coupled-cluster calculations with triples correlations in excellent agreement with the diffusion Monte Carlo calculations. This opens up perspectives for doing ab initio calculations for much larger systems of electrons.

  1. The implementation of ab initio quantum chemistry calculations on transporters.

    PubMed

    Cooper, M D; Hillier, I H

    1991-06-01

    The RHF and geometry optimization sections of the ab initio quantum chemistry code, GAMESS, have been optimized for a network of parallel microprocessors, Inmos T800-20 transputers, using both indirect and direct SCF techniques. The results indicate great scope for implementation of such codes on small parallel computer systems, very high efficiencies having been achieved, particularly in the cases of direct SCF and geometry optimization with large basis sets. The work, although performed upon one particular parallel system, the Meiko Computing Surface, is applicable to a wide range of parallel systems with both shared and distributed memory. PMID:1919615

  2. Ab initio electronic properties of dual phosphorus monolayers in silicon

    PubMed Central

    2014-01-01

    In the midst of the epitaxial circuitry revolution in silicon technology, we look ahead to the next paradigm shift: effective use of the third dimension - in particular, its combination with epitaxial technology. We perform ab initio calculations of atomically thin epitaxial bilayers in silicon, investigating the fundamental electronic properties of monolayer pairs. Quantitative band splittings and the electronic density are presented, along with effects of the layers’ relative alignment and comments on disordered systems, and for the first time, the effective electronic widths of such device components are calculated. PMID:25246862

  3. Ab Initio Calculations Applied to Problems in Metal Ion Chemistry

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry; Arnold, James O. (Technical Monitor)

    1994-01-01

    Electronic structure calculations can provide accurate spectroscopic data (such as molecular structures) vibrational frequencies, binding energies, etc.) that have been very useful in explaining trends in experimental data and in identifying incorrect experimental measurements. In addition, ab initio calculations. have given considerable insight into the many interactions that make the chemistry of transition metal systems so diverse. In this review we focus on cases where calculations and experiment have been used to solve interesting chemical problems involving metal ions. The examples include cases where theory was used to differentiate between disparate experimental values and cases where theory was used to explain unexpected experimental results.

  4. Ab initio study of hydrogen on beryllium surfaces

    NASA Astrophysics Data System (ADS)

    Bachurin, D. V.; Vladimirov, P. V.

    2015-11-01

    Static ab initio calculations were performed for five principal hexagonal close-packed beryllium surfaces: basal, prismatic (type I and II) and pyramidal (type I and II). The basal plane was found to be the most energetically favorable, while the energies of the prismatic (type I) and pyramidal (type I) planes were slightly higher followed by the type II planes. Beryllium is known to show extreme interlayer distance relaxation near the surface. Up to five outermost atomic layers were involved in surface relaxation. The presence of hydrogen on the beryllium surfaces led to a noticeable reduction of the surface energy.

  5. An improved ab initio structure for fluorine peroxide (FOOF)

    NASA Astrophysics Data System (ADS)

    Mack, Hans-Georg; Oberhammer, Heinz

    1988-03-01

    Ab initio calculations with the 6-31G* and Dunning (9s5p/4s2p) basis sets augmented with p and d functions at various levels of theory (RHF, MP2, MP3, and MP4) were carried out on F 2O 2. The best result was obtained at the MP2 level with the Dunning basis plus one set of d functions on fluorine and two sets of d functions on oxygen. These calculations reproduce the experimental bond lengths to within 0.01 Å and the angles to within the experimental uncertainties.

  6. Ab-Initio Shell Model with a Core

    SciTech Connect

    Lisetskiy, A F; Barrett, B R; Kruse, M; Navratil, P; Stetcu, I; Vary, J P

    2008-06-04

    We construct effective 2- and 3-body Hamiltonians for the p-shell by performing 12{h_bar}{Omega} ab initio no-core shell model (NCSM) calculations for A=6 and 7 nuclei and explicitly projecting the many-body Hamiltonians onto the 0{h_bar}{Omega} space. We then separate these effective Hamiltonians into 0-, 1- and 2-body contributions (also 3-body for A=7) and analyze the systematic behavior of these different parts as a function of the mass number A and size of the NCSM basis space. The role of effective 3- and higher-body interactions for A > 6 is investigated and discussed.

  7. Structure of 1:1 complex of 1-naphthylmethyl ester of monensin A with sodium perchlorate studied by X-ray, FT-IR and ab initio methods

    NASA Astrophysics Data System (ADS)

    Huczyński, Adam; Janczak, Jan; Brzezinski, Bogumil

    2012-12-01

    A new crystalline complex formed between 1-naphthylmethyl ester of the naturally occurring antibiotic - monensin A (MON8) with sodium perchlorate has been obtained and studied using X-ray crystallography and FT-IR spectroscopy. The X-ray data of the complex show that MON8 forms a pseudo-cyclic structure stabilised by one weak intramolecular hydrogen bond and the sodium cation co-ordinated by two oxygen atoms of hydroxyl groups and four etheric oxygen atoms in the hydrophilic sphere. Within this structure the oxygen atoms of the ester groups are not involved in the coordination of sodium cation. In contrast to the solid state structure of the complex, in acetonitrile solution an equilibrium between two structures, in which the oxygen atom of the carbonyl ester group is either involved or not involved in the complexation of the sodium cation, is found. In acetonitrile this equilibrium is shifted towards the latter structure i.e. the structure existing in the solid state. The gas-phase structure of [MON8sbnd Na]+ cation as shown the ab initio MO calculations is comparable with the crystal one. Three-dimensional molecular electrostatic potential calculated for the neutral MON8 and [MON8sbnd Na]+ molecules is helpful for understanding the structural aspects of the sodium complex formation.

  8. Tunneling Splittings in Vibronic Structure of CH_3F^+ ( X^2E): Studied by High Resolution Photoelectron Spectra and AB Initio Theoretical Method

    NASA Astrophysics Data System (ADS)

    Mo, Yuxiang; Gao, Shuming; Dai, Zuyang; Li, Hua

    2013-06-01

    We report a combined experimental and theoretical study on the vibronic structure of CH_3F^+. The results show that the tunneling splittings of vibrational energy levels occur in CH_3F^+ due to the Jahn-Teller effect. Experimentally, we have measured a high resolution ZEKE spectrum of CH_3F up to 3500 cm^-^1 above the ground state. Theoretically, we performed an ab initio calculation based on the diabatic model. The adiabatic potential energy surfaces (APES) of CH_3F^+ have been calculated at the MRCI/CAS/avq(t)z level and expressed by Taylor expansions with normal coordinates as variables. The energy gradients for the lower and upper APES, the derivative couplings between them and also the energies of the APES have been used to determine the coefficients in the Taylor expansion. The spin-vibronic energy levels have been calculated by accounting all six vibrational modes and their couplings. The experimental ZEKE spectra were assigned based on the theoretical calculations. W. Domcke, D. R. Yarkony, and H. Köpple (Eds.), Conical Intersections: Eletronic Structure, Dynamics and Spectroscopy (World Scientific, Singapore, 2004). M. S. Schuurman, D. E. Weinberg, and D. R. Yarkony, J. Chem. Phys. 127, 104309 (2007).

  9. Ab initio calculations on the magnetic properties of transition metal complexes

    SciTech Connect

    Bodenstein, Tilmann; Fink, Karin

    2015-12-31

    We present a protocol for the ab initio determination of the magnetic properties of mono- and polynuclear transition metal compounds. First, we obtain the low lying electronic states by multireference methods. Then, we include spin-orbit coupling and an external magnetic field for the determination of zero-field splitting and g-tensors. For the polynuclear complexes the magnetic exchange coupling constants are determined by a modified complete active space self consistent field method. Based on the results of the ab initio calculations, magnetic data such as magnetic susceptibility or magnetization are simulated and compared to experimental data. The results obtained for the polynuclear complexes are further analysed by calculations on model complexes where part of the magnetic centers are substituted by diamagnetic ions. The methods are applied to different Co and Ni containing transition metal complexes.

  10. Comparison between ab initio and semiempirical net atomic charges of some nicotinic acetylcholine receptor agonists

    SciTech Connect

    Yadav, J.S.; Hermsmeier, M.; Gund, T. )

    1989-01-01

    We have calculated the net atomic charges and molecular electrostatic potentials of two potent nicotinic acetylcholine receptor agonists, isoarecolone and acetylpiperazine, by three different methods to see how well they correlate and if the simplest method gives the same predictive results. The calculational methods involved calculating net atomic charges by semiempirical (MNDO from MOPAC) and ab initio (Mulliken) and ab initio (potential derived) at STO-3G basis set level. Some deviations were observed when comparisons were made atom by atom, but when group comparisons were made, good correlations were observed. When these partial charges were used to calculate the respective molecular electrostatic potentials on the van der Waals surface, very good correlations were obtained. This study shows that for routine electrostatic calculations, semiempirical MNDO Calculations give similar results and thus lead to similar predictions.

  11. Explicit Polarization (X-Pol) Potential Using ab Initio Molecular Orbital Theory and Density Functional Theory†

    PubMed Central

    Song, Lingchun; Han, Jaebeom; Lin, Yen-lin; Xie, Wangshen; Gao, Jiali

    2010-01-01

    The explicit polarization (X-Pol) method has been examined using ab initio molecular orbital theory and density functional theory. The X-Pol potential was designed to provide a novel theoretical framework for developing next-generation force fields for biomolecular simulations. Importantly, the X-Pol potential is a general method, which can be employed with any level of electronic structure theory. The present study illustrates the implementation of the X-Pol method using ab initio Hartree—Fock theory and hybrid density functional theory. The computational results are illustrated by considering a set of bimolecular complexes of small organic molecules and ions with water. The computed interaction energies and hydrogen bond geometries are in good accord with CCSD(T) calculations and B3LYP/aug-cc-pVDZ optimizations. PMID:19618944

  12. Ab initio cluster study of crystalline NaF

    SciTech Connect

    Temple, D.K.

    1992-01-01

    A highly-accurate ab initio cluster model of crystalline NaF has been constructed to explore the limits of cluster methods in the treatment of ionic solids. The focus of this model was the characterization of the lattice environment and its influence on the easily-polarizable fluorine anion. The model consisted of a central all-electron fluorine anion coordinated by pseudopotentials, to represent the nearest-neighbor sodium cations, and a finite array of point charges chosen to generate the correct crystal field from the surrounding infinite ionic lattice. The wavefunction and properties of the anion were calculated using the restricted Hartree-Fock and configuration interaction techniques from quantum chemistry. An extensive analysis of basis set incompleteness errors in the anion wavefunction was performed. Important features were identified in the embedded anion, such as its distortion under the influence of the lattice compressions, its stabilization from the Madelung potential, and its changes in size due to electron correlations. Bulk properties of the rocksalt-structure (B1) NaF crystal were derived from the total mode energies, calculated as a function of the crystal volume. The properties included the zero-pressure lattice constant, cohesive energy, and bulk modulus, and the pressure-volume equation-of-state. A series of test calculations explored the relationships, and their underlying physical mechanisms, between the features of the embedded anion and the bulk properties of the crystal. These features often produced opposing changes in the properties, demonstrating the importance of a thorough and systematic treatment of the embedded anion. The most thorough test calculation gave bulk properties that were within 1% of experiment. Using an embedded anion model for the high-pressure cesium-chloride (B2) phase of NaF, the B1-to-B2 structural transition was correctly predicted at 25 GPa, in excellent agreement with the experimental values of 23 to 27 GPa.

  13. Ab initio tight-binding Hamiltonian for transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Fang, Shiang; Kuate Defo, Rodrick; Shirodkar, Sharmila N.; Lieu, Simon; Tritsaris, Georgios A.; Kaxiras, Efthimios

    2015-11-01

    We present an accurate ab initio tight-binding Hamiltonian for the transition metal dichalcogenides, MoS2, MoSe2, WS2, WSe2, with a minimal basis (the d orbitals for the metal atoms and p orbitals for the chalcogen atoms) based on a transformation of the Kohn-Sham density functional theory Hamiltonian to a basis of maximally localized Wannier functions. The truncated tight-binding Hamiltonian, with only on-site, first, and partial second neighbor interactions, including spin-orbit coupling, provides a simple physical picture and the symmetry of the main band-structure features. Interlayer interactions between adjacent layers are modeled by transferable hopping terms between the chalcogen p orbitals. The full-range tight-binding Hamiltonian can be reduced to hybrid-orbital k .p effective Hamiltonians near the band extrema that capture important low-energy excitations. These ab initio Hamiltonians can serve as the starting point for applications to interacting many-body physics including optical transitions and Berry curvature of bands, of which we give some examples.

  14. Ab initio dynamics of the cytochrome P450 hydroxylation reaction

    PubMed Central

    Elenewski, Justin E.; Hackett, John C

    2015-01-01

    The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis. PMID:25681906

  15. Ab initio study of hot electrons in GaAs.

    PubMed

    Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B; Louie, Steven G

    2015-04-28

    Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation theory. Our computed electron-phonon relaxation times at the onset of the Γ, L, and X valleys are in excellent agreement with ultrafast optical experiments and show that the ultrafast (tens of femtoseconds) hot electron decay times observed experimentally arise from electron-phonon scattering. This result is an important advance to resolve a controversy on hot electron cooling in GaAs. We further find that, contrary to common notions, all optical and acoustic modes contribute substantially to electron-phonon scattering, with a dominant contribution from transverse acoustic modes. This work provides definitive microscopic insight into hot electrons in GaAs and enables accurate ab initio computation of hot carriers in advanced materials. PMID:25870287

  16. Unified ab initio approaches to nuclear structure and reactions

    NASA Astrophysics Data System (ADS)

    Navrátil, Petr; Quaglioni, Sofia; Hupin, Guillaume; Romero-Redondo, Carolina; Calci, Angelo

    2016-05-01

    The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches—built upon the no-core shell model—that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the 6He halo nucleus, of five- and six-nucleon scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of 9Be. Further, we discuss applications to the 7Be {({{p}},γ )}8{{B}} radiative capture. Finally, we highlight our efforts to describe transfer reactions including the 3H{({{d}},{{n}})}4He fusion.

  17. Entropy of Liquid Water from Ab Initio Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Spanu, Leonardo; Zhang, Cui; Galli, Giulia

    2012-02-01

    The debate on the structural properties of water has been mostly based on the calculation of pair correlation functions. However, the simulation of thermodynamic and spectroscopic quantities may be of great relevance for the characterization of liquid water properties. We have computed the entropy of liquid water using a two-phase thermodynamic model and trajectories generated by ab initio molecular dynamics simulations [1]. In an attempt to better understand the performance of several density functionals in simulating liquid water, we have performed ab initio molecular dynamics using semilocal, hybrid [2] and van der Waals density functionals [3]. We show that in all cases, at the experimental equilibrium density and at temperatures in the vicinity of 300 K, the computed entropies are underestimated, with respect to experiment, and the liquid exhibits a degree of tetrahedral order higher than in experiments. We also discuss computational strategies to simulate spectroscopic properties of water, including infrared and Raman spectra.[4pt] [1] C.Zhang, L.Spanu and G.Galli, J.Phys.Chem. B 2011 (in press)[0pt] [2] C.Zhang, D.Donadio, F.Gygi and G.Galli, J. Chem. Theory Comput. 7, 1443 (2011)[0pt] [3] C.Zhang, J.Wu, G.Galli and F.Gygi, J. Chem. Theory Comput. 7, 3061 (2011)

  18. AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT

    SciTech Connect

    French, Martin; Becker, Andreas; Lorenzen, Winfried; Nettelmann, Nadine; Bethkenhagen, Mandy; Redmer, Ronald; Wicht, Johannes

    2012-09-15

    We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grueneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.

  19. Ab initio prediction of the critical thickness of a precipitate

    NASA Astrophysics Data System (ADS)

    Sampath, S.; Janisch, R.

    2013-09-01

    Segregation and precipitation of second phases in metals and metallic alloys is an important phenomenon that has a strong influence on the mechanical properties of the material. Models exist that describe the growth of coherent, semi-coherent and incoherent precipitates. One important parameter of these models is the energy of the interface between matrix and precipitate. In this work we apply ab initio density functional theory calculations to obtain this parameter and to understand how it depends on chemical composition and mechanical strain at the interface. Our example is a metastable Mo-C phase, the body-centred tetragonal structure, which exists as a semi-coherent precipitate in body-centred cubic molybdenum. The interface of this precipitate is supposed to change from coherent to semi-coherent during the growth of the precipitate. We predict the critical thickness of the precipitate by calculating the different contributions to a semi-coherent interface energy by means of ab initio density functional theory calculations. The parameters in our model include the elastic strain energy stored in the precipitate, as well as a misfit dislocation energy that depends on the dislocation core width and the dislocation spacing. Our predicted critical thickness agrees well with experimental observations.

  20. Ab initio dynamics of the cytochrome P450 hydroxylation reaction

    NASA Astrophysics Data System (ADS)

    Elenewski, Justin E.; Hackett, John C.

    2015-02-01

    The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.

  1. Ab initio dynamics of the cytochrome P450 hydroxylation reaction

    SciTech Connect

    Elenewski, Justin E.; Hackett, John C

    2015-02-14

    The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.

  2. DFT and ab initio quantum chemical studies on p-cyanobenzoic acid

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Rani, T.; Varalakshmy, L.; Mohan, S.; Tedlamelekot, F.

    2011-05-01

    The Fourier transform infrared (FTIR) and FT-Raman spectra of p-cyanobenzoic acid (CBA) have been recorded in the range 4000-400 and 4000-100 cm -1, respectively. The complete vibrational assignment and analysis of the fundamental modes of the compound were carried out using the observed FTIR and FT-Raman data. The vibrational frequencies determined experimentally were compared with theoretical wavenumbers obtained from ab initio HF and DFT-B3LYP gradient calculations employing 6-31G**, 6-311++G** and cc-pVTZ basis sets for the optimised geometry of the compound. The geometry and normal modes of vibration obtained from the HF and DFT methods are in good agreement with the experimental data. The normal coordinate analysis was also carried out with ab initio force fields utilising Wilson's FG matrix method. The interactions of cyano and carboxylic acid groups with the skeletal vibrational modes were investigated.

  3. Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon

    PubMed Central

    2013-01-01

    The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due to computational tractability. Nonetheless, we provide valuable data for the benchmarking of empirical modelling techniques more capable of extending this discussion to confined disordered systems or actual devices. We then develop a less resource-intensive alternative via localised basis functions in siesta, retaining the physics of the plane-wave description, and extend this model beyond the capability of plane-wave methods to determine the ab initio valley splitting of well-isolated δ-layers. In obtaining an agreement between plane-wave and localised methods, we show that valley splitting has been overestimated in previous ab initio calculations by more than 50%. PMID:23445785

  4. Ab Initio No-Core Shell Model Calculations Using Realistic Two- and Three-Body Interactions

    SciTech Connect

    Navratil, P; Ormand, W E; Forssen, C; Caurier, E

    2004-11-30

    There has been significant progress in the ab initio approaches to the structure of light nuclei. One such method is the ab initio no-core shell model (NCSM). Starting from realistic two- and three-nucleon interactions this method can predict low-lying levels in p-shell nuclei. In this contribution, we present a brief overview of the NCSM with examples of recent applications. We highlight our study of the parity inversion in {sup 11}Be, for which calculations were performed in basis spaces up to 9{Dirac_h}{Omega} (dimensions reaching 7 x 10{sup 8}). We also present our latest results for the p-shell nuclei using the Tucson-Melbourne TM three-nucleon interaction with several proposed parameter sets.

  5. Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon.

    PubMed

    Drumm, Daniel W; Budi, Akin; Per, Manolo C; Russo, Salvy P; L Hollenberg, Lloyd C

    2013-01-01

    : The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due to computational tractability. Nonetheless, we provide valuable data for the benchmarking of empirical modelling techniques more capable of extending this discussion to confined disordered systems or actual devices. We then develop a less resource-intensive alternative via localised basis functions in siesta, retaining the physics of the plane-wave description, and extend this model beyond the capability of plane-wave methods to determine the ab initio valley splitting of well-isolated δ-layers. In obtaining an agreement between plane-wave and localised methods, we show that valley splitting has been overestimated in previous ab initio calculations by more than 50%. PMID:23445785

  6. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    SciTech Connect

    Geng, Hua Y.

    2015-02-15

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model—the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of r{sub s}=0.912.

  7. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    NASA Astrophysics Data System (ADS)

    Geng, Hua Y.

    2015-02-01

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model-the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of rs = 0.912.

  8. An ab initio MIA study of TIBO derivatives R79882 and R82913

    NASA Astrophysics Data System (ADS)

    Peeters, Anik; Van Alsenoy, C.

    1995-04-01

    The gas phase structure of two TIBO compounds (R79882 and R82913), potent inhibitors of the reverse transcriptase of HIV1, was studied with ab initio Hartree-Fock methods using the MIA approach. For compound R82913 the geometry of a dimer and of the respective monomers was fully optimized and compared with experiment. For compound R79882 a complete geometry optimization of 15 different conformers was performed.

  9. Optical and other material properties of SiO2 from ab initio studies

    NASA Astrophysics Data System (ADS)

    Warmbier, Robert; Mohammed, Faris; Quandt, Alexander

    2014-07-01

    The optical properties of photonic devices largely depend on the dielectric properties of the underlying materials. We apply modern ab initio methods to study crystalline SiO2 phases, which serve as toy models for amorphous glass. We discuss the dielectric response from the infrared to the VIS/UV, which is crucial for glass based photonic applications. Low density silica, like cristobalite, may provide a good basis for high transmission optical devices.

  10. Ab initio calculations in a uniform magnetic field using periodic supercells

    SciTech Connect

    Cai, W; Galli, G

    2003-10-21

    We present a formulation of ab initio electronic structure calculations in a finite magnetic field, which retains the simplicity and efficiency of techniques widely used in first principles molecular dynamics simulations, based on plane-wave basis sets and Fourier transforms. In addition we discuss results obtained with this method for the energy spectrum of interacting electrons in quantum wells, and for the electronic properties of dense fluid deuterium in a uniform magnetic field.