Sample records for abab reversal design

  1. Data-Division-Specific Robustness and Power of Randomization Tests for ABAB Designs

    ERIC Educational Resources Information Center

    Manolov, Rumen; Solanas, Antonio; Bulte, Isis; Onghena, Patrick

    2010-01-01

    This study deals with the statistical properties of a randomization test applied to an ABAB design in cases where the desirable random assignment of the points of change in phase is not possible. To obtain information about each possible data division, the authors carried out a conditional Monte Carlo simulation with 100,000 samples for each…

  2. Estimating Intervention Effects across Different Types of Single-Subject Experimental Designs: Empirical Illustration

    ERIC Educational Resources Information Center

    Moeyaert, Mariola; Ugille, Maaike; Ferron, John M.; Onghena, Patrick; Heyvaert, Mieke; Beretvas, S. Natasha; Van den Noortgate, Wim

    2015-01-01

    The purpose of this study is to illustrate the multilevel meta-analysis of results from single-subject experimental designs of different types, including AB phase designs, multiple-baseline designs, ABAB reversal designs, and alternating treatment designs. Current methodological work on the meta-analysis of single-subject experimental designs…

  3. Functional recovery in upper limb function in stroke survivors by using brain-computer interface A single case A-B-A-B design.

    PubMed

    Ono, Takashi; Mukaino, Masahiko; Ushiba, Junichi

    2013-01-01

    Resent studies suggest that brain-computer interface (BCI) training for chronic stroke patient is useful to improve their motor function of paretic hand. However, these studies does not show the extent of the contribution of the BCI clearly because they prescribed BCI with other rehabilitation systems, e.g. an orthosis itself, a robotic intervention, or electrical stimulation. We therefore compared neurological effects between interventions with neuromuscular electrical stimulation (NMES) with motor imagery and BCI-driven NMES, employing an ABAB experimental design. In epoch A, the subject received NMES on paretic extensor digitorum communis (EDC). The subject was asked to attempt finger extension simultaneously. In epoch B, the subject received NMES when BCI system detected motor-related electroencephalogram change while attempting motor imagery. Both epochs were carried out for 60 min per day, 5 days per week. As a result, EMG activity of EDC was enhanced by BCI-driven NMES and significant cortico-muscular coherence was observed at the final evaluation. These results indicate that the training by BCI-driven NMES is effective even compared to motor imagery combined with NMES, suggesting the superiority of closed-loop training with BCI-driven NMES to open-loop NMES for chronic stroke patients.

  4. Selection of Behavior Modification Programs Using the Simultaneous Treatment Design: Two Case Studies.

    ERIC Educational Resources Information Center

    Lowe, Warren C.

    This report outlines the limitations and weaknesses of singlecase, time-series research designs, of which the ABAB design is one of the widely used. An alternative design, the simultaneous treatment design, proposed by Browning and Stover (1971), has several advantages over the ABAB design. The design enables an experimenter to simultaneously…

  5. The Distributed Criterion Design

    ERIC Educational Resources Information Center

    McDougall, Dennis

    2006-01-01

    This article describes and illustrates a novel form of the changing criterion design called the distributed criterion design, which represents perhaps the first advance in the changing criterion design in four decades. The distributed criterion design incorporates elements of the multiple baseline and A-B-A-B designs and is well suited to applied…

  6. Novel Designs of Quantum Reversible Counters

    NASA Astrophysics Data System (ADS)

    Qi, Xuemei; Zhu, Haihong; Chen, Fulong; Zhu, Junru; Zhang, Ziyang

    2016-11-01

    Reversible logic, as an interesting and important issue, has been widely used in designing combinational and sequential circuits for low-power and high-speed computation. Though a significant number of works have been done on reversible combinational logic, the realization of reversible sequential circuit is still at premature stage. Reversible counter is not only an important part of the sequential circuit but also an essential part of the quantum circuit system. In this paper, we designed two kinds of novel reversible counters. In order to construct counter, the innovative reversible T Flip-flop Gate (TFG), T Flip-flop block (T_FF) and JK flip-flop block (JK_FF) are proposed. Based on the above blocks and some existing reversible gates, the 4-bit binary-coded decimal (BCD) counter and controlled Up/Down synchronous counter are designed. With the help of Verilog hardware description language (Verilog HDL), these counters above have been modeled and confirmed. According to the simulation results, our circuits' logic structures are validated. Compared to the existing ones in terms of quantum cost (QC), delay (DL) and garbage outputs (GBO), it can be concluded that our designs perform better than the others. There is no doubt that they can be used as a kind of important storage components to be applied in future low-power computing systems.

  7. Designing Novel Quaternary Quantum Reversible Subtractor Circuits

    NASA Astrophysics Data System (ADS)

    Haghparast, Majid; Monfared, Asma Taheri

    2018-01-01

    Reversible logic synthesis is an important area of current research because of its ability to reduce energy dissipation. In recent years, multiple valued logic has received great attention due to its ability to reduce the width of the reversible circuit which is a main requirement in quantum technology. Subtractor circuits are between major components used in quantum computers. In this paper, we will discuss the design of a quaternary quantum reversible half subtractor circuit using quaternary 1-qudit, 2-qudit Muthukrishnan-Stroud and 3-qudit controlled gates and a 2-qudit Generalized quaternary gate. Then a design of a quaternary quantum reversible full subtractor circuit based on the quaternary half subtractor will be presenting. The designs shall then be evaluated in terms of quantum cost, constant input, garbage output, and hardware complexity. The proposed quaternary quantum reversible circuits are the first attempt in the designing of the aforementioned subtractor.

  8. How to customize a bona fide psychotherapy for generalized anxiety disorder? A two-arms, patient blinded, ABAB crossed-therapist randomized clinical implementation trial design [IMPLEMENT 2.0].

    PubMed

    Flückiger, Christoph; Wolfer, Christine; Held, Judith; Hilpert, Peter; Rubel, Julian; Allemand, Mathias; Zinbarg, Richard E; Vîslă, Andreea

    2018-04-03

    Bona fide psychotherapy approaches are effective treatments for generalized anxiety disorder (GAD) compared to no-treatment conditions. Treatment manuals and protocols allow a relatively high degree of freedom for the way therapists implement these overall treatment packages and there is a systematic lack of knowledge on how therapists should customize these treatments. The present study experimentally examines two implementation strategies of customizing a bona fide psychotherapy approach based on a 16 session time-limited cognitive-behavioral therapy (CBT) protocol and their relation to the post-session and ultimate treatment outcomes. This trial contrasts two different implementation strategies of how to customize the in-session structure of a manual-based CBT-protocol for GAD. The patients will be randomly assigned to two implementation conditions: (1) a systematic focus on subtle changes lasting from 7 to 20 min at the check-in phase of every psychotherapy session and (2) a state-of-the-art (SOTA) check-in phase lasting several minutes mainly focused on the session goals. Potential therapist effects will be examined based on an ABAB crossed-therapist design. Treatment outcomes will be assessed at the following times: post-session outcomes, treatment outcome at post assessment and 6- as well as 12-month follow-up. The proposed randomized clinical implementation trial addresses the clinically relevant question of how to customize a bona fide psychotherapy protocol experimentally contrasting two implementation strategies. Through the development and testing of the proposed implementation design, this trial has the potential to inform therapists about efficacious implementation strategies of how to customize a manual-based treatment protocol in respect to the timing of the in-session structure. This trial was registered at ClinicalTrials.gov ( NCT03079336 ) at March 14, 2017.

  9. "Our Mystery Hero!" A Group Contingency Intervention for Reducing Verbally Disrespectful Behaviors

    ERIC Educational Resources Information Center

    Jones, Melissa; Boon, Richard T.; Fore, Cecil, III; Bender, William N.

    2008-01-01

    A reversal (ABAB) design was used to evaluate the effectiveness of a group contingency intervention on the verbally disrespectful behaviors of seven middle school students with specific learning disabilities and attention deficit disorders (ADHD) in a special education resource classroom setting for reading instruction. During the intervention…

  10. Design of a reversible single precision floating point subtractor.

    PubMed

    Anantha Lakshmi, Av; Sudha, Gf

    2014-01-04

    In recent years, Reversible logic has emerged as a major area of research due to its ability to reduce the power dissipation which is the main requirement in the low power digital circuit design. It has wide applications like low power CMOS design, Nano-technology, Digital signal processing, Communication, DNA computing and Optical computing. Floating-point operations are needed very frequently in nearly all computing disciplines, and studies have shown floating-point addition/subtraction to be the most used floating-point operation. However, few designs exist on efficient reversible BCD subtractors but no work on reversible floating point subtractor. In this paper, it is proposed to present an efficient reversible single precision floating-point subtractor. The proposed design requires reversible designs of an 8-bit and a 24-bit comparator unit, an 8-bit and a 24-bit subtractor, and a normalization unit. For normalization, a 24-bit Reversible Leading Zero Detector and a 24-bit reversible shift register is implemented to shift the mantissas. To realize a reversible 1-bit comparator, in this paper, two new 3x3 reversible gates are proposed The proposed reversible 1-bit comparator is better and optimized in terms of the number of reversible gates used, the number of transistor count and the number of garbage outputs. The proposed work is analysed in terms of number of reversible gates, garbage outputs, constant inputs and quantum costs. Using these modules, an efficient design of a reversible single precision floating point subtractor is proposed. Proposed circuits have been simulated using Modelsim and synthesized using Xilinx Virtex5vlx30tff665-3. The total on-chip power consumed by the proposed 32-bit reversible floating point subtractor is 0.410 W.

  11. Improving Closing Task Completion in a Drugstore

    ERIC Educational Resources Information Center

    Fante, Rhiannon; Davis, Ora L.; Kempt, Vivian

    2013-01-01

    A within-subject ABAB reversal design was utilized to investigate the effects of graphic feedback and goal setting on employee closing task completion. Goal setting was contingent upon baseline performance and graphic feedback was posted weekly. It was found that goal setting and graphic feedback improved employee closing task completion.…

  12. RNA Virus Reverse Genetics and Vaccine Design

    PubMed Central

    Stobart, Christopher C.; Moore, Martin L.

    2014-01-01

    RNA viruses are capable of rapid spread and severe or potentially lethal disease in both animals and humans. The development of reverse genetics systems for manipulation and study of RNA virus genomes has provided platforms for designing and optimizing viral mutants for vaccine development. Here, we review the impact of RNA virus reverse genetics systems on past and current efforts to design effective and safe viral therapeutics and vaccines. PMID:24967693

  13. Increasing Social Interactions Using Prompts and Rewards for Adolescents with ASD in an Ice Hockey Practice Context

    ERIC Educational Resources Information Center

    Beiers, Kevin; Derby, K. Mark; McLaughlin, T. F.

    2016-01-01

    We evaluated the effects of using prompts and reinforcement procedures to increase the social interaction of two children with autism (ASD). This study took place during the context of a hockey practice. Two adolescent participants were evaluated using an ABAB single subject reversal design. Baseline data were collected prior to and after the…

  14. Effect of reverse shoulder design philosophy on muscle moment arms.

    PubMed

    Hamilton, Matthew A; Diep, Phong; Roche, Chris; Flurin, Pierre Henri; Wright, Thomas W; Zuckerman, Joseph D; Routman, Howard

    2015-04-01

    This study analyzes the muscle moment arms of three different reverse shoulder design philosophies using a previously published method. Digital bone models of the shoulder were imported into a 3D modeling software and markers placed for the origin and insertion of relevant muscles. The anatomic model was used as a baseline for moment arm calculations. Subsequently, three different reverse shoulder designs were virtually implanted and moment arms were analyzed in abduction and external rotation. The results indicate that the lateral offset between the joint center and the axis of the humerus specific to one reverse shoulder design increased the external rotation moment arms of the posterior deltoid relative to the other reverse shoulder designs. The other muscles analyzed demonstrated differences in the moment arms, but none of the differences reached statistical significance. This study demonstrated how the combination of variables making up different reverse shoulder designs can affect the moment arms of the muscles in different and statistically significant ways. The role of humeral offset in reverse shoulder design has not been previously reported and could have an impact on external rotation and stability achieved post-operatively. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  15. The Identification and Establishment of Reinforcement for Collaboration in Elementary Students

    ERIC Educational Resources Information Center

    Darcy, Laura

    2017-01-01

    In Experiment 1, I conducted a functional analysis of student rate of learning with and without a peer-yoked contingency for 12 students in Kindergarten through 2nd grade in order to determine if they had conditioned reinforcement for collaboration. Using an ABAB reversal design, I compared rate of learning as measured by learn units to criterion…

  16. Effects of a Snoezelen Room on the Behavior of Three Autistic Clients

    ERIC Educational Resources Information Center

    McKee, Shari A.; Harris, Grant T.; Rice, Marnie E.; Silk, Larry

    2007-01-01

    The effect of a Snoezelen room on the disruptive and prosocial behavior of three male, autistic inpatients was examined. In an ABAB reversal design, specific disruptive and prosocial behaviors were recorded for each client throughout the four 28-day periods of the study. Results indicated that the three clients had different responses to the room,…

  17. Brief Report: Use of an Antecedent Procedure to Decrease Night Awakening in an Infant--A Replication

    ERIC Educational Resources Information Center

    Cautilli, Joseph

    2005-01-01

    Borowski, Hunter, and Johnson (2001) found that an antecedent strategy such as white noise could decrease sleep awakenings for infants in the natural home environment. This study attempts to replicate the findings using an ABAB reversal design. A five month and one week old child, who had difficulty with waking an average of four times per night,…

  18. Examining Treatment Effects for Single-Case ABAB Designs through Sensitivity Analyses

    ERIC Educational Resources Information Center

    Crumbacher, Christine A.

    2013-01-01

    Single-case designs (SCDs) are often used to examine the impact of an intervention over brief periods of time (Kratochwill & Stoiber, 2002; Segool, Brinkman, & Carlson, 2007). The majority of SCDs are inspected using visual analysis (Kromrey & Foster-Johnson, 1996; Morgan & Morgan, 2009). Although the single-case literature…

  19. Optimal design of reverse osmosis module networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maskan, F.; Wiley, D.E.; Johnston, L.P.M.

    2000-05-01

    The structure of individual reverse osmosis modules, the configuration of the module network, and the operating conditions were optimized for seawater and brackish water desalination. The system model included simple mathematical equations to predict the performance of the reverse osmosis modules. The optimization problem was formulated as a constrained multivariable nonlinear optimization. The objective function was the annual profit for the system, consisting of the profit obtained from the permeate, capital cost for the process units, and operating costs associated with energy consumption and maintenance. Optimization of several dual-stage reverse osmosis systems were investigated and compared. It was found thatmore » optimal network designs are the ones that produce the most permeate. It may be possible to achieve economic improvements by refining current membrane module designs and their operating pressures.« less

  20. Enhancement of roll maneuverability using post-reversal design

    NASA Astrophysics Data System (ADS)

    Li, Wei-En

    This dissertation consists of three main parts. The first part is to discuss aileron reversal problem for a typical section with linear aerodynamic and structural analysis. The result gives some insight and ideas for this aeroelastic problem. Although the aileron in its post-reversal state will work the opposite of its design, this type of phenomenon as a design root should not be ruled out on these grounds alone, as current active flight-control systems can compensate for this. Moreover, one can get considerably more (negative) lift for positive flap angle in this unusual regime than positive lift for positive flap angle in the more conventional setting. This may have important implications for development of highly maneuverable aircraft. The second part is to involve the nonlinear aerodynamic and structural analyses into the aileron reversal problem. Two models, a uniform cantilevered lifting surface and a rolling aircraft with rectangular wings, are investigated here. Both models have trailing-edge control surfaces attached to the main wings. A configuration that reverses at a relatively low dynamic pressure and flies with the enhanced controls at a higher level of effectiveness is demonstrated. To evaluate how reliable for the data from XFOIL, the data for the wing-aileron system from advanced CFD codes and experiment are used to compare with that from XFOIL. To enhance rolling maneuverability for an aircraft, the third part is to search for the optimal configuration during the post-reversal regime from a design point of view. Aspect ratio, hinge location, airfoil dimension, inner structure of wing section, composite skin, aeroelastic tailoring, and airfoil selection are investigated for cantilevered wing and rolling aircraft models, respectively. Based on these parametric structural designs as well as the aerodynamic characteristics of different airfoils, recommendations are given to expand AAW flight program.

  1. Thrust reverser design studies for an over-the-wing STOL transport

    NASA Technical Reports Server (NTRS)

    Ammer, R. C.; Sowers, H. D.

    1977-01-01

    Aerodynamic and acoustics analytical studies were conducted to evaluate three thrust reverser designs for potential use on commercial over-the-wing STOL transports. The concepts were: (1) integral D nozzle/target reverser, (2) integral D nozzle/top arc cascade reverser, and (3) post exit target reverser integral with wing. Aerodynamic flowpaths and kinematic arrangements for each concept were established to provide a 50% thrust reversal capability. Analytical aircraft stopping distance/noise trade studies conducted concurrently with flow path design showed that these high efficiency reverser concepts are employed at substantially reduced power settings to meet noise goals of 100 PNdB on a 152.4 m sideline and still meet 609.6 m landing runway length requirements. From an overall installation standpoint, only the integral D nozzle/target reverser concept was found to penalize nacelle cruise performance; for this concept a larger nacelle diameter was required to match engine cycle effective area demand in reverse thrust.

  2. Reverse Shoulder Arthroplasty Prosthesis Design Classification System.

    PubMed

    Routman, Howard D; Flurin, Pierre-Henri; Wright, Thomas W; Zuckerman, Joseph D; Hamilton, Matthew A; Roche, Christopher P

    2015-12-01

    Multiple different reverse total shoulder arthroplasty (rTSA) prosthesis designs are available in the global marketplace for surgeons to perform this growing procedure. Subtle differences in rTSA prosthesis design parameters have been shown to have significant biomechanical impact and clinical consequences. We propose an rTSA prosthesis design classification system to objectively identify and categorize different designs based upon their specific glenoid and humeral prosthetic characteristics for the purpose of standardizing nomenclature that will help the orthopaedic surgeon determine which combination of design configurations best suit a given clinical scenario. The impact of each prosthesis classification type on shoulder muscle length and deltoid wrapping are also described to illustrate how each prosthesis classification type impacts these biomechanical parameters.

  3. Single-Case Experimental Designs for the Evaluation of Treatments for Self-Injurious and Suicidal Behaviors

    ERIC Educational Resources Information Center

    Rizvi, Shireen L.; Nock, Matthew K.

    2008-01-01

    Single-case experimental designs (SCEDs) provide a time- and cost-effective alternative to randomized clinical trials and offer significant advantages in terms of internal and external validity. A brief history and primer on SCEDs is provided, specifically for use in suicide intervention research. Various SCED methodologies, such as AB, ABAB,…

  4. Designing Nanoscale Counter Using Reversible Gate Based on Quantum-Dot Cellular Automata

    NASA Astrophysics Data System (ADS)

    Moharrami, Elham; Navimipour, Nima Jafari

    2018-04-01

    Some new technologies such as Quantum-dot Cellular Automata (QCA) is suggested to solve the physical limits of the Complementary Metal-Oxide Semiconductor (CMOS) technology. The QCA as one of the novel technologies at nanoscale has potential applications in future computers. This technology has some advantages such as minimal size, high speed, low latency, and low power consumption. As a result, it is used for creating all varieties of memory. Counter circuits as one of the important circuits in the digital systems are composed of some latches, which are connected to each other in series and actually they count input pulses in the circuit. On the other hand, the reversible computations are very important because of their ability in reducing energy in nanometer circuits. Improving the energy efficiency, increasing the speed of nanometer circuits, increasing the portability of system, making smaller components of the circuit in a nuclear size and reducing the power consumption are considered as the usage of reversible logic. Therefore, this paper aims to design a two-bit reversible counter that is optimized on the basis of QCA using an improved reversible gate. The proposed reversible structure of 2-bit counter can be increased to 3-bit, 4-bit and more. The advantages of the proposed design have been shown using QCADesigner in terms of the delay in comparison with previous circuits.

  5. Design of a fault-tolerant reversible control unit in molecular quantum-dot cellular automata

    NASA Astrophysics Data System (ADS)

    Bahadori, Golnaz; Houshmand, Monireh; Zomorodi-Moghadam, Mariam

    Quantum-dot cellular automata (QCA) is a promising emerging nanotechnology that has been attracting considerable attention due to its small feature size, ultra-low power consuming, and high clock frequency. Therefore, there have been many efforts to design computational units based on this technology. Despite these advantages of the QCA-based nanotechnologies, their implementation is susceptible to a high error rate. On the other hand, using the reversible computing leads to zero bit erasures and no energy dissipation. As the reversible computation does not lose information, the fault detection happens with a high probability. In this paper, first we propose a fault-tolerant control unit using reversible gates which improves on the previous design. The proposed design is then synthesized to the QCA technology and is simulated by the QCADesigner tool. Evaluation results indicate the performance of the proposed approach.

  6. New reversing design method for LED uniform illumination.

    PubMed

    Wang, Kai; Wu, Dan; Qin, Zong; Chen, Fei; Luo, Xiaobing; Liu, Sheng

    2011-07-04

    In light-emitting diode (LED) applications, it is becoming a big issue that how to optimize light intensity distribution curve (LIDC) and design corresponding optical component to achieve uniform illumination when distance-height ratio (DHR) is given. A new reversing design method is proposed to solve this problem, including design and optimization of LIDC to achieve high uniform illumination and a new algorithm of freeform lens to generate the required LIDC by LED light source. According to this method, two new LED modules integrated with freeform lenses are successfully designed for slim direct-lit LED backlighting with thickness of 10mm, and uniformities of illuminance increase from 0.446 to 0.915 and from 0.155 to 0.887 when DHRs are 2 and 3 respectively. Moreover, the number of new LED modules dramatically decreases to 1/9 of the traditional LED modules while achieving similar uniform illumination in backlighting. Therefore, this new method provides a practical and simple way for optical design of LED uniform illumination when DHR is much larger than 1.

  7. The assessment of health policy changes using the time-reversed crossover design.

    PubMed Central

    Sollecito, W A; Gillings, D B

    1986-01-01

    The time-reversed crossover design is a quasi-experimental design which can be applied to evaluate the impact of a change in health policy on a large population. This design makes use of separate sampling and analysis strategies to improve the validity of conclusions drawn from such an evaluation. The properties of the time-reversed crossover design are presented including the use of stratification on outcome in the sampling stage, which is intended to improve external validity. It is demonstrated that, although this feature of the design introduces internal validity threats due to regression toward the mean in extreme-outcome strata, these effects can be measured and eliminated from the test of significance of treatment effects. Methods for within- and across-stratum estimation and hypothesis-testing are presented which are similar to those which have been developed for the traditional two-period crossover design widely used in clinical trials. The procedures are illustrated using data derived from a study conducted by the United Mine Workers of America Health and Retirement Funds to measure the impact of cost-sharing on health care utilization among members of its health plan. PMID:3081465

  8. [Veneer computer aided design based on reverse engineering technology].

    PubMed

    Liu, Ming-li; Chen, Xiao-dong; Wang, Yong

    2012-03-01

    To explore the computer aided design (CAD) method of veneer restoration, and to assess if the solution can help prosthesis meet morphology esthetics standard. A volunteer's upper right central incisor needed to be restored with veneer. Super hard stone models of patient's dentition (before and after tooth preparation) were scanned with the three-dimensional laser scanner. The veneer margin was designed as butt-to-butt type. The veneer was constructed using reverse engineering (RE) software. The technique guideline of veneers CAD was explore based on RE software, and the veneers was smooth, continuous and symmetrical, which met esthetics construction needs. It was a feasible method to reconstruct veneer restoration based on RE technology.

  9. Quantum cost optimized design of 4-bit reversible universal shift register using reduced number of logic gate

    NASA Astrophysics Data System (ADS)

    Maity, H.; Biswas, A.; Bhattacharjee, A. K.; Pal, A.

    In this paper, we have proposed the design of quantum cost (QC) optimized 4-bit reversible universal shift register (RUSR) using reduced number of reversible logic gates. The proposed design is very useful in quantum computing due to its low QC, less no. of reversible logic gate and less delay. The QC, no. of gates, garbage outputs (GOs) are respectively 64, 8 and 16 for proposed work. The improvement of proposed work is also presented. The QC is 5.88% to 70.9% improved, no. of gate is 60% to 83.33% improved with compared to latest reported result.

  10. Inverse Design of Low-Boom Supersonic Concepts Using Reversed Equivalent-Area Targets

    NASA Technical Reports Server (NTRS)

    Li, Wu; Rallabhand, Sriam

    2011-01-01

    A promising path for developing a low-boom configuration is a multifidelity approach that (1) starts from a low-fidelity low-boom design, (2) refines the low-fidelity design with computational fluid dynamics (CFD) equivalent-area (Ae) analysis, and (3) improves the design with sonic-boom analysis by using CFD off-body pressure distributions. The focus of this paper is on the third step of this approach, in which the design is improved with sonic-boom analysis through the use of CFD calculations. A new inverse design process for off-body pressure tailoring is formulated and demonstrated with a low-boom supersonic configuration that was developed by using the mixed-fidelity design method with CFD Ae analysis. The new inverse design process uses the reverse propagation of the pressure distribution (dp/p) from a mid-field location to a near-field location, converts the near-field dp/p into an equivalent-area distribution, generates a low-boom target for the reversed equivalent area (Ae,r) of the configuration, and modifies the configuration to minimize the differences between the configuration s Ae,r and the low-boom target. The new inverse design process is used to modify a supersonic demonstrator concept for a cruise Mach number of 1.6 and a cruise weight of 30,000 lb. The modified configuration has a fully shaped ground signature that has a perceived loudness (PLdB) value of 78.5, while the original configuration has a partially shaped aft signature with a PLdB of 82.3.

  11. Operant learning (R-S) principles applied to nail-biting.

    PubMed

    McClanahan, T M

    1995-10-01

    The principles of R-S learning were applied to a 32-yr.-old Caucasian woman to reduce the frequency and duration of fingernail-biting activity in a reversal-replication (ABAB) research design. The undesirable behavior, fingernail-biting which included frequency and duration, antecedents, and setting events, was recorded during a 28-day study. Self-monitoring recordings indicated that anxiety was the most prevalent antecedent. Through the use of a preliminary questionnaire and interview, increase in self-awareness was judged to be most effective in the extinction of the undesired behavior. The systematic desensitization techniques of deep muscle relaxation and Transcendental Meditation were used during the treatment phase.

  12. How reverse shoulder arthroplasty works.

    PubMed

    Walker, Matthew; Brooks, Jordan; Willis, Matthew; Frankle, Mark

    2011-09-01

    The reverse total shoulder arthroplasty was introduced to treat the rotator cuff-deficient shoulder. Since its introduction, an improved understanding of the biomechanics of rotator cuff deficiency and reverse shoulder arthroplasty has facilitated the development of modern reverse arthroplasty designs. We review (1) the basic biomechanical challenges associated with the rotator cuff-deficient shoulder; (2) the biomechanical rationale for newer reverse shoulder arthroplasty designs; (3) the current scientific evidence related to the function and performance of reverse shoulder arthroplasty; and (4) specific technical aspects of reverse shoulder arthroplasty. A PubMed search of the English language literature was conducted using the key words reverse shoulder arthroplasty, rotator cuff arthropathy, and biomechanics of reverse shoulder arthroplasty. Articles were excluded if the content fell outside of the biomechanics of these topics, leaving the 66 articles included in this review. Various implant design factors as well as various surgical implantation techniques affect stability of reverse shoulder arthroplasty and patient function. To understand the implications of individual design factors, one must understand the function of the normal and the cuff-deficient shoulder and coalesce this understanding with the pathology presented by each patient to choose the proper surgical technique for reconstruction. Several basic science and clinical studies improve our understanding of various design factors in reverse shoulder arthroplasty. However, much work remains to further elucidate the performance of newer designs and to evaluate patient outcomes using validated instruments such as the American Society for Elbow Surgery, simple shoulder test, and the Constant-Murley scores.

  13. A history of reverse total shoulder arthroplasty.

    PubMed

    Flatow, Evan L; Harrison, Alicia K

    2011-09-01

    Management of the cuff-deficient arthritic shoulder has long been challenging. Early unconstrained shoulder arthroplasty systems were associated with high complication and implant failure rates. The evolution toward the modern reverse shoulder arthroplasty includes many variables of constrained shoulder arthroplasty designs. This review explores the development of reverse shoulder arthroplasty, specifically describing (1) the evolution of reverse shoulder arthroplasty designs, (2) the biomechanical variations in the evolution of this arthroplasty, and (3) the current issues relevant to reverse shoulder arthroplasty today. Using a PubMed search, the literature was explored for articles addressing reverse shoulder arthroplasty, focusing on those papers with historical context. Results of the early designs were apparently poor, although they were not subjected to rigorous clinical research and usually reported only in secondary literature. We identified a trend of glenoid component failure in the early reverse designs. This trend was recognized and reported by authors as the reverse shoulder evolved. Authors reported greater pain relief and better function in reverse shoulder arthroplasty with the fundamental change of Grammont's design (moving the center of rotation medially and distally). However, current reports suggest lingering concerns and challenges with today's designs. The history of reverse shoulder arthroplasty involves the designs of many forward-thinking surgeons. Many of these highly constrained systems failed, although more recent designs have demonstrated improved longevity and implant performance. Reverse shoulder arthroplasty requires ongoing study, with challenges and controversies remaining around present-day designs.

  14. Systematic Design of a Magnetically Levitated Brushless DC Motor for a Reversible Rotary Intra-Aortic Blood Pump.

    PubMed

    Wang, Yaxin; Logan, Thomas G; Smith, P Alex; Hsu, Po-Lin; Cohn, William E; Xu, Liping; McMahon, Richard A

    2017-10-01

    The IntraVAD is a miniature intra-aortic ventricular assist device (VAD) designed to work in series with the compromised left ventricle. A reverse-rotation control (RRc) mode has been developed to increase myocardial perfusion and reduce ventricular volume. The RRc mode includes forward rotation in systole and reverse rotation in diastole, which requires the IntraVAD to periodically reverse its rotational direction in synchrony with the cardiac cycle. This periodic reversal leads to changes in pressure force over the impeller, which makes the entire system less stable. To eliminate the mechanical wear of a contact bearing and provide active control over the axial position of the rotor, a miniature magnetically levitated bearing (i.e., the PM-Coil module) composed of two concentric permanent magnetic (PM) rings and a pair of coils-one on each side-was proposed to provide passive radial and active axial rotor stabilization. In the early design stage, the numerical finite element method (FEM) was used to optimize the geometry of the brushless DC (BLDC) motor and the maglev module, but constructing a new model each time certain design parameters were adjusted required substantial computation time. Because the design criteria for the module had to be modified to account for the magnetic force produced by the motor and for the hemodynamic changes associated with pump operation, a simplified analytic expression was derived for the expected magnetic forces. Suitable bearings could then be designed capable of overcoming these forces without repeating the complicated FEM simulation for the motor. Using this method at the initial design stage can inform the design of the miniature maglev BLDC motor for the proposed pulsatile axial-flow VAD. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  15. An algebra of reversible computation.

    PubMed

    Wang, Yong

    2016-01-01

    We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.

  16. Reverse Engineering Nature to Design Biomimetic Total Knee Implants.

    PubMed

    Varadarajan, Kartik Mangudi; Zumbrunn, Thomas; Rubash, Harry E; Malchau, Henrik; Muratoglu, Orhun K; Li, Guoan

    2015-10-01

    While contemporary total knee arthroplasty (TKA) provides tremendous clinical benefits, the normal feel and function of the knee is not fully restored. To address this, a novel design process was developed to reverse engineer "biomimetic" articular surfaces that are compatible with normal soft-tissue envelope and kinematics of the knee. The biomimetic articular surface is created by moving the TKA femoral component along in vivo kinematics of normal knees and carving out the tibial articular surface from a rectangular tibial block. Here, we describe the biomimetic design process. In addition, we utilize geometric comparisons and kinematic simulations to show that; (1) tibial articular surfaces of conventional implants are fundamentally incompatible with normal knee motion, and (2) the anatomic geometry of the biomimetic surface contributes directly to restoration of normal knee kinematics. Such biomimetic implants may enable us to achieve the long sought after goal of a "normal" knee post-TKA surgery. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  17. Enabling people with developmental disabilities to actively perform designated occupational activities according to simple instructions with a Nintendo Wii Remote Controller by controlling environmental stimulation.

    PubMed

    Shih, Ching-Hsiang; Wang, Shu-Hui; Chang, Man-Ling; Shih, Ching-Hsiang

    2012-01-01

    The latest researches have adopted software technology, turning the Nintendo Wii Remote Controller into a high performance three-dimensional object orientation detector. This study extended Wii Remote Controller functionality to assess whether two people with developmental disabilities would be able to actively perform designated simple occupational activities according to simple instructions by controlling their favorite environmental stimulation using a Nintendo Wii Remote Controller. This study was conducted using ABAB designs. The data showed that both participants significantly increased their target response (performing a designated occupational activity) by activating the control system to produce their preferred environmental stimulation during the intervention phases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Initial glenoid fixation using two different reverse shoulder designs with an equivalent center of rotation in a low-density and high-density bone substitute.

    PubMed

    Stroud, Nicholas J; DiPaola, Matthew J; Martin, Brian L; Steiler, Cindy A; Flurin, Pierre-Henri; Wright, Thomas W; Zuckerman, Joseph D; Roche, Christopher P

    2013-11-01

    Numerous glenoid implant designs have been introduced into the global marketplace in recent years; however, little comparative biomechanical data exist to substantiate one design consideration over another. This study dynamically evaluated reverse shoulder glenoid baseplate fixation and compared the initial fixation associated with 2 reverse shoulder designs having an equivalent center of rotation in low-density and high-density bone substitute substrates. Significant differences in fixation were observed between implant designs, where the circular-porous reverse shoulder was associated with approximately twice the micromotion per equivalent test than the oblong-grit-blasted design. Additionally, 6 of the 7 circular-porous reverse shoulders failed catastrophically in the low-density bone model at an average of 2603 ± 981 cycles. None of the oblong-grit-blasted designs failed in the low-or high-density bone models and none of the circular-porous designs failed in the high-density bone models after 10,000 cycles of loading. These results demonstrate that significant differences in initial fixation exist between reverse shoulder implants having an equivalent center of rotation and suggest that design parameters, other than the position of the center of rotation, significantly affect fixation in low-density and high-density polyurethane bone substitutes. Subtle changes in glenoid baseplate design can dramatically affect fixation, particularly in low-density bone substitutes that are intended to simulate the bone quality of the recipient population for reverse shoulders. Copyright © 2013 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  19. Pediatric emotional dysregulation and behavioral disruptiveness treated with hypnosis: a time-series design.

    PubMed

    Iglesias, Alex; Iglesias, Adam

    2014-01-01

    A case of pediatric oppositional defiant disorder (ODD) with concomitant emotional dysregulation and secondary behavioral disruptiveness was treated with hypnosis by means of the hypnotic hold, a method adapted by the authors. An A-B-A-B time-series design with multiple replications was employed to measure the relationship of the hypnotic treatment to the dependent measure: episodes of emotional dysregulation with accompanying behavioral disruptiveness. The findings indicated a statistically significant relationship between the degree of change from phase to phase and the treatment. Follow-up at 6 months indicated a significant reduction of the frequency of targeted episodes of emotional dysregulation and behavioral disruptiveness at home.

  20. Application of Adjoint Methodology to Supersonic Aircraft Design Using Reversed Equivalent Areas

    NASA Technical Reports Server (NTRS)

    Rallabhandi, Sriram K.

    2013-01-01

    This paper presents an approach to shape an aircraft to equivalent area based objectives using the discrete adjoint approach. Equivalent areas can be obtained either using reversed augmented Burgers equation or direct conversion of off-body pressures into equivalent area. Formal coupling with CFD allows computation of sensitivities of equivalent area objectives with respect to aircraft shape parameters. The exactness of the adjoint sensitivities is verified against derivatives obtained using the complex step approach. This methodology has the benefit of using designer-friendly equivalent areas in the shape design of low-boom aircraft. Shape optimization results with equivalent area cost functionals are discussed and further refined using ground loudness based objectives.

  1. Modular Adder Designs Using Optimal Reversible and Fault Tolerant Gates in Field-Coupled QCA Nanocomputing

    NASA Astrophysics Data System (ADS)

    Bilal, Bisma; Ahmed, Suhaib; Kakkar, Vipan

    2018-02-01

    The challenges which the CMOS technology is facing toward the end of the technology roadmap calls for an investigation of various logical and technological solutions to CMOS at the nano scale. Two such paradigms which are considered in this paper are the reversible logic and the quantum-dot cellular automata (QCA) nanotechnology. Firstly, a new 3 × 3 reversible and universal gate, RG-QCA, is proposed and implemented in QCA technology using conventional 3-input majority voter based logic. Further the gate is optimized by using explicit interaction of cells and this optimized gate is then used to design an optimized modular full adder in QCA. Another configuration of RG-QCA gate, CRG-QCA, is then proposed which is a 4 × 4 gate and includes the fault tolerant characteristics and parity preserving nature. The proposed CRG-QCA gate is then tested to design a fault tolerant full adder circuit. Extensive comparisons of gate and adder circuits are drawn with the existing literature and it is envisaged that our proposed designs perform better and are cost efficient in QCA technology.

  2. Virtual screening studies on HIV-1 reverse transcriptase inhibitors to design potent leads.

    PubMed

    Vadivelan, S; Deeksha, T N; Arun, S; Machiraju, Pavan Kumar; Gundla, Rambabu; Sinha, Barij Nayan; Jagarlapudi, Sarma A R P

    2011-03-01

    The purpose of this study is to identify novel and potent inhibitors against HIV-1 reverse transcriptase (RT). The crystal structure of the most active ligand was converted into a feature-shaped query. This query was used to align molecules to generate statistically valid 3D-QSAR (r(2) = 0.873) and Pharmacophore models (HypoGen). The best HypoGen model consists of three Pharmacophore features (one hydrogen bond acceptor, one hydrophobic aliphatic and one ring aromatic) and further validated using known RT inhibitors. The designed novel inhibitors are further subjected to docking studies to reduce the number of false positives. We have identified and proposed some novel and potential lead molecules as reverse transcriptase inhibitors using analog and structure based studies. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  3. Enabling people with developmental disabilities to actively follow simple instructions and perform designated physical activities according to simple instructions with Nintendo Wii Balance Boards by controlling environmental stimulation.

    PubMed

    Shih, Ching-Hsiang; Chung, Chiao-Chen; Shih, Ching-Tien; Chen, Ling-Che

    2011-01-01

    The latest researches have adopted software technology turning the Nintendo Wii Balance Board into a high performance standing location detector. This study extended Wii Balance Board functionality to assess whether two people with developmental disabilities would be able to actively perform designated physical activities according to simple instructions by controlling their favorite environmental stimulation using Nintendo Wii Balance Boards. This study was carried out according to an A-B-A-B design. Data showed that both participants significantly increased their target response (performing a designated physical activity) by activating the control system to produce their preferred environmental stimulation during the intervention phases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Static internal performance of a single-engine onaxisymmetric-nozzle vaned-thrust-reverser design with thrust modulation capabilities

    NASA Technical Reports Server (NTRS)

    Leavitt, L. D.; Burley, J. R., II

    1985-01-01

    An investigation has been conducted at wind-off conditions in the stati-test facility of the Langley 16-Foot Transonic Tunnel. The tests were conducted on a single-engine reverser configuration with partial and full reverse-thrust modulation capabilities. The reverser design had four ports with equal areas. These ports were angled outboard 30 deg from the vertical impart of a splay angle to the reverse exhaust flow. This splaying of reverser flow was intended to prevent impingement of exhaust flow on empennage surfaces and to help avoid inlet reingestion of exhaust gas when the reverser is integrated into an actual airplane configuration. External vane boxes were located directly over each of the four ports to provide variation of reverser efflux angle from 140 deg to 26 deg (measured forward from the horizontal reference axis). The reverser model was tested with both a butterfly-type inner door and an internal slider door to provide area control for each individual port. In addition, main nozzle throat area and vector angle were varied to examine various methods of modulating thrust levels. Other model variables included vane box configuration (four or six vanes per box), orientation of external vane boxes with respect to internal port walls (splay angle shims), and vane box sideplates. Nozzle pressure ratio was varied from 2.0 approximately 7.0.

  5. Behavioral school psychology goes outdoors: the effect of organized games on playground aggression.

    PubMed

    Murphy, H A; Hutchison, J M; Bailey, J S

    1983-01-01

    This research focuses on the inappropriate, largely aggressive, behaviors of 344 K-2 children assigned to a playground prior to the beginning of the school day. Initially, a system for observing large numbers of children freely roaming over a large, open area was developed. This observational method was then used to determine the effectiveness of providing organized games for reducing potentially dangerous playground behaviors. Using a reversal (ABAB) design, it was found that the games, rope jumping, and foot racing, along with an infrequently used time-out procedure, significantly reduced the frequency of inappropriate incidents. It is suggested that when dealing with large groups, antecedent environmental manipulations may be more practical than providing consequences for the behaviors exhibited by identified individuals.

  6. A plasma model for reversed field pinch circuit design

    NASA Astrophysics Data System (ADS)

    Johnston, J. W.

    1981-03-01

    A plasma model has been developed for use in the design of circuits for reversed field pinch experiments. The magnetic field is assumed to evolve through a given series of relaxed states with the plasma resistivity specified as a function of time. At any instant the magnetic field configuration is determined by the field energy and the toroidal flux. If the Bessel function model is chosen as the relaxed state then the magnetic helicity can be used as an alternative to the magnetic energy without altering the results. Simulations of discharges on ZETA and ETA BETA II are presented. By suitable choices of the relaxed field configuration and plasma resistivity it is possible to obtain close agreement with the experimental waveforms. Application to the proposed RFX device is discussed.

  7. Toward Efficient Design of Reversible Logic Gates in Quantum-Dot Cellular Automata with Power Dissipation Analysis

    NASA Astrophysics Data System (ADS)

    Sasamal, Trailokya Nath; Singh, Ashutosh Kumar; Ghanekar, Umesh

    2018-04-01

    Nanotechnologies, remarkably Quantum-dot Cellular Automata (QCA), offer an attractive perspective for future computing technologies. In this paper, QCA is investigated as an implementation method for designing area and power efficient reversible logic gates. The proposed designs achieve superior performance by incorporating a compact 2-input XOR gate. The proposed design for Feynman, Toffoli, and Fredkin gates demonstrates 28.12, 24.4, and 7% reduction in cell count and utilizes 46, 24.4, and 7.6% less area, respectively over previous best designs. Regarding the cell count (area cover) that of the proposed Peres gate and Double Feynman gate are 44.32% (21.5%) and 12% (25%), respectively less than the most compact previous designs. Further, the delay of Fredkin and Toffoli gates is 0.75 clock cycles, which is equal to the delay of the previous best designs. While the Feynman and Double Feynman gates achieve a delay of 0.5 clock cycles, equal to the least delay previous one. Energy analysis confirms that the average energy dissipation of the developed Feynman, Toffoli, and Fredkin gates is 30.80, 18.08, and 4.3% (for 1.0 E k energy level), respectively less compared to best reported designs. This emphasizes the beneficial role of using proposed reversible gates to design complex and power efficient QCA circuits. The QCADesigner tool is used to validate the layout of the proposed designs, and the QCAPro tool is used to evaluate the energy dissipation.

  8. Appraisal of comparative single-case experimental designs for instructional interventions with non-reversible target behaviors: Introducing the CSCEDARS ("Cedars").

    PubMed

    Schlosser, Ralf W; Belfiore, Phillip J; Sigafoos, Jeff; Briesch, Amy M; Wendt, Oliver

    2018-05-28

    Evidence-based practice as a process requires the appraisal of research as a critical step. In the field of developmental disabilities, single-case experimental designs (SCEDs) figure prominently as a means for evaluating the effectiveness of non-reversible instructional interventions. Comparative SCEDs contrast two or more instructional interventions to document their relative effectiveness and efficiency. As such, these designs have great potential to inform evidence-based decision-making. To harness this potential, however, interventionists and authors of systematic reviews need tools to appraise the evidence generated by these designs. Our literature review revealed that existing tools do not adequately address the specific methodological considerations of comparative SCEDs that aim to compare instructional interventions of non-reversible target behaviors. The purpose of this paper is to introduce the Comparative Single-Case Experimental Design Rating System (CSCEDARS, "cedars") as a tool for appraising the internal validity of comparative SCEDs of two or more non-reversible instructional interventions. Pertinent literature will be reviewed to establish the need for this tool and to underpin the rationales for individual rating items. Initial reliability information will be provided as well. Finally, directions for instrument validation will be proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Reversed enantioselectivity of diisopropyl fluorophosphatase against organophosphorus nerve agents by rational design.

    PubMed

    Melzer, Marco; Chen, Julian C-H; Heidenreich, Anne; Gäb, Jürgen; Koller, Marianne; Kehe, Kai; Blum, Marc-Michael

    2009-12-02

    Diisopropyl fluorophosphatase (DFPase) from Loligo vulgaris is an efficient and robust biocatalyst for the hydrolysis of a range of highly toxic organophosphorus compounds including the nerve agents sarin, soman, and cyclosarin. In contrast to the substrate diisopropyl fluorophosphate (DFP) the nerve agents possess an asymmetric phosphorus atom, which leads to pairs of enantiomers that display markedly different toxicities. Wild-type DFPase prefers the less toxic stereoisomers of the substrates which leads to slower detoxification despite rapid hydrolysis. Enzyme engineering efforts based on rational design yielded two quadruple enzyme mutants with reversed enantioselectivity and overall enhanced activity against tested nerve agents. The reversed stereochemical preference is explained through modeling studies and the crystal structures of the two mutants. Using the engineered mutants in combination with wild-type DFPase leads to significantly enhanced activity and detoxification, which is especially important for personal decontamination. Our findings may also be of relevance for the structurally related enzyme human paraoxonase (PON), which is of considerable interest as a potential catalytic in vivo scavenger in case of organophosphorus poisoning.

  10. Designing a multistage supply chain in cross-stage reverse logistics environments: application of particle swarm optimization algorithms.

    PubMed

    Chiang, Tzu-An; Che, Z H; Cui, Zhihua

    2014-01-01

    This study designed a cross-stage reverse logistics course for defective products so that damaged products generated in downstream partners can be directly returned to upstream partners throughout the stages of a supply chain for rework and maintenance. To solve this reverse supply chain design problem, an optimal cross-stage reverse logistics mathematical model was developed. In addition, we developed a genetic algorithm (GA) and three particle swarm optimization (PSO) algorithms: the inertia weight method (PSOA_IWM), V(Max) method (PSOA_VMM), and constriction factor method (PSOA_CFM), which we employed to find solutions to support this mathematical model. Finally, a real case and five simulative cases with different scopes were used to compare the execution times, convergence times, and objective function values of the four algorithms used to validate the model proposed in this study. Regarding system execution time, the GA consumed more time than the other three PSOs did. Regarding objective function value, the GA, PSOA_IWM, and PSOA_CFM could obtain a lower convergence value than PSOA_VMM could. Finally, PSOA_IWM demonstrated a faster convergence speed than PSOA_VMM, PSOA_CFM, and the GA did.

  11. Designing a Multistage Supply Chain in Cross-Stage Reverse Logistics Environments: Application of Particle Swarm Optimization Algorithms

    PubMed Central

    Chiang, Tzu-An; Che, Z. H.

    2014-01-01

    This study designed a cross-stage reverse logistics course for defective products so that damaged products generated in downstream partners can be directly returned to upstream partners throughout the stages of a supply chain for rework and maintenance. To solve this reverse supply chain design problem, an optimal cross-stage reverse logistics mathematical model was developed. In addition, we developed a genetic algorithm (GA) and three particle swarm optimization (PSO) algorithms: the inertia weight method (PSOA_IWM), V Max method (PSOA_VMM), and constriction factor method (PSOA_CFM), which we employed to find solutions to support this mathematical model. Finally, a real case and five simulative cases with different scopes were used to compare the execution times, convergence times, and objective function values of the four algorithms used to validate the model proposed in this study. Regarding system execution time, the GA consumed more time than the other three PSOs did. Regarding objective function value, the GA, PSOA_IWM, and PSOA_CFM could obtain a lower convergence value than PSOA_VMM could. Finally, PSOA_IWM demonstrated a faster convergence speed than PSOA_VMM, PSOA_CFM, and the GA did. PMID:24772026

  12. Design and synthesis of nonionic copolypeptide hydrogels with reversible thermoresponsive and tunable physical properties.

    PubMed

    Zhang, Shanshan; Alvarez, Daniel J; Sofroniew, Michael V; Deming, Timothy J

    2015-04-13

    Polypeptide-based formulations that undergo liquid to hydrogel transitions upon change in temperature have become desirable targets since they can be mixed with cells or injected into tissues as liquids, and subsequently transform into rigid scaffolds or depots. Such materials have been challenging to prepare using synthetic polypeptides, especially when reversible gelation and tunable physical properties are desired. Here, we designed and prepared new nonionic diblock copolypeptide hydrogels (DCH) containing hydrophilic poly(γ-[2-(2-methoxyethoxy)ethyl]-rac-glutamate) and hydrophobic poly(l-leucine) segments, named DCHEO, and also further incorporated copolypeptide domains into DCHEO to yield unprecedented thermoresponsive DCH, named DCHT. Although previous attempts to prepare nonionic hydrogels composed solely of synthetic polypeptides have been unsuccessful, our designs yielded materials with highly reversible thermal transitions and tunable properties. Nonionic, thermoresponsive DCHT were found to support the viability of suspended mesenchymal stem cells in vitro and were able to dissolve and provide prolonged release of both hydrophilic and hydrophobic molecules. The versatility of these materials was further demonstrated by the independent molecular tuning of DCHT liquid viscosity at room temperature and DCHT hydrogel stiffness at elevated temperature, as well as the DCHT liquid to hydrogel transition temperature itself.

  13. Design and optimization of reverse-transcription quantitative PCR experiments.

    PubMed

    Tichopad, Ales; Kitchen, Rob; Riedmaier, Irmgard; Becker, Christiane; Ståhlberg, Anders; Kubista, Mikael

    2009-10-01

    Quantitative PCR (qPCR) is a valuable technique for accurately and reliably profiling and quantifying gene expression. Typically, samples obtained from the organism of study have to be processed via several preparative steps before qPCR. We estimated the errors of sample withdrawal and extraction, reverse transcription (RT), and qPCR that are introduced into measurements of mRNA concentrations. We performed hierarchically arranged experiments with 3 animals, 3 samples, 3 RT reactions, and 3 qPCRs and quantified the expression of several genes in solid tissue, blood, cell culture, and single cells. A nested ANOVA design was used to model the experiments, and relative and absolute errors were calculated with this model for each processing level in the hierarchical design. We found that intersubject differences became easily confounded by sample heterogeneity for single cells and solid tissue. In cell cultures and blood, the noise from the RT and qPCR steps contributed substantially to the overall error because the sampling noise was less pronounced. We recommend the use of sample replicates preferentially to any other replicates when working with solid tissue, cell cultures, and single cells, and we recommend the use of RT replicates when working with blood. We show how an optimal sampling plan can be calculated for a limited budget. .

  14. [Computer aided design for fixed partial denture framework based on reverse engineering technology].

    PubMed

    Sun, Yu-chun; Lü, Pei-jun; Wang, Yong

    2006-03-01

    To explore a computer aided design (CAD) route for the framework of domestic fixed partial denture (FPD) and confirm the suitable method of 3-D CAD. The working area of a dentition model was scanned with a 3-D mechanical scanner. Using the reverse engineering (RE) software, margin and border curves were extracted and several reference curves were created to ensure the dimension and location of pontic framework that was taken from the standard database. The shoulder parts of the retainers were created after axial surfaces constructed. The connecting areas, axial line and curving surface of the framework connector were finally created. The framework of a three-unit FPD was designed with RE technology, which showed smooth surfaces and continuous contours. The design route is practical. The result of this study is significant in theory and practice, which will provide a reference for establishing the computer aided design/computer aided manufacture (CAD/CAM) system of domestic FPD.

  15. Effects of strategic versus tactical instructions on adaptation to changing contingencies in children with adhd.

    PubMed

    Bicard, David E; Neef, Nancy A

    2002-01-01

    This study examined the effects of two types of instructions on the academic responding of 4 children with attention deficit hyperactivity disorder. Tactical instructions specified how to distribute responding between two concurrently available sets of math problems associated with different variable-interval schedules of reinforcement. Strategic instructions provided a strategy to determine the best way to distribute responding. Instruction conditions were counterbalanced in an ABAB/BABA reversal design nested within a multiple baseline across participants design. Experimental sessions consisted of a learning session in which participants were provided with one type of instruction, followed by a test session in which no instruction was provided. The schedules of reinforcement were subsequently reversed during test sessions. When learning and test schedules were identical, the responding of all 4 participants closely matched the reinforcement schedules. When tactical instructions were provided and schedules were subsequently changed, responding often remained under the control of the instructions. When strategic instructions were provided, responding more quickly adapted to the changed contingencies. Analysis of postsession verbal reports indicated correspondence between the participants' verbal descriptions (whether accurate or inaccurate) and their nonverbal patterns of responding.

  16. Evaluating a humane alternative to the bark collar: Automated differential reinforcement of not barking in a home-alone setting.

    PubMed

    Protopopova, Alexandra; Kisten, Dmitri; Wynne, Clive

    2016-12-01

    The aim of this study was to develop a humane alternative to the traditional remote devices that deliver punishers contingent on home-alone dog barking. Specifically, we evaluated the use of remote delivery of food contingent on intervals of not barking during the pet owner's absence. In Experiment 1, 5 dogs with a history of home-alone nuisance barking were recruited. Using an ABAB reversal design, we demonstrated that contingent remote delivery of food decreased home-alone barking for 3 of the dogs. In Experiment 2, we demonstrated that it is possible to thin the differential-reinforcement-of-other-behavior (DRO) schedule gradually, resulting in a potentially more acceptable treatment. Our results benefit the dog training community by providing a humane tool to combat nuisance barking. © 2016 Society for the Experimental Analysis of Behavior.

  17. Cleaning Our World through Reverse Graffiti

    ERIC Educational Resources Information Center

    Randazzo, Gabe; LaJevic, Lisa

    2013-01-01

    Over the last decade artists have begun to experiment with "reverse pollution" techniques, such as reverse graffiti, which focuses on cleaning environmental surfaces. Having recently been introduced to the works of Moose, the artist known for inventing the reverse graffiti technique, the authors decided to design a curriculum to increase…

  18. Design, Synthesis and Evaluation of a Novel Series of Inhibitors Reversing P-Glycoprotein-Mediated Multidrug Resistance.

    PubMed

    Ghaleb, Hesham; Li, Huilan; Kairuki, Mutta; Qiu, Qianqian; Bi, Xinzhou; Liu, Chunxia; Liao, Chen; Li, Jieming; Hezam, Kamal; Huang, Wenlong; Qian, Hai

    2018-05-22

    Multidrug resistance (MDR) is still the main barrier to attaining effective results with chemotherapy. Discovery of new chemo-reversal agents is needed to overcome MDR. Our study focused on a better way to obtain novel drugs with triazole rings that have an MDR-reversal ability through click chemistry. Among 20 developed compounds, compound 19 had a minimal cytotoxic effect compared to tariquidar and verapamil (VRP) and showed a higher reversal activity than VRP through increased accumulation in K562/A02 cells. Compound 19 also played an important role in the P-gp efflux function of intracellular Rh123 and doxorubicin (DOX) accumulation in K562/A02 cells. Moreover, compound 19 exhibited a long lifetime of approximately 24 h. These results indicated that compound 19 is a potential lead compound for the design of new drugs to overcome cancer MDR. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Optical reversible programmable Boolean logic unit.

    PubMed

    Chattopadhyay, Tanay

    2012-07-20

    Computing with reversibility is the only way to avoid dissipation of energy associated with bit erase. So, a reversible microprocessor is required for future computing. In this paper, a design of a simple all-optical reversible programmable processor is proposed using a polarizing beam splitter, liquid crystal-phase spatial light modulators, a half-wave plate, and plane mirrors. This circuit can perform 16 logical operations according to three programming inputs. Also, inputs can be easily recovered from the outputs. It is named the "reversible programmable Boolean logic unit (RPBLU)." The logic unit is the basic building block of many complex computational operations. Hence the design is important in sense. Two orthogonally polarized lights are defined here as two logical states, respectively.

  20. Time-reversed, flow-reversed ballistics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zernow, L.; Chapyak, E. J.; Scheffler, D. R.

    2001-01-01

    Two-dimensional simulations of planar sheet jet formation are studied to examine the hydrodynamic issues involved when simulations are carried out in the inverse direction, that is, with reversed time and flow. Both a realistic copper equation of state and a shockless equation of state were used. These studies are an initial step in evaluating this technique as a ballistics design tool.

  1. Optimized 4-bit Quantum Reversible Arithmetic Logic Unit

    NASA Astrophysics Data System (ADS)

    Ayyoub, Slimani; Achour, Benslama

    2017-08-01

    Reversible logic has received a great attention in the recent years due to its ability to reduce the power dissipation. The main purposes of designing reversible logic are to decrease quantum cost, depth of the circuits and the number of garbage outputs. The arithmetic logic unit (ALU) is an important part of central processing unit (CPU) as the execution unit. This paper presents a complete design of a new reversible arithmetic logic unit (ALU) that can be part of a programmable reversible computing device such as a quantum computer. The proposed ALU based on a reversible low power control unit and small performance parameters full adder named double Peres gates. The presented ALU can produce the largest number (28) of arithmetic and logic functions and have the smallest number of quantum cost and delay compared with existing designs.

  2. FAST TRACK COMMUNICATION: Reversible arithmetic logic unit for quantum arithmetic

    NASA Astrophysics Data System (ADS)

    Kirkedal Thomsen, Michael; Glück, Robert; Axelsen, Holger Bock

    2010-09-01

    This communication presents the complete design of a reversible arithmetic logic unit (ALU) that can be part of a programmable reversible computing device such as a quantum computer. The presented ALU is garbage free and uses reversible updates to combine the standard reversible arithmetic and logical operations in one unit. Combined with a suitable control unit, the ALU permits the construction of an r-Turing complete computing device. The garbage-free ALU developed in this communication requires only 6n elementary reversible gates for five basic arithmetic-logical operations on two n-bit operands and does not use ancillae. This remarkable low resource consumption was achieved by generalizing the V-shape design first introduced for quantum ripple-carry adders and nesting multiple V-shapes in a novel integrated design. This communication shows that the realization of an efficient reversible ALU for a programmable computing device is possible and that the V-shape design is a very versatile approach to the design of quantum networks.

  3. Static Performance of Six Innovative Thrust Reverser Concepts for Subsonic Transport Applications: Summary of the NASA Langley Innovative Thrust Reverser Test Program

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Yetter, Jeffrey A.

    2000-01-01

    The NASA Langley Configuration Aerodynamics Branch has conducted an experimental investigation to study the static performance of innovative thrust reverser concepts applicable to high-bypass-ratio turbofan engines. Testing was conducted on a conventional separate-flow exhaust system configuration, a conventional cascade thrust reverser configuration, and six innovative thrust reverser configurations. The innovative thrust reverser configurations consisted of a cascade thrust reverser with porous fan-duct blocker, a blockerless thrust reverser, two core-mounted target thrust reversers, a multi-door crocodile thrust reverser, and a wing-mounted thrust reverser. Each of the innovative thrust reverser concepts offer potential weight savings and/or design simplifications over a conventional cascade thrust reverser design. Testing was conducted in the Jet-Exit Test Facility at NASA Langley Research Center using a 7.9%-scale exhaust system model with a fan-to-core bypass ratio of approximately 9.0. All tests were conducted with no external flow and cold, high-pressure air was used to simulate core and fan exhaust flows. Results show that the innovative thrust reverser concepts achieved thrust reverser performance levels which, when taking into account the potential for system simplification and reduced weight, may make them competitive with, or potentially more cost effective than current state-of-the-art thrust reverser systems.

  4. Reverse engineering of a Hamiltonian by designing the evolution operators

    NASA Astrophysics Data System (ADS)

    Kang, Yi-Hao; Chen, Ye-Hong; Wu, Qi-Cheng; Huang, Bi-Hua; Xia, Yan; Song, Jie

    2016-07-01

    We propose an effective and flexible scheme for reverse engineering of a Hamiltonian by designing the evolution operators to eliminate the terms of Hamiltonian which are hard to be realized in practice. Different from transitionless quantum driving (TQD), the present scheme is focus on only one or parts of moving states in a D-dimension (D ≥ 3) system. The numerical simulation shows that the present scheme not only contains the results of TQD, but also has more free parameters, which make this scheme more flexible. An example is given by using this scheme to realize the population transfer for a Rydberg atom. The influences of various decoherence processes are discussed by numerical simulation and the result shows that the scheme is fast and robust against the decoherence and operational imperfection. Therefore, this scheme may be used to construct a Hamiltonian which can be realized in experiments.

  5. Study of Reversible Logic Synthesis with Application in SOC: A Review

    NASA Astrophysics Data System (ADS)

    Sharma, Chinmay; Pahuja, Hitesh; Dadhwal, Mandeep; Singh, Balwinder

    2017-08-01

    The prime concern in today’s SOC designs is the power dissipation which increases with technology scaling. The reversible logic possesses very high potential in reducing power dissipation in these designs. It finds its application in latest research fields such as DNA computing, quantum computing, ultra-low power CMOS design and nanotechnology. The reversible circuits can be easily designed using the conventional CMOS technology at a cost of a garbage output which maintains the reversibility. The purpose of this paper is to provide an overview of the developments that have occurred till date in this concept and how the new reversible logic gates are used to design the logic functions.

  6. Adiabatic model and design of a translating field reversed configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Intrator, T. P.; Siemon, R. E.; Sieck, P. E.

    We apply an adiabatic evolution model to predict the behavior of a field reversed configuration (FRC) during decompression and translation, as well as during boundary compression. Semi-empirical scaling laws, which were developed and benchmarked primarily for collisionless FRCs, are expected to remain valid even for the collisional regime of FRX-L experiment. We use this approach to outline the design implications for FRX-L, the high density translated FRC experiment at Los Alamos National Laboratory. A conical theta coil is used to accelerate the FRC to the largest practical velocity so it can enter a mirror bounded compression region, where it mustmore » be a suitable target for a magnetized target fusion (MTF) implosion. FRX-L provides the physics basis for the integrated MTF plasma compression experiment at the Shiva-Star pulsed power facility at Kirtland Air Force Research Laboratory, where the FRC will be compressed inside a flux conserving cylindrical shell.« less

  7. Identification of potential recovery facilities for designing a reverse supply chain network using physical programming

    NASA Astrophysics Data System (ADS)

    Pochampally, Kishore K.; Gupta, Surendra M.; Kamarthi, Sagar V.

    2004-02-01

    Although there are many quantitative models in the literature to design a reverse supply chain, every model assumes that all the recovery facilities that are engaged in the supply chain have enough potential to efficiently re-process the incoming used products. Motivated by the risk of re-processing used products in facilities of insufficient potentiality, this paper proposes a method to identify potential facilities in a set of candidate recovery facilities operating in a region where a reverse supply chain is to be established. In this paper, the problem is solved using a newly developed method called physical programming. The most significant advantage of using physical programming is that it allows a decision maker to express his preferences for values of criteria (for comparing the alternatives), not in the traditional form of weights but in terms of ranges of different degrees of desirability, such as ideal range, desirable range, highly desirable range, undesirable range, and unacceptable range. A numerical example is considered to illustrate the proposed method.

  8. Static Performance of a Wing-Mounted Thrust Reverser Concept

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Yetter, Jeffrey A.

    1998-01-01

    An experimental investigation was conducted in the Jet-Exit Test Facility at NASA Langley Research Center to study the static aerodynamic performance of a wing-mounted thrust reverser concept applicable to subsonic transport aircraft. This innovative engine powered thrust reverser system is designed to utilize wing-mounted flow deflectors to produce aircraft deceleration forces. Testing was conducted using a 7.9%-scale exhaust system model with a fan-to-core bypass ratio of approximately 9.0, a supercritical left-hand wing section attached via a pylon, and wing-mounted flow deflectors attached to the wing section. Geometric variations of key design parameters investigated for the wing-mounted thrust reverser concept included flow deflector angle and chord length, deflector edge fences, and the yaw mount angle of the deflector system (normal to the engine centerline or parallel to the wing trailing edge). All tests were conducted with no external flow and high pressure air was used to simulate core and fan engine exhaust flows. Test results indicate that the wing-mounted thrust reverser concept can achieve overall thrust reverser effectiveness levels competitive with (parallel mount), or better than (normal mount) a conventional cascade thrust reverser system. By removing the thrust reverser system from the nacelle, the wing-mounted concept offers the nacelle designer more options for improving nacelle aero dynamics and propulsion-airframe integration, simplifying nacelle structural designs, reducing nacelle weight, and improving engine maintenance access.

  9. 14 CFR 23.933 - Reversing systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... analysis and testing completed by the engine and propeller manufacturers. [Doc. No. 26344, 58 FR 18971, Apr... only must be designed so that, during any reversal in flight, the engine will produce no more than... engine from producing more than idle thrust when the reversing system malfunctions; except that it may...

  10. 14 CFR 23.933 - Reversing systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... analysis and testing completed by the engine and propeller manufacturers. [Doc. No. 26344, 58 FR 18971, Apr... only must be designed so that, during any reversal in flight, the engine will produce no more than... engine from producing more than idle thrust when the reversing system malfunctions; except that it may...

  11. 14 CFR 23.933 - Reversing systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... analysis and testing completed by the engine and propeller manufacturers. [Doc. No. 26344, 58 FR 18971, Apr... only must be designed so that, during any reversal in flight, the engine will produce no more than... engine from producing more than idle thrust when the reversing system malfunctions; except that it may...

  12. 14 CFR 23.933 - Reversing systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... analysis and testing completed by the engine and propeller manufacturers. [Doc. No. 26344, 58 FR 18971, Apr... only must be designed so that, during any reversal in flight, the engine will produce no more than... engine from producing more than idle thrust when the reversing system malfunctions; except that it may...

  13. 14 CFR 23.933 - Reversing systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... analysis and testing completed by the engine and propeller manufacturers. [Doc. No. 26344, 58 FR 18971, Apr... only must be designed so that, during any reversal in flight, the engine will produce no more than... engine from producing more than idle thrust when the reversing system malfunctions; except that it may...

  14. Reverse shoulder arthroplasty.

    PubMed

    Jarrett, Claudius D; Brown, Brandon T; Schmidt, Christopher C

    2013-07-01

    The reverse shoulder arthroplasty is considered to be one of the most significant technological advancements in shoulder reconstructive surgery over the past 30 years. It is able to successfully decrease pain and improve function for patients with rotator cuff-deficient shoulders. The glenoid is transformed into a sphere that articulates with a humeral socket. The current reverse prosthesis shifts the center of rotation more medial and distal, improving the deltoid's mechanical advantage. This design has resulted in successful improvement in both active shoulder elevation and in quality of life. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Global reverse supply chain design for solid waste recycling under uncertainties and carbon emission constraint.

    PubMed

    Xu, Zhitao; Elomri, Adel; Pokharel, Shaligram; Zhang, Qin; Ming, X G; Liu, Wenjie

    2017-06-01

    The emergence of concerns over environmental protection, resource conservation as well as the development of logistics operations and manufacturing technology has led several countries to implement formal collection and recycling systems of solid waste. Such recycling system has the benefits of reducing environmental pollution, boosting the economy by creating new jobs, and generating income from trading the recyclable materials. This leads to the formation of a global reverse supply chain (GRSC) of solid waste. In this paper, we investigate the design of such a GRSC with a special emphasis on three aspects; (1) uncertainty of waste collection levels, (2) associated carbon emissions, and (3) challenges posed by the supply chain's global aspect, particularly the maritime transportation costs and currency exchange rates. To the best of our knowledge, this paper is the first attempt to integrate the three above-mentioned important aspects in the design of a GRSC. We have used mixed integer-linear programming method along with robust optimization to develop the model which is validated using a sample case study of e-waste management. Our results show that using a robust model by taking the complex interactions characterizing global reverse supply chain networks into account, we can create a better GRSC. The effect of uncertainties and carbon constraints on decisions to reduce costs and emissions are also shown. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Hybrid algorithms for fuzzy reverse supply chain network design.

    PubMed

    Che, Z H; Chiang, Tzu-An; Kuo, Y C; Cui, Zhihua

    2014-01-01

    In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods.

  17. Hybrid Algorithms for Fuzzy Reverse Supply Chain Network Design

    PubMed Central

    Che, Z. H.; Chiang, Tzu-An; Kuo, Y. C.

    2014-01-01

    In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods. PMID:24892057

  18. Preliminary design for a reverse Brayton cycle cryogenic cooler

    NASA Technical Reports Server (NTRS)

    Swift, Walter L.

    1993-01-01

    A long life, single stage, reverse Brayton cycle cryogenic cooler is being developed for applications in space. The system is designed to provide 5 W of cooling at a temperature of 65 Kelvin with a total cycle input power of less than 200 watts. Key features of the approach include high speed, miniature turbomachines; an all metal, high performance, compact heat exchanger; and a simple, high frequency, three phase motor drive. In Phase 1, a preliminary design of the system was performed. Analyses and trade studies were used to establish the thermodynamic performance of the system and the performance specifications for individual components. Key mechanical features for components were defined and assembly layouts for the components and the system were prepared. Critical materials and processes were identified. Component and brassboard system level tests were conducted at cryogenic temperatures. The system met the cooling requirement of 5 W at 65 K. The system was also operated over a range of cooling loads from 0.5 W at 37 K to 10 W at 65 K. Input power to the system was higher than target values. The heat exchanger and inverter met or exceeded their respective performance targets. The compresssor/motor assembly was marginally below its performance target. The turboexpander met its aerodynamic efficiency target, but overall performance was below target because of excessive heat leak. The heat leak will be reduced to an acceptable value in the engineering model. The results of Phase 1 indicate that the 200 watt input power requirement can be met with state-of-the-art technology in a system which has very flexible integration requirements and negligible vibration levels.

  19. Preliminary design for a reverse Brayton cycle cryogenic cooler

    NASA Astrophysics Data System (ADS)

    Swift, Walter L.

    1993-12-01

    A long life, single stage, reverse Brayton cycle cryogenic cooler is being developed for applications in space. The system is designed to provide 5 W of cooling at a temperature of 65 Kelvin with a total cycle input power of less than 200 watts. Key features of the approach include high speed, miniature turbomachines; an all metal, high performance, compact heat exchanger; and a simple, high frequency, three phase motor drive. In Phase 1, a preliminary design of the system was performed. Analyses and trade studies were used to establish the thermodynamic performance of the system and the performance specifications for individual components. Key mechanical features for components were defined and assembly layouts for the components and the system were prepared. Critical materials and processes were identified. Component and brassboard system level tests were conducted at cryogenic temperatures. The system met the cooling requirement of 5 W at 65 K. The system was also operated over a range of cooling loads from 0.5 W at 37 K to 10 W at 65 K. Input power to the system was higher than target values. The heat exchanger and inverter met or exceeded their respective performance targets. The compresssor/motor assembly was marginally below its performance target. The turboexpander met its aerodynamic efficiency target, but overall performance was below target because of excessive heat leak. The heat leak will be reduced to an acceptable value in the engineering model. The results of Phase 1 indicate that the 200 watt input power requirement can be met with state-of-the-art technology in a system which has very flexible integration requirements and negligible vibration levels.

  20. Planning and Design of Seawater Reverse Osmosis Desalination Plants Marine Outfalls

    NASA Astrophysics Data System (ADS)

    Maalouf, S.; Yeh, W. W.

    2011-12-01

    Increasing demands for water in urban areas and agricultural zones in arid and semi-arid regions have urged planners and regulators to look for alternative renewable water sources. Worldwide, seawater reverse osmosis (SWRO) desalination plants have become an essential supply source for the production of fresh water in such regions. Disposal of their wastes, however, has not been fully and properly addressed. This study presents a strategy for the analysis and design of optimal disposal systems of hypersaline wastes that are generated by SWRO desalination plants. The study evaluates current disposal methods and recommends ways to effectively employ multiport marine outfalls for this purpose. Such outfalls emerged as reliable means for conveying wastes from process plants, to include wastewater treatment and power plants, into the coastal waters. Their proper use, however, in conjunction with SWRO desalination plants is still in its beginning stage, and much work needs to be done to employ them effectively. Therefore, the main objective of this research is to provide design engineers with effective procedures that meet environmental permitting requirements and restrictions, while ascertaining adequate hydrodynamic performance. The study is tested by employing a simulation model and examining its reliability under many parameter perturbation scenarios. This is further extended by providing a solution to the same problem using a heuristic approach.

  1. Design and synthesis of biotin analogues reversibly binding with streptavidin.

    PubMed

    Yamamoto, Tomohiro; Aoki, Kiyoshi; Sugiyama, Akira; Doi, Hirofumi; Kodama, Tatsuhiko; Shimizu, Yohei; Kanai, Motomu

    2015-04-01

    Two new biotin analogues, biotin carbonate 5 and biotin carbamate 6, have been synthesized. These molecules were designed to reversibly bind with streptavidin by replacing the hydrogen-bond donor NH group(s) of biotin's cyclic urea moiety with oxygen. Biotin carbonate 5 was synthesized from L-arabinose (7), which furnishes the desired stereochemistry at the 3,4-cis-dihydroxy groups, in 11% overall yield (over 10 steps). Synthesis of biotin carbamate 6 was accomplished from L-cysteine-derived chiral aldehyde 33 in 11% overall yield (over 7 steps). Surface plasmon resonance analysis of water-soluble biotin carbonate analogue 46 and biotin carbamate analogue 47 revealed that KD values of these compounds for binding to streptavidin were 6.7×10(-6)  M and 1.7×10(-10)  M, respectively. These values were remarkably greater than that of biotin (KD =10(-15)  M), and thus indicate the importance of the nitrogen atoms for the strong binding between biotin and streptavidin. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Thrust reverser analysis for implementation in the Aviation Environmental Design Tool (AEDT)

    DOT National Transportation Integrated Search

    2007-06-01

    This letter report presents an updated implementation for thrust reversers in AEDT. Currently, thrust reverser is applied to all STANDARD approach profiles in the Integrated Noise Mode (lNM) as 60% of the max rated thrust for jets and 40% for props o...

  3. Over-the-wing model thrust reverser noise tests

    NASA Technical Reports Server (NTRS)

    Goodykoontz, J.; Gutierrez, O.

    1977-01-01

    Static acoustic tests were conducted on a 1/12 scale model over-the-wing target type thrust reverser. The model configuration simulates a design that is applicable to the over-the-wing short-haul advanced technology engine. Aerodynamic screening tests of a variety of reverser designs identified configurations that satisfied a reverse thrust requirement of 35 percent of forward thrust at a nozzle pressure ratio of 1.29. The variations in the reverser configuration included, blocker door angle, blocker door lip angle and shape, and side skirt shape. Acoustic data are presented and compared for the various configurations. The model data scaled to a single full size engine show that peak free field perceived noise (PN) levels at a 152.4 meter sideline distance range from 98 to 104 PNdb.

  4. Live vaccines for human metapneumovirus designed by reverse genetics.

    PubMed

    Buchholz, Ursula J; Nagashima, Kunio; Murphy, Brian R; Collins, Peter L

    2006-10-01

    Human metapneumovirus (HMPV) was first described in 2001 and has quickly become recognized as an important cause of respiratory tract disease worldwide, especially in the pediatric population. A vaccine against HMPV is required to prevent severe disease associated with infection in infancy. The primary strategy is to develop a live-attenuated virus for intranasal immunization, which is particularly well suited against a respiratory virus. Reverse genetics provides a means of developing highly characterized 'designer' attenuated vaccine candidates. To date, several promising vaccine candidates have been developed, each using a different mode of attenuation. One candidate involves deletion of the G glycoprotein, providing attenuation that is probably based on reduced efficiency of attachment. A second candidate involves deletion of the M2-2 protein, which participates in regulating RNA synthesis and whose deletion has the advantageous property of upregulating transcription and increasing antigen synthesis. A third candidate involves replacing the P protein gene of HMPV with its counterpart from the related avian metapneumovirus, thereby introducing attenuation owing to its chimeric nature and host range restriction. Another live vaccine strategy involves using an attenuated parainfluenza virus as a vector to express HMPV protective antigens, providing a bivalent pediatric vaccine. Additional modifications to provide improved vaccines will also be discussed.

  5. Reverse osmosis water purification system

    NASA Technical Reports Server (NTRS)

    Ahlstrom, H. G.; Hames, P. S.; Menninger, F. J.

    1986-01-01

    A reverse osmosis water purification system, which uses a programmable controller (PC) as the control system, was designed and built to maintain the cleanliness and level of water for various systems of a 64-m antenna. The installation operates with other equipment of the antenna at the Goldstone Deep Space Communication Complex. The reverse osmosis system was designed to be fully automatic; with the PC, many complex sequential and timed logic networks were easily implemented and are modified. The PC monitors water levels, pressures, flows, control panel requests, and set points on analog meters; with this information various processes are initiated, monitored, modified, halted, or eliminated as required by the equipment being supplied pure water.

  6. Exact Synthesis of Reversible Circuits Using A* Algorithm

    NASA Astrophysics Data System (ADS)

    Datta, K.; Rathi, G. K.; Sengupta, I.; Rahaman, H.

    2015-06-01

    With the growing emphasis on low-power design methodologies, and the result that theoretical zero power dissipation is possible only if computations are information lossless, design and synthesis of reversible logic circuits have become very important in recent years. Reversible logic circuits are also important in the context of quantum computing, where the basic operations are reversible in nature. Several synthesis methodologies for reversible circuits have been reported. Some of these methods are termed as exact, where the motivation is to get the minimum-gate realization for a given reversible function. These methods are computationally very intensive, and are able to synthesize only very small functions. There are other methods based on function transformations or higher-level representation of functions like binary decision diagrams or exclusive-or sum-of-products, that are able to handle much larger circuits without any guarantee of optimality or near-optimality. Design of exact synthesis algorithms is interesting in this context, because they set some kind of benchmarks against which other methods can be compared. This paper proposes an exact synthesis approach based on an iterative deepening version of the A* algorithm using the multiple-control Toffoli gate library. Experimental results are presented with comparisons with other exact and some heuristic based synthesis approaches.

  7. Reversible logic gates on Physarum Polycephalum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumann, Andrew

    2015-03-10

    In this paper, we consider possibilities how to implement asynchronous sequential logic gates and quantum-style reversible logic gates on Physarum polycephalum motions. We show that in asynchronous sequential logic gates we can erase information because of uncertainty in the direction of plasmodium propagation. Therefore quantum-style reversible logic gates are more preferable for designing logic circuits on Physarum polycephalum.

  8. Functional analysis and intervention for perseverative verbal behaviour of an older adult with traumatic brain injury.

    PubMed

    Quearry, Amy Garcia; Lundervold, Duane A

    2016-01-01

    A functional analysis of behaviour was conducted to determine the controlling variables related to the perseverative verbal behaviour (PBV) of a 60-year-old female with a long-standing traumatic brain injury receiving educational assistance. Functional analyses (FA) of antecedent and consequent conditions related to PCB were conducted to determine controlling influence of: (a) content of verbal interaction and, (b) social reinforcement. After isolating the controlling variables, the functioned-based intervention was implemented in 60 minute tutoring sessions. A reversal condition was used to demonstrate experimental control of the behavior during tutoring sessions. PVB which occurred in the context of tutoring for an undergraduate course significantly interfered with the delivery of instruction. Multiple replications of the functional relation between social reinforcement and PVB duration was demonstrated using an A-B-A-B reversal design during functional analysis and tutoring conditions. PVB markedly declined, but did not extinguish over the course of weekly tutoring (extinction) sessions, most likely due to 'bootleg reinforcement' occurring in other situations. Results indicate that perseverative verbal behaviour following closed head injury may be strongly influenced by the social contingencies operating in various contexts and is amenable to applied behaviour analysis interventions.

  9. Effect of lateralized design on muscle and joint reaction forces for reverse shoulder arthroplasty.

    PubMed

    Liou, William; Yang, Yang; Petersen-Fitts, Graysen R; Lombardo, Daniel J; Stine, Sasha; Sabesan, Vani J

    2017-04-01

    Manufacturers of reverse shoulder arthroplasty (RSA) implants have recently designed innovative implants to optimize performance in rotator cuff-deficient shoulders. These advancements are not without tradeoffs and can have negative biomechanical effects. The objective of this study was to develop an integrated finite element analysis-kinematic model to compare the muscle forces and joint reaction forces (JRFs) of 3 different RSA designs. A kinematic model of a normal shoulder joint was adapted from the Delft model and integrated with the well-validated OpenSim shoulder model. Static optimizations then allowed for calculation of the individual muscle forces, moment arms, and JRFs relative to net joint moments. Three-dimensional computer models of 3 RSA designs-humeral lateralized design (HLD), glenoid lateralized design, and Grammont design-were integrated, and parametric studies were performed. Overall, there were decreases in deltoid and rotator cuff muscle forces for all 3 RSA designs. These decreases were greatest in the middle deltoid of the HLD model for abduction and flexion and in the rotator cuff muscles under both internal rotation and external rotation. The JRFs in abduction and flexion decreased similarly for all RSA designs compared with the normal shoulder model, with the greatest decrease seen in the HLD model. These findings demonstrate that the design characteristics implicit in these modified RSA prostheses result in mechanical differences most prominently seen in the deltoid muscle and overall JRFs. Further research using this novel integrated model can help guide continued optimization of RSA design and clinical outcomes. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  10. Dynamic urea bond for the design of reversible and self-healing polymers

    NASA Astrophysics Data System (ADS)

    Ying, Hanze; Zhang, Yanfeng; Cheng, Jianjun

    2014-02-01

    Polymers bearing dynamic covalent bonds may exhibit dynamic properties, such as self-healing, shape memory and environmental adaptation. However, most dynamic covalent chemistries developed so far require either catalyst or change of environmental conditions to facilitate bond reversion and dynamic property change in bulk materials. Here we report the rational design of hindered urea bonds (urea with bulky substituent attached to its nitrogen) and the use of them to make polyureas and poly(urethane-urea)s capable of catalyst-free dynamic property change and autonomous repairing at low temperature. Given the simplicity of the hindered urea bond chemistry (reaction of a bulky amine with an isocyanate), incorporation of the catalyst-free dynamic covalent urea bonds to conventional polyurea or urea-containing polymers that typically have stable bulk properties may further broaden the scope of applications of these widely used materials.

  11. Dynamic urea bond for the design of reversible and self-healing polymers

    PubMed Central

    Ying, Hanze; Zhang, Yanfeng; Cheng, Jianjun

    2014-01-01

    Polymers bearing dynamic covalent bonds may exhibit dynamic properties, such as self-healing, shape memory and environmental adaptation. However, most dynamic covalent chemistries developed so far require either catalyst or change of environmental conditions to facilitate bond reversion and dynamic property change in bulk materials. Here we report the rational design of hindered urea bonds (urea with bulky substituent attached to its nitrogen) and the use of them to make polyureas and poly(urethane-ureas) capable of catalyst-free dynamic property change and autonomous repairing at low temperature. Given the simplicity of the hindered urea bond chemistry (reaction of a bulky amine with an isocyanate), incorporation of the catalyst-free dynamic covalent urea bonds to conventional polyurea or urea-containing polymers that typically have stable bulk properties may further broaden the scope of applications of these widely used materials. PMID:24492620

  12. Reversed phase HPLC for strontium ranelate: Method development and validation applying experimental design.

    PubMed

    Kovács, Béla; Kántor, Lajos Kristóf; Croitoru, Mircea Dumitru; Kelemen, Éva Katalin; Obreja, Mona; Nagy, Előd Ernő; Székely-Szentmiklósi, Blanka; Gyéresi, Árpád

    2018-06-01

    A reverse-phase HPLC (RP-HPLC) method was developed for strontium ranelate using a full factorial, screening experimental design. The analytical procedure was validated according to international guidelines for linearity, selectivity, sensitivity, accuracy and precision. A separate experimental design was used to demonstrate the robustness of the method. Strontium ranelate was eluted at 4.4 minutes and showed no interference with the excipients used in the formulation, at 321 nm. The method is linear in the range of 20-320 μg mL-1 (R2 = 0.99998). Recovery, tested in the range of 40-120 μg mL-1, was found to be 96.1-102.1 %. Intra-day and intermediate precision RSDs ranged from 1.0-1.4 and 1.2-1.4 %, resp. The limit of detection and limit of quantitation were 0.06 and 0.20 μg mL-1, resp. The proposed technique is fast, cost-effective, reliable and reproducible, and is proposed for the routine analysis of strontium ranelate.

  13. Extending the boundaries of reverse engineering

    NASA Astrophysics Data System (ADS)

    Lawrie, Chris

    2002-04-01

    In today's market place the potential of Reverse Engineering as a time compression tool is commonly lost under its traditional definition. The term Reverse Engineering was coined way back at the advent of CMM machines and 3D CAD systems to describe the process of fitting surfaces to captured point data. Since these early beginnings, downstream hardware scanning and digitising systems have evolved in parallel with an upstream demand, greatly increasing the potential of a point cloud data set within engineering design and manufacturing processes. The paper will discuss the issues surrounding Reverse Engineering at the turn of the millennium.

  14. Reversibility of female sterilization.

    PubMed

    Siegler, A M; Hulka, J; Peretz, A

    1985-04-01

    The discussion considers the current status of reversibility of sterilization in the US and describes clinical and experimental efforts for developing techniques designed for reversibility. It focuses on regret following sterilization, reversal potential of current sterilization techniques, patient selection, current reversal techniques, results of sterilization procedures, experimental approaches to reversal of current techniques of sterilization, and sterilization procedures devised for reversibility, in humans and in animals. Request is the 1st stage of reversal, but a request for sterilization reversal (SR) does not always mean regret for a decision made at the time. Frequently it is a wish to restore fertility because life circumstances have changed after a sterilization that was ppropriate at the time it was performed. Schwyhart and Kutner reviewed 22 studies published between 1949-69 in which they found that the percentage of patients regretting the procedure ranged from 1.3-15%. Requests for reversal remain low in most countries, but if sterilization becomes a more popular method of contraception, requests will also increase. The ideal operation considered as a reversaible method of sterilization should include an easy, reliable outpatient method of tubal occlusion with miniml risk or patient discomfort that subsequently could be reversed without the need for a major surgical intervention. Endoscopic methods have progressed toward the 1st objective. A recent search of the literature uncovered few series of SR of more than 50 cases. The 767 operations found were analyzed with regard to pregnancy outcome. The precent of live births varied from 74-78.8%, and the occurance of tubal pregnancies ranged from 1.7-6.5%. All of the confounding variables in patient selection and small numbers of reported procedures preclude any conclusion about the different techniques or the number of operations that give a surgeon a level of expertise. Few authors classify their

  15. Acquisition of Social Referencing via Discrimination Training in Infants

    ERIC Educational Resources Information Center

    Pelaez, Martha; Virues-Ortega, Javier; Gewirtz, Jacob L.

    2012-01-01

    This experiment investigated social referencing as a form of discriminative learning in which maternal facial expressions signaled the consequences of the infant's behavior in an ambiguous context. Eleven 4- and 5-month-old infants and their mothers participated in a discrimination-training procedure using an ABAB design. Different consequences…

  16. The Treatment of the Behavioral Sequelae of Autism with Dextromethorphan: A Case Report

    ERIC Educational Resources Information Center

    Woodard, Cooper; Groden, June; Goodwin, Matthew; Shanower, Cori; Bianco, Joanne

    2005-01-01

    Dextromethorphan is the d-isomer of levorphenol, and an ingredient in antitussive preparations. A 10 year-old male diagnosed with Autistic Disorder, Pervasive Developmental Disorder, and Generalized Anxiety Disorder was administered this medication initially to treat a medical condition. This became a quasi-experimental ABAB design (A = baseline,…

  17. The Effectiveness of the "Picture Exchange Communication System" with Nonspeaking Adults

    ERIC Educational Resources Information Center

    Stoner, Julia B.; Beck, Ann R.; Bock, Stacey Jones; Hickey, Katherine; Kosuwan, Kullaya; Thompson, James R.

    2006-01-01

    "Picture Exchange Communication System" (PECS) training was implemented with 5 nonspeaking adults with mental retardation who were not currently using any type of functional communication system. A modified ABAB, single-subject design was used to assess the effectiveness of PECS in enhancing the functional communication skills of these…

  18. The Effects of Automated Prompting and Self-Monitoring on Homework Completion for a Student with Attention Deficit Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Blicha, Amy; Belfiore, Phillip J.

    2013-01-01

    This study examined the effects of an intervention consisting of automated prompting and self-monitoring on the level of independent homework task completion for an elementary-age student with attention deficit hyperactivity disorder (ADHD). Instituting a single subject, within series ABAB design, the results showed a consistent increase and…

  19. Effects of an Interdependent Group Contingency on the Transition Behavior of Middle School Students with Emotional and Behavioral Disorders

    ERIC Educational Resources Information Center

    Hawkins, Renee O.; Haydon, Todd; McCoy, Dacia; Howard, Andrea

    2017-01-01

    An ABAB design was used to evaluate the effectiveness of an interdependent group contingency with randomized components to improve the transition behavior of middle school students identified with emotional and behavioral disorders (EBDs) served in an alternative educational setting. The intervention was implemented by one teacher with three…

  20. Contact mechanics of reverse engineered distal humeral hemiarthroplasty implants.

    PubMed

    Willing, Ryan; King, Graham J W; Johnson, James A

    2015-11-26

    Erosion of articular cartilage is a concern following distal humeral hemiarthroplasty, because native cartilage surfaces are placed in contact with stiff metallic implant components, which causes decreases in contact area and increases in contact stresses. Recently, reverse engineered implants have been proposed which are intended to promote more natural contact mechanics by reproducing the native bone or cartilage shape. In this study, finite element modeling is used in order to calculate changes in cartilage contact areas and stresses following distal humeral hemiarthroplasty with commercially available and reverse engineered implant designs. At the ulna, decreases in contact area were -34±3% (p=0.002), -27±1% (p<0.001) and -14±2% (p=0.008) using commercially available, bone reverse engineered and cartilage reverse engineered designs, respectively. Peak contact stresses increased by 461±57% (p=0.008), 387±127% (p=0.229) and 165±16% (p=0.003). At the radius, decreases in contact area were -21±3% (p=0.013), -13±2% (p<0.006) and -6±1% (p=0.020), and peak contact stresses increased by 75±52% (p>0.999), 241±32% (p=0.010) and 61±10% (p=0.021). Between the three different implant designs, the cartilage reverse engineered design yielded the largest contact areas and lowest contact stresses, but was still unable to reproduce the contact mechanics of the native joint. These findings align with a growing body of evidence indicating that although reverse engineered hemiarthroplasty implants can provide small improvements in contact mechanics when compared with commercially available designs, further optimization of shape and material properties is required in order reproduce native joint contact mechanics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Emerging Indications for Reverse Shoulder Arthroplasty.

    PubMed

    Urch, Ekaterina; Dines, Joshua S; Dines, David M

    2016-01-01

    Historically, reverse shoulder arthroplasty was reserved for older, low-demand patients in whom rotator cuff arthropathy was diagnosed. Other common indications included sequelae of previously treated proximal humerus fractures, failed anatomic total shoulder arthroplasty, tumor resection, and rheumatoid arthritis in the elderly population. Unpredictable implant durability and high complication rates have limited the use of reverse shoulder arthroplasty to a narrow group of patients. Over the past decade, however, research has led to an improved understanding of the biomechanics behind reverse shoulder prostheses, which has improved implant design and surgical techniques. Consequently, orthopaedic surgeons have slowly begun to expand the indications for reverse shoulder arthroplasty to include a wider spectrum of shoulder pathologies. Recent studies have shown promising results for patients who undergo reverse shoulder arthroplasty for the treatment of acute proximal humerus fractures, massive rotator cuff tears without arthropathy, primary osteoarthritis, and chronic anterior dislocation, as well as for younger patients who have rheumatoid arthritis. These data suggest that, with judicious patient selection, reverse shoulder arthroplasty can be an excellent treatment option for a growing patient cohort.

  2. Assisting people with disabilities in actively performing designated occupational activities with battery-free wireless mice to control environmental stimulation.

    PubMed

    Shih, Ching-Hsiang

    2013-05-01

    The latest researches use software technology (OLDP, object location detection programs) to turn a commercial high-technology product, i.e. a battery-free wireless mouse, into a high performance/precise object location detector to detect whether or not an object has been placed in the designated location. The preferred environmental stimulation is also incorporated to assist those patients in need of occupational activities in performing simple occupational activities to acquire their preferred environmental stimulation. The result of the experiment shows that both participants have been able to control their preferred environmental stimulation by actively performing occupational activities. This study is going to extend the aforementioned researches by using battery-free wireless mice to assist patients in performing more complicated occupational activities. The ABAB design has been adopted for experiments, and the result shows that during intervention phrases, the occupational activities of both participants are significantly improved. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Improving Social Initiations in Young Children with Autism Using Reinforcers with Embedded Social Interactions

    ERIC Educational Resources Information Center

    Koegel, Robert L.; Vernon, Ty W.; Koegel, Lynn K.

    2009-01-01

    Children with autism often exhibit low levels of social engagement, decreased levels of eye contact, and low social affect. However, both the literature and our direct clinical observations suggest that some components of intervention procedures may result in improvement in child-initiated social areas. Using an ABAB research design with three…

  4. Microswitch and Keyboard-Emulator Technology to Facilitate the Writing Performance of Persons with Extensive Motor Disabilities

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Green, Vanessa; Oliva, Doretta; Lang, Russell

    2011-01-01

    This study assessed the effectiveness of microswitches for simple responses (i.e., partial hand closure, vocalization, and hand stroking) and a keyboard emulator to facilitate the writing performance of three participants with extensive motor disabilities. The study was carried out according to an ABAB design. During the A phases, the participants…

  5. The Effects of Audiotaped Progressive Muscle Relaxation Training on the Reading Performance of Emotionally Disturbed Adolescents.

    ERIC Educational Resources Information Center

    Margolis, Howard; Pica, Louis, Jr.

    A study examined the degree to which audiotaped progressive muscle relaxation training influenced the oral and silent reading performance of eight adolescents who were legally classified as emotionally disturbed. A single-case ABAB withdrawal design was used to examine the effects of relaxation training on oral reading. In addition, a…

  6. Communication Opportunities via Special Messaging Technology for Two Post-Coma Persons with Multiple Disabilities

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; O'Reilly, Mark F.; Singh, Nirbhay N.; Sigafoos, Jeff; Buonocunto, Francesca; Sacco, Valentina; Colonna, Fabio; Navarro, Jorge; Lanzilotti, Crocifissa; de Pace, Claudia; Megna, Marisa; Oliva, Doretta

    2011-01-01

    This study extended the assessment of a special messaging technology with two additional post-coma adults who had emerged from a minimally conscious state, but showed multiple disabilities including profound motor and communication impairments. For each participant, the study involved an ABAB design, in which the A represented baseline phases and…

  7. A Single Subject Evaluation of the K-P Diet for Hyperkinesis.

    ERIC Educational Resources Information Center

    Burlton-Bennet, Jocelyn A.; Robinson, Viviane M. J.

    1987-01-01

    A single subject ABAB design was employed to determine the effectiveness of the Feingold Kaiser Permanente (K-P) diet in the treatment of a six-year-old hyperkinetic male. Results indicated the K-P diet was effective in controlling the subject's hyperkinesis, nutritionally adequate, and moderately difficult to implement. (Author/DB)

  8. Reverse engineering of aircraft wing data using a partial differential equation surface model

    NASA Astrophysics Data System (ADS)

    Huband, Jacalyn Mann

    Reverse engineering is a multi-step process used in industry to determine a production representation of an existing physical object. This representation is in the form of mathematical equations that are compatible with computer-aided design and computer-aided manufacturing (CAD/CAM) equipment. The four basic steps to the reverse engineering process are data acquisition, data separation, surface or curve fitting, and CAD/CAM production. The surface fitting step determines the design representation of the object, and thus is critical to the success or failure of the reverse engineering process. Although surface fitting methods described in the literature are used to model a variety of surfaces, they are not suitable for reversing aircraft wings. In this dissertation, we develop and demonstrate a new strategy for reversing a mathematical representation of an aircraft wing. The basis of our strategy is to take an aircraft design model and determine if an inverse model can be derived. A candidate design model for this research is the partial differential equation (PDE) surface model, proposed by Bloor and Wilson and used in the Rapid Airplane Parameter Input Design (RAPID) tool at the NASA-LaRC Geolab. There are several basic mathematical problems involved in reversing the PDE surface model: (i) deriving a computational approximation of the surface function; (ii) determining a radial parametrization of the wing; (iii) choosing mathematical models or classes of functions for representation of the boundary functions; (iv) fitting the boundary data points by the chosen boundary functions; and (v) simultaneously solving for the axial parameterization and the derivative boundary functions. The study of the techniques to solve the above mathematical problems has culminated in a reverse PDE surface model and two reverse PDE surface algorithms. One reverse PDE surface algorithm recovers engineering design parameters for the RAPID tool from aircraft wing data and the other

  9. Design of two-way reversible bending actuator based on a shape memory alloy/shape memory polymer composite

    NASA Astrophysics Data System (ADS)

    Taya, Minoru; Liang, Yuanchang; Namli, Onur C.; Tamagawa, Hirohisa; Howie, Tucker

    2013-10-01

    The design of a reversible bending actuator based on a SMA/SMP composite is presented. The SMA/SMP composite is made of SMA NiTi wires with a bent ‘U’-shape in the austenite phase embedded in an epoxy SMP matrix which has a memorized flat shape. The bending motion is caused by heating the composite above TAf to activate the NiTi recovery. Upon cooling, the softening from the austenite to R-phase transformation results in a relaxation of the composite towards its original flat shape. In the three-point bending measurement the composite was able to exhibit a reversible deflection of 1.3 mm on a support with a 10 mm span. In addition, a material model for predicting the composite’s deflection is presented and predicts the experimental results reasonably well. The model also estimates the in-plane internal force and the degree of the SMA phase transformation.

  10. Options as information: rational reversals of evaluation and preference.

    PubMed

    Sher, Shlomi; McKenzie, Craig R M

    2014-06-01

    This article develops a rational analysis of an important class of apparent preference reversals-joint-separate reversals traditionally explained by the evaluability hypothesis. The "options-as-information" model considers a hypothetical rational actor with limited knowledge about the market distribution of a stimulus attribute. The actor's evaluations are formed via a 2-stage process-an inferential stage in which beliefs are updated on the basis of the sample of options received, followed by an assessment stage in which options are evaluated in light of these updated beliefs. This process generates joint-separate reversals in standard experimental designs. The normative model explains why the evaluability hypothesis works when it does, identifies boundary conditions for the hypothesis, and clarifies some common misconceptions about these effects. In particular, it implies that joint-separate reversals are not irrational; in fact, they are not preference reversals. However, in expanded designs where more than 2 options are jointly evaluated, the model predicts that genuine (and rational) preference reversals will sometimes emerge. Results of 3 experiments suggest an excellent fit between the rational actor model and the judgments of human actors in joint-separate experiments. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  11. A Placebo Double-Blind Pilot Study of Dextromethorphan for Problematic Behaviors in Children with Autism

    ERIC Educational Resources Information Center

    Woodard, Cooper; Groden, June; Goodwin, Matthew; Bodfish, James

    2007-01-01

    We used a mixed group/single-case, double-blind, placebo-controlled, ABAB design to examine the safety and efficacy of the glutamate antagonist dextromethorphan for the treatment of problematic behaviors and core symptoms in eight children diagnosed with autism. All participants had increased levels of irritability at baseline as measured by the…

  12. eCoaching: The Effects on Co-Teachers' Planning and Instruction

    ERIC Educational Resources Information Center

    Ploessl, Donna M.; Rock, Marcia L.

    2014-01-01

    Although co-teaching has become a popular approach to special education service provision in inclusive classrooms, practitioners have struggled to carry it out well. One suggestion for improvement has been to provide co-teachers with training that includes coaching. In this study, we used single-case (ABAB) withdrawal design, to investigate the…

  13. Effects of a Physical Education Supportive Curriculum and Technological Devices on Physical Activity

    ERIC Educational Resources Information Center

    Clapham, Emily Dean; Sullivan, Eileen C.; Ciccomascolo, Lori E.

    2015-01-01

    The purpose of this study was to examine the effects of a physical education supportive curriculum and technological devices, heart rate monitor (HRM) and pedometer (PED), on physical activity. A single-subject ABAB research design was used to examine amount and level of participation in physical activity among 106 suburban fourth and fifth…

  14. Two Adults with Multiple Disabilities Use a Computer-Aided Telephone System to Make Phone Calls Independently

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; O'Reilly, Mark F.; Singh, Nirbhay N.; Sigafoos, Jeff; Oliva, Doretta; Alberti, Gloria; Lang, Russell

    2011-01-01

    This study extended the assessment of a newly developed computer-aided telephone system with two participants (adults) who presented with blindness or severe visual impairment and motor or motor and intellectual disabilities. For each participant, the study was carried out according to an ABAB design, in which the A represented baseline phases and…

  15. The Effects of Check-In/Check-Out on Problem Behavior and Academic Engagement in Elementary School Students

    ERIC Educational Resources Information Center

    Miller, Leila M.; Dufrene, Brad A.; Sterling, Heather E.; Olmi, D. Joe; Bachmayer, Erica

    2015-01-01

    This study evaluated the effectiveness of Check-in/Check-out (CICO) for improving behavioral performance for three students referred for Tier 2 behavioral supports. An ABAB withdrawal design was used to evaluate CICO and results indicate that intervention was effective for reducing problem behavior as well as increasing academic engagement for all…

  16. Design rules for vertical interconnections by reverse offset printing

    NASA Astrophysics Data System (ADS)

    Kusaka, Yasuyuki; Kanazawa, Shusuke; Ushijima, Hirobumi

    2018-03-01

    Formation of vertical interconnections by reverse offset printing was investigated, particularly focusing on the transfer step, in which an ink pattern is transferred from a polydimethylsiloxane (PDMS) sheet for the step coverage of contact holes. We systematically examined the coverage of contact holes made of a tapered photoresist layer by varying the hole size, the hole depth, PDMS elasticity, PDMS thickness, printing speed, and printing indentation depth. Successful ink filling was achieved when the PDMS was softer, and the optimal PDMS thickness varied depending on the size of the contact holes. This behaviour is related to the bell-type uplift deformation of incompressible PDMS, which can be described by contact mechanics numerical simulations. Based on direct observation of PDMS/resist-hole contact behaviour, the step coverage of contact holes typically involves two steps of contact area growth: (i) the PDMS first touches the bottom of the holes and then (ii) the contact area gradually and radially widens toward the tapered sidewall. From an engineering perspective, it is pointed out that mechanical synchronisation mismatch in the roll-to-sheet type printing invokes the cracking of ink layers at the edges of contact holes. According to the above design rule, ink filling into a contact hole with thickness of 2.5 µm and radius of 10 µm was achieved. Contact chain patterns with 1386 points of vertical interconnections with the square hole size of up to 10 µm successfully demonstrated the validity of the technique presented herein.

  17. Phase conjugation and time reversal in acoustics

    NASA Astrophysics Data System (ADS)

    Fink, Mathias

    2000-07-01

    This paper compares the different approaches used in acoustics to time reverse or to phase conjugate a wavefield. The basic principle of a time reversal mirror is an extension for broadband pulsed waves to the optical phase conjugated mirror designed for monochromatic waves. However, this equivalence is only valid mathematically and there are some fundamental differences between these two techniques that will be described in this paper.

  18. Effect of microthreads on coronal bone healing of narrow-diameter implants with reverse-tapered design in beagle dogs.

    PubMed

    Chang, Yun-Young; Kim, Su-Hwan; Park, Keun-Oh; Yun, Jeong-Ho

    2017-12-01

    The objective of this study was to investigate the effect of microthreads on the coronal bone healing of narrow-diameter implants with reverse-tapered design. A total of 52 implants were classified into two groups according to presence or absence of coronal microthreads, the reverse-tapered narrow-diameter implant (RTN) group, and the reverse-tapered narrow-diameter implant with microthreads (RTNM) group. The implants were installed in split-mouth design in the edentulous mandible of six dogs. Three animals were sacrificed at 4 weeks and three at 8 weeks. Resonance frequency analysis, bone measurement using microcomputed tomography (micro-CT), removal torque test, and histometric analysis were performed. No significant differences in implant stability quotient value were observed between the groups at baseline, 4 weeks, or 8 weeks. Bone measurement using micro-CT showed that bone-implant contact volume (BICV) and bone-implant contact volume ratio (BICVR) in the coronal part of RTNM were statistically higher than those in RTN at 4 and 8 weeks. Histometric analysis showed statistically higher bone-implant contact length (BICL) in the coronal part of RTNM than in RTN at 4 weeks; however, bone-implant contact ratio (BICR) was not significantly different between the groups. At 8 weeks, the BICL and BICR did not differ significantly between the groups. Removal torque test showed no significant differences between the groups at 4 and 8 weeks. The microthreads might facilitate more coronal bone-implant contact due to increased surface areas at an early healing phase; however, they did not significantly affect coronal bone healing at 8 weeks. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. A "Reverse-Schur" Approach to Optimization With Linear PDE Constraints: Application to Biomolecule Analysis and Design.

    PubMed

    Bardhan, Jaydeep P; Altman, Michael D; Tidor, B; White, Jacob K

    2009-01-01

    We present a partial-differential-equation (PDE)-constrained approach for optimizing a molecule's electrostatic interactions with a target molecule. The approach, which we call reverse-Schur co-optimization, can be more than two orders of magnitude faster than the traditional approach to electrostatic optimization. The efficiency of the co-optimization approach may enhance the value of electrostatic optimization for ligand-design efforts-in such projects, it is often desirable to screen many candidate ligands for their viability, and the optimization of electrostatic interactions can improve ligand binding affinity and specificity. The theoretical basis for electrostatic optimization derives from linear-response theory, most commonly continuum models, and simple assumptions about molecular binding processes. Although the theory has been used successfully to study a wide variety of molecular binding events, its implications have not yet been fully explored, in part due to the computational expense associated with the optimization. The co-optimization algorithm achieves improved performance by solving the optimization and electrostatic simulation problems simultaneously, and is applicable to both unconstrained and constrained optimization problems. Reverse-Schur co-optimization resembles other well-known techniques for solving optimization problems with PDE constraints. Model problems as well as realistic examples validate the reverse-Schur method, and demonstrate that our technique and alternative PDE-constrained methods scale very favorably compared to the standard approach. Regularization, which ordinarily requires an explicit representation of the objective function, can be included using an approximate Hessian calculated using the new BIBEE/P (boundary-integral-based electrostatics estimation by preconditioning) method.

  20. Engineering Encounters: Reverse Engineering

    ERIC Educational Resources Information Center

    McGowan, Veronica Cassone; Ventura, Marcia; Bell, Philip

    2017-01-01

    This column presents ideas and techniques to enhance your science teaching. This month's issue shares information on how students' everyday experiences can support science learning through engineering design. In this article, the authors outline a reverse-engineering model of instruction and describe one example of how it looked in our fifth-grade…

  1. Reverse Algols

    NASA Technical Reports Server (NTRS)

    Leung, K. C.

    1989-01-01

    Reverse Algols, binary systems with a semidetached configuration in which the more massive component is in contact with the critical equipotential surface, are examined. Observational evidence for reverse Algols is presented and the parameters of seven reverse Algols are listed. The evolution of Algols and reverse Algols is discussed. It is suggested that, because reverse Algols represent the premass-reversal semidetached phase of close binary evolution, the evolutionary time scale between regular and reverse Algols is the ratio of the number of confirmed systems of these two Algol types.

  2. Effects of Prevent-Teach-Reinforce on Academic Engagement and Disruptive Behavior

    ERIC Educational Resources Information Center

    DeJager, Brett W.; Filter, Kevin J.

    2015-01-01

    This study assessed the effectiveness of prevent-teach-reinforce (P-T-R), a functional behavioral assessment-based intervention for students with behavior problems, using an A-B-A-B design with follow-up. Participants included three students in kindergarten, fourth grade, and fifth grade in a rural Midwestern school district. P-T-R interventions…

  3. Effects of Concept Mapping Instruction on the Vocabulary Acquisition Skills of Seventh-Graders with Mild Disabilities: A Replication Study

    ERIC Educational Resources Information Center

    Palmer, Jessica; Boon, Richard T.; Spencer, Vicky G.

    2014-01-01

    The present investigation replicates and extends an earlier study comparing 2 conditions, a dictionary approach versus a concept mapping model, on the learning of vocabulary words among 4 students with mild disabilities (i.e., emotional and/or behavioral disorders and other health impairments) attending a middle school. An A-B-A-B design was used…

  4. Developing weighted criteria to evaluate lean reverse logistics through analytical network process

    NASA Astrophysics Data System (ADS)

    Zagloel, Teuku Yuri M.; Hakim, Inaki Maulida; Krisnawardhani, Rike Adyartie

    2017-11-01

    Reverse logistics is a part of supply chain that bring materials from consumers back to manufacturer in order to gain added value or do a proper disposal. Nowadays, most companies are still facing several problems on reverse logistics implementation which leads to high waste along reverse logistics processes. In order to overcome this problem, Madsen [Framework for Reverse Lean Logistics to Enable Green Manufacturing, Eco Design 2009: 6th International Symposium on Environmentally Conscious Design and Inverse Manufacturing, Sapporo, 2009] has developed a lean reverse logistics framework as a step to eliminate waste by implementing lean on reverse logistics. However, the resulted framework sets aside criteria used to evaluate its performance. This research aims to determine weighted criteria that can be used as a base on reverse logistics evaluation by considering lean principles. The resulted criteria will ensure reverse logistics are kept off from waste, thus implemented efficiently. Analytical Network Process (ANP) is used in this research to determine the weighted criteria. The result shows that criteria used for evaluation lean reverse logistics are Innovation and Learning (35%), Economic (30%), Process Flow Management (14%), Customer Relationship Management (13%), Environment (6%), and Social (2%).

  5. Design and analysis of forward and reverse models for predicting defect accumulation, defect energetics, and irradiation conditions

    DOE PAGES

    Stewart, James A.; Kohnert, Aaron A.; Capolungo, Laurent; ...

    2018-03-06

    The complexity of radiation effects in a material’s microstructure makes developing predictive models a difficult task. In principle, a complete list of all possible reactions between defect species being considered can be used to elucidate damage evolution mechanisms and its associated impact on microstructure evolution. However, a central limitation is that many models use a limited and incomplete catalog of defect energetics and associated reactions. Even for a given model, estimating its input parameters remains a challenge, especially for complex material systems. Here, we present a computational analysis to identify the extent to which defect accumulation, energetics, and irradiation conditionsmore » can be determined via forward and reverse regression models constructed and trained from large data sets produced by cluster dynamics simulations. A global sensitivity analysis, via Sobol’ indices, concisely characterizes parameter sensitivity and demonstrates how this can be connected to variability in defect evolution. Based on this analysis and depending on the definition of what constitutes the input and output spaces, forward and reverse regression models are constructed and allow for the direct calculation of defect accumulation, defect energetics, and irradiation conditions. Here, this computational analysis, exercised on a simplified cluster dynamics model, demonstrates the ability to design predictive surrogate and reduced-order models, and provides guidelines for improving model predictions within the context of forward and reverse engineering of mathematical models for radiation effects in a materials’ microstructure.« less

  6. Design and analysis of forward and reverse models for predicting defect accumulation, defect energetics, and irradiation conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, James A.; Kohnert, Aaron A.; Capolungo, Laurent

    The complexity of radiation effects in a material’s microstructure makes developing predictive models a difficult task. In principle, a complete list of all possible reactions between defect species being considered can be used to elucidate damage evolution mechanisms and its associated impact on microstructure evolution. However, a central limitation is that many models use a limited and incomplete catalog of defect energetics and associated reactions. Even for a given model, estimating its input parameters remains a challenge, especially for complex material systems. Here, we present a computational analysis to identify the extent to which defect accumulation, energetics, and irradiation conditionsmore » can be determined via forward and reverse regression models constructed and trained from large data sets produced by cluster dynamics simulations. A global sensitivity analysis, via Sobol’ indices, concisely characterizes parameter sensitivity and demonstrates how this can be connected to variability in defect evolution. Based on this analysis and depending on the definition of what constitutes the input and output spaces, forward and reverse regression models are constructed and allow for the direct calculation of defect accumulation, defect energetics, and irradiation conditions. Here, this computational analysis, exercised on a simplified cluster dynamics model, demonstrates the ability to design predictive surrogate and reduced-order models, and provides guidelines for improving model predictions within the context of forward and reverse engineering of mathematical models for radiation effects in a materials’ microstructure.« less

  7. Reverse osmosis desalination: water sources, technology, and today's challenges.

    PubMed

    Greenlee, Lauren F; Lawler, Desmond F; Freeman, Benny D; Marrot, Benoit; Moulin, Philippe

    2009-05-01

    Reverse osmosis membrane technology has developed over the past 40 years to a 44% share in world desalting production capacity, and an 80% share in the total number of desalination plants installed worldwide. The use of membrane desalination has increased as materials have improved and costs have decreased. Today, reverse osmosis membranes are the leading technology for new desalination installations, and they are applied to a variety of salt water resources using tailored pretreatment and membrane system design. Two distinct branches of reverse osmosis desalination have emerged: seawater reverse osmosis and brackish water reverse osmosis. Differences between the two water sources, including foulants, salinity, waste brine (concentrate) disposal options, and plant location, have created significant differences in process development, implementation, and key technical problems. Pretreatment options are similar for both types of reverse osmosis and depend on the specific components of the water source. Both brackish water and seawater reverse osmosis (RO) will continue to be used worldwide; new technology in energy recovery and renewable energy, as well as innovative plant design, will allow greater use of desalination for inland and rural communities, while providing more affordable water for large coastal cities. A wide variety of research and general information on RO desalination is available; however, a direct comparison of seawater and brackish water RO systems is necessary to highlight similarities and differences in process development. This article brings to light key parameters of an RO process and process modifications due to feed water characteristics.

  8. New Generation Live Vaccines against Human Respiratory Syncytial Virus Designed by Reverse Genetics

    PubMed Central

    Collins, Peter L.; Murphy, Brian R.

    2005-01-01

    Development of a live pediatric vaccine against human respiratory syncytial virus (RSV) is complicated by the need to immunize young infants and the difficulty in balancing attenuation and immunogenicity. The ability to introduce desired mutations into infectious virus by reverse genetics provides a method for identifying and designing highly defined attenuating mutations. These can be introduced in combinations as desired to achieve gradations of attenuation. Attenuation is based on several strategies: multiple independent temperature-sensitive point mutations in the polymerase, a temperature-sensitive point mutation in a transcription signal, a set of non–temperature-sensitive mutations involving several genes, deletion of a viral RNA synthesis regulatory protein, and deletion of viral IFN α/β antagonists. The genetic stability of the live vaccine can be increased by judicious choice of mutations. The virus also can be engineered to increase the level of expression of the protective antigens. Protective antigens from antigenically distinct RSV strains can be added or swapped to increase the breadth of coverage. Alternatively, the major RSV protective antigens can be expressed from transcription units added to an attenuated parainfluenza vaccine virus, making a bivalent vaccine. This would obviate the difficulties inherent in the fragility and inefficient in vitro growth of RSV, simplifying vaccine design and use. PMID:16113487

  9. High pressure rotating reverse osmosis for long term space missions

    NASA Astrophysics Data System (ADS)

    Christensen Pederson, Cynthia Lynn

    Rotating reverse osmosis, which uses reverse osmosis to purify water and rotating filtration to improve the efficacy of filtration, has great potential for wastewater recycling on a long term space mission. Previous investigations of a proof-of-concept device indicated that the most efficient method to improve rotating reverse osmosis performance is to increase the operational pressure. Thus, a second generation device and fluid circuit were designed, fabricated, and tested to permit high pressure operation for long time periods. The design overcame several obstacles including membrane attachment, rotating seal design, and fluid and pressure management. A theoretical model of rotating reverse osmosis was modified to properly account for the flow conditions in the new design. Tests lasting a week were conducted with a variety of model wastewaters. Significant fouling and a decrease in flux were observed after three days of testing regardless of the operational parameters. A semi-empirical model, the fouling potential, was added to the theoretical model to account for the fouling. This allowed the simulation of 48 hour cleaning cycles that significantly increased the flux of the device. Experimental investigation of the rotational speed and concentrate flow rate indicated that an increase in either parameter decreased the fouling slightly. A week long test of a wastewater ersatz with a biocide did not exhibit a decrease in flux around day three that otherwise occurred. Therefore, biofouling was identified as the primary mechanism of fouling. Rotating reverse osmosis was compared with conventional spiral wound reverse osmosis and displayed increased rejection under dead end filtration conditions. The rotating device exhibited similar rejection and increased flux compared to a tubular reverse osmosis device previously used in a NASA wastewater recovery system. The integration of the rotating device into a NASA water recovery management system was evaluated. Lastly, a

  10. Using Clickers to Increase On-Task Behaviors of Middle School Students with Behavior Problems

    ERIC Educational Resources Information Center

    Xin, Joy F.; Johnson, Mary L.

    2015-01-01

    This study examined the effect of using a remote device, a Clicker, on the on-task behavior of middle school students with behavior problems. Five students with behavior problems participated in the study. A single-subject research design with ABAB (phase A: baseline 1, phase B: intervention 1, phase A: baseline 2, phase B: intervention 2) phases…

  11. Effects of Classwide Peer Tutoring on the Performance of Sixth Grade Students during a Volleyball Unit

    ERIC Educational Resources Information Center

    Ayvazo, Shiri; Ward, Phillip

    2009-01-01

    This investigation examined the effects of Classwide Peer Tutoring (CWPT), a variation of peer tutoring on the volleyball skills of four 6th grade middle school students purposefully selected from an intact class of 21 students. Participants were average to low skilled males and females. A single subject A-B-A-B withdrawal design was used to…

  12. Design and Construction of Field Reversed Configuration Plasma Chamber for Plasma Material Interaction Studies

    NASA Astrophysics Data System (ADS)

    Smith, DuWayne L.

    A Field Reversed Configuration (FRC) plasma source was designed and constructed to conduct high energy plasma-materials interaction studies. The purpose of these studies is the development of advanced materials for use in plasma based electric propulsion systems and nuclear fusion containment vessels. Outlined within this thesis is the basic concept of FRC plasmoid creation, an overview of the device design and integration of various diagnostics systems for plasma conditions and characterization, discussion on the variety of material defects resulting from the plasma exposure with methods and tools designed for characterization. Using a Michelson interferometer it was determined that the FRC plasma densities are on the order of ~1021 m-3. A novel dynamic pressure probe was created to measure ion velocities averaging 300 km/s. Compensating flux loop arrays were used to measure magnetic field strength and verify the existence of the FRC plasmoid and when used in combination with density measurements it was determined that the average ion temperatures are ~130 eV. X-ray Photoelectron Spectroscopy (XPS) was employed as a means of characterizing the size and shape of the plasma jet in the sample exposure positions. SEM results from preliminary studies reveal significant morphological changes on plasma facing material surfaces, and use of XRD to elucidate fuel gas-ion implantation strain rates correlated to plasma exposure energies.

  13. Comparative study of functional and aesthetically outcomes of reverse digital artery and reverse dorsal homodigital island flaps for fingertip repair.

    PubMed

    Chen, Q Z; Sun, Y C; Chen, J; Kong, J; Gong, Y P; Mao, T

    2015-11-01

    This retrospective study was designed to compare functional and cosmetic outcomes of the reverse digital artery island flap and reverse dorsal homodigital island flap in fingertip repair. A total of 23 patients were followed for 24 to 30 months. The reverse digital artery island flap was used in 12 patients, and reverse dorsal homodigital island flap in another 11 patients. Flap sensibility was assessed using the Semmes-Weinstein monofilament test and static 2-point discrimination test. Patient satisfaction, active motion of the finger joints, complications and cold intolerance were evaluated. The static 2-point discrimination and Michigan Hand Outcomes Questionnaire (appearance) of the fingers treated with a reverse digital artery flap were significantly better than those with a reverse dorsal homodigital flap. The static 2-point discrimination of the skin-grafted donor sides after dorsal homodigital flap were poorer than that in the contralateral finger. No significant differences were found between the two flaps for pressure or touch sensibility, active ranges of digital motion, complications and cold intolerance. III. © The Author(s) 2015.

  14. Andexanet alfa to reverse the anticoagulant activity of factor Xa inhibitors: a review of design, development and potential place in therapy.

    PubMed

    Sartori, Michelangelo; Cosmi, Benilde

    2018-04-01

    Direct oral anticoagulants are associated with rates of major bleeding which are not negligible, albeit lower than those associated with vitamin K antagonists. No specific reversal agent for factor Xa (FXa) direct inhibitors is currently available for clinical use. A modified activated human FXa decoy protein, andexanet alfa, is being developed that binds FXa direct inhibitors in their active site, thus reversing their anticoagulant effect. The purpose of this article is to review the design, development and clinical trials of andexanet alfa. Andexanet alfa was shown to reverse FXa inhibitors anticoagulant activity both in thrombosis animal models, healthy volunteers and patients with acute major bleeding. Andexanet alfa has been studied in double-blind, placebo-controlled phase II and III studies. A preliminary report of the phase III study showed that an effective hemostasis was obtained after andexanet alfa infusion in the majority of the patients with acute major bleeding associated with FXa inhibitors. Additional studies are ongoing and andexanet alfa is expected to be launched in the market in the near future.

  15. Reverse Commute Transportation: Emerging Provider Roles

    DOT National Transportation Integrated Search

    1992-03-01

    This study reports the findings of a small Federal Transit Administration funded study designed to identify and briefly evaluate both historical and modern reverse commute experiments and projects. A series of Federal and State programs funded revers...

  16. Rotating Reverse-Osmosis for Water Purification

    NASA Technical Reports Server (NTRS)

    Lueptow, RIchard M.

    2004-01-01

    A new design for a water-filtering device combines rotating filtration with reverse osmosis to create a rotating reverse- osmosis system. Rotating filtration has been used for separating plasma from whole blood, while reverse osmosis has been used in purification of water and in some chemical processes. Reverse- osmosis membranes are vulnerable to concentration polarization a type of fouling in which the chemicals meant not to pass through the reverse-osmosis membranes accumulate very near the surfaces of the membranes. The combination of rotating filtration and reverse osmosis is intended to prevent concentration polarization and thereby increase the desired flux of filtered water while decreasing the likelihood of passage of undesired chemical species through the filter. Devices based on this concept could be useful in a variety of commercial applications, including purification and desalination of drinking water, purification of pharmaceutical process water, treatment of household and industrial wastewater, and treatment of industrial process water. A rotating filter consists of a cylindrical porous microfilter rotating within a stationary concentric cylindrical outer shell (see figure). The aqueous suspension enters one end of the annulus between the inner and outer cylinders. Filtrate passes through the rotating cylindrical microfilter and is removed via a hollow shaft. The concentrated suspension is removed at the end of the annulus opposite the end where the suspension entered.

  17. A Reverse Osmosis System for an Advanced Separation Process Laboratory.

    ERIC Educational Resources Information Center

    Slater, C. S.; Paccione, J. D.

    1987-01-01

    Focuses on the development of a pilot unit for use in an advanced separations process laboratory in an effort to develop experiments on such processes as reverse osmosis, ultrafiltration, adsorption, and chromatography. Discusses reverse osmosis principles, the experimental system design, and some experimental studies. (TW)

  18. A “Reverse-Schur” Approach to Optimization With Linear PDE Constraints: Application to Biomolecule Analysis and Design

    PubMed Central

    Bardhan, Jaydeep P.; Altman, Michael D.

    2009-01-01

    We present a partial-differential-equation (PDE)-constrained approach for optimizing a molecule’s electrostatic interactions with a target molecule. The approach, which we call reverse-Schur co-optimization, can be more than two orders of magnitude faster than the traditional approach to electrostatic optimization. The efficiency of the co-optimization approach may enhance the value of electrostatic optimization for ligand-design efforts–in such projects, it is often desirable to screen many candidate ligands for their viability, and the optimization of electrostatic interactions can improve ligand binding affinity and specificity. The theoretical basis for electrostatic optimization derives from linear-response theory, most commonly continuum models, and simple assumptions about molecular binding processes. Although the theory has been used successfully to study a wide variety of molecular binding events, its implications have not yet been fully explored, in part due to the computational expense associated with the optimization. The co-optimization algorithm achieves improved performance by solving the optimization and electrostatic simulation problems simultaneously, and is applicable to both unconstrained and constrained optimization problems. Reverse-Schur co-optimization resembles other well-known techniques for solving optimization problems with PDE constraints. Model problems as well as realistic examples validate the reverse-Schur method, and demonstrate that our technique and alternative PDE-constrained methods scale very favorably compared to the standard approach. Regularization, which ordinarily requires an explicit representation of the objective function, can be included using an approximate Hessian calculated using the new BIBEE/P (boundary-integral-based electrostatics estimation by preconditioning) method. PMID:23055839

  19. Folding and Stabilization of Native-Sequence-Reversed Proteins

    PubMed Central

    Zhang, Yuanzhao; Weber, Jeffrey K; Zhou, Ruhong

    2016-01-01

    Though the problem of sequence-reversed protein folding is largely unexplored, one might speculate that reversed native protein sequences should be significantly more foldable than purely random heteropolymer sequences. In this article, we investigate how the reverse-sequences of native proteins might fold by examining a series of small proteins of increasing structural complexity (α-helix, β-hairpin, α-helix bundle, and α/β-protein). Employing a tandem protein structure prediction algorithmic and molecular dynamics simulation approach, we find that the ability of reverse sequences to adopt native-like folds is strongly influenced by protein size and the flexibility of the native hydrophobic core. For β-hairpins with reverse-sequences that fail to fold, we employ a simple mutational strategy for guiding stable hairpin formation that involves the insertion of amino acids into the β-turn region. This systematic look at reverse sequence duality sheds new light on the problem of protein sequence-structure mapping and may serve to inspire new protein design and protein structure prediction protocols. PMID:27113844

  20. Folding and Stabilization of Native-Sequence-Reversed Proteins

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanzhao; Weber, Jeffrey K.; Zhou, Ruhong

    2016-04-01

    Though the problem of sequence-reversed protein folding is largely unexplored, one might speculate that reversed native protein sequences should be significantly more foldable than purely random heteropolymer sequences. In this article, we investigate how the reverse-sequences of native proteins might fold by examining a series of small proteins of increasing structural complexity (α-helix, β-hairpin, α-helix bundle, and α/β-protein). Employing a tandem protein structure prediction algorithmic and molecular dynamics simulation approach, we find that the ability of reverse sequences to adopt native-like folds is strongly influenced by protein size and the flexibility of the native hydrophobic core. For β-hairpins with reverse-sequences that fail to fold, we employ a simple mutational strategy for guiding stable hairpin formation that involves the insertion of amino acids into the β-turn region. This systematic look at reverse sequence duality sheds new light on the problem of protein sequence-structure mapping and may serve to inspire new protein design and protein structure prediction protocols.

  1. Aggregation and Gelation of Aromatic Polyamides with Parallel and Anti-parallel Alignment of Molecular Dipole Along the Backbone

    NASA Astrophysics Data System (ADS)

    Zhu, Dan; Shang, Jing; Ye, Xiaodong; Shen, Jian

    2016-12-01

    The understanding of macromolecular structures and interactions is important but difficult, due to the facts that a macromolecules are of versatile conformations and aggregate states, which vary with environmental conditions and histories. In this work two polyamides with parallel or anti-parallel dipoles along the linear backbone, named as ABAB (parallel) and AABB (anti-parallel) have been studied. By using a combination of methods, the phase behaviors of the polymers during the aggregate and gelation, i.e., the forming or dissociation processes of nuclei and fibril, cluster of fibrils, and cluster-cluster aggregation have been revealed. Such abundant phase behaviors are dominated by the inter-chain interactions, including dispersion, polarity and hydrogen bonding, and correlatd with the solubility parameters of solvents, the temperature, and the polymer concentration. The results of X-ray diffraction and fast-mode dielectric relaxation indicate that AABB possesses more rigid conformation than ABAB, and because of that AABB aggregates are of long fibers while ABAB is of hairy fibril clusters, the gelation concentration in toluene is 1 w/v% for AABB, lower than the 3 w/v% for ABAB.

  2. How Uganda Reversed Its HIV Epidemic

    PubMed Central

    Okware, Sam; Naamara, Warren; Sutherland, Don; Flanagan, Donna; Carael, Michel; Blas, Erik; Delay, Paul; Tarantola, Daniel

    2006-01-01

    Uganda is one of only two countries in the world that has successfully reversed the course of its HIV epidemic. There remains much controversy about how Uganda's HIV prevalence declined in the 1990s. This article describes the prevention programs and activities that were implemented in Uganda during critical years in its HIV epidemic, 1987 to 1994. Multiple resources were aggregated to fuel HV prevention campaigns at multiple levels to a far greater degree than in neighboring countries. We conclude that the reversed direction of the HIV epidemic in Uganda was the direct result of these interventions and that other countries in the developing world could similarly prevent or reverse the escalation of HIV epidemics with greater availability of HIV prevention resources, and well designed programs that take efforts to a critical breadth and depth of effort. PMID:16858635

  3. Computer-aided dental prostheses construction using reverse engineering.

    PubMed

    Solaberrieta, E; Minguez, R; Barrenetxea, L; Sierra, E; Etxaniz, O

    2014-01-01

    The implementation of computer-aided design/computer-aided manufacturing (CAD/CAM) systems with virtual articulators, which take into account the kinematics, constitutes a breakthrough in the construction of customised dental prostheses. This paper presents a multidisciplinary protocol involving CAM techniques to produce dental prostheses. This protocol includes a step-by-step procedure using innovative reverse engineering technologies to transform completely virtual design processes into customised prostheses. A special emphasis is placed on a novel method that permits a virtual location of the models. The complete workflow includes the optical scanning of the patient, the use of reverse engineering software and, if necessary, the use of rapid prototyping to produce CAD temporary prostheses.

  4. Towards reversible basic linear algebra subprograms: A performance study

    DOE PAGES

    Perumalla, Kalyan S.; Yoginath, Srikanth B.

    2014-12-06

    Problems such as fault tolerance and scalable synchronization can be efficiently solved using reversibility of applications. Making applications reversible by relying on computation rather than on memory is ideal for large scale parallel computing, especially for the next generation of supercomputers in which memory is expensive in terms of latency, energy, and price. In this direction, a case study is presented here in reversing a computational core, namely, Basic Linear Algebra Subprograms, which is widely used in scientific applications. A new Reversible BLAS (RBLAS) library interface has been designed, and a prototype has been implemented with two modes: (1) amore » memory-mode in which reversibility is obtained by checkpointing to memory in forward and restoring from memory in reverse, and (2) a computational-mode in which nothing is saved in the forward, but restoration is done entirely via inverse computation in reverse. The article is focused on detailed performance benchmarking to evaluate the runtime dynamics and performance effects, comparing reversible computation with checkpointing on both traditional CPU platforms and recent GPU accelerator platforms. For BLAS Level-1 subprograms, data indicates over an order of magnitude better speed of reversible computation compared to checkpointing. For BLAS Level-2 and Level-3, a more complex tradeoff is observed between reversible computation and checkpointing, depending on computational and memory complexities of the subprograms.« less

  5. Controlling hazardous reactions during voltage reversal of high energy lithium cells

    NASA Technical Reports Server (NTRS)

    Domeniconi, M.

    1983-01-01

    The roll of general cell design characteristics in preventing hazardous reactions during voltage reversal of lithium cells is discussed. Anode limited versus cathode limited design and case positive versus case negative design are addressed.

  6. Process of forming compounds using reverse micelle or reverse microemulsion systems

    DOEpatents

    Linehan, John C.; Fulton, John L.; Bean, Roger M.

    1998-01-01

    The present invention is directed to a process for producing a nanometer-sized metal compound. The process comprises forming a reverse micelle or reverse microemulsion system comprising a polar fluid in a non-polar or low-polarity fluid. A first reactant comprising a multi-component, water-soluble metal compound is introduced into the polar fluid in a non-polar or low-polarity fluid. This first reactant can be introduced into the reverse micelle or reverse microemulsion system during formation thereof or subsequent to the formation of the reverse micelle or microemulsion system. The water-soluble metal compound is then reacted in the reverse micelle or reverse microemulsion system to form the nanometer-sized metal compound. The nanometer-sized metal compound is then precipitated from the reverse micelle or reverse microemulsion system.

  7. Static performance of vectoring/reversing non-axisymmetric nozzles

    NASA Technical Reports Server (NTRS)

    Willard, C. M.; Capone, F. J.; Konarski, M.; Stevens, H. L.

    1977-01-01

    An experimental program sponsored by the Air Force Flight Dynamics Laboratory is currently in progress to determine the internal and installed performance characteristics of five different thrust vectoring/reversing non-axisymmetric nozzle concepts for tactical fighter aircraft applications. Internal performance characteristics for the five non-axisymmetric nozzles and an advanced technology axisymmetric baseline nozzle were determined in static tests conducted in January 1977 at the NASA-Langley Research Center. The non-axisymmetric nozzle models were tested at thrust deflection angles of up to 30 degrees from horizontal at throat areas associated with both dry and afterburning power. In addition, dry power reverse thrust geometries were tested for three of the concepts. The best designs demonstrated internal performance levels essentially equivalent to the baseline axisymmetric nozzle at unvectored conditions. The best designs also gave minimum performance losses due to vectoring, and reverse thrust levels up to 50% of maximum dry power forward thrust. The installed performance characteristics will be established based on wind tunnel testing to be conducted at Arnold Engineering Development Center in the fall of 1977.

  8. Charge-reversal nanoparticles: novel targeted drug delivery carriers.

    PubMed

    Chen, Xinli; Liu, Lisha; Jiang, Chen

    2016-07-01

    Spurred by significant progress in materials chemistry and drug delivery, charge-reversal nanocarriers are being developed to deliver anticancer formulations in spatial-, temporal- and dosage-controlled approaches. Charge-reversal nanoparticles can release their drug payload in response to specific stimuli that alter the charge on their surface. They can elude clearance from the circulation and be activated by protonation, enzymatic cleavage, or a molecular conformational change. In this review, we discuss the physiological basis for, and recent advances in the design of charge-reversal nanoparticles that are able to control drug biodistribution in response to specific stimuli, endogenous factors (changes in pH, redox gradients, or enzyme concentration) or exogenous factors (light or thermos-stimulation).

  9. Evaluating the Effects of Function-Based Interventions With Deaf or Hard-of-Hearing Students.

    PubMed

    Gann, Candace J; Gaines, Sarah E; Antia, Shirin D; Umbreit, John; Liaupsin, Carl J

    2015-07-01

    This study examined the effectiveness of function-based interventions with students who are deaf or hard of hearing (D/HH). The participants were 3 elementary-aged males attending a center school for the deaf who exhibited chronic off-task behaviors throughout the school day. This study was conducted across 2 phases: (a) a descriptive functional behavior assessment (FBA) was conducted for each participant and (b) individualized function-based interventions were developed based on the results of the FBAs, followed by the implementation of the interventions in each classroom using a single-subject, ABAB reversal design. The function-based interventions significantly improved each participant's on-task behavior in his classroom environment. Furthermore, social validity ratings by each teacher revealed that the interventions were effective, easy to implement, and appropriate for each participant. Implications for application of the procedures used in this study with the D/HH population, limitations, and directions for future research are discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Why do airlines want and use thrust reversers? A compilation of airline industry responses to a survey regarding the use of thrust reversers on commercial transport airplanes

    NASA Technical Reports Server (NTRS)

    Yetter, Jeffrey A.

    1995-01-01

    Although thrust reversers are used for only a fraction of the airplane operating time, their impact on nacelle design, weight, airplane cruise performance, and overall airplane operating and maintenance expenses is significant. Why then do the airlines want and use thrust reversers? In an effort to understand the airlines need for thrust reversers, a survey of the airline industry was made to determine why and under what situations thrust reversers are currently used or thought to be needed. The survey was intended to help establish the cost/benefits trades for the use of thrust reversers and airline opinion regarding alternative deceleration devices. A compilation and summary of the responses given to the survey questionnaire is presented.

  11. Structure-Based Design of Novel Dihydroalkoxybenzyloxopyrimidine Derivatives as Potent Nonnucleoside Inhibitors of the Human Immunodeficiency Virus Reverse Transcriptase

    PubMed Central

    Sudbeck, Elise A.; Mao, Chen; Vig, Rakesh; Venkatachalam, T. K.; Tuel-Ahlgren, Lisa; Uckun, Fatih M.

    1998-01-01

    Two highly potent dihydroalkoxybenzyloxopyrimidine (DABO) derivatives targeting the nonnucleoside inhibitor (NNI) binding site of human immunodeficiency virus (HIV) reverse transcriptase (RT) have been designed based on the structure of the NNI binding pocket and tested for anti-HIV activity. Our lead DABO derivative, 5-isopropyl-2-[(methylthiomethyl)thio]-6-(benzyl)-pyrimidin-4-(1H)-one, elicited potent inhibitory activity against purified recombinant HIV RT and abrogated HIV replication in peripheral blood mononuclear cells at nanomolar concentrations (50% inhibitory concentration, <1 nM) but showed no detectable cytotoxicity at concentrations as high as 100 μM. PMID:9835518

  12. Reverse and forward engineering of protein pattern formation.

    PubMed

    Kretschmer, Simon; Harrington, Leon; Schwille, Petra

    2018-05-26

    Living systems employ protein pattern formation to regulate important life processes in space and time. Although pattern-forming protein networks have been identified in various prokaryotes and eukaryotes, their systematic experimental characterization is challenging owing to the complex environment of living cells. In turn, cell-free systems are ideally suited for this goal, as they offer defined molecular environments that can be precisely controlled and manipulated. Towards revealing the molecular basis of protein pattern formation, we outline two complementary approaches: the biochemical reverse engineering of reconstituted networks and the de novo design, or forward engineering, of artificial self-organizing systems. We first illustrate the reverse engineering approach by the example of the Escherichia coli Min system, a model system for protein self-organization based on the reversible and energy-dependent interaction of the ATPase MinD and its activating protein MinE with a lipid membrane. By reconstituting MinE mutants impaired in ATPase stimulation, we demonstrate how large-scale Min protein patterns are modulated by MinE activity and concentration. We then provide a perspective on the de novo design of self-organizing protein networks. Tightly integrated reverse and forward engineering approaches will be key to understanding and engineering the intriguing phenomenon of protein pattern formation.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Author(s).

  13. Reversible Thermoset Adhesives

    NASA Technical Reports Server (NTRS)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  14. Reversible Rigidity Control Using Low Melting Temperature Alloys

    NASA Astrophysics Data System (ADS)

    Shan, Wanliang; Lu, Tong; Majidi, Carmel

    2013-03-01

    Inspired by nature, materials able to achieve rapid rigidity changes have important applications for human body protection in military and many other areas. This talk presents the fabrication and design of soft-matter technologies that exhibit rapid reversible rigidity control. Fabricated with a masked deposition technique, the soft-matter composite contains liquid-phase and phase-changing metal alloys embedded in a soft and highly stretchable elastomer. The composite material can reversibly change its rigidity by three orders of magnitude and sustain large deformation.

  15. Zero field reversal probability in thermally assisted magnetization reversal

    NASA Astrophysics Data System (ADS)

    Prasetya, E. B.; Utari; Purnama, B.

    2017-11-01

    This paper discussed about zero field reversal probability in thermally assisted magnetization reversal (TAMR). Appearance of reversal probability in zero field investigated through micromagnetic simulation by solving stochastic Landau-Lifshitz-Gibert (LLG). The perpendicularly anisotropy magnetic dot of 50×50×20 nm3 is considered as single cell magnetic storage of magnetic random acces memory (MRAM). Thermally assisted magnetization reversal was performed by cooling writing process from near/almost Curie point to room temperature on 20 times runs for different randomly magnetized state. The results show that the probability reversal under zero magnetic field decreased with the increase of the energy barrier. The zero-field probability switching of 55% attained for energy barrier of 60 k B T and the reversal probability become zero noted at energy barrier of 2348 k B T. The higest zero-field switching probability of 55% attained for energy barrier of 60 k B T which corespond to magnetif field of 150 Oe for switching.

  16. Hierarchy of stability factors in reverse shoulder arthroplasty.

    PubMed

    Gutiérrez, Sergio; Keller, Tony S; Levy, Jonathan C; Lee, William E; Luo, Zong-Ping

    2008-03-01

    Reverse shoulder arthroplasty is being used more frequently to treat irreparable rotator cuff tears in the presence of glenohumeral arthritis and instability. To date, however, design features and functions of reverse shoulder arthroplasty, which may be associated with subluxation and dislocation of these implants, have been poorly understood. We asked: (1) what is the hierarchy of importance of joint compressive force, prosthetic socket depth, and glenosphere size in relation to stability, and (2) is this hierarchy defined by underlying and theoretically predictable joint contact characteristics? We examined the intrinsic stability in terms of the force required to dislocate the humerosocket from the glenosphere of eight commercially available reverse shoulder arthroplasty devices. The hierarchy of factors was led by compressive force followed by socket depth; glenosphere size played a much lesser role in stability of the reverse shoulder arthroplasty device. Similar results were predicted by a mathematical model, suggesting the stability was determined primarily by compressive forces generated by muscles.

  17. VLSI Implementation of Fault Tolerance Multiplier based on Reversible Logic Gate

    NASA Astrophysics Data System (ADS)

    Ahmad, Nabihah; Hakimi Mokhtar, Ahmad; Othman, Nurmiza binti; Fhong Soon, Chin; Rahman, Ab Al Hadi Ab

    2017-08-01

    Multiplier is one of the essential component in the digital world such as in digital signal processing, microprocessor, quantum computing and widely used in arithmetic unit. Due to the complexity of the multiplier, tendency of errors are very high. This paper aimed to design a 2×2 bit Fault Tolerance Multiplier based on Reversible logic gate with low power consumption and high performance. This design have been implemented using 90nm Complemetary Metal Oxide Semiconductor (CMOS) technology in Synopsys Electronic Design Automation (EDA) Tools. Implementation of the multiplier architecture is by using the reversible logic gates. The fault tolerance multiplier used the combination of three reversible logic gate which are Double Feynman gate (F2G), New Fault Tolerance (NFT) gate and Islam Gate (IG) with the area of 160μm x 420.3μm (67.25 mm2). This design achieved a low power consumption of 122.85μW and propagation delay of 16.99ns. The fault tolerance multiplier proposed achieved a low power consumption and high performance which suitable for application of modern computing as it has a fault tolerance capabilities.

  18. Naloxone reversal of buprenorphine-induced respiratory depression.

    PubMed

    van Dorp, Eveline; Yassen, Ashraf; Sarton, Elise; Romberg, Raymonda; Olofsen, Erik; Teppema, Luc; Danhof, Meindert; Dahan, Albert

    2006-07-01

    The objective of this investigation was to examine the ability of the opioid antagonist naloxone to reverse respiratory depression produced by the mu-opioid analgesic, buprenorphine, in healthy volunteers. The studies were designed in light of the claims that buprenorphine is relatively resistant to the effects of naloxone. In a first attempt, the effect of an intravenous bolus dose of 0.8 mg naloxone was assessed on 0.2 mg buprenorphine-induced respiratory depression. Next, the effect of increasing naloxone doses (0.5-7 mg, given over 30 min) on 0.2 mg buprenorphine-induced respiratory depression was tested. Subsequently, continuous naloxone infusions were applied to reverse respiratory depression from 0.2 and 0.4 mg buprenorphine. All doses are per 70 kg. Respiration was measured against a background of constant increased end-tidal carbon dioxide concentration. An intravenous naloxone dose of 0.8 mg had no effect on respiratory depression from buprenorphine. Increasing doses of naloxone given over 30 min produced full reversal of buprenorphine effect in the dose range of 2-4 mg naloxone. Further increasing the naloxone dose (doses of 5 mg or greater) caused a decline in reversal activity. Naloxone bolus doses of 2-3 mg, followed by a continuous infusion of 4 mg/h, caused full reversal within 40-60 min of both 0.2 and 0.4 mg buprenorphine-induced respiratory depression. Reversal of buprenorphine effect is possible but depends on the buprenorphine dose and the correct naloxone dose window. Because respiratory depression from buprenorphine may outlast the effects of naloxone boluses or short infusions, a continuous infusion of naloxone may be required to maintain reversal of respiratory depression.

  19. Reversible and non-reversible changes in nanostructured Si in humid atmosphere

    NASA Astrophysics Data System (ADS)

    Zhigalov, V.; Pyatilova, O.; Timoshenkov, S.; Gavrilov, S.

    2014-12-01

    Atmosphere water influence in the nanostructured silicon (NSS) was investigated by IR-spectroscopy and electron work function measurement. Long-term non-reversible dynamics of IR-spectra was found as a result of 100% humidity influence on the nanostructured silicon. It was indicated that air humidity affects on the work function. Dynamics of the electron work function consists of reversible and non-reversible components. Reversible component appears as strong anti-correlation between work function and humidity. Work function change of NSS is about 0.4 eV while the humidity changes between 0% and 100%. Reversible component can be explained by physical sorption of water molecules on the surface. Non-reversible component manifests as long-term decreasing trend of work function in humid atmosphere. Transition curve during abruptly humidity changes alters its shape. Non-reversible component can be explained by chemisorption of water.

  20. New design strategy for reversible plasticity shape memory polymers with deformable glassy aggregates.

    PubMed

    Lin, Tengfei; Tang, Zhenghai; Guo, Baochun

    2014-12-10

    Reversible plasticity shape memory (RPSM) is a new concept in the study of shape memory performance behavior and describes a phenomenon in which shape memory polymers (SMPs) can undergo a large plastic deformation at room temperature and subsequently recover their original shape upon heating. To date, RPSM behavior has been demonstrated in only a few polymers. In the present study, we implement a new design strategy, in which deformable glassy hindered phenol (AO-80) aggregates are incorporated into an amorphous network of epoxidized natural rubber (ENR) cured with zinc diacrylate (ZDA), in order to achieve RPSM properties. We propose that AO-80 continuously tunes the glass transition temperature (Tg) and improves the chain mobility of the SMP, providing traction and anchoring the ENR chains by intermolecular hydrogen bonding interactions. The RPSM behavior of the amorphous SMPs is characterized, and the results demonstrate good fixity at large deformations (up to 300%) and excellent recovery upon heating. Large energy storage capacities at Td in these RPSM materials are demonstrated compared with those achieved at elevated temperature in traditional SMPs. Interestingly, the further revealed self-healing properties of these materials are closely related to their RPSM behavior.

  1. Application of reverse engineering in the medical industry.

    NASA Astrophysics Data System (ADS)

    Kaleev, A. A.; Kashapov, L. N.; Kashapov, N. F.; Kashapov, R. N.

    2017-09-01

    The purpose of this research is to develop on the basis of existing analogs new design of ophthalmologic microsurgical tweezers by using reverse engineering techniques. Virtual model was obtained by using a three-dimensional scanning system Solutionix Rexcan 450 MP. Geomagic Studio program was used to remove defects and inaccuracies of the obtained parametric model. A prototype of the finished model was made on the installation of laser stereolithography Projet 6000. Total time of the creation was 16 hours from the reverse engineering procedure to 3D-printing of the prototype.

  2. The Expertise Reversal Effect Concerning Instructional Explanations

    ERIC Educational Resources Information Center

    Rey, Gunter Daniel; Fischer, Andreas

    2013-01-01

    The expertise reversal effect occurs when learner's expertise moderates design principles derived from cognitive load theory. Although this effect is supported by numerous empirical studies, indicating an overall large effect size, the effect was never tested by inducing expertise experimentally and using instructional explanations in a…

  3. pH Gradient Reversal: An Emerging Hallmark of Cancers.

    PubMed

    Sharma, Mohit; Astekar, Madhusudan; Soi, Sonal; Manjunatha, Bhari S; Shetty, Devi C; Radhakrishnan, Raghu

    2015-01-01

    Several tumors exhibit pH gradient reversal, with acidification of extracellular pH (pHe) and alkalinization of intracellular pH (pHi). The pH gradient reversal is evident even during the preliminary stages of tumorigenesis and is crucial for survival and propagation of tumors, irrespective of their pathology, genetics and origins. Moreover, this hallmark seems to be present ubiquitously in all malignant tumors. Based on these facts, we propose a new emerging hallmark of cancer "pH gradient reversal". Normalizing pH gradient reversal through inhibition of various proton transporters such as Na(+)-H(+) exchanger (NHE), Vacuolar-type H(+)-ATPase (V-ATPase), H(+)/K(+)-ATPases and carbonic anhydrases (CAs) has demonstrated substantial therapeutic benefits. Indeed, inhibition of NHE1 is now being regarded as the latest concept in cancer treatment. A recent patent deals with the utilization of cis-Urocanic acid to acidify the pHi and induce apoptosis in tumors. Another patent reports therapeutic benefit by inhibiting Lactate Dehydrogenase - 5 (LDH-5) in various cancers. Several patents have been formulated by designing drugs activated through acidic pHe providing a cancer specific action. The purpose of this review is to analyze the available literature and help design selective therapies that could be a valuable adjunct to the conventional therapies or even replace them.

  4. Proton-Fueled, Reversible DNA Hybridization Chain Assembly for pH Sensing and Imaging.

    PubMed

    Liu, Lan; Liu, Jin-Wen; Huang, Zhi-Mei; Wu, Han; Li, Na; Tang, Li-Juan; Jiang, Jian-Hui

    2017-07-05

    Design of DNA self-assembly with reversible responsiveness to external stimuli is of great interest for diverse applications. We for the first time develop a pH-responsive, fully reversible hybridization chain reaction (HCR) assembly that allows sensitive sensing and imaging of pH in living cells. Our design relies on the triplex forming sequences that form DNA triplex with toehold regions under acidic conditions and then induce a cascade of strand displacement and DNA assembly. The HCR assembly has shown dynamic responses in physiological pH ranges with excellent reversibility and demonstrated the potential for in vitro detection and live-cell imaging of pH. Moreover, this method affords HCR assemblies with highly localized fluorescence responses, offering advantages of improving sensitivity and better selectivity. The proton-fueled, reversible HCR assembly may provide a useful approach for pH-related cell biology study and disease diagnostics.

  5. The effect of left-right reversal on film: Watching Kurosawa reversed

    PubMed Central

    Bertamini, Marco; Bode, Carole; Bruno, Nicola

    2011-01-01

    The mirror reversal of an image is subtly different from the original. Often such change goes unnoticed in pictures, although it can affect preference. For the first time we studied the effect of mirror reversal of feature films. People watched Yojimbo or Sanjuro in a cinema, both classic films by Akira Kurosawa. They knew that this was a study and filled out a questionnaire. On one day Yojimbo was shown in its original orientation, and on another day the film was mirror reversed. Sanjuro was shown reversed on one day and non-reversed on another day. Viewers did not notice the reversal, even when they had seen the film before and considered themselves fans of Kurosawa. We compared this with estimates from a survey. In addition, the question about the use of space (scenography) revealed that although people who had seen the film before gave higher ratings compared with those who had not, this was only true when the film was not reversed. PMID:23145243

  6. Photonic topological insulator with broken time-reversal symmetry

    PubMed Central

    He, Cheng; Sun, Xiao-Chen; Liu, Xiao-Ping; Lu, Ming-Hui; Chen, Yulin; Feng, Liang; Chen, Yan-Feng

    2016-01-01

    A topological insulator is a material with an insulating interior but time-reversal symmetry-protected conducting edge states. Since its prediction and discovery almost a decade ago, such a symmetry-protected topological phase has been explored beyond electronic systems in the realm of photonics. Electrons are spin-1/2 particles, whereas photons are spin-1 particles. The distinct spin difference between these two kinds of particles means that their corresponding symmetry is fundamentally different. It is well understood that an electronic topological insulator is protected by the electron’s spin-1/2 (fermionic) time-reversal symmetry Tf2=−1. However, the same protection does not exist under normal circumstances for a photonic topological insulator, due to photon’s spin-1 (bosonic) time-reversal symmetry Tb2=1. In this work, we report a design of photonic topological insulator using the Tellegen magnetoelectric coupling as the photonic pseudospin orbit interaction for left and right circularly polarized helical spin states. The Tellegen magnetoelectric coupling breaks bosonic time-reversal symmetry but instead gives rise to a conserved artificial fermionic-like-pseudo time-reversal symmetry, Tp (Tp2=−1), due to the electromagnetic duality. Surprisingly, we find that, in this system, the helical edge states are, in fact, protected by this fermionic-like pseudo time-reversal symmetry Tp rather than by the bosonic time-reversal symmetry Tb. This remarkable finding is expected to pave a new path to understanding the symmetry protection mechanism for topological phases of other fundamental particles and to searching for novel implementations for topological insulators. PMID:27092005

  7. Static internal performance evaluation of several thrust reversing concepts for 2D-CD nozzles

    NASA Technical Reports Server (NTRS)

    Rowe, R. K.; Duss, D. J.; Leavitt, L. D.

    1984-01-01

    Recent performance testing of the two-dimensional convergent-divergent (2D-CD) nozzle has established the concept as a viable alternative to the axisymmetric nozzle for advanced technology aircraft. This type of exhaust system also offers potential integration and performance advantages in the areas of thrust reversing and vectoring over axi-symmetric nozzles. These advantages include the practical integration of thrust reversers which operate not only to reduce landing roll but also operate in-flight for enhanced maneuvering and thrust spoiling. To date there is a very limited data base available from which criteria can be developed for the design and evaluation of this type of thrust reverser system. For this reason, a static scale model test was conducted in which five different thrust reverser designs were evaluated. Each of the five models had varying performance/integration requirements which dictated the five different designs. Some of the parameters investigated in this test included; variable angle external cascade vanes, fixed angle internal cascade vanes, variable position inner doors, external slider doors and internal slider valves. In addition, normal force and yawing moment generation was investigated using the thrust reverser system. Selected results from this test will be presented and discussed in this paper.

  8. Reverse Aging of Composite Materials for Aeronautical Applications

    NASA Astrophysics Data System (ADS)

    lannone, Michele

    2008-08-01

    Hygro-thermal ageing of polymer matrix composite materials is a major issue for all the aeronautical structures. For carbon-epoxy composites generally used in aeronautical applications the major effect of ageing is the humidity absorption, which induces a plasticization effect, generally decreasing Tg and elastic moduli, and finally design allowables. A thermodynamical and kinetic study has been performed, aimed to establish a program of periodic heating of the composite part, able to reversing the ageing effect by inducing water desorption. The study was founded on a simple model based on Fick's law, coupled with a concept of "relative saturation coefficient" depending on the different temperature of the composite part and the environment. The behaviour of some structures exposed to humidity and "reverse aged" by heating has been virtually tested. The conclusion of the study allowed to issue a specific patent application for aeronautical structures to be designed on the basis of a "humidity free" concept which allows the use of higher design allowables; having as final results lighter composite structures with a simplified certification process.

  9. Biomechanics of Reverse Shoulder Arthroplasty: 
Current Concepts.

    PubMed

    Lorenzetti, Adam J; Stone, Geoffrey P; Simon, Peter; Frankle, Mark A

    2016-01-01

    The evolution of reverse shoulder arthroplasty has provided surgeons with new solutions for many complex shoulder problems. A primary goal of orthopaedics is the restoration or re-creation of functional anatomy to reduce pain and improve function, which can be accomplished by either repairing injured structures or replacing them as anatomically as possible. If reconstructible tissue is lacking or not available, which is seen in patients who have complex shoulder conditions such as an irreparable rotator cuff-deficient shoulder, cuff tear arthropathy, or severe glenoid bone loss, substantial problems may arise. Historically, hemiarthroplasty or glenoid grafting with total shoulder arthroplasty yielded inconsistent and unsatisfactory results. Underlying pathologies in patients who have an irreparable rotator cuff-deficient shoulder, cuff tear arthropathy, or severe glenoid bone loss can considerably alter the mechanical function of the shoulder and create treatment dilemmas that are difficult to overcome. A better biomechanical understanding of these pathologic adaptations has improved treatment options. In the past three decades, reverse total shoulder arthroplasty was developed to treat these complex shoulder conditions not by specifically re-creating the anatomy but by using the remaining functional tissue to improve shoulder balance. Reverse total shoulder arthroplasty has achieved reliable improvements in both pain and function. Initial implant designs lacked scientific evidence to support the design rationale, and many implants failed because surgeons did not completely understand the forces involved or the pathology being treated. Implant function and clinical results will continue to improve as surgeons' biomechanical understanding of shoulder disease and reverse shoulder arthroplasty implants increases.

  10. Design and Performance of a Pinned Photodiode CMOS Image Sensor Using Reverse Substrate Bias.

    PubMed

    Stefanov, Konstantin D; Clarke, Andrew S; Ivory, James; Holland, Andrew D

    2018-01-03

    A new pinned photodiode (PPD) CMOS image sensor with reverse biased p-type substrate has been developed and characterized. The sensor uses traditional PPDs with one additional deep implantation step to suppress the parasitic reverse currents, and can be fully depleted. The first prototypes have been manufactured on an 18 µm thick, 1000 Ω·cm epitaxial silicon wafers using 180 nm PPD image sensor process. Both front-side illuminated (FSI) and back-side illuminated (BSI) devices were manufactured in collaboration with Teledyne e2v. The characterization results from a number of arrays of 10 µm and 5.4 µm PPD pixels, with different shape, the size and the depth of the new implant are in good agreement with device simulations. The new pixels could be reverse-biased without parasitic leakage currents well beyond full depletion, and demonstrate nearly identical optical response to the reference non-modified pixels. The observed excessive charge sharing in some pixel variants is shown to not be a limiting factor in operation. This development promises to realize monolithic PPD CIS with large depleted thickness and correspondingly high quantum efficiency at near-infrared and soft X-ray wavelengths.

  11. Reverse Dynamization

    PubMed Central

    Glatt, Vaida; Bartnikowski, Nicole; Quirk, Nicholas; Schuetz, Michael; Evans, Christopher

    2016-01-01

    Background: Reverse dynamization is a technology for enhancing the healing of osseous defects. With use of an external fixator, the axial stiffness across the defect is initially set low and subsequently increased. The purpose of the study described in this paper was to explore the efficacy of reverse dynamization under different conditions. Methods: Rat femoral defects were stabilized with external fixators that allowed the stiffness to be modulated on living animals. Recombinant human bone morphogenetic protein-2 (rhBMP-2) was implanted into the defects on a collagen sponge. Following a dose-response experiment, 5.5 μg of rhBMP-2 was placed into the defect under conditions of very low (25.4-N/mm), low (114-N/mm), medium (185-N/mm), or high (254-N/mm) stiffness. Reverse dynamization was evaluated with 2 different starting stiffnesses: low (114 N/mm) and very low (25.4 N/mm). In both cases, high stiffness (254 N/mm) was imposed after 2 weeks. Healing was assessed with radiographs, micro-computed tomography (μCT), histological analysis, and mechanical testing. Results: In the absence of dynamization, the medium-stiffness fixators provided the best healing. Reverse dynamization starting with very low stiffness was detrimental to healing. However, with low initial stiffness, reverse dynamization considerably improved healing with minimal residual cartilage, enhanced cortication, increased mechanical strength, and smaller callus. Histological analysis suggested that, in all cases, healing provoked by rhBMP-2 occurred by endochondral ossification. Conclusions: These data confirm the potential utility of reverse dynamization as a way of improving bone healing but indicate that the stiffness parameters need to be selected carefully. Clinical Relevance: Reverse dynamization may reduce the amount of rhBMP-2 needed to induce healing of recalcitrant osseous lesions, reduce the time to union, and decrease the need for prolonged external fixation. PMID:27098327

  12. Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology.

    PubMed

    Chen, Jianyu; Zhang, Zhiguang; Chen, Xianshuai; Zhang, Chunyu; Zhang, Gong; Xu, Zhewu

    2014-11-01

    Recently a new therapeutic concept of patient-specific implant dentistry has been advanced based on computer-aided design/computer-aided manufacturing technology. However, a comprehensive study of the design and 3-dimensional (3D) printing of the customized implants, their mechanical properties, and their biomechanical behavior is lacking. The purpose of this study was to evaluate the mechanical and biomechanical performance of a novel custom-made dental implant fabricated by the selective laser melting technique with simulation and in vitro experimental studies. Two types of customized implants were designed by using reverse engineering: a root-analog implant and a root-analog threaded implant. The titanium implants were printed layer by layer with the selective laser melting technique. The relative density, surface roughness, tensile properties, bend strength, and dimensional accuracy of the specimens were evaluated. Nonlinear and linear finite element analysis and experimental studies were used to investigate the stress distribution, micromotion, and primary stability of the implants. Selective laser melting 3D printing technology was able to reproduce the customized implant designs and produce high density and strength and adequate dimensional accuracy. Better stress distribution and lower maximum micromotions were observed for the root-analog threaded implant model than for the root-analog implant model. In the experimental tests, the implant stability quotient and pull-out strength of the 2 types of implants indicated that better primary stability can be obtained with a root-analog threaded implant design. Selective laser melting proved to be an efficient means of printing fully dense customized implants with high strength and sufficient dimensional accuracy. Adding the threaded characteristic to the customized root-analog threaded implant design maintained the approximate geometry of the natural root and exhibited better stress distribution and

  13. New reversing freeform lens design method for LED uniform illumination with extended source and near field

    NASA Astrophysics Data System (ADS)

    Zhao, Zhili; Zhang, Honghai; Zheng, Huai; Liu, Sheng

    2018-03-01

    In light-emitting diode (LED) array illumination (e.g. LED backlighting), obtainment of high uniformity in the harsh condition of the large distance height ratio (DHR), extended source and near field is a key as well as challenging issue. In this study, we present a new reversing freeform lens design algorithm based on the illuminance distribution function (IDF) instead of the traditional light intensity distribution, which allows uniform LED illumination in the above mentioned harsh conditions. IDF of freeform lens can be obtained by the proposed mathematical method, considering the effects of large DHR, extended source and near field target at the same time. In order to prove the claims, a slim direct-lit LED backlighting with DHR equal to 4 is designed. In comparison with the traditional lenses, illuminance uniformity of LED backlighting with the new lens increases significantly from 0.45 to 0.84, and CV(RMSE) decreases dramatically from 0.24 to 0.03 in the harsh condition. Meanwhile, luminance uniformity of LED backlighting with the new lens is obtained as high as 0.92 at the condition of extended source and near field. This new method provides a practical and effective way to solve the problem of large DHR, extended source and near field for LED array illumination.

  14. Sequential Polarity-Reversing Circuit

    NASA Technical Reports Server (NTRS)

    Labaw, Clayton C.

    1994-01-01

    Proposed circuit reverses polarity of electric power supplied to bidirectional dc motor, reversible electro-mechanical actuator, or other device operating in direction depending on polarity. Circuit reverses polarity each time power turned on, without need for additional polarity-reversing or direction signals and circuitry to process them.

  15. A novel dynamic mechanical testing technique for reverse shoulder replacements.

    PubMed

    Dabirrahmani, Danè; Bokor, Desmond; Appleyard, Richard

    2014-04-01

    In vitro mechanical testing of orthopedic implants provides information regarding their mechanical performance under simulated biomechanical conditions. Current in vitro component stability testing methods for reverse shoulder implants are based on anatomical shoulder designs, which do not capture the dynamic nature of these loads. With glenoid component loosening as one of the most prevalent modes of failure in reverse shoulder replacements, it is important to establish a testing protocol with a more realistic loading regime. This paper introduces a novel method of mechanically testing reverse shoulder implants, using more realistic load magnitudes and vectors, than is currently practiced. Using a custom made jig setup within an Instron mechanical testing system, it is possible to simulate the change in magnitude and direction of the joint load during arm abduction. This method is a step towards a more realistic testing protocol for measuring reverse shoulder implant stability.

  16. Complications in reverse shoulder arthroplasty

    PubMed Central

    Barco, Raul; Savvidou, Olga D.; Sperling, John W.; Sanchez-Sotelo, Joaquín; Cofield, Robert H.

    2016-01-01

    The reported rate of complications of reverse shoulder arthroplasty (RSA) seems to be higher than the complication rate of anatomical total shoulder arthroplasty. The reported overall complication rate of primary RSA is approximately 15%; when RSA is used in the revision setting, the complication rate may approach 40%. The most common complications of RSA include instability, infection, notching, loosening, nerve injury, acromial and scapular spine fractures, intra-operative fractures and component disengagement. Careful attention to implant design and surgical technique, including implantation of components in the correct version and height, selection of the best glenosphere-humeral bearing match, avoidance of impingement, and adequate management of the soft tissues will hopefully translate in a decreasing number of complications in the future. Cite this article: Barco R, Savvidou OD, Sperling JW, Sanchez-Sotelo J, Cofield RH. Complications in reverse shoulder arthroplasty. EFORT Open Rev 2016;1:72-80. DOI: 10.1302/2058-5241.1.160003. PMID:28461931

  17. Complications in reverse shoulder arthroplasty.

    PubMed

    Barco, Raul; Savvidou, Olga D; Sperling, John W; Sanchez-Sotelo, Joaquín; Cofield, Robert H

    2016-03-01

    The reported rate of complications of reverse shoulder arthroplasty (RSA) seems to be higher than the complication rate of anatomical total shoulder arthroplasty.The reported overall complication rate of primary RSA is approximately 15%; when RSA is used in the revision setting, the complication rate may approach 40%.The most common complications of RSA include instability, infection, notching, loosening, nerve injury, acromial and scapular spine fractures, intra-operative fractures and component disengagement.Careful attention to implant design and surgical technique, including implantation of components in the correct version and height, selection of the best glenosphere-humeral bearing match, avoidance of impingement, and adequate management of the soft tissues will hopefully translate in a decreasing number of complications in the future. Cite this article: Barco R, Savvidou OD, Sperling JW, Sanchez-Sotelo J, Cofield RH. Complications in reverse shoulder arthroplasty. EFORT Open Rev 2016;1:72-80. DOI: 10.1302/2058-5241.1.160003.

  18. Reverse engineering highlights potential principles of large gene regulatory network design and learning.

    PubMed

    Carré, Clément; Mas, André; Krouk, Gabriel

    2017-01-01

    Inferring transcriptional gene regulatory networks from transcriptomic datasets is a key challenge of systems biology, with potential impacts ranging from medicine to agronomy. There are several techniques used presently to experimentally assay transcription factors to target relationships, defining important information about real gene regulatory networks connections. These techniques include classical ChIP-seq, yeast one-hybrid, or more recently, DAP-seq or target technologies. These techniques are usually used to validate algorithm predictions. Here, we developed a reverse engineering approach based on mathematical and computer simulation to evaluate the impact that this prior knowledge on gene regulatory networks may have on training machine learning algorithms. First, we developed a gene regulatory networks-simulating engine called FRANK (Fast Randomizing Algorithm for Network Knowledge) that is able to simulate large gene regulatory networks (containing 10 4 genes) with characteristics of gene regulatory networks observed in vivo. FRANK also generates stable or oscillatory gene expression directly produced by the simulated gene regulatory networks. The development of FRANK leads to important general conclusions concerning the design of large and stable gene regulatory networks harboring scale free properties (built ex nihilo). In combination with supervised (accepting prior knowledge) support vector machine algorithm we (i) address biologically oriented questions concerning our capacity to accurately reconstruct gene regulatory networks and in particular we demonstrate that prior-knowledge structure is crucial for accurate learning, and (ii) draw conclusions to inform experimental design to performed learning able to solve gene regulatory networks in the future. By demonstrating that our predictions concerning the influence of the prior-knowledge structure on support vector machine learning capacity holds true on real data ( Escherichia coli K14 network

  19. Reverse engineering biomolecular systems using -omic data: challenges, progress and opportunities.

    PubMed

    Quo, Chang F; Kaddi, Chanchala; Phan, John H; Zollanvari, Amin; Xu, Mingqing; Wang, May D; Alterovitz, Gil

    2012-07-01

    Recent advances in high-throughput biotechnologies have led to the rapid growing research interest in reverse engineering of biomolecular systems (REBMS). 'Data-driven' approaches, i.e. data mining, can be used to extract patterns from large volumes of biochemical data at molecular-level resolution while 'design-driven' approaches, i.e. systems modeling, can be used to simulate emergent system properties. Consequently, both data- and design-driven approaches applied to -omic data may lead to novel insights in reverse engineering biological systems that could not be expected before using low-throughput platforms. However, there exist several challenges in this fast growing field of reverse engineering biomolecular systems: (i) to integrate heterogeneous biochemical data for data mining, (ii) to combine top-down and bottom-up approaches for systems modeling and (iii) to validate system models experimentally. In addition to reviewing progress made by the community and opportunities encountered in addressing these challenges, we explore the emerging field of synthetic biology, which is an exciting approach to validate and analyze theoretical system models directly through experimental synthesis, i.e. analysis-by-synthesis. The ultimate goal is to address the present and future challenges in reverse engineering biomolecular systems (REBMS) using integrated workflow of data mining, systems modeling and synthetic biology.

  20. Multi-Response Optimization of Process Parameters for Imidacloprid Removal by Reverse Osmosis Using Taguchi Design.

    PubMed

    Genç, Nevim; Doğan, Esra Can; Narcı, Ali Oğuzhan; Bican, Emine

    2017-05-01

      In this study, a multi-response optimization method using Taguchi's robust design approach is proposed for imidacloprid removal by reverse osmosis. Tests were conducted with different membrane type (BW30, LFC-3, CPA-3), transmembrane pressure (TMP = 20, 25, 30 bar), volume reduction factor (VRF = 2, 3, 4), and pH (3, 7, 11). Quality and quantity of permeate are optimized with the multi-response characteristics of the total dissolved solid (TDS), conductivity, imidacloprid, and total organic carbon (TOC) rejection ratios and flux of permeate. The optimized conditions were determined as membrane type of BW30, TMP 30 bar, VRF 3, and pH 11. Under these conditions, TDS, conductivity, imidacloprid, and TOC rejections and permeate flux were 97.50 97.41, 97.80, 98.00% and 30.60 L/m2·h, respectively. Membrane type was obtained as the most effective factor; its contribution is 64%. The difference between the predicted and observed value of multi-response signal/noise (MRSN) is within the confidence interval.

  1. A novel reversible logic gate and its systematic approach to implement cost-efficient arithmetic logic circuits using QCA.

    PubMed

    Ahmad, Peer Zahoor; Quadri, S M K; Ahmad, Firdous; Bahar, Ali Newaz; Wani, Ghulam Mohammad; Tantary, Shafiq Maqbool

    2017-12-01

    Quantum-dot cellular automata, is an extremely small size and a powerless nanotechnology. It is the possible alternative to current CMOS technology. Reversible QCA logic is the most important issue at present time to reduce power losses. This paper presents a novel reversible logic gate called the F-Gate. It is simplest in design and a powerful technique to implement reversible logic. A systematic approach has been used to implement a novel single layer reversible Full-Adder, Full-Subtractor and a Full Adder-Subtractor using the F-Gate. The proposed Full Adder-Subtractor has achieved significant improvements in terms of overall circuit parameters among the most previously cost-efficient designs that exploit the inevitable nano-level issues to perform arithmetic computing. The proposed designs have been authenticated and simulated using QCADesigner tool ver. 2.0.3.

  2. Compliant Metal Enhanced Convection Cooled Reverse-Flow Annular Combustor

    NASA Technical Reports Server (NTRS)

    Paskin, Marc D.; Acosta, Waldo A.

    1994-01-01

    A joint Army/NASA program was conducted to design, fabricate, and test an advanced, reverse-flow, small gas turbine combustor using a compliant metal enhanced (CME) convection wall cooling concept. The objectives of this effort were to develop a design method (basic design data base and analysis) for the CME cooling technique and tben demonstrate its application to an advanced cycle, small, reverse-flow combustor with 3000 F (1922 K) burner outlet temperature (BOT). The CME concept offers significant improvements in wall cooling effectiveness resulting in a large reduction in cooling air requirements. Therefore, more air is available for control of burner outlet temperature pattern in addition to the benefit of improved efficiency, reduced emissions, and smoke levels. Rig test results demonstrated the benefits and viability of the CME concept meeting or exceeding the aerothermal performance and liner wall temperature characteristics of similar lower temperature-rise combustors, achieving 0.15 pattern factor at 3000 F (1922 K) BOT, while utilizing approximately 80 percent less cooling air than conventional, film-cooled combustion systems.

  3. Time reversal acoustics for small targets using decomposition of the time reversal operator

    NASA Astrophysics Data System (ADS)

    Simko, Peter C.

    The method of time reversal acoustics has been the focus of considerable interest over the last twenty years. Time reversal imaging methods have made consistent progress as effective methods for signal processing since the initial demonstration that physical time reversal methods can be used to form convergent wave fields on a localized target, even under conditions of severe multipathing. Computational time reversal methods rely on the properties of the so-called 'time reversal operator' in order to extract information about the target medium. Applications for which time reversal imaging have previously been explored include medical imaging, non-destructive evaluation, and mine detection. Emphasis in this paper will fall on two topics within the general field of computational time reversal imaging. First, we will examine previous work on developing a time reversal imaging algorithm based on the MUltiple SIgnal Classification (MUSIC) algorithm. MUSIC, though computationally very intensive, has demonstrated early promise in simulations using array-based methods applicable to true volumetric (three-dimensional) imaging. We will provide a simple algorithm through which the rank of the time reversal operator subspaces can be properly quantified so that the rank of the associated null subspace can be accurately estimated near the central pulse wavelength in broadband imaging. Second, we will focus on the scattering from small acoustically rigid two dimensional cylindrical targets of elliptical cross section. Analysis of the time reversal operator eigenmodes has been well-studied for symmetric response matrices associated with symmetric systems of scattering targets. We will expand these previous results to include more general scattering systems leading to asymmetric response matrices, for which the analytical complexity increases but the physical interpretation of the time reversal operator remains unchanged. For asymmetric responses, the qualitative properties of the

  4. Electric-field-driven magnetization reversal in square-shaped nanomagnet-based multiferroic heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Ren-Ci; Nan, Ce-Wen, E-mail: jzw12@psu.edu, E-mail: cwnan@tsinghua.edu.cn; Wang, J. J., E-mail: jzw12@psu.edu, E-mail: cwnan@tsinghua.edu.cn

    Based on phase field modeling and thermodynamic analysis, purely electric-field-driven magnetization reversal was shown to be possible in a multiferroic heterostructure of a square-shaped amorphous Co{sub 40}Fe{sub 40}B{sub 20} nanomagnet on top of a ferroelectric layer through electrostrain. The reversal is made possible by engineering the mutual interactions among the built-in uniaxial magnetic anisotropy, the geometry-dependent magnetic configuration anisotropy, and the magnetoelastic anisotropy. Particularly, the incorporation of the built-in uniaxial anisotropy made it possible to reverse magnetization with one single unipolar electrostrain pulse, which is simpler than previous designs involving the use of bipolar electrostrains and may alleviate ferroelectric fatigue.more » Critical conditions for triggering the magnetization reversal are identified.« less

  5. Analysis of efficiency of waste reverse logistics for recycling.

    PubMed

    Veiga, Marcelo M

    2013-10-01

    Brazil is an agricultural country with the highest pesticide consumption in the world. Historically, pesticide packaging has not been disposed of properly. A federal law requires the chemical industry to provide proper waste management for pesticide-related products. A reverse logistics program was implemented, which has been hailed a great success. This program was designed to target large rural communities, where economy of scale can take place. Over the last 10 years, the recovery rate has been very poor in most small rural communities. The objective of this study was to analyze the case of this compulsory reverse logistics program for pesticide packaging under the recent Brazilian Waste Management Policy, which enforces recycling as the main waste management solution. This results of this exploratory research indicate that despite its aggregate success, the reverse logistics program is not efficient for small rural communities. It is not possible to use the same logistic strategy for small and large communities. The results also indicate that recycling might not be the optimal solution, especially in developing countries with unsatisfactory recycling infrastructure and large transportation costs. Postponement and speculation strategies could be applied for improving reverse logistics performance. In most compulsory reverse logistics programs, there is no economical solution. Companies should comply with the law by ranking cost-effective alternatives.

  6. Rational design of reversible fluorescent probes for live-cell imaging and quantification of fast glutathione dynamics.

    PubMed

    Umezawa, Keitaro; Yoshida, Masafumi; Kamiya, Mako; Yamasoba, Tatsuya; Urano, Yasuteru

    2017-03-01

    Alterations in glutathione (GSH) homeostasis are associated with a variety of diseases and cellular functions, and therefore, real-time live-cell imaging and quantification of GSH dynamics are important for understanding pathophysiological processes. However, existing fluorescent probes are unsuitable for these purposes due to their irreversible fluorogenic mechanisms or slow reaction rates. In this work, we have successfully overcome these problems by establishing a design strategy inspired by Mayr's work on nucleophilic reaction kinetics. The synthesized probes exhibit concentration-dependent, reversible and rapid absorption/fluorescence changes (t 1/2  = 620 ms at [GSH] = 1 mM), as well as appropriate K d values (1-10 mM: within the range of intracellular GSH concentrations). We also developed FRET-based ratiometric probes, and demonstrated that they are useful for quantifying GSH concentration in various cell types and also for real-time live-cell imaging of GSH dynamics with temporal resolution of seconds.

  7. Rational design of reversible fluorescent probes for live-cell imaging and quantification of fast glutathione dynamics

    NASA Astrophysics Data System (ADS)

    Umezawa, Keitaro; Yoshida, Masafumi; Kamiya, Mako; Yamasoba, Tatsuya; Urano, Yasuteru

    2017-03-01

    Alterations in glutathione (GSH) homeostasis are associated with a variety of diseases and cellular functions, and therefore, real-time live-cell imaging and quantification of GSH dynamics are important for understanding pathophysiological processes. However, existing fluorescent probes are unsuitable for these purposes due to their irreversible fluorogenic mechanisms or slow reaction rates. In this work, we have successfully overcome these problems by establishing a design strategy inspired by Mayr's work on nucleophilic reaction kinetics. The synthesized probes exhibit concentration-dependent, reversible and rapid absorption/fluorescence changes (t1/2 = 620 ms at [GSH] = 1 mM), as well as appropriate Kd values (1-10 mM: within the range of intracellular GSH concentrations). We also developed FRET-based ratiometric probes, and demonstrated that they are useful for quantifying GSH concentration in various cell types and also for real-time live-cell imaging of GSH dynamics with temporal resolution of seconds.

  8. Design of a pulsed-mode fluidic pump using a venturi-like reverse flow diverter. [With no packing glands, mechanical seals or moving parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, G.V.; Lewis, B.E.

    1987-02-01

    This report presents a design procedure for pulsed-mode, venturi-like reverse flow diverter (RFD) pumping systems. Design techniques are presented for systems in which the output line area is allowed to vary proportionally with the throat area of the RFD as well as situations in which the output line area is held constant. The results show that for cases in which the output line area is allowed to vary, an optimum RFD throat area exists for a given input pressure. For situations in which the output line area is held constant, the average output flow decreases in almost a linear fashionmore » with increasing RFD throat area. 6 refs., 8 figs.« less

  9. To Design or Not to Design: In Conclusion

    DTIC Science & Technology

    2011-05-09

    planning performing bricolage and assembling components of Design into detailed planning logic, the military might consider reversing this process and...while incorporated into Design‟s holistic worldview. The process of bricolage would subsequently reverse, and those relevant components of detailed...production, defined as “ bricolage ” in organizational theory circles, turns one into „a handyperson who, rather than inventing a new theory or a new

  10. Evaluation of function, performance, and preference as transfemoral amputees transition from mechanical to microprocessor control of the prosthetic knee.

    PubMed

    Hafner, Brian J; Willingham, Laura L; Buell, Noelle C; Allyn, Katheryn J; Smith, Douglas G

    2007-02-01

    To evaluate differences in function, performance, and preference between mechanical and microprocessor prosthetic knee control technologies. A-B-A-B reversal design. Home, community, and laboratory environments. Twenty-one unilateral, transfemoral amputees. Mechanical control prosthetic knee versus microprocessor control prosthetic knee (Otto Bock C-Leg). Stair rating, hill rating and time, obstacle course time, divided attention task accuracy and time, Amputee Mobility Predictor score, step activity, Prosthesis Evaluation Questionnaire score, Medical Outcomes Study 36-Item Short-Form Health Survey score, self-reported frequency of stumbles and falls, and self-reported concentration required for ambulation. Stair descent score, hill descent time, and hill sound-side step length showed significant (P<.01) improvement with the C-Leg. Users reported a significant (P<.05) decrease in frequency of stumbles and falls, frustration with falling, and difficulty in multitasking while using the microprocessor knee. Subject satisfaction with the C-Leg was significantly (P<.001) greater than the mechanical control prosthesis. The study population showed improved performance when negotiating stairs and hills, reduced frequency of stumbling and falling, and a preference for the microprocessor control C-Leg as compared with the mechanical control prosthetic knee.

  11. Advancing reversible shape memory by tuning the polymer network architecture

    DOE PAGES

    Li, Qiaoxi; Zhou, Jing; Vatankhah-Varnoosfaderani, Mohammad; ...

    2016-02-02

    Because of counteraction of a chemical network and a crystalline scaffold, semicrystalline polymer networks exhibit a peculiar behavior—reversible shape memory (RSM), which occurs naturally without applying any external force and particular structural design. There are three RSM properties: (i) range of reversible strain, (ii) rate of strain recovery, and (iii) decay of reversibility with time, which can be improved by tuning the architecture of the polymer network. Different types of poly(octylene adipate) networks were synthesized, allowing for control of cross-link density and network topology, including randomly cross-linked network by free-radical polymerization, thiol–ene clicked network with enhanced mesh uniformity, and loosemore » network with deliberately incorporated dangling chains. It is shown that the RSM properties are controlled by average cross-link density and crystal size, whereas topology of a network greatly affects its extensibility. In conclusion, we have achieved 80% maximum reversible range, 15% minimal decrease in reversibility, and fast strain recovery rate up to 0.05 K –1, i.e., ca. 5% per 10 s at a cooling rate of 5 K/min.« less

  12. Constraining the reversing and non-reversing modes of the geodynamo. New insights from magnetostratigraphy.

    NASA Astrophysics Data System (ADS)

    Gallet, Y.; Pavlov, V.; Shatsillo, A.; Hulot, G.

    2015-12-01

    Constraining the evolution in the geomagnetic reversal frequency over hundreds of million years is not a trivial matter. Beyond the fact that there are long periods without reversals, known as superchrons, and periods with many reversals, the way the reversal frequency changes through time during reversing periods is still debated. A smooth evolution or a succession of stationary segments have both been suggested to account for the geomagnetic polarity time scale since the Middle-Late Jurassic. Sudden changes from a reversing mode to a non-reversing mode of the geodynamo may also well have happened, the switch between the two modes having then possibly been controlled by the thermal conditions at the core-mantle boundary. There is, nevertheless, a growing set of magnetostratigraphic data, which could help decipher a proper interpretation of the reversal history, in particular in the early Paleozoic and even during the Precambrian. Although yielding a fragmentary record, these data reveal the occurrence of both additional superchrons and periods characterized by extremely high, not to say extraordinary, magnetic reversal frequencies. In this talk, we will present a synthesis of these data, mainly obtained from Siberia, and discuss their implication for the magnetic reversal behavior over the past billion years.

  13. Design and Performance of a Pinned Photodiode CMOS Image Sensor Using Reverse Substrate Bias †

    PubMed Central

    Clarke, Andrew S.; Ivory, James; Holland, Andrew D.

    2018-01-01

    A new pinned photodiode (PPD) CMOS image sensor with reverse biased p-type substrate has been developed and characterized. The sensor uses traditional PPDs with one additional deep implantation step to suppress the parasitic reverse currents, and can be fully depleted. The first prototypes have been manufactured on an 18 µm thick, 1000 Ω·cm epitaxial silicon wafers using 180 nm PPD image sensor process. Both front-side illuminated (FSI) and back-side illuminated (BSI) devices were manufactured in collaboration with Teledyne e2v. The characterization results from a number of arrays of 10 µm and 5.4 µm PPD pixels, with different shape, the size and the depth of the new implant are in good agreement with device simulations. The new pixels could be reverse-biased without parasitic leakage currents well beyond full depletion, and demonstrate nearly identical optical response to the reference non-modified pixels. The observed excessive charge sharing in some pixel variants is shown to not be a limiting factor in operation. This development promises to realize monolithic PPD CIS with large depleted thickness and correspondingly high quantum efficiency at near-infrared and soft X-ray wavelengths. PMID:29301379

  14. Reversible thermochromic response based on photonic crystal structure in butterfly wing

    NASA Astrophysics Data System (ADS)

    Wang, Wanlin; Wang, Guo Ping; Zhang, Wang; Zhang, Di

    2018-01-01

    Subtle responsive properties can be achieved by the photonic crystal (PC) nanostructures of butterfly based on thermal expansion effect. The studies focused on making the sample visually distinct. However, the response is restricted by limited thermal expansion coefficients. We herein report a new class of reversible thermochromic response achieved by controlling the ambient refractive index in butterfly PC structure. The photonic ethanol-filled nanoarchitecture sample is simply assembled by sealing liquid ethanol filling Papilio ulysses butterfly wing. Volatile ethanol is used to modulate the ambient refractive index. The sample is sealed with glasses to ensure reversibility. Liquid ethanol filling butterfly wing demonstrated significant allochroic response to ambient refractive index, which can be controlled by the liquefaction and vaporization of ethanol. This design is capable of converting thermal energy into visual color signals. The mechanism of this distinct response is simulated and proven by band theory. The response properties are performed with different filled chemicals and different structure parameters. Thus, the reversible thermochromic response design might have potential use in the fields such as detection, photonic switch, displays, and so forth.

  15. Static performance and noise tests on a thrust reverser for an augmentor wing aircraft

    NASA Technical Reports Server (NTRS)

    Harkonen, D. L.; Marrs, C. C.; Okeefe, J. V.

    1974-01-01

    A 1/3 scale model static test program was conducted to measure the noise levels and reverse thrust performance characteristics of wing-mounted thrust reverser that could be used on an advanced augmentor wing airplane. The configuration tested represents only the most fundamental designs where installation and packaging restraints are not considered. The thrust reverser performance is presented in terms of horizontal, vertical, and resultant effectiveness ratios and the reverser noise is compared on the basis of peak perceived noise level (PNL) and one-third octave band data (OASPL). From an analysis of the model force and acoustic data, an assessment is made on the stopping distance versus noise for a 90,900 kg (200,000 lb) airplane using this type of thrust reverser.

  16. Ultrasonic Time Reversal Mirrors

    NASA Astrophysics Data System (ADS)

    Fink, Mathias; Montaldo, Gabriel; Tanter, Mickael

    2004-11-01

    For more than ten years, time reversal techniques have been developed in many different fields of applications including detection of defects in solids, underwater acoustics, room acoustics and also ultrasound medical imaging and therapy. The essential property that makes time reversed acoustics possible is that the underlying physical process of wave propagation would be unchanged if time were reversed. In a non dissipative medium, the equations governing the waves guarantee that for every burst of sound that diverges from a source there exists in theory a set of waves that would precisely retrace the path of the sound back to the source. If the source is pointlike, this allows focusing back on the source whatever the medium complexity. For this reason, time reversal represents a very powerful adaptive focusing technique for complex media. The generation of this reconverging wave can be achieved by using Time Reversal Mirrors (TRM). It is made of arrays of ultrasonic reversible piezoelectric transducers that can record the wavefield coming from the sources and send back its time-reversed version in the medium. It relies on the use of fully programmable multi-channel electronics. In this paper we present some applications of iterative time reversal mirrors to target detection in medical applications.

  17. Average output polarization dataset for signifying the temperature influence for QCA designed reversible logic circuits.

    PubMed

    Abdullah-Al-Shafi, Md; Bahar, Ali Newaz; Bhuiyan, Mohammad Maksudur Rahman; Shamim, S M; Ahmed, Kawser

    2018-08-01

    Quantum-dot cellular automata (QCA) as nanotechnology is a pledging contestant that has incredible prospective to substitute complementary metal-oxide-semiconductor (CMOS) because of its superior structures such as intensely high device thickness, minimal power depletion with rapid operation momentum. In this study, the dataset of average output polarization (AOP) for fundamental reversible logic circuits is organized as presented in (Abdullah-Al-Shafi and Bahar, 2017; Bahar et al., 2016; Abdullah-Al-Shafi et al., 2015; Abdullah-Al-Shafi, 2016) [1-4]. QCADesigner version 2.0.3 has been utilized to survey the AOP of reversible circuits at separate temperature point in Kelvin (K) unit.

  18. 75 FR 50801 - Reverse Mortgage Products: Guidance for Managing Compliance and Reputation Risks

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ... stronger standards, particularly with respect to policies designed to avoid conflicts of interest. A... related to data collection on the volume of reverse mortgages, anti-fraud provisions, test design for the...' policies and procedures will be designed to ensure that brokers with whom they do business as agents also...

  19. Are Health Plan Design and Prior Use of Long-Acting Reversible Contraception Associated with Pregnancy Intention?

    PubMed

    Armstrong, Mary Anne; Postlethwaite, Debbie A; Darbinian, Jeanne A; McCoy, Mark; Law, Amy

    2017-05-01

    In 2007, high-deductible plans were added to the primarily nondeductible Kaiser Permanente Northern California (KPNC) integrated health plan, which had covered 100% of device and procedure costs of long-acting reversible contraception (LARC) for members regardless of prescription/visit copay amount. We hypothesized that nondeductible plans and prior LARC use decreased unintended pregnancy. The purpose of this study was to determine if health plan design (nondeductible vs. deductible) and LARC use before pregnancy were associated with pregnancy intention. In this retrospective cohort study, women aged 15-44 as of the index date of June 30, 2010 were followed from January 1, 2010 to December 31, 2012 for evidence of pregnancy (n = 65,989). Health plan design, copays, contraceptive method used most recently before the pregnancy, and self-reported pregnancy intention status (intended, mistimed, unwanted) were obtained from electronic medical records. Logistic regression models were developed to determine if various health plan designs, copays, or prior LARC use were associated with pregnancy intention, controlling for potential confounders such as age, race/ethnicity, marital status, education/income, parity, and comorbidities. In all models, LARC use before pregnancy versus non-LARC use was significantly related to intended pregnancies (all models: odds ratio [OR] = 2.26, 95% confidence interval [CI] 2.06-2.48). Women with deductible plans with healthcare spending accounts (HSA) were more likely to report intended pregnancies versus women with nondeductible plans (all models: OR = 1.2, 95% CI 1.04-1.30). In stratified analyses, high income/high education was a significant predictor of intended pregnancy regardless of race/ethnicity. LARC use before pregnancy and having an HSA were associated with intended pregnancy.

  20. The moving-ring field-reversed mirror prototype reactor

    NASA Astrophysics Data System (ADS)

    Smith, A. C., Jr.; Carlson, G. A.; Fleischmann, H. H.; Grossman, W., Jr.; Kammash, T.; Schultz, K. R.; Woodall, D. M.

    1981-03-01

    A prototype fusion reactor was designed based on magnetic field reversed plasma confinement. A set of physics, technology, and mechanical design criteria were developed in order to make this concept attractive. Six major criteria guide the commercial prototype design. The prototype must: (1) produce net electricity decisively P sub net 70% of P sub gross; (2) scale to an economical commercial plant and have small physical size; (3) have all features required of a correcial upgrade plant (H-3 breeding, etc.); (4) minimize exotic technology and maintenance complexity; (5) promise significantly lower safety hazards than fission plants (environmentally and socially acceptable); and (6) be modular in design to permit repetitive production of components.

  1. Designing an anion-functionalized fluorescent ionic liquid as an efficient and reversible turn-off sensor for detecting SO2.

    PubMed

    Che, Siying; Dao, Rina; Zhang, Weidong; Lv, Xiaoyu; Li, Haoran; Wang, Congmin

    2017-03-30

    A novel anion-functionalized fluorescent ionic liquid was designed and prepared, which was capable of capturing sulphur dioxide with high capacity and could also be used as a good colorimetric and fluorescent SO 2 sensor. Compared to conventional fluorescent sensors, this fluorescent ionic liquid did not undergo aggregation-caused quenching or aggregation-induced emission, and the fluorescence was quenched when exposed to SO 2 , and the fluorescence would quench when exposed to SO 2 . The experimental absorption, spectroscopic investigation, and quantum chemical calculations indicated that the quenching of the fluorescence originated from SO 2 physical absorption, not chemical absorption. Furthermore, this fluorescent ionic liquid exhibited high selectivity, good quantification, and excellent reversibility for SO 2 detection, and showed potential for an excellent liquid sensor.

  2. 3D-Printable Photochromic Molecular Materials for Reversible Information Storage.

    PubMed

    Wales, Dominic J; Cao, Qun; Kastner, Katharina; Karjalainen, Erno; Newton, Graham N; Sans, Victor

    2018-06-01

    The formulation of advanced molecular materials with bespoke polymeric ionic-liquid matrices that stabilize and solubilize hybrid organic-inorganic polyoxometalates and allow their processing by additive manufacturing, is effectively demonstrated. The unique photo and redox properties of nanostructured polyoxometalates are translated across the scales (from molecular design to functional materials) to yield macroscopic functional devices with reversible photochromism. These properties open a range of potential applications including reversible information storage based on controlled topological and temporal reduction/oxidation of pre-formed printed devices. This approach pushes the boundaries of 3D printing to the molecular limits, allowing the freedom of design enabled by 3D printing to be coupled with the molecular tuneability of polymerizable ionic liquids and the photoactivity and orbital engineering possible with hybrid polyoxometalates. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. CMS-2 Reverse Engineering and ENCORE/MODEL Integration

    DTIC Science & Technology

    1992-05-01

    Automated extraction of design information from an existing software system written in CMS-2 can be used to document that system as-built, and that I The...extracted information is provided by a commer- dally available CASE tool. * Information describing software system design is automatically extracted...the displays in Figures 1, 2, and 3. T achiev ths GE 11 b iuo w as rjcs CM-2t Aa nsltr(M2da 1 n Joia Reverse EwngiernTcnlg 5RT [2GRE] . Two xampe fD

  4. Time Reversed Electromagnetics as a Novel Method for Wireless Power Transfer

    NASA Astrophysics Data System (ADS)

    Challa, Anu; Anlage, Steven M.; Tesla Team

    Taking advantage of ray-chaotic enclosures, time reversal has been shown to securely transmit information via short-wavelength waves between two points, yielding noise at all other sites. In this presentation, we propose a method to adapt the signal-focusing technique to electromagnetic signals in order to transmit energy to portable devices. Relying only on the time-reversal invariance properties of waves, the technique is unencumbered by the inversely-proportional-to-distance path loss or precise orientation requirements of its predecessors, making it attractive for power transfer applications. We inject a short microwave pulse into a complex, wave-chaotic chamber and collect the resulting long time-domain signal at a designated transceiver. The signal is then time reversed and emitted from the collection site, collapsing as a time-reversed replica of the initial pulse at the injection site. When amplified, this reconstruction is robust, as measured through metrics of peak-to-peak voltage and energy transfer ratio. We experimentally demonstrate that time reversed collapse can be made on a moving target, and propose a way to selectively target devices through nonlinear time-reversal. University of Maryland Gemstone Team TESLA: Frank Cangialosi, Anu Challa, Tim Furman, Tyler Grover, Patrick Healey, Ben Philip, Brett Potter, Scott Roman, Andrew Simon, Liangcheng Tao, Alex Tabatabai.

  5. Topological-charge-driven reversal of ferromagnetic rings via 360∘ domain-wall formation

    NASA Astrophysics Data System (ADS)

    Oyarce, A. L. Gonzalez; Trypiniotis, T.; Roy, P. E.; Barnes, C. H. W.

    2013-05-01

    We study the reversal mechanism between opposite closed flux states of ferromagnetic nanorings driven by an azimuthal magnetic field. The reversal proceeds via the formation of 360∘ domain walls, and we show that the role of interacting nucleation sites is essential for the process to take place. Such nucleation is seen to create domain walls with the right topological charge conditions for 360∘ domain-wall formation. Given the symmetry of the system, we utilize an energetic description as a function of the azimuthal field magnitude, which clearly reveals the different stages of this reversal process. The annihilation of the 360∘ domain walls that is necessary for the reversal process to complete is controlling the field value at the final stage of the process. Such a fundamental mechanism for ring reversal has several implications and will guide the design of the various data-storage-device proposals based on nanorings.

  6. Interface Promoted Reversible Mg Insertion in Nanostructured Tin-Antimony Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yingwen; Shao, Yuyan; Parent, Lucas R.

    This paper demonstrates intermetallic compounds SnSb are highly active materials for reversibly hosting Mg ions. Compared with monometallic Sn and Sb, SnSb alloy exhibited exceptionally high reversible capacity (420 mAh/g), excellent rate capability and good cyclic stability. Mg insertion into pristine SnSb involves an activation process to complete, which induces particle breakdown and results in phase segregation to Sn-rich and Sb-rich phases. Both experimental analysis and DFT simulation suggest that the Sn-rich phase is particularly active and provides most of the capacity whereas the Sb-rich phase is not as active, and the interface between these two phases play a keymore » role in promoting the formation and stabilization of the cubic Sn phase that is more favorable for fast and reversible Mg insertion. We further show that activated SnSb alloy has good compatibility with simple Mg electrolytes. Overall, this work could provide new approaches for designing materials capable of reversible Mg ion insertion and new opportunities for understanding Mg electrochemistry.« less

  7. 49 CFR 230.89 - Reverse gear.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Reverse gear. 230.89 Section 230.89 Transportation... Reversing Gear § 230.89 Reverse gear. (a) General provisions. Reverse gear, reverse levers, and quadrants... quadrant. Proper counterbalance shall be provided for the valve gear. (b) Air-operated power reverse gear...

  8. Reversible Flip-Flops in Quantum-Dot Cellular Automata

    NASA Astrophysics Data System (ADS)

    Rad, Samaneh Kazemi; Heikalabad, Saeed Rasouli

    2017-09-01

    Quantum-dot cellular automata is a new technology to design the efficient combinational and sequential circuits at the nano-scale. This technology has many desirable advantages compared to the CMOS technology such as low power consumption, less occupation area and low latency. These features make it suitable for use in flip-flop design. In this paper, with knowing the characteristics of reversible logic, we design new structures for flip-flops. The operations of these structures are evaluated with QCADesigner Version 2.0.3 simulator. In addition, we calculate the power dissipation of these structures by QCAPro tool. The results illustrated that proposed structures are efficient compared to the previous ones.

  9. Reverse Correlation in Neurophysiology

    ERIC Educational Resources Information Center

    Ringach, Dario; Shapley, Robert

    2004-01-01

    This article presents a review of reverse correlation in neurophysiology. We discuss the basis of reverse correlation in linear transducers and in spiking neurons. The application of reverse correlation to measure the receptive fields of visual neurons using white noise and m-sequences, and classical findings about spatial and color processing in…

  10. Reversible dilatancy in entangled single-wire materials.

    PubMed

    Rodney, David; Gadot, Benjamin; Martinez, Oriol Riu; du Roscoat, Sabine Rolland; Orgéas, Laurent

    2016-01-01

    Designing structures that dilate rapidly in both tension and compression would benefit devices such as smart filters, actuators or fasteners. This property however requires an unusual Poisson ratio, or Poisson function at finite strains, which has to vary with applied strain and exceed the familiar bounds: less than 0 in tension and above 1/2 in compression. Here, by combining mechanical tests and discrete element simulations, we show that a simple three-dimensional architected material, made of a self-entangled single long coiled wire, behaves in between discrete and continuum media, with a large and reversible dilatancy in both tension and compression. This unusual behaviour arises from an interplay between the elongation of the coiled wire and rearrangements due to steric effects, which, unlike in traditional discrete media, are hysteretically reversible when the architecture is made of an elastic fibre.

  11. Nickel-hydrogen cell reversal characteristics

    NASA Technical Reports Server (NTRS)

    Lurie, Charles

    1994-01-01

    Nickel-hydrogen cell reversal characteristics are being studied as part of a TRW program directed towards development of a high current battery cell bypass switch. The following are discussed: cell bypass switch; nickel-hydrogen cell reversal characteristics; and nickel-hydrogen cell chemistry: discharge/reversal and overdischarge (reversal) with nickel and hydrogen precharge.

  12. Performance of 1.15-pressure-ratio fan stage at several rotor blade setting angles with reverse flow

    NASA Technical Reports Server (NTRS)

    Kovich, G.; Moore, R. D.

    1976-01-01

    A 51 cm diameter low pressure ratio fan stage was tested in reverse flow. Survey flow data were taken over the range of rotative speed from 50 percent to 100 percent design speed at several rotor blade setting angles through both flat and feather pitch. Normal flow design values of pressure ratio and weight flow were 1.15 and 29.9 kg/sec with a rotor tip speed of 243.8 m/sec. The maximum thrust in reverse flow was 52.5 percent of design thrust in normal flow.

  13. The Geomagnetic Field During a Reversal

    NASA Technical Reports Server (NTRS)

    Heirtzler, James R.

    2003-01-01

    By modifying the IGRF it is possible to learn what may happen to the geomagnetic field during a geomagnetic reversal. If the entire IGRF reverses then the declination and inclination only reverse when the field strength is zero. If only the dipole component of the IGRF reverses a large geomagnetic field remains when the dipole component is zero and he direction of the field at the end of the reversal is not exactly reversed from the directions at the beginning of the reversal.

  14. Effect of varying internal geometry on the static performance of rectangular thrust-reverser ports

    NASA Technical Reports Server (NTRS)

    Re, Richard J.; Mason, Mary L.

    1987-01-01

    An investigation has been conducted to evaluate the effects of several geometric parameters on the internal performance of rectangular thrust-reverser ports for nonaxisymmetric nozzles. Internal geometry was varied with a test apparatus which simulated a forward-flight nozzle with a single, fully deployed reverser port. The test apparatus was designed to simulate thrust reversal (conceptually) either in the convergent section of the nozzle or in the constant-area duct just upstream of the nozzle. The main geometric parameters investigated were port angle, port corner radius, port location, and internal flow blocker angle. For all reverser port geometries, the port opening had an aspect ratio (throat width to throat height) of 6.1 and had a constant passage area from the geometric port throat to the exit. Reverser-port internal performance and thrust-vector angles computed from force-balance measurements are presented.

  15. Reverse design and characteristic study of multi-range HMCVT

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen; Chen, Long; Zeng, Falin

    2017-09-01

    The reduction of fuel consumption and increase of transmission efficiency is one of the key problems of the agricultural machinery. Many promising technologies such as hydromechanical continuously variable transmissions (HMCVT) are the focus of research and investments, but there is little technical documentation that describes the design principle and presents the design parameters. This paper presents the design idea and characteristic study of HMCVT, in order to find out the suitable scheme for the big horsepower tractors. Analyzed the kinematics and dynamics of a large horsepower tractor, according to the characteristic parameters, a hydro-mechanical continuously variable transmission has been designed. Compared with the experimental curves and theoretical curves of the stepless speed regulation of transmission, the experimental result illustrates the rationality of the design scheme.

  16. Reverse engineering by design: using history to teach.

    PubMed

    Fagette, Paul

    2013-01-01

    Engineering students rarely have an opportunity to delve into the historic antecedents of design in their craft, and this is especially true for biomedical devices. The teaching emphasis is always on the new, the innovative, and the future. Even so, over the last decade, I have coupled a research agenda with engineering special projects into a successful format that allows young biomedical engineering students to understand aspects of their history and learn the complexities of design. There is value in having knowledge of historic engineering achievements, not just for an appreciation of these accomplishments but also for understanding exactly how engineers and clinicians of the day executed their feats-in other words, how the design process works. Ultimately, this particular educational odyssey confirms that history and engineering education are not only compatible but mutually supportive.

  17. Dopamine, but not serotonin, regulates reversal learning in the marmoset caudate nucleus

    PubMed Central

    Clarke, H. F.; Hill, G. J.; Robbins, T. W.; Roberts, A. C.

    2011-01-01

    Studies of visual discrimination reversal learning have revealed striking neurochemical dissociations at the level of the orbitofrontal cortex (OFC) with serotoninergic, but not dopaminergic integrity being important for successful reversal learning. These findings have considerable implications for disorders such as obsessive compulsive disorder and schizophrenia in which reversal learning is impaired, and are primarily treated with drugs targeting the dopaminergic and serotoninergic systems. Dysfunction in such disorders however, is not limited to the OFC and extends subcortically to other structures implicated in reversal learning, such as the medial caudate nucleus. Therefore, because the roles of the serotonin and dopamine within the caudate nucleus are poorly understood, this study compared the effects of selective serotoninergic or selective dopaminergic depletions of the marmoset medial caudate nucleus on serial discrimination reversal learning. All monkeys were able to learn novel stimulus-reward associations, but unlike control monkeys and monkeys with selective serotoninergic medial caudate depletions, dopamine-depleted monkeys were markedly impaired in their ability to reverse this association. This impairment was not perseverative in nature. These findings are the opposite of those seen in the OFC and provide evidence for a neurochemical double dissociation between the OFC and medial caudate in the regulation of reversal learning. Whilst the specific contributions of these monoamines within the OFC-striatal circuit remain to be elucidated, these findings have profound implications for the development of drugs designed to remediate some of the cognitive processes underlying impaired reversal learning. PMID:21411670

  18. Reverse logistics system planning for recycling computers hardware: A case study

    NASA Astrophysics Data System (ADS)

    Januri, Siti Sarah; Zulkipli, Faridah; Zahari, Siti Meriam; Shamsuri, Siti Hajar

    2014-09-01

    This paper describes modeling and simulation of reverse logistics networks for collection of used computers in one of the company in Selangor. The study focuses on design of reverse logistics network for used computers recycling operation. Simulation modeling, presented in this work allows the user to analyze the future performance of the network and to understand the complex relationship between the parties involved. The findings from the simulation suggest that the model calculates processing time and resource utilization in a predictable manner. In this study, the simulation model was developed by using Arena simulation package.

  19. Reversible and Irreversible Time-Dependent Behavior of GRCop-84

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Arnold, Steven M.; Ellis, David L.

    2017-01-01

    A series of mechanical tests were conducted on a high-conductivity copper alloy, GRCop-84, in order to understand the time dependent response of this material. Tensile, creep, and stress relaxation tests were performed over a wide range of temperatures, strain rates, and stress levels to excite various amounts of time-dependent behavior. At low applied stresses the deformation behavior was found to be fully reversible. Above a certain stress, termed the viscoelastic threshold, irreversible deformation was observed. At these higher stresses the deformation was observed to be viscoplastic. Both reversible and irreversible regions contained time dependent deformation. These experimental data are documented to enable characterization of constitutive models to aid in design of high temperature components.

  20. Reversion phenomena of Cu-Cr alloys

    NASA Technical Reports Server (NTRS)

    Nishikawa, S.; Nagata, K.; Kobayashi, S.

    1985-01-01

    Cu-Cr alloys which were given various aging and reversion treatments were investigated in terms of electrical resistivity and hardness. Transmission electron microscopy was one technique employed. Some results obtained are as follows: the increment of electrical resistivity after the reversion at a constant temperature decreases as the aging temperature rises. In a constant aging condition, the increment of electrical resistivity after the reversion increases, and the time required for a maximum reversion becomes shorter as the reversion temperature rises. The reversion phenomena can be repeated, but its amount decreases rapidly by repetition. At first, the amount of reversion increases with aging time and reaches its maximum, and then tends to decrease again. Hardness changes by the reversion are very small, but the hardness tends to soften slightly. Any changes in transmission electron micrographs by the reversion treatment cannot be detected.

  1. Muscular activation during reverse and non-reverse chewing cycles in unilateral posterior crossbite.

    PubMed

    Piancino, Maria Grazia; Farina, Dario; Talpone, Francesca; Merlo, Andrea; Bracco, Pietro

    2009-04-01

    The aim of this study was to characterize the kinematics and masseter muscle activation in unilateral posterior crossbite. Eighty-two children (8.6 +/- 1.3 yr of age) with unilateral posterior crossbite and 12 children (8.9 +/- 0.6 yr of age) with normal occlusion were selected for the study. Electromyography (EMG) and kinematics were concurrently recorded during mastication of a soft bolus and a hard bolus. The percentage of reverse cycles in the group of patients was 59.0 +/- 33.1% (soft bolus) and 69.7 +/- 29.7% (hard bolus) when chewing on the crossbite side. When chewing on the non-affected side, the number of reverse cycles was 16.7 +/- 24.5% (soft bolus) and 16.7 +/- 22.3% (hard bolus). The reverse cycles on the crossbite side were narrower with respect to the cycles on the non-affected side. Although both types of cycles in patients resulted in lower EMG activity of the masseter of the crossbite side than of the contralateral masseter, the activity of the non-affected side was larger for reverse than for non-reverse cycles. It was concluded that when chewing on the crossbite side, the masseter activity is reduced on the mastication side (crossbite) and is unaltered (non-reverse cycles) or increased (reverse) on the non-affected side.

  2. Nano-Encrypted Morse Code: A Versatile Approach to Programmable and Reversible Nanoscale Assembly and Disassembly

    PubMed Central

    Wong, Ngo Yin; Xing, Hang; Tan, Li Huey; Lu, Yi

    2013-01-01

    While much work has been devoted to nanoscale assembly of functional materials, selective reversible assembly of components in the nanoscale pattern at selective sites has received much less attention. Exerting such a reversible control of the assembly process will make it possible to fine-tune the functional properties of the assembly and to realize more complex designs. Herein, by taking advantage of different binding affinities of biotin and desthiobiotin toward streptavidin, we demonstrate selective and reversible decoration of DNA origami tiles with streptavidin, including revealing an encrypted Morse code “NANO” and reversible exchange of uppercase letter “I” with lowercase “i”. The yields of the conjugations are high (> 90%) and the process is reversible. We expect this versatile conjugation technique to be widely applicable with different nanomaterials and templates. PMID:23373425

  3. Nano-encrypted Morse code: a versatile approach to programmable and reversible nanoscale assembly and disassembly.

    PubMed

    Wong, Ngo Yin; Xing, Hang; Tan, Li Huey; Lu, Yi

    2013-02-27

    While much work has been devoted to nanoscale assembly of functional materials, selective reversible assembly of components in the nanoscale pattern at selective sites has received much less attention. Exerting such a reversible control of the assembly process will make it possible to fine-tune the functional properties of the assembly and to realize more complex designs. Herein, by taking advantage of different binding affinities of biotin and desthiobiotin toward streptavidin, we demonstrate selective and reversible decoration of DNA origami tiles with streptavidin, including revealing an encrypted Morse code "NANO" and reversible exchange of uppercase letter "I" with lowercase "i". The yields of the conjugations are high (>90%), and the process is reversible. We expect this versatile conjugation technique to be widely applicable with different nanomaterials and templates.

  4. Reversible TAD Chemistry as a Convenient Tool for the Design of (Re)processable PCL-Based Shape-Memory Materials.

    PubMed

    Defize, Thomas; Riva, Raphaël; Thomassin, Jean-Michel; Alexandre, Michaël; Herck, Niels Van; Prez, Filip Du; Jérôme, Christine

    2017-01-01

    A chemically cross-linked but remarkably (re)processable shape-memory polymer (SMP) is designed by cross-linking poly(ε-caprolactone) (PCL) stars via the efficient triazolinedione click chemistry, based on the very fast and reversible Alder-ene reaction of 1,2,4-triazoline-3,5-dione (TAD) with indole compounds. Typically, a six-arm star-shaped PCL functionalized by indole moieties at the chain ends is melt-blended with a bisfunctional TAD, directly resulting in a cross-linked PCL-based SMP without the need of post-curing treatment. As demonstrated by the stress relaxation measurement, the labile character of the TAD-indole adducts under stress allows for the solid-state plasticity reprocessing of the permanent shape at will by compression molding of the raw cross-linked material, while keeping excellent shape-memory properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Planning in Reverse: A Viable Approach to Organizational Leadership

    ERIC Educational Resources Information Center

    Ballantyne, Scott; Berret, Beth; Wells, Mary Ellen

    2011-01-01

    Planning in Reverse is an innovative concept designed to make organizations more successful by altering the perspective utilized in the strategy process. What is needed for organizations to thrive in this new environment of change and uncertainty is a short-term approach for long-term viability. In this book, tools and concepts regarding Planning…

  6. Reversible simulation of irreversible computation

    NASA Astrophysics Data System (ADS)

    Li, Ming; Tromp, John; Vitányi, Paul

    1998-09-01

    Computer computations are generally irreversible while the laws of physics are reversible. This mismatch is penalized by among other things generating excess thermic entropy in the computation. Computing performance has improved to the extent that efficiency degrades unless all algorithms are executed reversibly, for example by a universal reversible simulation of irreversible computations. All known reversible simulations are either space hungry or time hungry. The leanest method was proposed by Bennett and can be analyzed using a simple ‘reversible’ pebble game. The reachable reversible simulation instantaneous descriptions (pebble configurations) of such pebble games are characterized completely. As a corollary we obtain the reversible simulation by Bennett and, moreover, show that it is a space-optimal pebble game. We also introduce irreversible steps and give a theorem on the tradeoff between the number of allowed irreversible steps and the memory gain in the pebble game. In this resource-bounded setting the limited erasing needs to be performed at precise instants during the simulation. The reversible simulation can be modified so that it is applicable also when the simulated computation time is unknown.

  7. Learning Reverse Engineering and Simulation with Design Visualization

    NASA Technical Reports Server (NTRS)

    Hemsworth, Paul J.

    2018-01-01

    The Design Visualization (DV) group supports work at the Kennedy Space Center by utilizing metrology data with Computer-Aided Design (CAD) models and simulations to provide accurate visual representations that aid in decision-making. The capability to measure and simulate objects in real time helps to predict and avoid potential problems before they become expensive in addition to facilitating the planning of operations. I had the opportunity to work on existing and new models and simulations in support of DV and NASA’s Exploration Ground Systems (EGS).

  8. Check valve installation in pilot operated relief valve prevents reverse pressurization

    NASA Technical Reports Server (NTRS)

    Oswalt, L.

    1966-01-01

    Two check valves prevent reverse flow through pilot-operated relief valves of differential area piston design. Title valves control pressure flow to ensure that the piston dome pressure is always at least as great as the main relief valve discharge pressure.

  9. Effect of sequence and stereochemistry reversal on p53 peptide mimicry.

    PubMed

    Atzori, Alessio; Baker, Audrey E; Chiu, Mark; Bryce, Richard A; Bonnet, Pascal

    2013-01-01

    Peptidomimetics effective in modulating protein-protein interactions and resistant to proteolysis have potential in therapeutic applications. An appealing yet underperforming peptidomimetic strategy is to employ D-amino acids and reversed sequences to mimic a lead peptide conformation, either separately or as the combined retro-inverso peptide. In this work, we examine the conformations of inverse, reverse and retro-inverso peptides of p53(15-29) using implicit solvent molecular dynamics simulation and circular dichroism spectroscopy. In order to obtain converged ensembles for the peptides, we find enhanced sampling is required via the replica exchange molecular dynamics method. From these replica exchange simulations, the D-peptide analogues of p53(15-29) result in a predominantly left-handed helical conformation. When the parent sequence is reversed sequence as either the L-peptide and D-peptide, these peptides display a greater helical propensity, feature reflected by NMR and CD studies in TFE/water solvent. The simulations also indicate that, while approximately similar orientations of the side-chains are possible by the peptide analogues, their ability to mimic the parent peptide is severely compromised by backbone orientation (for D-amino acids) and side-chain orientation (for reversed sequences). A retro-inverso peptide is disadvantaged as a mimic in both aspects, and further chemical modification is required to enable this concept to be used fruitfully in peptidomimetic design. The replica exchange molecular simulation approach adopted here, with its ability to provide detailed conformational insights into modified peptides, has potential as a tool to guide structure-based design of new improved peptidomimetics.

  10. Reverse Osmosis Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMordie Stoughton, Kate; Duan, Xiaoli; Wendel, Emily M.

    This technology evaluation was prepared by Pacific Northwest National Laboratory on behalf of the U.S. Department of Energy’s Federal Energy Management Program (FEMP). ¬The technology evaluation assesses techniques for optimizing reverse osmosis (RO) systems to increase RO system performance and water efficiency. This evaluation provides a general description of RO systems, the influence of RO systems on water use, and key areas where RO systems can be optimized to reduce water and energy consumption. The evaluation is intended to help facility managers at Federal sites understand the basic concepts of the RO process and system optimization options, enabling them tomore » make informed decisions during the system design process for either new projects or recommissioning of existing equipment. This evaluation is focused on commercial-sized RO systems generally treating more than 80 gallons per hour.¬« less

  11. Reverse Osmosis Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This technology evaluation was prepared by Pacific Northwest National Laboratory on behalf of the U.S. Department of Energy’s Federal Energy Management Program (FEMP). The technology evaluation assesses techniques for optimizing reverse osmosis (RO) systems to increase RO system performance and water efficiency. This evaluation provides a general description of RO systems, the influence of RO systems on water use, and key areas where RO systems can be optimized to reduce water and energy consumption. The evaluation is intended to help facility managers at Federal sites understand the basic concepts of the RO process and system optimization options, enabling them tomore » make informed decisions during the system design process for either new projects or recommissioning of existing equipment. This evaluation is focused on commercial-sized RO systems generally treating more than 80 gallons per hour.« less

  12. Reversal of Latency as Part of a Cure for HIV-1.

    PubMed

    Rasmussen, Thomas Aagaard; Tolstrup, Martin; Søgaard, Ole Schmeltz

    2016-02-01

    Here, the use of pharmacological agents to reverse HIV-1 latency will be explored as a therapeutic strategy towards a cure. However, while clinical trials of latency-reversing agents LRAs) have demonstrated their ability to increase production of latent HIV-1, such interventions have not had an effect on the size of the latent HIV-1 reservoir. Plausible explanations for this include insufficient host immune responses against virus-expressing cells, the presence of escape mutations in archived virus, or an insufficient scale of latency reversal. Importantly, these early studies of LRAs were primarily designed to investigate their ability to perturb the state of HIV-1 latency; using the absence of an impact on the size of the HIV-1 reservoir to discard their potential inclusion in curative strategies would be erroneous and premature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. pH-Driven Reversible Self-Assembly of Micron-Scale DNA Scaffolds.

    PubMed

    Green, Leopold N; Amodio, Alessia; Subramanian, Hari K K; Ricci, Francesco; Franco, Elisa

    2017-12-13

    Inspired by cytoskeletal scaffolds that sense and respond dynamically to environmental changes and chemical inputs with a unique capacity for reconfiguration, we propose a strategy that allows the dynamic and reversible control of the growth and breakage of micron-scale synthetic DNA structures upon pH changes. We do so by rationally designing a pH-responsive system composed of synthetic DNA strands that act as pH sensors, regulators, and structural elements. Sensor strands can dynamically respond to pH changes and route regulatory strands to direct the self-assembly of structural elements into tubular structures. This example represents the first demonstration of the reversible assembly and disassembly of micron-scale DNA scaffolds using an external chemical input other than DNA. The capacity to reversibly modulate nanostructure size may promote the development of smart devices for catalysis or drug-delivery applications.

  14. Advanced Control Synthesis for Reverse Osmosis Water Desalination Processes.

    PubMed

    Phuc, Bui Duc Hong; You, Sam-Sang; Choi, Hyeung-Six; Jeong, Seok-Kwon

    2017-11-01

      In this study, robust control synthesis has been applied to a reverse osmosis desalination plant whose product water flow and salinity are chosen as two controlled variables. The reverse osmosis process has been selected to study since it typically uses less energy than thermal distillation. The aim of the robust design is to overcome the limitation of classical controllers in dealing with large parametric uncertainties, external disturbances, sensor noises, and unmodeled process dynamics. The analyzed desalination process is modeled as a multi-input multi-output (MIMO) system with varying parameters. The control system is decoupled using a feed forward decoupling method to reduce the interactions between control channels. Both nominal and perturbed reverse osmosis systems have been analyzed using structured singular values for their stabilities and performances. Simulation results show that the system responses meet all the control requirements against various uncertainties. Finally the reduced order controller provides excellent robust performance, with achieving decoupling, disturbance attenuation, and noise rejection. It can help to reduce the membrane cleanings, increase the robustness against uncertainties, and lower the energy consumption for process monitoring.

  15. Geomagnetic Field During a Reversal

    NASA Technical Reports Server (NTRS)

    Heirtzler, J. R.

    2003-01-01

    It has frequently been suggested that only the geomagnetic dipole, rather than higher order poles, reverse during a geomagnetic field reversal. Under this assumption the geomagnetic field strength has been calculated for the surface of the Earth for various steps of the reversal process. Even without an eminent a reversal of the field, extrapolation of the present secular change (although problematic) shows that the field strength may become zero in some geographic areas within a few hundred years.

  16. Reversed PREE under Multiple Schedules: Exploration of a Modulation Hypothesis

    ERIC Educational Resources Information Center

    Svartdal, Frode

    2008-01-01

    When reinforcer rates are manipulated in within-subjects designs, persistence in subsequent extinction trials is sometimes greater to the response alternative associated with the higher reinforcer rate ("reversed" partial reinforcement extinction effect, RPREE). The RPREE is often held to be a contradiction to the conventional PREE. To explore the…

  17. Bio-inspired reversible underwater adhesive.

    PubMed

    Zhao, Yanhua; Wu, Yang; Wang, Liang; Zhang, Manman; Chen, Xuan; Liu, Minjie; Fan, Jun; Liu, Junqiu; Zhou, Feng; Wang, Zuankai

    2017-12-20

    The design of smart surfaces with switchable adhesive properties in a wet environment has remained a challenge in adhesion science and materials engineering. Despite intense demands in various industrial applications and exciting progress in mimicking the remarkable wet adhesion through the delicate control of catechol chemistry, polyelectrolyte complex, and supramolecular architectures, the full recapitulation of nature's dynamic function is limited. Here, we show a facile approach to synthesize bioinspired adhesive, which entails the reversible, tunable, and fast regulation of the wet adhesion on diverse surfaces. The smart wet adhesive takes advantage of the host-guest molecular interaction and the adhesive nature of catechol chemistry, as well as the responsive polymer, allowing for screening and activation of the interfacial interaction simply by a local temperature trigger in an on-demand manner. Our work opens up an avenue for the rational design of bioinspired adhesives with performances even beyond nature.

  18. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, John L.; Smith, Richard D.

    1993-01-01

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.

  19. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  20. Biomechanical evaluation of different designs of glenospheres in the SMR reverse total shoulder prosthesis: range of motion and risk of scapular notching.

    PubMed

    Chou, Justin; Malak, Sharif F; Anderson, Iain A; Astley, Tim; Poon, Peter C

    2009-01-01

    Reverse total shoulder arthroplasty is a treatment option for cuff tear arthropathy. Scapular notching remains a concern. This biomechanical study compared the range-of-motion in different designs of glenospheres and hence the relative risk of scapular notching. A precision coordinate device was used to investigate four different designs of glenospheres (SMR prosthesis); 36 mm concentric (Standard), 36 mm eccentric, 44 mm concentric, and 44 mm eccentric glenospheres. The centre of rotation in each design was first established. The position of the humeral prosthesis was recorded in the plane of the scapula to compare the degree of adduction and the total range-of-motion. Eccentric glenospheres were found to improve range-of-motion by allowing a higher degree of adduction. Larger diameter glenospheres were found to improve range-of-motion by increasing adduction and abduction. Compared to the 36 mm concentric (standard) glenosphere, the 36 mm eccentric glenosphere improved adduction by 14.5 degrees, the 44 mm concentric glenosphere improved adduction by 11.6 degrees, the 44 mm eccentric glenosphere improved adduction by 17.7 degrees. Eccentric glenospheres with a center-of-rotation placed more inferiorly were shown to improve adduction. This design may reduce the clinical incidence of scapular notching.

  1. Reversible Humidity Sensitive Clothing for Personal Thermoregulation

    PubMed Central

    Zhong, Ying; Zhang, Fenghua; Wang, Meng; Gardner, Calvin J.; Kim, Gunwoo; Liu, Yanju; Leng, Jinsong; Jin, Sungho; Chen, Renkun

    2017-01-01

    Two kinds of humidity-induced, bendable smart clothing have been designed to reversibly adapt their thermal insulation functionality. The first design mimics the pores in human skin, in which pre-cut flaps open to produce pores in Nafion sheets when humidity increases, as might occur during human sweating thus permitting air flow and reducing both the humidity level and the apparent temperature. Like the smart human sweating pores, the flaps can close automatically after the perspiration to keep the wearer warm. The second design involves thickness adjustable clothes by inserting the bent polymer sheets between two fabrics. As the humidity increases, the sheets become thinner, thus reducing the gap between the two fabrics to reduce the thermal insulation. The insulation layer can recover its original thickness upon humidity reduction to restore its warmth-preservation function. Such humidity sensitive smart polymer materials can be utilized to adjust personal comfort, and be effective in reducing energy consumption for building heating or cooling with numerous smart design. PMID:28281646

  2. Reversible Humidity Sensitive Clothing for Personal Thermoregulation

    NASA Astrophysics Data System (ADS)

    Zhong, Ying; Zhang, Fenghua; Wang, Meng; Gardner, Calvin J.; Kim, Gunwoo; Liu, Yanju; Leng, Jinsong; Jin, Sungho; Chen, Renkun

    2017-03-01

    Two kinds of humidity-induced, bendable smart clothing have been designed to reversibly adapt their thermal insulation functionality. The first design mimics the pores in human skin, in which pre-cut flaps open to produce pores in Nafion sheets when humidity increases, as might occur during human sweating thus permitting air flow and reducing both the humidity level and the apparent temperature. Like the smart human sweating pores, the flaps can close automatically after the perspiration to keep the wearer warm. The second design involves thickness adjustable clothes by inserting the bent polymer sheets between two fabrics. As the humidity increases, the sheets become thinner, thus reducing the gap between the two fabrics to reduce the thermal insulation. The insulation layer can recover its original thickness upon humidity reduction to restore its warmth-preservation function. Such humidity sensitive smart polymer materials can be utilized to adjust personal comfort, and be effective in reducing energy consumption for building heating or cooling with numerous smart design.

  3. Accurate diode behavioral model with reverse recovery

    NASA Astrophysics Data System (ADS)

    Banáš, Stanislav; Divín, Jan; Dobeš, Josef; Paňko, Václav

    2018-01-01

    This paper deals with the comprehensive behavioral model of p-n junction diode containing reverse recovery effect, applicable to all standard SPICE simulators supporting Verilog-A language. The model has been successfully used in several production designs, which require its full complexity, robustness and set of tuning parameters comparable with standard compact SPICE diode model. The model is like standard compact model scalable with area and temperature and can be used as a stand-alone diode or as a part of more complex device macro-model, e.g. LDMOS, JFET, bipolar transistor. The paper briefly presents the state of the art followed by the chapter describing the model development and achieved solutions. During precise model verification some of them were found non-robust or poorly converging and replaced by more robust solutions, demonstrated in the paper. The measurement results of different technologies and different devices compared with a simulation using the new behavioral model are presented as the model validation. The comparison of model validation in time and frequency domains demonstrates that the implemented reverse recovery effect with correctly extracted parameters improves the model simulation results not only in switching from ON to OFF state, which is often published, but also its impedance/admittance frequency dependency in GHz range. Finally the model parameter extraction and the comparison with SPICE compact models containing reverse recovery effect is presented.

  4. Beneficiation of borax by reverse flotation in boron saturated brine.

    PubMed

    Cafer Cilek, Emin; Uresin, Hasan

    2005-10-15

    Flotation is one of the plausible methods for recovering borax fines discharged as fine waste to the tailings dam in the Kirka borax processing plant. A literature review dealing with the flotation behavior of boron minerals reveals that clay minerals in the boron ores coat boron minerals and thus deteriorate the quality of boron concentrates produced by direct flotation. The main objective of this study is therefore to recover borax fines from the tailings of the concentrator by reverse flotation. A three-level-factor experimental design was used to determine the main and interaction effects of variables selected on the metallurgical performance of reverse flotation. An analysis of variance for experimental results indicates that interaction effects of the variables for concentrate quality and recovery of B2O3 is nonsignificant and the most important variable for grade of concentrate and recovery is the collector dosage. It is shown that a concentrate assaying 11.25% B2O3 with 89.90% B2O3 recovery could be produced by means of single-stage (rougher) reverse flotation. Additionally, in order to produce a sufficient-quality concentrate, a multistage reverse flotation scheme involving rougher, scavenger, and two cleaners was devised. A final concentrate containing 23.47% B2O3 with 81.78% B2O3 recovery was obtained from these tests. The reverse flotation method can be thus considered as an important option for the beneficiation of borax fines.

  5. Flow reversal and thermal limit in a heated rectangular channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, L.Y.; Tichler, P.R.; Yang, B.W.

    The thermal limit in a vertical rectangular channel was determined in a series of experiments whereby the internal coolant underwent a change in flow direction from forced downflow to upward natural circulation. The tests were designed to simulate the flow reversal transient in the High Flux Beam Reactor. A number of parameters were varied in the flow reversal experiments to examine their effects on the thermal limit. Among the parameters varied were the rate of flow coastdown, inlet subcooling, water level in the upper plenum, bypass ratio (ratio of initial flow through the heated section to initial flow through themore » bypass orifice), and single- verses double-sided heating.« less

  6. The 727 airplane target thrust reverser static performance model test for refanned JT8D engines

    NASA Technical Reports Server (NTRS)

    Chow, C. T. P.; Atkey, E. N.

    1974-01-01

    The results of a scale model static performance test of target thrust reverser configurations for the Pratt and Whitney Aircraft JT8D-100 series engine are presented. The objective of the test was to select a series of suitable candidate reverser configurations for the subsequent airplane model wind tunnel ingestion and flight controls tests. Test results indicate that adequate reverse thrust performance with compatible engine airflow match is achievable for the selected configurations. Tapering of the lips results in loss of performance and only minimal flow directivity. Door pressure surveys were conducted on a selected number of lip and fence configurations to obtain data to support the design of the thrust reverser system.

  7. High Fidelity Modeling of Field Reversed Configuration (FRC) Thrusters

    DTIC Science & Technology

    2016-06-01

    space propulsion . This effort consists of numerical model development, physical model development, and systematic studies of the non-linear plasma...studies of the physical characteristics of Field Reversed Configuration (FRC) plasma for advanced space propulsion . This effort consists of numerical...FRCs for propulsion application. Two of the most advanced designs are based on the theta-pinch formation and the RMF formation mechanism, which

  8. High Pressure Reverse Flow APS Engine

    NASA Technical Reports Server (NTRS)

    Senneff, J. M.

    1972-01-01

    A design and test demonstration effort was undertaken to evaluate the concept of the reverse flow engine for the APS engine application. The 1500 lb (6672 N) thrust engine was designed to operate on gaseous hydrogen and gaseous oxygen propellants at a mixture ratio of 4 and to achieve the objective performance of 435 sec (4266 Nsec/kg) specific impulse. Superimposed durability requirements called for a million-cycle capability with 50 hours duration. The program was undertaken as a series of tasks including the initial preliminary design, design of critical test components and finally, the design and demonstration of an altitude engine which could be used interchangeably to examine operating parameters as well as to demonstrate the capability of the concept. The program results are reported with data to indicate that all of the program objectives were met or exceeded within the course of testing on the program. The analysis effort undertaken is also reported in detail and supplemented with test data in some cases where prior definitions could not be made. The results are contained of these analyses as well as the test results conducted throughout the course of the program. Finally, the test data and analytical results were combined to allow recommendations for a flight weight design. This preliminary design effort is also detailed.

  9. Reverse Current in Solar Flares

    NASA Technical Reports Server (NTRS)

    Knight, J. W., III

    1978-01-01

    An idealized steady state model of a stream of energetic electrons neutralized by a reverse current in the pre-flare solar plasma was developed. These calculations indicate that, in some cases, a significant fraction of the beam energy may be dissipated by the reverse current. Joule heating by the reverse current is a more effective mechanism for heating the plasma than collisional losses from the energetic electrons because the Ohmic losses are caused by thermal electrons in the reverse current which have much shorter mean free paths than the energetic electrons. The heating due to reverse currents is calculated for two injected energetic electron fluxes. For the smaller injected flux, the temperature of the coronal plasma is raised by about a factor of two. The larger flux causes the reverse current drift velocity to exceed the critical velocity for the onset of ion cyclotron turbulence, producing anomalous resistivity and an order of magnitude increase in the temperature. The heating is so rapid that the lack of ionization equilibrium may produce a soft X-ray and EUV pulse from the corona.

  10. A new digitized reverse correction method for hypoid gears based on a one-dimensional probe

    NASA Astrophysics Data System (ADS)

    Li, Tianxing; Li, Jubo; Deng, Xiaozhong; Yang, Jianjun; Li, Genggeng; Ma, Wensuo

    2017-12-01

    In order to improve the tooth surface geometric accuracy and transmission quality of hypoid gears, a new digitized reverse correction method is proposed based on the measurement data from a one-dimensional probe. The minimization of tooth surface geometrical deviations is realized from the perspective of mathematical analysis and reverse engineering. Combining the analysis of complex tooth surface generation principles and the measurement mechanism of one-dimensional probes, the mathematical relationship between the theoretical designed tooth surface, the actual machined tooth surface and the deviation tooth surface is established, the mapping relation between machine-tool settings and tooth surface deviations is derived, and the essential connection between the accurate calculation of tooth surface deviations and the reverse correction method of machine-tool settings is revealed. Furthermore, a reverse correction model of machine-tool settings is built, a reverse correction strategy is planned, and the minimization of tooth surface deviations is achieved by means of the method of numerical iterative reverse solution. On this basis, a digitized reverse correction system for hypoid gears is developed by the organic combination of numerical control generation, accurate measurement, computer numerical processing, and digitized correction. Finally, the correctness and practicability of the digitized reverse correction method are proved through a reverse correction experiment. The experimental results show that the tooth surface geometric deviations meet the engineering requirements after two trial cuts and one correction.

  11. Cranioplasty prosthesis manufacturing based on reverse engineering technology

    PubMed Central

    Chrzan, Robert; Urbanik, Andrzej; Karbowski, Krzysztof; Moskała, Marek; Polak, Jarosław; Pyrich, Marek

    2012-01-01

    Summary Background Most patients with large focal skull bone loss after craniectomy are referred for cranioplasty. Reverse engineering is a technology which creates a computer-aided design (CAD) model of a real structure. Rapid prototyping is a technology which produces physical objects from virtual CAD models. The aim of this study was to assess the clinical usefulness of these technologies in cranioplasty prosthesis manufacturing. Material/Methods CT was performed on 19 patients with focal skull bone loss after craniectomy, using a dedicated protocol. A material model of skull deficit was produced using computer numerical control (CNC) milling, and individually pre-operatively adjusted polypropylene-polyester prosthesis was prepared. In a control group of 20 patients a prosthesis was manually adjusted to each patient by a neurosurgeon during surgery, without using CT-based reverse engineering/rapid prototyping. In each case, the prosthesis was implanted into the patient. The mean operating times in both groups were compared. Results In the group of patients with reverse engineering/rapid prototyping-based cranioplasty, the mean operating time was shorter (120.3 min) compared to that in the control group (136.5 min). The neurosurgeons found the new technology particularly useful in more complicated bone deficits with different curvatures in various planes. Conclusions Reverse engineering and rapid prototyping may reduce the time needed for cranioplasty neurosurgery and improve the prosthesis fitting. Such technologies may utilize data obtained by commonly used spiral CT scanners. The manufacturing of individually adjusted prostheses should be commonly used in patients planned for cranioplasty with synthetic material. PMID:22207125

  12. Adaptable Hydrogel Networks with Reversible Linkages for Tissue Engineering

    PubMed Central

    Wang, Huiyuan

    2015-01-01

    Adaptable hydrogels have recently emerged as a promising platform for three-dimensional (3D) cell encapsulation and culture. In conventional, covalently crosslinked hydrogels, degradation is typically required to allow complex cellular functions to occur, leading to bulk material degradation. In contrast, adaptable hydrogels are formed by reversible crosslinks. Through breaking and re-forming of the reversible linkages, adaptable hydrogels can be locally modified to permit complex cellular functions while maintaining their long-term integrity. In addition, these adaptable materials can have biomimetic viscoelastic properties that make them well suited for several biotechnology and medical applications. In this review, adaptable hydrogel design considerations and linkage selections are overviewed, with a focus on various cell compatible crosslinking mechanisms that can be exploited to form adaptable hydrogels for tissue engineering. PMID:25989348

  13. Design Assessment: "Consumer Reports" Style

    ERIC Educational Resources Information Center

    Kelley, Todd R.

    2010-01-01

    Novices to the design process often struggle at first to understand the various stages of design. Learning to design is a process not easily mastered, and therefore requires multiple levels of exposure to the design process. It is helpful if teachers are able to implement various entry-level design assignments such as reverse-engineering…

  14. Reverse Core Engine with Thrust Reverser

    NASA Technical Reports Server (NTRS)

    Chandler, Jesse M. (Inventor); Suciu, Gabriel L. (Inventor)

    2017-01-01

    An engine system has a gas generator, a bi-fi wall surrounding at least a portion of the gas generator, a casing surrounding a fan, and the casing having first and second thrust reverser doors which in a deployed position abut each other and the bi-fi wall.

  15. The Use of Reverse Engineering to Analyse Student Computer Programs.

    ERIC Educational Resources Information Center

    Vanneste, Philip; And Others

    1996-01-01

    Discusses how the reverse engineering approach can generate feedback on computer programs without the user having any prior knowledge of what the program was designed to do. This approach uses the cognitive model of programming knowledge to interpret both context independent and dependent errors in the same words and concepts as human programmers.…

  16. Reversal of radial glow distribution in helicon plasma induced by reversed magnetic field

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Zhao, G.; Niu, C.; Liu, Z. W.; Ouyang, J. T.; Chen, Q.

    2017-02-01

    In this work, the reversal of radial glow distribution induced by reversed magnetic field is reported. Based on the Boswell antenna which is symmetric and insensitive to the magnetic field direction, it seems such a phenomenon in theory appears impossible. However, according to the diagnostic of the helicon waves by magnetic probe, it is found that the direction of magnetic field significantly affects the propagation characteristic of helicon waves, i.e., the interchange of the helicon waves at the upper and the lower half of tube was caused by reversing the direction of magnetic field. It is suggested that the variation of helicon wave against the direction of magnetic field causes the reversed radial glow distribution. The appearance of the traveling wave does not only improve the discharge strength, but also determines the transition of the discharge mode.

  17. Tic Symptoms Induced by Atomoxetine in Treatment of ADHD: A Case Report and Literature Review.

    PubMed

    Yang, Rongwang; Li, Rong; Gao, Weijia; Zhao, Zhengyan

    Patients with attention-deficit/hyperactivity disorder (ADHD) are at increased risk for tic disorders. Atomoxetine (ATX) has been accepted as an alternative medication for patients with ADHD and a comorbid tic disorder. It is rarely reported that tic symptoms are induced by ATX. This present report described a boy with ADHD who developed tic symptoms during ATX initiation. We used an ABAB trial to confirm the tics were related to ATX administration. In addition, we reviewed the published literature of patients whose tic symptoms were confirmed or suspected of relating to ATX usage. This present case with an ABAB design showed on-off control of tics with or without ATX, which allowed us to make a strong conclusion that the tics were related to ATX administration. Literature review also indicated that ATX might induce tic symptoms in children with ADHD, especially in those being boys and having a history of tics. The time from starting ATX to tics symptoms appearing was approximately 19 days. The most common tic symptoms were eye blinking, vocal tics, or throat clearing, and neck movements. These tics symptoms in most cases could be resolved after discontinuing ATX without further pharmacotherapy. Pediatricians and child psychiatrists should be well aware of this potential adverse effect in children with ADHD receiving ATX.

  18. Myopia progression control lens reverses induced myopia in chicks.

    PubMed

    Irving, Elizabeth L; Yakobchuk-Stanger, Cristina

    2017-09-01

    To determine whether lens induced myopia in chicks can be reversed or reduced by wearing myopia progression control lenses of the same nominal (central) power but different peripheral designs. Newly hatched chicks wore -10D Conventional lenses unilaterally for 7 days. The myopic chicks were then randomly divided into three groups: one fitted with Type 1 myopia progression control lenses, the second with Type 2 myopia progression control lenses and the third continued to wear Conventional lenses for seven more days. All lenses had -10D central power, but Type 1 and Type 2 lenses had differing peripheral designs; +2.75D and +1.32D power rise at pupil edge, respectively. Axial length and refractive error were measured on Days 0, 7 and 14. Analyses were performed on the mean differences between treated and untreated eyes. Refractive error and axial length differences between treated and untreated eyes were insignificant on Day 0. On Day 7 treated eyes were longer (T1; 0.44 ± 0.07 mm, T2; 0.27 ± 0.06 mm, C; 0.40 ± 0.06 mm) and more myopic (T1; -9.61 ± 0.52D, T2; -9.57 ± 0.61D, C; -9.50 ± 0.58D) than untreated eyes with no significant differences between treatment groups. On Day 14 myopia was reversed (+2.91 ± 1.08D), reduced (-3.83 ± 0.94D) or insignificantly increased (-11.89 ± 0.79D) in treated eyes of Type 1, Type 2 and Conventional treated chicks respectively. Relative changes in axial lengths (T1; -0.13 ± 0.09 mm, T2; 0.36 ± 0.09 mm, C; 0.56 ± 0.05 mm) were consistent with changes in refraction. Refractive error differences were significant for all group comparisons (p < 0.001). Type 1 length differences were significantly different from Conventional and Type 2 groups (p < 0.001). Myopia progression control lens designs can reverse lens-induced myopia in chicks. The effect is primarily due to axial length changes. Different lens designs produce different effects indicating that lens design is important in modifying refractive error. © 2017 The Authors

  19. Geomagnetic Reversals during the Phanerozoic.

    PubMed

    McElhinny, M W

    1971-04-09

    An antalysis of worldwide paleomagnetic measurements suggests a periodicity of 350 x 10(6) years in the polarity of the geomagnetic field. During the Mesozoic it is predominantly normal, whereas during the Upper Paleozoic it is predominantly reversed. Although geomagnetic reversals occur at different rates throughout the Phanerozoic, there appeaars to be no clear correlation between biological evolutionary rates and reversal frequency.

  20. A Rationally Designed Reversible ‘Turn-Off’ Sensor for Glutathione

    PubMed Central

    Pei, Jinxin; Abell, Andrew D.

    2017-01-01

    γ-Glutamyl-cysteinyl-glycine (GSH) plays a critical role in maintaining redox homeostasis in biological systems and a decrease in its cellular levels is associated with diseases. Existing fluorescence-based chemosensors for GSH acts as irreversible reaction-based probes that exhibit a maximum fluorescence (‘turn-on’) once the reaction is complete, regardless of the actual concentration of GSH. A reversible, reaction-based ‘turn-off’ probe (1) is reported here to sense the decreasing levels of GSH, a situation known to occur at the onset of various diseases. The more fluorescent merocyanine (MC) isomer of 1 exists in aqueous solution and this reacts with GSH to induce formation of the ring-closed spiropyran (SP) isomer, with a measurable decrease in absorbance and fluorescence (‘turn-off’). Sensor 1 has good aqueous solubility and shows an excellent selectivity for GSH over other biologically relevant metal ions and aminothiol analytes. The sensor permeates HEK 293 cells and an increase in fluorescence is observed on adding buthionine sulfoximine, an inhibitor of GSH synthesis. PMID:28878194

  1. Innovative Design to Prevent Reversal of Roller Blood Pump Rotation in the Event of Electromechanical Failure: An Easy Solution to a Devastating Problem

    PubMed Central

    Skoletsky, Jennifer S.; White, Brian T.; Austin, Jon W.

    2007-01-01

    Abstract: Despite the advanced technologies of battery back-up for heart-lung consoles and the availability of system-wide generators, electromechanical failure is still occurring. Several heartlung machine manufacturers still provide unsafe handcranking devices to use in the case of an emergency while using a roller blood pump. A new design has been engineered to eliminate safety and quality issues for the perfusionist and the patient when the need for handcranking presents itself. A ratchet-style handcranking device was fabricated by means of a steel plate with adjustable pins. The adjustable pins allow for use with different models of the Cobe, Stockert, and Jostra heart-lung consoles, which contain roller pumps with 180° roller heads. Additional modifications such as a 1:2 transmission and fluorescent markers are also used in the design. This innovative design is an improvement in safety compared with the current handcrank provided by Cobe, Stockert, and Jostra. With this modified handcranking device, accidental reverse rotation of the roller pump head cannot occur. Fluorescent markers will improve visualization of the pump head in low-light situations. The ergonomic design improves efficiency by reducing fatigue. Most importantly, a “safe” safety device will replace the current design provided by these manufacturers, thus improving the quality of care by health care providers. PMID:17672191

  2. Strength and reversibility of stereotypes for a rotary control with linear scales.

    PubMed

    Chan, Alan H S; Chan, W H

    2008-02-01

    Using real mechanical controls, this experiment studied strength and reversibility of direction-of-motion stereotypes and response times for a rotary control with horizontal and vertical scales. Thirty-eight engineering undergraduates (34 men and 4 women) ages 23 to 47 years (M=29.8, SD=7.7) took part in the experiment voluntarily. The effects of instruction of change of pointer position and control plane on movement compatibility were analyzed with precise quantitative measures of strength and a reversibility index of stereotype. Comparisons of the strength and reversibility values of these two configurations with those of rotary control-circular display, rotary control-digital counter, four-way lever-circular display, and four-way lever-digital counter were made. The results of this study provided significant implications for the industrial design of control panels for improved human performance.

  3. Improvement of water desalination technologies in reverse osmosis plants

    NASA Astrophysics Data System (ADS)

    Vysotskii, S. P.; Konoval'chik, M. V.; Gul'ko, S. E.

    2017-07-01

    The strengthening of requirements for the protection of surface-water sources and increases in the cost of reagents lead to the necessity of using membrane (especially, reverse osmosis) technologies of water desalination as an alternative to ion-exchange technologies. The peculiarities of using reverse osmosis technologies in the desalination of waters with an increased salinity have been discussed. An analogy has been made between the dependence of the adsorptive capacity of ion-exchange resins on the reagent consumption during ion exchange and the dependence of the specific ion flux on the voltage in the electrodialysis and productivity of membrane elements on the excess of the pressure of source water over the osmotic pressure in reverse osmosis. It has been proposed to regulate the number of water desalination steps in reverse osmosis plants, which makes it possible to flexibly change the productivity of equipment and the level of desalinization, depending on the requirements for the technological process. It is shown that the selectivity of reverse osmotic membranes with respect to bivalent ions (calcium, magnesium, and sulfates) is approximately four times higher than the selectivity with respect to monovalent ions (sodium and chlorine). The process of desalination in reverse osmosis plants depends on operation factors, such as the salt content and ion composition of source water, the salt content of the concentrate, and the temperatures of solution and operating pressure, and the design features of devices, such as the length of the motion of the desalination water flux, the distance between membranes, and types of membranes and turbulators (spacers). To assess the influence of separate parameters on the process of reverse osmosis desalination of water solutions, we derived criteria equations by compiling problem solution matrices on the basis of the dimensional method, taking into account the Huntley complement. The operation of membrane elements was

  4. Electron microscopy investigations of purity of AlN interlayer in Al{sub x}Ga{sub 1-x}N/GaN heterostructures grown by plasma assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridhara Rao, D. V.; Jain, Anubha; Lamba, Sushil

    2013-05-13

    The electron microscopy was used to characterize the AlN interlayer in Al{sub x}Ga{sub 1-x}N/AlN/GaN heterostructures grown by plasma assisted molecular beam epitaxy (PAMBE). We show that the AlN interlayer grown by PAMBE is without gallium and oxygen incorporation and the interfaces are coherent. The AlN interlayer has the ABAB stacking of lattice planes as expected for the wurtzite phase. High purity of AlN interlayer with the ABAB stacking leads to larger conduction band offset along with stronger polarization effects. Our studies show that the origin of lower sheet resistance obtained by PAMBE is the purity of AlN interlayer.

  5. Reverse hybrid total hip arthroplasty.

    PubMed

    Wangen, Helge; Havelin, Leif I; Fenstad, Anne M; Hallan, Geir; Furnes, Ove; Pedersen, Alma B; Overgaard, Søren; Kärrholm, Johan; Garellick, Göran; Mäkelä, Keijo; Eskelinen, Antti; Nordsletten, Lars

    2017-06-01

    Background and purpose - The use of a cemented cup together with an uncemented stem in total hip arthroplasty (THA) has become popular in Norway and Sweden during the last decade. The results of this prosthetic concept, reverse hybrid THA, have been sparsely described. The Nordic Arthroplasty Register Association (NARA) has already published 2 papers describing results of reverse hybrid THAs in different age groups. Based on data collected over 2 additional years, we wanted to perform in depth analyses of not only the reverse hybrid concept but also of the different cup/stem combinations used. Patients and methods - From the NARA, we extracted data on reverse hybrid THAs from January 1, 2000 until December 31, 2013. 38,415 such hips were studied and compared with cemented THAs. The Kaplan-Meier method and Cox regression analyses were used to estimate the prosthesis survival and the relative risk of revision. The main endpoint was revision for any reason. We also performed specific analyses regarding the different reasons for revision and analyses regarding the cup/stem combinations used in more than 500 cases. Results - We found a higher rate of revision for reverse hybrids than for cemented THAs, with an adjusted relative risk of revision (RR) of 1.4 (95% CI: 1.3-1.5). At 10 years, the survival rate was 94% (CI: 94-95) for cemented THAs and 92% (95% CI: 92-93) for reverse hybrids. The results for the reverse hybrid THAs were inferior to those for cemented THAs in patients aged 55 years or more (RR =1.1, CI: 1.0-1.3; p < 0.05). We found a higher rate of early revision due to periprosthetic femoral fracture for reverse hybrids than for cemented THAs in patients aged 55 years or more (RR =3.1, CI: 2.2-4.5; p < 0.001). Interpretation - Reverse hybrid THAs had a slightly higher rate of revision than cemented THAs in patients aged 55 or more. The difference in survival was mainly caused by a higher incidence of early revision due to periprosthetic femoral fracture in

  6. Enhancing Services for Toddlers with Disabilities: A Reverse Mainstreaming Inclusion Approach.

    ERIC Educational Resources Information Center

    Cormany, Ernestine E.

    This practicum designed and developed a program to implement a reverse mainstreaming model of inclusion for 7 toddlers (ages 1 to 3) with disabilities (Down syndrome, profound mental retardation, cerebral palsy, neurofibromatosis, stroke, and hearing impairment) and 3 of their typically developing peers. Emphasis was on the provision of…

  7. Obesity-induced decreases in muscle performance are not reversed by weight loss.

    PubMed

    Seebacher, F; Tallis, J; McShea, K; James, R S

    2017-08-01

    Obesity can affect muscle phenotypes, and may thereby constrain movement and energy expenditure. Weight loss is a common and intuitive intervention for obesity, but it is not known whether the effects of obesity on muscle function are reversible by weight loss. Here we tested whether obesity-induced changes in muscle metabolic and contractile phenotypes are reversible by weight loss. We used zebrafish (Danio rerio) in a factorial design to compare energy metabolism, locomotor capacity, muscle isometric force and work-loop power output, and myosin heavy chain (MHC) composition between lean fish, diet-induced obese fish, and fish that were obese and then returned to lean body mass following diet restriction. Obesity increased resting metabolic rates (P<0.001) and decreased maximal metabolic rates (P=0.030), but these changes were reversible by weight loss, and were not associated with changes in muscle citrate synthase activity. In contrast, obesity-induced decreases in locomotor performance (P=0.0034), and isolated muscle isometric stress (P=0.01), work-loop power output (P<0.001) and relaxation rates (P=0.012) were not reversed by weight loss. Similarly, obesity-induced decreases in concentrations of fast and slow MHCs, and a shift toward fast MHCs were not reversed by weight loss. Obesity-induced changes in locomotor performance and muscle contractile function were not reversible by weight loss. These results show that weight loss alone may not be a sufficient intervention.

  8. Using a Formal Approach for Reverse Engineering and Design Recovery to Support Software Reuse

    NASA Technical Reports Server (NTRS)

    Gannod, Gerald C.

    2002-01-01

    This document describes 3rd year accomplishments and summarizes overall project accomplishments. Included as attachments are all published papers from year three. Note that the budget for this project was discontinued after year two, but that a residual budget from year two allowed minimal continuance into year three. Accomplishments include initial investigations into log-file based reverse engineering, service-based software reuse, and a source to XML generator.

  9. Asymmetric Thrust Reversers

    NASA Technical Reports Server (NTRS)

    Chandler, Jesse M. (Inventor); Suciu, Gabriel L. (Inventor)

    2018-01-01

    An aircraft includes a propulsion supported within an aft portion of a fuselage A thrust reverser is mounted in the aft portion of the fuselage proximate the propulsion system for directing thrust in a direction to slow the aircraft. The thrust reverser includes an upper blocker door movable about a first pivot axis to a deployed position and a lower blocker door movable about a second pivot axis not parallel to the first pivot axis.

  10. Supra-dendron Gelator Based on Azobenzene-Cyclodextrin Host-Guest Interactions: Photoswitched Optical and Chiroptical Reversibility.

    PubMed

    Xie, Fan; Ouyang, Guanghui; Qin, Long; Liu, Minghua

    2016-12-12

    A novel amphiphilic dendron (AZOC 8 GAc) with three l-glutamic acid units and an azobenzene moiety covalently linked by an alkyl spacer has been designed. The compound formed hydrogels with water at very low concentration and self-assembled into chiral-twist structures. The gel showed a reversible macroscopic volume phase transition in response to pH variations and photo-irradiation. During the photo-triggered changes, although the gel showed complete reversibility in its optical absorptions, only an incomplete chiroptical property change was achieved. On the other hand, the dendron could form a 1:1 inclusion complex through a host-guest interaction with α-cyclodextrin (α-CD), designated as supra-dendron gelator AZOC 8 GAc/α-CD. The supra-dendron showed similar gelation behavior to that of AZOC 8 GAc, but with enhanced photoisomerization-transition efficiency and chiroptical switching capacity, which was completely reversible in terms of both optical and chiroptical performances. The self-assembly of the supra-dendron is a hierarchical or multi-supramolecular self-assembling process. This work has clearly illustrated that the hierarchical and multi-supramolecular self-assembling system endows the supramolecular nanostructures or materials with superior reversible optical and chiroptical switching. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. How decision reversibility affects motivation.

    PubMed

    Bullens, Lottie; van Harreveld, Frenk; Förster, Jens; Higgins, Tory E

    2014-04-01

    The present research examined how decision reversibility can affect motivation. On the basis of extant findings, it was suggested that 1 way it could affect motivation would be to strengthen different regulatory foci, with reversible decision making, compared to irreversible decision making, strengthening prevention-related motivation relatively more than promotion-related motivation. If so, then decision reversibility should have effects associated with the relative differences between prevention and promotion motivation. In 5 studies, we manipulated the reversibility of a decision and used different indicators of regulatory focus motivation to test these predictions. Specifically, Study 1 tested for differences in participants' preference for approach versus avoidance strategies toward a desired end state. In Study 2, we used speed and accuracy performance as indicators of participants' regulatory motivation, and in Study 3, we measured global versus local reaction time performance. In Study 4, we approached the research question in a different way, making use of the value-from-fit hypothesis (Higgins, 2000, 2002). We tested whether a fit between chronic regulatory focus and focus induced by the reversibility of the decision increased participants' subjective positive feelings about the decision outcome. Finally, in Study 5, we tested whether regulatory motivation, induced by decision reversibility, also influenced participants' preference in specific product features. The results generally support our hypothesis showing that, compared to irreversible decisions, reversible decisions strengthen a prevention focus more than a promotion focus. Implications for research on decision making are discussed.

  12. Modeling pH variation in reverse osmosis.

    PubMed

    Nir, Oded; Bishop, Noga Fridman; Lahav, Ori; Freger, Viatcheslav

    2015-12-15

    The transport of hydronium and hydroxide ions through reverse osmosis membranes constitutes a unique case of ionic species characterized by uncommonly high permeabilities. Combined with electromigration, this leads to complex behavior of permeate pH, e.g., negative rejection, as often observed for monovalent ions in nanofiltration of salt mixtures. In this work we employed a rigorous phenomenological approach combined with chemical equilibrium to describe the trans-membrane transport of hydronium and hydroxide ions along with salt transport and calculate the resulting permeate pH. Starting from the Nernst-Planck equation, a full non-linear transport equation was derived, for which an approximate solution was proposed based on the analytical solution previously developed for trace ions in a dominant salt. Using the developed approximate equation, transport coefficients were deduced from experimental results obtained using a spiral wound reverse osmosis module operated under varying permeate flux (2-11 μm/s), NaCl feed concentrations (0.04-0.18 M) and feed pH values (5.5-9.0). The approximate equation agreed well with the experimental results, corroborating the finding that diffusion and electromigration, rather than a priori neglected convection, were the major contributors to the transport of hydronium and hydroxide. The approach presented here has the potential to improve the predictive capacity of reverse osmosis transport models for acid-base species, thereby improving process design/control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Site-directed mutagenesis of α-L-rhamnosidase from Alternaria sp. L1 to enhance synthesis yield of reverse hydrolysis based on rational design.

    PubMed

    Xu, Li; Liu, Xiaohong; Yin, Zhenhao; Liu, Qian; Lu, Lili; Xiao, Min

    2016-12-01

    The α-L-rhamnosidase catalyzes the hydrolytic release of rhamnose from polysaccharides and glycosides and is widely used due to its applications in a variety of industrial processes. Our previous work reported that a wild-type α-L-rhamnosidase (RhaL1) from Alternaria sp. L1 could synthesize rhamnose-containing chemicals (RCCs) though reverse hydrolysis reaction with inexpensive rhamnose as glycosyl donor. To enhance the yield of reverse hydrolysis reaction and to determine the amino acid residues essential for the catalytic activity of RhaL1, site-directed mutagenesis of 11 residues was performed in this study. Through rationally designed mutations, the critical amino acid residues which may form direct or solvent-mediated hydrogen bonds with donor rhamnose (Asp 252 , Asp 257 , Asp 264 , Glu 530 , Arg 548 , His 553 , and Trp 555 ) and may form the hydrophobic pocket in stabilizing donor (Trp 261 , Tyr 302 , Tyr 316 , and Trp 369 ) in active-site of RhaL1 were analyzed, and three positive mutants (W261Y, Y302F, and Y316F) with improved product yield stood out. From the three positive variants, mutant W261Y accelerated the reverse hydrolysis with a prominent increase (43.7 %) in relative yield compared to the wild-type enzyme. Based on the 3D structural modeling, we supposed that the improved yield of mutant W261Y is due to the adjustment of the spatial position of the putative catalytic acid residue Asp 257 . Mutant W261Y also exhibited a shift in the pH-activity profile in hydrolysis reaction, indicating that introducing of a polar residue in the active site cavity may affect the catalysis behavior of the enzyme.

  14. Reversible Humidity Sensitive Clothing for Personal Thermoregulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Ying; Zhang, Fenghua; Wang, Meng

    Two kinds of humidity-induced, bendable smart clothing have been designed to reversibly adapt their thermal insulation functionality. The first design mimics the pores in human skin, in which pre-cut flaps open to produce pores in Nafion sheets when humidity increases, as might occur during human sweating thus permitting air flow and reducing both the humidity level and the apparent temperature. Like the smart human sweating pores, the flaps can close automatically after the perspiration to keep the wearer warm. The second design involves thickness adjustable clothes by inserting the bent polymer sheets between two fabrics. As the humidity increases, themore » sheets become thinner, thus reducing the gap between the two fabrics to reduce the thermal insulation. The insulation layer can recover its original thickness upon humidity reduction to restore its warmth-preservation function. Such humidity sensitive smart polymer materials can be utilized to adjust personal comfort, and be effective in reducing energy consumption for building heating or cooling with numerous smart design.« less

  15. Reversible Humidity Sensitive Clothing for Personal Thermoregulation

    DOE PAGES

    Zhong, Ying; Zhang, Fenghua; Wang, Meng; ...

    2017-03-10

    Two kinds of humidity-induced, bendable smart clothing have been designed to reversibly adapt their thermal insulation functionality. The first design mimics the pores in human skin, in which pre-cut flaps open to produce pores in Nafion sheets when humidity increases, as might occur during human sweating thus permitting air flow and reducing both the humidity level and the apparent temperature. Like the smart human sweating pores, the flaps can close automatically after the perspiration to keep the wearer warm. The second design involves thickness adjustable clothes by inserting the bent polymer sheets between two fabrics. As the humidity increases, themore » sheets become thinner, thus reducing the gap between the two fabrics to reduce the thermal insulation. The insulation layer can recover its original thickness upon humidity reduction to restore its warmth-preservation function. Such humidity sensitive smart polymer materials can be utilized to adjust personal comfort, and be effective in reducing energy consumption for building heating or cooling with numerous smart design.« less

  16. Reversible S-nitrosylation in an engineered azurin

    DOE PAGES

    Tian, Shiliang; Liu, Jing; Cowley, Ryan E.; ...

    2016-04-25

    Here, S-Nitrosothiols are known as reagents for NO storage and transportation and as regulators in many physiological processes. Although the S-nitrosylation catalysed by haem proteins is well known, no direct evidence of S-nitrosylation in copper proteins has been reported. Here, we report reversible insertion of NO into a copper–thiolate bond in an engineered copper centre in Pseudomonas aeruginosa azurin by rational design of the primary coordination sphere and tuning its reduction potential by deleting a hydrogen bond in the secondary coordination sphere. The results not only provide the first direct evidence of S-nitrosylation of Cu(II)-bound cysteine in metalloproteins, but alsomore » shed light on the reaction mechanism and structural features responsible for stabilizing the elusive Cu(I)–S(Cys)NO species. The fast, efficient and reversible S-nitrosylation reaction is used to demonstrate its ability to prevent NO inhibition of cytochrome bo 3 oxidase activity by competing for NO binding with the native enzyme under physiologically relevant conditions.« less

  17. Cost Modeling and Design of Field-Reversed Configuration Fusion Power Plants

    NASA Astrophysics Data System (ADS)

    Kirtley, David; Slough, John; Helion Team

    2017-10-01

    The Inductively Driven Liner (IDL) fusion concept uses the magnetically driven implosion of thin (0.5-1 mm) Aluminum hoops to magnetically compress a merged Field-Reversed Configuration (FRC) plasma to fusion conditions. Both the driver and the target have been studied experimentally and theoretically by researchers at Helion Energy, MSNW, and the University of Washington, demonstrating compression fields greater than 100 T and suitable fusion targets. In the presented study, a notional power plant facility using this approach will be described. In addition, a full cost study based on the LLNL Z-IFE and HYLIFE-II studies, the ARIES Tokamak concept, and RAND power plant studies will be described. Finally, the expected capital costs, development requirements, and LCOE for 50 and 500 MW power plants will be given. This analysis includes core FRC plant scaling, metallic liner recycling, radiation shielding, operations, and facilities capital requirements.

  18. Reverse Genetics for Mammalian Orthoreovirus.

    PubMed

    Stuart, Johnasha D; Phillips, Matthew B; Boehme, Karl W

    2017-01-01

    Reverse genetics allows introduction of specific alterations into a viral genome. Studies performed with mutant viruses generated using reverse genetics approaches have contributed immeasurably to our understanding of viral replication and pathogenesis, and also have led to development of novel vaccines and virus-based vectors. Here, we describe the reverse genetics system that allows for production and recovery of mammalian orthoreovirus, a double-stranded (ds) RNA virus, from plasmids that encode the viral genome.

  19. Magnetic reversals from planetary dynamo waves.

    PubMed

    Sheyko, Andrey; Finlay, Christopher C; Jackson, Andrew

    2016-11-24

    A striking feature of many natural dynamos is their ability to undergo polarity reversals. The best documented example is Earth's magnetic field, which has reversed hundreds of times during its history. The origin of geomagnetic polarity reversals lies in a magnetohydrodynamic process that takes place in Earth's core, but the precise mechanism is debated. The majority of numerical geodynamo simulations that exhibit reversals operate in a regime in which the viscosity of the fluid remains important, and in which the dynamo mechanism primarily involves stretching and twisting of field lines by columnar convection. Here we present an example of another class of reversing-geodynamo model, which operates in a regime of comparatively low viscosity and high magnetic diffusivity. This class does not fit into the paradigm of reversal regimes that are dictated by the value of the local Rossby number (the ratio of advection to Coriolis force). Instead, stretching of the magnetic field by a strong shear in the east-west flow near the imaginary cylinder just touching the inner core and parallel to the axis of rotation is crucial to the reversal mechanism in our models, which involves a process akin to kinematic dynamo waves. Because our results are relevant in a regime of low viscosity and high magnetic diffusivity, and with geophysically appropriate boundary conditions, this form of dynamo wave may also be involved in geomagnetic reversals.

  20. Static internal performance of single expansion-ramp nozzles with thrust vectoring and reversing

    NASA Technical Reports Server (NTRS)

    Re, R. J.; Berrier, B. L.

    1982-01-01

    The effects of geometric design parameters on the internal performance of nonaxisymmetric single expansion-ramp nozzles were investigated at nozzle pressure ratios up to approximately 10. Forward-flight (cruise), vectored-thrust, and reversed-thrust nozzle operating modes were investigated.

  1. Magnetization reversal in magnetic dot arrays: Nearest-neighbor interactions and global configurational anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van de Wiele, Ben; Fin, Samuele; Pancaldi, Matteo

    2016-05-28

    Various proposals for future magnetic memories, data processing devices, and sensors rely on a precise control of the magnetization ground state and magnetization reversal process in periodically patterned media. In finite dot arrays, such control is hampered by the magnetostatic interactions between the nanomagnets, leading to the non-uniform magnetization state distributions throughout the sample while reversing. In this paper, we evidence how during reversal typical geometric arrangements of dots in an identical magnetization state appear that originate in the dominance of either Global Configurational Anisotropy or Nearest-Neighbor Magnetostatic interactions, which depends on the fields at which the magnetization reversal setsmore » in. Based on our findings, we propose design rules to obtain the uniform magnetization state distributions throughout the array, and also suggest future research directions to achieve non-uniform state distributions of interest, e.g., when aiming at guiding spin wave edge-modes through dot arrays. Our insights are based on the Magneto-Optical Kerr Effect and Magnetic Force Microscopy measurements as well as the extensive micromagnetic simulations.« less

  2. NASA Researcher Examines an Aircraft Model with a Four-Fan Thrust Reverser

    NASA Image and Video Library

    1972-03-21

    National Aeronautics and Space Administration (NASA) researcher John Carpenter inspects an aircraft model with a four-fan thrust reverser which would be studied in the 9- by 15-Foot Low Speed Wind Tunnel at the Lewis Research Center. Thrust reversers were introduced in the 1950s as a means for slowing high-speed jet aircraft during landing. Engineers sought to apply the technology to Vertical and Short Takeoff and Landing (VSTOL) aircraft in the 1970s. The new designs would have to take into account shorter landing areas, noise levels, and decreased thrust levels. A balance was needed between the thrust reverser’s efficiency, its noise generation, and the engine’s power setting. This model underwent a series of four tests in the 9- by 15-foot tunnel during April and May 1974. The model, with a high-wing configuration and no tail, was equipped with four thrust-reverser engines. The investigations included static internal aerodynamic tests on a single fan/reverser, wind tunnel isolated fan/reverser thrust tests, installation effects on a four-fan airplane model in a wind tunnel, and single reverser acoustic tests. The 9-by 15 was built inside the return leg of the 8- by 6-Foot Supersonic Wind Tunnel in 1968. The facility generates airspeeds from 0 to 175 miles per hour to evaluate the aerodynamic performance and acoustic characteristics of nozzles, inlets, and propellers, and investigate hot gas re-ingestion of advanced VSTOL concepts. John Carpenter was a technician in the Wind Tunnels Service Section of the Test Installations Division.

  3. Compact piezoelectric tripod manipulator based on a reverse bridge-type amplification mechanism

    NASA Astrophysics Data System (ADS)

    Na, Tae-Won; Choi, Jun-Ho; Jung, Jin-Young; Kim, Hyeong-Geon; Han, Jae-Hung; Park, Kwang-Chun; Oh, Il-Kwon

    2016-09-01

    We report a hierarchical piezoelectric tripod manipulator based on a reverse bridge-type displacement amplifier. The reverse bridge-type amplification mechanism is pre-strained by each piezo-stack actuator up to 60 μm and is cross-stacked in a series arrangement to make a compact and high-stroke manipulator having load-bearing characteristics. The designed manipulator with three degrees of freedom is compact with a height of 56.0 mm, a diameter of 48.6 mm and total weight of 115 g. It achieves a translational stroke of up to 880 μm in heaving motion and a tilting angle of up to 2.0° in rotational motion within the operating voltage and power range of the piezoelectric stack actuator. A key feature of the present design is built-in and pre-strained displacement amplification mechanisms integrated with piezoelectric stacked actuators, resulting in a compact tripod manipulator having exceptionally high stroke and load-bearing capacity.

  4. Parkinson’s disease managing reversible neurodegeneration

    PubMed Central

    Hinz, Marty; Stein, Alvin; Cole, Ted; McDougall, Beth; Westaway, Mark

    2016-01-01

    Traditionally, the Parkinson’s disease (PD) symptom course has been classified as an irreversible progressive neurodegenerative disease. This paper documents 29 PD and treatment-induced systemic depletion etiologies which cause and/or exacerbate the seven novel primary relative nutritional deficiencies associated with PD. These reversible relative nutritional deficiencies (RNDs) may facilitate and accelerate irreversible progressive neurodegeneration, while other reversible RNDs may induce previously undocumented reversible pseudo-neurodegeneration that is hiding in plain sight since the symptoms are identical to the symptoms being experienced by the PD patient. Documented herein is a novel nutritional approach for reversible processes management which may slow or halt irreversible progressive neurodegenerative disease and correct reversible RNDs whose symptoms are identical to the patient’s PD symptoms. PMID:27103805

  5. Three component vibrational time reversal communication

    DOE PAGES

    Anderson, Brian E.; Ulrich, Timothy J.; Ten Cate, James A.

    2015-01-01

    Time reversal provides an optimal prefilter matched signal to apply to a communication signal before signal transmission. Time reversal allows compensation for wave speed dispersion and can function well in reverberant environments. Time reversal can be used to focus elastic energy to each of the three components of motion independently. A pipe encased in concrete was used to demonstrate the ability to conduct communications of information using three component time reversal. Furthermore, the ability of time reversal to compensate for multi-path distortion (overcoming reverberation) will be demonstrated and the rate of signal communication will be presented. [The U.S. Department ofmore » Energy, through the LANL/LDRD Program, is gratefully acknowledged for supporting this work.]« less

  6. The prevalence of reversible airway obstruction in professional football players.

    PubMed

    Ross, R G

    2000-12-01

    To determine the prevalence of reversible airway obstruction in a group of professional football training camp participants. All attendees at a Canadian Football League team rookie preseason training camp were invited to participate in a protocol designed to elicit symptoms and signs of reversible airway obstruction (asthma) during the initial preparticipation examination. Those agreeing to the protocol completed a questionnaire containing standardized inquiries about a past history of asthma and the presence of symptoms. Participants then underwent spirometry testing to determine lung function before and after receiving a standardized dose of bronchodilator medication. Players showing evidence of airway obstruction during initial testing and still on the team roster underwent repeat spirometry testing and formal pulmonary function testing during the football season. The follow-up pulmonary function tests were performed to determine those that might benefit from treatment for asthma. Nineteen of 34 (56%) players agreeing to participate had significant reversible airway obstruction as defined by a 12% or greater reversibility in forced expiratory volume in one second (FEV1), peak expiratory flow rate (PEFR), and/or forced expiratory flow rate between 25 and 75% of forced vital capacity (FEF 25-75). In most participants, the diagnosis was made on the basis of spirometry alone. Of those testing positive during initial inquiry, 88% remained positive on repeat spirometry, and 73% had reversible airway obstruction during more stringently controlled hospital-based pulmonary function testing. Those players treated for previously undiagnosed asthma noted an improvement in subjective athletic performance during the football season. Based on the remarkably high prevalence of undiagnosed asthma in this group, it may prove worthwhile to test elite football players using lung function parameters.

  7. Tough Self-Healing Elastomers by Molecular Enforced Integration of Covalent and Reversible Networks.

    PubMed

    Wu, Jinrong; Cai, Li-Heng; Weitz, David A

    2017-10-01

    Self-healing polymers crosslinked by solely reversible bonds are intrinsically weaker than common covalently crosslinked networks. Introducing covalent crosslinks into a reversible network would improve mechanical strength. It is challenging, however, to apply this concept to "dry" elastomers, largely because reversible crosslinks such as hydrogen bonds are often polar motifs, whereas covalent crosslinks are nonpolar motifs. These two types of bonds are intrinsically immiscible without cosolvents. Here, we design and fabricate a hybrid polymer network by crosslinking randomly branched polymers carrying motifs that can form both reversible hydrogen bonds and permanent covalent crosslinks. The randomly branched polymer links such two types of bonds and forces them to mix on the molecular level without cosolvents. This enables a hybrid "dry" elastomer that is very tough with fracture energy 13500 Jm -2 comparable to that of natural rubber. Moreover, the elastomer can self-heal at room temperature with a recovered tensile strength 4 MPa, which is 30% of its original value, yet comparable to the pristine strength of existing self-healing polymers. The concept of forcing covalent and reversible bonds to mix at molecular scale to create a homogenous network is quite general and should enable development of tough, self-healing polymers of practical usage. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Reverse-mode PSLC multi-plane optical see-through display for AR applications.

    PubMed

    Liu, Shuxin; Li, Yan; Zhou, Pengcheng; Chen, Quanming; Su, Yikai

    2018-02-05

    In this paper we propose an optical see-through multi-plane display with reverse-mode polymer-stabilized liquid crystal (PSLC). Our design solves the problem of accommodation-vergence conflict with correct focus cues. In the reverse mode PSLC system, power consumption could be reduced to ~1/(N-1) of that in a normal mode system if N planes are displayed. The PSLC films fabricated in our experiment exhibit a low saturation voltage ~20 V rms , a high transparent-state transmittance (92%), and a fast switching time within 2 ms and polarization insensitivity. A proof-of-concept two-plane color display prototype and a four-plane monocolor display prototype were implemented.

  9. 14 CFR 25.933 - Reversing systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... reversal in flight the engine will produce no more than flight idle thrust. In addition, it must be shown... kind of failure is extremely remote. (3) Each system must have means to prevent the engine from... alone, under the most critical reversing condition expected in operation. (b) For propeller reversing...

  10. 14 CFR 25.933 - Reversing systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... reversal in flight the engine will produce no more than flight idle thrust. In addition, it must be shown... kind of failure is extremely remote. (3) Each system must have means to prevent the engine from... alone, under the most critical reversing condition expected in operation. (b) For propeller reversing...

  11. 14 CFR 25.933 - Reversing systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... reversal in flight the engine will produce no more than flight idle thrust. In addition, it must be shown... kind of failure is extremely remote. (3) Each system must have means to prevent the engine from... alone, under the most critical reversing condition expected in operation. (b) For propeller reversing...

  12. A Low Temperature, Reverse Brayton Cryocooler

    NASA Technical Reports Server (NTRS)

    Swift, Walter L.

    2001-01-01

    This status report covers the fifty-second month of a project to develop a low temperature, reverse-Brayton cryocooler using turbomachines. This program consists of a Basic Phase and four Option Phases. Each of the Phases is directed to a particular load/temperature combination. The technology and fundamental design features of the components used in these systems are related but differ somewhat in size, speed, and some details in physical geometry. Each of the Phases can be carried out independently of the others, except that all of the Phases rely on the technology developed and demonstrated during the Basic Phase. The Basic Phase includes the demonstration of a critical component and the production of a prototype model cryocooler. The critical technology demonstration will be the test of a small turboalternator over a range of conditions at temperatures down to 6 K. These tests will provide design verification data useful for the further design of the other coolers. The prototype model cooler will be designed to provide at least 5 mW of cooling at 6 K. The heat rejection temperature for this requirement is 220 K or greater. The input power to the system at these conditions is to be less than 60 W.

  13. Progress in the development of the reverse osmosis process for spacecraft wash water recovery.

    NASA Technical Reports Server (NTRS)

    Pecoraro, J. N.; Podall, H. E.; Spurlock, J. M.

    1972-01-01

    Research work on ambient- and pasteurization-temperature reverse osmosis processes for wash water recovery in a spacecraft environment is reviewed, and the advantages and drawbacks of each are noted. A key requirement in each case is to provide a membrane of appropriate stability and semipermeability. Reverse osmosis systems intended for such use must also take into account the specific limitations and requirements imposed by the small volume of water to be processed and the high water recovery desired. The incorporation of advanced high-temperature membranes into specially designed modules is discussed.

  14. An inexact reverse logistics model for municipal solid waste management systems.

    PubMed

    Zhang, Yi Mei; Huang, Guo He; He, Li

    2011-03-01

    This paper proposed an inexact reverse logistics model for municipal solid waste management systems (IRWM). Waste managers, suppliers, industries and distributors were involved in strategic planning and operational execution through reverse logistics management. All the parameters were assumed to be intervals to quantify the uncertainties in the optimization process and solutions in IRWM. To solve this model, a piecewise interval programming was developed to deal with Min-Min functions in both objectives and constraints. The application of the model was illustrated through a classical municipal solid waste management case. With different cost parameters for landfill and the WTE, two scenarios were analyzed. The IRWM could reflect the dynamic and uncertain characteristics of MSW management systems, and could facilitate the generation of desired management plans. The model could be further advanced through incorporating methods of stochastic or fuzzy parameters into its framework. Design of multi-waste, multi-echelon, multi-uncertainty reverse logistics model for waste management network would also be preferred. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Reversible and non-reversible thermal denaturation of lysozyme with varying pH at low ionic strength.

    PubMed

    Blumlein, Alice; McManus, Jennifer J

    2013-10-01

    DSC analysis has been used to quantify the reversibility of unfolding following thermal denaturation of lysozyme. Since the temperature at which protein unfolding occurs, Tm, varies with different solution conditions, the effect on the melting temperature and the degree of refolding after thermal denaturation in low ionic strength sodium phosphate buffers (5-1000mM) over a range of pH (5-9) in the presence/absence of disaccharides is examined. This study compares the enthalpies of unfolding during successive heating cycles to quantify reversibility following thermal denaturation. The disaccharides, trehalose and maltose were used to assess if the disaccharide induced increase in Tm is reflected in the reversibility of thermally induced denaturation. There was extensive overlap between the Tm values where non-reversible and reversible thermal denaturation occurred. Indeed, for pH6, at the highest and lowest Tm, no refolding was observed whereas refolding was observed for intermediate values, but with similar Tm values having different proportions of refolded protein. We established a method to measure the degree of reversible unfolding following thermal denaturation and hence indirectly, the degree to which protein is lost to irreversible aggregation, and show that solution conditions which increase melt transition temperatures do not automatically confer an increase in reversibility. This type of analysis may prove useful in assessing the stability of proteins in both the biopharmaceutical and food industries. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Vasectomy reversal: a clinical update

    PubMed Central

    Patel, Abhishek P; Smith, Ryan P

    2016-01-01

    Vasectomy is a safe and effective method of contraception used by 42–60 million men worldwide. Approximately 3%–6% of men opt for a vasectomy reversal due to the death of a child or divorce and remarriage, change in financial situation, desire for more children within the same marriage, or to alleviate the dreaded postvasectomy pain syndrome. Unlike vasectomy, vasectomy reversal is a much more technically challenging procedure that is performed only by a minority of urologists and places a larger financial strain on the patient since it is usually not covered by insurance. Interest in this procedure has increased since the operating microscope became available in the 1970s, which consequently led to improved patency and pregnancy rates following the procedure. In this clinical update, we discuss patient evaluation, variables that may influence reversal success rates, factors to consider in choosing to perform vasovasostomy versus vasoepididymostomy, and the usefulness of vasectomy reversal to alleviate postvasectomy pain syndrome. We also review the use of robotics for vasectomy reversal and other novel techniques and instrumentation that have emerged in recent years to aid in the success of this surgery. PMID:26975488

  17. Multibody system of the upper limb including a reverse shoulder prosthesis.

    PubMed

    Quental, C; Folgado, J; Ambrósio, J; Monteiro, J

    2013-11-01

    biomechanical advantages attributed to the reverse shoulder design and show an increase in activity from the deltoid, teres minor, and coracobrachialis muscles. The glenohumeral joint reaction forces estimated for the reverse shoulder are up to 15% lower than those in the normal shoulder anatomy. The data presented here complements previous publications, which, all together, allow researchers to build a biomechanical model of the upper limb including a reverse shoulder prosthesis.

  18. Attempting to Change Sex Role Attitudes in Adolescents: Explorations of Reverse Effects.

    ERIC Educational Resources Information Center

    Matteson, David R.

    1991-01-01

    Interventions designed to change sex role stereotypes have usually used presentations on women's roles and have been effective with females only, producing no effects or reverse effects with males. Conducted three experiments using media presentations focusing on men. Findings from 12 male and 28 female adolescents revealed that 2 presentations…

  19. Design of cryptographically secure AES like S-Box using second-order reversible cellular automata for wireless body area network applications.

    PubMed

    Gangadari, Bhoopal Rao; Rafi Ahamed, Shaik

    2016-09-01

    In biomedical, data security is the most expensive resource for wireless body area network applications. Cryptographic algorithms are used in order to protect the information against unauthorised access. Advanced encryption standard (AES) cryptographic algorithm plays a vital role in telemedicine applications. The authors propose a novel approach for design of substitution bytes (S-Box) using second-order reversible one-dimensional cellular automata (RCA 2 ) as a replacement to the classical look-up-table (LUT) based S-Box used in AES algorithm. The performance of proposed RCA 2 based S-Box and conventional LUT based S-Box is evaluated in terms of security using the cryptographic properties such as the nonlinearity, correlation immunity bias, strict avalanche criteria and entropy. Moreover, it is also shown that RCA 2 based S-Boxes are dynamic in nature, invertible and provide high level of security. Further, it is also found that the RCA 2 based S-Box have comparatively better performance than that of conventional LUT based S-Box.

  20. Design of cryptographically secure AES like S-Box using second-order reversible cellular automata for wireless body area network applications

    PubMed Central

    Rafi Ahamed, Shaik

    2016-01-01

    In biomedical, data security is the most expensive resource for wireless body area network applications. Cryptographic algorithms are used in order to protect the information against unauthorised access. Advanced encryption standard (AES) cryptographic algorithm plays a vital role in telemedicine applications. The authors propose a novel approach for design of substitution bytes (S-Box) using second-order reversible one-dimensional cellular automata (RCA2) as a replacement to the classical look-up-table (LUT) based S-Box used in AES algorithm. The performance of proposed RCA2 based S-Box and conventional LUT based S-Box is evaluated in terms of security using the cryptographic properties such as the nonlinearity, correlation immunity bias, strict avalanche criteria and entropy. Moreover, it is also shown that RCA2 based S-Boxes are dynamic in nature, invertible and provide high level of security. Further, it is also found that the RCA2 based S-Box have comparatively better performance than that of conventional LUT based S-Box. PMID:27733924

  1. Chemical reactions in reverse micelle systems

    DOEpatents

    Matson, Dean W.; Fulton, John L.; Smith, Richard D.; Consani, Keith A.

    1993-08-24

    This invention is directed to conducting chemical reactions in reverse micelle or microemulsion systems comprising a substantially discontinuous phase including a polar fluid, typically an aqueous fluid, and a microemulsion promoter, typically a surfactant, for facilitating the formation of reverse micelles in the system. The system further includes a substantially continuous phase including a non-polar or low-polarity fluid material which is a gas under standard temperature and pressure and has a critical density, and which is generally a water-insoluble fluid in a near critical or supercritical state. Thus, the microemulsion system is maintained at a pressure and temperature such that the density of the non-polar or low-polarity fluid exceeds the critical density thereof. The method of carrying out chemical reactions generally comprises forming a first reverse micelle system including an aqueous fluid including reverse micelles in a water-insoluble fluid in the supercritical state. Then, a first reactant is introduced into the first reverse micelle system, and a chemical reaction is carried out with the first reactant to form a reaction product. In general, the first reactant can be incorporated into, and the product formed in, the reverse micelles. A second reactant can also be incorporated in the first reverse micelle system which is capable of reacting with the first reactant to form a product.

  2. A thermodynamic approach for selecting operating conditions in the design of reversible solid oxide cell energy systems

    NASA Astrophysics Data System (ADS)

    Wendel, Christopher H.; Kazempoor, Pejman; Braun, Robert J.

    2016-01-01

    Reversible solid oxide cell (ReSOC) systems are being increasingly considered for electrical energy storage, although much work remains before they can be realized, including cell materials development and system design optimization. These systems store electricity by generating a synthetic fuel in electrolysis mode and subsequently recover electricity by electrochemically oxidizing the stored fuel in fuel cell mode. System thermal management is improved by promoting methane synthesis internal to the ReSOC stack. Within this strategy, the cell-stack operating conditions are highly impactful on system performance and optimizing these parameters to suit both operating modes is critical to achieving high roundtrip efficiency. Preliminary analysis shows the thermoneutral voltage to be a useful parameter for analyzing ReSOC systems and the focus of this study is to quantitatively examine how it is affected by ReSOC operating conditions. The results reveal that the thermoneutral voltage is generally reduced by increased pressure, and reductions in temperature, fuel utilization, and hydrogen-to-carbon ratio. Based on the thermodynamic analysis, many different combinations of these operating conditions are expected to promote efficient energy storage. Pressurized systems can achieve high efficiency at higher temperature and fuel utilization, while non-pressurized systems may require lower stack temperature and suffer from reduced energy density.

  3. Reversible unidirectional reflection and absorption of PT-symmetry structure under electro-optical modulation

    NASA Astrophysics Data System (ADS)

    Fang, Yun-tuan; Zhang, Yi-chi; Xia, Jing

    2018-06-01

    In order to obtain tunable unidirectional device, we assumed an ideal periodic layered Parity-Time (PT) symmetry structure inserted by doped LiNbO3 (LN) interlayers. LN is a typical electro-optical material of which the refractive index depends on the external electric field. In our work, we theoretically investigate the modulation effect of the external electric field on the transmittance and reflectance of the structure through numerical method. Through selected structural parameters, the one-way enhanced reflection and high absorption (above 0.9) behaviors are found. Within a special frequency band (not a single frequency), our theoretical model performs enhanced reflection in one incidence direction and high absorption in the other direction. Furthermore, the directions of enhanced reflection and absorption can be reversed through reversing the direction of applied electric field. Such structure with reversible properties has the potential in designing new optical devices.

  4. Reverse bias voltage testing of 8 cm x 8cm silicon solar cells

    NASA Technical Reports Server (NTRS)

    Woike, T.; Stotlar, S.; Lungu, C.

    1991-01-01

    A study is described of the reverse I-V characteristics of the largest space qualified silicon solar cells currently available (8 x 8 cm) and of reverse bias voltage (RBV) testing performed on these cells. This study includes production grade cells, both with and without cover glass. These cells span the typical output range seen in production. Initial characteristics of these cells are measured at both 28 and 60 C. These measurements show weak correlation between cell output and reverse characteristics. Analysis is presented to determine the proper conditions for RBV stress to simulate shadowing effects on a particular array design. After performing the RBV stress the characteristics of the stressed cells are remeasured. The degradation in cell performance is highly variable which exacerbates cell mismatching over time. The effect of this degradation on array lifetime is also discussed. Generalization of these results to other array configurations is also presented.

  5. Reverse lyotropic liquid crystals from europium nitrate and P123 with enhanced luminescence efficiency.

    PubMed

    Yi, Sijing; Li, Qintang; Liu, Hongguo; Chen, Xiao

    2014-10-02

    Fabrication of lyotropic aggregates containing the lanthanide ions is becoming a preferable way to prepare novel functional materials. Here, the lyotropic liquid crystals (LLCs) of reverse hexagonal, reverse bicontinuous cubic, and lamellar phases have been constructed in sequence directly from the mixtures of Eu(NO3)3·6H2O and Pluronic P123 amphiphilc block copolymer with increasing the salt proportion. Their phase types and structural characteristics were analyzed using polarized optical microscopy (POM) and small-angle X-ray scattering (SAXS) measurements. The driving forces of reverse LLC phase formation were investigated using Fourier-transformed infrared spectroscopy (FTIR) and rheological measurements. The hydrated europium salt was found to act not only as a solvent here, but also as the bridge to form hydrogen bonding between coordinated water molecules and PEO blocks, which played a key role in the reverse LLCs formation. Compared to those in aqueous solutions and solid state, the enhanced luminescence quantum yields and prolonged excited state lifetimes were observed in two europium containing reverse mesophases. The luminescence quenching effect of lanthanide ions was efficiently suppressed, probably due to the substitution of coordinated water molecules by oxyethyl groups of P123 and ordered phase structures of LLCs, where the coordinated europium ions were confined and isolated by PEO blocks. The optimum luminescence performance was then found to exist in the reverse hexagonal phase. The obtained results on such lanthanide-induced reverse LLCs should be referable for designing new luminescent soft materials construction to expand their application fields.

  6. A study on dynamic heat assisted magnetization reversal mechanisms under insufficient reversal field conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y. J.; Yang, H. Z.; Leong, S. H.

    2014-10-20

    We report an experimental study on the dynamic thermomagnetic (TM) reversal mechanisms at around Curie temperature (Tc) for isolated 60 nm pitch single-domain [Co/Pd] islands heated by a 1.5 μm spot size laser pulse under an applied magnetic reversal field (Hr). Magnetic force microscopy (MFM) observations with high resolution MFM tips clearly showed randomly trapped non-switched islands within the laser irradiated spot after dynamic TM reversal process with insufficient Hr strength. This observation provides direct experimental evidence by MFM of a large magnetization switching variation due to increased thermal fluctuation/agitation over magnetization energy at the elevated temperature of around Tc. The averagemore » percentage of non-switched islands/magnetization was further found to be inversely proportional to the applied reversal field Hr for incomplete magnetization reversal when Hr is less than 13% of the island coercivity (Hc), showing an increased switching field distribution (SFD) at elevated temperature of around Tc (where main contributions to SFD broadening are from Tc distribution and stronger thermal fluctuations). Our experimental study and results provide better understanding and insight on practical heat assisted magnetic recording (HAMR) process and recording performance, including HAMR writing magnetization dynamics induced SFD as well as associated DC saturation noise that limits areal density, as were previously observed and investigated by theoretical simulations.« less

  7. Influence of glenoid component design and humeral component retroversion on internal and external rotation in reverse shoulder arthroplasty: a cadaver study.

    PubMed

    Berhouet, J; Garaud, P; Favard, L

    2013-12-01

    A common disadvantage of reverse shoulder arthroplasty is limitation of the range of arm rotation. Several changes to the prosthesis design and implantation technique have been suggested to improve rotation range of motion (ROM). Glenoid component design and degree of humeral component retroversion influence rotation ROM after reverse shoulder arthroplasty. The Aequalis Reversed™ shoulder prosthesis (Tornier Inc., Edina, MN, USA) was implanted into 40 cadaver shoulders. Eight glenoid component combinations were tested, five with the 36-mm sphere (centred seating, eccentric seating, inferior tilt, centred with a 5-mm thick lateralised spacer, and centred with a 7-mm thick lateralised spacer) and three with the 42-mm sphere (centred with no spacer or with a 7-mm or 10-mm spacer). Humeral component position was evaluated with 0°, 10°, 20°, 30°, and 40° of retroversion. External and internal rotation ROMs to posterior and anterior impingement on the scapular neck were measured with the arm in 20° of abduction. The large glenosphere (42 mm) was associated with significantly (P<0.05) greater rotation ROMs, particularly when combined with a lateralised spacer (46° internal and 66° external rotation). Rotation ROMs were smallest with the 36-mm sphere. Greater humeral component retroversion was associated with a decrease in internal rotation and a significant increase (P<0.05) in external rotation. The best balance between rotation ROMs was obtained with the native retroversion, which was estimated at 17.5° on average in this study. Our anatomic study in a large number of cadavers involved a detailed and reproducible experimental protocol. However, we did not evaluate the variability in scapular anatomy. Earlier studies of the influence of technical parameters did not take humeral component retroversion into account. In addition, no previous studies assessed rotation ROMs. Rotation ROM should be improved by the use of a large-diameter glenosphere with a spacer to

  8. Biomechanical comparison of reverse total shoulder arthroplasty systems in soft tissue-constrained shoulders.

    PubMed

    Henninger, Heath B; King, Frank K; Tashjian, Robert Z; Burks, Robert T

    2014-05-01

    Numerous studies have examined the biomechanics of isolated variables in reverse total shoulder arthroplasty. This study directly compared the composite performance of two reverse total shoulder arthroplasty systems; each system was designed around either a medialized or a lateralized glenohumeral center of rotation. Seven pairs of shoulders were tested on a biomechanical simulator. Center of rotation, position of the humerus, passive and active range of motion, and force to abduct the arm were quantified. Native arms were tested, implanted with a Tornier Aequalis or DJO Surgical Reverse Shoulder Prosthesis (RSP), and then retested. Differences from the native state were then documented. Both systems shifted the center of rotation medially and inferiorly relative to native. Medial shifts were greater in the Aequalis implant (P < .037). All humeri shifted inferior compared with native but moved medially with the Aequalis (P < .001). Peak passive abduction, internal rotation, and external rotation did not differ between systems (P > .05). Both reverse total shoulder arthroplasty systems exhibited adduction deficits, but the RSP implant deficit was smaller (P = .046 between implants). Both systems reduced forces to abduct the arm compared with native, although the Aequalis required more force to initiate motion from the resting position (P = .022). Given the differences in system designs and configurations, outcome variables were generally comparable. The RSP implant allowed slightly more adduction, had a more lateralized humeral position, and required less force to initiate elevation. These factors may play roles in limiting scapular notching, improving active external rotation by normalizing the residual rotator cuff length, and limiting excessive stress on the deltoid. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  9. A new standing posture detector to enable people with multiple disabilities to control environmental stimulation by changing their standing posture through a commercial Wii Balance Board.

    PubMed

    Shih, Ching-Hsiang; Shih, Ching-Tien; Chiang, Ming-Shan

    2010-01-01

    This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture) and a Wii Balance Board with a newly developed standing posture detection program (i.e. a new software program turns a Wii Balance Board into a precise standing posture detector). The study was performed according to an ABAB design, in which A represented baseline and B represented intervention phases. Both participants significantly increased their target response (body swing) to activate the control system to produce environmental stimulation during the intervention phases. Practical and developmental implications of the findings were discussed.

  10. Prompting one low-fat, high-fiber selection in a fast-food restaurant.

    PubMed

    Wagner, J L; Winett, R A

    1988-01-01

    Evidence increasingly links a high-fat, low-fiber diet to coronary heart disease and certain site cancers, indicating a need for large-scale dietary change. Studies showing the effectiveness of particular procedures in specific settings are important at this point. The present study, using an A-B-A-B design and sales data from computerized cash registers, replicated and extended previous work by showing that inexpensive prompts (i.e., signs and fliers) in a national fast-food restaurant could increase the sales of salads, a low-fat, high-fiber menu selection. Suggestions also are made pertinent to more widespread use of the procedures.

  11. Electrical characteristics in reverse electrodialysis using nanoporous membranes

    NASA Astrophysics Data System (ADS)

    Chanda, Sourayon; Tsai, Peichun Amy

    2017-11-01

    We experimentally and numerically investigate the effects of concentration difference and flow velocity on sustainable electricity generation and associated fluid dynamics using a single reverse electrodialysis (RED) cell. By exploiting the charge-selective nature of nanoporous interfaces, electrical energy is generated by reverse electrodialysis harnessing chemical Gibbs energy via a salinity gradient. Experimentally, a RED cell was designed with two reservoirs, which are separated by a nanoporous, cation-selective membrane. We injected deionized water through one reservoir, whereas a solution of high salt concentration through the other. The gradient of salt concentration primarily drives the flow in the charged nano-pores, due to the interplay between charge selectivity, diffusion processes, and electro-migration. The current-voltage characteristics of the single RED cell shows a linear current-voltage relationship, similar to an electrochemical cell. The membrane resistance is increased with increasing salt concentration difference and external flow rate. The present experimental work was further analyzed numerically to better understand the detailed electrical and flow fields under different concentration gradients and external flows. NSERC Discovery, Accelerator, and CRC Programs.

  12. Why Contextual Preference Reversals Maximize Expected Value

    PubMed Central

    2016-01-01

    Contextual preference reversals occur when a preference for one option over another is reversed by the addition of further options. It has been argued that the occurrence of preference reversals in human behavior shows that people violate the axioms of rational choice and that people are not, therefore, expected value maximizers. In contrast, we demonstrate that if a person is only able to make noisy calculations of expected value and noisy observations of the ordinal relations among option features, then the expected value maximizing choice is influenced by the addition of new options and does give rise to apparent preference reversals. We explore the implications of expected value maximizing choice, conditioned on noisy observations, for a range of contextual preference reversal types—including attraction, compromise, similarity, and phantom effects. These preference reversal types have played a key role in the development of models of human choice. We conclude that experiments demonstrating contextual preference reversals are not evidence for irrationality. They are, however, a consequence of expected value maximization given noisy observations. PMID:27337391

  13. MANAGEMENT OF ENDOCRINE DISEASE: Reversible hypogonadotropic hypogonadism.

    PubMed

    Dwyer, Andrew A; Raivio, Taneli; Pitteloud, Nelly

    2016-06-01

    Congenital hypogonadotropic hypogonadism (CHH) is characterized by lack of puberty and infertility. Traditionally, it has been considered a life-long condition yet cases of reversibility have been described wherein patients spontaneously recover function of the reproductive axis following treatment. Reversibility occurs in both male and female CHH cases and appears to be more common (~10-15%) than previously thought. These reversal patients span a range of GnRH deficiency from mild to severe and many reversal patients harbor mutations in genes underlying CHH. However, to date there are no clear factors for predicting reversible CHH. Importantly, recovery of reproductive axis function may not be permanent. Thus, CHH is not always life-long and the incidence of reversal warrants periodic treatment withdrawal with close monitoring and follow-up. Reversible CHH highlights the importance of environmental (epigenetic) factors such as sex steroid treatment on the reproductive axis in modifying the phenotype. This review provides an overview and an update on what is known about this phenomenon. © 2016 European Society of Endocrinology.

  14. Dipole-quadrupole dynamics during magnetic field reversals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gissinger, Christophe

    The shape and the dynamics of reversals of the magnetic field in a turbulent dynamo experiment are investigated. We report the evolution of the dipolar and the quadrupolar parts of the magnetic field in the VKS experiment, and show that the experimental results are in good agreement with the predictions of a recent model of reversals: when the dipole reverses, part of the magnetic energy is transferred to the quadrupole, reversals begin with a slow decay of the dipole and are followed by a fast recovery, together with an overshoot of the dipole. Random reversals are observed at the borderlinemore » between stationary and oscillatory dynamos.« less

  15. A rapidly-reversible absorptive and emissive vapochromic Pt(II) pincer-based chemical sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryant, M. J.; Skelton, J. M.; Hatcher, L. E.

    Selective, robust and cost-effective chemical sensors for detecting small volatile-organic compounds (VOCs) have widespread applications in industry, healthcare and environmental monitoring. Here we design a Pt(II) pincer-Type material with selective absorptive and emissive responses to methanol and water. The yellow anhydrous form converts reversibly on a subsecond timescale to a red hydrate in the presence of parts-per-Thousand levels of atmospheric water vapour. Exposure to methanol induces a similarly-rapid and reversible colour change to a blue methanol solvate. Stable smart coatings on glass demonstrate robust switching over 10 4 cycles, and flexible microporous polymer membranes incorporating microcrystals of the complex showmore » identical vapochromic behaviour. The rapid vapochromic response can be rationalised from the crystal structure, and in combination with quantum-chemical modelling, we provide a complete microscopic picture of the switching mechanism. We discuss how this multiscale design approach can be used to obtain new compounds with tailored VOC selectivity and spectral responses.« less

  16. A rapidly-reversible absorptive and emissive vapochromic Pt(II) pincer-based chemical sensor

    DOE PAGES

    Bryant, M. J.; Skelton, J. M.; Hatcher, L. E.; ...

    2017-11-27

    Selective, robust and cost-effective chemical sensors for detecting small volatile-organic compounds (VOCs) have widespread applications in industry, healthcare and environmental monitoring. Here we design a Pt(II) pincer-Type material with selective absorptive and emissive responses to methanol and water. The yellow anhydrous form converts reversibly on a subsecond timescale to a red hydrate in the presence of parts-per-Thousand levels of atmospheric water vapour. Exposure to methanol induces a similarly-rapid and reversible colour change to a blue methanol solvate. Stable smart coatings on glass demonstrate robust switching over 10 4 cycles, and flexible microporous polymer membranes incorporating microcrystals of the complex showmore » identical vapochromic behaviour. The rapid vapochromic response can be rationalised from the crystal structure, and in combination with quantum-chemical modelling, we provide a complete microscopic picture of the switching mechanism. We discuss how this multiscale design approach can be used to obtain new compounds with tailored VOC selectivity and spectral responses.« less

  17. Methodological approaches to conducting pilot and proof tests on reverse-osmosis systems: Results of comparative studies

    NASA Astrophysics Data System (ADS)

    Panteleev, A. A.; Bobinkin, V. V.; Larionov, S. Yu.; Ryabchikov, B. E.; Smirnov, V. B.; Shapovalov, D. A.

    2017-10-01

    When designing large-scale water-treatment plants based on reverse-osmosis systems, it is proposed to conduct experimental-industrial or pilot tests for validated simulation of the operation of the equipment. It is shown that such tests allow establishing efficient operating conditions and characteristics of the plant under design. It is proposed to conduct pilot tests of the reverse-osmosis systems on pilot membrane plants (PMPs) and test membrane plants (TMPs). The results of a comparative experimental study of pilot and test membrane plants are exemplified by simulating the operating parameters of the membrane elements of an industrial plant. It is concluded that the reliability of the data obtained on the TMP may not be sufficient to design industrial water-treatment plants, while the PMPs are capable of providing reliable data that can be used for full-scale simulation of the operation of industrial reverse-osmosis systems. The test membrane plants allow simulation of the operating conditions of individual industrial plant systems; therefore, potential areas of their application are shown. A method for numerical calculation and experimental determination of the true selectivity and the salt passage are proposed. An expression has been derived that describes the functional dependence between the observed and true salt passage. The results of the experiments conducted on a test membrane plant to determine the true value of the salt passage of a reverse-osmosis membrane are exemplified by magnesium sulfate solution at different initial operating parameters. It is shown that the initial content of a particular solution component has a significant effect on the change in the true salt passage of the membrane.

  18. Sex Reversal in Birds.

    PubMed

    Major, Andrew T; Smith, Craig A

    2016-01-01

    Sexual differentiation in birds is controlled genetically as in mammals, although the sex chromosomes are different. Males have a ZZ sex chromosome constitution, while females are ZW. Gene(s) on the sex chromosomes must initiate gonadal sex differentiation during embryonic life, inducing paired testes in ZZ individuals and unilateral ovaries in ZW individuals. The traditional view of avian sexual differentiation aligns with that expounded for other vertebrates; upon sexual differentiation, the gonads secrete sex steroid hormones that masculinise or feminise the rest of the body. However, recent studies on naturally occurring or experimentally induced avian sex reversal suggest a significant role for direct genetic factors, in addition to sex hormones, in regulating sexual differentiation of the soma in birds. This review will provide an overview of sex determination in birds and both naturally and experimentally induced sex reversal, with emphasis on the key role of oestrogen. We then consider how recent studies on sex reversal and gynandromorphic birds (half male:half female) are shaping our understanding of sexual differentiation in avians and in vertebrates more broadly. Current evidence shows that sexual differentiation in birds is a mix of direct genetic and hormonal mechanisms. Perturbation of either of these components may lead to sex reversal. © 2016 S. Karger AG, Basel.

  19. Extreme reversed sexual dichromatism in a bird without sex role reversal.

    PubMed

    Heinsohn, Robert; Legge, Sarah; Endler, John A

    2005-07-22

    Brilliant plumage is typical of male birds, reflecting differential enhancement of male traits when females are the limiting sex. Brighter females are thought to evolve exclusively in response to sex role reversal. The striking reversed plumage dichromatism of Eclectus roratus parrots does not fit this pattern. We quantify plumage color in this species and show that very different selection pressures are acting on males and females. Male plumage reflects a compromise between the conflicting requirements for camouflage from predators while foraging and conspicuousness during display. Females are liberated from the need for camouflage but compete for rare nest hollows.

  20. Acute effects of cocaine and cannabis on reversal learning as a function of COMT and DRD2 genotype.

    PubMed

    Spronk, Desirée B; Van der Schaaf, Marieke E; Cools, Roshan; De Bruijn, Ellen R A; Franke, Barbara; van Wel, Janelle H P; Ramaekers, Johannes G; Verkes, Robbert J

    2016-01-01

    Long-term cannabis and cocaine use has been associated with impairments in reversal learning. However, how acute cannabis and cocaine administration affect reversal learning in humans is not known. In this study, we aimed to establish the acute effects of administration of cannabis and cocaine on valence-dependent reversal learning as a function of DRD2 Taq1A (rs1800497) and COMT Val108/158Met (rs4680) genotype. A double-blind placebo-controlled randomized 3-way crossover design was used. Sixty-one regular poly-drug users completed a deterministic reversal learning task under the influence of cocaine, cannabis, and placebo that enabled assessment of both reward- and punishment-based reversal learning. Proportion correct on the reversal learning task was increased by cocaine, but decreased by cannabis. Effects of cocaine depended on the DRD2 genotype, as increases in proportion correct were seen only in the A1 carriers, and not in the A2/A2 homozygotes. COMT genotype did not modulate drug-induced effects on reversal learning. These data indicate that acute administration of cannabis and cocaine has opposite effects on reversal learning. The effects of cocaine, but not cannabis, depend on interindividual genetic differences in the dopamine D2 receptor gene.

  1. Reversible Sterilization

    ERIC Educational Resources Information Center

    Largey, Gale

    1977-01-01

    Notes that difficult questions arise concerning the use of sterilization for alleged eugenic and euthenic purposes. Thus, how reversible sterilization will be used with relation to the poor, mentally ill, mentally retarded, criminals, and minors, is questioned. (Author/AM)

  2. Earth's magnetic moment during geomagnetic reversals

    NASA Astrophysics Data System (ADS)

    Sokoloff, D. D.

    2017-11-01

    The behavior of the dipole magnetic moment of the geomagnetic field during the reversals is considered. By analogy with the reversals of the magnetic field of the Sun, the scenario is suggested in which during the reversal the mean dipole moment becomes zero, whereas the instantaneous value of the dipole magnetic moment remains nonzero and the corresponding vector rotates from the vicinity of one geographical pole to the other. A thorough discussion concerning the definition of the mean magnetic moment, which is used in this concept, is presented. Since the behavior of the geomagnetic field during the reversal is far from stationary, the ensemble average instead of the time average has to be considered.

  3. An integrated conceptual framework for selecting reverse logistics providers in the presence of vagueness

    NASA Astrophysics Data System (ADS)

    Fırdolaş, Tugba; Önüt, Semih; Kongar, Elif

    2005-11-01

    In recent years, relating organization's attitude towards sustainable development, environmental management is gaining an increasing interest among researchers in supply chain management. With regard to a long term requirement of a shift from a linear economy towards a cycle economy, businesses should be motivated to embrace change brought about by consumers, government, competition, and ethical responsibility. To achieve business goals and objectives, a company must reply to increasing consumer demand for "green" products and implement environmentally responsible plans. Reverse logistics is an activity within organizations delegated to the customer service function, where customers with warranted or defective products would return them to their supplier. Emergence of reverse logistics enables to provide a competitive advantage and significant return on investment with an indirect effect on profitability. Many organizations are hiring third-party providers to implement reverse logistics programs designed to retain value by getting products back. Reverse logistics vendors play an important role in helping organizations in closing the loop for products offered by the organizations. In this regard, the selection of third-party providers issue is increasingly becoming an area of reverse logistics concept and practice. This study aims to assist managers in determining which third-party logistics provider to collaborate in the reverse logistics process with an alternative approach based on an integrated model using neural networks and fuzzy logic. An illustrative case study is discussed and the best provider is identified through the solution of this model.

  4. Rapid evaluation of reverse-osmosis membranes

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T.

    1972-01-01

    Simultaneous reverse-osmosis tests conducted with centrifuges having multiple compartment heads are discussed. Equipment for retaining reverse-osmosis membrane is illustrated. Method of conducting tests is described.

  5. Kinematic reversal schemes for the geomagnetic dipole.

    NASA Technical Reports Server (NTRS)

    Levy, E. H.

    1972-01-01

    Fluctuations in the distribution of cyclonic convective cells, in the earth's core, can reverse the sign of the geomagnetic field. Two kinematic reversal schemes are discussed. In the first scheme, a field maintained by cyclones concentrated at low latitude is reversed by a burst of cyclones at high latitude. Conversely, in the second scheme, a field maintained predominantly by cyclones in high latitudes is reversed by a fluctuation consisting of a burst of cyclonic convection at low latitude. The precise fluid motions which produce the geomagnetic field are not known. However, it appears that, whatever the details are, a fluctuation in the distribution of cyclonic cells over latitude can cause a geomagnetic reversal.

  6. NRMC - A GPU code for N-Reverse Monte Carlo modeling of fluids in confined media

    NASA Astrophysics Data System (ADS)

    Sánchez-Gil, Vicente; Noya, Eva G.; Lomba, Enrique

    2017-08-01

    NRMC is a parallel code for performing N-Reverse Monte Carlo modeling of fluids in confined media [V. Sánchez-Gil, E.G. Noya, E. Lomba, J. Chem. Phys. 140 (2014) 024504]. This method is an extension of the usual Reverse Monte Carlo method to obtain structural models of confined fluids compatible with experimental diffraction patterns, specifically designed to overcome the problem of slow diffusion that can appear under conditions of tight confinement. Most of the computational time in N-Reverse Monte Carlo modeling is spent in the evaluation of the structure factor for each trial configuration, a calculation that can be easily parallelized. Implementation of the structure factor evaluation in NVIDIA® CUDA so that the code can be run on GPUs leads to a speed up of up to two orders of magnitude.

  7. Reverse total shoulder arthroplasty

    PubMed Central

    Familiari, Filippo; Rojas, Jorge; Nedim Doral, Mahmut; Huri, Gazi; McFarland, Edward G.

    2018-01-01

    Since the introduction of reverse total shoulder arthroplasty (RTSA) in 1987 (in Europe) and 2004 (in the United States), the number of RTSAs performed annually has increased. Although the main indication for RTSA has been rotator cuff tears, indications have expanded to include several shoulder conditions, many of which involve dysfunction of the rotator cuff. RTSA complications have been reported to affect 19% to 68% of patients and include acromial fracture, haematoma, infection, instability, mechanical baseplate failure, neurological injury, periprosthetic fracture and scapular notching. Current controversies in RTSA include optimal baseplate positioning, humeral neck-shaft angle (135° versus 155°), glenosphere placement (medial, lateral or bony increased offset RTSA) and subscapularis repair. Improvements in prosthesis design, surgeon experience and clinical results will need to occur to optimize this treatment for many shoulder conditions. Cite this article: EFORT Open Rev 2018;3:58–69 DOI: 10.1302/2058-5241.3.170044 PMID:29657846

  8. 12 CFR 7.2023 - Reverse stock splits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Corporate Practices § 7.2023 Reverse stock splits. (a) Authority to engage in reverse stock splits. A national bank may engage in a reverse stock split if the transaction serves a legitimate corporate purpose and provides adequate dissenting shareholders' rights. (b) Legitimate corporate purpose. Examples of...

  9. HuR interacts with human immunodeficiency virus type 1 reverse transcriptase, and modulates reverse transcription in infected cells

    PubMed Central

    Lemay, Julie; Maidou-Peindara, Priscilla; Bader, Thomas; Ennifar, Eric; Rain, Jean-Christophe; Benarous, Richard; Liu, Lang Xia

    2008-01-01

    Reverse transcription of the genetic material of human immunodeficiency virus type 1 (HIV-1) is a critical step in the replication cycle of this virus. This process, catalyzed by reverse transcriptase (RT), is well characterized at the biochemical level. However, in infected cells, reverse transcription occurs in a multiprotein complex – the reverse transcription complex (RTC) – consisting of viral genomic RNA associated with viral proteins (including RT) and, presumably, as yet uncharacterized cellular proteins. Very little is known about the cellular proteins interacting with the RTC, and with reverse transcriptase in particular. We report here that HIV-1 reverse transcription is affected by the levels of a nucleocytoplasmic shuttling protein – the RNA-binding protein HuR. A direct protein-protein interaction between RT and HuR was observed in a yeast two-hybrid screen and confirmed in vitro by homogenous time-resolved fluorescence (HTRF). We mapped the domain interacting with HuR to the RNAse H domain of RT, and the binding domain for RT to the C-terminus of HuR, partially overlapping the third RRM RNA-binding domain of HuR. HuR silencing with specific siRNAs greatly impaired early and late steps of reverse transcription, significantly inhibiting HIV-1 infection. Moreover, by mutagenesis and immunoprecipitation studies, we could not detect the binding of HuR to the viral RNA. These results suggest that HuR may be involved in and may modulate the reverse transcription reaction of HIV-1, by an as yet unknown mechanism involving a protein-protein interaction with HIV-1 RT. PMID:18544151

  10. The Effectiveness of the Creative Reversal Act (CREACT) on Students' Creative Thinking

    ERIC Educational Resources Information Center

    Sak, Ugur; Oz, Ozge

    2010-01-01

    A research study using one-group pretest-posttest design was carried out on the effectiveness of the Creative Reversal Act (CREACT) on creative thinking. The CREACT is a new, teaching technique developed based on the theory of the janusian process. The research participants included 34 students who were attending 10th grade at a social studies…

  11. Caffeine, sleep and wakefulness: implications of new understanding about withdrawal reversal.

    PubMed

    James, Jack E; Keane, Michael A

    2007-12-01

    The broad aim of this review is to critically examine the implications of new understanding concerning caffeine withdrawal and withdrawal reversal in the context of research concerned with the effects of caffeine on sleep and wakefulness. A comprehensive search was conducted for relevant experimental studies in the PubMED and PsycINFO databases. Studies were assessed with particular reference to methodological adequacy for controlling against confounding due to caffeine withdrawal and withdrawal reversal. This assessment was used to clarify evidence of effects, highlight areas of ambiguity and derive recommendations for future research. It was found that researchers have generally failed to take account of the fact that habitual use of caffeine, even at moderate levels, leads to physical dependence evidenced by physiological, behavioural and subjective withdrawal effects during periods of abstinence. Consequently, there has been near-complete absence of adequate methodological controls against confounding due to reversal of withdrawal effects when caffeine is experimentally administered. The findings of what has been a substantial research effort to elucidate the effects of caffeine on sleep and wakefulness, undertaken over a period spanning decades, are ambiguous. Current shortcomings can be redressed by incorporating suitable controls in new experimental designs.

  12. Play: The Reversal Theory Perspective.

    ERIC Educational Resources Information Center

    Kerr, J. H.

    The intention of this theoretical paper is to present a reversal theory interpretation of play phenomena. Reversal theory, a developing theory in psychology, concerns the complex relationship between experience and motivation. One of the central charactieristics of the theory is that it attempts to understand why so much of human behavior is…

  13. Integrated forward and reverse supply chain: A tire case study.

    PubMed

    Pedram, Ali; Yusoff, Nukman Bin; Udoncy, Olugu Ezutah; Mahat, Abu Bakar; Pedram, Payam; Babalola, Ayo

    2017-02-01

    This paper attempts to integrate both a forward and reverse supply chain to design a closed-loop supply chain network (CLSC). The problem in the design of a CLSC network is uncertainty in demand, return products and the quality of return products. Scenario analyses are generated to overcome this uncertainty. In contrast to the existing supply chain network design models, a new application of a CLSC network was studied in this paper to reduce waste. A multi-product, multi-tier mixed integer linear model is developed for a CLSC network design. The main objective is to maximize profit and provide waste management decision support in order to minimize pollution. The result shows applicability of the model in the tire industry. The model determines the number and the locations of facilities and the material flows between these facilities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The Neural Circuit Mechanisms Underlying the Retinal Response to Motion Reversal

    PubMed Central

    Chen, Eric Y.; Chou, Janice; Park, Jeongsook; Schwartz, Greg

    2014-01-01

    To make up for delays in visual processing, retinal circuitry effectively predicts that a moving object will continue moving in a straight line, allowing retinal ganglion cells to anticipate the object's position. However, a sudden reversal of motion triggers a synchronous burst of firing from a large group of ganglion cells, possibly signaling a violation of the retina's motion prediction. To investigate the neural circuitry underlying this response, we used a combination of multielectrode array and whole-cell patch recordings to measure the responses of individual retinal ganglion cells in the tiger salamander to reversing stimuli. We found that different populations of ganglion cells were responsible for responding to the reversal of different kinds of objects, such as bright versus dark objects. Using pharmacology and designed stimuli, we concluded that ON and OFF bipolar cells both contributed to the reversal response, but that amacrine cells had, at best, a minor role. This allowed us to formulate an adaptive cascade model (ACM), similar to the one previously used to describe ganglion cell responses to motion onset. By incorporating the ON pathway into the ACM, we were able to reproduce the time-varying firing rate of fast OFF ganglion cells for all experimentally tested stimuli. Analysis of the ACM demonstrates that bipolar cell gain control is primarily responsible for generating the synchronized retinal response, as individual bipolar cells require a constant time delay before recovering from gain control. PMID:25411485

  15. Reverse logistics in the construction industry.

    PubMed

    Hosseini, M Reza; Rameezdeen, Raufdeen; Chileshe, Nicholas; Lehmann, Steffen

    2015-06-01

    Reverse logistics in construction refers to the movement of products and materials from salvaged buildings to a new construction site. While there is a plethora of studies looking at various aspects of the reverse logistics chain, there is no systematic review of literature on this important subject as applied to the construction industry. Therefore, the objective of this study is to integrate the fragmented body of knowledge on reverse logistics in construction, with the aim of promoting the concept among industry stakeholders and the wider construction community. Through a qualitative meta-analysis, the study synthesises the findings of previous studies and presents some actions needed by industry stakeholders to promote this concept within the real-life context. First, the trend of research and terminology related with reverse logistics is introduced. Second, it unearths the main advantages and barriers of reverse logistics in construction while providing some suggestions to harness the advantages and mitigate these barriers. Finally, it provides a future research direction based on the review. © The Author(s) 2015.

  16. Structural basis of reverse nucleotide polymerization

    PubMed Central

    Nakamura, Akiyoshi; Nemoto, Taiki; Heinemann, Ilka U.; Yamashita, Keitaro; Sonoda, Tomoyo; Komoda, Keisuke; Tanaka, Isao; Söll, Dieter; Yao, Min

    2013-01-01

    Nucleotide polymerization proceeds in the forward (5′-3′) direction. This tenet of the central dogma of molecular biology is found in diverse processes including transcription, reverse transcription, DNA replication, and even in lagging strand synthesis where reverse polymerization (3′-5′) would present a “simpler” solution. Interestingly, reverse (3′-5′) nucleotide addition is catalyzed by the tRNA maturation enzyme tRNAHis guanylyltransferase, a structural homolog of canonical forward polymerases. We present a Candida albicans tRNAHis guanylyltransferase-tRNAHis complex structure that reveals the structural basis of reverse polymerization. The directionality of nucleotide polymerization is determined by the orientation of approach of the nucleotide substrate. The tRNA substrate enters the enzyme’s active site from the opposite direction (180° flip) compared with similar nucleotide substrates of canonical 5′-3′ polymerases, and the finger domains are on opposing sides of the core palm domain. Structural, biochemical, and phylogenetic data indicate that reverse polymerization appeared early in evolution and resembles a mirror image of the forward process. PMID:24324136

  17. Categorizing and Promoting Reversibility of Mathematical Concepts

    ERIC Educational Resources Information Center

    Simon, Martin A.; Kara, Melike; Placa, Nicora; Sandir, Hakan

    2016-01-01

    Reversibility of concepts, a key aspect of mathematical development, is often problematic for learners. In this theoretical paper, we present a typology we have developed for categorizing the different reverse concepts that can be related to a particular initial concept and explicate the relationship among these different reverse concepts. We…

  18. Preference Reversal in Multiattribute Choice

    ERIC Educational Resources Information Center

    Tsetsos, Konstantinos; Usher, Marius; Chater, Nick

    2010-01-01

    A central puzzle for theories of choice is that people's preferences between options can be reversed by the presence of decoy options (that are not chosen) or by the presence of other irrelevant options added to the choice set. Three types of reversal effect reported in the decision-making literature, the attraction, compromise, and similarity…

  19. The Effect of Using the Creative Reversal Act in Science Education on Middle School Students' Creativity Levels

    ERIC Educational Resources Information Center

    Karaca, Tulin; Koray, Ozlem

    2017-01-01

    Purpose: The purpose of this study is to examine the effects of the creative reversal act (CREACT) used in teaching ecosystems topics on the creativity levels of middle school students. Research Methods: The research was conducted using a quasi-experimental design, a quantitative research method, and a pretest-posttest control group design. The…

  20. Is reverse hybrid hip replacement the solution?

    PubMed

    Lindalen, Einar; Havelin, Leif I; Nordsletten, Lars; Dybvik, Eva; Fenstad, Anne M; Hallan, Geir; Furnes, Ove; Høvik, Oystein; Röhrl, Stephan M

    2011-12-01

    Reverse hybrid hip replacement uses a cemented all-polyethylene cup and an uncemented stem. Despite increasing use of this method in Scandinavia, there has been very little documentation of results. We have therefore analyzed the results from the Norwegian Arthroplasty Register (NAR), with up to 10 years of follow-up. The NAR has been collecting data on total hip replacement (THR) since 1987. Reverse hybrid hip replacements were used mainly from 2000. We extracted data on reverse hybrid THR from this year onward until December 31, 2009, and compared the results with those from cemented implants over the same period. Specific cup/stem combinations involving 100 cases or more were selected. In addition, only combinations that were taken into use in 2005 or earlier were included. 3,963 operations in 3,630 patients were included. We used the Kaplan-Meier method and Cox regression analysis for estimation of prosthesis survival and relative risk of revision. The main endpoint was revision for any cause, but we also performed specific analyses on different reasons for revision. We found equal survival to that from cemented THR at 5 years (cemented: 97.0% (95% CI: 96.8-97.2); reverse hybrid: 96.7% (96.0-97.4)) and at 7 years (cemented: 96.0% (95.7-96.2); reverse hybrid: 95.6% (94.4-96.7)). Adjusted relative risk of revision of the reverse hybrids was 1.1 (0.9-1.4). In patients under 60 years of age, we found similar survival of the 2 groups at 5 and 7 years, with an adjusted relative risk of revision of reverse hybrids of 0.9 (0.6-1.3) compared to cemented implants. With a follow-up of up to 10 years, reverse hybrid THRs performed well, and similarly to all-cemented THRs from the same time period. The reverse hybrid method might therefore be an alternative to all-cemented THR. Longer follow-up time is needed to evaluate whether reverse hybrid hip replacement has any advantages over all-cemented THR.

  1. Use of micronutrients attenuates cannabis and nicotine abuse as evidenced from a reversal design: a case study.

    PubMed

    Harrison, Rachel; Rucklidge, Julia J; Blampied, Neville

    2013-01-01

    Prior research shows that micronutrients, particularly amino acids, can assist individuals with substance dependence to quit various drugs of abuse, including cannabis, alcohol, and cocaine. As part of a wider investigation of the impact of micronutrients (mostly vitamins and minerals) on psychiatric symptoms, such as Attention-Deficit/Hyperactivity Disorder (ADHD), depression, and anxiety, we observed that many participants reduced or eliminated use of alcohol, cigarettes, and cannabis. One case using a single-case reversal (off-on-off-on-off) design is presented and shows not only on-off control of psychiatric symptoms as micronutrients are consumed or withdrawn, but also simultaneous on-off use of cannabis and cigarettes, despite not directly targeting this substance use as part of the treatment protocol. This case adds to a growing body of research supporting the use of micronutrients in the treatment of psychiatric symptoms and suggests it may extend to substance dependence. Micronutrients, by assisting with mood regulation and reductions in anxiety, may assist with successful cessation of drug use. Alternatively, they may directly impact on the brain reward circuitry believed to be involved in the expression of addictions, thereby providing the appropriate precursors and cofactors necessary for adequate neurotransmitter synthesis. This case should continue to stimulate researchers to consider the role of nutrients, in particular vitamins and minerals, in drug treatment programs and encourage more rigorous trials.

  2. Design, synthesis and biological assessment of new thiazolylhydrazine derivatives as selective and reversible hMAO-A inhibitors.

    PubMed

    Can, Nafiz Öncü; Osmaniye, Derya; Levent, Serkan; Sağlık, Begüm Nurpelin; Korkut, Büşra; Atlı, Özlem; Özkay, Yusuf; Kaplancıklı, Zafer Asım

    2018-01-20

    In the recent works, it was shown that numerous thiazolylhydrazine derivatives display hMAO inhibitory activity in the range of micromolar concentration. Hence, in the present study a new series of new thiazole-hydrazines (3a-3n) were designed, synthesized, characterized and screened for their hMAO-A and hMAO-B inhibitory activity by an in vitro flurometric method. The enzyme inhibition assay revealed that most of the synthesized compounds have selective inhibition potency against hMAO-A. The compounds 3f and 3h showed promising hMAO-A inhibition with an IC 50 values of 0.012 μM and 0.011 μM and significant selectivity indexes of 1214 and 1601 towards hMAO-A, respectively. The mechanism of hMAO-A inhibition of compounds 3f and 3h was investigated by Lineweaver-Burk graphics and reversible-competitive inhibition of hMAO-A was determined. Cytotoxicity and genotoxicity studies were carried out and the compound 3h was found as non-cytotoxic and non-genotoxic. Theoretical calculation of ADME properties suggested that synthesized compounds may have a good pharmacokinetic profile. The docking study of compound 3f and 3h revealed that there is a strong interaction between the active sites of hMAO-A and analyzed compound. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Reverse innovation in maternal health.

    PubMed

    Firoz, Tabassum; Makanga, Prestige Tatenda; Nathan, Hannah L; Payne, Beth; Magee, Laura A

    2017-09-01

    Reverse innovation, defined as the flow of ideas from low- to high-income settings, is gaining traction in healthcare. With an increasing focus on value, investing in low-cost but effective and innovative solutions can be of mutual benefit to both high- and low-income countries. Reverse innovation has a role in addressing maternal health challenges in high-income countries by harnessing these innovative solutions for vulnerable populations especially in rural and remote regions. In this paper, we present three examples of 'reverse innovation' for maternal health: a low-cost, easy-to-use blood pressure device (CRADLE), a diagnostic algorithm (mini PIERS) and accompanying mobile app (PIERS on the Move), and a novel method for mapping maternal outcomes (MOM).

  4. A Critical Review on Prosthetic Features Available for Reversed Total Shoulder Arthroplasty

    PubMed Central

    De Wilde, Lieven

    2016-01-01

    Reversed total shoulder arthroplasty is a popular treatment in rotator cuff arthropathy and in displaced proximal humeral fractures in elderly. In 2016, 29 models of commercially available designs express this popularity. This study describes all the different design parameters available on the market. Prosthetic differences are found for the baseplate, glenosphere, polyethylene, and humeral component and these differences need to be weighed out carefully for each patient knowing that a gain in one mechanical parameter can balance the loss of another. Patient specific implants may help in the future. PMID:28105417

  5. Gravity controlled anti-reverse rotation device

    DOEpatents

    Dickinson, Robert J.; Wetherill, Todd M.

    1983-01-01

    A gravity assisted anti-reverse rotation device for preventing reverse rotation of pumps and the like. A horizontally mounted pawl is disposed to mesh with a fixed ratchet preventing reverse rotation when the pawl is advanced into intercourse with the ratchet by a vertically mounted lever having a lumped mass. Gravitation action on the lumped mass urges the pawl into mesh with the ratchet, while centrifugal force on the lumped mass during forward, allowed rotation retracts the pawl away from the ratchet.

  6. Tubulin Dimer Reversible Dissociation

    PubMed Central

    Schuck, Peter; Sackett, Dan L.

    2016-01-01

    Tubulins are evolutionarily conserved proteins that reversibly polymerize and direct intracellular traffic. Of the tubulin family only αβ-tubulin forms stable dimers. We investigated the monomer-dimer equilibrium of rat brain αβ-tubulin using analytical ultracentrifugation and fluorescence anisotropy, observing tubulin in virtually fully monomeric and dimeric states. Monomeric tubulin was stable for a few hours and exchanged into preformed dimers, demonstrating reversibility of dimer dissociation. Global analysis combining sedimentation velocity and fluorescence anisotropy yielded Kd = 84 (54–123) nm. Dimer dissociation kinetics were measured by analyzing the shape of the sedimentation boundary and by the relaxation of fluorescence anisotropy following rapid dilution of labeled tubulin, yielding koff in the range 10−3–10−2 s−1. Thus, tubulin dimers reversibly dissociate with moderately fast kinetics. Monomer-monomer association is much less sensitive than dimer-dimer association to solution changes (GTP/GDP, urea, and trimethylamine oxide). PMID:26934918

  7. A reversed-phase compatible thin-layer chromatography autography for the detection of acetylcholinesterase inhibitors.

    PubMed

    Ramallo, I Ayelen; García, Paula; Furlan, Ricardo L E

    2015-11-01

    A dual readout autographic assay to detect acetylcholinesterase inhibitors present in complex matrices adsorbed on reversed-phase or normal-phase thin-layer chromatography plates is described. Enzyme gel entrapment with an amphiphilic copolymer was used for assay development. The effects of substrate and enzyme concentrations, pH, incubation time, and incubation temperature on the sensitivity and the detection limit of the assay were evaluated. Experimental design and response surface methodology were used to optimize conditions with a minimum number of experiments. The assay allowed the detection of 0.01% w/w of physostigmine in both a spiked Sonchus oleraceus L. extract chromatographed on normal phase and a spiked Pimenta racemosa (Mill.) J.W. Moore leaf essential oil chromatographed on reversed phase. Finally, the reversed-phase thin-layer chromatography assay was applied to reveal the presence of an inhibitor in the Cymbopogon citratus (DC.) Stapf essential oil. The developed assay is able to detect acetylcholinesterase inhibitors present in complex matrixes that were chromatographed in normal phase or reversed-phase thin-layer chromatography. The detection limit for physostigmine on both normal and reversed phase was of 1×10(-4) μg. The results can be read by a change in color and/or a change in fluorescence. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Discovery of potent, reversible MetAP2 inhibitors via fragment based drug discovery and structure based drug design-Part 2.

    PubMed

    McBride, Christopher; Cheruvallath, Zacharia; Komandla, Mallareddy; Tang, Mingnam; Farrell, Pamela; Lawson, J David; Vanderpool, Darin; Wu, Yiqin; Dougan, Douglas R; Plonowski, Artur; Holub, Corine; Larson, Chris

    2016-06-15

    Methionine aminopeptidase-2 (MetAP2) is an enzyme that cleaves an N-terminal methionine residue from a number of newly synthesized proteins. This step is required before they will fold or function correctly. Pre-clinical and clinical studies with a MetAP2 inhibitor suggest that they could be used as a novel treatment for obesity. Herein we describe the discovery of a series of pyrazolo[4,3-b]indoles as reversible MetAP2 inhibitors. A fragment-based drug discovery (FBDD) approach was used, beginning with the screening of fragment libraries to generate hits with high ligand-efficiency (LE). An indazole core was selected for further elaboration, guided by structural information. SAR from the indazole series led to the design of a pyrazolo[4,3-b]indole core and accelerated knowledge-based fragment growth resulted in potent and efficient MetAP2 inhibitors, which have shown robust and sustainable body weight loss in DIO mice when dosed orally. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. In silico-designed novel non-peptidic ABAD LD hot spot mimetics reverse Aβ-induced mitochondrial impairments in vitro.

    PubMed

    Viswanath, Ambily Nath Indu; Kim, TaeHun; Jung, Seo Yun; Lim, Sang Min; Pae, Ae Nim

    2017-12-01

    Present work aimed to introduce non-peptidic ABAD loop D (L D ) hot spot mimetics as ABAD-Aβ inhibitors. A full-length atomistic model of ABAD-Aβ complex was built as a scaffold to launch the lead design and its topology later verified by cross-checking the computational mutagenesis results with that of in vitro data. Thereafter, the interactions of prime Aβ-binding L D residues-Tyr101, Thr108, and Thr110-were translated into specific pharmacophore features and this hypothesis subsequently used as a virtual screen query. ELISA-based screening of 20 hits identified two promising lead candidates, VC15 and VC19 with an IC 50 of 4.4 ± 0.3 and 9.6 ± 0.1 μm, respectively. They productively reversed Aβ-induced mitochondrial dysfunctions such as mitochondrial membrane potential loss (JC-1 assay), toxicity (MTT assay), and ATP reduction (ATP assay) in addition to increased cell viabilities. This is the first reporting of L D hot spot-centric in silico scheme to discover novel compounds with promising ABAD-Aβ inhibitory potential. These chemotypes are proposed for further structural optimization to derive novel Alzheimer's disease (AD) therapeutics. © 2017 John Wiley & Sons A/S.

  10. Reversible thermo-pneumatic valves on centrifugal microfluidic platforms.

    PubMed

    Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Harun, Sulaiman Wadi; Kazemzadeh, Amin; Rothan, Hussin A; Yusof, Rohana; Madou, Marc

    2015-08-21

    Centrifugal microfluidic systems utilize a conventional spindle motor to automate parallel biochemical assays on a single microfluidic disk. The integration of complex, sequential microfluidic procedures on these platforms relies on robust valving techniques that allow for the precise control and manipulation of fluid flow. The ability of valves to consistently return to their former conditions after each actuation plays a significant role in the real-time manipulation of fluidic operations. In this paper, we introduce an active valving technique that operates based on the deflection of a latex film with the potential for real-time flow manipulation in a wide range of operational spinning speeds. The reversible thermo-pneumatic valve (RTPV) seals or reopens an inlet when a trapped air volume is heated or cooled, respectively. The RTPV is a gas-impermeable valve composed of an air chamber enclosed by a latex membrane and a specially designed liquid transition chamber that enables the efficient usage of the applied thermal energy. Inputting thermo-pneumatic (TP) energy into the air chamber deflects the membrane into the liquid transition chamber against an inlet, sealing it and thus preventing fluid flow. From this point, a centrifugal pressure higher than the induced TP pressure in the air chamber reopens the fluid pathway. The behaviour of this newly introduced reversible valving system on a microfluidic disk is studied experimentally and theoretically over a range of rotational frequencies from 700 RPM to 2500 RPM. Furthermore, adding a physical component (e.g., a hemispherical rubber element) to induce initial flow resistance shifts the operational range of rotational frequencies of the RTPV to more than 6000 RPM. An analytical solution for the cooling of a heated RTPV on a spinning disk is also presented, which highlights the need for the future development of time-programmable RTPVs. Moreover, the reversibility and gas impermeability of the RTPV in the

  11. Reversible micromachining locator

    DOEpatents

    Salzer, Leander J.; Foreman, Larry R.

    1999-01-01

    This invention provides a device which includes a locator, a kinematic mount positioned on a conventional tooling machine, a part carrier disposed on the locator and a retainer ring. The locator has disposed therein a plurality of steel balls, placed in an equidistant position circumferentially around the locator. The kinematic mount includes a plurality of magnets which are in registry with the steel balls on the locator. In operation, a blank part to be machined is placed between a surface of a locator and the retainer ring (fitting within the part carrier). When the locator (with a blank part to be machined) is coupled to the kinematic mount, the part is thus exposed for the desired machining process. Because the locator is removably attachable to the kinematic mount, it can easily be removed from the mount, reversed, and reinserted onto the mount for additional machining. Further, the locator can likewise be removed from the mount and placed onto another tooling machine having a properly aligned kinematic mount. Because of the unique design and use of magnetic forces of the present invention, positioning errors of less than 0.25 micrometer for each machining process can be achieved.

  12. Reversible micromachining locator

    DOEpatents

    Salzer, L.J.; Foreman, L.R.

    1999-08-31

    This invention provides a device which includes a locator, a kinematic mount positioned on a conventional tooling machine, a part carrier disposed on the locator and a retainer ring. The locator has disposed therein a plurality of steel balls, placed in an equidistant position circumferentially around the locator. The kinematic mount includes a plurality of magnets which are in registry with the steel balls on the locator. In operation, a blank part to be machined is placed between a surface of a locator and the retainer ring (fitting within the part carrier). When the locator (with a blank part to be machined) is coupled to the kinematic mount, the part is thus exposed for the desired machining process. Because the locator is removably attachable to the kinematic mount, it can easily be removed from the mount, reversed, and reinserted onto the mount for additional machining. Further, the locator can likewise be removed from the mount and placed onto another tooling machine having a properly aligned kinematic mount. Because of the unique design and use of magnetic forces of the present invention, positioning errors of less than 0.25 micrometer for each machining process can be achieved. 7 figs.

  13. Monoamines stimulate sex reversal in the saddleback wrasse.

    PubMed

    Larson, Earl T; Norris, David O; Gordon Grau, E; Summers, Cliff H

    2003-02-15

    Monoamine neurotransmitters (norepinephrine, dopamine, and serotonin) play an important role in reproduction and sexual behavior throughout the vertebrates. They are the first endogenous chemical signals in the regulation of the hypothalamo-pituitary-gonadal (HPG) axis. In teleosts with behavioral sex determination, much is known about behavioral cues that induce sex reversal. The cues are social, processed via the visual system and depend on the ratio of females to males in the population. The mechanisms by which these external behavioral cues are converted to an internal chemical regulatory process are largely unknown. The protogynous Hawaiian saddleback wrasse, Thalassoma duperrey, was used to investigate the biological pathway mediating the conversion of a social cue into neuroendocrine events regulating sex reversal. Because monoamines play an important role in the regulation of the HPG axis, they were selected as likely candidates for such a conversion. To determine if monoamines could affect sex reversal, drugs affecting monoamines were used in an attempt to either induce sex reversal under non-permissive conditions, or prevent sex reversal under permissive conditions. Increasing norepinephrine or blocking dopamine or serotonin lead to sex reversal in experimental animals under non-permissive conditions. Increasing serotonin blocked sex reversal under permissive conditions, while blocking dopamine or norepinephrine retarded the process. The results presented here demonstrate that monoamines contribute significantly to the control sex reversal. Norepinephrine stimulates initiation and completion of gonadal sex of reversal as well as color change perhaps directly via its effects on the HPG axis. Dopamine exercises inhibitory action on the initiation of sex reversal while 5-HT inhibits both initiation and completion of sex reversal. The serotonergic system appears to be an integral part of the pathway mediating the conversion of a social cue into a

  14. Energy dissipation dataset for reversible logic gates in quantum dot-cellular automata.

    PubMed

    Bahar, Ali Newaz; Rahman, Mohammad Maksudur; Nahid, Nur Mohammad; Hassan, Md Kamrul

    2017-02-01

    This paper presents an energy dissipation dataset of different reversible logic gates in quantum-dot cellular automata. The proposed circuits have been designed and verified using QCADesigner simulator. Besides, the energy dissipation has been calculated under three different tunneling energy level at temperature T =2 K. For estimating the energy dissipation of proposed gates; QCAPro tool has been employed.

  15. Time-reversed wave mixing in nonlinear optics

    PubMed Central

    Zheng, Yuanlin; Ren, Huaijin; Wan, Wenjie; Chen, Xianfeng

    2013-01-01

    Time-reversal symmetry is important to optics. Optical processes can run in a forward or backward direction through time when such symmetry is preserved. In linear optics, a time-reversed process of laser emission can enable total absorption of coherent light fields inside an optical cavity of loss by time-reversing the original gain medium. Nonlinearity, however, can often destroy such symmetry in nonlinear optics, making it difficult to study time-reversal symmetry with nonlinear optical wave mixings. Here we demonstrate time-reversed wave mixings for optical second harmonic generation (SHG) and optical parametric amplification (OPA) by exploring this well-known but underappreciated symmetry in nonlinear optics. This allows us to observe the annihilation of coherent beams. Our study offers new avenues for flexible control in nonlinear optics and has potential applications in efficient wavelength conversion, all-optical computing. PMID:24247906

  16. Uncommon Indications for Reverse Total Shoulder Arthroplasty

    PubMed Central

    Hyun, Yoon Suk; Huri, Gazi; Garbis, Nickolas G.

    2013-01-01

    Total shoulder arthroplasty and shoulder hemiarthroplasty have been the traditional method for treating a variety of shoulder conditions, including arthritis, cuff tear arthropathy, and some fracture types. However, these procedures did not provide consistently good results for patients with torn rotator cuffs. The development of the reverse prosthesis by Grammont in the late 20th century revolutionized the treatment of the rotator-cuff-deficient shoulder with arthritis. The main indication for the reverse prosthesis remains the patient with cuff tear arthropathy who has pain and loss of motion. Because the reverse total shoulder arthroplasty produced such good results in these patients, the indications for the reverse prosthesis have expanded to include other shoulder conditions that have previously been difficult to treat successfully and predictably. This review discusses and critically reviews these newer indications for the reverse total shoulder arthroplasty. PMID:24340143

  17. Reverse Logistics

    DTIC Science & Technology

    2001-05-01

    reverse logistics was to pick up the damage or obsolete items from the vendor and discard them into a land fill. Estee Lauder Companies, Inc. dumped as...Quality Center, Benchmarking and Leveraging “Best Practices” Strategies , Houston, TX, AQPC, 1995. 2. Brauner, Marygail, “Evaluating Five Proposed Price

  18. Characterization of Covalent-Reversible EGFR Inhibitors

    PubMed Central

    2017-01-01

    Within the spectrum of kinase inhibitors, covalent-reversible inhibitors (CRIs) provide a valuable alternative approach to classical covalent inhibitors. This special class of inhibitors can be optimized for an extended drug-target residence time. For CRIs, it was shown that the fast addition of thiols to electron-deficient olefins leads to a covalent bond that can break reversibly under proteolytic conditions. Research groups are just beginning to include CRIs in their arsenal of compound classes, and, with that, the understanding of this interesting set of chemical warheads is growing. However, systems to assess both characteristics of the covalent-reversible bond in a simple experimental setting are sparse. Here, we have developed an efficient methodology to characterize the covalent and reversible properties of CRIs and to investigate their potential in targeting clinically relevant variants of the receptor tyrosine kinase EGFR.

  19. Do high school chemistry examinations inhibit deeper level understanding of dynamic reversible chemical reactions?

    NASA Astrophysics Data System (ADS)

    Wheeldon, R.; Atkinson, R.; Dawes, A.; Levinson, R.

    2012-07-01

    Background and purpose : Chemistry examinations can favour the deployment of algorithmic procedures like Le Chatelier's Principle (LCP) rather than reasoning using chemical principles. This study investigated the explanatory resources which high school students use to answer equilibrium problems and whether the marks given for examination answers require students to use approaches beyond direct application of LCP. Sample : The questionnaire was administered to 162 students studying their first year of advanced chemistry (age 16/17) in three high achieving London high schools. Design and methods : The students' explanations of reversible chemical systems were inductively coded to identify the explanatory approaches used and interviews with 13 students were used to check for consistency. AS level examination questions on reversible reactions were analysed to identify the types of explanations sought and the students' performance in these examinations was compared to questionnaire answers. Results : 19% of students used a holistic explanatory approach: when the rates of forward and reverse reactions are correctly described, recognising their simultaneous and mutually dependent nature. 36% used a mirrored reactions approach when the connected nature of the forward and reverse reactions is identified, but not their mutual dependency. 42% failed to recognize the interdependence of forward and reverse reactions (reactions not connected approach). Only 4% of marks for AS examination questions on reversible chemical systems asked for responses which went beyond either direct application of LCP or recall of equilibrium knowledge. 37% of students attained an A grade in their AS national examinations. Conclusions : Examinations favour the application of LCP making it possible to obtain the highest grade with little understanding of reversible chemical systems beyond a direct application of this algorithm. Therefore students' understanding may be attenuated so that they are

  20. Time reversibility in the quantum frame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masot-Conde, Fátima

    2014-12-04

    Classic Mechanics and Electromagnetism, conventionally taken as time-reversible, share the same concept of motion (either of mass or charge) as the basis of the time reversibility in their own fields. This paper focuses on the relationship between mobile geometry and motion reversibility. The goal is to extrapolate the conclusions to the quantum frame, where matter and radiation behave just as elementary mobiles. The possibility that the asymmetry of Time (Time’s arrow) is an effect of a fundamental quantum asymmetry of elementary particles, turns out to be a consequence of the discussion.

  1. Summary of the ultrafiltration, reverse osmosis, and adsorbents project

    NASA Astrophysics Data System (ADS)

    Colvin, C. M.; Roberts, R. C.; Williams, M. K.

    1983-01-01

    The design for a medium size (40 gal/min) ultrafiltration (UF) membrane unit includes a schematic diagram, capital and operating costs, a list and discussion of the radioisotopes tested and the results achieved, operating parameters, and characteristics of the available membrane configurations. The plant design for a reverse osmosis (RO) membrane unit includes a conceptual diagram, specifications for a RO unit producing 40 gal/min of permeated product, a list of radioisotopes tested on RO units and the rejections achieved, a discussion of the principal of RO, a discussion of the upper limits of cation and anion concentrations (there are no lower limits), a discussion of membrane configurations and porosities, a discussion of factors affecting membranes, a section on calculating the membrane area needed for a particular application, and capital and operating cost calculations. The design for an ion exchange pilot plant includes a schematic diagram; flow, resin, and column specifications; impurity limits; and operating and capital costs. A short theoretical discussion and process description are also included. The design retains flexibility so that application to a specific stream can be determined.

  2. Automated Design Framework for Synthetic Biology Exploiting Pareto Optimality.

    PubMed

    Otero-Muras, Irene; Banga, Julio R

    2017-07-21

    In this work we consider Pareto optimality for automated design in synthetic biology. We present a generalized framework based on a mixed-integer dynamic optimization formulation that, given design specifications, allows the computation of Pareto optimal sets of designs, that is, the set of best trade-offs for the metrics of interest. We show how this framework can be used for (i) forward design, that is, finding the Pareto optimal set of synthetic designs for implementation, and (ii) reverse design, that is, analyzing and inferring motifs and/or design principles of gene regulatory networks from the Pareto set of optimal circuits. Finally, we illustrate the capabilities and performance of this framework considering four case studies. In the first problem we consider the forward design of an oscillator. In the remaining problems, we illustrate how to apply the reverse design approach to find motifs for stripe formation, rapid adaption, and fold-change detection, respectively.

  3. Reversible Intercalation of Fluoride-Anion Receptor Complexes in Graphite

    NASA Technical Reports Server (NTRS)

    West, William C.; Whitacre, Jay F.; Leifer, Nicole; Greenbaum, Steve; Smart, Marshall; Bugga, Ratnakumar; Blanco, Mario; Narayanan, S. R.

    2007-01-01

    We have demonstrated a route to reversibly intercalate fluoride-anion receptor complexes in graphite via a nonaqueous electrochemical process. This approach may find application for a rechargeable lithium-fluoride dual-ion intercalating battery with high specific energy. The cell chemistry presented here uses graphite cathodes with LiF dissolved in a nonaqueous solvent through the aid of anion receptors. Cells have been demonstrated with reversible cathode specific capacity of approximately 80 mAh/g at discharge plateaus of upward of 4.8 V, with graphite staging of the intercalant observed via in situ synchrotron X-ray diffraction during charging. Electrochemical impedance spectroscopy and B-11 nuclear magnetic resonance studies suggest that cointercalation of the anion receptor with the fluoride occurs during charging, which likely limits the cathode specific capacity. The anion receptor type dictates the extent of graphite fluorination, and must be further optimized to realize high theoretical fluorination levels. To find these optimal anion receptors, we have designed an ab initio calculations-based scheme aimed at identifying receptors with favorable fluoride binding and release properties.

  4. Annealed Importance Sampling Reversible Jump MCMC algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karagiannis, Georgios; Andrieu, Christophe

    2013-03-20

    It will soon be 20 years since reversible jump Markov chain Monte Carlo (RJ-MCMC) algorithms have been proposed. They have significantly extended the scope of Markov chain Monte Carlo simulation methods, offering the promise to be able to routinely tackle transdimensional sampling problems, as encountered in Bayesian model selection problems for example, in a principled and flexible fashion. Their practical efficient implementation, however, still remains a challenge. A particular difficulty encountered in practice is in the choice of the dimension matching variables (both their nature and their distribution) and the reversible transformations which allow one to define the one-to-one mappingsmore » underpinning the design of these algorithms. Indeed, even seemingly sensible choices can lead to algorithms with very poor performance. The focus of this paper is the development and performance evaluation of a method, annealed importance sampling RJ-MCMC (aisRJ), which addresses this problem by mitigating the sensitivity of RJ-MCMC algorithms to the aforementioned poor design. As we shall see the algorithm can be understood as being an “exact approximation” of an idealized MCMC algorithm that would sample from the model probabilities directly in a model selection set-up. Such an idealized algorithm may have good theoretical convergence properties, but typically cannot be implemented, and our algorithms can approximate the performance of such idealized algorithms to an arbitrary degree while not introducing any bias for any degree of approximation. Our approach combines the dimension matching ideas of RJ-MCMC with annealed importance sampling and its Markov chain Monte Carlo implementation. We illustrate the performance of the algorithm with numerical simulations which indicate that, although the approach may at first appear computationally involved, it is in fact competitive.« less

  5. Cascade Reverse Osmosis Air Conditioning System: Cascade Reverse Osmosis and the Absorption Osmosis Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    BEETIT Project: Battelle is developing a new air conditioning system that uses a cascade reverse osmosis (RO)-based absorption cycle. Analyses show that this new cycle can be as much as 60% more efficient than vapor compression, which is used in 90% of air conditioners. Traditional vapor-compression systems use polluting liquids for a cooling effect. Absorption cycles use benign refrigerants such as water, which is absorbed in a salt solution and pumped as liquid—replacing compression of vapor. The refrigerant is subsequently separated from absorbing salt using heat for re-use in the cooling cycle. Battelle is replacing thermal separation of refrigerant withmore » a more efficient reverse osmosis process. Research has shown that the cycle is possible, but further investment will be needed to reduce the number of cascade reverse osmosis stages and therefore cost.« less

  6. Reversible colour change in Arthropoda.

    PubMed

    Umbers, Kate D L; Fabricant, Scott A; Gawryszewski, Felipe M; Seago, Ainsley E; Herberstein, Marie E

    2014-11-01

    The mechanisms and functions of reversible colour change in arthropods are highly diverse despite, or perhaps due to, the presence of an exoskeleton. Physiological colour changes, which have been recorded in 90 arthropod species, are rapid and are the result of changes in the positioning of microstructures or pigments, or in the refractive index of layers in the integument. By contrast, morphological colour changes, documented in 31 species, involve the anabolism or catabolism of components (e.g. pigments) directly related to the observable colour. In this review we highlight the diversity of mechanisms by which reversible colour change occurs and the evolutionary context and diversity of arthropod taxa in which it has been observed. Further, we discuss the functions of reversible colour change so far proposed, review the limited behavioural and ecological data, and argue that the field requires phylogenetically controlled approaches to understanding the evolution of reversible colour change. Finally, we encourage biologists to explore new model systems for colour change and to engage scientists from other disciplines; continued cross-disciplinary collaboration is the most promising approach to this nexus of biology, physics, and chemistry. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  7. Chickadees discriminate contingency reversals presented consistently, but not frequently.

    PubMed

    McMillan, Neil; Hahn, Allison H; Congdon, Jenna V; Campbell, Kimberley A; Hoang, John; Scully, Erin N; Spetch, Marcia L; Sturdy, Christopher B

    2017-07-01

    Chickadees are high-metabolism, non-migratory birds, and thus an especially interesting model for studying how animals follow patterns of food availability over time. Here, we studied whether black-capped chickadees (Poecile atricapillus) could learn to reverse their behavior and/or to anticipate changes in reinforcement when the reinforcer contingencies for each stimulus were not stably fixed in time. In Experiment 1, we examined the responses of chickadees on an auditory go/no-go task, with constant reversals in reinforcement contingencies every 120 trials across daily testing intervals. Chickadees did not produce above-chance discrimination; however, when trained with a procedure that only reversed after successful discrimination, chickadees were able to discriminate and reverse their behavior successfully. In Experiment 2, we examined the responses of chickadees when reversals were structured to occur at the same time once per day, and chickadees were again able to discriminate and reverse their behavior over time, though they showed no reliable evidence of reversal anticipation. The frequency of reversals throughout the day thus appears to be an important determinant for these animals' performance in reversal procedures.

  8. Protocol vulnerability detection based on network traffic analysis and binary reverse engineering.

    PubMed

    Wen, Shameng; Meng, Qingkun; Feng, Chao; Tang, Chaojing

    2017-01-01

    Network protocol vulnerability detection plays an important role in many domains, including protocol security analysis, application security, and network intrusion detection. In this study, by analyzing the general fuzzing method of network protocols, we propose a novel approach that combines network traffic analysis with the binary reverse engineering method. For network traffic analysis, the block-based protocol description language is introduced to construct test scripts, while the binary reverse engineering method employs the genetic algorithm with a fitness function designed to focus on code coverage. This combination leads to a substantial improvement in fuzz testing for network protocols. We build a prototype system and use it to test several real-world network protocol implementations. The experimental results show that the proposed approach detects vulnerabilities more efficiently and effectively than general fuzzing methods such as SPIKE.

  9. Reversible and irreversible heat engine and refrigerator cycles

    NASA Astrophysics Data System (ADS)

    Leff, Harvey S.

    2018-05-01

    Although no reversible thermodynamic cycles exist in nature, nearly all cycles covered in textbooks are reversible. This is a review, clarification, and extension of results and concepts for quasistatic, reversible and irreversible processes and cycles, intended primarily for teachers and students. Distinctions between the latter process types are explained, with emphasis on clockwise (CW) and counterclockwise (CCW) cycles. Specific examples of each are examined, including Carnot, Kelvin and Stirling cycles. For the Stirling cycle, potentially useful task-specific efficiency measures are proposed and illustrated. Whether a cycle behaves as a traditional refrigerator or heat engine can depend on whether it is reversible or irreversible. Reversible and irreversible-quasistatic CW cycles both satisfy Carnot's inequality for thermal efficiency, η ≤ η C a r n o t . Irreversible CCW cycles with two reservoirs satisfy the coefficient of performance inequality K ≤ K C a r n o t . However, an arbitrary reversible cycle satisfies K ≥ K C a r n o t when compared with a reversible Carnot cycle operating between its maximum and minimum temperatures, a potentially counterintuitive result.

  10. Reversible catalytic dehydrogenation of alcohols for energy storage

    PubMed Central

    Bonitatibus, Peter J.; Chakraborty, Sumit; Doherty, Mark D.; Siclovan, Oltea; Jones, William D.; Soloveichik, Grigorii L.

    2015-01-01

    Reversibility of a dehydrogenation/hydrogenation catalytic reaction has been an elusive target for homogeneous catalysis. In this report, reversible acceptorless dehydrogenation of secondary alcohols and diols on iron pincer complexes and reversible oxidative dehydrogenation of primary alcohols/reduction of aldehydes with separate transfer of protons and electrons on iridium complexes are shown. This reactivity suggests a strategy for the development of reversible fuel cell electrocatalysts for partial oxidation (dehydrogenation) of hydroxyl-containing fuels. PMID:25588879

  11. Reversible catalytic dehydrogenation of alcohols for energy storage

    DOE PAGES

    Bonitatibus, Jr., Peter J.; Chakraborty, Sumit; Doherty, Mark D.; ...

    2015-01-14

    Reversibility of a dehydrogenation/hydrogenation catalytic reaction has been an elusive target for homogeneous catalysis. In this paper, reversible acceptorless dehydrogenation of secondary alcohols and diols on iron pincer complexes and reversible oxidative dehydrogenation of primary alcohols/reduction of aldehydes with separate transfer of protons and electrons on iridium complexes are shown. Finally, this reactivity suggests a strategy for the development of reversible fuel cell electrocatalysts for partial oxidation (dehydrogenation) of hydroxyl-containing fuels.

  12. Geophysics: A reversal of geomagnetic polarity

    USGS Publications Warehouse

    Mankinen, Edward A.

    1986-01-01

    The detailed behaviour of the geomagnetic field during reversals is documented by palaeomagnetists to constrain models of the geomagnetic dynamo. Reversals are studied by measuring the magnetic remanence preserved in rocks to obtain both the direction and intensity of the ancient magnetic field.

  13. Reversible Lithium Neurotoxicity: Review of the Literature

    PubMed Central

    Netto, Ivan

    2012-01-01

    Objective: Lithium neurotoxicity may be reversible or irreversible. Reversible lithium neurotoxicity has been defined as cases of lithium neurotoxicity in which patients recovered without any permanent neurologic sequelae, even after 2 months of an episode of lithium toxicity. Cases of reversible lithium neurotoxicity differ in clinical presentation from those of irreversible lithium neurotoxicity and have important implications in clinical practice. This review aims to study the clinical presentation of cases of reversible lithium neurotoxicity. Data Sources: A comprehensive electronic search was conducted in the following databases: MEDLINE (PubMed), 1950 to November 2010; PsycINFO, 1967 to November 2010; and SCOPUS (EMBASE), 1950 to November 2010. MEDLINE and PsycINFO were searched by using the OvidSP interface. Study Selection: A combination of the following search terms was used: lithium AND adverse effects AND central nervous system OR neurologic manifestation. Publications cited include articles concerned with reversible lithium neurotoxicity. Data Extraction: The age, sex, clinical features, diagnostic categories, lithium doses, serum lithium levels, precipitating factors, and preventive measures of 52 cases of reversible lithium neurotoxicity were extracted. Data Synthesis: Among the 52 cases of reversible lithium neurotoxicity, patients ranged in age from 10 to 80 years and a greater number were female (P = .008). Most patients had affective disorders, schizoaffective disorders, and/or depression (P < .001) and presented mainly with acute organic brain syndrome. In most cases, the therapeutic serum lithium levels were less than or equal to 1.5 mEq/L (P < .001), and dosage regimens were less than 2,000 mg/day. Specific drug combinations with lithium, underlying brain pathology, abnormal tissue levels, specific diagnostic categories, and elderly populations were some of the precipitating factors reported for reversible lithium neurotoxicity. The

  14. Field-Reversed Configuration Power Plant Critical-Issue Scoping Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santarius, J. F.; Mogahed, E. A.; Emmert, G. A.

    A team from the Universities of Wisconsin, Washington, and Illinois performed an engineering scoping study of critical issues for field-reversed configuration (FRC) power plants. The key tasks for this research were (1) systems analysis for deuterium-tritium (D-T) FRC fusion power plants, and (2) conceptual design of the blanket and shield module for an FRC fusion core. For the engineering conceptual design of the fusion core, the project team focused on intermediate-term technology. For example, one decision was to use steele structure. The FRC systems analysis led to a fusion power plant with attractive features including modest size, cylindrical symmetry, goodmore » thermal efficiency (52%), relatively easy maintenance, and a high ratio of electric power to fusion core mass, indicating that it would have favorable economics.« less

  15. Stimulus-Responsive Nanoparticles and Associated (Reversible) Polymorphism via Polymerization Induced Self-assembly (PISA).

    PubMed

    Pei, Yiwen; Lowe, Andrew B; Roth, Peter J

    2017-01-01

    Polymerization-induced self-assembly (PISA) is an extremely versatile method for the in situ preparation of soft-matter nanoparticles of defined size and morphologies at high concentrations, suitable for large-scale production. Recently, certain PISA-prepared nanoparticles have been shown to exhibit reversible polymorphism ("shape-shifting"), typically between micellar, worm-like, and vesicular phases (order-order transitions), in response to external stimuli including temperature, pH, electrolytes, and chemical modification. This review summarises the literature to date and describes molecular requirements for the design of stimulus-responsive nano-objects. Reversible pH-responsive behavior is rationalised in terms of increased solvation of reversibly ionized groups. Temperature-triggered order-order transitions, conversely, do not rely on inherently thermo-responsive polymers, but are explained based on interfacial LCST or UCST behavior that affects the volume fractions of the core and stabilizer blocks. Irreversible morphology transitions, on the other hand, can result from chemical post-modification of reactive PISA-made particles. Emerging applications and future research directions of this "smart" nanoparticle behavior are reviewed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The posterior reversible encephalopathy syndrome.

    PubMed

    Sanjay, K Mandal; Partha, P Chakraborty

    2008-09-01

    The posterior/potentially reversible encephalopathy syndrome is a unique syndrome encountered commonly in hypertensive encephalopathy. A 13-year-old boy presented with of intermittent high grade fever, throbbing headache and non-projective vomiting for 5 days. The patient had a blood pressure of 120/80 mmHg but fundoscopy documented grade 3 hypertensive retinopathy. The patient improved symptomatically following conservative management. However, on the 5(th) post-admission day headache reappeared, and blood pressure measured at that time was 240/120 mmHg. Neuroimaging suggested white matter abnormalities. Search for the etiology of secondary hypertension led to the diagnosis of pheochromocytoma. Repeated MRI after successful surgical excision of the tumor patient showed reversal of white matter abnormalities. Reversible leucoencephalopathy due to pheochromocytoma have not been documented in literature previously.

  17. The Discovery of Reverse Transcriptase.

    PubMed

    Coffin, John M; Fan, Hung

    2016-09-29

    In 1970 the independent and simultaneous discovery of reverse transcriptase in retroviruses (then RNA tumor viruses) by David Baltimore and Howard Temin revolutionized molecular biology and laid the foundations for retrovirology and cancer biology. In this historical review we describe the formulation of the controversial provirus hypothesis by Temin, which ultimately was proven by his discovery of reverse transcriptase in Rous sarcoma virus virions. Baltimore arrived at the same discovery through his studies on replication of RNA-containing viruses, starting with poliovirus and then moving to vesicular stomatitis virus, where he discovered a virion RNA polymerase. Subsequent studies of reverse transcriptase led to the elucidation of the mechanism of retrovirus replication, the discovery of oncogenes, the advent of molecular cloning, the search for human cancer viruses, and the discovery and treatment of HIV/AIDS.

  18. Ice ages and geomagnetic reversals

    NASA Technical Reports Server (NTRS)

    Wu, Patrick

    1992-01-01

    There have been speculations on the relationship between climatic cooling and polarity reversals of the earth's magnetic field during the Pleistocene. Two of the common criticisms on this relationship have been the reality of these short duration geomagnetic events and the accuracy of their dates. Champion et al. (1988) have reviewed recent progress in this area. They identified a total of 10 short-duration polarity events in the last 1 Ma and 6 of these events have been found in volcanic rocks, which also have K-Ar dates. Supposing that the speculated relationship between climatic cooling and geomagnetic reversals actually exist, two mechanisms that assume climatic cooling causes short period magnetic reversals will be investigated. These two methods are core-mantle boundary topography and transfer of the rotational energy to the core.

  19. Designing a biocidal reverse osmosis membrane coating: Synthesis and biofouling properties

    DOE PAGES

    Hibbs, Michael R.; McGrath, Lucas K.; Kang, Seoktae; ...

    2015-12-04

    In this study, a biocidal coating was developed in order to reduce biofouling on a reverse osmosis (RO) membrane using a quaternary ammonium (QA) functionalized polymer. The synthesis of a series of polysulfone (PS) ionomers with QA groups is described, and a method for spraying these QA ionomers as an alcoholic solution, which dried into water insoluble coatings. Contact angle and streaming potential were used to analyze the coating's hydrophilicity and surface charge. Both PS-QA1 and the commercial RO membrane had an apparent contact angle of 68° that increased to 126° for PS-QA12 corresponding to alkyl chain length. A negativelymore » charged particle-probe was used to measure coated and uncoated RO membrane interaction forces. Measured interaction forces correlated strongly with the length of alkyl chains or hydrophobicity of the coated surfaces. Uncoated RO membranes and ones coated with PS-QA were exposed to suspensions of Escherichia coli cells. All four PS-QA coatings showed significant biotoxicity and killed 100% of the E. coli cells, but uncoated RO membranes had metabolically active biofilms. However, coatings tested in a RO crossflow system showed a flux reduction that is attributed to mass transfer resistance due to excessively thick films.« less

  20. Designing a biocidal reverse osmosis membrane coating: Synthesis and biofouling properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hibbs, Michael R.; McGrath, Lucas K.; Kang, Seoktae

    In this study, a biocidal coating was developed in order to reduce biofouling on a reverse osmosis (RO) membrane using a quaternary ammonium (QA) functionalized polymer. The synthesis of a series of polysulfone (PS) ionomers with QA groups is described, and a method for spraying these QA ionomers as an alcoholic solution, which dried into water insoluble coatings. Contact angle and streaming potential were used to analyze the coating's hydrophilicity and surface charge. Both PS-QA1 and the commercial RO membrane had an apparent contact angle of 68° that increased to 126° for PS-QA12 corresponding to alkyl chain length. A negativelymore » charged particle-probe was used to measure coated and uncoated RO membrane interaction forces. Measured interaction forces correlated strongly with the length of alkyl chains or hydrophobicity of the coated surfaces. Uncoated RO membranes and ones coated with PS-QA were exposed to suspensions of Escherichia coli cells. All four PS-QA coatings showed significant biotoxicity and killed 100% of the E. coli cells, but uncoated RO membranes had metabolically active biofilms. However, coatings tested in a RO crossflow system showed a flux reduction that is attributed to mass transfer resistance due to excessively thick films.« less

  1. Time-Dependent Reversible-Irreversible Deformation Threshold Determined Explicitly by Experimental Technique

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.; Arnold, Steven M.

    2000-01-01

    Structural materials for the design of advanced aeropropulsion components are usually subject to loading under elevated temperatures, where a material's viscosity (resistance to flow) is greatly reduced in comparison to its viscosity under low-temperature conditions. As a result, the propensity for the material to exhibit time-dependent deformation is significantly enhanced, even when loading is limited to a quasi-linear stress-strain regime as an effort to avoid permanent (irreversible) nonlinear deformation. An understanding and assessment of such time-dependent effects in the context of combined reversible and irreversible deformation is critical to the development of constitutive models that can accurately predict the general hereditary behavior of material deformation. To this end, researchers at the NASA Glenn Research Center at Lewis Field developed a unique experimental technique that identifies the existence of and explicitly determines a threshold stress k, below which the time-dependent material deformation is wholly reversible, and above which irreversible deformation is incurred. This technique is unique in the sense that it allows, for the first time, an objective, explicit, experimental measurement of k. The underlying concept for the experiment is based on the assumption that the material s time-dependent reversible response is invariable, even in the presence of irreversible deformation.

  2. Translation failure and medical reversal: Two sides to the same coin.

    PubMed

    Prasad, Vinay

    2016-01-01

    Translation failure occurs when the results of preclinical, observational and/or early phase studies fail to predict the results of well done (i.e. appropriately controlled, adequately powered, and properly conducted) phase III or randomised clinical trials. Some failures occur when promising basic science findings fail to replicate in human studies, while others happen when promising uncontrolled trial data show an exaggerated effect that vanishes in the setting of a randomised trial. Medical reversals occur when the results of preclinical, observational and/or early phase studies fail to predict the results of subsequent randomized clinical trials, but the practice has already gained widespread acceptance. Oncologic examples include bevacizumab and the use of autologous stem cell transplant in metastatic breast cancer. In a well-intentioned effort to reduce the rate of translation failure, oncologists must be careful that changes to regulatory processes and clinical trial design do not actually work to increase the approval of ineffective compounds. By trying to cure translation failure, we should be careful to avoid medical reversal. The rise of surrogate end-points and role of hard-wired bias in oncology trials suggest that we may be currently ignoring the simple fact that translation failure and medical reversal are two sides to the same coin. Published by Elsevier Ltd.

  3. Reversible switching between pressure-induced amorphization and thermal-driven recrystallization in VO2(B) nanosheets.

    PubMed

    Wang, Yonggang; Zhu, Jinlong; Yang, Wenge; Wen, Ting; Pravica, Michael; Liu, Zhenxian; Hou, Mingqiang; Fei, Yingwei; Kang, Lei; Lin, Zheshuai; Jin, Changqing; Zhao, Yusheng

    2016-07-18

    Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure-structure relationship and the role of flexible VOx polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials.

  4. Cheaper Adjoints by Reversing Address Computations

    DOE PAGES

    Hascoët, L.; Utke, J.; Naumann, U.

    2008-01-01

    The reverse mode of automatic differentiation is widely used in science and engineering. A severe bottleneck for the performance of the reverse mode, however, is the necessity to recover certain intermediate values of the program in reverse order. Among these values are computed addresses, which traditionally are recovered through forward recomputation and storage in memory. We propose an alternative approach for recovery that uses inverse computation based on dependency information. Address storage constitutes a significant portion of the overall storage requirements. An example illustrates substantial gains that the proposed approach yields, and we show use cases in practical applications.

  5. Reversible perspective and splitting in time.

    PubMed

    Hart, Helen Schoenhals

    2012-01-01

    The element of time--the experience of it and the defensive use of it--is explored in conjunction with the use of reversible perspective as a psychotic defense. Clinical material from a long analysis illustrates how a psychotic patient used the reversible perspective, with its static splitting, to abolish the experience of time. When he improved and the reversible perspective became less effective for him, he replaced it with a more dynamic splitting mechanism using time gaps. With further improvement, the patient began to experience the passage of time, and along with it the excruciating pain of separation, envy, and loss.

  6. Orthographic similarity: the case of "reversed anagrams".

    PubMed

    Morris, Alison L; Still, Mary L

    2012-07-01

    How orthographically similar are words such as paws and swap, flow and wolf, or live and evil? According to the letter position coding schemes used in models of visual word recognition, these reversed anagrams are considered to be less similar than words that share letters in the same absolute or relative positions (such as home and hose or plan and lane). Therefore, reversed anagrams should not produce the standard orthographic similarity effects found using substitution neighbors (e.g., home, hose). Simulations using the spatial coding model (Davis, Psychological Review 117, 713-758, 2010), for example, predict an inhibitory masked-priming effect for substitution neighbor word pairs but a null effect for reversed anagrams. Nevertheless, we obtained significant inhibitory priming using both stimulus types (Experiment 1). We also demonstrated that robust repetition blindness can be obtained for reversed anagrams (Experiment 2). Reversed anagrams therefore provide a new test for models of visual word recognition and orthographic similarity.

  7. PIC simulations of post-pulse field reversal and secondary ionization in nanosecond argon discharges

    NASA Astrophysics Data System (ADS)

    Kim, H. Y.; Gołkowski, M.; Gołkowski, C.; Stoltz, P.; Cohen, M. B.; Walker, M.

    2018-05-01

    Post-pulse electric field reversal and secondary ionization are investigated with a full kinetic treatment in argon discharges between planar electrodes on nanosecond time scales. The secondary ionization, which occurs at the falling edge of the voltage pulse, is induced by charge separation in the bulk plasma region. This process is driven by a reverse in the electric field from the cathode sheath to the formerly driven anode. Under the influence of the reverse electric field, electrons in the bulk plasma and sheath regions are accelerated toward the cathode. The electron movement manifests itself as a strong electron current generating high electron energies with significant electron dissipated power. Accelerated electrons collide with Ar molecules and an increased ionization rate is achieved even though the driving voltage is no longer applied. With this secondary ionization, in a single pulse (SP), the maximum electron density achieved is 1.5 times higher and takes a shorter time to reach using 1 kV 2 ns pulse as compared to a 1 kV direct current voltage at 1 Torr. A bipolar dual pulse excitation can increase maximum density another 50%–70% above a SP excitation and in half the time of RF sinusoidal excitation of the same period. The first field reversal is most prominent but subsequent field reversals also occur and correspond to electron temperature increases. Targeted pulse designs can be used to condition plasma density as required for fast discharge applications.

  8. A standing location detector enabling people with developmental disabilities to control environmental stimulation through simple physical activities with Nintendo Wii Balance Boards.

    PubMed

    Shih, Ching-Hsiang

    2011-01-01

    This study evaluated whether two people with developmental disabilities would be able to actively perform simple physical activities by controlling their favorite environmental stimulation using Nintendo Wii Balance Boards with a newly developed standing location detection program (SLDP, i.e., a new software program turning a Nintendo Wii Balance Board into a standing location detector). This study was carried out using to an ABAB design. The data showed that both participants significantly increased their simple physical activity (target response) to activate the control system to produce environmental stimulation during the B (intervention) phases. The practical and developmental implications of the findings are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Promoting step responses of children with multiple disabilities through a walker device and microswitches with contingent stimuli.

    PubMed

    Lancioni, G E; De Pace, C; Singh, N N; O'Reilly, M F; Sigafoos, J; Didden, R

    2008-08-01

    Children with severe or profound intellectual and motor disabilities often present problems of balance and locomotion and spend much of their time sitting or lying, with negative consequences for their development and social image. This study provides a replication of recent (pilot) studies using a walker (support) device and microswitches with preferred stimuli to promote locomotion in two children with multiple disabilities. One child used an ABAB design; the other only an AB sequence. Both succeeded in increasing their frequencies of step responses during the B (intervention) phase(s). These findings support the positive evidence already available on the effectiveness of this intervention in motivating and promoting children's locomotion.

  10. 14 CFR 33.97 - Thrust reversers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.97 Thrust reversers. (a) If the... this subpart must be run with the reverser installed. In complying with this section, the power control... regimes of control operations are incorporated necessitating scheduling of the power-control lever motion...

  11. 14 CFR 33.97 - Thrust reversers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.97 Thrust reversers. (a) If the... this subpart must be run with the reverser installed. In complying with this section, the power control... regimes of control operations are incorporated necessitating scheduling of the power-control lever motion...

  12. 14 CFR 33.97 - Thrust reversers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Thrust reversers. 33.97 Section 33.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.97 Thrust reversers. (a) If the...

  13. 14 CFR 33.97 - Thrust reversers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Thrust reversers. 33.97 Section 33.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.97 Thrust reversers. (a) If the...

  14. 14 CFR 33.97 - Thrust reversers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Thrust reversers. 33.97 Section 33.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.97 Thrust reversers. (a) If the...

  15. Ascorbyl radical disproportionation in reverse micellar systems

    NASA Astrophysics Data System (ADS)

    Gębicki, J. L.; Szymańska-Owczarek, M.; Pacholczyk-Sienicka, B.; Jankowski, S.

    2018-04-01

    Ascorbyl radical was generated by the pulse radiolysis method and observed with the fast kinetic spectrophotometry within reverse micelles stabilized by AOT in n-heptane or by Igepal CO-520 in cyclohexane at different water to surfactant molar ratio, w0. Rate constants for the disproportionation of the ascorbyl radicals were smaller than those for intermicellar exchange for both type of reverse micelles and slower than those in homogeneous aqueous solutions. However, they increased with increasing w0 for AOT/n-heptane system, while they decreased for Igepal CO-520 system. The absorption spectra of ascorbic acid AOT/n-heptane reverse micellar system showed that the "pH" sensed by this molecule is lower than that in respective homogeneous aqueous solutions. The obtained results were rationalized taking into account three main factors (i) preferential location of ascorbic acid molecules in the interfacial region of the both types of reverse micelles; (ii) postulate that the pH of the interface is lower than that of the water pool of reverse micelles and (iii) different structure of the interface of the reverse micelles made by AOT in n-heptane and those formed by Igepal CO-520 I cyclohexane. Some possible consequences of these findings are discussed.

  16. Reverse amblyopia with atropine treatment.

    PubMed

    Hainline, Bryan C; Sprunger, Derek C; Plager, David A; Neely, Daniel E; Guess, Matthew G

    2009-01-01

    Occlusion, pharmacologic pernalization and combined therapy have been documented in controlled studies to effectively treat amblyopia with few complications. However, there remain concerns about the effectiveness and complications when, as in this case, there are not standardized treatment protocols. A retrospective chart review of 133 consecutive patients in one community based ophthalmology practice treated for amblyopia was performed. Treatments evaluated were occlusion only, atropine penalization, and combination of occlusion and atropine. Reverse amblyopia was defined as having occured when the visual acuity of the sound eye was 3 LogMar units worse than visual acuity of the amblyopia eye after treatment. Improvement in vision after 6 months and 1 year of amblyopia therapy was similar among all three groups: 0.26 LogMar lines and 0.30 in the atropine group, 0.32 and 0.34 in the occlusion group, and 0.24 and 0.32 in the combined group. Eight (6%) patients demonstrated reverse amblyopia. The mean age of those who developed reverse amblyopia was 3.5 years, 1.5 years younger than the mean age of the study population, 7/8 had strabismic amblyopia, 6/8 were on daily atropine and had a mean refractive error of +4.77 diopters in the amblyopic eye and +5.06 diopters in the sound eye. Reverse amblyopia did not occur with occlusion only therapy. In this community based ophthalmology practice, atropine, patching, and combination therapy appear to be equally effective modalities to treat ambyopia. Highly hyperopic patients under 4 years of age with dense, strabismic amblyopia and on daily atropine appeared to be most at risk for development of reverse amblyopia.

  17. Reverse saturable absorption (RSA) in fluorinated iridium derivatives

    NASA Astrophysics Data System (ADS)

    Ferry, Michael J.; O'Donnell, Ryan M.; Bambha, Neal; Ensley, Trenton R.; Shensky, William M.; Shi, Jianmin

    2017-08-01

    The photophysical properties of cyclometallated iridium compounds are beneficial for nonlinear optical (NLO) applications, such as the design of reverse saturable absorption (RSA) materials. We report on the NLO characterization of a family of compounds of the form [Ir(pbt)2(LX)], where pbt is 2-phenylbenzothiazole and LX is a beta-diketonate ligand. In particular, we investigate the effects of trifluoromethylation on compound solubility and photophysics compared to the parent acetylacetonate (acac) version. The NLO properties, such as the singlet and triplet excited-state cross sections, of these compounds were measured using the Z-scan technique. The excited-state lifetimes were determined from visible transient absorption spectroscopy.

  18. A reversible transition in liquid Bi under pressure.

    PubMed

    Emuna, M; Matityahu, S; Yahel, E; Makov, G; Greenberg, Y

    2018-01-21

    The electrical resistance of solid and liquid Bi has been measured at high pressures and temperatures using a novel experimental design for high sensitivity measurements utilizing a "Paris-Edinburgh" toroid large volume press. An anomalous sharp decrease in resistivity with increasing temperature at constant pressures was observed in the region beyond melting which implies a possible novel transition in the melt. The proposed transition was observed across a range of pressures both in heating and cooling cycles of the sample demonstrating its reversibility. From the measurements it was possible to determine a "phase-line" of this transition on the Bi pressure-temperature phase diagram terminating at the melting curve.

  19. Effect of seminal oxidative stress on fertility after vasectomy reversal.

    PubMed

    Kolettis, P N; Sharma, R K; Pasqualotto, F F; Nelson, D; Thomas, A J; Agarwal, A

    1999-02-01

    To evaluate seminal oxidative stress in men after vasectomy reversal and to determine whether seminal oxidative stress could predict fertility after vasectomy reversal. Measurement of seminal reactive oxygen species (ROS) and total antioxidant capacity (TAC) in normal donors, men who were fertile after vasectomy reversal, and men who were infertile after vasectomy reversal. A male infertility clinic of a tertiary care center. Thirty men who underwent vasectomy reversal and 17 normal donors. None. Semen characteristics, seminal ROS, and TAC were measured with chemiluminescence assays in samples from donors and reversal patients. Mean adjusted seminal ROS (log [ROS+1]) was higher in infertile reversal patients (2.38+/-0.25) than in normal donors (1.30+/-0.14). Seminal ROS was also higher in all (fertile and infertile reversal combined) reversal patients than in donors. Total antioxidant capacity did not differ between groups. The ROS-TAC score, a composite index of seminal oxidative stress, was a significant predictor of fertility. A ROS-TAC score of 45 or greater had a positive predictive value of 73% in predicting fertility. Seminal oxidative stress is associated with vasectomy reversal. The ROS-TAC score is a possible predictor of infertility after vasectomy reversal.

  20. Reverse transport of children from a tertiary pediatric hospital.

    PubMed

    McPherson, Mona L; Jefferson, Larry S; Smith, E O'Brian; Sitler, Garry C; Graf, Jeanine M

    2007-01-01

    The purpose of this study was to determine the epidemiology and resources used and to study the potential savings of pediatric reverse transport patients. A case control study was performed with patients undergoing a reverse or outbound transport from a large, pediatric hospital. Twenty-five children undergoing reverse transport were compared with matched controls. Lengths of stay and costs were compared between the reverse transport and matched control patients. Fifty-two percent of the reverse transport patients returned home, whereas 32% went home for end-of-life care and 16% went to other facilities. The average reverse transport was more than 400 miles and cost $6,064. The reverse transport of these patients did not save pediatric intensive care unit (PICU) days but did result in a shorter hospital stay compared with the matched controls (10 vs. 19 days, P = .03). Decreased utilization of bed days came from less use of intermediate care unit resources. Pediatric patients undergo reverse transports for a variety of reasons, often for end-of-life care. The ability to reverse transport pediatric patients may not save PICU bed days but may offer pediatric tertiary care hospitals a means to provide more intermediate care bed availability.

  1. A novel technique for presurgical nasoalveolar molding using computer-aided reverse engineering and rapid prototyping.

    PubMed

    Yu, Quan; Gong, Xin; Wang, Guo-Min; Yu, Zhe-Yuan; Qian, Yu-Fen; Shen, Gang

    2011-01-01

    To establish a new method of presurgical nasoalveolar molding (NAM) using computer-aided reverse engineering and rapid prototyping technique in infants with unilateral cleft lip and palate (UCLP). Five infants (2 males and 3 females with mean age of 1.2 w) with complete UCLP were recruited. All patients were subjected to NAM before the cleft lip repair. The upper denture casts were recorded using a three-dimensional laser scanner within 2 weeks after birth in UCLP infants. A digital model was constructed and analyzed to simulate the NAM procedure with reverse engineering software. The digital geometrical data were exported to print the solid model with rapid prototyping system. The whole set of appliances was fabricated based on these solid models. Laser scanning and digital model construction simplified the NAM procedure and estimated the treatment objective. The appliances were fabricated based on the rapid prototyping technique, and for each patient, the complete set of appliances could be obtained at one time. By the end of presurgical NAM treatment, the cleft was narrowed, and the malformation of nasoalveolar segments was aligned normally. We have developed a novel technique of presurgical NAM based on a computer-aided design. The accurate digital denture model of UCLP infants could be obtained with laser scanning. The treatment design and appliance fabrication could be simplified with a computer-aided reverse engineering and rapid prototyping technique.

  2. A gaussian model for simulated geomagnetic field reversals

    NASA Astrophysics Data System (ADS)

    Wicht, Johannes; Meduri, Domenico G.

    2016-10-01

    Field reversals are the most spectacular events in the geomagnetic history but remain little understood. Here we explore the dipole behaviour in particularly long numerical dynamo simulations to reveal statistically significant conditions required for reversals and excursions to happen. We find that changes in the axial dipole moment behaviour are crucial while the equatorial dipole moment plays a negligible role. For small Rayleigh numbers, the axial dipole always remains strong and stable and obeys a clearly Gaussian probability distribution. Only when the Rayleigh number is increased sufficiently the axial dipole can reverse and its distribution becomes decisively non-Gaussian. Increased likelihoods around zero indicate a pronounced lingering in a new low dipole moment state. Reversals and excursions can only happen when axial dipole fluctuations are large enough to drive the system from the high dipole moment state assumed during stable polarity epochs into the low dipole moment state. Since it is just a matter of chance which polarity is amplified during dipole recovery, reversals and grand excursions, i.e. excursions during which the dipole assumes reverse polarity, are equally likely. While the overall reversal behaviour seems Earth-like, a closer comparison to palaeomagnetic findings suggests that the simulated events last too long and that grand excursions are too rare. For a particularly large Ekman number we find a second but less Earth-like type of reversals where the total field decays and recovers after a certain time.

  3. Magnetic field evolution and reversals in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Dobbs, C. L.; Price, D. J.; Pettitt, A. R.; Bate, M. R.; Tricco, T. S.

    2016-10-01

    We study the evolution of galactic magnetic fields using 3D smoothed particle magnetohydrodynamics (SPMHD) simulations of galaxies with an imposed spiral potential. We consider the appearance of reversals of the field, and amplification of the field. We find that magnetic field reversals occur when the velocity jump across the spiral shock is above ≈20 km s-1, occurring where the velocity change is highest, typically at the inner Lindblad resonance in our models. Reversals also occur at corotation, where the direction of the velocity field reverses in the corotating frame of a spiral arm. They occur earlier with a stronger amplitude spiral potential, and later or not at all with weaker or no spiral arms. The presence of a reversal at radii of around 4-6 kpc in our fiducial model is consistent with a reversal identified in the Milky Way, though we caution that alternative Galaxy models could give a similar reversal. We find that relatively high resolution, a few million particles in SPMHD, is required to produce consistent behaviour of the magnetic field. Amplification of the magnetic field occurs in the models, and while some may be genuinely attributable to differential rotation or spiral arms, some may be a numerical artefact. We check our results using ATHENA, finding reversals but less amplification of the field, suggesting that some of the amplification of the field with SPMHD is numerical.

  4. Experimental study of the reversible behavior of modulational instability in optical fibers

    NASA Astrophysics Data System (ADS)

    van Simaeys, Gaetan; Emplit, Philippe; Haelterman, Marc

    2002-03-01

    We report what is to our knowledge the first clear-cut experimental evidence of the reversibility of modulational instability in dispersive Kerr media. It was possible to perform this experiment with standard telecommunication fiber because we used a specially designed 550-ps square-pulse laser source based on the two-wavelength configuration of a nonlinear optical loop mirror. Our observations demonstrate that reversibility is due to well-balanced and synchronous energy transfer among a significant number of spectral wave components. These results provide what we believe is the first evidence, in the field of nonlinear optics, of the universal Fermi-Pasta-Ulam recurrence phenomenon that has been predicted for a large number of conservative nonlinear systems, including those described by a nonlinear Schrödinger equation that is relevant to the context of the present study.

  5. Superactivity of peroxidase solubilized in reversed micellar systems.

    PubMed

    Setti, L; Fevereiro, P; Melo, E P; Pifferi, P G; Cabral, J M; Aires-Barros, M R

    1995-12-01

    Vaccinium mirtyllus peroxidase solubilized in reversed micelles was used for the oxidation of guaiacol. Some relevant parameters for the enzymatic activity, such as pH, w(o) (molar ratio water/surfactant), surfactant type and concentration, and cosurfactant concentration, were investigated. The peroxidase showed higher activities in reversed micelles than in aqueous solution. The stability of the peroxidase in reversed micelles was also studied, namely, the effect of w(o) and temperature on enzyme deactivation. The peroxidase displayed higher stabilities in CTAB/hexanol in isooctane reversed micelles, with half-life times higher than 500 h.

  6. Energy storage for a lunar base by the reversible chemical reaction: CaO+H2O reversible reaction Ca(OH)2

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Difilipo, Frank

    1990-01-01

    A thermochemical solar energy storage concept involving the reversible reaction CaO + H2O yields Ca(OH)2 is proposed as a power system element for a lunar base. The operation and components of such a system are described. The CaO/H2O system is capable of generating electric power during both the day and night. The specific energy (energy to mass ratio) of the system was estimated to be 155 W-hr/kg. Mass of the required amount of CaO is neglected since it is obtained from lunar soil. Potential technical problems, such as reactor design and lunar soil processing, are reviewed.

  7. Achieving cost-neutrality with long-acting reversible contraceptive methods⋆

    PubMed Central

    Trussell, James; Hassan, Fareen; Lowin, Julia; Law, Amy; Filonenko, Anna

    2014-01-01

    Objectives This analysis aimed to estimate the average annual cost of available reversible contraceptive methods in the United States. In line with literature suggesting long-acting reversible contraceptive (LARC) methods become increasingly cost-saving with extended duration of use, it aimed to also quantify minimum duration of use required for LARC methods to achieve cost-neutrality relative to other reversible contraceptive methods while taking into consideration discontinuation. Study design A three-state economic model was developed to estimate relative costs of no method (chance), four short-acting reversible (SARC) methods (oral contraceptive, ring, patch and injection) and three LARC methods [implant, copper intrauterine device (IUD) and levonorgestrel intrauterine system (LNG-IUS) 20 mcg/24 h (total content 52 mg)]. The analysis was conducted over a 5-year time horizon in 1000 women aged 20–29 years. Method-specific failure and discontinuation rates were based on published literature. Costs associated with drug acquisition, administration and failure (defined as an unintended pregnancy) were considered. Key model outputs were annual average cost per method and minimum duration of LARC method usage to achieve cost-savings compared to SARC methods. Results The two least expensive methods were copper IUD ($304 per women, per year) and LNG-IUS 20 mcg/24 h ($308). Cost of SARC methods ranged between $432 (injection) and $730 (patch), per women, per year. A minimum of 2.1 years of LARC usage would result in cost-savings compared to SARC usage. Conclusions This analysis finds that even if LARC methods are not used for their full durations of efficacy, they become cost-saving relative to SARC methods within 3 years of use. Implications Previous economic arguments in support of using LARC methods have been criticized for not considering that LARC methods are not always used for their full duration of efficacy. This study calculated that cost-savings from LARC

  8. Time irreversibility in reversible shell models of turbulence.

    PubMed

    De Pietro, Massimo; Biferale, Luca; Boffetta, Guido; Cencini, Massimo

    2018-04-06

    Turbulent flows governed by the Navier-Stokes equations (NSE) generate an out-of-equilibrium time irreversible energy cascade from large to small scales. In the NSE, the energy transfer is due to the nonlinear terms that are formally symmetric under time reversal. As for the dissipative term: first, it explicitly breaks time reversibility; second, it produces a small-scale sink for the energy transfer that remains effective even in the limit of vanishing viscosity. As a result, it is not clear how to disentangle the time irreversibility originating from the non-equilibrium energy cascade from the explicit time-reversal symmetry breaking due to the viscous term. To this aim, in this paper we investigate the properties of the energy transfer in turbulent shell models by using a reversible viscous mechanism, avoiding any explicit breaking of the [Formula: see text] symmetry. We probe time irreversibility by studying the statistics of Lagrangian power, which is found to be asymmetric under time reversal also in the time-reversible model. This suggests that the turbulent dynamics converges to a strange attractor where time reversibility is spontaneously broken and whose properties are robust for what concerns purely inertial degrees of freedoms, as verified by the anomalous scaling behavior of the velocity structure functions.

  9. Reversibility and energy dissipation in adiabatic superconductor logic.

    PubMed

    Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2017-03-06

    Reversible computing is considered to be a key technology to achieve an extremely high energy efficiency in future computers. In this study, we investigated the relationship between reversibility and energy dissipation in adiabatic superconductor logic. We analyzed the evolution of phase differences of Josephson junctions in the reversible quantum-flux-parametron (RQFP) gate and confirmed that the phase differences can change time reversibly, which indicates that the RQFP gate is physically, as well as logically, reversible. We calculated energy dissipation required for the RQFP gate to perform a logic operation and numerically demonstrated that the energy dissipation can fall below the thermal limit, or the Landauer bound, by lowering operation frequencies. We also investigated the 1-bit-erasure gate as a logically irreversible gate and the quasi-RQFP gate as a physically irreversible gate. We calculated the energy dissipation of these irreversible gates and showed that the energy dissipation of these gate is dominated by non-adiabatic state changes, which are induced by unwanted interactions between gates due to logical or physical irreversibility. Our results show that, in reversible computing using adiabatic superconductor logic, logical and physical reversibility are required to achieve energy dissipation smaller than the Landauer bound without non-adiabatic processes caused by gate interactions.

  10. Role Reversal in Abused/Neglected Families

    ERIC Educational Resources Information Center

    Flanzraich, Mark; Dunsavage, Irene

    1977-01-01

    This article describes role reversal behavior among abused and neglected children. In role reversal traditional role behaviors between a parent and a child are interchanged. The child adopts some of the behaviors traditionally associated with parents and parents tend to act dependent. Listed are ways social workers can help with different aspects…

  11. Reversible switching between pressure-induced amorphization and thermal-driven recrystallization in VO2(B) nanosheets

    PubMed Central

    Wang, Yonggang; Zhu, Jinlong; Yang, Wenge; Wen, Ting; Pravica, Michael; Liu, Zhenxian; Hou, Mingqiang; Fei, Yingwei; Kang, Lei; Lin, Zheshuai; Jin, Changqing; Zhao, Yusheng

    2016-01-01

    Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure–structure relationship and the role of flexible VOx polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials. PMID:27426219

  12. On the impact of water activity on reversal tolerant fuel cell anode performance and durability

    NASA Astrophysics Data System (ADS)

    Hong, Bo Ki; Mandal, Pratiti; Oh, Jong-Gil; Litster, Shawn

    2016-10-01

    Durability of polymer electrolyte fuel cells in automotive applications can be severely affected by hydrogen starvation arising due to transients during the drive-cycle. It causes individual cell voltage reversal, yielding water electrolysis and carbon corrosion reactions at the anode, ultimately leading to catastrophic cell failure. A popular material-based mitigation strategy is to employ a reversal tolerant anode (RTA) that includes oxygen evolution reaction (OER) catalyst (e.g., IrO2) to promote water electrolysis over carbon corrosion. Here we report that RTA performance surprisingly drops under not only water-deficient but also water-excess conditions. This presents a significant technical challenge since the most common triggers for cell reversal involve excess liquid water. Our findings from detailed electrochemical diagnostics and nano-scale X-ray computed tomography provide insight into how automotive fuel cells can overcome critical vulnerabilities using material-based solutions. Our work also highlights the need for improved materials, electrode designs, and operation strategies for robust RTAs.

  13. Reversible switching between pressure-induced amorphization and thermal-driven recrystallization in VO2(B) nanosheets

    DOE PAGES

    Wang, Yonggang; Zhu, Jinlong; Yang, Wenge; ...

    2016-07-18

    Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO 2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure–structure relationship and the role of flexiblemore » VO x polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials.« less

  14. Asymmetric Cherenkov acoustic reverse in topological insulators

    NASA Astrophysics Data System (ADS)

    Smirnov, Sergey

    2014-09-01

    A general phenomenon of the Cherenkov radiation known in optics or acoustics of conventional materials is a formation of a forward cone of, respectively, photons or phonons emitted by a particle accelerated above the speed of light or sound in those materials. Here we suggest three-dimensional topological insulators as a unique platform to fundamentally explore and practically exploit the acoustic aspect of the Cherenkov effect. We demonstrate that by applying an in-plane magnetic field to a surface of a three-dimensional topological insulator one may suppress the forward Cherenkov sound up to zero at a critical magnetic field. Above the critical field the Cherenkov sound acquires pure backward nature with the polar distribution differing from the forward one generated below the critical field. Potential applications of this asymmetric Cherenkov reverse are in the design of low energy electronic devices such as acoustic ratchets or, in general, in low power design of electronic circuits with a magnetic field control of the direction and magnitude of the Cherenkov dissipation.

  15. Reversible infantile mitochondrial diseases.

    PubMed

    Boczonadi, Veronika; Bansagi, Boglarka; Horvath, Rita

    2015-05-01

    Mitochondrial diseases are usually severe and progressive conditions; however, there are rare forms that show remarkable spontaneous recoveries. Two homoplasmic mitochondrial tRNA mutations (m.14674T>C/G in mt-tRNA(Glu)) have been reported to cause severe infantile mitochondrial myopathy in the first months of life. If these patients survive the first year of life by extensive life-sustaining measures they usually recover and develop normally. Another mitochondrial disease due to deficiency of the 5-methylaminomethyl-2-thiouridylate methyltransferase (TRMU) causes severe liver failure in infancy, but similar to the reversible mitochondrial myopathy, within the first year of life these infants may also recover completely. Partial recovery has been noted in some other rare forms of mitochondrial disease due to deficiency of mitochondrial tRNA synthetases and mitochondrial tRNA modifying enzymes. Here we summarize the clinical presentation of these unique reversible mitochondrial diseases and discuss potential molecular mechanisms behind the reversibility. Understanding these mechanisms may provide the key to treatments of potential broader relevance in mitochondrial disease, where for the majority of the patients no effective treatment is currently available.

  16. Reversible Self-Actuated Thermo-Responsive Pore Membrane

    PubMed Central

    Park, Younggeun; Gutierrez, Maria Paz; Lee, Luke P.

    2016-01-01

    Smart membranes, which can selectively control the transfer of light, air, humidity and temperature, are important to achieve indoor climate regulation. Even though reversible self-actuation of smart membranes is desirable in large-scale, reversible self-regulation remains challenging. Specifically, reversible 100% opening/closing of pore actuation showing accurate responsiveness, reproducibility and structural flexibility, including uniform structure assembly, is currently very difficult. Here, we report a reversible, thermo-responsive self-activated pore membrane that achieves opening and closing of pores. The reversible, self-actuated thermo-responsive pore membrane was fabricated with hybrid materials of poly (N-isopropylacrylamide), (PNIPAM) within polytetrafluoroethylene (PTFE) to form a multi-dimensional pore array. Using Multiphysics simulation of heat transfer and structural mechanics based on finite element analysis, we demonstrated that pore opening and closing dynamics can be self-activated at environmentally relevant temperatures. Temperature cycle characterizations of the pore structure revealed 100% opening ratio at T = 40 °C and 0% opening ratio at T = 20 °C. The flexibility of the membrane showed an accurate temperature-responsive function at a maximum bending angle of 45°. Addressing the importance of self-regulation, this reversible self-actuated thermo-responsive pore membrane will advance the development of future large-scale smart membranes needed for sustainable indoor climate control. PMID:27991563

  17. Reversible Self-Actuated Thermo-Responsive Pore Membrane

    NASA Astrophysics Data System (ADS)

    Park, Younggeun; Gutierrez, Maria Paz; Lee, Luke P.

    2016-12-01

    Smart membranes, which can selectively control the transfer of light, air, humidity and temperature, are important to achieve indoor climate regulation. Even though reversible self-actuation of smart membranes is desirable in large-scale, reversible self-regulation remains challenging. Specifically, reversible 100% opening/closing of pore actuation showing accurate responsiveness, reproducibility and structural flexibility, including uniform structure assembly, is currently very difficult. Here, we report a reversible, thermo-responsive self-activated pore membrane that achieves opening and closing of pores. The reversible, self-actuated thermo-responsive pore membrane was fabricated with hybrid materials of poly (N-isopropylacrylamide), (PNIPAM) within polytetrafluoroethylene (PTFE) to form a multi-dimensional pore array. Using Multiphysics simulation of heat transfer and structural mechanics based on finite element analysis, we demonstrated that pore opening and closing dynamics can be self-activated at environmentally relevant temperatures. Temperature cycle characterizations of the pore structure revealed 100% opening ratio at T = 40 °C and 0% opening ratio at T = 20 °C. The flexibility of the membrane showed an accurate temperature-responsive function at a maximum bending angle of 45°. Addressing the importance of self-regulation, this reversible self-actuated thermo-responsive pore membrane will advance the development of future large-scale smart membranes needed for sustainable indoor climate control.

  18. Ancient Magnetic Reversals: Clues to the Geodynamo.

    ERIC Educational Resources Information Center

    Hoffman, Kenneth A.

    1988-01-01

    Discusses the question posed by some that the earth's magnetic field may reverse. States that rocks magnetized by ancient fields may offer clues to the underlying reversal mechanism in the earth's core. (TW)

  19. NMDA Receptor Antagonism Impairs Reversal Learning in Developing Rats

    PubMed Central

    Chadman, Kathryn K.; Watson, Deborah J.; Stanton, Mark E.

    2014-01-01

    Four experiments examined the effect of dizocilpine maleate (MK-801), a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, on reversal learning during development. On postnatal days (PND) 21, 26, or 30, rats were trained on spatial discrimination and reversal in a T-maze. When MK-801 was administered (intraperitoneally) before both acquisition and reversal, 0.18 mg/kg generally impaired performance, whereas doses of 0.06 mg/kg and 0.10 mg/kg, but not 0.03 mg/kg, selectively impaired reversal learning (Experiments 1 and 3). The selective effect on reversal was not a result of sensitization to the second dose of MK-801 (Experiment 2) and was observed when the drug was administered only during reversal in an experiment addressing state-dependent learning (Experiment 4). Spatial reversal learning is more sensitive to NMDA-receptor antagonism than is acquisition. No age differences in sensitivity to MK-801 were found between PND 21 and 30. PMID:17014258

  20. Reverse traffic: intersecting inequalities in human egg donation.

    PubMed

    Nahman, Michal

    2011-11-01

    The paper examines a case of cross-border reproductive care that happens in reverse by looking at Israeli--Romanian transnational ova traffic. The state of Israel claims to have the most IVF clinics per capita in the world, some of the highest success rates in the use of assisted reproductive technology, very liberal regulation of these technologies and the most heavily subsidized IVF in the world. This support and the government's demographic policies are designed to encourage the growth of the Jewish population in its demographic race against Palestinians. Yet transnational egg donation is very costly and reimbursement to patients a slow and involved process. Hence, while transnational ova donation is increasing in Israel, only a few can afford to participate in this border crossing. Further, new laws are meant to forbid cross-religious donation in Israel, hardening the borders of the Jewish State. Romanian ova donors are part of the global majority, exploited by markets' incursions into new niches in bodies. The history of Romanian oppression of women's reproduction makes today's women willing to undergo invasive treatment for very little compensation, even when there is the possibility of injury. This paper documents reverse traffic reproduction, which maintains, rather than addresses, inequalities. Copyright © 2011 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  1. Effect of Humeral Component Version on Outcomes in Reverse Shoulder Arthroplasty.

    PubMed

    Aleem, Alexander W; Feeley, Brian T; Austin, Luke S; Ma, C Benjamin; Krupp, Ryan J; Ramsey, Matthew L; Getz, Charles L

    2017-05-01

    Although reverse shoulder arthroplasty provides excellent clinical results in appropriately selected patients, loss of external and internal rotation may occur. Component selection, design, and placement affect postoperative results. Recent studies considered the effect of humeral component version on functional results. The current study investigated whether humeral stem retroversion affects the outcomes of reverse shoulder arthroplasty with a retrospective review of a multisurgeon, industry-sponsored, prospectively gathered database of a single reverse shoulder arthroplasty implant. All patients had at least 2-year follow-up. Clinical outcomes, including American Shoulder and Elbow Surgeons score, visual analog scale pain score, Short Form-12 Mental and Physical Component scores, range of motion, and internal rotation function, were compared between patients with humeral retroversion of 10° or less (group A) and those with humeral retroversion of 20° or greater (group B). Radiographic outcomes were compared. The analysis included 64 patients (group A, 29 patients; group B, 35 patients). No clinical or statistically significant difference was found in American Shoulder and Elbow Surgeons scores. Both groups showed statistical and clinical improvement vs preoperative scores, with group A averaging 77.8 and group B averaging 79.2 at final follow-up. No differences were found between groups in range of motion or ability to perform tasks that require shoulder internal rotation. Patients can expect good clinical improvement after reverse shoulder arthroplasty. No difference was found in clinical or radiologic outcomes based on humeral component retroversion. Despite the theoretical increase in external rotation when the humeral component is placed closer to native retroversion, the results did not show this effect. [Orthopedics. 2017; 40(3):179-186.]. Copyright 2017, SLACK Incorporated.

  2. Magnetic flux trapping during field reversal in the formation of a field-reversed configuration

    NASA Astrophysics Data System (ADS)

    Steinhauer, Loren C.

    1985-11-01

    The flow of plasma and magnetic flux toward a wall is examined in a slab geometry where the magnetic field is parallel to the wall. Magnetohydrodynamic (MHD) flow with a quasisteady approximation is assumed that reduces the problem to three coupled ordinary differential equations. The calculated behavior shows that a thin current sheath is established at the wall in which a variety of phenomena appear, including significant resistive heating and rapid deceleration of the plasma flow. The sheath physics determines the speed at which flux and plasma flow toward the wall. The model has been applied to the field-reversal phase of a field-reversed theta pinch, during which the reduced magnetic field near the wall drives an outward flow of plasma and magnetic flux. The analysis leads to approximate expressions for the instantaneous flow speed, the loss of magnetic flux during the field reversal phase, the integrated heat flow to the wall, and the highest possible magnetic flux retained after reversal. Predictions from this model are compared with previous time-dependent MHD calculations and with experimental results from the TRX-1 [Proceedings of the 4th Symposium on the Physics and Technology of Compact Toroids, 27-29 October 1981 (Lawrence Livermore National Laboratory, Livermore, CA, 1982), p. 61] and TRX-2 [Proceedings of the 6th U.S. Symposium on Compact Toroid Research, 20-23 February, 1984 (Princeton Plasma Physics Laboratory, Princeton, NJ, 1984), p. 154] experiments.

  3. Reversibility and stability of information processing systems

    NASA Technical Reports Server (NTRS)

    Zurek, W. H.

    1984-01-01

    Classical and quantum models of dynamically reversible computers are considered. Instabilities in the evolution of the classical 'billiard ball computer' are analyzed and shown to result in a one-bit increase of entropy per step of computation. 'Quantum spin computers', on the other hand, are not only microscopically, but also operationally reversible. Readoff of the output of quantum computation is shown not to interfere with this reversibility. Dissipation, while avoidable in principle, can be used in practice along with redundancy to prevent errors.

  4. Flux-trapping during the formation of field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Armstrong, W. T.; Harding, D. G.; Crawford, E. A.; Hoffman, A. L.

    1981-10-01

    Optimized trapping of bias flux during the early formation phases of a Field Reversed Configuration was studied experimentally on the field reversed theta pinch TRX-1. An annular z-pinch preionizer was employed to permit ionization at high values of initial reverse bias flux. Octopole barrier fields are pulsed during field reversal to minimize plasma/wall contact and associated loss of reverse flux. Also, second half cycle operation was examined in obtaining very high values of reverse flux. Flux loss is generally observed to be governed by resistive diffusion through a current sheath at the plasma boundary, rather than flux convection to the plasma boundary. Trapped reverse flux at the time of field reversal, as well as after the radial implosion, is observed to increase with the applied bias field. This increase is greatest, and in fact nearly linear with bias field, when barrier fields are employed. Barrier fields also appear to broaden the current sheath, which results in some flux loss and a less dynamic radial implosion. A general model and one dimensional simulation of flux loss is described and correlated with experimental results.

  5. Flow reversal power limit for the HFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Lap Y.; Tichler, P.R.

    The High Flux Beam Reactor (HFBR) undergoes a buoyancy-driven reversal of flow in the reactor core following certain postulated accidents. Uncertainties about the afterheat removal capability during the flow reversal has limited the reactor operating power to 30 MW. An experimental and analytical program to address these uncertainties is described in this report. The experiments were single channel flow reversal tests under a range of conditions. The analytical phase involved simulations of the tests to benchmark the physical models and development of a criterion for dryout. The criterion is then used in simulations of reactor accidents to determine a safemore » operating power level. It is concluded that the limit on the HFBR operating power with respect to the issue of flow reversal is in excess of 60 MW.« less

  6. Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2

    NASA Astrophysics Data System (ADS)

    Koketsu, Toshinari; Ma, Jiwei; Morgan, Benjamin J.; Body, Monique; Legein, Christophe; Dachraoui, Walid; Giannini, Mattia; Demortière, Arnaud; Salanne, Mathieu; Dardoize, François; Groult, Henri; Borkiewicz, Olaf J.; Chapman, Karena W.; Strasser, Peter; Dambournet, Damien

    2017-11-01

    In contrast to monovalent lithium or sodium ions, the reversible insertion of multivalent ions such as Mg2+ and Al3+ into electrode materials remains an elusive goal. Here, we demonstrate a new strategy to achieve reversible Mg2+ and Al3+ insertion in anatase TiO2, achieved through aliovalent doping, to introduce a large number of titanium vacancies that act as intercalation sites. We present a broad range of experimental and theoretical characterizations that show a preferential insertion of multivalent ions into titanium vacancies, allowing a much greater capacity to be obtained compared to pure TiO2. This result highlights the possibility to use the chemistry of defects to unlock the electrochemical activity of known materials, providing a new strategy for the chemical design of materials for practical multivalent batteries.

  7. Pattern-reversal electroretinograms in unilateral glaucoma.

    PubMed

    Wanger, P; Persson, H E

    1983-06-01

    Pattern-reversal and flash electroretinograms (ERG) and oscillatory potentials (OP) were recorded from 11 patients with unilateral glaucoma. All glaucomatous eyes had reduced amplitudes both compared to the opposite eye in the same patient and to reference values. In 10 of the 11 cases this reduction was below the level of normal variation. The difference in pattern-reversal ERG amplitude means from glaucomatous and opposite eyes was statistically significant. No differences were observed in flash ERGs or OPs. The histopathologic correlate to the visual field defects in glaucoma is retinal ganglion cell degeneration. The present electrophysiologic findings support the view, based on results from animal experiments, that the pattern-reversal ERG reflects ganglion cell activity.

  8. Synthesis, structure-activity relationship and molecular docking of cyclohexenone based analogous as potent non-nucleoside reverse-transcriptase inhibitors

    NASA Astrophysics Data System (ADS)

    Nazar, Muhammad Faizan; Abdullah, Muhammad Imran; Badshah, Amir; Mahmood, Asif; Rana, Usman Ali; Khan, Salah Ud-Din

    2015-04-01

    The chalcones core in compounds is advantageously chosen effective synthons, which offer exciting perspectives in biological and pharmacological research. The present study reports the successful development of eight new cyclohexenone based anti-reverse transcriptase analogous using rational drug design synthesis principles. These new cyclohexenone derivatives (CDs) were synthesized by following a convenient route of Robinson annulation, and the molecular structure of these CDs were later confirmed by various analytical techniques such as 1H NMR, 13C NMR, FT-IR, UV-Vis spectroscopy and mass spectrometry. All the synthesized compounds were screened theoretically and experimentally against reverse transcriptase (RT) and found potentially active reverse transcriptase (RT) inhibitors. Of the compounds studied, the compound 2FC4 showed high interaction with RT at non-nucleoside binding site, contributing high free binding energy (ΔG -8.01 Kcal) and IC50 (0.207 μg/ml), respectively. Further results revealed that the compounds bearing more halogen groups, with additional hydrophobic character, offered superior anti-reverse transcriptase activity as compared to rest of compounds. It is anticipate that the present study would be very useful for the selection of potential reverse transcriptase inhibitors featuring inclusive pharmacological profiles.

  9. Analysis of the flow field generated near an aircraft engine operating in reverse thrust. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Ledwith, W. A., Jr.

    1972-01-01

    A computer solution is developed to the exhaust gas reingestion problem for aircraft operating in the reverse thrust mode on a crosswind-free runway. The computer program determines the location of the inlet flow pattern, whether the exhaust efflux lies within the inlet flow pattern or not, and if so, the approximate time before the reversed flow reaches the engine inlet. The program is written so that the user is free to select discrete runway speeds or to study the entire aircraft deceleration process for both the far field and cross-ingestion problems. While developed with STOL applications in mind, the solution is equally applicable to conventional designs. The inlet and reversed jet flow fields involved in the problem are assumed to be noninteracting. The nacelle model used in determining the inlet flow field is generated using an iterative solution to the Neuman problem from potential flow theory while the reversed jet flow field is adapted using an empirical correlation from the literature. Sample results obtained using the program are included.

  10. Role-Reversal Exercise with Deaf Strong Hospital to Teach Communication Competency and Cultural Awareness

    PubMed Central

    Parkhill, Amy L.; Schlehofer, Deirdre A.; Starr, Matthew J.; Barnett, Steven

    2011-01-01

    Objective To implement a role-reversal exercise to increase first-year pharmacy students' awareness of communication barriers in the health care setting, especially for deaf and hard-of-hearing patients. Design Volunteers from the local deaf community conducted Deaf Strong Hospital, a role-reversal exercise in which students were the “patients.” Students navigated through a reception area, encounter with a physician, and having a prescription filled at a pharmacy without receiving or using any spoken language. Assessment A debriefing session was held in which small groups of students had the opportunity to ask questions of a panel of deaf and hard-of-hearing volunteers. On a survey administered to assess students' learning, 97% agreed or strongly agreed that the experience would likely impact their attitudes and behavior in future interactions with patients who did not speak English. Conclusions The role-reversal exercise was an effective method of teaching students that the delivery of health care is dependent on adequate communication between health care providers and the patient. PMID:21655407

  11. A Food Chain Algorithm for Capacitated Vehicle Routing Problem with Recycling in Reverse Logistics

    NASA Astrophysics Data System (ADS)

    Song, Qiang; Gao, Xuexia; Santos, Emmanuel T.

    2015-12-01

    This paper introduces the capacitated vehicle routing problem with recycling in reverse logistics, and designs a food chain algorithm for it. Some illustrative examples are selected to conduct simulation and comparison. Numerical results show that the performance of the food chain algorithm is better than the genetic algorithm, particle swarm optimization as well as quantum evolutionary algorithm.

  12. Reversing Africa's Decline. Worldwatch Paper 65.

    ERIC Educational Resources Information Center

    Brown, Lester R.; Wolf, Edward C.

    This paper highlights some of the themes that any successful strategy to reverse the decline of Africa must embrace. Africa is a continent experiencing a breakdown in the relationship between people and their natural support systems. Famine and the threat of famine are among the manifestations of this breakdown. This decline can be reversed. To do…

  13. Spatial reversal learning in preclinical scrapie-inoculated mice.

    PubMed

    Lysons, A M; Woollard, S J

    1996-04-10

    Acquisition and reversal of a two-choice spatial discrimination were tested in scrapie-inoculated mice. Both acquisition and reversal were normal in mice tested 138 and 103 days prior to the onset of clinical symptoms. At 65 days before onset of clinical symptoms, scrapie-inoculated mice required more trails to criterion in reversal learning, but this effect was not significant in a second experiment (68 days preclinical) and was transient: no effect was seen 33 days before symptoms. However, the course of reversal learning was abnormal in all three late preclinical groups (68, 65 and 33 days before symptoms). Reversal learning in these three groups was characterized by a rapid extinction of the original discrimination, followed by a period, absent in controls, during which performance showed no further improvement. This effect corresponds in time of onset to the appearance of characteristic neuropathological features.

  14. Accurate reconstruction of discontinuous mandible using a reverse engineering/computer-aided design/rapid prototyping technique: a preliminary clinical study.

    PubMed

    Zhou, Li-bin; Shang, Hong-tao; He, Li-sheng; Bo, Bin; Liu, Gui-cai; Liu, Yan-pu; Zhao, Jin-long

    2010-09-01

    To improve the reconstructive surgical outcome of a discontinuous mandibular defect, we used reverse engineering (RE), computer-aided design (CAD), and rapid prototyping (RP) technique to fabricate customized mandibular trays to precisely restore the mandibular defects. Autogenous bone grafting was also used to restore the bony continuity for occlusion rehabilitation. Six patients who had undergone block resection of the mandible underwent reconstruction using a custom titanium tray combining autogenous iliac grafts. The custom titanium tray was made using a RE/CAD/RP technique. A virtual 3-dimensional model was obtained by spiral computed tomography scanning. The opposite side of the mandible was mirrored to cover the defect area to restore excellent facial symmetry. A bone grafting tray was designed from the mirrored image and manufactured using RP processing and casting. The mandibular defects were restored using the trays in combination of autologous iliac grafting. An implant denture was made for 1 of the 6 patients at 24 weeks postoperatively for occlusion rehabilitation. The trays fabricated using this technique fit well in all 6 patients. The reconstructive procedures were easy and time saving. Satisfactory facial symmetry was restored. No severe complications occurred in the 5 patients without occlusion rehabilitation during a mean 50-month follow-up period. The reconstruction in the patient with occlusion lasted for only 1 year and failed eventually because of bone resorption and infection. Mandibular reconstruction was facilitated using the RE/CAD/RP technique. Satisfactory esthetic results were achieved. However, the rigidity of the cast tray could cause severe stress shielding to the grafts, which could lead to disuse atrophy. Therefore, some modification is needed for functional reconstruction. Copyright 2010 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  15. Is inhibitory control involved in discriminating pseudowords that contain the reversible letters b and d?

    PubMed

    Brault Foisy, Lorie-Marlène; Ahr, Emmanuel; Masson, Steve; Houdé, Olivier; Borst, Grégoire

    2017-10-01

    Children tend to confuse reversible letters such as b and d when they start learning to read. According to some authors, mirror errors are a consequence of the mirror generalization (MG) process that allows one to recognize objects independently of their left-right orientation. Although MG is advantageous for the visual recognition of objects, it is detrimental for the visual recognition of reversible letters. Previous studies comparing novice and expert readers demonstrated that MG must be inhibited to discriminate reversible single letters. In this study, we investigated whether MG must also be inhibited by novice readers to discriminate between two pseudowords containing reversible letters. Readable pseudowords, rather than words, were used to mimic early non-automatic stages of reading when reading is achieved by decoding words through grapheme-phoneme pairing and combination. We designed a negative priming paradigm in which school-aged children (10-year-olds) were asked to judge whether two pseudowords were identical on the prime and whether two animals were identical on the probe. Children required more time to determine that two animals were mirror images of each other when preceded by pseudowords containing the reversible letter b or d than when preceded by different pseudowords containing the control letter f or t (Experiment 1) or by different pseudowords that differed only by the target letter f or k (Experiment 2). These results suggest that MG must be inhibited to discriminate between pseudowords containing reversible letters, generalizing the findings regarding single letters to a context more representative of the early stages of reading. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Variable neighborhood search for reverse engineering of gene regulatory networks.

    PubMed

    Nicholson, Charles; Goodwin, Leslie; Clark, Corey

    2017-01-01

    A new search heuristic, Divided Neighborhood Exploration Search, designed to be used with inference algorithms such as Bayesian networks to improve on the reverse engineering of gene regulatory networks is presented. The approach systematically moves through the search space to find topologies representative of gene regulatory networks that are more likely to explain microarray data. In empirical testing it is demonstrated that the novel method is superior to the widely employed greedy search techniques in both the quality of the inferred networks and computational time. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Performance of a low-pressure fan stage with reverse flow

    NASA Technical Reports Server (NTRS)

    Moore, R. D.; Lewis, G. W., Jr.; Tysl, E. R.

    1976-01-01

    The reverse flow aerodynamic performance of a 51-centimeter-diameter fan stage is presented. The stage was tested with the variable pitch rotor blades set through feather at -75 deg, -80 deg, and -85 deg from design setting angle. Of the three tested the stage with the rotor blades set at -75 deg exhibited the highest pressure ratio and highest flow. For all three configurations, there was little or no flow in the inner third of the exit passage due to the rotor blade being almost perpendicular to the axial direction in the hub region.

  18. Reverse current in solar flares

    NASA Technical Reports Server (NTRS)

    Knight, J. W.; Sturrock, P. A.

    1977-01-01

    We examine the proposal that impulsive X-ray bursts are produced by high-energy electrons streaming from the corona to the chromosphere. It is known that the currents associated with these streams are so high that either the streams do not exist or their current is neutralized by a reverse current. Analysis of a simple model in which the reverse current is stable indicates that the primary electron stream leads to the development of an electric field in the ambient corona which (a) decelerates the primary beam and (b) produces a neutralizing reverse current. It appears that, in some circumstances, this electric field could prevent the primary beam from reaching the chromosphere. In any case, the electric field acts as an energy exchange mechanism, extracting kinetic energy from the primary beam and using it to heat the ambient plasma. This heating is typically so rapid that it must be expected to have important dynamical consequences.

  19. Reverse Transfection Using Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Yamada, Shigeru; Fujita, Satoshi; Uchimura, Eiichiro; Miyake, Masato; Miyake, Jun

    Reverse transfection from a solid surface has the potential to deliver genes into various types of cell and tissue more effectively than conventional methods of transfection. We present a method for reverse transfection using a gold colloid (GC) as a nanoscaffold by generating nanoclusters of the DNA/reagentcomplex on a glass surface, which could then be used for the regulation of the particle size of the complex and delivery of DNA into nuclei. With this method, we have found that the conjugation of gold nanoparticles (20 nm in particle size) to the pEGFP-N1/Jet-PEI complex resulted in an increase in the intensity of fluorescence of enhanced green fluorescent protein (EGFP) (based on the efficiency of transfection) from human mesenchymal stem cells (hMSCs), as compared with the control without GC. In this manner, we constructed a method for reverse transfection using GC to deliver genes into the cells effectively.

  20. Cycle Design of Reverse Brayton Cryocooler for HTS Cable Cooling Using Exergy Analysis

    NASA Astrophysics Data System (ADS)

    Gupta, Sudeep Kumar; Ghosh, Parthasarathi

    2017-02-01

    The reliability and price of cryogenic refrigeration play an important role in the successful commercialization of High Temperature Superconducting (HTS) cables. For cooling HTS cable, sub-cooled liquid nitrogen (LN2) circulation system is used. One of the options to maintain LN2 in its sub-cooled state is by providing refrigeration with the help of Reverse Brayton Cryo-cooler (RBC). The refrigeration requirement is 10 kW for continuously sub-cooling LN2 from 72 K to 65 K for cooling 1 km length of HTS cable [1]. In this paper, a parametric evaluation of RBC for sub-cooling LN2 has been performed using helium as a process fluid. Exergy approach has been adopted for this analysis. A commercial process simulator, Aspen HYSYS® V8.6 has been used for this purpose. The critical components have been identified and their exergy destruction and exergy efficiency have been obtained for a given heat load condition.

  1. Neural Correlates of Letter Reversal in Children and Adults

    PubMed Central

    Kalra, Priya; Yee, Debbie; Sinha, Pawan; Gabrieli, John D. E.

    2014-01-01

    Children often make letter reversal errors when first learning to read and write, even for letters whose reversed forms do not appear in normal print. However, the brain basis of such letter reversal in children learning to read is unknown. The present study compared the neuroanatomical correlates (via functional magnetic resonance imaging) and the electrophysiological correlates (via event-related potentials or ERPs) of this phenomenon in children, ages 5–12, relative to young adults. When viewing reversed letters relative to typically oriented letters, adults exhibited widespread occipital, parietal, and temporal lobe activations, including activation in the functionally localized visual word form area (VWFA) in left occipito-temporal cortex. Adults exhibited significantly greater activation than children in all of these regions; children only exhibited such activation in a limited frontal region. Similarly, on the P1 and N170 ERP components, adults exhibited significantly greater differences between typical and reversed letters than children, who failed to exhibit significant differences between typical and reversed letters. These findings indicate that adults distinguish typical and reversed letters in the early stages of specialized brain processing of print, but that children do not recognize this distinction during the early stages of processing. Specialized brain processes responsible for early stages of letter perception that distinguish between typical and reversed letters may develop slowly and remain immature even in older children who no longer produce letter reversals in their writing. PMID:24859328

  2. From Loschmidt daemons to time-reversed waves.

    PubMed

    Fink, Mathias

    2016-06-13

    Time-reversal invariance can be exploited in wave physics to control wave propagation in complex media. Because time and space play a similar role in wave propagation, time-reversed waves can be obtained by manipulating spatial boundaries or by manipulating time boundaries. The two dual approaches will be discussed in this paper. The first approach uses 'time-reversal mirrors' with a wave manipulation along a spatial boundary sampled by a finite number of antennas. Related to this method, the role of the spatio-temporal degrees of freedom of the wavefield will be emphasized. In a second approach, waves are manipulated from a time boundary and we show that 'instantaneous time mirrors', mimicking the Loschmidt point of view, simultaneously acting in the entire space at once can also radiate time-reversed waves. © 2016 The Author(s).

  3. Novel 5-oxo-hexahydroquinoline derivatives: design, synthesis, in vitro P-glycoprotein-mediated multidrug resistance reversal profile and molecular dynamics simulation study

    PubMed Central

    Shahraki, Omolbanin; Edraki, Najmeh; Khoshneviszadeh, Mehdi; Zargari, Farshid; Ranjbar, Sara; Saso, Luciano; Firuzi, Omidreza; Miri, Ramin

    2017-01-01

    Overexpression of the efflux pump P-glycoprotein (P-gp) is one of the important mechanisms of multidrug resistance (MDR) in many tumor cells. In this study, 26 novel 5-oxo-hexahydroquinoline derivatives containing different nitrophenyl moieties at C4 and various carboxamide substituents at C3 were designed, synthesized and evaluated for their ability to inhibit P-gp by measuring the amount of rhodamine 123 (Rh123) accumulation in uterine sarcoma cells that overexpress P-gp (MES-SA/Dx5) using flow cytometry. The effect of compounds with highest MDR reversal activities was further evaluated by measuring the alterations of MES-SA/Dx5 cells’ sensitivity to doxorubicin (DXR) using MTT assay. The results of both biological assays indicated that compounds bearing 2-nitrophenyl at C4 position and compounds with 4-chlorophenyl carboxamide at C3 demonstrated the highest activities in resistant cells, while they were devoid of any effect in parental nonresistant MES-SA cells. One of the active derivatives, 5c, significantly increased intracellular Rh123 at 100 µM, and it also significantly reduced the IC50 of DXR by 70.1% and 88.7% at 10 and 25 µM, respectively, in MES-SA/Dx5 cells. The toxicity of synthesized compounds against HEK293 as a noncancer cell line was also investigated. All tested derivatives except for 2c compound showed no cytotoxicity. A molecular dynamics simulation study was also performed to investigate the possible binding site of 5c in complex with human P-gp, which showed that this compound formed 11 average H-bonds with Ser909, Thr911, Arg547, Arg543 and Ser474 residues of P-gp. A good agreement was found between the results of the computational and experimental studies. The findings of this study show that some 5-oxo-hexahydroquinoline derivatives could serve as promising candidates for the discovery of new agents for P-gp-mediated MDR reversal. PMID:28243063

  4. Reversal of Diabetic Nephropathy by a Ketogenic Diet

    PubMed Central

    Poplawski, Michal M.; Mastaitis, Jason W.; Isoda, Fumiko; Grosjean, Fabrizio; Zheng, Feng; Mobbs, Charles V.

    2011-01-01

    Intensive insulin therapy and protein restriction delay the development of nephropathy in a variety of conditions, but few interventions are known to reverse nephropathy. Having recently observed that the ketone 3-beta-hydroxybutyric acid (3-OHB) reduces molecular responses to glucose, we hypothesized that a ketogenic diet, which produces prolonged elevation of 3-OHB, may reverse pathological processes caused by diabetes. To address this hypothesis, we assessed if prolonged maintenance on a ketogenic diet would reverse nephropathy produced by diabetes. In mouse models for both Type 1 (Akita) and Type 2 (db/db) diabetes, diabetic nephropathy (as indicated by albuminuria) was allowed to develop, then half the mice were switched to a ketogenic diet. After 8 weeks on the diet, mice were sacrificed to assess gene expression and histology. Diabetic nephropathy, as indicated by albumin/creatinine ratios as well as expression of stress-induced genes, was completely reversed by 2 months maintenance on a ketogenic diet. However, histological evidence of nephropathy was only partly reversed. These studies demonstrate that diabetic nephropathy can be reversed by a relatively simple dietary intervention. Whether reduced glucose metabolism mediates the protective effects of the ketogenic diet remains to be determined. PMID:21533091

  5. Marburg Virus Reverse Genetics Systems.

    PubMed

    Schmidt, Kristina Maria; Mühlberger, Elke

    2016-06-22

    The highly pathogenic Marburg virus (MARV) is a member of the Filoviridae family and belongs to the group of nonsegmented negative-strand RNA viruses. Reverse genetics systems established for MARV have been used to study various aspects of the viral replication cycle, analyze host responses, image viral infection, and screen for antivirals. This article provides an overview of the currently established MARV reverse genetic systems based on minigenomes, infectious virus-like particles and full-length clones, and the research that has been conducted using these systems.

  6. Analysis of Ten Reverse Engineering Tools

    NASA Astrophysics Data System (ADS)

    Koskinen, Jussi; Lehmonen, Tero

    Reverse engineering tools can be used in satisfying the information needs of software maintainers. Especially in case of maintaining large-scale legacy systems tool support is essential. Reverse engineering tools provide various kinds of capabilities to provide the needed information to the tool user. In this paper we analyze the provided capabilities in terms of four aspects: provided data structures, visualization mechanisms, information request specification mechanisms, and navigation features. We provide a compact analysis of ten representative reverse engineering tools for supporting C, C++ or Java: Eclipse Java Development Tools, Wind River Workbench (for C and C++), Understand (for C++), Imagix 4D, Creole, Javadoc, Javasrc, Source Navigator, Doxygen, and HyperSoft. The results of the study supplement the earlier findings in this important area.

  7. Investigation into reversion of polyurethane encapsulants

    NASA Technical Reports Server (NTRS)

    Lynch, C. R.

    1973-01-01

    The effect of high humidity (95% RH) at 60 C, 70 C, 85 C and 100 C on the solid-to-liquid reversion of polyurethane elastomers (used for potting electrical connectors and conformal coating printed circuit boards) was investigated. Hardness measurements were conducted on eleven elastomers to track reversion for a 101-day period. The primary purpose of the tests was to provide data to predict service life for the polyurethane elastomers. This was not accomplished as the hardness did not deteriorate rapidly enough at the lower test temperatures. The tests did determine that the potting and coating materials most widely used on the S-1C Program are susceptible to reversion but appear adequate for service in the S-1C environment.

  8. The mechano-chemistry of a monomeric reverse transcriptase

    PubMed Central

    Malik, Omri; Khamis, Hadeel; Rudnizky, Sergei

    2017-01-01

    Abstract Retroviral reverse transcriptase catalyses the synthesis of an integration-competent dsDNA molecule, using as a substrate the viral RNA. Using optical tweezers, we follow the Murine Leukemia Virus reverse transcriptase as it performs strand-displacement polymerization on a template under mechanical force. Our results indicate that reverse transcriptase functions as a Brownian ratchet, with dNTP binding as the rectifying reaction of the ratchet. We also found that reverse transcriptase is a relatively passive enzyme, able to polymerize on structured templates by exploiting their thermal breathing. Finally, our results indicate that the enzyme enters the recently characterized backtracking state from the pre-translocation complex. PMID:29165701

  9. Blade Sections in Streamwise Oscillations into Reverse Flow

    DTIC Science & Technology

    2015-05-07

    NC 27709-2211 Reverse Flow, Oscillating Airfoils , Oscillating Freesteam REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR...plate or bluff body rather than an airfoil . Reverse flow operation requires investigation and quantification to accurately capture these Submitted for... airfoil integrated quantities (lift, drag, moment) in reverse flow and developed new algorithms for comprehensive codes, reducing errors from 30 %–50

  10. Rapid and reliable diagnostic method to detect Zika virus by real-time fluorescence reverse transcription loop-mediated isothermal amplification.

    PubMed

    Guo, Xu-Guang; Zhou, Yong-Zhuo; Li, Qin; Wang, Wei; Wen, Jin-Zhou; Zheng, Lei; Wang, Qian

    2018-04-18

    To detect Zika virus more rapidly and accurately, we developed a novel method that utilized a real-time fluorescence reverse transcription loop-mediated isothermal amplification (LAMP) technique. The NS5 gene was amplified by a set of six specific primers that recognized six distinct sequences. The amplification process, including 60 min of thermostatic reaction with Bst DNA polymerase following real-time fluorescence reverse transcriptase using genomic Zika virus standard strain (MR766), was conducted through fluorescent signaling. Among the six pairs of primers that we designate here, NS5 was the most efficient with a high sensitivity of up to 3.3 ng/μl and reproducible specificity on eight pathogen samples that were used as negative controls. The real-time fluorescence reverse transcription LAMP detection process can be completed within 35 min. Our study demonstrated that real-time fluorescence reverse transcription LAMP could be highly beneficial and convenient clinical application to detect Zika virus due to its high specificity and stability.

  11. Self-assembled air-stable magnesium hydride embedded in 3-D activated carbon for reversible hydrogen storage.

    PubMed

    Shinde, S S; Kim, Dong-Hyung; Yu, Jin-Young; Lee, Jung-Ho

    2017-06-01

    The rational design of stable, inexpensive catalysts with excellent hydrogen dynamics and sorption characteristics under realistic environments for reversible hydrogen storage remains a great challenge. Here, we present a simple and scalable strategy to fabricate a monodispersed, air-stable, magnesium hydride embedded in three-dimensional activated carbon with periodic synchronization of transition metals (MHCH). The high surface area, homogeneous distribution of MgH 2 nanoparticles, excellent thermal stability, high energy density, steric confinement by carbon, and robust architecture of the catalyst resulted in a noticeable enhancement of the hydrogen storage performance. The resulting MHCH-5 exhibited outstanding hydrogen storage performance, better than that of most reported Mg-based hydrides, with a high storage density of 6.63 wt% H 2 , a rapid kinetics loading in <5 min at 180 °C, superior reversibility, and excellent long-term cycling stability over ∼435 h. The significant reduction of the enthalpy and activation energy observed in the MHCH-5 demonstrated enhancement of the kinetics of de-/hydrogenation compared to that of commercial MgH 2 . The origin of the intrinsic hydrogen thermodynamics was elucidated via solid state 1 H NMR. This work presents a readily scaled-up strategy towards the design of realistic catalysts with superior functionality and stability for applications in reversible hydrogen storage, lithium ion batteries, and fuel cells.

  12. Reversing the similarity effect: The effect of presentation format.

    PubMed

    Cataldo, Andrea M; Cohen, Andrew L

    2018-06-01

    A context effect is a change in preference that occurs when alternatives are added to a choice set. Models of preferential choice that account for context effects largely assume a within-dimension comparison process. It has been shown, however, that the format in which a choice set is presented can influence comparison strategies. That is, a by-alternative or by-dimension grouping of the dimension values encourage within-alternative or within-dimension comparisons, respectively. For example, one classic context effect, the compromise effect, is strengthened by a by-dimension presentation format. Extrapolation from this result suggests that a second context effect, the similarity effect, will actually reverse when stimuli are presented in a by-dimension format. In the current study, we presented participants with a series of apartment choice sets designed to elicit the similarity effect, with either a by-alternative or by-dimension presentation format. Participants in the by-alternative condition demonstrated a standard similarity effect; however, participants in the by-dimension condition demonstrated a strong reverse similarity effect. The present data can be accounted for by Multialternative Decision Field Theory (MDFT) and the Multiattribute Linear Ballistic Accumulator (MLBA), but not Elimination by Aspects (EBA). Indeed, when some weak assumptions of within-dimension processes are met, MDFT and the MLBA predict the reverse similarity effect. These modeling results suggest that the similarity effect is governed by either forgetting and inhibition (MDFT), or attention to positive or negative differences (MLBA). These results demonstrate that flexibility in the comparison process needs to be incorporated into theories of preferential choice. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. A model for 'reverse innovation' in health care.

    PubMed

    Depasse, Jacqueline W; Lee, Patrick T

    2013-08-30

    'Reverse innovation,' a principle well established in the business world, describes the flow of ideas from emerging to more developed economies. There is strong and growing interest in applying this concept to health care, yet there is currently no framework for describing the stages of reverse innovation or identifying opportunities to accelerate the development process. This paper combines the business concept of reverse innovation with diffusion of innovation theory to propose a model for reverse innovation as a way to innovate in health care. Our model includes the following steps: (1) identifying a problem common to lower- and higher-income countries; (2) innovation and spread in the low-income country (LIC); (3) crossover to the higher-income country (HIC); and (4) innovation and spread in the HIC. The crucial populations in this pathway, drawing from diffusion of innovation theory, are LIC innovators, LIC early adopters, and HIC innovators. We illustrate the model with three examples of current reverse innovations. We then propose four sets of specific actions that forward-looking policymakers, entrepreneurs, health system leaders, and researchers may take to accelerate the movement of promising solutions through the reverse innovation pipeline: (1) identify high-priority problems shared by HICs and LICs; (2) create slack for change, especially for LIC innovators, LIC early adopters, and HIC innovators; (3) create spannable social distances between LIC early adopters and HIC innovators; and (4) measure reverse innovation activity globally.

  14. Reverse thrust performance of the QCSEE variable pitch turbofan engine

    NASA Technical Reports Server (NTRS)

    Samanich, N. E.; Reemsnyder, D. C.; Blodmer, H. E.

    1980-01-01

    Results of steady state reverse and forward to reverse thrust transient performance tests are presented. The original quiet, clean, short haul, experimental engine four segment variable fan nozzle was retested in reverse and compared with a continuous, 30 deg half angle conical exlet. Data indicated that the significantly more stable, higher pressure recovery flow with the fixed 30 deg exlet resulted in lower engine vibrations, lower fan blade stress, and approximately a 20 percent improvement in reverse thrust. Objective reverse thrust of 35 percent of takeoff thrust was reached. Thrust response of less than 1.5 sec was achieved for the approach and the takeoff to reverse thrust transients.

  15. The reverse laser drilling of transparent materials

    NASA Technical Reports Server (NTRS)

    Anthony, T. R.; Lindner, P. A.

    1980-01-01

    Within a limited range of incident laser-beam intensities, laser drilling of a sapphire wafer initiates on the surface of the wafer where the laser beam exits and proceeds upstream in the laser beam to the surface where the laser beam enters the wafer. This reverse laser drilling is the result of the constructive interference between the laser beam and its reflected component on the exit face of the wafer. Constructive interference occurs only at the exit face of the sapphire wafer because the internally reflected laser beam suffers no phase change there. A model describing reverse laser drilling predicts the ranges of incident laser-beam intensity where no drilling, reverse laser drilling, and forward laser drilling can be expected in various materials. The application of reverse laser drilling in fabricating feed-through conductors in silicon-on-sapphire wafers for a massively parallel processer is described.

  16. Medical abortion reversal: science and politics meet.

    PubMed

    Bhatti, Khadijah Z; Nguyen, Antoinette T; Stuart, Gretchen S

    2018-03-01

    Medical abortion is a safe, effective, and acceptable option for patients seeking an early nonsurgical abortion. In 2014, medical abortion accounted for nearly one third (31%) of all abortions performed in the United States. State-level attempts to restrict reproductive and sexual health have recently included bills that require physicians to inform women that a medical abortion is reversible. In this commentary, we will review the history, current evidence-based regimen, and regulation of medical abortion. We will then examine current proposed and existing abortion reversal legislation. The objective of this commentary is to ensure physicians are armed with rigorous evidence to inform patients, communities, and policy makers about the safety of medical abortion. Furthermore, given the current paucity of evidence for medical abortion reversal, physicians and policy makers can dispel bad science and misinformation and advocate against medical abortion reversal legislation. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Bony increased-offset reversed shoulder arthroplasty: minimizing scapular impingement while maximizing glenoid fixation.

    PubMed

    Boileau, Pascal; Moineau, Grégory; Roussanne, Yannick; O'Shea, Kieran

    2011-09-01

    Scapular notching, prosthetic instability, limited shoulder rotation and loss of shoulder contour are associated with conventional medialized design reverse shoulder arthroplasty. Prosthetic (ie, metallic) lateralization increases torque at the baseplate-glenoid interface potentially leading to failure. We asked whether bony lateralization of reverse shoulder arthroplasty would avoid the problems caused by humeral medialization without increasing torque or shear force applied to the glenoid component. We prospectively followed 42 patients with rotator cuff deficiency treated with bony increased-offset reverse shoulder arthroplasty. A cylinder of autologous cancellous bone graft, harvested from the humeral head, was placed between the reamed glenoid surface and baseplate. Graft and baseplate fixation was achieved using a lengthened central peg (25 mm) and four screws. Patients underwent clinical, radiographic, and CT assessment at a minimum of 2 years after surgery. The humeral graft incorporated completely in 98% of cases (41 of 42) and partially in one. At a mean of 28 months postoperatively, no graft resorption, glenoid loosening, or postoperative instability was observed. Inferior scapular notching occurred in 19% (eight of 42). The absolute Constant-Murley score improved from 31 to 67. Thirty-six patients (86%) were able to internally rotate sufficiently to reach their back over the sacrum. Grafting of the glenoid surface during reverse shoulder arthroplasty effectively creates a long-necked scapula, providing the benefits of lateralization. Bony increased-offset reverse shoulder arthroplasty is associated with low rates of inferior scapular notching, improved shoulder rotation, no prosthetic instability and improved shoulder contour. In contrast to metallic lateralization, bony lateralization has the advantage of maintaining the prosthetic center of rotation at the prosthesis-bone interface, thus minimizing torque on the glenoid component. Level IV

  18. Dynamical similarity of geomagnetic field reversals.

    PubMed

    Valet, Jean-Pierre; Fournier, Alexandre; Courtillot, Vincent; Herrero-Bervera, Emilio

    2012-10-04

    No consensus has been reached so far on the properties of the geomagnetic field during reversals or on the main features that might reveal its dynamics. A main characteristic of the reversing field is a large decrease in the axial dipole and the dominant role of non-dipole components. Other features strongly depend on whether they are derived from sedimentary or volcanic records. Only thermal remanent magnetization of lava flows can capture faithful records of a rapidly varying non-dipole field, but, because of episodic volcanic activity, sequences of overlying flows yield incomplete records. Here we show that the ten most detailed volcanic records of reversals can be matched in a very satisfactory way, under the assumption of a common duration, revealing common dynamical characteristics. We infer that the reversal process has remained unchanged, with the same time constants and durations, at least since 180 million years ago. We propose that the reversing field is characterized by three successive phases: a precursory event, a 180° polarity switch and a rebound. The first and third phases reflect the emergence of the non-dipole field with large-amplitude secular variation. They are rarely both recorded at the same site owing to the rapidly changing field geometry and last for less than 2,500 years. The actual transit between the two polarities does not last longer than 1,000 years and might therefore result from mechanisms other than those governing normal secular variation. Such changes are too brief to be accurately recorded by most sediments.

  19. Marburg Virus Reverse Genetics Systems

    PubMed Central

    Schmidt, Kristina Maria; Mühlberger, Elke

    2016-01-01

    The highly pathogenic Marburg virus (MARV) is a member of the Filoviridae family and belongs to the group of nonsegmented negative-strand RNA viruses. Reverse genetics systems established for MARV have been used to study various aspects of the viral replication cycle, analyze host responses, image viral infection, and screen for antivirals. This article provides an overview of the currently established MARV reverse genetic systems based on minigenomes, infectious virus-like particles and full-length clones, and the research that has been conducted using these systems. PMID:27338448

  20. Asymmetry in Student Achievement on Multiple-Choice and Constructed-Response Items in Reversible Mathematics Processes

    ERIC Educational Resources Information Center

    Sangwin, Christopher J.; Jones, Ian

    2017-01-01

    In this paper we report the results of an experiment designed to test the hypothesis that when faced with a question involving the inverse direction of a reversible mathematical process, students solve a multiple-choice version by verifying the answers presented to them by the direct method, not by undertaking the actual inverse calculation.…

  1. Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koketsu, Toshinari; Ma, Jiwei; Morgan, Benjamin J.

    In contrast to monovalent lithium or sodium ions, the reversible insertion of multivalent ions such as Mg 2+ and Al 3+ into electrode materials remains an elusive goal. In this work, we demonstrate a new strategy to achieve reversible Mg 2+ and Al 3+ insertion in anatase TiO 2, achieved through aliovalent doping, to introduce a large number of titanium vacancies that act as intercalation sites. We present a broad range of experimental and theoretical characterizations that show a preferential insertion of multivalent ions into titanium vacancies, allowing a much greater capacity to be obtained compared to pure TiO 2.more » In conclusion, this result highlights the possibility to use the chemistry of defects to unlock the electrochemical activity of known materials providing a new strategy for the chemical design of materials for practical multivalent batteries.« less

  2. Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO 2

    DOE PAGES

    Koketsu, Toshinari; Ma, Jiwei; Morgan, Benjamin J.; ...

    2017-09-18

    In contrast to monovalent lithium or sodium ions, the reversible insertion of multivalent ions such as Mg 2+ and Al 3+ into electrode materials remains an elusive goal. In this work, we demonstrate a new strategy to achieve reversible Mg 2+ and Al 3+ insertion in anatase TiO 2, achieved through aliovalent doping, to introduce a large number of titanium vacancies that act as intercalation sites. We present a broad range of experimental and theoretical characterizations that show a preferential insertion of multivalent ions into titanium vacancies, allowing a much greater capacity to be obtained compared to pure TiO 2.more » In conclusion, this result highlights the possibility to use the chemistry of defects to unlock the electrochemical activity of known materials providing a new strategy for the chemical design of materials for practical multivalent batteries.« less

  3. Assisting people with disabilities to actively improve their collaborative physical activities with Nintendo Wii Balance Boards by controlling environmental stimulation.

    PubMed

    Shih, Ching-Hsiang; Chen, Ling-Che; Shih, Ching-Tien

    2012-01-01

    The latest researches have adopted software technology to modify the Nintendo Wii Balance Board functionality and used it to enable two people with developmental disabilities to actively perform physical activities. This study extended the latest research of the Wii Balance Board application to assess whether four people (two groups) with developmental disabilities would be able to actively improve their physical activities collaboration--walking to the designated location following simple instructions, by controlling their favorite environmental stimulation through using three Nintendo Wii Balance Boards. We employed an A-B-A-B design, with A represented the baseline and B represented intervention phases. Data showed that both groups of participants significantly increased their collaborative target response (collaboratively performing designated physical activities) by activating the control system to produce their preferred environmental stimulation during the intervention phases. Practical and developmental implications of the findings are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Structural and Preclinical Studies of Computationally Designed Non-Nucleoside Reverse Transcriptase Inhibitors for Treating HIV infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudalkar, Shalley N.; Beloor, Jagadish; Chan, Albert H.

    The clinical benefits of HIV-1 non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs) are hindered by their unsatisfactory pharmacokinetic (PK) properties along with the rapid development of drug-resistant variants. However, the clinical efficacy of these inhibitors can be improved by developing compounds with enhanced pharmacological profiles and heightened antiviral activity. We used computational and structure-guided design to develop two next-generation NNRTI drug candidates, compounds I and II, which are members of a class of catechol diethers. We evaluated the preclinical potential of these compounds in BALB/c mice because of their high solubility (510 µg/ml for compound I and 82.9 µg/ml for compoundmore » II), low cytotoxicity, and enhanced antiviral activity against wild-type (WT) HIV-1 RT and resistant variants. Additionally, crystal structures of compounds I and II with WT RT suggested an optimal binding to the NNRTI binding pocket favoring the high anti-viral potency. A single intraperitoneal dose of compounds I and II exhibited a prolonged serum residence time of 48 hours and concentration maximum (Cmax) of 4000- to 15,000-fold higher than their therapeutic/effective concentrations. These Cmax values were 4- to 15-fold lower than their cytotoxic concentrations observed in MT-2 cells. Compound II showed an enhanced area under the curve (0–last) and decreased plasma clearance over compound I and efavirenz, the standard of care NNRTI. Hence, the overall (PK) profile of compound II was excellent compared with that of compound I and efavirenz. Furthermore, both compounds were very well tolerated in BALB/c mice without any detectable acute toxicity. Taken together, these data suggest that compounds I and II possess improved anti-HIV-1 potency, remarkable in vivo safety, and prolonged in vivo circulation time, suggesting strong potential for further development as new NNRTIs for the potential treatment of HIV infection.« less

  5. Reverse logistics in the Brazilian construction industry.

    PubMed

    Nunes, K R A; Mahler, C F; Valle, R A

    2009-09-01

    In Brazil most Construction and Demolition Waste (C&D waste) is not recycled. This situation is expected to change significantly, since new federal regulations oblige municipalities to create and implement sustainable C&D waste management plans which assign an important role to recycling activities. The recycling organizational network and its flows and components are fundamental to C&D waste recycling feasibility. Organizational networks, flows and components involve reverse logistics. The aim of this work is to introduce the concepts of reverse logistics and reverse distribution channel networks and to study the Brazilian C&D waste case.

  6. Performance of the reverse Helmbold universal portfolio

    NASA Astrophysics Data System (ADS)

    Tan, Choon Peng; Kuang, Kee Seng; Lee, Yap Jia

    2017-04-01

    The universal portfolio is an important investment strategy in a stock market where no stochastic model is assumed for the stock prices. The zero-gradient set of the objective function estimating the next-day portfolio which contains the reverse Kullback-Leibler order-alpha divergence is considered. From the zero-gradient set, the explicit, reverse Helmbold universal portfolio is obtained. The performance of the explicit, reverse Helmbold universal portfolio is studied by running them on some stock-price data sets from the local stock exchange. It is possible to increase the wealth of the investor by using these portfolios in investment.

  7. Transitional paleointensities from Kauai, Hawaii, and geomagnetic reversal models

    USGS Publications Warehouse

    Bogue, Scott W.; Coe, Robert S.

    1984-01-01

    Previously presented paleointensity results from an R-N transition zone in Kauai, Hawaii, show that field intensity dropped from 0. 431 Oe to 0. 101 Oe while the field remained within 30 degree of the reversed axial dipole direction. A recovery in intensity and the main directional change followed this presumably short period of low field strength. As the reversal neared completion, the field has an intensity of 0. 217 Oe while still 40 degree from the final direction. The relationship of paleointensity to field direction during the early part of the reversal thus differs from that toward the end, a feature that only some reversal models are consistent with. For example, a model in which a standing nondipole component persists through the dipole reversal predicts only symmetric intensity patterns. In contrast, zonal flooding models generate suitably complex field behavior if multiple flooding schemes operate during a single reversal or if the flooding process is itself asymmetric.

  8. Encoding changes in orbitofrontal cortex in reversal-impaired aged rats.

    PubMed

    Schoenbaum, Geoffrey; Setlow, Barry; Saddoris, Michael P; Gallagher, Michela

    2006-03-01

    Previous work in rats and primates has shown that normal aging can be associated with a decline in cognitive flexibility mediated by prefrontal circuits. For example, aged rats are impaired in rapid reversal learning, which in young rats depends critically on the orbitofrontal cortex. To assess whether aging-related reversal impairments reflect orbitofrontal dysfunction, we identified aged rats with reversal learning deficits and then recorded single units as these rats, along with unimpaired aged cohorts and young control rats, learned and reversed a series of odor discrimination problems. We found that the flexibility of neural correlates in orbitofrontal cortex was markedly diminished in aged rats characterized as reversal-impaired in initial training. In particular, although many cue-selective neurons in young and aged-unimpaired rats reversed odor preference when the odor-outcome associations were reversed, cue-selective neurons in reversal-impaired aged rats did not. In addition, outcome-expectant neurons in aged-impaired rats failed to become active during cue sampling after learning. These altered features of neural encoding could provide a basis for cognitive inflexibility associated with normal aging.

  9. Solid-state reversible quadratic nonlinear optical molecular switch with an exceptionally large contrast.

    PubMed

    Sun, Zhihua; Luo, Junhua; Zhang, Shuquan; Ji, Chengmin; Zhou, Lei; Li, Shenhui; Deng, Feng; Hong, Maochun

    2013-08-14

    Exceptional nonlinear optical (NLO) switching behavior, including an extremely large contrast (on/off) of ∼35 and high NLO coefficients, is displayed by a solid-state reversible quadratic NLO switch. The favorable results, induced by very fast molecular motion and anionic ordering, provides impetus for the design of a novel second-harmonic-generation switch involving molecular motion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Multilayer biomimetics: reversible covalent stabilization of a nanostructured biofilm.

    PubMed

    Li, Bingyun; Haynie, Donald T

    2004-01-01

    Designed polypeptides and electrostatic layer-by-layer self-assembly form the basis of promising research in bionanotechnology and medicine on development of polyelectrolyte multilayer films (PEMs). We show that PEMs can be formed from oppositely charged 32mers containing several cysteine residues. The polypeptides in PEMs become cross-linked under mild oxidizing conditions. This mimicking of disulfide (S-S) bond stabilization of folded protein structure confers on the PEMs a marked increase in resistance to film disassembly at acidic pH. The reversibility of S-S bond stabilization of PEMs presents further advantages for controlling physical properties of films, coatings, and other applications involving PEMs.

  11. Design, synthesis and biological evaluations of N-Hydroxy thienopyrimidine-2,4-diones as inhibitors of HIV reverse transcriptase-associated RNase H.

    PubMed

    Kankanala, Jayakanth; Kirby, Karen A; Huber, Andrew D; Casey, Mary C; Wilson, Daniel J; Sarafianos, Stefan G; Wang, Zhengqiang

    2017-12-01

    Human immunodeficiency virus (HIV) reverse transcriptase (RT) associated ribonuclease H (RNase H) is the only HIV enzymatic function not targeted by current antiviral drugs. Although various chemotypes have been reported to inhibit HIV RNase H, few have shown significant antiviral activities. We report herein the design, synthesis and biological evaluation of a novel N-hydroxy thienopyrimidine-2,3-dione chemotype (11) which potently and selectively inhibited RNase H with considerable potency against HIV-1 in cell culture. Current structure-activity-relationship (SAR) identified analogue 11d as a nanomolar inhibitor of RNase H (IC 50  = 0.04 μM) with decent antiviral potency (EC 50  = 7.4 μM) and no cytotoxicity (CC 50  > 100 μM). In extended biochemical assays compound 11d did not inhibit RT polymerase (pol) while inhibiting integrase strand transfer (INST) with 53 fold lower potency (IC 50  = 2.1 μM) than RNase H inhibition. Crystallographic and molecular modeling studies confirmed the RNase H active site binding mode. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Probabilistic reversal learning is impaired in Parkinson's disease

    PubMed Central

    Peterson, David A.; Elliott, Christian; Song, David D.; Makeig, Scott; Sejnowski, Terrence J.; Poizner, Howard

    2009-01-01

    In many everyday settings, the relationship between our choices and their potentially rewarding outcomes is probabilistic and dynamic. In addition, the difficulty of the choices can vary widely. Although a large body of theoretical and empirical evidence suggests that dopamine mediates rewarded learning, the influence of dopamine in probabilistic and dynamic rewarded learning remains unclear. We adapted a probabilistic rewarded learning task originally used to study firing rates of dopamine cells in primate substantia nigra pars compacta (Morris et al. 2006) for use as a reversal learning task with humans. We sought to investigate how the dopamine depletion in Parkinson's disease (PD) affects probabilistic reward learning and adaptation to a reversal in reward contingencies. Over the course of 256 trials subjects learned to choose the more favorable from among pairs of images with small or large differences in reward probabilities. During a subsequent otherwise identical reversal phase, the reward probability contingencies for the stimuli were reversed. Seventeen Parkinson's disease (PD) patients of mild to moderate severity were studied off of their dopaminergic medications and compared to 15 age-matched controls. Compared to controls, PD patients had distinct pre- and post-reversal deficiencies depending upon the difficulty of the choices they had to learn. The patients also exhibited compromised adaptability to the reversal. A computational model of the subjects’ trial-by-trial choices demonstrated that the adaptability was sensitive to the gain with which patients weighted pre-reversal feedback. Collectively, the results implicate the nigral dopaminergic system in learning to make choices in environments with probabilistic and dynamic reward contingencies. PMID:19628022

  13. The reverse of social anxiety is not always the opposite: the reverse-scored items of the social interaction anxiety scale do not belong.

    PubMed

    Rodebaugh, Thomas L; Woods, Carol M; Heimberg, Richard G

    2007-06-01

    Although well-used and empirically supported, the Social Interaction Anxiety Scale (SIAS) has a questionable factor structure and includes reverse-scored items with questionable utility. Here, using samples of undergraduates and a sample of clients with social anxiety disorder, we extend previous work that opened the question of whether the reverse-scored items belong on the scale. First, we successfully confirmed the factor structure obtained in previous samples. Second, we found the reverse-scored items to show consistently weaker relationships with a variety of comparison measures. Third, we demonstrated that removing the reverse-scored questions generally helps rather than hinders the psychometric performance of the SIAS total score. Fourth, we found that the reverse-scored items show a strong relationship with the normal personality characteristic of extraversion, suggesting that the reverse-scored items may primarily assess extraversion. Given the above results, we suggest investigators consider performing data analyses using only the straightforwardly worded items of the SIAS.

  14. A Link-Level Simulator of the cdma2000 Reverse-Link Physical Layer

    PubMed Central

    Gharavi, H.; Chin, F.; Ban, K.; Wyatt-Millington, R.

    2003-01-01

    The cdma2000 system is an evolutionary enhancement of the IS-95 standards which support 3G services defined by the International Telecommunications Union (ITU). cdma2000 comes in two phases: 1XRTT and 3XRTT (1X and 3X indicates the number of 1.25 MHz wide radio carrier channels used and RTT stands for Radio Transmission Technology). The cdma2000 1XRTT, which operates within a 1.25 MHz bandwidth, can be utilized in existing IS-95 CDMA channels as it uses the same bandwidth, while 3XRTT requires the commitment of 5 MHz bandwidth to support higher data rates. This paper describes a software model implementation of the cdma2000 reverse link and its application for evaluating the effect of rake receiver design parameters on the system performance under various multipath fading conditions. The cdma2000 models were developed at the National Institute of Standards and Technology (NIST), using SPW (Signal Processing Worksystem) commercial software tools. The model has been developed in a generic manner that includes all the reverse link six radio configurations and their corresponding data rates, according to cdma2000 specifications. After briefly reviewing the traffic channel characteristics of the cdma2000 reverse link (subscriber to base station), the paper discusses the rake receiver implementation including an ideal rake receiver. It then evaluates the performance of each receiver for a Spreading Rate 3 (3XRTT) operation, which is considered as a true “3G” cdma2000 technology. These evaluations are based on the vehicular IMT-2000 (International Mobile Telecommunication 2000) channel model using the link budget defined in cdma2000 specifications for the reverse link. PMID:27413613

  15. Method for distinguishing multiple targets using time-reversal acoustics

    DOEpatents

    Berryman, James G.

    2004-06-29

    A method for distinguishing multiple targets using time-reversal acoustics. Time-reversal acoustics uses an iterative process to determine the optimum signal for locating a strongly reflecting target in a cluttered environment. An acoustic array sends a signal into a medium, and then receives the returned/reflected signal. This returned/reflected signal is then time-reversed and sent back into the medium again, and again, until the signal being sent and received is no longer changing. At that point, the array has isolated the largest eigenvalue/eigenvector combination and has effectively determined the location of a single target in the medium (the one that is most strongly reflecting). After the largest eigenvalue/eigenvector combination has been determined, to determine the location of other targets, instead of sending back the same signals, the method sends back these time reversed signals, but half of them will also be reversed in sign. There are various possibilities for choosing which half to do sign reversal. The most obvious choice is to reverse every other one in a linear array, or as in a checkerboard pattern in 2D. Then, a new send/receive, send-time reversed/receive iteration can proceed. Often, the first iteration in this sequence will be close to the desired signal from a second target. In some cases, orthogonalization procedures must be implemented to assure the returned signals are in fact orthogonal to the first eigenvector found.

  16. Topology reconstruction for B-Rep modeling from 3D mesh in reverse engineering applications

    NASA Astrophysics Data System (ADS)

    Bénière, Roseline; Subsol, Gérard; Gesquière, Gilles; Le Breton, François; Puech, William

    2012-03-01

    Nowadays, most of the manufactured objects are designed using CAD (Computer-Aided Design) software. Nevertheless, for visualization, data exchange or manufacturing applications, the geometric model has to be discretized into a 3D mesh composed of a finite number of vertices and edges. But, in some cases, the initial model may be lost or unavailable. In other cases, the 3D discrete representation may be modified, for example after a numerical simulation, and does not correspond anymore to the initial model. A reverse engineering method is then required to reconstruct a 3D continuous representation from the discrete one. In previous work, we have presented a new approach for 3D geometric primitive extraction. In this paper, to complete our automatic and comprehensive reverse engineering process, we propose a method to construct the topology of the retrieved object. To reconstruct a B-Rep model, a new formalism is now introduced to define the adjacency relations. Then a new process is used to construct the boundaries of the object. The whole process is tested on 3D industrial meshes and bring a solution to recover B-Rep models.

  17. Reversible solvatomagnetic switching in a single-ion magnet from an entatic state.

    PubMed

    Vallejo, J; Pardo, E; Viciano-Chumillas, M; Castro, I; Amorós, P; Déniz, M; Ruiz-Pérez, C; Yuste-Vivas, C; Krzystek, J; Julve, M; Lloret, F; Cano, J

    2017-05-01

    A vast impact on molecular nanoscience can be achieved using simple transition metal complexes as dynamic chemical systems to perform specific and selective tasks under the control of an external stimulus that switches "ON" and "OFF" their electronic properties. While the interest in single-ion magnets (SIMs) lies in their potential applications in information storage and quantum computing, the switching of their slow magnetic relaxation associated with host-guest processes is insufficiently explored. Herein, we report a unique example of a mononuclear cobalt(ii) complex in which geometrical constraints are the cause of easy and reversible water coordination and its release. As a result, a reversible and selective colour and SIM behaviour switch occurs between a "slow-relaxing" deep red anhydrous material (compound 1 ) and its "fast-relaxing" orange hydrated form (compound 2 ). The combination of this optical and magnetic switching in this new class of vapochromic and thermochromic SIMs offers fascinating possibilities for designing multifunctional molecular materials.

  18. Dexamethasone does not diminish sugammadex reversal of neuromuscular block - clinical study in surgical patients undergoing general anesthesia.

    PubMed

    Rezonja, Katja; Mars, Tomaz; Jerin, Ales; Kozelj, Gordana; Pozar-Lukanovic, Neva; Sostaric, Maja

    2016-10-21

    Sugammadex reverses neuromuscular block (NMB) through binding aminosteroid neuromuscular blocking agents. Although sugammadex appears to be highly selective, it can interact with other drugs, like corticosteroids. A prospective single-blinded randomized clinical trial was designed to explore the significance of interactions between dexamethasone and sugammadex. Sixty-five patients who were anesthetized for elective abdominal or urological surgery were included. NMB was assessed using train-of-four stimulation (TOF), with rocuronium used to maintain the desired NMB depth. NMB reversal at the end of anaesthesia was achieved using sugammadex. According to their received antiemetics, the patients were randomized to either the granisetron or dexamethasone group. Blood samples were taken before and after NMB reversal, for plasma dexamethasone and rocuronium determination. Primary endpoint was time from sugammadex administration to NMB reversal. Secondary endpoints included the ratios of the dexamethasone and rocuronium concentrations after NMB reversal versus before sugammadex administration. There were no differences for time to NMB reversal between the control (mean 121 ± 61 s) and the dexamethasone group (mean 125 ± 57 s; P = 0.760). Time to NMB reversal to a TOF ratio ≥0.9 was significantly longer in patients with lower TOF prior to sugammadex administration (Beta = -0.268; P = 0.038). The ratio between the rocuronium concentrations after NMB reversal versus before sugammadex administration was significantly affected by sugammadex dose (Beta = -0.375; P = 0.004), as was rocuronium dose per hour of operation (Beta = -0.366; p = 0.007), while it was not affected by NMB depth before administration of sugammadex (Beta = -0.089; p = 0.483) and dexamethasone (Beta = -0.186; p = 0.131). There was significant drop in plasma dexamethasone after sugammadex administration and NMB reversal (p < 0.001). Administration

  19. Effects of social stories on prosocial behavior of preschool children with autism spectrum disorders.

    PubMed

    Crozier, Shannon; Tincani, Matt

    2007-10-01

    Social Stories are a popular intervention for preschool children with autism spectrum disorders (ASD), but little research on Social Stories has been conducted with this population. This study investigated the effects of Social Stories on prosocial behavior of three preschool children with ASD in an inclusive setting. An ABAB design was used for two participants, while an ABACBC was used for the third. Social Stories increased appropriate behavior and decreased inappropriate behavior for two participants. The addition of verbal prompts (condition C) was necessary to increase appropriate behavior for the third participant. Maintenance probes were conducted to assess whether stories became imbedded in classroom routines. Results are discussed in relation to applications, study limitations, and areas for future research.

  20. Lassa Virus Reverse Genetics.

    PubMed

    Martínez-Sobrido, Luis; Paessler, Slobodan; de la Torre, Juan Carlos

    2017-01-01

    The Old World (OW) arenavirus Lassa (LASV ) is estimated to infect several hundred thousand people yearly in West Africa, resulting in high numbers of Lassa fever (LF), a viral hemorrhagic fever (HF) disease associated with high morbidity and mortality. To date, no licensed vaccines are available to LASV infections, and anti-LASV drug therapy is limited to an off-label use of ribavirin (Rib) that is only partially effective. The development of reverse genetics has provided investigators with a novel and powerful approach for the investigation of the molecular, cell biology, and pathogenesis of LASV. The use of cell-based LASV minigenome (MG) systems has allowed examining the cis- and trans-acting factors involved in genome replication and gene transcription and the identification of novel drugable LASV targets. Likewise, it is now feasible to rescue infectious recombinant (r)LASV entirely from cloned cDNAs containing predetermined mutations in their genomes to investigate virus-host interactions and mechanisms of pathogenesis, as well as to facilitate screens to identify antiviral drugs against LASV and the implementation of novel strategies to develop live-attenuated vaccines (LAV). In this chapter we will summarize the state-of-the-art experimental procedures for implementation of LASV reverse genetics. In addition, we will briefly discuss some significant translational research developments that have been made possible upon the development of LASV reverse genetics.

  1. Slowly switching between environments facilitates reverse evolution in small populations

    NASA Astrophysics Data System (ADS)

    Tan, Longzhi; Gore, Jeff

    2011-03-01

    The rate at which a physical process occurs usually changes the behavior of a system. In thermodynamics, the reversibility of a process generally increases when it occurs at an infinitely slow rate. In biological evolution, adaptations to a new environment may be reversed by evolution in the ancestral environment. Such fluctuating environments are ubiquitous in nature, although how the rate of switching affects reverse evolution is unknown. Here we use a computational approach to quantify evolutionary reversibility as a function of the rate of switching between two environments. For small population sizes, which travel on landscapes as random walkers, we find that both genotypic and phenotypic reverse evolution increase at slow switching rates. However, slow switching of environments decreases evolutionary reversibility for a greedy walker, corresponding to large populations (extensive clonal interference). We conclude that the impact of the switching rate for biological evolution is more complicated than other common physical processes, and that a quantitative approach may yield significant insight into reverse evolution.

  2. Reversible vector ratchets for skyrmion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xiu; Reichhardt, Cynthia Jane Olson; Reichhardt, Charles

    In this paper, we show that ac driven skyrmions interacting with an asymmetric substrate provide a realization of a class of ratchet system which we call a vector ratchet that arises due to the effect of the Magnus term on the skyrmion dynamics. In a vector ratchet, the dc motion induced by the ac drive can be described as a vector that can be rotated clockwise or counterclockwise relative to the substrate asymmetry direction. Up to a full 360° rotation is possible for varied ac amplitudes or skyrmion densities. In contrast to overdamped systems, in which ratchet motion is alwaysmore » parallel to the substrate asymmetry direction, vector ratchets allow the ratchet motion to be in any direction relative to the substrate asymmetry. It is also possible to obtain a reversal in the direction of rotation of the vector ratchet, permitting the creation of a reversible vector ratchet. We examine vector ratchets for ac drives applied parallel or perpendicular to the substrate asymmetry direction, and show that reverse ratchet motion can be produced by collective effects. No reversals occur for an isolated skyrmion on an asymmetric substrate. Finally, since a vector ratchet can produce motion in any direction, it could represent a method for controlling skyrmion motion for spintronic applications.« less

  3. Reversible vector ratchets for skyrmion systems

    NASA Astrophysics Data System (ADS)

    Ma, X.; Reichhardt, C. J. Olson; Reichhardt, C.

    2017-03-01

    We show that ac driven skyrmions interacting with an asymmetric substrate provide a realization of a class of ratchet system which we call a vector ratchet that arises due to the effect of the Magnus term on the skyrmion dynamics. In a vector ratchet, the dc motion induced by the ac drive can be described as a vector that can be rotated clockwise or counterclockwise relative to the substrate asymmetry direction. Up to a full 360∘ rotation is possible for varied ac amplitudes or skyrmion densities. In contrast to overdamped systems, in which ratchet motion is always parallel to the substrate asymmetry direction, vector ratchets allow the ratchet motion to be in any direction relative to the substrate asymmetry. It is also possible to obtain a reversal in the direction of rotation of the vector ratchet, permitting the creation of a reversible vector ratchet. We examine vector ratchets for ac drives applied parallel or perpendicular to the substrate asymmetry direction, and show that reverse ratchet motion can be produced by collective effects. No reversals occur for an isolated skyrmion on an asymmetric substrate. Since a vector ratchet can produce motion in any direction, it could represent a method for controlling skyrmion motion for spintronic applications.

  4. Reversible vector ratchets for skyrmion systems

    DOE PAGES

    Ma, Xiu; Reichhardt, Cynthia Jane Olson; Reichhardt, Charles

    2017-03-03

    In this paper, we show that ac driven skyrmions interacting with an asymmetric substrate provide a realization of a class of ratchet system which we call a vector ratchet that arises due to the effect of the Magnus term on the skyrmion dynamics. In a vector ratchet, the dc motion induced by the ac drive can be described as a vector that can be rotated clockwise or counterclockwise relative to the substrate asymmetry direction. Up to a full 360° rotation is possible for varied ac amplitudes or skyrmion densities. In contrast to overdamped systems, in which ratchet motion is alwaysmore » parallel to the substrate asymmetry direction, vector ratchets allow the ratchet motion to be in any direction relative to the substrate asymmetry. It is also possible to obtain a reversal in the direction of rotation of the vector ratchet, permitting the creation of a reversible vector ratchet. We examine vector ratchets for ac drives applied parallel or perpendicular to the substrate asymmetry direction, and show that reverse ratchet motion can be produced by collective effects. No reversals occur for an isolated skyrmion on an asymmetric substrate. Finally, since a vector ratchet can produce motion in any direction, it could represent a method for controlling skyrmion motion for spintronic applications.« less

  5. Reverse total shoulder arthroplasty: research models

    PubMed Central

    PETRILLO, STEFANO; LONGO, UMILE GIUSEPPE; GULOTTA, LAWRENCE V.; BERTON, ALESSANDRA; KONTAXIS, ANDREAS; WRIGHT, TIMOTHY; DENARO, VINCENZO

    2016-01-01

    Purpose the past decade has seen a considerable increase in the use of research models to study reverse total shoulder arthroplasty (RTSA). Nevertheless, none of these models has been shown to completely reflect real in vivo conditions. Methods we performed a systematic review of the literature matching the following key words: “reverse total shoulder arthroplasty” or “reverse total shoulder replacement” or “reverse total shoulder prosthesis” and “research models” or “biomechanical models” or “physical simulators” or “virtual simulators”. The following databases were screened: Medline, Google Scholar, EMBASE, CINAHIL and Ovid. We identified and included all articles reporting research models of any kind, such as physical or virtual simulators, in which RTSA and the glenohumeral joint were reproduced. Results computer models and cadaveric models are the most commonly used, and they were shown to be reliable in simulating in vivo conditions. Bone substitute models have been used in a few studies. Mechanical testing machines provided useful information on stability factors in RTSA. Conclusion because of the limitations of each individual model, additional research is required to develop a research model of RTSA that may reduce the limitations of those presently available, and increase the reproducibility of this technique in the clinical setting. PMID:28217660

  6. Paleomagnetic Study of a Reversal of the Earth's Magnetic Field.

    PubMed

    Dunn, J R; Fuller, M; Ito, H; Schmidt, V A

    1971-05-21

    A detailed record of a field reversal has been obtained from the natural remanent magnetization of the Tatoosh intrusion in Mount Rainier National Park, Washington. The reversal took place at 14.7 +/- 1 million years and is interpreted to be from reverse to normal. A decrease in the intensity of the field of about an order of magnitude occurs immediately before the reversal, while its orientation remains substantially unchanged. The onset of the reversal is marked by abrupt swinging of the virtual geomagnetic pole along an arc of a great circle. During the reversal the pole traces a path across the Pacific. In the last stage of the process recorded in the sections, the succession of virtual geomagnetic poles is very similar to those generated by secular variation in the recent past. Although the cooling rate of the intrusion is not sufficiently well known to permit a useful calculation of the duration of the reversal process, an estimate based on the length of the supposed secular variation cycles gives 1 to 4 x 103 years for the reversal of field direction and approximately 1 x 104 years for the time scale of the intensity changes.

  7. Reversible Deformation of Transfusion Tracheids in Taxus baccata Is Associated with a Reversible Decrease in Leaf Hydraulic Conductance1[OPEN

    PubMed Central

    Zhang, Yong-Jiang; Rockwell, Fulton E.; Wheeler, James K.; Holbrook, N. Michele

    2014-01-01

    Declines in leaf hydraulic conductance (Kleaf) with increasing water stress have been attributed to cavitation of the leaf xylem. However, in the leaves of conifers, the reversible collapse of transfusion tracheids may provide an alternative explanation. Using Taxus baccata, a conifer species without resin, we developed a modified rehydration technique that allows the separation of declines in Kleaf into two components: one reversible and one irreversible upon relaxation of water potential to −1 MPa. We surveyed leaves at a range of water potentials for evidence of cavitation using cryo-scanning electron microscopy and quantified dehydration-induced structural changes in transfusion tracheids by cryo-fluorescence microscopy. Irreversible declines in Kleaf did not occur until leaf water potentials were more negative than −3 MPa. Declines in Kleaf between −2 and −3 MPa were reversible and accompanied by the collapse of transfusion tracheids, as evidenced by cryo-fluorescence microscopy. Based on cryo-scanning electron microscopy, cavitation of either transfusion or xylem tracheids did not contribute to declines in Kleaf in the reversible range. Moreover, the deformation of transfusion tracheids was quickly reversible, thus acting as a circuit breaker regulating the flux of water through the leaf vasculature. As transfusion tissue is present in all gymnosperms, the reversible collapse of transfusion tracheids may be a general mechanism in this group for the protection of leaf xylem from excessive loads generated in the living leaf tissue. PMID:24948828

  8. Time in Science: Reversibility vs. Irreversibility

    NASA Astrophysics Data System (ADS)

    Pomeau, Yves

    To discuss properly the question of irreversibility one needs to make a careful distinction between reversibility of the equations of motion and the choice of the initial conditions. This is also relevant for the rather confuse philosophy of the wave packet reduction in quantum mechanics. The explanation of this reduction requires also to make precise assumptions on what initial data are accessible in our world. Finally I discuss how a given (and long) time record can be shown in an objective way to record an irreversible or reversible process. Or: can a direction of time be derived from its analysis? This leads quite naturally to examine if there is a possible spontaneous breaking of the time reversal symmetry in many body systems, a symmetry breaking that would be put in evidence objectively by looking at certain specific time correlations.

  9. Stagnation point reverse flow combustor

    NASA Technical Reports Server (NTRS)

    Zinn, Ben T. (Inventor); Neumeier, Yedidia (Inventor); Seitzman, Jerry M. (Inventor); Jagoda, Jechiel (Inventor); Weksler, Yoav (Inventor)

    2008-01-01

    A method for combusting a combustible fuel includes providing a vessel having an opening near a proximate end and a closed distal end defining a combustion chamber. A combustible reactants mixture is presented into the combustion chamber. The combustible reactants mixture is ignited creating a flame and combustion products. The closed end of the combustion chamber is utilized for directing combustion products toward the opening of the combustion chamber creating a reverse flow of combustion products within the combustion chamber. The reverse flow of combustion products is intermixed with combustible reactants mixture to maintain the flame.

  10. Reversal electron attachment ionizer for detection of trace species

    NASA Technical Reports Server (NTRS)

    Bernius, Mark T. (Inventor); Chutjian, Ara (Inventor)

    1990-01-01

    An in-line reversal electron, high-current ionizer capable of focusing a beam of electrons to a reversal region and executing a reversal of said electrons, such that the electrons possess zero kinetic energy at the point of reversal, may be used to produce both negative and positive ions. A sample gas is introduced at the point of electron reversal for low energy electron-(sample gas) molecule attachment with high efficiency. The attachment process produces negative ions from the sample gas, which includes species present in trace (minute) amounts. These ions are extracted efficiently and directed to a mass analyzer where they may be detected and identified. The generation and detection of positive ions is accomplished in a similar fashion with minimal adjustment to potentials applied to the apparatus.

  11. Reversal electron attachment ionizer for detection of trace species

    NASA Technical Reports Server (NTRS)

    Bernius, Mark T. (Inventor); Chutjian, Ara (Inventor)

    1989-01-01

    An in-line reversal electron, high-current ionizer capable of focusing a beam of electrons to a reversal region and executing a reversal of the electrons, such that the electrons possess zero kinetic energy at the point of reversal, may be used to produce both negative and positive ions. A sample gas is introduced at the point of electron reversal for low energy electron-(sample gas) molecule attachment with high efficiency. The attachment process produces negative ions from the sample gas, which includes species present in trace (minute) amounts. These ions are extracted efficiently and directed to a mass analyzer where they may be detected and identified. The generation and detection of positive ions is accomplished in a similar fashion with minimal adjustment to potentials applied to the apparatus.

  12. Dual-stimuli responsive and reversibly activatable theranostic nanoprobe for precision tumor-targeting and fluorescence-guided photothermal therapy

    NASA Astrophysics Data System (ADS)

    Zhao, Xu; Yang, Cheng-Xiong; Chen, Li-Gong; Yan, Xiu-Ping

    2017-05-01

    The integrated functions of diagnostics and therapeutics make theranostics great potential for personalized medicine. Stimulus-responsive therapy allows spatial control of therapeutic effect only in the site of interest, and offers promising opportunities for imaging-guided precision therapy. However, the imaging strategies in previous stimulus-responsive therapies are `always on' or irreversible `turn on' modality, resulting in poor signal-to-noise ratios or even `false positive' results. Here we show the design of dual-stimuli-responsive and reversibly activatable nanoprobe for precision tumour-targeting and fluorescence-guided photothermal therapy. We fabricate the nanoprobe from asymmetric cyanine and glycosyl-functionalized gold nanorods (AuNRs) with matrix metalloproteinases (MMPs)-specific peptide as a linker to achieve MMPs/pH synergistic and pH reversible activation. The unique activation and glycosyl targetibility makes the nanoprobe bright only in tumour sites with negligible background, while AuNRs and asymmetric cyanine give synergistic photothermal effect. This work paves the way to designing efficient nanoprobes for precision theranostics.

  13. Quercetin-glutamic acid conjugate with a non-hydrolysable linker; a novel scaffold for multidrug resistance reversal agents through inhibition of P-glycoprotein.

    PubMed

    Kim, Mi Kyoung; Kim, Yunyoung; Choo, Hyunah; Chong, Youhoon

    2017-02-01

    Previously, we have reported remarkable effect of a quercetin-glutamic acid conjugate to reverse multidrug resistance (MDR) of cancer cells to a broad spectrum of anticancer agents through inhibition of P-glycoprotein (Pgp)-mediated drug efflux. Due to the hydrolysable nature, MDR-reversal activity of the quercetin conjugate was attributed to its hydrolysis product, quercetin. However, several lines of evidence demonstrated that the intact quercetin-glutamic acid conjugate has stronger MDR-reversal activity than quercetin. In order to evaluate this hypothesis and to identify a novel scaffold for MDR-reversal agents, we prepared quercetin conjugates with a glutamic acid attached at the 7-O position via a non-hydrolysable linker. Pgp inhibition assay, Pgp ATPase assay, and MDR-reversal activity assay were performed, and the non-hydrolysable quercetin conjugates showed significantly higher activities compared with those of quercetin. Unfortunately, the quercetin conjugates were not as effective as verapamil in Pgp-inhibition and thereby reversing MDR, but it is worth to note that the structurally modified quercetin conjugates with a non-cleavable linker showed significantly improved MDR-reversal activity compared with quercetin. Taken together, the quercetin conjugates with appropriate structural modifications were shown to have a potential to serve as a scaffold for the design of novel MDR-reversal agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Alcohol consumption stimulates early steps in reverse cholesterol transport.

    PubMed

    van der Gaag, M S; van Tol, A; Vermunt, S H; Scheek, L M; Schaafsma, G; Hendriks, H F

    2001-12-01

    Alcohol consumption is associated with increased HDL cholesterol levels, which may indicate stimulated reverse cholesterol transport. The mechanism is, however, not known. The aim of this study was to evaluate the effects of alcohol consumption on the first two steps of the reverse cholesterol pathway: cellular cholesterol efflux and plasma cholesterol esterification. Eleven healthy middle-aged men consumed four glasses (40 g of alcohol) of red wine, beer, spirits (Dutch gin), or carbonated mineral water (control) daily with evening dinner, for 3 weeks, according to a 4 x 4 Latin square design. After 3 weeks of alcohol consumption the plasma ex vivo cholesterol efflux capacity, measured with Fu5AH cells, was raised by 6.2% (P < 0.0001) and did not differ between the alcoholic beverages. Plasma cholesterol esterification was increased by 10.8% after alcohol (P = 0.008). Changes were statistically significant after beer and spirits, but not after red wine consumption (P = 0.16). HDL lipids changed after alcohol consumption; HDL total cholesterol, HDL cholesteryl ester, HDL free cholesterol, HDL phospholipids and plasma apolipoprotein A-I all increased (P < 0.01). In conclusion, alcohol consumption stimulates cellular cholesterol efflux and its esterification in plasma. These effects were mostly independent of the kind of alcoholic beverage

  15. 49 CFR 234.237 - Reverse switch cut-out circuit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Reverse switch cut-out circuit. 234.237 Section....237 Reverse switch cut-out circuit. A switch, when equipped with a switch circuit controller connected... warning system can only be cut out when the switch point is within one-half inch of full reverse position. ...

  16. 49 CFR 234.237 - Reverse switch cut-out circuit.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Reverse switch cut-out circuit. 234.237 Section....237 Reverse switch cut-out circuit. A switch, when equipped with a switch circuit controller connected... warning system can only be cut out when the switch point is within one-half inch of full reverse position. ...

  17. 49 CFR 234.237 - Reverse switch cut-out circuit.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Reverse switch cut-out circuit. 234.237 Section....237 Reverse switch cut-out circuit. A switch, when equipped with a switch circuit controller connected... warning system can only be cut out when the switch point is within one-half inch of full reverse position. ...

  18. Time reversibility of quantum diffusion in small-world networks

    NASA Astrophysics Data System (ADS)

    Han, Sung-Guk; Kim, Beom Jun

    2012-02-01

    We study the time-reversal dynamics of a tight-binding electron in the Watts-Strogatz (WS) small-world networks. The localized initial wave packet at time t = 0 diffuses as time proceeds until the time-reversal operation, together with the momentum perturbation of the strength η, is made at the reversal time T. The time irreversibility is measured by I = |Π( t = 2 T) - Π( t = 0)|, where Π is the participation ratio gauging the extendedness of the wavefunction and for convenience, t is measured forward even after the time reversal. When η = 0, the time evolution after T makes the wavefunction at t = 2 T identical to the one at t = 0, and we find I = 0, implying a null irreversibility or a complete reversibility. On the other hand, as η is increased from zero, the reversibility becomes weaker, and we observe enhancement of the irreversibility. We find that I linearly increases with increasing η in the weakly-perturbed region, and that the irreversibility is much stronger in the WS network than in the local regular network.

  19. Reverse time migration by Krylov subspace reduced order modeling

    NASA Astrophysics Data System (ADS)

    Basir, Hadi Mahdavi; Javaherian, Abdolrahim; Shomali, Zaher Hossein; Firouz-Abadi, Roohollah Dehghani; Gholamy, Shaban Ali

    2018-04-01

    Imaging is a key step in seismic data processing. To date, a myriad of advanced pre-stack depth migration approaches have been developed; however, reverse time migration (RTM) is still considered as the high-end imaging algorithm. The main limitations associated with the performance cost of reverse time migration are the intensive computation of the forward and backward simulations, time consumption, and memory allocation related to imaging condition. Based on the reduced order modeling, we proposed an algorithm, which can be adapted to all the aforementioned factors. Our proposed method benefit from Krylov subspaces method to compute certain mode shapes of the velocity model computed by as an orthogonal base of reduced order modeling. Reverse time migration by reduced order modeling is helpful concerning the highly parallel computation and strongly reduces the memory requirement of reverse time migration. The synthetic model results showed that suggested method can decrease the computational costs of reverse time migration by several orders of magnitudes, compared with reverse time migration by finite element method.

  20. An efficient reversible privacy-preserving data mining technology over data streams.

    PubMed

    Lin, Chen-Yi; Kao, Yuan-Hung; Lee, Wei-Bin; Chen, Rong-Chang

    2016-01-01

    With the popularity of smart handheld devices and the emergence of cloud computing, users and companies can save various data, which may contain private data, to the cloud. Topics relating to data security have therefore received much attention. This study focuses on data stream environments and uses the concept of a sliding window to design a reversible privacy-preserving technology to process continuous data in real time, known as a continuous reversible privacy-preserving (CRP) algorithm. Data with CRP algorithm protection can be accurately recovered through a data recovery process. In addition, by using an embedded watermark, the integrity of the data can be verified. The results from the experiments show that, compared to existing algorithms, CRP is better at preserving knowledge and is more effective in terms of reducing information loss and privacy disclosure risk. In addition, it takes far less time for CRP to process continuous data than existing algorithms. As a result, CRP is confirmed as suitable for data stream environments and fulfills the requirements of being lightweight and energy-efficient for smart handheld devices.