Ab initio electronic structure study for TTF-TCNQ under uniaxial compression
NASA Astrophysics Data System (ADS)
Ishibashi, Shoji; Hashimoto, Tamotsu; Kohyama, Masanori; Terakura, Kiyoyuki
2004-04-01
We have investigated the electronic structure of TTF-TCNQ under uniaxial compression with ab initio plane-wave pseudopotential calculations within the local-density approximation and generalized gradient approximation. Depending on the compression direction, the constituent molecules are deformed in different ways. Along with these structural deformations, quasi-one-dimensional Fermi surfaces show dramatic changes in their shapes and sizes.
Ab initio calculations on twisted graphene/hBN: Electronic structure and STM image simulation
NASA Astrophysics Data System (ADS)
Correa, J. D.; Cisternas, E.
2016-09-01
By performing ab initio calculations we obtained theoretical scanning tunneling microscopy (STM) images and studied the electronic properties of graphene on a hexagonal boron-nitrite (hBN) layer. Three different stack configurations and four twisted angles were considered. All calculations were performed using density functional theory, including van der Waals interactions as implemented in the SIESTA ab initio package. Our results show that the electronic structure of graphene is preserved, although some small changes are induced by the interaction with the hBN layer, particularly in the total density of states at 1.5 eV under the Fermi level. When layers present a twisted angle, the density of states shows several van Hove singularities under the Fermi level, which are associated to moiré patterns observed in theoretical STM images.
Electronic Structure of Silicon Nanowires Matrix from Ab Initio Calculations.
Monastyrskii, Liubomyr S; Boyko, Yaroslav V; Sokolovskii, Bogdan S; Potashnyk, Vasylyna Ya
2016-12-01
An investigation of the model of porous silicon in the form of periodic set of silicon nanowires has been carried out. The electronic energy structure was studied using a first-principle band method-the method of pseudopotentials (ultrasoft potentials in the basis of plane waves) and linearized mode of the method of combined pseudopotentials. Due to the use of hybrid exchange-correlation potentials (B3LYP), the quantitative agreement of the calculated value of band gap in the bulk material with experimental data is achieved. The obtained results show that passivation of dangling bonds with hydrogen atoms leads to substantial transformation of electronic energy structure. At complete passivation of the dangling silicon bonds by hydrogen atoms, the band gap value takes the magnitude which substantially exceeds that for bulk silicon. The incomplete passivation gives rise to opposite effect when the band gap value decreases down the semimetallic range. PMID:26768147
Kurova, N. V. Burdov, V. A.
2013-12-15
The results of ab initio calculations of the electronic structure of Si nanocrystals doped with shallow donors (Li, P) are reported. It is shown that phosphorus introduces much more significant distortions into the electronic structure of the nanocrystal than lithium, which is due to the stronger central cell potential of the phosphorus ion. It is found that the Li-induced splitting of the ground state in the conduction band of the nanocrystal into the singlet, doublet, and triplet retains its inverse structure typical for bulk silicon.
Electronic Structures of Anti-Ferromagnetic Tetraradicals: Ab Initio and Semi-Empirical Studies.
Zhang, Dawei; Liu, Chungen
2016-04-12
The energy relationships and electronic structures of the lowest-lying spin states in several anti-ferromagnetic tetraradical model systems are studied with high-level ab initio and semi-empirical methods. The Full-CI method (FCI), the complete active space second-order perturbation theory (CASPT2), and the n-electron valence state perturbation theory (NEVPT2) are employed to obtain reference results. By comparing the energy relationships predicted from the Heisenberg and Hubbard models with ab initio benchmarks, the accuracy of the widely used Heisenberg model for anti-ferromagnetic spin-coupling in low-spin polyradicals is cautiously tested in this work. It is found that the strength of electron correlation (|U/t|) concerning anti-ferromagnetically coupled radical centers could range widely from strong to moderate correlation regimes and could become another degree of freedom besides the spin multiplicity. Accordingly, the Heisenberg-type model works well in the regime of strong correlation, which reproduces well the energy relationships along with the wave functions of all the spin states. In moderately spin-correlated tetraradicals, the results of the prototype Heisenberg model deviate severely from those of multi-reference electron correlation ab initio methods, while the extended Heisenberg model, containing four-body terms, can introduce reasonable corrections and maintains its accuracy in this condition. In the weak correlation regime, both the prototype Heisenberg model and its extended forms containing higher-order correction terms will encounter difficulties. Meanwhile, the Hubbard model shows balanced accuracy from strong to weak correlation cases and can reproduce qualitatively correct electronic structures, which makes it more suitable for the study of anti-ferromagnetic coupling in polyradical systems. PMID:26963572
Bylaska, Eric J.; Dixon, David A.; Felmy, Andrew R.; Tratnyek, Paul G.
2002-12-17
Substituted chloromethyl radicals and anions are potential intermediates in the reduction of substituted chlorinated methanes (CHxCl3-xL, with L- ) F-, OH-, SH-, NO3 -, HCO3 - and (x 0-3). Thermochemical properties, Hf (298.15 K), S(298.15 K,1 bar), and GS(298.15 K, 1 bar), were calculated by using ab initio electronic structure methods for the substituted chloromethyl radicals and anions: CHyCl2-yL and CHyCl2-yL-, for y 0-2. In addition, thermochemical properties were calculated for the aldehyde, ClHCO, and the gemchlorohydrin anions, CCl3O-, CHCl2O-, and CH2ClO-. The thermochemical properties of these additional compounds were calculated because the nitrate-substituted compounds, CHyCl2-y(NO3) and CHyCl2-y(NO3)-,
Klevets, Ivan; Bryk, Taras
2014-12-07
Electron-ion structure factors, calculated in ab initio molecular dynamics simulations, are reported for several binary liquids with different kinds of chemical bonding: metallic liquid alloy Bi–Pb, molten salt RbF, and liquid water. We derive analytical expressions for the long-wavelength asymptotes of the partial electron-ion structure factors of binary systems and show that the analytical results are in good agreement with the ab initio simulation data. The long-wavelength behaviour of the total charge structure factors for the three binary liquids is discussed.
Atomic and Electronic Structures of C_60+BN Nanopeapods from ab initio Pseudopotential Calculations
NASA Astrophysics Data System (ADS)
Trave, Andrea; Ribeiro, Filipe; Louie, Steven G.; Cohen, Marvin L.
2004-03-01
Nanopeapods are structures of nanometric size consisting of an external carbon nanotube encapsulating a chain or complex array of fullerenes. Recent calculations and experiments have proven that nanopeapods can be obtained assembling fullerenes within boron nitride nanotubes, creating novel materials of possible interest for electronic transport applications. To improve the understanding of the properties of these composite systems, as compared to empty nanotubes and carbon nanopeapods, ab-initio total energy calculations have been performed within the pseudopotential Density Functional Theory in local density approximation. Results of these calculations on the energetics and geometrical deformations involved in the encapsulation will be presented, followed by a discussion of the consequences on the electronic structures of these systems, with particular focus on aspects relevant to electronic transport phenomena. This work is supported by NFS (Grant DMR00-87088) and DOE (Contract DE-AC03-76SF00098), using computational resources at NERSC and NPACI.
Ab Initio Calculations of the Electronic Structures and Biological Functions of Protein Molecules
NASA Astrophysics Data System (ADS)
Zheng, Haoping
The self-consistent cluster-embedding (SCCE) calculation method reduces the computational effort from M3 to about M1 (M is the number of atoms in the system) with precise calculations. Thus the ab initio, all-electron calculation of the electronic structure and biological function of protein molecule has become a reality, which will promote new proteomics considerably. The calculated results of two real protein molecules, the trypsin inhibitor from the seeds of squash Cucurbita maxima (CMTI-I, 436 atoms) and the ascaris trypsin inhibitor (912 atoms, two three-dimensional structures), will be presented in this paper. The reactive sites of the inhibitors are determined and explained. The accuracy of structure determination of the inhibitors are tested theoretically.
Ab Initio Calculations of the Electronic Structures and Biological Functions of Protein Molecules
NASA Astrophysics Data System (ADS)
Zheng, Haoping
2003-04-01
The self-consistent cluster-embedding (SCCE) calculation method reduces the computational effort from M3 to about M1 (M is the number of atoms in the system) with unchanged calculation precision. So the ab initio, all-electron calculation of the electronic structure and biological function of protein molecule becomes a reality, which will promote new proteomics considerably. The calculated results of two real protein molecules, the trypsin inhibitor from the seeds of squash Cucurbita maxima (CMTI-I, 436 atoms) and the Ascaris trypsin inhibitor (912 atoms, two three-dimensional structures), are presented. The reactive sites of the inhibitors are determined and explained. The precision of structure determination of inhibitors are tested theoretically.
Ab initio study of pressure induced structural and electronic properties in TmPo
Makode, Chandrabhan Pataiya, Jagdish; Sanyal, Sankar P.; Panwar, Y. S.; Aynyas, Mahendra
2015-06-24
We report an ab initio calculation of pressure induced structural phase transition and electronic properties of Thulium Polonide (TmPo).The total energy as a function of volume is obtained by means of self-consistent tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). It is found that TmPo is stable in NaCl-type (B{sub 1}-phase) structure to CsCl-type (B{sub 2}-phase) structure of this compound in the pressure range of 7.0 GPa. We also calculate the lattice parameter (a{sub 0}), bulk modulus (B{sub 0}), band structure and density of states. From energy diagram it is observed that TmPo exhibit metallic behavior. The calculated values of equilibrium lattice parameter and bulk modulus are in general good agreement.
Nekrashevich, S. S. Gritsenko, V. A.; Klauser, R.; Gwo, S.
2010-10-15
Charge transfer {Delta}Q = 0.35e at the Si-N bond in silicon nitride is determined experimentally using photoelectron spectroscopy, and the ionic formula of silicon nitride Si{sub 3}{sup +1.4}N{sub 4}{sup -1.05} is derived. The electronic structure of {alpha}-Si{sub 3}N{sub 4} is studied ab initio using the density functional method. The results of calculations (partial density of states) are compared with experimental data on X-ray emission spectroscopy of amorphous Si{sub 3}N{sub 4}. The electronic structure of the valence band of amorphous Si{sub 3}N{sub 4} is studied using synchrotron radiation at different excitation energies. The electron and hole effective masses m{sub e}{sup *} {approx} m{sub h}{sup *} {approx} 0.5m{sub e} are estimated theoretically. The calculated values correspond to experimental results on injection of electrons and holes into silicon nitride.
NASA Astrophysics Data System (ADS)
Padilha, José Eduardo; Pontes, Renato Borges
2016-01-01
Ab initio electronic structure and transport calculations of 2D hexagonal germanium with four possible structural defects were performed. The considered defects were Stone-Wales (SW), single vacancy (5-9) and two divacancies (5-8-5 and 555-777). We showed that these defects present a local reconstruction that can be clearly identified by STM images. Among the investigated defects, we verified that the SW defect has the lowest formation energy. We showed that in the presence of structural defects the 2D hexagonal germanium maintains its Dirac cone feature only for the single vacancy. The divacancies and the SW defect destroy the linear dispersion relation of the electrons, near the Fermi level, in this system. Moreover, we verified that these defects create scattering centers, which can lead to diminishing of the current by roughly 42% for the Stone-Wales and single vacancy, 55% for the divacancy 5-8-5 and 68% for the 555-777 divacancy.
Hegde, Ganesh Bowen, R. Chris
2015-10-15
The accuracy of a single s-orbital representation of Cu towards enabling multi-thousand atom ab initio calculations of electronic structure is evaluated in this work. If an electrostatic compensation charge of 0.3 electron per atom is used in this basis representation, the electronic transmission in bulk and nanocrystalline Cu can be made to compare accurately to that obtained with a Double Zeta Polarized basis set. The use of this representation is analogous to the use of single band effective mass representation for semiconductor electronic structure. With a basis of just one s-orbital per Cu atom, the representation is extremely computationally efficient and can be used to provide much needed ab initio insight into electronic transport in nanocrystalline Cu interconnects at realistic dimensions of several thousand atoms.
Ab initio electron affinity and hyperfine structure constants of ^231Pa:
NASA Astrophysics Data System (ADS)
Dinov, Konstantin D.; Beck, Donald R.
1996-05-01
We have performed valence shell Relativistic Configuration Interaction calculations(Konstantin D. Dinov and Donald R. Beck, Electron affinity and hyperfine structure constants of Pa^-: 7p attachment.) Submitted to Phys. Rev. A for the Electron Affinity (EA) of ^231Pa. Our result of 0.222 eV for the binding energy of the Pa^- 5f^2 6d 7s^2 7p J=6 state is consistent with the experimental yield(X-L. Zhao, M-J. Nadeau, M.A. Garwan, L.R. Kilius and A.E. Litherland, Nuc. Instr. Meth. B 92), 258-64 (1994). Our result for the hyperfine structure constants of Pa^-, is the first available ab initio result. No other bound states were found for the 7p attachment. We didn't find evidence to support possible 5d attachment in this system. This work extends our previous calculations for the Rare Earth negative ions(K.D. Dinov and D.R. Beck, Phys. Rev. A 52) , 2632-37 (1995); K. Dinov and D.R. Beck, Phys. Rev. A 51 (2), 1680-82 (1995); K. Dinov, D.R. Beck and D. Datta, Phys. Rev. A 50 (2), 1144-48 (1994).
Ab initio calculation of structural stability, electronic and optical properties of Ag{sub 2}Se
Rameshkumar, S.; Jayalakshmi, V.; Jaiganesh, G.; Palanivel, B.
2015-06-24
The structural stability, electronic and optical properties of Ag{sub 2}Se compound is studied using ab initio packages. Ag{sub 2}Se is found to crystallize in orthorhombic structure with two different space groups i.e. P2{sub 1}2{sub 1}2{sub 1} (No. 19) and P222{sub 1} (No. 17). For this compound in these two space groups, the total energy has been computed as a function of volume. Our calculated results suggest that the P2{sub 1}2{sub 1}2{sub 1}–phase is more stable than that of the P222{sub 1}–phase. The band structure calculation show that Ag{sub 2}Se is semimetallic with an overlap of about 0.014 eV in P2{sub 1}2{sub 1}2{sub 1}–phase whereas is metallic in nature in P222{sub 1}–phase. Moreover, the optical properties including the dielectric function, energy loss spectrum are obtained and analysed.
PSI3: an open-source Ab Initio electronic structure package.
Crawford, T Daniel; Sherrill, C David; Valeev, Edward F; Fermann, Justin T; King, Rollin A; Leininger, Matthew L; Brown, Shawn T; Janssen, Curtis L; Seidl, Edward T; Kenny, Joseph P; Allen, Wesley D
2007-07-15
PSI3 is a program system and development platform for ab initio molecular electronic structure computations. The package includes mature programming interfaces for parsing user input, accessing commonly used data such as basis-set information or molecular orbital coefficients, and retrieving and storing binary data (with no software limitations on file sizes or file-system-sizes), especially multi-index quantities such as electron repulsion integrals. This platform is useful for the rapid implementation of both standard quantum chemical methods, as well as the development of new models. Features that have already been implemented include Hartree-Fock, multiconfigurational self-consistent-field, second-order Møller-Plesset perturbation theory, coupled cluster, and configuration interaction wave functions. Distinctive capabilities include the ability to employ Gaussian basis functions with arbitrary angular momentum levels; linear R12 second-order perturbation theory; coupled cluster frequency-dependent response properties, including dipole polarizabilities and optical rotation; and diagonal Born-Oppenheimer corrections with correlated wave functions. This article describes the programming infrastructure and main features of the package. PSI3 is available free of charge through the open-source, GNU General Public License. PMID:17420978
Quarti, Claudio; Mosconi, Edoardo; De Angelis, Filippo
2015-04-14
The last two years have seen the unprecedentedly rapid emergence of a new class of solar cells, based on hybrid organic-inorganic halide perovskites. The success of this class of materials is due to their outstanding photoelectrochemical properties coupled to their low cost, mainly solution-based, fabrication techniques. Solution processed materials are however often characterized by an inherent flexible structure, which is hardly mapped into a single local minimum energy structure. In this perspective, we report on the interplay between structural and electronic properties of hybrid lead iodide perovskites investigated using ab initio molecular dynamics (AIMD) simulations, which allow the dynamical simulation of disordered systems at finite temperature. We compare the prototypical MAPbI3 (MA = methylammonium) perovskite in its cubic and tetragonal structure with the trigonal phase of FAPbI3 (FA = formamidinium), investigating different starting arrangements of the organic cations. Despite the relatively short time scale amenable to AIMD, typically a few tens of ps, this analysis demonstrates the sizable structural flexibility of this class of materials, showing that the instantaneous structure could significantly differ from the time and thermal averaged structure. We also highlight the importance of the organic-inorganic interactions in determining the fluxional properties of this class of materials. A peculiar spatial localization of the valence and conduction band edges is also found, with a dynamics in the range of 0.1 ps, which is associated with the positional dynamics of the organic cations within the cubo-octahedral perovskite cage. This asymmetry in the spatial localization of the band edges is expected to ease exciton dissociation and assist the initial stages of charge separation, possibly constituting one of the key factors for the impressive photovoltaic performances of hybrid lead-iodide perovskites. PMID:25766785
NASA Astrophysics Data System (ADS)
Matsuda, Yuki
This dissertation focuses on ab-initio quantum mechanical calculations of nanoelectronics in three research topics: contact resistance properties of carbon nanotubes and graphenes (Chapters 1 through 3), electrical properties of carbon nanotubes (Chapter 4) and silicon nanowires (Chapter 5). Through all the chapters, the aim of the research is to provide useful guidelines for experimentalists. Chapter 1 presents the contact resistance of metal electrode-carbon nanotube and metal electrode-graphene interfaces for various deposited metals, based on first-principles quantum mechanical density functional and matrix Green's function methods. Chapters 2 and 3 describe inventive ways to enhance contact resistance properties as well as mechanical stabilities using "molecular anchors" (Chapter 2) or using "end-contacted" (or end-on) electrodes (Chapter 3). Chapters 1 through 3 also provide useful guidelines for nanotube assembly process which is one of the main obstacles in nanoelectronics. Chapter 4 shows accurate and detailed band structure properties of single-walled carbon nanotubes using B3LYP hybrid functional, which are critical parameters in determining the electronic properties such as small band gaps (˜0.1 eV) and effective masses. Chapter 5 details both structural and electronic properties of silicon nanowires. These results lead to the findings controlling the diameter and surface coverage by adsorbates (e.g., hydrogen) of silicon nanowires can be effectively used to optimize their properties for various applications. All the theoretical results are compared with other theoretical studies and experimental data. Notably, electronic studies using B3LYP show excellent agreement with experimental studies quantitatively, which previous quantum mechanical calculations had failed. These studies show how quantum mechanical predictions of complex phenomena can be effectively investigated computationally in nanomaterials and nanodevices. Given the difficulty, expense
Ab initio study of the electronic structures of lithium containing diatomic molecules and ions
NASA Astrophysics Data System (ADS)
Boldyrev, Alexander I.; Simons, Jack; Schleyer, Paul von R.
1993-12-01
Ab initio calculations are used to provide bond lengths, harmonic frequencies, and dissociation energies of low-lying electronic states for LiX, LiX+, and LiX- (with X=Li through F and Na through Cl). Most of these species represent hitherto experimentally unknown molecules or ions, which provides the focus of the work presented here. All of these species are stable to dissociation and the anions are stable to loss of an electron. Differences among the electronic structures of the valence isoelectronic LiX; and HX, LiX+, and HX+; and LiX- and HX- species are analyzed. Optimized geometries, dissociation energies, ionization potentials, and electron affinities were calculated for the following ground states of the respective species: 1Σ+ for Li2(1Σ+g) LiNa, LiBe+, LiBe-, LiMg+, LiMg-, LiF, LiAl, LiS-, and LiCl; 2Σ+ for Li+2(2Σ+g), Li-2(2Σ+u) LiBe, LiB+, LiF-, LiNa+, LiNa-, LiMg, LiAl+, and LiCl-; 2Πr for LiB-, LiAl-; 2Πi for LiO, LiF+, LiS, and LiCl+; 3Πr for LiB, LiC+, and LiSi+; 3Σ- for LiN, LiO+, LiSi-, LiP, and LiS+; 4Σ- for LiC, LiN+, LiN-, LiSi, LiP+, and LiP-; and 5Σ- for LiC-.
Hoy, Erik P.; Mazziotti, David A.
2015-08-14
Tensor factorization of the 2-electron integral matrix is a well-known technique for reducing the computational scaling of ab initio electronic structure methods toward that of Hartree-Fock and density functional theories. The simplest factorization that maintains the positive semidefinite character of the 2-electron integral matrix is the Cholesky factorization. In this paper, we introduce a family of positive semidefinite factorizations that generalize the Cholesky factorization. Using an implementation of the factorization within the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)], we study several inorganic molecules, alkane chains, and potential energy curves and find that this generalized factorization retains the accuracy and size extensivity of the Cholesky factorization, even in the presence of multi-reference correlation. The generalized family of positive semidefinite factorizations has potential applications to low-scaling ab initio electronic structure methods that treat electron correlation with a computational cost approaching that of the Hartree-Fock method or density functional theory.
Hoy, Erik P; Mazziotti, David A
2015-08-14
Tensor factorization of the 2-electron integral matrix is a well-known technique for reducing the computational scaling of ab initio electronic structure methods toward that of Hartree-Fock and density functional theories. The simplest factorization that maintains the positive semidefinite character of the 2-electron integral matrix is the Cholesky factorization. In this paper, we introduce a family of positive semidefinite factorizations that generalize the Cholesky factorization. Using an implementation of the factorization within the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)], we study several inorganic molecules, alkane chains, and potential energy curves and find that this generalized factorization retains the accuracy and size extensivity of the Cholesky factorization, even in the presence of multi-reference correlation. The generalized family of positive semidefinite factorizations has potential applications to low-scaling ab initio electronic structure methods that treat electron correlation with a computational cost approaching that of the Hartree-Fock method or density functional theory. PMID:26277123
Ab-initio calculations of electronic, transport, and structural properties of boron phosphide
Ejembi, J. I.; Nwigboji, I. H.; Franklin, L.; Malozovsky, Y.; Zhao, G. L.; Bagayoko, D.
2014-09-14
We present results from ab-initio, self-consistent density functional theory calculations of electronic and related properties of zinc blende boron phosphide (zb-BP). We employed a local density approximation potential and implemented the linear combination of atomic orbitals formalism. This technique follows the Bagayoko, Zhao, and Williams method, as enhanced by the work of Ekuma and Franklin. The results include electronic energy bands, densities of states, and effective masses. The calculated band gap of 2.02 eV, for the room temperature lattice constant of a=4.5383 Å, is in excellent agreement with the experimental value of 2.02±0.05 eV. Our result for the bulk modulus, 155.7 GPa, agrees with experiment (152–155 GPa). Our predictions for the equilibrium lattice constant and the corresponding band gap, for very low temperatures, are 4.5269 Å and 2.01 eV, respectively.
NASA Astrophysics Data System (ADS)
Trevisanutto, Paolo E.; Vignale, Giovanni
2016-05-01
Ab initio electronic structure calculations of two-dimensional layered structures are typically performed using codes that were developed for three-dimensional structures, which are periodic in all three directions. The introduction of a periodicity in the third direction (perpendicular to the layer) is completely artificial and may lead in some cases to spurious results and to difficulties in treating the action of external fields. In this paper we develop a new approach, which is "native" to quasi-2D materials, making use of basis function that are periodic in the plane, but atomic-like in the perpendicular direction. We show how some of the basic tools of ab initio electronic structure theory — density functional theory, GW approximation and Bethe-Salpeter equation — are implemented in the new basis. We argue that the new approach will be preferable to the conventional one in treating the peculiarities of layered materials, including the long range of the unscreened Coulomb interaction in insulators, and the effects of strain, corrugations, and external fields.
Trevisanutto, Paolo E; Vignale, Giovanni
2016-05-28
Ab initio electronic structure calculations of two-dimensional layered structures are typically performed using codes that were developed for three-dimensional structures, which are periodic in all three directions. The introduction of a periodicity in the third direction (perpendicular to the layer) is completely artificial and may lead in some cases to spurious results and to difficulties in treating the action of external fields. In this paper we develop a new approach, which is "native" to quasi-2D materials, making use of basis function that are periodic in the plane, but atomic-like in the perpendicular direction. We show how some of the basic tools of ab initio electronic structure theory - density functional theory, GW approximation and Bethe-Salpeter equation - are implemented in the new basis. We argue that the new approach will be preferable to the conventional one in treating the peculiarities of layered materials, including the long range of the unscreened Coulomb interaction in insulators, and the effects of strain, corrugations, and external fields. PMID:27250294
Ab initio nuclear structure theory
NASA Astrophysics Data System (ADS)
Negoita, Gianina Alina
Ab initio no core methods have become major tools for understanding the properties of light nuclei based on realistic nucleon-nucleon (NN) and three-nucleon (NNN) interactions. A brief description is provided for the inter-nucleon interactions that fit two-body scattering and bound state data, as well as NNN interactions. Major new progress, including the goal of applying these interactions to solve for properties of nuclei, is limited by convergence issues. That is, with the goal of obtaining high precision solutions of the nuclear many-body Hamiltonian with no core methods (all nucleons treated on the same footing), one needs to proceed to very large basis spaces to achieve a convergence pattern suitable for extrapolation to the exact result. This thesis investigates (1) the similarity renormalization group (SRG) approach to soften the interaction, while preserving its phase shift properties, and (2) adoption of a realistic basis space using Woods-Saxon (WS) single-particle wavefunctions. Both have their advantages and limitations, discussed here. For (1), SRG was demonstrated by applying it to a realistic NN interaction, JISP16, in a harmonic oscillator (HO) representation. The degree of interaction softening achieved through a regulator parameter is examined. For (2), new results are obtained with the realistic JISP16 NN interaction in ab initio calculations of light nuclei 4He, 6He and 12C, using a WS basis optimized to minimize the ground-state energy within the truncated no core shell model. These are numerically-intensive many-body calculations. Finally, to gain insight into the potential for no core investigations of heavier nuclei, an initial investigation was obtained for the odd mass A = 47 - 49 region nuclei straddling 48Ca. The motivation for selecting these nuclei stems from the aim of preparing for nuclear double beta-decay studies of 48Ca. In these heavier systems, phenomenological additions to the realistic NN interaction determined by previous
Gall, D.; Sta''dele, M.; Ja''rrendahl, K.; Petrov, I.; Desjardins, P.; Haasch, R. T.; Lee, T.-Y.; Greene, J. E.
2001-03-15
Experimental and ab initio computational methods are employed to conclusively show that ScN is a semiconductor rather than a semimetal; i.e., there is a gap between the N 2p and the Sc 3d bands. Previous experimental investigators reported, in agreement with band structure calculations showing a band overlap of 0.2 eV, that ScN is a semimetal while others concluded that it is a semiconductor with a band gap larger than 2 eV. We have grown high quality, single crystalline ScN layers on MgO(001) and on TiN(001) buffer layers on MgO(001) by ultrahigh vacuum reactive magnetron sputter deposition. ScN optical properties were determined by transmission, reflection, and spectroscopic ellipsometry while in-situ x-ray and ultraviolet valence band photoelectron spectroscopy were used to determine the density of states (DOS) below the Fermi level. The measured DOS exhibits peaks at 3.8 and 5.2 eV stemming from the N 2p bands and at 15.3 eV due to the N 2s bands. The imaginary part of the measured dielectric function {epsilon}{sub 2} consists of two primary features due to direct X- and {Gamma}-point transitions at photon energies of 2.7 and 3.8 eV, respectively. For comparison, the ScN band structure was calculated using an ab initio Kohn--Sham approach which treats the exchange interactions exactly within density-functional theory. Calculated DOS and the complex dielectric function are in good agreement with our ScN valence-band photoelectron spectra and measured optical properties, respectively. We conclude, combining experimental and computational results, that ScN is a semiconductor with an indirect {Gamma}--X bandgap of 1.3{+-}0.3eV and a direct X-point gap of 2.4{+-}0.3eV.
NASA Astrophysics Data System (ADS)
Yoon, Sangmoon; Jin, Kyoungsuk; Kang, Seoung-Hun; Nam, Ki Tae; Kim, Miyoung; Kwon, Young-Kyun
Manganese oxide nanoparticles have attracted a lot of attentions as a promising candidate for next-generation catalyst. Therefore, understanding the electronic structure of manganese oxide in room temperature is highly required for the rational design of catalysts. We study the effects of paramagnetism and electron correlations on the electronic structure of MnO using ab initio density functional theory. Spin configurations of paramagnetism are postulated as the ensemble average of various spin disorders. Each initial disordered spin configuration is randomly generated with two constraints on magnetic local moments. We first investigate the influence of magnetic ordering on the elctronic structure of MnO using noncollinear spin calculations and find that the magnetic disorders make valence band maximum more delocalized. Moreover, we examine the role of electron correlations in the electronic structure of paramagnetic MnO using DFT +U calculations. Strong electron correlations modify not only the size of band gap but also the magnitude of local moments as in the antiferromagnetic MnO. Besides, the initialized spin disorder remains almost unchanged as electron correlation get stronger. Furthermore, our results obtained by considering both strong electron correlation and paramagnetism confirm experimentally-observed oxygen K edge X-ray emission spectra [1] reflecting the feature of valence bands. [1] E. Z. Kurmaev et al., Phys. Rev. B. 77, 165127 (2008).
Ab initio structural and electronic analysis of CH3SH self-assembled on a Cu(110) substrate
NASA Astrophysics Data System (ADS)
D'Agostino, S.; Chiodo, L.; Della Sala, F.; Cingolani, R.; Rinaldi, R.
2007-05-01
Ab initio Density Functional Theory calculations are here reported to characterize the adsorption of methanethiol at the Cu(110) surface. Theoretical results suggest that the binding of the adsorbate to the substrate is rather weak and the molecular geometry is correspondingly almost unaffected by the adsorption. Otherwise, when CH3SH deprotonates producing methanethiolate, a stronger chemical bond is realized between the sulfur atom of CH3S radical and Cu surface atoms. A detailed study of structural and electronic properties of methanethiolate on Cu(110) for a p(2×2) and a c(2×2) overlayer structure has been carried out. We find that, in the most stable configuration, the molecule adsorbs in the shortbridge site. The chemical bond arises due to a strong hybridization among p orbitals of sulfur and d states from the substrate, as it is deduced by an analysis of partial densities of states and charge densities.
NASA Astrophysics Data System (ADS)
Aarset, Kirsten; Hagen, Kolbjørn; Stølevik, Reidar
1997-09-01
Gas-phase electron diffraction data obtained at 23°C, together with results from ab initio molecular orbital calculations ( {HF}/{6-31 G(d)}). were used to determine the structure and conformational composition of 1,1-dichlorobutane. Of the five distinguishable conformers (AA, G + A, AG +, G + G + and G + G -), the G + A conformer was found to be the low-energy form, and the investigation also indicated that certain amounts of the AA and G + G - conformers might be present. The symbols describing the conformers refer to torsion about the C 1C 2 and C 2C 3 bonds, anti (A) with H 5C 1C 2C 3 and C 1C 2C 3C 4 torsion angles of 180° and gauche (G + or G -) with torsion angles of + 60° or 300° (-60°) respectively. The results for the principal distances ( rg) and angles (∠ α) from the combined electron diffraction/ab initio study for the G + A conformer, with estimated 2σ uncertainties, were as follows: r( C1 C2) = 1.521(4) Å, r( C2 C3) = 1.539(4) Å, r( C3 C4) = 1.546(4) Å, r( C Cl6) = 1.782(3) Å, r( CCl7) = 1.782(3) Å,
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1988-01-01
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1989-01-01
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F + H2 yields HF + H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.
NASA Astrophysics Data System (ADS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F + H2 yields HF + H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.
NASA Astrophysics Data System (ADS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.
Bylaska, Eric J.; Dixon, David A.; Felmy, Andrew R.
2000-01-01
The presence of different anionic species in natural waters can significantly alter the degradation rates of chlorinated methanes and other organic compounds. Favorable reaction energetics is a necessary feature of these nucleophilic substitution reactions that can result in the degradation of the chlorinated methanes. In this study, ab initio electronic structure theory is used to evaluate the free energies of reaction of a series of monovalent anionic species (OH-, SH-, NO3 -, HCO3 -, HSO3 -, HSO4 -, H2PO4 -, and F-) that can occur in natural waters with the chlorinated methanes, CCl4, CCl3H, CCl2H2, and CClH3. The results of this investigation show that nucleophilic substitution reactions of OH-, SH-, HCO3 -, and F- are significantly exothermic for chlorine displacement, NO3 - reactions are slightly exothermic to thermoneutral, HSO3
NASA Astrophysics Data System (ADS)
Mogulkoc, Y.; Ciftci, Y. O.; Kabak, M.; Colakoglu, K.
2014-07-01
The structural, elastic, thermodynamic, electronic and vibrational properties of CsCl-type TbMg have been studied by performing ab initio calculations based on density functional theory using the Vienna Ab initio Simulation Package (VASP). The exchange correlation potential within the generalized-gradient approximation (GGA) of projector augmented wave (PAW) method is used. The calculated structural parameters, such as the lattice constant, bulk modulus, its pressure derivative, formation energy and second-order elastic constants are presented in this paper. The obtained results are compared with related experimental and theoretical studies. The electronic band calculations, total density of states (DOS), partial DOS and charge density are also presented. Formation enthalpy and Cauchy pressure are determined. In order to obtain more information the elastic properties such as Zener anisotropy factor, Poisson’s ratio, Young modulus, isotropic shear modulus, Debye temperature and melting point have been carried out. The elastic constants are calculated in zero and different pressure ranges (0-50 GPa) with bulk modulus. We have performed the thermodynamic properties of TbMg by using quasi-harmonic Debye model. The temperature and pressure variation of the volume, bulk modulus, and thermal expansion coefficient have been predicted over a pressure range of 0-25 GPa for of TbMg. Pressure dependence of the anisotropy factors, Young’s modulus, Poisson’s ratios, bulk modulus and axis compressibility of TbMg are presented along different directions and planes. Finally, the phonon dispersion curves are presented for TbMg.
NASA Astrophysics Data System (ADS)
Roy, Soumendra K.; Jian, Tian; Lopez, Gary V.; Li, Wei-Li; Su, Jing; Bross, David H.; Peterson, Kirk A.; Wang, Lai-Sheng; Li, Jun
2016-02-01
The observation of the gaseous UFO- anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO- is linear with an O-U-F structure and a 3H4 spectral term derived from a U 7sσ25fφ15fδ1 electron configuration, whereas the ground state of neutral UFO has a 4H7/2 spectral term with a U 7sσ15fφ15fδ1 electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.
Tohme, Samir N.; Korek, Mahmoud E-mail: fkorek@yahoo.com; Awad, Ramadan
2015-03-21
Ab initio techniques have been applied to investigate the electronic structure of the LiYb molecule. The potential energy curves have been computed in the Born–Oppenheimer approximation for the ground and 29 low-lying doublet and quartet excited electronic states. Complete active space self-consistent field, multi-reference configuration interaction, and Rayleigh Schrödinger perturbation theory to second order calculations have been utilized to investigate these states. The spectroscopic constants, ω{sub e}, R{sub e}, B{sub e}, …, and the static dipole moment, μ, have been investigated by using the two different techniques of calculation with five different types of basis. The eigenvalues, E{sub v}, the rotational constant, B{sub v}, the centrifugal distortion constant, D{sub v}, and the abscissas of the turning points, R{sub min} and R{sub max}, have been calculated by using the canonical functions approach. The comparison between the values of the present work, calculated by different techniques, and those available in the literature for several electronic states shows a very good agreement. Twenty-one new electronic states have been studied here for the first time.
Tohme, Samir N; Korek, Mahmoud; Awad, Ramadan
2015-03-21
Ab initio techniques have been applied to investigate the electronic structure of the LiYb molecule. The potential energy curves have been computed in the Born-Oppenheimer approximation for the ground and 29 low-lying doublet and quartet excited electronic states. Complete active space self-consistent field, multi-reference configuration interaction, and Rayleigh Schrödinger perturbation theory to second order calculations have been utilized to investigate these states. The spectroscopic constants, ωe, Re, Be, …, and the static dipole moment, μ, have been investigated by using the two different techniques of calculation with five different types of basis. The eigenvalues, Ev, the rotational constant, Bv, the centrifugal distortion constant, Dv, and the abscissas of the turning points, Rmin and Rmax, have been calculated by using the canonical functions approach. The comparison between the values of the present work, calculated by different techniques, and those available in the literature for several electronic states shows a very good agreement. Twenty-one new electronic states have been studied here for the first time. PMID:25796254
NASA Astrophysics Data System (ADS)
Tohme, Samir N.; Korek, Mahmoud; Awad, Ramadan
2015-03-01
Ab initio techniques have been applied to investigate the electronic structure of the LiYb molecule. The potential energy curves have been computed in the Born-Oppenheimer approximation for the ground and 29 low-lying doublet and quartet excited electronic states. Complete active space self-consistent field, multi-reference configuration interaction, and Rayleigh Schrödinger perturbation theory to second order calculations have been utilized to investigate these states. The spectroscopic constants, ωe, Re, Be, …, and the static dipole moment, μ, have been investigated by using the two different techniques of calculation with five different types of basis. The eigenvalues, Ev, the rotational constant, Bv, the centrifugal distortion constant, Dv, and the abscissas of the turning points, Rmin and Rmax, have been calculated by using the canonical functions approach. The comparison between the values of the present work, calculated by different techniques, and those available in the literature for several electronic states shows a very good agreement. Twenty-one new electronic states have been studied here for the first time.
Vázquez-Mayagoitia, Alvaro; Huertas, Oscar; Brancolini, Giorgia; Migliore, Agostino; Sumpter, Bobby G; Orozco, Modesto; Luque, F Javier; Di Felice, Rosa; Fuentes-Cabrera, Miguel
2009-10-29
The structural, tautomeric, hydrogen-bonding, stacking, and electronic properties of a seleno-derivative of thymine (T), denoted here as 4SeT and created by replacing O4 in T with Se, are investigated by means of ab initio computational techniques. The structural properties of T and 4SeT are very similar, and the geometrical differences are mainly limited to the adjacent environment of the C-Se bond. The canonical "keto" form is the most stable tautomer, in the gas phase and in aqueous solution, for both T and 4SeT. It is argued that the competition between two opposite trends, i.e., a decrease in the base-pairing ability and an increase of the stacking interaction upon incorporation of 4SeT into a duplex, likely explains the similar experimental melting points of a seleno-derivative duplex (Se-DNA) and its native counterpart. Interestingly, the underlying electronic structure shows that replacement of O4 with Se promotes a reduction in the HOMO-LUMO gap and an increase in interplane coupling, which suggests that Se-DNA could be potentially useful for nanodevice applications. This finding is further supported by the fact that transfer integrals between 4SeT...A stacked base pairs are larger than those determined for similarly stacked natural T...A pairs. PMID:19813710
Bylaska, E.J.; Dixon, D.A.; Felmy, A.R.
2000-01-27
The presence of different anionic species in natural waters can significantly alter the degradation rates of chlorinated methanes and other organic compounds. favorable reaction energetics is a necessary feature of these nucleophilic substitution reactions that can result in the degradation of the chlorinated methanes. In this study, ab initio electronic structure theory is used to evaluate the free energies of reaction of a series of monovalent anionic species (OH{sup {minus}}, SH{sup {minus}}, NO{sub 3}{sup {minus}}, HCO{sub 3}{sup {minus}}, HSO{sub 3}{sup {minus}}, HSO{sub 4}{sup {minus}}, H{sub 2}PO{sub 4}{sup {minus}}, and F{sup {minus}}) that can occur in natural waters with the chlorinated methanes, CCk{sub 4}, CCl{sub 3}H, CCl{sub 2}H{sub 2}, and CClH{sub 3}. The results of this investigation show that nucleophilic substitution reactions of OH{sup {minus}}, SH{sup {minus}}, HCO{sub 3}{sup {minus}}, and F{sup {minus}} are significantly exothermic for chlorine displacement, NO{sub 3}{sup {minus}} reactions are slightly exothermic to the thermoneutral, HSO{sub 3}{sup {minus}} reactions are slightly endothermic to thermoneutral and HSO{sub 4}{sup {minus}}, and H{sub 2}PO{sub 4}{sup {minus}} reactions are significantly endothermic. In the case of OH{sup {minus}}, SH{sup {minus}}, and F{sup {minus}} where there are limited experimental data, these results agree well with experiment. The results for HCO{sub 3}{sup {minus}} are potentially important given the near ubiquitous occurrence of carbonate species in natural waters. The calculations reveal that the degree of chlorination, with the exception of substitution of OH{sup {minus}}, does not have a large effect on the Gibbs free energies of the substitution reactions. These results demonstrate that ab initio electronic structure methods can be used to calculate the reaction energetics of a potentially large number of organic compounds with other aqueous species in natural waters and can be used to help identify
Ab initio simulation of the electronic structure of Ta{sub 2}O{sub 5} crystal modifications
Perevalov, T. V. Shaposhnikov, A. V.
2013-06-15
Ab initio simulation of the electronic structure crystalline {beta} and {delta} phases of tantalum(V) oxide (Ta{sub 2}O{sub 5}), representing a promising dielectric material for microelectronics, has been carried out. Both ideal crystals and those with neutral oxygen vacancies in various coordination positions have been studied. The simulation has been performed using the density functional theory with hybrid functionals involving the Hartree-Fock exchange energy. This approach gives a correct description of the bandgap width: 4.1 eV for {beta}-Ta{sub 2}O{sub 5} and 3.1 eV for {delta}-Ta{sub 2}O{sub 5}. The energy levels related to oxygen vacancies in various positions have been determined for the spectra of electron states in {beta}- and {delta}-Ta{sub 2}O{sub 5} polymorphs. It is established that the presence of oxygen vacancies in Ta{sub 2}O{sub 5} crystal modifications leads to the formation of characteristic absorption peaks in their electron energy loss spectra.
Gaenko, Alexander; DeFusco, Albert; Varganov, Sergey A.; Martínez, Todd J.; Gordon, Mark S.
2014-10-20
This work presents a nonadiabatic molecular dynamics study of the nonradiative decay of photoexcited trans-azomethane, using the ab initio multiple spawning (AIMS) program that has been interfaced with the General Atomic and Molecular Electronic Structure System (GAMESS) quantum chemistry package for on-the-fly electronic structure evaluation. The interface strategy is discussed, and the capabilities of the combined programs are demonstrated with a nonadiabatic molecular dynamics study of the nonradiative decay of photoexcited trans-azomethane. Energies, gradients, and nonadiabatic coupling matrix elements were obtained with the state-averaged complete active space self-consistent field method, as implemented in GAMESS. The influence of initial vibrational excitationmore » on the outcome of the photoinduced isomerization is explored. Increased vibrational excitation in the CNNC torsional mode shortens the excited state lifetime. Depending on the degree of vibrational excitation, the excited state lifetime varies from ~60–200 fs. As a result, these short lifetimes are in agreement with time-resolved photoionization mass spectroscopy experiments.« less
Roy, Soumendra K; Jian, Tian; Lopez, Gary V; Li, Wei-Li; Su, Jing; Bross, David H; Peterson, Kirk A; Wang, Lai-Sheng; Li, Jun
2016-02-28
The observation of the gaseous UFO(-) anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO(-) is linear with an O-U-F structure and a (3)H4 spectral term derived from a U 7sσ(2)5fφ(1)5fδ(1) electron configuration, whereas the ground state of neutral UFO has a (4)H(7/2) spectral term with a U 7sσ(1)5fφ(1)5fδ(1) electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations. PMID:26931704
NASA Astrophysics Data System (ADS)
Keith, J. Brandon; Fennick, Jacob R.; Junkermeier, Chad E.; Nelson, Daniel R.; Lewis, James P.
2009-03-01
FIREBALL is an ab initio technique for fast local orbital simulations of nanotechnological, solid state, and biological systems. We have implemented a convenient interface for new users and software architects in the platform-independent Java language to access FIREBALL's unique and powerful capabilities. The graphical user interface can be run directly from a web server or from within a larger framework such as the Computational Science and Engineering Online (CSE-Online) environment or the Distributed Analysis of Neutron Scattering Experiments (DANSE) framework. We demonstrate its use for high-throughput electronic structure calculations and a multi-100 atom quantum molecular dynamics (MD) simulation. Program summaryProgram title: FireballUI Catalogue identifier: AECF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 279 784 No. of bytes in distributed program, including test data, etc.: 12 836 145 Distribution format: tar.gz Programming language: Java Computer: PC and workstation Operating system: The GUI will run under Windows, Mac and Linux. Executables for Mac and Linux are included in the package. RAM: 512 MB Word size: 32 or 64 bits Classification: 4.14 Nature of problem: The set up and running of many simulations (all of the same type), from the command line, is a slow process. But most research quality codes, including the ab initio tight-binding code FIREBALL, are designed to run from the command line. The desire is to have a method for quickly and efficiently setting up and running a host of simulations. Solution method: We have created a graphical user interface for use with the FIREBALL code. Once the user has created the files containing the atomic coordinates for each system that they are
NASA Astrophysics Data System (ADS)
Bucci, F.; Sanna, A.; Continenza, A.; Katrych, S.; Karpinski, J.; Gross, E. K. U.; Profeta, G.
2016-01-01
As a follow-up to the discovery of a new family of Fe-based superconductors, namely, the RE4Fe2As2Te1 -xO4 (42214) (RE = Pr, Sm, and Gd), we present a detailed ab initio study of these compounds highlighting the role of rare-earth (RE) atoms, external pressure, and Te content on their physical properties. Modifications of the structural, magnetic, and electronic properties of the pure (e.g., x =0.0 ) 42214 compounds and their possible correlations with the observed superconducting properties are calculated and discussed. The careful analysis of the results obtained shows that (i) changing the RE atoms allows one to tune the internal pressure acting on the As height with respect to the Fe planes; (ii) similarly to other Fe pnictides, the 42214 pure compounds show an antiferromagnetic-stripe magnetic ground state phase joined by an orthorhombic distortion (not experimentally found yet); (iii) smaller RE atoms increase the magnetic instability of the compounds possibly favoring the onset of the superconducting state; (iv) external pressure induces the vanishing of the magnetic order with a transition to the tetragonal phase and can be a possible experimental route towards higher superconducting critical temperature (Tc) ; and (v) Te vacancies act on the structural parameters, changing the As height and affecting the stability of the magnetic phase.
NASA Astrophysics Data System (ADS)
Pask, J. E.; Sterne, P. A.
2004-03-01
The finite-element (FE) method is a general approach for the solution of partial differential equations. Like the planewave (PW) method, the FE method is a systematically improvable expansion approach. Unlike the PW method, however, its basis functions are strictly local in real space, which allows for variable resolution in real space and facilitates massively parallel implementation. We discuss the application of the FE method to ab initio electronic-structure calculations.(J.E. Pask, B.M. Klein, C.Y. Fong, and P.A. Sterne, Phys. Rev. B 59), 12352 (1999). In particular, we discuss the use of nonlocal pseudopotentials in bulk calculations, and the handling of long-range interactions in the construction of the Kohn-Sham effective potential and total energy. We show that the total energy converges variationally, and at the optimal theoretical rate consistent with the cubic completeness of the basis. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
Milowska, Karolina Z.; Birowska, Magdalena; Majewski, Jacek A.
2013-12-04
We present exemplary results of extensive studies of structural, mechanical and electronic properties of covalent functionalization of carbon nanotubes (CNTs). We report new results for metallic (9,0), and semiconducting (10,0) single-wall carbon nanotubes (CNT) functionalized with -COOH, -OH, and both groups with concentration up to 12.5%. Our studies are performed in the framework of the density functional theory (DFT). We discuss here the stability, local and global changes in structure, elastic moduli (Young's, Shear, and Bulk), electronic structure and resulting band gaps, as a function of the density of the adsorbed molecules.
Ab initio study of structural, electronic, magnetic alloys: XTiSb (X = Co, Ni and Fe)
Ibrir, M. Berri, S.; Lakel, S.; Alleg, S.; Bensalem, R.
2015-03-30
Structural, electronic and magnetic properties of three semi-Heusler compounds of CoTiSb, NiTiSb and FeTiSb were calculated by the method (FP-LAPW) which is based on the DFT code WIEN2k. We used the generalized gradient approximation (GGA (06)) for the term of the potential exchange and correlation (XC) to calculate structural properties, electronic properties and magnetic properties. Structural properties obtained as the lattice parameter are in good agreement with the experimental results available for the electronic and magnetic properties was that: CoTiSb is a semiconductor NiTiSb is a metal and FeTiSb is a half-metal ferromagnetic.
NASA Astrophysics Data System (ADS)
Debbichi, L.; Eriksson, O.; Lebègue, S.
2014-05-01
By means of first-principles GW calculations, we have studied the electronic structure properties of MX2 (M =Mo, W; X =S, Se, Te) bilayers, including hybrid structures of MX2 building blocks. The effect of spin-orbit coupling on the electronic structure and the effect of van der Waals interaction on the geometry were taken into account. All the homogeneous bilayers are identified as indirect band-gap materials, with an increase of the band gap when Mo is changed to W, and a decrease of the band gap when the atomic number of X is increased. The same behavior is also observed for hybrid bilayers with common chalcogen atoms, while bilayers with common metal atoms have a direct band gap. Finally, it is shown that due to their particular band alignment, some heterobilayers enable electron-hole separation, which is of interest for solar cell applications.
Ab initio investigations of the electronic structure and chemical bonding of Li{sub 2}ZrN{sub 2}
Matar, S.F.; Poettgen, R.; Al Alam, A.F.; Ouaini, N.
2012-06-15
The electronic structure of the ternary nitride Li{sub 2}ZrN{sub 2} is examined from ab initio with DFT computations for an assessment of the properties of chemical bonding. The compound is found insulating with 1.8 eV band gap; it becomes metallic and less ionic upon removal of one equivalent of Li. The chemical interaction is found mainly between Zr and N on one hand and Li and N on the other hand. While all pair interactions are bonding, antibonding N-N interactions are found dominant at the top of the valence band of Li{sub 2}ZrN{sub 2} and they become less intense upon removal of Li. From energy differences the partial delithiation leading to Li{sub 2-x}ZrN{sub 2} (x={approx}1) is favored. - Graphical abstract: Trigonal structure of Li{sub 2}ZrN{sub 2} showing the Zr-N-Li layers along the c-axis. Highlights: Black-Right-Pointing-Pointer Li{sub 2}ZrN{sub 2} calculated insulating with a 1.8 eV gap in agreement with its light green color. Black-Right-Pointing-Pointer Lithium de-intercalation is energetically favored for one out of two Li equivalents. Black-Right-Pointing-Pointer Li plays little role in the change of the structure, ensured by Zr and N binding. Black-Right-Pointing-Pointer Similar changes in the electronic structure as for various intercalated phases of ZrN.
Ab initio study of pressure induced structural and electronic properties in uranium monobismuthide
NASA Astrophysics Data System (ADS)
Pataiya, Jagdish; Aynyas, Mahendra; Makode, C.; Singh, A.; Sanyal, Sankar P.
2014-04-01
We have investigated the pressure induced structural and electronic properties of uranium monobismuthide. The total energy as a function of volume is obtained by means of self-consistent tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). We predict structural phase transition from NaCl to CsCl-type structure at a pressure of 4.6 GPa. From energy band diagram it is observed that UBi exhibits metallic behavior. The calculated equilibrium lattice parameter is in good agreement with the experimental and other theoretical work.
Ab initio study of pressure induced structural and electronic properties in uranium monobismuthide
Pataiya, Jagdish Makode, C.; Aynyas, Mahendra; Singh, A.; Sanyal, Sankar P.
2014-04-24
We have investigated the pressure induced structural and electronic properties of uranium monobismuthide. The total energy as a function of volume is obtained by means of self-consistent tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). We predict structural phase transition from NaCl to CsCl-type structure at a pressure of 4.6 GPa. From energy band diagram it is observed that UBi exhibits metallic behavior. The calculated equilibrium lattice parameter is in good agreement with the experimental and other theoretical work.
Bylaska, Eric J.; Glaesemann, Kurt R.; Felmy, Andrew R.; Vasiliu, Monica; Dixon, David A.; Tratnyek, P. G.
2010-11-25
Electronic structure methods were used to calculate the gas-phase and aqueous phase reaction energies for reductive dechlorination (i.e. hydrogenolysis), reductive Beta-elimination, dehydrochlorination, and nucleophilic substitution by OH- of 1,2,3-trichloropropane. The thermochemical properties Delta Hof(298.15K), So(298.15K,1 bar), and Delta GS(298.15K, 1 bar) were calculated by using ab initio electronic structure calculations, isodesmic reactions schemes, gas-phase entropy estimates, and continuum solvation models for 1,2,3-trichloropropane and several likely metabolites. On the basis of these thermochemical estimates, together with a Fe(II)/Fe(III) chemical equilibrium model for natural reducing environments, all of the reactions studied were predicted to be very favorable in the standard state and under a wide range of pH conditions. The most favorable reaction was reductive Beta-elimination (Delta Gorxn ≈ -32 kcal/mol), followed closely by reductive dechlorination (Delta Gorxn ≈ -27 kcal/mol), dehydrochlorination (Delta Gorxn ≈ -27kcal/mol), and nucleophilic substitution by OH- (Delta Gorxn ≈ -25 kcal/mol). For both reduction reactions studied, it was found that the first electron-transfer step, yielding the intermediate CH2-CHCl-CH2Cl , and CH2Cl-CH-CH2Cl species, was not favorable in the standard state (Delta Gorxn ≈ +15 kcal/mol) and was predicted to occur only at relatively high pH values. This result suggests that reduction by natural attenuation is unlikely.
NASA Astrophysics Data System (ADS)
Suleiman, Mohammed S. H.; Joubert, Daniel P.
2015-11-01
In the present work, the atomic and the electronic structures of Au3N, AuN and AuN2 are investigated using first-principles density-functional theory (DFT). We studied cohesive energy vs. volume data for a wide range of possible structures of these nitrides. Obtained data were fitted to a Birch-Murnaghan third-order equation of state (EOS) so as to identify the most likely candidates for the true crystal structure in this subset of the infinite parameter space, and to determine their equilibrium structural parameters. The analysis of the electronic properties was achieved by the calculations of the band structure and the total and partial density of states (DOS). Some possible pressure-induced structural phase transitions have been pointed out. Further, we carried out GW0 calculations within the random-phase approximation (RPA) to the dielectric tensor to investigate the optical spectra of the experimentally suggested modification: Au3N(D09). Obtained results are compared with experiment and with some available previous calculations.
Ab initio investigation of the structural and electronic properties of amorphous HgTe.
Zhao, Huxian; Chen, Xiaoshuang; Lu, Jianping; Shu, Haibo; Lu, Wei
2014-01-29
We present the structure and electronic properties of amorphous mercury telluride obtained from first-principle calculations. The initial configuration of amorphous mercury telluride is created by computation alchemy. According to different exchange–correlation functions in our calculations, we establish two 256-atom models. The topology of both models is analyzed in terms of radial and bond angle distributions. It is found that both the Te and the Hg atoms tend to be fourfold, but with a wrong bond rate of about 10%. The fraction of threefold and fivefold atoms also shows that there are a significant number of dangling and floating bonds in our models. The electronic properties are also obtained. It is indicated that there is a bandgap in amorphous HgTe, in contrast to the zero bandgap for crystalline HgTe. The structures of the band tail and defect states are also discussed. PMID:24592480
Ab initio investigation of the electronic structure and the magnetic trends within equiatomic FeN
NASA Astrophysics Data System (ADS)
Houari, A.; Matar, S. F.; Belkhir, M. A.
2007-05-01
The magnetic properties of equiatomic FeN nitride have been investigated within the density functional theory (DFT) using the augmented spherical wave method (ASW). Calculation of the energy versus volume in hypothetic rocksalt (RS), zinc-blende (ZB) and wurtzite (W) types structures show that the RS-type structure is preferred. At equilibrium, energy/volume spin polarized calculations indicate that the ground state of RS-FeN is ferromagnetic with a high moment, while ZB-FeN and W-FeN are non magnetic. The magnetovolume effects with respect to the Slater-Pauling-Friedel model are discussed. Analyses of the electronic structure (density of states and chemical bonding) are reported. A discussion of the structural and magnetic properties of FeN compound is given with respect to N local environment of Fe.
Ab-initio study of electronic structure and elastic properties of ZrC
NASA Astrophysics Data System (ADS)
Mund, H. S.; Ahuja, B. L.
2016-05-01
The electronic and elastic properties of ZrC have been investigated using the linear combination of atomic orbitals method within the framework of density functional theory. Different exchange-correlation functionals are taken into account within generalized gradient approximation. We have computed energy bands, density of states, elastic constants, bulk modulus, shear modulus, Young's modulus, Poisson's ratio, lattice parameters and pressure derivative of the bulk modulus by calculating ground state energy of the rock salt structure type ZrC.
NASA Astrophysics Data System (ADS)
Makode, Chandrabhan; Sanyal, Sankar P.
2011-09-01
We have investigated the structural and electronic properties of monophospides of thorium, uranium and neptunium. The total energy as a function of volume is obtained by means of the self-consistent tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). From the present study with the help of total energy calculations it is found that ThP, UP and NpP are stable in NaCl-type structure at ambient pressure. The structural stability of ThP, UP and NpP changes under the application of pressure. We predict a structural phase transition from NaCl-type (B 1-phase) structure to CsCl-type (B 2-phase) structure for these phospides in the pressure range of 37.0-24.0 GPa (ThP-NpP). We also calculate lattice parameter ( a0), bulk modulus ( B0), band structure and density of states. From energy band diagram it is observed that ThP, UP and NpP exhibit metallic behavior. The calculated equilibrium lattice parameters and bulk modulus are in good agreement with experimental and theoretical work.
NASA Astrophysics Data System (ADS)
Aryal, Sita Ram
The alumino-silicate solid solution series (Al 4+2xSi2-2 xO10-x) is an important class of ceramics. Except for the end member (x=0), Al2 SiO5 the crystal structures of the other phases, called mullite, have partially occupied sites. Stoichiometric supercell models for the four mullite phases 3Al2O 3 · 2SiO2 · 2Al 2O3 · SiO2, 4 Al2O3· SiO 2, 9Al2O3 · SiO2, and iota-Al2 O3 (iota-alumina) are constructed starting from experimentally reported crystal structures. A large number of models were built for each phase and relaxed using the Vienna ab initio simulation package (VASP) program. The model with the lowest total energy for a given x was chosen as the representative structure for that phase. Electronic structure and mechanical properties of mullite phases were studied via first-principles calculations. Of the various phases of transition alumina, iota-Al 2O3 is the least well known. In addition structural details have not, until now, been available. It is the end member of the aluminosilicate solid solution series with x=1. Based on a high alumina content mullite phase, a structural model for iota- Al2O3 is constructed. The simulated x-ray diffraction (XRD) pattern of this model agrees well with a measured XRD pattern. The iota-Al2 O3 is a highly disordered ultra-low-density phase of alumina with a theoretical density of 2854kg/m3. Using this theoretically constructed model, elastic, thermodynamic, electronic, and spectroscopic properties of iota-Al2 O3 have been calculated and compared it with those of alpha- Al2O3 and gamma- Al2O3. Boron carbide (B4C) undergoes an amorphization under high velocity impacts. The mechanism of amorphization is not clear. Ab initio methods are used to carry out large-scale uniaxial compression simulations on two polytypes of stoichiometric boron carbide (B4C), B 11C-CBC, and B12- CCC where B11C or B12 is the 12-atom icosahedron and CBC or CCC is the three-atom chain. The simulations were performed on large supercells of 180 atoms
NASA Astrophysics Data System (ADS)
Hemzalová, P.; Friák, M.; Šob, M.; Ma, D.; Udyansky, A.; Raabe, D.; Neugebauer, J.
2013-11-01
We have employed parameter-free density functional theory calculations to study the thermodynamic stability and structural parameters as well as elastic and electronic properties of Ni4N in eight selected crystallographic phases. In agreement with the experimental findings, the cubic structure with Pearson symbol cP5, space group Pm3¯m (221) is found to be the most stable and it is also the only thermodynamically stable structure at T=0 K with respect to decomposition to the elemental Ni crystal and N2 gas phase. We determine structural parameters, bulk moduli, and their pressure derivatives for all eight allotropes. The thermodynamic stability and bulk modulus is shown to be anticorrelated. Comparing ferromagnetic and nonmagnetic states, we find common features between the magnetism of elemental Ni and studied ferromagnetic Ni4N structures. For the ground-state Ni4N structure and other two Ni4N cubic allotropes, we predict a complete set of single-crystalline elastic constants (in the equilibrium and under hydrostatic pressure), the Young and area moduli, as well as homogenized polycrystalline elastic moduli obtained by different homogenization methods. We demonstrate that the elastic anisotropy of the ground-state Ni4N is qualitatively opposite to that in the elemental Ni, i.e., these materials have hard and soft crystallographic directions interchanged. Moreover, one of the studied metastable cubic phases is found auxetic, i.e., exhibiting negative Poisson ratio.
Electronic structure of Sc C[sub 60]. An ab initio theoretical study
Guo, T.; Odom, G.K.; Scuseria, G.E. )
1994-08-11
We have studied the electronic structure of Sc C[sub 60] at the self-consistent-field Hartree-Fock (SCF-HF) level of theory employing a double-zeta (DZ) basis set. Binding energies have also been calculated employing a hybrid of HF and density functional theory (herein denoted as HF-BLYP). Several electronic states in C[sub 50] and C[sub 30] symmetry were considered. A double-minimum configuration is found for the open-shell [sup 4]A[sub 2] electronic ground state in C[sub 50] symmetry. The lowest energy minimum has Sc located 1.175 [angstrom] away from the center of the cage, approaching a C[sub 60] pentagon along a C[sub 5] axis. Bonding between the Sc atom and the cage occurs by donation of the 4s electrons to the lowest unoccupied orbital of C[sub 60] and by 3d electron interaction with the antibonding orbital associated with the five double bonds radiating from the pentagon closest to Sc ([approximately] 2.5 [angstrom]). The other local minimum has Sc located at the center of the cage and is predicted to be 1.2 eV higher in energy at the highest level of theory employed in this work (DZ/HF-BLYP). The energy barrier for moving Sc from the center of the cage to the lowest energy position is predicted to be 0.1 eV at the same level of theory. 33 refs., 2 figs., 2 tabs.
Ab initio study of the structural, electronic and optical properties of ZnTe compound
Bahloul, B.; Deghfel, B.; Amirouche, L.; Bounab, S.; Bentabet, A.; Bouhadda, Y.; Fenineche, N.
2015-03-30
Structural, electronic and optical properties of ZnTe compound were calculated using Density Functional Theory (DFT) based on the pseudopotentials and planewaves (PP-PW) method as implemented in the ABINIT computer code, where the exchange–correlation functional is approximated using the local density approximation (LDA) and the generalized gradient approximation (GGA). The obtained results from either LDA or GGa calculation for lattice parameter, energy band gap and optical parameters, such as the fundamental absorption edge, the peaks observed in the imaginary part of the dielectric function, the macroscopic dielectric constants and the optical dielectric constant, are compared with the available theoretical results and experimental data.
Electronic structure and anisotropic chemical bonding in TiNF from ab initio study
Matar, Samir F.
2012-01-15
Accounting for disorder in anatase titanium nitride fluoride TiNF is done through atoms re-distributions based on geometry optimizations using ultra soft pseudo potentials within density functional theory DFT. The fully geometry relaxed structures are found to keep the body centering of anatase (I4{sub 1}/amd No. 141). The new structural setups are identified with space groups I-4m2 No. 119 and Imm2 No. 44 which obey the 'group to subgroup' relationships with respect to anatase. In the ground state Imm2 structure identified from energy differences, TiNF is found semi-conducting with similar density of states features to anatase TiO{sub 2} and a chemical bonding differentiated between covalent like Ti-N versus ionic like Ti-F. Inter-anion N-F bonding is also identified. - Graphical Abstract: The geometry optimized ground state anatase derived TiNF structure with arrangement of open faceted TiN3F3 distorted octahedra. The insert shows the arrangement of octahedra in anatase TiO{sub 2}. Highlights: Black-Right-Pointing-Pointer Original approach of TiNF structure for addressing the electronic band structure. Black-Right-Pointing-Pointer Based on anatase, two different ordering scheme models with geometry optimization. Black-Right-Pointing-Pointer New structures obeying the group{yields}subgroup relationships with Imm2 ground state from energy. Black-Right-Pointing-Pointer In the ground state TiNF is found semi-conducting with similar density of states to anatase TiO{sub 2}. Black-Right-Pointing-Pointer Chemical bonding differentiated between covalent like Ti-N and ionic Ti-F.
Ab Initio Study of the Structural, Electronic, and Thermal Properties of Alloy
NASA Astrophysics Data System (ADS)
Benkaddour, I.; Khachai, H.; Chiker, F.; Benosman, N.; Benkaddour, Y.; Murtaza, G.; Omran, S. Bin; Khenata, R.
2015-07-01
The results of a first-principle study of the structural, electronic, and thermal properties of a alloy, using the full-potential linear muffin-tin-orbital (FP-LMTO) method in the framework of density functional theory, within both the local density approximation and the generalized gradient approximation are presented. The composition effect on lattice constants, bulk moduli, band gaps, and effective masses is analyzed. The quasi-harmonic Debye model, using a set of total energy versus volume calculations obtained with the FP-LMTO method, is applied to study the thermal and vibrational effects. The temperature effect on the lattice parameters, thermal expansions, heat capacities, and Debye temperatures is determined from the non-equilibrium Gibbs functions. The microscopic origins of the bowing parameter were explained using the approach of Zunger and coworkers.
NASA Astrophysics Data System (ADS)
Schiffmann, Florian; VandeVondele, Joost
2015-06-01
We present an improved preconditioning scheme for electronic structure calculations based on the orbital transformation method. First, a preconditioner is developed which includes information from the full Kohn-Sham matrix but avoids computationally demanding diagonalisation steps in its construction. This reduces the computational cost of its construction, eliminating a bottleneck in large scale simulations, while maintaining rapid convergence. In addition, a modified form of Hotelling's iterative inversion is introduced to replace the exact inversion of the preconditioner matrix. This method is highly effective during molecular dynamics (MD), as the solution obtained in earlier MD steps is a suitable initial guess. Filtering small elements during sparse matrix multiplication leads to linear scaling inversion, while retaining robustness, already for relatively small systems. For system sizes ranging from a few hundred to a few thousand atoms, which are typical for many practical applications, the improvements to the algorithm lead to a 2-5 fold speedup per MD step.
Schiffmann, Florian; VandeVondele, Joost
2015-06-28
We present an improved preconditioning scheme for electronic structure calculations based on the orbital transformation method. First, a preconditioner is developed which includes information from the full Kohn-Sham matrix but avoids computationally demanding diagonalisation steps in its construction. This reduces the computational cost of its construction, eliminating a bottleneck in large scale simulations, while maintaining rapid convergence. In addition, a modified form of Hotelling's iterative inversion is introduced to replace the exact inversion of the preconditioner matrix. This method is highly effective during molecular dynamics (MD), as the solution obtained in earlier MD steps is a suitable initial guess. Filtering small elements during sparse matrix multiplication leads to linear scaling inversion, while retaining robustness, already for relatively small systems. For system sizes ranging from a few hundred to a few thousand atoms, which are typical for many practical applications, the improvements to the algorithm lead to a 2-5 fold speedup per MD step. PMID:26133420
Schiffmann, Florian; VandeVondele, Joost
2015-06-28
We present an improved preconditioning scheme for electronic structure calculations based on the orbital transformation method. First, a preconditioner is developed which includes information from the full Kohn-Sham matrix but avoids computationally demanding diagonalisation steps in its construction. This reduces the computational cost of its construction, eliminating a bottleneck in large scale simulations, while maintaining rapid convergence. In addition, a modified form of Hotelling’s iterative inversion is introduced to replace the exact inversion of the preconditioner matrix. This method is highly effective during molecular dynamics (MD), as the solution obtained in earlier MD steps is a suitable initial guess. Filtering small elements during sparse matrix multiplication leads to linear scaling inversion, while retaining robustness, already for relatively small systems. For system sizes ranging from a few hundred to a few thousand atoms, which are typical for many practical applications, the improvements to the algorithm lead to a 2-5 fold speedup per MD step.
Ab initio electronic structure study of a model water splitting dimer complex.
Fernando, Amendra; Aikens, Christine M
2015-12-28
A model manganese dimer electrocatalyst bridged by μ-OH ligands is used to investigate changes in spin states that may occur during water oxidation. We have employed restricted open-shell Hartree-Fock (ROHF), second-order Møller-Plesset perturbation theory (MP2), complete active space self-consistent field (CASSCF), and multireference second-order Møller-Plesset perturbation theory (MRMP2) calculations to investigate this system. Multiconfigurational methods like CASSCF and MRMP2 are appropriate methods to study these systems with antiferromagnetically-coupled electrons. Orbital occupations and distributions have been closely analyzed to understand the electronic details and contributions to the water splitting from manganese and oxygen atoms. The presence of Mn(IV)O˙ radical moieties has been observed in this catalytic pathway. Multiple nearly degenerate excited states were found close to the ground state in all structures. This suggests competing potential energy landscapes near the ground state may influence the reactivity of manganese complexes such as the dimers studied in this work. PMID:26593689
Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes
Draayer, Jerry P.
2014-09-28
We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).
Ab initio approach to structural, electronic, and ferroelectric properties of antimony sulphoiodide
NASA Astrophysics Data System (ADS)
Amoroso, Danila; Picozzi, Silvia
2016-06-01
By means of first-principles calculations for the SbSI semiconductor, we show that bare density functional theory fails to reproduce the experimentally observed ferroelectric phase, whereas a more advanced approach, based on hybrid functionals, correctly works. When comparing the paraelectric and ferroelectric phases, our results show polar displacements along the c direction of the Sb and S sublattices with respect to the iodine framework, leading to a predicted spontaneous polarization of P ≃20 μ C/cm2 , in good agreement with experiments. In the ferroelectric phase, the semiconducting behavior of SbSI is confirmed by relatively large values for the indirect and direct gaps (≃2.15 eV and 2.3 eV , respectively). An analysis of the electronic structure, in terms of density of states, charge density distribution, and anomalies in the Born effective charges, reveals (i) the clear presence of a Sb(III) lone pair and (ii) a large covalency in the SbSI bonding, based on the hybridization between Sb and S ions, in turn more ionically bonded to iodine anions. Finally, the interplay between ferroelectricity and spin-orbit coupling reveals a coexistence of Dresselhaus and Rashba relativistic effects and a spin texture that can be reversed by switching the polarization, of potential appeal in electrically controlled spintronics.
NASA Astrophysics Data System (ADS)
Wu, Hai-Ying; Chen, Ya-Hong; Zhou, Ping; Han, Xiang-Yu; Liu, Zi-Jiang
2014-09-01
The structural, electronic, and mechanical stability properties of magnesium sulfide in different phases are presented using the plane wave pseudopotential method within the generalized gradient approximation. Eight different phases such as rocksalt (B1), zincblende (B3), wurtzite (B4), nickel arsenide (B8), cesium chloride (B2), PH4I-type (B11), FeSi-type (B28), and MnP-type (B31) are considered in great detail. The calculated ground-state properties of these phases are consistent with available experimental and theoretical data. It is found that MgS in the B1 and B8 phases are indirect band gap materials, the B3, B4, B11, B28, and B31 phases are all direct gap materials, while the B2 phase displays the metallic character. The B1, B3, B4, B8, B28, and B31 phases are mechanically stable at ambient conditions, but the B2 and B11 phases are mechanically unstable under zero pressure and zero temperature
Wang, Zhiguo; Zhou, Yungang; Bang, Junhyeok; Prange, Micah P.; Zhang, Shengbai; Gao, Fei
2012-08-02
Defects play an important role on the unique properties of the sp2-bonded materials, such as graphene. The creation and evolution of mono-vacancy, di-vacancy, Stone-Wales (SW) and grain boundaries (GBs) under irradiation in graphene are investigated using density functional theory and time-dependent density functional theory molecular dynamics simulations. It is of great interest to note that the patterns of these defects can be controlled through electron irradiation. The SW defects can be created by electron irradiation with energy of above the displacement threshold energy (Td, {approx}19 eV) and can be healed with an energy (14-18 eV) lower than Td. The transformation between four types of divacancies, V2(5-8-5), V2(555-777), V2(5555-6-7777), and V2(55-77) can be realized through bond rotation induced by electron irradiation. The migrations of divancancies, SW defects, and GBs can also be controlled by electron irradiation. Thus, electron irradiation can serve as an important tool to modify morphology in a controllable manner, and to tailor the physical properties of graphene.
NASA Astrophysics Data System (ADS)
Kong, Bo; Zhang, Yachao
2016-07-01
The electronic structures of the cubic GdH3 are extensively investigated using the ab initio many-body GW calculations treating the Gd 4f electrons either in the core (4f-core) or in the valence states (4f-val). Different degrees of quasiparticle (QP) self-consistent calculations with the different starting points are used to correct the failures of the GGA/GGA + U/HSE03 calculations. In the 4f-core case, GGA + G0W0 calculations give a fundamental band gap of 1.72 eV, while GGA+ GW0 or GGA + GW calculations present a larger band gap. In the 4f-val case, the nonlocal exchange-correlation (xc) functional HSE03 can account much better for the strong localization of the 4f states than the semilocal or Hubbard U corrected xc functional in the Kohn-Sham equation. We show that the fundamental gap of the antiferromagnetic (AFM) or ferromagnetic (FM) GdH3 can be opened up by solving the QP equation with improved starting point of eigenvalues and wave functions given by HSE03. The HSE03 + G0W0 calculations present a fundamental band gap of 2.73 eV in the AFM configuration, and the results of the corresponding GW0 and GW calculations are 2.89 and 3.03 eV, respectively. In general, for the cubic structure, the fundamental gap from G0W0 calculations in the 4f-core case is the closest to the real result. By G0W0 calculations in the 4f-core case, we find that H or Gd defects can strongly affect the band structure, especially the H defects. We explain the mechanism in terms of the possible electron correlation on the hydrogen site. Under compression, the insulator-to-metal transition in the cubic GdH3 occurs around 40 GPa, which might be a satisfied prediction.
Bylaska, Eric J; Glaesemann, Kurt R; Felmy, Andrew R; Vasiliu, Monica; Dixon, David A; Tratnyek, Paul G
2010-11-25
Electronic structure methods were used to calculate the gas and aqueous phase reaction energies for reductive dechlorination (i.e., hydrogenolysis), reductive β-elimination, dehydrochlorination, and nucleophilic substitution by OH− of 1,2,3-trichloropropane. The thermochemical properties ΔH(f)°(298.15 K), S°(298.15 K, 1 bar), and ΔG(S)(298.15 K, 1 bar) were calculated by using ab initio electronic structure calculations, isodesmic reactions schemes, gas-phase entropy estimates, and continuum solvation models for 1,2,3-trichloropropane and several likely degradation products: CH3−CHCl−CH2Cl, CH2Cl−CH2−CH2Cl, C•H2−CHCl−CH2Cl, CH2Cl−C•H−CH2Cl, CH2═CCl−CH2Cl, cis-CHCl═CH−CH2Cl, trans-CHCl═CH−CH2Cl, CH2═CH−CH2Cl, CH2Cl−CHCl−CH2OH, CH2Cl−CHOH−CH2Cl, CH2═CCl−CH2OH, CH2═COH−CH2Cl, cis-CHOH═CH−CH2Cl, trans-CHOH═CH−CH2Cl, CH(═O)−CH2−CH2Cl, and CH3−C(═O)−CH2Cl. On the basis of these thermochemical estimates, together with a Fe(II)/Fe(III) chemical equilibrium model for natural reducing environments, all of the reactions studied were predicted to be very favorable in the standard state and under a wide range of pH conditions. The most favorable reaction was reductive β-elimination (ΔG(rxn)° ≈ −32 kcal/mol), followed closely by reductive dechlorination (ΔG(rxn)° ≈ −27 kcal/mol), dehydrochlorination (ΔG(rxn)° ≈ −27 kcal/mol), and nucleophilic substitution by OH− (ΔG(rxn)° ≈ −25 kcal/mol). For both reduction reactions studied, it was found that the first electron-transfer step, yielding the intermediate C•H2−CHCl−CH2Cl and the CH2Cl−C•H−CH2Cl species, was not favorable in the standard state (ΔG(rxn)° ≈ +15 kcal/mol) and was predicted to occur only at relatively high pH values. This result suggests that reduction by natural attenuation is unlikely. PMID:21038905
Gas-phase acidities of tetrahedral oxyacids from ab initio electronic structure theory
Rustad, J.R.; Dixon, D.A.; Kubicki, J.D.; Felmy, A.R.
2000-05-04
Density functional calculations have been performed on several protonation states of the oxyacids of Si, P, V, As, Cr, and S. Structures and vibrational frequencies are in good agreement with experimental values where these are available. A reasonably well-defined correlation between the calculated gas-phase acidities and the measured pK{sub a} in aqueous solution has been found. The pK{sub a}/gas-phase acidity slopes are consistent with those derived from previous molecular mechanics calculations on ferric hydrolysis and the first two acidity constants for orthosilicic acid. The successive deprotonation of other H{sub n}TO{sub 4} species, for a given tetrahedral anion T are roughly consistent with this slope, but not to the extent that there is a universal correlation among all species.
van Genderen, E.; Clabbers, M. T. B.; Das, P. P.; Stewart, A.; Nederlof, I.; Barentsen, K. C.; Portillo, Q.; Pannu, N. S.; Nicolopoulos, S.; Gruene, T.; Abrahams, J. P.
2016-01-01
Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e− Å−2 s−1) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014). PMID:26919375
NASA Astrophysics Data System (ADS)
Subotnik, Joseph
In this talk, I will give a broad overview of our work in nonadiabatic dynamics, i.e. the dynamics of strongly coupled nuclear-electronic motion whereby the relaxation of a photo-excited electron leads to the heating up of phonons. I will briefly discuss how to model such nuclear motion beyond mean field theory. Armed with the proper framework, I will then focus on how to calculate one flavor of electron-phonon couplings, known as derivative couplings in the chemical literature. Derivative couplings are the matrix elements that couple adiabatic electronic states within the Born-Oppenheimer treatment, and I will show that these matrix elements show spurious poles using formal (frequency-independent) time-dependent density functional theory. To correct this TD-DFT failure, a simple approximation will be proposed and evaluated. Finally, time permitting, I will show some ab initio calculations whereby one can use TD-DFT derivative couplings to study electronic relaxation through a conical intersection.
NASA Astrophysics Data System (ADS)
Ford, Thomas A.
2014-09-01
The molecular structures, vibrational spectra and atomic charges of the alicyclic ethers containing from two to five carbon atoms have been determined by means of ab initio calculations, at the level of second order Møller-Plesset perturbation theory and using Dunning's augmented correlation-consistent polarized valence triple-zeta basis set. Two isomers of the oxetane, tetrahydrofuran and tetrahydropyran molecules have been identified and their relative energies determined. Structural properties, such as the COC bond angles and the CH bond lengths, are found to increase steadily with increasing ring size and with decreasing ionization energy. The mean CH2 stretching and bending wavenumbers exhibit the reverse behaviour, while the mean wavenumbers of the CH2 wagging and twisting modes follow the same trend as the structural features. The ring mode wavenumbers vary in a less regular way. The charges of the oxygen, α-carbon and axial and equatorial α- and β-hydrogen atoms also do not show systematic dependences on ring size or ionization energy. The trends in the values of these properties have been rationalized.
NASA Astrophysics Data System (ADS)
Jaiganesh, G.; Jaya, S. Mathi
2015-06-01
The magnetism, structure and spin polarized electronic structure of Ti substituted MO (M = Mg, Ca, Sr) are studied using the ab-initio techniques within the framework of the density functional theory. Appropriately constructed supercell along with the full structural optimization of these cells is used for studying the influence of Ti substitution on the magnetism and electronic structure of these compounds. We find from our calculations that the Ti substituted MO compounds energetically favor magnetically ordered state. The Ti concentration is found to be important in deciding the magnetic order and we have observed antiferromagnetic order for the Ti concentration of 0.25. The Ti substituted MO compounds are thus an interesting class of materials that deserve further studies.
Jaiganesh, G. Jaya, S. Mathi
2015-06-24
The magnetism, structure and spin polarized electronic structure of Ti substituted MO (M = Mg, Ca, Sr) are studied using the ab-initio techniques within the framework of the density functional theory. Appropriately constructed supercell along with the full structural optimization of these cells is used for studying the influence of Ti substitution on the magnetism and electronic structure of these compounds. We find from our calculations that the Ti substituted MO compounds energetically favor magnetically ordered state. The Ti concentration is found to be important in deciding the magnetic order and we have observed antiferromagnetic order for the Ti concentration of 0.25. The Ti substituted MO compounds are thus an interesting class of materials that deserve further studies.
Ab Initio Structure Analysis Using Laboratory Powder Diffraction Data
NASA Astrophysics Data System (ADS)
Sasaki, Akito
Today, laboratory X-ray diffractometers are seeing increasingly wide use in the ab initio crystal structure analysis of organic powder samples. This is because optics and optical devices have been improved, making it possible to obtain precise integrated intensities of reflections in high 2-theta ranges. Another reason is that one can use direct-space methods, which do not require “high-resolution diffraction data”, much more easily than before. Described here are some key points to remember when performig ab initio crystal structure analysis using powder diffraction data from organic compounds.
NASA Astrophysics Data System (ADS)
Ohsawa, Takeo; Ueda, Shigenori; Suzuki, Motohiro; Tateyama, Yoshitaka; Williams, Jesse R.; Ohashi, Naoki
2015-10-01
Crystalline-polarity-dependent electronic structures of gallium nitride (GaN) were studied by photoemission spectroscopy (PES) using soft and hard x-rays with different linear polarizations. A peak located near the valence band (VB) maximum was enhanced for a (0001) surface compared with that for a ( 000 1 ¯ ) surface regardless of photon energy. Comparison of the VB density of states obtained by ab-initio calculations with the observed VB-PES spectra indicates that the crystalline-polarity dependence is associated with the Ga 4p and N 2p states. The most plausible origin of the crystalline-polarity-dependent VB feature is based on the photoemission phenomena of electrons in the pz-orbitals due to spontaneous electric polarization along the c-axis of GaN.
NASA Astrophysics Data System (ADS)
Choi, Heechae; Lee, Eung-Kwan; Cho, Sung Beom; Chung, Yong-Chae
2012-04-01
Using ab initio calculations, we investigated the changes of the magnetic moment and electronic structures of Fe adatoms on strained graphene sheets. By the uniaxial tensile strains in armchair and zig-zag directions on graphene sheets, the amounts of charge transfers from graphene 2pz orbital to Fe adatom 3d orbitals were linearly increased. The magnetic moments of Fe, however, show the tendency of linear decrements with the uniaxial tensile strains. The increased Fe magnetic moments by uniaxialy graphene compressions resulted from the shifting of spin-minority states of electrons while the decreased Fe magnetic moments were due to the reduction in the spin-majority states of 3dxy-orbitals of the Fe adatom.
Bylaska, Eric J.; Dixon, David A.; Felmy, Andrew R.; Apra, Edoardo; Windus, Theresa L.; Zhan, Chang-Guo; Tratnyek, Paul G.
2004-07-08
Electronic structure methods were used to calculate the aqueous reaction energies for hydrogenolysis, dehydrochlorination, and nucleophilic substitution by OH- of 4,4¢-DDT. Thermochemical properties ¢Hf° (298.15 K), S° (298.15 K, 1 bar), ¢GS (298.15 K, 1 bar) were calculated by using ab initio electronic structure calculations, isodesmic reactions schemes, gas-phase entropy estimates, and continuum solvation models for a series of DDT type structures (p-C6H4Cl)2-CH-CCl3, (p-C6H4Cl)2-CH-CCl2¥, (p-C6H4Cl)2-CHCHCl2, (p-C6H4Cl)2-CdCCl2, (p-C6H4Cl)2-CH-CCl2OH, (p-C6H4Cl)2-CH-CCl(dO), and (p-C6H4-Cl)2-CH-COOH. On the basis of these thermochemical estimates, the overall aqueous reaction energetics of hydrogenolysis, dehydrochlorination, and hydrolysis of 4,4¢-DDT were estimated. The results of this investigation showed that the dehydrochlorination and hydrolysis reactions have strongly favorable thermodynamics in the standard state, as well as under a wide range of pH conditions. For hydrogenolysis with the reductant aqueous Fe(II), the thermodynamics are strongly dependent on pH, and the stability region of the (p-C6H4Cl)2-CH-CCl2¥(aq) species is a key to controlling the reactivity in hydrogenolysis. These results illustrate the use of ab initio electronic structure methods to identify the potentially important environmental degradation reactions by calculation of the reaction energetics of a potentially large number of organic compounds with aqueous species in natural waters.
Wang, Xue B.; Fu, Qiang; Yang, Jinlong
2010-09-02
Hydroxyl substituted phenoxide, o-, m-, p- HO(C6H4)O– and the corresponding neutral radicals are important species, in particularly, the p- isomer pair is directly involved in the proton-coupled electron transfer in biological photosynthetic centers. Here we report the first spectroscopic study of these species in the gas phase by means of low-temperature photoelectron spectroscopy (PES) and ab initio calculations. Vibrationally resolved PES spectra were obtained at 70 K and several photon energies for each anion, directly yielding electron affinity (EA) and electronic structure information of the corresponding hydroxyphenoxyl radical. The EAs are found to vary with OH positions, from 1.990 ± 0.010 eV (p-) to 2.315 ± 0.010 (o-) and 2.330 ± 0.010 (m-). Theoretical calculations were carried out to identify the optimized molecular structures for both anions and neutral radicals. The electron binding energies and excited state energies were also calculated to compare with experimental data. Excellent agreement is found between calculations and experiments. Molecular orbital analyses indicate strong OH anti-bonding interaction with the phenoxide moiety for o- as well as p- isomers, whereas such interaction is largely missing for the m- anion. The variance of EAs among three isomers is interpreted primarily due to the interplay between two competing factors: the OH anti-bonding interaction and H-bonding stabilization (existed only in the o- anion).
NASA Astrophysics Data System (ADS)
Ikeda, Tohru; Nagayoshi, Kanade; Kitaura, Kazuo
2003-03-01
A computational procedure is proposed for calculating the lattice energy of molecular crystals using the ab initio MO method. Our method does not require any adjustable parameters and provides a general description for various molecular crystals including electron donor-acceptor (EDA) complexes. Using the method, the packing structure of H 3N-BF 3 crystal was optimized at the HF/3-21 + G level and the lattice energy was calculated at the MP2/6-311 + G * level. The calculation reproduced the experimental lattice constants with reasonable accuracy. Moreover, the structural feature of the H 3N-BF 3 crystal was discussed based on the molecular interactions in the crystal.
Ab Initio Electronic Relaxation Times and Transport in Noble Metals
NASA Astrophysics Data System (ADS)
Mustafa, Jamal I.; Bernardi, Marco; Neaton, Jeffrey B.; Louie, Steven G.
Relaxation times employed to study electron transport in metals are typically assumed to be constants and obtained empirically using the Drude model. Here, we employ ab initio calculations to compute the electron-phonon relaxation times of Cu, Ag, and Au, and find that they vary significantly on the Fermi surface, spanning ~15 -45 fs. We compute room temperature resistivities in excellent agreement with experiment by combining GW bandstructures, Wannier-interpolated band velocities, and ab initio relaxation times. Our calculations are compared to other approximations used for the relaxation times. Additionally, an importance sampling scheme is introduced to speed up the convergence of resistivity and transport calculations by sampling directly points on the Fermi surface. This work was supported by NSF Grant No. DMR15-1508412 and U.S. DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided by DOE at LBNL's NERSC facility.
Ab initio studies of phoshorene island single electron transistor.
Ray, S J; Venkata Kamalakar, M; Chowdhury, R
2016-05-18
Phosphorene is a newly unveiled two-dimensional crystal with immense potential for nanoelectronic and optoelectronic applications. Its unique electronic structure and two dimensionality also present opportunities for single electron devices. Here we report the behaviour of a single electron transistor (SET) made of a phosphorene island, explored for the first time using ab initio calculations. We find that the band gap and the charging energy decrease monotonically with increasing layer numbers due to weak quantum confinement. When compared to two other novel 2D crystals such as graphene and MoS2, our investigation reveals larger adsorption energies of gas molecules on phosphorene, which indicates better a sensing ability. The calculated charge stability diagrams show distinct changes in the presence of an individual molecule which can be applied to detect the presence of different molecules with sensitivity at a single molecular level. The higher charging energies of the molecules within the SET display operational viability at room temperature, which is promising for possible ultra sensitive detection applications. PMID:27093536
Ab initio studies of phosphorene island single electron transistor
NASA Astrophysics Data System (ADS)
Ray, S. J.; Venkata Kamalakar, M.; Chowdhury, R.
2016-05-01
Phosphorene is a newly unveiled two-dimensional crystal with immense potential for nanoelectronic and optoelectronic applications. Its unique electronic structure and two dimensionality also present opportunities for single electron devices. Here we report the behaviour of a single electron transistor (SET) made of a phosphorene island, explored for the first time using ab initio calculations. We find that the band gap and the charging energy decrease monotonically with increasing layer numbers due to weak quantum confinement. When compared to two other novel 2D crystals such as graphene and MoS2, our investigation reveals larger adsorption energies of gas molecules on phosphorene, which indicates better a sensing ability. The calculated charge stability diagrams show distinct changes in the presence of an individual molecule which can be applied to detect the presence of different molecules with sensitivity at a single molecular level. The higher charging energies of the molecules within the SET display operational viability at room temperature, which is promising for possible ultra sensitive detection applications.
NASA Technical Reports Server (NTRS)
Smith, Grant D.; Jaffe, R. L.; Yoon, D. Y.; Arnold, James O. (Technical Monitor)
1994-01-01
Conformational energy contours of perfluoroalkanes, determined from ab initio calculations, confirm the well-known spitting of trans states into two minima at plus or minus 17 degrees but also show that the gauche states split as well, with minima at plus or minus 124 degrees and plus or minus 84 in order to relieve steric crowding. The directions of such split distortions from the perfectly staggered states are strongly coupled for adjacent pairs of bonds in a manner identical to the intradyad pair for poly (isobutylene) chains. These conformational characteristics are fully represented by a six-state rotational isomeric state (RIS) model for PTFE comprised of t(+), t(-), g(sup +)+, g(sup +)-, g(sup -) + and g(sup -)-states, located at the split energy minima. The resultant 6 x 6 statistical weight matrix is described by first-order interaction parameters for the g+(+) (ca. 0.6 kcal/mol) and g+- (ca. 2.0 kcal/mol) states, and second order parameters for the g(sup +)+g(sup +)+ (ca 0.6 kcal/mol) and g(sup +)+g(sup -)+ (ca. 1.0 kcal/mol) states. This six-state RIS model, without adjustment of the geometric or energy parameters as determined from the ab initio calculations, predicts the unperturbed chain dimensions and the fraction of gauche bonds as a function of temperature for PTFE in good agreement with available experimental values.
Pi, Xiaodong; Ni, Zhenyi; Yang, Deren E-mail: christophe.delerue@isen.fr; Delerue, Christophe E-mail: christophe.delerue@isen.fr
2014-11-21
In contrast to the conventional doping of bulk silicon (Si), the doping of Si nanocrystals (NCs) that are often smaller than 5 nm in diameter may lead to serious structural changes. Since the electronic and optical properties of Si NCs are intimately associated with their structures, it is critical to understand how doping impacts the structures of Si NCs. By means of ab initio calculation we now compare 1.4 nm phosphorus (P)-doped Si NCs without structural relaxation and those with structural relaxation. Structural changes induced by structural relaxation are manifested by the stretching and compressing of bonds and apparent variations in bond angles. With the increase of the concentration of P structural changes induced by structural relaxation become more serious. It is found that structural relaxation makes differences in the energy-level schemes of P-doped Si NCs. Structural relaxation also causes the binding energy of an electron in a P-doped Si NC to more significantly increase as the concentration of P increases. With the increase of the concentration of P structural relaxation leads to more pronounced changes in the optical absorption of P-doped Si NCs.
Ab initio electronic properties of dual phosphorus monolayers in silicon
2014-01-01
In the midst of the epitaxial circuitry revolution in silicon technology, we look ahead to the next paradigm shift: effective use of the third dimension - in particular, its combination with epitaxial technology. We perform ab initio calculations of atomically thin epitaxial bilayers in silicon, investigating the fundamental electronic properties of monolayer pairs. Quantitative band splittings and the electronic density are presented, along with effects of the layers’ relative alignment and comments on disordered systems, and for the first time, the effective electronic widths of such device components are calculated. PMID:25246862
Ab initio molecular crystal structures, spectra, and phase diagrams.
Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni
2014-09-16
Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling
Ab initio study of hot electrons in GaAs.
Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B; Louie, Steven G
2015-04-28
Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation theory. Our computed electron-phonon relaxation times at the onset of the Γ, L, and X valleys are in excellent agreement with ultrafast optical experiments and show that the ultrafast (tens of femtoseconds) hot electron decay times observed experimentally arise from electron-phonon scattering. This result is an important advance to resolve a controversy on hot electron cooling in GaAs. We further find that, contrary to common notions, all optical and acoustic modes contribute substantially to electron-phonon scattering, with a dominant contribution from transverse acoustic modes. This work provides definitive microscopic insight into hot electrons in GaAs and enables accurate ab initio computation of hot carriers in advanced materials. PMID:25870287
NASA Astrophysics Data System (ADS)
Haddadi, K.; Bouhemadou, A.; Bin-Omran, S.; Maabed, S.; Khenata, R.
2015-01-01
The structural parameters, elastic constants, electronic structure and optical properties of the recently reported monoclinic quaternary nitridoaluminate LiCaAlN2 are investigated in detail using the ab initio plane-wave pseudopotential method within the generalized gradient approximation. The calculated equilibrium structural parameters are in excellent agreement with the experimental data, which validate the reliability of the applied theoretical method. The chemical and structural stabilities of LiCaAlN2 are confirmed by calculating the cohesion energy and enthalpy of formation. Chemical band stiffness is calculated to explain the pressure dependence of the lattice parameters. Through the band structure calculation, LiCaAlN2 is predicted to be an indirect band gap of 2.725 eV. The charge-carrier effective masses are estimated from the band structure dispersions. The frequency-dependent dielectric function, absorption coefficient, refractive index, extinction coefficient, reflectivity coefficient and electron energy loss function spectra are calculated for polarized incident light in a wide energy range. Optical spectra exhibit a noticeable anisotropy. Single-crystal and polycrystalline elastic constants and related properties, including isotropic sound velocities and Debye temperatures, are numerically estimated. The calculated elastic constants and elastic compliances are used to analyse and visualize the elastic anisotropy of LiCaAlN2. The calculated elastic constants demonstrate the mechanical stability and brittle behaviour of the considered material.
NASA Astrophysics Data System (ADS)
Fathi, M. B.; Kanjouri, F.; Farhadi, G.
2015-07-01
Nitinol as a superelastic shape memory alloy (SMA) has been the focus of physical-chemical studies in recent decades in respect to functionality of biocompatibility in the body. Superelastic properties of nitinol are the direct results of the electronic structure of this material while dealing with the ab initio behavior of microstructure. In the present work, the elastic properties and electronic structure of B2-phase binary TiNi(1-x)Cux (x = 0, 0.25 and 0.75) shape memory alloys are discussed aiming at understanding of the physical properties underlying superelastic behavior. The calculations have been performed with the program package WIEN2K, in the framework of first-principle, all-electron density functional theory (DFT) within the scheme of the generalized gradient approximation (GGA). The optimized lattice parameters and independent elastic constants are obtained for use in the calculation of the bulk and shear moduli, Young modulus, Poisson ratio and Zener anisotropy parameter. For different alloying fractions x, the tetragonal (C‧) and trigonal (C44) shear constants are calculated and brittle/ductile behavior of these compounds is discussed. Finally, a qualitative discussion of dependence of elastic behavior of these compounds upon the electronic density of states (DOS) is presented.
NASA Astrophysics Data System (ADS)
Cremer, Dieter; Dorofeeva, Olga V.; Mastryukov, Vladimir S.
1981-09-01
Restricted Hartree—Fock calculations on 21 planar and puckered conformers of azetidine have been done employing a split valence basis augmented by d functions. Complete geometry optimizations have been performed for eight conformers. In this way the puckering potential of azetidine is explored over the range -40° < ø (puckering angle) < 40°, for both sp3 and sp2 hybridization of the nitrogen atom. In its equatorial form, azetidine is slightly more puckered than cyclobutane. This is because of a decrease of van der Waals' repulsion between H atoms. Charge effects lead to destabilization of the axial forms. There is only moderate coupling between puckering and methylene group rocking. Previously published electron diffraction (ED) data are reinvestigated using vibrational corrections and information from the ab initio calculations. On the basis of this MO constrained ED (MOCED) analysis a puckering angle φ = 35.1(1.8)° is found. Observed rg and re bond distances are compared with ab initio values.
Nový, Jakub; Böhm, Stanislav; Králová, Jarmila; Král, Vladimír; Urbanová, Marie
2008-02-01
Variations in the structure of d(GGGA)(5) oligonucleotide in the presence of Li(+), Na(+), and K(+) ions and its temperature stability were studied using electronic and vibrational circular dichroism, IR absorption, and ab initio calculations with the Becke 3-Lee-Yang-Parr functional at the 6-31G** level. The samples were characterized by nondenaturing gel electrophoresis. Oligonucleotide d(GGGA)(5) in the presence of Li(+) forms a nonplanar single tetramer, with angles of 102 degrees and 171 degrees between neighboring guanine bases. This tetramer changes its geometry at temperatures >50 degrees C, but does not form a quadruplex structure. In the presence of Na(+), the d(GGGA)(5) structure was optimized to almost planar tetramers with an angle of 177 degrees between neighboring guanines. The spectral results suggest that it stacks into a quadruplex helical structure. This quadruplex structure decayed to a single tetramer at temperatures >60 degrees C. The Hartree-Fock energies imply that d(GGGA)(5) prefers to form complexes with Na(+) rather than Li(+). The d(GGGA)(5) structure in the presence of monovalent ions is stabilized against thermal denaturation in the order Li(+) < Na(+) < K(+). PMID:17960602
NASA Astrophysics Data System (ADS)
Jezierski, Andrzej; Szytuła, Andrzej
2016-02-01
The electronic structures and thermodynamic properties of LaPtIn and CePtIn are studied by means of ab-initio full-relativistic full-potential local orbital basis (FPLO) method within densities functional (DFT) methodologies. We have also examined the influence of hydrogen on the electronic structure and stability of CePtInH and LaPtInH systems. The positions of the hydrogen atoms have been found from the minimum of the total energy. Our calculations have shown that band structure and topology of the Fermi surfaces changed significantly during the hydrogenation. The thermodynamic properties (bulk modulus, Debye temperatures, constant pressure heat capacity) calculated in quasi-harmonic Debye-Grüneisen model are in a good agreement with the experimental data. We have applied different methods of the calculation of the equation of states (EOS) (Murnaghan, Birch-Murnaghan, Poirier-Tarantola, Vinet). The thermodynamic properties are presented for the pressure 0
NASA Astrophysics Data System (ADS)
Richard, D.; Muñoz, E. L.; Butz, T.; Errico, L. A.; Rentería, M.
2010-07-01
The time-differential γ-γ perturbed-angular-correlation (TDPAC) technique using T44i→S44c tracers was applied to study the nuclear quadrupole interaction of the first excited I=1 state of S44c in the cubic bixbyite structure of scandium sesquioxide (Sc2O3) . In addition, ab initio calculations of electronic and structural properties and hyperfine parameters at the cationic sites of the Sc2O3 structure were performed using the full-potential augmented plane wave plus local-orbital (APW+lo) method. The accuracy of the calculations and the excellent agreement of the predicted electric-field-gradient (EFG) tensors and the structural properties (lattice parameters, internal positions) with the experimental results enable us to identify the observed hyperfine interactions and to infer the EFG sign that cannot be measured in conventional TDPAC experiments. Additionally, the APW+lo calculations show that the EFG at Sc sites is originated in the population of Sc3p states and give an explanation for the preferential occupation of the asymmetric cationic site C of the structure by the T44i doping impurities. Finally, the validity of the ionic model, usually used to describe the EFG at native cation sites, is discussed.
Li, Junjie; Li, Xiaohu; Iyengar, Srinivasan S
2014-06-10
We discuss a multiconfigurational treatment of the "on-the-fly" electronic structure within the quantum wavepacket ab initio molecular dynamics (QWAIMD) method for coupled treatment of quantum nuclear effects with electronic structural effects. Here, multiple single-particle electronic density matrices are simultaneously propagated with a quantum nuclear wavepacket and other classical nuclear degrees of freedom. The multiple density matrices are coupled through a nonorthogonal configuration interaction (NOCI) procedure to construct the instantaneous potential surface. An adaptive-mesh-guided set of basis functions composed of Gaussian primitives are used to simplify the electronic structure calculations. Specifically, with the replacement of the atom-centered basis functions positioned on the centers of the quantum-mechanically treated nuclei by a mesh-guided band of basis functions, the two-electron integrals used to compute the electronic structure potential surface become independent of the quantum nuclear variable and hence reusable along the entire Cartesian grid representing the quantum nuclear coordinates. This reduces the computational complexity involved in obtaining a potential surface and facilitates the interpretation of the individual density matrices as representative diabatic states. The parametric nuclear position dependence of the diabatic states is evaluated at the initial time-step using a Shannon-entropy-based sampling function that depends on an approximation to the quantum nuclear wavepacket and the potential surface. This development is meant as a precursor to an on-the-fly fully multireference electronic structure procedure embedded, on-the-fly, within a quantum nuclear dynamics formalism. We benchmark the current development by computing structural, dynamic, and spectroscopic features for a series of bihalide hydrogen-bonded systems: FHF(-), ClHCl(-), BrHBr(-), and BrHCl(-). We find that the donor-acceptor structural features are in good
Gaenko, Alexander; DeFusco, Albert; Varganov, Sergey A.; Martínez, Todd J.; Gordon, Mark S.
2014-10-20
This work presents a nonadiabatic molecular dynamics study of the nonradiative decay of photoexcited trans-azomethane, using the ab initio multiple spawning (AIMS) program that has been interfaced with the General Atomic and Molecular Electronic Structure System (GAMESS) quantum chemistry package for on-the-fly electronic structure evaluation. The interface strategy is discussed, and the capabilities of the combined programs are demonstrated with a nonadiabatic molecular dynamics study of the nonradiative decay of photoexcited trans-azomethane. Energies, gradients, and nonadiabatic coupling matrix elements were obtained with the state-averaged complete active space self-consistent field method, as implemented in GAMESS. The influence of initial vibrational excitation on the outcome of the photoinduced isomerization is explored. Increased vibrational excitation in the CNNC torsional mode shortens the excited state lifetime. Depending on the degree of vibrational excitation, the excited state lifetime varies from ~60–200 fs. As a result, these short lifetimes are in agreement with time-resolved photoionization mass spectroscopy experiments.
NASA Astrophysics Data System (ADS)
Zemen, J.; Mašek, J.; Kučera, J.; Mol, J. A.; Motloch, P.; Jungwirth, T.
2014-04-01
An empirical multiorbital (spd) tight binding (TB) model including magnetism and spin-orbit coupling is applied to calculations of magnetic anisotropy energy (MAE) in CoPt L10 structure. A realistic Slater-Koster parametrisation for single-element transition metals is adapted for the ordered binary alloy. Spin magnetic moment and density of states are calculated using a full-potential linearised augmented plane-wave (LAPW) ab initio method and our TB code with different variants of the interatomic parameters. Detailed mutual comparison of this data allows for determination of a subset of the compound TB parameters tuning of which improves the agreement of the TB and LAPW results. MAE calculated as a function of band filling using the refined parameters is in broad agreement with ab initio data for all valence states and in quantitative agreement with ab initio and experimental data for the natural band filling. Our work provides a practical basis for further studies of relativistic magnetotransport anisotropies by means of local Green's function formalism which is directly compatible with our TB approach.
Haskins, Justin B; Bauschlicher, Charles W; Lawson, John W
2015-11-19
Density functional theory (DFT), density functional theory molecular dynamics (DFT-MD), and classical molecular dynamics using polarizable force fields (PFF-MD) are employed to evaluate the influence of Li(+) on the structure, transport, and electrochemical stability of three potential ionic liquid electrolytes: N-methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([pyr14][TFSI]), N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide ([pyr13][FSI]), and 1-ethyl-3-methylimidazolium boron tetrafluoride ([EMIM][BF4]). We characterize the Li(+) solvation shell through DFT computations of [Li(Anion)n]((n-1)-) clusters, DFT-MD simulations of isolated Li(+) in small ionic liquid systems, and PFF-MD simulations with high Li-doping levels in large ionic liquid systems. At low levels of Li-salt doping, highly stable solvation shells having two to three anions are seen in both [pyr14][TFSI] and [pyr13][FSI], whereas solvation shells with four anions dominate in [EMIM][BF4]. At higher levels of doping, we find the formation of complex Li-network structures that increase the frequency of four anion-coordinated solvation shells. A comparison of computational and experimental Raman spectra for a wide range of [Li(Anion)n]((n-1)-) clusters shows that our proposed structures are consistent with experiment. We then compute the ion diffusion coefficients and find measures from small-cell DFT-MD simulations to be the correct order of magnitude, but influenced by small system size and short simulation length. Correcting for these errors with complementary PFF-MD simulations, we find DFT-MD measures to be in close agreement with experiment. Finally, we compute electrochemical windows from DFT computations on isolated ions, interacting cation/anion pairs, and liquid-phase systems with Li-doping. For the molecular-level computations, we generally find the difference between ionization energy and electron affinity from isolated ions and interacting cation/anion pairs to
NASA Astrophysics Data System (ADS)
Hamioud, Farida; Alghamdi, Ghadah S.; Al-Omari, Saleh; Mubarak, A. A.
2016-03-01
We have performed ab initio investigation of some physical properties of the perovskite TlMnX3 (X = F, Cl) compounds using the full-potential linearized augmented plane wave (FP-LAPW) method. The generalized gradient approximation (GGA) is employed as exchange-correlation potential. The calculated lattice constant and bulk modulus agree with previous studies. Both compounds are found to be elastically stable. TlMnF3 and TlMnCl3 are classified as anisotropic and ductile compounds. The calculations of the band structure of the studied compounds showed the semiconductor behavior with the indirect (M-X) energy gap. Both compounds are classified as a ferromagnetic due to the integer value of the total magnetic moment of the compounds. The different optical spectra are calculated from the real and the imaginary parts of the dielectric function and connected to the electronic structure of the compounds. The static refractive index n(0) is inversely proportional to the energy bandgap of the two compounds. Beneficial optics technology applications are predicted based on the optical spectra.
Ab initio modelling: Genesis of crystal structures
NASA Astrophysics Data System (ADS)
van de Walle, Axel
2005-05-01
Genetic algorithms prove useful to distil a complex quantum mechanical calculation of interatomic interactions down to its simplest mathematical expression. This makes it possible to predict the structure of new compounds from first principles.
NASA Astrophysics Data System (ADS)
Demkov, Alexander A.; Navrotsky, Alexandra
2001-03-01
The International Technology Roadmap for Semiconductors (ITRS) predicts that the strategy of scaling complementary metal-oxide-semiconductor (CMOS) devices will come to an abrupt end around the year 2012. The main reason for this will be the unacceptably high leakage current through the silicon dioxide gate with a thickness below 20 ÅFinding a gate insulator alternative to SiO2 has proven to be far from trivial. Hafnium and zirconium dioxides and silicates have been recently considered as gate dielectrics with intermediate dielectric constants. Hafnia and ziconia are important ceramic materials as well, and their phase relations are rather well studied. There is also interest in hafnia as a constituent of ceramic waste forms for plutonium, based on its refractory nature and high neutron absorption cross section. We use a combination of the ab-initio calculations and calorimetry to investigate thermodynamic and electronic properties of hafnia and zirconia. We describe the cubic to tetragonal phase transition in the fluorite structure by computing the total energy surface for zone-edge distortions correct to fourth order in the soft-mode displacement with the strain coupling renormalization included. We compare the two materials using some simple chemical concepts.
Structural phase transition and 5f-electrons localization of PuSe explored by ab initio calculations
Cui Shouxin; Feng Wenxia; Hu Haiquan; Gong Zizheng; Liu Hong
2010-04-15
An investigation into the structural phase transformation, electronic and optical properties of PuSe under high pressure was conducted by using the full potential linearized augmented plane wave plus local orbitals (FP-LAPW+lo) method, in the presence and in the absence of spin-orbit coupling (SOC). Our results demonstrate that there exists a structural phase transition from rocksalt (B 1) structure to CsCl-type (B 2) structure at the transition pressure of 36.3 GPa (without SOC) and 51.3 GPa (with SOC). The electronic density of states (DOS) for PuSe show that the f-electrons of Pu are more localized and concentrated in a narrow peak near the Fermi level, which is consistent with the experimental studies. The band structure shows that B 1-PuSe is metallic. A pseudogap appears around the Fermi level of the total density of states of B 1 phase PuSe, which may contribute to its stability. The calculated reflectivity R(omega) shows agreement with the available experimental results. Furthermore, the absorption spectrum, refractive index, extinction coefficient, energy-loss spectrum and dielectric function were calculated. The origin of the spectral peaks was interpreted based on the electronic structures. - Abstract: Graphical Abstract Legend (TOC Figure): 5f-electrons are more localized by the analysis of the density of states (SOC). The origin spectra peaks was interpreted based on electronic structures.
Ab initio electronic stopping power of protons in bulk materials
NASA Astrophysics Data System (ADS)
Shukri, Abdullah Atef; Bruneval, Fabien; Reining, Lucia
2016-01-01
The electronic stopping power is a crucial quantity for ion irradiation: it governs the deposited heat, the damage profile, and the implantation depth. Whereas experimental data are readily available for elemental solids, the data are much more scarce for compounds. Here we develop a fully ab initio computational scheme based on linear response time-dependent density-functional theory to predict the random electronic stopping power (RESP) of materials without any empirical fitting. We show that the calculated RESP compares well with experimental data, when at full convergence, with the inclusion of the core states and of the exchange correlation. We evaluate the unexpectedly limited magnitude of the nonlinear terms in the RESP by comparing with other approaches based on the time propagation of time-dependent density-functional theory. Finally, we check the validity of a few empirical rules of thumbs that are commonly used to estimate the electronic stopping power.
NASA Astrophysics Data System (ADS)
Abadias, G.; Kanoun, M. B.; Goumri-Said, S.; Koutsokeras, L.; Dub, S. N.; Djemia, Ph.
2014-10-01
The structure, phase stability, and mechanical properties of ternary alloys of the Zr-Ta-N system are investigated by combining thin-film growth and ab initio calculations. Zr1-xTaxN films with 0≤x≤1 were deposited by reactive magnetron cosputtering in Ar +N2 plasma discharge and their structural properties characterized by x-ray diffraction. We considered both ordered and disordered alloys, using supercells and special quasirandom structure approaches, to account for different possible metal atom distributions on the cation sublattice. Density functional theory within the generalized gradient approximation was employed to calculate the electronic structure as well as predict the evolution of the lattice parameter and key mechanical properties, including single-crystal elastic constants and polycrystalline elastic moduli, of ternary Zr1-xTaxN compounds with cubic rocksalt structure. These calculated values are compared with experimental data from thin-film measurements using Brillouin light scattering and nanoindentation tests. We also study the validity of Vegard's empirical rule and the effect of growth-dependent stresses on the lattice parameter. The thermal stability of these Zr1-xTaxN films is also studied, based on their structural and mechanical response upon vacuum annealing at 850 °C for 3 h. Our findings demonstrate that Zr1-xTaxN alloys with Ta fraction 0.51⩽x⩽0.78 exhibit enhanced toughness, while retaining high hardness ˜30 GPa, as a result of increased valence electron concentration and phase stability tuning. Calculations performed for disordered or ordered structures both lead to the same conclusion regarding the mechanical behavior of these nitride alloys, in agreement with recent literature findings [H. Kindlund, D. G. Sangiovanni, L. Martinez-de-Olcoz, J. Lu, J. Jensen, J. Birch, I. Petrov, J. E. Greene, V. Chirita, and L. Hultman, APL Materials 1, 042104 (2013), 10.1063/1.4822440].
Macromolecular ab initio phasing enforcing secondary and tertiary structure
Millán, Claudia; Sammito, Massimo; Usón, Isabel
2015-01-01
Ab initio phasing of macromolecular structures, from the native intensities alone with no experimental phase information or previous particular structural knowledge, has been the object of a long quest, limited by two main barriers: structure size and resolution of the data. Current approaches to extend the scope of ab initio phasing include use of the Patterson function, density modification and data extrapolation. The authors’ approach relies on the combination of locating model fragments such as polyalanine α-helices with the program PHASER and density modification with the program SHELXE. Given the difficulties in discriminating correct small substructures, many putative groups of fragments have to be tested in parallel; thus calculations are performed in a grid or supercomputer. The method has been named after the Italian painter Arcimboldo, who used to compose portraits out of fruit and vegetables. With ARCIMBOLDO, most collections of fragments remain a ‘still-life’, but some are correct enough for density modification and main-chain tracing to reveal the protein’s true portrait. Beyond α-helices, other fragments can be exploited in an analogous way: libraries of helices with modelled side chains, β-strands, predictable fragments such as DNA-binding folds or fragments selected from distant homologues up to libraries of small local folds that are used to enforce nonspecific tertiary structure; thus restoring the ab initio nature of the method. Using these methods, a number of unknown macromolecules with a few thousand atoms and resolutions around 2 Å have been solved. In the 2014 release, use of the program has been simplified. The software mediates the use of massive computing to automate the grid access required in difficult cases but may also run on a single multicore workstation (http://chango.ibmb.csic.es/ARCIMBOLDO_LITE) to solve straightforward cases. PMID:25610631
NASA Astrophysics Data System (ADS)
Ramanna, J.; Yedukondalu, N.; Ramesh Babu, K.; Vaitheeswaran, G.
2013-06-01
We report the structural, elastic, electronic, and optical properties of antiperovskite alkali metal oxyhalides Na3OCl, Na3OBr, and K3OBr using two different density functional methods within generalized gradient approximation (GGA). Plane wave pseudo potential (PW-PP) method has been used to calculate the ground state structural and elastic properties while the electronic structure and optical properties are calculated explicitly using full potential-linearized augmented plane wave (FP-LAPW) method. The calculated ground state properties of the investigated compounds agree quite well with the available experimental data. The predicted elastic constants using both PW-PP and FP-LAPW methods are in good accord with each other and show that the materials are mechanically stable. The low values of the elastic moduli indicate that these materials are soft in nature. The bulk properties such as shear moduli, Young's moduli, and Poisson's ratio are derived from the calculated elastic constants. Tran-Blaha modified Becke-Johnson (TB-mBJ) potential improves the band gaps over GGA and Engel-Vosko GGA. The computed TB-mBJ electronic band structure reveals that these materials are direct band gap insulators. The complex dielectric function of the metal oxyhalide compounds have been calculated and the observed prominent peaks are analyzed through the TB-mBJ electronic structures. By using the knowledge of complex dielectric function other important optical properties including absorption, reflectivity, refractive index and loss function have been obtained as a function of energy.
NASA Astrophysics Data System (ADS)
Tsumuraya, Takao; Shishidou, Tatsuya; Oguchi, Tamio
2009-05-01
We study the electronic structure and vibrational modes of several amides M(NH2)n and alanates M(AlH4)n (M = K, Na, Li, Ca and Mg), focusing on the role of cation states. Calculated breathing stretching vibration modes for these compounds are compared with measured infrared and Raman spectra. In the amides, we find a significant tendency such that the breathing mode frequencies and the structural parameters of NH2 vary in accordance with the ionization energy of cation. The tendency may be explained by the strength in hybridization between cation orbitals and molecular orbitals of (NH2)-. The microscopic mechanism of correlations between the vibration frequencies and structural parameters is elucidated in relation to the electronic structure. A possible similar tendency in the alanates is also discussed.
NASA Astrophysics Data System (ADS)
Bentouaf, Ali; Hassan, Fouad El Haj
2015-05-01
Density functional theory based on full-potential linearized augmented plane wave (FP LAPW) method is used to investigate the structural, electronic and magnetic properties of Co2VSi Heusler alloys, with L21 structure. It is shown that calculated lattice constants and spin magnetic moments using the general gradient approximation method are in good agreement with experimental values. We also presented the thermal effects using the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. Temperature and pressure effects on the structural parameters, heat capacities, thermal expansion coefficient, and Debye temperatures are determined from the non-equilibrium Gibbs functions.
NASA Astrophysics Data System (ADS)
Pan, Yong; Guan, Weiming
2016-09-01
MoS3 has attracted considerable attention as potential hydrogen storage material due to the interaction between the hydrogen and unsaturated sulfur atoms. However, its structure and physical properties are unknown. By means of first-principles approach and Inorganic crystal structure Database (ISCD), we systematically investigated the structure, relevant physical and thermodynamic properties of MoS3. Phonon dispersion, electronic structure, band structure and heat capacity are calculated in detail. We predicted the orthorhombic B2ab (SrS3-type) and tetragonal P-421m (BaS3-type) structures of MoS3, which prefers to form the SrS3-type (Space group: B2ab, No.41) structure at the ground state. High pressure results in structural transition from SrS3-type structure to BaS3-type structure. This sulfide exhibits a degree of metallic behavior. The calculated heat capacity of MoS3 with SrS3-type structure is about of 39 J/(mol·K).
Sharma, Sheetal; Verma, A.S.; Jindal, V.K.
2014-05-01
Graphical abstract: - Highlights: • FP-LAPW method has been used to compute the solid state properties of AgGaX{sub 2} (X = S, Se, Te). • Electronic and optical properties reported with recently developed mBJ potential. • Thermal expansion, heat capacity, Debye temperature, entropy and Grüneisen parameter were evaluated. • Hardness was calculated for the first time at different temperature and pressure. - Abstract: We have performed ab initio calculations for the structural, electronic, optical, elastic and thermal properties of the silver gallium dichalcogenides (AgGaX{sub 2}: X = S, Se, Te). In this study, we have used the accurate full potential linearized augmented plane wave (FP-LAPW) method to find the equilibrium structural parameters and to compute the six elastic constants (C{sub 11}, C{sub 12}, C{sub 13}, C{sub 33}, C{sub 44} and C{sub 66}). We have reported electronic and optical properties with the recently developed density functional theory of Tran and Blaha, and this theory is used along with the Wu-Cohen generalized gradient approximation (WC-GGA) for the exchange-correlation potential. Furthermore, optical features such as dielectric functions, refractive indices, extinction coefficient, optical reflectivity, absorption coefficients and optical conductivities were calculated for photon energies up to 40 eV. The thermodynamical properties such as thermal expansion, heat capacity, debye temperature, entropy, Grüneisen parameter and bulk modulus were calculated employing the quasi-harmonic Debye model at different temperatures (0–900 K) and pressures (0–8 GPa) and the silent results were interpreted. Hardness of the materials was calculated for the first time at different temperatures and pressures.
Electronic structure, magnetism and stability of Co2CrX (X =Al, Ga, In) ab initio study
NASA Astrophysics Data System (ADS)
Dahmane, F.; Mesri, D.; Tadjer, A.; Khenata, R.; Benalia, S.; Djoudi, L.; Doumi, B.; Boumia, L.; Aourag, H.
2016-01-01
The structural, electronic as well as the magnetic properties of the Co2CrX (X =Al, Ga and In) full-Heusler alloy have been studied using first-principles calculations performed in the framework of density functional theory (DFT) within the generalized gradient approximation (GGA). It was taken into account both possible L21 structures (i.e. Hg2CuTi- and Cu2MnAl-type). Basically, for all compounds, the Cu2MnAl-type structure is energetically more stable than Hg2CuTi-type structure at the equilibrium volume. The electronic structure calculations for Co2CrAl reveal that half-metallic (HM) character in Cu2MnAl-type structure, Co2CrGa show nearly HM behavior and Co2CrIn has a metallic character. The predicted total magnetic moment is 3μB for Co2CrX (X =Al, Ga) which is in good convergence with the Slater-Pauling (SP) rule.
Atomic and electronic structure of hydrogen on ZnO (1bar 100) surface: ab initio hybrid calculations
NASA Astrophysics Data System (ADS)
Usseinov, A. B.; Kotomin, E. A.; Zhukovskii, Yu F.; Purans, J.; Sorokin, A. V.; Akilbekov, A. T.
2013-12-01
Hydrogen atoms unavoidably incorporated into ZnO during growth of bulk samples and thin films considerably affect their electrical conductivity. The results of first principles hybrid LCAO calculations are discussed for hydrogen atoms in the bulk and on the non-polar ZnO (1bar 100) surface. The incorporation energy, the atomic relaxation, the electronic density redistribution and the electronic structure modifications are compared for the surface adsorption and bulk interstitial H positions. It is shown that hydrogen has a strong binding with the surface O ions (2.7 eV) whereas its incorporation into bulk is energetically unfavorable. Surface hydrogen atoms are very shallow donors, thus, contributing to the electronic conductivity.
NASA Astrophysics Data System (ADS)
Craco, L.; Laad, M. S.; Müller-Hartmann, E.
2003-12-01
Motivated by a study of various experiments describing the electronic and magnetic properties of the diluted magnetic semiconductor Ga1-xMnxAs, we investigate its physical response in detail using a combination of first-principles band structure with methods based on dynamical mean field theory to incorporate strong, dynamical correlations, and intrinsic as well as extrinsic disorder in one single theoretical picture. We show how ferromagnetism is driven by double exchange (DE), in agreement with very recent observations, along with a good quantitative description of the details of the electronic structure, as probed by scanning tunneling microscopy and optical conductivity. Our results show how ferromagnetism can be driven by DE even in diluted magnetic semiconductors with small carrier concentration.
NASA Astrophysics Data System (ADS)
Benlamari, S.; Amara Korba, S.; Lakel, S.; Meradji, H.; Ghemid, S.; El Haj Hassan, F.
2016-01-01
The structural, elastic, thermal and electronic properties of perovskite hydrides SrLiH3 and SrPdH3 have been investigated using the all-electron full-potential linear augmented plane wave (FP-LAPW) method based on the density functional theory (DFT). For the exchange-correlation potential, local-density approximation (LDA) and generalized gradient approximation (GGA) have been used to calculate theoretical lattice parameters, bulk modulus, and its pressure derivative. The present results are in good agreement with available theoretical and experimental data. The three independent elastic constants (C11, C12 and C44) are also reported. From electronic band structure and density of states (DOSs), it is found that SrLiH3 is an insulator characterized by an indirect gap of 3.48 eV, while SrPdH3 is metallic with a calculated DOSs at Fermi energy of 0.745 states/eV-unit cell. Poisson’s ratio (σ), Young’s modulus (E), shear modulus (G), anisotropy factor (A), average sound velocities (vm) and density (ρ) of these compounds are also estimated for the first time. The Debye temperature is deduced from the average sound velocity. Variation of elastic constants and bulk modulus of these compounds as a function of pressure is also reported. Pressure and thermal effects on some macroscopic properties are predicted using the quasi-harmonic Debye model.
NASA Astrophysics Data System (ADS)
Behzad, Somayeh
2016-09-01
Monolayer α-graphyne is a new two-dimensional carbon allotrope with many special features. In this work the electronic properties of AA- and AB-stacked bilayers of this material and then the optical properties are studied, using first principle plane wave method. The electronic spectrum has two Dirac cones for AA stacked bilayer α-graphyne. For AB-stacked bilayer, the interlayer interaction changes the linear bands into parabolic bands. The optical spectra of the most stable AB-stacked bilayer closely resemble to that of the monolayer, except for small shifts of peak positions and increasing of their intensity. For AB-stacked bilayer, a pronounced peak has been found at low energies under the perpendicular polarization. This peak can be clearly ascribed to the transitions at the Dirac point as a result of the small degeneracy lift in the band structure.
NASA Astrophysics Data System (ADS)
Toprek, Dragan; Belosevic-Cavor, Jelena; Koteski, Vasil
2015-10-01
First principles calculations were performed in the framework of the density functional theory (DFT) using the Full Potential-Linear Augment Plane Wave method (FP-LAPW) within the generalized gradient approximation (GGA) to predict the structural, electronic, elastic and thermal properties of NiTi2 intermetallic compound. By using the Wien2k all-electron code, calculations of the ground state and electronic properties such as lattice constants, bulk modulus, presure derivative of bulk modulus, total energies and density of states were also included. The elastic constants and mechanical properties such as Poisson's ratio, Young's modulus and shear modulus are estimated from the calculated elastic constants of the single crystal. Through the quasi-harmonic Debye model, the preasure and temperature dependences of the linear expansion coefficient, bulk modulus and heat capacity have been investigated. Finally, the Debye temperature has been estimated from the average sound velocity according to the predicted polycrystal bulk properties and from the single crystal elastic constants.
Unified ab initio approaches to nuclear structure and reactions
NASA Astrophysics Data System (ADS)
Navrátil, Petr; Quaglioni, Sofia; Hupin, Guillaume; Romero-Redondo, Carolina; Calci, Angelo
2016-05-01
The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches—built upon the no-core shell model—that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the 6He halo nucleus, of five- and six-nucleon scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of 9Be. Further, we discuss applications to the 7Be {({{p}},γ )}8{{B}} radiative capture. Finally, we highlight our efforts to describe transfer reactions including the 3H{({{d}},{{n}})}4He fusion.
Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study
NASA Astrophysics Data System (ADS)
Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.
2016-05-01
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg10In90, Hg30In70,. Hg50In50, Hg70In30, and Hg90Pb10) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the local arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.
An ab initio investigation into the elastic, structural and electronic properties of MoS2 nanotubes
NASA Astrophysics Data System (ADS)
Ansari, R.; Malakpour, S.; Faghihnasiri, M.; Sahmani, S.
2015-06-01
Molybdenum disulfide (MoS2) is a unique semiconductor with a honeycomb structure like graphite, which has the ability to form various nanostructures with distinct characteristics. In the present study, the elastic, structural and electronic properties of armchair and zigzag MoS2 nanotubes with different diameters are investigated using the density functional theory (DFT). The DFT calculations are performed within the framework of generalized gradient approximation and using the Perdew-Burke-Ernzerhof (PBE) exchange model. It is demonstrated that for all of the considered MoS2 nanotubes anharmonicity exists, except for (6,6) MoS2 nanotube. Moreover, it is found that by increasing the tube diameter, Young's modulus of both armchair and zigzag MoS2 nanotubes increases. Also, it is observed that all of armchair MoS2 nanotubes are indirect band gap-type. On the other hand, all of zigzag MoS2 nanotubes have band gaps with the type of direct in Γ point.
Development of Novel Analytical Method for Ab Initio Powder Structural Analysis
NASA Astrophysics Data System (ADS)
Sakata, Makoto; Nishibori, Eiji; Sawa, Hiroshi
Genetic Algorithm (GA) applied to ab initio structure determination from synchrotron powder diffraction is described. It seems to have an advantage over other real space methods for ab initio structure determination because of the existence of schema theorem. As an example, the case of Prednisolone Succinate is shown in some detail. Future development of GA in crystallography is briefly described.
Strak, Pawel; Sakowski, Konrad; Kempisty, Pawel
2015-09-07
Properties of bare and nitrogen-covered Al-terminated AlN(0001) surface were determined using density functional theory (DFT) calculations. At a low nitrogen coverage, the Fermi level is pinned by Al broken bond states located below conduction band minimum. Adsorption of nitrogen is dissociative with an energy gain of 6.05 eV/molecule at a H3 site creating an overlap with states of three neighboring Al surface atoms. During this adsorption, electrons are transferred from Al broken bond to topmost N adatom states. Accompanying charge transfer depends on the Fermi level. In accordance with electron counting rule (ECR), the DFT results confirm the Fermi level is not pinned at the critical value of nitrogen coverage θ{sub N}(1) = 1/4 monolayer (ML), but it is shifted from an Al-broken bond state to Np{sub z} state. The equilibrium thermodynamic potential of nitrogen in vapor depends drastically on the Fermi level pinning being shifted by about 4 eV for an ECR state at 1/4 ML coverage. For coverage above 1/4 ML, adsorption is molecular with an energy gain of 1.5 eV at a skewed on-top position above an Al surface atom. Electronic states of the admolecule are occupied as in the free molecule, no electron transfer occurs and adsorption of a N{sub 2} molecule does not depend on the Fermi level. The equilibrium pressure of molecular nitrogen above an AlN(0001) surface depends critically on the Fermi level position, being very low and very high for low and high coverage, respectively. From this fact, one can conclude that at typical growth conditions, the Fermi level is not pinned, and the adsorption and incorporation of impurities depend on the position of Fermi level in the bulk.
Mathivon, Kevin; Linguerri, Roberto; Hochlaf, Majdi
2014-03-01
In the present theoretical work, we investigated the stationary points (minima and transition states) on the ground state potential energy surfaces of neutral and ionic 1,4-diazabicyclo[2.2.2]octane (DABCO)--Ar(n)⁰,⁺¹ (n = 1-4) clusters. As established in our systematic work on DABCO--Ar cluster (Mathivon et al., J Chem Phys 139:164306, 2013), the (R)MP2/aug-cc-pVDZ level is accurate enough for validating the prediction of stable forms. For n = 1 and 2, further computations at the MP2/aug-cc-pVTZ level confirm these assumptions. We show that some of the already known isomers of these heteroclusters derived using lower levels of theory are not realistic. More interestingly, our work reveals that DABCO is subject to slight deformations when binding to a small number of Ar atoms. Moreover, we computed the potential energy surfaces of the lowest singlet electronic states of DABCO--Ar(n)(n = 1-3) and of DABCO⁺--Ar(n)(n = 1-3), and the transition moments for the Sp(p = 1-3) ← S0 neutral transitions. These electronic states are found to be Rydberg in nature. The shape of their potentials is mainly repulsive with slight stabilization in the S2 potentials. Finally, the effects of microsolvation of DABCO in Ar clusters in ground and electronic excited states are discussed. The photophysical and photochemical dynamics of these electronic states may be complex. PMID:24549795
NASA Astrophysics Data System (ADS)
Strak, Pawel; Sakowski, Konrad; Kempisty, Pawel; Krukowski, Stanislaw
2015-09-01
Properties of bare and nitrogen-covered Al-terminated AlN(0001) surface were determined using density functional theory (DFT) calculations. At a low nitrogen coverage, the Fermi level is pinned by Al broken bond states located below conduction band minimum. Adsorption of nitrogen is dissociative with an energy gain of 6.05 eV/molecule at a H3 site creating an overlap with states of three neighboring Al surface atoms. During this adsorption, electrons are transferred from Al broken bond to topmost N adatom states. Accompanying charge transfer depends on the Fermi level. In accordance with electron counting rule (ECR), the DFT results confirm the Fermi level is not pinned at the critical value of nitrogen coverage θN(1) = 1/4 monolayer (ML), but it is shifted from an Al-broken bond state to Npz state. The equilibrium thermodynamic potential of nitrogen in vapor depends drastically on the Fermi level pinning being shifted by about 4 eV for an ECR state at 1/4 ML coverage. For coverage above 1/4 ML, adsorption is molecular with an energy gain of 1.5 eV at a skewed on-top position above an Al surface atom. Electronic states of the admolecule are occupied as in the free molecule, no electron transfer occurs and adsorption of a N2 molecule does not depend on the Fermi level. The equilibrium pressure of molecular nitrogen above an AlN(0001) surface depends critically on the Fermi level position, being very low and very high for low and high coverage, respectively. From this fact, one can conclude that at typical growth conditions, the Fermi level is not pinned, and the adsorption and incorporation of impurities depend on the position of Fermi level in the bulk.
Aguirrechu-Comerón, Amagoia; Hernández-Molina, Rita; Rodríguez-Hernández, Plácida; Muñoz, Alfonso; Rodríguez-Mendoza, Ulises R; Lavín, Vı́ctor; Angel, Ross J; Gonzalez-Platas, Javier
2016-08-01
Copper(I) iodine compounds can exhibit interesting mechanochromic and thermochromic luminescent properties with important technological applications. We report the synthesis and structure determination by X-ray diffraction of a new polymeric staircase copper(I) iodine compound catena(bis(μ2-iodo)-6-methylquinoline-copper(I), [C10H9CuIN]. The structure is composed of isolated polymeric staircase chains of copper-iodine coordinated to organic ligands through Cu-N bonds. High pressure X-ray diffraction to 6.45 GPa shows that the material is soft, with a bulk modulus K0 = 10.2(2)GPa and a first derivative K'0 = 8.1(3), typical for organometallic compounds. The unit-cell compression is very anisotropic with the stiffest direction [302] arising from a combination of the stiff CuI ladders and the shear of the planar quinolone ligands over one another. Full structure refinements at elevated pressures show that pressures reduce the Cu···Cu distances in the compound. This effect is detected in luminescence spectra with the appearance of four sub-bands at 515, 600, 647, and 712 nm above 3.5 GPa. Red-shifts are observed, and they are tentatively associated with interactions between copper(I) ions due to the shortening of the Cu···Cu distances induced by pressure, below twice the van der Waals limit (2.8 Å). Additionally, ab initio simulations were performed, and they confirmed the structure and the results obtained experimentally for the equation of state. The simulation allowed the band structure and the electronic density of states of this copper(I) iodine complex to be determined. In particular, the band gap decreases slowly with pressure in a quadratic way with dEg/dP = -0.011 eV/GPa and d(2)Eg/dP(2) = 0.001 eV/GPa(2). PMID:27429246
AB INITIO AND CALPHAD THERMODYNAMICS OF MATERIALS
Turchi, P A
2004-04-14
Ab initio electronic structure methods can supplement CALPHAD in two major ways for subsequent applications to stability in complex alloys. The first one is rather immediate and concerns the direct input of ab initio energetics in CALPHAD databases. The other way, more involved, is the assessment of ab initio thermodynamics {acute a} la CALPHAD. It will be shown how these results can be used within CALPHAD to predict the equilibrium properties of multi-component alloys.
NASA Astrophysics Data System (ADS)
Faghaninia, Alireza; Ager, Joel W.; Lo, Cynthia S.
2015-06-01
Accurate models of carrier transport are essential for describing the electronic properties of semiconductor materials. To the best of our knowledge, the current models following the framework of the Boltzmann transport equation (BTE) either rely heavily on experimental data (i.e., semiempirical), or utilize simplifying assumptions, such as the constant relaxation time approximation (BTE-cRTA). While these models offer valuable physical insights and accurate calculations of transport properties in some cases, they often lack sufficient accuracy—particularly in capturing the correct trends with temperature and carrier concentration. We present here a transport model for calculating low-field electrical drift mobility and Seebeck coefficient of n -type semiconductors, by explicitly considering relevant physical phenomena (i.e., elastic and inelastic scattering mechanisms). We first rewrite expressions for the rates of elastic scattering mechanisms, in terms of ab initio properties, such as the band structure, density of states, and polar optical phonon frequency. We then solve the linear BTE to obtain the perturbation to the electron distribution—resulting from the dominant scattering mechanisms—and use this to calculate the overall mobility and Seebeck coefficient. Therefore, we have developed an ab initio model for calculating mobility and Seebeck coefficient using the Boltzmann transport (aMoBT) equation. Using aMoBT, we accurately calculate electrical transport properties of the compound n -type semiconductors, GaAs and InN, over various ranges of temperature and carrier concentration. aMoBT is fully predictive and provides high accuracy when compared to experimental measurements on both GaAs and InN, and vastly outperforms both semiempirical models and the BTE-cRTA. Therefore, we assert that this approach represents a first step towards a fully ab initio carrier transport model that is valid in all compound semiconductors.
NASA Astrophysics Data System (ADS)
Zhu, Xiaolei; Yarkony, David R.
2016-01-01
In this work, we demonstrate that for moderate sized systems, here a system with 13 atoms, global coupled potential energy surfaces defined for several electronic states over a wide energy range and for distinct regions of nuclear coordinate space characterized by distinct electron configurations, can be constructed with precise energetics and an excellent description of non-adiabatic interactions in all regions. This is accomplished using a recently reported algorithm for constructing quasi-diabatic representations, Hd, of adiabatic electronic states coupled by conical intersections. In this work, the algorithm is used to construct an Hd to describe the photodissociation of phenol from its first and second excited electronic states. The representation treats all 33 internal degrees of freedom in an even handed manner. The ab initio adiabatic electronic structure data used to construct the fit are obtained exclusively from multireference configuration interaction with single and double excitation wave functions comprised of 88 × 106 configuration state functions, at geometries determined by quasi-classical trajectories. Since the algorithm uses energy gradients and derivative couplings in addition to electronic energies to construct Hd, data at only 7379 nuclear configurations are required to construct a representation, which describes all nuclear configurations involved in H atom photodissociation to produce the phenoxyl radical in its ground or first excited electronic state, with a mean unsigned energy error of 202.9 cm-1 for electronic energies <60 000 cm-1.
NASA Astrophysics Data System (ADS)
Resat, Marianne Sowa; Smolanoff, Jason N.; Goldman, Ilyse B.; Anderson, Scott L.
1994-06-01
We report a combined experimental and theoretical study of the reaction of small carbon cluster cations with N2O aimed at understanding the reaction mechanism and how it is affected by the electronic and geometric structure of the C+n reactants. Cross sections for reaction of C+n (n=3-12) with N2O were measured over a collision energy range from 0.1-10 eV, using a guided ion beam tandem mass spectrometer. Ab initio calculations were used to examine the structure and energetics of reactant and product species. Small clusters, which are linear, react with no activation barrier, resulting in either oxide or nitride formation. The branching between oxide and nitride channels shows a strong even-odd alternation, with even clusters preferentially forming nitrides. This appears to be correlated with an even/odd alternation in the ionization potential of the CnN. The larger, monocyclic C+n have activation barriers for reaction, and a completely different product distribution. Secondary reactions of the primary oxide and nitride products were studied at high N2O pressures. Products containing two O or two N atoms are not observed, but it is possible to add one of each. Possible reaction mechanisms are discussed and supported by thermochemistry derived from spin restricted ab initio calculations.
NASA Astrophysics Data System (ADS)
Bannikov, V. V.; Beketov, A. R.; Baranov, M. V.; Elagin, A. A.; Kudyakova, V. S.; Shishkin, R. A.
2016-05-01
The phase stability, electronic structure, and magnetic properties of Al1- x Ti x N compositions based on the metastable aluminum nitride modification with the rock-salt structure at low ( x = 0.03) and high ( x = 0.25) concentrations of titanium in the system have been investigated using the results of ab initio band calculations. It has been shown that, at low values of x, the partial substitution is characterized by a positive enthalpy, which, however, changes sign with an increase in the titanium concentration. According to the results of the band structure calculations, the doped compositions have electronic conductivity. For x = 0.03, titanium impurity atoms have local magnetic moments (˜0.6 μB), and the electronic spectrum is characterized by a 100% spin polarization of near-Fermi states. Some of the specific features of the chemical bonding in Al1- x Ti x N cubic phases have been considered.
Structure and lattice dynamics of PrFe3(BO3)4: Ab initio calculation
NASA Astrophysics Data System (ADS)
Chernyshev, V. A.; Nikiforov, A. E.; Petrov, V. P.
2016-06-01
The crystal structure and phonon spectrum of PrFe3(BO3)4 are ab initio calculated in the context of the density functional theory. The ion coordinates in the unit cell of a crystal and the lattice parameters are evaluated from the calculations. The types and frequencies of the fundamental vibrations, as well as the line intensities of the IR spectrum, are determined. The elastic constants of the crystal are calculated. A "seed" frequency of the vibration strongly interacting with the electron excitation on the praseodymium ion is obtained for low-frequency A 2 mode. The calculated results are in agreement with the known experimental data.
Xiao, Haiyan Y.; Weber, William J.; Zhang, Yanwen; Zu, X. T.; Li, Sean
2015-02-09
In this study, the response of titanate pyrochlores (A2Ti2O7, A = Y, Gd and Sm) to electronic excitation is investigated utilizing an ab initio molecular dynamics method. All the titanate pyrochlores are found to undergo a crystalline-to-amorphous structural transition under a low concentration of electronic excitations. The transition temperature at which structural amorphization starts to occur depends on the concentration of electronic excitations. During the structural transition, O2-like molecules are formed, and this anion disorder further drives cation disorder that leads to an amorphous state. This study provides new insights into the mechanisms of amorphization in titanate pyrochlores under laser,more » electron and ion irradiations.« less
Ab Initio Infrared Spectra and Electronic Response Calculations for the Insulating Phases of VO2
NASA Astrophysics Data System (ADS)
Hendriks, Christopher; Huffman, Tyler; Walter, Eric; Qazilbash, Mumtaz; Krakauer, Henry
Previous studies have shown that, under doping or tensile strain and upon heating, the well-known vanadium dioxide (VO2) transition from an insulating monoclinic (M1) to a metallic rutile (R) phase progresses through a triclinic symmetry (T) phase and a magnetic monoclinic phase (M2), both of which are insulating. Structurally, this progression from M1 to R through T and M2 can be characterized by the progressive breaking of the V dimers. Investigation of the effect of these structural changes on the insulating phases of VO2 may help resolve questions surrounding the long-debated issue of the respective roles of electronic correlation and Peierls mechanisms in driving the MIT. We investigated electronic and vibrational properties of the insulating phases of VO2 in the framework of DFT+U. We will present ab initio calculations of infrared spectra and optical electronic responses for the insulating phases and compare these to available experimental measurements. Supported by ONR.
Electronic states of lithium passivated germanium nanowires: An ab-initio study
Trejo, A.; Carvajal, E.; Vázquez-Medina, R.; Cruz-Irisson, M.
2014-05-15
A study of the electronic and structural properties of germanium nanowires (GeNWs) was performed using the ab-initio Density Functional Theory within the generalized gradient approximation where electron-ion interactions are described by ultrasoft pseudopotentials. To study the effects of the lithium in the surface of the GeNWs we compare the electronic band structures of Hydrogen passivated GeNWs with those of partial and totally Li passivated GeNWs. The nanowires were constructed in the [001], [111] and [110] directions, using the supercell model to create different wire diameters. The results show that in the case of partial Li passivation there are localized orbitals near the valence band maximum, which would create a p-doped-kind of state. The total Li passivation created metallic states for all the wires.
NASA Astrophysics Data System (ADS)
Vlahos, Vasilios; Booske, John H.; Morgan, Dane
2010-02-01
Microwave, x-ray, and radio-frequency radiation sources require a cathode emitting electrons into vacuum. Thermionic B-type dispenser cathodes consist of BaxOz coatings on tungsten (W), where the surface coatings lower the W work function and enhance electron emission. The new and promising class of scandate cathodes modifies the B-type surface through inclusion of Sc, and their superior emissive properties are also believed to stem from the formation of a low work function surface alloy. In order to better understand these cathode systems, density-functional theory (DFT)-based ab initio modeling is used to explore the stability and work function of BaxScyOz on W(001) monolayer-type surface structures. It is demonstrated how surface depolarization effects can be calculated easily using ab initio calculations and fitted to an analytic depolarization equation. This approach enables the rapid extraction of the complete depolarization curve (work function versus coverage relation) from relatively few DFT calculations, useful for understanding and characterizing the emitting properties of novel cathode materials. It is generally believed that the B-type cathode has some concentration of Ba-O dimers on the W surface, although their structure is not known. Calculations suggest that tilted Ba-O dimers are the stable dimer surface configuration and can explain the observed work function reduction corresponding to various dimer coverages. Tilted Ba-O dimers represent a new surface coating structure not previously proposed for the activated B-type cathode. The thermodynamically stable phase of Ba and O on the W surface was identified to be the Ba0.25O configuration, possessing a significantly lower Φ value than any of the Ba-O dimer configurations investigated. The identification of a more stable Ba0.25O phase implies that if Ba-O dimers cover the surface of emitting B-type cathodes, then a nonequilibrium steady state must dominate the emitting surface. The identification of
Ab-initio study on crystal structure of α-RuCl3
NASA Astrophysics Data System (ADS)
Kee, Hae-Young; Kim, Heung-Sik
α -RuCl3 was recently proposed as a candidate system for materialization of Kitaev model, but precise structural information of the compound has remained elusive. For the clarification of the full three-dimensional crystal structure of α-RuCl3, we performed ab-initio electronic structure calculations including effects of spin-orbit coupling (SOC) and electron correlations. We found that SOC prevents dimerization between Ru atoms, and keeps the system close to honeycomb lattice. The ground state crystal structure has monoclinic C 2 / m -type layer stacking, but trigonal P31 12 -and orthorhombic Cmc21 -type stacking orders are comparable to the C 2 / m structure in energy, so that stacking faults can be easily introduced. The electronic structure and the jeff=1/2 pseudospin exchange interactions and possible magnetic states in α-RuCl3 will be presented.
Structure and Raman spectra in cryolitic melts: simulations with an ab initio interaction potential.
Cikit, Serpil; Akdeniz, Zehra; Madden, Paul A
2014-01-30
The Raman spectra of cryolitic melts have been calculated from molecular dynamics computer simulations using a polarizable ionic potential obtained by force-fitting to ab initio electronic structure calculations. Simulations which made use of this ab initio derived polarizable interaction potential reproduced the structure and dynamical properties of crystalline cryolite, Na3AlF6, rather well. The transferability of the potential model from solid state to the molten state is tested by comparing results for the Raman spectra of melts of various compositions with those previously obtained with empirically developed potentials and with experimental data. The shapes of the spectra and their evolution with composition in the mixtures conform quite well to those seen experimentally, and we discuss the relationship between the bands seen in the spectra and the vibrational modes of the AlFn((3–n)) coordination complexes which are found in the NaF/AlF3 mixtures. The simulations thus enable a link between the structure of the melt as derived through Raman spectroscopy and through diffraction experiments. We report results for quantities which relate to the degree of cross-linking between these coordination complexes and the diffusive properties of ions. PMID:24432905
An improved ab initio structure for fluorine peroxide (FOOF)
NASA Astrophysics Data System (ADS)
Mack, Hans-Georg; Oberhammer, Heinz
1988-03-01
Ab initio calculations with the 6-31G* and Dunning (9s5p/4s2p) basis sets augmented with p and d functions at various levels of theory (RHF, MP2, MP3, and MP4) were carried out on F 2O 2. The best result was obtained at the MP2 level with the Dunning basis plus one set of d functions on fluorine and two sets of d functions on oxygen. These calculations reproduce the experimental bond lengths to within 0.01 Å and the angles to within the experimental uncertainties.
Manson, S.T.; Miller, J.H.
1987-01-01
Ab initio calculations of single and double differential cross sections for ionization by fast, charged particles within the framework of the Born approximation are presented. In addition, a semi-empirical method based on the asymptotic Bethe-Born expansion is also discussed. Both are applied to ionization of helium by electrons and protons in an effort to assess their accuracy and validity. Agreement with experiment is quite good. The implications for other targets is discussed.
NASA Astrophysics Data System (ADS)
Tarighi Ahmadpour, Mahdi; Hashemifar, S. Javad; Rostamnejadi, Ali
2016-07-01
We use density functional computations to study the zero temperature structural, electronic, magnetic, and optical properties of (5,0) finite carbon nanotubes (FCNT), with length in the range of 4-44 Å. It is found that the structural and electronic properties of (5,0) FCNTs, in the ground state, converge at a length of about 30 Å, while the excited state properties exhibit long-range edge effects. We discuss that curvature effects enhance energy gap of FCNTs, in contrast to the known trend in the periodic limit. It is seen that compensation of curvature effects in two special small sizes may give rise to spontaneous magnetization. The obtained cohesive energies provide some insights into the effects of environment on the growth of FCNTs. The second-order difference of the total energies reveals an important magic size of about 15 Å. The optical and dynamical magnetic responses of the FCNTs to polarized electromagnetic pulses are studied by time dependent density functional theory. The results show that the static and dynamic magnetic properties mainly come from the edge carbon atoms. The optical absorption properties are described in terms of local field effects and characterized by Casida linear response method.
Borges, P. D. E-mail: lscolfaro@txstate.edu; Scolfaro, L. E-mail: lscolfaro@txstate.edu
2014-12-14
The thermoelectric properties of indium nitride in the most stable wurtzite phase (w-InN) as a function of electron and hole concentrations and temperature were studied by solving the semiclassical Boltzmann transport equations in conjunction with ab initio electronic structure calculations, within Density Functional Theory. Based on maximally localized Wannier function basis set and the ab initio band energies, results for the Seebeck coefficient are presented and compared with available experimental data for n-type as well as p-type systems. Also, theoretical results for electric conductivity and power factor are presented. Most cases showed good agreement between the calculated properties and experimental data for w-InN unintentionally and p-type doped with magnesium. Our predictions for temperature and concentration dependences of electrical conductivity and power factor revealed a promising use of InN for intermediate and high temperature thermoelectric applications. The rigid band approach and constant scattering time approximation were utilized in the calculations.
Yu, Dequan; Chen, Jun; Cong, Shulin; Sun, Zhigang
2015-12-17
The FH2– anion has a stable structure that resembles a configuration in the vicinity of the transition state for neutral reaction F + H2 → HF + H. Electron photodetachment spectra of the FH2– anion reveal the neutral reaction dynamics in the critical transition-state region. Accurate quantum dynamics simulations of the photodetachment spectra using highly accurate new ab initio potential energy surfaces for both anionic and neutral FH2 are performed and compared with all available experimental results. The results provide reliable interpretations for the experimental observations of FH2– photoelectron detachment and reveal a detailed picture of the molecular dynamics around the transition state of the F + H2 reaction. The latest high-resolution photoelectron detachment spectra [Kim et al. Science, 2015, 349, 510-513] confirm the high accuracy of our new potential energy surface for describing the resonance-enhanced reactivity of the neutral F + H2 reaction. PMID:26550683
Electron-scattering form factors for 6Li in the ab initio symmetry-guided framework
NASA Astrophysics Data System (ADS)
Dytrych, T.; Hayes, A. C.; Launey, K. D.; Draayer, J. P.; Maris, P.; Vary, J. P.; Langr, D.; Oberhuber, T.
2015-02-01
We present an ab initio symmetry-adapted no-core shell-model description for 6Li. We study the structure of the ground state of 6Li and the impact of the symmetry-guided space selection on the charge density components for this state in momentum space, including the effect of higher shells. We accomplish this by investigating the electron scattering charge form factor for momentum transfers up to q ˜4 fm-1 . We demonstrate that this symmetry-adapted framework can achieve significantly reduced dimensions for equivalent large shell-model spaces while retaining the accuracy of the form factor for any momentum transfer. These new results confirm the previous outcomes for selected spectroscopy observables in light nuclei, such as binding energies, excitation energies, electromagnetic moments, E 2 and M 1 reduced transition probabilities, as well as point-nucleon matter rms radii.
Ab initio theory for ultrafast magnetization dynamics with a dynamic band structure
NASA Astrophysics Data System (ADS)
Mueller, B. Y.; Haag, M.; Fähnle, M.
2016-09-01
Laser-induced modifications of magnetic materials on very small spatial dimensions and ultrashort timescales are a promising field for novel storage and spintronic devices. Therefore, the contribution of electron-electron spin-flip scattering to the ultrafast demagnetization of ferromagnets after an ultrashort laser excitation is investigated. In this work, the dynamical change of the band structure resulting from the change of the magnetization in time is taken into account on an ab initio level. We find a large influence of the dynamical band structure on the magnetization dynamics and we illustrate the thermalization and relaxation process after laser irradiation. Treating the dynamical band structure yields a demagnetization comparable to the experimental one.
Ab-initio study of magnetism behavior in TiO2 semiconductor with structural defects
NASA Astrophysics Data System (ADS)
Zarhri, Z.; Houmad, M.; Ziat, Y.; El Rhazouani, O.; Slassi, A.; Benyoussef, A.; El Kenz, A.
2016-05-01
Magnetic, electronic and structural properties of titanium dioxide material with different structural defects are studied using the first-principles ab-initio calculations and the Korringa-Kohn-Rostoker method (KKR) combined with the coherent potential approximation (CPA) method in connection with the local density approximation (LDA). We investigated all structural defects in rutile TiO2 such as Titanium interstitial (Tii), Titanium anti-sites (Tio), Titanium vacancies (VTi), Oxygen interstitial (Oi), Oxygen anti-sites (OTi) and oxygen vacancies (Vo). Mechanisms of hybridization and interaction between magnetic atoms are investigated. The transition temperature is computed using the Mean Field Approximation (MFA).Magnetic stability energy of ferromagnetic and disordered local moment states is calculated to determine the most stable state. Titanium anti-sites have a half-metallic aspect. We also studied the change type caused by structural defects in this material.
Ab initio molecular dynamics studies of the structure and dynamics of molten SexTe1-x alloys
NASA Astrophysics Data System (ADS)
Lomba, E.; Katcho, N. A.; Otero-Díaz, L. C.
2005-10-01
We calculate the microscopic structure and dynamics of molten SexTe1-x alloys ( x=0.3 , 0.5, 0.7) at 748 K by means of ab initio molecular dynamics. We present results for the static and dynamic structure factors, diffusion coefficients, and frequency spectra, in addition to the electronic density of states. Both the results for the structural and dynamic properties are in relatively good agreement with the available experimental data, despite the known shortcomings of ab initio techniques for the limiting case x=0 . The results also indicate that, as expected, the increase in the number of Te atoms augments the metallic character of the sample in close connection with a corresponding disruption of the Se chain network that dominates the structure of the condensed phases of pure selenium.
Ab initio phonon coupling and optical response of hot electrons in plasmonic metals
NASA Astrophysics Data System (ADS)
Brown, Ana M.; Sundararaman, Ravishankar; Narang, Prineha; Goddard, William A.; Atwater, Harry A.
2016-08-01
Ultrafast laser measurements probe the nonequilibrium dynamics of excited electrons in metals with increasing temporal resolution. Electronic structure calculations can provide a detailed microscopic understanding of hot electron dynamics, but a parameter-free description of pump-probe measurements has not yet been possible, despite intensive research, because of the phenomenological treatment of electron-phonon interactions. We present ab initio predictions of the electron-temperature dependent heat capacities and electron-phonon coupling coefficients of plasmonic metals. We find substantial differences from free-electron and semiempirical estimates, especially in noble metals above transient electron temperatures of 2000 K, because of the previously neglected strong dependence of electron-phonon matrix elements on electron energy. We also present first-principles calculations of the electron-temperature dependent dielectric response of hot electrons in plasmonic metals, including direct interband and phonon-assisted intraband transitions, facilitating complete theoretical predictions of the time-resolved optical probe signatures in ultrafast laser experiments.
Eremeev, S V; Chukurov, E N; Gruznev, D V; Zotov, A V; Saranin, A A
2015-08-01
Using ab initio calculations, atomic structure and electronic properties of Si(1 1 1)[Formula: see text]-Bi surface modified by adsorption of 1/3 monolayer of alkali metals, Li, Na, K, Rb and Cs, have been explored. Upon adsorption of all metals, a similar atomic structure develops at the surface where twisted chained Bi trimers are arranged into a honeycomb network and alkali metal atoms occupy the [Formula: see text] sites in the center of each honeycomb unit. Among other structural characteristics, the greatest variation concerns the relative heights at which alkali metals reside with respect to Bi-trimer layer. Except for Li, the other metals reside higher than Bi layer and their heights increase with atomic number. All adsorbed surface structures display similar electron band structures of which the most essential feature is metallic surface-state band with a giant spin splitting. This electronic property allows one to consider the Si(1 1 1)[Formula: see text]-Bi surfaces modified by alkali metal adsorption as a set of material systems showing promise for spintronic applications. PMID:26151642
Hou, Gao-Lei; Feng, Gang; Zhao, Li-Juan; Xu, Hong-Guang; Zheng, Wei-Jun
2015-11-12
The (KI)n(-) (n = 1-4) and K(KI)n(-) (n = 1-3) clusters were studied by negative ion photoelectron spectroscopy and ab initio calculations. Comparison between the theoretical vertical detachment energies and the experimental values revealed that multiple isomers may coexist in the experiments. The existence of two isomers for K(KI)(-) and K(KI)2(-) were confirmed directly by isomer-depletion experiments, in which the low adiabatic detachment energy isomers were depleted by a 1064 nm laser beam before the anions were photodetached by a 532 nm laser beam. Our results show that the most stable structures of the K(KI)(-), (KI)2(-), and K(KI)2(-) anions are chain structures, while those of their neutral counterparts are planar. Three-dimensional structures start to appear at n = 3 for (KI)n(-/0) and K(KI)n(-/0). In the K(KI)n(-) cluster anions, the excess electron is localized on the extra K atom and forms an electron pair with the existing s electron of the K atom; the resulting negatively charged K prefers to interact with the other positively charged K atoms rather than with the I atoms. Both the anionic and neutral (KI)4 clusters have cuboid structures, which may be regarded as the smallest structural motif of KI crystal. PMID:26473992
Numerical criteria for the evaluation of ab initio predictions of protein structure.
Zemla, A; Venclovas, C; Reinhardt, A; Fidelis, K; Hubbard, T J
1997-01-01
As part of the CASP2 protein structure prediction experiment, a set of numerical criteria were defined for the evaluation of "ab initio" predictions. The evaluation package comprises a series of electronic submission formats, a submission validator, evaluation software, and a series of scripts to summarize the results for the CASP2 meeting and for presentation via the World Wide Web (WWW). The evaluation package is accessible for use on new predictions via WWW so that results can be compared to those submitted to CASP2. With further input from the community, the evaluation criteria are expected to evolve into a comprehensive set of measures capturing the overall quality of a prediction as well as critical detail essential for further development of prediction methods. We discuss present measures, limitations of the current criteria, and possible improvements. PMID:9485506
NASA Astrophysics Data System (ADS)
Singh, Ram Sevak; Solanki, Ankit
2016-03-01
Silicon carbide nanotubes (SiCNTs) have received a great deal of scientific and commercial interest due to their intriguing properties that include high temperature stability and electronic properties. For their efficient and widespread applications, tuning of electronic properties of SiCNTs is an attractive study. In this article, electronic properties of sulphur doped (S-doped) zigzag (9 , 0) SiCNT is investigated by ab initio calculations based on density functional theory (DFT). Energy band structures and density of states of fully optimized undoped and doped structures with varying dopant concentration are calculated. S-doped on C-site of the nanotube exhibits a monotonic reduction of energy gap with increase in dopant concentration, and the nanotube transforms from semiconductor to metal at high dopant concentration. In case of S-doped on Si-site doping has less influence on modulating electronic structures, which results in reduction of energy gap up to a moderate doping concentration. Importantly, S preferential substitutes of Si-sites and the nanotube with S-doped on Si-site are energetically more stable as compared to the nanotube with S-doped on C-site. The study of tunable electronic properties in S-doped SiCNT may have potential in fabricating nanoelectronic devices, hydrogen storage and gas sensing applications.
NASA Astrophysics Data System (ADS)
Durig, J. R.; Shen, S.; Guirgis, G. A.
2001-01-01
The far infrared spectrum from 370 to 50 cm -1 of gaseous 2-bromoethanol, BrCH 2CH 2OH, was recorded at a resolution of 0.10 cm -1. The fundamental O-H torsion of the more stable gauche ( Gg') conformer, where the capital G refers to internal rotation around the C-C bond and the lower case g to the internal rotation around the C-O bond, was observed as a series of Q-branch transitions beginning at 340 cm -1. The corresponding O-H torsional modes were observed for two of the other high energy conformers, Tg (285 cm -1) and Tt (234 cm -1). The heavy atom asymmetric torsion (rotation around C-C bond) for the Gg' conformer has been observed at 140 cm -1. Variable temperature (-63 to -100°C) studies of the infrared spectra (4000-400 cm -1) of the sample dissolved in liquid xenon have been recorded. From these data the enthalpy differences have been determined to be 411±40 cm -1 (4.92±0.48 kJ/mol) for the Gg'/ Tt and 315±40 cm -1 (3.76±0.48 kJ/mol) for the Gg'/ Tg, with the Gg' conformer the most stable form. Additionally, the infrared spectrum of the gas, and Raman spectrum of the liquid phase are reported. The structural parameters, conformational stabilities, barriers to internal rotation and fundamental frequencies have been obtained from ab initio calculations utilizing different basis sets at the restricted Hartree-Fock or with full electron correlation by the perturbation method to second order. The theoretical results are compared to the experimental results when appropriate. Combining the ab initio calculations with the microwave rotational constants, r0 adjusted parameters have been obtained for the three 2-haloethanols (F, Cl and Br) for the Gg' conformers.
Ab initio calculation of the electronic absorption spectrum of liquid water
NASA Astrophysics Data System (ADS)
Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa
2014-04-01
The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O-H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.
Ab initio calculation of the electronic absorption spectrum of liquid water
Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa
2014-04-28
The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.
A Simple ab Initio Model for the Hydrated Electron That Matches Experiment.
Kumar, Anil; Walker, Jonathan A; Bartels, David M; Sevilla, Michael D
2015-08-27
Since its discovery over 50 years ago, the "structure" and properties of the hydrated electron have been a subject for wonderment and also fierce debate. In the present work we seriously explore a minimal model for the aqueous electron, consisting of a small water anion cluster embedded in a polarized continuum, using several levels of ab initio calculation and basis set. The minimum energy "zero Kelvin" structure found for any 4-water (or larger) anion cluster, at any post-Hartree–Fock theory level, is very similar to a recently reported embedded-DFT-in-classical-water-MD simulation (Uhlig, Marsalek, and Jungwirth, J. Phys. Chem. Lett. 2012, 3, 3071−3075), with four OH bonds oriented toward the maximum charge density in a small central "void". The minimum calculation with just four water molecules does a remarkably good job of reproducing the resonance Raman properties, the radius of gyration derived from the optical spectrum, the vertical detachment energy, and the hydration free energy. For the first time we also successfully calculate the EPR g-factor and (low temperature ice) hyperfine couplings. The simple tetrahedral anion cluster model conforms very well to experiment, suggesting it does in fact represent the dominant structural motif of the hydrated electron. PMID:26275103
Time-domain ab initio studies of photoinduced electron dynamics in nanoscale semiconductors
NASA Astrophysics Data System (ADS)
Prezhdo, Oleg
2010-03-01
Design of novel materials for energy harvesting and storage requires an understanding of the dynamical response on the nanometer scale. We have developed state-of-the-art non-adiabatic molecular dynamics techniques and implemented them within time-dependent density functional theory in order to model the ultrafast processes in these materials at the atomistic level and in real time. Quantum dots (QD) are quasi-zero dimensional structures with a unique combination of molecular and bulk properties. As a result, QDs exhibit new physical phenomena such as the electron-phonon relaxation bottleneck and carrier multiplication, which have the potential to greatly increase solar cell efficiencies. Photoinduced charge separation across molecular/bulk interfaces drives the dye-sensitized semiconductor solar cell. A subject of active research, it creates many challenges due to the stark differences between the quantum states of molecular and periodic systems, as well as the different sets of theories and experimental tools used by physicists and chemists. Our time-domain atomistic simulations create a detailed picture of these materials. By comparing and contrasting their properties, we provide a unifying description of quantum dynamics on the nanometer scale, resolve several highly debated issues, and generate theoretical guidelines for development of novel systems for energy harvesting and storage. [4pt] [1] O. V. Prezhdo ``Photoinduced dynamics in semiconductor quantum-dots: insights from time-domain ab initio studies'', Acc. Chem. Res., available online.[0pt] [2] O. V. Prezhdo, W. R. Duncan, V. V. Prezhdo, ``Photoinduced electron dynamics at semiconductor interfaces: a time-domain ab initio prospective'', Prog. Surf. Science, 84, 39 (2009).[0pt] [3] O. V. Prezhdo, et al., ``Dynamics of the photoexcited electron at the chromophore-semiconductor interface'', Acc. Chem. Res., 41, 339 (2008).[0pt] [4] W. R. Duncan, O. V. Prezhdo, ``Theoretical studies of photoinduced electron
Cargnoni, Fausto; Nishibori, Eiji; Rabiller, Philippe; Bertini, Luca; Snyder, G Jeffrey; Christensen, Mogens; Gatti, Carlo; Iversen, Bo Brummerstadt
2004-08-20
The experimental electron density of the high-performance thermoelectric material Zn4Sb3 has been determined by maximum entropy (MEM) analysis of short-wavelength synchrotron powder diffraction data. These data are found to be more accurate than conventional single-crystal data due to the reduction of common systematic errors, such as absorption, extinction and anomalous scattering. Analysis of the MEM electron density directly reveals interstitial Zn atoms and a partially occupied main Zn site. Two types of Sb atoms are observed: a free spherical ion (Sb3-) and Sb2(4-) dimers. Analysis of the MEM electron density also reveals possible Sb disorder along the c axis. The disorder, defects and vacancies are all features that contribute to the drastic reduction of the thermal conductivity of the material. Topological analysis of the thermally smeared MEM density has been carried out. Starting with the X-ray structure ab initio computational methods have been used to deconvolute structural information from the space-time data averaging inherent to the XRD experiment. The analysis reveals how interstitial Zn atoms and vacancies affect the electronic structure and transport properties of beta-Zn4Sb3. The structure consists of an ideal A12Sb10 framework in which point defects are distributed. We propose that the material is a 0.184:0.420:0.396 mixture of A12Sb10, A11BCSb10 and A10BCDSb10 cells, in which A, B, C and D are the four Zn sites in the X-ray structure. Given the similar density of states (DOS) of the A12Sb10, A11BCSb10 and A10BCDSb10 cells, one may electronically model the defective stoichiometry of the real system either by n-doping the 12-Zn atom cell or by p-doping the two 13-Zn atom cells. This leads to similar calculated Seebeck coefficients for the A12Sb10, A11BCSb10 and A10BCDSb10 cells (115.0, 123.0 and 110.3 microV K(-1) at T=670 K). The model system is therefore a p-doped semiconductor as found experimentally. The effect is dramatic if these cells are
NASA Astrophysics Data System (ADS)
Cuong, Nguyen Tien; Mizuta, Hiroshi; Cong, Bach Thanh; Otsuka, Nobuo; Chi, Dam Hieu
2012-09-01
Graphene is a promising candidate as a material used in nano-scale devices because of recent developments in advanced experimental techniques. Motivated by recent successful fabrications of U-shaped graphene channel transistors by using the gallium focused ion beam technology, we have performed ab-initio calculations to investigate the electronic properties and quantum transport in U-shaped graphene nanoribbons. The electronic properties are calculated using a numerical atomic orbital basis set in the framework of the density functional theory. The transport properties are investigated using the non-equilibrium Green's function method. The transmission spectra of U-shaped graphenes are analyzed in order to reveal the quantum transport of the systems. We found that the graphene nanoribbons tend to open a band gap when U-shaped structures are formed in both armchair and zigzag cases. The geometrical structures of U-shaped GNRs had enormous influences on the electron transport around the Fermi energy due to the formation of quasi-bound states at zigzag edges. The obtained results have provided valuable information for designing potential nano-scale devices based on graphenes.
Tunneling of electrons via rotor-stator molecular interfaces: Combined ab initio and model study
NASA Astrophysics Data System (ADS)
Petreska, Irina; Ohanesjan, Vladimir; Pejov, Ljupčo; Kocarev, Ljupčo
2016-07-01
Tunneling of electrons through rotor-stator anthracene aldehyde molecular interfaces is studied with a combined ab initio and model approach. Molecular electronic structure calculated from first principles is utilized to model different shapes of tunneling barriers. Together with a rectangular barrier, we also consider a sinusoidal shape that captures the effects of the molecular internal structure more realistically. Quasiclassical approach with the Simmons' formula for current density is implemented. Special attention is paid on conformational dependence of the tunneling current. Our results confirm that the presence of the side aldehyde group enhances the interesting electronic properties of the pure anthracene molecule, making it a bistable system with geometry dependent transport properties. We also investigate the transition voltage and we show that conformation-dependent field emission could be observed in these molecular interfaces at realistically low voltages. The present study accompanies our previous work where we investigated the coherent transport via strongly coupled delocalized orbital by application of Non-equilibrium Green's Function Formalism.
Feller, D.F.
1993-07-01
This collection of benchmark timings represents a snapshot of the hardware and software capabilities available for ab initio quantum chemical calculations at Pacific Northwest Laboratory`s Molecular Science Research Center in late 1992 and early 1993. The ``snapshot`` nature of these results should not be underestimated, because of the speed with which both hardware and software are changing. Even during the brief period of this study, we were presented with newer, faster versions of several of the codes. However, the deadline for completing this edition of the benchmarks precluded updating all the relevant entries in the tables. As will be discussed below, a similar situation occurred with the hardware. The timing data included in this report are subject to all the normal failures, omissions, and errors that accompany any human activity. In an attempt to mimic the manner in which calculations are typically performed, we have run the calculations with the maximum number of defaults provided by each program and a near minimum amount of memory. This approach may not produce the fastest performance that a particular code can deliver. It is not known to what extent improved timings could be obtained for each code by varying the run parameters. If sufficient interest exists, it might be possible to compile a second list of timing data corresponding to the fastest observed performance from each application, using an unrestricted set of input parameters. Improvements in I/O might have been possible by fine tuning the Unix kernel, but we resisted the temptation to make changes to the operating system. Due to the large number of possible variations in levels of operating system, compilers, speed of disks and memory, versions of applications, etc., readers of this report may not be able to exactly reproduce the times indicated. Copies of the output files from individual runs are available if questions arise about a particular set of timings.
NASA Astrophysics Data System (ADS)
Yurchenko, Sergei N.; Carvajal, Miguel; Thiel, Walter; Jensen, Per
2006-09-01
We report a six-dimensional CCSD(T)/aug-cc-pVTZ dipole moment surface for the electronic ground state of PH 3 computed ab initio on a large grid of 10 080 molecular geometries. Parameterized, analytical functions are fitted through the ab initio data, and the resulting dipole moment functions are used, together with a potential energy function determined by refining an existing ab initio surface in fittings to experimental wavenumber data, for simulating absorption spectra of the first three polyads of PH 3, i.e., ( ν2, ν4), ( ν1, ν3, 2 ν2, 2 ν4, ν2 + ν4), and ( ν1 + ν2, ν3 + ν2, ν1 + ν4, ν3 + ν4, 2 ν2 + ν4, ν2 + 2 ν4, 3 ν2, 3 ν4). The resulting theoretical transition moments show excellent agreement with experiment. A line-by-line comparison of the simulated intensities of the ν2/ ν4 band system with 955 experimental intensity values reported by Brown et al. [L.R. Brown, R.L. Sams, I. Kleiner, C. Cottaz, L. Sagui, J. Mol. Spectrosc. 215 (2002) 178-203] gives an average absolute percentage deviation of 8.7% (and a root-mean-square deviation of 0.94 cm -1 for the transition wavenumbers). This is very remarkable since the calculations rely entirely on ab initio dipole moment surfaces and do not involve any adjustment of these surfaces to reproduce the experimental intensities. Finally, we predict the line strengths for transitions between so-called cluster levels (near-degenerate levels formed at high rotational excitation) for J up to 60.
Yamaji, Youhei
2015-12-31
Recently, condensed-matter ab initio approaches to strongly correlated electrons confined in crystalline solids have been developed and applied to transition-metal oxides and molecular conductors. In this paper, an ab initio scheme based on constrained random phase approximations and localized Wannier orbitals is applied to a spin liquid candidate Na{sub 2}IrO{sub 3} and is shown to reproduce experimentally observed specific heat.
Combined electron beam imaging and ab initio modeling of T{sub 1} precipitates in Al-Li-Cu alloys
Dwyer, C.; Weyland, M.; Chang, L. Y.; Muddle, B. C.
2011-05-16
Among the many considerable challenges faced in developing a rational basis for advanced alloy design, establishing accurate atomistic models is one of the most fundamental. Here we demonstrate how advanced imaging techniques in a double-aberration-corrected transmission electron microscope, combined with ab initio modeling, have been used to determine the atomic structure of embedded 1 nm thick T{sub 1} precipitates in precipitation-hardened Al-Li-Cu aerospace alloys. The results provide an accurate determination of the controversial T{sub 1} structure, and demonstrate how next-generation techniques permit the characterization of embedded nanostructures in alloys and other nanostructured materials.
Towards Accurate Ab Initio Predictions of the Spectrum of Methane
NASA Technical Reports Server (NTRS)
Schwenke, David W.; Kwak, Dochan (Technical Monitor)
2001-01-01
We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born- Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.
Ab initio NMR Confirmed Evolutionary Structure Prediction for Organic Molecular Crystals
NASA Astrophysics Data System (ADS)
Pham, Cong-Huy; Kucukbenli, Emine; de Gironcoli, Stefano
2015-03-01
Ab initio crystal structure prediction of even small organic compounds is extremely challenging due to polymorphism, molecular flexibility and difficulties in addressing the dispersion interaction from first principles. We recently implemented vdW-aware density functionals and demonstrated their success in energy ordering of aminoacid crystals. In this work we combine this development with the evolutionary structure prediction method to study cholesterol polymorphs. Cholesterol crystals have paramount importance in various diseases, from cancer to atherosclerosis. The structure of some polymorphs (e.g. ChM, ChAl, ChAh) have already been resolved while some others, which display distinct NMR spectra and are involved in disease formation, are yet to be determined. Here we thoroughly assess the applicability of evolutionary structure prediction to address such real world problems. We validate the newly predicted structures with ab initio NMR chemical shift data using secondary referencing for an improved comparison with experiments.
Ab initio studies of equations of state and chemical reactions of reactive structural materials
NASA Astrophysics Data System (ADS)
Zaharieva, Roussislava
subject of studies of the shock or thermally induced chemical reactions of the two solids comprising these reactive materials, from first principles, is a relatively new field of study. The published literature on ab initio techniques or quantum mechanics based approaches consists of the ab initio or ab initio-molecular dynamics studies in related fields that contain a solid and a gas. One such study in the literature involves a gas and a solid. This is an investigation of the adsorption of gasses such as carbon monoxide (CO) on Tungsten. The motivation for these studies is to synthesize alternate or synthetic fuel technology by Fischer-Tropsch process. In this thesis these studies are first to establish the procedure for solid-solid reaction and then to extend that to consider the effects of mechanical strain and temperature on the binding energy and chemisorptions of CO on tungsten. Then in this thesis, similar studies are also conducted on the effect of mechanical strain and temperature on the binding energies of Titanium and hydrogen. The motivations are again to understand the method and extend the method to such solid-solid reactions. A second motivation is to seek strained conditions that favor hydrogen storage and strain conditions that release hydrogen easily when needed. Following the establishment of ab initio and ab initio studies of chemical reactions between a solid and a gas, the next step of research is to study thermally induced chemical reaction between two solids (Ni+Al). Thus, specific new studies of the thesis are as follows: (1) Ab initio Studies of Binding energies associated with chemisorption of (a) CO on W surfaces (111, and 100) at elevated temperatures and strains and (b) adsorption of hydrogen in titanium base. (2) Equations of state of mixtures of reactive material structures from ab initio methods. (3) Ab initio studies of the reaction initiation, transition states and reaction products of intermetallic mixtures of (Ni+Al) at elevated
Marquez, A.; Sanz, J.F. )
1992-12-02
Experimental and theoretical research on the electronic and geometric structure of transition-metal-carbenes and -alkylidenes is an active area in chemistry nowadays due to their potential activity in catalysis and in organic and organometallic synthesis. A theoretical investigation of the electronic structure of the high-valent, transition-metal, alkylidene-like complexes MoM[prime]H[sub 2] (M[prime] = C, Si, Ge, and Sn) is reported. Based on ab initio calculations carried out at the complete active space multiconfiguration self-consistent field (CASSCF) level, the molecular structure of the ground state and some low-lying excited states have been determined. For M[prime] = C, Si, and Ge, the ground state has C[sub 2v] symmetry (state [sup 5]B[sub 1]) and corresponds to pairing each electron of the M[prime]H[sub 2] triplet [sup 3]B[sub 1] with an electron of Mo ([sup 7]S). In the case of MoSnH[sub 2], the lowest state is bent (C[sub s] symmetry, state [sup 7]A[prime]), the out-of-plane angle being 68[degrees], and dissociates into SnH[sub 2] ([sup 1]A[sub 1]) + Mo ([sup 7]S). Dissociation energies, potential energy profiles for the dissociation, harmonic force constants in terms of internal symmetry coordinates, and vibrational frequencies are reported. The comparison of these properties with those of their pentacarbonylated homologous (CO)[sub 5]M[double bond]M[prime]H[sub 2] shows that the carbene-like (Fischer) type of complexation is stronger than the alkylidene-like one (Schrock). 28 refs., 4 figs., 6 tabs.
Ab-initio crystal structure prediction. A case study: NaBH{sub 4}
Caputo, Riccarda; Tekin, Adem
2011-07-15
Crystal structure prediction from first principles is still one of the most challenging and interesting issue in condensed matter science. we explored the potential energy surface of NaBH{sub 4} by a combined ab-initio approach, based on global structure optimizations and quantum chemistry. In particular, we used simulated annealing (SA) and density functional theory (DFT) calculations. The methodology enabled the identification of several local minima, of which the global minimum corresponded to the tetragonal ground-state structure (P4{sub 2}/nmc), and the prediction of higher energy stable structures, among them a monoclinic (Pm) one was identified to be 22.75 kJ/mol above the ground-state at T=298 K. In between, orthorhombic and cubic structures were recovered, in particular those with Pnma and F4-bar 3m symmetries. - Graphical abstract: The total electron energy difference of the calculated stable structures. Here, the tetragonal (IT 137) and the monoclinic (IT 6) symmetry groups corresponded to the lowest and the highest energy structures, respectively. Highlights: > Potential energy surface of NaBH{sub 4} is investigated. > This is done a combination of global structure optimizations based on simulated annealing and density functional calculations. > We successfully reproduced experimentally found tetragonal and orthorhombic structures of NaBH{sub 4}. > Furthermore, we found a new stable high energy structure.
Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics
Sharma, Nalini; Ahluwalia, P. K.; Thakur, Anil
2015-05-15
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70}, Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30} and Hg{sub 90}In{sub 10}) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.
Pressure-induced structural transitions in BN from ab initio metadynamics
NASA Astrophysics Data System (ADS)
Hromadová, Liliana; Martoňák, Roman
2011-12-01
We report here results of ab initio metadynamics simulations of structural transitions in boron nitride at high pressures. Transitions starting from sp2 bonded (graphite-like) structures are studied in a temperature range from 300 to 3000 K and pressures from 20 to 31 GPa. Rhombohedral boron nitride (r-BN) was found to directly transform at all temperatures into cubic boron nitride (c-BN). Hexagonal boron nitride (h-BN) transforms at T<700 K into wurtzite boron nitride (w-BN). At higher temperatures we found a possible transformation pathway resulting in the fully tetrahedrally (sp3) bonded metastable structure. This structure is tetragonal (P42/mnm) and is an analog of the “bct C4” (I4/mmm) structure recently discussed for carbon. The P42/mnm structure has been predicted theoretically for BN but so far not reported experimentally. We calculate structural, elastic, and electronic properties of this structure and discuss the transition mechanism. We also study the transitions at extreme pressures in the tera-pascal range starting from sp3 bonded c-BN and w-BN structures.
Takeuchi, Hiroshi; Enmi, Jun-ichiro; Onozaki, Manabu; Egawa, Toru; Konaka, Shigehiro
1994-09-01
Gas electron diffusion and HF/4-21 G calculations on geometric parameters and harmonic force constants are used to study the molecular structure of tert-butyl acetate. This determined that C{sub 1} = O{sub 2} is (cis) to O{sub 4}-C{sub 5} and the tert-butyl group is staggered to the C{sub 1}-O{sub 4} bond. The structural parameters are also determined. C{sub 1}-O{sub 4} bond length shortening is rationalized in terms of the resonance effect and the electron-releasing inductive effect of substituents. 29 refs., 4 figs., 4 tabs.
AB Initio Study of the Structure and Spectroscopic Properties of Halogenated Thioperoxy Radicals
NASA Technical Reports Server (NTRS)
Munoz, Luis A.; Binning, R. C., Jr.; Weiner, Brad R.; Ishikawa, Yasuyuki
1997-01-01
Thioperoxy (XSO or XOS) radicals exist in a variety of chemical environments, and they have as a consequence drawn some interest. HSO, an important species in the chemistry of the troposphere, has been examined both experimentally. The halogenated (X = F, Cl or Br) peroxy species and isovalent thioperoxy species have been studied less, but they too are potentially interesting because oxidized sulfur species and halogen sources are present in the atmosphere. Learning the fate of XSO and XOS radicals is important to understanding the atmospheric oxidation chemistry of sulfur compounds. Of these, FSO and ClSO are particularly interesting because they have been directly detected spectroscopically. Recent studies in our laboratory on the photochemistry of thionyl halides (X2SO; where X = F or Cl) have suggested new ways to generate XSO species. The laser-induced photodissociation of thionyl fluoride, F2SO, at 193 nm and thionyl chloride, ClSO, at 248 nm is characterized by a radical mechanism, X2SO -> XSO + X. The structure of FSO has been characterized experimentally by Endo et cd. employing microwave spectroscopy. Using the unrestricted Hartree-Fock (UHF) self-consistent field (SCF) method, Sakai and Morokuma computed the electronic structure of the ground (sup 2)A" and the first excited (sup 2)A' states of FSO. Electron correlation was not taken into account in their study. In a laser photodissociation experiment, Huber et al. identified ClSO mass spectromctrically. ClSO has also been detected in low temperature matrices by EPR and in the gas phase by far IR laser magnetic resonance. Although the structure of FSO is known in detail, the only study, experimental or theoretical, of CISO has been an ab initio HFSCF study by Hinchliffe. Electron correlation corrections were also excluded from this study. In order to better understand the isomerization and dissociation dynamics of the radical species, we have performed ab initio correlated studies of the potential energy
NASA Astrophysics Data System (ADS)
Sarhaddi, Reza; Arabi, Hadi; Pourarian, Faiz
2014-05-01
The structural, stability and electronic properties of C15-AB2 (A = Ti, Zr; B = Cr) isomeric intermetallic compounds were systematically investigated by using density functional theory (DFT) and plane-wave pseudo-potential (PW-PP) method. The macroscopic properties including the lattice constant, bulk modulus and stability for these compounds were studied before and after hydrogenation. For parent compounds, the enthalpy of formation was evaluated with regard to their bulk modules and electronic structures. After hydrogenation of compounds at different interstitial tetrahedral sites (A2B2, A1B3, B4), a volume expansion was found for hydrides. The stability properties of hydrides characterized the A2B2 sites as the site preference of hydrogen atoms for both compounds. The Miedema's "reverse stability" rule is also satisfied in these compounds as lower the enthalpy of formation for the host compound, the more stable the hydride. Analysis of microscopic properties (electronic structures) after hydrogenation at more stable interstitial site (A2B2) shows that the H atoms interact stronger with the weaker (or non) hydride forming element B (Cr) than the hydride forming element A (Ti/Zr). A correlation was also found between the stability of the hydrides and their electronic structure: the deeper the hydrogen band, the less stable the hydride.
Palummo, Maurizia; Hogan, Conor; Sottile, Francesco; Bagalá, Paolo; Rubio, Angel
2009-08-28
We present a theoretical investigation of electronic and optical properties of free-base porphyrins based on density functional theory and many-body perturbation theory. The electronic levels of free-base porphine (H(2)P) and its phenyl derivative, free-base tetraphenylporphyrin (H(2)TPP) are calculated using the ab initio GW approximation for the self-energy. The approach is found to yield results that compare favorably with the available photoemission spectra. The excitonic nature of the optical peaks is revealed by solving the Bethe-Salpeter equation, which provides an accurate description of the experimental absorption spectra. The lowest triplet transition energies are in good agreement with the measured values. PMID:19725603
Electronic states of Zn2 - Ab initio calculations of a prototype for Hg2
NASA Technical Reports Server (NTRS)
Hay, P. J.; Dunning, T. H., Jr.; Raffenetti, R. C.
1976-01-01
The electronic states of Zn2 are investigated by ab initio polarization configuration-interaction calculations. Molecular states dissociating to Zn(1S) + Zn(1S, 3P, 1P) and Zn(3P) + Zn(3P) are treated. Important effects from states arising from Zn(+)(25) + Zn(-)(2P) are found in the potential-energy curves and electronic-transition moments. A model calculation for Hg2 based on the Zn2 curves and including spin-orbit coupling leads to a new interpretation of the emission bands in Hg vapor.
Ab initio Structure Determination of Mg10Ir19B16
Xu, Qiang; Klimczuk, T.; Gortenmulder, T.; Jansen, J.; McGuire, Michael A; Cava, R. J.; Zandbergen, H
2009-01-01
The ab initio structure determination of a novel unconventional noncentro-symmetric superconductor Mg{sub 10}Ir{sub 19}B{sub 16} (T{sub c} = 5 K) has been performed using a method that involves a combination of experimental data and calculations. Electron diffraction, X-ray powder diffraction, phase estimation routines, quantum mechanical calculations, high-resolution electron microscopy, and structural chemistry arguments are used. With the strengths of different methods used to eliminate the ambiguities encountered in others, the complete structure, including a very light B atom, has been determined with a high accuracy from impure polycrystalline powder samples, which suggests that the type of analysis described may be used to successfully address other similar intractable problems. The solved structure of Mg{sub 10}Ir{sub 19}B{sub 16} shows a complex nature that irregular coordination environments preclude a conversional description of compact packing of coordination polyhedra; however, it can be easier understood as ordered in an onion-skin-like series of nested polyhedra.
NASA Astrophysics Data System (ADS)
Milošević, Aleksandar S.; Lalić, Milan V.; Popović, Zoran S.; Vukajlović, Filip R.
2013-08-01
Within density functional theory (DFT) with the generalized gradient approximation (GGA), GGA plus on-site Coulomb repulsion method, and improved version of the modified Becke-Johnson exchange potential suggested recently by Tran and Blaha [F. Tran, P. Blaha, Phys. Rev. Lett. 102 (2009) 226401] (TB-mBJ), we investigate the electronic structure and optical properties of noncentrosymmetric multiferroic perovskites PbVO3 and BiCoO3. These two compounds, although similar in lattice distortions and population of crystal-field levels, behave quite differently because of the different interplay between the fundamental Kramers degeneracy and the single-ion anisotropy in them. The main characteristic of the calculated TB-mBJ electronic structures is significant rearrangement of the V and Co 3d states near their valence bands tops when compared to the present and earlier GGA and GGA + U calculations of these compounds. This fact causes the different optical responses of the title compounds as well, which are analyzed and interpreted in terms of the calculated electronic structures. A comparison of the calculated properties with available experimental data indicates that the TB-mBJ approach provides a better description of the electronic and optical properties of PbVO3 and BiCoO3 than the standard GGA and GGA + U approaches.
NASA Astrophysics Data System (ADS)
Ranjbardizaj, Ahmad; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki
2013-03-01
Bi2Q3 (Q =Se, Te) are the best-known bulk thermoelectric materials, which have been demonstrated to be topological insulators (TI). TI's are insulators with conductive surface states consisting of a single Dirac cones. These materials have layered structures consisting of stacked quintuple layers (QL), with relatively weak coupling between the QL's. Therefore, it might be easy to prepare the Bi2Q3 in the form of thin films with particular thicknesses using the available experimental techniques. In this study, the electronic and structural properties of bulk Bi2Se3 are investigated using density functional theory. Our results show that the Bi2Se3 is an indirect semiconductor with energy gap of ~ 0.27 eV. Additionally, the electronic structure dependence of Bi2Se3to the thicknesses of thin films (n-QL's with n =1,2...9) is considered. It is observed that the electronic structure of this kind of thin films depends on the number of QL's. For n-QL's with n larger than three, the thin film has a bulk band gap and has protected conducting states on its surface. Moreover, the effect of number of layers (n) on band-gap energy is studied. Similar calculations and discussions are carried out for Bi2Te3 and the results are compared to the Bi2Se3 case and also the available theoretical and experimental results.
NASA Astrophysics Data System (ADS)
Demiray, Ferhat; Sıdır, İsa; Gülseven Sıdır, Yadigar
2016-08-01
Density functional theory calculations at the LDA level have been performed to investigate the geometrical structure, stabilities and electronic properties of cyanide-coated fullerene C20@(CN) n, with n=0-20 in the ground state. From the binding energy, dissociation energy and second-order energy, even-number-coated fullerenes are more stable than odd-number ones. C20 has been successfully coated with electron-withdrawing group CN, achieving fullerene electron acceptors which have low-LUMO levels. The lowest LUMO value obtained for C20@(CN)12 is -5.89 eV, which is comparable with or lower than that of C60 and C60@(CN)2 fullerenes. Each of the cyanide coatings makes the fullerenes more stable with a larger HOMO-LUMO gap. Designed cyanide-coated fullerene compounds are promising and progressive to achieve a wider range of donor materials and high efficiencies in organic photovoltaic devices.
Ab initio study of structural, electronic, magnetic and optical properties of Ti-doped ZnTe and CdTe
NASA Astrophysics Data System (ADS)
El Amine Monir, M.; Baltache, H.; Murtaza, G.; Khenata, R.; Bin Omran, S.; Uğur, Ş.; Benalia, S.; Rached, D.
2014-03-01
The full potential linearized augmented plane wave method within the framework of density functional theory (DFT) is employed to investigate the structural, magnetic, electronic and optical properties of Ti-doped ZnTe and CdTe in the zinc blende phase. In this approach the local spin density approximation (LSDA) is used for the exchange-correlation (XC) potential. Results are provided for the lattice constant, bulk modulus, pressure derivative, magnetic moment, band structure, density of states and refractive indices. Our results are compared with other theoretical works and good agreement is shown.
NASA Astrophysics Data System (ADS)
D'Yachkov, P. N.; Makaev, D. V.
2007-11-01
Every carbon single-walled nanotube (SWNT) can be generated by first mapping only two nearest-neighbor C atoms onto a surface of a cylinder and then using the rotational and helical symmetry operators to determine the remainder of the tubule [C. T. White , Phys. Rev. B 47, 5485 (1993)]. With account of these symmetries, we developed a symmetry-adapted version of a linear augmented cylindrical wave method. In this case, the cells contain only two carbon atoms, and the ab initio theory becomes applicable to any SWNT independent of the number of atoms in a translational unit cell. The approximations are made in the sense of muffin-tin (MT) potentials and local-density-functional theory only. An electronic potential is suggested to be spherically symmetrical in the regions of atoms and constant in an interspherical region up to the two essentially impenetrable cylinder-shaped potential barriers. To construct the basis wave functions, the solutions of the Schrödinger equation for the interspherical and MT regions of the tubule were sewn together using a theorem of addition for cylindrical functions, the resulting basis functions being continuous and differentiable anywhere in the system. With account of analytical equations for these functions, the overlap and Hamiltonian integrals are calculated, which permits determination of electronic structure of nanotube. We have calculated the total band structures and densities of states of the chiral and achiral, semiconducting, semimetallic, and metallic carbon SWNTs (13, 0), (12, 2), (11, 3), (10, 5), (9, 6), (8, 7), (7, 7), (12, 4), and (100, 99) containing up to the 118 804 atoms per translational unit cell. Even for the (100, 99) system with huge unit cell, the band structure can be easily calculated and the results can be presented in the standard form of four curves for the valence band plus one curve for the low-energy states of conduction band. About 150 functions produce convergence of the band structures better then
Ab Initio study of multiple exciton generation in layered structure quantum dots
NASA Astrophysics Data System (ADS)
Zhang, Zhiyong; Zimmerman, Paul; Cui, Yi; Musgrave, Charles
2011-03-01
Multiple Exciton Generation (MEG) can potentially increase the photovoltaic conversion efficiency significantly and has been reported in a large number of systems and has been extensively studies theoretically and experimentally. Here we report our study of the MEG process in inorganic layered structure quantum dots using high level Ab Initio methods that are capable of electronic states of multi-exciton in character. Our results show that multiple states that are of multi-exciton character exist in quantum dots and different mechanisms govern the MEG process in quantum dots: (1) MEG through an internal crossing mechanism from a optically active state to an optically dark multi-exciton state, as in the singlet fission process of pentacene; and (2) direct multi-exciton generation through an optically active excited state. We also discuss detailed structure evolution of quantum dots, from stable molecular like structures of various shapes and sizes, to larger quantum dots of bulk like bonding motifs with distinctive surface structures and illustrate the correlation between structure and the multi-exciton states.
Arghavani Nia, Borhan; Sedighi, Matin; Shahrokhi, Masoud; Moradian, Rostam
2013-11-15
A density functional theory study of structural, electronical and optical properties of Ca{sub 3}Sb{sub 2} compound in hexagonal and cubic phases is presented. In the exchange–correlation potential, generalized gradient approximation (PBE-GGA) has been used to calculate lattice parameters, bulk modulus, cohesive energy, dielectric function and energy loss spectra. The electronic band structure of this compound has been calculated using the above two approximations as well as another form of PBE-GGA, proposed by Engle and Vosko (EV-GGA). It is found that the hexagonal phase of Ca{sub 3}Sb{sub 2} has an indirect gap in the Γ→N direction; while in the cubic phase there is a direct-gap at the Γ point in the PBE-GGA and EV-GGA. Effects of applying pressure on the band structure of the system studied and optical properties of these systems were calculated. - Graphical abstract: A density functional theory study of structural, electronic and optical properties of Ca{sub 3}Sb{sub 2} compound in hexagonal and cubic phases is presented. Display Omitted - Highlights: • Physical properties of Ca{sub 3}Sb{sub 2} in hexagonal and cubic phases are investigated. • It is found that the hexagonal phase is an indirect gap semiconductor. • Ca{sub 3}Sb{sub 2} is a direct-gap semiconductor at the Γ point in the cubic phase. • By increasing pressure the semiconducting band gap and anti-symmetry gap are decreased.
Ab initio study on electronically excited states of lithium isocyanide, LiNC
NASA Astrophysics Data System (ADS)
Yasumatsu, Hisato; Jeung, Gwang-Hi
2014-01-01
The electronically excited states of the lithium isocyanide molecule, LiNC, were studied by means of ab initio calculations. The bonding nature of LiNC up to ˜10 eV is discussed on the basis of the potential energy surfaces according to the interaction between the ion-pair and covalent states. The ion-pair states are described by Coulomb attractive interaction in the long distance range, while the covalent ones are almost repulsive or bound with a very shallow potential dent. These two states interact each other to form adiabatic potential energy surfaces with non-monotonic change in the potential energy with the internuclear distance.
Holst, Bastian; French, Martin; Redmer, Ronald
2011-06-15
Using Kubo's linear response theory, we derive expressions for the frequency-dependent electrical conductivity (Kubo-Greenwood formula), thermopower, and thermal conductivity in a strongly correlated electron system. These are evaluated within ab initio molecular dynamics simulations in order to study the thermoelectric transport coefficients in dense liquid hydrogen, especially near the nonmetal-to-metal transition region. We also observe significant deviations from the widely used Wiedemann-Franz law, which is strictly valid only for degenerate systems, and give an estimate for its valid scope of application toward lower densities.
Electronic and transport properties edge functionalized graphene nanoribbons-An ab initio approach
Chauhan, Satyendra Singh; Srivastava, Pankaj; Shrivastva, A. K.
2014-04-24
With the help of ab initio approach we have investigated the electronic and transport properties of edge functionalized zigzag graphene nanoribbons using density functional theory. We have studied the energetic stability and Fermi energy of ZGNRs. We have reported that the edge functionalization of zigzag graphene nanoribbons can break the degeneracy that can be used to promote the onset of a semiconducting to metal transition or a half metal to semiconducting state. The edge functionalization also promotes a metal-semimetal transition. It has also been observed that the transmission spectrum of the edge functionalized ZGNRs are different from those of pristine.
Hydration structure of salt solutions from ab initio molecular dynamics.
Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L
2013-01-01
The solvation structures of Na(+), K(+), and Cl(-) ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na(+), K(+), and Cl(-), respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed. PMID:23298049
Hydration structure of salt solutions from ab initio molecular dynamics
Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L.
2013-01-07
The solvation structures of Na{sup +}, K{sup +}, and Cl{sup -} ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na{sup +}, K{sup +}, and Cl{sup -}, respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed.
Hydration structure of salt solutions from ab initio molecular dynamics
NASA Astrophysics Data System (ADS)
Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L.
2013-01-01
The solvation structures of Na^+, K^+, and Cl^- ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na^+, K^+, and Cl^-, respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed.
Al-Douri, Y.; Ahmad, S.; Hashim, U.; Reshak, Ali Hussain; Baaziz, H.; Charifi, Z.; Khenata, R.
2010-12-15
The structural, electronic and optical properties of cubic CdS{sub 1-x}Te{sub x} alloys, with Te-concentrations varying from 0% up to 100% are investigated. The calculations are based on the total-energy calculations using the full potential-linearized augmented plane wave (FP-LAPW) method. The exchange and correlation potential is treated by the generalized-gradient approximation (GGA) for the total-energy calculations, while for electronic properties in addition to that the Engel-Vosko (EV-GGA) formalism was also applied. The ground state properties for all Te-concentrations are presented. The optical dielectric constant is also determined for both the binary and their related ternary alloys. (author)
NASA Astrophysics Data System (ADS)
dos Santos, Renato B.; de Brito Mota, F.; Rivelino, R.; Kakanakova-Georgieva, A.; Gueorguiev, G. K.
2016-04-01
Graphite-like hexagonal AlN (h-AlN) multilayers have been experimentally manifested and theoretically modeled. The development of any functional electronics applications of h-AlN would most certainly require its integration with other layered materials, particularly graphene. Here, by employing vdW-corrected density functional theory calculations, we investigate structure, interaction energy, and electronic properties of van der Waals stacking sequences of few-layer h-AlN with graphene. We find that the presence of a template such as graphene induces enough interlayer charge separation in h-AlN, favoring a graphite-like stacking formation. We also find that the interface dipole, calculated per unit cell of the stacks, tends to increase with the number of stacked layers of h-AlN and graphene.
NASA Astrophysics Data System (ADS)
Mousa, Ahmad A.; Khalifeh, Jamil M.
2015-10-01
Structural, electronic, elastic and mechanical properties of ScM (M =Au, Hg and Tl) intermetallic compounds are studied using the full potential-linearized augmented plane wave (FP-LAPW) method based on the density functional theory (DFT), within the generalized gradient approximation (GGA) and the local density approximation (LDA) to the exchange-correlation approximation energy as implemented in the Wien2k code. The ground state properties including lattice parameters, bulk modulus and elastic constants were all computed and compared with the available previous theoretical and experimental results. The lattice constant was found to increase in contrast to the bulk modulus which was found to decrease with every substitution of the cation (M) starting from Au till Tl in ScM. Both the electronic band structure and density-of-states (DOS) calculations show that these compounds possess metallic properties. The calculated elastic constants (C11, C12 and C44) confirmed the elastic stability of the ScM compounds in the B2-phase. The mechanical properties and ductile behaviors of these compounds are also predicted based on the calculated elastic constants.
Structural, electronic and magnetic properties of Cd1-xTMxS (TM=Co and V) by ab-initio calculations
NASA Astrophysics Data System (ADS)
Yahi, Hakima; Meddour, Athmane
2016-03-01
The structural, electronic and ferromagnetic properties of Cd1-xTMxS (TM=Co and V) compounds at x=0.25, 0.50 and 0.75 in zinc blende (B3) phase, have been investigated using all-electron full-potential linear muffin tin orbital (FP-LMTO) calculations within the frame work of the density functional theory and the generalized gradient approximation. The electronic properties exhibit half-metallic behavior at x=0.25, 0.50, and 0.75 for Cd1-xVxS and x=0.25 and 0.50 for Cd1-xCoxS, while Cd1-xCoxS with x=0.75 is nearly half-metallic. The calculated magnetic moment per substituted transition metal (TM) atom for half-metallic compounds is found to be 3 μB, whereas that of a nearly half-metallic compound is 2.29 μB. The analysis of band structure and density of states shows that the TM-3d states play a key role in generating spin-polarization and magnetic moment in these compounds. Furthermore, we establish that the p-d hybridization reduces the local magnetic moment of Co and enhances that of V from their free space charge value of 3 μB and creates small local magnetic moments on nonmagnetic Cd and S sites. The exchange constant N0α and N0β have been calculated to validate the effects resulting from exchange splitting process.
AB INITIO STUDY OF STRUCTURAL, ELECTRONIC AND OPTICAL PROPERTIES OF MgxCd1-xX (X = S, Se, Te) ALLOYS
NASA Astrophysics Data System (ADS)
Noor, N. A.; Shaukat, A.
2012-12-01
This study describes structural, electronic and optical properties of MgxCd1-xX (X = S, Se, Te) alloys in the complete range 0≤x ≤1 of composition x in the zinc-blende (ZB) phase with the help of full-potential linearized augmented plane wave plus local orbitals (FP-LAPW+lo) method within density functional theory (DFT). In order to calculate total energy, generalized gradient approximation (Wu-Cohen GGA) has been applied, which is based on optimization energy. For electronic structure calculations, the corresponding potential is being optimized by Engel-Vosko GGA formalism. Our calculations reveal the nonlinear variation of lattice constant and bulk modulus with different concentration for the end binary and their ternary alloys, which slightly deviates from Vegard's law. The calculated band structures show a direct band gap for all three alloys with increasing order in the complete range of the compositional parameter x. In addition, we have discussed the disorder parameter (gap bowing) and concluded that the total band gap bowing is substantially influenced by the chemical (electronegativity) contribution. The calculated density of states (DOS) of these alloys is discussed in terms of contribution from various s-, p- and d-states of the constituent atoms and charge density distributions plots are analyzed. Optical properties have been presented in the form of the complex dielectric function ɛ(ω), refractive index n(ω) and extinction coefficient k(ω) as function of the incident photon energy, and the results have been compared with existing experimental data and other theoretical calculations.
Chen, Chung-De; Huang, Yen-Chieh; Chiang, Hsin-Lin; Hsieh, Yin-Cheng; Guan, Hong-Hsiang; Chuankhayan, Phimonphan; Chen, Chun-Jung
2014-09-01
A novel direct phase-selection method to select optimized phases from the ambiguous phases of a subset of reflections to replace the corresponding initial SAD phases has been developed. With the improved phases, the completeness of built residues of protein molecules is enhanced for efficient structure determination. Optimization of the initial phasing has been a decisive factor in the success of the subsequent electron-density modification, model building and structure determination of biological macromolecules using the single-wavelength anomalous dispersion (SAD) method. Two possible phase solutions (ϕ{sub 1} and ϕ{sub 2}) generated from two symmetric phase triangles in the Harker construction for the SAD method cause the well known phase ambiguity. A novel direct phase-selection method utilizing the θ{sub DS} list as a criterion to select optimized phases ϕ{sub am} from ϕ{sub 1} or ϕ{sub 2} of a subset of reflections with a high percentage of correct phases to replace the corresponding initial SAD phases ϕ{sub SAD} has been developed. Based on this work, reflections with an angle θ{sub DS} in the range 35–145° are selected for an optimized improvement, where θ{sub DS} is the angle between the initial phase ϕ{sub SAD} and a preliminary density-modification (DM) phase ϕ{sub DM}{sup NHL}. The results show that utilizing the additional direct phase-selection step prior to simple solvent flattening without phase combination using existing DM programs, such as RESOLVE or DM from CCP4, significantly improves the final phases in terms of increased correlation coefficients of electron-density maps and diminished mean phase errors. With the improved phases and density maps from the direct phase-selection method, the completeness of residues of protein molecules built with main chains and side chains is enhanced for efficient structure determination.
NASA Astrophysics Data System (ADS)
Reffas, Mounir; Bouhemadou, Abdelmadjid; Haddadi, Khelifa; Bin-Omran, Saad; Louail, Layachi
2014-12-01
Structural parameters, electronic structure, elastic constants and thermodynamic properties of the tetragonal ternary intermetallics CaCu2Si2 and SrCu2Si2 are investigated theoretically for the first time using the plane-wave ultra-soft pseudopotential method based on the density functional theory. The calculated equilibrium structural parameters agree well with the existing experimental data. Pressure dependence of the structural parameters is also explored. Analysis of the band structure, total and site-projected l-decomposed densities of states and valence charge distributions reveals the conducting character of both considered materials with a mixture of ionic-covalent chemical bonding character. Pressure dependences of the single-crystal elastic constants C ij for CaCu2Si2 and SrCu2Si2 are explored. The elastic wave velocities propagating along the principal crystallographic directions are numerically estimated. The elastic anisotropy is estimated and further illustrated by 3D-direction-dependent of the Young's modulus. A set of some macroscopic elastic moduli, including the bulk, Young's and shear moduli, Poisson's coefficient, average elastic wave velocities and Debye temperature, were calculated for polycrystalline CaCu2Si2 and SrCu2Si2 from the C ij via the Voigt-Reuss-Hill approximations. Through the quasiharmonic Debye model, which takes into account the phonon effects, the temperature and pressure dependencies of the bulk modulus, unit cell volume, volume thermal expansion coefficient, Debye temperature and volume constant and pressure constant heat capacities of CaCu2Si2 and SrCu2Si2 are explored systematically in the ranges of 0-40 GPa and 0-1400 K.
NASA Astrophysics Data System (ADS)
Hirano, Tsuneo; Okuda, Rei; Nagashima, Umpei; Jensen, Per
2012-12-01
FeCO is a molecule of astrophysical interest. We report here theoretical calculations of its geometrical parameters, electronic structures, and molecular constants (such as dipole moment and spin-orbit coupling constant) in the electronic ground state tilde{X}3Σ - and the low-lying triplet and quintet excited states. The calculations were made at the MR-SDCI+Q_DK3/[5ZP ANO-RCC (Fe, C, O)] and MR-AQCC_DK3/[5ZP ANO-RCC (Fe, C, O)] levels of theory. A multi-reference calculation was required to describe correctly the wavefunctions of all states studied. For all triplet states, the σ-donation through the 10σ molecular orbital (MO) as well as the π-back-donation through the 4π MO are observed, and the dipole moment vector points from O toward Fe as expected. However, in the excited quintet states 5Π, 5Φ, and 5Δ, the almost negligible contribution of Fe 4s to the 10σ MO makes the dipole moment vector point from Fe toward O, i.e., in the same direction as in CO. In the tilde{X}3Σ - state, the electron provided by the σ-donation through the 10σ MO is shared between the Fe atom and the C end of the CO residue to form a coordinate-covalent Fe-C bond. In the tilde{a}5Σ - state (the high-spin counterpart of tilde{X}3Σ -), the σ-donation through the 10σ MO is not significant and so the Fe-C bond is rather ionic. The π-back-donation through the 4π MO is found to be of comparable importance in the two electronic states; it has a slightly larger magnitude in the tilde{X}3Σ - state. The difference in the molecular properties of the low-spin tilde{X}3Σ - and the high-spin tilde{a}5Σ - states can be understood in terms of the dynamical electron correlation effects.
NASA Astrophysics Data System (ADS)
Benkhelifa, F. Z.; Lekhal, A.; Méçabih, S.; Abbar, B.; Bouhafs, B.
2014-12-01
We have investigated the electronic structure, magnetic and thermal properties of the ternary full-Heusler alloys Rh2MnZ (Z=Ge, Sn, Pb) under pressure employing the full potential linearized augmented plane wave (FP-LAPW) plus local orbitals method based on the density functional theory (DFT), For the exchange-correlation effects we have adopted the generalized gradient approximation (GGA).Through the quasi-harmonic Debye model, we also study the thermodynamic properties of Rh2MnZ (Z=Ge, Sn and Pb). The thermal expansion versus temperature and pressure, the thermodynamic parameters (Debye temperature and specific heat) with pressure P, and the heat capacity at various pressures and temperatures in the ranges of 0 GPa to 0.6 GPa and 0 K to 400 K have been obtained.
Zhao, Pengfei; Liang, Chongyun; Gong, Xiwen; Gao, Ran; Liu, Jiwei; Wang, Min; Che, Renchao
2013-09-01
Monodispersed manganese oxide (Mn1-xCox)3O4 (0 ≤ x ≤ 0.5) nanoparticles, less than 10 nm size, are respectively synthesized via a facile thermolysis method at a rather low temperature, ranging from 90 to 100 °C, without any inertia gas for protection. The influences of the Co dopant content on the critical reaction temperature required for the nanoparticle formation, electronic band structures, magnetic properties, and the microwave absorption capability of (Mn1-xCox)3O4 are comprehensively investigated by means of both experimental and theoretical approaches including powder X-ray diffraction (XRD), electron energy loss spectroscopy (EELS), super conductivity quantum interference device (SQUID) examination, and first-principle simulations. Co is successfully doped into the Mn atomic sites of the (Mn1-xCox)3O4 lattice, which is further confirmed by EELS data acquired from one individual nanoparticle. Therefore, continuous solid solutions of well-crystallized (Mn1-xCox)3O4 products are achieved without any impurity phase or phase separation. With increases in the Co dopant concentration x from 0 to 0.5, the lattice parameters change systemically, where the overall saturation magnetization at 30 K increases due to the more intense coupling of the 3d electrons between Mn and Co, as revealed by simulations. The microwave absorption properties of the (Mn1-xCox)3O4 nanoparticles are examined between 2 and 18 GHz. The maximum absorption peak -11.0 dB of the x = 0 sample is enhanced to -11.5 dB for x = 0.2, -12.7 dB for x = 0.25, -15.6 dB for x = 0.33, and -24.0 dB for x = 0.5 respectively, suggesting the Co doping effects. Our results might provide novel insights into the understanding of the influences of metallic ion doping on the electromagnetic properties of metallic oxide nanomaterials. PMID:23868450
NASA Astrophysics Data System (ADS)
Zhao, Pengfei; Liang, Chongyun; Gong, Xiwen; Gao, Ran; Liu, Jiwei; Wang, Min; Che, Renchao
2013-08-01
Monodispersed manganese oxide (Mn1-xCox)3O4 (0 <= x <= 0.5) nanoparticles, less than 10 nm size, are respectively synthesized via a facile thermolysis method at a rather low temperature, ranging from 90 to 100 °C, without any inertia gas for protection. The influences of the Co dopant content on the critical reaction temperature required for the nanoparticle formation, electronic band structures, magnetic properties, and the microwave absorption capability of (Mn1-xCox)3O4 are comprehensively investigated by means of both experimental and theoretical approaches including powder X-ray diffraction (XRD), electron energy loss spectroscopy (EELS), super conductivity quantum interference device (SQUID) examination, and first-principle simulations. Co is successfully doped into the Mn atomic sites of the (Mn1-xCox)3O4 lattice, which is further confirmed by EELS data acquired from one individual nanoparticle. Therefore, continuous solid solutions of well-crystallized (Mn1-xCox)3O4 products are achieved without any impurity phase or phase separation. With increases in the Co dopant concentration x from 0 to 0.5, the lattice parameters change systemically, where the overall saturation magnetization at 30 K increases due to the more intense coupling of the 3d electrons between Mn and Co, as revealed by simulations. The microwave absorption properties of the (Mn1-xCox)3O4 nanoparticles are examined between 2 and 18 GHz. The maximum absorption peak -11.0 dB of the x = 0 sample is enhanced to -11.5 dB for x = 0.2, -12.7 dB for x = 0.25, -15.6 dB for x = 0.33, and -24.0 dB for x = 0.5 respectively, suggesting the Co doping effects. Our results might provide novel insights into the understanding of the influences of metallic ion doping on the electromagnetic properties of metallic oxide nanomaterials.Monodispersed manganese oxide (Mn1-xCox)3O4 (0 <= x <= 0.5) nanoparticles, less than 10 nm size, are respectively synthesized via a facile thermolysis method at a rather low
Xiao, Haiyan Y.; Weber, William J.; Zhang, Yanwen; Zu, X. T.; Li, Sean
2015-02-09
In this study, the response of titanate pyrochlores (A_{2}Ti_{2}O_{7}, A = Y, Gd and Sm) to electronic excitation is investigated utilizing an ab initio molecular dynamics method. All the titanate pyrochlores are found to undergo a crystalline-to-amorphous structural transition under a low concentration of electronic excitations. The transition temperature at which structural amorphization starts to occur depends on the concentration of electronic excitations. During the structural transition, O_{2}-like molecules are formed, and this anion disorder further drives cation disorder that leads to an amorphous state. This study provides new insights into the mechanisms of amorphization in titanate pyrochlores under laser, electron and ion irradiations.
Crystal structure and magnetism in α -RuCl3 : An ab initio study
NASA Astrophysics Data System (ADS)
Kim, Heung-Sik; Kee, Hae-Young
2016-04-01
α -RuCl3 has been proposed recently as an excellent playground for exploring Kitaev physics on a two-dimensional (2D) honeycomb lattice. However, structural clarification of the compound has not been completed, which is crucial in understanding the physics of this system. Here, using ab initio electronic structure calculations, we study a full three-dimensional (3D) structure of α -RuCl3 , including the effects of spin-orbit coupling (SOC) and electronic correlations. The three major results are as follows: (i) SOC suppresses dimerization of Ru atoms, which exists in other Ru compounds such as isostructural Li2RuO3 , and makes the honeycomb closer to an ideal one. (ii) The nearest-neighbor Kitaev exchange interaction between the jeff=1 /2 pseudospin strongly depends on the Ru-Ru distance and the Cl position, originating from the nature of the edge-sharing geometry. (iii) The optimized 3D structure without electronic correlations has P 3 ¯1 m space-group symmetry independent of SOC, but including electronic correlation changes the optimized 3D structure to either C 2 /m or C m c 21 within 0.1 meV per formula unit (f.u.) energy difference. The reported P 3112 structure is also close in energy. The interlayer spin-exchange coupling is a few percent of the in-plane spin-exchange terms, confirming that α -RuCl3 is close to a 2D system. We further suggest how to increase the Kitaev term via tensile strain, which sheds light in realizing the Kitaev spin-liquid phase in this system.
Ab initio quasiparticle band structure of ABA and ABC-stacked graphene trilayers
NASA Astrophysics Data System (ADS)
Menezes, Marcos G.; Capaz, Rodrigo B.; Louie, Steven G.
2014-01-01
We obtain the quasiparticle band structure of ABA and ABC-stacked graphene trilayers through ab initio density-functional theory (DFT) and many-body quasiparticle calculations within the GW approximation. To interpret our results, we fit the DFT and GW π bands to a low-energy tight-binding model, which is found to reproduce very well the observed features near the K point. The values of the extracted hopping parameters are reported and compared with available theoretical and experimental data. For both stackings, the self-energy corrections lead to a renormalization of the Fermi velocity, an effect also observed in previous calculations on monolayer graphene. They also increase the separation between the higher-energy bands, which is proportional to the nearest-neighbor interlayer hopping parameter γ1. Both features are brought to closer agreement with experiment through the self-energy corrections. Finally, other effects, such as trigonal warping, electron-hole asymmetry, and energy gaps, are discussed in terms of the associated parameters.
Predicting crystal structures ab initio: group 14 nitrides and phosphides.
Hart, Judy N; Allan, Neil L; Claeyssens, Frederik
2010-08-14
Crystal structures are predicted for a range of group 14 nitrides and phosphides with 1 : 1 stoichiometry, following our method of starting from the known structures for a range of binary compounds and looking for trends in the preferred local bonding environments in the optimised structures. We have previously applied this method to predict the structures of carbon nitride and phosphorus carbide. Here, we use a similar approach to predict the structures of silicon and germanium nitrides and phosphides with 1 : 1 stoichiometry. We find that the local bonding environments in the preferred structures for the nitrides are the same as those for the 3 : 4 stoichiometry. For the phosphides, we have found several possible structures with similar energies. Structures containing hypervalent phosphorus must be considered as these are often low in energy, particularly for GeP; these have not been included in previous work. The greater tendency to form hypervalent phosphorus in GeP than SiP can be rationalised by considering the bond enthalpies for the two compositions. PMID:20603659
Ab Initio Prediction of Transcription Factor Targets Using Structural Knowledge
Kaplan, Tommy; Friedman, Nir; Margalit, Hanah
2005-01-01
Current approaches for identification and detection of transcription factor binding sites rely on an extensive set of known target genes. Here we describe a novel structure-based approach applicable to transcription factors with no prior binding data. Our approach combines sequence data and structural information to infer context-specific amino acid–nucleotide recognition preferences. These are used to predict binding sites for novel transcription factors from the same structural family. We demonstrate our approach on the Cys2His2 Zinc Finger protein family, and show that the learned DNA-recognition preferences are compatible with experimental results. We use these preferences to perform a genome-wide scan for direct targets of Drosophila melanogaster Cys2His2 transcription factors. By analyzing the predicted targets along with gene annotation and expression data we infer the function and activity of these proteins. PMID:16103898
NASA Astrophysics Data System (ADS)
Galler, Anna; Gunacker, Patrik; Tomczak, Jan; Thunström, Patrik; Held, Karsten
Recently, approaches such as the dynamical vertex approximation (D ΓA) or the dual-fermion method have been developed. These diagrammatic approaches are going beyond dynamical mean field theory (DMFT) by including nonlocal electronic correlations on all length scales as well as the local DMFT correlations. Here we present our efforts to extend the D ΓA methodology to ab-initio materials calculations (ab-initio D ΓA). Our approach is a unifying framework which includes both GW and DMFT-type of diagrams, but also important nonlocal correlations beyond, e.g. nonlocal spin fluctuations. In our multi-band implementation we are using a worm sampling technique within continuous-time quantum Monte Carlo in the hybridization expansion to obtain the DMFT vertex, from which we construct the reducible vertex function using the two particle-hole ladders. As a first application we show results for transition metal oxides. Support by the ERC project AbinitioDGA (306447) is acknowledged.
Yoshimura, Masato; Chen, Nai-Chi; Guan, Hong-Hsiang; Chuankhayan, Phimonphan; Lin, Chien-Chih; Nakagawa, Atsushi; Chen, Chun-Jung
2016-01-01
Molecular averaging, including noncrystallographic symmetry (NCS) averaging, is a powerful method for ab initio phase determination and phase improvement. Applications of the cross-crystal averaging (CCA) method have been shown to be effective for phase improvement after initial phasing by molecular replacement, isomorphous replacement, anomalous dispersion or combinations of these methods. Here, a two-step process for phase determination in the X-ray structural analysis of a new coat protein from a betanodavirus, Grouper nervous necrosis virus, is described in detail. The first step is ab initio structure determination of the T = 3 icosahedral virus-like particle using NCS averaging (NCSA). The second step involves structure determination of the protrusion domain of the viral molecule using cross-crystal averaging. In this method, molecular averaging and solvent flattening constrain the electron density in real space. To quantify these constraints, a new, simple and general indicator, free fraction (ff), is introduced, where ff is defined as the ratio of the volume of the electron density that is freely changed to the total volume of the crystal unit cell. This indicator is useful and effective to evaluate the strengths of both NCSA and CCA. Under the condition that a mask (envelope) covers the target molecule well, an ff value of less than 0.1, as a new rule of thumb, gives sufficient phasing power for the successful construction of new structures. PMID:27377380
Yoshimura, Masato; Chen, Nai Chi; Guan, Hong Hsiang; Chuankhayan, Phimonphan; Lin, Chien Chih; Nakagawa, Atsushi; Chen, Chun Jung
2016-07-01
Molecular averaging, including noncrystallographic symmetry (NCS) averaging, is a powerful method for ab initio phase determination and phase improvement. Applications of the cross-crystal averaging (CCA) method have been shown to be effective for phase improvement after initial phasing by molecular replacement, isomorphous replacement, anomalous dispersion or combinations of these methods. Here, a two-step process for phase determination in the X-ray structural analysis of a new coat protein from a betanodavirus, Grouper nervous necrosis virus, is described in detail. The first step is ab initio structure determination of the T = 3 icosahedral virus-like particle using NCS averaging (NCSA). The second step involves structure determination of the protrusion domain of the viral molecule using cross-crystal averaging. In this method, molecular averaging and solvent flattening constrain the electron density in real space. To quantify these constraints, a new, simple and general indicator, free fraction (ff), is introduced, where ff is defined as the ratio of the volume of the electron density that is freely changed to the total volume of the crystal unit cell. This indicator is useful and effective to evaluate the strengths of both NCSA and CCA. Under the condition that a mask (envelope) covers the target molecule well, an ff value of less than 0.1, as a new rule of thumb, gives sufficient phasing power for the successful construction of new structures. PMID:27377380
Ab initio nuclear structure from lattice effective field theory
Lee, Dean
2014-11-11
This proceedings article reviews recent results by the Nuclear Lattice EFT Collaboration on an excited state of the {sup 12}C nucleus known as the Hoyle state. The Hoyle state plays a key role in the production of carbon via the triple-alpha reaction in red giant stars. We discuss the structure of low-lying states of {sup 12}C as well as the dependence of the triple-alpha reaction on the masses of the light quarks.
Ab initio determination of effective electron-phonon coupling factor in copper
NASA Astrophysics Data System (ADS)
Ji, Pengfei; Zhang, Yuwen
2016-04-01
The electron temperature Te dependent electron density of states g (ε), Fermi-Dirac distribution f (ε), and electron-phonon spectral function α2 F (Ω) are computed as prerequisites before achieving effective electron-phonon coupling factor Ge-ph. The obtained Ge-ph is implemented into a molecular dynamics (MD) and two-temperature model (TTM) coupled simulation of femtosecond laser heating. By monitoring temperature evolutions of electron and lattice subsystems, the result utilizing Ge-ph from ab initio calculation shows a faster decrease of Te and increase of Tl than those using Ge-ph from phenomenological treatment. The approach of calculating Ge-ph and its implementation into MD-TTM simulation is applicable to other metals.
Ab initio structure determination of n-diamond.
Li, Da; Tian, Fubo; Chu, Binhua; Duan, Defang; Sha, Xiaojing; Lv, Yunzhou; Zhang, Huadi; Lu, Nan; Liu, Bingbing; Cui, Tian
2015-01-01
A systematic computational study on the crystal structure of n-diamond has been performed using first-principle methods. A novel carbon allotrope with hexagonal symmetry R32 space group has been predicted. We name it as HR-carbon. HR-carbon composed of lonsdaleite layers and unique C3 isosceles triangle rings, is stable over graphite phase above 14.2 GPa. The simulated x-ray diffraction pattern, Raman, and energy-loss near-edge spectrum can match the experimental results very well, indicating that HR-carbon is a likely candidate structure for n-diamond. HR-carbon has an incompressible atomic arrangement because of unique C3 isosceles triangle rings. The hardness and bulk modulus of HR-carbon are calculated to be 80 GPa and 427 GPa, respectively, which are comparable to those of diamond. C3 isosceles triangle rings are very important for the stability and hardness of HR-carbon. PMID:26299905
Ab initio structure determination of n-diamond
Li, Da; Tian, Fubo; Chu, Binhua; Duan, Defang; Sha, Xiaojing; Lv, Yunzhou; Zhang, Huadi; Lu, Nan; Liu, Bingbing; Cui, Tian
2015-01-01
A systematic computational study on the crystal structure of n-diamond has been performed using first-principle methods. A novel carbon allotrope with hexagonal symmetry R32 space group has been predicted. We name it as HR-carbon. HR-carbon composed of lonsdaleite layers and unique C3 isosceles triangle rings, is stable over graphite phase above 14.2 GPa. The simulated x-ray diffraction pattern, Raman, and energy-loss near-edge spectrum can match the experimental results very well, indicating that HR-carbon is a likely candidate structure for n-diamond. HR-carbon has an incompressible atomic arrangement because of unique C3 isosceles triangle rings. The hardness and bulk modulus of HR-carbon are calculated to be 80 GPa and 427 GPa, respectively, which are comparable to those of diamond. C3 isosceles triangle rings are very important for the stability and hardness of HR-carbon. PMID:26299905
Ab initio analysis of the defect structure of ceria
NASA Astrophysics Data System (ADS)
Zacherle, T.; Schriever, A.; De Souza, R. A.; Martin, M.
2013-04-01
We calculated the formation energies of all simple point defects in cubic fluorite structured CeO2 using density functional theory within the GGA+U approximation. All possible defect charge states were considered, and also polarons CeCe' and associates of polarons with oxygen vacancies: (VO··-CeCe')· and (CeCe'-VO··-CeCe')×. From the individual defect energies, we extracted Schottky, Frenkel, and anti-Frenkel energies: we find that anti-Frenkel disorder has the lowest energy in ceria. Energies for the reduction and the hydration of ceria are also computed, and the results are in good agreement with experiment. Finally, point-defect concentrations and conductivities are predicted for undoped and donor-doped systems as a function of oxygen partial pressure and temperature. The characteristic slopes found in experiment are reproduced.
Debela, T. T.; Wang, X. D.; Cao, Q. P.; Zhang, D. X.; Wang, S. Y.; Wang, Cai-Zhuang; Jiang, J. Z.
2013-12-12
Atomic structure transitions of liquid niobium during solidification, at different temperatures from 3200 to 1500 K, were studied by using ab initio molecular dynamics simulations. The local atomic structure variations with temperature are investigated by using the pair-correlation function, the structure factor, the bond-angle distribution function, the Honeycutt–Anderson index, Voronoi tessellation and the cluster alignment methods. Our results clearly show that, upon quenching, the icosahedral short-range order dominates in the stable liquid and supercooled liquid states before the system transforms to crystalline body-center cubic phase at a temperature of about 1830 K.
NASA Astrophysics Data System (ADS)
Sivaranjani, T.; Periandy, S.; Xavier, S.
2016-03-01
The FT-IR and FT-Raman spectra of 3-pyridinemethanol (3PYRM) have been recorded in the regions 4000-400 and 4000-100 cm-1 respectively. The vibrational analysis of 3PYRM was carried out using wavenumbers computed by HF and DFT (B3LYP) methods with 6-311++G (d, p) basis set, along with experimental values. The conformational analyses were performed and the energies of the different possible conformers were determined. The total electron density and MESP surfaces of the molecules were constructed using B3LYP/6-311++G (d, p) method to display nucleophilic and electrophilic region globally. The HOMO and LUMO energies were measured and different reactivity descriptors are discussed the active sites of the molecule. Natural Bond Orbital Analysis is discussed and possible transition are correlated with the electronic transitions. Milliken's net charges and the atomic natural charges are also predicted. The 13C and 1H NMR chemical shifts were computed at the B3LYP/6-311++G (2d, p) level by applying GIAO theory and compared with the experimental spectra recorded using the high resolution of 100 MHz and 400 MHz NMR spectrometer with electromagnetic field strength 9.1T, respectively. The temperature dependence of the thermodynamic properties; heat capacity, entropy and enthalpy for the title compounds were also determined by B3LYP/6-311++G (d, p) method.
NASA Astrophysics Data System (ADS)
Zeng, Xiancheng; Hu, Hao; Hu, Xiangqian; Cohen, Aron J.; Yang, Weitao
2008-03-01
Electron transfer (ET) reactions are one of the most important processes in chemistry and biology. Because of the quantum nature of the processes and the complicated roles of the solvent, theoretical study of ET processes is challenging. To simulate ET processes at the electronic level, we have developed an efficient density functional theory (DFT) quantum mechanical (QM)/molecular mechanical (MM) approach that uses the fractional number of electrons as the order parameter to calculate the redox free energy of ET reactions in solution. We applied this method to study the ET reactions of the aqueous metal complexes Fe(H2O)62+/3+ and Ru(H2O)62+/3+. The calculated oxidation potentials, 5.82 eV for Fe(II/III) and 5.14 eV for Ru(II/III), agree well with the experimental data, 5.50 and 4.96 eV, for iron and ruthenium, respectively. Furthermore, we have constructed the diabatic free energy surfaces from histogram analysis based on the molecular dynamics trajectories. The resulting reorganization energy and the diabatic activation energy also show good agreement with experimental data. Our calculations show that using the fractional number of electrons (FNE) as the order parameter in the thermodynamic integration process leads to efficient sampling and validate the ab initio QM/MM approach in the calculation of redox free energies.
Surface electron density models for accurate ab initio molecular dynamics with electronic friction
NASA Astrophysics Data System (ADS)
Novko, D.; Blanco-Rey, M.; Alducin, M.; Juaristi, J. I.
2016-06-01
Ab initio molecular dynamics with electronic friction (AIMDEF) is a valuable methodology to study the interaction of atomic particles with metal surfaces. This method, in which the effect of low-energy electron-hole (e-h) pair excitations is treated within the local density friction approximation (LDFA) [Juaristi et al., Phys. Rev. Lett. 100, 116102 (2008), 10.1103/PhysRevLett.100.116102], can provide an accurate description of both e-h pair and phonon excitations. In practice, its applicability becomes a complicated task in those situations of substantial surface atoms displacements because the LDFA requires the knowledge at each integration step of the bare surface electron density. In this work, we propose three different methods of calculating on-the-fly the electron density of the distorted surface and we discuss their suitability under typical surface distortions. The investigated methods are used in AIMDEF simulations for three illustrative adsorption cases, namely, dissociated H2 on Pd(100), N on Ag(111), and N2 on Fe(110). Our AIMDEF calculations performed with the three approaches highlight the importance of going beyond the frozen surface density to accurately describe the energy released into e-h pair excitations in case of large surface atom displacements.
Ab initio prediction of protein structure with both all-atom and simplified force fields
NASA Astrophysics Data System (ADS)
Scheraga, Harold
2004-03-01
Using only a physics-based ab initio method, and both all-atom (ECEPP/3) and simplified united-residue (UNRES) force fields, global optimization of both potential functions with Monte Carlo-plus-Minimization (MCM) and Conformational Space Annealing (CSA), respectively, provides predicted structures of proteins without use of knowledge-based information. The all-atom approach has been applied to the 46-residue protein A, and the UNRES approach has been applied to larger CASP targets. The predicted structures will be described.
Ramsdellite-structured LiTiO 2: A new phase predicted from ab initio calculations
NASA Astrophysics Data System (ADS)
Koudriachova, M. V.
2008-06-01
A new phase of highly lithiated titania with potential application as an anode in Li-rechargeable batteries is predicted on the basis of ab initio calculations. This phase has a composition LiTiO2 and may be accessed through electrochemical lithiation of ramsdellite-structured TiO2 at the lowest potential reported for titanium dioxide based materials. The potential remains constant over a wide range of Li-concentrations. The new phase is metastable with respect to a tetragonally distorted rock salt structure, which hitherto has been the only known polymorph of LiTiO2.
NASA Astrophysics Data System (ADS)
Govindarajan, M.; Karabacak, M.; Suvitha, A.; Periandy, S.
2012-04-01
In this work, the vibrational spectral analysis was carried out by using Raman and infrared spectroscopy in the range 100-4000 cm-1 and 50-4000 cm-1, respectively, for 4-chloro-3-nitrotoluene (C7H6NO2Cl) molecule. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on Hartree Fock (HF) and density functional theory (DFT) method and different basis sets combination. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The scaled B3LYP/6-311++G(d,p) results show the best agreement with the experimental values over the other methods. The calculated HOMO and LUMO energies shows that charge transfer within the molecule. The effects due to the substitutions of methyl group, nitro group and halogen were investigated. The results of the calculations were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. Besides, frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) and thermodynamic properties were performed.
Govindarajan, M; Karabacak, M; Suvitha, A; Periandy, S
2012-04-01
In this work, the vibrational spectral analysis was carried out by using Raman and infrared spectroscopy in the range 100-4000 cm(-1) and 50-4000 cm(-1), respectively, for 4-chloro-3-nitrotoluene (C7H6NO2Cl) molecule. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on Hartree Fock (HF) and density functional theory (DFT) method and different basis sets combination. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The scaled B3LYP/6-311++G(d,p) results show the best agreement with the experimental values over the other methods. The calculated HOMO and LUMO energies shows that charge transfer within the molecule. The effects due to the substitutions of methyl group, nitro group and halogen were investigated. The results of the calculations were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. Besides, frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) and thermodynamic properties were performed. PMID:22261102
NASA Astrophysics Data System (ADS)
Rasool, M. Nasir; Mehmood, Salman; Sattar, M. Atif; Khan, Muhammad Azhar; Hussain, Altaf
2015-12-01
Full potential linearized augmented plane wave method (FPLAPW) has been employed to probe the structural, electronic and magnetic properties of equiatomic yttrium based quaternary Heusler alloys YCoCrZ (Z=Si, Ge, Ga, Al). These calculations have been carried out via ab -initio simulations based on density functional theory (DFT) approach coded by Wien2K. The generalized gradient approximation of Perdew-Burke-Ernzerhof 96 scheme is engaged for calculations in all alloys under investigation. Equilibrium lattice constants are studied by structural optimization performed by computing total energies versus volumes. Structural optimization demonstrates that Y(3/4,3/4,3/4)Co(0,0,0)Cr(1/2,1/2,1/2)Z(1/4,1/4,1/4) (Type-1) configuration is the most stable one. The calculated electronic and magnetic properties based on type-1, indicate that YCoCrZ alloys are half-metallic ferromagnetic. The calculation of spin polarization is also made and further their total magnetic moments follow the Slater Pauling rule of Mtot=NVE-18 conceding the integer value i.e. 4.00μB and 3.00μB for YCoCrSi, Ge and YCoCrGa, Al respectively. The results of density of states (DOS) revealed that yttrium based quaternary Heusler alloys exhibit excellent band gaps i.e. 0.70, 0.65, 0.46 and 0.35 eV for YCoCrSi, Ge, Ga and Al respectively. The formation of band gaps owing to hybridization effect is also described. The half-metallic gaps of these compounds comprising the order YCoCrGa>YCoCrSi>YCoCrAl>YCoCrGe by size, is also manipulated. The incredible spin gapless semiconductor (SGS) type character of YCoCrGa and YCoCrAl having bantam DOS in spin up version is also discoursed. The optimised results of these compounds signpost that these are suitable candidates for spintronics applications.
Ab initio investigation of electronic properties of the magnesium hydride molecular ion.
Khemiri, Noura; Dardouri, Riadh; Oujia, Brahim; Gadéa, Florent Xavier
2013-09-12
In this work, adiabatic potential energy curves, spectroscopic constants, dipole moments, and vibrational levels for numerous electronic states of magnesium hydride molecular ion (MgH(+)) are computed. These properties are determined by the use of an ab initio method involving a nonempirical pseudopotential for the magnesium core (Mg), the core polarization potential (CPP), the l-dependent cutoff functions and the full valence configuration interaction (FCI). The molecular ion is thus treated as a two-electron system. Our calculations on the MgH(+) molecular ion extend previous theoretical works to numerous electronic excited states in the various symmetries. A good agreement with the available theoretical and experimental works is obtained for the spectroscopic constants, the adiabatic potential energy curves, and the dipole moments for the lowest states of MgH(+). PMID:23944679
An ab initio model for the modulation of galactic cosmic-ray electrons
Engelbrecht, N. E.; Burger, R. A.
2013-12-20
The modulation of galactic cosmic-ray electrons is studied using an ab initio three-dimensional steady state cosmic-ray modulation code in which the effects of turbulence on both the diffusion and drift of these cosmic-rays are treated as self-consistently as possible. A significant refinement is that a recent two-component turbulence transport model is used. This model yields results in reasonable agreement with observations of turbulence quantities throughout the heliosphere. The sensitivity of computed galactic electron intensities to choices of various turbulence parameters pertaining to the dissipation range of the slab turbulence spectrum, and to the choice of model of dynamical turbulence, is demonstrated using diffusion coefficients derived from the quasi-linear and extended nonlinear guiding center theories. Computed electron intensities and latitude gradients are also compared with spacecraft observations.
Simple synthesis, structure and ab initio study of 1,4-benzodiazepine-2,5-diones
NASA Astrophysics Data System (ADS)
Jadidi, Khosrow; Aryan, Reza; Mehrdad, Morteza; Lügger, Thomas; Ekkehardt Hahn, F.; Ng, Seik Weng
2004-04-01
A simple procedure for the synthesis of pyrido[2,1-c][1,4] benzodiazepine-6,12-dione ( 1) and 1,4-benzodiazepine-2,5-diones ( 2a- 2d), using microwave irradiation and/or conventional heating is reported. The configuration of 1 was determined by single-crystal X-ray diffraction. A detailed ab initio B3LYP/6-31G* calculation of structural parameters and substituent effects on ring inversion barriers (Δ G#) and also free energy differences (Δ G0) for benzodiazepines are reported.
Xu, Dong; Zhang, Yang
2012-01-01
Ab initio protein folding is one of the major unsolved problems in computational biology due to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1–20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 non-homologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score (TM-score) >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in 1/3 cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction (CASP9) experiment, QUARK server outperformed the second and third best servers by 18% and 47% based on the cumulative Z-score of global distance test-total (GDT-TS) scores in the free modeling (FM) category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress towards the solution of the most important problem in the field. PMID:22411565
Dynamics and Structure of Point Defects in Forsterite: ab initio calculations
NASA Astrophysics Data System (ADS)
Churakov, S.; Khisina, N.; Urusov, V.; Wirth, R.
2001-12-01
OH-bearing fluid inclusions in Fo92 forsterite samples from peridotite nodule 9206 (Udachnaja kimberlite pipe)[1] were documented recently based on TEM and IR studies. The Fourier transform of diffraction pattern from the inclusions exhibited a pattern, which is interpreted as ordered planar (2H)xMg defects. In this study the structure and dynamics of protons associated with Mg(1), Mg(2) vacancies and interstitial polyhedrons ordered in a (100) plane corresponding to double unite cell periodicity of the forsterite lattice has been investigated by ab initio quantum mechanic calculations. Static structure optimizations and ab-initio molecular dynamics (MD) simulations have been performed using the CPMD density functional code[2]. The calculations were accomplished with the BLYP-functional utilizing the generalized gradient approximation. Non-local Goedecker-type pseudopotentials[3] have been applied to account for core electrons. Valence electron orbitals were approximated by plane wave expansion up to 70 Ry energy cutoff. The energy of static structures was sampled on 2x2x2 Monkhorst-Pack mesh[4]. During the structure relaxation parameters of an orthorhombic 2x1x2 supercell contaning 116 atoms corresponding to Mg28Si16O64H8 hydrous olivine was fixed at experimental values of a=9.524Å b=10.225Å and c=11.988Å relative to the Pbnm space group. Series of NVT-MD calculations were performed at 1000 K on 2x1x1 supercell with 58 atoms using four chain Nose thermostat. Randomly disturbed optimized structures were used as initial configuration for MD runs. The 1ps system equilibration is followed by trajectory production over 5 ps interval. A point energy sampling was applied in all MD calculations. A series of geometry optimizations, starting with various initial position of protons in Mg(1), Mg(2) and interstitial sites were carried out to obtain a structure with the lowest lattice energy. It was found that structures with protons completely located within the M1
Ab initio spectroscopic characterization of borane, BH, in its X1Σ+ electronic state.
Koput, Jacek
2015-11-15
The accurate potential energy and electric dipole moment functions of borane, BH, in its X1Σ+ electronic state have been determined from ab initio calculations using the multireference averaged coupled-pair functional method in conjunction with the correlation-consistent core-valence basis sets up to septuple-zeta quality. The higher-order electron correlation, scalar relativistic, adiabatic, and nonadiabatic effects were discussed. Vibration-rotation energy levels of the (11)BH, (11)BD, (10)BH, and (10)BD isotopologues were predicted to near "spectroscopic" accuracy. For the main isotopologue (11)BH, the adiabatic dissociation energy D0 and the effective equilibrium internuclear distance r(e) were predicted to be 28,469 ± 10 cm(-1) and 1.23214 ± 0.0001 Å, respectively. PMID:26444679
Ab Initio Dynamics of AN Electron Interacting with a Lattice Defect
NASA Astrophysics Data System (ADS)
Ivanov, Vsevolod; Bernardi, Marco
We study the scattering process of a charge carrier with a defect in a range of bulk and 2D materials. The scattering potential is obtained using density functional theory, the carrier is represented by a gaussian wavepacket, and the dynamics is carried out with a split-operator technique. Our parallel code can model the electron-defect scattering processes in real space and time, with an electron wavepacket of realistic size (100 - 1000 unit cells) and an accuracy typical of ab initio calculations. We apply our approach to model a carrier scattering with a vacancy in silicon and an impurity in monolayer MoS2, obtaining angular dependent scattering cross sections and resonant states.
Ab initio electron scattering cross-sections and transport in liquid xenon
NASA Astrophysics Data System (ADS)
Boyle, G. J.; McEachran, R. P.; Cocks, D. G.; Brunger, M. J.; Buckman, S. J.; Dujko, S.; White, R. D.
2016-09-01
Ab initio fully differential cross-sections for electron scattering in liquid xenon are developed from a solution of the Dirac–Fock scattering equations, using a recently developed framework (Boyle et al 2015 J. Chem. Phys. 142 154507) which considers multipole polarizabilities, a non-local treatment of exchange, and screening and coherent scattering effects. A multi-term solution of Boltzmann’s equation accounting for the full anisotropic nature of the differential cross-section is used to calculate transport properties of excess electrons in liquid xenon. The results were found to agree to within 25% of the measured mobilities and characteristic energies over the reduced field range of 10‑4–1 Td. The accuracies are comparable to those achieved in the gas phase. A simple model, informed by highly accurate gas-phase cross-sections, is presented to improve the liquid cross-sections, which was found to enhance the accuracy of the transport coefficient calculations.
Ab-initio Calculations of Electronic Properties of Boron Phosphide (BP)
NASA Astrophysics Data System (ADS)
Ejembi, John; Franklin, Lashaunda; Malozovsky, Yuriy; Bagayoko, Diola
2014-03-01
We present results from ab-initio, self consistent local density approximation (LDA) calculations of electronic and related properties of zinc blende boron phosphide (BP). We employed a local density approximation (LDA) potential and implemented the linear combination of atomic orbitals (LCAO) formalism. This implementation followed the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). We discuss our preliminary results for the indirect band gap, from Γ to X, of Boron Phosphide. We also report calculated electron and hole effective masses for Boron Phosphide and total (DOS) and partial (pDOS) density of states. Acknowledgments: This research is funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE-NA0001861), LaSPACE, and LONI-SUBR.
NASA Astrophysics Data System (ADS)
Petit, L.; Paudyal, D.; Mudryk, Y.; Gschneidner, K. A.; Pecharsky, V. K.; Lüders, M.; Szotek, Z.; Banerjee, R.; Staunton, J. B.
2015-11-01
We explain a profound complexity of magnetic interactions of some technologically relevant gadolinium intermetallics using an ab initio electronic structure theory which includes disordered local moments and strong f -electron correlations. The theory correctly finds GdZn and GdCd to be simple ferromagnets and predicts a remarkably large increase of Curie temperature with a pressure of +1.5 K kbar-1 for GdCd confirmed by our experimental measurements of +1.6 K kbar-1 . Moreover, we find the origin of a ferromagnetic-antiferromagnetic competition in GdMg manifested by noncollinear, canted magnetic order at low temperatures. Replacing 35% of the Mg atoms with Zn removes this transition, in excellent agreement with long-standing experimental data.
Calderín, L; González, L E; González, D J
2009-05-21
We report a study on several static, dynamic, and electronic properties of liquid Hg at room temperature. We have performed ab initio molecular dynamics simulations using Kohn-Sham density functional theory combined with a nonlocal ultrasoft pseudopotential. The calculated static structure shows good agreement with the available experimental data. We present results for the single-particle dynamics, and recent experimental data are analyzed. The calculated dynamic structure factors S(q,omega) fairly agree with their experimental counterparts as measured by inelastic x-ray (and neutron) scattering experiments. The dispersion relation exhibits a positive dispersion, which however is not so marked as suggested by the experiment; moreover, its slope at the long-wavelength limit provides a good estimate of the experimental sound velocity. We have also analyzed the dynamical processes behind the S(q,omega) in terms of a model including a relaxation mechanism with both fast and slow characteristic time scales. PMID:19466841
Ab initio study of the structure and dynamics of bulk liquid Fe
NASA Astrophysics Data System (ADS)
Marqués, M.; González, L. E.; González, D. J.
2015-10-01
Several static and dynamic properties of bulk liquid Fe at a thermodynamic state near its triple point have been evaluated by ab initio molecular dynamics simulations. The calculated static structure shows very good agreement with the available experimental data, including an asymmetric second peak in the structure factor which underlines a substantial local icosahedral short-range order in the liquid. The dynamical structure reveals propagating density fluctuations, with an associated dispersion relation which closely follows the experimental data. The dynamic structure factors S (q ,ω ) show a good agreement with their experimental counterparts which have been recently measured by an inelastic x-ray scattering experiment. The dynamical processes behind the S (q ,ω ) have been analyzed by using a model with two decay channels (a fast and a slow) associated with the relaxations of the collective excitations. The recent finding of transverselike excitation modes in the IXS data is analyzed by using the present ab initio simulation results. Several transport coefficients have been evaluated and the results are compared with the available experimental data.
NASA Astrophysics Data System (ADS)
Kang, Youngho; Jeon, Sang Ho; Cho, Youngmi; Han, Seungwu
2016-01-01
We investigate the vertical ionization potential (IP) and electron affinity (EA) of organic semiconductors in the solid state that govern the optoelectrical property of organic devices using a fully ab initio way. The present method combines the density functional theory and many-body perturbation theory based on G W approximations. To demonstrate the accuracy of this approach, we carry out calculations on several prototypical organic molecules. Since IP and EA depend on the molecular orientation at the surface, the molecular geometry of the surface is explicitly considered through the slab model. The computed IP and EA are in reasonable and consistent agreements with spectroscopic data on organic surfaces with various molecular arrangements. However, the transport gaps are slightly underestimated in calculations, which can be explained by different screening effects between surface and bulk regions.
NASA Astrophysics Data System (ADS)
Kumar, Anupriya; Kołaski, Maciej; Kim, Kwang S.
2008-01-01
Structures of the ground state pyrrole-(H2O)n clusters are investigated using ab initio calculations. The charge-transfer driven femtosecond scale dynamics are studied with excited state ab initio molecular dynamics simulations employing the complete-active-space self-consistent-field method for pyrrole-(H2O)n clusters. Upon the excitation of these clusters, the charge density is located over the farthest water molecule which is repelled by the depleted π-electron cloud of pyrrole ring, resulting in a highly polarized complex. For pyrrole-(H2O), the charge transfer is maximized (up to 0.34a.u.) around ˜100fs and then oscillates. For pyrrole-(H2O)2, the initial charge transfer occurs through the space between the pyrrole and the π H-bonded water molecule and then the charge transfer takes place from this water molecule to the σ H-bonded water molecule. The total charge transfer from the pyrrole to the water molecules is maximized (up to 0.53a.u.) around ˜100fs.
Symmetry-Adapted Ab Initio Shell Model for Nuclear Structure Calculations
NASA Astrophysics Data System (ADS)
Draayer, J. P.; Dytrych, T.; Launey, K. D.; Langr, D.
2012-05-01
An innovative concept, the symmetry-adapted ab initio shell model, that capitalizes on partial as well as exact symmetries that underpin the structure of nuclei, is discussed. This framework is expected to inform the leading features of nuclear structure and reaction data for light and medium mass nuclei, which are currently inaccessible by theory and experiment and for which predictions of modern phenomenological models often diverge. We use powerful computational and group-theoretical algorithms to perform ab initio CI (configuration-interaction) calculations in a model space spanned by SU(3) symmetry-adapted many-body configurations with the JISP16 nucleon-nucleon interaction. We demonstrate that the results for the ground states of light nuclei up through A = 16 exhibit a strong dominance of low-spin and high-deformation configurations together with an evident symplectic structure. This, in turn, points to the importance of using a symmetry-adapted framework, one based on an LS coupling scheme with the associated spatial configurations organized according to deformation.
NASA Technical Reports Server (NTRS)
Lawson, John W.; Bauschlicher, Charles W.; Daw, Murray
2011-01-01
Refractory materials such as metallic borides, often considered as ultra high temperature ceramics (UHTC), are characterized by high melting point, high hardness, and good chemical inertness. These materials have many applications which require high temperature materials that can operate with no or limited oxidation. Ab initio, first principles methods are the most accurate modeling approaches available and represent a parameter free description of the material based on the quantum mechanical equations. Using these methods, many of the intrinsic properties of these material can be obtained. We performed ab initio calculations based on density functional theory for the UHTC materials ZrB2 and HfB2. Computational results are presented for structural information (lattice constants, bond lengths, etc), electronic structure (bonding motifs, densities of states, band structure, etc), thermal quantities (phonon spectra, phonon densities of states, specific heat), as well as information about point defects such as vacancy and antisite formation energies.
NASA Astrophysics Data System (ADS)
Zhou, Liangcai; Körmann, Fritz; Holec, David; Bartosik, Matthias; Grabowski, Blazej; Neugebauer, Jörg; Mayrhofer, Paul H.
2014-11-01
The dynamical and thermodynamic phase stabilities of the stoichiometric compound CrN including different structural and magnetic configurations are comprehensively investigated using a first-principles density functional theory (DFT) plus U (DFT +U ) approach in conjunction with experimental measurements of the thermal expansion. Comparing DFT and DFT +U results with experimental data reveals that the treatment of electron correlations using methods beyond standard DFT is crucial. The nonmagnetic face-centered cubic B1-CrN phase is both elastically and dynamically unstable, even under high pressure, while CrN phases with nonzero local magnetic moments are predicted to be dynamically stable within the framework of the DFT +U scheme. Furthermore, the impact of different treatments for the exchange-correlation (xc)-functional is investigated by carrying out all computations employing the local density approximation and generalized gradient approximation. To address finite-temperature properties, both magnetic and vibrational contributions to the free energy have been computed employing our recently developed spin-space averaging method. The calculated phase transition temperature between low-temperature antiferromagnetic and high-temperature paramagnetic (PM) CrN variants is in excellent agreement with experimental values and reveals the strong impact of the choice of the xc-functional. The temperature-dependent linear thermal expansion coefficient of CrN is experimentally determined by the wafer curvature method from a reactive magnetron sputter deposited single-phase B1-CrN thin film with dense film morphology. A good agreement is found between experimental and ab initio calculated linear thermal expansion coefficients of PM B1-CrN. Other thermodynamic properties, such as the specific heat capacity, have been computed as well and compared to previous experimental data.
NASA Astrophysics Data System (ADS)
Jakubek, Z. J.; Bunker, P. R.; Zachwieja, M.; Nakhate, S. G.; Simard, B.; Yurchenko, S. N.; Thiel, W.; Jensen, Per
2006-03-01
In this work, the X˜B12 and ÃA12 electronic states of the phosphino (PH2) free radical have been studied by dispersed fluorescence and ab initio methods. PH2 molecules were produced in a molecular free-jet apparatus by laser vaporizing a silicon rod in the presence of phosphine (PH3) gas diluted in helium. The laser-induced fluorescence, from the excited ÃA12 electronic state down to the ground electronic state, was dispersed and analyzed. Ten (υ1υ2υ3) vibrationally excited levels of the ground electronic state, with υ1⩽2, υ2⩽6, and υ3=0, have been observed. Ab initio potential-energy surfaces for the X˜B12 and ÃA12 electronic states have been calculated at 210 points. These two states correlate with a Πu2 state at linearity and they interact by the Renner-Teller coupling and spin-orbit coupling. Using the ab initio potential-energy surfaces with our RENNER computer program system, the vibronic structure and relative intensities of the ÃA12→X˜B12 emission band system have been calculated in order to corroborate the experimental assignments.
Ab initio investigations of A-site doping on the structure and electric polarization of HoMnO3
NASA Astrophysics Data System (ADS)
S, Sathya Sheela; C, Kanagaraj; Natesan, Baskaran
2015-06-01
We have investigated the effect of A-site doping on the structure and electric polarization of orthorhombic HoMnO3 using ab initio density functional theory calculations. We find that the substitution of rare earth ions, such as Lu, Y and La in place of Ho in orthorhombic HoMnO3 modifies the local structure around Mn ions drastically, and leads to the formation of two distinct Mn sites Mn(0) and Mn(1). As a result, large variance between Mn(0)O6 and Mn(1)O6 octahedral distortions arises. This variance in the octahedral distortions drives the disparate hopping of electrons between the eg orbitals enhancing the electronic polarization with increasing rare earth ion radius. The largest polarization of 7 µC/cm2 is obtained for La doped HoMnO3. This increase in polarization has been explained on the basis of radius mismatch induced local structural effects.
The Crystal Structure of Impurity Centers Tm^{2+} and Eu^{2+} in SrCl2 : Ab Initio Calculations
NASA Astrophysics Data System (ADS)
Chernyshev, V. A.; Serdcev, A. V.; Petrov, V. P.; Nikiforov, A. E.
2016-01-01
Ab initio calculations of the impurity centers Tm^{2+} thulium and europium Eu^{2+} in SrCl2 and MeF2 (Me = Ca, Sr, Ba) were carried out at low (zero) temperature. The crystal structure of impurity centers was investigated. Charge density maps show that the bonds formed by the rare-earth ions have an ionic character. The crystal structures, lattice dynamics, and band structures of MeF2 and SrCl2 were calculated at low temperature. Ab initio calculations were performed in periodic CRYSTAL code within the framework of the MO LCAO approach by using hybrid DFT functionals.
Xiong, L H; Yoo, H; Lou, H B; Wang, X D; Cao, Q P; Zhang, D X; Jiang, J Z; Xie, H L; Xiao, T Q; Jeon, S; Lee, G W
2015-01-28
X-ray diffraction and electrostatic levitation measurements, together with the ab initio molecular dynamics simulation of liquid Al(75)Cu(25) alloy have been performed from 800 to 1600 K. Experimental and ab initio molecular dynamics simulation results match well with each other. No abnormal changes were experimentally detected in the specific heat capacity over total hemispheric emissivity and density curves in the studied temperature range for a bulk liquid Al(75)Cu(25) alloy measured by the electrostatic levitation technique. The structure factors gained by the ab initio molecular dynamics simulation precisely coincide with the experimental data. The atomic structure analyzed by the Honeycutt-Andersen index and Voronoi tessellation methods shows that icosahedral-like atomic clusters prevail in the liquid Al(75)Cu(25) alloy and the atomic clusters evolve continuously. All results obtained here suggest that no liquid-liquid transition appears in the bulk liquid Al(75)Cu(25) alloy in the studied temperature range. PMID:25524926