Sample records for ab-initio density functional

  1. Comparing ab initio density-functional and wave function theories: the impact of correlation on the electronic density and the role of the correlation potential.

    PubMed

    Grabowski, Ireneusz; Teale, Andrew M; Śmiga, Szymon; Bartlett, Rodney J

    2011-09-21

    The framework of ab initio density-functional theory (DFT) has been introduced as a way to provide a seamless connection between the Kohn-Sham (KS) formulation of DFT and wave-function based ab initio approaches [R. J. Bartlett, I. Grabowski, S. Hirata, and S. Ivanov, J. Chem. Phys. 122, 034104 (2005)]. Recently, an analysis of the impact of dynamical correlation effects on the density of the neon atom was presented [K. Jankowski, K. Nowakowski, I. Grabowski, and J. Wasilewski, J. Chem. Phys. 130, 164102 (2009)], contrasting the behaviour for a variety of standard density functionals with that of ab initio approaches based on second-order Møller-Plesset (MP2) and coupled cluster theories at the singles-doubles (CCSD) and singles-doubles perturbative triples [CCSD(T)] levels. In the present work, we consider ab initio density functionals based on second-order many-body perturbation theory and coupled cluster perturbation theory in a similar manner, for a range of small atomic and molecular systems. For comparison, we also consider results obtained from MP2, CCSD, and CCSD(T) calculations. In addition to this density based analysis, we determine the KS correlation potentials corresponding to these densities and compare them with those obtained for a range of ab initio density functionals via the optimized effective potential method. The correlation energies, densities, and potentials calculated using ab initio DFT display a similar systematic behaviour to those derived from electronic densities calculated using ab initio wave function theories. In contrast, typical explicit density functionals for the correlation energy, such as VWN5 and LYP, do not show behaviour consistent with this picture of dynamical correlation, although they may provide some degree of correction for already erroneous explicitly density-dependent exchange-only functionals. The results presented here using orbital dependent ab initio density functionals show that they provide a treatment of

  2. Explicit polarization (X-Pol) potential using ab initio molecular orbital theory and density functional theory.

    PubMed

    Song, Lingchun; Han, Jaebeom; Lin, Yen-lin; Xie, Wangshen; Gao, Jiali

    2009-10-29

    The explicit polarization (X-Pol) method has been examined using ab initio molecular orbital theory and density functional theory. The X-Pol potential was designed to provide a novel theoretical framework for developing next-generation force fields for biomolecular simulations. Importantly, the X-Pol potential is a general method, which can be employed with any level of electronic structure theory. The present study illustrates the implementation of the X-Pol method using ab initio Hartree-Fock theory and hybrid density functional theory. The computational results are illustrated by considering a set of bimolecular complexes of small organic molecules and ions with water. The computed interaction energies and hydrogen bond geometries are in good accord with CCSD(T) calculations and B3LYP/aug-cc-pVDZ optimizations.

  3. Ab initio molecular dynamics with nuclear quantum effects at classical cost: Ring polymer contraction for density functional theory.

    PubMed

    Marsalek, Ondrej; Markland, Thomas E

    2016-02-07

    Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.

  4. Coupling of ab initio density functional theory and molecular dynamics for the multiscale modeling of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ng, T. Y.; Yeak, S. H.; Liew, K. M.

    2008-02-01

    A multiscale technique is developed that couples empirical molecular dynamics (MD) and ab initio density functional theory (DFT). An overlap handshaking region between the empirical MD and ab initio DFT regions is formulated and the interaction forces between the carbon atoms are calculated based on the second-generation reactive empirical bond order potential, the long-range Lennard-Jones potential as well as the quantum-mechanical DFT derived forces. A density of point algorithm is also developed to track all interatomic distances in the system, and to activate and establish the DFT and handshaking regions. Through parallel computing, this multiscale method is used here to study the dynamic behavior of single-walled carbon nanotubes (SWCNTs) under asymmetrical axial compression. The detection of sideways buckling due to the asymmetrical axial compression is reported and discussed. It is noted from this study on SWCNTs that the MD results may be stiffer compared to those with electron density considerations, i.e. first-principle ab initio methods.

  5. Ab initio molecular dynamics with nuclear quantum effects at classical cost: Ring polymer contraction for density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsalek, Ondrej; Markland, Thomas E., E-mail: tmarkland@stanford.edu

    Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding asmore » a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.« less

  6. Ab initio theory and modeling of water.

    PubMed

    Chen, Mohan; Ko, Hsin-Yu; Remsing, Richard C; Calegari Andrade, Marcos F; Santra, Biswajit; Sun, Zhaoru; Selloni, Annabella; Car, Roberto; Klein, Michael L; Perdew, John P; Wu, Xifan

    2017-10-10

    Water is of the utmost importance for life and technology. However, a genuinely predictive ab initio model of water has eluded scientists. We demonstrate that a fully ab initio approach, relying on the strongly constrained and appropriately normed (SCAN) density functional, provides such a description of water. SCAN accurately describes the balance among covalent bonds, hydrogen bonds, and van der Waals interactions that dictates the structure and dynamics of liquid water. Notably, SCAN captures the density difference between water and ice I h at ambient conditions, as well as many important structural, electronic, and dynamic properties of liquid water. These successful predictions of the versatile SCAN functional open the gates to study complex processes in aqueous phase chemistry and the interactions of water with other materials in an efficient, accurate, and predictive, ab initio manner.

  7. Ab initio theory and modeling of water

    PubMed Central

    Chen, Mohan; Ko, Hsin-Yu; Remsing, Richard C.; Calegari Andrade, Marcos F.; Santra, Biswajit; Sun, Zhaoru; Selloni, Annabella; Car, Roberto; Klein, Michael L.; Perdew, John P.; Wu, Xifan

    2017-01-01

    Water is of the utmost importance for life and technology. However, a genuinely predictive ab initio model of water has eluded scientists. We demonstrate that a fully ab initio approach, relying on the strongly constrained and appropriately normed (SCAN) density functional, provides such a description of water. SCAN accurately describes the balance among covalent bonds, hydrogen bonds, and van der Waals interactions that dictates the structure and dynamics of liquid water. Notably, SCAN captures the density difference between water and ice Ih at ambient conditions, as well as many important structural, electronic, and dynamic properties of liquid water. These successful predictions of the versatile SCAN functional open the gates to study complex processes in aqueous phase chemistry and the interactions of water with other materials in an efficient, accurate, and predictive, ab initio manner. PMID:28973868

  8. Ab initio density functional theory investigation of structural and electronic properties of double-walled silicon carbide nanotubes

    NASA Astrophysics Data System (ADS)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2009-12-01

    By using ab initio density functional theory, the structural and electronic properties of (n,n)@(11,11) double-walled silicon carbide nanotubes (SiCNTs) are investigated. Our calculations reveal the existence of an energetically favorable double-walled nanotube whose interwall distance is about 4.3 Å. Interwall spacing and curvature difference are found to be essential for the electronic states around the Fermi level.

  9. Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Changlani, Hitesh J.; Zheng, Huihuo; Wagner, Lucas K.

    2015-09-14

    We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U{sup ∗}/t tomore » be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.« less

  10. Ab initio density functional theory investigation of Li-intercalated silicon carbide nanotube bundles

    NASA Astrophysics Data System (ADS)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2009-06-01

    We present the results of ab initio density functional theory calculations on the energetic, and geometric and electronic structure of Li-intercalated ( 6,6) silicon carbide nanotube (SiCNT) bundles. Our results show that intercalation of lithium leads to the significant changes in the geometrical structure. The most prominent effect of Li intercalation on the electronic band structure is a shift of the Fermi energy which occurs as a result of charge transfer from lithium to the SiCNTs. All the Li-intercalated ( 6,6) SiCNT bundles are predicted to be metallic representing a substantial change in electronic properties relative to the undoped bundle, which is a wide band gap semiconductor. Both inside of the nanotube and the interstitial space are susceptible for intercalation. The present calculations suggest that the SiCNT bundle is a promising candidate for the anode material in battery applications.

  11. Ab initio density functional theory investigation of electronic properties of semiconducting single-walled carbon nanotube bundles

    NASA Astrophysics Data System (ADS)

    Moradian, Rostam; Behzad, Somayeh; Azadi, Sam

    2008-09-01

    By using ab initio density functional theory we investigated the structural and electronic properties of semiconducting (7, 0), (8, 0) and (10, 0) carbon nanotube bundles. The energetic and electronic evolutions of nanotubes in the bundling process are also studied. The effects of inter-tube coupling on the electronic dispersions of semiconducting carbon nanotube bundles are demonstrated. Our results show that the inter-tube coupling decreases the energy gap in semiconducting nanotubes. We found that bundles of (7, 0) and (8, 0) carbon nanotubes have metallic feature, while (10, 0) bundle is a semiconductor with an energy gap of 0.22 eV. To clarify our results the band structures of isolated and bundled nanotubes are compared.

  12. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms

    NASA Astrophysics Data System (ADS)

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  13. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms.

    PubMed

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R

    2016-07-07

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  14. Lithium cluster anions: photoelectron spectroscopy and ab initio calculations.

    PubMed

    Alexandrova, Anastassia N; Boldyrev, Alexander I; Li, Xiang; Sarkas, Harry W; Hendricks, Jay H; Arnold, Susan T; Bowen, Kit H

    2011-01-28

    Structural and energetic properties of small, deceptively simple anionic clusters of lithium, Li(n)(-), n = 3-7, were determined using a combination of anion photoelectron spectroscopy and ab initio calculations. The most stable isomers of each of these anions, the ones most likely to contribute to the photoelectron spectra, were found using the gradient embedded genetic algorithm program. Subsequently, state-of-the-art ab initio techniques, including time-dependent density functional theory, coupled cluster, and multireference configurational interactions methods, were employed to interpret the experimental spectra.

  15. Ab initio density functional theory investigation of crystalline bundles of polygonized single-walled silicon carbide nanotubes

    NASA Astrophysics Data System (ADS)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2008-11-01

    By using ab initio density functional theory, the structural characterizations and electronic properties of two large-diameter (13, 13) and (14, 14) armchair silicon carbide nanotube (SiCNT) bundles are investigated. Full structural optimizations show that the cross sections of these large-diameter SiCNTs in the bundles have a nearly hexagonal shape. The effects of inter-tube coupling on the electronic dispersions of large-diameter SiCNT bundles are demonstrated. By comparing the band structures of the triangular lattices of (14, 14) SiCNTs with nearly hexagonal and circular cross sections we found that the polygonization of the tubes in the bundle leads to a further dispersion of the occupied bands and an increase in the bandgap by 0.18 eV.

  16. Ab initio density functional theory investigation of crystalline bundles of polygonized single-walled silicon carbide nanotubes.

    PubMed

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2008-11-19

    By using ab initio density functional theory, the structural characterizations and electronic properties of two large-diameter (13, 13) and (14, 14) armchair silicon carbide nanotube (SiCNT) bundles are investigated. Full structural optimizations show that the cross sections of these large-diameter SiCNTs in the bundles have a nearly hexagonal shape. The effects of inter-tube coupling on the electronic dispersions of large-diameter SiCNT bundles are demonstrated. By comparing the band structures of the triangular lattices of (14, 14) SiCNTs with nearly hexagonal and circular cross sections we found that the polygonization of the tubes in the bundle leads to a further dispersion of the occupied bands and an increase in the bandgap by 0.18 eV.

  17. Ab initio density functional theory investigation of structural and electronic properties of silicon carbide nanotube bundles

    NASA Astrophysics Data System (ADS)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2008-10-01

    By using ab initio density functional theory the structural and electronic properties of isolated and bundled (8,0) and (6,6) silicon carbide nanotubes (SiCNTs) are investigated. Our results show that for such small diameter nanotubes the inter-tube interaction causes a very small radial deformation, while band splitting and reduction of the semiconducting energy band gap are significant. We compared the equilibrium interaction energy and inter-tube separation distance of (8,0) SiCNT bundle with (10,0) carbon nanotube (CNT) bundle where they have the same radius. We found that there is a larger inter-tube separation and weaker inter-tube interaction in the (8,0) SiCNT bundle with respect to (10,0) CNT bundle, although they have the same radius.

  18. An ab initio study of the conformational energy map of acetylcholine

    NASA Astrophysics Data System (ADS)

    Segall, M. D.; Payne, M. C.; Boyes, R. N.

    An ab initio density functional theory study is reported of the conformational energy map of acetylcholine, with respect to the two central dihedral angles of the molecule. The acetylcholine molecule pays a central role in neurotransmission and has been studied widely using semi-empirical computational modelling. The ab initio results are compared with a number of previous investigations and with experiment. The ab initio data indicate that the most stable conformation of acetylcholine is the trans , gauche arrangement of the central dihedral angles. Furthermore, Mulliken population analysis of the electronic structure of the molecule in this conformation indicates that the positive charge of the molecule is spread over the exterior of the cationic head of the molecule.

  19. The ab-initio density matrix renormalization group in practice.

    PubMed

    Olivares-Amaya, Roberto; Hu, Weifeng; Nakatani, Naoki; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic

    2015-01-21

    The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.

  20. Exchange coupling and magnetic anisotropy in a family of bipyrimidyl radical-bridged dilanthanide complexes: density functional theory and ab initio calculations.

    PubMed

    Zhang, Yi-Quan; Luo, Cheng-Lin; Zhang, Qiang

    2014-05-05

    The origin of the magnetic anisotropy energy barriers in a series of bpym(-) (bpym = 2,2'-bipyrimidine) radical-bridged dilanthanide complexes [(Cp*2Ln)2(μ-bpym)](+) [Cp* = pentamethylcyclopentadienyl; Ln = Gd(III) (1), Tb(III) (2), Dy(III) (3), Ho(III) (4), Er(III) (5)] has been explored using density functional theory (DFT) and ab initio methods. DFT calculations show that the exchange coupling between the two lanthanide ions for each complex is very weak, but the antiferromagnetic Ln-bpym(-) couplings are strong. Ab initio calculations show that the effective energy barrier of 2 or 3 mainly comes from the contribution of a single Tb(III) or Dy(III) fragment, which is only about one third of a single Ln energy barrier. For 4 or 5, however, both of the two Ho(III) or Er(III) fragments contribute to the total energy barrier. Thus, it is insufficient to only increase the magnetic anisotropy energy barrier of a single Ln ion, while enhancing the Ln-bpym(-) couplings is also very important. Copyright © 2014 Wiley Periodicals, Inc.

  1. An ab-initio study of mechanical, dynamical and electronic properties of MgEu intermetallic

    NASA Astrophysics Data System (ADS)

    Kumar, S. Ramesh; Jaiganesh, G.; Jayalakshmi, V.

    2018-04-01

    The theoretical investigation on the mechanical, dynamical and electronic properties of MgEu in CsCl-type structure has been carried out through the ab-initio calculations within the framework of the density functional theory and the density functional perturbation theory. For the purpose, Vienna Ab initio Simulation Package and Phonopy packages were used. Our calculated ground-state properties of MgEu are in good agreement with other available results. Our computed elastic constants and phonon spectrum results suggest that MgEu is mechanically and dynamically stable up to 5 GPa. The thermodynamic quantities as a function of temperatures are also reported and discussed. The band structure, density of states and charge density also calculated to understand the electronic properties of MgEu.

  2. Verification of Anderson Superexchange in MnO via Magnetic Pair Distribution Function Analysis and ab initio Theory

    NASA Astrophysics Data System (ADS)

    Frandsen, Benjamin A.; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J.; Staunton, Julie B.; Billinge, Simon J. L.

    2016-05-01

    We present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ˜1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. The Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.

  3. AB INITIO Molecular Dynamics Simulations of Water Under Static and Shock Compressed Conditions

    NASA Astrophysics Data System (ADS)

    Goldman, Nir; Fried, Laurence E.; Mundy, Christopher J.; Kuo, I.-F. William; Curioni, Alessandro; Reed, Evan J.

    2007-12-01

    We report herein a series of ab initio simulations of water under both static and shocked conditions. We have calculated the coherent x-ray scattering intensity of several phases of water under high pressure, using ab initio Density Functional Theory (DFT). We provide new atomic scattering form factors for water at extreme conditions, which take into account frequently neglected changes in ionic charge and electron delocalization. We have also simulated liquid water undergoing shock loading of velocities from 5-11 km/s using the Multi-Scale Shock Technique (MSST). We show that Density Functional Theory (DFT) molecular dynamics results compare extremely well to experiments on the water shock Hugoniot.

  4. Single-ion 4f element magnetism: an ab-initio look at Ln(COT)2(-).

    PubMed

    Gendron, Frédéric; Pritchard, Benjamin; Bolvin, Hélène; Autschbach, Jochen

    2015-12-14

    The electron densities associated with the Ln 4f shell, and spin and orbital magnetizations ('magnetic moment densities'), are investigated for the Ln(COT)2(-) series. The densities are obtained from ab-initio calculations including spin-orbit coupling. For Ln = Ce, Pr the magnetizations are also derived from crystal field models and shown to agree with the ab-initio results. Analysis of magnetizations from ab-initio calculations may be useful in assisting research on single molecule magnets.

  5. Verification of Anderson Superexchange in MnO via Magnetic Pair Distribution Function Analysis and ab initio Theory.

    PubMed

    Frandsen, Benjamin A; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J; Staunton, Julie B; Billinge, Simon J L

    2016-05-13

    We present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ∼1  nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. The Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.

  6. Verification of Anderson superexchange in MnO via magnetic pair distribution function analysis and ab initio theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benjamin A. Frandsen; Brunelli, Michela; Page, Katharine

    Here, we present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ~1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominatedmore » by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. Furthermore, the Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.« less

  7. Verification of Anderson superexchange in MnO via magnetic pair distribution function analysis and ab initio theory

    DOE PAGES

    Benjamin A. Frandsen; Brunelli, Michela; Page, Katharine; ...

    2016-05-11

    Here, we present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ~1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominatedmore » by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. Furthermore, the Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.« less

  8. Ab initio structures and polarizabilities of sodium clusters

    NASA Astrophysics Data System (ADS)

    Kronik, Leeor; Vasiliev, Igor; Jain, Manish; Chelikowsky, James R.

    2001-09-01

    We present quantitative ab initio calculations for Na cluster structures and polarizabilities, for all cluster sizes up to 20 atoms. Our calculations are performed by combining an ab initio core-corrected pseudopotential and a gradient-corrected density functional within a real space approach. We find the cluster bonding to be very floppy and catalog a host of low-energy quasi-degenerate isomers for all second-decade clusters. The existence of these isomers results in a band of polarizability values for each cluster size even at zero temperature. This eliminates any finer structure in the polarizability curve. We further show that the experimental polarizability values are consistently underestimated by calculations at zero temperature. By computing the effects of structure expansion and distortion due to a finite temperature we arrive at a quantitative agreement between theory and experiment.

  9. Ab initio density-functional calculations in materials science: from quasicrystals over microporous catalysts to spintronics.

    PubMed

    Hafner, Jürgen

    2010-09-29

    During the last 20 years computer simulations based on a quantum-mechanical description of the interactions between electrons and atomic nuclei have developed an increasingly important impact on materials science, not only in promoting a deeper understanding of the fundamental physical phenomena, but also enabling the computer-assisted design of materials for future technologies. The backbone of atomic-scale computational materials science is density-functional theory (DFT) which allows us to cast the intractable complexity of electron-electron interactions into the form of an effective single-particle equation determined by the exchange-correlation functional. Progress in DFT-based calculations of the properties of materials and of simulations of processes in materials depends on: (1) the development of improved exchange-correlation functionals and advanced post-DFT methods and their implementation in highly efficient computer codes, (2) the development of methods allowing us to bridge the gaps in the temperature, pressure, time and length scales between the ab initio calculations and real-world experiments and (3) the extension of the functionality of these codes, permitting us to treat additional properties and new processes. In this paper we discuss the current status of techniques for performing quantum-based simulations on materials and present some illustrative examples of applications to complex quasiperiodic alloys, cluster-support interactions in microporous acid catalysts and magnetic nanostructures.

  10. Ab initio vel ex eventu

    NASA Astrophysics Data System (ADS)

    Thiessen, P. A.; Treder, H.-J.

    Der gegenwärtige Stand der physikalischen Erkenntnis, in Sonderheit die Atomistik und die Quantentheorie, ermöglicht (in wohldefinierten Energie-Bereichen) eine ab initio-Berechnung aller physikalischen und chemischen Prozesse und Strukturen. Die Schrödinger-Gleichung erlaubt zusammen mit den Prinzipien der Quantenstatistik (Pauli-Prinzip) aus dem Planckschen Wirkungsquantum h und den atomischen Konstanten die Berechnung aller Energieumsätze, Zeitabläufe etc., die insbesondere die chemische Physik bestimmen. Die Rechenresultate gelten auch quantitativ bis auf die unvermeidliche Stochastik.Die ab initio-Berechnungen korrespondieren einerseits und sind andererseits komplementär zu den auf den Methoden der theoretischen Chemie und der klassischen Thermodynamik beruhenden Ergebnissen ex eventu. Die theoretische Behandlung ab initio führt zu mathematischen Experimenten, die die Laboratoriums-Experimente ergänzen oder auch substituieren.Translated AbstractAb initio vel ex eventuThe present state of physical knowledge, in peculiar atomistic and quantum theory, makes an ab initio calculation of all physical and chemical processes and structures possible (in well defined reaches of energy). The Schrödinger equation together with the principles of quantum statistics (Pauli principle) permits from the Planck and atomistic constants to calculate all exchanges of energy, courses of time, etc. which govern chemical physics. The calculated results are valid even quantitatively apart from the unavoidable stochastics.These ab initio calculations on the one hand correspond and are on the other complimentary to results ex eventu based on the methods of theoretical chemistry and classical thermodynamics. Theoretical treatment ab initio leads to mathematical experiments which add to or even substitute experiments in the laboratory.

  11. Brønsted acidity of protic ionic liquids: a modern ab initio valence bond theory perspective.

    PubMed

    Patil, Amol Baliram; Mahadeo Bhanage, Bhalchandra

    2016-09-21

    Room temperature ionic liquids (ILs), especially protic ionic liquids (PILs), are used in many areas of the chemical sciences. Ionicity, the extent of proton transfer, is a key parameter which determines many physicochemical properties and in turn the suitability of PILs for various applications. The spectrum of computational chemistry techniques applied to investigate ionic liquids includes classical molecular dynamics, Monte Carlo simulations, ab initio molecular dynamics, Density Functional Theory (DFT), CCSD(t) etc. At the other end of the spectrum is another computational approach: modern ab initio Valence Bond Theory (VBT). VBT differs from molecular orbital theory based methods in the expression of the molecular wave function. The molecular wave function in the valence bond ansatz is expressed as a linear combination of valence bond structures. These structures include covalent and ionic structures explicitly. Modern ab initio valence bond theory calculations of representative primary and tertiary ammonium protic ionic liquids indicate that modern ab initio valence bond theory can be employed to assess the acidity and ionicity of protic ionic liquids a priori.

  12. An ab initio molecular dynamics and density functional theory study of the formation of phosphate chains from metathiophosphates.

    PubMed

    Mosey, Nicholas J; Woo, Tom K

    2006-09-04

    The reactions that occur between metathiophosphate (MTP) molecules are identified and examined through ab initio molecular dynamics simulations and static quantum chemical calculations at the density functional level of theory. The simulations show that certain types of MTPs can react to yield phosphate chains, while others only dimerize. These differences are rationalized in terms of reaction energies and the electronic structures of these molecules. In the reaction leading to the formation of phosphate chains, the reactive center, a tri-coordinate phosphorus atom, is continually regenerated. A polymerization mechanism linking MTPs to phosphate chains is developed on the basis of these results. This information sheds light on the underlying processes that may be responsible for the formation of phosphates under high-temperature conditions and may prove useful in the development of protocols for the rational synthesis of complex phosphate structures.

  13. Electron transport in extended carbon-nanotube/metal contacts: Ab initio based Green function method

    NASA Astrophysics Data System (ADS)

    Fediai, Artem; Ryndyk, Dmitry A.; Cuniberti, Gianaurelio

    2015-04-01

    We have developed a new method that is able to predict the electrical properties of the source and drain contacts in realistic carbon nanotube field effect transistors (CNTFETs). It is based on large-scale ab initio calculations combined with a Green function approach. For the first time, both internal and external parts of a realistic CNT-metal contact are taken into account at the ab initio level. We have developed the procedure allowing direct calculation of the self-energy for an extended contact. Within the method, it is possible to calculate the transmission coefficient through a contact of both finite and infinite length; the local density of states can be determined in both free and embedded CNT segments. We found perfect agreement with the experimental data for Pd and Al contacts. We have explained why CNTFETs with Pd electrodes are p -type FETs with ohmic contacts, which can carry current close to the ballistic limit (provided contact length is large enough), whereas in CNT-Al contacts transmission is suppressed to a significant extent, especially for holes.

  14. Ab initio theory of noble gas atoms in bcc transition metals

    DOE PAGES

    Jiang, Chao; Zhang, Yongfeng; Gao, Yipeng; ...

    2018-01-01

    Systematic ab initio calculations based on density functional theory have been performed to gain fundamental understanding of the interactions between noble gas atoms (He, Ne, Ar and Kr) and bcc transition metals in groups 5B (V, Nb and Ta), 6B (Cr, Mo and W) and 8B (Fe).

  15. Ab Initio Density Functional Calculations and Infra-Red Study of CO Interaction with Pd Atoms on θ-Al2O3 (010) Surface.

    PubMed

    Narula, Chaitanya K; Allard, Lawrence F; Wu, Zili

    2017-07-24

    The ab initio density functional theoretical studies show that energetics favor CO oxidation on single Pd atoms supported on θ-alumina. The diffuse reflectance infra-red spectroscopy (DRIFTS) results show that carbonates are formed as intermediates when single supported Pd atoms are exposed to a gaseous mixture of CO + O 2 . The rapid agglomeration of Pd atoms under CO oxidation conditions even at 6 °C leads to the presence of Pd particles along with single atoms during CO oxidation experiments. Thus, the observed CO oxidation has contributions from both single Pd atoms and Pd particles.

  16. Toward ab initio molecular dynamics modeling for sum-frequency generation spectra; an efficient algorithm based on surface-specific velocity-velocity correlation function.

    PubMed

    Ohto, Tatsuhiko; Usui, Kota; Hasegawa, Taisuke; Bonn, Mischa; Nagata, Yuki

    2015-09-28

    Interfacial water structures have been studied intensively by probing the O-H stretch mode of water molecules using sum-frequency generation (SFG) spectroscopy. This surface-specific technique is finding increasingly widespread use, and accordingly, computational approaches to calculate SFG spectra using molecular dynamics (MD) trajectories of interfacial water molecules have been developed and employed to correlate specific spectral signatures with distinct interfacial water structures. Such simulations typically require relatively long (several nanoseconds) MD trajectories to allow reliable calculation of the SFG response functions through the dipole moment-polarizability time correlation function. These long trajectories limit the use of computationally expensive MD techniques such as ab initio MD and centroid MD simulations. Here, we present an efficient algorithm determining the SFG response from the surface-specific velocity-velocity correlation function (ssVVCF). This ssVVCF formalism allows us to calculate SFG spectra using a MD trajectory of only ∼100 ps, resulting in the substantial reduction of the computational costs, by almost an order of magnitude. We demonstrate that the O-H stretch SFG spectra at the water-air interface calculated by using the ssVVCF formalism well reproduce those calculated by using the dipole moment-polarizability time correlation function. Furthermore, we applied this ssVVCF technique for computing the SFG spectra from the ab initio MD trajectories with various density functionals. We report that the SFG responses computed from both ab initio MD simulations and MD simulations with an ab initio based force field model do not show a positive feature in its imaginary component at 3100 cm(-1).

  17. Large-Scale Hybrid Density Functional Theory Calculations in the Condensed-Phase: Ab Initio Molecular Dynamics in the Isobaric-Isothermal Ensemble

    NASA Astrophysics Data System (ADS)

    Ko, Hsin-Yu; Santra, Biswajit; Distasio, Robert A., Jr.; Wu, Xifan; Car, Roberto

    Hybrid functionals are known to alleviate the self-interaction error in density functional theory (DFT) and provide a more accurate description of the electronic structure of molecules and materials. However, hybrid DFT in the condensed-phase has a prohibitively high associated computational cost which limits their applicability to large systems of interest. In this work, we present a general-purpose order(N) implementation of hybrid DFT in the condensed-phase using Maximally localized Wannier function; this implementation is optimized for massively parallel computing architectures. This algorithm is used to perform large-scale ab initio molecular dynamics simulations of liquid water, ice, and aqueous ionic solutions. We have performed simulations in the isothermal-isobaric ensemble to quantify the effects of exact exchange on the equilibrium density properties of water at different thermodynamic conditions. We find that the anomalous density difference between ice I h and liquid water at ambient conditions as well as the enthalpy differences between ice I h, II, and III phases at the experimental triple point (238 K and 20 Kbar) are significantly improved using hybrid DFT over previous estimates using the lower rungs of DFT This work has been supported by the Department of Energy under Grants No. DE-FG02-05ER46201 and DE-SC0008626.

  18. Revisiting Wiedemann-Franz law through Boltzmann transport equations and ab-initio density functional theory

    NASA Astrophysics Data System (ADS)

    Nag, Abhinav; Kumari, Anuja; Kumar, Jagdish

    2018-05-01

    We have investigated structural, electronic and transport properties of the alkali metals using ab-initio density functional theory. The electron energy dispersions are found parabolic free electron like which is expected for alkali metals. The lattice constants for all the studied metals are also in good agreement within 98% with experiments. We have further computed their transport properties using semi-classical Boltzmann transport equations with special focus on electrical and thermal conductivity. Our objective was to obtain Wiedemann-Franz law and hence Lorenz number. The motivation to do these calculations is to see that how the incorporation of different interactions such as electron-lattice, electron-electron interaction affect the Wiedeman-Franz law. By solving Boltzmann transport equations, we have obtained electrical conductivity (σ/τ) and thermal conductivity (κ0 /τ) at different temperatures and then calculated Lorenz number using L = κ0 /(σT). The obtained value of Lorenz number has been found to match with value derived for free electron Fermi gas 2.44× 10-8 WΩK-2. Our results prove that the Wiedemann-Franz law as derived for free electron gas does not change much for alkali metals, even when one incorporates interaction of electrons with atomic nuclei and other electrons. However, at lower temperatures, the Lorenz number, was found to be deviating from its theoretical value.

  19. Macromolecular ab initio phasing enforcing secondary and tertiary structure.

    PubMed

    Millán, Claudia; Sammito, Massimo; Usón, Isabel

    2015-01-01

    Ab initio phasing of macromolecular structures, from the native intensities alone with no experimental phase information or previous particular structural knowledge, has been the object of a long quest, limited by two main barriers: structure size and resolution of the data. Current approaches to extend the scope of ab initio phasing include use of the Patterson function, density modification and data extrapolation. The authors' approach relies on the combination of locating model fragments such as polyalanine α-helices with the program PHASER and density modification with the program SHELXE. Given the difficulties in discriminating correct small substructures, many putative groups of fragments have to be tested in parallel; thus calculations are performed in a grid or supercomputer. The method has been named after the Italian painter Arcimboldo, who used to compose portraits out of fruit and vegetables. With ARCIMBOLDO, most collections of fragments remain a 'still-life', but some are correct enough for density modification and main-chain tracing to reveal the protein's true portrait. Beyond α-helices, other fragments can be exploited in an analogous way: libraries of helices with modelled side chains, β-strands, predictable fragments such as DNA-binding folds or fragments selected from distant homologues up to libraries of small local folds that are used to enforce nonspecific tertiary structure; thus restoring the ab initio nature of the method. Using these methods, a number of unknown macromolecules with a few thousand atoms and resolutions around 2 Å have been solved. In the 2014 release, use of the program has been simplified. The software mediates the use of massive computing to automate the grid access required in difficult cases but may also run on a single multicore workstation (http://chango.ibmb.csic.es/ARCIMBOLDO_LITE) to solve straightforward cases.

  20. Combined ab initio and density functional study on polaron to bipolaron transitions in oligophenyls and oligothiophenes

    NASA Astrophysics Data System (ADS)

    Irle, Stephan; Lischka, Hans

    1997-08-01

    Ab initio self-consistent-field (SCF), two-configuration SCF (TCSCF), and density functional theory (DFT) calculations on the charge-transfer complexes of doubly Li/Cl-doped oligothiophenes and oligo(p-phenyls) and on respective charged systems without counterions have been carried out in order to study polaron to bipolaron transitions. Oligomer chains up to octamers and the ring structures cyclo-dodecathiophene and cyclo-dodeca(p-phenyl) have been investigated. Special attention is paid to the open-shell biradical character of two isolated polaronic defects. It is found that the TCSCF and the spin-unrestricted DFT methods can be successfully applied. A bipolaron structure is obtained when the doping atoms are located on neighboring rings and when there is one undoped ring separating the two doped ones. If there are two or more undoped rings in between a two-polaron configuration (biradical) is found. The bipolaron system is calculated to be more stable than the two-polaron case when counterions are taken into account. The stabilities are reversed if the bare, doubly-charged systems are considered. A theoretical estimate for the barrier height of the polaron to bipolaron transition is given using model reaction coordinates.

  1. Ab-initio atomic level stress and role of d-orbitals in CuZr, CuZn and CuY

    NASA Astrophysics Data System (ADS)

    Ojha, Madhusudan; Nicholson, Don M.; Egami, Takeshi

    2015-03-01

    Atomic level stress offers a new tool to characterize materials within the local approximation to density functional theory (DFT). Ab-initio atomic level stresses in B2 structures of CuZr, CuZn and CuY are calculated and results are explained on the basis of d-orbital contributions to Density of States (DOS). The overlap of d-orbital DOS plays an important role in the relative magnitude of atomic level stresses in these structures. The trends in atomic level stresses that we observed in these simple B2 structures are also seen in complex structures such as liquids, glasses and solid solutions. The stresses are however modified by the different coordination and relaxed separation distances in these complex structures. We used the Locally Self-Consistent Multiple Scattering (LSMS) code and Vienna Ab-initio Simulation Package (VASP) for ab-initio calculations.

  2. A walk through the approximations of ab initio multiple spawning

    NASA Astrophysics Data System (ADS)

    Mignolet, Benoit; Curchod, Basile F. E.

    2018-04-01

    Full multiple spawning offers an in principle exact framework for excited-state dynamics, where nuclear wavefunctions in different electronic states are represented by a set of coupled trajectory basis functions that follow classical trajectories. The couplings between trajectory basis functions can be approximated to treat molecular systems, leading to the ab initio multiple spawning method which has been successfully employed to study the photochemistry and photophysics of several molecules. However, a detailed investigation of its approximations and their consequences is currently missing in the literature. In this work, we simulate the explicit photoexcitation and subsequent excited-state dynamics of a simple system, LiH, and we analyze (i) the effect of the ab initio multiple spawning approximations on different observables and (ii) the convergence of the ab initio multiple spawning results towards numerically exact quantum dynamics upon a progressive relaxation of these approximations. We show that, despite the crude character of the approximations underlying ab initio multiple spawning for this low-dimensional system, the qualitative excited-state dynamics is adequately captured, and affordable corrections can further be applied to ameliorate the coupling between trajectory basis functions.

  3. A walk through the approximations of ab initio multiple spawning.

    PubMed

    Mignolet, Benoit; Curchod, Basile F E

    2018-04-07

    Full multiple spawning offers an in principle exact framework for excited-state dynamics, where nuclear wavefunctions in different electronic states are represented by a set of coupled trajectory basis functions that follow classical trajectories. The couplings between trajectory basis functions can be approximated to treat molecular systems, leading to the ab initio multiple spawning method which has been successfully employed to study the photochemistry and photophysics of several molecules. However, a detailed investigation of its approximations and their consequences is currently missing in the literature. In this work, we simulate the explicit photoexcitation and subsequent excited-state dynamics of a simple system, LiH, and we analyze (i) the effect of the ab initio multiple spawning approximations on different observables and (ii) the convergence of the ab initio multiple spawning results towards numerically exact quantum dynamics upon a progressive relaxation of these approximations. We show that, despite the crude character of the approximations underlying ab initio multiple spawning for this low-dimensional system, the qualitative excited-state dynamics is adequately captured, and affordable corrections can further be applied to ameliorate the coupling between trajectory basis functions.

  4. Ab Initio Calculations of Transport in Titanium and Aluminum Mixtures

    NASA Astrophysics Data System (ADS)

    Walker, Nicholas; Novak, Brian; Tam, Ka Ming; Moldovan, Dorel; Jarrell, Mark

    In classical molecular dynamics simulations, the self-diffusion and shear viscosity of titanium about the melting point have fallen within the ranges provided by experimental data. However, the experimental data is difficult to collect and has been rather scattered, making it of limited value for the validation of these calculations. By using ab initio molecular dynamics simulations within the density functional theory framework, the classical molecular dynamics data can be validated. The dynamical data from the ab initio molecular dynamics can also be used to calculate new potentials for use in classical molecular dynamics, allowing for more accurate classical dynamics simulations for the liquid phase. For metallic materials such as titanium and aluminum alloys, these calculations are very valuable due to an increasing demand for the knowledge of their thermophysical properties that drive the development of new materials. For example, alongside knowledge of the surface tension, viscosity is an important input for modeling the additive manufacturing process at the continuum level. We are developing calculations of the viscosity along with the self-diffusion for aluminum, titanium, and titanium-aluminum alloys with ab initio molecular dynamics. Supported by the National Science Foundation through cooperative agreement OIA-1541079 and the Louisiana Board of Regents.

  5. Ab initio molecular simulations with numeric atom-centered orbitals

    NASA Astrophysics Data System (ADS)

    Blum, Volker; Gehrke, Ralf; Hanke, Felix; Havu, Paula; Havu, Ville; Ren, Xinguo; Reuter, Karsten; Scheffler, Matthias

    2009-11-01

    We describe a complete set of algorithms for ab initio molecular simulations based on numerically tabulated atom-centered orbitals (NAOs) to capture a wide range of molecular and materials properties from quantum-mechanical first principles. The full algorithmic framework described here is embodied in the Fritz Haber Institute "ab initio molecular simulations" (FHI-aims) computer program package. Its comprehensive description should be relevant to any other first-principles implementation based on NAOs. The focus here is on density-functional theory (DFT) in the local and semilocal (generalized gradient) approximations, but an extension to hybrid functionals, Hartree-Fock theory, and MP2/GW electron self-energies for total energies and excited states is possible within the same underlying algorithms. An all-electron/full-potential treatment that is both computationally efficient and accurate is achieved for periodic and cluster geometries on equal footing, including relaxation and ab initio molecular dynamics. We demonstrate the construction of transferable, hierarchical basis sets, allowing the calculation to range from qualitative tight-binding like accuracy to meV-level total energy convergence with the basis set. Since all basis functions are strictly localized, the otherwise computationally dominant grid-based operations scale as O(N) with system size N. Together with a scalar-relativistic treatment, the basis sets provide access to all elements from light to heavy. Both low-communication parallelization of all real-space grid based algorithms and a ScaLapack-based, customized handling of the linear algebra for all matrix operations are possible, guaranteeing efficient scaling (CPU time and memory) up to massively parallel computer systems with thousands of CPUs.

  6. Ab initio Studies of Magnetism in the Iron Chalcogenides FeTe and FeSe

    NASA Astrophysics Data System (ADS)

    Hirayama, Motoaki; Misawa, Takahiro; Miyake, Takashi; Imada, Masatoshi

    2015-09-01

    The iron chalcogenides FeTe and FeSe belong to the family of iron-based superconductors. We study the magnetism in these compounds in the normal state using the ab initio downfolding scheme developed for strongly correlated electron systems. In deriving ab initio low-energy effective models, we employ the constrained GW method to eliminate the double counting of electron correlations originating from the exchange correlations already taken into account in the density functional theory. By solving the derived ab initio effective models, we reveal that the elimination of the double counting is important in reproducing the bicollinear antiferromagnetic order in FeTe, as is observed in experiments. We also show that the elimination of the double counting induces a unique degeneracy of several magnetic orders in FeSe, which may explain the absence of the magnetic ordering. We discuss the relationship between the degeneracy and the recently found puzzling phenomena in FeSe as well as the magnetic ordering found under pressure.

  7. Ab-initio adsorption study of chitosan on functionalized graphene: critical role of van der Waals interactions.

    PubMed

    Rahman, R; Mazumdar, D

    2012-03-01

    We investigate the adsorption process of an organic biomolecule (chitosan) on epoxy-functionalized graphene using ab-initio density functional methods incorporating van-der-waals (vdW) interactions. The role of London dispersion force on the cohesive energy and conformal preference of the molecule is quantitatively elucidated. Functionalizing graphene with epoxy leads to weak hydrogen-bond interactions with chitosan. Binding energy values increase by over an order of magnitude after including vdW corrections, implying that dispersive interactions dominate the physisorption process. Conformal study show binding upto 30 kcal/mol when the molecule is oriented with the hydroxyl group approaching the functionalized graphene. Our study advances the promise of functionalized graphene for a variety of applications.

  8. Ab initio calculation of one-nucleon halo states

    NASA Astrophysics Data System (ADS)

    Rodkin, D. M.; Tchuvil'sky, Yu M.

    2018-02-01

    We develop an approach to microscopic and ab initio description of clustered systems, states with halo nucleon and one-nucleon resonances. For these purposes a basis combining ordinary shell-model components and cluster-channel terms is built up. The transformation of clustered wave functions to the uniform Slater-determinant type is performed using the concept of cluster coefficients. The resulting basis of orthonormalized wave functions is used for calculating the eigenvalues and the eigenvectors of Hamiltonians built in the framework of ab initio approaches. Calculations of resonance and halo states of 5He, 9Be and 9B nuclei demonstrate that the approach is workable and labor-saving.

  9. Ab initio and density functional computations of the vibrational spectrum, molecular geometry and some molecular properties of the antidepressant drug sertraline (Zoloft) hydrochloride

    NASA Astrophysics Data System (ADS)

    Sagdinc, Seda; Kandemirli, Fatma; Bayari, Sevgi Haman

    2007-02-01

    Sertraline hydrochloride is a highly potent and selective inhibitor of serotonin (5HT). It is a basic compound of pharmaceutical application for antidepressant treatment (brand name: Zoloft). Ab initio and density functional computations of the vibrational (IR) spectrum, the molecular geometry, the atomic charges and polarizabilities were carried out. The infrared spectrum of sertraline is recorded in the solid state. The observed IR wave numbers were analysed in light of the computed vibrational spectrum. On the basis of the comparison between calculated and experimental results and the comparison with related molecules, assignments of fundamental vibrational modes are examined. The X-ray geometry and experimental frequencies are compared with the results of our theoretical calculations.

  10. Pseudopotential for ab initio calculations of uranium compounds

    NASA Astrophysics Data System (ADS)

    Smirnov, G. S.; Pisarev, V. V.; Stegailov, V. V.

    2018-01-01

    The density functional theory (DFT) is a research tool of the highest importance for electronic structure calculations. It is often the only affordable method for ab initio calculations of complex materials. The pseudopotential approach allows reducing the total number of electrons in the model that speeds up calculations. However, there is a lack of pseudopotentials for heavy elements suitable for condensed matter DFT models. In this work, we present a pseudopotential for uranium developed in the Goedecker-Teter-Hutter form. Its accuracy is illustrated using several molecular and solid-state calculations.

  11. Ab-initio Density Functional Theory (DFT) Studies of Electronic, Transport, and Bulk Properties of Sodium Oxide (Na2O)

    NASA Astrophysics Data System (ADS)

    Polin, Daniel; Ziegler, Joshua; Malozovsky, Yuriy; Bagayoko, Diola

    We present the findings of ab-initio calculations of electronic, transport, and structural properties of cubic sodium oxide (Na2O). These results were obtained using density functional theory (DFT), specifically a local density approximation (LDA) potential, and the linear combination of Gaussian orbitals (LCGO). Our implementation of LCGO followed the Bagayoko, Zhao, and Williams method as enhanced by the work of Ekuma and Franklin (BZW-EF). We describe the electronic band structure of Na2O with a direct band gap of 2.22 eV. Our results include predicted values for the electronic band structure and associated energy eigenvalues, the total and partial density of states (DOS and pDOS), the equilibrium lattice constant of Na2O, and the bulk modulus. We have also calculated the electron and holes effective masses in the Γ to L, Γ to X, and Γ to K directions. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE- NA0002630), LaSPACE, and LONI-SUBR.

  12. Ab initio study of the electron energy loss function in a graphene-sapphire-graphene composite system

    NASA Astrophysics Data System (ADS)

    Despoja, Vito; Djordjević, Tijana; Karbunar, Lazar; Radović, Ivan; Mišković, Zoran L.

    2017-08-01

    The propagator of a dynamically screened Coulomb interaction W in a sandwichlike structure consisting of two graphene layers separated by a slab of Al2O3 (or vacuum) is derived from single-layer graphene response functions and by using a local dielectric function for the bulk Al2O3 . The response function of graphene is obtained using two approaches within the random phase approximation (RPA): an ab initio method that includes all electronic bands in graphene and a computationally less demanding method based on the massless Dirac fermion (MDF) approximation for the low-energy excitations of electrons in the π bands. The propagator W is used to derive an expression for the effective dielectric function of our sandwich structure, which is relevant for the reflection electron energy loss spectroscopy of its surface. Focusing on the range of frequencies from THz to mid-infrared, special attention is paid to finding an accurate optical limit in the ab initio method, where the response function is expressed in terms of a frequency-dependent conductivity of graphene. It was shown that the optical limit suffices for describing hybridization between the Dirac plasmons in graphene layers and the Fuchs-Kliewer phonons in both surfaces of the Al2O3 slab, and that the spectra obtained from both the ab initio method and the MDF approximation in the optical limit agree perfectly well for wave numbers up to about 0.1 nm-1. Going beyond the optical limit, the agreement between the full ab initio method and the MDF approximation was found to extend to wave numbers up to about 0.3 nm-1 for doped graphene layers with the Fermi energy of 0.2 eV.

  13. An efficient and accurate molecular alignment and docking technique using ab initio quality scoring

    PubMed Central

    Füsti-Molnár, László; Merz, Kenneth M.

    2008-01-01

    An accurate and efficient molecular alignment technique is presented based on first principle electronic structure calculations. This new scheme maximizes quantum similarity matrices in the relative orientation of the molecules and uses Fourier transform techniques for two purposes. First, building up the numerical representation of true ab initio electronic densities and their Coulomb potentials is accelerated by the previously described Fourier transform Coulomb method. Second, the Fourier convolution technique is applied for accelerating optimizations in the translational coordinates. In order to avoid any interpolation error, the necessary analytical formulas are derived for the transformation of the ab initio wavefunctions in rotational coordinates. The results of our first implementation for a small test set are analyzed in detail and compared with published results of the literature. A new way of refinement of existing shape based alignments is also proposed by using Fourier convolutions of ab initio or other approximate electron densities. This new alignment technique is generally applicable for overlap, Coulomb, kinetic energy, etc., quantum similarity measures and can be extended to a genuine docking solution with ab initio scoring. PMID:18624561

  14. Thermal decomposition of 1,3,3-trinitroazetidine (TNAZ): A density functional theory and ab initio study

    NASA Astrophysics Data System (ADS)

    Veals, Jeffrey D.; Thompson, Donald L.

    2014-04-01

    Density functional theory and ab initio methods are employed to investigate decomposition pathways of 1,3,3-trinitroazetidine initiated by unimolecular loss of NO2 or HONO. Geometry optimizations are performed using M06/cc-pVTZ and coupled-cluster (CC) theory with single, double, and perturbative triple excitations, CCSD(T), is used to calculate accurate single-point energies for those geometries. The CCSD(T)/cc-pVTZ energies for NO2 elimination by N-N and C-N bond fission are, including zero-point energy (ZPE) corrections, 43.21 kcal/mol and 50.46 kcal/mol, respectively. The decomposition initiated by trans-HONO elimination can occur by a concerted H-atom and nitramine NO2 group elimination or by a concerted H-atom and nitroalkyl NO2 group elimination via barriers (at the CCSD(T)/cc-pVTZ level with ZPE corrections) of 47.00 kcal/mol and 48.27 kcal/mol, respectively. Thus, at the CCSD(T)/cc-pVTZ level, the ordering of these four decomposition steps from energetically most favored to least favored is: NO2 elimination by N-N bond fission, HONO elimination involving the nitramine NO2 group, HONO elimination involving a nitroalkyl NO2 group, and finally NO2 elimination by C-N bond fission.

  15. Assessment of Ab Initio and Density Functional Theory Methods for the Excitations of Donor-Acceptor Complexes: The Case of the Benzene-Tetracyanoethylene Model.

    PubMed

    Xu, Peng; Zhang, Cai-Rong; Wang, Wei; Gong, Ji-Jun; Liu, Zi-Jiang; Chen, Hong-Shan

    2018-04-10

    The understanding of the excited-state properties of electron donors, acceptors and their interfaces in organic optoelectronic devices is a fundamental issue for their performance optimization. In order to obtain a balanced description of the different excitation types for electron-donor-acceptor systems, including the singlet charge transfer (CT), local excitations, and triplet excited states, several ab initio and density functional theory (DFT) methods for excited-state calculations were evaluated based upon the selected model system of benzene-tetracyanoethylene (B-TCNE) complexes. On the basis of benchmark calculations of the equation-of-motion coupled-cluster with single and double excitations method, the arithmetic mean of the absolute errors and standard errors of the electronic excitation energies for the different computational methods suggest that the M11 functional in DFT is superior to the other tested DFT functionals, and time-dependent DFT (TDDFT) with the Tamm-Dancoff approximation improves the accuracy of the calculated excitation energies relative to that of the full TDDFT. The performance of the M11 functional underlines the importance of kinetic energy density, spin-density gradient, and range separation in the development of novel DFT functionals. According to the TDDFT results, the performances of the different TDDFT methods on the CT properties of the B-TCNE complexes were also analyzed.

  16. Diffusion in liquid Germanium using ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Kulkarni, R. V.; Aulbur, W. G.; Stroud, D.

    1996-03-01

    We describe the results of calculations of the self-diffusion constant of liquid Ge over a range of temperatures. The calculations are carried out using an ab initio molecular dynamics scheme which combines an LDA model for the electronic structure with the Bachelet-Hamann-Schlüter norm-conserving pseudopotentials^1. The energies associated with electronic degrees of freedom are minimized using the Williams-Soler algorithm, and ionic moves are carried out using the Verlet algorithm. We use an energy cutoff of 10 Ry, which is sufficient to give results for the lattice constant and bulk modulus of crystalline Ge to within 1% and 12% of experiment. The program output includes not only the self-diffusion constant but also the structure factor, electronic density of states, and low-frequency electrical conductivity. We will compare our results with other ab initio and semi-empirical calculations, and discuss extension to impurity diffusion. ^1 We use the ab initio molecular dynamics code fhi94md, developed at 1cm the Fritz-Haber Institute, Berlin. ^2 Work supported by NASA, Grant NAG3-1437.

  17. Ab Initio-Based Predictions of Hydrocarbon Combustion Chemistry

    DTIC Science & Technology

    2015-07-15

    There are two prime objectives of the research. One is to develop and apply efficient methods for using ab initio potential energy surfaces (PESs...31-Mar-2015 Approved for Public Release; Distribution Unlimited Final Report: Ab Initio -Based Predictions of Hydrocarbon Combustion Chemistry The...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 hydrocarbon combustion, ab initio quantum chemistry, potential energy surfaces, chemical

  18. Ab initio quantum chemistry: methodology and applications.

    PubMed

    Friesner, Richard A

    2005-05-10

    This Perspective provides an overview of state-of-the-art ab initio quantum chemical methodology and applications. The methods that are discussed include coupled cluster theory, localized second-order Moller-Plesset perturbation theory, multireference perturbation approaches, and density functional theory. The accuracy of each approach for key chemical properties is summarized, and the computational performance is analyzed, emphasizing significant advances in algorithms and implementation over the past decade. Incorporation of a condensed-phase environment by means of mixed quantum mechanical/molecular mechanics or self-consistent reaction field techniques, is presented. A wide range of illustrative applications, focusing on materials science and biology, are discussed briefly.

  19. Ab initio NMR Confirmed Evolutionary Structure Prediction for Organic Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Pham, Cong-Huy; Kucukbenli, Emine; de Gironcoli, Stefano

    2015-03-01

    Ab initio crystal structure prediction of even small organic compounds is extremely challenging due to polymorphism, molecular flexibility and difficulties in addressing the dispersion interaction from first principles. We recently implemented vdW-aware density functionals and demonstrated their success in energy ordering of aminoacid crystals. In this work we combine this development with the evolutionary structure prediction method to study cholesterol polymorphs. Cholesterol crystals have paramount importance in various diseases, from cancer to atherosclerosis. The structure of some polymorphs (e.g. ChM, ChAl, ChAh) have already been resolved while some others, which display distinct NMR spectra and are involved in disease formation, are yet to be determined. Here we thoroughly assess the applicability of evolutionary structure prediction to address such real world problems. We validate the newly predicted structures with ab initio NMR chemical shift data using secondary referencing for an improved comparison with experiments.

  20. Are trinuclear superhalogens promising candidates for building blocks of novel magnetic materials? A theoretical prospect from combined broken-symmetry density functional theory and ab initio study.

    PubMed

    Yu, Yang; Li, Chen; Yin, Bing; Li, Jian-Li; Huang, Yuan-He; Wen, Zhen-Yi; Jiang, Zhen-Yi

    2013-08-07

    The structures, relative stabilities, vertical electron detachment energies, and magnetic properties of a series of trinuclear clusters are explored via combined broken-symmetry density functional theory and ab initio study. Several exchange-correlation functionals are utilized to investigate the effects of different halogen elements and central atoms on the properties of the clusters. These clusters are shown to possess stronger superhalogen properties than previously reported dinuclear superhalogens. The calculated exchange coupling constants indicate the antiferromagnetic coupling between the transition metal ions. Spin density analysis demonstrates the importance of spin delocalization in determining the strengths of various couplings. Spin frustration is shown to occur in some of the trinuclear superhalogens. The coexistence of strong superhalogen properties and spin frustration implies the possibility of trinuclear superhalogens working as the building block of new materials of novel magnetic properties.

  1. Perspective: Ab initio force field methods derived from quantum mechanics

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Guidez, Emilie B.; Bertoni, Colleen; Gordon, Mark S.

    2018-03-01

    It is often desirable to accurately and efficiently model the behavior of large molecular systems in the condensed phase (thousands to tens of thousands of atoms) over long time scales (from nanoseconds to milliseconds). In these cases, ab initio methods are difficult due to the increasing computational cost with the number of electrons. A more computationally attractive alternative is to perform the simulations at the atomic level using a parameterized function to model the electronic energy. Many empirical force fields have been developed for this purpose. However, the functions that are used to model interatomic and intermolecular interactions contain many fitted parameters obtained from selected model systems, and such classical force fields cannot properly simulate important electronic effects. Furthermore, while such force fields are computationally affordable, they are not reliable when applied to systems that differ significantly from those used in their parameterization. They also cannot provide the information necessary to analyze the interactions that occur in the system, making the systematic improvement of the functional forms that are used difficult. Ab initio force field methods aim to combine the merits of both types of methods. The ideal ab initio force fields are built on first principles and require no fitted parameters. Ab initio force field methods surveyed in this perspective are based on fragmentation approaches and intermolecular perturbation theory. This perspective summarizes their theoretical foundation, key components in their formulation, and discusses key aspects of these methods such as accuracy and formal computational cost. The ab initio force fields considered here were developed for different targets, and this perspective also aims to provide a balanced presentation of their strengths and shortcomings. Finally, this perspective suggests some future directions for this actively developing area.

  2. Topological Semimetals Studied by Ab Initio Calculations

    NASA Astrophysics Data System (ADS)

    Hirayama, Motoaki; Okugawa, Ryo; Murakami, Shuichi

    2018-04-01

    In topological semimetals such as Weyl, Dirac, and nodal-line semimetals, the band gap closes at points or along lines in k space which are not necessarily located at high-symmetry positions in the Brillouin zone. Therefore, it is not straightforward to find these topological semimetals by ab initio calculations because the band structure is usually calculated only along high-symmetry lines. In this paper, we review recent studies on topological semimetals by ab initio calculations. We explain theoretical frameworks which can be used for the search for topological semimetal materials, and some numerical methods used in the ab initio calculations.

  3. Ab Initio Studies of Stratospheric Ozone Depletion Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.

  4. Crossover of cation partitioning in olivines: a combination of ab initio and Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Chatterjee, Swastika; Bhattacharyya, Sirshendu; Sengupta, Surajit; Saha-Dasgupta, Tanusri

    2011-04-01

    We report studies based on a combination of ab initio electronic structure and Monte Carlo (MC) technique on the problem of cation partitioning among inequivalent octahedral sites, M1 and M2 in mixed olivines containing Mg2+ and Fe2+ ions. Our MC scheme uses interactions derived out of ab initio, density functional calculations carried out on measured crystal structure data. Our results show that there is no reversal of the preference of Fe for M1 over M2 as a function of temperature. Our findings do not agree with the experimental findings of Redfern et al. (Phys Chem Miner 27:630-637, 2000), but are in agreement with those of Heinemann et al. (Eur J Mineral 18:673-689, 2006) and Morozov et al. (Eur J Mineral 17:495-500, 2005).

  5. Ab initio simulations of iron-nickel alloys at Earth's core conditions

    NASA Astrophysics Data System (ADS)

    Côté, Alexander S.; Vočadlo, Lidunka; Brodholt, John P.

    2012-09-01

    We report ab initio density functional theory calculations on iron-nickel (FeNi) alloys at conditions representative of the Earth's inner core. We test different concentrations of Ni, up to ∼39 wt% using ab initio lattice dynamics, and investigate the thermodynamic and vibrational stability of the three candidate crystal structures (bcc, hcp and fcc). First of all, at inner core pressures, we find that pure Fe transforms from the hcp to the fcc phase at around 6000 K. Secondly, in agreement with low pressure experiments on Fe-Ni alloys, we find the fcc structure is stabilised by the incorporation of Ni under core pressures and temperatures. Our results show that the fcc structure may, therefore, be stable under core conditions depending on the temperature in the inner core and the Ni content. Lastly, we find that within the quasi-harmonic approximation, there is no stability field for FeNi alloys in the bcc structure under core conditions.

  6. Ab initio study of the structural properties of acetonitrile-water mixtures

    NASA Astrophysics Data System (ADS)

    Chen, Jinfan; Sit, Patrick H.-L.

    2015-08-01

    Structural properties of acetonitrile and acetonitrile-water mixtures are studied using Density Functional Theory (DFT) and ab initio molecular dynamics simulations. Stable molecular clusters consisted of several water and acetonitrile molecules are identified to provide microscopic understanding of the interaction among water and acetonitrile molecules. Ab initio molecular dynamics simulations are performed to study the liquid structure at the finite temperature. Three mixing compositions in which the mole fraction of acetonitrile equals 0.109, 0.5 and 0.891 are studied. These compositions correspond to three distinct structural regimes. At the 0.109 and 0.891 mole fraction of acetonitrile, the majority species are mostly connected among themselves and the minority species are either isolated or forming small clusters without disrupting the network of the majority species. At the 0.5 mole fraction of acetonitrile, large water and acetonitrile clusters persist throughout the simulation, exhibiting the microheterogeneous behavior in acetonitrile-water mixtures in the mid-range mixing ratio.

  7. S/G-1: an ab initio force-field blending frozen Hermite Gaussian densities and distributed multipoles. Proof of concept and first applications to metal cations.

    PubMed

    Chaudret, Robin; Gresh, Nohad; Narth, Christophe; Lagardère, Louis; Darden, Thomas A; Cisneros, G Andrés; Piquemal, Jean-Philip

    2014-09-04

    We demonstrate as a proof of principle the capabilities of a novel hybrid MM'/MM polarizable force field to integrate short-range quantum effects in molecular mechanics (MM) through the use of Gaussian electrostatics. This lead to a further gain in accuracy in the representation of the first coordination shell of metal ions. It uses advanced electrostatics and couples two point dipole polarizable force fields, namely, the Gaussian electrostatic model (GEM), a model based on density fitting, which uses fitted electronic densities to evaluate nonbonded interactions, and SIBFA (sum of interactions between fragments ab initio computed), which resorts to distributed multipoles. To understand the benefits of the use of Gaussian electrostatics, we evaluate first the accuracy of GEM, which is a pure density-based Gaussian electrostatics model on a test Ca(II)-H2O complex. GEM is shown to further improve the agreement of MM polarization with ab initio reference results. Indeed, GEM introduces nonclassical effects by modeling the short-range quantum behavior of electric fields and therefore enables a straightforward (and selective) inclusion of the sole overlap-dependent exchange-polarization repulsive contribution by means of a Gaussian damping function acting on the GEM fields. The S/G-1 scheme is then introduced. Upon limiting the use of Gaussian electrostatics to metal centers only, it is shown to be able to capture the dominant quantum effects at play on the metal coordination sphere. S/G-1 is able to accurately reproduce ab initio total interaction energies within closed-shell metal complexes regarding each individual contribution including the separate contributions of induction, polarization, and charge-transfer. Applications of the method are provided for various systems including the HIV-1 NCp7-Zn(II) metalloprotein. S/G-1 is then extended to heavy metal complexes. Tested on Hg(II) water complexes, S/G-1 is shown to accurately model polarization up to quadrupolar

  8. Quantum wavepacket ab initio molecular dynamics: an approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects.

    PubMed

    Sumner, Isaiah; Iyengar, Srinivasan S

    2007-10-18

    We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.

  9. Ab initio molecular dynamics in a finite homogeneous electric field.

    PubMed

    Umari, P; Pasquarello, Alfredo

    2002-10-07

    We treat homogeneous electric fields within density functional calculations with periodic boundary conditions. A nonlocal energy functional depending on the applied field is used within an ab initio molecular dynamics scheme. The reliability of the method is demonstrated in the case of bulk MgO for the Born effective charges, and the high- and low-frequency dielectric constants. We evaluate the static dielectric constant by performing a damped molecular dynamics in an electric field and avoiding the calculation of the dynamical matrix. Application of this method to vitreous silica shows good agreement with experiment and illustrates its potential for systems of large size.

  10. High-throughput ab-initio dilute solute diffusion database.

    PubMed

    Wu, Henry; Mayeshiba, Tam; Morgan, Dane

    2016-07-19

    We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world.

  11. Decohesion models informed by first-principles calculations: The ab initio tensile test

    NASA Astrophysics Data System (ADS)

    Enrique, Raúl A.; Van der Ven, Anton

    2017-10-01

    Extreme deformation and homogeneous fracture can be readily studied via ab initio methods by subjecting crystals to numerical "tensile tests", where the energy of locally stable crystal configurations corresponding to elongated and fractured states are evaluated by means of density functional method calculations. The information obtained can then be used to construct traction curves of cohesive zone models in order to address fracture at the macroscopic scale. In this work, we perform an in depth analysis of traction curves and how ab initio calculations must be interpreted to rigorously parameterize an atomic scale cohesive zone model, using crystalline Ag as an example. Our analysis of traction curves reveal the existence of two qualitatively distinct decohesion criteria: (i) an energy criterion whereby the released elastic energy equals the energy cost of creating two new surfaces and (ii) an instability criterion that occurs at a higher and size independent stress than that of the energy criterion. We find that increasing the size of the simulation cell renders parts of the traction curve inaccessible to ab initio calculations involving the uniform decohesion of the crystal. We also find that the separation distance below which a crack heals is not a material parameter as has been proposed in the past. Finally, we show that a large energy barrier separates the uniformly stressed crystal from the decohered crystal, resolving a paradox predicted by a scaling law based on the energy criterion that implies that large crystals will decohere under vanishingly small stresses. This work clarifies confusion in the literature as to how a cohesive zone model is to be parameterized with ab initio "tensile tests" in the presence of internal relaxations.

  12. Ab-initio calculations on melting of thorium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, D., E-mail: debojyoti@barc.gov.in; Sahoo, B. D.; Joshi, K. D.

    2016-05-23

    Ab-initio molecular dynamics study has been performed on face centered cubic structured thorium to determine its melting temperature at room pressure. The ion-electron interaction potential energy calculated as a function of temperature for three volumes (a{sub 0}){sup 3} and (1.02a{sub 0}){sup 3} and (1.04a{sub 0}){sup 3} increases gradually with temperature and undergoes a sharp jump at ~2200 K, ~2100 K and ~1800 K, respectively. Here, a{sub 0} = 5.043 Å is the equilibrium lattice parameter at 0 K obtained from ab-initio calculations. These jumps in interaction energy are treated as due to the onset of melting and corresponding temperatures asmore » melting point. The melting point of 2100 K is close to the experimental value of 2023 K. Further, the same has been verified by plotting the atomic arrangement evolved at various temperatures and corresponding pair correlation functions.« less

  13. 7Be(p,gamma)8B S-factor from Ab Initio Wave Functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navratil, P; Bertulani, C A; Caurier, E

    2006-10-12

    There has been a significant progress in ab initio approaches to the structure of light nuclei. Starting from realistic two- and three-nucleon interactions the ab initio no-core shell model (NCSM) predicts low-lying levels in p-shell nuclei. It is a challenging task to extend ab initio methods to describe nuclear reactions. We present here a brief overview of the first steps taken toward nuclear reaction applications. In particular, we discuss our calculation of the {sup 7}Be(p,{gamma}){sup 8}B S-factor. We also present our first results of the {sup 3}He({alpha},{gamma}){sup 7}Be S-factor and of the S-factor of the mirror reaction {sup 3}H({alpha},{gamma}){sup 7}Li.more » The {sup 7}Be(p,{gamma}){sup 8}B and {sup 3}He({alpha},{gamma}){sup 7}Be reactions correspond to the most important uncertainties in solar model predictions of neutrino fluxes.« less

  14. Identification and Characterization of Molecular Bonding Structures by ab initio Quasi-Atomic Orbital Analyses.

    PubMed

    West, Aaron C; Duchimaza-Heredia, Juan J; Gordon, Mark S; Ruedenberg, Klaus

    2017-11-22

    The quasi-atomic analysis of ab initio electronic wave functions in full valence spaces, which was developed in preceding papers, yields oriented quasi-atomic orbitals in terms of which the ab initio molecular wave function and energy can be expressed. These oriented quasi-atomic orbitals are the rigorous ab initio counterparts to the conceptual bond forming atomic hybrid orbitals of qualitative chemical reasoning. In the present work, the quasi-atomic orbitals are identified as bonding orbitals, lone pair orbitals, radical orbitals, vacant orbitals and orbitals with intermediate character. A program determines the bonding characteristics of all quasi-atomic orbitals in a molecule on the basis of their occupations, bond orders, kinetic bond orders, hybridizations and local symmetries. These data are collected in a record and provide the information for a comprehensive understanding of the synergism that generates the bonding structure that holds the molecule together. Applications to a series of molecules exhibit the complete bonding structures that are embedded in their ab initio wave functions. For the strong bonds in a molecule, the quasi-atomic orbitals provide quantitative ab initio amplifications of the Lewis dot symbols. Beyond characterizing strong bonds, the quasi-atomic analysis also yields an understanding of the weak interactions, such as vicinal, hyperconjugative and radical stabilizations, which can make substantial contributions to the molecular bonding structure.

  15. Positive semidefinite tensor factorizations of the two-electron integral matrix for low-scaling ab initio electronic structure.

    PubMed

    Hoy, Erik P; Mazziotti, David A

    2015-08-14

    Tensor factorization of the 2-electron integral matrix is a well-known technique for reducing the computational scaling of ab initio electronic structure methods toward that of Hartree-Fock and density functional theories. The simplest factorization that maintains the positive semidefinite character of the 2-electron integral matrix is the Cholesky factorization. In this paper, we introduce a family of positive semidefinite factorizations that generalize the Cholesky factorization. Using an implementation of the factorization within the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)], we study several inorganic molecules, alkane chains, and potential energy curves and find that this generalized factorization retains the accuracy and size extensivity of the Cholesky factorization, even in the presence of multi-reference correlation. The generalized family of positive semidefinite factorizations has potential applications to low-scaling ab initio electronic structure methods that treat electron correlation with a computational cost approaching that of the Hartree-Fock method or density functional theory.

  16. Ab initio calculations of the lattice dynamics of silver halides

    NASA Astrophysics Data System (ADS)

    Gordienko, A. B.; Kravchenko, N. G.; Sedelnikov, A. N.

    2010-12-01

    Based on ab initio pseudopotential calculations, the results of investigations of the lattice dynamics of silver halides AgHal (Hal = Cl, Br, I) are presented. Equilibrium lattice parameters, phonon spectra, frequency densities and effective atomic-charge values are obtained for all types of crystals under study.

  17. On the room-temperature phase diagram of high pressure hydrogen: an ab initio molecular dynamics perspective and a diffusion Monte Carlo study.

    PubMed

    Chen, Ji; Ren, Xinguo; Li, Xin-Zheng; Alfè, Dario; Wang, Enge

    2014-07-14

    The finite-temperature phase diagram of hydrogen in the region of phase IV and its neighborhood was studied using the ab initio molecular dynamics (MD) and the ab initio path-integral molecular dynamics (PIMD). The electronic structures were analyzed using the density-functional theory (DFT), the random-phase approximation, and the diffusion Monte Carlo (DMC) methods. Taking the state-of-the-art DMC results as benchmark, comparisons of the energy differences between structures generated from the MD and PIMD simulations, with molecular and dissociated hydrogens, respectively, in the weak molecular layers of phase IV, indicate that standard functionals in DFT tend to underestimate the dissociation barrier of the weak molecular layers in this mixed phase. Because of this underestimation, inclusion of the quantum nuclear effects (QNEs) in PIMD using electronic structures generated with these functionals leads to artificially dissociated hydrogen layers in phase IV and an error compensation between the neglect of QNEs and the deficiencies of these functionals in standard ab initio MD simulations exists. This analysis partly rationalizes why earlier ab initio MD simulations complement so well the experimental observations. The temperature and pressure dependencies for the stability of phase IV were also studied in the end and compared with earlier results.

  18. Time-domain ab initio modeling of photoinduced dynamics at nanoscale interfaces.

    PubMed

    Wang, Linjun; Long, Run; Prezhdo, Oleg V

    2015-04-01

    Nonequilibrium processes involving electronic and vibrational degrees of freedom in nanoscale materials are under active experimental investigation. Corresponding theoretical studies are much scarcer. The review starts with the basics of time-dependent density functional theory, recent developments in nonadiabatic molecular dynamics, and the fusion of the two techniques. Ab initio simulations of this kind allow us to directly mimic a great variety of time-resolved experiments performed with pump-probe laser spectroscopies. The focus is on the ultrafast photoinduced charge and exciton dynamics at interfaces formed by two complementary materials. We consider purely inorganic materials, inorganic-organic hybrids, and all organic interfaces, involving bulk semiconductors, metallic and semiconducting nanoclusters, graphene, carbon nanotubes, fullerenes, polymers, molecular crystals, molecules, and solvent. The detailed atomistic insights available from time-domain ab initio studies provide a unique description and a comprehensive understanding of the competition between electron transfer, thermal relaxation, energy transfer, and charge recombination processes. These advances now make it possible to directly guide the development of organic and hybrid solar cells, as well as photocatalytic, electronic, spintronic, and other devices relying on complex interfacial dynamics.

  19. High-throughput ab-initio dilute solute diffusion database

    PubMed Central

    Wu, Henry; Mayeshiba, Tam; Morgan, Dane

    2016-01-01

    We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world. PMID:27434308

  20. Resolution of ab initio shapes determined from small-angle scattering.

    PubMed

    Tuukkanen, Anne T; Kleywegt, Gerard J; Svergun, Dmitri I

    2016-11-01

    Spatial resolution is an important characteristic of structural models, and the authors of structures determined by X-ray crystallography or electron cryo-microscopy always provide the resolution upon publication and deposition. Small-angle scattering of X-rays or neutrons (SAS) has recently become a mainstream structural method providing the overall three-dimensional structures of proteins, nucleic acids and complexes in solution. However, no quantitative resolution measure is available for SAS-derived models, which significantly hampers their validation and further use. Here, a method is derived for resolution assessment for ab initio shape reconstruction from scattering data. The inherent variability of the ab initio shapes is utilized and it is demonstrated how their average Fourier shell correlation function is related to the model resolution. The method is validated against simulated data for proteins with known high-resolution structures and its efficiency is demonstrated in applications to experimental data. It is proposed that henceforth the resolution be reported in publications and depositions of ab initio SAS models.

  1. Resolution of ab initio shapes determined from small-angle scattering

    PubMed Central

    Tuukkanen, Anne T.; Kleywegt, Gerard J.; Svergun, Dmitri I.

    2016-01-01

    Spatial resolution is an important characteristic of structural models, and the authors of structures determined by X-ray crystallography or electron cryo-microscopy always provide the resolution upon publication and deposition. Small-angle scattering of X-rays or neutrons (SAS) has recently become a mainstream structural method providing the overall three-dimensional structures of proteins, nucleic acids and complexes in solution. However, no quantitative resolution measure is available for SAS-derived models, which significantly hampers their validation and further use. Here, a method is derived for resolution assessment for ab initio shape reconstruction from scattering data. The inherent variability of the ab initio shapes is utilized and it is demonstrated how their average Fourier shell correlation function is related to the model resolution. The method is validated against simulated data for proteins with known high-resolution structures and its efficiency is demonstrated in applications to experimental data. It is proposed that henceforth the resolution be reported in publications and depositions of ab initio SAS models. PMID:27840683

  2. Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.

    2016-05-01

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg10In90, Hg30In70,. Hg50In50, Hg70In30, and Hg90Pb10) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the local arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.

  3. Ab initio calculations of the concentration dependent band gap reduction in dilute nitrides

    NASA Astrophysics Data System (ADS)

    Rosenow, Phil; Bannow, Lars C.; Fischer, Eric W.; Stolz, Wolfgang; Volz, Kerstin; Koch, Stephan W.; Tonner, Ralf

    2018-02-01

    While being of persistent interest for the integration of lattice-matched laser devices with silicon circuits, the electronic structure of dilute nitride III/V-semiconductors has presented a challenge to ab initio computational approaches. The origin of the computational problems is the strong distortion exerted by the N atoms on most host materials. Here, these issues are resolved by combining density functional theory calculations based on the meta-GGA functional presented by Tran and Blaha (TB09) with a supercell approach for the dilute nitride Ga(NAs). Exploring the requirements posed to supercells, it is shown that the distortion field of a single N atom must be allowed to decrease so far that it does not overlap with its periodic images. This also prevents spurious electronic interactions between translational symmetric atoms, allowing us to compute band gaps in very good agreement with experimentally derived reference values. In addition to existing approaches, these results offer a promising ab initio avenue to the electronic structure of dilute nitride semiconductor compounds.

  4. Quantum ring-polymer contraction method: Including nuclear quantum effects at no additional computational cost in comparison to ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    John, Christopher; Spura, Thomas; Habershon, Scott; Kühne, Thomas D.

    2016-04-01

    We present a simple and accurate computational method which facilitates ab initio path-integral molecular dynamics simulations, where the quantum-mechanical nature of the nuclei is explicitly taken into account, at essentially no additional computational cost in comparison to the corresponding calculation using classical nuclei. The predictive power of the proposed quantum ring-polymer contraction method is demonstrated by computing various static and dynamic properties of liquid water at ambient conditions using density functional theory. This development will enable routine inclusion of nuclear quantum effects in ab initio molecular dynamics simulations of condensed-phase systems.

  5. Communication: Unraveling the 4He droplet-mediated soft-landing from ab initio-assisted and time-resolved density functional simulations: Au@4He300/TiO2(110)

    NASA Astrophysics Data System (ADS)

    de Lara-Castells, María Pilar; Aguirre, Néstor F.; Stoll, Hermann; Mitrushchenkov, Alexander O.; Mateo, David; Pi, Martí

    2015-04-01

    An ab-initio-based methodological scheme for He-surface interactions and zero-temperature time-dependent density functional theory for superfluid 4He droplets motion are combined to follow the short-time collision dynamics of the Au@4He300 system with the TiO2(110) surface. This composite approach demonstrates the 4He droplet-assisted sticking of the metal species to the surface at low landing energy (below 0.15 eV/atom), thus providing the first theoretical evidence of the experimentally observed 4He droplet-mediated soft-landing deposition of metal nanoparticles on solid surfaces [Mozhayskiy et al., J. Chem. Phys. 127, 094701 (2007) and Loginov et al., J. Phys. Chem. A 115, 7199 (2011)].

  6. Bicanonical ab Initio Molecular Dynamics for Open Systems.

    PubMed

    Frenzel, Johannes; Meyer, Bernd; Marx, Dominik

    2017-08-08

    Performing ab initio molecular dynamics simulations of open systems, where the chemical potential rather than the number of both nuclei and electrons is fixed, still is a challenge. Here, drawing on bicanonical sampling ideas introduced two decades ago by Swope and Andersen [ J. Chem. Phys. 1995 , 102 , 2851 - 2863 ] to calculate chemical potentials of liquids and solids, an ab initio simulation technique is devised, which introduces a fictitious dynamics of two superimposed but otherwise independent periodic systems including full electronic structure, such that either the chemical potential or the average fractional particle number of a specific chemical species can be kept constant. As proof of concept, we demonstrate that solvation free energies can be computed from these bicanonical ab initio simulations upon directly superimposing pure bulk water and the respective aqueous solution being the two limiting systems. The method is useful in many circumstances, for instance for studying heterogeneous catalytic processes taking place on surfaces where the chemical potential of reactants rather than their number is controlled and opens a pathway toward ab initio simulations at constant electrochemical potential.

  7. Ab initio, density functional theory, and continuum solvation model prediction of the product ratio in the S(N)2 reaction of NO2(-) with CH3CH2Cl and CH3CH2Br in DMSO solution.

    PubMed

    Westphal, Eduard; Pliego, Josefredo R

    2007-10-11

    The reaction pathways for the interaction of the nitrite ion with ethyl chloride and ethyl bromide in DMSO solution were investigated at the ab initio level of theory, and the solvent effect was included through the polarizable continuum model. The performance of BLYP, GLYP, XLYP, OLYP, PBE0, B3PW91, B3LYP, and X3LYP density functionals has been tested. For the ethyl bromide case, our best ab initio calculations at the CCSD(T)/aug-cc-pVTZ level predicts product ratio of 73% and 27% for nitroethane and ethyl nitrite, respectively, which can be compared with the experimental values of 67% and 33%. This translates to an error in the relative DeltaG* of only 0.17 kcal mol(-1). No functional is accurate (deviation <0.5 kcal mol(-1)) for predicting relative DeltaG*. The hybrid X3LYP functional presents the best performance with deviation 0.82 kcal mol(-1). The present problem should be included in the test set used for the evaluation of new functionals.

  8. Molecular structure, vibrational spectra, NBO analysis and molecular packing prediction of 3-nitroacetanilide by ab initio HF and density functional theory

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Hong; Li, Tong-Wei; Ju, Wei-Wei; Yong, Yong-Liang; Zhang, Xian-Zhou

    2014-01-01

    Quantum chemical calculations of geometries and vibrational wavenumbers of 3-nitroacetanilide (C8H8N2O3) in the ground state were carried out by using ab initio HF and density functional theory (DFT/B3LYP) methods with 6-31+G* basis set. The -311++G** basis set is also used for B3LYP level. The scaled harmonic vibrational frequencies have been compared with experimental FT-IR spectra. Theoretical vibrational spectra of the title compound were interpreted by means of potential energies distributions (PEDs) using MOLVIB program. The theoretical spectrograms for IR spectra of the title compound have been constructed. The shortening of Csbnd H bond length and the elongation of Nsbnd H bond length suggest the existence of weak Csbnd H⋯O and Nsbnd H⋯O hydrogen bonds, which is confirmed by the natural bond orbital analysis. In addition, the crystal structure obtained by molecular mechanics belongs to the P21 space group, with lattice parameters Z = 4, a = 14.9989 Å, b = 4.0367 Å, c = 12.9913 Å, ρ = 0.998 g cm-3.

  9. {bold {ital Ab initio}} studies of the structural and electronic properties of solid cubane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, S.L.; Martins, J.L.

    1998-12-01

    In this paper, we report {ital ab initio} calculation of the structural and electronic properties of solid cubane (s-C{sub 8}H{sub 8}) in the local-density approximation. By using an {ital ab initio} constant pressure extended molecular dynamics method with variable cell shape proposed by Wentzcovitch, Martins, and Price, we compute a lattice parameter {ital a} and a bond angle {alpha} for the rhombohedral Bravais lattice and compare it with experimental x-ray data. We obtain bond lengths for the mononuclear C{sub 8}H{sub 8} unit of basis atoms, as well as a density of states and heat of formation. {copyright} {ital 1998} {italmore » The American Physical Society}« less

  10. Magnetic properties of vanadium doped CdTe: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Goumrhar, F.; Bahmad, L.; Mounkachi, O.; Benyoussef, A.

    2017-04-01

    In this paper, we are applying the ab initio calculations to study the magnetic properties of vanadium doped CdTe. This study is based on the Korringa-Kohn-Rostoker method (KKR) combined with the coherent potential approximation (CPA), within the local density approximation (LDA). This method is called KKR-CPA-LDA. We have calculated and plotted the density of states (DOS) in the energy diagram for different concentrations of dopants. We have also investigated the magnetic and half-metallic properties of this compound and shown the mechanism of exchange interaction. Moreover, we have estimated the Curie temperature Tc for different concentrations. Finally, we have shown how the crystal field and the exchange splittings vary as a function of the concentrations.

  11. Comparative study of ab initio nonradiative recombination rate calculations under different formalisms

    NASA Astrophysics Data System (ADS)

    Shi, Lin; Xu, Ke; Wang, Lin-Wang

    2015-05-01

    Nonradiative carrier recombination is of both great applied and fundamental importance, but the correct ab initio approaches to calculate it remain to be inconclusive. Here we used five different approximations to calculate the nonradiative carrier recombinations of two complex defect structures GaP :Z nGa-OP and GaN :Z nGa-VN , and compared the results with experiments. In order to apply different multiphonon assisted electron transition formalisms, we have calculated the electron-phonon coupling constants by ab initio density functional theory for all phonon modes. Compared with different methods, the capture coefficients calculated by the static coupling theory are 4.30 ×10-8 and 1.46 ×10-7c m3/s for GaP :Z nGa-OP and GaN :Z nGa-VN , which are in good agreement with the experiment results, (4-1+2) ×10-8 and 3.0 ×10-7c m3/s , respectively. We also provided arguments for why the static coupling theory should be used to calculate the nonradiative decays of semiconductors.

  12. Ab initio calculations for industrial materials engineering: successes and challenges.

    PubMed

    Wimmer, Erich; Najafabadi, Reza; Young, George A; Ballard, Jake D; Angeliu, Thomas M; Vollmer, James; Chambers, James J; Niimi, Hiroaki; Shaw, Judy B; Freeman, Clive; Christensen, Mikael; Wolf, Walter; Saxe, Paul

    2010-09-29

    Computational materials science based on ab initio calculations has become an important partner to experiment. This is demonstrated here for the effect of impurities and alloying elements on the strength of a Zr twist grain boundary, the dissociative adsorption and diffusion of iodine on a zirconium surface, the diffusion of oxygen atoms in a Ni twist grain boundary and in bulk Ni, and the dependence of the work function of a TiN-HfO(2) junction on the replacement of N by O atoms. In all of these cases, computations provide atomic-scale understanding as well as quantitative materials property data of value to industrial research and development. There are two key challenges in applying ab initio calculations, namely a higher accuracy in the electronic energy and the efficient exploration of large parts of the configurational space. While progress in these areas is fueled by advances in computer hardware, innovative theoretical concepts combined with systematic large-scale computations will be needed to realize the full potential of ab initio calculations for industrial applications.

  13. Ab-initio study on electronic properties of rocksalt SnAs

    NASA Astrophysics Data System (ADS)

    Babariya, Bindiya; Vaghela, M. V.; Gajjar, P. N.

    2018-05-01

    Within the frame work of Local Density Approximation of Exchange and Correlation, ab-initio method of density functional theory with Abinit code is used to compute electronic energy band structure, density of States and charge density of SnAs in rocksalt phase. Our result after optimization for lattice constant agrees with experimental value within 0.59% deviation. The computed electronic energy bands in high symmetry directions Γ→K→X→Γ→L→X→W→L→U shown metallic nature. The lowest band in the electronic band structure is showing band-gap approximately 1.70 eV from next higher band and no crossing between lowest two bands are seen. The density of states revels p-p orbit hybridization between Sn and As atoms. The spherical contour around Sn and As in the charge density plot represent partly ionic and partly covalent bonding. Fermi surface topology is the resultant effect of the single band crossing along L direction at Ef.

  14. Ab initio density functional theory study on the atomic and electronic structure of GaP/Si(001) heterointerfaces

    NASA Astrophysics Data System (ADS)

    Romanyuk, O.; Supplie, O.; Susi, T.; May, M. M.; Hannappel, T.

    2016-10-01

    The atomic and electronic band structures of GaP/Si(001) heterointerfaces were investigated by ab initio density functional theory calculations. Relative total energies of abrupt interfaces and mixed interfaces with Si substitutional sites within a few GaP layers were derived. It was found that Si diffusion into GaP layers above the first interface layer is energetically unfavorable. An interface with Si/Ga substitution sites in the first layer above the Si substrate is energetically the most stable one in thermodynamic equilibrium. The electronic band structure of the epitaxial GaP/Si(001) heterostructure terminated by the (2 ×2 ) surface reconstruction consists of surface and interface electronic states in the common band gap of two semiconductors. The dispersion of the states is anisotropic and differs for the abrupt Si-Ga, Si-P, and mixed interfaces. Ga 2 p , P 2 p , and Si 2 p core-level binding-energy shifts were computed for the abrupt and the lowest-energy heterointerface structures. Negative and positive core-level shifts due to heterovalent bonds at the interface are predicted for the abrupt Si-Ga and Si-P interfaces, respectively. The distinct features in the heterointerface electronic structure and in the core-level shifts open new perspectives in the experimental characterization of buried polar-on-nonpolar semiconductor heterointerfaces.

  15. Ab initio molecular dynamics simulations of liquid water using high quality meta-GGA functionals

    DOE PAGES

    Ruiz Pestana, Luis; Mardirossian, Narbe; Head-Gordon, Martin; ...

    2017-02-27

    We have used ab initio molecular dynamics (AIMD) to characterize water properties using two meta-generalized gradient approximation (meta-GGA) functionals, M06-L-D3 and B97M-rV, and compared their performance against a standard GGA corrected for dispersion, revPBE-D3, at ambient conditions (298 K, and 1 g cm –3 or 1 atm). Simulations of the equilibrium density, radial distribution functions, self-diffusivity, the infrared spectrum, liquid dipole moments, and characterizations of the hydrogen bond network show that all three functionals have overcome the problem of the early AIMD simulations that erroneously found ambient water to be highly structured, but they differ substantially among themselves in agreementmore » with experiment on this range of water properties. We show directly using water cluster data up through the pentamer that revPBE-D3 benefits from a cancellation of its intrinsic functional error by running classical trajectories, whereas the meta-GGA functionals are demonstrably more accurate and would require the simulation of nuclear quantum effects to realize better agreement with all cluster and condensed phase properties.« less

  16. Comparative studies of the spectroscopy of CuCl2: DFT versus standard ab initio approaches

    NASA Astrophysics Data System (ADS)

    Ramírez-Solís, A.; Poteau, R.; Vela, A.; Daudey, J. P.

    2005-04-01

    The XΠg2-Σg +2, XΠg2-Δg2, XΠg2-Σu +2, XΠg2-Πu2 transitions on CuCl2 have been studied using several exchange-correlation functionals from the various types of density functional theory (DFT) approaches like local density approximation (LDA), generalized gradient approximation (GGA), hybrid and meta-GGA. The results are compared with the experience and with those coming from the most sophisticated nondynamic and dynamic electronic correlation treatments using the same relativistic effective core potentials and especially developed basis sets to study the electronic structure of the five lowest states and the corresponding vertical and adiabatic transition energies. The calculated transition energies for three of the hybrid functionals (B3LYP, B97-2, and PBE0) are in very good agreement with the benchmark ab initio results and experimental figures. All of the other functionals largely overestimate the XΠg2-Σg +2 and XΠg2-Δg2 transition energies, many of them even placing the Δg2 ligand field state above the charge transfer Πu2 and Σu +2 states. The relative weight of the Hartree-Fock exchange in the definition of the functional used appears to play a key role in the accurate description of the ΛSΣ density defined by the orientation of the 3d hole (σ, π, or δ) on Cu in the field of both chlorine atoms, but no simple connection of this weight with the quality of the spectra has been found. Mulliken charges and spin densities are carefully analyzed; a possible link between the extent of spin density on the metal for the XΠg2 state and the performance of the various functionals was observed, suggesting that those that lead to the largest values (close to 0.65) are the ones that best reproduce these four transitions. Most functionals lead to a remarkably low ionicity for the three ligand field states even for the best performing functionals, compared to the complete active space (SCF) (21, 14) ab initio values. These findings show that not only large

  17. Approximate Quantum Dynamics using Ab Initio Classical Separable Potentials: Spectroscopic Applications.

    PubMed

    Hirshberg, Barak; Sagiv, Lior; Gerber, R Benny

    2017-03-14

    Algorithms for quantum molecular dynamics simulations that directly use ab initio methods have many potential applications. In this article, the ab initio classical separable potentials (AICSP) method is proposed as the basis for approximate algorithms of this type. The AICSP method assumes separability of the total time-dependent wave function of the nuclei and employs mean-field potentials that govern the dynamics of each degree of freedom. In the proposed approach, the mean-field potentials are determined by classical ab initio molecular dynamics simulations. The nuclear wave function can thus be propagated in time using the effective potentials generated "on the fly". As a test of the method for realistic systems, calculations of the stationary anharmonic frequencies of hydrogen stretching modes were carried out for several polyatomic systems, including three amino acids and the guanine-cytosine pair of nucleobases. Good agreement with experiments was found. The method scales very favorably with the number of vibrational modes and should be applicable for very large molecules, e.g., peptides. The method should also be applicable for properties such as vibrational line widths and line shapes. Work in these directions is underway.

  18. Communication: Improved ab initio molecular dynamics by minimally biasing with experimental data

    NASA Astrophysics Data System (ADS)

    White, Andrew D.; Knight, Chris; Hocky, Glen M.; Voth, Gregory A.

    2017-01-01

    Accounting for electrons and nuclei simultaneously is a powerful capability of ab initio molecular dynamics (AIMD). However, AIMD is often unable to accurately reproduce properties of systems such as water due to inaccuracies in the underlying electronic density functionals. This shortcoming is often addressed by added empirical corrections and/or increasing the simulation temperature. We present here a maximum-entropy approach to directly incorporate limited experimental data via a minimal bias. Biased AIMD simulations of water and an excess proton in water are shown to give significantly improved properties both for observables which were biased to match experimental data and for unbiased observables. This approach also yields new physical insight into inaccuracies in the underlying density functional theory as utilized in the unbiased AIMD.

  19. Communication: Improved ab initio molecular dynamics by minimally biasing with experimental data.

    PubMed

    White, Andrew D; Knight, Chris; Hocky, Glen M; Voth, Gregory A

    2017-01-28

    Accounting for electrons and nuclei simultaneously is a powerful capability of ab initio molecular dynamics (AIMD). However, AIMD is often unable to accurately reproduce properties of systems such as water due to inaccuracies in the underlying electronic density functionals. This shortcoming is often addressed by added empirical corrections and/or increasing the simulation temperature. We present here a maximum-entropy approach to directly incorporate limited experimental data via a minimal bias. Biased AIMD simulations of water and an excess proton in water are shown to give significantly improved properties both for observables which were biased to match experimental data and for unbiased observables. This approach also yields new physical insight into inaccuracies in the underlying density functional theory as utilized in the unbiased AIMD.

  20. Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Nalini, E-mail: nalini-2808@yahoo.co.in; Ahluwalia, P. K.; Thakur, Anil

    2016-05-23

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70,.} Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30}, and Hg{sub 90}Pb{sub 10}) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the localmore » arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.« less

  1. A note on AB INITIO semiconductor band structures

    NASA Astrophysics Data System (ADS)

    Fiorentini, Vincenzo

    1992-09-01

    We point out that only the internal features of the DFT ab initio theoretical picture of a crystal should be used in a consistent ab initio calculation of the band structure. As a consequence, we show that ground-state band structure calculations should be performed for the system in equilibrium at zero pressure, i.e. at the computed equilibrium cell volume ω th. Examples of consequences of this attitude are considered.

  2. Accurate ab initio quartic force fields for borane and BeH2

    NASA Technical Reports Server (NTRS)

    Martin, J. M. L.; Lee, Timothy J.

    1992-01-01

    The quartic force fields of BH3 and BeH2 have been computed ab initio using an augmented coupled cluster (CCSD(T)) method and basis sets of spdf and spdfg quality. For BH3, the computed spectroscopic constants are in very good agreement with recent experimental data, and definitively confirm misassignments in some older work, in agreement with recent ab initio studies. Using the computed spectroscopic constants, the rovibrational partition function for both molecules has been constructed using a modified direct numerical summation algorithm, and JANAF-style thermochemical tables are presented.

  3. Spectroscopic and Ab Initio Determination of the Ring-Twisting Potential Energy Function for 1,3-Cyclohexadiene

    NASA Astrophysics Data System (ADS)

    Autrey, Daniel; Choo, Jaebum; Laane, Jaan

    2000-10-01

    The ring-twisting vibration of 1,3-cyclohexadiene has been studied using Raman and infrared spectroscopy of the molecule in the vapor phase. The Raman spectrum shows five ring-twisting transitions in the 150 - 200 cm-1 region. The far-infrared spectrum shows only two transitions for this vibration, which is infrared forbidden in the C_2v (planar) approximation. Three ring-twisting combination bands were also observed off a fundamental vibration at 926.1 cm-1. A coordinate dependent kinetic energy expansion for the ring-twisting motion was calculated, and this was used to determine the ring-twisting potential function. Ab initio calculations were performed using Moller-Plesset perturbation theory (MP2) using different basis sets. The barrier to planarity of 1150 cm-1 was determined from the spectroscopic data. The various ab initio calculations gave barriers to planarity in the 1197 - 1593 cm-1 range.

  4. Ab-initio molecular dynamics simulations of liquid Hg-Pb alloys

    NASA Astrophysics Data System (ADS)

    Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.

    2014-04-01

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-Pb alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-Pb mixtures (Hg30Pb70, Hg50Pb50 and Hg90Pb10) at 600K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and lead (l-Pb). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered three alloys. Among the all considered alloys, Hg50Pb50 alloy shows presence of more chemical ordering and presence of hetero-coordination.

  5. Molecular structure, vibrational spectra, NBO analysis and molecular packing prediction of 3-nitroacetanilide by ab initio HF and density functional theory.

    PubMed

    Li, Xiao-Hong; Li, Tong-Wei; Ju, Wei-Wei; Yong, Yong-Liang; Zhang, Xian-Zhou

    2014-01-24

    Quantum chemical calculations of geometries and vibrational wavenumbers of 3-nitroacetanilide (C8H8N2O3) in the ground state were carried out by using ab initio HF and density functional theory (DFT/B3LYP) methods with 6-31+G(*) basis set. The -311++G(**) basis set is also used for B3LYP level. The scaled harmonic vibrational frequencies have been compared with experimental FT-IR spectra. Theoretical vibrational spectra of the title compound were interpreted by means of potential energies distributions (PEDs) using MOLVIB program. The theoretical spectrograms for IR spectra of the title compound have been constructed. The shortening of C-H bond length and the elongation of N-H bond length suggest the existence of weak C-H⋯O and N-H⋯O hydrogen bonds, which is confirmed by the natural bond orbital analysis. In addition, the crystal structure obtained by molecular mechanics belongs to the P2(1) space group, with lattice parameters Z=4, a=14.9989 Å, b=4.0367 Å, c=12.9913 Å, ρ=0.998 g cm(-3). Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Ab initio theory of the N2V defect in diamond for quantum memory implementation

    NASA Astrophysics Data System (ADS)

    Udvarhelyi, Péter; Thiering, Gergő; Londero, Elisa; Gali, Adam

    2017-10-01

    The N2V defect in diamond is characterized by means of ab initio methods relying on density functional theory calculated parameters of a Hubbard model Hamiltonian. It is shown that this approach appropriately describes the energy levels of correlated excited states induced by this defect. By determining its critical magneto-optical parameters, we propose to realize a long-living quantum memory by N2V defect, i.e., H 3 color center in diamond.

  7. Multiple time step integrators in ab initio molecular dynamics.

    PubMed

    Luehr, Nathan; Markland, Thomas E; Martínez, Todd J

    2014-02-28

    Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy.

  8. Ab initio calculation of the potential bubble nucleus 34Si

    NASA Astrophysics Data System (ADS)

    Duguet, T.; Somà, V.; Lecluse, S.; Barbieri, C.; Navrátil, P.

    2017-03-01

    Background: The possibility that an unconventional depletion (referred to as a "bubble") occurs in the center of the charge density distribution of certain nuclei due to a purely quantum mechanical effect has attracted theoretical and experimental attention in recent years. Based on a mean-field rationale, a correlation between the occurrence of such a semibubble and an anomalously weak splitting between low angular-momentum spin-orbit partners has been further conjectured. Energy density functional and valence-space shell model calculations have been performed to identify and characterize the best candidates, among which 34Si appears as a particularly interesting case. While the experimental determination of the charge density distribution of the unstable 34Si is currently out of reach, (d ,p ) experiments on this nucleus have been performed recently to test the correlation between the presence of a bubble and an anomalously weak 1 /2--3 /2- splitting in the spectrum of 35Si as compared to 37S. Purpose: We study the potential bubble structure of 34Si on the basis of the state-of-the-art ab initio self-consistent Green's function many-body method. Methods: We perform the first ab initio calculations of 34Si and 36S. In addition to binding energies, the first observables of interest are the charge density distribution and the charge root-mean-square radius for which experimental data exist in 36S. The next observable of interest is the low-lying spectroscopy of 35Si and 37S obtained from (d ,p ) experiments along with the spectroscopy of 33Al and 35P obtained from knock-out experiments. The interpretation in terms of the evolution of the underlying shell structure is also provided. The study is repeated using several chiral effective field theory Hamiltonians as a way to test the robustness of the results with respect to input internucleon interactions. The convergence of the results with respect to the truncation of the many-body expansion, i.e., with respect to

  9. Ab initio thermodynamic model for magnesium carbonates and hydrates.

    PubMed

    Chaka, Anne M; Felmy, Andrew R

    2014-09-04

    An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first-principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogues of Ca-based hydrated carbonates monohydrocalcite and ikaite, which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.

  10. Ab Initio Predictions of Hexagonal Zr(B,C,N) Polymorphs for Coherent Interface Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Chongze; Huang, Jingsong; Sumpter, Bobby G.

    2017-10-27

    Density functional theory calculations are used to explore hexagonal (HX) NiAs-like polymorphs of Zr(B,C,N) and compare with corresponding Zr(B,C,N) Hagg-like face-centered cubic rocksalt (B1) phases. While all predicted compounds are mechanically stable according to the Born-Huang criteria, only HX Zr(C,N) are found dynamically stable from ab initio molecular dynamics simulations and lattice dynamics calculations. HX ZrN emerges as a candidate structure with ground state energy, elastic constants, and extrinsic mechanical parameters comparable with those of B1 ZrN. Ab initio band structure and semi-classical Boltzmann transport calculations predict a metallic character and a monotonic increase in electrical conductivity with the numbermore » of valence electrons. Electronic structure calculations indicate that the HX phases gain their stability and mechanical attributes by Zr d- non-metal p hybridization and by broadening of Zr d bands. Furthermore, it is shown that the HX ZrN phase provides a low-energy coherent interface model for connecting B1 ZrN domains, with significant energetic advantage over an atomistic interface model derived from high resolution transmission electron microscopy images. The ab initio characterizations provided herein should aid the experimental identification of non-Hagg-like hard phases. Furthermore, the results can also enrich the variety of crystalline phases potentially available for designing coherent interfaces in superhard nanostructured materials and in materials with multilayer characteristics.« less

  11. Surface Segregation Energies of BCC Binaries from Ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2003-01-01

    We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy method. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameterization. Quantum approximate segregation energies are computed with and without atomistic relaxation. The ab initio calculations are performed without relaxation for the most part, but predicted relaxations from quantum approximate calculations are used in selected cases to compute approximate relaxed ab initio segregation energies. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with other quantum approximate and ab initio theoretical work, and available experimental results.

  12. Ab initio calculations of the electron spectrum and density of states of TlFeS{sub 2} and TlFeSe{sub 2} crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismayilova, N. A., E-mail: ismayilova-narmin-84@mail.ru; Orudjev, H. S.; Jabarov, S. H.

    2017-04-15

    The results of ab initio calculations of the electron spectrum of TlFeS{sub 2} and TlFeSe{sub 2} crystals in the antiferromagnetic phase are reported. Calculations are carried out in the context of the density functional theory. The origin of the bands of s, p, and d electron states of Tl, Fe, S, and Se atoms is studied. It is established that, in the antiferromagnetic phase, the crystals possess semiconductor properties. The band gaps are found to be 0.05 and 0.34 eV for TlFeS{sub 2} and TlFeSe{sub 2} crystals, respectively.

  13. The molecular structure and conformation of tetrabromoformaldazine: ab initio and DFT calculations

    NASA Astrophysics Data System (ADS)

    Jeong, Myongho; Kwon, Younghi

    2000-06-01

    Ab initio and density functional theory methods are applied to investigate the molecular structure and conformational nature of tetrabromoformaldazine. The calculations including the effects of the electron correlation at the B3LYP and MP2 levels with the basis set 6-311+G(d) can reproduce the experimental geometrical parameters at the skew conformation. The N-N bond torsional angle φ calculated at the MP2/6-311+G(d) level is found to be closest to the observed angle. The scanning of the potential energy surface suggests that the anti-conformation is at a saddle point corresponding to the transition state.

  14. Towards Accurate Ab Initio Predictions of the Spectrum of Methane

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born- Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.

  15. Ab Initio Crystal Field for Lanthanides.

    PubMed

    Ungur, Liviu; Chibotaru, Liviu F

    2017-03-13

    An ab initio methodology for the first-principle derivation of crystal-field (CF) parameters for lanthanides is described. The methodology is applied to the analysis of CF parameters in [Tb(Pc) 2 ] - (Pc=phthalocyanine) and Dy 4 K 2 ([Dy 4 K 2 O(OtBu) 12 ]) complexes, and compared with often used approximate and model descriptions. It is found that the application of geometry symmetrization, and the use of electrostatic point-charge and phenomenological CF models, lead to unacceptably large deviations from predictions based on ab initio calculations for experimental geometry. It is shown how the predictions of standard CASSCF (Complete Active Space Self-Consistent Field) calculations (with 4f orbitals in the active space) can be systematically improved by including effects of dynamical electronic correlation (CASPT2 step) and by admixing electronic configurations of the 5d shell. This is exemplified for the well-studied Er-trensal complex (H 3 trensal=2,2',2"-tris(salicylideneimido)trimethylamine). The electrostatic contributions to CF parameters in this complex, calculated with true charge distributions in the ligands, yield less than half of the total CF splitting, thus pointing to the dominant role of covalent effects. This analysis allows the conclusion that ab initio crystal field is an essential tool for the decent description of lanthanides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. GAUSSIAN 76: An ab initio Molecular Orbital Program

    DOE R&D Accomplishments Database

    Binkley, J. S.; Whiteside, R.; Hariharan, P. C.; Seeger, R.; Hehre, W. J.; Lathan, W. A.; Newton, M. D.; Ditchfield, R.; Pople, J. A.

    1978-01-01

    Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type Gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans.

  17. Ab initio joint density-functional theory of solvated electrodes, with model and explicit solvation

    NASA Astrophysics Data System (ADS)

    Arias, Tomas

    2015-03-01

    First-principles guided design of improved electrochemical systems has the potential for great societal impact by making non-fossil-fuel systems economically viable. Potential applications include improvements in fuel-cells, solar-fuel systems (``artificial photosynthesis''), supercapacitors and batteries. Economical fuel-cell systems would enable zero-carbon footprint transportation, solar-fuel systems would directly convert sunlight and water into hydrogen fuel for such fuel-cell vehicles, supercapacitors would enable nearly full recovery of energy lost during vehicle braking thus extending electric vehicle range and acceptance, and economical high-capacity batteries would be central to mitigating the indeterminacy of renewable resources such as wind and solar. Central to the operation of all of the above electrochemical systems is the electrode-electrolyte interface, whose underlying physics is quite rich, yet remains remarkably poorly understood. The essential underlying technical challenge to the first principles studies which could explore this physics is the need to properly represent simultaneously both the interaction between electron-transfer events at the electrode, which demand a quantum mechanical description, and multiscale phenomena in the liquid environment such as the electrochemical double layer (ECDL) and its associated shielding, which demand a statistical description. A direct ab initio approach to this challenge would, in principle, require statistical sampling and thousands of repetitions of already computationally demanding quantum mechanical calculations. This talk will begin with a brief review of a recent advance, joint density-functional theory (JDFT), which allows for a fully rigorous and, in principle, exact representation of the thermodynamic equilibrium between a system described at the quantum-mechanical level and a liquid environment, but without the need for costly sampling. We then shall demonstrate how this approach applies in

  18. Ab initio phonon point defect scattering and thermal transport in graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polanco, Carlos A.; Lindsay, Lucas R.

    Here, we study the scattering of phonons from point defects and their effect on lattice thermal conductivity κ using a parameter-free ab initio Green's function methodology. Specifically, we focus on the scattering of phonons by boron (B), nitrogen (N), and phosphorus substitutions as well as single- and double-carbon vacancies in graphene. We show that changes of the atomic structure and harmonic interatomic force constants locally near defects govern the strength and frequency trends of the scattering of out-of-plane acoustic (ZA) phonons, the dominant heat carriers in graphene. ZA scattering rates due to N substitutions are nearly an order of magnitudemore » smaller than those for B defects despite having similar mass perturbations. Furthermore, ZA phonon scattering rates from N defects decrease with increasing frequency in the lower-frequency spectrum in stark contrast to expected trends from simple models. ZA phonon-vacancy scattering rates are found to have a significantly softer frequency dependence (~ω 0) in graphene than typically employed in phenomenological models. The rigorous Green's function calculations demonstrate that typical mass-defect models do not adequately describe ZA phonon-defect scattering rates. Our ab initio calculations capture well the trend of κ vs vacancy density from experiments, though not the magnitudes. In conclusion, this work elucidates important insights into phonon-defect scattering and thermal transport in graphene, and demonstrates the applicability of first-principles methods toward describing these properties in imperfect materials.« less

  19. Ab initio phonon point defect scattering and thermal transport in graphene

    DOE PAGES

    Polanco, Carlos A.; Lindsay, Lucas R.

    2018-01-04

    Here, we study the scattering of phonons from point defects and their effect on lattice thermal conductivity κ using a parameter-free ab initio Green's function methodology. Specifically, we focus on the scattering of phonons by boron (B), nitrogen (N), and phosphorus substitutions as well as single- and double-carbon vacancies in graphene. We show that changes of the atomic structure and harmonic interatomic force constants locally near defects govern the strength and frequency trends of the scattering of out-of-plane acoustic (ZA) phonons, the dominant heat carriers in graphene. ZA scattering rates due to N substitutions are nearly an order of magnitudemore » smaller than those for B defects despite having similar mass perturbations. Furthermore, ZA phonon scattering rates from N defects decrease with increasing frequency in the lower-frequency spectrum in stark contrast to expected trends from simple models. ZA phonon-vacancy scattering rates are found to have a significantly softer frequency dependence (~ω 0) in graphene than typically employed in phenomenological models. The rigorous Green's function calculations demonstrate that typical mass-defect models do not adequately describe ZA phonon-defect scattering rates. Our ab initio calculations capture well the trend of κ vs vacancy density from experiments, though not the magnitudes. In conclusion, this work elucidates important insights into phonon-defect scattering and thermal transport in graphene, and demonstrates the applicability of first-principles methods toward describing these properties in imperfect materials.« less

  20. Ab initio phonon point defect scattering and thermal transport in graphene

    NASA Astrophysics Data System (ADS)

    Polanco, Carlos A.; Lindsay, Lucas

    2018-01-01

    We study the scattering of phonons from point defects and their effect on lattice thermal conductivity κ using a parameter-free ab initio Green's function methodology. Specifically, we focus on the scattering of phonons by boron (B), nitrogen (N), and phosphorus substitutions as well as single- and double-carbon vacancies in graphene. We show that changes of the atomic structure and harmonic interatomic force constants locally near defects govern the strength and frequency trends of the scattering of out-of-plane acoustic (ZA) phonons, the dominant heat carriers in graphene. ZA scattering rates due to N substitutions are nearly an order of magnitude smaller than those for B defects despite having similar mass perturbations. Furthermore, ZA phonon scattering rates from N defects decrease with increasing frequency in the lower-frequency spectrum in stark contrast to expected trends from simple models. ZA phonon-vacancy scattering rates are found to have a significantly softer frequency dependence (˜ω0 ) in graphene than typically employed in phenomenological models. The rigorous Green's function calculations demonstrate that typical mass-defect models do not adequately describe ZA phonon-defect scattering rates. Our ab initio calculations capture well the trend of κ vs vacancy density from experiments, though not the magnitudes. This work elucidates important insights into phonon-defect scattering and thermal transport in graphene, and demonstrates the applicability of first-principles methods toward describing these properties in imperfect materials.

  1. Ab Initio Optimized Effective Potentials for Real Molecules in Optical Cavities: Photon Contributions to the Molecular Ground State

    PubMed Central

    2018-01-01

    We introduce a simple scheme to efficiently compute photon exchange-correlation contributions due to the coupling to transversal photons as formulated in the newly developed quantum-electrodynamical density-functional theory (QEDFT).1−5 Our construction employs the optimized-effective potential (OEP) approach by means of the Sternheimer equation to avoid the explicit calculation of unoccupied states. We demonstrate the efficiency of the scheme by applying it to an exactly solvable GaAs quantum ring model system, a single azulene molecule, and chains of sodium dimers, all located in optical cavities and described in full real space. While the first example is a two-dimensional system and allows to benchmark the employed approximations, the latter two examples demonstrate that the correlated electron-photon interaction appreciably distorts the ground-state electronic structure of a real molecule. By using this scheme, we not only construct typical electronic observables, such as the electronic ground-state density, but also illustrate how photon observables, such as the photon number, and mixed electron-photon observables, for example, electron–photon correlation functions, become accessible in a density-functional theory (DFT) framework. This work constitutes the first three-dimensional ab initio calculation within the new QEDFT formalism and thus opens up a new computational route for the ab initio study of correlated electron–photon systems in quantum cavities. PMID:29594185

  2. Ab initio and classical molecular dynamics studies of the structural and dynamical behavior of water near a hydrophobic graphene sheet.

    PubMed

    Rana, Malay Kumar; Chandra, Amalendu

    2013-05-28

    The behavior of water near a graphene sheet is investigated by means of ab initio and classical molecular dynamics simulations. The wetting of the graphene sheet by ab initio water and the relation of such behavior to the strength of classical dispersion interaction between surface atoms and water are explored. The first principles simulations reveal a layered solvation structure around the graphene sheet with a significant water density in the interfacial region implying no drying or cavitation effect. It is found that the ab initio results of water density at interfaces can be reproduced reasonably well by classical simulations with a tuned dispersion potential between the surface and water molecules. Calculations of vibrational power spectrum from ab initio simulations reveal a shift of the intramolecular stretch modes to higher frequencies for interfacial water molecules when compared with those of the second solvation later or bulk-like water due to the presence of free OH modes near the graphene sheet. Also, a weakening of the water-water hydrogen bonds in the vicinity of the graphene surface is found in our ab initio simulations as reflected in the shift of intermolecular vibrational modes to lower frequencies for interfacial water molecules. The first principles calculations also reveal that the residence and orientational dynamics of interfacial water are somewhat slower than those of the second layer or bulk-like molecules. However, the lateral diffusion and hydrogen bond relaxation of interfacial water molecules are found to occur at a somewhat faster rate than that of the bulk-like water molecules. The classical molecular dynamics simulations with tuned Lennard-Jones surface-water interaction are found to produce dynamical results that are qualitatively similar to those of ab initio molecular dynamics simulations.

  3. Three-cluster dynamics within an ab initio framework

    DOE PAGES

    Quaglioni, Sofia; Romero-Redondo, Carolina; Navratil, Petr

    2013-09-26

    In this study, we introduce a fully antisymmetrized treatment of three-cluster dynamics within the ab initio framework of the no-core shell model/resonating-group method. Energy-independent nonlocal interactions among the three nuclear fragments are obtained from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with bound-state boundary conditions by means of the hyperspherical-harmonic method on a Lagrange mesh. We discuss the formalism in detail and give algebraic expressions for systems of two single nucleons plus a nucleus. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we apply the method to amore » 4He+n+n description of 6He and compare the results to experiment and to a six-body diagonalization of the Hamiltonian performed within the harmonic-oscillator expansions of the no-core shell model. Differences between the two calculations provide a measure of core ( 4He) polarization effects.« less

  4. Quantifying Ab Initio Equation of State Errors for Hydrogen-Helium Mixtures

    NASA Astrophysics Data System (ADS)

    Clay, Raymond; Morales, Miguel

    2017-06-01

    In order to produce predictive models of Jovian planets, an accurate equation of state for hydrogen-helium mixtures is needed over pressure and temperature ranges spanning multiple orders of magnitude. While extensive theoretical work has been done in this area, previous controversies regarding the equation of state of pure hydrogen have demonstrated exceptional sensitivity to approximations commonly employed in ab initio calculations. To this end, we present the results of our quantum Monte Carlo based benchmarking studies for several major classes of density functionals. Additionally, we expand upon our published results by considering the impact that ionic finite size effects and density functional errors translate to errors in the equation of state. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. Ab initio interatomic potentials and the thermodynamic properties of fluids

    NASA Astrophysics Data System (ADS)

    Vlasiuk, Maryna; Sadus, Richard J.

    2017-07-01

    Monte Carlo simulations with accurate ab initio interatomic potentials are used to investigate the key thermodynamic properties of argon and krypton in both vapor and liquid phases. Data are reported for the isochoric and isobaric heat capacities, the Joule-Thomson coefficient, and the speed of sound calculated using various two-body interatomic potentials and different combinations of two-body plus three-body terms. The results are compared to either experimental or reference data at state points between the triple and critical points. Using accurate two-body ab initio potentials, combined with three-body interaction terms such as the Axilrod-Teller-Muto and Marcelli-Wang-Sadus potentials, yields systematic improvements to the accuracy of thermodynamic predictions. The effect of three-body interactions is to lower the isochoric and isobaric heat capacities and increase both the Joule-Thomson coefficient and speed of sound. The Marcelli-Wang-Sadus potential is a computationally inexpensive way to utilize accurate two-body ab initio potentials for the prediction of thermodynamic properties. In particular, it provides a very effective way of extending two-body ab initio potentials to liquid phase properties.

  6. Ab initio interatomic potentials and the thermodynamic properties of fluids.

    PubMed

    Vlasiuk, Maryna; Sadus, Richard J

    2017-07-14

    Monte Carlo simulations with accurate ab initio interatomic potentials are used to investigate the key thermodynamic properties of argon and krypton in both vapor and liquid phases. Data are reported for the isochoric and isobaric heat capacities, the Joule-Thomson coefficient, and the speed of sound calculated using various two-body interatomic potentials and different combinations of two-body plus three-body terms. The results are compared to either experimental or reference data at state points between the triple and critical points. Using accurate two-body ab initio potentials, combined with three-body interaction terms such as the Axilrod-Teller-Muto and Marcelli-Wang-Sadus potentials, yields systematic improvements to the accuracy of thermodynamic predictions. The effect of three-body interactions is to lower the isochoric and isobaric heat capacities and increase both the Joule-Thomson coefficient and speed of sound. The Marcelli-Wang-Sadus potential is a computationally inexpensive way to utilize accurate two-body ab initio potentials for the prediction of thermodynamic properties. In particular, it provides a very effective way of extending two-body ab initio potentials to liquid phase properties.

  7. On the incorporation of the geometric phase in general single potential energy surface dynamics: A removable approximation to ab initio data.

    PubMed

    Malbon, Christopher L; Zhu, Xiaolei; Guo, Hua; Yarkony, David R

    2016-12-21

    For two electronic states coupled by conical intersections, the line integral of the derivative coupling can be used to construct a complex-valued multiplicative phase factor that makes the real-valued adiabatic electronic wave function single-valued, provided that the curl of the derivative coupling is zero. Unfortunately for ab initio determined wave functions, the curl is never rigorously zero. However, when the wave functions are determined from a coupled two diabatic state Hamiltonian H d (fit to ab initio data), the resulting derivative couplings are by construction curl free, except at points of conical intersection. In this work we focus on a recently introduced diabatization scheme that produces the H d by fitting ab initio determined energies, energy gradients, and derivative couplings to the corresponding H d determined quantities in a least squares sense, producing a removable approximation to the ab initio determined derivative coupling. This approach and related numerical issues associated with the nonremovable ab initio derivative couplings are illustrated using a full 33-dimensional representation of phenol photodissociation. The use of this approach to provide a general framework for treating the molecular Aharonov Bohm effect is demonstrated.

  8. Introducing ab initio based neural networks for transition-rate prediction in kinetic Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Messina, Luca; Castin, Nicolas; Domain, Christophe; Olsson, Pär

    2017-02-01

    The quality of kinetic Monte Carlo (KMC) simulations of microstructure evolution in alloys relies on the parametrization of point-defect migration rates, which are complex functions of the local chemical composition and can be calculated accurately with ab initio methods. However, constructing reliable models that ensure the best possible transfer of physical information from ab initio to KMC is a challenging task. This work presents an innovative approach, where the transition rates are predicted by artificial neural networks trained on a database of 2000 migration barriers, obtained with density functional theory (DFT) in place of interatomic potentials. The method is tested on copper precipitation in thermally aged iron alloys, by means of a hybrid atomistic-object KMC model. For the object part of the model, the stability and mobility properties of copper-vacancy clusters are analyzed by means of independent atomistic KMC simulations, driven by the same neural networks. The cluster diffusion coefficients and mean free paths are found to increase with size, confirming the dominant role of coarsening of medium- and large-sized clusters in the precipitation kinetics. The evolution under thermal aging is in better agreement with experiments with respect to a previous interatomic-potential model, especially concerning the experiment time scales. However, the model underestimates the solubility of copper in iron due to the excessively high solution energy predicted by the chosen DFT method. Nevertheless, this work proves the capability of neural networks to transfer complex ab initio physical properties to higher-scale models, and facilitates the extension to systems with increasing chemical complexity, setting the ground for reliable microstructure evolution simulations in a wide range of alloys and applications.

  9. Site occupancy trend of Co in Ni{sub 2}MnIn: Ab initio approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Soumyadipta, E-mail: soumyadipta.pal@gmail.com; Mahadevan, Priya; Biswas, C.

    2015-06-24

    The trend of site occupation of Co at Ni sites of Ni{sub 2}MnIn system is studied in austenitic phase having L2{sub 1} structure by ab initio density functional theory (DFT) calculation. The Co atoms prefer to be at Ni sites rather than Mn site and are ferromagetically coupled with Ni and Mn. The ground state has tetragonal structure for Ni{sub 1.5}Co{sub 0.5}MnIn and Ni{sub 1.25}Co{sub 0.75}MnIn. The Co tends to form cluster.

  10. Ab initio determination of effective electron-phonon coupling factor in copper

    NASA Astrophysics Data System (ADS)

    Ji, Pengfei; Zhang, Yuwen

    2016-04-01

    The electron temperature Te dependent electron density of states g (ε), Fermi-Dirac distribution f (ε), and electron-phonon spectral function α2 F (Ω) are computed as prerequisites before achieving effective electron-phonon coupling factor Ge-ph. The obtained Ge-ph is implemented into a molecular dynamics (MD) and two-temperature model (TTM) coupled simulation of femtosecond laser heating. By monitoring temperature evolutions of electron and lattice subsystems, the result utilizing Ge-ph from ab initio calculation shows a faster decrease of Te and increase of Tl than those using Ge-ph from phenomenological treatment. The approach of calculating Ge-ph and its implementation into MD-TTM simulation is applicable to other metals.

  11. Ab initio study of energy transfer rates and impact sensitivities of crystalline explosives.

    PubMed

    Bernstein, Jonathan

    2018-02-28

    Impact sensitivities of various crystalline explosives were predicted by means of plane wave-density functional theory calculations. Crystal structures and complete vibrational spectra of TATB, PETN, FOX7, TEX, 14DNI, and β-HMX molecular crystals were calculated. A correlation between the phonon-vibron coupling (which is proportionally related to the energy transfer rate between the phonon manifold and the intramolecular vibrational modes) and impact sensitivities of secondary explosives was found. We propose a method, based on ab initio calculations, for the evaluation of impact sensitivities, which consequently can assist in screening candidates for chemical synthesis of high energetic materials.

  12. Ab initio study of energy transfer rates and impact sensitivities of crystalline explosives

    NASA Astrophysics Data System (ADS)

    Bernstein, Jonathan

    2018-02-01

    Impact sensitivities of various crystalline explosives were predicted by means of plane wave-density functional theory calculations. Crystal structures and complete vibrational spectra of TATB, PETN, FOX7, TEX, 14DNI, and β-HMX molecular crystals were calculated. A correlation between the phonon-vibron coupling (which is proportionally related to the energy transfer rate between the phonon manifold and the intramolecular vibrational modes) and impact sensitivities of secondary explosives was found. We propose a method, based on ab initio calculations, for the evaluation of impact sensitivities, which consequently can assist in screening candidates for chemical synthesis of high energetic materials.

  13. Sphinx: merging knowledge-based and ab initio approaches to improve protein loop prediction

    PubMed Central

    Marks, Claire; Nowak, Jaroslaw; Klostermann, Stefan; Georges, Guy; Dunbar, James; Shi, Jiye; Kelm, Sebastian

    2017-01-01

    Abstract Motivation: Loops are often vital for protein function, however, their irregular structures make them difficult to model accurately. Current loop modelling algorithms can mostly be divided into two categories: knowledge-based, where databases of fragments are searched to find suitable conformations and ab initio, where conformations are generated computationally. Existing knowledge-based methods only use fragments that are the same length as the target, even though loops of slightly different lengths may adopt similar conformations. Here, we present a novel method, Sphinx, which combines ab initio techniques with the potential extra structural information contained within loops of a different length to improve structure prediction. Results: We show that Sphinx is able to generate high-accuracy predictions and decoy sets enriched with near-native loop conformations, performing better than the ab initio algorithm on which it is based. In addition, it is able to provide predictions for every target, unlike some knowledge-based methods. Sphinx can be used successfully for the difficult problem of antibody H3 prediction, outperforming RosettaAntibody, one of the leading H3-specific ab initio methods, both in accuracy and speed. Availability and Implementation: Sphinx is available at http://opig.stats.ox.ac.uk/webapps/sphinx. Contact: deane@stats.ox.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28453681

  14. Sphinx: merging knowledge-based and ab initio approaches to improve protein loop prediction.

    PubMed

    Marks, Claire; Nowak, Jaroslaw; Klostermann, Stefan; Georges, Guy; Dunbar, James; Shi, Jiye; Kelm, Sebastian; Deane, Charlotte M

    2017-05-01

    Loops are often vital for protein function, however, their irregular structures make them difficult to model accurately. Current loop modelling algorithms can mostly be divided into two categories: knowledge-based, where databases of fragments are searched to find suitable conformations and ab initio, where conformations are generated computationally. Existing knowledge-based methods only use fragments that are the same length as the target, even though loops of slightly different lengths may adopt similar conformations. Here, we present a novel method, Sphinx, which combines ab initio techniques with the potential extra structural information contained within loops of a different length to improve structure prediction. We show that Sphinx is able to generate high-accuracy predictions and decoy sets enriched with near-native loop conformations, performing better than the ab initio algorithm on which it is based. In addition, it is able to provide predictions for every target, unlike some knowledge-based methods. Sphinx can be used successfully for the difficult problem of antibody H3 prediction, outperforming RosettaAntibody, one of the leading H3-specific ab initio methods, both in accuracy and speed. Sphinx is available at http://opig.stats.ox.ac.uk/webapps/sphinx. deane@stats.ox.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  15. Carbon diffusion in molten uranium: an ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Garrett, Kerry E.; Abrecht, David G.; Kessler, Sean H.; Henson, Neil J.; Devanathan, Ram; Schwantes, Jon M.; Reilly, Dallas D.

    2018-04-01

    In this work we used ab initio molecular dynamics within the framework of density functional theory and the projector-augmented wave method to study carbon diffusion in liquid uranium at temperatures above 1600 K. The electronic interactions of carbon and uranium were described using the local density approximation (LDA). The self-diffusion of uranium based on this approach is compared with literature computational and experimental results for liquid uranium. The temperature dependence of carbon and uranium diffusion in the melt was evaluated by fitting the resulting diffusion coefficients to an Arrhenius relationship. We found that the LDA calculated activation energy for carbon was nearly twice that of uranium: 0.55 ± 0.03 eV for carbon compared to 0.32 ± 0.04 eV for uranium. Structural analysis of the liquid uranium-carbon system is also discussed.

  16. Fourfold Clusters of Rovibrational Energies in H2Te Studied With an Ab Initio Potential Energy Function

    NASA Technical Reports Server (NTRS)

    Jensen, Per; Li, Yan; Hirsch, Gerhard; Buenker, Robert J.; Lee, Timothy J.; Arnold, James O. (Technical Monitor)

    1994-01-01

    We report an ab initio investigation of the cluster effect (i.e., the formation of nearly degenerate, four member groups of rotation-vibration energy levels at higher J and K(sub a). values) in the H2Te molecule. The potential energy function has been calculated ab initio at a total of 334 molecular geometries by means of the CCSD(T) method where the (1s-4f) core electrons of Te were described by an effective core potential. The values of the potential energy function obtained cover the region up to around 10,000/cm above the equilibrium energy. On the basis of the ab initio potential, the rotation-vibration energy spectra of H2Te-130 and its deuterated isotopomers have been calculated with the MORBID (Morse Oscillator Rigid Bender Internal Dynamics) Hamiltonian and computer program. In particular, we have calculated the rotational energy manifolds for J less than or = 40 in the vibrational ground state, the upsilon(sub 2) state, the "first triad" (the upsilon(sub l)/upsilon(sub 3)/2upsilon(sub 2) interacting vibrational states), and the "second triad" (the upsilon(sub 1) + upsilon(sub 2/upsilon(sub 2) + upsilon(sub 3)/3upsilon(sub 2) states) of H2Te-130. We find that the cluster formation in H2Te is very similar to those of of H2Se and H2S, which we have studied previously. However, contrary to semiclassical predictions, we do not determine any significant displacement of the clusters towards lower J values relative to H2Se. Hence the experimental observation of the cluster states in H2Te will be at least as difficult as in H2Se.

  17. Towards accurate ab initio predictions of the vibrational spectrum of methane

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.

    2002-01-01

    We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born-Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.

  18. Ab initio and density functional study on the mechanism of the C2H2++methanol reaction

    NASA Astrophysics Data System (ADS)

    Irle, Stephan; Morokuma, Keiji

    1999-09-01

    High level ab initio (G2MS and CASSCF) and density functional (B3LYP) calculations were carried out to study the mechanism of the ion-molecule reaction C2H2++CH3OH for four reaction channels: hydride abstraction from methanol (HA), proton transfer from acetylene cation (PT), charge transfer (CT), and covalent complex formation (CC) channel. For the CT channel, two pathways have been found: a usual nonadiabatic pathway via A'/A″ seam of crossing, and a low-energy adiabatic pathway through an initial intermediate; the latter may be the dominant process with favorable energies and a large impact parameter. The HA process involves a low-energy direct intermediate and a very low barrier to form C2H3+CH2OH+ and is also energetically favorable. The PT processes require passage over a high-energy transition state (TS) and are not important. One of the experimentally unobserved CC channels, formation of the COCC skeleton, is energetically favorable and there is no energetic reason for it not to take place; a "dynamic bottleneck" argument may have to be invoked to explain the experiment. The increase in reaction efficiency with the C-C stretch excitation may be justified by considering the TSs for two CT pathways, where the C-C distance changed substantially from that in the reactant C2H2+. Very qualitatively, the C2H2++CH3OH potential energy surface looks more like that of the C2H2++NH3 system than the C2H2++CH4 system, because of the differences in the ionization potentials: NH3˜CH3OH

  19. Ab-Initio Molecular Dynamics Simulation of Graphene Sheet

    NASA Astrophysics Data System (ADS)

    Kolev, S.; Balchev, I.; Cvetkov, K.; Tinchev, S.; Milenov, T.

    2017-01-01

    The study of graphene is important because it is a promising material for a variety of applications in the electronic industry. In the present work, the properties of а 2D periodic graphene sheet are studied with the use of ab initio molecular dynamics. DFT in the generalized gradient approximation is used in order to carry out the dynamical simulations. The PBE functional and DZVP-MOLOPT basis set are implemented in the CP2K/Quickstep package. A periodic box, consisting of 288 carbon atoms is chosen for the simulations. After geometry optimization it has dimensions 2964 x 2964 x 1500 pm and form angles of 90, 90, 60 degrees. The dynamical simulation is run for 1 ps in the NPT ensemble, at temperature T = 298.15 K. The radial distribution function shows a first peak at 142 pm, marking the bond length between carbon atoms. The density of states for the periodic systems is simulated as occupied orbitals represent the valence band and unoccupied ones the conduction band. The calculated bandgap, as expected is close to 0 eV.

  20. Ab initio approach to the ion stopping power at the plasma-solid interface

    NASA Astrophysics Data System (ADS)

    Bonitz, Michael; Schlünzen, Niclas; Wulff, Lasse; Joost, Jan-Philip; Balzer, Karsten

    2016-10-01

    The energy loss of ions in solids is of key relevance for many applications of plasmas, ranging from plasma technology to fusion. Standard approaches are based on density functional theory or SRIM simulations, however, the applicability range and accuracy of these results are difficult to assess, in particular, for low energies. Here we present an independent approach that is based on ab initio nonequilibrium Green functions theory, e.g. that allows to incorporate electronic correlations effects of the solid. We present the first application of this method to low-temperature plasmas, concentrating on proton and alpha-particle stopping in a graphene layer. In addition to the stopping power we present time-dependent results for the local electron density, the spectral function and the photoemission spectrum that is directly accessible in optical, UV or x-ray diagnostics. http://www.itap.uni-kiel.de/theo-physik/bonitz/.

  1. Ab initio calculations of deep-level carrier nonradiative recombination rates in bulk semiconductors.

    PubMed

    Shi, Lin; Wang, Lin-Wang

    2012-12-14

    Nonradiative carrier recombination is of both applied and fundamental interest. Here a novel algorithm is introduced to calculate such a deep level nonradiative recombination rate using the ab initio density functional theory. This algorithm can calculate the electron-phonon coupling constants all at once. An approximation is presented to calculate the phonon modes for one impurity in a large supercell. The neutral Zn impurity site together with a N vacancy is considered as the carrier-capturing deep impurity level in bulk GaN. Its capture coefficient is calculated as 5.57 × 10(-10)cm(3)/s at 300 K. We found that there is no apparent onset of such a nonradiative process as a function of temperature.

  2. Predicting vapor-liquid phase equilibria with augmented ab initio interatomic potentials

    NASA Astrophysics Data System (ADS)

    Vlasiuk, Maryna; Sadus, Richard J.

    2017-06-01

    The ability of ab initio interatomic potentials to accurately predict vapor-liquid phase equilibria is investigated. Monte Carlo simulations are reported for the vapor-liquid equilibria of argon and krypton using recently developed accurate ab initio interatomic potentials. Seventeen interatomic potentials are studied, formulated from different combinations of two-body plus three-body terms. The simulation results are compared to either experimental or reference data for conditions ranging from the triple point to the critical point. It is demonstrated that the use of ab initio potentials enables systematic improvements to the accuracy of predictions via the addition of theoretically based terms. The contribution of three-body interactions is accounted for using the Axilrod-Teller-Muto plus other multipole contributions and the effective Marcelli-Wang-Sadus potentials. The results indicate that the predictive ability of recent interatomic potentials, obtained from quantum chemical calculations, is comparable to that of accurate empirical models. It is demonstrated that the Marcelli-Wang-Sadus potential can be used in combination with accurate two-body ab initio models for the computationally inexpensive and accurate estimation of vapor-liquid phase equilibria.

  3. Predicting vapor-liquid phase equilibria with augmented ab initio interatomic potentials.

    PubMed

    Vlasiuk, Maryna; Sadus, Richard J

    2017-06-28

    The ability of ab initio interatomic potentials to accurately predict vapor-liquid phase equilibria is investigated. Monte Carlo simulations are reported for the vapor-liquid equilibria of argon and krypton using recently developed accurate ab initio interatomic potentials. Seventeen interatomic potentials are studied, formulated from different combinations of two-body plus three-body terms. The simulation results are compared to either experimental or reference data for conditions ranging from the triple point to the critical point. It is demonstrated that the use of ab initio potentials enables systematic improvements to the accuracy of predictions via the addition of theoretically based terms. The contribution of three-body interactions is accounted for using the Axilrod-Teller-Muto plus other multipole contributions and the effective Marcelli-Wang-Sadus potentials. The results indicate that the predictive ability of recent interatomic potentials, obtained from quantum chemical calculations, is comparable to that of accurate empirical models. It is demonstrated that the Marcelli-Wang-Sadus potential can be used in combination with accurate two-body ab initio models for the computationally inexpensive and accurate estimation of vapor-liquid phase equilibria.

  4. Ab initio calculation of resonant Raman intensities of transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Miranda, Henrique; Reichardt, Sven; Molina-Sanchez, Alejandro; Wirtz, Ludger

    Raman spectroscopy is used to characterize optical and vibrational properties of materials. Its computational simulation is important for the interpretation of experimental results. Two approaches are the bond polarizability model and density functional perturbation theory. However, both are known to not capture resonance effects. These resonances and quantum interference effects are important to correctly reproduce the intensities as a function of laser energy as, e.g., reported for the case of multi-layer MoTe21.We present two fully ab initio approaches that overcome this limitation. In the first, we calculate finite difference derivatives of the dielectric susceptibility with the phonon displacements2. In the second we calculate electron-light and electron-phonon matrix elements from density functional theory and use them to evaluate expressions for the Raman intensity derived from time-dependent perturbation theory. These expressions are implemented in a computer code that performs the calculations as a post-processing step. We compare both methods and study the case of triple-layer MoTe2. Luxembourg National Research Fund (FNR).

  5. Ab initio molecular dynamics simulation study of successive hydrogenation reactions of carbon monoxide producing methanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Thi Nu; Ono, Shota; Ohno, Kaoru, E-mail: ohno@ynu.ac.jp

    Doing ab initio molecular dynamics simulations, we demonstrate a possibility of hydrogenation of carbon monoxide producing methanol step by step. At first, the hydrogen atom reacts with the carbon monoxide molecule at the excited state forming the formyl radical. Formaldehyde was formed after adding one more hydrogen atom to the system. Finally, absorption of two hydrogen atoms to formaldehyde produces methanol molecule. This study is performed by using the all-electron mixed basis approach based on the time dependent density functional theory within the adiabatic local density approximation for an electronic ground-state configuration and the one-shot GW approximation for an electronicmore » excited state configuration.« less

  6. A Force Balanced Fragmentation Method for ab Initio Molecular Dynamic Simulation of Protein.

    PubMed

    Xu, Mingyuan; Zhu, Tong; Zhang, John Z H

    2018-01-01

    A force balanced generalized molecular fractionation with conjugate caps (FB-GMFCC) method is proposed for ab initio molecular dynamic simulation of proteins. In this approach, the energy of the protein is computed by a linear combination of the QM energies of individual residues and molecular fragments that account for the two-body interaction of hydrogen bond between backbone peptides. The atomic forces on the caped H atoms were corrected to conserve the total force of the protein. Using this approach, ab initio molecular dynamic simulation of an Ace-(ALA) 9 -NME linear peptide showed the conservation of the total energy of the system throughout the simulation. Further a more robust 110 ps ab initio molecular dynamic simulation was performed for a protein with 56 residues and 862 atoms in explicit water. Compared with the classical force field, the ab initio molecular dynamic simulations gave better description of the geometry of peptide bonds. Although further development is still needed, the current approach is highly efficient, trivially parallel, and can be applied to ab initio molecular dynamic simulation study of large proteins.

  7. Ab initio Computations of the Electronic, Mechanical, and Thermal Properties of Ultra High Temperature Ceramics (UHTC) ZrB2 and HfB2

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Bauschlicher, Charles W.; Daw, Murray

    2011-01-01

    Refractory materials such as metallic borides, often considered as ultra high temperature ceramics (UHTC), are characterized by high melting point, high hardness, and good chemical inertness. These materials have many applications which require high temperature materials that can operate with no or limited oxidation. Ab initio, first principles methods are the most accurate modeling approaches available and represent a parameter free description of the material based on the quantum mechanical equations. Using these methods, many of the intrinsic properties of these material can be obtained. We performed ab initio calculations based on density functional theory for the UHTC materials ZrB2 and HfB2. Computational results are presented for structural information (lattice constants, bond lengths, etc), electronic structure (bonding motifs, densities of states, band structure, etc), thermal quantities (phonon spectra, phonon densities of states, specific heat), as well as information about point defects such as vacancy and antisite formation energies.

  8. Towards an ab initio description of correlated materials

    NASA Astrophysics Data System (ADS)

    Yee, Chuck-Hou

    Strongly-correlated materials are a rich playground for physical phenomena, exhibiting complex phase diagrams with many competing orders. Ab initio insights into materials combined with physical ideas provide the ability to identify the organizing principles driving the correlated electronic behavior and pursue first-principles design of new compounds. Realistic modeling of correlated materials is an active area of research, especially with the recent merger of density functional theory (DFT) with dynamical mean-field theory (DMFT). This thesis is structured in two parts. The first describes the methods and algorithmic developments which drive advances in DFT+DMFT. In Ch. 2 and 3, we provide an overview of the two foundational theories, DMFT and DFT. In the second half of Ch. 3, we describe some of the principles guiding the combination of the two theories to form DFT+DMFT. In Ch. 4, we describe the algorithm lying at the heart of modern DFT+DMFT implementations, the hybridization expansion formulation of continuous-time quantum monte carlo (CTQMC) for the general Anderson impurity problem, as well as a fast rejection algorithm for speeding-up the local trace evaluation. The final chapter in the methods section describes an algorithm for direct sampling of the partition function, and thus the free energy and entropy, of simple Anderson impurity models within CTQMC. The second part of the thesis is a collection of applications of our ab initio approach to key correlated materials. We first apply our method to plutonium binary alloys (Ch. 6), which when supplemented with slave-boson mean-field theory, allows us to understand the observed photoemission spectra. Ch. 7 describes the computation of spectra and optical conductivity for rare-earth nickelates grown as epitaxial thin films. In the final two chapters, we turn our attention to the high-temperature superconductors. In the first, we show that the charge-transfer energy is a key chemical variable which controls

  9. Well-characterized sequence features of eukaryote genomes and implications for ab initio gene prediction.

    PubMed

    Huang, Ying; Chen, Shi-Yi; Deng, Feilong

    2016-01-01

    In silico analysis of DNA sequences is an important area of computational biology in the post-genomic era. Over the past two decades, computational approaches for ab initio prediction of gene structure from genome sequence alone have largely facilitated our understanding on a variety of biological questions. Although the computational prediction of protein-coding genes has already been well-established, we are also facing challenges to robustly find the non-coding RNA genes, such as miRNA and lncRNA. Two main aspects of ab initio gene prediction include the computed values for describing sequence features and used algorithm for training the discriminant function, and by which different combinations are employed into various bioinformatic tools. Herein, we briefly review these well-characterized sequence features in eukaryote genomes and applications to ab initio gene prediction. The main purpose of this article is to provide an overview to beginners who aim to develop the related bioinformatic tools.

  10. Many-body optimization using an ab initio monte carlo method.

    PubMed

    Haubein, Ned C; McMillan, Scott A; Broadbelt, Linda J

    2003-01-01

    Advances in computing power have made it possible to study solvated molecules using ab initio quantum chemistry. Inclusion of discrete solvent molecules is required to determine geometric information about solute/solvent clusters. Monte Carlo methods are well suited to finding minima in many-body systems, and ab initio methods are applicable to the widest range of systems. A first principles Monte Carlo (FPMC) method was developed to find minima in many-body systems, and emphasis was placed on implementing moves that increase the likelihood of finding minimum energy structures. Partial optimization and molecular interchange moves aid in finding minima and overcome the incomplete sampling that is unavoidable when using ab initio methods. FPMC was validated by studying the boron trifluoride-water system, and then the method was used to examine the methyl carbenium ion in water to demonstrate its application to solvation problems.

  11. Cooperative effects in the structuring of fluoride water clusters: Ab initio hybrid quantum mechanical/molecular mechanical model incorporating polarizable fluctuating charge solvent

    NASA Astrophysics Data System (ADS)

    Bryce, Richard A.; Vincent, Mark A.; Malcolm, Nathaniel O. J.; Hillier, Ian H.; Burton, Neil A.

    1998-08-01

    A new hybrid quantum mechanical/molecular mechanical model of solvation is developed and used to describe the structure and dynamics of small fluoride/water clusters, using an ab initio wave function to model the ion and a fluctuating charge potential to model the waters. Appropriate parameters for the water-water and fluoride-water interactions are derived, with the fluoride anion being described by density functional theory and a large Gaussian basis. The role of solvent polarization in determining the structure and energetics of F(H2O)4- clusters is investigated, predicting a slightly greater stability of the interior compared to the surface structure, in agreement with ab initio studies. An extended Lagrangian treatment of the polarizable water, in which the water atomic charges fluctuate dynamically, is used to study the dynamics of F(H2O)4- cluster. A simulation using a fixed solvent charge distribution indicates principally interior, solvated states for the cluster. However, a preponderance of trisolvated configurations is observed using the polarizable model at 300 K, which involves only three direct fluoride-water hydrogen bonds. Ab initio calculations confirm this trisolvated species as a thermally accessible state at room temperature, in addition to the tetrasolvated interior and surface structures. Extension of this polarizable water model to fluoride clusters with five and six waters gave less satisfactory agreement with experimental energies and with ab initio geometries. However, our results do suggest that a quantitative model of solvent polarization is fundamental for an accurate understanding of the properties of anionic water clusters.

  12. Microscopic optical potentials derived from ab initio translationally invariant nonlocal one-body densities

    NASA Astrophysics Data System (ADS)

    Gennari, Michael; Vorabbi, Matteo; Calci, Angelo; Navrátil, Petr

    2018-03-01

    Background: The nuclear optical potential is a successful tool for the study of nucleon-nucleus elastic scattering and its use has been further extended to inelastic scattering and other nuclear reactions. The nuclear density of the target nucleus is a fundamental ingredient in the construction of the optical potential and thus plays an important role in the description of the scattering process. Purpose: In this paper we derive a microscopic optical potential for intermediate energies using ab initio translationally invariant nonlocal one-body nuclear densities computed within the no-core shell model (NCSM) approach utilizing two- and three-nucleon chiral interactions as the only input. Methods: The optical potential is derived at first order within the spectator expansion of the nonrelativistic multiple scattering theory by adopting the impulse approximation. Nonlocal nuclear densities are derived from the NCSM one-body densities calculated in the second quantization. The translational invariance is generated by exactly removing the spurious center-of-mass (COM) component from the NCSM eigenstates. Results: The ground-state local and nonlocal densities of He 4 ,6 ,8 , 12C, and 16O are calculated and applied to optical potential construction. The differential cross sections and the analyzing powers for the elastic proton scattering off these nuclei are then calculated for different values of the incident proton energy. The impact of nonlocality and the COM removal is discussed. Conclusions: The use of nonlocal densities has a substantial impact on the differential cross sections and improves agreement with experiment in comparison to results generated with the local densities especially for light nuclei. For the halo nuclei 6He and 8He, the results for the differential cross section are in a reasonable agreement with the data although a more sophisticated model for the optical potential is required to properly describe the

  13. On the photoisomerization of 5-hydroxytropolone: An ab initio and nuclear wave function study

    NASA Astrophysics Data System (ADS)

    Paz, Juan J.; Moreno, Miquel; Lluch, José M.

    1997-10-01

    In this paper we perform ab initio calculations for the stable conformations and the transition states for the isomerization processes in 5-hydroxytropolone in both the ground (S0) and first excited (S1) singlet electronic states. The Hartree-Fock self-consistent field (SCF) level and a complete active space SCF (CASSCF) level for S0 are considered, whereas the configuration interaction all single excitation method (CIS) and the CASSCF levels are used to deal with the S1 state. Energies are reevaluated at all levels through perturbation theory up to second order: Møller-Plesset for the Hartree-Fock and CIS methods, and the CASPT2 method for CAS results. The ab initio results are then used to perform different monodimensional fits to the potential energy surfaces in order to analyze the wave functions for the nuclear motions in both electronic states. Our best results predict that for the S0 state two stable conformers, syn and anti, can exist in thermal equilibrium. In accordance with experimental expectations the syn isomer is the most stable. As for the S1 state, and again in accord with experimental spectroscopical data, the order of stability reverses, the anti being the most stable. A more interesting result is that analysis of the nuclear wave functions shows an important syn-anti mixing in the S1 state that does not appear in S0. This result explains the appearance of syn-anti and anti-syn crossover transitions observed in the electronic spectra of 5-hydroxytropolone so that syn-anti reaction may take place through photoisomerization.

  14. DFT-based ab initio MD simulation of the ionic conduction in doped ZrO₂ systems under epitaxial strain.

    PubMed

    Oka, M; Kamisaka, H; Fukumura, T; Hasegawa, T

    2015-11-21

    The oxygen ionic conduction in ZrO2 systems under tensile epitaxial strain was investigated by performing ab initio molecular dynamics (MD) calculations based on density functional theory (DFT) to elucidate the essential factors in the colossal ionic conductivity observed in the yttria stabilized ZrO2 (YSZ)/SrTiO3 heterostructure. Three factors were evaluated: lattice strain, oxygen vacancies, and dopants. Phonon calculations based on density functional perturbation theory (DFPT) were used to obtain the most stable structure for nondoped ZrO2 under 7% tensile strain along the a- and b-axes. This structure has the space group Pbcn, which is entirely different from that of cubic ZrO2, suggesting that previous ab initio MD calculations assuming cubic ZrO2 may have overestimated the ionic conductivity due to relaxation from the initial structure to the stable structure (Pbcn). Our MD calculations revealed that the ionic conductivity is enhanced only when tensile strain and oxygen vacancies are incorporated, although the presently obtained diffusion constant is far below the range for the colossal ionic conduction experimentally observed. The enhanced ionic conductivity is due to the combined effects of oxygen sublattice formation induced by strain and deformation of this sublattice by oxygen vacancies.

  15. Concentration dependence of electrical resistivity of binary liquid alloy HgZn: Ab-initio study

    NASA Astrophysics Data System (ADS)

    Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.

    2013-06-01

    The electrical resistivity of HgZn liquid alloy has been made calculated using Troullier and Martins ab-initio pseudopotential as a function of concentration. Hard sphere diameters of Hg and Zn are obtained through the inter-ionic pair potential have been used to calculate partial structure factors. Considering the liquid alloy to be a ternary mixture Ziman's formula for calculating the resistivity of binary liquid alloys, modified for complex formation, has been used. These results suggest that ab-initio approach for calculating electrical resistivity is quite successful in explaining the electronic transport properties of binary Liquid alloys.

  16. Accurate energetics of small molecules containing third-row atoms Ga-Kr: A comparison of advanced ab initio and density functional theory

    NASA Astrophysics Data System (ADS)

    Yockel, Scott; Mintz, Benjamin; Wilson, Angela K.

    2004-07-01

    Advanced ab initio [coupled cluster theory through quasiperturbative triple excitations (CCSD(T))] and density functional (B3LYP) computational chemistry approaches were used in combination with the standard and augmented correlation consistent polarized valence basis sets [cc-pVnZ and aug-cc-pVnZ, where n=D(2), T(3), Q(4), and 5] to investigate the energetic and structural properties of small molecules containing third-row (Ga-Kr) atoms. These molecules were taken from the Gaussian-2 (G2) extended test set for third-row atoms. Several different schemes were used to extrapolate the calculated energies to the complete basis set (CBS) limit for CCSD(T) and the Kohn-Sham (KS) limit for B3LYP. Zero point energy and spin orbital corrections were included in the results. Overall, CCSD(T) atomization energies, ionization energies, proton affinities, and electron affinities are in good agreement with experiment, within 1.1 kcal/mol when the CBS limit has been determined using a series of two basis sets of at least triple zeta quality. For B3LYP, the overall mean absolute deviation from experiment for the three properties and the series of molecules is more significant at the KS limit, within 2.3 and 2.6 kcal/mol for the cc-pVnZ and aug-cc-pVnZ basis set series, respectively.

  17. Carbon diffusion in molten uranium: an ab initio molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, Kerry E.; Abrecht, David G.; Kessler, Sean H.

    In this work we used ab initio molecular dynamics (AIMD) within the framework of density functional theory (DFT) and the projector-augmented wave (PAW) method to study carbon diffusion in liquid uranium at temperatures above 1600 K. The electronic interactions of carbon and uranium were described using the local density approximation (LDA). The self-diffusion of uranium based on this approach is compared with literature computational and experimental results for liquid uranium. The temperature dependence of carbon and uranium diffusion in the melt was evaluated by fitting the resulting diffusion coefficients to an Arrhenius relationship. We found that the LDA calculated activationmore » energy for carbon was nearly twice that of uranium: 0.55±0.03 eV for carbon compared to 0.32±0.04 eV for uranium. Structural analysis of the liquid uranium-carbon system is also discussed.« less

  18. Interactions of foreign interstitial and substitutional atoms in bcc iron from ab initio calculations

    NASA Astrophysics Data System (ADS)

    You, Y.; Yan, M. F.

    2013-05-01

    C and N atoms are the most frequent foreign interstitial atoms (FIAs), and often incorporated into the surface layers of steels to enhance their properties by thermochemical treatments. Al, Si, Ti, V, Cr, Mn, Co, Ni, Cu, Nb and Mo are the most common alloying elements in steels, also can be called foreign substitutional atoms (FSAs). The FIA and FSA interactions play an important role in the diffusion of C and N atoms, and the microstructures and mechanical properties of surface modified layers. Ab initio calculations based on the density functional theory are carried out to investigate FIA interactions with FSA in ferromagnetic bcc iron. The FIA-FSA interactions are analyzed systematically from five aspects, including interaction energies, density of states (DOS), bond populations, electron density difference maps and local magnetic moments.

  19. Cobalt-doped ZnO nanocrystals: quantum confinement and surface effects from ab initio methods.

    PubMed

    Schoenhalz, Aline L; Dalpian, Gustavo M

    2013-10-14

    Cobalt-doped ZnO nanocrystals were studied through ab initio methods based on the Density Functional Theory. Both quantum confinement and surface effects were explicitly taken into account. When only quantum confinement effects are considered, Co atoms interact through a superexchange mechanism, stabilizing an antiferromagnetic ground state. Usually, this is the case for high quality nanoparticles with perfect surface saturation. When the surfaces were considered, a strong hybridization between the Co atoms and surfaces was observed, strongly changing their electronic and magnetic properties. Our results indicated that the surfaces might qualitatively change the properties of impurities in semiconductor nanocrystals.

  20. Stabilization of flat aromatic Si6 rings analogous to benzene: ab initio theoretical prediction.

    PubMed

    Zdetsis, Aristides D

    2007-12-07

    It is shown by ab initio calculations, based on density functional (DFT/B3LYP), and high level coupled-cluster [CCSD(T)] and quadratic CI [QCISD(T)] methods, that flat aromatic silicon structures analogous to benzene (C6H6) can be stabilized in the presence of lithium. The resulting planar Si6Li6 structure is both stable and aromatic, sharing many key characteristics with benzene. To facilitate possible synthesis and characterization of these species, routes of formation with high exothermicity are suggested and several spectral properties (including optical absorption, infrared, and Raman) are calculated.

  1. Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.

    2015-05-01

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg10In90, Hg30In70, Hg50In50, Hg70In30 and Hg90In10) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.

  2. Revisiting the Electronic Structure of FeS Monomers Using ab Initio Ligand Field Theory and the Angular Overlap Model.

    PubMed

    Chilkuri, Vijay Gopal; DeBeer, Serena; Neese, Frank

    2017-09-05

    Iron-sulfur (FeS) proteins are universally found in nature with actives sites ranging in complexity from simple monomers to multinuclear sites from two up to eight iron atoms. These sites include mononuclear (rubredoxins), dinuclear (ferredoxins and Rieske proteins), trinuclear (e.g., hydrogenases), and tetranuclear (various ferredoxins and high-potential iron-sulfur proteins). The electronic structure of the higher-nuclearity clusters is inherently extremely complex. Hence, it is reasonable to take a bottom-up approach in which clusters of increasing nuclearity are analyzed in terms of the properties of their lower nuclearity constituents. In the present study, the first step is taken by an in-depth analysis of mononuclear FeS systems. Two different FeS molecules with phenylthiolate and methylthiolate as ligands are studied in their oxidized and reduced forms using modern wave function-based ab initio methods. The ab initio electronic spectra and wave function are presented and analyzed in detail. The very intricate electronic structure-geometry relationship in these systems is analyzed using ab initio ligand field theory (AILFT) in conjunction with the angular overlap model (AOM) parametrization scheme. The simple AOM model is used to explain the effect of geometric variations on the electronic structure. Through a comparison of the ab initio computed UV-vis absorption spectra and the available experimental spectra, the low-energy part of the many-particle spectrum is carefully analyzed. We show ab initio calculated magnetic circular dichroism spectra and present a comparison with the experimental spectrum. Finally, AILFT parameters and the ab initio spectra are compared with those obtained experimentally to understand the effect of the increased covalency of the thiolate ligands on the electronic structure of FeS monomers.

  3. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Hua Y., E-mail: huay.geng@gmail.com; Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY 14853

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model—the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate ismore » about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of r{sub s}=0.912.« less

  4. Flexible Force Field Parameterization through Fitting on the Ab Initio-Derived Elastic Tensor

    PubMed Central

    2017-01-01

    Constructing functional forms and their corresponding force field parameters for the metal–linker interface of metal–organic frameworks is challenging. We propose fitting these parameters on the elastic tensor, computed from ab initio density functional theory calculations. The advantage of this top-down approach is that it becomes evident if functional forms are missing when components of the elastic tensor are off. As a proof-of-concept, a new flexible force field for MIL-47(V) is derived. Negative thermal expansion is observed and framework flexibility has a negligible effect on adsorption and transport properties for small guest molecules. We believe that this force field parametrization approach can serve as a useful tool for developing accurate flexible force field models that capture the correct mechanical behavior of the full periodic structure. PMID:28661672

  5. Ab initio molecular dynamics simulation of LiBr association in water

    NASA Astrophysics Data System (ADS)

    Izvekov, Sergei; Philpott, Michael R.

    2000-12-01

    A computationally economical scheme which unifies the density functional description of an ionic solute and the classical description of a solvent was developed. The density functional part of the scheme comprises Car-Parrinello and related formalisms. The substantial saving in the computer time is achieved by performing the ab initio molecular dynamics of the solute electronic structure in a relatively small basis set constructed from lowest energy Kohn-Sham orbitals calculated for a single anion in vacuum, instead of using plane wave basis. The methodology permits simulation of an ionic solution for longer time scales while keeping accuracy in the prediction of the solute electronic structure. As an example the association of the Li+-Br- ion-pair system in water is studied. The results of the combined molecular dynamics simulation are compared with that obtained from the classical simulation with ion-ion interaction described by the pair potential of Born-Huggins-Mayer type. The comparison reveals an important role played by the polarization of the Br- ion in the dynamics of ion pair association.

  6. Ab Initio and Analytic Intermolecular Potentials for Ar-CF₄

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vayner, Grigoriy; Alexeev, Yuri; Wang, Jiangping

    2006-03-09

    Ab initio calculations at the CCSD(T) level of theory are performed to characterize the Ar + CF ₄ intermolecular potential. Extensive calculations, with and without a correction for basis set superposition error (BSSE), are performed with the cc-pVTZ basis set. Additional calculations are performed with other correlation consistent (cc) basis sets to extrapolate the Ar---CF₄potential energy minimum to the complete basis set (CBS) limit. Both the size of the basis set and BSSE have substantial effects on the Ar + CF₄ potential. Calculations with the cc-pVTZ basis set and without a BSSE correction, appear to give a good representation ofmore » the potential at the CBS limit and with a BSSE correction. In addition, MP2 theory is found to give potential energies in very good agreement with those determined by the much higher level CCSD(T) theory. Two analytic potential energy functions were determined for Ar + CF₄by fitting the cc-pVTZ calculations both with and without a BSSE correction. These analytic functions were written as a sum of two body potentials and excellent fits to the ab initio potentials were obtained by representing each two body interaction as a Buckingham potential.« less

  7. Ab-initio calculations of electronic, transport, and structural properties of boron phosphide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ejembi, J. I.; Nwigboji, I. H.; Franklin, L.

    2014-09-14

    We present results from ab-initio, self-consistent density functional theory calculations of electronic and related properties of zinc blende boron phosphide (zb-BP). We employed a local density approximation potential and implemented the linear combination of atomic orbitals formalism. This technique follows the Bagayoko, Zhao, and Williams method, as enhanced by the work of Ekuma and Franklin. The results include electronic energy bands, densities of states, and effective masses. The calculated band gap of 2.02 eV, for the room temperature lattice constant of a=4.5383 Å, is in excellent agreement with the experimental value of 2.02±0.05 eV. Our result for the bulk modulus,more » 155.7 GPa, agrees with experiment (152–155 GPa). Our predictions for the equilibrium lattice constant and the corresponding band gap, for very low temperatures, are 4.5269 Å and 2.01 eV, respectively.« less

  8. Materials Screening for the Discovery of New Half-Heuslers: Machine Learning versus ab Initio Methods.

    PubMed

    Legrain, Fleur; Carrete, Jesús; van Roekeghem, Ambroise; Madsen, Georg K H; Mingo, Natalio

    2018-01-18

    Machine learning (ML) is increasingly becoming a helpful tool in the search for novel functional compounds. Here we use classification via random forests to predict the stability of half-Heusler (HH) compounds, using only experimentally reported compounds as a training set. Cross-validation yields an excellent agreement between the fraction of compounds classified as stable and the actual fraction of truly stable compounds in the ICSD. The ML model is then employed to screen 71 178 different 1:1:1 compositions, yielding 481 likely stable candidates. The predicted stability of HH compounds from three previous high-throughput ab initio studies is critically analyzed from the perspective of the alternative ML approach. The incomplete consistency among the three separate ab initio studies and between them and the ML predictions suggests that additional factors beyond those considered by ab initio phase stability calculations might be determinant to the stability of the compounds. Such factors can include configurational entropies and quasiharmonic contributions.

  9. Multiobjective evolutionary algorithm with many tables for purely ab initio protein structure prediction.

    PubMed

    Brasil, Christiane Regina Soares; Delbem, Alexandre Claudio Botazzo; da Silva, Fernando Luís Barroso

    2013-07-30

    This article focuses on the development of an approach for ab initio protein structure prediction (PSP) without using any earlier knowledge from similar protein structures, as fragment-based statistics or inference of secondary structures. Such an approach is called purely ab initio prediction. The article shows that well-designed multiobjective evolutionary algorithms can predict relevant protein structures in a purely ab initio way. One challenge for purely ab initio PSP is the prediction of structures with β-sheets. To work with such proteins, this research has also developed procedures to efficiently estimate hydrogen bond and solvation contribution energies. Considering van der Waals, electrostatic, hydrogen bond, and solvation contribution energies, the PSP is a problem with four energetic terms to be minimized. Each interaction energy term can be considered an objective of an optimization method. Combinatorial problems with four objectives have been considered too complex for the available multiobjective optimization (MOO) methods. The proposed approach, called "Multiobjective evolutionary algorithms with many tables" (MEAMT), can efficiently deal with four objectives through the combination thereof, performing a more adequate sampling of the objective space. Therefore, this method can better map the promising regions in this space, predicting structures in a purely ab initio way. In other words, MEAMT is an efficient optimization method for MOO, which explores simultaneously the search space as well as the objective space. MEAMT can predict structures with one or two domains with RMSDs comparable to values obtained by recently developed ab initio methods (GAPFCG , I-PAES, and Quark) that use different levels of earlier knowledge. Copyright © 2013 Wiley Periodicals, Inc.

  10. Communication: Unraveling the {sup 4}He droplet-mediated soft-landing from ab initio-assisted and time-resolved density functional simulations: Au@{sup 4}He{sub 300}/TiO{sub 2}(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lara-Castells, María Pilar de, E-mail: Pilar.deLara.Castells@csic.es; Aguirre, Néstor F.; Stoll, Hermann

    2015-04-07

    An ab-initio-based methodological scheme for He-surface interactions and zero-temperature time-dependent density functional theory for superfluid {sup 4}He droplets motion are combined to follow the short-time collision dynamics of the Au@{sup 4}He{sub 300} system with the TiO{sub 2}(110) surface. This composite approach demonstrates the {sup 4}He droplet-assisted sticking of the metal species to the surface at low landing energy (below 0.15 eV/atom), thus providing the first theoretical evidence of the experimentally observed {sup 4}He droplet-mediated soft-landing deposition of metal nanoparticles on solid surfaces [Mozhayskiy et al., J. Chem. Phys. 127, 094701 (2007) and Loginov et al., J. Phys. Chem. A 115,more » 7199 (2011)].« less

  11. Ab Initio Prediction of Adsorption Isotherms for Small Molecules in Metal-Organic Frameworks.

    PubMed

    Kundu, Arpan; Piccini, GiovanniMaria; Sillar, Kaido; Sauer, Joachim

    2016-10-26

    For CO and N 2 on Mg 2+ sites of the metal-organic framework CPO-27-Mg (Mg-MOF-74), ab initio calculations of Gibbs free energies of adsorption have been performed. Combined with the Bragg-Williams/Langmuir model and taking into account the experimental site availability (76.5%), we obtained adsorption isotherms in close agreement with those in experiment. The remaining deviations in the Gibbs free energy (about 1 kJ/mol) are significantly smaller than the "chemical accuracy" limit of about 4 kJ/mol. The presented approach uses (i) a DFT dispersion method (PBE+D2) to optimize the structure and to calculate anharmonic frequencies for vibrational partition functions and (ii) a "hybrid MP2:(PBE+D2)+ΔCCSD(T)" method to determine electronic energies. With the achieved accuracy (estimated uncertainty ±1.4 kJ/mol), the ab initio energies become useful benchmarks for assessing different DFT + dispersion methods (PBE+D2, B3LYP+D*, and vdW-D2), whereas the ab initio heats, entropies, and Gibbs free energies of adsorption are used to assess the reliability of experimental values derived from fitting isotherms or from variable-temperature IR studies.

  12. Amorphous Ge quantum dots embedded in crystalline Si: ab initio results.

    PubMed

    Laubscher, M; Küfner, S; Kroll, P; Bechstedt, F

    2015-10-14

    We study amorphous Ge quantum dots embedded in a crystalline Si matrix through structure modeling and simulation using ab initio density functional theory including spin-orbit interaction and quasiparticle effects. Three models are generated by replacing a spherical region within diamond Si by Ge atoms and creating a disordered bond network with appropriate density inside the Ge quantum dot. After total-energy optimisations of the atomic geometry we compute the electronic and optical properties. We find three major effects: (i) the resulting nanostructures adopt a type-I heterostructure character; (ii) the lowest optical transitions occur only within the Ge quantum dots, and do not involve or cross the Ge-Si interface. (iii) for larger amorphous Ge quantum dots, with diameters of about 2.0 and 2.7 nm, absorption peaks appear in the mid-infrared spectral region. These are promising candidates for intense luminescence at photon energies below the gap energy of bulk Ge.

  13. Data files for ab initio calculations of the lattice parameter and elastic stiffness coefficients of bcc Fe with solutes

    DOE PAGES

    Fellinger, Michael R.; Hector, Jr., Louis G.; Trinkle, Dallas R.

    2016-11-29

    Here, we present computed datasets on changes in the lattice parameter and elastic stiffness coefficients of BCC Fe due to substitutional Al, B, Cu, Mn, and Si solutes, and octahedral interstitial C and N solutes. The data is calculated using the methodology based on density functional theory (DFT). All the DFT calculations were performed using the Vienna Ab initio Simulations Package (VASP). The data is stored in the NIST dSpace repository.

  14. Evidence for anisotropic dielectric properties of monoclinic hafnia using valence electron energy-loss spectroscopy in high-resolution transmission electron microscopy and ab initio time-dependent density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guedj, C.; CEA, LETI, MINATEC Campus, F-38054 Grenoble; Hung, L.

    2014-12-01

    The effect of nanocrystal orientation on the energy loss spectra of monoclinic hafnia (m-HfO{sub 2}) is measured by high resolution transmission electron microscopy (HRTEM) and valence energy loss spectroscopy (VEELS) on high quality samples. For the same momentum-transfer directions, the dielectric properties are also calculated ab initio by time-dependent density-functional theory (TDDFT). Experiments and simulations evidence anisotropy in the dielectric properties of m-HfO{sub 2}, most notably with the direction-dependent oscillator strength of the main bulk plasmon. The anisotropic nature of m-HfO{sub 2} may contribute to the differences among VEELS spectra reported in literature. The good agreement between the complex dielectricmore » permittivity extracted from VEELS with nanometer spatial resolution, TDDFT modeling, and past literature demonstrates that the present HRTEM-VEELS device-oriented methodology is a possible solution to the difficult nanocharacterization challenges given in the International Technology Roadmap for Semiconductors.« less

  15. Conformational stability, r(0) structural parameters, vibrational assignments and ab initio calculations of ethyldichlorophosphine.

    PubMed

    Darkhalil, Ikhlas D; Paquet, Charles; Waqas, Mohammad; Gounev, Todor K; Durig, James R

    2015-02-05

    Variable temperature (-60 to -100 °C) studies of ethyldichlorophosphine, CH3CH2PCl2, of the infrared spectra (4000-400 cm(-1)) dissolved in liquid xenon have been carried out. From these data, the two conformers have been identified and the enthalpy difference has been determined between the more stable trans conformer and the less stable gauche form to be 88±9 cm(-1) (1.04±0.11 kJ/mol). The percentage of abundance of the gauche conformer is estimated to be 57% at ambient temperature. The conformational stabilities have been predicted from ab initio calculations by utilizing many different basis sets up to aug-cc-pVTZ for both MP2(full) and density functional theory calculations by the B3LYP method. Vibrational assignments have been provided for both conformers which have been predicted by MP2(full)/6-31G(d) ab initio calculations to predict harmonic force fields, wavenumbers of the fundamentals, infrared intensities, Raman activities and depolarization ratios for both conformers. Estimated r0 structural parameters have been obtained from adjusted MP2(full)/6-311+G(d,p) calculations. The results are discussed and compared to the corresponding properties of some related molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Multiple emissions of benzil at room temperature and 77 K and their assignments from ab initio quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Bhaswati; Jana, Barnali; Bose, Debosreeta; Chattopadhyay, Nitin

    2011-01-01

    Multiple emissions have been observed from benzil under different conditions in solutions at room temperature as well as in low temperature glass matrices at 77 K. Low temperature emission has been monitored in rigid matrices frozen under different conditions of illumination. Steady state and time-resolved results together with the ab initio quantum chemical calculations provide, for the first time, the assignments of the different fluorescence bands to the different geometries and/or electronic states of the fluorophore molecule. It is revealed that the skew form of benzil emits from the first (S1) as well as the second excited singlet (S2) states depending on the excitation wavelength, while the relaxed transplanar conformer fluoresces only from the S1 state. The yet unexplored emission band peaking at around 360 nm has been assigned to originate from the S2 state. Ab initio calculations using the density functional theory at B3LYP/6-31G** level corroborate well with the experimental observations.

  17. Multiple emissions of benzil at room temperature and 77 K and their assignments from ab initio quantum chemical calculations.

    PubMed

    Bhattacharya, Bhaswati; Jana, Barnali; Bose, Debosreeta; Chattopadhyay, Nitin

    2011-01-28

    Multiple emissions have been observed from benzil under different conditions in solutions at room temperature as well as in low temperature glass matrices at 77 K. Low temperature emission has been monitored in rigid matrices frozen under different conditions of illumination. Steady state and time-resolved results together with the ab initio quantum chemical calculations provide, for the first time, the assignments of the different fluorescence bands to the different geometries and∕or electronic states of the fluorophore molecule. It is revealed that the skew form of benzil emits from the first (S(1)) as well as the second excited singlet (S(2)) states depending on the excitation wavelength, while the relaxed transplanar conformer fluoresces only from the S(1) state. The yet unexplored emission band peaking at around 360 nm has been assigned to originate from the S(2) state. Ab initio calculations using the density functional theory at B3LYP∕6-31G∗∗ level corroborate well with the experimental observations.

  18. The spectroscopic (FTIR, FT-IR gas phase and FT-Raman), first order hyperpolarizabilities, NMR analysis of 2,4-dichloroaniline by ab initio HF and density functional methods.

    PubMed

    Sundaraganesan, N; Karpagam, J; Sebastian, S; Cornard, J P

    2009-07-01

    In this work, the experimental and theoretical study on molecular structure and vibrational spectra of 2,4-dichloroaniline (2,4-DCA) were studied. The Fourier transform infrared (gas phase) and Fourier transform Raman spectra of 2,4-DCA were recorded. The molecular geometry and vibrational frequencies of 2,4-DCA in the ground state were calculated by using the Hartree-Fock (HF) and density functional (DF) methods (BLYP, B3LYP and SVWN) with 6-31G(d,p) as basis set. Comparison of the observed fundamental vibrational frequencies of 2,4-DCA with calculated results by HF and density functional methods indicates that BLYP is superior to other methods for molecular vibrational problems. The difference between the observed and scaled wave number values of most of the fundamentals is very small. The electric dipole moment (micro) and the first hyperpolarizability (beta) values of the investigated molecule were computed using ab initio quantum mechanical calculations. The calculated results also show that the 2,4-DCA molecule might have microscopic nonlinear optical (NLO) behavior with non-zero values. Natural atomic charges of 2,4-DCA and 4-chloroaniline was calculated and compared. The isotropic chemical shift computed by (13)C NMR analyses also shows good agreement with experimental observations. The theoretically predicted FTIR and FT-Raman spectra of the title molecule have been constructed.

  19. Iterative projection algorithms for ab initio phasing in virus crystallography.

    PubMed

    Lo, Victor L; Kingston, Richard L; Millane, Rick P

    2016-12-01

    Iterative projection algorithms are proposed as a tool for ab initio phasing in virus crystallography. The good global convergence properties of these algorithms, coupled with the spherical shape and high structural redundancy of icosahedral viruses, allows high resolution phases to be determined with no initial phase information. This approach is demonstrated by determining the electron density of a virus crystal with 5-fold non-crystallographic symmetry, starting with only a spherical shell envelope. The electron density obtained is sufficiently accurate for model building. The results indicate that iterative projection algorithms should be routinely applicable in virus crystallography, without the need for ancillary phase information. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Ab initio parameterization of a charge optimized many-body forcefield for Si-SiO2: Validation and thermal transport in nanostructures.

    PubMed

    France-Lanord, Arthur; Soukiassian, Patrick; Glattli, Christian; Wimmer, Erich

    2016-03-14

    In an effort to extend the reach of current ab initio calculations to simulations requiring millions of configurations for complex systems such as heterostructures, we have parameterized the third-generation Charge Optimized Many-Body (COMB3) potential using solely ab initio total energies, forces, and stress tensors as input. The quality and the predictive power of the new forcefield are assessed by computing properties including the cohesive energy and density of SiO2 polymorphs, surface energies of alpha-quartz, and phonon densities of states of crystalline and amorphous phases of SiO2. Comparison with data from experiments, ab initio calculations, and molecular dynamics simulations using published forcefields including BKS (van Beest, Kramer, and van Santen), ReaxFF, and COMB2 demonstrates an overall improvement of the new parameterization. The computed temperature dependence of the thermal conductivity of crystalline alpha-quartz and the Kapitza resistance of the interface between crystalline Si(001) and amorphous silica is in excellent agreement with experiment, setting the stage for simulations of complex nanoscale heterostructures.

  1. Spin-memory loss due to spin-orbit coupling at ferromagnet/heavy-metal interfaces: Ab initio spin-density matrix approach

    NASA Astrophysics Data System (ADS)

    Dolui, Kapildeb; Nikolić, Branislav K.

    2017-12-01

    Spin-memory loss (SML) of electrons traversing ferromagnetic-metal/heavy-metal (FM/HM), FM/normal-metal (FM/NM), and HM/NM interfaces is a fundamental phenomenon that must be invoked to explain consistently large numbers of spintronic experiments. However, its strength extracted by fitting experimental data to phenomenological semiclassical theory, which replaces each interface by a fictitious bulk diffusive layer, is poorly understood from a microscopic quantum framework and/or materials properties. Here we describe an ensemble of flowing spin quantum states using spin-density matrix, so that SML is measured like any decoherence process by the decay of its off-diagonal elements or, equivalently, by the reduction of the magnitude of polarization vector. By combining this framework with density functional theory, we examine how all three components of the polarization vector change at Co/Ta, Co/Pt, Co/Cu, Pt/Cu, and Pt/Au interfaces embedded within Cu/FM/HM/Cu vertical heterostructures. In addition, we use ab initio Green's functions to compute spectral functions and spin textures over FM, HM, and NM monolayers around these interfaces which quantify interfacial spin-orbit coupling and explain the microscopic origin of SML in long-standing puzzles, such as why it is nonzero at the Co/Cu interface; why it is very large at the Pt/Cu interface; and why it occurs even in the absence of disorder, intermixing and magnons at the interface.

  2. Beyond Born-Mayer: Improved models for short-range repulsion in ab initio force fields

    DOE PAGES

    Van Vleet, Mary J.; Misquitta, Alston J.; Stone, Anthony J.; ...

    2016-06-23

    Short-range repulsion within inter-molecular force fields is conventionally described by either Lennard-Jones or Born-Mayer forms. Despite their widespread use, these simple functional forms are often unable to describe the interaction energy accurately over a broad range of inter-molecular distances, thus creating challenges in the development of ab initio force fields and potentially leading to decreased accuracy and transferability. Herein, we derive a novel short-range functional form based on a simple Slater-like model of overlapping atomic densities and an iterated stockholder atom (ISA) partitioning of the molecular electron density. We demonstrate that this Slater-ISA methodology yields a more accurate, transferable, andmore » robust description of the short-range interactions at minimal additional computational cost compared to standard Lennard-Jones or Born-Mayer approaches. Lastly, we show how this methodology can be adapted to yield the standard Born-Mayer functional form while still retaining many of the advantages of the Slater-ISA approach.« less

  3. Ab Initio Studies of Halogen and Nitrogen Oxide Species of Interest in Stratospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.

  4. Serious Gaming for Test & Evaluation of Clean-Slate (Ab Initio) National Airspace System (NAS) Designs

    NASA Technical Reports Server (NTRS)

    Allen, B. Danette; Alexandrov, Natalia

    2016-01-01

    Incremental approaches to air transportation system development inherit current architectural constraints, which, in turn, place hard bounds on system capacity, efficiency of performance, and complexity. To enable airspace operations of the future, a clean-slate (ab initio) airspace design(s) must be considered. This ab initio National Airspace System (NAS) must be capable of accommodating increased traffic density, a broader diversity of aircraft, and on-demand mobility. System and subsystem designs should scale to accommodate the inevitable demand for airspace services that include large numbers of autonomous Unmanned Aerial Vehicles and a paradigm shift in general aviation (e.g., personal air vehicles) in addition to more traditional aerial vehicles such as commercial jetliners and weather balloons. The complex and adaptive nature of ab initio designs for the future NAS requires new approaches to validation, adding a significant physical experimentation component to analytical and simulation tools. In addition to software modeling and simulation, the ability to exercise system solutions in a flight environment will be an essential aspect of validation. The NASA Langley Research Center (LaRC) Autonomy Incubator seeks to develop a flight simulation infrastructure for ab initio modeling and simulation that assumes no specific NAS architecture and models vehicle-to-vehicle behavior to examine interactions and emergent behaviors among hundreds of intelligent aerial agents exhibiting collaborative, cooperative, coordinative, selfish, and malicious behaviors. The air transportation system of the future will be a complex adaptive system (CAS) characterized by complex and sometimes unpredictable (or unpredicted) behaviors that result from temporal and spatial interactions among large numbers of participants. A CAS not only evolves with a changing environment and adapts to it, it is closely coupled to all systems that constitute the environment. Thus, the ecosystem that

  5. Heats of Segregation of BCC Binaries from ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2004-01-01

    We compare dilute-limit heats of segregation for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent LMTO-based parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation, while the ab initio calculations are performed without relaxation. Results are discussed within the context of a segregation model driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  6. Double-walled silicon nanotubes: an ab initio investigation

    NASA Astrophysics Data System (ADS)

    Lima, Matheus P.

    2018-02-01

    The synthesis of silicon nanotubes realized in the last decade demonstrates multi-walled tubular structures consisting of Si atoms in {{sp}}2 and the {{sp}}3 hybridizations. However, most of the theoretical models were elaborated taking as the starting point {{sp}}2 structures analogous to carbon nanotubes. These structures are unfavorable due to the natural tendency of the Si atoms to undergo {{sp}}3. In this work, through ab initio simulations based on density functional theory, we investigated double-walled silicon nanotubes proposing layered tubes possessing most of the Si atoms in an {{sp}}3 hybridization, and with few {{sp}}2 atoms localized at the outer wall. The lowest-energy structures have metallic behavior. Furthermore, the possibility to tune the band structure with the application of a strain was demonstrated, inducing a metal-semiconductor transition. Thus, the behavior of silicon nanotubes differs significantly from carbon nanotubes, and the main source of the differences is the distortions in the lattice associated with the tendency of Si to make four chemical bonds.

  7. Physical properties of molybdenum monoboride: Ab-initio study

    NASA Astrophysics Data System (ADS)

    Rajpoot, Priyanka; Rastogi, Anugya; Verma, U. P.

    2018-02-01

    The Ab initio investigations on structural, electronic, optical and thermal properties of MoB have been reported using full potential linearised-augmented plane wave method within the framework of density functional theory. The exchange and correlation potentials were calculated using the Perdew-Burke-Ernzerhof-Sol generalised gradient approximation. The calculated equilibrium lattice constants and cell volume are in excellent agreement with the experimental results as compared to the available theoretical data. Electronic band structure shows that MoB is metallic in nature. From the partial densities of states of MoB it has been found that major contribution on the Fermi level is due to Mo-4d states. Among the reported optical parameters the large value of reflectivity at low energy shows that MoB can be used as a coating material in IR region. Maximum absorption in extreme UV region shows that it can be used in production of electricity through solar power in space vehicles. Various thermal properties have been calculated in a wide temperature range at high pressures. Change in thermal expansion coefficient with respect to temperature shows that anharmonic effect in MoB is very weak at high temperature. The optical and thermal properties of MoB are presented for the first time in this work.

  8. Numerical Optimization of Density Functional Tight Binding Models: Application to Molecules Containing Carbon, Hydrogen, Nitrogen, and Oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnapriyan, A.; Yang, P.; Niklasson, A. M. N.

    New parametrizations for semiempirical density functional tight binding (DFTB) theory have been developed by the numerical optimization of adjustable parameters to minimize errors in the atomization energy and interatomic forces with respect to ab initio calculated data. Initial guesses for the radial dependences of the Slater- Koster bond integrals and overlap integrals were obtained from minimum basis density functional theory calculations. The radial dependences of the pair potentials and the bond and overlap integrals were represented by simple analytic functions. The adjustable parameters in these functions were optimized by simulated annealing and steepest descent algorithms to minimize the value ofmore » an objective function that quantifies the error between the DFTB model and ab initio calculated data. The accuracy and transferability of the resulting DFTB models for the C, H, N, and O system were assessed by comparing the predicted atomization energies and equilibrium molecular geometries of small molecules that were not included in the training data from DFTB to ab initio data. The DFTB models provide accurate predictions of the properties of hydrocarbons and more complex molecules containing C, H, N, and O.« less

  9. Numerical Optimization of Density Functional Tight Binding Models: Application to Molecules Containing Carbon, Hydrogen, Nitrogen, and Oxygen

    DOE PAGES

    Krishnapriyan, A.; Yang, P.; Niklasson, A. M. N.; ...

    2017-10-17

    New parametrizations for semiempirical density functional tight binding (DFTB) theory have been developed by the numerical optimization of adjustable parameters to minimize errors in the atomization energy and interatomic forces with respect to ab initio calculated data. Initial guesses for the radial dependences of the Slater- Koster bond integrals and overlap integrals were obtained from minimum basis density functional theory calculations. The radial dependences of the pair potentials and the bond and overlap integrals were represented by simple analytic functions. The adjustable parameters in these functions were optimized by simulated annealing and steepest descent algorithms to minimize the value ofmore » an objective function that quantifies the error between the DFTB model and ab initio calculated data. The accuracy and transferability of the resulting DFTB models for the C, H, N, and O system were assessed by comparing the predicted atomization energies and equilibrium molecular geometries of small molecules that were not included in the training data from DFTB to ab initio data. The DFTB models provide accurate predictions of the properties of hydrocarbons and more complex molecules containing C, H, N, and O.« less

  10. Ab initio study of the structure and dynamics of bulk liquid Fe

    NASA Astrophysics Data System (ADS)

    Marqués, M.; González, L. E.; González, D. J.

    2015-10-01

    Several static and dynamic properties of bulk liquid Fe at a thermodynamic state near its triple point have been evaluated by ab initio molecular dynamics simulations. The calculated static structure shows very good agreement with the available experimental data, including an asymmetric second peak in the structure factor which underlines a substantial local icosahedral short-range order in the liquid. The dynamical structure reveals propagating density fluctuations, with an associated dispersion relation which closely follows the experimental data. The dynamic structure factors S (q ,ω ) show a good agreement with their experimental counterparts which have been recently measured by an inelastic x-ray scattering experiment. The dynamical processes behind the S (q ,ω ) have been analyzed by using a model with two decay channels (a fast and a slow) associated with the relaxations of the collective excitations. The recent finding of transverselike excitation modes in the IXS data is analyzed by using the present ab initio simulation results. Several transport coefficients have been evaluated and the results are compared with the available experimental data.

  11. Ab initio molecular dynamics of solvation effects on reactivity at electrified interfaces

    DOE PAGES

    Herron, Jeffrey A.; Morikawa, Yoshitada; Mavrikakis, Manos

    2016-08-08

    Using ab initio molecular dynamics (as implemented in periodic, self-consistent (GGA-PBE) density functional theory (DFT) we investigated the mechanism of methanol electro-oxidation on Pt(111). We investigated the role of solvation and electrode potential on the energetics of the first proton transfer step, methanol electro-oxidation to methoxy (CH 3O) or hydroxymethyl (CH 2OH). The results show that solvation weakens the adsorption of methoxy to uncharged Pt(111), while the binding energy of methanol and hydroxymethyl are not significantly affected. The free energies of activation for breaking the C-H and O-H bonds in methanol were calculated through a Blue Moon Ensemble using constrainedmore » ab initio molecular dynamics. Calculated barriers for these elementary steps on unsolvated, uncharged Pt(111) are similar to results for climbing-image nudged elastic band calculations from the literature. Solvation reduces the barrier for both C-H and O-H bond activation steps with respect to their vapor phase values, though the effect is more pronounced for C-H bond activation due to less disruption of the hydrogen-bond network. The calculated activation energy barriers show that breaking the C-H bond of methanol is more facile than the O-H bond on solvated negatively biased, or uncharged Pt(111). Furthermore, with positive bias, O-H bond activation is enhanced, becoming slightly more facile than C-H bond activation.« less

  12. Ab initio study of Pd carbonyls and CO/Pd(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramprasad, R.; Glassford, K.M.; Adams, J.B.

    1994-12-31

    Carbon monoxide chemisorption on transition metal surfaces has been one of the most extensively studied in surface science in past years due to its importance in a variety of catalytic processes, especially, automotive catalytic converters using Pt or Pd. The authors have performed ab initio studies to understand the electronic and geometric aspects of the Pd-CO bond in small carbonyl clusters and the CO covered (2 x 1)p2mg superstructure of the Pd(110) surface. They have used the standard quantum chemistry package Gaussian to study the former system and a LDA (local density approximation) formalism using ab initio pseudopotentials and amore » plane wave basis to study the latter. The latter results are preliminary; the authors intended to study thicker slabs in the future. The organization of the paper is as follows. The authors describe the methods used in their calculation in Sec. 2. In Sec. 3, they present results and discussion; here, they first look at the smallest possible clusters, viz, Pd{sub 2} and PdCO, take a brief look at the orbital chemistry involved and then move on to the study of the CO covered Pd(110) surface and examine the geometry of the near equilibrium structure.« less

  13. A highly accurate ab initio potential energy surface for methane.

    PubMed

    Owens, Alec; Yurchenko, Sergei N; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2016-09-14

    A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of (12)CH4 reproduced with a root-mean-square error of 0.70 cm(-1). The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement.

  14. Ab Initio Multiple Spawning Photochemical Dynamics of DMABN Using GPUs

    DOE PAGES

    Curchod, Basile F. E.; Sisto, Aaron; Martinez, Todd J.

    2016-12-15

    The ultrafast decay dynamics of 4-( N,N-dimethylamino)benzonitrile (DMABN) following photoexcitation was studied with the ab initio multiple spawning (AIMS) method, combined with GPU-accelerated linear-response time-dependent density functional theory (LR-TDDFT). We validate the LR-TDDFT method for this case and then present a detailed analysis of the first ≈200 fs of DMABN excited-state dynamics. Almost complete nonadiabatic population transfer from S 2 (the initially populated bright state) to S 1 takes place in less than 50 fs, without significant torsion of the dimethylamino (DMA) group. Significant torsion of the DMA group is only observed after the nuclear wavepacket reaches S 1 andmore » acquires locally excited electronic character. Here, our results show that torsion of the DMA group is not prerequisite for nonadiabatic transitions in DMABN, although such motion is indeed relevant on the lowest excited state (S 1).« less

  15. Operator evolution for ab initio electric dipole transitions of 4He

    DOE PAGES

    Schuster, Micah D.; Quaglioni, Sofia; Johnson, Calvin W.; ...

    2015-07-24

    A goal of nuclear theory is to make quantitative predictions of low-energy nuclear observables starting from accurate microscopic internucleon forces. A major element of such an effort is applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence of ab initio calculations as a function of the model space size. The consistent simultaneous transformation of external operators, however, has been overlooked in applications of the theory, particularly for nonscalar transitions. We study the evolution of the electric dipole operator in the framework of the similarity renormalization group method and apply the renormalized matrix elements to the calculationmore » of the 4He total photoabsorption cross section and electric dipole polarizability. All observables are calculated within the ab initio no-core shell model. Furthermore, we find that, although seemingly small, the effects of evolved operators on the photoabsorption cross section are comparable in magnitude to the correction produced by including the chiral three-nucleon force and cannot be neglected.« less

  16. An ab initio CASSCF study of zero field splitting fluctuations in the octet ground state of aqueous [Gd(iii)(HPDO3A)(H2O)

    NASA Astrophysics Data System (ADS)

    Khan, Shehryar; Pollet, Rodolphe; Vuilleumier, Rodolphe; Kowalewski, Jozef; Odelius, Michael

    2017-12-01

    In this work, we present ab initio calculations of the zero-field splitting (ZFS) of a gadolinium complex [Gd(iii)(HPDO3A)(H2O)] sampled from an ab initio molecular dynamics (AIMD) simulation. We perform both post-Hartree-Fock (complete active space self-consistent field—CASSCF) and density functional theory (DFT) calculations of the ZFS and compare and contrast the methods with experimental data. Two different density functional approximations (TPSS and LC-BLYP) were investigated. The magnitude of the ZFS from the CASSCF calculations is in good agreement with experiment, whereas the DFT results in varying degrees overestimate the magnitude of the ZFS for both functionals and exhibit a strong functional dependence. It was found in the sampling over the AIMD trajectory that the fluctuations in the transient ZFS tensor derived from DFT are not correlated with those of CASSCF nor does the magnitude of the ZFS from CASSCF and DFT correlate. From the fluctuations in the ZFS tensor, we extract a correlation time of the transient ZFS which is on the sub-picosecond time scale, showing a faster decay than experimental estimates.

  17. Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Nalini; Ahluwalia, P. K.; Thakur, Anil

    2015-05-15

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70}, Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30} and Hg{sub 90}In{sub 10}) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factormore » shows the presence of liquid state in the considered alloys.« less

  18. Ab initio theories for light nuclei and neutron stars

    NASA Astrophysics Data System (ADS)

    Gezerlis, Alexandros

    2016-09-01

    In this talk I will touch upon several features of modern ab initio low-energy nuclear theory. I will start by discussing what ``ab initio'' means in this context. Specifically, I will spend some time going over nucleon-nucleon and three-nucleon interactions and their connections with the underlying theory of Quantum Chromodynamics. I will then show how these interactions are used to describe light nuclei using essentially exact few-body methods. I will then discuss heavier systems, especially those of astrophysical relevance, as well as the methods used to tackle them. This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Canada Foundation for Innovation (CFI).

  19. Spin-Orbit Effect on the Molecular Properties of TeXn (X = F, Cl, Br, and I; n = 1, 2, and 4): A Density Functional Theory and Ab Initio Study.

    PubMed

    Moon, Jiwon; Kim, Joonghan

    2016-09-29

    Density functional theory (DFT) and ab initio calculations, including spin-orbit coupling (SOC), were performed to investigate the spin-orbit (SO) effect on the molecular properties of tellurium halides, TeXn (X = F, Cl, Br, and I; n = 1, 2, and 4). SOC elongates the Te-X bond and slightly reduces the vibrational frequencies. Consideration of SOC leads to better agreement with experimental values. Møller-Plesset second-order perturbation theory (MP2) seriously underestimates the Te-X bond lengths. In contrast, B3LYP significantly overestimates them. SO-PBE0 and multireference configuration interactions with the Davidson correction (MRCI+Q), which include SOC via a state-interaction approach, give the Te-I bond length of TeI2 that matches the experimental value. On the basis of the calculated thermochemical energy and optimized molecular structure, TeI4 is unlikely to be stable. The use of PBE0 including SOC is strongly recommended for predicting the molecular properties of Te-containing compounds.

  20. Kinetics of Electrocatalytic Reactions from First-Principles: A Critical Comparison with the Ab Initio Thermodynamics Approach.

    PubMed

    Exner, Kai S; Over, Herbert

    2017-05-16

    Multielectron processes in electrochemistry require the stabilization of reaction intermediates (RI) at the electrode surface after every elementary reaction step. Accordingly, the bond strengths of these intermediates are important for assessing the catalytic performance of an electrode material. Current understanding of microscopic processes in modern electrocatalysis research is largely driven by theory, mostly based on ab initio thermodynamics considerations, where stable reaction intermediates at the electrode surface are identified, while the actual free energy barriers (or activation barriers) are ignored. This simple approach is popular in electrochemistry in that the researcher has a simple tool at hand in successfully searching for promising electrode materials. The ab initio TD approach allows for a rough but fast screening of the parameter space with low computational cost. However, ab initio thermodynamics is also frequently employed (often, even based on a single binding energy only) to comprehend on the activity and on the mechanism of an electrochemical reaction. The basic idea is that the activation barrier of an endergonic reaction step consists of a thermodynamic part and an additional kinetically determined barrier. Assuming that the activation barrier scales with thermodynamics (so-called Brønsted-Polanyi-Evans (BEP) relation) and the kinetic part of the barrier is small, ab initio thermodynamics may provide molecular insights into the electrochemical reaction kinetics. However, for many electrocatalytic reactions, these tacit assumptions are violated so that ab initio thermodynamics will lead to contradictions with both experimental data and ab initio kinetics. In this Account, we will discuss several electrochemical key reactions, including chlorine evolution (CER), oxygen evolution reaction (OER), and oxygen reduction (ORR), where ab initio kinetics data are available in order to critically compare the results with those derived from a

  1. Car and Parrinello meet Green and Kubo: simulating atomic heat transport from equilibrium ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Baroni, Stefano

    Modern simulation methods based on electronic-structure theory have long been deemed unfit to compute heat transport coefficients within the Green-Kubo formalism. This is so because the quantum-mechanical energy density from which the heat flux is derived is inherently ill defined, thus allegedly hampering the use of the Green-Kubo formula. While this objection would actually apply to classical systems as well, I will demonstrate that the thermal conductivity is indeed independent of the specific microscopic expression for the energy density and current from which it is derived. This fact results from a kind of gauge invariance stemming from energy conservation and extensivity, which I will illustrate numerically for a classical Lennard-Jones fluid. I will then introduce an expression for the adiabatic energy flux, derived within density-functional theory, that allows simulating atomic heat transport using equilibrium ab initio molecular dynamics. The resulting methodology is demonstrated by comparing results from ab-initio and classical molecular-dynamics simulations of a model liquid-Argon system, for which accurate inter-atomic potentials are derived by the force-matching method, and applied to compute the thermal conductivity of heavy water at ambient conditions. The problem of evaluating transport coefficients along with their accuracy from relatively short trajectories is finally addressed and discussed with a few representative examples. Partially funded by the European Union through the MaX Centre of Excellence (Grant No. 676598).

  2. An ab initio-based Er–He interatomic potential in hcp Er

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Li; ye, Yeting; Fan, K. M.

    2014-09-01

    We have developed an empirical erbium-helium (Er-He) potential by fitting to the results calculated from ab initio method. Based on the electronic hybridization between Er and He atoms, an s-band model, along with a repulsive pair potential, has been derived to describe the Er-He interaction. The atomic configurations and the formation energies of single He defects, small He interstitial clusters (Hen) and He-vacancy (HenV ) clusters obtained by ab initio calculations are used as the fitting database. The binding energies and relative stabilities of the HnVm clusters are studied by the present potential and compared with the ab initio calculations.more » The Er-He potential is also applied to study the migration of He in hcp-Er at different temperatures, and He clustering is found to occur at 600 K in hcp Er crystal, which may be due to the anisotropic migration behavior of He interstitials.« less

  3. Ab initio study of the effects of thin CsI coatings on the work function of graphite cathodes

    NASA Astrophysics Data System (ADS)

    Vlahos, Vasilios; Booske, John H.; Morgan, Dane

    2007-10-01

    Cesium-iodide (CsI)-coated graphite cathodes are promising electron sources for high power microwave generators, but the mechanism driving the improved emission is not well understood. Therefore, an ab initio modeling investigation on the effects of thin CsI coatings on graphite has been carried out. It is demonstrated that the CsI coatings reduce the work function of the system significantly through a mechanism of induced dipoles. The results suggest that work function modification is a major contribution to the improved emission seen when CsI coatings are applied to C.

  4. Structural, electronic, and dynamical properties of liquid water by ab initio molecular dynamics based on SCAN functional within the canonical ensemble

    NASA Astrophysics Data System (ADS)

    Zheng, Lixin; Chen, Mohan; Sun, Zhaoru; Ko, Hsin-Yu; Santra, Biswajit; Dhuvad, Pratikkumar; Wu, Xifan

    2018-04-01

    We perform ab initio molecular dynamics (AIMD) simulation of liquid water in the canonical ensemble at ambient conditions using the strongly constrained and appropriately normed (SCAN) meta-generalized-gradient approximation (GGA) functional approximation and carry out systematic comparisons with the results obtained from the GGA-level Perdew-Burke-Ernzerhof (PBE) functional and Tkatchenko-Scheffler van der Waals (vdW) dispersion correction inclusive PBE functional. We analyze various properties of liquid water including radial distribution functions, oxygen-oxygen-oxygen triplet angular distribution, tetrahedrality, hydrogen bonds, diffusion coefficients, ring statistics, density of states, band gaps, and dipole moments. We find that the SCAN functional is generally more accurate than the other two functionals for liquid water by not only capturing the intermediate-range vdW interactions but also mitigating the overly strong hydrogen bonds prescribed in PBE simulations. We also compare the results of SCAN-based AIMD simulations in the canonical and isothermal-isobaric ensembles. Our results suggest that SCAN provides a reliable description for most structural, electronic, and dynamical properties in liquid water.

  5. Ab initio optical potentials and nucleon scattering on medium mass nuclei

    NASA Astrophysics Data System (ADS)

    Idini, A.; Barbieri, C.; Navrátil, P.

    2018-03-01

    We show first results for the elastic scattering of neutrons off oxygen and calcium isotopes obtained from ab initio optical potentials. The potential is derived using self-consistent Green’s function theory (SCGF) with the saturating chiral interaction NNLOsat. Calculations are compared to available scattering data and show that it is possible to reproduce low energy scattering observables in medium mass nuclei from first principles.

  6. Ab initio thermodynamic results for warm dense matter

    NASA Astrophysics Data System (ADS)

    Bonitz, Michael

    2016-10-01

    Warm dense matter (WDM) - an exotic state where electrons are quantum degenerate and ions may be strongly correlated - is ubiquitous in dense astrophysical plasmas and highly compressed laboratory systems including inertial fusion. Accurate theoretical predictions require precision thermodynamic data for the electron gas at high density and finite temperature around the Fermi temperature. First such data have been obtained by restricted path integral Monte Carlo (restricted PIMC) simulations and transformed into analytical fits for the free energy. Such results are also key input for novel finite temperature density functional theory. However, the RPIMC data of Ref. 1 are limited to moderate densities, and even there turned out to be surprisingly inaccurate, which is a consequence of the fermion sign problem. These problems were recently overcome by the development of alternative QMC approaches in Kiel (configuration PIMC and permutation blocking PIMC) and Imperial College (Density matrix QMC). The three methods have their strengths and limitations in complementary parameter regions and provide highly accurate thermodynamic data for the electronic contributions in WDM. While the original results were obtained for small particle numbers, recently accurate finite size corrections were derived allowing to compute ab initio thermodynamic data with an unprecedented accuracy of better than 0.3 percent. This provides the final step for the use as benchmark data for experiments and models of Warm dense matter. Co-authors: T. Schoof, S. Groth, T. Dornheim, F. D. Malone, M. Foulkes, and T. Sjostroem, Funded by: DFG via SFB-TR24 and project BO1366-10.

  7. A partition function-based weighting scheme in force field parameter development using ab initio calculation results in global configurational space.

    PubMed

    Wu, Yao; Dai, Xiaodong; Huang, Niu; Zhao, Lifeng

    2013-06-05

    In force field parameter development using ab initio potential energy surfaces (PES) as target data, an important but often neglected matter is the lack of a weighting scheme with optimal discrimination power to fit the target data. Here, we developed a novel partition function-based weighting scheme, which not only fits the target potential energies exponentially like the general Boltzmann weighting method, but also reduces the effect of fitting errors leading to overfitting. The van der Waals (vdW) parameters of benzene and propane were reparameterized by using the new weighting scheme to fit the high-level ab initio PESs probed by a water molecule in global configurational space. The molecular simulation results indicate that the newly derived parameters are capable of reproducing experimental properties in a broader range of temperatures, which supports the partition function-based weighting scheme. Our simulation results also suggest that structural properties are more sensitive to vdW parameters than partial atomic charge parameters in these systems although the electrostatic interactions are still important in energetic properties. As no prerequisite conditions are required, the partition function-based weighting method may be applied in developing any types of force field parameters. Copyright © 2013 Wiley Periodicals, Inc.

  8. Nuclear shielding constants by density functional theory with gauge including atomic orbitals

    NASA Astrophysics Data System (ADS)

    Helgaker, Trygve; Wilson, Philip J.; Amos, Roger D.; Handy, Nicholas C.

    2000-08-01

    Recently, we introduced a new density-functional theory (DFT) approach for the calculation of NMR shielding constants. First, a hybrid DFT calculation (using 5% exact exchange) is performed on the molecule to determine Kohn-Sham orbitals and their energies; second, the constants are determined as in nonhybrid DFT theory, that is, the paramagnetic contribution to the constants is calculated from a noniterative, uncoupled sum-over-states expression. The initial results suggested that this semiempirical DFT approach gives shielding constants in good agreement with the best ab initio and experimental data; in this paper, we further validate this procedure, using London orbitals in the theory, having implemented DFT into the ab initio code DALTON. Calculations on a number of small and medium-sized molecules confirm that our approach produces shieldings in excellent agreement with experiment and the best ab initio results available, demonstrating its potential for the study of shielding constants of large systems.

  9. Ab initio investigation of barium-scandium-oxygen coatings on tungsten for electron emitting cathodes

    NASA Astrophysics Data System (ADS)

    Vlahos, Vasilios; Booske, John H.; Morgan, Dane

    2010-02-01

    Microwave, x-ray, and radio-frequency radiation sources require a cathode emitting electrons into vacuum. Thermionic B-type dispenser cathodes consist of BaxOz coatings on tungsten (W), where the surface coatings lower the W work function and enhance electron emission. The new and promising class of scandate cathodes modifies the B-type surface through inclusion of Sc, and their superior emissive properties are also believed to stem from the formation of a low work function surface alloy. In order to better understand these cathode systems, density-functional theory (DFT)-based ab initio modeling is used to explore the stability and work function of BaxScyOz on W(001) monolayer-type surface structures. It is demonstrated how surface depolarization effects can be calculated easily using ab initio calculations and fitted to an analytic depolarization equation. This approach enables the rapid extraction of the complete depolarization curve (work function versus coverage relation) from relatively few DFT calculations, useful for understanding and characterizing the emitting properties of novel cathode materials. It is generally believed that the B-type cathode has some concentration of Ba-O dimers on the W surface, although their structure is not known. Calculations suggest that tilted Ba-O dimers are the stable dimer surface configuration and can explain the observed work function reduction corresponding to various dimer coverages. Tilted Ba-O dimers represent a new surface coating structure not previously proposed for the activated B-type cathode. The thermodynamically stable phase of Ba and O on the W surface was identified to be the Ba0.25O configuration, possessing a significantly lower Φ value than any of the Ba-O dimer configurations investigated. The identification of a more stable Ba0.25O phase implies that if Ba-O dimers cover the surface of emitting B-type cathodes, then a nonequilibrium steady state must dominate the emitting surface. The identification of

  10. Density functional calculations on structural materials for nuclear energy applications and functional materials for photovoltaic energy applications (abstract only).

    PubMed

    Domain, C; Olsson, P; Becquart, C S; Legris, A; Guillemoles, J F

    2008-02-13

    Ab initio density functional theory calculations are carried out in order to predict the evolution of structural materials under aggressive working conditions such as cases with exposure to corrosion and irradiation, as well as to predict and investigate the properties of functional materials for photovoltaic energy applications. Structural metallic materials used in nuclear facilities are subjected to irradiation which induces the creation of large amounts of point defects. These defects interact with each other as well as with the different elements constituting the alloys, which leads to modifications of the microstructure and the mechanical properties. VASP (Vienna Ab initio Simulation Package) has been used to determine the properties of point defect clusters and also those of extended defects such as dislocations. The resulting quantities, such as interaction energies and migration energies, are used in larger scale simulation methods in order to build predictive tools. For photovoltaic energy applications, ab initio calculations are used in order to search for new semiconductors and possible element substitutions for existing ones in order to improve their efficiency.

  11. Molecular Spectroscopy by Ab Initio Methods

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry; Arnold, James O. (Technical Monitor)

    1994-01-01

    Due to recent advances in methods and computers, the accuracy of ab calculations has reached a point where these methods can be used to provide accurate spectroscopic constants for small molecules; this will be illustrated with several examples. We will show how ab initio calculations where used to identify the Hermann infrared system in N2 and two band systems in CO. The identification of all three of these band systems relied on very accurate calculations of quintet states. The analysis of the infrared spectra of cool stars requires knowledge of the intensity of vibrational transitions in SiO for high nu and J levels. While experiment can supply very accurate dipole moments for nu = 0 to 3, this is insufficient to construct a global dipole moment function. We show how theory, combined by the experiment, can be used to generate the line intensities up to nu = 40 and J = 250. The spectroscopy of transition metal containing systems is very difficult for both theory and experiment. We will discuss the identification of the ground state of Ti2 and the spectroscopy of AlCu as examples of how theory can contribute to the understanding of these complex systems.

  12. A Complete and Accurate Ab Initio Repeat Finding Algorithm.

    PubMed

    Lian, Shuaibin; Chen, Xinwu; Wang, Peng; Zhang, Xiaoli; Dai, Xianhua

    2016-03-01

    It has become clear that repetitive sequences have played multiple roles in eukaryotic genome evolution including increasing genetic diversity through mutation, changes in gene expression and facilitating generation of novel genes. However, identification of repetitive elements can be difficult in the ab initio manner. Currently, some classical ab initio tools of finding repeats have already presented and compared. The completeness and accuracy of detecting repeats of them are little pool. To this end, we proposed a new ab initio repeat finding tool, named HashRepeatFinder, which is based on hash index and word counting. Furthermore, we assessed the performances of HashRepeatFinder with other two famous tools, such as RepeatScout and Repeatfinder, in human genome data hg19. The results indicated the following three conclusions: (1) The completeness of HashRepeatFinder is the best one among these three compared tools in almost all chromosomes, especially in chr9 (8 times of RepeatScout, 10 times of Repeatfinder); (2) in terms of detecting large repeats, HashRepeatFinder also performed best in all chromosomes, especially in chr3 (24 times of RepeatScout and 250 times of Repeatfinder) and chr19 (12 times of RepeatScout and 60 times of Repeatfinder); (3) in terms of accuracy, HashRepeatFinder can merge the abundant repeats with high accuracy.

  13. Ab Initio structure prediction for Escherichia coli: towards genome-wide protein structure modeling and fold assignment

    PubMed Central

    Xu, Dong; Zhang, Yang

    2013-01-01

    Genome-wide protein structure prediction and structure-based function annotation have been a long-term goal in molecular biology but not yet become possible due to difficulties in modeling distant-homology targets. We developed a hybrid pipeline combining ab initio folding and template-based modeling for genome-wide structure prediction applied to the Escherichia coli genome. The pipeline was tested on 43 known sequences, where QUARK-based ab initio folding simulation generated models with TM-score 17% higher than that by traditional comparative modeling methods. For 495 unknown hard sequences, 72 are predicted to have a correct fold (TM-score > 0.5) and 321 have a substantial portion of structure correctly modeled (TM-score > 0.35). 317 sequences can be reliably assigned to a SCOP fold family based on structural analogy to existing proteins in PDB. The presented results, as a case study of E. coli, represent promising progress towards genome-wide structure modeling and fold family assignment using state-of-the-art ab initio folding algorithms. PMID:23719418

  14. 4He+n+n continuum within an ab initio framework

    DOE PAGES

    Romero-Redondo, Carolina; Quaglioni, Sofia; Navratil, Petr; ...

    2014-07-16

    In this study, the low-lying continuum spectrum of the 6He nucleus is investigated for the first time within an ab initio framework that encompasses the 4He+n+n three-cluster dynamics characterizing its lowest decay channel. This is achieved through an extension of the no-core shell model combined with the resonating-group method, in which energy-independent nonlocal interactions among three nuclear fragments can be calculated microscopically, starting from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with three-body scattering boundary conditions by means of the hyperspherical-harmonics method on a Lagrange mesh. Using amore » soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we find the known J π = 2 + resonance as well as a result consistent with a new low-lying second 2 + resonance recently observed at GANIL at ~2.6 MeV above the He6 ground state. We also find resonances in the 2 –, 1 +, and 0 – channels, while no low-lying resonances are present in the 0 + and 1 – channels.« less

  15. E2 and SN2 Reactions of X(-) + CH3CH2X (X = F, Cl); an ab Initio and DFT Benchmark Study.

    PubMed

    Bento, A Patrícia; Solà, Miquel; Bickelhaupt, F Matthias

    2008-06-01

    We have computed consistent benchmark potential energy surfaces (PESs) for the anti-E2, syn-E2, and SN2 pathways of X(-) + CH3CH2X with X = F and Cl. This benchmark has been used to evaluate the performance of 31 popular density functionals, covering local-density approximation, generalized gradient approximation (GGA), meta-GGA, and hybrid density-functional theory (DFT). The ab initio benchmark has been obtained by exploring the PESs using a hierarchical series of ab initio methods [up to CCSD(T)] in combination with a hierarchical series of Gaussian-type basis sets (up to aug-cc-pVQZ). Our best CCSD(T) estimates show that the overall barriers for the various pathways increase in the order anti-E2 (X = F) < SN2 (X = F) < SN2 (X = Cl) ∼ syn-E2 (X = F) < anti-E2 (X = Cl) < syn-E2 (X = Cl). Thus, anti-E2 dominates for F(-) + CH3CH2F, and SN2 dominates for Cl(-) + CH3CH2Cl, while syn-E2 is in all cases the least favorable pathway. Best overall agreement with our ab initio benchmark is obtained by representatives from each of the three categories of functionals, GGA, meta-GGA, and hybrid DFT, with mean absolute errors in, for example, central barriers of 4.3 (OPBE), 2.2 (M06-L), and 2.0 kcal/mol (M06), respectively. Importantly, the hybrid functional BHandH and the meta-GGA M06-L yield incorrect trends and qualitative features of the PESs (in particular, an erroneous preference for SN2 over the anti-E2 in the case of F(-) + CH3CH2F) even though they are among the best functionals as measured by their small mean absolute errors of 3.3 and 2.2 kcal/mol in reaction barriers. OLYP and B3LYP have somewhat higher mean absolute errors in central barriers (5.6 and 4.8 kcal/mol, respectively), but the error distribution is somewhat more uniform, and as a consequence, the correct trends are reproduced.

  16. A review on ab initio studies of static, transport, and optical properties of polystyrene under extreme conditions for inertial confinement fusion applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, L. A.; Boehly, T. R.; Ding, Y. H.

    Polystyrene (CH), commonly known as “plastic,” has been one of the widely used ablator materials for capsule designs in inertial confinement fusion (ICF). Knowing its precise properties under high-energy-density conditions is crucial to understanding and designing ICF implosions through radiation–hydrodynamic simulations. For this purpose, systematic ab initio studies on the static, transport, and optical properties of CH, in a wide range of density and temperature conditions (ρ= 0.1 to 100 g/cm 3 and T = 10 3 to 4 × 10 6K), have been conducted using quantum molecular dynamics (QMD) simulations based on the density functional theory. We have builtmore » several wide-ranging, self-consistent material-properties tables for CH, such as the first-principles equation of state (FPEOS), the QMD-based thermal conductivity (Κ QMD) and ionization, and the first-principles opacity table (FPOT). This paper is devoted to providing a review on (1) what results were obtained from these systematic ab initio studies; (2) how these self-consistent results were compared with both traditional plasma-physics models and available experiments; and (3) how these first-principles–based properties of polystyrene affect the predictions of ICF target performance, through both 1-D and 2-D radiation–hydrodynamic simulations. In the warm dense regime, our ab initio results, which can significantly differ from predictions of traditional plasma-physics models, compared favorably with experiments. When incorporated into hydrocodes for ICF simulations, these first-principles material properties of CH have produced significant differences over traditional models in predicting 1-D/2-D target performance of ICF implosions on OMEGA and direct-drive–ignition designs for the National Ignition Facility. Lastly, we will discuss the implications of these studies on the current small-margin ICF target designs using a CH ablator.« less

  17. A review on ab initio studies of static, transport, and optical properties of polystyrene under extreme conditions for inertial confinement fusion applications

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Collins, L. A.; Boehly, T. R.; Ding, Y. H.; Radha, P. B.; Goncharov, V. N.; Karasiev, V. V.; Collins, G. W.; Regan, S. P.; Campbell, E. M.

    2018-05-01

    Polystyrene (CH), commonly known as "plastic," has been one of the widely used ablator materials for capsule designs in inertial confinement fusion (ICF). Knowing its precise properties under high-energy-density conditions is crucial to understanding and designing ICF implosions through radiation-hydrodynamic simulations. For this purpose, systematic ab initio studies on the static, transport, and optical properties of CH, in a wide range of density and temperature conditions (ρ = 0.1 to 100 g/cm3 and T = 103 to 4 × 106 K), have been conducted using quantum molecular dynamics (QMD) simulations based on the density functional theory. We have built several wide-ranging, self-consistent material-properties tables for CH, such as the first-principles equation of state, the QMD-based thermal conductivity (κQMD) and ionization, and the first-principles opacity table. This paper is devoted to providing a review on (1) what results were obtained from these systematic ab initio studies; (2) how these self-consistent results were compared with both traditional plasma-physics models and available experiments; and (3) how these first-principles-based properties of polystyrene affect the predictions of ICF target performance, through both 1-D and 2-D radiation-hydrodynamic simulations. In the warm dense regime, our ab initio results, which can significantly differ from predictions of traditional plasma-physics models, compared favorably with experiments. When incorporated into hydrocodes for ICF simulations, these first-principles material properties of CH have produced significant differences over traditional models in predicting 1-D/2-D target performance of ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility. Finally, we will discuss the implications of these studies on the current small-margin ICF target designs using a CH ablator.

  18. A review on ab initio studies of static, transport, and optical properties of polystyrene under extreme conditions for inertial confinement fusion applications

    DOE PAGES

    Collins, L. A.; Boehly, T. R.; Ding, Y. H.; ...

    2018-03-23

    Polystyrene (CH), commonly known as “plastic,” has been one of the widely used ablator materials for capsule designs in inertial confinement fusion (ICF). Knowing its precise properties under high-energy-density conditions is crucial to understanding and designing ICF implosions through radiation–hydrodynamic simulations. For this purpose, systematic ab initio studies on the static, transport, and optical properties of CH, in a wide range of density and temperature conditions (ρ= 0.1 to 100 g/cm 3 and T = 10 3 to 4 × 10 6K), have been conducted using quantum molecular dynamics (QMD) simulations based on the density functional theory. We have builtmore » several wide-ranging, self-consistent material-properties tables for CH, such as the first-principles equation of state (FPEOS), the QMD-based thermal conductivity (Κ QMD) and ionization, and the first-principles opacity table (FPOT). This paper is devoted to providing a review on (1) what results were obtained from these systematic ab initio studies; (2) how these self-consistent results were compared with both traditional plasma-physics models and available experiments; and (3) how these first-principles–based properties of polystyrene affect the predictions of ICF target performance, through both 1-D and 2-D radiation–hydrodynamic simulations. In the warm dense regime, our ab initio results, which can significantly differ from predictions of traditional plasma-physics models, compared favorably with experiments. When incorporated into hydrocodes for ICF simulations, these first-principles material properties of CH have produced significant differences over traditional models in predicting 1-D/2-D target performance of ICF implosions on OMEGA and direct-drive–ignition designs for the National Ignition Facility. Lastly, we will discuss the implications of these studies on the current small-margin ICF target designs using a CH ablator.« less

  19. Interaction of single-walled carbon nanotubes and saxitoxin: Ab initio simulations and biological responses in hippocampal cell line HT-22.

    PubMed

    Ramos, Patrícia; Schmitz, Marcos; Filgueira, Daza; Votto, Ana Paula; Durruthy, Michael; Gelesky, Marcos; Ruas, Caroline; Yunes, João; Tonel, Mariana; Fagan, Solange; Monserrat, José

    2017-07-01

    Saxitoxins (STXs) are potent neurotoxins that also induce cytotoxicity through the generation of reactive oxygen species. Carbon nanotubes (CNTs) are nanomaterials that can promote a Trojan horse effect, facilitating the entry of toxic molecules to cells when adsorbed to nanomaterials. The interaction of pristine single-walled (SW)CNTs and carboxylated (SWCNT-COOH) nanotubes with STX was evaluated by ab initio simulation and bioassays using the cell line HT-22. Cells (5 × 10 4  cells/mL) were exposed to SWCNT and SWCNT-COOH (5 μg mL -1 ), STX (200 μg L -1 ), SWCNT+STX, and SWCNT-COOH+STX for 30 min or 24 h. Results of ab initio simulation showed that the interaction between SWCNT and SWCNT-COOH with STX occurs in a physisorption. The interaction of SWCNT+STX induced a decrease in cell viability. Cell proliferation was not affected in any treatment after 30 min or 24 h of exposure (p > 0.05). Treatment with SWCNT-COOH induced high reactive oxygen species levels, an effect attenuated in SWCNT-COOH+STX treatment. In terms of cellular oxygen consumption, both CNTs when coexposed with STX antagonize the toxin effect. Based on these results, it can be concluded that the results obtained in vitro corroborate the semiempirical evidence found using density functional theory ab initio simulation. Environ Toxicol Chem 2017;36:1728-1737. © 2016 SETAC. © 2016 SETAC.

  20. Ab Initio Studies of Chlorine Oxide and Nitrogen Oxide Species of Interest in Stratospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of chlorine oxide and nitrogen oxide species will be demonstrated by presentation of some example studies. In particular the geometrical structures, vibrational spectra, and heats of formation Of ClNO2, CisClONO, and trans-ClONO are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the ab initio results are shown to fill in the gaps and to resolve the experimental controversy. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of ClONO2, HONO2, ClOOC17 ClOOH, and HOOH will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of the experimental studies.

  1. Steel — ab Initio: Quantum Mechanics Guided Design of New Fe-Based Materials

    NASA Astrophysics Data System (ADS)

    Prahl, Ulrich; Bleck, Wolfgang; Saeed-Akbari, Alireza

    This contribution reports the results of the collaborative research unit SFB 761 "Steel — ab initio", a cooperative project between RWTH Aachen University and the Max-Planck-Institute for Iron Research in Düsseldorf (MPIE) financed by the German Research Foundation (DFG). For the first time, it is exploited how ab initio approaches may lead to a detailed understanding and thus to a specific improvement of material development. The challenge lies in the combination of abstract natural science theories with rather engineering-like established concepts. Aiming at the technological target of the development of a new type of structural materials based on Fe-Mn-C alloys, the combination of ab initio and engineering methods is new, but could be followed quite successfully. Three major topics are treated in this research unit: a) development of a new method for material- and process-development based on ab initio calculations; b) design of a new class of structural materials with extraordinary property combinations; c) acceleration of development time and reduction of experimental efforts and complexity for material- and process-development. In the present work, an overview of the results of the first five years as well as an outlook for the upcoming three-year period is given.

  2. Ab initio theoretical calculations of the electronic excitation energies of small water clusters.

    PubMed

    Tachikawa, Hiroto; Yabushita, Akihiro; Kawasaki, Masahiro

    2011-12-14

    A direct ab initio molecular dynamics method has been applied to a water monomer and water clusters (H(2)O)(n) (n = 1-3) to elucidate the effects of zero-point energy (ZPE) vibration on the absorption spectra of water clusters. Static ab initio calculations without ZPE showed that the first electronic transitions of (H(2)O)(n), (1)B(1)←(1)A(1), are blue-shifted as a function of cluster size (n): 7.38 eV (n = 1), 7.58 eV (n = 2) and 8.01 eV (n = 3). The inclusion of the ZPE vibration strongly affects the excitation energies of a water dimer, and a long red-tail appears in the range of 6.42-6.90 eV due to the structural flexibility of a water dimer. The ultraviolet photodissociation of water clusters and water ice surfaces is relevant to these results.

  3. Deuteron-induced nucleon transfer reactions within an ab initio framework: First application to p -shell nuclei

    DOE PAGES

    Raimondi, Francesco; Hupin, Guillaume; Navratil, Petr; ...

    2016-05-10

    Low-energy transfer reactions in which a proton is stripped from a deuteron projectile and dropped into a target play a crucial role in the formation of nuclei in both primordial and stellar nucleosynthesis, as well as in the study of exotic nuclei using radioactive beam facilities and inverse kinematics. Here, ab initio approaches have been successfully applied to describe the 3H(d,n) 4He and 3He(d,p) 4He fusion processes. An ab initio treatment of transfer reactions would also be desirable for heavier targets. In this work, we extend the ab initio description of (d,p) reactions to processes with light p-shell nuclei. Asmore » a first application, we study the elastic scattering of deuterium on 7Li and the 7Li(d,p) 8Li transfer reaction based on a two-body Hamiltonian. We use the no-core shell model to compute the wave functions of the nuclei involved in the reaction, and describe the dynamics between targets and projectiles with the help of microscopic-cluster states in the spirit of the resonating group method. The shapes of the excitation functions for deuterons impinging on 7Li are qualitatively reproduced up to the deuteron breakup energy. The interplay between d– 7Li and p– 8Li particle-decay channels determines some features of the 9Be spectrum above the d+ 7Li threshold. Our prediction for the parity of the 17.298 MeV resonance is at odds with the experimental assignment. Deuteron stripping reactions with p-shell targets can now be computed ab initio, but calculations are very demanding. Finally, a quantitative description of the 7Li(d,p) 8Li reaction will require further work to include the effect of three-nucleon forces and additional decay channels and to improve the convergence rate of our calculations.« less

  4. Deuteron-induced nucleon transfer reactions within an ab initio framework: First application to p -shell nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raimondi, Francesco; Hupin, Guillaume; Navratil, Petr

    Low-energy transfer reactions in which a proton is stripped from a deuteron projectile and dropped into a target play a crucial role in the formation of nuclei in both primordial and stellar nucleosynthesis, as well as in the study of exotic nuclei using radioactive beam facilities and inverse kinematics. Here, ab initio approaches have been successfully applied to describe the 3H(d,n) 4He and 3He(d,p) 4He fusion processes. An ab initio treatment of transfer reactions would also be desirable for heavier targets. In this work, we extend the ab initio description of (d,p) reactions to processes with light p-shell nuclei. Asmore » a first application, we study the elastic scattering of deuterium on 7Li and the 7Li(d,p) 8Li transfer reaction based on a two-body Hamiltonian. We use the no-core shell model to compute the wave functions of the nuclei involved in the reaction, and describe the dynamics between targets and projectiles with the help of microscopic-cluster states in the spirit of the resonating group method. The shapes of the excitation functions for deuterons impinging on 7Li are qualitatively reproduced up to the deuteron breakup energy. The interplay between d– 7Li and p– 8Li particle-decay channels determines some features of the 9Be spectrum above the d+ 7Li threshold. Our prediction for the parity of the 17.298 MeV resonance is at odds with the experimental assignment. Deuteron stripping reactions with p-shell targets can now be computed ab initio, but calculations are very demanding. Finally, a quantitative description of the 7Li(d,p) 8Li reaction will require further work to include the effect of three-nucleon forces and additional decay channels and to improve the convergence rate of our calculations.« less

  5. Discovering charge density functionals and structure-property relationships with PROPhet: A general framework for coupling machine learning and first-principles methods

    DOE PAGES

    Kolb, Brian; Lentz, Levi C.; Kolpak, Alexie M.

    2017-04-26

    Modern ab initio methods have rapidly increased our understanding of solid state materials properties, chemical reactions, and the quantum interactions between atoms. However, poor scaling often renders direct ab initio calculations intractable for large or complex systems. There are two obvious avenues through which to remedy this problem: (i) develop new, less expensive methods to calculate system properties, or (ii) make existing methods faster. This paper describes an open source framework designed to pursue both of these avenues. PROPhet (short for PROPerty Prophet) utilizes machine learning techniques to find complex, non-linear mappings between sets of material or system properties. Themore » result is a single code capable of learning analytical potentials, non-linear density functionals, and other structure-property or property-property relationships. These capabilities enable highly accurate mesoscopic simulations, facilitate computation of expensive properties, and enable the development of predictive models for systematic materials design and optimization. Here, this work explores the coupling of machine learning to ab initio methods through means both familiar (e.g., the creation of various potentials and energy functionals) and less familiar (e.g., the creation of density functionals for arbitrary properties), serving both to demonstrate PROPhet’s ability to create exciting post-processing analysis tools and to open the door to improving ab initio methods themselves with these powerful machine learning techniques.« less

  6. Discovering charge density functionals and structure-property relationships with PROPhet: A general framework for coupling machine learning and first-principles methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolb, Brian; Lentz, Levi C.; Kolpak, Alexie M.

    Modern ab initio methods have rapidly increased our understanding of solid state materials properties, chemical reactions, and the quantum interactions between atoms. However, poor scaling often renders direct ab initio calculations intractable for large or complex systems. There are two obvious avenues through which to remedy this problem: (i) develop new, less expensive methods to calculate system properties, or (ii) make existing methods faster. This paper describes an open source framework designed to pursue both of these avenues. PROPhet (short for PROPerty Prophet) utilizes machine learning techniques to find complex, non-linear mappings between sets of material or system properties. Themore » result is a single code capable of learning analytical potentials, non-linear density functionals, and other structure-property or property-property relationships. These capabilities enable highly accurate mesoscopic simulations, facilitate computation of expensive properties, and enable the development of predictive models for systematic materials design and optimization. Here, this work explores the coupling of machine learning to ab initio methods through means both familiar (e.g., the creation of various potentials and energy functionals) and less familiar (e.g., the creation of density functionals for arbitrary properties), serving both to demonstrate PROPhet’s ability to create exciting post-processing analysis tools and to open the door to improving ab initio methods themselves with these powerful machine learning techniques.« less

  7. Electronic structure and magnetism of titanium substituted Cd3P2: An ab-initio study

    NASA Astrophysics Data System (ADS)

    Jaiganesh, G.; Jaya, S. Mathi

    2018-05-01

    Using the ab-initio computations that are based on the density functional theory, we have investigated the magnetism and electronic properties of one and two Ti atom substituted Cd3P2 compound. The magnetic stability of the substituted compounds was obtained by analyzing the minimum total energies in nonmagnetic, ferromagnetic and antiferromagnetic phases. Our results indicated the formation of magnetic order in one and two Ti atom substituted Cd3P2 as well as metallic characteristics in these systems. A significant value of the magnetic moment of Ti atom is observed from our calculations. We further find that the neighboring Cd and P atoms too acquire a small magnetic moment.

  8. FTIR, FT-Raman spectra and ab initio, DFT vibrational analysis of 2,4-dinitrophenylhydrazine.

    PubMed

    Sundaraganesan, N; Ayyappan, S; Umamaheswari, H; Joshua, B Dominic

    2007-01-01

    The FTIR and FT-Raman spectra of 2,4-dinitrophenylhydrazine (2,4-DNPH) has been recorded in the region 4000-400 and 3500-50cm-1, respectively. The optimized geometry, frequency and intensity of the vibrational bands of 2,4-DNPH were obtained by the ab initio and density functional theory (DFT) levels of theory with complete relaxation in the potential energy surface using 6-31G(d,p) and 6-311G(d,p) basis sets. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.

  9. FTIR, FT-Raman spectra and ab initio, DFT vibrational analysis of 2,4-dinitrophenylhydrazine

    NASA Astrophysics Data System (ADS)

    Sundaraganesan, N.; Ayyappan, S.; Umamaheswari, H.; Dominic Joshua, B.

    2007-01-01

    The FTIR and FT-Raman spectra of 2,4-dinitrophenylhydrazine (2,4-DNPH) has been recorded in the region 4000-400 and 3500-50 cm -1, respectively. The optimized geometry, frequency and intensity of the vibrational bands of 2,4-DNPH were obtained by the ab initio and density functional theory (DFT) levels of theory with complete relaxation in the potential energy surface using 6-31G(d,p) and 6-311G(d,p) basis sets. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.

  10. Optical absorption spectra and g factor of MgO: Mn2+explored by ab initio and semi empirical methods

    NASA Astrophysics Data System (ADS)

    Andreici Eftimie, E.-L.; Avram, C. N.; Brik, M. G.; Avram, N. M.

    2018-02-01

    In this paper we present a methodology for calculations of the optical absorption spectra, ligand field parameters and g factor for the Mn2+ (3d5) ions doped in MgO host crystal. The proposed technique combines two methods: the ab initio multireference (MR) and the semi empirical ligand field (LF) in the framework of the exchange charge model (ECM) respectively. Both methods of calculations are applied to the [MnO6]10-cluster embedded in an extended point charge field of host matrix ligands based on Gellé-Lepetit procedure. The first step of such investigations was the full optimization of the cubic structure of perfect MgO crystal, followed by the structural optimization of the doped of MgO:Mn2+ system, using periodic density functional theory (DFT). The ab initio MR wave functions approaches, such as complete active space self-consistent field (CASSCF), N-electron valence second order perturbation theory (NEVPT2) and spectroscopy oriented configuration interaction (SORCI), are used for the calculations. The scalar relativistic effects have also been taken into account through the second order Douglas-Kroll-Hess (DKH2) procedure. Ab initio ligand field theory (AILFT) allows to extract all LF parameters and spin-orbit coupling constant from such calculations. In addition, the ECM of ligand field theory (LFT) has been used for modelling theoptical absorption spectra. The perturbation theory (PT) was employed for the g factor calculation in the semi empirical LFT. The results of each of the aforementioned types of calculations are discussed and the comparisons between the results obtained and the experimental results show a reasonable agreement, which justifies this new methodology based on the simultaneous use of both methods. This study establishes fundamental principles for the further modelling of larger embedded cluster models of doped metal oxides.

  11. The charger transfer electronic coupling in diabatic perspective: A multi-state density functional theory study

    NASA Astrophysics Data System (ADS)

    Guo, Xinwei; Qu, Zexing; Gao, Jiali

    2018-01-01

    The multi-state density functional theory (MSDFT) provides a convenient way to estimate electronic coupling of charge transfer processes based on a diabatic representation. Its performance has been benchmarked against the HAB11 database with a mean unsigned error (MUE) of 17 meV between MSDFT and ab initio methods. The small difference may be attributed to different representations, diabatic from MSDFT and adiabatic from ab initio calculations. In this discussion, we conclude that MSDFT provides a general and efficient way to estimate the electronic coupling for charge-transfer rate calculations based on the Marcus-Hush model.

  12. Towards ab initio Calculations with the Dynamical Vertex Approximation

    NASA Astrophysics Data System (ADS)

    Galler, Anna; Kaufmann, Josef; Gunacker, Patrik; Pickem, Matthias; Thunström, Patrik; Tomczak, Jan M.; Held, Karsten

    2018-04-01

    While key effects of the many-body problem — such as Kondo and Mott physics — can be understood in terms of on-site correlations, non-local fluctuations of charge, spin, and pairing amplitudes are at the heart of the most fascinating and unresolved phenomena in condensed matter physics. Here, we review recent progress in diagrammatic extensions to dynamical mean-field theory for ab initio materials calculations. We first recapitulate the quantum field theoretical background behind the two-particle vertex. Next we discuss latest algorithmic advances in quantum Monte Carlo simulations for calculating such two-particle quantities using worm sampling and vertex asymptotics, before giving an introduction to the ab initio dynamical vertex approximation (AbinitioDΓA). Finally, we highlight the potential of AbinitioDΓA by detailing results for the prototypical correlated metal SrVO3.

  13. Ab initio study of perovskite type oxide materials for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Lee, Yueh-Lin

    2011-12-01

    Perovskite type oxides form a family of materials of significant interest for cathodes and electrolytes of solid oxide fuel cells (SOFCs). These perovskites not only are active catalysts for surface oxygen reduction (OR) reactions but also allow incorporating the spilt oxygen monomers into their bulk, an unusual and poorly understood catalytic mechanism that couples surface and bulk properties. The OR mechanisms can be influenced strongly by defects in perovskite oxides, composition, and surface defect structures. This thesis work initiates a first step in developing a general strategy based on first-principles calculations for detailed control of oxygen vacancy content, transport rates of surface and bulk oxygen species, and surface/interfacial reaction kinetics. Ab initio density functional theory methods are used to model properties relevant for the OR reactions on SOFC cathodes. Three main research thrusts, which focus on bulk defect chemistry, surface defect structures and surface energetics, and surface catalytic properties, are carried to investigate different level of material chemistry for improved understanding of key physics/factors that govern SOFC cathode OR activity. In the study of bulk defect chemistry, an ab initio based defect model is developed for modeling defect chemistry of LaMnO 3 under SOFC conditions. The model suggests an important role for defect interactions, which are typically excluded in previous defect models. In the study of surface defect structures and surface energetics, it is shown that defect energies change dramatically (1˜2 eV lower) from bulk values near surfaces. Based on the existing bulk defect model with the calculated ab initio surface defect energetics, we predict the (001) MnO 2 surface oxygen vacancy concentration of (La0.9Sr0.1 )MnO3 is about 5˜6 order magnitude higher than that of the bulk under typical SOFC conditions. Finally, for surface catalytic properties, we show that area specific resistance, oxygen

  14. Conformational study of glyoxal bis(amidinohydrazone) by ab initio methods

    NASA Astrophysics Data System (ADS)

    Mannfors, B.; Koskinen, J. T.; Pietilä, L.-O.

    1997-08-01

    We report the first ab initio molecular orbital study on the ground state of the endiamine tautomer of glyoxal bis(amidinohydrazone) (or glyoxal bis(guanylhydrazone), GBG) free base. The calculations were performed at the following levels of theory: Hartree-Fock, second-order Møller-Plesset perturbation theory and density functional theory (B-LYP and B3-LYP) as implemented in the Gaussian 94 software. The standard basis set 6-31G(d) was found to be sufficient. The default fine grid of Gaussian 94 was used in the density functional calculations. Molecular properties, such as optimized structures, total energies and the electrostatic potential derived (CHELPG) atomic charges, were studied as functions of C-C and N-N conformations. The lowest energy conformation was found to be all- trans, in agreement with the experimental solid-state structure. The second conformer with respect to rotation around the central C-C bond was found to be the cis conformer with an MP2//HF energy of 4.67 kcal mol -1. For rotation around the N-N bond the energy increased monotonically from the trans conformation to the cis conformation, the cis energy being very high, 22.01 kcal mol -1 (MP2//HF). The atomic charges were shown to be conformation dependent, and the bond charge increments and especially the conformational changes of the bond charge increments were found to be easily transferable between structurally related systems.

  15. Development and application of ab initio QM/MM methods for mechanistic simulation of reactions in solution and in enzymes

    PubMed Central

    Hu, Hao; Yang, Weitao

    2013-01-01

    Determining the free energies and mechanisms of chemical reactions in solution and enzymes is a major challenge. For such complex reaction processes, combined quantum mechanics/molecular mechanics (QM/MM) method is the most effective simulation method to provide an accurate and efficient theoretical description of the molecular system. The computational costs of ab initio QM methods, however, have limited the application of ab initio QM/MM methods. Recent advances in ab initio QM/MM methods allowed the accurate simulation of the free energies for reactions in solution and in enzymes and thus paved the way for broader application of the ab initio QM/MM methods. We review here the theoretical developments and applications of the ab initio QM/MM methods, focusing on the determination of reaction path and the free energies of the reaction processes in solution and enzymes. PMID:24146439

  16. Ab initio simulations of molten Ni alloys

    NASA Astrophysics Data System (ADS)

    Woodward, Christopher; Asta, Mark; Trinkle, Dallas R.; Lill, James; Angioletti-Uberti, Stefano

    2010-06-01

    Convective instabilities responsible for misoriented grains in directionally solidified turbine airfoils are produced by variations in liquid-metal density with composition and temperature across the solidification zone. Here, fundamental properties of molten Ni-based alloys, required for modeling these instabilities, are calculated using ab initio molecular dynamics simulations. Equations of state are derived from constant number-volume-temperature ensembles at 1830 and 1750 K for elemental, binary (Ni-X, X=Al, W, Re, and Ta) and ternary (Ni-Al-X, X=W, Re, and Ta) Ni alloys. Calculated molar volumes agree to within 0.6%-1.8% of available measurements. Predictions are used to investigate the range of accuracy of a parameterization of molar volumes with composition and temperature based on measurements of binary alloys. Structural analysis reveals a pronounced tendency for icosahedral short-range order for Ni-W and Ni-Re alloys and the calculations provide estimates of diffusion rates and their dependence on compositions and temperature.

  17. State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas.

    PubMed

    Jäger, Benjamin; Hellmann, Robert; Bich, Eckard; Vogel, Eckhard

    2016-03-21

    A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only at a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.

  18. Towards an ab-initio treatment of nonlocal electronic correlations with dynamical vertex approximation

    NASA Astrophysics Data System (ADS)

    Galler, Anna; Gunacker, Patrik; Tomczak, Jan; Thunström, Patrik; Held, Karsten

    Recently, approaches such as the dynamical vertex approximation (D ΓA) or the dual-fermion method have been developed. These diagrammatic approaches are going beyond dynamical mean field theory (DMFT) by including nonlocal electronic correlations on all length scales as well as the local DMFT correlations. Here we present our efforts to extend the D ΓA methodology to ab-initio materials calculations (ab-initio D ΓA). Our approach is a unifying framework which includes both GW and DMFT-type of diagrams, but also important nonlocal correlations beyond, e.g. nonlocal spin fluctuations. In our multi-band implementation we are using a worm sampling technique within continuous-time quantum Monte Carlo in the hybridization expansion to obtain the DMFT vertex, from which we construct the reducible vertex function using the two particle-hole ladders. As a first application we show results for transition metal oxides. Support by the ERC project AbinitioDGA (306447) is acknowledged.

  19. Progress towards an ab initio real-time treatment of warm dense matter

    NASA Astrophysics Data System (ADS)

    Baczewski, Andrew; Cangi, Attila; Hansen, Stephanie; Jensen, Daniel

    2017-10-01

    Time-dependent density functional theory (TDDFT) provides an accurate description of equilibrium properties of warm dense matter, such as the dynamic structure factor (Baczewski et al., Phys. Rev. Lett., 116(11), 2016). While non-equilibrium properties, such as stopping power, have also been demonstrated to be within the grasp of TDDFT, the ultrafast isochoric heating of condensed matter into the warm dense state, enabled by recent advances in XFELs, remains beyond its capabilities. In this talk, we will describe the successes of and continuing challenges for TDDFT for warm dense matter, and present progress towards a more complete ab initio treatment of isochoric x-ray heating. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the DOE's National Nuclear Security Administration under contract DE-NA0003525.

  20. Ab initio study of structural and mechanical property of solid molecular hydrogens

    NASA Astrophysics Data System (ADS)

    Ye, Yingting; Yang, Li; Yang, Tianle; Nie, Jinlan; Peng, Shuming; Long, Xinggui; Zu, Xiaotao; Du, Jincheng

    2015-06-01

    Ab initio calculations based on density functional theory (DFT) were performed to investigate the structural and the elastic properties of solid molecular hydrogens (H2). The influence of molecular axes of H2 on structural relative stabilities of hexagonal close-packed (hcp) and face-centered cubic (fcc) structured hydrogen molecular crystals were systematically investigated. Our results indicate that for hcp structures, disordered hydrogen molecule structure is more stable, while for fcc structures, Pa3 hydrogen molecular crystal is most stable. The cohesive energy of fcc H2 crystal was found to be lower than hcp. The mechanical properties of fcc and hcp hydrogen molecular crystals were obtained, with results consistent with previous theoretical calculations. In addition, the effects of zero point energy (ZPE) and van der Waals (vdW) correction on the cohesive energy and the stability of hydrogen molecular crystals were systematically studied and discussed.

  1. Ab initio Quantum Chemical and Experimental Reaction Kinetics Studies in the Combustion of Bipropellants

    DTIC Science & Technology

    2017-03-24

    NUMBER (Include area code) 24 March 2017 Briefing Charts 01 March 2017 - 31 March 2017 Ab initio Quantum Chemical and Experimental Reaction Kinetics...Laboratory AFRL/RQRS 1 Ara Road Edwards AFB, CA 93524 *Email: ghanshyam.vaghjiani@us.af.mil Ab initio Quantum Chemical and Experimental Reaction ...Clearance 17161 Zador et al., Prog. Energ. Combust. Sci., 37 371 (2011) Why Quantum Chemical Reaction Kinetics Studies? DISTRIBUTION A: Approved for

  2. Ab initio study of II-(VI)2 dichalcogenides.

    PubMed

    Olsson, P; Vidal, J; Lincot, D

    2011-10-12

    The structural stabilities of the (Zn,Cd)(S,Se,Te)(2) dichalcogenides have been determined ab initio. These compounds are shown to be stable in the pyrite phase, in agreement with available experiments. Structural parameters for the ZnTe(2) pyrite semiconductor compound proposed here are presented. The opto-electronic properties of these dichalcogenide compounds have been calculated using quasiparticle GW theory. Bandgaps, band structures and effective masses are proposed as well as absorption coefficients and refraction indices. The compounds are all indirect semiconductors with very flat conduction band dispersion and high absorption coefficients. The work functions and surface properties are predicted. The Te and Se based compounds could be of interest as absorber materials in photovoltaic applications.

  3. Ab initio and density functional force field studies on the IR spectra and structure of diazonium dicyanomethylide (diazodicyanomethane)

    NASA Astrophysics Data System (ADS)

    Georgieva, Miglena K.

    2004-03-01

    The structure of diazonium dicyanomethylide (diazodicyanomethane) +N 2-C(CN) 2-↔N 2C(CN) 2 has been studied on the basis of ab initio HF, MP2 and DFT BLYP force field calculations, as well as of literature IR spectra and X-ray diffraction structural data. The results have been compared with those obtained for a series of chemical relatives of the title compound, i.e. molecules, push-pull molecules, anions and zwitterions, containing α-dicyano or diazo fragments, and especially substituted ammonium dicyanomethylides and diazomethane +N 2-CH 2-↔N 2CH 2. It has been found on the basis of spectral, bond length, bond order and electric charge analyses that the diazonium (or carbanionic, left) canonical form is much more important for the title zwitterion, than the corresponding one for diazomethane. So, the title compound can be named (and considered as) both diazonium dicyanomethylide and dicyanodiazomethane.

  4. Assessing the accuracy of improved force-matched water models derived from Ab initio molecular dynamics simulations.

    PubMed

    Köster, Andreas; Spura, Thomas; Rutkai, Gábor; Kessler, Jan; Wiebeler, Hendrik; Vrabec, Jadran; Kühne, Thomas D

    2016-07-15

    The accuracy of water models derived from ab initio molecular dynamics simulations by means on an improved force-matching scheme is assessed for various thermodynamic, transport, and structural properties. It is found that although the resulting force-matched water models are typically less accurate than fully empirical force fields in predicting thermodynamic properties, they are nevertheless much more accurate than generally appreciated in reproducing the structure of liquid water and in fact superseding most of the commonly used empirical water models. This development demonstrates the feasibility to routinely parametrize computationally efficient yet predictive potential energy functions based on accurate ab initio molecular dynamics simulations for a large variety of different systems. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Linear electro-optic effect in semiconductors: Ab initio description of the electronic contribution

    NASA Astrophysics Data System (ADS)

    Prussel, Lucie; Véniard, Valérie

    2018-05-01

    We propose an ab initio framework to derive the electronic part of the second-order susceptibility tensor for the electro-optic effect in bulk semiconductors. We find a general expression for χ(2 ) evaluated within time-dependent density-functional theory, including explicitly the band-gap corrections at the level of the scissors approximation. Excitonic effects are accounted for, on the basis of a simple scalar approximation. We apply our formalism to the computation of the electro-optic susceptibilities for several semiconductors, such as GaAs, GaN, and SiC. Taking into account the ionic contribution according to the Faust-Henry coefficient, we obtain a good agreement with experimental results. Finally, using different types of strain to break centrosymmetry, we show that high electro-optic coefficients can be obtained in bulk silicon for a large range of frequencies.

  6. Electronic Structures of Anti-Ferromagnetic Tetraradicals: Ab Initio and Semi-Empirical Studies.

    PubMed

    Zhang, Dawei; Liu, Chungen

    2016-04-12

    The energy relationships and electronic structures of the lowest-lying spin states in several anti-ferromagnetic tetraradical model systems are studied with high-level ab initio and semi-empirical methods. The Full-CI method (FCI), the complete active space second-order perturbation theory (CASPT2), and the n-electron valence state perturbation theory (NEVPT2) are employed to obtain reference results. By comparing the energy relationships predicted from the Heisenberg and Hubbard models with ab initio benchmarks, the accuracy of the widely used Heisenberg model for anti-ferromagnetic spin-coupling in low-spin polyradicals is cautiously tested in this work. It is found that the strength of electron correlation (|U/t|) concerning anti-ferromagnetically coupled radical centers could range widely from strong to moderate correlation regimes and could become another degree of freedom besides the spin multiplicity. Accordingly, the Heisenberg-type model works well in the regime of strong correlation, which reproduces well the energy relationships along with the wave functions of all the spin states. In moderately spin-correlated tetraradicals, the results of the prototype Heisenberg model deviate severely from those of multi-reference electron correlation ab initio methods, while the extended Heisenberg model, containing four-body terms, can introduce reasonable corrections and maintains its accuracy in this condition. In the weak correlation regime, both the prototype Heisenberg model and its extended forms containing higher-order correction terms will encounter difficulties. Meanwhile, the Hubbard model shows balanced accuracy from strong to weak correlation cases and can reproduce qualitatively correct electronic structures, which makes it more suitable for the study of anti-ferromagnetic coupling in polyradical systems.

  7. Ab initio study of collective excitations in a disparate mass molten salt.

    PubMed

    Bryk, Taras; Klevets, Ivan

    2012-12-14

    Ab initio molecular dynamics simulations and the approach of generalized collective modes are applied for calculations of spectra of longitudinal and transverse collective excitations in molten LiBr. Dispersion and damping of low- and high-frequency branches of collective excitations as well as wave-number dependent relaxing modes were calculated. The main mode contributions to partial, total, and concentration dynamic structure factors were estimated in a wide region of wave numbers. A role of polarization effects is discussed from comparison of mode contributions to concentration dynamic structure factors calculated for molten LiBr from ab initio and classical rigid ion simulations.

  8. Ab-initio Electronic, Transport and Related Properties of Zinc Blende Boron Arsenide (zb-BAs)

    NASA Astrophysics Data System (ADS)

    Nwigboji, Ifeanyi H.; Malozovsky, Yuriy; Bagayoko, Diola

    We present results from ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport, and bulk properties of zinc blende boron arsenide (zb-BAs). We utilized a local density approximation (LDA) potential and the linear combination of atomic orbital (LCAO) formalism. Our computational technique follows the Bagayoko, Zhao, and Williams method, as enhanced by Ekuma and Franklin. Our results include electronic energy bands, densities of states, and effective masses. We explain the agreement between these findings, including the indirect band gap, and available, corresponding, experimental ones. This work confirms the capability of DFT to describe accurately properties of materials, provided the computations adhere to the conditions of validity of DFT [AIP Advances, 4, 127104 (2014)]. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE- NA0002630), LaSPACE, and LONI-SUBR.

  9. Investigation of electronic structure and chemical bonding of intermetallic Pd2HfIn: An ab-initio study

    NASA Astrophysics Data System (ADS)

    Bano, Amreen; Gaur, N. K.

    2018-05-01

    Ab-initio calculations are carried out to study the electronic and chemical bonding properties of Intermetallic full Heusler compound Pd2HfIn which crystallizes in F-43m structure. All calculations are performed by using density functional theory (DFT) based code Quantum Espresso. Generalized gradient approximations (GGA) of Perdew- Burke- Ernzerhof (PBE) have been adopted for exchange-correlation potential. Calculated electronic band structure reveals the metallic character of the compound. From partial density of states (PDoS), we found the presence of relatively high intensity electronic states of 4d-Pd atom at Fermi level. We have found a pseudo-gap just abouve the Fermi level and N(E) at Fermi level is observed to be 0.8 states/eV, these finding indicates the existence of superconducting character in Pd2HfIn.

  10. Approaches to ab initio molecular replacement of α-helical transmembrane proteins.

    PubMed

    Thomas, Jens M H; Simkovic, Felix; Keegan, Ronan; Mayans, Olga; Zhang, Chengxin; Zhang, Yang; Rigden, Daniel J

    2017-12-01

    α-Helical transmembrane proteins are a ubiquitous and important class of proteins, but present difficulties for crystallographic structure solution. Here, the effectiveness of the AMPLE molecular replacement pipeline in solving α-helical transmembrane-protein structures is assessed using a small library of eight ideal helices, as well as search models derived from ab initio models generated both with and without evolutionary contact information. The ideal helices prove to be surprisingly effective at solving higher resolution structures, but ab initio-derived search models are able to solve structures that could not be solved with the ideal helices. The addition of evolutionary contact information results in a marked improvement in the modelling and makes additional solutions possible.

  11. Virtual synthesis of crystals using ab initio MD: Case study on LiFePO4

    NASA Astrophysics Data System (ADS)

    Mishra, S. B.; Nanda, B. R. K.

    2017-05-01

    Molecular dynamics simulation technique is fairly successful in studying the structural aspects and dynamics of fluids. Here we study the ability of ab initio molecular dynamics (ab initio MD) to carry out virtual experiments to synthesize new crystalline materials and to predict their structures. For this purpose the olivine phosphate LiFePO4 (LFPO) is used as an example. As transition metal oxides in general are stabilized with layered geometry, we carried out ab initio MD simulations over a hypothetical layered configuration consisting of alternate LiPO2 and FeO2 layers. With intermittent steps of electron minimization, the resulted equilibrium lattice consist of PO4 tetrahedra and distorted Fe-O complexes similar to the one observed in the experimental lattice.

  12. Electron transport in all-Heusler Co2CrSi/Cu2CrAl/Co2CrSi device, based on ab-initio NEGF calculations

    NASA Astrophysics Data System (ADS)

    Mikaeilzadeh, L.; Pirgholi, M.; Tavana, A.

    2018-05-01

    Based on the ab-initio non-equilibrium Green's function (NEGF) formalism based on the density functional theory (DFT), we have studied the electron transport in the all-Heusler device Co2CrSi/Cu2CrAl/Co2CrSi. Results show that the calculated transmission spectra is very sensitive to the structural parameters and the interface. Also, we obtain a range for the thickness of the spacer layer for which the MR effect is optimum. Calculations also show a perfect GMR effect in this device.

  13. GalaxyGPCRloop: Template-Based and Ab Initio Structure Sampling of the Extracellular Loops of G-Protein-Coupled Receptors.

    PubMed

    Won, Jonghun; Lee, Gyu Rie; Park, Hahnbeom; Seok, Chaok

    2018-06-07

    The second extracellular loops (ECL2s) of G-protein-coupled receptors (GPCRs) are often involved in GPCR functions, and their structures have important implications in drug discovery. However, structure prediction of ECL2 is difficult because of its long length and the structural diversity among different GPCRs. In this study, a new ECL2 conformational sampling method involving both template-based and ab initio sampling was developed. Inspired by the observation of similar ECL2 structures of closely related GPCRs, a template-based sampling method employing loop structure templates selected from the structure database was developed. A new metric for evaluating similarity of the target loop to templates was introduced for template selection. An ab initio loop sampling method was also developed to treat cases without highly similar templates. The ab initio method is based on the previously developed fragment assembly and loop closure method. A new sampling component that takes advantage of secondary structure prediction was added. In addition, a conserved disulfide bridge restraining ECL2 conformation was predicted and analytically incorporated into sampling, reducing the effective dimension of the conformational search space. The sampling method was combined with an existing energy function for comparison with previously reported loop structure prediction methods, and the benchmark test demonstrated outstanding performance.

  14. Molecular dynamics simulations of fluid methane properties using ab initio intermolecular interaction potentials.

    PubMed

    Chao, Shih-Wei; Li, Arvin Huang-Te; Chao, Sheng D

    2009-09-01

    Intermolecular interaction energy data for the methane dimer have been calculated at a spectroscopic accuracy and employed to construct an ab initio potential energy surface (PES) for molecular dynamics (MD) simulations of fluid methane properties. The full potential curves of the methane dimer at 12 symmetric conformations were calculated by the supermolecule counterpoise-corrected second-order Møller-Plesset (MP2) perturbation theory. Single-point coupled cluster with single and double and perturbative triple excitations [CCSD(T)] calculations were also carried out to calibrate the MP2 potentials. We employed Pople's medium size basis sets [up to 6-311++G(3df, 3pd)] and Dunning's correlation consistent basis sets (cc-pVXZ and aug-cc-pVXZ, X = D, T, Q). For each conformer, the intermolecular carbon-carbon separation was sampled in a step 0.1 A for a range of 3-9 A, resulting in a total of 732 configuration points calculated. The MP2 binding curves display significant anisotropy with respect to the relative orientations of the dimer. The potential curves at the complete basis set (CBS) limit were estimated using well-established analytical extrapolation schemes. A 4-site potential model with sites located at the hydrogen atoms was used to fit the ab initio potential data. This model stems from a hydrogen-hydrogen repulsion mechanism to explain the stability of the dimer structure. MD simulations using the ab initio PES show quantitative agreements on both the atom-wise radial distribution functions and the self-diffusion coefficients over a wide range of experimental conditions. Copyright 2008 Wiley Periodicals, Inc.

  15. Electronic transport coefficients from ab initio simulations and application to dense liquid hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holst, Bastian; French, Martin; Redmer, Ronald

    2011-06-15

    Using Kubo's linear response theory, we derive expressions for the frequency-dependent electrical conductivity (Kubo-Greenwood formula), thermopower, and thermal conductivity in a strongly correlated electron system. These are evaluated within ab initio molecular dynamics simulations in order to study the thermoelectric transport coefficients in dense liquid hydrogen, especially near the nonmetal-to-metal transition region. We also observe significant deviations from the widely used Wiedemann-Franz law, which is strictly valid only for degenerate systems, and give an estimate for its valid scope of application toward lower densities.

  16. Ab initio results for intermediate-mass, open-shell nuclei

    NASA Astrophysics Data System (ADS)

    Baker, Robert B.; Dytrych, Tomas; Launey, Kristina D.; Draayer, Jerry P.

    2017-01-01

    A theoretical understanding of nuclei in the intermediate-mass region is vital to astrophysical models, especially for nucleosynthesis. Here, we employ the ab initio symmetry-adapted no-core shell model (SA-NCSM) in an effort to push first-principle calculations across the sd-shell region. The ab initio SA-NCSM's advantages come from its ability to control the growth of model spaces by including only physically relevant subspaces, which allows us to explore ultra-large model spaces beyond the reach of other methods. We report on calculations for 19Ne and 20Ne up through 13 harmonic oscillator shells using realistic interactions and discuss the underlying structure as well as implications for various astrophysical reactions. This work was supported by the U.S. NSF (OCI-0904874 and ACI -1516338) and the U.S. DOE (DE-SC0005248), and also benefitted from the Blue Waters sustained-petascale computing project and high performance computing resources provided by LSU.

  17. Magnetic Excitations in Polyoxotungstate-Supported Lanthanoid Single-Molecule Magnets: An Inelastic Neutron Scattering and ab Initio Study.

    PubMed

    Vonci, Michele; Giansiracusa, Marcus J; Van den Heuvel, Willem; Gable, Robert W; Moubaraki, Boujemaa; Murray, Keith S; Yu, Dehong; Mole, Richard A; Soncini, Alessandro; Boskovic, Colette

    2017-01-03

    Inelastic neutron scattering (INS) has been used to investigate the crystal field (CF) magnetic excitations of the analogs of the most representative lanthanoid-polyoxometalate single-molecule magnet family: Na 9 [Ln(W 5 O 18 ) 2 ] (Ln = Nd, Tb, Ho, Er). Ab initio complete active space self-consistent field/restricted active space state interaction calculations, extended also to the Dy analog, show good agreement with the experimentally determined low-lying CF levels, with accuracy better in most cases than that reported for approaches based only on simultaneous fitting to CF models of magnetic or spectroscopic data for isostructural Ln families. In this work we demonstrate the power of a combined spectroscopic and computational approach. Inelastic neutron scattering has provided direct access to CF levels, which together with the magnetometry data, were employed to benchmark the ab initio results. The ab initio determined wave functions corresponding to the CF levels were in turn employed to assign the INS transitions allowed by selection rules and interpret the observed relative intensities of the INS peaks. Ultimately, we have been able to establish the relationship between the wave function composition of the CF split Ln III ground multiplets and the experimentally measured magnetic and spectroscopic properties for the various analogs of the Na 9 [Ln(W 5 O 18 ) 2 ] family.

  18. Ab initio simulation of elastic and mechanical properties of Zn- and Mg-doped hydroxyapatite (HAP).

    PubMed

    Aryal, Sitaram; Matsunaga, Katsuyuki; Ching, Wai-Yim

    2015-07-01

    Hydroxyapatite (HAP) is an important bioceramic which constitutes the mineral components of bones and hard tissues in mammals. It is bioactive and used as bioceramic coatings for metallic implants and bone fillers. HAP readily absorbs a large amount of impurities. Knowledge on the elastic and mechanical properties of impurity-doped HAP is a subject of great importance to its potential for biomedical applications. Zn and Mg are the most common divalent cations HAP absorbs. Using density function theory based ab initio methods, we have carried out a large number of ab initio calculations to obtain the bulk elastic and mechanical properties of HAP with Zn or Mg doped in different concentration at the Ca1 and Ca2 sites using large 352-atom supercells. Detailed information on their dependece on the concetraion of the substitued impurity is obtained. Our results show that Mg enhances overall elastic and bulk mechanical properties whereas Zn tends to degrade except at low concentrations. At a higher concentration, the mechanical properties of Zn and Mg doped HAP also depend significantly on impurity distribution between the Ca1 and Ca2 sites. There is a strong evidence that Zn prefers Ca2 site for substituion whereas Mg has no such preference. These results imply that proper control of dopant concentration and their site preference must carefully considered in using doped HAP for specific biomedical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Ab initio DFT+U study of He atom incorporation into UO(2) crystals.

    PubMed

    Gryaznov, Denis; Heifets, Eugene; Kotomin, Eugene

    2009-09-07

    We present and discuss results of the density functional theory (DFT) for perfect UO(2) crystals with He atoms in octahedral interstitial positions therein. We have calculated basic bulk crystal properties and He incorporation energies into the low temperature anti-ferromagnetic UO(2) phase using several exchange-correlation functionals within the spin-polarized local density (LDA) and generalized gradient (GGA) approximations. In all DFT calculations we included the on-site correlation corrections using the Hubbard model (DFT+U approach). We analysed a potential crystalline symmetry reduction from tetragonal down to orthorhombic structure and confirmed the presence of the Jahn-Teller effect in a perfect UO(2). We discuss also the problem of a conducting electronic state arising when He is placed into a tetragonal antiferromagnetic phase of UO(2) commonly used in defect modelling. Consequently, we found a specific monoclinic lattice distortion which allowed us to restore the semiconducting state and properly estimate He incorporation energies. Unlike the bulk properties, the He incorporation energy strongly depends on several factors, including the supercell size, the use of spin polarization, the exchange-correlation functionals and on-site correlation corrections. We compare our results for the He incorporation with the previous shell model and ab initio DFT calculations.

  20. Ab-initio Computation of the Electronic, transport, and Bulk Properties of Calcium Oxide.

    NASA Astrophysics Data System (ADS)

    Mbolle, Augustine; Banjara, Dipendra; Malozovsky, Yuriy; Franklin, Lashounda; Bagayoko, Diola

    We report results from ab-initio, self-consistent, local Density approximation (LDA) calculations of electronic and related properties of calcium oxide (CaO) in the rock salt structure. We employed the Ceperley and Alder LDA potential and the linear combination of atomic orbitals (LCAO) formalism. Our calculations are non-relativistic. We implemented the LCAO formalism following the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). The BZW-EF method involves a methodical search for the optimal basis set that yields the absolute minima of the occupied energies, as required by density functional theory (DFT). Our calculated, indirect band gap of 6.91eV, from towards the L point, is in excellent agreement with experimental value of 6.93-7.7eV, at room temperature (RT). We have also calculated the total (DOS) and partial (pDOS) densities of states as well as the bulk modulus. Our calculated bulk modulus is in excellent agreement with experiment. Work funded in part by the US Department of Energy (DOE), National Nuclear Security Administration (NNSA) (Award No.DE-NA0002630), the National Science Foundation (NSF) (Award No, 1503226), LaSPACE, and LONI-SUBR.

  1. Heats of Segregation of BCC Binaries from Ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2003-01-01

    We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  2. Ab Initio: And a New Era of Airline Pilot Training.

    ERIC Educational Resources Information Center

    Gesell, Laurence E.

    1995-01-01

    Expansion of air transportation and decreasing numbers seeking pilot training point to a shortage of qualified pilots. Ab initio training, in which candidates with no flight time are trained to air transport proficiency, could resolve the problem. (SK)

  3. Controlling Magnetic and Ferroelectric Order Through Geometry: Synthesis, Ab Initio Theory, Characterization of New Multi-Ferric Fluoride Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halasyamani, Shiv; Fennie, Craig

    2016-11-03

    We have focused on the synthesis, characterization, and ab initio theory on multi-functional mixed-metal fluorides. With funding from the DOE, we have successfully synthesized and characterized a variety of mixed metal fluoride materials.

  4. The keto-enol equilibrium in substituted acetaldehydes: focal-point analysis and ab initio limit

    NASA Astrophysics Data System (ADS)

    Balabin, Roman M.

    2011-10-01

    High-level ab initio electronic structure calculations up to the CCSD(T) theory level, including extrapolations to the complete basis set (CBS) limit, resulted in high precision energetics of the tautomeric equilibrium in 2-substituted acetaldehydes (XH2C-CHO). The CCSD(T)/CBS relative energies of the tautomers were estimated using CCSD(T)/aug-cc-pVTZ, MP3/aug-cc-pVQZ, and MP2/aug-cc-pV5Z calculations with MP2/aug-cc-pVTZ geometries. The relative enol (XHC = CHOH) stabilities (ΔE e,CCSD(T)/CBS) were found to be 5.98 ± 0.17, -1.67 ± 0.82, 7.64 ± 0.21, 8.39 ± 0.31, 2.82 ± 0.52, 10.27 ± 0.39, 9.12 ± 0.18, 5.47 ± 0.53, 7.50 ± 0.43, 10.12 ± 0.51, 8.49 ± 0.33, and 6.19 ± 0.18 kcal mol-1 for X = BeH, BH2, CH3, Cl, CN, F, H, NC, NH2, OCH3, OH, and SH, respectively. Inconsistencies between the results of complex/composite energy computations methods Gn/CBS (G2, G3, CBS-4M, and CBS-QB3) and high-level ab initio methods (CCSD(T)/CBS and MP2/CBS) were found. DFT/aug-cc-pVTZ results with B3LYP, PBE0 (PBE1PBE), TPSS, and BMK density functionals were close to the CCSD(T)/CBS levels (MAD = 1.04 kcal mol-1).

  5. Unification of the phonon mode behavior in semiconductor alloys: Theory and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Pagès, O.; Postnikov, A. V.; Kassem, M.; Chafi, A.; Nassour, A.; Doyen, S.

    2008-03-01

    We demonstrate how to overcome serious problems in understanding and classification of vibration spectra in semiconductor alloys, following from traditional use of the virtual crystal approximation (VCA). We show that such different systems as InGaAs (1- bond→1 -mode behavior), InGaP (modified 2-mode), and ZnTeSe (2- bond→1 -mode) obey, in fact, the same phonon mode behavior—hence probably a universal one—of a percolation type (1- bond→2 -mode). The change of paradigm from the “VCA insight” (an averaged microscopic one) to the “percolation insight” (a mesoscopic one) offers a promising link toward the understanding of alloy disorder. The discussion is supported by ab initio simulation of the phonon density of states at the zone center of representative supercells at intermediary composition (ZnTeSe) and at the impurity-dilute limits (all systems). In particular, we propose a simple ab initio “protocol” to estimate the basic input parameters of our semiempirical “percolation” model for the calculation of the 1- bond→2 -mode vibration spectra of zinc blende alloys. With this, the model turns self-sufficient.

  6. Ab Initio Classical Dynamics Simulations of CO_2 Line-Mixing Effects in Infrared Bands

    NASA Astrophysics Data System (ADS)

    Lamouroux, Julien; Hartmann, Jean-Michel; Tran, Ha; Snels, Marcel; Stefani, Stefania; Piccioni, Giuseppe

    2013-06-01

    Ab initio calculations of line-mixing effects in CO_2 infrared bands are presented and compared with experiments. The predictions were carried using requantized Classical Dynamics Molecular Simulations (rCDMS) based on an approach previously developed and successfully tested for CO_2 isolated line shapes. Using classical dynamics equations, the force and torque applied to each molecule by the surrounding molecules (described by an ab initio intermolecular potential) are computed at each time step. This enables, using a requantization procedure, to predict dipole and isotropic polarizability auto-correlation functions whose Fourier-Laplace transforms yield the spectra. The quality of the rCDMS calculations is demonstrated by comparisons with measured spectra in the spectral regions of the 3ν_3 and 2ν_1+2ν_2+ν_3 Infrared bands. J.-M. Hartmann, H. Tran, N. H. Ngo, et al., Phys. Rev. Lett. A {87} (2013), 013403. H. Tran, C. Boulet, M. Snels, S. Stefani, J. Quant. Spectrosc. Radiat. Transfer {112} (2011), 925-936.

  7. Long-range corrected density functional through the density matrix expansion based semilocal exchange hole.

    PubMed

    Patra, Bikash; Jana, Subrata; Samal, Prasanjit

    2018-03-28

    The exchange hole, which is one of the principal constituents of the density functional formalism, can be used to design accurate range-separated hybrid functionals in association with appropriate correlation. In this regard, the exchange hole derived from the density matrix expansion has gained attention due to its fulfillment of some of the desired exact constraints. Thus, the new long-range corrected density functional proposed here combines the meta generalized gradient approximation level exchange functional designed from the density matrix expansion based exchange hole coupled with the ab initio Hartree-Fock exchange through the range separation of the Coulomb interaction operator using the standard error function technique. Then, in association with the Lee-Yang-Parr correlation functional, the assessment and benchmarking of the above newly constructed range-separated functional with various well-known test sets shows its reasonable performance for a broad range of molecular properties, such as thermochemistry, non-covalent interaction and barrier heights of the chemical reactions.

  8. Ab Initio Studies of Shock-Induced Chemical Reactions of Inter-Metallics

    NASA Astrophysics Data System (ADS)

    Zaharieva, Roussislava; Hanagud, Sathya

    2009-06-01

    Shock-induced and shock assisted chemical reactions of intermetallic mixtures are studied by many researchers, using both experimental and theoretical techniques. The theoretical studies are primarily at continuum scales. The model frameworks include mixture theories and meso-scale models of grains of porous mixtures. The reaction models vary from equilibrium thermodynamic model to several non-equilibrium thermodynamic models. The shock-effects are primarily studied using appropriate conservation equations and numerical techniques to integrate the equations. All these models require material constants from experiments and estimates of transition states. Thus, the objective of this paper is to present studies based on ab initio techniques. The ab inito studies, to date, use ab inito molecular dynamics. This paper presents a study that uses shock pressures, and associated temperatures as starting variables. Then intermetallic mixtures are modeled as slabs. The required shock stresses are created by straining the lattice. Then, ab initio binding energy calculations are used to examine the stability of the reactions. Binding energies are obtained for different strain components super imposed on uniform compression and finite temperatures. Then, vibrational frequencies and nudge elastic band techniques are used to study reactivity and transition states. Examples include Ni and Al.

  9. Investigation of polarization effects in the gramicidin A channel from ab initio molecular dynamics simulations.

    PubMed

    Timko, Jeff; Kuyucak, Serdar

    2012-11-28

    Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K(+) ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K(+) ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K(+) ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K(+) ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.

  10. Ab Initio Study of Polarizabilities of Oligothiophene, Oligocyclopentadiene and Oligofulvene and their Cyano Substituted Oligomers

    NASA Astrophysics Data System (ADS)

    Lagowski, Jolanta; Ferdous, Sultana

    2005-03-01

    Ab Initio polarizabilities of thiophene, fulvene and cyclopentadiene based conducting oligomers and polymers and their cyano derivatives have been calculated using the Hartree-Fock (HF), configuration interaction (singles) (CIS ) and density functional (DF) theories with 3-21G* basis using Gaussian software. The main motivation of this investigation is to determine the correlation between the excitation energies and polarizabilities for the conjugated systems studied. It has been found that HF and DF approaches give similar magnitudes for polarizabilities whereas CIS theory provides results that are considerably different. All three methods predict similar trends in polarizabilities as a function of oligomer length and bond alternation along the backbone of the oligomers. It has also been observed that the end groups and the number of `double' bonds have a significant effect on the magnitude of polarizability per C-C bond. Comparison with experimental results will be made where possible.

  11. Ab initio potential-energy surfaces for complex, multichannel systems using modified novelty sampling and feedforward neural networks

    NASA Astrophysics Data System (ADS)

    Raff, L. M.; Malshe, M.; Hagan, M.; Doughan, D. I.; Rockley, M. G.; Komanduri, R.

    2005-02-01

    A neural network/trajectory approach is presented for the development of accurate potential-energy hypersurfaces that can be utilized to conduct ab initio molecular dynamics (AIMD) and Monte Carlo studies of gas-phase chemical reactions, nanometric cutting, and nanotribology, and of a variety of mechanical properties of importance in potential microelectromechanical systems applications. The method is sufficiently robust that it can be applied to a wide range of polyatomic systems. The overall method integrates ab initio electronic structure calculations with importance sampling techniques that permit the critical regions of configuration space to be determined. The computed ab initio energies and gradients are then accurately interpolated using neural networks (NN) rather than arbitrary parametrized analytical functional forms, moving interpolation or least-squares methods. The sampling method involves a tight integration of molecular dynamics calculations with neural networks that employ early stopping and regularization procedures to improve network performance and test for convergence. The procedure can be initiated using an empirical potential surface or direct dynamics. The accuracy and interpolation power of the method has been tested for two cases, the global potential surface for vinyl bromide undergoing unimolecular decomposition via four different reaction channels and nanometric cutting of silicon. The results show that the sampling methods permit the important regions of configuration space to be easily and rapidly identified, that convergence of the NN fit to the ab initio electronic structure database can be easily monitored, and that the interpolation accuracy of the NN fits is excellent, even for systems involving five atoms or more. The method permits a substantial computational speed and accuracy advantage over existing methods, is robust, and relatively easy to implement.

  12. Distributed approximating functional fit of the H{sub 3} {ital ab initio} potential-energy data of Liu and Siegbahn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frishman, A.; Hoffman, D.K.; Kouri, D.J.

    1997-07-01

    We report a distributed approximating functional (DAF) fit of the {ital ab initio} potential-energy data of Liu [J. Chem. Phys. {bold 58}, 1925 (1973)] and Siegbahn and Liu [{ital ibid}. {bold 68}, 2457 (1978)]. The DAF-fit procedure is based on a variational principle, and is systematic and general. Only two adjustable parameters occur in the DAF leading to a fit which is both accurate (to the level inherent in the input data; RMS error of 0.2765 kcal/mol) and smooth ({open_quotes}well-tempered,{close_quotes} in DAF terminology). In addition, the LSTH surface of Truhlar and Horowitz based on this same data [J. Chem. Phys.more » {bold 68}, 2466 (1978)] is itself approximated using only the values of the LSTH surface on the same grid coordinate points as the {ital ab initio} data, and the same DAF parameters. The purpose of this exercise is to demonstrate that the DAF delivers a well-tempered approximation to a known function that closely mimics the true potential-energy surface. As is to be expected, since there is only roundoff error present in the LSTH input data, even more significant figures of fitting accuracy are obtained. The RMS error of the DAF fit, of the LSTH surface at the input points, is 0.0274 kcal/mol, and a smooth fit, accurate to better than 1cm{sup {minus}1}, can be obtained using more than 287 input data points. {copyright} {ital 1997 American Institute of Physics.}« less

  13. Ab-initio study of liquid systems: Concentration dependence of electrical resistivity of binary liquid alloy Rb1-xCsx

    NASA Astrophysics Data System (ADS)

    Thakur, Anil; Sharma, Nalini; Chandel, Surjeet; Ahluwalia, P. K.

    2013-02-01

    The electrical resistivity (ρL) of Rb1-XCsX binary alloys has been made calculated using Troullier Martins ab-initio pseudopotentials. The present results of the electrical resistivity (ρL) of Rb1-XCsX binary alloys have been found in good agreement with the experimental results. These results suggest that ab-initio approach for calculating electrical resistivity is quite successful in explaining the electronic transport properties of binary Liquid alloys. Hence ab-initio pseudopotentials can be used instead of model pseudopotentials having problem of transferability.

  14. Quantitative verification of ab initio self-consistent laser theory.

    PubMed

    Ge, Li; Tandy, Robert J; Stone, A D; Türeci, Hakan E

    2008-10-13

    We generalize and test the recent "ab initio" self-consistent (AISC) time-independent semiclassical laser theory. This self-consistent formalism generates all the stationary lasing properties in the multimode regime (frequencies, thresholds, internal and external fields, output power and emission pattern) from simple inputs: the dielectric function of the passive cavity, the atomic transition frequency, and the transverse relaxation time of the lasing transition.We find that the theory gives excellent quantitative agreement with full time-dependent simulations of the Maxwell-Bloch equations after it has been generalized to drop the slowly-varying envelope approximation. The theory is infinite order in the non-linear hole-burning interaction; the widely used third order approximation is shown to fail badly.

  15. Origins of Singlet Fission in Solid Pentacene from an ab initio Green's Function Approach

    NASA Astrophysics Data System (ADS)

    Refaely-Abramson, Sivan; da Jornada, Felipe H.; Louie, Steven G.; Neaton, Jeffrey B.

    2017-12-01

    We develop a new first-principles approach to predict and understand rates of singlet fission with an ab initio Green's-function formalism based on many-body perturbation theory. Starting with singlet and triplet excitons computed from a G W plus Bethe-Salpeter equation approach, we calculate the exciton-biexciton coupling to lowest order in the Coulomb interaction, assuming a final state consisting of two noninteracting spin-correlated triplets with finite center-of-mass momentum. For crystalline pentacene, symmetries dictate that the only purely Coulombic fission decay process from a bright singlet state requires a final state consisting of two inequivalent nearly degenerate triplets of nonzero, equal and opposite, center-of-mass momenta. For such a process, we predict a singlet lifetime of 30-70 fs, in very good agreement with experimental data, indicating that this process can dominate singlet fission in crystalline pentacene. Our approach is general and provides a framework for predicting and understanding multiexciton interactions in solids.

  16. An Ab Initio Exciton Model Including Charge-Transfer Excited States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xin; Parrish, Robert M.; Liu, Fang

    Here, the Frenkel exciton model is a useful tool for theoretical studies of multichromophore systems. We recently showed that the exciton model could be used to coarse-grain electronic structure in multichromophoric systems, focusing on singly excited exciton states. However, our previous implementation excluded charge-transfer excited states, which can play an important role in light-harvesting systems and near-infrared optoelectronic materials. Recent studies have also emphasized the significance of charge-transfer in singlet fission, which mediates the coupling between the locally excited states and the multiexcitonic states. In this work, we report on an ab initio exciton model that incorporates charge-transfer excited statesmore » and demonstrate that the model provides correct charge-transfer excitation energies and asymptotic behavior. Comparison with TDDFT and EOM-CC2 calculations shows that our exciton model is robust with respect to system size, screening parameter, and different density functionals. Inclusion of charge-transfer excited states makes the exciton model more useful for studies of singly excited states and provides a starting point for future construction of a model that also includes double-exciton states.« less

  17. An Ab Initio Exciton Model Including Charge-Transfer Excited States

    DOE PAGES

    Li, Xin; Parrish, Robert M.; Liu, Fang; ...

    2017-06-15

    Here, the Frenkel exciton model is a useful tool for theoretical studies of multichromophore systems. We recently showed that the exciton model could be used to coarse-grain electronic structure in multichromophoric systems, focusing on singly excited exciton states. However, our previous implementation excluded charge-transfer excited states, which can play an important role in light-harvesting systems and near-infrared optoelectronic materials. Recent studies have also emphasized the significance of charge-transfer in singlet fission, which mediates the coupling between the locally excited states and the multiexcitonic states. In this work, we report on an ab initio exciton model that incorporates charge-transfer excited statesmore » and demonstrate that the model provides correct charge-transfer excitation energies and asymptotic behavior. Comparison with TDDFT and EOM-CC2 calculations shows that our exciton model is robust with respect to system size, screening parameter, and different density functionals. Inclusion of charge-transfer excited states makes the exciton model more useful for studies of singly excited states and provides a starting point for future construction of a model that also includes double-exciton states.« less

  18. An Ab Initio Exciton Model Including Charge-Transfer Excited States.

    PubMed

    Li, Xin; Parrish, Robert M; Liu, Fang; Kokkila Schumacher, Sara I L; Martínez, Todd J

    2017-08-08

    The Frenkel exciton model is a useful tool for theoretical studies of multichromophore systems. We recently showed that the exciton model could be used to coarse-grain electronic structure in multichromophoric systems, focusing on singly excited exciton states [ Acc. Chem. Res. 2014 , 47 , 2857 - 2866 ]. However, our previous implementation excluded charge-transfer excited states, which can play an important role in light-harvesting systems and near-infrared optoelectronic materials. Recent studies have also emphasized the significance of charge-transfer in singlet fission, which mediates the coupling between the locally excited states and the multiexcitonic states. In this work, we report on an ab initio exciton model that incorporates charge-transfer excited states and demonstrate that the model provides correct charge-transfer excitation energies and asymptotic behavior. Comparison with TDDFT and EOM-CC2 calculations shows that our exciton model is robust with respect to system size, screening parameter, and different density functionals. Inclusion of charge-transfer excited states makes the exciton model more useful for studies of singly excited states and provides a starting point for future construction of a model that also includes double-exciton states.

  19. Common lines modeling for reference free Ab-initio reconstruction in cryo-EM.

    PubMed

    Greenberg, Ido; Shkolnisky, Yoel

    2017-11-01

    We consider the problem of estimating an unbiased and reference-free ab initio model for non-symmetric molecules from images generated by single-particle cryo-electron microscopy. The proposed algorithm finds the globally optimal assignment of orientations that simultaneously respects all common lines between all images. The contribution of each common line to the estimated orientations is weighted according to a statistical model for common lines' detection errors. The key property of the proposed algorithm is that it finds the global optimum for the orientations given the common lines. In particular, any local optima in the common lines energy landscape do not affect the proposed algorithm. As a result, it is applicable to thousands of images at once, very robust to noise, completely reference free, and not biased towards any initial model. A byproduct of the algorithm is a set of measures that allow to asses the reliability of the obtained ab initio model. We demonstrate the algorithm using class averages from two experimental data sets, resulting in ab initio models with resolutions of 20Å or better, even from class averages consisting of as few as three raw images per class. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jäger, Benjamin, E-mail: benjamin.jaeger@uni-rostock.de; Hellmann, Robert, E-mail: robert.hellmann@uni-rostock.de; Bich, Eckard

    2016-03-21

    A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only atmore » a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.« less

  1. The application of ab initio calculations to molecular spectroscopy

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1989-01-01

    The state of the art in ab initio molecular structure calculations is reviewed with an emphasis on recent developments, such as full configuration-interaction benchmark calculations and atomic natural orbital basis sets. It is found that new developments in methodology, combined with improvements in computer hardware, are leading to unprecedented accuracy in solving problems in spectroscopy.

  2. The application of ab initio calculations to molecular spectroscopy

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1989-01-01

    The state of the art in ab initio molecular structure calculations is reviewed, with an emphasis on recent developments such as full configuration-interaction benchmark calculations and atomic natural orbital basis sets. It is shown that new developments in methodology combined with improvements in computer hardware are leading to unprecedented accuracy in solving problems in spectroscopy.

  3. Ab Initio Calculations of Singlet and Triplet Excited States of Chlorine Nitrate and Nitric Acid

    NASA Technical Reports Server (NTRS)

    Grana, Ana M.; Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    Ab initio calculations of vertical excitations to singlet and triplet excited states of chlorine nitrate and nitric acid are reported. The nature of the electronic transitions are examined by decomposing the difference density into the sum of detachment and attachment densities. Counterparts for the three lowest singlet excited states of nitric acid survive relatively unperturbed in chlorine nitrate, while other low-lying singlet states of chlorine nitrate appear to be directly dissociative in the ClO chromophore. These results suggest an assignment of the two main peaks in the experimental chlorine nitrate absorption spectrum. In addition, triplet vertical excitations and the lowest optimized triplet geometries of both molecules are studied.

  4. Ab initio quantum chemical study of electron transfer in carboranes

    NASA Astrophysics Data System (ADS)

    Pati, Ranjit; Pineda, Andrew C.; Pandey, Ravindra; Karna, Shashi P.

    2005-05-01

    The electron transfer (ET) properties of 10- and 12-vertex carboranes are investigated by the ab initio Hartree-Fock method within the Marcus-Hush (MH) two-state model and the Koopman theorem (KT) approach. The calculated value of the ET coupling matrix element, VAB, is consistently higher in the KT approach than in the MH two-state model. For the carborane molecules functionalized by -CH 2 groups at C-vertices, VAB strongly depends on the relative orientation of the planes containing the terminal -CH 2 groups. The predicted conformation dependence of VAB offers a molecular mechanism to control ET between two active centers in molecular systems.

  5. Hydrogen diffusion in liquid aluminum from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Jakse, N.; Pasturel, A.

    2014-05-01

    Ab initio molecular dynamics simulations are used to describe the diffusion of hydrogen in liquid aluminum at different temperatures. Quasi-instantaneous jumps separating periods of localized vibrations around a mean position are found to characterize the hydrogen motion at the microscopic scale. The hydrogen motion is furthermore analyzed using the van Hove function. We highlight a non-Fickian behavior for the hydrogen diffusion due to a large spatial distribution of hydrogen jumps. We show that a generalized continuous time random walk (CTRW) model describes the experimental diffusion coefficients in a satisfactory manner. Finally, the impact of impurities and alloying elements on hydrogen diffusion in aluminum is discussed.

  6. Comparison between Gaussian-type orbitals and plane wave ab initio density functional theory modeling of layer silicates: Talc [Mg{sub 3}Si{sub 4}O{sub 10}(OH){sub 2}] as model system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulian, Gianfranco; Valdrè, Giovanni, E-mail: giovanni.valdre@unibo.it; Tosoni, Sergio

    2013-11-28

    The quantum chemical characterization of solid state systems is conducted with many different approaches, among which the adoption of periodic boundary conditions to deal with three-dimensional infinite condensed systems. This method, coupled to the Density Functional Theory (DFT), has been proved successful in simulating a huge variety of solids. Only in relatively recent years this ab initio quantum-mechanic approach has been used for the investigation of layer silicate structures and minerals. In the present work, a systematic comparison of different DFT functionals (GGA-PBEsol and hybrid B3LYP) and basis sets (plane waves and all-electron Gaussian-type orbitals) on the geometry, energy, andmore » phonon properties of a model layer silicate, talc [Mg{sub 3}Si{sub 4}O{sub 10}(OH){sub 2}], is presented. Long range dispersion is taken into account by DFT+D method. Results are in agreement with experimental data reported in literature, with minimal deviation given by the GTO/B3LYP-D* method regarding both axial lattice parameters and interaction energy and by PW/PBE-D for the unit-cell volume and angular values. All the considered methods adequately describe the experimental talc infrared spectrum.« less

  7. Ab Initio Simulations of Temperature Dependent Phase Stability and Martensitic Transitions in NiTi

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.

    2016-01-01

    For NiTi based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. In particular, we show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing these phase transformations is discussed.

  8. Ab initio structure prediction of silicon and germanium sulfides for lithium-ion battery materials

    NASA Astrophysics Data System (ADS)

    Hsueh, Connie; Mayo, Martin; Morris, Andrew J.

    Conventional experimental-based approaches to materials discovery, which can rely heavily on trial and error, are time-intensive and costly. We discuss approaches to coupling experimental and computational techniques in order to systematize, automate, and accelerate the process of materials discovery, which is of particular relevance to developing new battery materials. We use the ab initio random structure searching (AIRSS) method to conduct a systematic investigation of Si-S and Ge-S binary compounds in order to search for novel materials for lithium-ion battery (LIB) anodes. AIRSS is a high-throughput, density functional theory-based approach to structure prediction which has been successful at predicting the structures of LIBs containing sulfur and silicon and germanium. We propose a lithiation mechanism for Li-GeS2 anodes as well as report new, theoretically stable, layered and porous structures in the Si-S and Ge-S systems that pique experimental interest.

  9. Structure and Magnetic Properties in Ruthenium-Based Full-Heusler Alloys: AB INITIO Calculations

    NASA Astrophysics Data System (ADS)

    Bahlouli, S.; Aarizou, Z.; Elchikh, M.

    2013-12-01

    In this paper, we present ab initio calculations within density functional theory (DFT) to investigate structure, electronic and magnetic properties of Ru2CrZ (Z = Si, Ge and Sn) full-Heusler alloys. We have used the developed full-potential linearized muffin tin orbitals (FP-LMTO) based on the local spin density approximation (LSDA) with the PLane Wave expansion (PLW). In particular, we found that these Ruthenium-based Heusler alloys have the antiferromagnetic (AFM) type II as ground state. Then, we studied and discussed the magnetic properties belonging to our different magnetic structures: AFM type II, AFM type I and ferromagnetic (FM) phase. We also found that Ru2CrSi and Ru2CrGe exhibit a semiconducting behavior whereas Ru2CrSn has a semimetallic-like behavior as it is experimentally found. We made an estimation of Néel temperatures (TN) in the framework of the mean-field theory and used the energy differences approach to deduce the relevant short-range nearest-neighbor (J1) and next-nearest-neighbor (J2) interactions. The calculated TN are somewhat overestimated to the available experimental ones.

  10. Kinetic products in coordination networks: ab initio X-ray powder diffraction analysis.

    PubMed

    Martí-Rujas, Javier; Kawano, Masaki

    2013-02-19

    Porous coordination networks are materials that maintain their crystal structure as molecular "guests" enter and exit their pores. They are of great research interest with applications in areas such as catalysis, gas adsorption, proton conductivity, and drug release. As with zeolite preparation, the kinetic states in coordination network preparation play a crucial role in determining the final products. Controlling the kinetic state during self-assembly of coordination networks is a fundamental aspect of developing further functionalization of this class of materials. However, unlike for zeolites, there are few structural studies reporting the kinetic products made during self-assembly of coordination networks. Synthetic routes that produce the necessary selectivity are complex. The structural knowledge obtained from X-ray crystallography has been crucial for developing rational strategies for design of organic-inorganic hybrid networks. However, despite the explosive progress in the solid-state study of coordination networks during the last 15 years, researchers still do not understand many chemical reaction processes because of the difficulties in growing single crystals suitable for X-ray diffraction: Fast precipitation can lead to kinetic (metastable) products, but in microcrystalline form, unsuitable for single crystal X-ray analysis. X-ray powder diffraction (XRPD) routinely is used to check phase purity, crystallinity, and to monitor the stability of frameworks upon guest removal/inclusion under various conditions, but rarely is used for structure elucidation. Recent advances in structure determination of microcrystalline solids from ab initio XRPD have allowed three-dimensional structure determination when single crystals are not available. Thus, ab initio XRPD structure determination is becoming a powerful method for structure determination of microcrystalline solids, including porous coordination networks. Because of the great interest across scientific

  11. Ti, Al and N adatom adsorption and diffusion on rocksalt cubic AlN (001) and (011) surfaces: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Mastail, C.; David, M.; Nita, F.; Michel, A.; Abadias, G.

    2017-11-01

    We use ab initio calculations to determine the preferred nucleation sites and migration pathways of Ti, Al and N adatoms on cubic NaCl-structure (B1) AlN surfaces, primary inputs towards a further thin film growth modelling of the TiAlN alloy system. The potential energy landscape is mapped out for both metallic species and nitrogen adatoms for two different AlN surface orientations, (001) and (110), using density functional theory. For all species, the adsorption energies on AlN(011) surface are larger than on AlN(001) surface. Ti and Al adatom adsorption energy landscapes determined at 0 K by ab initio show similar features, with stable binding sites being located in, or near, epitaxial surface positions, with Ti showing a stronger binding compared to Al. In direct contrast, N adatoms (Nad) adsorb preferentially close to N surface atoms (Nsurf), thus forming strong N2-molecule-like bonds on both AlN(001) and (011). Similar to N2 desorption mechanisms reported for other cubic transition metal nitride surfaces, in the present work we investigate Nad/Nsurf desorption on AlN(011) using a drag calculation method. We show that this process leaves a Nsurf vacancy accompanied with a spontaneous surface reconstruction, highlighting faceting formation during growth.

  12. Ab initio theory of noble gas atoms in bcc transition metals.

    PubMed

    Jiang, Chao; Zhang, Yongfeng; Gao, Yipeng; Gan, Jian

    2018-06-18

    Systematic ab initio calculations based on density functional theory have been performed to gain fundamental understanding of the interactions between noble gas atoms (He, Ne, Ar and Kr) and bcc transition metals in groups 5B (V, Nb and Ta), 6B (Cr, Mo and W) and 8B (Fe). Our charge density analysis indicates that the strong polarization of nearest-neighbor metal atoms by noble gas interstitials is the electronic origin of their high formation energies. Such polarization becomes more significant with an increasing gas atom size and interstitial charge density in the host bcc metal, which explains the similar trend followed by the unrelaxed formation energies of noble gas interstitials. Upon allowing for local relaxation, nearby metal atoms move farther away from gas interstitials in order to decrease polarization, albeit at the expense of increasing the elastic strain energy. Such atomic relaxation is found to play an important role in governing both the energetics and site preference of noble gas atoms in bcc metals. Our most notable finding is that the fully relaxed formation energies of noble gas interstitials are strongly correlated with the elastic shear modulus of the bcc metal, and the physical origin of this unexpected correlation has been elucidated by our theoretical analysis based on the effective-medium theory. The kinetic behavior of noble gas atoms and their interaction with pre-existing vacancies in bcc transition metals have also been discussed in this work.

  13. Ab initio electronic transport and thermoelectric properties of solids from full and range-separated hybrid functionals

    NASA Astrophysics Data System (ADS)

    Sansone, Giuseppe; Ferretti, Andrea; Maschio, Lorenzo

    2017-09-01

    Within the semiclassical Boltzmann transport theory in the constant relaxation-time approximation, we perform an ab initio study of the transport properties of selected systems, including crystalline solids and nanostructures. A local (Gaussian) basis set is adopted and exploited to analytically evaluate band velocities as well as to access full and range-separated hybrid functionals (such as B3LYP, PBE0, or HSE06) at a moderate computational cost. As a consequence of the analytical derivative, our approach is computationally efficient and does not suffer from problems related to band crossings. We investigate and compare the performance of a variety of hybrid functionals in evaluating Boltzmann conductivity. Demonstrative examples include silicon and aluminum bulk crystals as well as two thermoelectric materials (CoSb3, Bi2Te3). We observe that hybrid functionals other than providing more realistic bandgaps—as expected—lead to larger bandwidths and hence allow for a better estimate of transport properties, also in metallic systems. As a nanostructure prototype, we also investigate conductivity in boron-nitride (BN) substituted graphene, in which nanoribbons (nanoroads) alternate with BN ones.

  14. Substrate Screening Effects in ab initio Many-body Green's Function Calculations of Doped Graphene on SiC

    NASA Astrophysics Data System (ADS)

    Vigil-Fowler, Derek; Lischner, Johannes; Louie, Steven

    2013-03-01

    Understanding many-electron interaction effects and the influence of the substrate in graphene-on-substrate systems is of great theoretical and practical interest. Thus far, both model Hamiltonian and ab initio GW calculations for the quasiparticle properties of such systems have employed crude models for the effect of the substrate, often approximating the complicated substrate dielectric matrix by a single constant. We develop a method in which the spatially-dependent dielectric matrix of the substrate (e.g., SiC) is incorporated into that of doped graphene to obtain an accurate total dielectric matrix. We present ab initio GW + cumulant expansion calculations, showing that both the cumulant expansion (to include higher-order electron correlations) and a proper account of the substrate screening are needed to achieve agreement with features seen in ARPES. We discuss how this methodology could be used in other systems. This work was supported by NSF Grant No. DMR10-1006184 and U.S. DOE Contract No. DE-AC02-05CH11231. Computational resources have been provided by the NERSC and NICS. D.V-F. acknowledges funding from the DOD's NDSEG fellowship.

  15. Optical properties of highly compressed polystyrene: An ab initio study

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Collins, L. A.; Colgan, J. P.; Goncharov, V. N.; Kilcrease, D. P.

    2017-10-01

    Using all-electron density functional theory, we have performed an ab initio study on x-ray absorption spectra of highly compressed polystyrene (CH). We found that the K -edge shifts in strongly coupled, degenerate polystyrene cannot be explained by existing continuum-lowering models adopted in traditional plasma physics. To gain insights into the K -edge shift in warm, dense CH, we have developed a model designated as "single mixture in a box" (SMIAB), which incorporates both the lowering of the continuum and the rising of the Fermi surface resulting from high compression. This simple SMIAB model correctly predicts the K -edge shift of carbon in highly compressed CH in good agreement with results from quantum molecular dynamics (QMD) calculations. Traditional opacity models failed to give the proper K -edge shifts as the CH density increased. Based on QMD calculations, we have established a first-principles opacity table (FPOT) for CH in a wide range of densities and temperatures [ρ =0.1 -100 g /c m3 and T =2000 -1 000 000 K ]. The FPOT gives much higher Rosseland mean opacity compared to the cold-opacity-patched astrophysics opacity table for warm, dense CH and favorably compares to the newly improved Los Alamos atomic model for moderately compressed CH (ρCH≤10 g /c m3 ), but remains a factor of 2 to 3 higher at extremely high densities (ρCH≥50 g /c m3 ). We anticipate the established FPOT of CH will find important applications to reliable designs of high-energy-density experiments. Moreover, the understanding of K -edge shifting revealed in this study could provide guides for improving the traditional opacity models to properly handle the strongly coupled and degenerate conditions.

  16. Optical properties of highly compressed polystyrene: An ab initio study

    DOE PAGES

    Hu, S. X.; Collins, L. A.; Colgan, J. P.; ...

    2017-10-16

    Using all-electron density functional theory, we have performed an ab initio study on x ray absorption spectra of highly compressed polystyrene (CH). Here, we found that the K-edge shifts in strongly coupled, degenerate polystyrene cannot be explained by existing continuum-lowering models adopted in traditional plasma physics. To gain insights into the K edge shift in warm, dense CH, we have developed a model designated as “single-mixture-in-a-box” (SMIAB), which incorporates both the lowering of continuum and the rising of Fermi surface resulting from high compression. This simple SMIAB model correctly predicts the K-edge shift of carbon in highly compressed CH inmore » good agreement with results from quantum-molecular-dynamics (QMD) calculations. Traditional opacity models failed to give the proper K-edge shifts as the CH density increased. Based on QMD calculations, we have established a first-principles opacity table (FPOT) for CH in a wide range of densities and temperatures [p = 0.1 to 100 g/cm 3 and T = 2000 to 1,000,000 K]. The FPOT gives much higher Rosseland mean opacity compared to the cold-opacity–patched astrophysics opacity table for warm, dense CH and favorably compares to the newly improved Los Alamos ATOMIC model for moderately compressed CH (pCH ≤10 g/cm 3) but remains a factor of 2 to 3 higher at extremely high densities (pCH ≥ 50 g/cm 3). We anticipate the established FPOT of CH will find important applications to reliable designs of high-energy-density experiments. Moreover, the understanding of K-edge shifting revealed in this study could provide guides for improving the traditional opacity models to properly handle the strongly coupled and degenerate conditions.« less

  17. Optical properties of highly compressed polystyrene: An ab initio study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, S. X.; Collins, L. A.; Colgan, J. P.

    Using all-electron density functional theory, we have performed an ab initio study on x ray absorption spectra of highly compressed polystyrene (CH). Here, we found that the K-edge shifts in strongly coupled, degenerate polystyrene cannot be explained by existing continuum-lowering models adopted in traditional plasma physics. To gain insights into the K edge shift in warm, dense CH, we have developed a model designated as “single-mixture-in-a-box” (SMIAB), which incorporates both the lowering of continuum and the rising of Fermi surface resulting from high compression. This simple SMIAB model correctly predicts the K-edge shift of carbon in highly compressed CH inmore » good agreement with results from quantum-molecular-dynamics (QMD) calculations. Traditional opacity models failed to give the proper K-edge shifts as the CH density increased. Based on QMD calculations, we have established a first-principles opacity table (FPOT) for CH in a wide range of densities and temperatures [p = 0.1 to 100 g/cm 3 and T = 2000 to 1,000,000 K]. The FPOT gives much higher Rosseland mean opacity compared to the cold-opacity–patched astrophysics opacity table for warm, dense CH and favorably compares to the newly improved Los Alamos ATOMIC model for moderately compressed CH (pCH ≤10 g/cm 3) but remains a factor of 2 to 3 higher at extremely high densities (pCH ≥ 50 g/cm 3). We anticipate the established FPOT of CH will find important applications to reliable designs of high-energy-density experiments. Moreover, the understanding of K-edge shifting revealed in this study could provide guides for improving the traditional opacity models to properly handle the strongly coupled and degenerate conditions.« less

  18. Covariant density functional theory: predictive power and first attempts of a microscopic derivation

    NASA Astrophysics Data System (ADS)

    Ring, Peter

    2018-05-01

    We discuss systematic global investigations with modern covariant density functionals. The number of their phenomenological parameters can be reduced considerable by using microscopic input from ab-initio calculations in nuclear matter. The size of the tensor force is still an open problem. Therefore we use the first full relativistic Brueckner-Hartree-Fock calculations in finite nuclear systems in order to study properties of such functionals, which cannot be obtained from nuclear matter calculations.

  19. Carbene-aerogen bonds: an ab initio study

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Sabouri, Ayda

    2017-04-01

    Through the use of ab initio calculations, the possibility of formation of σ-hole interaction between ZO3 (Z = Ar, Kr and Xe) and carbene species is investigated. Since singlet carbenes show a negative electrostatic potential on their divalent carbon atom, they can favourably interact with the positive electrostatic potential generated by the σ-hole of Z atom of ZO3. The characteristic of this interaction, termed as 'carbene-aerogen' bond, is analysed in terms of geometric, interaction energies and electronic features. The energy decomposition analysis indicates that for all complexes analysed here, the electrostatic energy is more negative than the polarisation or dispersion energy term. According to the electron density analysis, some partial covalent character can be ascribed to XeṡṡṡC interactions. In addition, the carbene-aerogen bond exhibits cooperative effects with the HṡṡṡO hydrogen-bonding interaction in ternary complexes where both interactions coexist. For a given carbene, the amount of these cooperative effects increases with the size of the Z atom. The results obtained in this work may be helpful for the extension and future application of σ-hole intermolecular interactions as well as coordination chemistry.

  20. Consistent integration of experimental and ab initio data into molecular and coarse-grained models

    NASA Astrophysics Data System (ADS)

    Vlcek, Lukas

    As computer simulations are increasingly used to complement or replace experiments, highly accurate descriptions of physical systems at different time and length scales are required to achieve realistic predictions. The questions of how to objectively measure model quality in relation to reference experimental or ab initio data, and how to transition seamlessly between different levels of resolution are therefore of prime interest. To address these issues, we use the concept of statistical distance to define a measure of similarity between statistical mechanical systems, i.e., a model and its target, and show that its minimization leads to general convergence of the systems' measurable properties. Through systematic coarse-graining, we arrive at appropriate expressions for optimization loss functions consistently incorporating microscopic ab initio data as well as macroscopic experimental data. The design of coarse-grained and multiscale models is then based on factoring the model system partition function into terms describing the system at different resolution levels. The optimization algorithm takes advantage of thermodynamic perturbation expressions for fast exploration of the model parameter space, enabling us to scan millions of parameter combinations per hour on a single CPU. The robustness and generality of the new model optimization framework and its efficient implementation are illustrated on selected examples including aqueous solutions, magnetic systems, and metal alloys.

  1. Conformational and Structural Studies of Isopropylamine from Temperature Dependent Raman Spectra of Xenon Solutions and {AB INITIO} Calculations

    NASA Astrophysics Data System (ADS)

    Klaassen, Joshua J.; Darkhalil, Ikhlas D.; Durig, James R.

    2012-06-01

    The Raman and infrared spectra (4000 to 50 cm-1) of the gas, liquid or solution, and solid have been recorded of isopropylamine, (CH3)2CHNH2. Variable temperature (-50 to -100oC) studies of the Raman spectra (3500 to 100 cm-1) dissolved in liquid xenon have been carried out. From these data, both the {trans} and {gauche} conformers have been identified and their relative stability obtained. The enthalpy difference has been determined from 20 band pairs at 6 temperatures to be 113 +/- 11 cm-1 (1.35 +/- 0.13 kJ mol-1) with the {trans} conformer the more stable form. The percentage of the {gauche} conformer is estimated to be 54 +/- 1 percent at ambient temperature. The conformational stabilities have been predicted from {ab initio} calculations utilizing several different basis sets up to aug-cc-pVTZ from both MP2(full) and density functional theory calculations by the B3LYP method. By utilizing previously reported microwave rotational constants along with {ab initio} MP2(full)/6-311+G(d,p) predicted structural values, adjusted r0 parameters have been obtained for the {trans} conformer. The determined heavy atom and NH2 distances in angstroms are C-C = 1.530(3), C-N = 1.465(3), N-H = 1.019(3) and angles in degrees NCC = 108.9(5), CCC = 111.0(5), HNC = 110.3(5). The structural parameters for the {gauche} conformer were estimated by using the same adjustment differences to the {gauche} form as those obtained for the corresponding {trans} parameters. Vibrational assignments have been provided for the observed bands for both conformers which are supported by MP2(full)/6-31G(d) {ab initio} calculations to predict harmonic force constants, wavenumbers, infrared intensities, Raman activities and depolarization ratios for both conformers. The results are discussed and compared to the corresponding properties of some related molecules.

  2. Ab initio molecular dynamics of the reaction of quercetin with superoxide radical

    NASA Astrophysics Data System (ADS)

    Lespade, Laure

    2016-08-01

    Superoxide plays an important role in biology but in unregulated concentrations it is implicated in a lot of diseases such as cancer or atherosclerosis. Antioxidants like flavonoids are abundant in plant and are good scavengers of superoxide radical. The modeling of superoxide scavenging by flavonoids from the diet still remains a challenge. In this study, ab initio molecular dynamics of the reaction of the flavonoid quercetin toward superoxide radical has been carried out using Car-Parrinello density functional theory. The study has proven different reactant solvation by modifying the number of water molecules surrounding superoxide. The reaction consists in the gift of a hydrogen atom of one of the hydroxyl groups of quercetin to the radical. When it occurs, it is relatively fast, lower than 100 fs. Calculations show that it depends largely on the environment of the hydroxyl group giving its hydrogen atom, the geometry of the first water layer and the presence of a certain number of water molecules in the second layer, indicating a great influence of the solvent on the reactivity.

  3. Magneto-structural correlations in a family of Fe(II)Re(IV)(CN)2 single-chain magnets: density functional theory and ab initio calculations.

    PubMed

    Zhang, Yi-Quan; Luo, Cheng-Lin; Wu, Xin-Bao; Wang, Bing-Wu; Gao, Song

    2014-04-07

    Until now, the expressions of the anisotropic energy barriers Δξ and ΔA, using the uniaxial magnetic anisotropy D, the intrachain coupling strength J, and the high-spin ground state S for single-chain magnets (SCMs) in the intermediate region between the Ising and the Heisenberg limits, were unknown. To explore this relationship, we used density functional theory and ab initio methods to obtain expressions of Δξ and ΔA in terms of D, J, and S of six R4Fe(II)-Re(IV)Cl4(CN)2 (R = diethylformamide (1), dibutylformamide (2), dimethylformamide (3), dimethylbutyramide (4), dimethylpropionamide (5), and diethylacetamide (6)) SCMs in the intermediate region. The ΔA value for compounds 1-3 was very similar to the magnetic anisotropic energy of a single Fe(II), while the value of Δξ was predicted using the exchange interaction of Fe(II) with the neighboring Re(IV), which could be expressed as 2JSReSFe. Similar to compounds 1-3, the anisotropy energy barrier ΔA of compounds 4 and 5 was also equal to (Di - Ei)SFe(2), but the correlation energy Δξ was closely equal to 2JSReSFe(cos 98.4 - cos 180) due to the reversal of the spins on the opposite Fe(II). For compound 6, one unit cell of Re(IV)Fe(II) was regarded as a domain wall since it had two different Re(IV)-Fe(II) couplings. Thus, the Δξ of compound 6 was expressed as 4J″SRe1Fe1SRe2Fe2, where J″ was the coupling constant of the neighboring unit cells of Re1Fe1 and Re2Fe2, and ΔA was equal to the anisotropic energy barrier of one domain wall given by DRe1Fe1(S(2)Re1Fe1 - 1/4).

  4. Ab initio calculations of the absorption spectrum of chalcone

    NASA Astrophysics Data System (ADS)

    Oumi, Manabu; Maurice, David; Head-Gordon, Martin

    1999-03-01

    The excitation energies and excited states of trans-chalcone ( trans-( s-cis)-1,3-diphenylpropenone), and several related molecules ( trans-( s-cis)-3-phenylpropenal, s-cis-1-phenylpropenone, propenal, trans-( s-cis)-1-(4-hydroxyphenyl)-3-phenylpropenone, trans-( s-cis)3-(4-hydroxyphenyl)-1-phenylpropenone) have been calculated using single reference ab initio molecular orbital methods, and characterized by attachment-detachment density analysis. The results suggest assignments for the lowest three electronic transitions observed experimentally for trans-( s-cis)-chalcone in solution. The extent of localization of the electronic transitions is established by calculations on the excited states of trans-( s-cis)-3-phenylpropenal, s-cis-1-phenylpropenone and propenal, as well as analysis of the chalcone calculations. Contrary to some previous work, none of these excitations are strongly delocalized over the entire molecule. Calculated substituent shifts for the hydroxy chalcones are in qualitative agreement with experimental data, and support the localized interpretation of the main π→ π* transition.

  5. Ab initio correlated calculations of rare-gas dimer quadrupoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donchev, Alexander G.

    2007-10-15

    This paper reports ab initio calculations of rare gas (RG=Kr, Ar, Ne, and He) dimer quadrupoles at the second order of Moeller-Plesset perturbation theory (MP2). The study reveals the crucial role of the dispersion contribution to the RG{sub 2} quadrupole in the neighborhood of the equilibrium dimer separation. The magnitude of the dispersion quadrupole is found to be much larger than that predicted by the approximate model of Hunt. As a result, the total MP2 quadrupole moment is significantly smaller than was assumed in virtually all previous related studies. An analytical model for the distance dependence of the RG{sub 2}more » quadrupole is proposed. The model is based on the effective-electron approach of Jansen, but replaces the original Gaussian approximation to the electron density in an RG atom by an exponential one. The role of the nonadditive contribution in RG{sub 3} quadrupoles is discussed.« less

  6. Ab Initio Calculated Results Require New Formulations for Properties in the Limit of Zero Density: The Viscosity of Methane (CH4)

    NASA Astrophysics Data System (ADS)

    Laesecke, Arno; Muzny, Chris D.

    2017-12-01

    A wide-ranging formulation for the viscosity of methane in the limit of zero density is presented. Using ab initio calculated data of Hellmann et al. (J Chem Phys 129, 064302, 2008) from 80 K to 1500 K, the functional form was developed by guided symbolic regression with the constraints of correct extrapolation to T → 0 and in the high-temperature limit. The formulation was adjusted to the recalibrated experimental data of May et al. (Int J Thermophys 28, 1085-1110, 2007) so that these are represented within their estimated expanded uncertainty of 0.053 % (k = 2) in their temperature range from 210.756 K to 391.551 K. Based on comparisons with original data and recalibrated viscosity ratio measurements, the expanded uncertainty of the new correlation is estimated outside this temperature range to be 0.2 % to 700 K, 0.5 % to 1100 K, 1 % to 1500 K, and physically correct at higher temperatures. At temperatures below 210 K, the new correlation agrees with recalibrated experimental data within 0.3 % down to 150 K. Hellmann et al. estimated the expanded uncertainty of their calculated data at 1 % to 80 K. The new formulation extrapolates without a singularity to T→ 0.

  7. Ab Initio and Analytic Intermolecular Potentials for Ar–CH3OH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasic, Uros; Alexeev, Yuri; Vayner, Grigoriy

    2006-09-20

    Ab initio calculations at the CCSD(T)/aug-cc-pVTZ level of theory were used to characterize the Ar–CH₃y6tOH intermolecular potential energy surface (PES). Potential energy curves were calculated for four different Ar + CH₃OH orientations and used to derive an analytic function for the intermolecular PES. A sum of Ar–C, Ar–O, Ar–H(C), and Ar–H(O) two-body potentials gives an excellent fit to these potential energy curves up to 100 kcal mol¯¹, and adding an additional r¯¹n term to the Buckingham two-body potential results in only a minor improvement in the fit. Three Ar–CH₃OH van der Waals minima were found from the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ calculations. Themore » structure of the global minimum is in overall good agreement with experiment (X.-C. Tan, L. Sun and R. L. Kuczkowski, J. Mol. Spectrosc., 1995, 171, 248). It is T-shaped with the hydroxyl H-atom syn with respect to Ar. Extrapolated to the complete basis set (CBS) limit, the global minimum has a well depth of 0.72 kcal mol¯¹ with basis set superposition error (BSSE) correction. The aug-cc-pVTZ basis set gives a well depth only 0.10 kcal mol¯¹ smaller than this value. The well depths of the other two minima are within 0.16 kcal mol¯¹ of the global minimum. The analytic Ar–CH₃OH intermolecular potential also identifies these three minima as the only van der Waals minima and the structures predicted by the analytic potential are similar to the ab initio structures. The analytic potential identifies the same global minimum and the predicted well depths for the minima are within 0.05 kcal mol¯1 of the ab initio values. Combining this Ar–CH₃OH intermolecular potential with a potential for a OH-terminated alkylthiolate self-assembled monolayer surface (i.e., HO-SAM) provides a potential to model Ar + HO-SAM collisions.« less

  8. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M.

    2015-05-21

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H{sub 2}O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previousmore » spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm{sup −1} is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.« less

  9. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M.

    2015-05-01

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H2O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0-4000 cm-1 is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.

  10. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment.

    PubMed

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M

    2015-05-21

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H2O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0-4000 cm(-1) is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.

  11. Unified theory of quantized electrons, phonons, and photons out of equilibrium: A simplified ab initio approach based on the generalized Baym-Kadanoff ansatz

    NASA Astrophysics Data System (ADS)

    de Melo, Pedro Miguel M. C.; Marini, Andrea

    2016-04-01

    We present a full ab initio description of the coupled out-of-equilibrium dynamics of photons, phonons, and electrons. In the present approach, the quantized nature of the electromagnetic field as well as of the nuclear oscillations is fully taken into account. The result is a set of integrodifferential equations, written on the Keldysh contour, for the Green's functions of electrons, phonons, and photons where the different kinds of interactions are merged together. We then concentrate on the electronic dynamics in order to reduce the problem to a computationally feasible approach. By using the generalized Baym-Kadanoff ansatz and the completed collision approximation, we introduce a series of efficient but controllable approximations. In this way, we reduce all equations to a set of decoupled equations for the density matrix that describe all kinds of static and dynamical correlations. The final result is a coherent, general, and inclusive scheme to calculate several physical quantities: carrier dynamics, transient photoabsorption, and light emission, all of which include, at the same time, electron-electron, electron-phonon, and electron-photon interactions. We further discuss how all these observables can be easily calculated within the present scheme using a fully atomistic ab initio approach.

  12. Exploring the free energy surface using ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Samanta, Amit; Morales, Miguel A.; Schwegler, Eric

    2016-04-01

    Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational and algorithmic perspectives. In this regard, schemes that utilize a set of pre-defined order parameters to sample the relevant parts of the configuration space [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006); J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)] have proved useful. Here, we demonstrate how these order-parameter aided temperature accelerated sampling schemes can be used within the Born-Oppenheimer and the Car-Parrinello frameworks of ab initio molecular dynamics to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways. We have used these methods to identify the metastable structures and reaction pathways in SiO2 and Ti. In addition, we have used the string method [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002); L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] within the density functional theory to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hexagonal closed packed to face centered cubic phase transition in Ti.

  13. Thermal, spectroscopic, and ab initio structural characterization of carprofen polymorphs.

    PubMed

    Bruni, Giovanna; Gozzo, Fabia; Capsoni, Doretta; Bini, Marcella; Macchi, Piero; Simoncic, Petra; Berbenni, Vittorio; Milanese, Chiara; Girella, Alessandro; Ferrari, Stefania; Marini, Amedeo

    2011-06-01

    Commercial and recrystallized polycrystalline samples of carprofen, a nonsteroidal anti-inflammatory drug, were studied by thermal, spectroscopic, and structural techniques. Our investigations demonstrated that recrystallized sample, stable at room temperature (RT), is a single polymorphic form of carprofen (polymorph I) that undergoes an isostructural polymorphic transformation by heating (polymorph II). Polymorph II remains then metastable at ambient conditions. Commercial sample is instead a mixture of polymorphs I and II. The thermodynamic relationships between the two polymorphs were determined through the construction of an energy/temperature diagram. The ab initio structural determination performed on synchrotron X-Ray powder diffraction patterns recorded at RT on both polymorphs allowed us to elucidate, for the first time, their crystal structure. Both crystallize in the monoclinic space group type P2(1) /c, and the unit cell similarity index and the volumetric isostructurality index indicate that the temperature-induced polymorphic transformation I → II is isostructural. Polymorphs I and II are conformational polymorphs, sharing a very similar hydrogen bond network, but with different conformation of the propanoic skeleton, which produces two different packing. The small conformational change agrees with the low value of transition enthalpy obtained by differential scanning calorimetry measurements and the small internal energy computed with density functional methods. Copyright © 2011 Wiley-Liss, Inc.

  14. Ab initio calculations of ionic hydrocarbon compounds with heptacoordinate carbon.

    PubMed

    Wang, George; Rahman, A K Fazlur; Wang, Bin

    2018-04-25

    Ionic hydrocarbon compounds that contain hypercarbon atoms, which bond to five or more atoms, are important intermediates in chemical synthesis and may also find applications in hydrogen storage. Extensive investigations have identified hydrocarbon compounds that contain a five- or six-coordinated hypercarbon atom, such as the pentagonal-pyramidal hexamethylbenzene, C 6 (CH 3 ) 6 2+ , in which a hexacoordinate carbon atom is involved. It remains challenging to search for further higher-coordinated carbon in ionic hydrocarbon compounds, such as seven- and eight-coordinated carbon. Here, we report ab initio density functional calculations that show a stable 3D hexagonal-pyramidal configuration of tropylium trication, (C 7 H 7 ) 3+ , in which a heptacoordinate carbon atom is involved. We show that this tropylium trication is stable against deprotonation, dissociation, and structural deformation. In contrast, the pyramidal configurations of ionic C 8 H 8 compounds, which would contain an octacoordinate carbon atom, are unstable. These results provide insights for developing new molecular structures containing hypercarbon atoms, which may have potential applications in chemical synthesis and in hydrogen storage. Graphical abstract Possible structural transformations of stable configurations of (C 7 H 7 ) 3+ , which may result in the formation of the pyramidal structure that involves a heptacoordinate hypercarbon atom.

  15. Ab-initio Calculation of the XANES of Lithium Phosphates and LiFePO4

    NASA Astrophysics Data System (ADS)

    Yiu, Y. M.; Yang, Songlan; Wang, Dongniu; Sun, Xueliang; Sham, T. K.

    2013-04-01

    Lithium iron phosphate has been regarded as a promising cathode material for the next generation lithium ion batteries due to its high specific capacity, superior thermal and cyclic stability [1]. In this study, the XANES (X-ray Absorption Near Edge Structure) spectra of lithium iron phosphate and lithium phosphates of various compositions at the Li K, P L3,2, Fe M3,2 and O K-edges have been simulated self-consistently using ab-initio calculations based on multiple scattering theory (the FEFF9 code) and DFT (Density Functional Theory, the Wien2k code). The lithium phosphates under investigation include LiFePO4, γ-Li3PO4, Li4P2O7 and LiPO3. The calculated spectra are compared to the experimental XANES recorded in total electron yield (TEY) and fluorescence yield (FLY). This work was carried out to assess the XANES of possible phases presented in LiFePO4 based Li ion battery applications [2].

  16. Ab initio study of H + + H 2 collisions: Elastic/inelastic and charge transfer processes

    NASA Astrophysics Data System (ADS)

    Saieswari, A.; Kumar, Sanjay

    2007-12-01

    An ab initio full configuration interaction study has been undertaken to obtain the global potential energy surfaces for the ground and the first excited electronic state of the H + + H 2 system employing Dunning's cc-pVQZ basis set. Using the ab initio approach the corresponding quasi-diabatic potential energy surfaces and coupling potentials have been obtained. A time-independent quantum mechanical study has been also undertaken for both the inelastic and charge transfer processes at the experimental collision energy Ec.m. = 20.0 eV and the preliminary results show better agreement with the experimental data as compared to the earlier available theoretical studies.

  17. Nuclear structure and dynamics with density functional theory

    NASA Astrophysics Data System (ADS)

    Stetcu, Ionel

    2015-10-01

    Even in the absence of ab initio methods capable of tackling heavy nuclei without restrictions, one can obtain an ab initio description of ground-state properties by means of the density functional theory (DFT), and its extension to superfluid systems in its local variant, the superfluid local density approximation (SLDA). Information about the properties of excited states can be obtained in the same framework by using an extension to the time-dependent (TD) phenomena. Unlike other approaches in which the nuclear structure information is used as a separate input into reaction models, the TD approach treats on the same footing the nuclear structure and dynamics, and is well suited to provide more reliable description for a large number of processes involving heavy nuclei, from the nuclear response to electroweak probes, to nuclear reactions, such as neutron-induced reactions, or nuclear fusion and fission. Such processes, sometimes part of integrated nuclear systems, have important applications in astrophysics, energy production, global security, etc. In this talk, I will present the simulation of a simple reaction, that is the Coulomb excitation of a 238U nucleus, and discuss the application of the TD-DFT formalism to the description of induced fission. I gratefully acknowledge partial support of the U.S. Department of Energy through an Early Career Award of the LANL/LDRD Program.

  18. Ab initio and empirical energy landscapes of (MgF2)n clusters (n = 3, 4).

    PubMed

    Neelamraju, S; Schön, J C; Doll, K; Jansen, M

    2012-01-21

    We explore the energy landscape of (MgF(2))(3) on both the empirical and ab initio level using the threshold algorithm. In order to determine the energy landscape and the dynamics of the trimer we investigate not only the stable isomers but also the barriers separating these isomers. Furthermore, we study the probability flows in order to estimate the stability of all the isomers found. We find that there is reasonable qualitative agreement between the ab initio and empirical potential, and important features such as sub-basins and energetic barriers follow similar trends. However, we observe that the energies are systematically different for the less compact clusters, when comparing empirical and ab initio energies. Since the underlying motivation of this work is to identify the possible clusters present in the gas phase during a low-temperature atom beam deposition synthesis of MgF(2), we employ the same procedure to additionally investigate the energy landscape of the tetramer. For this case, however, we use only the empirical potential.

  19. Ab initio many-body calculations of nucleon scattering on ^16O

    NASA Astrophysics Data System (ADS)

    Navratil, Petr; Quaglioni, Sofia; Roth, Robert

    2008-10-01

    We develop a new ab initio many-body approachootnotetextS. Quaglioni and P. Navratil, arXiv:0804.1560. capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group methodootnotetextY. C. Tang et al., Phys. Rep. 47, 167 (1978); K. Langanke and H. Friedrich, Advances in Nuclear Physics, Plenum, New York, 1987. with the ab initio no-core shell model (NCSM).ootnotetextP. Navratil, J. P. Vary, and B. R. Barrett, Phys. Rev. Lett. 84, 5728 (2000); Phys. Rev. C 62, 054311 (2000). In this way, we complement a microscopic-cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, while preserving Pauli principle and translational symmetry. We will present results for low-energy nucleon scattering on ^16O and for A=17 bound states obtained using realistic nucleon-nucleon potentials. The ^16O wave functions are calculated within the importance-truncated NCSMootnotetextR. Roth and P. Navratil, Phys. Rev. Lett. 99, 092501 (2007). that allows the use of model spaces up to 18φ and ultimately enables to reach convergence of phase-shifts and other observables. Prepared by LLNL under Contract DE-AC52-07NA27344. Support from the U.S. DOE/SC/NP (Work Proposal No. SCW0498), and from the U. S. Department of Energy Grant DE-FC02-07ER41457 is acknowledged.

  20. Using Ab-Initio Calculations to Appraise Stm-Based - and Kink-Formation Energies

    NASA Astrophysics Data System (ADS)

    Feibelman, Peter J.

    2001-03-01

    Ab-initio total energies can and should be used to test the typically model-dependent results of interpreting STM morphologies. The benefits of such tests are illustrated here by ab-initio energies of step- and kink-formation on Pb and Pt(111) which show that the STM-based values of the kink energies must be revised. On Pt(111), the computed kink-energies for (100)- and (111)-microfacet steps are about 0.25 and 0.18 eV. These results imply a specific ratio of formation energies for the two step types, namely 1.14, in excellent agreement with experiment. If kink-formation actually cost the same energy on the two step types, an inference drawn from scanning probe observations of step wandering,(M. Giesen et al., Surf. Sci. 366, 229(1996).) this ratio ought to be 1. In the case of Pb(111), though computed energies to form (100)- and (111)-microfacet steps agree with measurement, the ab-initio kink-formation energies for the two step types, 41 and 60 meV, are 40-50% below experimental values drawn from STM images.(K. Arenhold et al., Surf. Sci. 424, 271(1999).) The discrepancy results from interpreting the images with a step-stiffness vs. kink-energy relation appropriate to (100) but not (111) surfaces. Good agreement is found when proper account of the trigonal symmetry of Pb(111) is taken in reinterpreting the step-stiffness data.

  1. Substituent Inductive Effects on the Electrochemical Oxidation of Flavonoids Studied by Square Wave Voltammetry and Ab Initio Calculations.

    PubMed

    Arroyo-Currás, Netzahualcóyotl; Rosas-García, Víctor M; Videa, Marcelo

    2016-10-27

    Flavonoids are natural products commonly found in the human diet that show antioxidant, anti-inflammatory and anti-hepatotoxic activities. These nutraceutical properties may relate to the electrochemical activity of flavonoids. To increase the understanding of structure-electrochemical activity relations and the inductive effects that OH substituents have on the redox potential of flavonoids, we carried out square-wave voltammetry experiments and ab initio calculations of eight flavonoids selected following a systematic variation in the number of hydroxyl substituents and their location on the flavan backbone: three flavonols, three anthocyanidins, one anthocyanin and the flavonoid backbone flavone. We compared the effect that the number of -OH groups in the ring B of flavan has on the oxidation potential of the flavonoids considered, finding linear correlations for both flavonols and anthocyanidins ( R 2 = 0.98 ). We analyzed the effects that position and number of -OH substituents have on electron density distributions via ab initio quantum chemical calculations. We present direct correlations between structural features and oxidation potentials that provide a deeper insight into the redox chemistry of these molecules.

  2. Superior ab initio identification, annotation and characterisation of TEs and segmental duplications from genome assemblies.

    PubMed

    Zeng, Lu; Kortschak, R Daniel; Raison, Joy M; Bertozzi, Terry; Adelson, David L

    2018-01-01

    Transposable Elements (TEs) are mobile DNA sequences that make up significant fractions of amniote genomes. However, they are difficult to detect and annotate ab initio because of their variable features, lengths and clade-specific variants. We have addressed this problem by refining and developing a Comprehensive ab initio Repeat Pipeline (CARP) to identify and cluster TEs and other repetitive sequences in genome assemblies. The pipeline begins with a pairwise alignment using krishna, a custom aligner. Single linkage clustering is then carried out to produce families of repetitive elements. Consensus sequences are then filtered for protein coding genes and then annotated using Repbase and a custom library of retrovirus and reverse transcriptase sequences. This process yields three types of family: fully annotated, partially annotated and unannotated. Fully annotated families reflect recently diverged/young known TEs present in Repbase. The remaining two types of families contain a mixture of novel TEs and segmental duplications. These can be resolved by aligning these consensus sequences back to the genome to assess copy number vs. length distribution. Our pipeline has three significant advantages compared to other methods for ab initio repeat identification: 1) we generate not only consensus sequences, but keep the genomic intervals for the original aligned sequences, allowing straightforward analysis of evolutionary dynamics, 2) consensus sequences represent low-divergence, recently/currently active TE families, 3) segmental duplications are annotated as a useful by-product. We have compared our ab initio repeat annotations for 7 genome assemblies to other methods and demonstrate that CARP compares favourably with RepeatModeler, the most widely used repeat annotation package.

  3. Reactive wetting properties of TiO2 nanoparticles predicted by ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Brandt, Erik G.; Agosta, Lorenzo; Lyubartsev, Alexander P.

    2016-07-01

    Small-sized wet TiO2 nanoparticles have been investigated by ab initio molecular dynamics simulations. Chemical and physical adsorption of water on the TiO2-water interface was studied as a function of water content, ranging from dry nanoparticles to wet nanoparticles with monolayer coverage of water. The surface reactivity was shown to be a concave function of water content and driven by surface defects. The local coordination number at the defect was identified as the key factor to decide whether water adsorption proceeds through dissociation or physisorption on the surface. A consistent picture of TiO2 nanoparticle wetting at the microscopic level emerges, which corroborates existing experimental data and gives further insight into the molecular mechanisms behind nanoparticle wetting. These calculations will facilitate the engineering of metal oxide nanoparticles with a controlled catalytic water activity.Small-sized wet TiO2 nanoparticles have been investigated by ab initio molecular dynamics simulations. Chemical and physical adsorption of water on the TiO2-water interface was studied as a function of water content, ranging from dry nanoparticles to wet nanoparticles with monolayer coverage of water. The surface reactivity was shown to be a concave function of water content and driven by surface defects. The local coordination number at the defect was identified as the key factor to decide whether water adsorption proceeds through dissociation or physisorption on the surface. A consistent picture of TiO2 nanoparticle wetting at the microscopic level emerges, which corroborates existing experimental data and gives further insight into the molecular mechanisms behind nanoparticle wetting. These calculations will facilitate the engineering of metal oxide nanoparticles with a controlled catalytic water activity. Electronic supplementary information (ESI) available: Simulation data on equilibration of energies and structures (root-mean-square-deviations and

  4. Ab initio conformational analysis of N-formyl ?-alanine amide including electron correlation

    NASA Astrophysics Data System (ADS)

    Yu, Ching-Hsing; Norman, Mya A.; Schäfer, Lothar; Ramek, Michael; Peeters, Anik; van Alsenoy, Christian

    2001-06-01

    The conformational properties of N-formyl L-alanine amide (ALA) were investigated using RMP2/6-311G∗∗ ab initio gradient geometry optimization. One hundred forty four structures of ALA were optimized at 30° grid points in its φ(N-C(α)), ψ(C(α)-C‧) conformational space. Using cubic spline functions, the grid structures were then used to construct analytical representations of complete surfaces, in φ,ψ-space, of bond lengths, bond angles, torsional sensitivity and electrostatic atomic charges. Analyses show that, in agreement with previous studies, the right-handed helical conformation, αR, is not a local energy minimum of the potential energy surface of ALA. Comparisons with protein crystallographic data show that the characteristic differences between geometrical trends in dipeptides and proteins, previously found for ab initio dipeptide structures obtained without electron correlation, are also found in the electron-correlated geometries. In contrast to generally accepted features of force fields used in empirical molecular modeling, partial atomic charges obtained by the CHELPG method are found to be not constant, but to vary significantly throughout the φ,ψ-space. By comparing RHF and MP2 structures, the effects of dispersion forces on ALA were studied, revealing molecular contractions for those conformations, in which small adjustments of torsional angles entail large changes in non-bonded distances.

  5. Vibrational modes in thymine molecule from an ab initio MO calculation

    NASA Astrophysics Data System (ADS)

    Aida, Misako; Kaneko, Motohisa; Dupuis, Michel; Ueda, Toyotoshi; Ushizawa, Koichi; Ito, Gen; Kumakura, Akiko; Tsuboi, Masamichi

    1997-03-01

    Ab initio self-consistent field molecular orbital (SCF MO) calculations have been made of the thymine molecule for the equilibrium geometry, harmonic force constants, vibrational frequencies, vibrational modes, infrared intensities, and Raman intensities. The results have been correlated with the observed Raman and infrared spectra of thymine crystalline powder.

  6. Recent advances in jointed quantum mechanics and molecular mechanics calculations of biological macromolecules: schemes and applications coupled to ab initio calculations.

    PubMed

    Hagiwara, Yohsuke; Tateno, Masaru

    2010-10-20

    We review the recent research on the functional mechanisms of biological macromolecules using theoretical methodologies coupled to ab initio quantum mechanical (QM) treatments of reaction centers in proteins and nucleic acids. Since in most cases such biological molecules are large, the computational costs of performing ab initio calculations for the entire structures are prohibitive. Instead, simulations that are jointed with molecular mechanics (MM) calculations are crucial to evaluate the long-range electrostatic interactions, which significantly affect the electronic structures of biological macromolecules. Thus, we focus our attention on the methodologies/schemes and applications of jointed QM/MM calculations, and discuss the critical issues to be elucidated in biological macromolecular systems. © 2010 IOP Publishing Ltd

  7. Exploring Partonic Structure of Hadrons Using ab initio Lattice QCD Calculations.

    PubMed

    Ma, Yan-Qing; Qiu, Jian-Wei

    2018-01-12

    Following our previous proposal, we construct a class of good "lattice cross sections" (LCSs), from which we can study the partonic structure of hadrons from ab initio lattice QCD calculations. These good LCSs, on the one hand, can be calculated directly in lattice QCD, and on the other hand, can be factorized into parton distribution functions (PDFs) with calculable coefficients, in the same way as QCD factorization for factorizable hadronic cross sections. PDFs could be extracted from QCD global analysis of the lattice QCD generated data of LCSs. We also show that the proposed functions for lattice QCD calculation of PDFs in the literature are special cases of these good LCSs.

  8. Exploring Partonic Structure of Hadrons Using ab initio Lattice QCD Calculations

    DOE PAGES

    Ma, Yan-Qing; Qiu, Jian-Wei

    2018-01-10

    Following our previous proposal, we construct a class of good "lattice cross sections" (LCSs), from which we can study the partonic structure of hadrons from ab initio lattice QCD calculations. These good LCSs, on the one hand, can be calculated directly in lattice QCD, and on the other hand, can be factorized into parton distribution functions (PDFs) with calculable coefficients, in the same way as QCD factorization for factorizable hadronic cross sections. PDFs could be extracted from QCD global analysis of the lattice QCD generated data of LCSs. In conclusion, we also show that the proposed functions for lattice QCDmore » calculation of PDFs in the literature are special cases of these good LCSs.« less

  9. Anopheles gambiae genome reannotation through synthesis of ab initio and comparative gene prediction algorithms

    PubMed Central

    Li, Jun; Riehle, Michelle M; Zhang, Yan; Xu, Jiannong; Oduol, Frederick; Gomez, Shawn M; Eiglmeier, Karin; Ueberheide, Beatrix M; Shabanowitz, Jeffrey; Hunt, Donald F; Ribeiro, José MC; Vernick, Kenneth D

    2006-01-01

    Background Complete genome annotation is a necessary tool as Anopheles gambiae researchers probe the biology of this potent malaria vector. Results We reannotate the A. gambiae genome by synthesizing comparative and ab initio sets of predicted coding sequences (CDSs) into a single set using an exon-gene-union algorithm followed by an open-reading-frame-selection algorithm. The reannotation predicts 20,970 CDSs supported by at least two lines of evidence, and it lowers the proportion of CDSs lacking start and/or stop codons to only approximately 4%. The reannotated CDS set includes a set of 4,681 novel CDSs not represented in the Ensembl annotation but with EST support, and another set of 4,031 Ensembl-supported genes that undergo major structural and, therefore, probably functional changes in the reannotated set. The quality and accuracy of the reannotation was assessed by comparison with end sequences from 20,249 full-length cDNA clones, and evaluation of mass spectrometry peptide hit rates from an A. gambiae shotgun proteomic dataset confirms that the reannotated CDSs offer a high quality protein database for proteomics. We provide a functional proteomics annotation, ReAnoXcel, obtained by analysis of the new CDSs through the AnoXcel pipeline, which allows functional comparisons of the CDS sets within the same bioinformatic platform. CDS data are available for download. Conclusion Comprehensive A. gambiae genome reannotation is achieved through a combination of comparative and ab initio gene prediction algorithms. PMID:16569258

  10. Quantum Fragment Based ab Initio Molecular Dynamics for Proteins.

    PubMed

    Liu, Jinfeng; Zhu, Tong; Wang, Xianwei; He, Xiao; Zhang, John Z H

    2015-12-08

    Developing ab initio molecular dynamics (AIMD) methods for practical application in protein dynamics is of significant interest. Due to the large size of biomolecules, applying standard quantum chemical methods to compute energies for dynamic simulation is computationally prohibitive. In this work, a fragment based ab initio molecular dynamics approach is presented for practical application in protein dynamics study. In this approach, the energy and forces of the protein are calculated by a recently developed electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method. For simulation in explicit solvent, mechanical embedding is introduced to treat protein interaction with explicit water molecules. This AIMD approach has been applied to MD simulations of a small benchmark protein Trpcage (with 20 residues and 304 atoms) in both the gas phase and in solution. Comparison to the simulation result using the AMBER force field shows that the AIMD gives a more stable protein structure in the simulation, indicating that quantum chemical energy is more reliable. Importantly, the present fragment-based AIMD simulation captures quantum effects including electrostatic polarization and charge transfer that are missing in standard classical MD simulations. The current approach is linear-scaling, trivially parallel, and applicable to performing the AIMD simulation of proteins with a large size.

  11. Optimization of an exchange-correlation density functional for water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritz, Michelle; Fernández-Serra, Marivi; Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794-3800

    2016-06-14

    We describe a method, that we call data projection onto parameter space (DPPS), to optimize an energy functional of the electron density, so that it reproduces a dataset of experimental magnitudes. Our scheme, based on Bayes theorem, constrains the optimized functional not to depart unphysically from existing ab initio functionals. The resulting functional maximizes the probability of being the “correct” parameterization of a given functional form, in the sense of Bayes theory. The application of DPPS to water sheds new light on why density functional theory has performed rather poorly for liquid water, on what improvements are needed, and onmore » the intrinsic limitations of the generalized gradient approximation to electron exchange and correlation. Finally, we present tests of our water-optimized functional, that we call vdW-DF-w, showing that it performs very well for a variety of condensed water systems.« less

  12. Evaluating High-Throughput Ab Initio Gene Finders to Discover Proteins Encoded in Eukaryotic Pathogen Genomes Missed by Laboratory Techniques

    PubMed Central

    Goodswen, Stephen J.; Kennedy, Paul J.; Ellis, John T.

    2012-01-01

    Next generation sequencing technology is advancing genome sequencing at an unprecedented level. By unravelling the code within a pathogen’s genome, every possible protein (prior to post-translational modifications) can theoretically be discovered, irrespective of life cycle stages and environmental stimuli. Now more than ever there is a great need for high-throughput ab initio gene finding. Ab initio gene finders use statistical models to predict genes and their exon-intron structures from the genome sequence alone. This paper evaluates whether existing ab initio gene finders can effectively predict genes to deduce proteins that have presently missed capture by laboratory techniques. An aim here is to identify possible patterns of prediction inaccuracies for gene finders as a whole irrespective of the target pathogen. All currently available ab initio gene finders are considered in the evaluation but only four fulfil high-throughput capability: AUGUSTUS, GeneMark_hmm, GlimmerHMM, and SNAP. These gene finders require training data specific to a target pathogen and consequently the evaluation results are inextricably linked to the availability and quality of the data. The pathogen, Toxoplasma gondii, is used to illustrate the evaluation methods. The results support current opinion that predicted exons by ab initio gene finders are inaccurate in the absence of experimental evidence. However, the results reveal some patterns of inaccuracy that are common to all gene finders and these inaccuracies may provide a focus area for future gene finder developers. PMID:23226328

  13. On the way to a microscopic derivation of covariant density functionals in nuclei

    NASA Astrophysics Data System (ADS)

    Ring, Peter

    2018-02-01

    Several methods are discussed to derive covariant density functionals from the microscopic input of bare nuclear forces. In a first step there are semi-microscopic functionals, which are fitted to ab-initio calculations of nuclear matter and depend in addition on very few phenomenological parameters. They are able to describe nuclear properties with the same precision as fully phenomenological functionals. In a second step we present first relativistic Brueckner-Hartree-Fock calculations in finite nuclei in order to study properties of such functionals, which cannot be obtained from nuclear matter calculations.

  14. Ab-initio calculations of the Ruddlesden Popper phases CaMnO3, CaO(CaMnO3) and CaO(CaMnO3)2

    NASA Astrophysics Data System (ADS)

    Cardoso, C.; Borges, R. P.; Gasche, T.; Godinho, M.

    2008-01-01

    The present work reports ab-initio density functional theory calculations for the Ruddlesden-Popper phase CaO(CaMnO3)n compounds. In order to study the evolution of the properties with the number of perovskite layers, a detailed analysis of the densities of states calculated for each compound and for several magnetic configurations was performed. The effect of distortions of the crystal structure on the magnetic ground state is also analysed and the exchange constants and transition temperatures are calculated for the three compounds using a mean field model. The calculated magnetic ground state structures and magnetic moments are in good agreement with experimental results and previous calculations.

  15. Ab-initio study of pressure evolution of structural, mechanical and magnetic properties of cementite (Fe3C) phase

    NASA Astrophysics Data System (ADS)

    Gorai, S.; Ghosh, P. S.; Bhattacharya, C.; Arya, A.

    2018-04-01

    The pressure evolution of phase stability, structural and mechanical properties of Fe3C in ferro-magnetic (FM) and high pressure non magnetic (NM) phase is investigated from first principle calculations. The 2nd order FM to NM phase transition of Fe3C is identified around 60 GPa. Pressure (or density) variation of sound velocities from our ab-initio calculated single crystal elastic constants are determined to predict these parameters at Earth's outer core pressure.

  16. Metallic VS2 Monolayer Polytypes as Potential Sodium-Ion Battery Anode via ab Initio Random Structure Searching.

    PubMed

    Putungan, Darwin Barayang; Lin, Shi-Hsin; Kuo, Jer-Lai

    2016-07-27

    We systematically investigated the potential of single-layer VS2 polytypes as Na-battery anode materials via density functional theory calculations. We found that sodiation tends to inhibit the 1H-to-1T structural phase transition, in contrast to lithiation-induced transition on monolayer MoS2. Thus, VS2 can have better structural stability in the cycles of charging and discharging. Diffussion of Na atom was found to be very fast on both polytypes, with very small diffusion barriers of 0.085 eV (1H) and 0.088 eV (1T). Ab initio random structure searching was performed in order to explore stable configurations of Na on VS2. Our search found that both the V top and the hexagonal center sites are preferred adsorption sites for Na, with the 1H phase showing a relatively stronger binding. Notably, our random structures search revealed that Na clusters can form as a stacked second layer at full Na concentration, which is not reported in earlier works wherein uniform, single-layer Na adsorption phases were assumed. With reasonably high specific energy capacity (232.91 and 116.45 mAh/g for 1H and 1T phases, respectively) and open-circuit voltage (1.30 and 1.42 V for 1H and 1T phases, respectively), VS2 is a promising alternative material for Na-ion battery anodes with great structural sturdiness. Finally, we have shown the capability of the ab initio random structure searching in the assessment of potential materials for energy storage applications.

  17. Ab initio electronic structure calculations for metallic intermediate band formation in photovoltaic materials

    NASA Astrophysics Data System (ADS)

    Wahnón, P.; Tablero, C.

    2002-04-01

    A metallic isolated band in the middle of the band gap of several III-V semiconductors has been predicted as photovoltaic materials with the possibility of providing substantially enhanced efficiencies. We have investigated the electronic band structures and lattice constants of GanAsmM and GanPmM with M=Sc, Ti, V, and Cr, to identify whether this isolated band is likely to exist by means of accurate calculations. For this task, we use the SIESTA program, an ab initio periodic density-functional method, fully self consistent in the local-density approximation. Norm-conserving, nonlocal pseudopotentials and confined linear combination of atomic orbitals have been used. We have carried out a case study of GanAsmTi and GanPmTi energy-band structure including analyses of the effect of the basis set, fine k-point mesh to ensure numerical convergence, structural parameters, and generalized gradient approximation for exchange and correlation corrections. We find the isolated intermediate band when one Ti atom replaces the position of one As (or P) atom in the crystal structure. For this kind of compound we show that the intermediate band relative position inside the band gap and width are sensitive to the dynamic relaxation of the crystal and the size of the basis set.

  18. Ab initio study on the structural and electronic properties of water surrounding a multifunctional nanoprobe

    NASA Astrophysics Data System (ADS)

    Xia, Xiuli; Shao, Yuanzhi

    2018-02-01

    We report the magneto-electric behavior of a dual-modality biomedical nanoprobe, a ternary nanosystem consisting of gold and gadolinia clusters and water molecules, with the effect of both nanoclusters on the structural and electronic properties of water. The hydrogen-oxygen bond lengths and angles as well as electronic charges of water molecules surrounding both nanoclusters were calculated using Hubbard U corrected density functional theory aided by molecular dynamics approach. The calculations reveal existence of a magneto-electric interaction between gold and gadolinium oxide nanoclusters, which influences the physical properties of surrounding water remarkably. A broader (narrower) distribution of Hsbnd O bond lengths (Hsbnd Osbnd H bond angles) was observed at the presence of either gold or gadolinia nanoclusters. The presence of Gd6O9 cluster leads to the larger charges of neighbour oxygen atoms. The distribution of oxygen atom charges becomes border when both Gd6O9 and Au13 clusters coexist. Ab initio calculation provides a feasible approach to explore the most essential interactions among functional components of a multimodal nanoprobe applied in aqueous environment.

  19. Ab Initio Modeling of Molecular Radiation

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Schwenke, David

    2014-01-01

    Radiative emission from excited states of atoms and molecules can comprise a significant fraction of the total heat flux experienced by spacecraft during atmospheric entry at hypersonic speeds. For spacecraft with ablating heat shields, some of this radiative flux can be absorbed by molecular constituents in the boundary layer that are formed by the ablation process. Ab initio quantum mechanical calculations are carried out to predict the strengths of these emission and absorption processes. This talk will describe the methods used in these calculations using, as examples, the 4th positive emission bands of CO and the 1g+ 1u+ absorption in C3. The results of these calculations are being used as input to NASA radiation modeling codes like NeqAir, HARA and HyperRad.

  20. Using the Ab Initio Molecular Dynamics Method for Simulating the Peculiarities in the Temperature Dependence of Liquid Bismuth Properties

    NASA Astrophysics Data System (ADS)

    Yuryev, A. A.; Gelchinski, B. R.; Vatolin, N. A.

    2018-03-01

    The specific features pertinent to the temperature dependence of the electronic and atomic properties of liquid bismuth that have been observed in experiments are investigated according to the ab initio molecular dynamics method using the SIESTA open software package. The density of electronic states, the radial distribution function of atoms, and the self-diffusion coefficient are calculated for the temperature range from the melting point equal to 545 K to 1500 K. The calculated data are in good agreement with the experimental data. It is found that the position of the first peak in the radial distribution function of atoms and the self-diffusion coefficient are characterized by a nonmonotonic dependence under the conditions of superheating by approximately 150 K above the melting temperature. In the authors' opinion, this dependence feature is attributed to a change in the liquid short-range order structure.

  1. Multipole-Based Force Fields from ab Initio Interaction Energies and the Need for Jointly Refitting All Intermolecular Parameters.

    PubMed

    Kramer, Christian; Gedeck, Peter; Meuwly, Markus

    2013-03-12

    Distributed atomic multipole (MTP) moments promise significant improvements over point charges (PCs) in molecular force fields, as they (a) more realistically reproduce the ab initio electrostatic potential (ESP) and (b) allow to capture anisotropic atomic properties such as lone pairs, conjugated systems, and σ holes. The present work focuses on the question of whether multipolar electrostatics instead of PCs in standard force fields leads to quantitative improvements over point charges in reproducing intermolecular interactions. To this end, the interaction energies of two model systems, benzonitrile (BZN) and formamide (FAM) homodimers, are characterized over a wide range of dimer conformations. It is found that although with MTPs the monomer ab initio ESP can be captured better by about an order of magnitude compared to point charges (PCs), this does not directly translate into better describing ab initio interaction energies compared to PCs. Neither ESP-fitted MTPs nor refitted Lennard-Jones (LJ) parameters alone demonstrate a clear superiority of atomic MTPs. We show that only if both electrostatic and LJ parameters are jointly optimized in standard, nonpolarizable force fields, atomic are MTPs clearly beneficial for reproducing ab initio dimerization energies. After an exhaustive exponent scan, we find that for both BZN and FAM, atomic MTPs and a 9-6 LJ potential can reproduce ab initio interaction energies with ∼30% (RMSD 0.13 vs 0.18 kcal/mol) less error than point charges (PCs) and a 12-6 LJ potential. We also find that the improvement due to using MTPs with a 9-6 LJ potential is considerably more pronounced than with a 12-6 LJ potential (≈ 10%; RMSD 0.19 versus 0.21 kcal/mol).

  2. Structural modeling of Ge6.25As32.5Se61.25 using a combination of reverse Monte Carlo and Ab initio molecular dynamics.

    PubMed

    Opletal, George; Drumm, Daniel W; Wang, Rong P; Russo, Salvy P

    2014-07-03

    Ternary glass structures are notoriously difficult to model accurately, and yet prevalent in several modern endeavors. Here, a novel combination of Reverse Monte Carlo (RMC) modeling and ab initio molecular dynamics (MD) is presented, rendering these complicated structures computationally tractable. A case study (Ge6.25As32.5Se61.25 glass) illustrates the effects of ab initio MD quench rates and equilibration temperatures, and the combined approach's efficacy over standard RMC or random insertion methods. Submelting point MD quenches achieve the most stable, realistic models, agreeing with both experimental and fully ab initio results. The simple approach of RMC followed by ab initio geometry optimization provides similar quality to the RMC-MD combination, for far fewer resources.

  3. Interplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in CASP10

    PubMed Central

    Zhang, Yang

    2014-01-01

    We develop and test a new pipeline in CASP10 to predict protein structures based on an interplay of I-TASSER and QUARK for both free-modeling (FM) and template-based modeling (TBM) targets. The most noteworthy observation is that sorting through the threading template pool using the QUARK-based ab initio models as probes allows the detection of distant-homology templates which might be ignored by the traditional sequence profile-based threading alignment algorithms. Further template assembly refinement by I-TASSER resulted in successful folding of two medium-sized FM targets with >150 residues. For TBM, the multiple threading alignments from LOMETS are, for the first time, incorporated into the ab initio QUARK simulations, which were further refined by I-TASSER assembly refinement. Compared with the traditional threading assembly refinement procedures, the inclusion of the threading-constrained ab initio folding models can consistently improve the quality of the full-length models as assessed by the GDT-HA and hydrogen-bonding scores. Despite the success, significant challenges still exist in domain boundary prediction and consistent folding of medium-size proteins (especially beta-proteins) for nonhomologous targets. Further developments of sensitive fold-recognition and ab initio folding methods are critical for solving these problems. PMID:23760925

  4. Interplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in CASP10.

    PubMed

    Zhang, Yang

    2014-02-01

    We develop and test a new pipeline in CASP10 to predict protein structures based on an interplay of I-TASSER and QUARK for both free-modeling (FM) and template-based modeling (TBM) targets. The most noteworthy observation is that sorting through the threading template pool using the QUARK-based ab initio models as probes allows the detection of distant-homology templates which might be ignored by the traditional sequence profile-based threading alignment algorithms. Further template assembly refinement by I-TASSER resulted in successful folding of two medium-sized FM targets with >150 residues. For TBM, the multiple threading alignments from LOMETS are, for the first time, incorporated into the ab initio QUARK simulations, which were further refined by I-TASSER assembly refinement. Compared with the traditional threading assembly refinement procedures, the inclusion of the threading-constrained ab initio folding models can consistently improve the quality of the full-length models as assessed by the GDT-HA and hydrogen-bonding scores. Despite the success, significant challenges still exist in domain boundary prediction and consistent folding of medium-size proteins (especially beta-proteins) for nonhomologous targets. Further developments of sensitive fold-recognition and ab initio folding methods are critical for solving these problems. Copyright © 2013 Wiley Periodicals, Inc.

  5. Superior ab initio identification, annotation and characterisation of TEs and segmental duplications from genome assemblies

    PubMed Central

    Zeng, Lu; Kortschak, R. Daniel; Raison, Joy M.

    2018-01-01

    Transposable Elements (TEs) are mobile DNA sequences that make up significant fractions of amniote genomes. However, they are difficult to detect and annotate ab initio because of their variable features, lengths and clade-specific variants. We have addressed this problem by refining and developing a Comprehensive ab initio Repeat Pipeline (CARP) to identify and cluster TEs and other repetitive sequences in genome assemblies. The pipeline begins with a pairwise alignment using krishna, a custom aligner. Single linkage clustering is then carried out to produce families of repetitive elements. Consensus sequences are then filtered for protein coding genes and then annotated using Repbase and a custom library of retrovirus and reverse transcriptase sequences. This process yields three types of family: fully annotated, partially annotated and unannotated. Fully annotated families reflect recently diverged/young known TEs present in Repbase. The remaining two types of families contain a mixture of novel TEs and segmental duplications. These can be resolved by aligning these consensus sequences back to the genome to assess copy number vs. length distribution. Our pipeline has three significant advantages compared to other methods for ab initio repeat identification: 1) we generate not only consensus sequences, but keep the genomic intervals for the original aligned sequences, allowing straightforward analysis of evolutionary dynamics, 2) consensus sequences represent low-divergence, recently/currently active TE families, 3) segmental duplications are annotated as a useful by-product. We have compared our ab initio repeat annotations for 7 genome assemblies to other methods and demonstrate that CARP compares favourably with RepeatModeler, the most widely used repeat annotation package. PMID:29538441

  6. Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation.

    PubMed

    Yang, Lina; Minnich, Austin J

    2017-03-14

    Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.

  7. Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation

    PubMed Central

    Yang, Lina; Minnich, Austin J.

    2017-01-01

    Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials. PMID:28290484

  8. Zinc complexation in chloride-rich hydrothermal fluids (25-600 °C): A thermodynamic model derived from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Mei, Yuan; Sherman, David M.; Liu, Weihua; Etschmann, Barbara; Testemale, Denis; Brugger, Joël

    2015-02-01

    The solubility of zinc minerals in hydrothermal fluids is enhanced by chloride complexation of Zn2+. Thermodynamic models of these complexation reactions are central to models of Zn transport and ore formation. However, existing thermodynamic models, derived from solubility measurements, are inconsistent with spectroscopic measurements of Zn speciation. Here, we used ab initio molecular dynamics simulations (with the PBE exchange-correlation functional) to predict the speciation of Zn-Cl complexes from 25 to 600 °C. We also obtained in situ XAS measurements of Zn-Cl solutions at 30-600 °C. Qualitatively, the simulations reproduced the main features derived from in situ XANES and EXAFS measurements: octahedral to tetrahedral transition with increasing temperature and salinity, stability of ZnCl42- at high chloride concentration up to ⩾500 °C, and increasing stability of the trigonal planar [ZnCl3]- complex at high temperature. Having confirmed the dominant species, we directly determined the stability constants for the Zn-Cl complexes using thermodynamic integration along constrained Zn-Cl distances in a series of MD simulations. We corrected our stability constants to infinite dilution using the b-dot model for the activity coefficients of the solute species. In order to compare the ab initio results with experiments, we need to re-model the existing solubility data using the species we identified in our MD simulations. The stability constants derived from refitting published experimental data are in reasonable agreement with those we obtained using ab initio MD simulations. Our new thermodynamic model accurately predicts the experimentally observed changes in ZnO(s) and ZnCO3(s) solubility as a function of chloride concentration from 200 (Psat) to 600 °C (2000 bar). This study demonstrates that metal speciation and geologically useful stability constants can be derived for species in hydrothermal fluids from ab initio MD simulations even at the generalized

  9. Ab initio predictions of the symmetry energy and recent constraints

    NASA Astrophysics Data System (ADS)

    Sammarruca, Francesca

    2017-01-01

    The symmetry energy plays a crucial role in the structure and the dynamics of neutron-rich systems, including the formation of neutron skins, the location of neutron drip lines, as well as intriguing correlations with the structure of compact stars. With experimental efforts in progress or being planned to shed light on the less known aspects of the nuclear chart, microscopic predictions based on ab initio approaches are very important. In recent years, chiral effective field theory has become popular because of its firm connection with quantum chromodynamics and its systematic approach to the development of nuclear forces. Predictions of the symmetry energy obtained from modern chiral interactions will be discussed in the light of recent empirical constraints extracted from heavy ion collisions at 400 MeV per nucleon at GSI. Applications of our equations of state to neutron-rich systems will also be discussed, with particular emphasis on neutron skins, which are sensitive to the density dependence of the symmetry energy.

  10. A coupled channel study of HN2 unimolecular decay based on a global ab initio potential surface

    NASA Technical Reports Server (NTRS)

    Koizumi, Hiroyasu; Schatz, George C.; Walch, Stephen P.

    1991-01-01

    The unimolecular decay lifetimes of several vibrational states of HN2 are determined on the basis of an accurate coupled channel dynamics study using a global analytical potential surface. The surface reproduces the ab initio points with an rms error of 0.08 kcal/mol for energies below 20 kcal/mol. Modifications to the potential that describe the effect of improving the basis set in the ab initio calculations are provided. Converged coupled channel calculations are performed for the ground rotational state of HN2 to determine the lifetimes of the lowest ten vibrational states. Only the ground vibrational state (000) and first excited bend (001) are found to have lifetimes longer than 1 ps. The lifetimes of these states are estimated at 3 x 10 to the -9th and 2 x 10 to the -10th s, respectively. Variation of these results with quality of the ab initio calculations is not more than a factor of 5.

  11. Recognizing metal and acid radical ion-binding sites by integrating ab initio modeling with template-based transferals.

    PubMed

    Hu, Xiuzhen; Dong, Qiwen; Yang, Jianyi; Zhang, Yang

    2016-11-01

    More than half of proteins require binding of metal and acid radical ions for their structure and function. Identification of the ion-binding locations is important for understanding the biological functions of proteins. Due to the small size and high versatility of the metal and acid radical ions, however, computational prediction of their binding sites remains difficult. We proposed a new ligand-specific approach devoted to the binding site prediction of 13 metal ions (Zn 2+ , Cu 2+ , Fe 2+ , Fe 3+ , Ca 2+ , Mg 2+ , Mn 2+ , Na + , K + ) and acid radical ion ligands (CO3 2- , NO2 - , SO4 2- , PO4 3- ) that are most frequently seen in protein databases. A sequence-based ab initio model is first trained on sequence profiles, where a modified AdaBoost algorithm is extended to balance binding and non-binding residue samples. A composite method IonCom is then developed to combine the ab initio model with multiple threading alignments for further improving the robustness of the binding site predictions. The pipeline was tested using 5-fold cross validations on a comprehensive set of 2,100 non-redundant proteins bound with 3,075 small ion ligands. Significant advantage was demonstrated compared with the state of the art ligand-binding methods including COACH and TargetS for high-accuracy ion-binding site identification. Detailed data analyses show that the major advantage of IonCom lies at the integration of complementary ab initio and template-based components. Ion-specific feature design and binding library selection also contribute to the improvement of small ion ligand binding predictions. http://zhanglab.ccmb.med.umich.edu/IonCom CONTACT: hxz@imut.edu.cn or zhng@umich.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Course 4: Density Functional Theory, Methods, Techniques, and Applications

    NASA Astrophysics Data System (ADS)

    Chrétien, S.; Salahub, D. R.

    Contents 1 Introduction 2 Density functional theory 2.1 Hohenberg and Kohn theorems 2.2 Levy's constrained search 2.3 Kohn-Sham method 3 Density matrices and pair correlation functions 4 Adiabatic connection or coupling strength integration 5 Comparing and constrasting KS-DFT and HF-CI 6 Preparing new functionals 7 Approximate exchange and correlation functionals 7.1 The Local Spin Density Approximation (LSDA) 7.2 Gradient Expansion Approximation (GEA) 7.3 Generalized Gradient Approximation (GGA) 7.4 meta-Generalized Gradient Approximation (meta-GGA) 7.5 Hybrid functionals 7.6 The Optimized Effective Potential method (OEP) 7.7 Comparison between various approximate functionals 8 LAP correlation functional 9 Solving the Kohn-Sham equations 9.1 The Kohn-Sham orbitals 9.2 Coulomb potential 9.3 Exchange-correlation potential 9.4 Core potential 9.5 Other choices and sources of error 9.6 Functionality 10 Applications 10.1 Ab initio molecular dynamics for an alanine dipeptide model 10.2 Transition metal clusters: The ecstasy, and the agony... 10.3 The conversion of acetylene to benzene on Fe clusters 11 Conclusions

  13. The study of molecular spectroscopy by ab initio methods

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1991-01-01

    This review illustrates the potential of theory for solving spectroscopic problems. The accuracy of approximate techniques for including electron correlation have been calibrated by comparison with full configuration-interaction calculations. Examples of the application of ab initio calculations to vibrational, rotational, and electronic spectroscopy are given. It is shown that the state-averaged, complete active space self-consistent field, multireference configuration-interaction procedure provides a good approach for treating several electronic states accurately in a common molecular orbital basis.

  14. Ab-initio Calculation of Optoelectronic and Structural Properties of Cubic Lithium Oxide (Li2O)

    NASA Astrophysics Data System (ADS)

    Ziegler, Joshua; Polin, Daniel; Malozovsky, Yuriy; Bagayoko, Diola

    Using the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), we performed ab-initio, density functional theory (DFT) calculations of optoelectronic, transport, and bulk properties of Li2S. In so doing, we avoid ``band gap'' and problems plaguing many DET calculations [AIP Advances 4, 127104 (2014)]. We employed a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO). With the BZW-EF method, our results possess the full, physical content of DFT and agree with available, corresponding experimental ones. In particular, we found a room temperature indirect band gap of 6.659 eV that compares favorably with experimental values ranging from 5 to 7.99 eV. We also calculated total and partial density of states (DOS and PDOS), effective masses of charge carriers, the equilibrium lattice constant, and the bulk modulus. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award Nos. DE-NA0001861 and DE- NA0002630), LaSPACE, and LONI-SUBR.

  15. Spectroscopic study of uracil, 1-methyluracil and 1-methyl-4-thiouracil: Hydrogen bond interactions in crystals and ab-initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Brela, Mateusz Z.; Boczar, Marek; Malec, Leszek M.; Wójcik, Marek J.; Nakajima, Takahito

    2018-05-01

    Hydrogen bond networks in uracil, 1-methyluracil and 1-methyl-4-thiouracil were studied by ab initio molecular dynamics as well as analysis of the orbital interactions. The power spectra calculated by ab initio molecular dynamics for atoms involved in hydrogen bonds were analyzed. We calculated spectra by using anharmonic approximation based on the autocorrelation function of the atom positions obtained from the Born-Oppenheimer simulations. Our results show the differences between hydrogen bond networks in uracil and its methylated derivatives. The studied methylated derivatives, 1-methyluracil as well as 1-methyl-4-thiouracil, form dimeric structures in the crystal phase, while uracil does not form that kind of structures. The presence of sulfur atom instead oxygen atom reflects weakness of the hydrogen bonds that build dimers.

  16. Ab initio study of the electrostatic multipole nature of torsional potentials in CH3SSCH3, CH3SSH, and HOOH

    NASA Technical Reports Server (NTRS)

    Sokalski, W. A.; Lai, J.; Luo, N.; Sun, S.; Shibata, M.; Ornstein, R.; Rein, R.

    1991-01-01

    The origin of torsional potentials in H3CSSCH3, H3CSSH, and HOOH and the anisotropy of the local charge distribution has been analyzed in terms of atomic multipoles calculated from the ab initio LCAO-MO-SCF wave function in the 6-31G* basis set. The results indicate that for longer -S-S-bonds the major contribution to these torsional barriers are electrostatic interactions of the atomic multipoles located on two atoms forming the rotated bond. This finding demonstrates the important role of electrostatic 1-2 interatomic interactions, usually neglected in conformational studies. It also opens the possibility to derive directly from accurate ab initio wave functions a simple nonempirical torsional potential involving atomic multipoles of two bonded atoms defining the torsional angle. For shorter -O-O- bonds, use of more precise models and inclusion of 1-3 interactions seems to be necessary.

  17. Ab initio Study of Transition metal binding to the Prion Protein

    NASA Astrophysics Data System (ADS)

    Cox, Daniel L.; Singh, Rajiv R. P.; Pan, Jianping

    2004-03-01

    Fundamental understanding of the prion protein (PrP) is of critical public health importance in view of mad cow and chronic wasting diseases. In recent years, it has been shown that the normal form (PrP^c) binds copper^1), and the structure of the copper binding domain has been elaborated. Hypotheses about toxicity associated with binding of other metals (notably manganese) have been put forward, Accordingly, using the ab initio SIESTA density functional theory code^2), we calculated the binding energy E_B(M) of M-(PrP) complexes relative to initially uncomplexed M ions, with M=Cu,Ni,Zn,Mn and (PrP)^* the minimal binding domain. The binding energy trend is E_B(Ni)>E_B(Cu)>E_B(Zn)>E_B(Mn), consistent with recent experiments apart from the surprising stability of Ni. We will also present preliminary results for binding of initially complexed M ions. *-Supported by U.S. DOE, Office of Basic Energy Sciences, Division of Materials Research 1) G.S. Jackson et al., Proc. Nat. Acad. Sci. (USA) 98, 8531 (2001). 2) P. Ordejón, et al., Phys. Rev. B53, R10441 (1996); J.M. Soler et al., J. Phys. Cond. Matt. 14, 2745 (2002).

  18. Hydrogen interaction with ferrite/cementite interface: ab initio calculations and thermodynamics

    NASA Astrophysics Data System (ADS)

    Mirzoev, A. A.; Verkhovykh, A. V.; Okishev, K. Yu.; Mirzaev, D. A.

    2018-02-01

    The paper presents the results of ab initio modelling of the interaction of hydrogen atoms with ferrite/cementite interfaces in steels and thermodynamic assessment of the ability of interfaces to trap hydrogen atoms. Modelling was performed using the density functional theory with generalised gradient approximation (GGA'96), as implemented in WIEN2k package. An Isaichev-type orientation relationship between the two phases was accepted, with a habit plane (101)c ∥ (112)α. The supercell contained 64 atoms (56 Fe and 8 C). The calculated formation energies of ferrite/cementite interface were 0.594 J/m2. The calculated trapping energy at cementite interstitial was 0.18 eV, and at the ferrite/cementite interface - 0.30 eV. Considering calculated zero-point energy, the trapping energies at cementite interstitial and ferrite/cementite interface become 0.26 eV and 0.39 eV, respectively. The values are close to other researchers' data. These results were used to construct a thermodynamic description of ferrite/cementite interface-hydrogen interaction. Absorption calculations using the obtained trapping energy values showed that even thin lamellar ferrite/cementite mixture with an interlamellar spacing smaller than 0.1 μm has noticeable hydrogen trapping ability at a temperature below 400 K.

  19. Ab initio quasiparticle bandstructure of ABA and ABC-stacked graphene trilayers

    NASA Astrophysics Data System (ADS)

    Menezes, Marcos; Capaz, Rodrigo; Louie, Steven

    2013-03-01

    We obtain the quasiparticle band structure of ABA and ABC-stacked graphene trilayers through ab initio density functional theory (DFT) and many-body quasiparticle calculations within the GW approximation. To interpret our results, we fit the DFT and GW π bands to a low energy tight-binding model, which is found to reproduce very well the observed features near the K point. The values of the extracted hopping parameters are reported and compared with available theoretical and experimental data. For both stackings, the quasiparticle corrections lead to a renormalization of the Fermi velocity, an effect also observed in previous calculations on monolayer graphene. They also increase the separation between the higher energy bands, which is proportional to the nearest neighbor interlayer hopping parameter γ1. Both features are brought to closer agreement with experiment through the quasiparticle corrections. Finally, other effects, such as trigonal warping, electron-hole assymetry and energy gaps are discussed in terms of the associated parameters. This work was supported by the Brazilian funding agencies: CAPES, CNPq, FAPERJ and INCT-Nanomateriais de Carbono. It was also supported by NSF grant No. DMR10-1006184 and U.S. DOE under Contract No. DE-AC02-05CH11231.

  20. Exploring the speed and performance of molecular replacement with AMPLE using QUARK ab initio protein models.

    PubMed

    Keegan, Ronan M; Bibby, Jaclyn; Thomas, Jens; Xu, Dong; Zhang, Yang; Mayans, Olga; Winn, Martyn D; Rigden, Daniel J

    2015-02-01

    AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected.

  1. Phenolic Polymer Solvation in Water and Ethylene Glycol, II: Ab Initio Computations.

    PubMed

    Bauschlicher, Charles W; Bucholz, Eric W; Haskins, Justin B; Monk, Joshua D; Lawson, John W

    2017-04-06

    Ab initio techniques are used to study the interaction of ethylene glycol and water with a phenolic polymer. The water bonds more strongly with the phenolic OH than with the ring. The phenolic OH groups can form hydrogen bonds between themselves. For more than one water molecule, there is a competition between water-water and water-phenolic interactions. Ethylene glycol shows the same effects as those of water, but the potential energy surface is further complicated by CH 2 -phenolic interactions, different conformers of ethylene glycol, and two OH groups on each molecule. Thus, the ethylene glycol-phenolic potential is more complicated than the water-phenolic potential. The results of the ab initio calculations are compared to those obtained using a force field. These calibration studies show that the water system is easier to describe than the ethylene glycol system. The calibration studies confirm the reliability of force fields used in our companion molecular dynamics study of a phenolic polymer in water and ethylene solutions.

  2. Progress in low-resolution ab initio phasing with CrowdPhase

    DOE PAGES

    Jorda, Julien; Sawaya, Michael R.; Yeates, Todd O.

    2016-03-01

    Ab initio phasing by direct computational methods in low-resolution X-ray crystallography is a long-standing challenge. A common approach is to consider it as two subproblems: sampling of phase space and identification of the correct solution. While the former is amenable to a myriad of search algorithms, devising a reliable target function for the latter problem remains an open question. Here, recent developments in CrowdPhase, a collaborative online game powered by a genetic algorithm that evolves an initial population of individuals with random genetic make-up ( i.e. random phases) each expressing a phenotype in the form of an electron-density map, aremore » presented. Success relies on the ability of human players to visually evaluate the quality of these maps and, following a Darwinian survival-of-the-fittest concept, direct the search towards optimal solutions. While an initial study demonstrated the feasibility of the approach, some important crystallographic issues were overlooked for the sake of simplicity. To address these, the new CrowdPhase includes consideration of space-group symmetry, a method for handling missing amplitudes, the use of a map correlation coefficient as a quality metric and a solvent-flattening step. Lastly, performances of this installment are discussed for two low-resolution test cases based on bona fide diffraction data.« less

  3. Progress in low-resolution ab initio phasing with CrowdPhase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorda, Julien; Sawaya, Michael R.; Yeates, Todd O.

    Ab initio phasing by direct computational methods in low-resolution X-ray crystallography is a long-standing challenge. A common approach is to consider it as two subproblems: sampling of phase space and identification of the correct solution. While the former is amenable to a myriad of search algorithms, devising a reliable target function for the latter problem remains an open question. Here, recent developments in CrowdPhase, a collaborative online game powered by a genetic algorithm that evolves an initial population of individuals with random genetic make-up ( i.e. random phases) each expressing a phenotype in the form of an electron-density map, aremore » presented. Success relies on the ability of human players to visually evaluate the quality of these maps and, following a Darwinian survival-of-the-fittest concept, direct the search towards optimal solutions. While an initial study demonstrated the feasibility of the approach, some important crystallographic issues were overlooked for the sake of simplicity. To address these, the new CrowdPhase includes consideration of space-group symmetry, a method for handling missing amplitudes, the use of a map correlation coefficient as a quality metric and a solvent-flattening step. Lastly, performances of this installment are discussed for two low-resolution test cases based on bona fide diffraction data.« less

  4. Ab initio study of intrinsic profiles of liquid metals and their reflectivity

    NASA Astrophysics Data System (ADS)

    del Rio, B. G.; Souto, J.; Alemany, M. M. G.; González, L. E.

    2017-08-01

    The free surfaces of liquid metals are known to exhibit a stratified profile that, in favourable cases, shows up in experiments as a peak in the ratio between the reflectivity function and that of an ideal step-like profile. This peak is located at a wave-vector related to the distance between the layers of the profile. In fact the surface roughness produced by thermally induced capillary waves causes a depletion of the previous so called intrinsic reflectivity by a damping factor that may hinder the observation of the peak. The behaviour of the intrinsic reflectivity below the layering peak is however far from being universal, with systems as Ga or In where the reflectiviy falls uniformly towards the q → 0 value, others like Sn or Bi where a shoulder appears at intermediate wavevectors, and others like Hg which show a minimum. We have performed extensive ab initio simulations of the free liquid surfaces of Bi, Pb and Hg, that yield direct information on the structure of the profiles and found that the macroscopic capillary wave theory usually employed in order to remove the capillary wave components fails badly in some cases for the typical sample sizes affordable in ab initio simulations. However, a microscopic method for the determination of the intrinsic profile is shown to be succesful in obtaining meaningful intrinsic profiles and corresponding reflectivities which reproduce correctly the qualitative behaviour observed experimentally.

  5. Unified ab initio approaches to nuclear structure and reactions

    DOE PAGES

    Navratil, Petr; Quaglioni, Sofia; Hupin, Guillaume; ...

    2016-04-13

    The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches—built upon the no-core shell model—that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the 6He halo nucleus, of five- and six-nucleon scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of 9Be. Further, we discuss applications to the 7Bemore » $${({\\rm{p}},\\gamma )}^{8}{\\rm{B}}$$ radiative capture. Lastly, we highlight our efforts to describe transfer reactions including the 3H$${({\\rm{d}},{\\rm{n}})}^{4}$$He fusion.« less

  6. A fragmentation and reassembly method for ab initio phasing.

    PubMed

    Shrestha, Rojan; Zhang, Kam Y J

    2015-02-01

    Ab initio phasing with de novo models has become a viable approach for structural solution from protein crystallographic diffraction data. This approach takes advantage of the known protein sequence information, predicts de novo models and uses them for structure determination by molecular replacement. However, even the current state-of-the-art de novo modelling method has a limit as to the accuracy of the model predicted, which is sometimes insufficient to be used as a template for successful molecular replacement. A fragment-assembly phasing method has been developed that starts from an ensemble of low-accuracy de novo models, disassembles them into fragments, places them independently in the crystallographic unit cell by molecular replacement and then reassembles them into a whole structure that can provide sufficient phase information to enable complete structure determination by automated model building. Tests on ten protein targets showed that the method could solve structures for eight of these targets, although the predicted de novo models cannot be used as templates for successful molecular replacement since the best model for each target is on average more than 4.0 Å away from the native structure. The method has extended the applicability of the ab initio phasing by de novo models approach. The method can be used to solve structures when the best de novo models are still of low accuracy.

  7. Comparative semiempirical and ab initio study of the structural and chemical properties of uric acid and its anions

    NASA Astrophysics Data System (ADS)

    Altarsha, Muhannad; Monard, Gérald; Castro, Bertrand

    Semiempirical, density functional theory (DFT), and ab initio calculations have been performed to assess the relative stabilities of 15 possible tautomer forms of neutral uric acid, and of the different urate mono- and dianion forms. These methods have also been used to compute ionization potentials (IPs) for uric acid and its derived anions. Overall, we have found that semiempirical calculations, in particular PM3, perform well as compared with B3LYP or MP2 computations toward these different structural and chemical properties of uric acid: the triketo form of uric acid is the most stable tautomer form of neutral uric acid. Three other tautomer forms are relatively close in energy, within the range 2-6 kcal/mol above the triketo form, with a mean energy deviation of only 1.3 kcal/mol between PM3 and DFT or ab initio results; the monoanion form of uric acid obtained by abstracting one proton in position 3 (denoted UAN3-) is the most stable form among all four possible urate monoanions both in gas phase and in solution; the dianion form of uric acid obtained by abstracting two protons, respectively, in positions 3 and 9 of uric acid (denoted UAN3-N9-) is the most stable urate dianion form both in gas phase and in solution. However, these two most stable species do not have the lowest IPs in solution: among monoanions and dianions, respectively, the species with the lowest IPs are UAN7- and UAN7-N9-.

  8. Combining density functional and incremental post-Hartree-Fock approaches for van der Waals dominated adsorbate-surface interactions: Ag{sub 2}/graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lara-Castells, María Pilar de, E-mail: Pilar.deLara.Castells@csic.es; Mitrushchenkov, Alexander O.; Stoll, Hermann

    2015-09-14

    A combined density functional (DFT) and incremental post-Hartree-Fock (post-HF) approach, proven earlier to calculate He-surface potential energy surfaces [de Lara-Castells et al., J. Chem. Phys. 141, 151102 (2014)], is applied to describe the van der Waals dominated Ag{sub 2}/graphene interaction. It extends the dispersionless density functional theory developed by Pernal et al. [Phys. Rev. Lett. 103, 263201 (2009)] by including periodic boundary conditions while the dispersion is parametrized via the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)]. Starting with the elementary cluster unit of the target surface (benzene), continuing through the realistic cluster model (coronene), andmore » ending with the periodic model of the extended system, modern ab initio methodologies for intermolecular interactions as well as state-of-the-art van der Waals-corrected density functional-based approaches are put together both to assess the accuracy of the composite scheme and to better characterize the Ag{sub 2}/graphene interaction. The present work illustrates how the combination of DFT and post-HF perspectives may be efficient to design simple and reliable ab initio-based schemes in extended systems for surface science applications.« less

  9. Electronic absorption, vibrational spectra, nonlinear optical properties, NBO analysis and thermodynamic properties of N-(4-nitro-2-phenoxyphenyl) methanesulfonamide molecule by ab initio HF and density functional methods.

    PubMed

    Rajamani, T; Muthu, S; Karabacak, M

    2013-05-01

    In this work, the vibrational spectral analysis was carried out by using FT-Raman and FT-IR spectroscopy in the range 4000-100 cm(-1) and 4000-400 cm(-1), respectively, for N-(4-nitro-2-phenoxyphenyl) methanesulfonamide molecule. Theoretical calculations were performed by ab initio RHF and density functional theory (DFT) method using 6-31G(d,p) and 6-311G(d,p) basis sets. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The results of the calculations were applied to simulated spectra of the title compound, which show excellent agreement with observed spectra. The frontier orbital energy gap and dipole moment illustrates the high reactivity of the title molecule. The first order hyperpolarizability (β0) and related properties (μ, α and Δα) of the molecule were also calculated. Stability of the molecule arising from hyperconjugative interactions and charge delocalization were analyzed using natural bond orbital (NBO) analysis. The results show that electron density (ED) in the σ(*) and π(*) anti-bonding orbitals and second order delocalization energies (E2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. UV-vis spectrum of the compound was recorded in the region 200-500 nm in ethanol and electronic properties such as excitation energies, oscillator strength and wavelength were calculated by TD-DFT/B3LYP, CIS and TD-HF methods using 6-31G(d,p) basis set. Molecular electrostatic potential (MEP) and HOMO-LUMO energy levels are also constructed. The thermodynamic properties of the title compound were calculated at different temperatures and the results reveals the heat capacity (C), and entropy (S) increases with rise in temperature. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. A density difference based analysis of orbital-dependent exchange-correlation functionals

    NASA Astrophysics Data System (ADS)

    Grabowski, Ireneusz; Teale, Andrew M.; Fabiano, Eduardo; Śmiga, Szymon; Buksztel, Adam; Della Sala, Fabio

    2014-03-01

    We present a density difference based analysis for a range of orbital-dependent Kohn-Sham functionals. Results for atoms, some members of the neon isoelectronic series and small molecules are reported and compared with ab initio wave function calculations. Particular attention is paid to the quality of approximations to the exchange-only optimised effective potential (OEP) approach: we consider both the localised Hartree-Fock as well as the Krieger-Li-Iafrate methods. Analysis of density differences at the exchange-only level reveals the impact of the approximations on the resulting electronic densities. These differences are further quantified in terms of the ground state energies, frontier orbital energy differences and highest occupied orbital energies obtained. At the correlated level, an OEP approach based on a perturbative second-order correlation energy expression is shown to deliver results comparable with those from traditional wave function approaches, making it suitable for use as a benchmark against which to compare standard density functional approximations.

  11. Ab initio molecular crystal structures, spectra, and phase diagrams.

    PubMed

    Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni

    2014-09-16

    Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling

  12. Ab initio modeling of steady-state and time-dependent charge transport in hole-only α-NPD devices

    NASA Astrophysics Data System (ADS)

    Liu, Feilong; Massé, Andrea; Friederich, Pascal; Symalla, Franz; Nitsche, Robert; Wenzel, Wolfgang; Coehoorn, Reinder; Bobbert, Peter A.

    2016-12-01

    We present an ab initio modeling study of steady-state and time-dependent charge transport in hole-only devices of the amorphous molecular semiconductor α-NPD [N ,N'-Di(1 -naphthyl)-N ,N'-diphenyl-(1 ,1'-biphenyl)-4 ,4'-diamine] . The study is based on the microscopic information obtained from atomistic simulations of the morphology and density functional theory calculations of the molecular hole energies, reorganization energies, and transfer integrals. Using stochastic approaches, the microscopic information obtained in simulation boxes at a length scale of ˜10 nm is expanded and employed in one-dimensional (1D) and three-dimensional (3D) master-equation modeling of the charge transport at the device scale of ˜100 nm. Without any fit parameter, predicted current density-voltage and impedance spectroscopy data obtained with the 3D modeling are in very good agreement with measured data on devices with different α-NPD layer thicknesses in a wide range of temperatures, bias voltages, and frequencies. Similarly good results are obtained with the computationally much more efficient 1D modeling after optimizing a hopping prefactor.

  13. Perpendicular magnetic anisotropy in Mn2VIn (001) films: An ab initio study

    NASA Astrophysics Data System (ADS)

    Zipporah, Muthui; Robinson, Musembi; Julius, Mwabora; Arti, Kashyap

    2018-05-01

    First principles study of the magnetic anisotropy of Mn2VIn (001) films show perpendicular magnetic anisotropy (PMA), which increases as a function of the thickness of the film. Density functional theory (DFT) as implemented in the Vienna Ab initio simulation package (VASP) is employed here to perform a comprehensive theoretical investigation of the structural, electronic and magnetic properties of the Mn2VIn(001) films of varying thickness. Our calculations were performed on fully relaxed structures, with five to seventeen mono layers (ML). The degree of spin polarization is higher in the (001) Mn2VIn thin films as compared to the bulk in contrast to what is usually the case and as in Mn2VAl, which is isoelectronic to Mn2VIn as well as inCo2VIn (001) films studied for comparison. Tetragonal distortions are found in all the systems after relaxation. The distortion in the Mn2VIn system persists even for the 17ML thin film, resulting in PMA in the Mn2VIn system. This significant finding has potential to contribute to spin transfer torque (STT) and magnetic random access memory MRAM applications, as materials with PMA derived from volume magnetocrystalline anisotropy are being proposed as ideal magnetic electrodes.

  14. IR Spectra of (HCOOH)2 and (DCOOH)2: Experiment, VSCF/VCI, and Ab Initio Molecular Dynamics Calculations Using Full-Dimensional Potential and Dipole Moment Surfaces.

    PubMed

    Qu, Chen; Bowman, Joel M

    2018-05-17

    We report quantum VSCF/VCI and ab initio molecular dynamics (AIMD) calculations of the IR spectra of (HCOOH) 2 and (DCOOH) 2 , using full-dimensional, ab initio potential energy and dipole moment surfaces (PES and DMS). These surfaces are fits, using permutationally invariant polynomials, to 13 475 ab initio CCSD(T)-F12a electronic energies and MP2 dipole moments. Here "AIMD" means using these ab initio potential and dipole moment surfaces in the MD calculations. The VSCF/VCI calculations use all (24) normal modes for coupling, with a four-mode representation of the potential. The quantum spectra align well with jet-cooled and room-temperature experimental spectra over the spectral range 600-3600 cm -1 . Analyses of the complex O-H and C-H stretch bands are made based on the mixing of the VSCF/VCI basis functions. The comparisons of the AIMD IR spectra with both experimental and VSCF/VCI ones provide tests of the accuracy of the AIMD approach. These indicate good accuracy for simple bands but not for the complex O-H stretch band, which is upshifted from experimental and VSCF/VCI bands by roughly 300 cm -1 . In addition to testing the AIMD approach, the PES, DMS, and VSCF/VCI calculations for formic acid dimer provide opportunities for testing other methods to represent high-dimensional data and other methods that perform postharmonic vibrational calculations.

  15. Extent of hydrogen coverage of Si(001) under chemical vapor deposition conditions from ab initio approaches

    NASA Astrophysics Data System (ADS)

    Rosenow, Phil; Tonner, Ralf

    2016-05-01

    The extent of hydrogen coverage of the Si(001) c(4 × 2) surface in the presence of hydrogen gas has been studied with dispersion corrected density functional theory. Electronic energy contributions are well described using a hybrid functional. The temperature dependence of the coverage in thermodynamic equilibrium was studied computing the phonon spectrum in a supercell approach. As an approximation to these demanding computations, an interpolated phonon approach was found to give comparable accuracy. The simpler ab initio thermodynamic approach is not accurate enough for the system studied, even if corrections by the Einstein model for surface vibrations are considered. The on-set of H2 desorption from the fully hydrogenated surface is predicted to occur at temperatures around 750 K. Strong changes in hydrogen coverage are found between 1000 and 1200 K in good agreement with previous reflectance anisotropy spectroscopy experiments. These findings allow a rational choice for the surface state in the computational treatment of chemical reactions under typical metal organic vapor phase epitaxy conditions on Si(001).

  16. Extent of hydrogen coverage of Si(001) under chemical vapor deposition conditions from ab initio approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenow, Phil; Tonner, Ralf, E-mail: tonner@chemie.uni-marburg.de

    2016-05-28

    The extent of hydrogen coverage of the Si(001) c(4 × 2) surface in the presence of hydrogen gas has been studied with dispersion corrected density functional theory. Electronic energy contributions are well described using a hybrid functional. The temperature dependence of the coverage in thermodynamic equilibrium was studied computing the phonon spectrum in a supercell approach. As an approximation to these demanding computations, an interpolated phonon approach was found to give comparable accuracy. The simpler ab initio thermodynamic approach is not accurate enough for the system studied, even if corrections by the Einstein model for surface vibrations are considered. Themore » on-set of H{sub 2} desorption from the fully hydrogenated surface is predicted to occur at temperatures around 750 K. Strong changes in hydrogen coverage are found between 1000 and 1200 K in good agreement with previous reflectance anisotropy spectroscopy experiments. These findings allow a rational choice for the surface state in the computational treatment of chemical reactions under typical metal organic vapor phase epitaxy conditions on Si(001).« less

  17. Lattice dynamics of Cs2NaYbF6 and Cs2NaYF6 elpasolites: Ab initio calculation

    NASA Astrophysics Data System (ADS)

    Chernyshev, V. A.; Petrov, V. P.; Nikiforov, A. E.; Zakir'yanov, D. O.

    2015-06-01

    The ab initio calculations of the crystal structure and the phonon spectrum of Cs2NaYbF6 and Cs2NaYF6 crystals with the elpasolite structure have been performed. The frequencies and types of fundamental vibrations have been determined. The calculations have been performed in the framework of the density functional theory using the molecular orbital method with hybrid functionals in the CRYSTAL09 program developed for the simulation of periodic structures. The outer 5 s and 5 p shells of the rare-earth ion have been described in Gaussian-type basis sets. The influence of inner shells, including 4 f electron shells, on the outer shells has been described using the pseudopotential. It has been shown that this approach allows the description of the phonon spectrum with the inclusion of the splitting of the longitudinal and transverse optical modes.

  18. Ab initio study of point defects near stacking faults in 3C-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Jianqi; Liu, Bin; Zhang, Yanwen

    Interactions between point defects and stacking faults in 3C-SiC are studied using an ab initio method based on density functional theory. The results show that the discontinuity of the stacking sequence considerably affects the configurations and behavior of intrinsic defects, especially in the case of silicon interstitials. The existence of an intrinsic stacking fault (missing a C-Si bilayer) shortens the distance between the tetrahedral-center site and its second-nearest-neighboring silicon layer, making the tetrahedral silicon interstitial unstable. Instead of a tetrahedral configuration with four C neighbors, a pyramid-like interstitial structure with a defect state within the band gap becomes a stablemore » configuration. In addition, orientation rotation occurs in the split interstitials that has diverse effects on the energy landscape of silicon and carbon split interstitials in the stacking fault region. Moreover, our analyses of ionic relaxation and electronic structure of vacancies show that the built-in strain field, owing to the existence of the stacking fault, makes the local environment around vacancies more complex than that in the bulk.« less

  19. Ab initio study of point defects near stacking faults in 3C-SiC

    DOE PAGES

    Xi, Jianqi; Liu, Bin; Zhang, Yanwen; ...

    2016-07-02

    Interactions between point defects and stacking faults in 3C-SiC are studied using an ab initio method based on density functional theory. The results show that the discontinuity of the stacking sequence considerably affects the configurations and behavior of intrinsic defects, especially in the case of silicon interstitials. The existence of an intrinsic stacking fault (missing a C-Si bilayer) shortens the distance between the tetrahedral-center site and its second-nearest-neighboring silicon layer, making the tetrahedral silicon interstitial unstable. Instead of a tetrahedral configuration with four C neighbors, a pyramid-like interstitial structure with a defect state within the band gap becomes a stablemore » configuration. In addition, orientation rotation occurs in the split interstitials that has diverse effects on the energy landscape of silicon and carbon split interstitials in the stacking fault region. Moreover, our analyses of ionic relaxation and electronic structure of vacancies show that the built-in strain field, owing to the existence of the stacking fault, makes the local environment around vacancies more complex than that in the bulk.« less

  20. Yttrium aluminium garnet under pressure: Structural, elastic, and vibrational properties from ab initio studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monteseguro, V.; Rodríguez-Hernández, P.; Muñoz, A., E-mail: amunoz@ull.es

    The structural, elastic, and vibrational properties of yttrium aluminum garnet Y{sub 3}Al{sub 5}O{sub 12} are studied under high pressure by ab initio calculations in the framework of the density functional theory. The calculated ground state properties are in good agreement with the available experimental data. Pressure dependences of bond length and bulk moduli of the constituent polyhedra are reported. The evolution of the elastic constants and the major elastic properties, Young and shear modulus, Poisson's ratios, and Zener anisotropy ratio, are described. The mechanical stability is analyzed, on the light of “Born generalized stability criteria,” showing that the garnet ismore » mechanically unstable above 116 GPa. Symmetries, frequencies, and pressure coefficients of the Raman-active modes are discussed on the basis of the calculated total and partial phonon density of states, which reflect the dynamical contribution of each atom. The relations between the phonon modes of Y{sub 3}Al{sub 5}O{sub 12} and the internal and external molecular modes of the different polyhedra are discussed. Infrared-active modes, as well as the silent modes, and their pressure dependence are also investigated. No dynamical instabilities were found below 116 GPa.« less

  1. Ab Initio Modeling of Structure and Properties of Single and Mixed Alkali Silicate Glasses.

    PubMed

    Baral, Khagendra; Li, Aize; Ching, Wai-Yim

    2017-10-12

    A density functional theory (DFT)-based ab initio molecular dynamics (AIMD) has been applied to simulate models of single and mixed alkali silicate glasses with two different molar concentrations of alkali oxides. The structural environments and spatial distributions of alkali ions in the 10 simulated models with 20% and 30% of Li, Na, K and equal proportions of Li-Na and Na-K are studied in detail for subtle variations among the models. Quantum mechanical calculations of electronic structures, interatomic bonding, and mechanical and optical properties are carried out for each of the models, and the results are compared with available experimental observation and other simulations. The calculated results are in good agreement with the experimental data. We have used the novel concept of using the total bond order density (TBOD), a quantum mechanical metric, to characterize internal cohesion in these glass models. The mixed alkali effect (MAE) is visible in the bulk mechanical properties but not obvious in other physical properties studied in this paper. We show that Li doping deviates from expected trend due to the much stronger Li-O bonding than those of Na and K doping. The approach used in this study is in contrast with current studies in alkali-doped silicate glasses based only on geometric characterizations.

  2. Ab initio phasing by molecular averaging in real space with new criteria: application to structure determination of a betanodavirus.

    PubMed

    Yoshimura, Masato; Chen, Nai Chi; Guan, Hong Hsiang; Chuankhayan, Phimonphan; Lin, Chien Chih; Nakagawa, Atsushi; Chen, Chun Jung

    2016-07-01

    Molecular averaging, including noncrystallographic symmetry (NCS) averaging, is a powerful method for ab initio phase determination and phase improvement. Applications of the cross-crystal averaging (CCA) method have been shown to be effective for phase improvement after initial phasing by molecular replacement, isomorphous replacement, anomalous dispersion or combinations of these methods. Here, a two-step process for phase determination in the X-ray structural analysis of a new coat protein from a betanodavirus, Grouper nervous necrosis virus, is described in detail. The first step is ab initio structure determination of the T = 3 icosahedral virus-like particle using NCS averaging (NCSA). The second step involves structure determination of the protrusion domain of the viral molecule using cross-crystal averaging. In this method, molecular averaging and solvent flattening constrain the electron density in real space. To quantify these constraints, a new, simple and general indicator, free fraction (ff), is introduced, where ff is defined as the ratio of the volume of the electron density that is freely changed to the total volume of the crystal unit cell. This indicator is useful and effective to evaluate the strengths of both NCSA and CCA. Under the condition that a mask (envelope) covers the target molecule well, an ff value of less than 0.1, as a new rule of thumb, gives sufficient phasing power for the successful construction of new structures.

  3. Ab initio phasing by molecular averaging in real space with new criteria: application to structure determination of a betanodavirus

    PubMed Central

    Yoshimura, Masato; Chen, Nai-Chi; Guan, Hong-Hsiang; Chuankhayan, Phimonphan; Lin, Chien-Chih; Nakagawa, Atsushi; Chen, Chun-Jung

    2016-01-01

    Molecular averaging, including noncrystallographic symmetry (NCS) averaging, is a powerful method for ab initio phase determination and phase improvement. Applications of the cross-crystal averaging (CCA) method have been shown to be effective for phase improvement after initial phasing by molecular replacement, isomorphous replacement, anomalous dispersion or combinations of these methods. Here, a two-step process for phase determination in the X-ray structural analysis of a new coat protein from a betanodavirus, Grouper nervous necrosis virus, is described in detail. The first step is ab initio structure determination of the T = 3 icosahedral virus-like particle using NCS averaging (NCSA). The second step involves structure determination of the protrusion domain of the viral molecule using cross-crystal averaging. In this method, molecular averaging and solvent flattening constrain the electron density in real space. To quantify these constraints, a new, simple and general indicator, free fraction (ff), is introduced, where ff is defined as the ratio of the volume of the electron density that is freely changed to the total volume of the crystal unit cell. This indicator is useful and effective to evaluate the strengths of both NCSA and CCA. Under the condition that a mask (envelope) covers the target molecule well, an ff value of less than 0.1, as a new rule of thumb, gives sufficient phasing power for the successful construction of new structures. PMID:27377380

  4. Ab initio study of C + H3+ reactions

    NASA Technical Reports Server (NTRS)

    Talbi, D.; DeFrees, D. J.

    1991-01-01

    The reaction C + H3+ --> CH(+) + H2 is frequently used in models of dense interstellar cloud chemistry with the assumption that it is fast, i.e. there are no potential energy barriers inhibiting it. Ab initio molecular orbital study of the triplet CH3+ potential energy surface (triplet because the reactant carbon atom is a ground state triplet) supports this hypothesis. The reaction product is 3 pi CH+; the reaction is to exothermic even though the product is not in its electronic ground state. No path has been found on the potential energy surface for C + H3+ --> CH2(+) + H reaction.

  5. Computational prediction of muon stopping sites using ab initio random structure searching (AIRSS)

    NASA Astrophysics Data System (ADS)

    Liborio, Leandro; Sturniolo, Simone; Jochym, Dominik

    2018-04-01

    The stopping site of the muon in a muon-spin relaxation experiment is in general unknown. There are some techniques that can be used to guess the muon stopping site, but they often rely on approximations and are not generally applicable to all cases. In this work, we propose a purely theoretical method to predict muon stopping sites in crystalline materials from first principles. The method is based on a combination of ab initio calculations, random structure searching, and machine learning, and it has successfully predicted the MuT and MuBC stopping sites of muonium in Si, diamond, and Ge, as well as the muonium stopping site in LiF, without any recourse to experimental results. The method makes use of Soprano, a Python library developed to aid ab initio computational crystallography, that was publicly released and contains all the software tools necessary to reproduce our analysis.

  6. Quantal Study of the Exchange Reaction for N + N2 using an ab initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Wang, Dunyou; Stallcop, James R.; Huo, Winifred M.; Dateo, Christopher E.; Schwenke, David W.; Partridge, Harry; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The N + N2 exchange rate is calculated using a time-dependent quantum dynamics method on a newly determined ab initio potential energy surface (PES) for the ground A" state. This ab initio PES shows a double barrier feature in the interaction region with the barrier height at 47.2 kcal/mol, and a shallow well between these two barriers, with the minimum at 43.7 kcal/mol. A quantum dynamics wave packet calculation has been carried out using the fitted PES to compute the cumulative reaction probability for the exchange reaction of N + N2(J=O). The J - K shift method is then employed to obtain the rate constant for this reaction. The calculated rate constant is compared with experimental data and a recent quasi-classical calculation using a LEPS PES. Significant differences are found between the present and quasiclassical results. The present rate calculation is the first accurate 3D quantal dynamics study for N + N2 reaction system and the ab initio PES reported here is the first such surface for N3.

  7. Prediction of possible CaMnO3 modifications using an ab initio minimization data-mining approach.

    PubMed

    Zagorac, Jelena; Zagorac, Dejan; Zarubica, Aleksandra; Schön, J Christian; Djuris, Katarina; Matovic, Branko

    2014-10-01

    We have performed a crystal structure prediction study of CaMnO3 focusing on structures generated by octahedral tilting according to group-subgroup relations from the ideal perovskite type (Pm\\overline 3 m), which is the aristotype of the experimentally known CaMnO3 compound in the Pnma space group. Furthermore, additional structure candidates have been obtained using data mining. For each of the structure candidates, a local optimization on the ab initio level using density-functional theory (LDA, hybrid B3LYP) and the Hartree--Fock (HF) method was performed, and we find that several of the modifications may be experimentally accessible. In the high-pressure regime, we identify a post-perovskite phase in the CaIrO3 type, not previously observed in CaMnO3. Similarly, calculations at effective negative pressure predict a phase transition from the orthorhombic perovskite to an ilmenite-type (FeTiO3) modification of CaMnO3.

  8. Exploring the speed and performance of molecular replacement with AMPLE using QUARK ab initio protein models

    PubMed Central

    Keegan, Ronan M.; Bibby, Jaclyn; Thomas, Jens; Xu, Dong; Zhang, Yang; Mayans, Olga; Winn, Martyn D.; Rigden, Daniel J.

    2015-01-01

    AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected. PMID:25664744

  9. Atomistic non-adiabatic dynamics of the LH2 complex with a GPU-accelerated ab initio exciton model

    DOE PAGES

    Sisto, Aaron; Stross, Clem; van der Kamp, Marc W.; ...

    2017-03-28

    We recently outlined an efficient multi-tiered parallel ab initio excitonic framework that utilizes time dependent density functional theory (TDDFT) to calculate ground and excited state energies and gradients of large supramolecular complexes in atomistic detail – enabling us to undertake non-adiabatic simulations which explicitly account for the coupled anharmonic vibrational motion of all the constituent atoms in a supramolecular system. Here we apply that framework to the 27 coupled bacterio-chlorophyll-a chromophores which make up the LH2 complex, using it to compute an on-the-fly nonadiabatic surface-hopping (SH) trajectory of electronically excited LH2. Part one of this article is focussed on calibratingmore » our ab initio exciton Hamiltonian using two key parameters: a shift δ, which corrects for the error in TDDFT vertical excitation energies; and an effective dielectric constant ε, which describes the average screening of the transition-dipole coupling between chromophores. Using snapshots obtained from equilibrium molecular dynamics simulations (MD) of LH2, we tune the values of both δ and ε through fitting to the thermally broadened experimental absorption spectrum, giving a linear absorption spectrum that agrees reasonably well with experiment. In part two of this article, we construct a time-resolved picture of the coupled vibrational and excitation energy transfer (EET) dynamics in the sub-picosecond regime following photo-excitation. Assuming Franck–Condon excitation of a narrow eigenstate band centred at 800 nm, we use surface hopping to follow a single nonadiabatic dynamics trajectory within the full eigenstate manifold. Consistent with experimental data, this trajectory gives timescales for B800→B850 population transfer (τ B800→B850) between 650–1050 fs, and B800 population decay (τ 800→) between 10–50 fs. The dynamical picture that emerges is one of rapidly fluctuating LH2 eigenstates that are delocalized over multiple

  10. Atomistic non-adiabatic dynamics of the LH2 complex with a GPU-accelerated ab initio exciton model.

    PubMed

    Sisto, Aaron; Stross, Clem; van der Kamp, Marc W; O'Connor, Michael; McIntosh-Smith, Simon; Johnson, Graham T; Hohenstein, Edward G; Manby, Fred R; Glowacki, David R; Martinez, Todd J

    2017-06-14

    We recently outlined an efficient multi-tiered parallel ab initio excitonic framework that utilizes time dependent density functional theory (TDDFT) to calculate ground and excited state energies and gradients of large supramolecular complexes in atomistic detail - enabling us to undertake non-adiabatic simulations which explicitly account for the coupled anharmonic vibrational motion of all the constituent atoms in a supramolecular system. Here we apply that framework to the 27 coupled bacterio-chlorophyll-a chromophores which make up the LH2 complex, using it to compute an on-the-fly nonadiabatic surface-hopping (SH) trajectory of electronically excited LH2. Part one of this article is focussed on calibrating our ab initio exciton Hamiltonian using two key parameters: a shift δ, which corrects for the error in TDDFT vertical excitation energies; and an effective dielectric constant ε, which describes the average screening of the transition-dipole coupling between chromophores. Using snapshots obtained from equilibrium molecular dynamics simulations (MD) of LH2, we tune the values of both δ and ε through fitting to the thermally broadened experimental absorption spectrum, giving a linear absorption spectrum that agrees reasonably well with experiment. In part two of this article, we construct a time-resolved picture of the coupled vibrational and excitation energy transfer (EET) dynamics in the sub-picosecond regime following photo-excitation. Assuming Franck-Condon excitation of a narrow eigenstate band centred at 800 nm, we use surface hopping to follow a single nonadiabatic dynamics trajectory within the full eigenstate manifold. Consistent with experimental data, this trajectory gives timescales for B800→B850 population transfer (τ B800→B850 ) between 650-1050 fs, and B800 population decay (τ 800→ ) between 10-50 fs. The dynamical picture that emerges is one of rapidly fluctuating LH2 eigenstates that are delocalized over multiple chromophores and

  11. Vibrational spectrum and assignments of 2-(4-methoxyphenyl)-1 H-benzo[ d]imidazole by ab initio Hartree-Fock and density functional methods

    NASA Astrophysics Data System (ADS)

    Arslan, Hakan; Algül, Öztekin

    2008-06-01

    The room temperature attenuated total reflection Fourier transform infrared spectrum of the 2-(4-methoxyphenyl)-1 H-benzo[ d]imidazole has been recorded with diamond/ZnSe prism. The conformational behaviour, structural stability of optimized geometry, frequency and intensity of the vibrational bands of the title compound were investigated by utilizing ab initio calculations with 6-311G** basis set at HF, B3LYP, BLYP, B3PW91 and mPW1PW91 levels. The harmonic vibrational frequencies were calculated and scaled values have been compared with experimental IR spectrum. The observed and the calculated frequencies are found to be in good agreement. The theoretical vibrational spectra of the title compound were interpreted by means of potential energy distributions using VEDA 4 program. Furthermore, the optimal uniform scaling factors calculated for the title compound are 0.9120, 0.9596, 0.9660, 0.9699, and 0.9993 for HF, mPW1PW91, B3PW91, B3LYP and BLYP methods, respectively.

  12. Accurate ab initio dipole moment surfaces of ozone: First principle intensity predictions for rotationally resolved spectra in a large range of overtone and combination bands.

    PubMed

    Tyuterev, Vladimir G; Kochanov, Roman V; Tashkun, Sergey A

    2017-02-14

    Ab initio dipole moment surfaces (DMSs) of the ozone molecule are computed using the MRCI-SD method with AVQZ, AV5Z, and VQZ-F12 basis sets on a dense grid of about 1950 geometrical configurations. The analytical DMS representation used for the fit of ab initio points provides better behavior for large nuclear displacements than that of previous studies. Various DMS models were derived and tested. Vibration-rotation line intensities of 16 O 3 were calculated from these ab initio surfaces by the variational method using two different potential functions determined in our previous works. For the first time, a very good agreement of first principle calculations with the experiment was obtained for the line-by-line intensities in rotationally resolved ozone spectra in a large far- and mid-infrared range. This includes high overtone and combination bands up to ΔV = 6. A particular challenge was a correct description of the B-type bands (even ΔV 3 values) that represented major difficulties for the previous ab initio investigations and for the empirical spectroscopic models. The major patterns of various B-type bands were correctly described without empirically adjusted dipole moment parameters. For the 10 μm range, which is of key importance for the atmospheric ozone retrievals, our ab initio intensity results are within the experimental error margins. The theoretical values for the strongest lines of the ν 3 band lie in general between two successive versions of HITRAN (HIgh-resolution molecular TRANsmission) empirical database that corresponded to most extended available sets of observations. The overall qualitative agreement in a large wavenumber range for rotationally resolved cold and hot ozone bands up to about 6000 cm -1 is achieved here for the first time. These calculations reveal that several weak bands are yet missing from available spectroscopic databases.

  13. Ab initio study of the ground and excited electronic states of the methyl radical

    PubMed Central

    Zanchet, A.; Bañares, L.; Senent, M. L.; García-Vela, A.

    2016-01-01

    The ground and some excited electronic states of the methyl radical have been characterized by means of highly correlated ab intio techniques. The specific excited states investigated are those involved in the dissociation of the radical, namely the 3s and 3pz Rydberg states, and the A1 and B1 valence states crossing them, respectively. The C-H dissociative coordinate and the HCH bending angle were considered in order to generate the first two-dimensional ab initio representation of the potential surfaces of the above electronic states of CH3, along with the nonadiabatic couplings between them. Spectroscopic constants and frequencies calculated for the ground and bound excited states agree well with most of the available experimental data. Implications of the shape of the excited potential surfaces and couplings for the dissociation pathways of CH3 are discussed in the light of recent experimental results for dissociation from low-lying vibrational states of CH3. Based on the ab initio data some predictions are made regarding methyl photodissociation from higher initial vibrational states. PMID:27892569

  14. Combined experimental and ab initio study of the electronic structure of narrow-diameter single-wall carbon nanotubes with predominant (6,4),(6,5) chirality

    NASA Astrophysics Data System (ADS)

    de Blauwe, K.; Mowbray, D. J.; Miyata, Y.; Ayala, P.; Shiozawa, H.; Rubio, A.; Hoffmann, P.; Kataura, H.; Pichler, T.

    2010-09-01

    Narrow diameter tubes and especially (6,5) tubes with a diameter of 0.75 nm are currently one of the most studied carbon nanotubes because their unique optical and especially luminescence response makes them exceptionally suited for biomedical applications. Here we report on a detailed analysis of the electronic structure of nanotubes with (6,5) and (6,4) chiralities using a combined experimental and theoretical approach. From high-energy spectroscopy involving x-ray absorption and photoemission spectroscopy the detailed valence- and conduction-band response of these narrow diameter tubes is studied. The observed electronic structure is in sound agreement with state of the art ab initio calculations using density-functional theory.

  15. Spectroscopic fingerprints of toroidal nuclear quantum delocalization via ab initio path integral simulations.

    PubMed

    Schütt, Ole; Sebastiani, Daniel

    2013-04-05

    We investigate the quantum-mechanical delocalization of hydrogen in rotational symmetric molecular systems. To this purpose, we perform ab initio path integral molecular dynamics simulations of a methanol molecule to characterize the quantum properties of hydrogen atoms in a representative system by means of their real-space and momentum-space densities. In particular, we compute the spherically averaged momentum distribution n(k) and the pseudoangular momentum distribution n(kθ). We interpret our results by comparing them to path integral samplings of a bare proton in an ideal torus potential. We find that the hydroxyl hydrogen exhibits a toroidal delocalization, which leads to characteristic fingerprints in the line shapes of the momentum distributions. We can describe these specific spectroscopic patterns quantitatively and compute their onset as a function of temperature and potential energy landscape. The delocalization patterns in the projected momentum distribution provide a promising computational tool to address the intriguing phenomenon of quantum delocalization in condensed matter and its spectroscopic characterization. As the momentum distribution n(k) is also accessible through Nuclear Compton Scattering experiments, our results will help to interpret and understand future measurements more thoroughly. Copyright © 2012 Wiley Periodicals, Inc.

  16. Synthesis, FTIR, FT-Raman, UV-visible, ab initio and DFT studies on benzohydrazide.

    PubMed

    Arjunan, V; Rani, T; Mythili, C V; Mohan, S

    2011-08-01

    A systematic vibrational spectroscopic assignment and analysis of benzohydrazide (BH) has been carried out by using FTIR and FT-Raman spectral data. The vibrational analysis were aided by electronic structure calculations--ab initio (RHF) and hybrid density functional methods (B3LYP and B3PW91) performed with 6-31G(d,p) and 6-311++G(d,p) basis sets. Molecular equilibrium geometries, electronic energies, IR intensities, harmonic vibrational frequencies, depolarization ratios and Raman activities have been computed. Potential energy distribution (PED) and normal mode analysis have also been performed. The assignments proposed based on the experimental IR and Raman spectra have been reviewed and complete assignment of the observed spectra have been proposed. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λ(max) were determined by time-dependent DFT (TD-DFT) method. The geometrical, thermodynamical parameters and absorption wavelengths were compared with the experimental data. The interactions of carbonyl and hydrazide groups on the benzene ring skeletal modes were investigated. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Ab Initio Values of the Thermophysical Properties of Helium as Standards

    PubMed Central

    Hurly, John J.; Moldover, Michael R.

    2000-01-01

    Recent quantum mechanical calculations of the interaction energy of pairs of helium atoms are accurate and some include reliable estimates of their uncertainty. We combined these ab initio results with earlier published results to obtain a helium-helium interatomic potential that includes relativistic retardation effects over all ranges of interaction. From this potential, we calculated the thermophysical properties of helium, i.e., the second virial coefficients, the dilute-gas viscosities, and the dilute-gas thermal conductivities of 3He, 4He, and their equimolar mixture from 1 K to 104 K. We also calculated the diffusion and thermal diffusion coefficients of mixtures of 3He and 4He. For the pure fluids, the uncertainties of the calculated values are dominated by the uncertainties of the potential; for the mixtures, the uncertainties of the transport properties also include contributions from approximations in the transport theory. In all cases, the uncertainties are smaller than the corresponding experimental uncertainties; therefore, we recommend the ab initio results be used as standards for calibrating instruments relying on these thermophysical properties. We present the calculated thermophysical properties in easy-to-use tabular form. PMID:27551630

  18. Simple calculation of ab initio melting curves: Application to aluminum.

    PubMed

    Robert, Grégory; Legrand, Philippe; Arnault, Philippe; Desbiens, Nicolas; Clérouin, Jean

    2015-03-01

    We present a simple, fast, and promising method to compute the melting curves of materials with ab initio molecular dynamics. It is based on the two-phase thermodynamic model of Lin et al [J. Chem. Phys. 119, 11792 (2003)] and its improved version given by Desjarlais [Phys. Rev. E 88, 062145 (2013)]. In this model, the velocity autocorrelation function is utilized to calculate the contribution of the nuclei motion to the entropy of the solid and liquid phases. It is then possible to find the thermodynamic conditions of equal Gibbs free energy between these phases, defining the melting curve. The first benchmark on the face-centered cubic melting curve of aluminum from 0 to 300 GPa demonstrates how to obtain an accuracy of 5%-10%, comparable to the most sophisticated methods, for a much lower computational cost.

  19. A full-dimensional ab initio potential energy surface and rovibrational energies of the Ar–HF complex

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Zhou, Yanzi; Xie, Daiqian

    2018-04-01

    We report a new full-dimensional ab initio potential energy surface for the Ar-HF van der Waals complex at the level of coupled-cluster singles and doubles with noniterative inclusion of connected triples levels [CCSD(T)] using augmented correlation-consistent quintuple-zeta basis set (aV5Z) plus bond functions. Full counterpoise correction was employed to correct the basis-set superposition error. The hypersurface was fitted using artificial neural network method with a root mean square error of 0.1085 cm-1 for more than 8000 ab initio points. The complex was found to prefer a linear Ar-H-F equilibrium structure. The three-dimensional discrete variable representation method and the Lanczos propagation algorithm were then employed to calculate the rovibrational states without separating inter- and intra- molecular nuclear motions. The calculated vibrational energies of Ar-HF differ from the experiment values within about 1 cm-1 on the first four HF vibrational states, and the predicted pure rotational energies on (0000) and (1000) vibrational states are deviated from the observed value by about 1%, which shows the accuracy of our new PES.

  20. Lattice dynamics calculations based on density-functional perturbation theory in real space

    NASA Astrophysics Data System (ADS)

    Shang, Honghui; Carbogno, Christian; Rinke, Patrick; Scheffler, Matthias

    2017-06-01

    A real-space formalism for density-functional perturbation theory (DFPT) is derived and applied for the computation of harmonic vibrational properties in molecules and solids. The practical implementation using numeric atom-centered orbitals as basis functions is demonstrated exemplarily for the all-electron Fritz Haber Institute ab initio molecular simulations (FHI-aims) package. The convergence of the calculations with respect to numerical parameters is carefully investigated and a systematic comparison with finite-difference approaches is performed both for finite (molecules) and extended (periodic) systems. Finally, the scaling tests and scalability tests on massively parallel computer systems demonstrate the computational efficiency.

  1. An Ab Initio Based Potential Energy Surface for Water

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)

    1996-01-01

    We report a new determination of the water potential energy surface. A high quality ab initio potential energy surface (PES) and dipole moment function of water have been computed. This PES is empirically adjusted to improve the agreement between the computed line positions and those from the HITRAN 92 data base. The adjustment is small, nonetheless including an estimate of core (oxygen 1s) electron correlation greatly improves the agreement with experiment. Of the 27,245 assigned transitions in the HITRAN 92 data base for H2(O-16), the overall root mean square (rms) deviation between the computed and observed line positions is 0.125/cm. However the deviations do not correspond to a normal distribution: 69% of the lines have errors less than 0.05/cm. Overall, the agreement between the line intensities computed in the present work and those contained in the data base is quite good, however there are a significant number of line strengths which differ greatly.

  2. Ab-initio study of structural and electronic properties of WS2/h-BN van der Waals heterostructure

    NASA Astrophysics Data System (ADS)

    Ghasemi majd, Zahra; Amiri, Peiman; Taghizadeh, Seyed Fardin

    2018-06-01

    First-principle calculations with different exchange-correlation functionals, including LDA, GGA, semi-empirical and ab-initio van der Waals in the forms of vdW-DF2B86R and vdW-DF2 were performed to evaluate the performance of different functionals in describing the bonding mechanism, adsorption energy and interlayer distance of WS2 monolayer on and between h-BN layers. The finding was that the vdW-DF2B86R seems to be the approach best lending itself to this purpose. In order to include the van der Waals (vdW) interactions in our calculations, we used the DFT-D2 and vdW methods, which gave rise to a physical adsorption with no net charge transfer between the WS2 layer and the corresponding substrates. In addition, we investigated the electronic and structural properties of WS2 and h-BN heterolayers, using vdW-DF2B86R functional. Based on density functional theory calculations, WS2 on and between h-BN layers showed a direct band gap at the K-point, which was experimentally observed.

  3. Ab Initio Study of Aluminium Impurity and Interstitial-Substitutional Complexes in Ge Using a Hybrid Functional (HSE)

    NASA Astrophysics Data System (ADS)

    Igumbor, E.; Mapasha, R. E.; Meyer, W. E.

    2017-07-01

    The results of an ab initio modelling of aluminium substitutional impurity ({\\hbox {Al}}_Ge), aluminium interstitial in Ge [{\\hbox {I}}_Al for the tetrahedral (T) and hexagonal (H) configurations] and aluminium interstitial-substitutional pairs in Ge ({\\hbox {I}}_Al{\\hbox {Al}}_Ge) are presented. For all calculations, the hybrid functional of Heyd, Scuseria, and Ernzerhof in the framework of density functional theory was used. Defects formation energies, charge state transition levels and minimum energy configurations of the {\\hbox {Al}}_Ge, {\\hbox {I}}_Al and {\\hbox {I}}_Al{\\hbox {Al}}_Ge were obtained for -2, -1, 0, +1 and +2 charge states. The calculated formation energy shows that for the neutral charge state, the {\\hbox {I}}_Al is energetically more favourable in the T than the H configuration. The {\\hbox {I}}_Al{\\hbox {Al}}_Ge forms with formation energies of -2.37 eV and -2.32 eV, when the interstitial atom is at the T and H sites, respectively. The {\\hbox {I}}_Al{\\hbox {Al}}_Ge is energetically more favourable when the interstitial atom is at the T site with a binding energy of 0.8 eV. The {\\hbox {I}}_Al in the T configuration, induced a deep donor (+2/+1) level at EV+0.23 eV and the {\\hbox {Al}}_Ge induced a single acceptor level (0/-1) at EV+0.14 eV in the band gap of Ge. The {\\hbox {I}}_Al{\\hbox {Al}}_Ge induced double-donor levels are at E_V+0.06 and E_V+0.12 eV, when the interstitial atom is at the T and H sites, respectively. The {\\hbox {I}}_Al and {\\hbox {I}}_Al{\\hbox {Al}}_Ge exhibit properties of charge state-controlled metastability.

  4. Structural phase transition of BeTe: an ab initio molecular dynamics study.

    PubMed

    Alptekin, Sebahaddin

    2017-08-11

    Beryllium telluride (BeTe) with cubic zinc-blende (ZB) structure was studied using ab initio constant pressure method under high pressure. The ab initio molecular dynamics (MD) approach for constant pressure was studied and it was found that the first order phase transition occurs from the ZB structure to the nickel arsenide (NiAs) structure. It has been shown that the MD simulation predicts the transition pressure P T more than the value obtained by the static enthalpy and experimental data. The structural pathway reveals MD simulation such as cubic → tetragonal → orthorhombic → monoclinic → orthorhombic → hexagonal, leading the ZB to NiAs phase. The phase transformation is accompanied by a 10% volume drop and at 80 GPa is likely to be around 35 GPa in the experiment. In the present study, our obtained values can be compared with the experimental and theoretical results. Graphical abstract The energy-volume relation and ZB phase for the BeTe.

  5. Magneto-electronic properties and spin-resolved I-V curves of a Co/GeSe heterojunction diode: an ab initio study

    NASA Astrophysics Data System (ADS)

    Makinistian, Leonardo; Albanesi, Eduardo A.

    2013-06-01

    We present ab initio calculations of magnetoelectronic and transport properties of the interface of hcp Cobalt (001) and the intrinsic narrow-gap semiconductor germanium selenide (GeSe). Using a norm-conserving pseudopotentials scheme within DFT, we first model the interface with a supercell approach and focus on the spin-resolved densities of states and the magnetic moment (spin and orbital components) at the different atomic layers that form the device. We also report a series of cuts (perpendicular to the plane of the heterojunction) of the electronic and spin densities showing a slight magnetization of the first layers of the semiconductor. Finally, we model the device with a different scheme: using semiinfinite electrodes connected to the heterojunction. These latter calculations are based upon a nonequilibrium Green's function approach that allows us to explore the spin-resolved electronic transport under a bias voltage (spin-resolved I-V curves), revealing features of potential applicability in spintronics.

  6. Ab-initio calculation and experimental observation of room temperature ferromagnetism in 50 keV nitrogen implanted rutile TiO2

    NASA Astrophysics Data System (ADS)

    Luitel, Homnath; Chakrabarti, Mahuya; Sarkar, A.; Dechoudhury, S.; Bhowmick, D.; Naik, V.; Sanyal, D.

    2018-02-01

    Room temperature magnetic properties of 50 keV N4+ ion beam implanted rutile TiO2 have been theoretically and experimentally studied. Ab-initio calculation under the frame work of density functional theory has been carried out to study the magnetic properties of the different possible nitrogen related defects in TiO2. Spin polarized density of states calculation suggests that both Ninst and NO can induce ferromagnetic ordering in rutile TiO2. In both cases the 2p orbital electrons of nitrogen atom give rise to the magnetic moment in TiO2. The possibility of the formation of N2 molecule in TiO2 system is also studied but in this case no significant magnetic moment has been observed. The magnetic measurements, using SQUID magnetometer, results a ferromagnetic ordering even at room temperature for the 50 keV N4+ ion beam implanted rutile TiO2.

  7. Machine Learning Force Field Parameters from Ab Initio Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ying; Li, Hui; Pickard, Frank C.

    Machine learning (ML) techniques with the genetic algorithm (GA) have been applied to determine a polarizable force field parameters using only ab initio data from quantum mechanics (QM) calculations of molecular clusters at the MP2/6-31G(d,p), DFMP2(fc)/jul-cc-pVDZ, and DFMP2(fc)/jul-cc-pVTZ levels to predict experimental condensed phase properties (i.e., density and heat of vaporization). The performance of this ML/GA approach is demonstrated on 4943 dimer electrostatic potentials and 1250 cluster interaction energies for methanol. Excellent agreement between the training data set from QM calculations and the optimized force field model was achieved. The results were further improved by introducing an offset factor duringmore » the machine learning process to compensate for the discrepancy between the QM calculated energy and the energy reproduced by optimized force field, while maintaining the local “shape” of the QM energy surface. Throughout the machine learning process, experimental observables were not involved in the objective function, but were only used for model validation. The best model, optimized from the QM data at the DFMP2(fc)/jul-cc-pVTZ level, appears to perform even better than the original AMOEBA force field (amoeba09.prm), which was optimized empirically to match liquid properties. The present effort shows the possibility of using machine learning techniques to develop descriptive polarizable force field using only QM data. The ML/GA strategy to optimize force fields parameters described here could easily be extended to other molecular systems.« less

  8. An ab initio study of the structure and dynamics of bulk liquid Ag and its liquid-vapor interface

    NASA Astrophysics Data System (ADS)

    Gonzalez Del Rio, Beatriz; Gonzalez Tesedo, Luis Enrique; Gonzalez Fernandez, David Jose

    Several static and dynamic properties of bulk liquid Ag at a thermodynamic state near its triple point have been calculated by means of ab initio molecular dynamics simulations. The calculated static structure shows a very good agreement with the available experimental data. The dynamical structure reveals collective density excitations with an associated dispersion relation which points to a small positive dispersion. Results are also reported at a slightly higher temperature in order to study the structure of the free liquid surface. The ionic density profile shows an oscillatory behaviour with two different wavelenghts, as the spacing between the outer and first inner layer is different from that between the other inner layers.

  9. Ab initio R-matrix calculations of e+-molecule scattering

    NASA Technical Reports Server (NTRS)

    Danby, Grahame; Tennyson, Jonathan

    1990-01-01

    The adaptation of the molecular R-matrix method, originally developed for electron-molecule collision studies, to positron scattering is discussed. Ab initio R-matrix calculations are presented for collisions of low energy positrons with a number of diatomic systems including H2, HF and N2. Differential elastic cross sections for positron-H2 show a minimum at about 45 deg for collision energies between 0.3 and 0.5 Ryd. The calculations predict a bound state of positronHF. Calculations on inelastic processes in N2 and O2 are also discussed.

  10. Engineering Room-temperature Superconductors Via ab-initio Calculations

    NASA Astrophysics Data System (ADS)

    Gulian, Mamikon; Melkonyan, Gurgen; Gulian, Armen

    The BCS, or bosonic model of superconductivity, as Little and Ginzburg have first argued, can bring in superconductivity at room temperatures in the case of high-enough frequency of bosonic mode. It was further elucidated by Kirzhnitset al., that the condition for existence of high-temperature superconductivity is closely related to negative values of the real part of the dielectric function at finite values of the reciprocal lattice vectors. In view of these findings, the task is to calculate the dielectric function for real materials. Then the poles of this function will indicate the existence of bosonic excitations which can serve as a "glue" for Cooper pairing, and if the frequency is high enough, and the dielectric matrix is simultaneously negative, this material is a good candidate for very high-Tc superconductivity. Thus, our approach is to elaborate a methodology of ab-initio calculation of the dielectric function of various materials, and then point out appropriate candidates. We used the powerful codes (TDDF with the DP package in conjunction with ABINIT) for computing dielectric responses at finite values of the wave vectors in the reciprocal lattice space. Though our report is concerned with the particular problem of superconductivity, the application range of the data processing methodology is much wider. The ability to compute the dielectric function of existing and still non-existing (though being predicted!) materials will have many more repercussions not only in fundamental sciences but also in technology and industry.

  11. Automated generation of radical species in crystalline carbohydrate using ab initio MD simulations.

    PubMed

    Aalbergsjø, Siv G; Pauwels, Ewald; Van Yperen-De Deyne, Andy; Van Speybroeck, Veronique; Sagstuen, Einar

    2014-08-28

    As the chemical structures of radiation damaged molecules may differ greatly from their undamaged counterparts, investigation and description of radiation damaged structures is commonly biased by the researcher. Radical formation from ionizing radiation in crystalline α-l-rhamnose monohydrate has been investigated using a new method where the selection of radical structures is unbiased by the researcher. The method is based on using ab initio molecular dynamics (MD) studies to investigate how ionization damage can form, change and move. Diversity in the radical production is gained by using different points on the potential energy surface of the intact crystal as starting points for the ionizations and letting the initial velocities of the nuclei after ionization be generated randomly. 160 ab initio MD runs produced 12 unique radical structures for investigation. Out of these, 7 of the potential products have never previously been discussed, and 3 products are found to match with radicals previously observed by electron magnetic resonance experiments.

  12. A systematic benchmark of the ab initio Bethe-Salpeter equation approach for low-lying optical excitations of small organic molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruneval, Fabien; Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720; Department of Physics, University of California, Berkeley, California 94720

    2015-06-28

    The predictive power of the ab initio Bethe-Salpeter equation (BSE) approach, rigorously based on many-body Green’s function theory but incorporating information from density functional theory, has already been demonstrated for the optical gaps and spectra of solid-state systems. Interest in photoactive hybrid organic/inorganic systems has recently increased and so has the use of the BSE for computing neutral excitations of organic molecules. However, no systematic benchmarks of the BSE for neutral electronic excitations of organic molecules exist. Here, we study the performance of the BSE for the 28 small molecules in Thiel’s widely used time-dependent density functional theory benchmark setmore » [Schreiber et al., J. Chem. Phys. 128, 134110 (2008)]. We observe that the BSE produces results that depend critically on the mean-field starting point employed in the perturbative approach. We find that this starting point dependence is mainly introduced through the quasiparticle energies obtained at the intermediate GW step and that with a judicious choice of starting mean-field, singlet excitation energies obtained from BSE are in excellent quantitative agreement with higher-level wavefunction methods. The quality of the triplet excitations is slightly less satisfactory.« less

  13. Linear free-energy relationships between a single gas-phase ab initio equilibrium bond length and experimental pKa values in aqueous solution.

    PubMed

    Alkorta, Ibon; Popelier, Paul L A

    2015-02-02

    Remarkably simple yet effective linear free energy relationships were discovered between a single ab initio computed bond length in the gas phase and experimental pKa values in aqueous solution. The formation of these relationships is driven by chemical features such as functional groups, meta/para substitution and tautomerism. The high structural content of the ab initio bond length makes a given data set essentially divide itself into high correlation subsets (HCSs). Surprisingly, all molecules in a given high correlation subset share the same conformation in the gas phase. Here we show that accurate pKa values can be predicted from such HCSs. This is achieved within an accuracy of 0.2 pKa units for 5 drug molecules. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Spectroscopic study of uracil, 1-methyluracil and 1-methyl-4-thiouracil: Hydrogen bond interactions in crystals and ab-initio molecular dynamics.

    PubMed

    Brela, Mateusz Z; Boczar, Marek; Malec, Leszek M; Wójcik, Marek J; Nakajima, Takahito

    2018-05-15

    Hydrogen bond networks in uracil, 1-methyluracil and 1-methyl-4-thiouracil were studied by ab initio molecular dynamics as well as analysis of the orbital interactions. The power spectra calculated by ab initio molecular dynamics for atoms involved in hydrogen bonds were analyzed. We calculated spectra by using anharmonic approximation based on the autocorrelation function of the atom positions obtained from the Born-Oppenheimer simulations. Our results show the differences between hydrogen bond networks in uracil and its methylated derivatives. The studied methylated derivatives, 1-methyluracil as well as 1-methyl-4-thiouracil, form dimeric structures in the crystal phase, while uracil does not form that kind of structures. The presence of sulfur atom instead oxygen atom reflects weakness of the hydrogen bonds that build dimers. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Ab Initio Computation of Dynamical Properties: Pressure Broadening

    NASA Astrophysics Data System (ADS)

    Wiesenfeld, Laurent; Drouin, Brian

    2014-06-01

    Rotational spectroscopy of polar molecules is the main observational tool in many areas of astrophysics, for gases of low densities (n ˜ 102 - 108 cm-3). Spectral line shapes in astrophysical media are largely dominated by turbulence-induced Doppler effects and natural line broadening are negligible. However line broadening remains an important tool for denser gases, like planetary high atmospheres. Understanding the excitation schemes of polar molecules requires the knowledge of excitation transfer rate due to collisional excitation, between the polar molecule and the ambient gas, usually H2. Transport properties in ionized media also require a precise knowledge of momentum transfer rates by elastic collisions. In order to assess the theoretically computed cross section and energy/momentum transfer rates, direct absolute experiments are scarce. The best way is to measure not individual scattering events but rather the global effect of the buffer gas, thanks to the pressure broadening cross sections, whose magnitude can be measured without any scaling parameters. At low temperatures, both elastic and inelastic scattering amplitudes are tested. At higher temperature, depending on the interaction strength, only inelastic scattering cross section are shown to play a significant role 1 ,2. Thanks to the advances of computer capabilities, it has become practical to compute spectral line parameters fromab initio quantum chemistry. In particular, the theory of rotational line broadening is readily incorporated into scattering quantum dynamical theory, like close-coupling schemes. The only approximations used in the computation are the isolated collision/isolated line approximations. We compute the non-binding interaction potential with high precision quantum chemistry and fit the resulting ab initio points onto a suitable functional. We have recently computed several such systems, for molecules in H2 buffer gas: H2O,3 H2CO,4 HCO+ .5 Detailed computations taking into

  16. Derivation of force field parameters for SnO2-H2O surface systems from plane-wave density functional theory calculations.

    PubMed

    Bandura, A V; Sofo, J O; Kubicki, J D

    2006-04-27

    Plane-wave density functional theory (DFT-PW) calculations were performed on bulk SnO2 (cassiterite) and the (100), (110), (001), and (101) surfaces with and without H2O present. A classical interatomic force field has been developed to describe bulk SnO2 and SnO2-H2O surface interactions. Periodic density functional theory calculations using the program VASP (Kresse et al., 1996) and molecular cluster calculations using Gaussian 03 (Frisch et al., 2003) were used to derive the parametrization of the force field. The program GULP (Gale, 1997) was used to optimize parameters to reproduce experimental and ab initio results. The experimental crystal structure and elastic constants of SnO2 are reproduced reasonably well with the force field. Furthermore, surface atom relaxations and structures of adsorbed H2O molecules agree well between the ab initio and force field predictions. H2O addition above that required to form a monolayer results in consistent structures between the DFT-PW and classical force field results as well.

  17. π-π stacking tackled with density functional theory

    PubMed Central

    Swart, Marcel; van der Wijst, Tushar; Fonseca Guerra, Célia

    2007-01-01

    Through comparison with ab initio reference data, we have evaluated the performance of various density functionals for describing π-π interactions as a function of the geometry between two stacked benzenes or benzene analogs, between two stacked DNA bases, and between two stacked Watson–Crick pairs. Our main purpose is to find a robust and computationally efficient density functional to be used specifically and only for describing π-π stacking interactions in DNA and other biological molecules in the framework of our recently developed QM/QM approach "QUILD". In line with previous studies, most standard density functionals recover, at best, only part of the favorable stacking interactions. An exception is the new KT1 functional, which correctly yields bound π-stacked structures. Surprisingly, a similarly good performance is achieved with the computationally very robust and efficient local density approximation (LDA). Furthermore, we show that classical electrostatic interactions determine the shape and depth of the π-π stacking potential energy surface. Figure Additivity approximation for the π-π interaction between two stacked Watson–Crick base pairs in terms of pairwise interactions between individual bases Electronic supplementary material The online version of this article (doi:10.1007/s00894-007-0239-y) contains supplementary material, which is available to authorized users. PMID:17874150

  18. Ab initio Hartree-Fock and density functional theory investigations on the conformational stability, molecular structure and vibrational spectra of 5-chloro-3-(2-(4-methylpiperazin-1-yl)-2-oxoethyl)benzo[d]thiazol-2(3H)-one drug molecule.

    PubMed

    Taşal, Erol; Kumalar, Mustafa

    2012-09-01

    In this work, the experimental and theoretical spectra of 5-chloro-3-(2-(4-methylpiperazin-1-yl)-2-oxoethyl)benzo[d]thiazol-2(3H)-one molecule (abbreviated as 5CMOT) are studied. The molecular geometry and vibrational frequencies are calculated in the ground state of molecule using ab initio Hartree-Fock (HF) and Density Function Theory (DFT) methods with 6-311++G(d,p), 6-31G++(d,p), 6-31G(d,p), 6-31G(d) and 6-31G basis sets. Three staggered stable conformers were observed on the torsional potential energy surfaces. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes calculated. The comparison of the theoretical and experimental geometries of the title compound indicated that the X-ray parameters fairly well agree with the theoretically obtained values for the most stable conformer. The theoretical results showed an excellent agreement with the experimental values. The calculated HOMO and LUMO energies show that the charge transfer occurs within the molecule. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Emergent properties of nuclei from ab initio coupled-cluster calculations

    NASA Astrophysics Data System (ADS)

    Hagen, G.; Hjorth-Jensen, M.; Jansen, G. R.; Papenbrock, T.

    2016-06-01

    Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. This endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. This paper reviews some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLO{}{{sat}} is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to 56Ni. We derive an efficient scheme for including continuum effects in coupled-cluster computations of nuclei based on chiral nucleon-nucleon and three-nucleon forces, and present new results for unbound states in the neutron-rich isotopes of oxygen and calcium. The coupling to the continuum impacts the energies of the {J}π =1/{2}-,3/{2}-,7/{2}-,3/{2}+ states in {}{17,23,25}O, and—contrary to naive shell-model expectations—the level ordering of the {J}π =3/{2}+,5/{2}+,9/{2}+ states in {}{53,55,61}Ca. ).

  20. Specific interactions between mycobacterial FtsZ protein and curcumin derivatives: Molecular docking and ab initio molecular simulations

    NASA Astrophysics Data System (ADS)

    Fujimori, Mitsuki; Sogawa, Haruki; Ota, Shintaro; Karpov, Pavel; Shulga, Sergey; Blume, Yaroslav; Kurita, Noriyuki

    2018-01-01

    Filamentous temperature-sensitive Z (FtsZ) protein plays essential role in bacteria cell division, and its inhibition prevents Mycobacteria reproduction. Here we adopted curcumin derivatives as candidates of novel inhibitors and investigated their specific interactions with FtsZ, using ab initio molecular simulations based on protein-ligand docking, classical molecular mechanics and ab initio fragment molecular orbital (FMO) calculations. Based on FMO calculations, we specified the most preferable site of curcumin binding to FtsZ and highlighted the key amino acid residues for curcumin binding at an electronic level. The result will be useful for proposing novel inhibitors against FtsZ based on curcumin derivatives.

  1. Curved-line search algorithm for ab initio atomic structure relaxation

    NASA Astrophysics Data System (ADS)

    Chen, Zhanghui; Li, Jingbo; Li, Shushen; Wang, Lin-Wang

    2017-09-01

    Ab initio atomic relaxations often take large numbers of steps and long times to converge, especially when the initial atomic configurations are far from the local minimum or there are curved and narrow valleys in the multidimensional potentials. An atomic relaxation method based on on-the-flight force learning and a corresponding curved-line search algorithm is presented to accelerate this process. Results demonstrate the superior performance of this method for metal and magnetic clusters when compared with the conventional conjugate-gradient method.

  2. Infrared signature of micro-hydration in the organophosphate sarin: An ab initio study

    DOE PAGES

    Alam, Todd M.; Pearce, Charles Joseph

    2015-06-28

    The infrared (IR) spectra of micro-hydrated Sarin•(H 2O) n clusters containing between one and four explicit waters have been studied using ab initio density functional theory (DFT) methods. The phosphate group P=O bond vibration region (~1270 to 1290 cm –1) revealed the largest frequency variation with hydration, with a frequency red shift reflecting the direct hydrogen bond formation between the P=O of Sarin and water. Small variations to the P-F stretch (~810 to 815 cm –1) and the C-O-P vibrational modes (~995 to 1004 cm –1) showed that the water interactions with these functional groups were minor, and that themore » structures of Sarin were not extensively perturbed in the hydrated complexes. Increasing the number of explicit hydration waters produced only small vibrational changes in the lowest free energy complexes. These minor changes were consistent with a single water-phosphate hydrogen bond being the dominant structure, though a second water-phosphate hydrogen bond was observed in some complexes and was identified by an additional red shift of the P=O bond vibration. As a result, the H 2O•H 2O vibrational modes (~3450 to 3660 cm –1) increased in complexity with higher hydration levels and reflect the extended hydrogen bonding networks formed between the explicit waters in the hydrated Sarin clusters.« less

  3. Ab initio ground and excited state potential energy surfaces for NO-Kr complex and dynamics of Kr solids with NO impurity

    NASA Astrophysics Data System (ADS)

    Castro-Palacios, Juan Carlos; Rubayo-Soneira, Jesús; Ishii, Keisaku; Yamashita, Koichi

    2007-04-01

    The intermolecular potentials for the NO(XΠ2)-Kr and NO(AΣ+2)-Kr systems have been calculated using highly accurate ab initio calculations. The spin-restricted coupled cluster method for the ground 1A'2 state [NO(XΠ2)-Kr ] and the multireference singles and doubles configuration interaction method for the excited 2A'2 state [NO(AΣ+2)-Kr], respectively, were used. The potential energy surfaces (PESs) show two linear wells and one that is almost in the perpendicular position. An analytical representation of the PESs has been constructed for the triatomic systems and used to carry out molecular dynamics (MD) simulations of the NO-doped krypton matrix response after excitation of NO. MD results are shown comparatively for three sets of potentials: (1) anisotropic ab initio potentials [NO molecule direction fixed during the dynamics and considered as a point (its center of mass)], (2) isotropic ab initio potentials (isotropic part in a Legendre polynomial expansion of the PESs), and (3) fitted Kr-NO potentials to the spectroscopic data. An important finding of this work is that the anisotropic and isotropic ab initio potentials calculated for the Kr-NO triatomic system are not suitable for describing the dynamics of structural relaxation upon Rydberg excitation of a NO impurity in the crystal. However, the isotropic ab initio potential in the ground state almost overlaps the published experimental potential, being almost independent of the angle asymmetry. This fact is also manifested in the radial distribution function around NO. However, in the case of the excited state the isotropic ab initio potential differs from the fitted potentials, which indicates that the Kr-NO interaction in the matrix is quite different because of the presence of the surrounding Kr atoms acting on the NO molecule. MD simulations for isotropic potentials reasonably reproduce the experimental observables for the femtosecond response and the bubble size but do not match spectroscopic

  4. Atomic defects in monolayer WSe2 tunneling FETs studied by systematic ab initio calculations

    NASA Astrophysics Data System (ADS)

    Wu, Jixuan; Fan, Zhiqiang; Chen, Jiezhi; Jiang, Xiangwei

    2018-05-01

    Atomic defects in monolayer WSe2 tunneling FETs (TFETs) are studied through systematic ab initio calculations aiming at performance predictions and enhancements. The effects of various defect positions and different passivation atoms are characterized in WSe2 TFETs by rigorous ab initio quantum transport simulations. It is suggested that the Se vacancy (VSe) defect located in the gate-controlled channel region tends to increase the OFF current (I off), whereas it can be well suppressed by oxygen passivation. It is demonstrated that chlorine (Cl) passivation at the source-side tunneling region can largely suppress I off, leading to an impressively improved on–off ratio (I on/I off) compared with that without any defect. However, it is also observed that randomly positioned atomic defects tend to induce significant fluctuation of the TFET output. Further discussions are made with focus on the performance-variability trade-off for robust circuit design.

  5. High-throughput density-functional perturbation theory phonons for inorganic materials

    NASA Astrophysics Data System (ADS)

    Petretto, Guido; Dwaraknath, Shyam; P. C. Miranda, Henrique; Winston, Donald; Giantomassi, Matteo; van Setten, Michiel J.; Gonze, Xavier; Persson, Kristin A.; Hautier, Geoffroy; Rignanese, Gian-Marco

    2018-05-01

    The knowledge of the vibrational properties of a material is of key importance to understand physical phenomena such as thermal conductivity, superconductivity, and ferroelectricity among others. However, detailed experimental phonon spectra are available only for a limited number of materials, which hinders the large-scale analysis of vibrational properties and their derived quantities. In this work, we perform ab initio calculations of the full phonon dispersion and vibrational density of states for 1521 semiconductor compounds in the harmonic approximation based on density functional perturbation theory. The data is collected along with derived dielectric and thermodynamic properties. We present the procedure used to obtain the results, the details of the provided database and a validation based on the comparison with experimental data.

  6. Avoiding fractional electrons in subsystem DFT based ab-initio molecular dynamics yields accurate models for liquid water and solvated OH radical.

    PubMed

    Genova, Alessandro; Ceresoli, Davide; Pavanello, Michele

    2016-06-21

    In this work we achieve three milestones: (1) we present a subsystem DFT method capable of running ab-initio molecular dynamics simulations accurately and efficiently. (2) In order to rid the simulations of inter-molecular self-interaction error, we exploit the ability of semilocal frozen density embedding formulation of subsystem DFT to represent the total electron density as a sum of localized subsystem electron densities that are constrained to integrate to a preset, constant number of electrons; the success of the method relies on the fact that employed semilocal nonadditive kinetic energy functionals effectively cancel out errors in semilocal exchange-correlation potentials that are linked to static correlation effects and self-interaction. (3) We demonstrate this concept by simulating liquid water and solvated OH(•) radical. While the bulk of our simulations have been performed on a periodic box containing 64 independent water molecules for 52 ps, we also simulated a box containing 256 water molecules for 22 ps. The results show that, provided one employs an accurate nonadditive kinetic energy functional, the dynamics of liquid water and OH(•) radical are in semiquantitative agreement with experimental results or higher-level electronic structure calculations. Our assessments are based upon comparisons of radial and angular distribution functions as well as the diffusion coefficient of the liquid.

  7. Calcium ions in aqueous solutions: Accurate force field description aided by ab initio molecular dynamics and neutron scattering

    NASA Astrophysics Data System (ADS)

    Martinek, Tomas; Duboué-Dijon, Elise; Timr, Štěpán; Mason, Philip E.; Baxová, Katarina; Fischer, Henry E.; Schmidt, Burkhard; Pluhařová, Eva; Jungwirth, Pavel

    2018-06-01

    We present a combination of force field and ab initio molecular dynamics simulations together with neutron scattering experiments with isotopic substitution that aim at characterizing ion hydration and pairing in aqueous calcium chloride and formate/acetate solutions. Benchmarking against neutron scattering data on concentrated solutions together with ion pairing free energy profiles from ab initio molecular dynamics allows us to develop an accurate calcium force field which accounts in a mean-field way for electronic polarization effects via charge rescaling. This refined calcium parameterization is directly usable for standard molecular dynamics simulations of processes involving this key biological signaling ion.

  8. Ab Initio Reactive Computer Aided Molecular Design

    DOE PAGES

    Martínez, Todd J.

    2017-03-21

    Few would dispute that theoretical chemistry tools can now provide keen insights into chemical phenomena. Yet the holy grail of efficient and reliable prediction of complex reactivity has remained elusive. Fortunately, recent advances in electronic structure theory based on the concepts of both element- and rank-sparsity, coupled with the emergence of new highly parallel computer architectures, have led to a significant increase in the time and length scales which can be simulated using first principles molecular dynamics. This then opens the possibility of new discovery-based approaches to chemical reactivity, such as the recently proposed ab initio nanoreactor. Here, we arguemore » that due to these and other recent advances, the holy grail of computational discovery for complex chemical reactivity is rapidly coming within our reach.« less

  9. Ab Initio Reactive Computer Aided Molecular Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez, Todd J.

    Few would dispute that theoretical chemistry tools can now provide keen insights into chemical phenomena. Yet the holy grail of efficient and reliable prediction of complex reactivity has remained elusive. Fortunately, recent advances in electronic structure theory based on the concepts of both element- and rank-sparsity, coupled with the emergence of new highly parallel computer architectures, have led to a significant increase in the time and length scales which can be simulated using first principles molecular dynamics. This then opens the possibility of new discovery-based approaches to chemical reactivity, such as the recently proposed ab initio nanoreactor. Here, we arguemore » that due to these and other recent advances, the holy grail of computational discovery for complex chemical reactivity is rapidly coming within our reach.« less

  10. Ab initio study of weakly bound halogen complexes: RX⋯PH3.

    PubMed

    Georg, Herbert C; Fileti, Eudes E; Malaspina, Thaciana

    2013-01-01

    Ab initio calculations were employed to study the role of ipso carbon hybridization in halogenated compounds RX (R=methyl, phenyl, acetyl, H and X=F, Cl, Br and I) and its interaction with a phosphorus atom, as occurs in the halogen bonded complex type RX⋯PH3. The analysis was performed using ab initio MP2, MP4 and CCSD(T) methods. Systematic energy analysis found that the interaction energies are in the range -4.14 to -11.92 kJ mol(-1) (at MP2 level without ZPE correction). Effects of electronic correlation levels were evaluated at MP4 and CCSD(T) levels and a reduction of up to 27% in interaction energy obtained in MP2 was observed. Analysis of the electrostatic maps confirms that the PhCl⋯PH3 and all MeX⋯PH3 complexes are unstable. NBO analysis suggested that the charge transfer between the moieties is bigger when using iodine than bromine and chlorine. The electrical properties of these complexes (dipole and polarizability) were determined and the most important observed aspect was the systematic increase at the dipole polarizability, given by the interaction polarizability. This increase is in the range of 0.7-6.7 u.a. (about 3-7%).

  11. Effective mass and Fermi surface complexity factor from ab initio band structure calculations

    NASA Astrophysics Data System (ADS)

    Gibbs, Zachary M.; Ricci, Francesco; Li, Guodong; Zhu, Hong; Persson, Kristin; Ceder, Gerbrand; Hautier, Geoffroy; Jain, Anubhav; Snyder, G. Jeffrey

    2017-02-01

    The effective mass is a convenient descriptor of the electronic band structure used to characterize the density of states and electron transport based on a free electron model. While effective mass is an excellent first-order descriptor in real systems, the exact value can have several definitions, each of which describe a different aspect of electron transport. Here we use Boltzmann transport calculations applied to ab initio band structures to extract a density-of-states effective mass from the Seebeck Coefficient and an inertial mass from the electrical conductivity to characterize the band structure irrespective of the exact scattering mechanism. We identify a Fermi Surface Complexity Factor: Nv*K* from the ratio of these two masses, which in simple cases depends on the number of Fermi surface pockets (Nv* ) and their anisotropy K*, both of which are beneficial to high thermoelectric performance as exemplified by the high values found in PbTe. The Fermi Surface Complexity factor can be used in high-throughput search of promising thermoelectric materials.

  12. Ab initio NMR parameters of BrCH3 and ICH3 with relativistic and vibrational corrections

    NASA Astrophysics Data System (ADS)

    Uhlíková, Tereza; Urban, Štěpán

    2018-05-01

    This study is focused on two effects identified when NMR parameters are calculated based on first principles. These effects are 1. vibrational correction of properties when using ab initio optimized equilibrium geometry; 2. relativistic effects and limits of using the Flygare equation. These effects have been investigated and determined for nuclear spin-rotation constants and nuclear magnetic shieldings for the CH3Br and CH3I molecules. The most significant result is the difference between chemical shieldings determined based on the ab initio relativistic four-component Dirac-Coulomb Hamiltonian and chemical shieldings calculated using experimental values and the Flygare equation. This difference is approximately 320 ppm and 1290 ppm for 79Br and 127I in the CH3X molecule, respectively.

  13. Graphitic nanofilms of zinc-blende materials: ab initio calculations

    NASA Astrophysics Data System (ADS)

    Hu, San-Lue; Zhao, Li; Li, Yan-Li

    2017-12-01

    Ab initio calculations on ultra-thin nanofilms of 25 kinds of zinc-blende semiconductors demonstrate their stable geometry structures growth along (1 1 1) surface. Our results show that the (1 1 1) surfaces of 9 kinds of zinc-blende semiconductors can transform into a stable graphitelike structure within a certain thickness. The tensile strain effect on the thickness of graphitic films is not obvious. The band gaps of stable graphitic films can be tuned over a wide range by epitaxial tensile strain, which is important for applications in microelectronic devices, solar cells and light-emitting diodes.

  14. 14N NQR lineshape in nanocrystals: An ab initio investigation of urea

    PubMed Central

    Gregorovič, Alan

    2017-01-01

    14N nuclear quadrupole resonance (NQR) lineshapes mostly contain information of low interest, although in nanocrystals they may display some unexpected behaviour. In this work, we present an ab initio computational study of the 14N NQR lineshapes in urea nanocrystals as a function of the nanocrystal size and geometry, focusing on the surface induced broadening of the lineshapes. The lineshapes were obtained through a calculation of the electric field gradient for each nitrogen site in the nanocrystal separately, taking into account the individual crystal field by embedding the molecule of interest in a suitable lattice of point multipoles representing other urea molecules in the nanocrystal. The small influence of distant molecules is found with a series expansion, using the in-crystal Sternheimer shieldings which we also calculated ab initio. We have considered nanocrystals with two geometries: a sphere and a cube, with characteristic sizes between 5 and 100 nm. Our calculations suggest that there is a dramatic difference between the linewidths for the two geometries. For spheres, we find a steep drop in linewidths at ∼10 nm; at 5 nm the linewidth is ∼11 kHz, whereas for sizes above 20 nm the linewidth is practically negligible (<100 Hz). For cubes, on the other hand, we find a steady 1/size decrease, from 12 kHz at 10 nm to 1.2 kHz at 100 nm. This analysis is important for 14N NQR spectroscopy of crystalline pharmaceuticals, where nanoparticles are increasingly more often embedded in some sort of matrix. Although this is only a theoretical analysis, we believe that this work can serve as a guidance for the forthcoming experimental analysis. PMID:28527464

  15. Ab initio and DFT study of hydrogen bond interactions between ascorbic acid and dimethylsulfoxide based on FT-IR and FT-Raman spectra

    NASA Astrophysics Data System (ADS)

    Niazazari, Naser; Zatikyan, Ashkhen L.; Markarian, Shiraz A.

    2013-06-01

    The hydrogen bonding of 1:1 complexes formed between L-ascorbic acid (LAA) and dimethylsulfoxide (DMSO) has been studied by means of ab initio and density functional theory (DFT) calculations. Solutions of L-ascorbic acid (AA) in dimethylsulfoxide (DMSO) have been studied by means of both FT-IR (4000-220 cm-1) and FT-Raman spectroscopy. Ab initio Hartree-Fock (HF) and DFT methods have been used to determine the structure and energies of stable conformers of various types of L-AA/DMSO complexes in gas phase and solution. The basis sets 6-31++G∗∗ and 6-311+G∗ were used to describe the structure, energy, charges and vibrational frequencies of interacting complexes in the gas phase. The optimized geometric parameters and interaction energies for various complexes at different theories have been estimated. Binding energies have been corrected for basis set superposition error (BSSE) and harmonic vibrational frequencies of the structures have been calculated to obtain the stable forms of the complexes. The self-consistent reaction field (SCRF) has been used to calculate the effect of DMSO as the solvent on the geometry, energy and charges of complexes. The solvent effect has been studied using the Onsager models. It is shown that the polarity of the solvent plays an important role on the structures and relative stabilities of different complexes. The results obtained show that there is a satisfactory correlation between experimental and theoretical predictions.

  16. Ab initio calculations for the elastic properties of magnesium under pressure

    NASA Astrophysics Data System (ADS)

    Sin'Ko, G. V.; Smirnov, N. A.

    2009-09-01

    Results of ab initio calculations of the elastic constants for the hcp, bcc, double hcp (dhcp), and fcc magnesium in a wide range of pressures are presented. The calculated elastic constants are compared with available experimental and theoretical data. We discuss the effect of the electron topological transition that occurs when the hcp structure is compressed on results of calculations and consider possibility of observing the hcp→dhcp transition on the magnesium Hugoniot.

  17. The X3LYP extended density functional accurately describes H-bonding but fails completely for stacking.

    PubMed

    Cerný, Jirí; Hobza, Pavel

    2005-04-21

    The performance of the recently introduced X3LYP density functional which was claimed to significantly improve the accuracy for H-bonded and van der Waals complexes was tested for extended H-bonded and stacked complexes (nucleic acid base pairs and amino acid pairs). In the case of planar H-bonded complexes (guanine...cytosine, adenine...thymine) the DFT results nicely agree with accurate correlated ab initio results. For the stacked pairs (uracil dimer, cytosine dimer, adenine...thymine and guanine...cytosine) the DFT fails completely and it was even not able to localize any minimum at the stacked subspace of the potential energy surface. The geometry optimization of all these stacked clusters leads systematically to the planar H-bonded pairs. The amino acid pairs were investigated in the crystal geometry. DFT again strongly underestimates the accurate correlated ab initio stabilization energies and usually it was not able to describe the stabilization of a pair. The X3LYP functional thus behaves similarly to other current functionals. Stacking of nucleic acid bases as well as interaction of amino acids was described satisfactorily by using the tight-binding DFT method, which explicitly covers the London dispersion energy.

  18. Ab Initio Potential Energy Surfaces and the Calculation of Accurate Vibrational Frequencies

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.; Martin, Jan M. L.; Taylor, Peter R.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Due to advances in quantum mechanical methods over the last few years, it is now possible to determine ab initio potential energy surfaces in which fundamental vibrational frequencies are accurate to within plus or minus 8 cm(exp -1) on average, and molecular bond distances are accurate to within plus or minus 0.001-0.003 Angstroms, depending on the nature of the bond. That is, the potential energy surfaces have not been scaled or empirically adjusted in any way, showing that theoretical methods have progressed to the point of being useful in analyzing spectra that are not from a tightly controlled laboratory environment, such as vibrational spectra from the interstellar medium. Some recent examples demonstrating this accuracy will be presented and discussed. These include the HNO, CH4, C2H4, and ClCN molecules. The HNO molecule is interesting due to the very large H-N anharmonicity, while ClCN has a very large Fermi resonance. The ab initio studies for the CH4 and C2H4 molecules present the first accurate full quartic force fields of any kind (i.e., whether theoretical or empirical) for a five-atom and six-atom system, respectively.

  19. Qualitative assessment of ultra-fast non-Grotthuss proton dynamics in S1 excited state of liquid H2O from ab initio time-dependent density functional theory★

    NASA Astrophysics Data System (ADS)

    Ziaei, Vafa; Bredow, Thomas

    2017-11-01

    We study qualitatively ultra-fast proton transfer (PT) in the first singlet (S1) state of liquid water (absorption onset) through excited-state dynamics by means of time-dependent density functional theory and ab initio Born-Oppenheimer molecular dynamics. We find that after the initial excitation, a PT occurs in S1 in form of a rapid jump to a neighboring water molecule, on which the proton either may rest for a relatively long period of time (as a consequence of possible defect in the hydrogen bond network) followed by back and forth hops to its neighboring water molecule or from which it further moves to the next water molecule accompanied by back and forth movements. In this way, the proton may become delocalized over a long water wire branch, followed again by back and forth jumps or short localization on a water molecule for some femtoseconds. As a result, the mechanism of PT in S1 is in most cases highly non-Grotthuss-like, delayed and discrete. Furthermore, upon PT an excess charge is ejected to the solvent trap, the so-called solvated electron. The spatial extent of the ejected solvated electron is mainly localized within one solvent shell with overlappings on the nearest neighbor water molecules and delocalizing (diffuse) tails extending beyond the first solvent sphere. During the entire ultra-short excited-state dynamics the remaining OH radical from the initially excited water molecule exhibits an extremely low mobility and is non-reactive. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-80329-7.

  20. Electronic and mechanical properties of ZnX (X = S, Se and Te)—An ab initio study

    NASA Astrophysics Data System (ADS)

    Verma, Ajay Singh; Sharma, Sheetal; Sarkar, Bimal Kumar; Jindal, Vijay Kumar

    2011-12-01

    Zinc chalcogenides (ZnX, X = S, Se and Te) have been increasing attention as wide and direct band gap semiconductor for blue and ultraviolet optical devices. This paper analyzes electronic and mechanical properties of these materials by ab initio pseudo-potential method that uses non conserving pseudopotentials in fully nonlocal form, as implemented in SIESTA code. In this approach the local density approximation (LDA) is used for the exchange-correlation (XC) potential. The calculations are given for band gap, elastic constants (C11, C12 and C44), shear modulus, and Young's modulus. The results are in very good agreement with previous theoretical calculations and available experimental data.

  1. Spin orbit coupling for molecular ab initio density matrix renormalization group calculations: Application to g-tensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roemelt, Michael, E-mail: michael.roemelt@theochem.rub.de

    Spin Orbit Coupling (SOC) is introduced to molecular ab initio density matrix renormalization group (DMRG) calculations. In the presented scheme, one first approximates the electronic ground state and a number of excited states of the Born-Oppenheimer (BO) Hamiltonian with the aid of the DMRG algorithm. Owing to the spin-adaptation of the algorithm, the total spin S is a good quantum number for these states. After the non-relativistic DMRG calculation is finished, all magnetic sublevels of the calculated states are constructed explicitly, and the SOC operator is expanded in the resulting basis. To this end, spin orbit coupled energies and wavefunctionsmore » are obtained as eigenvalues and eigenfunctions of the full Hamiltonian matrix which is composed of the SOC operator matrix and the BO Hamiltonian matrix. This treatment corresponds to a quasi-degenerate perturbation theory approach and can be regarded as the molecular equivalent to atomic Russell-Saunders coupling. For the evaluation of SOC matrix elements, the full Breit-Pauli SOC Hamiltonian is approximated by the widely used spin-orbit mean field operator. This operator allows for an efficient use of the second quantized triplet replacement operators that are readily generated during the non-relativistic DMRG algorithm, together with the Wigner-Eckart theorem. With a set of spin-orbit coupled wavefunctions at hand, the molecular g-tensors are calculated following the scheme proposed by Gerloch and McMeeking. It interprets the effective molecular g-values as the slope of the energy difference between the lowest Kramers pair with respect to the strength of the applied magnetic field. Test calculations on a chemically relevant Mo complex demonstrate the capabilities of the presented method.« less

  2. Physical origins of weak H 2 binding on carbon nanostructures: Insight from ab initio studies of chemically functionalized graphene nanoribbons

    DOE PAGES

    Ulman, Kanchan; Bhaumik, Debarati; Wood, Brandon C.; ...

    2014-05-05

    Here, we have performed ab initio density functional theory calculations, incorporating London dispersion corrections, to study the absorption of molecular hydrogen on zigzag graphene nanoribbons whose edges have been functionalized by OH, NH 2, COOH, NO 2, or H 2PO 3. We find that hydrogen molecules always preferentially bind at or near the functionalized edge, and display induced dipole moments. Binding is generally enhanced by the presence of polar functional groups. Furthermore, the largest gains are observed for groups with oxygen lone pairs that can facilitate local charge reorganization, with the biggest single enhancement in adsorption energy found for “strongmore » functionalization” by H 2PO 3 (115 meV/H 2 versus 52 meV/H 2 on bare graphene). We show that for binding on the “outer edge” near the functional group, the presence of the group can introduce appreciable contributions from Debye interactions and higher-order multipole electrostatic terms, in addition to the dominant London dispersion interactions. For those functional groups that contain the OH moiety, the adsorption energy is linearly proportional to the number of lone pairs on oxygen atoms. Mixed functionalization with two different functional groups on a graphene edge can also have a synergistic effect, particularly when electron-donating and electron-withdrawing groups are combined. For binding on the “inner edge” somewhat farther from the functional group, most of the binding again arises from London interactions; however, there is also significant charge redistribution in the π manifold, which directly reflects the electron donating or withdrawing capacity of the functional group. These results offer insight into the specific origins of weak binding of gas molecules on graphene, and suggest that edge functionalization could perhaps be used in combination with other strategies to increase the uptake of hydrogen in graphene. They also have relevance for the storage of hydrogen

  3. A global ab initio potential for HCN/HNC, exact vibrational energies, and comparison to experiment

    NASA Technical Reports Server (NTRS)

    Bentley, Joseph A.; Bowman, Joel M.; Gazdy, Bela; Lee, Timothy J.; Dateo, Christopher E.

    1992-01-01

    An ab initio (i.e., from first principles) calculation of vibrational energies of HCN and HNC is reported. The vibrational calculations were done with a new potential derived from a fit to 1124 ab initio electronic energies which were calculated using the highly accurate CCSD(T) coupled-cluster method in conjunction with a large atomic natural orbital basis set. The properties of this potential are presented, and the vibrational calculations are compared to experiment for 54 vibrational transitions, 39 of which are for zero total angular momentum, J = 0, and 15 of which are for J = 1. The level of agreement with experiment is unprecedented for a triatomic with two nonhydrogen atoms, and demonstrates the capability of the latest computational methods to give reliable predictions on a strongly bound triatomic molecule at very high levels of vibrational excitation.

  4. Dispersion Interactions between Rare Gas Atoms: Testing the London Equation Using ab Initio Methods

    ERIC Educational Resources Information Center

    Halpern, Arthur M.

    2011-01-01

    A computational chemistry experiment is described in which students can use advanced ab initio quantum mechanical methods to test the ability of the London equation to account quantitatively for the attractive (dispersion) interactions between rare gas atoms. Using readily available electronic structure applications, students can calculate the…

  5. JDFTx: Software for joint density-functional theory

    DOE PAGES

    Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.; ...

    2017-11-14

    Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs (Graphics Processing Units). This code hosts the development of joint density-functional theory (JDFT) thatmore » combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.« less

  6. JDFTx: Software for joint density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.

    Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs (Graphics Processing Units). This code hosts the development of joint density-functional theory (JDFT) thatmore » combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.« less

  7. Trends in magnetism of free Rh clusters via relativistic ab-initio calculations.

    PubMed

    Šipr, O; Ebert, H; Minár, J

    2015-02-11

    A fully relativistic ab-initio study on free Rh clusters of 13-135 atoms is performed to identify general trends concerning their magnetism and to check whether concepts which proved to be useful in interpreting magnetism of 3d metals are applicable to magnetism of 4d systems. We found that there is no systematic relation between local magnetic moments and coordination numbers. On the other hand, the Stoner model appears well-suited both as a criterion for the onset of magnetism and as a guide for the dependence of local magnetic moments on the site-resolved density of states at the Fermi level. Large orbital magnetic moments antiparallel to spin magnetic moments were found for some sites. The intra-atomic magnetic dipole Tz term can be quite large at certain sites but as a whole it is unlikely to affect the interpretation of x-ray magnetic circular dichroism experiments based on the sum rules.

  8. Maximally localized Wannier functions in LaMnO3 within PBE + U, hybrid functionals and partially self-consistent GW: an efficient route to construct ab initio tight-binding parameters for eg perovskites.

    PubMed

    Franchini, C; Kováčik, R; Marsman, M; Murthy, S Sathyanarayana; He, J; Ederer, C; Kresse, G

    2012-06-13

    Using the newly developed VASP2WANNIER90 interface we have constructed maximally localized Wannier functions (MLWFs) for the e(g) states of the prototypical Jahn-Teller magnetic perovskite LaMnO(3) at different levels of approximation for the exchange-correlation kernel. These include conventional density functional theory (DFT) with and without the additional on-site Hubbard U term, hybrid DFT and partially self-consistent GW. By suitably mapping the MLWFs onto an effective e(g) tight-binding (TB) Hamiltonian we have computed a complete set of TB parameters which should serve as guidance for more elaborate treatments of correlation effects in effective Hamiltonian-based approaches. The method-dependent changes of the calculated TB parameters and their interplay with the electron-electron (el-el) interaction term are discussed and interpreted. We discuss two alternative model parameterizations: one in which the effects of the el-el interaction are implicitly incorporated in the otherwise 'noninteracting' TB parameters and a second where we include an explicit mean-field el-el interaction term in the TB Hamiltonian. Both models yield a set of tabulated TB parameters which provide the band dispersion in excellent agreement with the underlying ab initio and MLWF bands.

  9. Effects of Mg II and Ca II ionization on ab-initio solar chromosphere models

    NASA Technical Reports Server (NTRS)

    Rammacher, W.; Cuntz, M.

    1991-01-01

    Acoustically heated solar chromosphere models are computed considering radiation damping by (non-LTE) emission from H(-) and by Mg II and Ca II emission lines. The radiative transfer equations for the Mg II k and Ca II K emission lines are solved using the core-saturation method with complete redistribution. The Mg II k and Ca II K cooling rates are compared with the VAL model C. Several substantial improvements over the work of Ulmschneider et al. (1987) are included. It is found that the rapid temperature rises caused by the ionization of Mg II are not formed in the middle chromosphere, but occur at larger atmospheric heights. These models represent the temperature structure of the 'real' solar chromosphere much better. This result is a major precondition for the study of ab-initio models for solar flux tubes based on MHD wave propagation and also for ab-initio models for the solar transition layer.

  10. Nonconventional screening of the Coulomb interaction in FexOy clusters: An ab initio study

    NASA Astrophysics Data System (ADS)

    Peters, L.; Şaşıoǧlu, E.; Rossen, S.; Friedrich, C.; Blügel, S.; Katsnelson, M. I.

    2017-04-01

    From microscopic point-dipole model calculations of the screening of the Coulomb interaction in nonpolar systems by polarizable atoms, it is known that screening strongly depends on dimensionality. For example, in one-dimensional systems, the short-range interaction is screened, while the long-range interaction is antiscreened. This antiscreening is also observed in some zero-dimensional structures, i.e., molecular systems. By means of ab initio calculations in conjunction with the random-phase approximation (RPA) within the FLAPW method, we study screening of the Coulomb interaction in FexOy clusters. For completeness, these results are compared with their bulk counterpart magnetite. It appears that the on-site Coulomb interaction is very well screened both in the clusters and bulk. On the other hand, for the intersite Coulomb interaction, the important observation is made that it is almost constant throughout the clusters, while for the bulk it is almost completely screened. More precisely and interestingly, in the clusters antiscreening is observed by means of ab initio calculations.

  11. Conformational stability, structural parameters and vibrational assignment from variable temperature infrared spectra of krypton solutions and ab initio calculations of ethylisothiocyanate.

    PubMed

    Durig, James R; Zheng, Chao

    2007-11-01

    Variable temperature (-105 to -150 degrees C) studies of the infrared spectra (3500-400 cm(-1)) of ethylisothiocyanate, CH(3)CH(2)NCS, dissolved in liquid krypton have been recorded. Additionally the infrared spectra of the gas and solid have been re-investigated. These spectroscopic data indicate a single conformer in all physical states with a large number of molecules in the gas phase at ambient temperature in excited states of the CN torsional mode which has a very low barrier to conformational interchange. To aid in the analyses of the vibrational and rotational spectra, ab initio calculations have been carried out by the perturbation method to the second order (MP2) with valence and core electron correlation using a variety of basis sets up to 6-311+G(2df,2pd). With the smaller basis sets up to 6-311+G(d,p) and cc-PVDZ, the cis conformer is indicated as a transition state with all larger basis sets the cis conformer is the only stable form. The predicted energy difference from these calculations between the cis form and the higher energy trans conformer is about 125 cm(-1) which represents essentially the barrier to internal rotation of the NCS group (rotation around NC axis). Density functional theory calculation by the B3LYP method with the same basis sets predicts this barrier to be about 25 cm(-1). By utilizing the previously reported microwave rotational constants with the structural parameters predicted by the ab initio MP2(full)/6-311+G(d,p) calculations, adjusted r(0) structural parameters have been obtained for the cis form. The determined heavy atom parameters are: r(NC)=1.196(5), r(CS)=1.579(5), r(CN)=1.439(5), r(CC)=1.519(5)A for the distances and angles of angleCCN=112.1(5), angleCNC=146.2(5), angleNCS=174.0(5) degrees . The centrifugal distortion constants, dipole moments, conformational stability, vibrational frequencies, infrared intensities and Raman activities have been predicted from ab initio calculations and compared to experimental

  12. The many-body Wigner Monte Carlo method for time-dependent ab-initio quantum simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sellier, J.M., E-mail: jeanmichel.sellier@parallel.bas.bg; Dimov, I.

    2014-09-15

    The aim of ab-initio approaches is the simulation of many-body quantum systems from the first principles of quantum mechanics. These methods are traditionally based on the many-body Schrödinger equation which represents an incredible mathematical challenge. In this paper, we introduce the many-body Wigner Monte Carlo method in the context of distinguishable particles and in the absence of spin-dependent effects. Despite these restrictions, the method has several advantages. First of all, the Wigner formalism is intuitive, as it is based on the concept of a quasi-distribution function. Secondly, the Monte Carlo numerical approach allows scalability on parallel machines that is practicallymore » unachievable by means of other techniques based on finite difference or finite element methods. Finally, this method allows time-dependent ab-initio simulations of strongly correlated quantum systems. In order to validate our many-body Wigner Monte Carlo method, as a case study we simulate a relatively simple system consisting of two particles in several different situations. We first start from two non-interacting free Gaussian wave packets. We, then, proceed with the inclusion of an external potential barrier, and we conclude by simulating two entangled (i.e. correlated) particles. The results show how, in the case of negligible spin-dependent effects, the many-body Wigner Monte Carlo method provides an efficient and reliable tool to study the time-dependent evolution of quantum systems composed of distinguishable particles.« less

  13. CERES: An ab initio code dedicated to the calculation of the electronic structure and magnetic properties of lanthanide complexes.

    PubMed

    Calvello, Simone; Piccardo, Matteo; Rao, Shashank Vittal; Soncini, Alessandro

    2018-03-05

    We have developed and implemented a new ab initio code, Ceres (Computational Emulator of Rare Earth Systems), completely written in C++11, which is dedicated to the efficient calculation of the electronic structure and magnetic properties of the crystal field states arising from the splitting of the ground state spin-orbit multiplet in lanthanide complexes. The new code gains efficiency via an optimized implementation of a direct configurational averaged Hartree-Fock (CAHF) algorithm for the determination of 4f quasi-atomic active orbitals common to all multi-electron spin manifolds contributing to the ground spin-orbit multiplet of the lanthanide ion. The new CAHF implementation is based on quasi-Newton convergence acceleration techniques coupled to an efficient library for the direct evaluation of molecular integrals, and problem-specific density matrix guess strategies. After describing the main features of the new code, we compare its efficiency with the current state-of-the-art ab initio strategy to determine crystal field levels and properties, and show that our methodology, as implemented in Ceres, represents a more time-efficient computational strategy for the evaluation of the magnetic properties of lanthanide complexes, also allowing a full representation of non-perturbative spin-orbit coupling effects. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Atomistic and Ab Initio Calculations or Ternary II-IV-V2 Semiconductors

    DTIC Science & Technology

    1999-12-07

    consisting of two- and three-body terms is developed reproducing crystal lattice constants, elastic and dielectric constants very well. The calculated...the lattice . This difference may well be due to defect-induced lattice distortion which plays a key role in stabilizing the hole states in the... lattice . 15. SUBJECT TERMS Chalcopyrites, Defects, Atomistic and AB Initio Calculations 16. SECURITY CLASSIFICATION OF: a. REPORT u b. ABSTRACT U

  15. Ab initio implementation of quantum trajectory mean-field approach and dynamical simulation of the N{sub 2}CO photodissociation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Binbin; Liu, Lihong; Cui, Ganglong

    2015-11-21

    In this work, the recently introduced quantum trajectory mean-field (QTMF) approach is implemented and employed to explore photodissociation dynamics of diazirinone (N{sub 2}CO), which are based on the high-level ab initio calculation. For comparison, the photodissociation process has been simulated as well with the fewest-switches surface hopping (FSSH) and the ab initio multiple spawning (AIMS) methods. Overall, the dynamical behavior predicted by the three methods is consistent. The N{sub 2}CO photodissociation at λ > 335 nm is an ultrafast process and the two C—N bonds are broken in a stepwise way, giving birth to CO and N{sub 2} as themore » final products in the ground state. Meanwhile, some noticeable differences were found in the QTMF, FSSH, and AIMS simulated time constants for fission of the C—N bonds, excited-state lifetime, and nonadiabatic transition ratios in different intersection regions. These have been discussed in detail. The present study provides a clear evidence that direct ab initio QTMF approach is one of the reliable tools for simulating nonadiabatic dynamics processes.« less

  16. Emergent properties of nuclei from ab initio coupled-cluster calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagen, G.; Hjorth-Jensen, M.; Jansen, G. R.

    Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. Our endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. We review some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLOmore » $${}_{{\\rm{sat}}}$$ is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to 56Ni. We derive an efficient scheme for including continuum effects in coupled-cluster computations of nuclei based on chiral nucleon–nucleon and three-nucleon forces, and present new results for unbound states in the neutron-rich isotopes of oxygen and calcium. Finally, the coupling to the continuum impacts the energies of the $${J}^{\\pi }=1/{2}^{-},3/{2}^{-},7/{2}^{-},3/{2}^{+}$$ states in $${}^{\\mathrm{17,23,25}}$$O, and—contrary to naive shell-model expectations—the level ordering of the $${J}^{\\pi }=3/{2}^{+},5/{2}^{+},9/{2}^{+}$$ states in $${}^{\\mathrm{53,55,61}}$$Ca.« less

  17. Emergent properties of nuclei from ab initio coupled-cluster calculations

    DOE PAGES

    Hagen, G.; Hjorth-Jensen, M.; Jansen, G. R.; ...

    2016-05-17

    Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. Our endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. We review some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLOmore » $${}_{{\\rm{sat}}}$$ is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to 56Ni. We derive an efficient scheme for including continuum effects in coupled-cluster computations of nuclei based on chiral nucleon–nucleon and three-nucleon forces, and present new results for unbound states in the neutron-rich isotopes of oxygen and calcium. Finally, the coupling to the continuum impacts the energies of the $${J}^{\\pi }=1/{2}^{-},3/{2}^{-},7/{2}^{-},3/{2}^{+}$$ states in $${}^{\\mathrm{17,23,25}}$$O, and—contrary to naive shell-model expectations—the level ordering of the $${J}^{\\pi }=3/{2}^{+},5/{2}^{+},9/{2}^{+}$$ states in $${}^{\\mathrm{53,55,61}}$$Ca.« less

  18. Ab initio theory of point defects in oxide materials: structure, properties, chemical reactivity

    NASA Astrophysics Data System (ADS)

    Pacchioni, Gianfranco

    2000-05-01

    Point defects play a fundamental role in determining the physical and chemical properties of inorganic materials. This holds not only for the bulk properties but also for the surface of oxides where several kinds of point defects exist and exhibit a rich and complex chemistry. A particularly important defect in oxides is the oxygen vacancy. Depending on the electronic structure of the material the nature of oxygen vacancies changes dramatically. In this article we provide a rationalization of the very different electronic structure of neutral and charged oxygen vacancies in SiO 2 and MgO, two oxide materials with completely different electronic structure (from very ionic, MgO, to largely covalent, SiO 2). We used methods of ab initio quantum chemistry, from density functional theory (DFT) to configuration interaction (CI), to determine the ground and excited state properties of these defects. The theoretical results are combined with recent spectroscopic measurements. A series of observable properties has been determined in this way: defect formation energies, hyperfine interactions in electron paramagnetic resonance (EPR) spectra of paramagnetic centers, optical spectra, surface chemical reactivity. The interplay between experimental and theoretical information allows one to unambiguously identify the structure of oxygen vacancies in these binary oxides and on their surfaces.

  19. Resolving the Origins of Crystalline Anharmonicity Using Terahertz Time-Domain Spectroscopy and ab Initio Simulations.

    PubMed

    Ruggiero, Michael T; Zeitler, J Axel

    2016-11-17

    Anharmonicity has been shown to be an important piece of the fundamental framework that dictates numerous observable phenomena. In particular, anharmonicity is the driving force of vibrational relaxation processes, mechanisms that are integral to the proper function of numerous chemical processes. However, elucidating its origins has proven difficult due to experimental and theoretical challenges, specifically related to separating the anharmonic contributions from other unrelated effects. While no one technique is particularly suited for providing a complete picture of anharmonicity, by combining multiple complementary methods such a characterization can be made. In this study the role of individual atomic interactions on the anharmonic properties of crystalline purine, the building block of many DNA and RNA nucleobases, is studied by experimental terahertz time-domain spectroscopy and first-principles density functional theory (DFT) and ab initio molecular dynamics simulations (AIMD). In particular, the detailed vibrational information provided by the DFT calculations is used to interpret the atomic origins of anharmonic-related effects as determined by the AIMD calculations, which are in good agreement with the experimental data. The results highlight that anharmonicity is especially pronounced in the intermolecular interactions, particularly along the amine hydrogen bond coordinate, and yields valuable insight into what is similarly observed complex biosystems and crystalline solids.

  20. The Yambo code: a comprehensive tool to perform ab-initio simulations of equilibrium and out-of-equilibrium properties

    NASA Astrophysics Data System (ADS)

    Marini, Andrea

    Density functional theory and many-body perturbation theory methods (such as GW and Bethe-Selpether equation) are standard approaches to the equilibrium ground and excited state properties of condensed matter systems, surfaces, molecules and other several kind of materials. At the same time ultra-fast optical spectroscopy is becoming a widely used and powerful tool for the observation of the out-of-equilibrium dynamical processes. In this case the theoretical tools (such as the Baym-Kadanoff equation) are well known but, only recently, have been merged with the ab-Initio approach. And, for this reason, highly parallel and efficient codes are lacking. Nevertheless, the combination of these two areas of research represents, for the ab-initio community, a challenging prespective as it requires the development of advanced theoretical, methodological and numerical tools. Yambo is a popular community software implementing the above methods using plane-waves and pseudo-potentials. Yambo is available to the community as open-source software, and oriented to high-performance computing. The Yambo project aims at making the simulation of these equilibrium and out-of-equilibrium complex processes available to a wide community of users. Indeed the code is used, in practice, in many countries and well beyond the European borders. Yambo is a member of the suite of codes of the MAX European Center of Excellence (Materials design at the exascale) . It is also used by the user facilities of the European Spectroscopy Facility and of the NFFA European Center (nanoscience foundries & fine analysis). In this talk I will discuss some recent numerical and methodological developments that have been implemented in Yambo towards to exploitation of next generation HPC supercomputers. In particular, I will present the hybrid MPI+OpenMP parallelization and the specific case of the response function calculation. I will also discuss the future plans of the Yambo project and its potential use as

  1. Ab initio investigation of the surface properties of dispenser B-type and scandate thermionic emission cathodes

    NASA Astrophysics Data System (ADS)

    Vlahos, Vasilios; Lee, Yueh-Lin; Booske, John H.; Morgan, Dane; Turek, Ladislav; Kirshner, Mark; Kowalczyk, Richard; Wilsen, Craig

    2009-05-01

    Scandate cathodes (BaxScyOz on W) are important thermionic electron emission materials whose emission mechanism remains unclear. Ab initio modeling is used to investigate the surface properties of both scandate and traditional B-type (Ba-O on W) cathodes. We demonstrate that the Ba-O dipole surface structure believed to be present in active B-type cathodes is not thermodynamically stable, suggesting that a nonequilibrium steady state dominates the active cathode's surface structure. We identify a stable, low work function BaxScyOz surface structure, which may be responsible for some scandate cathode properties and demonstrate that multicomponent surface coatings can lower cathode work functions.

  2. Domain Wall Formation in Ferromagnetic Layers: An Ab Initio Study

    NASA Astrophysics Data System (ADS)

    Herper, Heike C.

    Domain walls are an inherent feature of ferromagnetic (FM) films consisting of layers with different magnetic orientations. Since FM films are used in electrical devices the question of the influence of domain walls on, e.g., the magnetoresistance has attracted much interest. Besides discussing the resistance contribution of domain walls, it is appropriate to study different types of domain walls and their energy of formation. The behaviour of domain walls is usually discussed within model calculations. In the present paper it is done within an ab initio Green's function technique for layered systems, i.e., the fully relativistic, spin-polarized screened Korringa-Kohn Rostoker method. Results are presented for fcc Co layers covered by two semi-infinite fcc Pt(001) bulk systems or by bulk fcc Co(001), respectively. The resistance, which is caused by the different types of domain walls is discussed within a Kubo-Greenwood approach considering Co(001)/Co24/Co(001) as an example.

  3. Ab initio prediction of superdense tetragonal and monoclinic polymorphs of carbon

    DOE PAGES

    Li, Zhen -Zhen; Wang, Jian -Tao; Xu, Li -Fang; ...

    2016-11-02

    The design and synthesis of three-dimensional denser carbons are one of the hot issues in condensed matter physics because of their fascinating properties. Here we identify by ab initio calculations several tetragonal and monoclinic polymorphs of carbon that adopt the t32, t32*, m32, and m32* structures in P4¯2 1c, P4 32 12, P2 1/c, and C2 symmetry, respectively. These carbon polymorphs have large 32-atom unit cells in all-sp 3 bonding networks comprising five- and six-membered rings that are dynamically stable, as verified by a phonon mode analysis. Electronic band structure calculations show that they are insulators with band gaps inmore » the range of 5.19–5.41 eV, close to the calculated band gap of 5.34 eV for diamond. Remarkably, these carbon phases possess an extremely high atom number density exceeding that of diamond. Lastly, the present results establish different types of carbon phases and offer insights into their outstanding structural and electronic properties.« less

  4. High order discretization techniques for real-space ab initio simulations

    NASA Astrophysics Data System (ADS)

    Anderson, Christopher R.

    2018-03-01

    In this paper, we present discretization techniques to address numerical problems that arise when constructing ab initio approximations that use real-space computational grids. We present techniques to accommodate the singular nature of idealized nuclear and idealized electronic potentials, and we demonstrate the utility of using high order accurate grid based approximations to Poisson's equation in unbounded domains. To demonstrate the accuracy of these techniques, we present results for a Full Configuration Interaction computation of the dissociation of H2 using a computed, configuration dependent, orbital basis set.

  5. Real-time ab initio simulations of excited-state dynamics in nanostructures

    NASA Astrophysics Data System (ADS)

    Tomanek, David

    2007-03-01

    Combining time-dependent ab initio density functional calculations for electrons with molecular dynamics simulations for ions, we investigate the effect of excited-state dynamics in nanostructures. In carbon nanotubes, we find electronic excitations to last for a large fraction of a picosecond. The de-excitation process is dominated by coupling to other electronic degrees of freedom during the first few hundred femtoseconds. Later, the de-excitation process becomes dominated by coupling to ionic motion. The onset point and damping rate in that regime change with initial ion velocities, a manifestation of temperature dependent electron-phonon coupling. Considering the fact that the force field in the electronically excited state differs significantly from the ground state, as reflected in the Franck-Condon effect, atomic bonds can easily be broken or restored during the relatively long lifetime of electronic excitations. This effect can be utilized in a ``photo-surgery" of nanotubes, causing structural self-healing at vacancy sites or selective de-oxidation processes induced by photo-absorption. Also, electronic excitations are a key ingredient for the understanding of sputtering processes in nanostructures, induced by energetic collisions with ions. Yoshiyuki Miyamoto, Angel Rubio, and David Tomanek, Phys. Rev. Lett. 97, 126104 (2006). Yoshiyuki Miyamoto, Savas Berber, Mina Yoon, Angel Rubio, and David Tomanek, Chem. Phys. Lett. 392, 209 (2004). Yoshiyuki Miyamoto, Noboru Jinbo, Hisashi Nakamura, Angel Rubio, and David Tomanek, Phys. Rev. B 70, 233408 (2004). Yoshiyuki Miyamoto, Arkady Krasheninnikov, and David Tomanek (in preparation).

  6. Ab initio determination of mode coupling in HSSH - The torsional splitting in the first excited S-S stretching state

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; Winnewisser, G.; Yamada, K. M. T.; Defrees, D. J.; Mclean, A. D.

    1989-01-01

    A mechanism for the enhanced splitting detected in the millimeter-wave rotational spectra of the first excited S-S stretching state of HSSH (disulfane) has been studied. The mechanism, which involves a potential coupling between the first excited S-S stretching state and excited torsional states, has been investigated in part by the use of ab initio theory. Based on an ab initio potential surface, coupling matrix elements have been calculated, and the amount of splitting has then been estimated by second-order perturbation theory. The result, while not in quantitative agreement with the measured splitting, lends plausibility to the assumed mechanism.

  7. Intermolecular Potentials of Methane Assessed by Second Virial Coefficients, ab Initio Dimer Interaction Energies, and Aggregate Cohesive Energies.

    PubMed

    Ribeiro, Douglas S

    2017-06-01

    This study presents computations of three energy related properties for 26 previously published multisite intermolecular potentials of methane: MM2, MM3, MM2en, MM3en, MM2mc, MM3mc, MM3envir, RMK, OPLS all-atom, MUB-2, AMBER, BOYD, Williams, Sheikh, MG, Tsuzuki, E2-Gay, E4-Gay, MP4exp-6(iii), MP4exp-6(iv), Rowley-A, Rowley-B, TraPPE-EH, Ouyang, CLC, and Chao and three united atom potentials: Saager-Fischer (SF), OPLS united atom, and HFD. The three properties analyzed are the second virial coefficients for 14 temperature points in the range of 110 to 623.15 K, the interaction energies for 12 orientations of the methane dimer as a function of distance followed by a comparison to three ab initio data sets and the cohesive energy of the aggregate of 512 methane molecules. The latter computed energies are correlated to latent heat of evaporation of 11 potentials and are proposed as surrogate approximate parameters for ΔH vap for the studied potentials. The 10 best performing potentials are selected by rms order in each one of the properties and three of them are found to be present simultaneously in the three sets: Tsuzuki, MM3mc, and MM2mc. On the basis of the cohesive energy of the aggregate, a quantitative measure of the anisotropy of the potentials is proposed. The results are discussed on the basis of anisotropy, nonadditivity and ability of the potentials to reproduce ab initio data. It is concluded that the nonadditivity of the pair potentials holds and the available ab initio data did not lead to pair potentials that are cohesive enough to reproduce accurately the second virial coefficients.

  8. Formation Dynamics of Potassium-Based Graphite Intercalation Compounds: An Ab Initio Study

    NASA Astrophysics Data System (ADS)

    Jiang, Xiankai; Song, Bo; Tománek, David

    2018-04-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. We use ab initio molecular dynamics simulations to study the microscopic dynamics of potassium intercalation in graphite. Upon adsorbing on graphite from the vapor phase, K atoms transfer their valence charge to the substrate. K atoms adsorbed on the surface diffuse rapidly along the graphene basal plane and eventually enter the interlayer region following a "U -turn" across the edge, gaining additional energy. This process is promoted at higher coverages associated with higher K pressure, leading to the formation of a stable intercalation compound. We find that the functionalization of graphene edges is an essential prerequisite for intercalation since bare edges reconstruct and reconnect, closing off the entry channels for the atoms.

  9. Specific interactions between DNA and regulatory protein controlled by ligand-binding: Ab initio molecular simulation

    NASA Astrophysics Data System (ADS)

    Matsushita, Y.; Murakawa, T.; Shimamura, K.; Oishi, M.; Ohyama, T.; Kurita, N.

    2015-02-01

    The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.

  10. Cooperative effects in spherical spasers: Ab initio analytical model

    NASA Astrophysics Data System (ADS)

    Bordo, V. G.

    2017-06-01

    A fully analytical semiclassical theory of cooperative optical processes which occur in an ensemble of molecules embedded in a spherical core-shell nanoparticle is developed from first principles. Both the plasmonic Dicke effect and spaser generation are investigated for the designs in which a shell/core contains an arbitrarily large number of active molecules in the vicinity of a metallic core/shell. An essential aspect of the theory is an ab initio account of the feedback from the core/shell boundaries which significantly modifies the molecular dynamics. The theory provides rigorous, albeit simple and physically transparent, criteria for both plasmonic superradiance and surface plasmon generation.

  11. Fourier transform microwave spectra and ab initio calculation of N-ethylformamide

    NASA Astrophysics Data System (ADS)

    Ohba, Keisuke; Usami, Tsuyoshi; Kawashima, Yoshiyuki; Hirota, Eizi

    2005-06-01

    A peptide molecule: N-ethylformamide HCONHCH 2CH 3 (NEFA) was investigated by Fourier transform microwave spectroscopy in order to determine molecular structure, potential barrier to methyl internal rotation, and nuclear quadrupole coupling constant of the nitrogen atom. All the three ( a, b and c) types of transitions were observed; they were split into hyperfine structure components due to nitrogen nuclear quadrupole coupling. The rotational constants of NEFA were determined to be A=9904.8373(6), B=3521.0995(2) and C=2984.9808(2) MHz, with three standard deviations in parentheses. The inertial defect Δ= Icc- Iaa- Ibb was calculated from the rotational constants to be -25.24492(2) uÅ 2, which indicates the ethyl group to be bent out of the peptide linkage plane. A comparison of the observed rotational constants with those calculated by an ab initio molecular orbital method also led us to conclude that the most stable form of NEFA is trans- sc, a conformer with a nonplanar heavy atom skeleton. No evidence has so far been obtained for the existence of other conformers, as was the case for a related molecule: N-ethylacetamide. We have also observed spectra of five singly substituted isotopomers, three 13C and one for each of 15N and 18O, from which we derived a partial rs structure, in fair agreement with an ab initio result.

  12. Ab Initio Reaction Kinetics of CH 3 O$$\\dot{C}$$(=O) and $$\\dot{C}$$H 2 OC(=O)H Radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Ting; Yang, Xueliang; Ju, Yiguang

    The dissociation and isomerization kinetics of the methyl ester combustion intermediates methoxycarbonyl radical (CH3Omore » $$\\dot{C}$$(=O)) and (formyloxy)methyl radical ($$\\dot{C}$$H2OC(=O)H) are investigated theoretically using high-level ab initio methods and Rice–Ramsperger–Kassel–Marcus (RRKM)/master equation (ME) theory. Geometries obtained at the hybrid density functional theory (DFT) and coupled cluster singles and doubles with perturbative triples correction (CCSD(T)) levels of theory are found to be similar. We employ high-level ab initio wave function methods to refine the potential energy surface: CCSD(T), multireference singles and doubles configuration interaction (MRSDCI) with the Davidson–Silver (DS) correction, and multireference averaged coupled-pair functional (MRACPF2) theory. MRSDCI+DS and MRACPF2 capture the multiconfigurational character of transition states (TSs) and predict lower barrier heights than CCSD(T). The temperature- and pressure-dependent rate coefficients are computed using RRKM/ME theory in the temperature range 300–2500 K and a pressure range of 0.01 atm to the high-pressure limit, which are then fitted to modified Arrhenius expressions. Dissociation of CH3O$$\\dot{C}$$(=O) to $$\\dot{C}$$H3 and CO2 is predicted to be much faster than dissociating to CH3$$\\dot{O}$$ and CO, consistent with its greater exothermicity. Isomerization between CH3O$$\\dot{C}$$(=O) and $$\\dot{C}$$H2OC(=O)H is predicted to be the slowest among the studied reactions and rarely happens even at high temperature and high pressure, suggesting the decomposition pathways of the two radicals are not strongly coupled. The predicted rate coefficients and branching fractions at finite pressures differ significantly from the corresponding high-pressure-limit results, especially at relatively high temperatures. Finally, because it is one of the most important CH3$$\\dot{O}$$ removal mechanisms under atmospheric conditions, the reaction kinetics of

  13. Accuracy of ab initio electron correlation and electron densities in vanadium dioxide

    DOE PAGES

    Kylänpää, Ilkka; Balachandran, Janakiraman; Ganesh, Panchapakesan; ...

    2017-11-27

    Here, diffusion quantum Monte Carlo results are used as a reference to analyze properties related to phase stability and magnetism in vanadium dioxide computed with various formulations of density functional theory. We introduce metrics related to energetics, electron densities and spin densities that give us insight on both local and global variations in the antiferromagnetic M1 and R phases. Importantly, these metrics can address contributions arising from the challenging description of the 3d orbital physics in this material. We observe that the best description of energetics between the structural phases does not correspond to the best accuracy in the charge density, which is consistent with observations made recently by Medvedev et~al. in the context of isolated atoms. However, we do find evidence that an accurate spin density connects to correct energetic ordering of different magnetic states in VOmore » $$_2$$, although local, semilocal, and meta-GGA functionals tend to erroneously favor demagnetization of the vanadium sites. The recently developed SCAN functional stands out as remaining nearly balanced in terms of magnetization across the M1-R transition and correctly predicting the ground state crystal structure. In addition to ranking current density functionals, our reference energies and densities serve as important benchmarks for future functional development.« less

  14. Accuracy of ab initio electron correlation and electron densities in vanadium dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kylänpää, Ilkka; Balachandran, Janakiraman; Ganesh, Panchapakesan

    Here, diffusion quantum Monte Carlo results are used as a reference to analyze properties related to phase stability and magnetism in vanadium dioxide computed with various formulations of density functional theory. We introduce metrics related to energetics, electron densities and spin densities that give us insight on both local and global variations in the antiferromagnetic M1 and R phases. Importantly, these metrics can address contributions arising from the challenging description of the 3d orbital physics in this material. We observe that the best description of energetics between the structural phases does not correspond to the best accuracy in the charge density, which is consistent with observations made recently by Medvedev et~al. in the context of isolated atoms. However, we do find evidence that an accurate spin density connects to correct energetic ordering of different magnetic states in VOmore » $$_2$$, although local, semilocal, and meta-GGA functionals tend to erroneously favor demagnetization of the vanadium sites. The recently developed SCAN functional stands out as remaining nearly balanced in terms of magnetization across the M1-R transition and correctly predicting the ground state crystal structure. In addition to ranking current density functionals, our reference energies and densities serve as important benchmarks for future functional development.« less

  15. Accuracy of ab initio electron correlation and electron densities in vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Kylänpää, Ilkka; Balachandran, Janakiraman; Ganesh, Panchapakesan; Heinonen, Olle; Kent, Paul R. C.; Krogel, Jaron T.

    2017-11-01

    Diffusion quantum Monte Carlo results are used as a reference to analyze properties related to phase stability and magnetism in vanadium dioxide computed with various formulations of density functional theory. We introduce metrics related to energetics, electron densities and spin densities that give us insight on both local and global variations in the antiferromagnetic M1 and R phases. Importantly, these metrics can address contributions arising from the challenging description of the 3 d orbital physics in this material. We observe that the best description of energetics between the structural phases does not correspond to the best accuracy in the charge density, which is consistent with observations made recently by Medvedev et al. [Science 355, 371 (2017), 10.1126/science.aag0410] in the context of isolated atoms. However, we do find evidence that an accurate spin density connects to correct energetic ordering of different magnetic states in VO2, although local, semilocal, and meta-GGA functionals tend to erroneously favor demagnetization of the vanadium sites. The recently developed SCAN functional stands out as remaining nearly balanced in terms of magnetization across the M1-R transition and correctly predicting the ground state crystal structure. In addition to ranking current density functionals, our reference energies and densities serve as important benchmarks for future functional development. With our reference data, the accuracy of both the energy and the electron density can be monitored simultaneously, which is useful for functional development. So far, this kind of detailed high accuracy reference data for correlated materials has been absent from the literature.

  16. Reductive half-reaction of aldehyde oxidoreductase toward acetaldehyde: Ab initio and free energy quantum mechanical/molecular mechanical calculations.

    PubMed

    Dieterich, Johannes M; Werner, Hans-Joachim; Mata, Ricardo A; Metz, Sebastian; Thiel, Walter

    2010-01-21

    Energy and free energy barriers for acetaldehyde conversion in aldehyde oxidoreductase are determined for three reaction pathways using quantum mechanical/molecular mechanical (QM/MM) calculations on the solvated enzyme. Ab initio single-point QM/MM energies are obtained at the stationary points optimized at the DFT(B3LYP)/MM level. These ab initio calculations employ local correlation treatments [LMP2 and LCCSD(T0)] in combination with augmented triple- and quadruple-zeta basis sets, and the final coupled cluster results include MP2-based corrections for basis set incompleteness and for the domain approximation. Free energy perturbation (FEP) theory is used to generate free energy profiles at the DFT(B3LYP)/MM level for the most important reaction steps by sampling along the corresponding reaction paths using molecular dynamics. The ab initio and FEP QM/MM results are combined to derive improved estimates of the free energy barriers, which differ from the corresponding DFT(B3LYP)/MM energy barriers by about 3 kcal mol(-1). The present results confirm the qualitative mechanistic conclusions from a previous DFT(B3LYP)/MM study. Most favorable is a three-step Lewis base catalyzed mechanism with an initial proton transfer from the cofactor to the Glu869 residue, a subsequent nucleophilic attack that yields a tetrahedral intermediate (IM2), and a final rate-limiting hydride transfer. The competing metal center activated pathway has the same final step but needs to overcome a higher barrier in the initial step on the route to IM2. The concerted mechanism has the highest free energy barrier and can be ruled out. While confirming the qualitative mechanistic scenario proposed previously on the basis of DFT(B3LYP)/MM energy profiles, the present ab initio and FEP QM/MM calculations provide corrections to the barriers that are important when aiming at high accuracy.

  17. Mirnacle: machine learning with SMOTE and random forest for improving selectivity in pre-miRNA ab initio prediction.

    PubMed

    Marques, Yuri Bento; de Paiva Oliveira, Alcione; Ribeiro Vasconcelos, Ana Tereza; Cerqueira, Fabio Ribeiro

    2016-12-15

    MicroRNAs (miRNAs) are key gene expression regulators in plants and animals. Therefore, miRNAs are involved in several biological processes, making the study of these molecules one of the most relevant topics of molecular biology nowadays. However, characterizing miRNAs in vivo is still a complex task. As a consequence, in silico methods have been developed to predict miRNA loci. A common ab initio strategy to find miRNAs in genomic data is to search for sequences that can fold into the typical hairpin structure of miRNA precursors (pre-miRNAs). The current ab initio approaches, however, have selectivity issues, i.e., a high number of false positives is reported, which can lead to laborious and costly attempts to provide biological validation. This study presents an extension of the ab initio method miRNAFold, with the aim of improving selectivity through machine learning techniques, namely, random forest combined with the SMOTE procedure that copes with imbalance datasets. By comparing our method, termed Mirnacle, with other important approaches in the literature, we demonstrate that Mirnacle substantially improves selectivity without compromising sensitivity. For the three datasets used in our experiments, our method achieved at least 97% of sensitivity and could deliver a two-fold, 20-fold, and 6-fold increase in selectivity, respectively, compared with the best results of current computational tools. The extension of miRNAFold by the introduction of machine learning techniques, significantly increases selectivity in pre-miRNA ab initio prediction, which optimally contributes to advanced studies on miRNAs, as the need of biological validations is diminished. Hopefully, new research, such as studies of severe diseases caused by miRNA malfunction, will benefit from the proposed computational tool.

  18. Ab initio atomistic thermodynamics study on the oxidation mechanism of binary and ternary alloy surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shi-Yu, E-mail: buaasyliu@gmail.com; Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong; Liu, Shiyang

    Utilizing a combination of ab initio density-functional theory and thermodynamics formalism, we have established the microscopic mechanisms for oxidation of the binary and ternary alloy surfaces and provided a clear explanation for the experimental results of the oxidation. We construct three-dimensional surface phase diagrams (SPDs) for oxygen adsorption on three different Nb-X(110) (X = Ti, Al or Si) binary alloy surfaces. On the basis of the obtained SPDs, we conclude a general microscopic mechanism for the thermodynamic oxidation, that is, under O-rich conditions, a uniform single-phase SPD (type I) and a nonuniform double-phase SPD (type II) correspond to the sustainedmore » complete selective oxidation and the non-sustained partial selective oxidation by adding the X element, respectively. Furthermore, by revealing the framework of thermodynamics for the oxidation mechanism of ternary alloys through the comparison of the surface energies of two separated binary alloys, we provide an understanding for the selective oxidation behavior of the Nb ternary alloy surfaces. Using these general microscopic mechanisms, one could predict the oxidation behavior of any binary and multi-component alloy surfaces based on thermodynamics considerations.« less

  19. Antibacterial activity, thermal stability and ab initio study of copolymer containing sulfobetaine and carboxybetaine groups

    NASA Astrophysics Data System (ADS)

    Tarannum, Nazia; Singh, Meenakshi; Yadav, Anil K.

    2017-10-01

    Here, we have explored the antibacterial activity, thermal stability and theoretical study of two copolymers that contain sulfobetaine and carboetaine moiety. Copolymers were synthesized based on Schiff base chemistry with generation of zwitterionic centres by nucleophilic addition of sultone/lactone. To predict and confirm the molecular structure of zwitterionic polyelectrolyte molecule, the theoretical study of structural features and other thermodynamic characteristics of copolymer constituents was obtained by ab initio calculations. Various parameters such as geometry optimization, energy calculations, frequency calculations and intrinsic reaction coefficient (IRC) are simulated using Hartree Fock (HF) method. The geometry optimizations are analyzed at HF/3-21 G default level of theory. The vibrational frequency is calculated via density functional theory (DFT)/B3LYP 6-31G*(d) level whose values are in accord with the experimental observed frequency. Both copolymers have been successfully assessed for antibacterial activity against Staphylococcus aureus and Pseudomonas aeuroginosa bacterial strains by disc diffusion method. The antibacterial study helped in evaluating zone of inhibition, minimum inhibitory concentration and minimum bactericidal concentration. Sulfobetaine copolymer is found to be more effective in curtailing the infection caused by bacteria as compared to carbobetaine.

  20. Ab initio crystal structure prediction of magnesium (poly)sulfides and calculation of their NMR parameters.

    PubMed

    Mali, Gregor

    2017-03-01

    Ab initio prediction of sensible crystal structures can be regarded as a crucial task in the quickly-developing methodology of NMR crystallography. In this contribution, an evolutionary algorithm was used for the prediction of magnesium (poly)sulfide crystal structures with various compositions. The employed approach successfully identified all three experimentally detected forms of MgS, i.e. the stable rocksalt form and the metastable wurtzite and zincblende forms. Among magnesium polysulfides with a higher content of sulfur, the most probable structure with the lowest formation energy was found to be MgS 2 , exhibiting a modified rocksalt structure, in which S 2- anions were replaced by S 2 2- dianions. Magnesium polysulfides with even larger fractions of sulfur were not predicted to be stable. For the lowest-energy structures, 25 Mg quadrupolar coupling constants and chemical shift parameters were calculated using the density functional theory approach. The calculated NMR parameters could be well rationalized by the symmetries of the local magnesium environments, by the coordination of magnesium cations and by the nature of the surrounding anions. In the future, these parameters could serve as a reference for the experimentally determined 25 Mg NMR parameters of magnesium sulfide species.

  1. Ab initio Prediction of Martensitic and Intermartensitic Phase Boundaries in Ni-Mn-Ga

    NASA Astrophysics Data System (ADS)

    Dutta, B.; ćakır, A.; Giacobbe, C.; Al-Zubi, A.; Hickel, T.; Acet, M.; Neugebauer, J.

    2016-01-01

    Despite the importance of martensitic transformations of Ni-Mn-Ga Heusler alloys for their magnetocaloric and shape-memory properties, the martensitic part of their phase diagrams is not well determined. Using an ab initio approach that includes the interplay of lattice and vibrational degrees of freedom we identify an intermartensitic transformation between a modulated and a nonmodulated phase as a function of excess Ni and Mn content. Based on an evaluation of the theoretical findings and experimental x-ray diffraction data for Mn-rich alloys, we are able to predict the phase diagram for Ni-rich alloys. In contrast to other mechanisms discussed for various material systems in the literature, we herewith show that the intermartensitic transformation can be understood solely using thermodynamic concepts.

  2. The molecular structures and conformation of o-selenobenzyl fluoride derivatives, ArSeX (Ar=C 6H 4CH 2F; X=CN, Cl, Me): ab initio and DFT calculations

    NASA Astrophysics Data System (ADS)

    Jeong, Myongho; Kwon, Younghi

    2000-10-01

    Ab initio and density functional theory methods are applied to investigate the molecular structures, intramolecular orbital interactions, and 19F and 77Se NMR chemical shifts of o-selenobenzyl fluoride derivatives, ArSeX ( Ar= C6H4CH2F; X= CN, Cl, Me) , at both RHF and B3LYP levels with the basis sets 6-311G ∗∗ and 6-311+G ∗∗. There are two stable rotational conformers for ArSeX. The energy differences between both conformers for each compound are small (within 2 kcal/mol) at various levels.

  3. Avoiding fractional electrons in subsystem DFT based ab-initio molecular dynamics yields accurate models for liquid water and solvated OH radical

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genova, Alessandro, E-mail: alessandro.genova@rutgers.edu; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu; Ceresoli, Davide, E-mail: davide.ceresoli@cnr.it

    2016-06-21

    In this work we achieve three milestones: (1) we present a subsystem DFT method capable of running ab-initio molecular dynamics simulations accurately and efficiently. (2) In order to rid the simulations of inter-molecular self-interaction error, we exploit the ability of semilocal frozen density embedding formulation of subsystem DFT to represent the total electron density as a sum of localized subsystem electron densities that are constrained to integrate to a preset, constant number of electrons; the success of the method relies on the fact that employed semilocal nonadditive kinetic energy functionals effectively cancel out errors in semilocal exchange–correlation potentials that aremore » linked to static correlation effects and self-interaction. (3) We demonstrate this concept by simulating liquid water and solvated OH{sup •} radical. While the bulk of our simulations have been performed on a periodic box containing 64 independent water molecules for 52 ps, we also simulated a box containing 256 water molecules for 22 ps. The results show that, provided one employs an accurate nonadditive kinetic energy functional, the dynamics of liquid water and OH{sup •} radical are in semiquantitative agreement with experimental results or higher-level electronic structure calculations. Our assessments are based upon comparisons of radial and angular distribution functions as well as the diffusion coefficient of the liquid.« less

  4. Ab initio calculation of the rotational spectrum of methane vibrational ground state

    NASA Astrophysics Data System (ADS)

    Cassam-Chenaï, P.; Liévin, J.

    2012-05-01

    In a previous article we have introduced an alternative perturbation scheme to the traditional one starting from the harmonic oscillator, rigid rotator Hamiltonian, to find approximate solutions of the spectral problem for rotation-vibration molecular Hamiltonians. The convergence of our method for the methane vibrational ground state rotational energy levels was quicker than that of the traditional method, as expected, and our predictions were quantitative. In this second article, we study the convergence of the ab initio calculation of effective dipole moments for methane within the same theoretical frame. The first order of perturbation when applied to the electric dipole moment operator of a spherical top gives the expression used in previous spectroscopic studies. Higher orders of perturbation give corrections corresponding to higher centrifugal distortion contributions and are calculated accurately for the first time. Two potential energy surfaces of the literature have been used for solving the anharmonic vibrational problem by means of the vibrational mean field configuration interaction approach. Two corresponding dipole moment surfaces were calculated in this work at a high level of theory. The predicted intensities agree better with recent experimental values than their empirical fit. This suggests that our ab initio dipole moment surface and effective dipole moment operator are both highly accurate.

  5. Physical origins of weak H{sub 2} binding on carbon nanostructures: Insight from ab initio studies of chemically functionalized graphene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulman, Kanchan; Bhaumik, Debarati; Wood, Brandon C.

    2014-05-07

    We have performed ab initio density functional theory calculations, incorporating London dispersion corrections, to study the absorption of molecular hydrogen on zigzag graphene nanoribbons whose edges have been functionalized by OH, NH{sub 2}, COOH, NO{sub 2}, or H{sub 2}PO{sub 3}. We find that hydrogen molecules always preferentially bind at or near the functionalized edge, and display induced dipole moments. Binding is generally enhanced by the presence of polar functional groups. The largest gains are observed for groups with oxygen lone pairs that can facilitate local charge reorganization, with the biggest single enhancement in adsorption energy found for “strong functionalization” bymore » H{sub 2}PO{sub 3} (115 meV/H{sub 2} versus 52 meV/H{sub 2} on bare graphene). We show that for binding on the “outer edge” near the functional group, the presence of the group can introduce appreciable contributions from Debye interactions and higher-order multipole electrostatic terms, in addition to the dominant London dispersion interactions. For those functional groups that contain the OH moiety, the adsorption energy is linearly proportional to the number of lone pairs on oxygen atoms. Mixed functionalization with two different functional groups on a graphene edge can also have a synergistic effect, particularly when electron-donating and electron-withdrawing groups are combined. For binding on the “inner edge” somewhat farther from the functional group, most of the binding again arises from London interactions; however, there is also significant charge redistribution in the π manifold, which directly reflects the electron donating or withdrawing capacity of the functional group. Our results offer insight into the specific origins of weak binding of gas molecules on graphene, and suggest that edge functionalization could perhaps be used in combination with other strategies to increase the uptake of hydrogen in graphene. They also have relevance for the

  6. Symplectic no-core configuration interaction framework for ab initio nuclear structure. II. Structure of rotational states

    NASA Astrophysics Data System (ADS)

    Caprio, Mark A.; McCoy, Anna E.; Dytrych, Tomas

    2017-09-01

    Rotational band structure is readily apparent as an emergent phenomenon in ab initio nuclear many-body calculations of light nuclei, despite the incompletely converged nature of most such calculations at present. Nuclear rotation in light nuclei can be analyzed in terms of approximate dynamical symmetries of the nuclear many-body problem: in particular, Elliott's SU (3) symmetry of the three-dimensional harmonic oscillator and the symplectic Sp (3 , R) symmetry of three-dimensional phase space. Calculations for rotational band members in the ab initio symplectic no-core configuration interaction (SpNCCI) framework allow us to directly examine the SU (3) and Sp (3 , R) nature of rotational states. We present results for rotational bands in p-shell nuclei. Supported by the US DOE under Award No. DE-FG02-95ER-40934 and the Czech Science Foundation under Grant No. 16-16772S.

  7. Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei

    DOE PAGES

    Dytrych, T.; Maris, P.; Launey, K. D.; ...

    2016-06-22

    We report on the computational characteristics of ab initio nuclear structure calculations in a symmetry-adapted no-core shell model (SA-NCSM) framework. We examine the computational complexity of the current implementation of the SA-NCSM approach, dubbed LSU3shell, by analyzing ab initio results for 6Li and 12C in large harmonic oscillator model spaces and SU3-selected subspaces. We demonstrate LSU3shell’s strong-scaling properties achieved with highly-parallel methods for computing the many-body matrix elements. Results compare favorably with complete model space calculations and significant memory savings are achieved in physically important applications. In particular, a well-chosen symmetry-adapted basis affords memory savings in calculations of states withmore » a fixed total angular momentum in large model spaces while exactly preserving translational invariance.« less

  8. Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dytrych, T.; Maris, Pieter; Launey, K. D.

    2016-06-09

    We report on the computational characteristics of ab initio nuclear structure calculations in a symmetry-adapted no-core shell model (SA-NCSM) framework. We examine the computational complexity of the current implementation of the SA-NCSM approach, dubbed LSU3shell, by analyzing ab initio results for 6Li and 12C in large harmonic oscillator model spaces and SU(3)-selected subspaces. We demonstrate LSU3shell's strong-scaling properties achieved with highly-parallel methods for computing the many-body matrix elements. Results compare favorably with complete model space calculations and signi cant memory savings are achieved in physically important applications. In particular, a well-chosen symmetry-adapted basis a ords memory savings in calculations ofmore » states with a fixed total angular momentum in large model spaces while exactly preserving translational invariance.« less

  9. Discovering chemistry with an ab initio nanoreactor

    DOE PAGES

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; ...

    2014-11-02

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis frommore » primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.« less

  10. Discovering chemistry with an ab initio nanoreactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis frommore » primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.« less

  11. DFT benchmark study for the oxidative addition of CH 4 to Pd. Performance of various density functionals

    NASA Astrophysics Data System (ADS)

    de Jong, G. Theodoor; Geerke, Daan P.; Diefenbach, Axel; Matthias Bickelhaupt, F.

    2005-06-01

    We have evaluated the performance of 24 popular density functionals for describing the potential energy surface (PES) of the archetypal oxidative addition reaction of the methane C-H bond to the palladium atom by comparing the results with our recent ab initio [CCSD(T)] benchmark study of this reaction. The density functionals examined cover the local density approximation (LDA), the generalized gradient approximation (GGA), meta-GGAs as well as hybrid density functional theory. Relativistic effects are accounted for through the zeroth-order regular approximation (ZORA). The basis-set dependence of the density-functional-theory (DFT) results is assessed for the Becke-Lee-Yang-Parr (BLYP) functional using a hierarchical series of Slater-type orbital (STO) basis sets ranging from unpolarized double-ζ (DZ) to quadruply polarized quadruple-ζ quality (QZ4P). Stationary points on the reaction surface have been optimized using various GGA functionals, all of which yield geometries that differ only marginally. Counterpoise-corrected relative energies of stationary points are converged to within a few tenths of a kcal/mol if one uses the doubly polarized triple-ζ (TZ2P) basis set and the basis-set superposition error (BSSE) drops to 0.0 kcal/mol for our largest basis set (QZ4P). Best overall agreement with the ab initio benchmark PES is achieved by functionals of the GGA, meta-GGA, and hybrid-DFT type, with mean absolute errors of 1.3-1.4 kcal/mol and errors in activation energies ranging from +0.8 to -1.4 kcal/mol. Interestingly, the well-known BLYP functional compares very reasonably with an only slightly larger mean absolute error of 2.5 kcal/mol and an underestimation by -1.9 kcal/mol of the overall barrier (i.e., the difference in energy between the TS and the separate reactants). For comparison, with B3LYP we arrive at a mean absolute error of 3.8 kcal/mol and an overestimation of the overall barrier by 4.5 kcal/mol.

  12. Distinguishing between relaxation pathways by combining dissociative ionization pump probe spectroscopy and ab initio calculations: a case study of cytosine.

    PubMed

    Kotur, Marija; Weinacht, Thomas C; Zhou, Congyi; Kistler, Kurt A; Matsika, Spiridoula

    2011-05-14

    We present a general method for tracking molecular relaxation along different pathways from an excited state down to the ground state. We follow the excited state dynamics of cytosine pumped near the S(0)-S(1) resonance using ultrafast laser pulses in the deep ultraviolet and probed with strong field near infrared pulses which ionize and dissociate the molecules. The fragment ions are detected via time of flight mass spectroscopy as a function of pump probe delay and probe pulse intensity. Our measurements reveal that different molecular fragments show different timescales, indicating that there are multiple relaxation pathways down to the ground state. We interpret our measurements with the help of ab initio electronic structure calculations of both the neutral molecule and the molecular cation for different conformations en route to relaxation back down to the ground state. Our measurements and calculations show passage through two seams of conical intersections between ground and excited states and demonstrate the ability of dissociative ionization pump probe measurements in conjunction with ab initio electronic structure calculations to track molecular relaxation through multiple pathways.

  13. Ab Initio Path Integral Molecular Dynamics Study of the Nuclear Quantum Effect on Out-of-Plane Ring Deformation of Hydrogen Maleate Anion.

    PubMed

    Kawashima, Yukio; Tachikawa, Masanori

    2014-01-14

    Ab initio path integral molecular dynamics (PIMD) simulation was performed to understand the nuclear quantum effect on the out-of-plane ring deformation of hydrogen maleate anion and investigate the existence of a stable structure with ring deformation, which was suggested in experimental observation (Fillaux et al., Chem. Phys. 1999, 120, 387-403). The isotope effect and the temperature effect are studied as well. We first investigated the nuclear quantum effect on the proton transfer. In static calculation and classical ab initio molecular dynamics simulations, the proton in the hydrogen bond is localized to either oxygen atom. On the other hand, the proton is located at the center of two oxygen atoms in quantum ab initio PIMD simulations. The nuclear quantum effect washes out the barrier of proton transfer. We next examined the nuclear quantum effect on the motion of hydrogen maleate anion. Principal component analysis revealed that the out-of-plane ring bending modes have dominant contribution to the entire molecular motion. In quantum ab initio PIMD simulations, structures with ring deformation were the global minimum for the deuterated isotope at 300 K. We analyzed the out-of-plane ring bending mode further and found that there are three minima along a ring distortion mode. We successfully found a stable structure with ring deformation of hydrogen maleate for the first time, to our knowledge, using theoretical calculation. The structures with ring deformation found in quantum simulation of the deuterated isotope allowed the proton transfer to occur more frequently than the planar structure. Static ab initio electronic structure calculation found that the structures with ring deformation have very small proton transfer barrier compared to the planar structure. We suggest that the "proton transfer driven" mechanism is the origin of stabilization for the structure with out-of-plane ring deformation.

  14. Conformational Characteristics of Poly(tetrafluoroethylene) (PTFE) Based Upon Ab Initio Electronic Structure Calculations on Model Molecules

    NASA Technical Reports Server (NTRS)

    Smith, Grant D.; Jaffe, R. L.; Yoon, D. Y.; Arnold, James O. (Technical Monitor)

    1994-01-01

    Conformational energy contours of perfluoroalkanes, determined from ab initio calculations, confirm the well-known spitting of trans states into two minima at plus or minus 17 degrees but also show that the gauche states split as well, with minima at plus or minus 124 degrees and plus or minus 84 in order to relieve steric crowding. The directions of such split distortions from the perfectly staggered states are strongly coupled for adjacent pairs of bonds in a manner identical to the intradyad pair for poly (isobutylene) chains. These conformational characteristics are fully represented by a six-state rotational isomeric state (RIS) model for PTFE comprised of t(+), t(-), g(sup +)+, g(sup +)-, g(sup -) + and g(sup -)-states, located at the split energy minima. The resultant 6 x 6 statistical weight matrix is described by first-order interaction parameters for the g+(+) (ca. 0.6 kcal/mol) and g+- (ca. 2.0 kcal/mol) states, and second order parameters for the g(sup +)+g(sup +)+ (ca 0.6 kcal/mol) and g(sup +)+g(sup -)+ (ca. 1.0 kcal/mol) states. This six-state RIS model, without adjustment of the geometric or energy parameters as determined from the ab initio calculations, predicts the unperturbed chain dimensions and the fraction of gauche bonds as a function of temperature for PTFE in good agreement with available experimental values.

  15. Ab initio quantum direct dynamics simulations of ultrafast photochemistry with Multiconfigurational Ehrenfest approach

    NASA Astrophysics Data System (ADS)

    Makhov, Dmitry V.; Symonds, Christopher; Fernandez-Alberti, Sebastian; Shalashilin, Dmitrii V.

    2017-08-01

    The Multiconfigurational Ehrenfest (MCE) method is a quantum dynamics technique which allows treatment of a large number of quantum nuclear degrees of freedom. This paper presents a review of MCE and its recent applications, providing a summary of the formalisms, including its ab initio direct dynamics versions and also giving a summary of recent results. Firstly, we describe the Multiconfigurational Ehrenfest version 2 (MCEv2) method and its applicability to direct dynamics and report new calculations which show that the approach converges to the exact result in model systems with tens of degrees of freedom. Secondly, we review previous ;on the fly; ab initio Multiple Cloning (AIMC-MCE) MCE dynamics results obtained for systems of a similar size, in which the calculations treat every electron and every nucleus of a polyatomic molecule on a fully quantum basis. We also review the Time Dependent Diabatic Basis (TDDB) version of the technique and give an example of its application. We summarise the details of the sampling techniques and interpolations used for calculation of the matrix elements, which make our approach efficient. Future directions of work are outlined.

  16. Estudio ab initio del mecanismo de la reacción HSO + O3

    NASA Astrophysics Data System (ADS)

    Nebot Gil, I.

    La reacción entre el radical HSO y el ozono ha sido ampliamente estudiada desde el punto de vista experimental debido a la importancia que tiene el radical HSO en la oxidación de los compuestos de azufre reductores y a que puede contribuir a la producción de H2SO4 [1-4]. Se realizaron diversos estudios teóricos sobre la cinética de la reacción entre el radical HSO y el ozono. La reacción del HSO con el ozono presenta tres canales diferentes : HSO + O3 &rightarrow &HSO2 + O2 &rightarrow &HS + 2 O2 &rightarrow &SO + OH + O2 La controversia existente entre los grupos experimentales sobre cuál de las tres vías es la predominante, se ha resuelto mediante un estudio teórico de todas ellas utilizando métodos ab initio. La estructura de todos los reactivos, productos, intermedios y estados de transición ha sido optimizada a nivel ab initio utilizando los métodos UMP2 /6-31G** y QCISD/6-31G**.

  17. A new ab initio potential energy surface for the Ne-H 2 interaction

    NASA Astrophysics Data System (ADS)

    Lique, François

    2009-03-01

    A new accurate three-dimensional potential energy surface for the Ne-H 2 system, which explicitly takes into account the r-dependence of the H 2 vibration, was determined from ab initio calculations. It was obtained with the single and double excitation coupled-cluster method with noniterative perturbational treatment of triple excitation [CCSD(T)]. Calculations was been performed using the augmented correlation-consistent polarized quintuple zeta basis set (aug-cc-pV5Z) for the three atoms. We checked the accuracy of the present ab initio calculations. We have determined, using the new Ne-H 2 potential energy surface, differential cross-sections for the rotational excitation of the H 2 and D 2 molecules in collision with Ne and we have compared them with experimental results of Faubel et al. [M. Faubel, F.A. Gianturco, F. Ragnetti, L.Y. Rusin, F. Sondermann, U. Tappe, J.P. Toennies, J. Chem. Phys. 101 (1994) 8800]. The overall agreement confirms that the new potential energy surface can be used for the simulation of molecular collisions and/or molecular spectroscopy of the van der Waals complex Ne-H 2.

  18. Novel high-pressure phase of ZrO{sub 2}: An ab initio prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durandurdu, Murat, E-mail: murat.durandurdu@agu.edu.tr

    2015-10-15

    The high-pressure behavior of the orthorhombic cotunnite type ZrO{sub 2} is explored using an ab initio constant pressure technique. For the first time, a novel hexagonal phase (Ni{sub 2}In type) within P6{sub 3}/mmc symmetry is predicted through the simulation. The Ni{sub 2}In type crystal is the densest high-pressure phase of ZrO{sub 2} proposed so far and has not been observed in other metal dioxides at high pressure before. The phase transformation is accompanied by a small volume drop and likely to occur around 380 GPa in experiment. - Graphical abstract: Post-cotunnite Ni{sub 2}In type hexagonal phase forms in zirconia atmore » high pressure. - Highlights: • A post-cotunnite phase is predicted for ZrO{sub 2} through an ab initio simulation. • Cotunnite ZrO{sub 2} adopts the Ni{sub 2}In type structure at high pressure. • The Ni{sub 2}In type structure is the densest high-pressure phase of ZrO{sub 2} proposed so far. • The preferred mechanism in ZrO{sub 2} differs from the other metal dioxides.« less

  19. A Toolbox for Ab Initio 3-D Reconstructions in Single-particle Electron Microscopy

    PubMed Central

    Voss, Neil R; Lyumkis, Dmitry; Cheng, Anchi; Lau, Pick-Wei; Mulder, Anke; Lander, Gabriel C; Brignole, Edward J; Fellmann, Denis; Irving, Christopher; Jacovetty, Erica L; Leung, Albert; Pulokas, James; Quispe, Joel D; Winkler, Hanspeter; Yoshioka, Craig; Carragher, Bridget; Potter, Clinton S

    2010-01-01

    Structure determination of a novel macromolecular complex via single-particle electron microscopy depends upon overcoming the challenge of establishing a reliable 3-D reconstruction using only 2-D images. There are a variety of strategies that deal with this issue, but not all of them are readily accessible and straightforward to use. We have developed a “toolbox” of ab initio reconstruction techniques that provide several options for calculating 3-D volumes in an easily managed and tightly controlled work-flow that adheres to standard conventions and formats. This toolbox is designed to streamline the reconstruction process by removing the necessity for bookkeeping, while facilitating transparent data transfer between different software packages. It currently includes procedures for calculating ab initio reconstructions via random or orthogonal tilt geometry, tomograms, and common lines, all of which have been tested using the 50S ribosomal subunit. Our goal is that the accessibility of multiple independent reconstruction algorithms via this toolbox will improve the ease with which models can be generated, and provide a means of evaluating the confidence and reliability of the final reconstructed map. PMID:20018246

  20. Five ab initio potential energy and dipole moment surfaces for hydrated NaCl and NaF. I. Two-body interactions.

    PubMed

    Wang, Yimin; Bowman, Joel M; Kamarchik, Eugene

    2016-03-21

    We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na(+)H2O, F(-)H2O, and Cl(-)H2O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H2O potentials are permutationally invariant fits to roughly 20,000 coupled cluster CCSD(T) energies (awCVTZ basis for Na(+) and aVTZ basis for Cl(-) and F(-)), over a large range of distances and H2O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.