Sample records for abandoned uranium mining

  1. Western Abandoned Uranium Mine Region Maps

    EPA Pesticide Factsheets

    Map of the Western Abandoned Uranium Mine (AUM) Region, more than 100 abandoned uranium mine claims generally located along the Little Colorado River and Highway 89 in the Cameron, Coalmine Canyon, Bodaway/Gap, and Leupp Chapters in Northern Arizona.

  2. Western Abandoned Uranium Mine Region Fact Sheets

    EPA Pesticide Factsheets

    Fact sheets related to Western Abandoned Uranium Mine (AUM) Region, more than 100 abandoned uranium mine claims located along the Little Colorado River and Highway 89, ain the Cameron, Coalmine Canyon, Bodaway/Gap, and Leupp Chapters in Northern Arizona.

  3. Biogeochemical behaviour and bioremediation of uranium in waters of abandoned mines.

    PubMed

    Mkandawire, Martin

    2013-11-01

    The discharges of uranium and associated radionuclides as well as heavy metals and metalloids from waste and tailing dumps in abandoned uranium mining and processing sites pose contamination risks to surface and groundwater. Although many more are being planned for nuclear energy purposes, most of the abandoned uranium mines are a legacy of uranium production that fuelled arms race during the cold war of the last century. Since the end of cold war, there have been efforts to rehabilitate the mining sites, initially, using classical remediation techniques based on high chemical and civil engineering. Recently, bioremediation technology has been sought as alternatives to the classical approach due to reasons, which include: (a) high demand of sites requiring remediation; (b) the economic implication of running and maintaining the facilities due to high energy and work force demand; and (c) the pattern and characteristics of contaminant discharges in most of the former uranium mining and processing sites prevents the use of classical methods. This review discusses risks of uranium contamination from abandoned uranium mines from the biogeochemical point of view and the potential and limitation of uranium bioremediation technique as alternative to classical approach in abandoned uranium mining and processing sites.

  4. Navajo Nation: Cleaning Up Abandoned Uranium Mines

    EPA Pesticide Factsheets

    This site provides information about the progress of EPA's cleanup of abandoned uranium mines on Navajo and Hopi lands and in other areas of Arizona and New Mexico, including health impacts, major enforcement and removal milestones, and community actions.

  5. Abandoned Uranium Mine (AUM) Points, Navajo Nation, 2016, US EPA Region 9

    EPA Pesticide Factsheets

    This GIS dataset contains point features of all Abandoned Uranium Mines (AUMs) on or within one mile of the Navajo Nation. Points are centroids developed from the Navajo Nation production mines polygon dataset that comprise of productive or unproductive Abandoned Uranium Mines. Attributes include mine names, aliases, links to AUM reports, indicators whether an AUM was mined above or below ground, indicators whether an AUM was mined above or below the local water table, and the region in which an AUM is located. This dataset contains 608 features.

  6. Acute and chronic toxicity of effluent water from an abandoned uranium mine.

    PubMed

    Antunes, S C; Pereira, R; Gonçalves, F

    2007-08-01

    Inactive or abandoned mines represent a significant source of environmental, chemical, physical, and aesthetic impact. Among concerning situations, the occurrence of abandoned or semi-abandoned mine-associated ponds (for sedimentation of solids, for effluent neutralization, or for washing the ore) is a common feature in this type of system. These ponds are a source of contamination for the groundwater resources and adjacent soils, because they lack appropriate impermeabilization. The use of this water for agriculture may also pose chronic risks to humans. In Portugal, these problems have been diagnosed and some remediation projects have been developed. The purpose of our study was to evaluate the acute and chronic toxicity of water samples collected from the aquatic system surrounding an abandoned uranium mine (Cunha Baixa, Mangualde, Central Portugal). The present study focuses on the water compartment, whose toxicity was evaluated by means of standard toxicity assays using two Daphnia species (D. longispina and D. magna). Three different ponds were used in the characterization of the aquatic system from Cunha Baixa mine: a reference pond (Ref), a mine effluent treatment pond (T), and a mine pit pond (M). Metal analyses performed in the water samples from these ponds showed values that, in some cases, were much higher than maximum recommendable values established (especially Al, Mn) by Portuguese legislation for waters for crop irrigation. Acute toxicity was only observed in the mine pit pond, with EC(50) values of 28.4% and 50.4% for D. longispina and D. magna, respectively. The significant impairment of chronic endpoints, translated in reductions in the population growth rate for both species, gives rise to concerns regarding the potential risks for aquatic zooplanktonic communities, from local receiving waters, potentially exposed to point source discharges of the treated and nontreated effluent from Cunha Baixa uranium mine.

  7. Abandoned Uranium Mine (AUM) Surface Areas, Navajo Nation, 2016, US EPA Region 9

    EPA Pesticide Factsheets

    This GIS dataset contains polygon features that represent all Abandoned Uranium Mines (AUMs) on or within one mile of the Navajo Nation. Attributes include mine names, aliases, Potentially Responsible Parties, reclaimation status, EPA mine status, links to AUM reports, and the region in which an AUM is located. This dataset contains 608 features.

  8. Abandoned Uranium Mines (AUM) Site Screening Map Service, 2016, US EPA Region 9

    EPA Pesticide Factsheets

    As described in detail in the Five-Year Report, US EPA completed on-the-ground screening of 521 abandoned uranium mine areas. US EPA and the Navajo EPA are using the Comprehensive Database and Atlas to determine which mines should be cleaned up first. US EPA continues to research and identify Potentially Responsible Parties (PRPs) under Superfund to contribute to the costs of cleanup efforts.This US EPA Region 9 web service contains the following map layers:Abandoned Uranium Mines, Priority Mines, Tronox Mines, Navajo Environmental Response Trust Mines, Mines with Enforcement Actions, Superfund AUM Regions, Navajo Nation Administrative Boundaries and Chapter Houses.Mine points have a maximum scale of 1:220,000, while Mine polygons have a minimum scale of 1:220,000. Chapter houses have a minimum scale of 1:200,000. BLM Land Status has a minimum scale of 1:150,000.Full FGDC metadata records for each layer can be found by clicking the layer name at the web service endpoint and viewing the layer description. Data used to create this web service are available for download at https://edg.epa.gov/metadata/catalog/data/data.page.Security Classification: Public. Access Constraints: None. Use Constraints: None. Please check sources, scale, accuracy, currentness and other available information. Please confirm that you are using the most recent copy of both data and metadata. Acknowledgement of the EPA would be appreciated.

  9. TECHNICAL REPORT ON TECHNOLOGICALLY ENHANCED NATURALLY OCCURRING RADIOACTIVE MATERIALS FROM URANIUM MINING, VOLUME II: INVESTIGATION OF POTENTIAL HEALTH, GEOGRAPHIC, AND ENVIRONMENTAL ISSUES OF ABANDONED URANIUM MINES

    EPA Science Inventory

    Volume II investigates the potential radiogenic risks from abandoned uranium mines and evaluates which may pose the greatest hazards to members of the public and to the environment. The intent of this report is to identify who may be most likely to be exposed to wastes at small a...

  10. Spatial distribution of environmental risk associated to a uranium abandoned mine (Central Portugal)

    NASA Astrophysics Data System (ADS)

    Antunes, I. M.; Ribeiro, A. F.

    2012-04-01

    The abandoned uranium mine of Canto do Lagar is located at Arcozelo da Serra, central Portugal. The mine was exploited in an open pit and produced about 12430Kg of uranium oxide (U3O8), between 1987 and 1988. The dominant geological unit is the porphyritic coarse-grained two-mica granite, with biotite>muscovite. The uranium deposit consists of two gaps crushing, parallel to the coarse-grained porphyritic granite, with average direction N30°E, silicified, sericitized and reddish jasperized, with a width of approximately 10 meters. These gaps are accompanied by two thin veins of white quartz, 70°-80° WNW, ferruginous and jasperized with chalcedony, red jasper and opal. These veins are about 6 meters away from each other. They contain secondary U-phosphates phases such as autunite and torbernite. Rejected materials (1000000ton) were deposited on two dumps and a lake was formed in the open pit. To assess the environmental risk of the abandoned uranium mine of Canto do Lagar, were collected and analysed 70 samples on stream sediments, soils and mine tailings materials. The relation between samples composition were tested using the Principal Components Analysis (PCA) (multivariate analysis) and spatial distribution using Kriging Indicator. The spatial distribution of stream sediments shows that the probability of expression for principal component 1 (explaining Y, Zr, Nb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Hf, Th and U contents), decreases along SE-NW direction. This component is explained by the samples located inside mine influence. The probability of expression for principal component 2 (explaining Be, Na, Al, Si, P, K, Ca, Ti, Mn, Fe, Co, Ni, Cu, As, Rb, Sr, Mo, Cs, Ba, Tl and Bi contents), increases to middle stream line. This component is explained by the samples located outside mine influence. The spatial distribution of soils, shows that the probability of expression for principal component 1 (explaining Mg, P, Ca, Ge, Sr, Y, Zr, La, Ce, Pr

  11. Uranium Mines and Mills Location Database

    EPA Pesticide Factsheets

    EPA has compiled mine location information from federal, state, and Tribal agencies into a single database as part of its investigation into the potential environmental hazards of wastes from abandoned uranium mines in the western United States.

  12. Working with Communities on Cleaning Up Abandoned Uranium Mines

    EPA Pesticide Factsheets

    This site provides information about the EPA's work to inform and include communities in the cleanup of abandoned mines, including health impacts, major enforcement and removal milestones, and community actions.

  13. 238U, and its decay products, in grasses from an abandoned uranium mine

    NASA Astrophysics Data System (ADS)

    Childs, Edgar; Maskall, John; Millward, Geoffrey

    2016-04-01

    Bioaccumulation of radioactive contaminants by plants is of concern particularly where the sward is an essential part of the diet of ruminants. The abandoned South Terras uranium mine, south west England, had primary deposits of uraninite (UO2) and pitchblende (U3O8), which contained up to 30% uranium. When the mine was active uranium and radium were extracted but following closure it was abandoned without remediation. Waste rock and gangue, consisting of inefficiently processed minerals, were spread around the site, including a field where ruminants are grazed. Here we report the activity concentrations of 238U, 235U 214,210Pb, and the concentrations of selected metals in the soils, roots and leaves of grasses taken from the contaminated field. Soil samples were collected at the surface, and at 30 cm depth, using an auger along a 10-point transect in the field from the foot of a waste heap. Whole, individual grass plants were removed with a spade, ensuring that their roots were intact. The soils and roots and grass leaves were freeze-dried. Activity concentrations of the radionuclides were determined by gamma spectroscopy, following 30 days incubation for development of secular equilibrium. Dried soils, roots and grasses were also digested in aqua regia and the concentrations of elements determined by ICP techniques. Maximum activity concentrations of 238U, 235U, 214Pb and 210Pb surface soils were 63,300, 4,510, 23,300 and 49,400 Bq kg-1, respectively. The mean 238U:235U ratio was 11.8 ± 1.8, an order of magnitude lower than the natural value of 138, indicating disequilibrium within the decay chain due to mineral processing. Radionuclides in the roots had 5 times lower concentration and only grass leaves in the vicinity of the waste heap had measureable values. The mean soil to root transfer factor for 238U was 36%, the mean root to leaf was 3% and overall only 0.7% of 238U was transferred from the soil to the leaves. The roots contained 0.8% iron, possibly as

  14. Bioaccessibility of U, Th and Pb in particulate matter from an abandoned uranium mine

    NASA Astrophysics Data System (ADS)

    Millward, Geoffrey; Foulkes, Michael; Henderson, Sam; Blake, William

    2016-04-01

    Currently, there are approximately 150 uranium mines in Europe at various stages of either operation, development, decommissioning, restoration or abandonment (wise-uranium.com). The particulate matter comprising the mounds of waste rock and mill tailings poses a risk to human health through the inadvertent ingestion of particles contaminated with uranium and thorium, and their decay products, which exposes recipients to the dual toxicity of heavy elements and their radioactive emissions. We investigated the bioaccessibility of 238U, 232Th and 206,214,210Pb in particulate samples taken from a contaminated, abandoned uranium mine in South West England. Sampling included a mine shaft, dressing floor and waste heap, as well as soils from a field used for grazing. The contaminants were extracted using the in-vitro Unified Bioaccessibility Research Group of Europe Method (UBM) in order to mimic the digestion processes in the human stomach (STOM) and the combined stomach and gastrointestinal tract (STOM+INT). Analyses of concentrations of U, Th and Pb in the extracts were by ICP-MS and the activity concentrations of radionuclides were determined on the same particles, before and after extraction, using gamma spectroscopy. 'Total' concentrations of U, Th and Pb for all samples were in the range 57 to 16,200, 0.28 to 3.8 and 69 to 4750 mg kg-1, respectively. For U and Pb the concentrations in the STOM fraction were lower than the total and STOM+INT fractions were even lower. However, for Th the STOM+INT fractions were higher than the STOM due to the presence of Th carbonate species within the gastrointestinal fluid. Activity concentrations for 214Pb and 210Pb, including total, STOM and STOM+INT, were in the range 180 to <1 Bq g-1 for the dressing floor and waste heap and 18 to <1 Bq g-1 for the grazing land. Estimates of the bioaccessible fractions (BAFs) of 238U in the most contaminated samples were 39% and 8% in the STOM and STOM+INT, respectively, whereas the respective

  15. New perspectives on a 140-year legacy of mining and abandoned mine cleanup in the San Juan Mountains, Colorado

    USGS Publications Warehouse

    Yager, Douglas B.; Fey, David L.; Chapin, Thomas; Johnson, Raymond H.

    2016-01-01

    The Gold King mine water release that occurred on 5 August 2015 near the historical mining community of Silverton, Colorado, highlights the environmental legacy that abandoned mines have on the environment. During reclamation efforts, a breach of collapsed workings at the Gold King mine sent 3 million gallons of acidic and metal-rich mine water into the upper Animas River, a tributary to the Colorado River basin. The Gold King mine is located in the scenic, western San Juan Mountains, a region renowned for its volcano-tectonic and gold-silver-base metal mineralization history. Prior to mining, acidic drainage from hydrothermally altered areas was a major source of metals and acidity to streams, and it continues to be so. In addition to abandoned hard rock metal mines, uranium mine waste poses a long-term storage and immobilization challenge in this area. Uranium resources are mined in the Colorado Plateau, which borders the San Juan Mountains on the west. Uranium processing and repository sites along the Animas River near Durango, Colorado, are a prime example of how the legacy of mining must be managed for the health and well-being of future generations. The San Juan Mountains are part of a geoenvironmental nexus where geology, mining, agriculture, recreation, and community issues converge. This trip will explore the geology, mining, and mine cleanup history in which a community-driven, watershed-based stakeholder process is an integral part. Research tools and historical data useful for understanding complex watersheds impacted by natural sources of metals and acidity overprinted by mining will also be discussed.

  16. Residential proximity to abandoned uranium mines and serum inflammatory potential in chronically exposed Navajo communities.

    PubMed

    Harmon, Molly E; Lewis, Johnnye; Miller, Curtis; Hoover, Joseph; Ali, Abdul-Mehdi S; Shuey, Chris; Cajero, Miranda; Lucas, Selita; Zychowski, Katherine; Pacheco, Bernadette; Erdei, Esther; Ramone, Sandy; Nez, Teddy; Gonzales, Melissa; Campen, Matthew J

    2017-07-01

    Members of the Navajo Nation, who possess a high prevalence of cardiometabolic disease, reside near hundreds of local abandoned uranium mines (AUM), which contribute uranium, arsenic and other metals to the soil, water and air. We recently reported that hypertension is associated with mine waste exposures in this population. Inflammation is a major player in the development of numerous vascular ailments. Our previous work establishing that specific transcriptional responses of cultured endothelial cells treated with human serum can reveal relative circulating inflammatory potential in a manner responsive to pollutant exposures, providing a model to assess responses associated with exposure to these waste materials in this population. To investigate a potential link between exposures to AUM and serum inflammatory potential in affected communities, primary human coronary artery endothelial cells were treated for 4 h with serum provided by Navajo study participants (n=145). Endothelial transcriptional responses of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and chemokine ligand 2 (CCL2) were measured. These transcriptional responses were then linked to AUM exposure metrics, including surface area-weighted AUM proximity and estimated oral intake of metals. AUM proximity strongly predicted endothelial transcriptional responses to serum including CCL2, VCAM-1 and ICAM-1 (P<0.0001 for each), whereas annual water intakes of arsenic and uranium did not, even after controlling for all major effect modifiers. Inflammatory potential associated with proximity to AUMs, but not oral intake of specific metals, additionally suggests a role for inhalation exposure as a contributor to cardiovascular disease.

  17. Trace Element Mobility in Water and Sediments in a Hyporheic Zone Adjacent to an Abandoned Uranium Mine

    NASA Astrophysics Data System (ADS)

    Roldan, C.; Blake, J.; Cerrato, J.; Ali, A.; Cabaniss, S.

    2015-12-01

    The legacy of abandoned uranium mines lead to community concerns about environmental and health effects. This study focuses on a cross section of the Rio Paguate, adjacent to the Jackpile Mine on the Laguna Reservation, west-central New Mexico. Often, the geochemical interactions that occur in the hyporheic zone adjacent to these abandoned mines play an important role in trace element mobility. In order to understand the mobility of uranium (U), arsenic (As), and vanadium (V) in the Rio Paguate; surface water, hyporheic zone water, and core sediment samples were analyzed using inductively coupled plasma mass spectroscopy (ICP-MS). All water samples were filtered through 0.45μm and 0.22μm filters and analyzed. The results show that there is no major difference in concentrations of U (378-496μg/L), As (0.872-6.78μg/L), and V (2.94-5.01μg/L) between the filter sizes or with depth (8cm and 15cm) in the hyporheic zone. The unfiltered hyporheic zone water samples were analyzed after acid digestion to assess the particulate fraction. These results show a decrease in U concentration (153-202μg/L) and an increase in As (33.2-219μg/L) and V (169-1130μg/L) concentrations compared to the filtered waters. Surface water concentrations of U(171-184μg/L) are lower than the filtered hyporheic zone waters while As(1.32-8.68μg/L) and V(1.75-2.38μg/L) are significantly lower than the hyporheic zone waters and particulates combined. Concentrations of As in the sediment core samples are higher in the first 15cm below the water-sediment interface (14.3-3.82μg/L) and decrease (0.382μg/L) with depth. Uranium concentrations are consistent (0.047-0.050μg/L) at all depths. The over all data suggest that U is mobile in the dissolved phase and both As and V are mobile in the particular phase as they travel through the system.

  18. Abandoned Mine Lands

    EPA Pesticide Factsheets

    Abandoned Mine Lands are those lands, waters, and surrounding watersheds where extraction, beneficiation, or processing of ores and minerals (excluding coal) has occurred. These lands also include areas where mining or processing activity is inactive.

  19. Chemical Interactions of Uranium in Water, Sediments, and Plants Along a Watershed Adjacent to the Abandoned Jackpile Mine

    NASA Astrophysics Data System (ADS)

    Blake, J.; De Vore, C. L.; Avasarala, S.; Ali, A.; Roldan, C.; Bowers, F.; Spilde, M.; Artyushkova, K.; Cerrato, J.

    2015-12-01

    The chemical interactions, mobility, and plant uptake of uranium (U) near abandoned mine wastes was investigated along the Rio Paguate, adjacent to the Jackpile Mine, located in Laguna Pueblo, New Mexico. Elevated U concentrations in surface water adjacent to mine waste range from 30 to 710 μg/L seasonally and decrease to 5.77 to 10.0 μg/L at a wetland 4.5 kilometers downstream of the mine. Although U concentrations in stream water are elevated, aqua regia acid digestions performed on co-located stream bed and stream bank sediments reveal that there is limited U accumulation on sediments along the reach between the mine and wetland, with most sediment concentrations being near the 3 mg/kg crustal average. However, U concentrations in sediments in the wetland are 4 times the background concentrations in the area. Individual results from salt cedar roots, stems, and leaves collected along the river transect show higher U concentrations in the roots adjacent to the mine waste (20 and 55 mg/kg) and lower in the stems and leaves. Translocation values calculated below 1 are evident in many of the plant samples, suggesting that U root to shoot translocation is minimal and U is accumulating in the roots. Concentrations of U in salt cedar roots from downstream of the mine waste decrease to 15 mg/kg. X-ray photoelectron spectroscopy analysis on sediment samples adjacent to the mine waste show a 75:25% ratio of Fe(III) to Fe(II), which can have an effect on adsorption properties. Electron microprobe results suggest that the ore in this area is present as a uranium-phosphate phase. Our results suggest that dilution, uptake by plants, and U sorption to wetland sediments are the dominant factors that help to decrease the U concentrations downstream of the mine.

  20. The USGS Abandoned Mine Lands Initiative: Protecting and restoring the environment near abandoned mine lands

    USGS Publications Warehouse

    ,

    1999-01-01

    The Abandoned Mine Lands (AML) Initiative is part of a larger strategy of the U.S. Department of the Interior and the U.S. Department of Agriculture to clean up Federal lands contaminated by abandoned mines.Thousands of abandond hard-rock metal mines (such as gold, copper, lead, and zinc) have left a dual legacy across the Western United States. They reflect the historic development of the west, yet at the same time represent a possible threat to human health and local ecosystems.Abandoned Mine Lands (AML) are areas adjacent to or affected by abandoned mines. AML's often contain unmined mineral deposits, mine dumps (the ore and rock removed to get to the ore deposits), and tailings (the material left over from the ore processing) that contaminate the surrounding watershed and ecosystem. For example, streams near AML's can contain metals and (or) be so acidic that fish and aquatic insects cannot live in them.Many of these abandoned hard-rock mines are located on or adjacent to public lands administered by the Bureau of Land Management, National Park Service, and U.S. Forest Service. These federal land management agencies and the USGS are committed to mitigating the adverse effects that AML's can have on water quality and stream habitats.The USGS AML Initiative began in 1997 and will continue through 2001 in two pilot watersheds - the Boulder River basin in southwestern Montana and the upper Animas River basin in southwestern Colorado. The USGS is providing a wide range of scientific expertise to help land managers minimize and, where possible, eliminate the adverse environmental effects of AML's. USGS ecologists, geologists, water quality experts, hydrologists, geochemists, and mapping and digital data collection experts are collaborating to provide the scientific knowledge needed for an effective cleanup of AML's.

  1. El Paso Natural Gas Mines Fact Sheets

    EPA Pesticide Factsheets

    These fact sheets contain information about El Paso Natural Gas Mines and the Western Abandoned Uranium Mine Region, 19 abandoned uranium mine claims generally located along the Little Colorado River or Highway 89 near Cameron, AZ.

  2. Assessment of groundwater quality and contamination problems ascribed to an abandoned uranium mine (Cunha Baixa region, Central Portugal)

    NASA Astrophysics Data System (ADS)

    Neves, O.; Matias, M. J.

    2008-02-01

    The assessment of groundwater quality and its environmental implications in the region of the abandoned Cunha Baixa uranium mine (Central Portugal) was carried out from 1995 to 2004. Shallow groundwater is the major water supply source for irrigation in the neighbourhood of Cunha Baixa village. Water samples from the mine site as well as from private wells were collected in order to identify the mining impact on water composition, the extent of contamination and the seasonal and temporal groundwater quality variations. Some of the sampled private wells contain waters having low pH (<4.5 5) and high values of EC, TDS, SO4, F, Ca, Mg, Al, Mn, Ni, U, Zn and 226Ra. The wells located through the ESE WSE groundwater flow path (1 km down gradient of the mining site) display the most contaminated water. In the summer season, the levels of SO4, Al, Mn, and U were 50 120 times higher than those registered for uncontaminated waters and exceeded the quality limits for irrigation purposes, presenting soil degradation risks. Nevertheless, this study indicates that groundwater contamination suffered a small decrease from 1999 to 2004. The bioaccumulation of toxic metals such as Al, Mn, and U within the food chain may cause a serious health hazard to the Cunha Baixa village inhabitants.

  3. Wind Power Potential at Abandoned Mines in Korea

    NASA Astrophysics Data System (ADS)

    jang, M.; Choi, Y.; Park, H.; Go, W.

    2013-12-01

    This study performed an assessment of wind power potential at abandoned mines in the Kangwon province by analyzing gross energy production, greenhouse gas emission reduction and economic effects estimated from a 600 kW wind turbine. Wind resources maps collected from the renewable energy data center in Korea Institute of Energy Research(KIER) were used to determine the average wind speed, temperature and atmospheric pressure at hub height(50 m) for each abandoned mine. RETScreen software developed by Natural Resources Canada(NRC) was utilized for the energy, emission and financial analyses of wind power systems. Based on the results from 5 representative mining sites, we could know that the average wind speed at hub height is the most critical factor for assessing the wind power potential. Finally, 47 abandoned mines that have the average wind speed faster than 6.5 m/s were analyzed, and top 10 mines were suggested as relatively favorable sites with high wind power potential in the Kangwon province.

  4. 77 FR 5740 - Tennessee Abandoned Mine Land Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 942... Mining Reclamation and Enforcement (OSM), Interior. ACTION: Proposed rule; public comment period and... amendment to the Tennessee Abandoned Mine Land (AML) Reclamation Plan under the Surface Mining Control and...

  5. 30 CFR 931.20 - Approval of the New Mexico abandoned mine reclamation plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Approval of the New Mexico abandoned mine..., DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE NEW MEXICO § 931.20 Approval of the New Mexico abandoned mine reclamation plan. The New Mexico Abandoned Mine...

  6. 30 CFR 931.20 - Approval of the New Mexico abandoned mine reclamation plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Approval of the New Mexico abandoned mine..., DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE NEW MEXICO § 931.20 Approval of the New Mexico abandoned mine reclamation plan. The New Mexico Abandoned Mine...

  7. 30 CFR 931.20 - Approval of the New Mexico abandoned mine reclamation plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Approval of the New Mexico abandoned mine..., DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE NEW MEXICO § 931.20 Approval of the New Mexico abandoned mine reclamation plan. The New Mexico Abandoned Mine...

  8. 30 CFR 931.20 - Approval of the New Mexico abandoned mine reclamation plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Approval of the New Mexico abandoned mine..., DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE NEW MEXICO § 931.20 Approval of the New Mexico abandoned mine reclamation plan. The New Mexico Abandoned Mine...

  9. 30 CFR 931.20 - Approval of the New Mexico abandoned mine reclamation plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Approval of the New Mexico abandoned mine..., DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE NEW MEXICO § 931.20 Approval of the New Mexico abandoned mine reclamation plan. The New Mexico Abandoned Mine...

  10. Trust Mines

    EPA Pesticide Factsheets

    The United States and the Navajo Nation entered into settlement agreements that provide funds to conduct investigations and any needed cleanup at 16 of the 46 priority mines, including six mines in the Northern Abandoned Uranium Mine Region.

  11. 30 CFR 938.20 - Approval of Pennsylvania abandoned mine land reclamation plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Approval of Pennsylvania abandoned mine land... PENNSYLVANIA § 938.20 Approval of Pennsylvania abandoned mine land reclamation plan. The Pennsylvania Abandoned... are available at the following locations: (a) Pennsylvania Department of Environmental Resources...

  12. Uranium mining in Portugal: a review of the environmental legacies of the largest mines and environmental and human health impacts.

    PubMed

    Pereira, R; Barbosa, S; Carvalho, F P

    2014-04-01

    The history of uranium mining in Portugal during almost one century has followed international demand peaks of both radium and uranium, which in turn were driven by medical, military, and civil applications. Nowadays, following price drop in the 1980s, mining activities decreased and ceased in 2001. The current challenge is to deal with environmental legacies left by old uranium mines, mainly located in Viseu and Guarda districts. In 2001, based on several radiological surveys carried out, the Portuguese government assumed the remediation costs of abandoned mine areas for environmental safety and public health protection. Detailed environmental and public health risk assessments were performed under the scope of studies both requested by the government and by funded research projects. It was found that the existing risks, due to radiological and chemical exposures to metals and radionuclide's, were particularly high at the old milling facilities and mines where in situ and heap leaching of low-grade ore occurred. The different studies, involving both humans and non-human species from different trophic levels, demonstrated the existence of effects at different levels of biological organization (molecular, cellular, tissues, individuals, and populations) and on ecosystem services. To mitigate the risks, the environmental rehabilitation works at the Urgeiriça mine complex are almost complete, while at Cunha Baixa mine, they are presently in progress. These works and environmental improvements achieved and expected are described herein.

  13. Atmospheric monitoring at abandoned mercury mine sites in Asturias (NW Spain).

    PubMed

    Loredo, Jorge; Soto, Jorge; Alvarez, Rodrigo; Ordóñez, Almudena

    2007-07-01

    Mercury concentrations are usually significant in historic Hg mining districts all over the world, so the atmospheric environment is potentially affected. In Asturias, northern Spain, past mining operations have left a legacy of ruins and Hg-rich wastes, soils and sediments in abandoned sites. Total Hg concentrations in the ambient air of these abandoned mine sites have been investigated to evaluate the impact of the Hg emissions. This paper presents the synthesis of current knowledge about atmospheric Hg contents in the area of the abandoned Hg mining and smelting works at 'La Peña-El Terronal' and La Soterraña, located in Mieres and Pola de Lena districts, respectively, both within the Caudal River basin. It was found that average atmospheric Hg concentrations are higher than the background level in the area (0.1 microg Nm(-3)), reaching up to 203.7 microg Nm(-3) at 0.2 m above the ground level, close to the old smelting chimney at El Terronal mine site. Data suggest that past Hg mining activities have big influences on the increased Hg concentrations around abandoned sites and that atmospheric transfer is a major pathway for Hg cycling in these environments.

  14. Microfilming maps of abandoned anthracite mines: mines in the southern anthracite field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gait, G.B.

    1978-01-01

    This report is the fifth in a series concerning the Bureau of Mines program for microfilming maps of abandoned mines in the Pennsylvania anthracite region. A catalog of the microfilmed maps of 47 of 49 major mines and 18 independent mines in the Southern field is presented. Previous reports included catalogs of microfilmed maps of mines in the Eastern Middle field, the Wyoming and Lackawanna Basins of the Northern field, and the Western Middle anthracite field.

  15. 78 FR 9803 - Tennessee Abandoned Mine Land Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ..., dangerous impoundments, abandoned structures/equipment, open mine portals, and open mine shafts and refuse..., policy, procedural, and organizational changes that have occurred since 1984. DATES: Effective Date... procedures to manage their financial management, equipment, and procurement systems. OMB Circular A-102 was...

  16. Section 9 Lease Mines

    EPA Pesticide Factsheets

    Information about Section 9 Lease Mines, three abandoned uranium mines sites located near the Little Colorado River in Northern Arizona. The mines are located just outside the Navajo Nation and are about 10 miles southeast of Cameron, AZ.

  17. 30 CFR 938.25 - Approval of Pennsylvania abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Approval of Pennsylvania abandoned mine land reclamation plan amendments. 938.25 Section 938.25 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE PENNSYLVANIA § 938.25 Approval of Pennsylvania abandoned mine land reclamation plan amendments...

  18. Use of an automatic resistivity system for detecting abandoned mine workings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, W.R.; Burdick, R.G.

    1983-01-01

    A high-resolution earth resistivity system has been designed and constructed for use as a means of detecting abandoned coal mine workings. The automatic pole-dipole earth resistivity technique has already been applied to the detection of subsurface voids for military applications. The hardware and software of the system are described, together with applications for surveying and mapping abandoned coal mine workings. Field tests are presented to illustrate the detection of both air-filled and water-filled mine workings.

  19. 30 CFR 906.25 - Approval of Colorado abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Approval of Colorado abandoned mine land reclamation plan amendments. 906.25 Section 906.25 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE COLORADO § 906.25 Approval of Colorado abandoned mine land reclamation plan amendments. The...

  20. 30 CFR 935.25 - Approval of Ohio abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Plan to provide for the reclamation of areas causing acid mine drainage AMD and to revise the project... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Approval of Ohio abandoned mine land... STATE OHIO § 935.25 Approval of Ohio abandoned mine land reclamation plan amendments. The following is a...

  1. 30 CFR 935.25 - Approval of Ohio abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Plan to provide for the reclamation of areas causing acid mine drainage AMD and to revise the project... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Approval of Ohio abandoned mine land... STATE OHIO § 935.25 Approval of Ohio abandoned mine land reclamation plan amendments. The following is a...

  2. 30 CFR 935.25 - Approval of Ohio abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Plan to provide for the reclamation of areas causing acid mine drainage AMD and to revise the project... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Approval of Ohio abandoned mine land... STATE OHIO § 935.25 Approval of Ohio abandoned mine land reclamation plan amendments. The following is a...

  3. 30 CFR 935.25 - Approval of Ohio abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Plan to provide for the reclamation of areas causing acid mine drainage AMD and to revise the project... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Approval of Ohio abandoned mine land... STATE OHIO § 935.25 Approval of Ohio abandoned mine land reclamation plan amendments. The following is a...

  4. U.S. ARMY CORPS OF ENGINEERS ABANDONED MINE LAND REMEDIATION WORKSHOP

    EPA Science Inventory

    Mining activities in the US (not counting coal) produce 1-2 billion tons of mine waste annually. Since many of the ore mines involve sulfide minerals, the production of acid mine drainage (AMD) is a common problem from these abandoned mine sites. The combination of acidity, heavy...

  5. Monitoring genotoxic exposure in uranium mines.

    PubMed Central

    Srám, R J; Dobiás, L; Rössner, P; Veselá, D; Veselý, D; Rakusová, R; Rericha, V

    1993-01-01

    Recent data from deep uranium mines in Czechoslovakia indicated that mines are exposed to other mutagenic factors in addition to radon daughter products. Mycotoxins were identified as a possible source of mutagens in these mines. Mycotoxins were examined in 38 samples from mines and in throat swabs taken from 116 miners and 78 controls. The following mycotoxins were identified from mines samples: aflatoxins B1 and G1, citrinin, citreoviridin, mycophenolic acid, and sterigmatocystin. Some mold strains isolated from mines and throat swabs were investigated for mutagenic activity by the SOS chromotest and Salmonella assay with strains TA100 and TA98. Mutagenicity was observed, especially with metabolic activation in vitro. These data suggest that mycotoxins produced by molds in uranium mines are a new genotoxic factor for uranium miners. PMID:8143610

  6. 30 CFR 948.25 - Approval of West Virginia abandoned mine lands reclamation plan amendments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... March 26, 1993 Amendments contained in House Bill 2492; Expanded eligibility criteria; Acid mine... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Approval of West Virginia abandoned mine lands... STATE WEST VIRGINIA § 948.25 Approval of West Virginia abandoned mine lands reclamation plan amendments...

  7. 30 CFR 948.25 - Approval of West Virginia abandoned mine lands reclamation plan amendments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... March 26, 1993 Amendments contained in House Bill 2492; Expanded eligibility criteria; Acid mine... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Approval of West Virginia abandoned mine lands... STATE WEST VIRGINIA § 948.25 Approval of West Virginia abandoned mine lands reclamation plan amendments...

  8. 30 CFR 948.25 - Approval of West Virginia abandoned mine lands reclamation plan amendments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... March 26, 1993 Amendments contained in House Bill 2492; Expanded eligibility criteria; Acid mine... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Approval of West Virginia abandoned mine lands... STATE WEST VIRGINIA § 948.25 Approval of West Virginia abandoned mine lands reclamation plan amendments...

  9. Sinkhole-type subsidence over abandoned coal mines in St. David, Illinois. Mine subsidence report, St. David, Illinois. A field survey and analysis of mine subsidence of abandoned coal mines in St. David, Illinois

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wildanger, E.G.; Mahar, J.; Nieto, A.

    1980-01-01

    This study examined the geologic data, mining history, and subsidence trends of the St. David region. Mine subsidence has occurred due to collapse of the abandoned mine workings. The known subsidence areas have been mapped and described. Results of the study include: (1) St. David has been undermined by both large shipping mines and smaller local mines; (2) sinkholes will continue to develop in this area in response to rock failure and roof collapse above the abandoned mine workings; (3) some primary factors that contribute to the sinkhole problems are the undermining and roof rock composition; (4) sinkholes will bemore » smaller in the future; (5) ten of the 63 sinkholes occurred close enough to structures to cause damage, and only six sinkholes caused damage; (6) ways to minimize potential damage to future homes from sinkhole subsidence are manageable; (7) threats to residents lie in the collapse of heavy walls, brick chimneys, breaks in gas, water, or electrical lines; and (8) location of future subsidence is not predictable. (DP)« less

  10. 30 CFR 931.25 - Approval of New Mexico abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Approval of New Mexico abandoned mine land reclamation plan amendments. 931.25 Section 931.25 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE NEW MEXICO § 931.25 Approval of New Mexico abandoned mine land reclamation plan amendments. The...

  11. 30 CFR 931.25 - Approval of New Mexico abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Approval of New Mexico abandoned mine land reclamation plan amendments. 931.25 Section 931.25 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE NEW MEXICO § 931.25 Approval of New Mexico abandoned mine land reclamation plan amendments. The...

  12. 30 CFR 931.25 - Approval of New Mexico abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Approval of New Mexico abandoned mine land reclamation plan amendments. 931.25 Section 931.25 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE NEW MEXICO § 931.25 Approval of New Mexico abandoned mine land reclamation plan amendments. The...

  13. 30 CFR 931.25 - Approval of New Mexico abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Approval of New Mexico abandoned mine land reclamation plan amendments. 931.25 Section 931.25 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE NEW MEXICO § 931.25 Approval of New Mexico abandoned mine land reclamation plan amendments. The...

  14. 30 CFR 931.25 - Approval of New Mexico abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Approval of New Mexico abandoned mine land reclamation plan amendments. 931.25 Section 931.25 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE NEW MEXICO § 931.25 Approval of New Mexico abandoned mine land reclamation plan amendments. The...

  15. Use of an automatic earth resistivity system for detection of abandoned mine workings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, W.R.; Burdick, R.

    1982-04-01

    Under the sponsorship of the US Bureau of Mines, a surface-operated automatic high resolution earth resistivity system and associated computer data processing techniques have been designed and constructed for use as a potential means of detecting abandoned coal mine workings. The hardware and software aspects of the new system are described together with applications of the method to the survey and mapping of abandoned mine workings.

  16. Establishing Radiological Screening Levels for Defense-related Uranium Mine (DRUM) Sites on BLM Land Using a Recreational Future-use Scenario.

    PubMed

    Brown, Steven H; Edge, Russel; Elmer, John; McDonald, Michael

    2018-06-01

    Thousands of former uranium mining sites in the United States, primarily in the southwestern states of Colorado, Arizona, New Mexico, Arizona, and Utah, are being identified and evaluated to assess their potential for causing public and environmental impacts. The common radiological contaminant of concern that characterizes these sites is naturally occurring uranium ore and associated wastes that may have been left behind postmining. The majority of these sites were abandoned and in general, are referred to as abandoned uranium mines, regardless of the government authority currently managing the land or in some cases, assigned responsibility for the oversight of assessment and remediation. The U.S. Department of Energy has identified over 4,000 defense-related uranium mine sites from which uranium ore was purchased by the U.S. government for nuclear defense programs prior to 1970. U.S. Department of Energy has established a program to inventory and perform environmental screening on defense-related uranium mine sites. The focus of this paper is the approximately 2,400 defense-related uranium mine sites located on federal land managed by the Bureau of Land Management and the U.S. Forest Service. This paper presents the results of an analysis to develop radiological screening criteria for U.S. Department of Energy's defense-related uranium mine sites that can be used as input to the overall ranking of these sites for prioritization of additional assessment, reclamation, or remedial actions. For these sites managed by Bureau of Land Management, public access is typically limited to short-term use, primarily for recreational purposes. This is a broad category that can cover a range of possible activities, including camping, hiking, hunting, biking, all-terrain vehicle use, and horseback riding. The radiological screening levels were developed by calculating the radiological dose to future recreational users of defense-related uranium mine sites assuming a future camper

  17. Preliminary study of a radiological survey in an abandoned uranium mining area in Madagascar

    NASA Astrophysics Data System (ADS)

    N, Rabesiranana; M, Rasolonirina; F, Solonjara A.; Andriambololona., Raoelina; L, Mabit

    2010-05-01

    The region of Vinaninkarena located in central Madagascar (47°02'40"E, 19°57'17"S), is known to be a high natural radioactive area. Uranium ore was extracted in this region during the 1950s and the early 1960s. In the mid-1960s, mining activities were stopped and the site abandoned. In the meantime, the region, which used to be without any inhabitants, has recently been occupied by new settlers with presumed increase in exposure of the local population to natural ionizing radiation. In order to assess radiological risk, a survey to assess the soil natural radioactivity background was conducted during the year 2004. This study was implemented in the frame of the FADES Project SP99v1b_21 entitled: Assessment of the environmental pollution by multidisciplinary approach, and the International Atomic Energy Agency Technical Cooperation Project MAG 7002 entitled: Effects of air and water pollution on human health. Global Positioning System (GPS) was used to determine the geographical coordinates of the top soil samples (0-15cm) collected. The sampling was performed using a multi integrated scale approach to estimate the spatial variability of the parameters under investigation (U, Th and K) using geo-statistical approach. A total of 205 soil samples was collected in the study site (16 km2). After humidity correction, the samples were sealed in 100 cm3 cylindrical air-tight plastic containers and stored for more than 6 months to reach a secular equilibrium between parents and short-lived progeny (226Ra and progeny, 238U and 234Th). Measurements were performed using a high-resolution HPGe Gamma-detector with a 30% relative efficiency and an energy resolution of 1.8 keV at 1332.5 keV, allowing the determination of the uranium and thorium series and 40K. In case of secular equilibrium, a non-gamma-emitting radionuclide activity was deduced from its gamma emitting progeny. This was the case for 238U (from 234Th), 226Ra (from 214Pb and 214Bi) and 232Th (from 228Ac, 212Pb or

  18. 30 CFR 944.20 - Approval of Utah abandoned mine plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Division of Oil, Gas and Mining, Department of Natural Resources, 3 Triad Center, Suite 350, 355 West North... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Approval of Utah abandoned mine plan. 944.20... INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE UTAH § 944.20 Approval of...

  19. 30 CFR 944.20 - Approval of Utah abandoned mine plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Division of Oil, Gas and Mining, Department of Natural Resources, 3 Triad Center, Suite 350, 355 West North... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Approval of Utah abandoned mine plan. 944.20... INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE UTAH § 944.20 Approval of...

  20. 30 CFR 944.20 - Approval of Utah abandoned mine plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Division of Oil, Gas and Mining, Department of Natural Resources, 3 Triad Center, Suite 350, 355 West North... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Approval of Utah abandoned mine plan. 944.20... INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE UTAH § 944.20 Approval of...

  1. 30 CFR 944.20 - Approval of Utah abandoned mine plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Division of Oil, Gas and Mining, Department of Natural Resources, 3 Triad Center, Suite 350, 355 West North... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Approval of Utah abandoned mine plan. 944.20... INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE UTAH § 944.20 Approval of...

  2. 30 CFR 944.20 - Approval of Utah abandoned mine plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Division of Oil, Gas and Mining, Department of Natural Resources, 3 Triad Center, Suite 350, 355 West North... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Approval of Utah abandoned mine plan. 944.20... INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE UTAH § 944.20 Approval of...

  3. Monitoring genotoxic exposure in uranium mines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sram, R.J.; Vesela, D.; Vesely, D.

    1993-10-01

    Recent data from deep uranium mines in Czechoslovakia indicated that miners are exposed to other mutagenic factors in addition to radon daughter products. Mycotoxins were identified as a possible source of mutagens in these mines. Mycotoxins were examined in 38 samples from mines and in throat swabs taken from 116 miners and 78 controls. The following mycotoxins were identified from mines samples: aflatoxins B{sub 1} and G1, citrinin, citreoviridin, mycophenolic acid, and sterigmatocystin. Some mold strains isolated from mines and throat swabs were investigated for mutagenic activity by the SOS chromotest and Salmonella assay with strains TA100 and TA98. Mutagenicitymore » was observed, especially with metabolic activation in citro. These data suggest that mycotoxins produced by molds in uranium mines are a new genotoxic factor im uranium miners. 17 refs., 4 tabs.« less

  4. [Heavy metal tolerance of Miscanthus plants and their phytoremediation potential in abandoned mine land].

    PubMed

    Wu, Dao Ming; Chen, Xiao Yang; Zeng, Shu Cai

    2017-04-18

    Miscanthus has been recognized as promising candidate for phytoremediation in abandoned mine land, because of its high tolerance to heavy metals and bioenergy potential. Miscanthus has been reported tolerant to several heavy metal elements. However, it has not been recognized as hyperaccumulator for these elements. The detailed mechanisms by which Miscanthus tolerates these heavy metal elements are still unclear. According to recent studies, several mechanisms, such as high metabolic capacity in root, an abundance of microbes in the root-rhizosphere, and high capacity of antioxidation and photosynthesis might contribute to enhance the heavy metal tolerance of Miscanthus. Miscanthus has a certain potential in the phytoremediation of abandoned mine land, because of its high suitability for the phytostabilization of heavy metals. Moreover, Miscanthus cropping is a promising practice to enhance the diversity of botanical species and soil organism, and to improve soil physical and chemical properties. Here we reviewed recent literatures on the biological characteristics and the heavy metal tolerance of Miscanthus, and its phytoremediation potential in abandoned mine land. A basic guideline for using Miscanthus in abandoned mine land phytoremediation and an outlook for further study on the mechanisms of heavy metals tolerance in Miscanthus were further proposed. We hoped to provide theoretical references for phytoremediation in abandoned mine land by using Miscanthus.

  5. Virginia big-eared bats (Corynorhinus townsendii virginianus) roosting in abandoned coal mines in West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.B.; Edwards, J.W.; Wood, P.B.

    We surveyed bats at 36 abandoned coal mines during summer 2002 and 47 mines during fall 2002 at New River Gorge National River and Gauley River National Recreation Area, WV. During summer, we captured three federally endangered Virginia big-eared bats at two mine entrances, and 25 were captured at 12 mine entrances during fall. These represent the first documented captures of this species at coal mines in West Virginia. Future survey efforts conducted throughout the range of the Virginia big-eared bat should include abandoned coal mines.

  6. Remediation and rehabilitation of abandoned mining sites in Cyprus

    NASA Astrophysics Data System (ADS)

    Helsen, S.; Rommens, T.; De Ridder, A.; Panayiotou, C.; Colpaert, J.

    2009-04-01

    Due to a particular geological setting, Cyprus is rich in ore deposits, many of them subject to extensive mining. Most of the mines have a long history, sometimes dating back to prehistorical times. These abandoned mines cause severe off-site environmental problems and health risks for the local population. Groundwater supplies are affected by the leaching of pollutants, surface water is contaminated because of water erosion, and harmful dust containing heavy metals or asbestos is spread due to wind erosion. In addition to the environmental risks associated with the abandoned mines, many of these sites are aestethically unattractive, and remain an economic burden to stakeholders and the public in general, due to the downgrading of surrounding areas, non-development and hence loss of revenue. These factors are important in Cyprus where tourism is a significant source of income for local communities. An EUREKA-project addresses the issue of abandoned mine clean-up and restoration. The main objectives of this study are : (1) To develop phytostabilization and -remediation techniques to stabilize and clean up sites characterized by high nickel and copper concentrations in the soil, using endemic plants (Alyssum spp. and mycorrhizal Pinus brutia). In some old mines, efforts were already made to stabilize slopes in an attempt to minimize soil erosion and spreading of pollutants. These restoration efforts, however, remained largely unsuccessful because vegetation that was planted could not cope with the harsh hydrogeochemical soil characteristics. Regeneration of the vegetation cover therefore failed ; (2) to demonstrate the risks associated to the environmental hazard of metal polluted mine spoils and outline a method by which to accomplish this type of risk assessment ; (3) to analyse costs and benefits of phytostabilization- and phytoremediation-based solution for the problem. Results of the first experiments are still preliminary and incomplete. However, it is expected

  7. Uranium mobility and accumulation along the Rio Paguate, Jackpile Mine in Laguna Pueblo, NM.

    PubMed

    Blake, Johanna M; De Vore, Cherie L; Avasarala, Sumant; Ali, Abdul-Mehdi; Roldan, Claudia; Bowers, Fenton; Spilde, Michael N; Artyushkova, Kateryna; Kirk, Matthew F; Peterson, Eric; Rodriguez-Freire, Lucia; Cerrato, José M

    2017-04-19

    The mobility and accumulation of uranium (U) along the Rio Paguate, adjacent to the Jackpile Mine, in Laguna Pueblo, New Mexico was investigated using aqueous chemistry, electron microprobe, X-ray diffraction and spectroscopy analyses. Given that it is not common to identify elevated concentrations of U in surface water sources, the Rio Paguate is a unique site that concerns the Laguna Pueblo community. This study aims to better understand the solid chemistry of abandoned mine waste sediments from the Jackpile Mine and identify key hydrogeological and geochemical processes that affect the fate of U along the Rio Paguate. Solid analyses using X-ray fluorescence determined that sediments located in the Jackpile Mine contain ranges of 320 to 9200 mg kg -1 U. The presence of coffinite, a U(iv)-bearing mineral, was identified by X-ray diffraction analyses in abandoned mine waste solids exposed to several decades of weathering and oxidation. The dissolution of these U-bearing minerals from abandoned mine wastes could contribute to U mobility during rain events. The U concentration in surface waters sampled closest to mine wastes are highest during the southwestern monsoon season. Samples collected from September 2014 to August 2016 showed higher U concentrations in surface water adjacent to the Jackpile Mine (35.3 to 772 μg L -1 ) compared with those at a wetland 4.5 kilometers downstream of the mine (5.77 to 110 μg L -1 ). Sediments co-located in the stream bed and bank along the reach between the mine and wetland had low U concentrations (range 1-5 mg kg -1 ) compared to concentrations in wetland sediments with higher organic matter (14-15%) and U concentrations (2-21 mg kg -1 ). Approximately 10% of the total U in wetland sediments was amenable to complexation with 1 mM sodium bicarbonate in batch experiments; a decrease of U concentration in solution was observed over time in these experiments likely due to re-association with sediments in the reactor. The findings

  8. Siting of prison complex above abandoned underground coal mine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marino, G.G.

    1998-10-01

    This paper discusses in detail the process undertaken to mitigate the effects of any future mine subsidence on prison structures proposed above old abandoned underground workings. The site for a proposed prison complex purchased by the state of Indiana was located in west-central Indiana and was undermined by an old abandoned room and pillar mine. Based on a study of the mine map and subsurface verification of the extent of mining it was determined that all prison buildings and important structures could be placed above solid coal to the north. However, one masonry building was located within the potential drawmore » zone of mine works that still contained significant mine voids. Based on empirical data the subsidence potential was estimated and the building was designed accordingly to be mine subsidence resistant. It was decided that a phase 2 prison complex should be constructed adjacent to and just south of the phase 1 complex. This complex would be directly above the underground workings. Subsequently, an extensive subsurface investigation program was undertaken to (1) ascertain whether or not mine areas where buildings would be located were already collapsed and thus only nominal, if any, subsidence could occur in the future and (2) verify the presence of solid coal areas within the mine as indicated on the mine map. Based on all the site information gathered subsidence profiles were developed from an empirical database of subsidence events in the Illinois coal basin. As a result of this work many structures on the site required no or nominal subsidence considerations. However, for others that could be affected potentially by future subsidence movement preliminary subsidence resistant designs were completed using the expected level of potential subsidence movement.« less

  9. 30 CFR 904.20 - Approval of Arkansas abandoned mine land reclamation plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Approval of Arkansas abandoned mine land reclamation plan. 904.20 Section 904.20 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT.... Box 8913, Little Rock, AR 72219-8913. (b) Office of Surface Mining Reclamation and Enforcement, Tulsa...

  10. 30 CFR 904.20 - Approval of Arkansas abandoned mine land reclamation plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Approval of Arkansas abandoned mine land reclamation plan. 904.20 Section 904.20 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT.... Box 8913, Little Rock, AR 72219-8913. (b) Office of Surface Mining Reclamation and Enforcement, Tulsa...

  11. 30 CFR 904.20 - Approval of Arkansas abandoned mine land reclamation plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Approval of Arkansas abandoned mine land reclamation plan. 904.20 Section 904.20 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT.... Box 8913, Little Rock, AR 72219-8913. (b) Office of Surface Mining Reclamation and Enforcement, Tulsa...

  12. 30 CFR 904.20 - Approval of Arkansas abandoned mine land reclamation plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Approval of Arkansas abandoned mine land reclamation plan. 904.20 Section 904.20 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT.... Box 8913, Little Rock, AR 72219-8913. (b) Office of Surface Mining Reclamation and Enforcement, Tulsa...

  13. 30 CFR 904.20 - Approval of Arkansas abandoned mine land reclamation plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Approval of Arkansas abandoned mine land reclamation plan. 904.20 Section 904.20 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT.... Box 8913, Little Rock, AR 72219-8913. (b) Office of Surface Mining Reclamation and Enforcement, Tulsa...

  14. 30 CFR 906.20 - Approval of Colorado abandoned mine land reclamation plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Approval of Colorado abandoned mine land reclamation plan. 906.20 Section 906.20 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE COLORADO...

  15. Uranium Mines and Mills | RadTown USA | US EPA

    EPA Pesticide Factsheets

    2017-08-07

    Uranium is used as nuclear fuel for electric power generation. U.S. mining industries can obtain uranium in two ways: mining or milling. Mining waste and mill tailings can contaminate water, soil and air if not disposed of properly.

  16. Prioritizing abandoned coal mine reclamation projects within the contiguous United States using geographic information system extrapolation.

    PubMed

    Gorokhovich, Yuri; Reid, Matthew; Mignone, Erica; Voros, Andrew

    2003-10-01

    Coal mine reclamation projects are very expensive and require coordination of local and federal agencies to identify resources for the most economic way of reclaiming mined land. Location of resources for mine reclamation is a spatial problem. This article presents a methodology that allows the combination of spatial data on resources for the coal mine reclamation and uses GIS analysis to develop a priority list of potential mine reclamation sites within contiguous United States using the method of extrapolation. The extrapolation method in this study was based on the Bark Camp reclamation project. The mine reclamation project at Bark Camp, Pennsylvania, USA, provided an example of the beneficial use of fly ash and dredged material to reclaim 402,600 sq mi of a mine abandoned in the 1980s. Railroads provided transportation of dredged material and fly ash to the site. Therefore, four spatial elements contributed to the reclamation project at Bark Camp: dredged material, abandoned mines, fly ash sources, and railroads. Using spatial distribution of these data in the contiguous United States, it was possible to utilize GIS analysis to prioritize areas where reclamation projects similar to Bark Camp are feasible. GIS analysis identified unique occurrences of all four spatial elements used in the Bark Camp case for each 1 km of the United States territory within 20, 40, 60, 80, and 100 km radii from abandoned mines. The results showed the number of abandoned mines for each state and identified their locations. The federal or state governments can use these results in mine reclamation planning.

  17. Toxicity assessment of the water used for human consumption from the Cameron/Tuba City abandoned uranium mining area prior/after the combined electrochemical treatment/advanced oxidation.

    PubMed

    Gajski, Goran; Oreščanin, Višnja; Gerić, Marko; Kollar, Robert; Lovrenčić Mikelić, Ivanka; Garaj-Vrhovac, Vera

    2015-01-01

    The purpose of this work was detailed physicochemical, radiological, and toxicological characterization of the composite sample of water intended for human consumption in the Cameron/Tuba City abandoned uranium mining area before and after a combined electrochemical/advanced oxidation treatment. Toxicological characterization was conducted on human lymphocytes using a battery of bioassays. On the bases of the tested parameters, it could be concluded that water used for drinking from the tested water sources must be strictly forbidden for human and/or animal consumption since it is extremely cytogenotoxic, with high oxidative stress potential. A combined electrochemical treatment and posttreatment with ozone and UV light decreased the level of all physicochemical and radiological parameters below the regulated values. Consequently, the purified sample was neither cytotoxic nor genotoxic, indicating that the presented method could be used for the improvement of water quality from the sites highly contaminated with the mixture of heavy metals and radionuclides.

  18. Western Region Mines Community Involvement Plan

    EPA Pesticide Factsheets

    Factsheets related to the Western Abandoned Uranium Mine Region, generally located along the Little Colorado River and Highway 89, and are in the Cameron, Coalmine Canyon, Bodaway/Gap, and Leupp Chapters.

  19. SSH gene expression profile of Eisenia andrei exposed in situ to a naturally contaminated soil from an abandoned uranium mine.

    PubMed

    Lourenço, Joana; Pereira, Ruth; Gonçalves, Fernando; Mendo, Sónia

    2013-02-01

    The effects of the exposure of earthworms (Eisenia andrei) to contaminated soil from an abandoned uranium mine, were assessed through gene expression profile evaluation by Suppression Subtractive Hybridization (SSH). Organisms were exposed in situ for 56 days, in containers placed both in a contaminated and in a non-contaminated site (reference). Organisms were sampled after 14 and 56 days of exposure. Results showed that the main physiological functions affected by the exposure to metals and radionuclides were: metabolism, oxireductase activity, redox homeostasis and response to chemical stimulus and stress. The relative expression of NADH dehydrogenase subunit 1 and elongation factor 1 alpha was also affected, since the genes encoding these enzymes were significantly up and down-regulated, after 14 and 56 days of exposure, respectively. Also, an EST with homology for SET oncogene was found to be up-regulated. To the best of our knowledge, this is the first time that this gene was identified in earthworms and thus, further studies are required, to clarify its involvement in the toxicity of metals and radionuclides. Considering the results herein presented, gene expression profiling proved to be a very useful tool to detect earthworms underlying responses to metals and radionuclides exposure, pointing out for the detection and development of potential new biomarkers. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. 30 CFR 913.20 - Approval of Illinois abandoned mine land reclamation plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... approved plan are available at: (a) Illinois Department of Natural Resources, Office of Mines and Minerals, Abandoned Mine Land Reclamation Division, One Natural Resources Way, Springfield, Illinois 62701-1787. (b... Building, 575 North Pennsylvania Street, Room 301, Indianapolis, IN 46204-1521. [64 FR 20166, Apr. 26, 1999...

  1. Radiochronological Age of a Uranium Metal Sample from an Abandoned Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, L A; Williams, R W; Glover, S E

    2012-03-16

    A piece of scrap uranium metal bar buried in the dirt floor of an old, abandoned metal rolling mill was analyzed using multi-collector inductively coupled plasma mass spectroscopy (MC-ICP-MS). The mill rolled uranium rods in the 1940s and 1950s. Samples of the contaminated dirt in which the bar was buried were also analyzed. The isotopic composition of uranium in the bar and dirt samples were both the same as natural uranium, though a few samples of dirt also contained recycled uranium; likely a result of contamination with other material rolled at the mill. The time elapsed since the uranium metalmore » bar was last purified can be determined by the in-growth of the isotope {sup 230}Th from the decay of {sup 234}U, assuming that only uranium isotopes were present in the bar after purification. The age of the metal bar was determined to be 61 years at the time of this analysis and corresponds to a purification date of July 1950 {+-} 1.5 years.« less

  2. LAND REBORN: TOOLS FOR THE 21ST CENTURY/NATIONAL ASSOCIATION OF ABANDONED MINE LAND PROGRAMS

    EPA Science Inventory

    Mining activities in the US (not counting coal) produce 1-2 billion tons of mine waste annually. Since many of the ore mines involve sulfide minerals, the production of acid mine drainage (AMD) is a common problem from these abandoned mine sites. The combination of acidity, heavy...

  3. Geochemical investigations by the U.S. Geological Survey on uranium mining, milling, and environmental restoration

    USGS Publications Warehouse

    Landa, Edward R.; Cravotta, Charles A.; Naftz, David L.; Verplanck, Philip L.; Nordstrom, D. Kirk; Zielinski, Robert A.

    2000-01-01

    Recent research by the U.S. Geological Survey has characterized contaminant sources and identified important geochemical processes that influence transport of radionuclides from uranium mining and milling wastes. 1) Selective extraction studies indicated that alkaline earth sulfates and hydrous ferric oxides are important hosts of 226Ra in uranium mill tailings. The action of sulfate-reducing and ironreducing bacteria on these phases was shown to enhance release of radium, and this adverse result may temper decisions to dispose of uranium mill tailings in anaerobic environments. 2) Field studies have shown that although surface-applied sewage sludge/wood chip amendments aid in revegetating pyritic spoil, the nitrogen in sludge leachate can enhance pyrite oxidation, acidification of groundwater, and the consequent mobilization of metals and radionuclides. 3) In a U.S. Environmental Protection Agencyfunded study, three permeable reactive barriers consisting of phosphate-rich material, zero-valent iron, or amorphous ferric oxyhydroxide have been installed at an abandoned uranium upgrader facility near Fry Canyon, UT. Preliminary results indicate that each of the permeable reactive barriers is removing the majority of the uranium from the groundwater. 4) Studies on the geochemistry of rare earth elements as analogues for actinides such as uranium and thorium in acid mine drainage environments indicate high mobility under acid-weathering conditions but measurable attenuation associated with iron and aluminum colloid formation. Mass balances from field and laboratory studies are being used to quantify the amount of attenuation. 5) A field study in Colorado demonstrated the use of 234U/238U isotopic ratio measurements to evaluate contamination of shallow groundwater with uranium mill effluent.

  4. Field Testing of Downgradient Uranium Mobility at an In-Situ Recovery Uranium Mine

    NASA Astrophysics Data System (ADS)

    Reimus, P. W.; Clay, J. T.; Rearick, M.; Perkins, G.; Brown, S. T.; Basu, A.; Chamberlain, K.

    2015-12-01

    In-situ recovery (ISR) mining of uranium involves the injection of O2 and CO2 (or NaHCO3) into saturated roll-front deposits to oxidize and solubilize the uranium, which is then removed by ion exchange at the surface and processed into U3O8. While ISR is economical and environmentally-friendly relative to conventional mining, one of the challenges of extracting uranium by this process is that it leaves behind a geochemically-altered aquifer that is exceedingly difficult to restore to pre-mining geochemical conditions, a regulatory objective. In this research, we evaluated the ability of the aquifer downgradient of an ISR mining area to attenuate the transport of uranium and other problem constituents that are mobilized by the mining process. Such an evaluation can help inform both regulators and the mining industry as to how much restoration of the mined ore zone is necessary to achieve regulatory compliance at various distances downgradient of the mining zone even if complete restoration of the ore zone proves to be difficult or impossible. Three single-well push-pull tests and one cross-well test were conducted in which water from an unrestored, previously-mined ore zone was injected into an unmined ore zone that served as a geochemical proxy for the downgradient aquifer. In all tests, non-reactive tracers were injected with the previously-mined ore zone water to allow the transport of uranium and other constituents to be compared to that of the nonreactive species. In the single-well tests, it was shown that the recovery of uranium relative to the nonreactive tracers ranged from 12-25%, suggesting significant attenuation capacity of the aquifer. In the cross-well test, selenate, molybdate and metavanadate were injected with the unrestored water to provide information on the transport of these potentially-problematic anionic constituents. In addition to the species-specific transport information, this test provided valuable constraints on redox conditions within

  5. Trust Mines: Legal Documents and Settlements

    EPA Pesticide Factsheets

    Legal Documents and Settlements related to the Northern Abandoned Uranium Mines Region including the Phase 1 Settlement Agreement and Environmental Response Trust Agreement, Phase 2 Settlement Agreement Removal Site Evaluation (RSE) Trust Agreement.

  6. Elevated Arsenic and Uranium Concentrations in Unregulated Water Sources on the Navajo Nation, USA.

    PubMed

    Hoover, Joseph; Gonzales, Melissa; Shuey, Chris; Barney, Yolanda; Lewis, Johnnye

    2017-01-01

    Regional water pollution and use of unregulated water sources can be an important mixed metals exposure pathway for rural populations located in areas with limited water infrastructure and an extensive mining history. Using censored data analysis and mapping techniques we analyzed the joint geospatial distribution of arsenic and uranium in unregulated water sources throughout the Navajo Nation, where over 500 abandoned uranium mine sites are located in the rural southwestern United States. Results indicated that arsenic and uranium concentrations exceeded national drinking water standards in 15.1 % (arsenic) and 12.8 % (uranium) of tested water sources. Unregulated sources in close proximity (i.e., within 6 km) to abandoned uranium mines yielded significantly higher concentrations of arsenic or uranium than more distant sources. The demonstrated regional trends for potential co-exposure to these chemicals have implications for public policy and future research. Specifically, to generate solutions that reduce human exposure to water pollution from unregulated sources in rural areas, the potential for co-exposure to arsenic and uranium requires expanded documentation and examination. Recommendations for prioritizing policy and research decisions related to the documentation of existing health exposures and risk reduction strategies are also provided.

  7. Detection of abandoned mines/caves using airborne LWIR hyperspectral data

    NASA Astrophysics Data System (ADS)

    Shen, Sylvia S.; Roettiger, Kurt A.

    2012-09-01

    The detection of underground structures, both natural and man-made, continues to be an important requirement in both the military/intelligence and civil communities. There are estimates that as many as 70,000 abandoned mines/caves exist across the nation. These mines represent significant hazards to public health and safety, and they are of concern to Government agencies at the local, state, and federal levels. NASA is interested in the detection of caves on Mars and the Moon in anticipation of future manned space missions. And, the military/ intelligence community is interested in detecting caves, mines, and other underground structures that may be used to conceal the production of weapons of mass destruction or to harbor insurgents or other persons of interest by the terrorists. Locating these mines/caves scattered over millions of square miles is an enormous task, and limited resources necessitate the development of an efficient and effective broad area search strategy using remote sensing technologies. This paper describes an internally-funded research project of The Aerospace Corporation (Aerospace) to assess the feasibility of using airborne hyperspectral data to detect abandoned cave/mine entrances in a broad-area search application. In this research, we have demonstrated the potential utility of using thermal contrast between the cave/mine entrance and the ambient environment as a discriminatory signature. We have also demonstrated the use of a water vapor absorption line at12.55 μm and a quartz absorption feature at 9.25 μm as discriminatory signatures. Further work is required to assess the broader applicability of these signatures.

  8. Leachability of Arsenic and Heavy Metals from Mine Tailings of Abandoned Metal Mines

    PubMed Central

    Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk; Kim, Hyung-Seok

    2009-01-01

    Mine tailings from an abandoned metal mine in Korea contained high concentrations of arsenic (As) and heavy metals [e.g., As: 67,336, Fe: 137,180, Cu: 764, Pb: 3,572, and Zn: 12,420 (mg/kg)]. US EPA method 6010 was an effective method for analyzing total arsenic and heavy metals concentrations. Arsenic in the mine tailings showed a high residual fraction of 89% by a sequential extraction. In Toxicity Characteristic Leaching Procedure (TCLP) and Korean Standard Leaching Test (KSLT), leaching concentrations of arsenic and heavy metals were very low [e.g., As (mg/L): 0.4 for TCLP and 0.2 for KSLT; cf. As criteria (mg/L): 5.0 for TCLP and 1.5 for KSLT]. PMID:20049231

  9. Uranium mining wastes: The use of the Fish Embryo Acute Toxicity Test (FET) test to evaluate toxicity and risk of environmental discharge.

    PubMed

    Lourenço, J; Marques, S; Carvalho, F P; Oliveira, J; Malta, M; Santos, M; Gonçalves, F; Pereira, R; Mendo, S

    2017-12-15

    Active and abandoned uranium mining sites often create environmentally problematic situations, since they cause the contamination of all environmental matrices (air, soil and water) with stable metals and radionuclides. Due to their cytotoxic, genotoxic and teratogenic properties, the exposure to these contaminants may cause several harmful effects in living organisms. The Fish Embryo Acute Toxicity Test (FET) test was employed to evaluate the genotoxic and teratogenic potential of mine liquid effluents and sludge elutriates from a deactivated uranium mine. The aims were: a) to determine the risk of discharge of such wastes in the environment; b) the effectiveness of the chemical treatment applied to the uranium mine water, which is a standard procedure generally applied to liquid effluents from uranium mines and mills, to reduce its toxicological potential; c) the suitability of the FET test for the evaluation the toxicity of such wastes and the added value of including the evaluation of genotoxicity. Results showed that through the FET test it was possible to determine that both elutriates and effluents are genotoxic and also that the mine effluent is teratogenic at low concentrations. Additionally, liquid effluents and sludge elutriates affect other parameters namely, growth and hatching and that water pH alone played an important role in the hatching process. The inclusion of genotoxicity evaluation in the FET test was crucial to prevent the underestimation of the risks posed by some of the tested effluents/elutriates. Finally, it was possible to conclude that care should be taken when using benchmark values calculated for specific stressors to evaluate the risk posed by uranium mining wastes to freshwater ecosystems, due to their chemical complexity. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. 30 CFR 902.20 - Approval of Alaska abandoned mine land reclamation plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Approval of Alaska abandoned mine land reclamation plan. 902.20 Section 902.20 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT..., Denver, Colorado 80202-5733. [60 FR 33724, June 29, 1995, as amended at 60 FR 54593, Oct. 25, 1995] ...

  11. Abandoned Uranium Mine (AUM) Trust Mine Points, Navajo Nation, 2016, US EPA Region 9

    EPA Pesticide Factsheets

    This GIS dataset contains point features that represent mines included in the Navajo Environmental Response Trust. This mine category also includes Priority mines. USEPA and NNEPA prioritized mines based on gamma radiation levels, proximity to homes and potential for water contamination identified in the preliminary assessments. Attributes include mine names, reclaimed status, links to US EPA AUM reports, and the region in which the mine is located. This dataset contains 19 features.

  12. Study on Reuse Strategy of Abandoned Industrial Square - in the case of Jingxi Wang Ping Coal Mine

    NASA Astrophysics Data System (ADS)

    Li, Xiaodan; Chen, Zhiting; Jia, Lijun; Wu, Wei; Zhang, Hailiang; Ma, Tianyi; Wang, Tao

    2018-06-01

    Wangping Coal Mine, whose industrial heritage is of great value, was one of the eight coal mines in Beijing. A large number of field surveys and analysis of the abandoned industrial facilities of Wangping Coal Mine were carried out in this paper. From the perspective of protecting industrial heritage culture and sustainable development, this paper studies the ideas and strategies for reusing the abandoned facilities of the Wangping Coal Mine. In order to protect its industrial heritage as much as possible, it is suggested to reuse the industrial square of Wangping Coal Mine as a community park.

  13. Reactive transport modeling of uranium 238 and radium 226 in groundwater of the Königstein uranium mine, Germany

    NASA Astrophysics Data System (ADS)

    Nitzsche, O.; Merkel, B.

    Knowledge of the transport behavior of radionuclides in groundwater is needed for both groundwater protection and remediation of abandoned uranium mines and milling sites. Dispersion, diffusion, mixing, recharge to the aquifer, and chemical interactions, as well as radioactive decay, should be taken into account to obtain reliable predictions on transport of primordial nuclides in groundwater. This paper demonstrates the need for carrying out rehabilitation strategies before closure of the Königstein in-situ leaching uranium mine near Dresden, Germany. Column experiments on drilling cores with uranium-enriched tap water provided data about the exchange behavior of uranium. Uranium breakthrough was observed after more than 20 pore volumes. This strong retardation is due to the exchange of positively charged uranium ions. The code TReAC is a 1-D, 2-D, and 3-D reactive transport code that was modified to take into account the radioactive decay of uranium and the most important daughter nuclides, and to include double-porosity flow. TReAC satisfactorily simulated the breakthrough curves of the column experiments and provided a first approximation of exchange parameters. Groundwater flow in the region of the Königstein mine was simulated using the FLOWPATH code. Reactive transport behavior was simulated with TReAC in one dimension along a 6000-m path line. Results show that uranium migration is relatively slow, but that due to decay of uranium, the concentration of radium along the flow path increases. Results are highly sensitive to the influence of double-porosity flow. Résumé La protection des eaux souterraines et la restauration des sites miniers et de prétraitement d'uranium abandonnés nécessitent de connaître le comportement des radionucléides au cours de leur transport dans les eaux souterraines. La dispersion, la diffusion, le mélange, la recharge de l'aquifère et les interactions chimiques, de même que la décroissance radioactive, doivent être

  14. Using stable isotopes (δD, δ18O, δ34S and 87Sr/86Sr) to identify sources of water in abandoned mines in the Fengfeng coal mining district, northern China

    NASA Astrophysics Data System (ADS)

    Qu, Shen; Wang, Guangcai; Shi, Zheming; Xu, Qingyu; Guo, Yuying; Ma, Luan; Sheng, Yizhi

    2018-05-01

    With depleted coal resources or deteriorating mining geological conditions, some coal mines have been abandoned in the Fengfeng mining district, China. Water that accumulates in an abandoned underground mine (goaf water) may be a hazard to neighboring mines and impact the groundwater environment. Groundwater samples at three abandoned mines (Yi, Er and Quantou mines) in the Fengfeng mining district and the underlying Ordovician limestone aquifer were collected to characterize their chemical and isotopic compositions and identify the sources of the mine water. The water was HCO3·SO4-Ca·Mg type in Er mine and the auxiliary shaft of Yi mine, and HCO3·SO4-Na type in the main shaft of Quantou mine. The isotopic compositions (δD and δ18O) of water in the three abandoned mines were close to that of Ordovician limestone groundwater. Faults in the abandoned mines were developmental, possibly facilitating inflows of groundwater from the underlying Ordovician limestone aquifers into the coal mines. Although the Sr2+ concentrations differed considerably, the ratios of Sr2+/Ca2+ and 87Sr/86Sr and the 34S content of SO4 2- were similar for all three mine waters and Ordovician limestone groundwater, indicating that a close hydraulic connection may exist. Geochemical and isotopic indicators suggest that (1) the mine waters may originate mainly from the Ordovician limestone groundwater inflows, and (2) the upward hydraulic gradient in the limestone aquifer may prevent its contamination by the overlying abandoned mine water. The results of this study could be useful for water resources management in this area and other similar mining areas.

  15. Analysis of radon reduction and ventilation systems in uranium mines in China.

    PubMed

    Hu, Peng-hua; Li, Xian-jie

    2012-09-01

    Mine ventilation is the most important way of reducing radon in uranium mines. At present, the radon and radon progeny levels in Chinese uranium mines where the cut and fill stoping method is used are 3-5 times higher than those in foreign uranium mines, as there is not much difference in the investments for ventilation protection between Chinese uranium mines and international advanced uranium mines with compaction methodology. In this paper, through the analysis of radon reduction and ventilation systems in Chinese uranium mines and the comparison of advantages and disadvantages between a variety of ventilation systems in terms of radon control, the authors try to illustrate the reasons for the higher radon and radon progeny levels in Chinese uranium mines and put forward some problems in three areas, namely the theory of radon control and ventilation systems, radon reduction ventilation measures and ventilation management. For these problems, this paper puts forward some proposals regarding some aspects, such as strengthening scrutiny, verifying and monitoring the practical situation, making clear ventilation plans, strictly following the mining sequence, promoting training of ventilation staff, enhancing ventilation system management, developing radon reduction ventilation technology, purchasing ventilation equipment as soon as possible in the future, and so on.

  16. Unexpected hydrologic perturbation in an abandoned underground coal mine: Response to surface reclamation?

    USGS Publications Warehouse

    Harper, D.; Olyphant, G.A.; Hartke, E.J.

    1990-01-01

    A reclamation project at the abandoned Blackhawk Mine site near Terre Haute, Indiana, lasted about four months and involved the burial of coarse mine refuse in shallow (less than 9 m) pits excavated into loess and till in an area of about 16 ha. An abandoned flooded underground coal mine underlies the reclamation site at a depth of about 38 m; the total area underlain by the mine is about 10 km2. The potentiometric levels associated with the mine indicate a significant (2.7 m) and prolonged perturbation of the deeper confined groundwater system; 14 months after completing reclamation, the levels began to rise linearly (at an average rate of 0.85 cm/d) for 11 months, then fell exponentially for 25 months, and are now nearly stable. Prominent subsidence features exist near the reclamation site. Subsidence-related fractures were observed in cores from the site, and such fractures may have provided a connection between the shallower and deeper groundwater systems. ?? 1990 Springer-Verlag New York Inc.

  17. What Price Energy? Hazards of Uranium Mining in the Southwest.

    ERIC Educational Resources Information Center

    Barry, Tom

    1979-01-01

    This article describes the hazards, sickness, death and destruction caused by uranium mining/nuclear energy development in the Southwest focusing on the experiences of several Indian uranium mines. (RTS)

  18. Hydrogeology, groundwater flow, and groundwater quality of an abandoned underground coal-mine aquifer, Elkhorn Area, West Virginia

    USGS Publications Warehouse

    Kozar, Mark D.; McCoy, Kurt J.; Britton, James Q.; Blake, B.M.

    2017-01-01

    The Pocahontas No. 3 coal seam in southern West Virginia has been extensively mined by underground methods since the 1880’s. An extensive network of abandoned mine entries in the Pocahontas No. 3 has since filled with good-quality water, which is pumped from wells or springs discharging from mine portals (adits), and used as a source of water for public supplies. This report presents results of a three-year investigation of the geology, hydrology, geochemistry, and groundwater flow processes within abandoned underground coal mines used as a source of water for public supply in the Elkhorn area, McDowell County, West Virginia. This study focused on large (> 500 gallon per minute) discharges from the abandoned mines used as public supplies near Elkhorn, West Virginia. Median recharge calculated from base-flow recession of streamflow at Johns Knob Branch and 12 other streamflow gaging stations in McDowell County was 9.1 inches per year. Using drainage area versus mean streamflow relationships from mined and unmined watersheds in McDowell County, the subsurface area along dip of the Pocahontas No. 3 coal-mine aquifer contributing flow to the Turkey Gap mine discharge was determined to be 7.62 square miles (mi2), almost 10 times larger than the 0.81 mi2 surface watershed. Results of this investigation indicate that groundwater flows down dip beneath surface drainage divides from areas up to six miles east in the adjacent Bluestone River watershed. A conceptual model was developed that consisted of a stacked sequence of perched aquifers, controlled by stress-relief and subsidence fractures, overlying a highly permeable abandoned underground coal-mine aquifer, capable of substantial interbasin transfer of water. Groundwater-flow directions are controlled by the dip of the Pocahontas No. 3 coal seam, the geometry of abandoned mine workings, and location of unmined barriers within that seam, rather than surface topography. Seven boreholes were drilled to intersect

  19. 30 CFR 902.25 - Approval of Alaska abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reclamation plan amendments. 902.25 Section 902.25 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE ALASKA § 902.25 Approval of Alaska abandoned mine land reclamation plan amendments. The following... approving all, or portions of these amendments, were published in the Federal Register and the State...

  20. 30 CFR 914.25 - Approval of Indiana abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 26, 1994 Emergency response reclamation program. July 23, 1997 March 16, 1998 Indiana plan §§ 884.13... reclamation plan amendments. 914.25 Section 914.25 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE INDIANA § 914.25 Approval of Indiana abandoned mine land reclamation plan amendments. The...

  1. 30 CFR 914.25 - Approval of Indiana abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 26, 1994 Emergency response reclamation program. July 23, 1997 March 16, 1998 Indiana plan §§ 884.13... reclamation plan amendments. 914.25 Section 914.25 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE INDIANA § 914.25 Approval of Indiana abandoned mine land reclamation plan amendments. The...

  2. 30 CFR 902.25 - Approval of Alaska abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reclamation plan amendments. 902.25 Section 902.25 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE ALASKA § 902.25 Approval of Alaska abandoned mine land reclamation plan amendments. The following... approving all, or portions of these amendments, were published in the Federal Register and the State...

  3. 30 CFR 902.25 - Approval of Alaska abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reclamation plan amendments. 902.25 Section 902.25 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE ALASKA § 902.25 Approval of Alaska abandoned mine land reclamation plan amendments. The following... approving all, or portions of these amendments, were published in the Federal Register and the State...

  4. 30 CFR 914.25 - Approval of Indiana abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 26, 1994 Emergency response reclamation program. July 23, 1997 March 16, 1998 Indiana plan §§ 884.13... reclamation plan amendments. 914.25 Section 914.25 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE INDIANA § 914.25 Approval of Indiana abandoned mine land reclamation plan amendments. The...

  5. Nanominerals and potentially hazardous elements from coal cleaning rejects of abandoned mines: Environmental impact and risk assessment.

    PubMed

    Fdez-Ortiz de Vallejuelo, Silvia; Gredilla, Ainara; da Boit, Kátia; Teixeira, Elba C; Sampaio, Carlos H; Madariaga, Juan Manuel; Silva, Luis F O

    2017-02-01

    Soils around coal mining are important reservoir of hazardous elements (HEs), nanominerals, and ultrafine compounds. This research reports and discusses the soil concentrations of HEs (As, Cd, Cr, Cu, Ni, Pb, and Zn) in coal residues of abandoned mines. To assess differences regarding environmental impact and risk assessment between coal abandoned mines from the Santa Catarina state, eighteen coal cleaning rejects with different mineralogical and chemical composition, from eight abandoned mines were collected. Nanominerals and ultra-fine minerals from mining-contaminated areas were analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and high-resolution transmission electron microscope (HR-TEM), providing new information on the mineralogy and nano-mineralogy of these coal residues. The total contents of 57 elements (HEs, alkali metals, and rare earth elements) were analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The calculation of NWACs (Normalized Average Weighted Concentration), together with the chemometric analysis by Principal component analysis (PCA) confirmed the variability of the samples regarding their city and their mine of origin. Moreover, the results confirmed the existence of hotspots in mines near urban areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The siting of a prison complex above an abandoned underground coal mine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marino, G.G.

    1997-12-31

    This paper discusses in detail the process undertaken to mitigate the effects of any future mine subsidence on prison structures proposed above old abandoned underground workings. The site for a proposed prison complex purchased by the State of Indiana was located in west-central Indiana and was undermined by an old abandoned room and pillar mine. The original plan for construction consisted of one phase. Based on a study of the mine map and subsurface verification of the extent of mining it was determined that all prison buildings and important structures could be placed above solid coal to the north. Onemore » masonry building, however, was located within the potential draw zone of mine works which still contained significant mine voids. Based on empirical data the subsidence potential was estimated and the building was accordingly designed to be mine subsidence resistant. It was decided that a phase two prison complex should be constructed adjacent to and just south of the Phase I complex. This complex would be directly above the underground workings. The first stage of design was to minimize subsidence potential by positioning the exposure of significant structures to the subjacent mining assuming the mine map was sufficiently accurate. Subsequently, an extensive subsurface investigation program was then undertaken to: (1) ascertain whether or not mine areas where buildings would be located were already collapsed and thus only nominal, if any, subsidence could occur in the future; and (2) verify the presence of solid coal areas within the mine as indicated on the mine map. Based on all the site information gathered subsidence profiles were developed from an empirical data base of subsidence events in the Illinois Coal Basin. As a result of this work many structures on the site required no or nominal subsidence considerations.« less

  7. SEMINAR PUBLICATION: MANAGING ENVIRONMENTAL PROBLEMS AT INACTIVE AND ABANDONED METALS MINE SITES

    EPA Science Inventory

    Environmental problems associated with abandoned and inactive mines are addressed along with some approaches to resolving those problems, including case studies demonstrating technologies that have worked. New technologies being investigated are addressed also.

  8. Mercury methylation in mine wastes collected from abandoned mercury mines in the USA

    USGS Publications Warehouse

    Gray, J.E.; Hines, M.E.; Biester, H.; Lasorsa, B.K.; ,

    2003-01-01

    Speciation and transformation of Hg was studied in mine wastes collected from abandoned Hg mines at McDermitt, Nevada, and Terlingua, Texas, to evaluate formation of methyl-Hg, which is highly toxic. In these mine wastes, we measured total Hg and methyl-Hg contents, identified various Hg compounds using a pyrolysis technique, and determined rates of Hg methylation and methyl-Hg demethylation using isotopic-tracer methods. Mine wastes contain total Hg contents as high as 14000 ??g/g and methyl-Hg concentrations as high as 88 ng/g. Mine wastes were found to contain variable amounts of cinnabar, metacinnabar, Hg salts, Hg0, and Hg0 and Hg2+ sorbed onto matrix particulates. Samples with Hg0 and matrix-sorbed Hg generally contained significant methyl-Hg contents. Similarly, samples containing Hg0 compounds generally produced significant Hg methylation rates, as much as 26%/day. Samples containing mostly cinnabar showed little or no Hg methylation. Mine wastes with high methyl-Hg contents generally showed low methyl-Hg demethylation, suggesting that Hg methylation was dominant. Methyl-Hg demethylation was by both oxidative and microbial pathways. The correspondence of mine wastes containing Hg0 compounds and measured Hg methylation suggests that Hg0 oxidizes to Hg2+, which is subsequently bioavailable for microbial Hg methylation.

  9. The History of Uranium Mining and the Navajo People

    PubMed Central

    Brugge, Doug; Goble, Rob

    2002-01-01

    From World War II until 1971, the government was the sole purchaser of uranium ore in the United States. Uranium mining occurred mostly in the southwestern United States and drew many Native Americans and others into work in the mines and mills. Despite a long and well-developed understanding, based on the European experience earlier in the century, that uranium mining led to high rates of lung cancer, few protections were provided for US miners before 1962 and their adoption after that time was slow and incomplete. The resulting high rates of illness among miners led in 1990 to passage of the Radiation Exposure Compensation Act. PMID:12197966

  10. The risk of collapse in abandoned mine sites: the issue of data uncertainty

    NASA Astrophysics Data System (ADS)

    Longoni, Laura; Papini, Monica; Brambilla, Davide; Arosio, Diego; Zanzi, Luigi

    2016-04-01

    Ground collapses over abandoned underground mines constitute a new environmental risk in the world. The high risk associated with subsurface voids, together with lack of knowledge of the geometric and geomechanical features of mining areas, makes abandoned underground mines one of the current challenges for countries with a long mining history. In this study, a stability analysis of Montevecchia marl mine is performed in order to validate a general approach that takes into account the poor local information and the variability of the input data. The collapse risk was evaluated through a numerical approach that, starting with some simplifying assumptions, is able to provide an overview of the collapse probability. The final results is an easy-accessible-transparent summary graph that shows the collapse probability. This approach may be useful for public administrators called upon to manage this environmental risk. The approach tries to simplify this complex problem in order to achieve a roughly risk assessment, but, since it relies on just a small amount of information, any final user should be aware that a comprehensive and detailed risk scenario can be generated only through more exhaustive investigations.

  11. Abandoned mines and their impact on the environment: Case studies from Franklin and Sterling Mines, NJ and Rondout Quarry, NY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolkas, M.M.; Nehru, C.E.

    1995-09-01

    Water logged abandoned mines have an impact on the environment. In this project we selected abandoned mines from two sets of different ore bodies to learn about their environmental impact. Franklin and Sterling Pb-Zn mines, NJ and the limestone quarry in Rondout formation, NY were selected as case study examples. In the Pb-Zn mines metalimestone is the country rock and in the Rondout quarry limestone is the country rock. Soil water samples from selected strategic locations were analyzed for toxic and related heavy metal elements such as Pb, Zn, Cd, Cr and U. The levels of concentrations of these elementsmore » varied from one location to another according to the chemistry of the ore body and the ground movement throughout the area. In particular Cd, Cr and U concentration were variable from Franklin to Sterling mine. However, in the Rondout limestone (cement) quarry, higher concentrations of Cr and lower concentrations of Pb and Zn were noted. We conclude that ore body chemistry, mine dumps and tailing contaminated ponds along with the ground water movement throughout the area have an impact on the ground water and nearby river/stream contaminant chemistry in the areas.« less

  12. Uranium mining in France

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, L.

    Since the onset of the first ''oil shock'' in 1974, France has pursued a policy of steadily increasing energy independence based on nuclear power for generation of electricity. In 1973, nuclear reactors supplied only 8% of France's electrical power. A strong development effort lifted the nuclear share to 23% in 1980, to 66% in 1985, and the plan is to raise the total to 75% by 1990. In 1976, Cogema (Compagnie Generale des Matieres Nucleaires) was organized from the production division of France's Commissariat a l'Energie Atomique (CEA) to handle fuel supply and spent fuel reprocessing for the expanding industrymore » (see subsequent article on Cogema). In parallel with growth of the French nuclear power, Cogema has become a world leader in all aspects of the fuel cycle, providing services not only domestically but internationally as well. As a uranium mining company, Cogema has steadily developed domestic and foreign sources of supply, and over the years it has maintained the world's strongest uranium exploration effort throughout the ups and downs of the market. As a result, the company has become the world's leading uranium supplier, with about 20% of total production contributed either by its domestic mining divisions or overseas subsidiaries.« less

  13. Flow behavior and mobility of contaminated waste rock materials in the abandoned Imgi mine in Korea

    NASA Astrophysics Data System (ADS)

    Jeong, S. W.; Wu, Y.-H.; Cho, Y. C.; Ji, S. W.

    2018-01-01

    Incomplete mine reclamation can cause ecological and environmental impacts. This paper focuses on the geotechnical and rheological characteristics of waste rock materials, which are mainly composed of sand-size particles, potentially resulting in mass movement (e.g., slide or flow) and extensive acid mine drainage. To examine the potential for contaminant mobilization resulting from physicochemical processes in abandoned mines, a series of scenario-based debris flow simulations was conducted using Debris-2D to identify different hazard scenarios and volumes. The flow behavior of waste rock materials was examined using a ball-measuring rheometric apparatus, which can be adapted for large particle samples, such as debris flow. Bingham yield stresses determined in controlled shear rate mode were used as an input parameter in the debris flow modeling. The yield stresses ranged from 100 to 1000 Pa for shear rates ranging from 10- 5 to 102 s- 1. The results demonstrated that the lowest yield stress could result in high mobility of debris flow (e.g., runout distance > 700 m from the source area for 60 s); consequently, the material contaminants may easily reach the confluence of the Suyoung River through a mountain stream. When a fast slide or debris flow occurs at or near an abandoned mine area, it may result in extremely dynamic and destructive geomorphological changes. Even for the highest yield stress of debris flow simulation (i.e., τy = 2000 Pa), the released debris could flow into the mountain stream; therefore, people living near abandoned mines may become exposed to water pollution throughout the day. To maintain safety at and near abandoned mines, the physicochemical properties of waste materials should be monitored, and proper mitigation measures post-mining should be considered in terms of both their physical damage and chemical pollution potential.

  14. Effects of uranium mining, Puerco River, New Mexico

    USGS Publications Warehouse

    Lopes, Thomas J.

    1991-01-01

    Effluent from uranium-mine dewatering and acidic water released by a tailings-pond dike failure increased radionuclide activities in streamflow in the Puerco River in New Mexico and Arizona. Median dissolved gross-alpha activity in the streamflow was 1,130 picocuries per liter from 1975 to 1986 when mine discharges ceased and 6.2 picocuries per liter from 1986 to 1989. From 1975 to July 1979, major ions in streamflow at the Puerco River at Gallup streamflow-gaging station were sodium, bicarbonate, and sulfate. On July 16, 1979, the day of the tailing spill, major ions in streamflow were magnesium, calcium, and sulfate. From 1979 to 1984, major ions in streamflow had a greater proportion of calcium and sulfate than prior to the spill, indicating flushing of residual tailings solution. Geochemical modeling of mine effluent indicates that uranium was unlikely to precipitate from effluent between the mines and Gallup or when mixed with wastewater downstream from Gallup. Geochemical modeling of acidic-tailings solution indicates that uranium was in solution as far downstream as Gallup. When the acidic-tailings solution mixed with 10- to 40-percent wastewater, uranium may have precipitated from solution as carnotite [K2(UO2)2(VO4)2] and tyuyamunite [Ca(UO2)2(VO4)2].

  15. 30 CFR 904.25 - Approval of Arkansas abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; Management accounting; and Abandoned mine land problem description. September 22, 1999 January 14, 2000... management and disposition of land and water; Reclamation on private land; Rights of entry; Public...

  16. Science for watershed decisions on abandoned mine lands; review of preliminary results, Denver, Colorado, February 4-5, 1998

    USGS Publications Warehouse

    Nimick, David A.; Von Guerard, Paul

    1998-01-01

    From the Preface: There are thousands of abandoned or inactive mines on or adjacent to public lands administered by the U.S. Forest Service, Bureau of Land Management, and National Park Service. Mine wastes from many of these abandoned mines adversely affect resources on public lands. In 1995, an interdepartmental work group within the Federal government developed a strategy to address remediation of the many abandoned mines on public lands. This strategy is based on using a watershed approach to address the abandoned mine lands (AML) problem. The USGS, working closely with the Federal land-management agencies (FLMAs), is key for the success of this watershed approach. In support of this watershed approach, the USGS developed an AML Initiative with pilot studies in the Boulder River in Montana and the Animas River in Colorado. The goal of these studies is to design and implement a reliable strategy that will supply the scientific information to the FLMAs so that land managers can develop efficient and cost-effective remediation of AML. The symposium 'Science for Watershed Decisions on Abandoned Mine Lands: Review of Preliminary Results' held in Denver, Colorado, on February 4-5, 1998, provided the FLMAs a first look at the techniques, data, and interpretations being generated by the USGS pilot studies. This multidisciplined effort already is proving very valuable to land managers in making science-based AML cleanup decisions and will continue to be of increasing value as additional and more complete information is obtained. Ongoing interaction between scientists and land managers is essential to insure the efficient continuation and success of AML cleanup efforts.

  17. Environmental geochemistry of abandoned mercury mines in West-Central Nevada, USA

    USGS Publications Warehouse

    Gray, J.E.; Crock, J.G.; Fey, D.L.

    2002-01-01

    The Humboldt River is a closed basin and is the longest river in Nevada. Numerous abandoned Hg mines are located within the basin, and because Hg is a toxic heavy metal, the potential transport of Hg from these mines into surrounding ecosystems, including the Humboldt River, is of environmental concern Samples of ore, sediment, water, calcines (roasted ore), and leachates of the calcines were analyzed for Hg and other heavy metals to evaluate geochemical dispersion from the mines. Cinnabar-bearing ore samples collected from the mines contain highly elevated Hg concentrations, up to 6.9 %, whereas calcines collected from the mines contain up to 2000 mg Hg/kg. Stream-sediment samples collected within 1 km of the mines contain as much as 170 mg Hg/kg, but those collected distal from the mines (> 5 km) contain 8 km from the Humboldt River, and Hg is transported and diluted through a large volume of pediment before it reaches the Humboldt River. ?? 2002 Elsevier Science Ltd. All rights reserved.

  18. Effects of abandoned arsenic mine on water resources pollution in north west of iran.

    PubMed

    Hajalilou, Behzad; Mosaferi, Mohammad; Khaleghi, Fazel; Jadidi, Sakineh; Vosugh, Bahram; Fatehifar, Esmail

    2011-01-01

    Pollution due to mining activities could have an important role in health and welfare of people who are living in mining area. When mining operation finishes, environ-ment of mining area can be influenced by related pollution e.g. heavy metals emission to wa-ter resources. The present study was aimed to evaluate Valiloo abandoned arsenic mine ef-fects on drinking water resources quality and possible health effects on the residents of min-ing area in the North West of Iran. Water samples and some limited composite wheat samples in downstream of min-ing area were collected. Water samples were analyzed for chemical parameters according to standard methods. For determination of arsenic in water samples, Graphite Furnace Atomic Absorption Spectrometric Method (GFAAS) and for wheat samples X - Ray Fluorescence (XRF) and Inductively Coupled Plasma Method (ICP) were used. Information about possible health effects due to exposure to arsenic was collected through interviews in studied villages and health center of Herris City. The highest concentrations of arsenic were measured near the mine (as high as 2000 µg/L in Valiloo mine opening water). With increasing distance from the mine, concentration was decreased. Arsenic was not detectable in any of wheat samples. Fortunately, no health effects had been reported between residents of studied area due to exposure to arsenic. Valiloo abandoned arsenic mine has caused release of arsenic to the around en-vironment of the mine, so arsenic concentration has been increased in the groundwater and also downstream river that requires proper measures to mitigate spread of arsenic.

  19. Use of modflow drain package for simulating inter-basin transfer in abandoned coal mines

    USGS Publications Warehouse

    Kozar, Mark D.; McCoy, Kurt J.

    2017-01-01

    Simulation of groundwater flow in abandoned mines is difficult, especially where flux to and from mines is unknown or poorly quantified, and inter-basin transfer of groundwater occurs. A 3-year study was conducted in the Elkhorn area, West Virginia to better understand groundwater-flow processes and inter-basin transfer in above drainage abandoned coal mines. The study area was specifically selected, as all mines are located above the elevation of tributary receiving streams, to allow accurate measurements of discharge from mine portals and tributaries for groundwater model calibration. Abandoned mine workings were simulated in several ways, initially as a layer of high hydraulic conductivity bounded by lower permeability rock in adjacent strata, and secondly as rows of higher hydraulic conductivity embedded within a lower hydraulic conductivity coal aquifer matrix. Regardless of the hydraulic conductivity assigned to mine workings, neither approach to simulate mine workings could accurately reproduce the inter-basin transfer of groundwater from adjacent watersheds. To resolve the problem, a third approach was developed. The MODFLOW DRAIN package was used to simulate seepage into and through mine workings discharging water under unconfined conditions to Elkhorn Creek, North Fork, and tributaries of the Bluestone River. Drain nodes were embedded in a matrix of uniform hydraulic conductivity cells that represented the coal mine aquifer. Drain heads were empirically defined from well observations, and elevations were based on structure contours for the Pocahontas No. 3 mine workings. Use of the DRAIN package to simulate mine workings as an internal boundary condition resolved the inter-basin transfer problem, and effectively simulated a shift from a topographic- dominated to a dip-dominated flow system, by dewatering overlying unmined strata and shifting the groundwater drainage divide up dip within the Pocahontas No. 3 coal seam several kilometers into the adjacent

  20. Ground water contamination with (238)U, (234)U, (235)U, (226)Ra and (210)Pb from past uranium mining: cove wash, Arizona.

    PubMed

    Dias da Cunha, Kenya Moore; Henderson, Helenes; Thomson, Bruce M; Hecht, Adam A

    2014-06-01

    The objectives of the study are to present a critical review of the (238)U, (234)U, (235)U, (226)Ra and (210)Pb levels in water samples from the EPA studies (U.S. EPA in Abandoned uranium mines and the Navajo Nation: Red Valley chapter screening assessment report. Region 9 Superfund Program, San Francisco, 2004, Abandoned uranium mines and the Navajo Nation: Northern aum region screening assessment report. Region 9 Superfund Program, San Francisco, 2006, Health and environmental impacts of uranium contamination, 5-year plan. Region 9 Superfund Program, San Franciso, 2008) and the dose assessment for the population due to ingestion of water containing (238)U and (234)U. The water quality data were taken from Sect. "Data analysis" of the published report, titled Abandoned Uranium Mines Project Arizona, New Mexico, Utah-Navajo Lands 1994-2000, Project Atlas. Total uranium concentration was above the maximum concentration level for drinking water (7.410-1 Bq/L) in 19 % of the water samples, while (238)U and (234)U concentrations were above in 14 and 17 % of the water samples, respectively. (226)Ra and (210)Pb concentrations in water samples were in the range of 3.7 × 10(-1) to 5.55 × 102 Bq/L and 1.11 to 4.33 × 102 Bq/L, respectively. For only two samples, the (226)Ra concentrations exceeded the MCL for total Ra for drinking water (0.185 Bq/L). However, the (210)Pb/(226)Ra ratios varied from 0.11 to 47.00, and ratios above 1.00 were observed in 71 % of the samples. Secular equilibrium of the natural uranium series was not observed in the data record for most of the water samples. Moreover, the (235)U/(total)U mass ratios ranged from 0.06 to 5.9 %, and the natural mass ratio of (235)U to (total)U (0.72 %) was observed in only 16 % of the water samples, ratios above or below the natural ratio could not be explained based on data reported by U.S. EPA. In addition, statistical evaluations showed no correlations among the distribution of the radionuclide concentrations

  1. Environmental risks of abandoning a mining project already started: Romaltyn Mining Baia Mare

    NASA Astrophysics Data System (ADS)

    Bud, I.; Duma, S.; Gusat, D.; Pasca, I.; Bud, A.

    2016-08-01

    The history of mining activity, which has been the economy engine in the region and has contributed to the formation of many localities, has been deleted too quickly. During all this time, in the world countries which have invested in mining sector have made considerable progress. The paper brings in question, within the framework of the theme, the implications arising from the abandonment of the Romaltyn project which mainly affects two objectives: Central Tailing Pond and Aurul Tailing Pond. The Central tailing pond constitutes an unfortunate source of pollution for groundwater, surface water, soil and air on a large area around it, because its location upstream of Baia Mare city and in the vicinity of a agricultural production zone. The consequences of the tailing pond maintenance in the current situation are: presence of sclerozing dust with sulphurs content scattered over large agricultural area; soil pollution by acidification; heavy metals release which enter in food chain and will be found in food. The final disposal of the pollution source is the only solution really safe in long term. Abandoning Aurul tailing pond in the current phase of construction involves high environmental risks. Taking in consideration the potential and the huge soil volume which are necessary for rehabilitation, isolation and rehabilitation of this area involve extremely high costs and the realization is, technically, almost impossible in the current context.

  2. Summary of Environmental Data Analysis and Work Performed by Lawrence Livermore National Laboratory (LLNL) in Support of the Navajo Nation Abandoned Mine Lands Project at Tse Tah, Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taffet, Michael J.; Esser, Bradley K.; Madrid, Victor M.

    This report summarizes work performed by Lawrence Livermore National Laboratory (LLNL) under Navajo Nation Services Contract CO9729 in support of the Navajo Abandoned Mine Lands Reclamation Program (NAMLRP). Due to restrictions on access to uranium mine waste sites at Tse Tah, Arizona that developed during the term of the contract, not all of the work scope could be performed. LLNL was able to interpret environmental monitoring data provided by NAMLRP. Summaries of these data evaluation activities are provided in this report. Additionally, during the contract period, LLNL provided technical guidance, instructional meetings, and review of relevant work performed by NAMLRPmore » and its contractors that was not contained in the contract work scope.« less

  3. The effect of the depth and groundwater on the formation of sinkholes or ground subsidence associated with abandoned room and pillar lignite mines under static and dynamic conditions

    NASA Astrophysics Data System (ADS)

    Aydan, Ö.; Ito, T.

    2015-11-01

    It is well known that some sinkholes or subsidence take place from time to time in the areas where abandoned room and pillar type mines exist. The author has been involved with the stability of abandoned mines beneath urbanized residential areas in Tokai region and there is a great concern about the stability of these abandoned mines during large earthquakes as well as in the long term. The 2003 Miyagi Hokubu and 2011 Great East Japan earthquakes caused great damage to abandoned mines and resulted in many collapses. The author presents the effect of the depth and groundwater on the formation of sinkholes or ground subsidence associated with abandoned room and pillar lignite mines under static and dynamic conditions and discusses the implications on the areas above abandoned lignite mines in this paper.

  4. Uranium and its decay products in samples contaminated with uranium mine and mill waste

    NASA Astrophysics Data System (ADS)

    Benedik, L.; Klemencic, H.; Repinc, U.; Vrecek, P.

    2003-05-01

    The routine determination of the activity concentrations of uranium isotopes (^{238}U, ^{235}U and ^{234}U), thorium isotopes (^{212}Th, ^{230}TI, and ^{228}Th), ^{231}Pa, ^{226}Ra, ^{210}Pb and ^{210}Po in the environment is one of the most important tasks in uranium mining areas. Natural radionuclides contribute negligibly to the extemal radiation dose, but in the case of ingestion or inhalation can represent a very serious hazard. The objective of this study was to determine the activities of uranium and its decay products ^{230}Th, ^{231}Pa, ^{226}Ra, ^{210}Pb and ^{210}Po in sediments and water below sources of contamination (uranium mine, disposal sites and individual inflows) using gamma and alpha spectrometry, beta counting, the liquid scintillation technique and radiochemical neutron activation analysis.

  5. Mining and Environmental Health Disparities in Native American Communities.

    PubMed

    Lewis, Johnnye; Hoover, Joseph; MacKenzie, Debra

    2017-06-01

    More than a century of hard rock mining has left a legacy of >160,000 abandoned mines in the Western USA that are home to the majority of Native American lands. This article describes how abrogation of treaty rights, ineffective policies, lack of infrastructure, and a lack of research in Native communities converge to create chronic exposure, ill-defined risks, and tribal health concerns. Recent results show that Native Americans living near abandoned uranium mines have an increased likelihood for kidney disease and hypertension, and an increased likelihood of developing multiple chronic diseases linked to their proximity to the mine waste and activities bringing them in contact with the waste. Biomonitoring confirms higher than expected exposure to uranium and associated metals in the waste in adults, neonates, and children in these communities. These sites will not be cleaned up for many generations making it critical to understand and prioritize exposure-toxicity relationships in Native populations to appropriately allocate limited resources to protect health. Recent initiatives, in partnership with Native communities, recognize these needs and support development of tribal research capacity to ensure that research respectful of tribal culture and policies can address concerns in the future. In addition, recognition of the risks posed by these abandoned sites should inform policy change to protect community health in the future.

  6. Investigating uranium distribution in surface sediments and waters: a case study of contamination from the Juniper Uranium Mine, Stanislaus National Forest, CA.

    PubMed

    Kayzar, Theresa M; Villa, Adam C; Lobaugh, Megan L; Gaffney, Amy M; Williams, Ross W

    2014-10-01

    The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. The ((234)U)/((238)U) composition of Red Rock Creek is altered downstream of the Juniper Mine. As a result of mine-derived contamination, water ((234)U)/((238)U) ratios are 67% lower than in water upstream of the mine (1.114-1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activity ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041-1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (∼70-80% of uranium in leachable fraction). Contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment. Published by Elsevier Ltd.

  7. Investigating uranium distribution in surface sediments and waters: a case study of contamination from the Juniper Uranium Mine, Stanislaus National Forest, CA

    DOE PAGES

    Kayzar, Theresa M.; Villa, Adam C.; Lobaugh, Megan L.; ...

    2014-06-07

    The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. Furthermore, we alter the (234U)/(238U) composition of Red Rock Creek downstream of the Juniper Mine. As a result of mine-derived contamination, water (234U)/(238U) ratios are 67% lower than in water upstream of the mine (1.114–1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activitymore » ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041–1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (~70–80% of uranium in leachable fraction). Furthermore, contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment.« less

  8. 30 CFR 75.1721 - Opening of new underground coal mines, or reopening and reactivating of abandoned or deactivated...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Opening of new underground coal mines, or reopening and reactivating of abandoned or deactivated coal mines, notification by the operator... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75...

  9. Sustainability of uranium mining and milling: toward quantifying resources and eco-efficiency.

    PubMed

    Mudd, Gavin M; Diesendorf, Mark

    2008-04-01

    The mining of uranium has long been a controversial public issue, and a renewed debate has emerged on the potential for nuclear power to help mitigate against climate change. The central thesis of pro-nuclear advocates is the lower carbon intensity of nuclear energy compared to fossil fuels, although there remains very little detailed analysis of the true carbon costs of nuclear energy. In this paper, we compile and analyze a range of data on uranium mining and milling, including uranium resources as well as sustainability metrics such as energy and water consumption and carbon emissions with respect to uranium production-arguably the first time for modern projects. The extent of economically recoverable uranium resources is clearly linked to exploration, technology, and economics but also inextricably to environmental costs such as energy/water/chemicals consumption, greenhouse gas emissions, and social issues. Overall, the data clearly show the sensitivity of sustainability assessments to the ore grade of the uranium deposit being mined and that significant gaps remain in complete sustainability reporting and accounting. This paper is a case study of the energy, water, and carbon costs of uranium mining and milling within the context of the nuclear energy chain.

  10. Quantifying uranium transport rates and storage of fluvially eroded mine tailings from a historic mine site in the Grand Canyon Region

    NASA Astrophysics Data System (ADS)

    Skalak, K.; Benthem, A. J.; Walton-Day, K. E.; Jolly, G.

    2015-12-01

    The Grand Canyon region contains a large number of breccia pipes with economically viable uranium, copper, and silver concentrations. Mining in this region has occurred since the late 19th century and has produced ore and waste rock having elevated levels of uranium and other contaminants. Fluvial transport of these contaminants from mine sites is a possibility, as this arid region is susceptible to violent storms and flash flooding which might erode and mobilize ore or waste rock. In order to assess and manage the risks associated with uranium mining, it is important to understand the transport and storage rates of sediment and uranium within the ephemeral streams of this region. We are developing a 1-dimensional sediment transportation model to examine uranium transport and storage through a typical canyon system in this region. Our study site is Hack Canyon Mine, a uranium and copper mine site, which operated in the 1980's and is currently experiencing fluvial erosion of its waste rock repository. The mine is located approximately 40km upstream from the Colorado River and is in a deep, narrow canyon with a small watershed. The stream is ephemeral for the upper half of its length and sediment is primarily mobilized during flash flood events. We collected sediment samples at 110 locations longitudinally through the river system to examine the distribution of uranium in the stream. Samples were sieved to the sand size and below fraction (<2mm) and uranium was measured by gamma-ray spectroscopy. Sediment storage zones were also examined in the upper 8km of the system to determine where uranium is preferentially stored in canyon systems. This information will quantify the downstream transport of constituents associated with the Hack Canyon waste rock and contribute to understanding the risks associated with fluvial mobilization of uranium mine waste.

  11. Study of heavy metals transport by runoff and sediments from an abandoned mine: Alagoa, Portugal

    NASA Astrophysics Data System (ADS)

    Gerardo, R.; de Lima, J. L. M. P.; de Lima, M. I. P.

    2009-04-01

    Over time, several studies have been designed to understand heavy metals fate and its impact on the environment and on human health. However, only a few studies have focused on the transport of heavy metals in mining areas through the various hydrological processes such as runoff, infiltration, and subsurface flow. In particular, heavy rainfall events have a great impact on the dispersion of metals existing in the soil. This problem is often more serious in abandoned and inactive mining sites causing environmental problems. In Portugal, there are 175 identified abandoned mines that continuously threaten the environment through acid drainage waters that pollute the soil as well as surface and groundwater. An example is the abandoned mine of Alagoa, located near the village of Penacova (Centre of Portugal); in this site mining activities ceased about 30 years ago. The area is characterized by very steep slopes that are confining with a small stream; the mining excavation by-products were deposited on these slopes. We have selected this mine as a case study, aiming at understanding the transport mechanisms and dispersion of heavy metals and at contributing to the definition of the most appropriate mitigation measures for this area that is contaminated by heavy metals from the mine tailings. So far a total of 30 soil samples from 3 contaminated zones were collected and analysed for pH, texture and heavy metal content, using atomic absorption spectroscopy. Results indicate that the contents of Zn and Pb in the soil samples are in the range from 95-460 mg/kg and 67-239 mg/kg, respectively, which exceed the critical limit-values defined by the Portuguese legislation. These metals are dispersed downslope and downstream from the mine tailings by storm water. The next step of this work is to investigate the transport of heavy metals by runoff, by mobilization of sediments and by subsurface flow. Three spatial scales tests will be conducted: on the mine tailings, on the slope

  12. Applied technology for mine waste water decontamination in the uranium ores extraction from Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bejenaru, C.; Filip, G.; Vacariu, V.T.

    1996-12-31

    The exploitation of uranium ores in Romania is carried out in underground mines. In all exploited uranium deposits, mine waste waters results and will still result after the closure of uranium ore extraction activity. The mine waters are radioactively contaminated with uranium and its decay products being a hazard both for underground waters as for the environment. This paper present the results of research work carried out by authors for uranium elimination from waste waters as the problems involved during the exploitation process of the existent equipment as its maintenance in good experimental conditions. The main waste water characteristics aremore » discussed: solids as suspension, uranium, radium, mineral salts, pH, etc. The moist suitable way to eliminate uranium from mine waste waters is the ion exchange process based on ion exchangers in fluidized bed. A flowsheet is given with main advantages resulted.« less

  13. UNDERGROUND URANIUM MINING ON COLORADO PLATEAU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dare, W.L.

    1958-10-31

    The size and continuity of the Chinie ore bodies in the Big Indian district, Utah, have permitted mine operators in plan a more integrated development and mining system using larger and more specialized equipment. Thick ore and firm backs at the south end of the district than permitted room and pillar mining, using large drill jumbos send diesel-powered haulage equipment. The Gismo loader and draw-chute system has proved efficient. Driving the haulage- way below the stope level is an advantage when pillars are recovered. To the north, thinner ore with weaker backs favor retreat systems and smaller equipment. Here, themore » ore bodies are delineated by a grid system of drifts, send the ore recovered by panel, longwall, or similar mining methods, retreating toward the principal entry. Labor productivity ranges from 8 to 21 tons per man-shift, send direct mining send development costs, excluding initial development, ranges from 75 to 51 per ton. A unique system of mine development is in the Temple Mountain district, Utah, where the shallow Chinie deposits are mined through 36- inch diameter calyx drill holes. Using small diesel-powered ore buggies and bucket hoisting, ore in produced from the two largest mines at a rate of 4.1 tons per man-shift, at a direci cost of 15 a ton. Ambrosia Lake deposits range from 5 to 80 feet thick and occur from 350 to 1,000 feet below the surface. These mines are in development stages. Open, retreat, and top-slice sloping is planned. Adequate ventilation is essential in uranium mining since sufficient air must be coursed through the workings to maintain airborne radioactive concentration at tolerance levels send dilute exhaust gases where diesel-powered equipment is used. Uranium miners have found that radiometric scannning is a quick and efficient method for checking ths grade of the ore produced and in process of development. (auth)« less

  14. Psychosocial and health impacts of uranium mining and milling on Navajo lands.

    PubMed

    Dawson, Susan E; Madsen, Gary E

    2011-11-01

    The uranium industry in the American Southwest has had profoundly negative impacts on American Indian communities. Navajo workers experienced significant health problems, including lung cancer and nonmalignant respiratory diseases, and psychosocial problems, such as depression and anxiety. There were four uranium processing mills and approximately 1,200 uranium mines on the Navajo Nation's over 27,000 square miles. In this paper, a chronology is presented of how uranium mining and milling impacted the lives of Navajo workers and their families. Local community leaders organized meetings across the reservation to inform workers and their families about the relationship between worker exposures and possible health problems. A reservation-wide effort resulted in activists working with political leaders and attorneys to write radiation compensation legislation, which was passed in 1990 as the Radiation Exposure Compensation Act (RECA) and included underground uranium miners, atomic downwinders, and nuclear test-site workers. Later efforts resulted in the inclusion of surface miners, ore truck haulers, and millworkers in the RECA Amendments of 2000. On the Navajo Nation, the Office of Navajo Uranium Workers was created to assist workers and their families to apply for RECA funds. Present issues concerning the Navajo and other uranium-impacted groups include those who worked in mining and milling after 1971 and are excluded from RECA. Perceptions about uranium health impacts have contributed recently to the Navajo people rejecting a resumption of uranium mining and milling on Navajo lands.

  15. Tracing lead pollution sources in abandoned mine areas using stable Pb isotope ratios.

    PubMed

    Yoo, Eun-Jin; Lee, Jung-A; Park, Jae-Seon; Lee, Khanghyun; Lee, Won-Seok; Han, Jin-Seok; Choi, Jong-Woo

    2014-02-01

    This study focused on Pb isotope ratios of sediments in areas around an abandoned mine to determine if the ratios can be used as a source tracer. For pretreatment, sediment samples were dissolved with mixed acids, and a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS, Nu plasma II) was used to investigate the Pb isotopic composition of the samples. The measured isotope ratios were then corrected for instrumental mass fractionation by measuring the (203)Tl/(205)Tl ratio. Repeated measurements with the NIST SRM 981 reference material showed that the precision of all ratios was below 104 ppm (±2σ) for 50 ng/g. The isotope ratios ((207)Pb/(206)Pb) found were 0.85073 ± 0.0004~0.85373 ± 0.0003 for the main stream, while they were 0.83736 ± 0.0010 for the tributary and 0.84393 ± 0.0002 for the confluence. A binary mixing equation for isotope ratios showed that the contributions of mine lead to neighboring areas were up to 60%. Therefore, Pb isotope ratios can be a good source tracer for areas around abandoned mines.

  16. A science-based, watershed strategy to support effective remediation of abandoned mine lands

    USGS Publications Warehouse

    Buxton, Herbert T.; Nimick, David A.; Von Guerard, Paul; Church, Stan E.; Frazier, Ann G.; Gray, John R.; Lipin, Bruce R.; Marsh, Sherman P.; Woodward, Daniel F.; Kimball, Briant A.; Finger, Susan E.; Ischinger, Lee S.; Fordham, John C.; Power, Martha S.; Bunch, Christine M.; Jones, John W.

    1997-01-01

    A U.S. Geological Survey Abandoned Mine Lands Initiative will develop a strategy for gathering and communicating the scientific information needed to formulate effective and cost-efficient remediation of abandoned mine lands. A watershed approach will identify, characterize, and remediate contaminated sites that have the most profound effect on water and ecosystem quality within a watershed. The Initiative will be conducted during 1997 through 2001 in two pilot watersheds, the Upper Animas River watershed in Colorado and the Boulder River watershed in Montana. Initiative efforts are being coordinated with the U.S. Forest Service, Bureau of Land Management, National Park Service, and other stakeholders which are using the resulting scientific information to design and implement remediation activities. The Initiative has the following eight objective-oriented components: estimate background (pre-mining) conditions; define baseline (current) conditions; identify target sites (major contaminant sources); characterize target sites and processes affecting contaminant dispersal; characterize ecosystem health and controlling processes at target sites; develop remediation goals and monitoring network; provide an integrated, quality-assured and accessible data network; and document lessons learned for future applications of the watershed approach.

  17. Source identification of uranium-containing materials at mine legacy sites in Portugal.

    PubMed

    Keatley, A C; Martin, P G; Hallam, K R; Payton, O D; Awbery, R; Carvalho, F P; Oliveira, J M; Silva, L; Malta, M; Scott, T B

    2018-03-01

    Whilst prior nuclear forensic studies have focused on identifying signatures to distinguish between different uranium deposit types, this paper focuses on providing a scientific basis for source identification of materials from different uranium mine sites within a single region, which can then be potentially used within nuclear forensics. A number of different tools, including gamma spectrometry, alpha spectrometry, mineralogy and major and minor elemental analysis, have been utilised to determine the provenance of uranium mineral samples collected at eight mine sites, located within three different uranium provinces, in Portugal. A radiation survey was initially conducted by foot and/or unmanned aerial vehicle at each site to assist sample collection. The results from each mine site were then compared to determine if individual mine sites could be distinguished based on characteristic elemental and isotopic signatures. Gamma and alpha spectrometry were used to differentiate between samples from different sites and also give an indication of past milling and mining activities. Ore samples from the different mine sites were found to be very similar in terms of gangue and uranium mineralogy. However, rarer minerals or specific impurity elements, such as calcium and copper, did permit some separation of the sites examined. In addition, classification rates using linear discriminant analysis were comparable to those in the literature. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  18. Lessons learned from the U.S. Geological Survey abandoned mine lands initiative: 1997-2002

    USGS Publications Warehouse

    Kimball, Briant A.; Church, Stan E.; Besser, John M.

    2006-01-01

    Growth of the United States has been facilitated, in part, by hard-rock mining in the Rocky Mountains. Abandoned and inactive mines cause many significant environmental concerns in hundreds of watersheds. Those who have responsibility to address these environmental concerns must have a basic level of scientific information about mining and mine wastes in a watershed prior to initiating remediation activities. To demonstrate what information is needed and how to obtain that information, the U.S. Geological Survey implemented the Abandoned Mine Lands (AML) Initiative from 1997 to 2002 with demonstration studies in the Boulder River watershed in Montana and the Animas River watershed in Colorado. The AML Initiative included collection and analysis of geologic, hydrologic, geochemical, geophysical, and biological data. The synergy of this interdisciplinary analysis produced a perspective of the environmental concerns that could not have come from a single discipline. Two examples of these perspectives include (1) the combination of hydrological tracer techniques, structural geology, and geophysics help to understand the spatial distribution of loading to the streams in a way that cannot be evaluated by monitoring at a catchment outlet, and (2) the combination of toxicology and hydrology combine to illustrate that seasonal variability of toxicity conditions occurs. Lessons have been learned by listening to and collaborating with land-management agencies to understand their needs and by applying interdisciplinary methods to answer their questions.

  19. The Remediation of Abandoned Iron Ore Mine Subsidence in Rockaway Township, New Jersey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gartenberg, Gary; Poff, Gregory

    2010-06-30

    This report represents the twenty-seventh and Final Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this last reporting period ending June 30, 2010 and a summary of the work accomplished since the agreement inception in 1997. This report is issued as part of the project reporting provisions set forth in the Cooperator's Agreement between the United States Government - Department of Energy, and Rockaway Township. The purpose of the Cooperator's Agreement is for the Department ofmore » Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800's, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. At the Green Pond Mine site at the Township's Jacobs Road Compost Storage Facility, surface monitoring continued after completion of construction in September 2003. Surface monitoring was conducted periodically at the Mt. Hope Road subsidence work area and adjacent areas after the January 2000 construction effort. In March 2007, a seventh collapse occurred over a portion of the White Meadow Mine in a public roadway at the intersection of Iowa and Erie Avenues in Rockaway Township. After test drilling, this portion of the mine was remediated by drilling and grouting the stopes.« less

  20. Using indicator kriging for the evaluation of arsenic potential contamination in an abandoned mining area (Portugal).

    PubMed

    Antunes, I M H R; Albuquerque, M T D

    2013-01-01

    Mining and mineral-processing activities can modify the environment in a variety of ways. Sulfide mineralization is notorious for producing waters with high metal contents. Arsenic is commonly associated with sulfide mineralization and is considered to be toxic in the environment at low levels. The studied abandoned mining area is located in central Portugal and the resulting tailings and rejected materials were deposited and exposed to the air and water for the last 50 years. Sixteen water sample-points were collected. One of these was collected outside the mining influence, with the aim of obtaining a reference background. The risk assessment, concerning the proximity to abandoned mineralized deposits, needs the evaluation of intrinsic and specific vulnerabilities aiming the quantification of the anthropogenic activities. In this study, two indicator variables were constructed. The first one (I(1)), a specific vulnerability, considers the arsenic water supply standard value (0.05 mg/L), and the probability of it being exceeded is dependent on the geologic and hydrological characteristics of the studied area and also on the anthropogenic activities. The second one (I(2)), an intrinsic vulnerability, considers arsenic background limit as cut-off value, and depends only on the geologic and hydro-geological characteristics of the studied area. At Segura, the arsenic water content found during December 2006 (1.190 mg/L) was higher than the arsenic water content detected in October 2006 (0.636 mg/L) which could be associated to the arsenic released from Fe oxy-hydroxide. At Segura abandoned mining area, the iso-probability maps of October 2006 and December 2006, show strong anomalies associated with the water drainage from abandoned mining activities. Near the village, the probability of exceeding the arsenic background value is high but lower than the probability of exceeding the arsenic water supply value. The arsenic anomalies indicate a high probability for water

  1. Uranium and Associated Heavy Metals in Ovis aries in a Mining Impacted Area in Northwestern New Mexico

    PubMed Central

    Samuel-Nakamura, Christine; Robbins, Wendie A.; Hodge, Felicia S.

    2017-01-01

    The objective of this study was to determine uranium (U) and other heavy metal (HM) concentrations (As, Cd, Pb, Mo, and Se) in tissue samples collected from sheep (Ovis aries), the primary meat staple on the Navajo reservation in northwestern New Mexico. The study setting was a prime target of U mining, where more than 1100 unreclaimed abandoned U mines and structures remain. The forage and water sources for the sheep in this study were located within 3.2 km of abandoned U mines and structures. Tissue samples from sheep (n = 3), their local forage grasses (n = 24), soil (n = 24), and drinking water (n = 14) sources were collected. The samples were analyzed using Inductively Coupled Plasma-Mass Spectrometry. Results: In general, HMs concentrated more in the roots of forage compared to the above ground parts. The sheep forage samples fell below the National Research Council maximum tolerable concentration (5 mg/kg). The bioaccumulation factor ratio was >1 in several forage samples, ranging from 1.12 to 16.86 for Mo, Cd, and Se. The study findings showed that the concentrations of HMs were greatest in the liver and kidneys. Of the calculated human intake, Se Reference Dietary Intake and Mo Recommended Dietary Allowance were exceeded, but the tolerable upper limits for both were not exceeded. Food intake recommendations informed by research are needed for individuals especially those that may be more sensitive to HMs. Further study with larger sample sizes is needed to explore other impacted communities across the reservation. PMID:28788090

  2. Uranium and Associated Heavy Metals in Ovis aries in a Mining Impacted Area in Northwestern New Mexico.

    PubMed

    Samuel-Nakamura, Christine; Robbins, Wendie A; Hodge, Felicia S

    2017-07-28

    The objective of this study was to determine uranium (U) and other heavy metal (HM) concentrations (As, Cd, Pb, Mo, and Se) in tissue samples collected from sheep ( Ovis aries ), the primary meat staple on the Navajo reservation in northwestern New Mexico. The study setting was a prime target of U mining, where more than 1100 unreclaimed abandoned U mines and structures remain. The forage and water sources for the sheep in this study were located within 3.2 km of abandoned U mines and structures. Tissue samples from sheep ( n = 3), their local forage grasses ( n = 24), soil ( n = 24), and drinking water ( n = 14) sources were collected. The samples were analyzed using Inductively Coupled Plasma-Mass Spectrometry. Results: In general, HMs concentrated more in the roots of forage compared to the above ground parts. The sheep forage samples fell below the National Research Council maximum tolerable concentration (5 mg/kg). The bioaccumulation factor ratio was >1 in several forage samples, ranging from 1.12 to 16.86 for Mo, Cd, and Se. The study findings showed that the concentrations of HMs were greatest in the liver and kidneys. Of the calculated human intake, Se Reference Dietary Intake and Mo Recommended Dietary Allowance were exceeded, but the tolerable upper limits for both were not exceeded. Food intake recommendations informed by research are needed for individuals especially those that may be more sensitive to HMs. Further study with larger sample sizes is needed to explore other impacted communities across the reservation.

  3. Community-level effects in edaphic fauna from an abandoned mining area: integration with chemical and toxicological lines of evidence.

    PubMed

    Antunes, Sara C; Castro, Bruno B; Moreira, Cláudia; Gonçalves, Fernando; Pereira, Ruth

    2013-02-01

    As a part of the Ecological Risk Assessment of a deactivated uranium mining area (Cunha Baixa), the aim of this study was to assess the drivers of litter arthropod community (ecological line of evidence) inhabiting soils with different degrees of contamination. Litter arthropods were collected in the mining area using a total of 70 pitfall traps, in the spring and autumn of 2004. Unlike information previously collected in the chemical and ecotoxicological lines of evidence, we found no clear evidence of impacts of soil contamination on the edaphic arthropod assemblage. Multivariate analyses were unable to extract relevant environmental gradients related to contamination, as most of the sites shared the same taxa overall. Given the consistency of the chemical and ecotoxicological lines of evidence, we must conclude that the litter arthropod assemblage underestimated the impacts of contamination in this abandoned mining area. In part, this could be due to the uncertainty caused by confounding factors that affect the litter arthropod community in the area. Nevertheless, despite the overall lack of responsiveness of the epigeic arthropod community data, a few taxa were negatively correlated with metal concentrations (Clubionidae and Staphylinidae), while Pseudoscorpionida were associated with the toxicological profile of the sites. These evidences suggest that community-level approaches with other animal and plant assemblages are necessary to reduce uncertainty relatively to the assessment of risks in higher evaluation tiers in the Cunha Baixa mine area. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. USGS Abandoned Mine Lands Research Presented at the NAAMLP Meeting in Billings, Mont., Sept. 25, 2006

    USGS Publications Warehouse

    Johnson, Kate; Church, Stan

    2006-01-01

    The following talk was an invited presentation given at the National Association of Abandoned Mine Lands Programs meeting in Billings, Montana on Sept. 25, 2006. The objective of the talk was to outline the scope of the U.S. Geological Survey research, past, present and future, in the area of abandoned mine research. Two large Professional Papers have come out of our AML studies: Nimick, D.A., Church, S.E., and Finger, S.E., eds., 2004, Integrated investigations of environmental effects of historical mining in the Basin and Boulder mining districts, Boulder River watershed, Jefferson County, Montana: U.S. Geological Survey Professional Paper 1652, 524 p., 2 plates, 1 DVD, URL: http://pubs.er.usgs.gov/usgspubs/pp/pp1652 Church, S.E., von Guerard, Paul, and Finger, S.E., eds., 2006, Integrated Investigations of Environmental Effects of Historical Mining in the Animas River Watershed, San Juan County, Colorado: U.S. Geological Survey Professional Paper 1651, 1,096 p., 6 plates, 1 DVD (in press). Additional publications and links can be found on the USGS AML website at URL: http://amli.usgs.gov/ or are accessible from the USGS Mineral Resource Program website at URL: http://minerals.usgs.gov/.

  5. Groundwater-quality data associated with abandoned underground coal mine aquifers in West Virginia, 1973-2016: Compilation of existing data from multiple sources

    USGS Publications Warehouse

    McAdoo, Mitchell A.; Kozar, Mark D.

    2017-11-14

    This report describes a compilation of existing water-quality data associated with groundwater resources originating from abandoned underground coal mines in West Virginia. Data were compiled from multiple sources for the purpose of understanding the suitability of groundwater from abandoned underground coal mines for public supply, industrial, agricultural, and other uses. This compilation includes data collected for multiple individual studies conducted from July 13, 1973 through September 7, 2016. Analytical methods varied by the time period of data collection and requirements of the independent studies.This project identified 770 water-quality samples from 294 sites that could be attributed to abandoned underground coal mine aquifers originating from multiple coal seams in West Virginia.

  6. Uranium mining and lung cancer among Navajo men in New Mexico and Arizona, 1969 to 1993.

    PubMed

    Gilliland, F D; Hunt, W C; Pardilla, M; Key, C R

    2000-03-01

    Navajo men who were underground miners have excess risk of lung cancer. To further characterize the long-term consequences of uranium mining in this high-risk population, we examined lung cancer incidence among Navajo men residing in New Mexico and Arizona from 1969 to 1993 and conducted a population-based case-control study to estimate the risk of lung cancer for Navajo uranium miners. Uranium mining contributed substantially to lung cancer among Navajo men over the 25-year period following the end of mining for the Navajo Nation. Sixty-three (67%) of the 94-incident lung cancers among Navajo men occurred in former uranium miners. The relative risk for a history of mining was 28.6 (95% confidence interval, 13.2-61.7). Smoking did not account for the strong relationship between lung cancer and uranium mining. The Navajo experience with uranium mining is a unique example of exposure in a single occupation accounting for the majority of lung cancers in an entire population.

  7. Taxation and regulation of uranium mining in Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1990-11-01

    Government taxation and regulation have a profound influence on mineral operations. In Canada, taxation occurs both on the federal and provincial levels. In addition, both federal and provincial regulations also affect mine operations, sometimes with overlapping, or conflicting, legislation and jurisdiction. Three broad areas of regulation affect the mine production of uranium in Canada: (1) mining law or mineral rights; (2) the licensing procedures; and (3) regulation of occupational health and safety.

  8. Relationship between plant biodiversity and heavy metal bioavailability in grasslands overlying an abandoned mine.

    PubMed

    Hernández, A J; Pastor, J

    2008-04-01

    Abandoned metal mines in the Sierra de Guadarrama, Madrid, Spain, are often located in areas of high ecological value. This is true of an abandoned barium mine situated in the heart of a bird sanctuary. Today the area sustains grasslands, interspersed with oakwood formations of Quercus ilex and heywood scrub (Retama sphaerocarpa L.), used by cattle, sheep and wild animals. Our study was designed to establish a relationship between the plant biodiversity of these grasslands and the bioavailability of heavy metals in the topsoil layer of this abandoned mine. We conducted soil chemical analyses and performed a greenhouse evaluation of the effects of different soil heavy metal concentrations on biodiversity. The greenhouse bioassays were run for 6 months using soil samples obtained from the mine polluted with heavy metals (Cu, Zn, Pb and Cd) and from a control pasture. Soil heavy metal and Na concentrations, along with the pH, had intense negative effects on plant biodiversity, as determined through changes in the Shannon index and species richness. Numbers of grasses, legumes, and composites were reduced, whilst other species (including ruderals) were affected to a lesser extent. Zinc had the greatest effect on biodiversity, followed by Cd and Cu. When we compared the sensitivity of the biodiversity indicators to the different metal content variables, pseudototal metal concentrations determined by X-ray fluorescence (XRF) were the most sensitive, followed by available and soluble metal contents. Worse correlations between biodiversity variables and metal variables were shown by pseudototal contents obtained by plasma emission spectroscopy (ICP-OES). Our results highlight the importance of using as many different indicators as possible to reliably assess the response shown by plants to heavy metal soil pollution.

  9. Environmental radioactivity assessment around old uranium mining sites near Mangualde (Viseu), Portugal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvalho, Fernando P.; Torres, Lubelia M.; Oliveira, Joao M.

    2007-07-01

    Uranium ore was extracted in the surroundings of Mangualde city, North of Portugal, in the mines of Cunha Baixa, Quinta do Bispo and Espinho until a few years ago. Mining waste, milling tailings and acid mine waters are the on site remains of this extractive activity. Environmental radioactivity measurements were performed in and around these sites in order to assess the dispersal of radionuclides from uranium mining waste and the spread of acidic waters resulting from the in situ uranium leaching with sulphuric acid. Results show migration of acid waters into groundwater around the Cunha Baixa mine. This groundwater ismore » tapped by irrigation wells in the agriculture area near the Cunha Baixa village. Water from wells displayed uranium ({sup 238}U) concentrations up to 19x10{sup 3} mBq L{sup -1} and sulphate ion concentrations up to 1070 mg L{sup -1}. These enhanced concentrations are positively correlated with low water pH, pointing to a common origin for radioactivity, dissolved sulphate, and acidity in underground mining works. Radionuclide concentrations were determined in horticulture and farm products from this area also and results suggest low soil to plant transfer of radionuclides and low food chain transfer of radionuclides to man. Analysis of aerosols in surface air showed re suspension of dust from mining and milling waste heaps. Therefore, it is recommended to maintain mine water treatment and to plan remediation of these mine sites in order to prevent waste dispersal in the environment. (authors)« less

  10. Multisource geological data mining and its utilization of uranium resources exploration

    NASA Astrophysics Data System (ADS)

    Zhang, Jie-lin

    2009-10-01

    Nuclear energy as one of clear energy sources takes important role in economic development in CHINA, and according to the national long term development strategy, many more nuclear powers will be built in next few years, so it is a great challenge for uranium resources exploration. Research and practice on mineral exploration demonstrates that utilizing the modern Earth Observe System (EOS) technology and developing new multi-source geological data mining methods are effective approaches to uranium deposits prospecting. Based on data mining and knowledge discovery technology, this paper uses multi-source geological data to character electromagnetic spectral, geophysical and spatial information of uranium mineralization factors, and provides the technical support for uranium prospecting integrating with field remote sensing geological survey. Multi-source geological data used in this paper include satellite hyperspectral image (Hyperion), high spatial resolution remote sensing data, uranium geological information, airborne radiometric data, aeromagnetic and gravity data, and related data mining methods have been developed, such as data fusion of optical data and Radarsat image, information integration of remote sensing and geophysical data, and so on. Based on above approaches, the multi-geoscience information of uranium mineralization factors including complex polystage rock mass, mineralization controlling faults and hydrothermal alterations have been identified, the metallogenic potential of uranium has been evaluated, and some predicting areas have been located.

  11. Selective uptake of uranium and thorium by some vegetables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusof, A.M.; Ghazali, Z.; Rahman, S.A.

    1996-12-31

    Uranium and thorium are trace elements in the actinide series found naturally in the atmosphere and can enter the human body through ingestion of food or by drinking. To establish baseline information for current and future environmental assessment due to pollution, especially in foodstuff, by heavy and trace metals, biological samples such as locally grown vegetables were analyzed for uranium and thorium contents. The terrain in most parts of the Malaysian peninsula consists of monazite-bearing rocks or soil that can be found extensively in areas related to tin-mining operations. Abandoned mining areas provide suitable sites for vegetable cultivation where mostmore » vegetables in the lowlands are grown.« less

  12. Corrosion control when using passively treated abandoned mine drainage as alternative makeup water for cooling systems.

    PubMed

    Hsieh, Ming-Kai; Chien, Shih-Hsiang; Li, Heng; Monnell, Jason D; Dzombak, David A; Vidic, Radisav D

    2011-09-01

    Passively treated abandoned mine drainage (AMD) is a promising alternative to fresh water as power plant cooling water system makeup water in mining regions where such water is abundant. Passive treatment and reuse of AMD can avoid the contamination of surface water caused by discharge of abandoned mine water, which typically is acidic and contains high concentrations of metals, especially iron. The purpose of this study was to evaluate the feasibility of reusing passively treated AMD in cooling systems with respect to corrosion control through laboratory experiments and pilot-scale field testing. The results showed that, with the addition of the inhibitor mixture orthophosphate and tolyltriazole, mild steel and copper corrosion rates were reduced to acceptable levels (< 0.127 mm/y and < 0.0076 mm/y, respectively). Aluminum had pitting corrosion problems in every condition tested, while cupronickel showed that, even in the absence of any inhibitor and in the presence of the biocide monochloramine, its corrosion rate was still very low (0.018 mm/y).

  13. Assessment of nonpoint source chemical loading potential to watersheds containing uranium waste dumps associated with uranium exploration and mining, Browns Hole, Utah

    USGS Publications Warehouse

    Marston, Thomas M.; Beisner, Kimberly R.; Naftz, David L.; Snyder, Terry

    2012-01-01

    During August of 2008, 35 solid-phase samples were collected from abandoned uranium waste dumps, undisturbed geologic background sites, and adjacent streambeds in Browns Hole in southeastern Utah. The objectives of this sampling program were (1) to assess impacts on human health due to exposure to radium, uranium, and thorium during recreational activities on and around uranium waste dumps on Bureau of Land Management lands; (2) to compare concentrations of trace elements associated with mine waste dumps to natural background concentrations; (3) to assess the nonpoint source chemical loading potential to ephemeral and perennial watersheds from uranium waste dumps; and (4) to assess contamination from waste dumps to the local perennial stream water in Muleshoe Creek. Uranium waste dump samples were collected using solid-phase sampling protocols. Solid samples were digested and analyzed for major and trace elements. Analytical values for radium and uranium in digested samples were compared to multiple soil screening levels developed from annual dosage calculations in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act's minimum cleanup guidelines for uranium waste sites. Three occupancy durations for sites were considered: 4.6 days per year, 7.0 days per year, and 14.0 days per year. None of the sites exceeded the radium soil screening level of 96 picocuries per gram, corresponding to a 4.6 days per year exposure. Two sites exceeded the radium soil screening level of 66 picocuries per gram, corresponding to a 7.0 days per year exposure. Seven sites exceeded the radium soil screening level of 33 picocuries per gram, corresponding to a 14.0 days per year exposure. A perennial stream that flows next to the toe of a uranium waste dump was sampled, analyzed for major and trace elements, and compared with existing aquatic-life and drinking-water-quality standards. None of the water-quality standards were exceeded in the stream samples.

  14. Solutions Network Formulation Report. Landsat Data Continuity Mission Simulated Data Products for Bureau of Land Management and Environmental Protection Agency Abandoned Mine Lands Decision Support

    NASA Technical Reports Server (NTRS)

    Estep, Leland

    2007-01-01

    Presently, the BLM (Bureau of Land Management) has identified a multitude of abandoned mine sites in primarily Western states for cleanup. These sites are prioritized and appropriate cleanup has been called in to reclaim the sites. The task is great in needing considerable amounts of agency resources. For instance, in Colorado alone there exists an estimated 23,000 abandoned mines. The problem is not limited to Colorado or to the United States. Cooperation for reclamation is sought at local, state, and federal agency level to aid in identification, inventory, and cleanup efforts. Dangers posed by abandoned mines are recognized widely and will tend to increase with time because some of these areas are increasingly used for recreation and, in some cases, have been or are in the process of development. In some cases, mines are often vandalized once they are closed. The perpetrators leave them open, so others can then access the mines without realizing the danger posed. Abandoned mine workings often fill with water or oxygen-deficient air and dangerous gases following mining. If the workings are accidentally entered into, water or bad air can prove fatal to those underground. Moreover, mine residue drainage negatively impacts the local watershed ecology. Some of the major hazards that might be monitored by higher-resolution satellites include acid mine drainage, clogged streams, impoundments, slides, piles, embankments, hazardous equipment or facilities, surface burning, smoke from underground fires, and mine openings.

  15. Hydrology of an abandoned coal-mining area near McCurtain, Haskell County, Oklahoma

    USGS Publications Warehouse

    Slack, L.J.

    1983-01-01

    Water quality was investigated from October 1980 to May 1983 in an area of abandoned coal mines in Haskell county, Oklahoma. Bedrock in the area is shale, siltstone, sandstone, and the McAlester (Stigler) and Hartshorne coals of the McAlester Formation and Hartshorne Sandstone of Pennsylvanian age. The two coal beds, upper and lower Hartshorne, associated with the Hartshorne Sandstone converge or are separated by a few feet or less of bony coal or shale in the McCurtain area. Many small faults cut the Hartshorne coal in all the McCurtain-area mines. The main avenues of water entry to and movement through the bedrock are the exposed bedding-plane openings between layers of sandstone, partings between laminae of shale, fractures and joints developed during folding and faulting laminae of shale, fractures and joints developed during folding and faulting of the brittle rocks, and openings caused by surface mining--the overburden being shattered and broken to form spoil. Water-table conditions exist in bedrock and spoil in the area. Mine pond water is in direct hydraulic connections with water in the spoil piles and the underlying Hartshorne Sandstone. Sulfate is the best indicator of the presence of coal-mine drainage in both surface and ground water in the Oklahoma coal field. Median sulfate concentrations for four sites on Mule Creek ranged from 26 to 260 milligrams per liter. Median sulfate concentrations increased with increased drainage from unreclaimed mined areas. The median sulfate concentration in Mule Creek where it drains the reclaimed area is less than one-third of that at the next site downstream where the stream begins to drain abandoned (unreclaimed) mine lands. Water from Mule Creek predominantly is a sodium sulfate type. Maximum and median values for specific conductance and concentrations of calcium, magnesium, sodium, sulfate, chloride, dissolved solids, and alkalinity increase as Mule Creek flows downstream and drains increasing areas of abandoned

  16. Agriculture in an area impacted by past uranium mining activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvalho, F. P.; Oliveira, J. M.; Neves, O.

    2007-07-01

    The shallow aquifer near the old Cunha Baixa uranium mine (Viseu, Portugal) was contaminated by acid mine drainage. Concentration of radionuclides in water from irrigation wells and in the topsoil layer of the agriculture fields nearby display enhanced concentrations of uranium, radium and polonium. Two types of agriculture land in this area were selected, one with enhanced and another with low uranium concentrations, for controlled growth of lettuce and potatoes. Plants were grown in replicate portions of land (two plots) in each soil type and were periodically irrigated with water from wells. In each soil, one plot was irrigated withmore » water containing low concentration of dissolved uranium and the other plot with water containing enhanced concentration of dissolved uranium. At the end of the growth season, plants were harvested and analysed, along with soil and irrigation water samples. Results show the accumulation of radionuclides in edible parts of plants, specially in the field plots with higher radionuclide concentrations in soil. Radionuclides in irrigation water contributed less to the radioactivity accumulated in plants than radionuclides from soils. (authors)« less

  17. Microbial communities associated with uranium in-situ recovery mining process are related to acid mine drainage assemblages.

    PubMed

    Coral, Thomas; Descostes, Michaël; De Boissezon, Hélène; Bernier-Latmani, Rizlan; de Alencastro, Luiz Felippe; Rossi, Pierre

    2018-07-01

    A large fraction (47%) of the world's uranium is mined by a technique called "In Situ Recovery" (ISR). This mining technique involves the injection of a leaching fluid (acidic or alkaline) into a uranium-bearing aquifer and the pumping of the resulting solution through cation exchange columns for the recovery of dissolved uranium. The present study reports the in-depth alterations brought to autochthonous microbial communities during acidic ISR activities. Water samples were collected from a uranium roll-front deposit that is part of an ISR mine in operation (Tortkuduk, Kazakhstan). Water samples were obtained at a depth of ca 500 m below ground level from several zones of the Uyuk aquifer following the natural redox zonation inherited from the roll front deposit, including the native mineralized orebody and both upstream and downstream adjacent locations. Samples were collected equally from both the entrance and the exit of the uranium concentration plant. Next-generation sequencing data showed that the redox gradient shaped the community structures, within the anaerobic, reduced, and oligotrophic habitats of the native aquifer zones. Acid injection induced drastic changes in the structures of these communities, with a large decrease in both cell numbers and diversity. Communities present in the acidified (pH values < 2) mining areas exhibited similarities to those present in acid mine drainage, with the dominance of Sulfobacillus sp., Leptospirillum sp. and Acidithiobacillus sp., as well as the archaean Ferroplasma sp. Communities located up- and downstream of the mineralized zone under ISR and affected by acidic fluids were blended with additional facultative anaerobic and acidophilic microorganisms. These mixed biomes may be suitable communities for the natural attenuation of ISR mining-affected subsurface through the reduction of metals and sulfate. Assessing the effect of acidification on the microbial community is critical to evaluating the potential

  18. Federal Guidance Report No. 8: Guidance for the Control of Radiation Hazards in Uranium Mining

    EPA Pesticide Factsheets

    This report contains background material used in the development of guidance concerning radiation protection in the mining of uranium ore, and seeks to provide guidance for long-term radiation protection in uranium mining.

  19. Heavy metal pollution associated with an abandoned lead-zinc mine in the Kirki region, NE Greece.

    PubMed

    Nikolaidis, Christos; Zafiriadis, Ilias; Mathioudakis, Vasileios; Constantinidis, Theodore

    2010-09-01

    The "Agios Philippos" mine in the Kirki region (NE Greece) has been abandoned in 1998 after half a century of ore exploration without a reclamation or remediation plan. This article aims at elucidating the potential environmental risks associated with this site by quantifying pollution in tailing basins, stream waters, stream sediments and agricultural fields. Concentrations of heavy metals in the abandoned mine tailings reached 12,567 mg/kg for Pb, 22,292 mg/kg for Zn, 174 mg/kg for Cd and 241 mg/kg for As. The geoaccumulation index and enrichment factor for these metals were indicative of extremely high contamination (I(geo) > 5) and extremely high enrichment (EF > 40), respectively. Stream waters in the proximity of the mine had an acidic pH equal to 5.96 and a high sulfate content (SO(4)(-2) = 545.5 mg/L), whereas concentrations of Mn, Zn and Cd reached 2,399 microg/L, 7,681 microg/L and 11.2 microg/L. High I(geo) and EF values for Cd, Zn and As in stream sediments indicates that surface water pollution has a historic background, which is typically associated with acid mine drainage. Agricultural fields in the proximity of the mine exhibited high I(geo) and EF values, which were in decreasing order Cd > Pb > Zn > As. These findings urge for an immediate remediation action of the afflicted area.

  20. Characterization and treatment of water used for human consumption from six sources located in the Cameron/Tuba City abandoned uranium mining area.

    PubMed

    Orescanin, Visnja; Kollar, Robert; Nad, Karlo; Mikelic, Ivanka Lovrencic; Kollar, Iris

    2011-01-01

    The purpose of this research was the characterization and improvement of the quality of water used for human consumption of unregulated/regulated water sources located in the Cameron/Tuba City abandoned uranium mining area (NE Arizona, western edge of the Navajo Nation). Samples were collected at six water sources which included regulated sources: Wind Mill (Tank 3T-538), Badger Springs and Paddock Well as well as unregulated sources: Willy Spring, Water Wall and Water Hole. Samples taken from Wind Mill, Water Wall and Water Hole were characterized with high turbidity and color as well as high level of manganese, iron and nickel and elevated value of molybdenum. High level of iron was also found in Badger Spring, Willy Spring, and Paddock Well. These three water sources were also characterized with elevated values of fluoride and vanadium. Significant amounts of zinc were found in Water Wall and Water Hole samples. Water Wall sample was also characterized with high level of Cr(VI). Compared to primary or secondary Navajo Nation Environmental Protection Agency (NNEPA) water quality standard the highest enrichment was found for turbidity (50.000 times), color (up to 1.796 times) and manganese (71 times), Cr(VI) (17.5 times), iron (7.4 times) and arsenic (5.2 times). Activities of (226)Ra and (238)U in water samples were still in agreement with the maximum contaminant levels. In order to comply with NNEPA water quality standard water samples were subjected to electrochemical treatment. This method was selected due to its high removal efficiency for heavy metals and uranium, lower settlement time, production of smaller volume of waste mud and higher stability of waste mud compared to physico-chemical treatment. Following the treatment, concentrations of heavy metals and activities of radionuclides in all samples were significantly lower compared to NNEPA or WHO regulated values. The maximum removal efficiencies for color, turbidity, arsenic, manganese, molybdenum and

  1. Geochemical and mineralogical characterization of the abandoned Valzinco (lead-zinc) and Mitchell (gold) mine sites prior to reclamation, Spotsylvania County, Virginia

    USGS Publications Warehouse

    Hammarstrom, Jane M.; Johnson, Adam N.; Seal, Robert R.; Meier, Allen L.; Briggs, Paul L.; Piatak, Nadine M.

    2006-01-01

    The Virginia gold-pyrite belt, part of the central Virginia volcanic-plutonic belt, hosts numerous abandoned metal mines. The belt extends from about 50 km south of Washington, D.C., for approximately 175 km to the southwest into central Virginia. The rocks that comprise the belt include metamorphosed volcanic and clastic (noncarbonate) sedimentary rocks that were originally deposited during the Ordovician). Deposits that were mined can be classified into three broad categories: 1. volcanic-associated massive sulfide deposits, 2. low-sulfide quartz-gold vein deposits, 3. gold placer deposits, which result from weathering of the vein deposits The massive sulfide deposits were historically mined for iron and pyrite (sulfur), zinc, lead, and copper but also yielded byproduct gold and silver. The most intensely mineralized and mined section of the belt is southwest of Fredericksburg, in the Mineral district of Louisa and Spotsylvania counties. The Valzinco Piatak lead-zinc mine and the Mitchell gold prospect are abandoned sites in Spotsylvania County. As a result of environmental impacts associated with historic mining, both sites were prioritized for reclamation under the Virginia Orphaned Land Program administered by the Virginia Department of Mines, Minerals, and Energy (VDMME). This report summarizes geochemical data for all solid sample media, along with mineralogical data, and results of weathering experiments on Valzinco tailings and field experiments on sediment accumulation in Knights Branch. These data provide a framework for evaluating water-rock interactionsand geoenvironmental signatures of long-abandoned mines developed in massive sulfide deposits and low-sulfide gold-quartz vein deposits in the humid temperate ecosystem domain in the eastern United States.

  2. Evaluation of the environmental contamination at an abandoned mining site using multivariate statistical techniques--the Rodalquilar (Southern Spain) mining district.

    PubMed

    Bagur, M G; Morales, S; López-Chicano, M

    2009-11-15

    Unsupervised and supervised pattern recognition techniques such as hierarchical cluster analysis, principal component analysis, factor analysis and linear discriminant analysis have been applied to water samples recollected in Rodalquilar mining district (Southern Spain) in order to identify different sources of environmental pollution caused by the abandoned mining industry. The effect of the mining activity on waters was monitored determining the concentration of eleven elements (Mn, Ba, Co, Cu, Zn, As, Cd, Sb, Hg, Au and Pb) by inductively coupled plasma mass spectrometry (ICP-MS). The Box-Cox transformation has been used to transform the data set in normal form in order to minimize the non-normal distribution of the geochemical data. The environmental impact is affected mainly by the mining activity developed in the zone, the acid drainage and finally by the chemical treatment used for the benefit of gold.

  3. Geology of the Midnite uranium mine area, Washington: maps, description, and interpretation

    USGS Publications Warehouse

    Nash, J. Thomas

    1977-01-01

    Bedrock geology of about 12 km2 near the Midnite mine has been mapped at the surface, in mine exposures, and from drilling, at scales from 1:600 to 1:12,000 and is presented here at 1:12,000 to provide description of the setting of uranium deposits. Oldest rocks in the area are metapelitic and metacarbonate rocks of the Precambrian (Y) Togo Formation. The chief host for uranium deposits is graphitic and pyritic mica phyllite and muscovite schist. Ore also occurs in calc-silicate hornfels and marble at the western edge of a calcareous section about 1,150 m thick. Calcareous rocks of the Togo are probably older than the pelitic as they are interpreted to be near the axis of a broad anticline. The composition and structural position of the calcareous unit suggests correlation with less metamorphosed carbonate-bearing rocks of the Lower Wallace Formation, Belt Supergroup, about 200 km to the east. Basic sills intrusive into the Togo have been metamorphosed to amphibolite. Unmetamorphosed rocks in the mine area are Cretaceous(?) and Eocene igneous rocks. Porphyritic quartz monzonite of Cretaceous age, part of the Loon Lake batholith, is exposed over one third of the mine area. It underlies the roof pendant of Precambrian rocks in which the Midnite mine occurs at depths of generally less than 300 m. The pluton is a two-mica granite and exhibits pegmatitic and aplitic textural features indicative of water saturation and pressure quenching. Eocene intrusive and extrusive rocks in the area provide evidence that the Eocene surface was only a short distance above the present uranium deposits. Speculative hypotheses are presented for penesyngenetic, hydrothermal, and supergene modes of uranium emplacement. The Precambrian Stratigraphy, similar in age and pre-metamorphic lithology to that of rocks hosting large uranium deposits in Saskatchewan and Northern Territory, Australia, suggests the possibility of uranium accumulation along with diagenetic pyrite in carbonaceous muds in

  4. Predicting temporal changes in total iron concentrations in groundwaters flowing from abandoned deep mines: a first approximation

    NASA Astrophysics Data System (ADS)

    Younger, Paul L.

    2000-06-01

    Discharges of contaminated groundwater from abandoned deep mines are a major environmental problem in many parts of the world. While process-based models of pollutant generation have been successfully developed for certain surface mines and waste rock piles of relatively simple geometry and limited areal extent, such models are not readily applicable to large systems of laterally extensive, interconnected, abandoned deep mines. As a first approximation for such systems, hydrological and lithological factors, which can reasonably be expected to influence pollutant release, have been assessed by empirically assessing data from 81 abandoned deep coal mine discharges in the UK. These data demonstrate that after flooding of a deep mine is complete and groundwater begins to migrate from the mine voids into surface waters or adjoining aquifers, flushing of the mine voids by fresh recharge results in a gradual improvement in the quality of groundwater (principally manifested as decreasing Fe concentrations and stabilisation of pH around 7). Alternative representations of the flushing process have been examined. While elegant analytical solutions of the advection-dispersion equation can be made to mimic the changes in iron concentration, parameterisation is tendentious in practice. Scrutiny of the UK data suggest that to a first approximation, the duration of the main period of flushing can be predicted to endure around four times as long as the foregoing process of mine flooding. Short- and long-term iron concentrations (i.e. at the start of the main period of flushing and after its completion, respectively) can be estimated from the sulphur content of the worked strata. If strata composition data are unavailable, some indication of pollution potential can be obtained from considerations of the proximity of worked strata to marine beds (which typically have high pyrite contents). The long-term concentrations of iron in a particular discharge can also be approximated on the

  5. Elevated concentrations of U and co-occurring metals in abandoned mine wastes in a northeastern Arizona Native American community

    DOE PAGES

    Blake, Johanna M.; Avasarala, Sumant; Artyushkova, Kateryna; ...

    2015-07-09

    The chemical interactions of U and co-occurring metals in abandoned mine wastes in a Native American community in northeastern Arizona were investigated using spectroscopy, microscopy and aqueous chemistry. The concentrations of U (67–169 μg L –1) in spring water samples exceed the EPA maximum contaminant limit of 30 μg L –1. Elevated U (6,614 mg kg –1), V (15,814 mg kg –1), and As (40 mg kg –1) concentrations were detected in mine waste solids. Spectroscopy (XPS and XANES) solid analyses identified U (VI), As (-I and III) and Fe (II, III). Linear correlations for the release of U vsmore » V and As vs Fe were observed for batch experiments when reacting mine waste solids with 10 mM ascorbic acid (~pH 3.8) after 264 h. The release of U, V, As, and Fe was at least 4-fold lower after reaction with 10 mM bicarbonate (~pH 8.3). These results suggest that U–V mineral phases similar to carnotite [K 2(UO 2) 2V 2O 8] and As–Fe-bearing phases control the availability of U and As in these abandoned mine wastes. Elevated concentrations of metals are of concern due to human exposure pathways and exposure of livestock currently ingesting water in the area. This study contributes to understanding the occurrence and mobility of metals in communities located close to abandoned mine waste sites.« less

  6. Trace elements in native and transplanted Fontinalis antipyretica and Platyhypnidium riparioides from rivers polluted by uranium mining.

    PubMed

    Kosior, Grzegorz; Steinnes, Eiliv; Samecka-Cymerman, Aleksandra; Lierhagen, Syverin; Kolon, Krzysztof; Dołhańczuk-Śródka, Agnieszka; Ziembik, Zbigniew

    2017-03-01

    The past uranium/polymetallic mining activities in the Sudety (SW Poland) left abandoned mines, pits, and dumps of waste rocks with trace elements and radionuclides which may erode or leach out and create a potential risk for the aquatic ecosystem, among others. In the present work four rivers affected by effluents from such mines were selected to evaluate the application of aquatic mosses for the bioindication of 56 elements. Naturally growing F. antipyretica and P. riparioides were compared with transplanted samples of the same species. The results demonstrate serious pollution of the examined rivers, especially with As, Ba, Fe, Mn, Pb, Ti, U and Zn, reaching extremely high concentrations in native moss samples. In the most polluted rivers native F. antipyretica and P. riparioides samples showed significantly higher concentrations of As, Ba, Cu, Fe, La, Nd, Ni, Pb, U and Zn than corresponding transplanted samples, whereas at less polluted sites a reverse situation was sometimes observed. Transplanted moss moved from clean to extremely polluted rivers probably protects itself against the accumulation of toxic elements by reducing their uptake. Selection of native or transplanted F. antipyretica and P. riparioides depended on the pollution load. Copyright © 2016. Published by Elsevier Ltd.

  7. Dewatering of the Jenkins open pit uranium mine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straskraba, V.; Kissinger, L.E.

    Mining of low grade uranium sandstones in the Jenkins open pit mine in the Shirley Basin, Wyoming was troubled by slope failures and wet conditions in the pit. Since the mine was expanding toward a river, the possibility of drainage from this river into the mine raised serious concern during the mine planning. A baseline hydrogeologic study was performed and dewatering measures were designed with the help of a numerical mathematical model. A combination of dewatering wells installed from the surface around the perimeter of the pit and horizontal drains in areas of high slope failure potential substantially improved themore » mining conditions and slope stability. This procedure consequently led to the successful ore recovery from the highly saturated sandstone strata. The development of drawdown during the dewatering of two separated aquifers in the overburden was close to that predicted by the model.« less

  8. Contamination of wells completed in the Roubidoux aquifer by abandoned zinc and lead mines, Ottawa County, Oklahoma

    USGS Publications Warehouse

    Christenson, Scott C.

    1995-01-01

    The Roubidoux aquifer in Ottawa County Oklahoma is used extensively as a source of water for public supplies, commerce, industry, and rural water districts. Water in the Roubidoux aquifer in eastern Ottawa County has relatively low dissolved-solids concentrations (less than 200 mg/L) with calcium, magnesium, and bicarbonate as the major ions. The Boone Formation is stratigraphically above the Roubidoux aquifer and is the host rock for zinc and lead sulfide ores, with the richest deposits located in the vicinity of the City of Picher. Mining in what became known as the Picher mining district began in the early 1900's and continued until about 1970. The water in the abandoned zinc and lead mines contains high concentrations of calcium, magnesium, bicarbonate, sulfate, fluoride, cadmium, copper, iron, lead, manganese, nickel, and zinc. Water from the abandoned mines is a potential source of contamination to the Roubidoux aquifer and to wells completed in the Roubidoux aquifer. Water samples were collected from wells completed in the Roubidoux aquifer in the Picher mining district and from wells outside the mining district to determine if 10 public supply wells in the mining district are contaminated. The chemical analyses indicate that at least 7 of the 10 public supply wells in the Picher mining district are contaminated by mine water. Application of the Mann-Whitney test indicated that the concentrations of some chemical constituents that are indicators of mine-water contamination are different in water samples from wells in the mining area as compared to wells outside the mining area. Application of the Wilcoxon signed-rank test showed that the concentrations of some chemical constituents that are indicators of mine-water contamination were higher in current (1992-93) data than in historic (1981-83) data, except for pH, which was lower in current than in historic data. pH and sulfate, alkalinity, bicarbonate, magnesium, iron, and tritium concentrations consistently

  9. Theoretical study of the dissolution kinetics of galena and cerussite in an abandoned mining area (Zaida mine, Morocco)

    NASA Astrophysics Data System (ADS)

    El Alaoui, Lamiae; Dekayir, Abdelilah

    2018-05-01

    In the abandoned mine in Zaida, the pit lakes filled with water constitute significant water reserves. In these lakes, the waters are permanently in contact with ore deposit (cerussite and galena). The modelling of the interaction of waters with this mineralization shows that cerussite dissolves more rapidly than galena. This dissolution is controlled by the pH and dissolved oxygen concentration in solution. The lead concentrations recorded in these lakes come largely from the dissolution of cerussite.

  10. Breccia-pipe uranium mining in northern Arizona; estimate of resources and assessment of historical effects

    USGS Publications Warehouse

    Bills, Donald J.; Brown, Kristin M.; Alpine, Andrea E.; Otton, James K.; Van Gosen, Bradley S.; Hinck, Jo Ellen; Tillman, Fred D.

    2011-01-01

    About 1 million acres of Federal land in the Grand Canyon region of Arizona were temporarily withdrawn from new mining claims in July 2009 by the Secretary of the Interior because of concern that increased uranium mining could have negative impacts on the land, water, people, and wildlife. During a 2-year interval, a Federal team led by the Bureau of Land Management is evaluating the effects of withdrawing these lands for extended periods. As part of this team, the U.S. Geological Survey (USGS) conducted a series of short-term studies to examine the historical effects of breccia-pipe uranium mining in the region. The USGS studies provide estimates of uranium resources affected by the possible land withdrawal, examine the effects of previous breccia-pipe mining, summarize water-chemistry data for streams and springs, and investigate potential biological pathways of exposure to uranium and associated contaminants. This fact sheet summarizes results through December 2009 and outlines further research needs.

  11. Size distribution of radon daughter particles in uranium mine atmospheres.

    PubMed

    George, A C; Hinchliffe, L; Sladowski, R

    1975-06-01

    The size distribution of radon daughters was measured in several uranium mines using four compact diffusion batteries and a round jet cascade impactor. Simultaneously, measurements were made of uncombined fractions of radon daughters, radon concentration, working level and particle concentration. The size distributions found for radon daughters were log normal. The activity median diameters ranged from 0.09 mum to 0.3 mum with a mean value of 0.17 mum. Geometric standard deviations were in the range from 1.3 to 4 with a mean value of 2.7. Uncombined fractions expressed in accordance with the ICRP definition ranged from 0.004 to 0.16 with a mean value of 0.04. The radon daughter sizes in these mines are greater than the sizes assumed by various authors in calculating respiratory tract dose. The disparity may reflect the widening use of diesel-powered equipment in large uranium mines.

  12. Trace elements and Pb isotopes in soils and sediments impacted by uranium mining.

    PubMed

    Cuvier, A; Pourcelot, L; Probst, A; Prunier, J; Le Roux, G

    2016-10-01

    The purpose of this study is to evaluate the contamination in As, Ba, Co, Cu, Mn, Ni, Sr, V, Zn and REE, in a high uranium activity (up to 21,000Bq∙kg(-1)) area, downstream of a former uranium mine. Different geochemical proxies like enrichment factor and fractions from a sequential extraction procedure are used to evaluate the level of contamination, the mobility and the availability of the potential contaminants. Pb isotope ratios are determined in the total samples and in the sequential leachates to identify the sources of the contaminants and to determine the mobility of radiogenic Pb in the context of uranium mining. In spite of the large uranium contamination measured in the soils and the sediments (EF≫40), trace element contamination is low to moderate (2mining activities. Most of the trace elements are associated with the most mobile fractions of the sediments/soils, implying an enhanced potential availability. Even if no Pb enrichment is highlighted, the Pb isotopic signature of the contaminated soils is strongly radiogenic. Measurements performed on the sequential leachates reveal inputs of radiogenic Pb in the most mobile fractions of the contaminated soil. Inputs of low-mobile radiogenic Pb from mining activities may also contribute to the Pb signature recorded in the residual phase of the contaminated samples. We demonstrate that Pb isotopes are efficient tools to trace the origin and the mobility of the contaminants in environments affected by uranium mining. Copyright © 2016. Published by Elsevier B.V.

  13. Uranium mining wastes, garden exhibition and health risks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Gerhard; Schmidt, Peter; Hinz, Wilko

    2007-07-01

    Available in abstract form only. Full text of publication follows: For more than 40 years the Soviet-German stockholding company SDAG WISMUT mined and milled Uranium in the East of Germany and became up to 1990 the world's third largest Uranium producer. After reunification of Germany, the new found state own company Wismut GmbH was faced with the task of decommissioning and rehabilitation of the mining and milling sites. One of the largest mining areas in the world, that had to be cleaned up, was located close to the municipality of Ronneburg near the City of Gera in Thuringia. After closingmore » the operations of the Ronneburg underground mine and at the 160 m deep open pit mine with a free volume of 84 Mio.m{sup 3}, the open pit and 7 large piles of mine waste, together 112 Mio.m{sup 3} of material, had to be cleaned up. As a result of an optimisation procedure it was chosen to relocate the waste rock piles back into the open pit. After taking this decision and approval of the plan the disposal operation was started. Even though the transport task was done by large trucks, this took 16 years. The work will be finished in 2007, a cover consisting of 40 cm of uncontaminated material will be placed on top of the material, and the re-vegetation of the former open pit area will be established. When in 2002 the City of Gera applied to host the largest garden exhibition in Germany, Bundesgartenschau (BUGA), in 2007, Wismut GmbH supported this plan by offering parts of the territory of the former mining site as an exhibition ground. Finally, it was decided by the BUGA organizers to arrange its 2007 exhibition on grounds in Gera and in the valley adjacent to the former open pit mine, with parts of the remediated area within the fence of the exhibition. (authors)« less

  14. Cola soft drinks for evaluating the bioaccessibility of uranium in contaminated mine soils.

    PubMed

    Lottermoser, Bernd G; Schnug, Ewald; Haneklaus, Silvia

    2011-08-15

    There is a rising need for scientifically sound and quantitative as well as simple, rapid, cheap and readily available soil testing procedures. The purpose of this study was to explore selected soft drinks (Coca-Cola Classic®, Diet Coke®, Coke Zero®) as indicators of bioaccessible uranium and other trace elements (As, Ce, Cu, La, Mn, Ni, Pb, Th, Y, Zn) in contaminated soils of the Mary Kathleen uranium mine site, Australia. Data of single extraction tests using Coca-Cola Classic®, Diet Coke® and Coke Zero® demonstrate that extractable arsenic, copper, lanthanum, manganese, nickel, yttrium and zinc concentrations correlate significantly with DTPA- and CaCl₂-extractable metals. Moreover, the correlation between DTPA-extractable uranium and that extracted using Coca-Cola Classic® is close to unity (+0.98), with reduced correlations for Diet Coke® (+0.66) and Coke Zero® (+0.55). Also, Coca-Cola Classic® extracts uranium concentrations near identical to DTPA, whereas distinctly higher uranium fractions were extracted using Diet Coke® and Coke Zero®. Results of this study demonstrate that the use of Coca-Cola Classic® in single extraction tests provided an excellent indication of bioaccessible uranium in the analysed soils and of uranium uptake into leaves and stems of the Sodom apple (Calotropis procera). Moreover, the unconventional reagent is superior in terms of availability, costs, preparation and disposal compared to traditional chemicals. Contaminated site assessments and rehabilitation of uranium mine sites require a solid understanding of the chemical speciation of environmentally significant elements for estimating their translocation in soils and plant uptake. Therefore, Cola soft drinks have potential applications in single extraction tests of uranium contaminated soils and may be used for environmental impact assessments of uranium mine sites, nuclear fuel processing plants and waste storage and disposal facilities. Copyright © 2011 Elsevier

  15. Groundwater Restoration at Uranium In-Situ Recovery Mines, South Texas Coastal Plain

    USGS Publications Warehouse

    Hall, Susan

    2009-01-01

    This talk was presented by U.S. Geological Survey (USGS) geologist Susan Hall on May 11, 2009, at the Uranium 2009 conference in Keystone, Colorado, and on May 12, 2009, as part of an underground injection control track presentation at the Texas Commission on Environmental Quality (TCEQ) Environmental Trade Fair and Conference in Austin, Texas. Texas has been the location of the greatest number of uranium in-situ recovery (ISR) mines in the United States and was the incubator for the development of alkaline leach technology in this country. For that reason, the author chose to focus on the effectiveness of restoration at ISR mines by examining legacy mines developed in Texas. The best source for accurate information about restoration at Texas ISR mines is housed at the TCEQ offices in Austin. The bulk of this research is an analysis of those records.

  16. Radionuclides from past uranium mining in rivers of Portugal.

    PubMed

    Carvalho, Fernando P; Oliveira, João M; Lopes, Irene; Batista, Aleluia

    2007-01-01

    During several decades and until a few years ago, uranium mines were exploited in the Centre of Portugal and wastewaters from uranium ore milling facilities were discharged into river basins. To investigate enhancement of radioactivity in freshwater ecosystems, radionuclides of uranium and thorium series were measured in water, sediments, suspended matter, and fish samples from the rivers Vouga, Dão, Távora and Mondego. The results show that these rivers carry sediments with relatively high naturally occurring radioactivity, and display relatively high concentrations of radon dissolved in water, which is typical of a uranium rich region. Riverbed sediments show enhanced concentrations of radionuclides in the mid-section of the Mondego River, a sign of past wastewater discharges from mining and milling works at Urgeiriça confirmed by the enhanced values of (238)U/(232)Th radionuclide ratios in sediments. Radionuclide concentrations in water, suspended matter and freshwater fish from that section of Mondego are also enhanced in comparison with concentrations measured in other rivers. Based on current radionuclide concentrations in fish, regular consumption of freshwater species by local populations would add 0.032 mSv a(-1) of dose equivalent (1%) to the average background radiation dose. Therefore, it is concluded that current levels of enhanced radioactivity do not pose a significant radiological risk either to aquatic fauna or to freshwater fish consumers.

  17. 30 CFR 57.4011 - Abandoned electric circuits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Abandoned electric circuits. 57.4011 Section 57.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control § 57.4011 Abandoned electric circuits. Abandoned electric circuits shall be deenergized...

  18. 30 CFR 56.4011 - Abandoned electric circuits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Abandoned electric circuits. 56.4011 Section 56.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Control § 56.4011 Abandoned electric circuits. Abandoned electric circuits shall be deenergized and...

  19. 30 CFR 57.4011 - Abandoned electric circuits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Abandoned electric circuits. 57.4011 Section 57.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control § 57.4011 Abandoned electric circuits. Abandoned electric circuits shall be deenergized...

  20. 30 CFR 56.4011 - Abandoned electric circuits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Abandoned electric circuits. 56.4011 Section 56.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Control § 56.4011 Abandoned electric circuits. Abandoned electric circuits shall be deenergized and...

  1. 30 CFR 57.4011 - Abandoned electric circuits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Abandoned electric circuits. 57.4011 Section 57.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control § 57.4011 Abandoned electric circuits. Abandoned electric circuits shall be deenergized...

  2. 30 CFR 56.4011 - Abandoned electric circuits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Abandoned electric circuits. 56.4011 Section 56.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Control § 56.4011 Abandoned electric circuits. Abandoned electric circuits shall be deenergized and...

  3. 30 CFR 56.4011 - Abandoned electric circuits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Abandoned electric circuits. 56.4011 Section 56.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Control § 56.4011 Abandoned electric circuits. Abandoned electric circuits shall be deenergized and...

  4. 30 CFR 57.4011 - Abandoned electric circuits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Abandoned electric circuits. 57.4011 Section 57.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Control § 57.4011 Abandoned electric circuits. Abandoned electric circuits shall be deenergized...

  5. Using remote sensing imagery to monitoring sea surface pollution cause by abandoned gold-copper mine

    NASA Astrophysics Data System (ADS)

    Kao, H. M.; Ren, H.; Lee, Y. T.

    2010-08-01

    The Chinkuashih Benshen mine was the largest gold-copper mine in Taiwan before the owner had abandoned the mine in 1987. However, even the mine had been closed, the mineral still interacts with rain and underground water and flowed into the sea. The polluted sea surface had appeared yellow, green and even white color, and the pollutants had carried by the coast current. In this study, we used the optical satellite images to monitoring the sea surface. Several image processing algorithms are employed especial the subpixel technique and linear mixture model to estimate the concentration of pollutants. The change detection approach is also applied to track them. We also conduct the chemical analysis of the polluted water to provide the ground truth validation. By the correlation analysis between the satellite observation and the ground truth chemical analysis, an effective approach to monitoring water pollution could be established.

  6. Prokaryotic and eukaryotic community structure affected by the presence of an acid mine drainage from an abandoned gold mine.

    PubMed

    Bonilla, José O; Kurth, Daniel G; Cid, Fabricio D; Ulacco, José H; Gil, Raúl A; Villegas, Liliana B

    2018-04-28

    The acid mine drainage that originates in the abandoned gold mine in San Luis, Argentina, is released into La Carolina stream. The aim of this study was to determine the influence of this mine drainage on the physicochemical parameters of the area studied and on both prokaryotic and eukaryotic community structure. In addition, specific relationships between microbial taxonomic groups and physicochemical parameters were established. The drainage that flows into La Carolina stream acidifies the stream and increases its sulfate, Zn, Cd and Te concentrations. Microbial analysis showed that prokaryotic community structure is mainly affected by pH values. Actinobacteria and Gammaproteobacteria were abundant in samples characterized by low pH values, while Nitrospirae, Chloroflexi, Deltaproteobacteria, Thaumarchaeota and Euryarchaeota were associated with high concentrations of heavy metals. Otherwise, Alphaproteobacteria was present in samples taken in sunlit areas. Regarding eukaryotic community structure, the sunlight had the greatest impact. Inside the mine, in the absence of light, fungi and protists members were the most abundant microorganisms, while those samples taken in the presence of light displayed algae (green algae and diatoms) as the most abundant ones. After receiving the mine drainage, the stream showed a decrease in the diatom abundance and green algae predominated.

  7. Factoring uncertainty into restoration modeling of in-situ leach uranium mines

    USGS Publications Warehouse

    Johnson, Raymond H.; Friedel, Michael J.

    2009-01-01

    Postmining restoration is one of the greatest concerns for uranium in-situ leach (ISL) mining operations. The ISL-affected aquifer needs to be returned to conditions specified in the mining permit (either premining or other specified conditions). When uranium ISL operations are completed, postmining restoration is usually achieved by injecting reducing agents into the mined zone. The objective of this process is to restore the aquifer to premining conditions by reducing the solubility of uranium and other metals in the ground water. Reactive transport modeling is a potentially useful method for simulating the effectiveness of proposed restoration techniques. While reactive transport models can be useful, they are a simplification of reality that introduces uncertainty through the model conceptualization, parameterization, and calibration processes. For this reason, quantifying the uncertainty in simulated temporal and spatial hydrogeochemistry is important for postremedial risk evaluation of metal concentrations and mobility. Quantifying the range of uncertainty in key predictions (such as uranium concentrations at a specific location) can be achieved using forward Monte Carlo or other inverse modeling techniques (trial-and-error parameter sensitivity, calibration constrained Monte Carlo). These techniques provide simulated values of metal concentrations at specified locations that can be presented as nonlinear uncertainty limits or probability density functions. Decisionmakers can use these results to better evaluate environmental risk as future metal concentrations with a limited range of possibilities, based on a scientific evaluation of uncertainty.

  8. Distribution of 226Ra body burden of workers in an underground uranium mine in India.

    PubMed

    Patnaik, R L; Jha, V N; Kumar, R; Srivastava, V S; Ravi, P M; Tripathi, R M

    2014-11-01

    Uranium mine workers are exposed to ore dust containing uranium and its daughter products during different mining operations. These radionuclides may pose inhalation hazards to workers during the course of their occupation. The most significant among these radionuclides is (226)Ra. The measurement of radium body burden of uranium mine workers is important to assess their internal exposure. For this purpose, the radon-in-breath measurement technique has been used in the present paper. Workers at the Jaduguda mine, India, associated with different categories of mining operations were monitored between 2001 and 2007. The measurement results indicate that workers--depending on mining operation category--show (226)Ra body burdens ranging from 0.15 to 2.85 kBq. The maximum body burden was found for workers associated with timbering operations, with an average (226)Ra body burden of 0.85 ± 0.54 kBq. Overall, the average value observed for 800 workers was 0.76 ± 0.51 kBq, which gives rise to an average effective dose of 1.67 mSv per year for inhalation and 0.21 mSv per year for ingestion.

  9. 30 CFR 77.215-4 - Refuse piles; abandonment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Refuse piles; abandonment. 77.215-4 Section 77... MINES Surface Installations § 77.215-4 Refuse piles; abandonment. When a refuse pile is to be abandoned... refuse pile shall be abandoned in accordance with a plan submitted by the operator and approved by the...

  10. Characterization of cores from an in-situ recovery mined uranium deposit in Wyoming: Implications for post-mining restoration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WoldeGabriel, G.; Boukhalfa, H.; Ware, S. D.

    In-situ recovery (ISR) of uranium (U) from sandstone-type roll-front deposits is a technology that involves the injection of solutions that consist of ground water fortified with oxygen and carbonate to promote the oxidative dissolution of U, which is pumped to recovery facilities located at the surface that capture the dissolved U and recycle the treated water. The ISR process alters the geochemical conditions in the subsurface creating conditions that are more favorable to the migration of uranium and other metals associated with the uranium deposit. There is a lack of clear understanding of the impact of ISR mining on themore » aquifer and host rocks of the post-mined site and the fate of residual U and other metals within the mined ore zone. We performed detailed petrographic, mineralogical, and geochemical analyses of several samples taken from about 7 m of core of the formerly the ISR-mined Smith Ranch–Highland uranium deposit in Wyoming. We show that previously mined cores contain significant residual uranium (U) present as coatings on pyrite and carbonaceous fragments. Coffinite was identified in three samples. Core samples with higher organic (> 1 wt.%) and clay (> 6–17 wt.%) contents yielded higher 234U/ 238U activity ratios (1.0–1.48) than those with lower organic and clay fractions. The ISR mining was inefficient in mobilizing U from the carbonaceous materials, which retained considerable U concentrations (374–11,534 ppm). This is in contrast with the deeper part of the ore zone, which was highly depleted in U and had very low 234U/ 238U activity ratios. This probably is due to greater contact with the lixiviant (leaching solution) during ISR mining. EXAFS analyses performed on grains with the highest U and Fe concentrations reveal that Fe is present in a reduced form as pyrite and U occurs mostly as U(IV) complexed by organic matter or as U(IV) phases of carbonate complexes. Moreover, U–O distances of ~ 2.05 Å were noted, indicating the

  11. Characterization of cores from an in-situ recovery mined uranium deposit in Wyoming: Implications for post-mining restoration

    DOE PAGES

    WoldeGabriel, G.; Boukhalfa, H.; Ware, S. D.; ...

    2014-10-08

    In-situ recovery (ISR) of uranium (U) from sandstone-type roll-front deposits is a technology that involves the injection of solutions that consist of ground water fortified with oxygen and carbonate to promote the oxidative dissolution of U, which is pumped to recovery facilities located at the surface that capture the dissolved U and recycle the treated water. The ISR process alters the geochemical conditions in the subsurface creating conditions that are more favorable to the migration of uranium and other metals associated with the uranium deposit. There is a lack of clear understanding of the impact of ISR mining on themore » aquifer and host rocks of the post-mined site and the fate of residual U and other metals within the mined ore zone. We performed detailed petrographic, mineralogical, and geochemical analyses of several samples taken from about 7 m of core of the formerly the ISR-mined Smith Ranch–Highland uranium deposit in Wyoming. We show that previously mined cores contain significant residual uranium (U) present as coatings on pyrite and carbonaceous fragments. Coffinite was identified in three samples. Core samples with higher organic (> 1 wt.%) and clay (> 6–17 wt.%) contents yielded higher 234U/ 238U activity ratios (1.0–1.48) than those with lower organic and clay fractions. The ISR mining was inefficient in mobilizing U from the carbonaceous materials, which retained considerable U concentrations (374–11,534 ppm). This is in contrast with the deeper part of the ore zone, which was highly depleted in U and had very low 234U/ 238U activity ratios. This probably is due to greater contact with the lixiviant (leaching solution) during ISR mining. EXAFS analyses performed on grains with the highest U and Fe concentrations reveal that Fe is present in a reduced form as pyrite and U occurs mostly as U(IV) complexed by organic matter or as U(IV) phases of carbonate complexes. Moreover, U–O distances of ~ 2.05 Å were noted, indicating the

  12. Native plant communities in an abandoned Pb-Zn mining area of northern Spain: implications for phytoremediation and germplasm preservation.

    PubMed

    Barrutia, O; Artetxe, U; Hernández, A; Olano, J M; García-Plazaola, J I; Garbisu, C; Becerril, J M

    2011-03-01

    Plants growing on metalliferous soils from abandoned mines are unique because of their ability to cope with high metal levels in soil. In this study, we characterized plants and soils from an abandoned Pb-Zn mine in the Basque Country (northern Spain). Soil in this area proved to be deficient in major macronutrients and to contain toxic levels of Cd, Pb, and Zn. Spontaneously growing native plants (belonging to 31 species, 28 genera, and 15 families) were botanically identified. Plant shoots and rhizosphere soil were sampled at several sites in the mine, and analyzed for Pb, Zn and Cd concentration. Zinc showed the highest concentrations in shoots, followed by Pb and Cd. Highest Zn concentrations in shoots were found in the Zn-Cd hyperaccumulator Thlaspi caerulescens (mean = 18,254 mg Zn kg(-1) DW). Different metal tolerance and accumulation patterns were observed among the studied plant species, thus offering a wide germplasm assortment for the suitable selection of phytoremediation technologies. This study highlights the importance of preserving metalliferous environments as they shelter a unique and highly valuable metallicolous biodiversity.

  13. Uranium in Surface Waters and Sediments Affected by Historical Mining in the Denver West 1:100,000 Quadrangle, Colorado

    USGS Publications Warehouse

    Zielinski, Robert A.; Otton, James K.; Schumann, R. Randall; Wirt, Laurie

    2008-01-01

    Geochemical sampling of 82 stream waters and 87 stream sediments within mountainous areas immediately west of Denver, Colorado, was conducted by the U.S. Geological Survey in October 1994. The primary purpose was to evaluate regionally the effects of geology and past mining on the concentration and distribution of uranium. The study area contains uranium- and thorium-rich bedrock, numerous noneconomic occurrences of uranium minerals, and several uranium deposits of variable size and production history. During the sampling period, local streams had low discharge and were more susceptible to uranium-bearing acid drainage originating from historical mines of base- and precious-metal sulfides. Results indicated that the spatial distribution of Precambrian granites and metamorphic rocks strongly influences the concentration of uranium in stream sediments. Within-stream transport increases the dispersion of uranium- and thorium rich mineral grains derived primarily from granitic source rocks. Dissolved uranium occurs predominantly as uranyl carbonate complexes, and concentrations ranged from less than 1 to 65 micrograms per liter. Most values were less than 5 micrograms per liter, which is less than the current drinking water standard of 30 micrograms per liter and much less than locally applied aquatic-life toxicity standards of several hundred micrograms per liter. In local streams that are affected by uranium-bearing acid mine drainage, dissolved uranium is moderated by dilution and sorptive uptake by stream sediments. Sorbents include mineral alteration products and chemical precipitates of iron- and aluminum-oxyhydroxides, which form where acid drainage enters streams and is neutralized. Suspended uranium is relatively abundant in some stream segments affected by nearby acid drainage, which likely represents mobilization of these chemical precipitates. The 234U/238U activity ratio of acid drainage (0.95-1.0) is distinct from that of local surface waters (more than 1

  14. Safeguards on uranium ore concentrate? the impact of modern mining and milling process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis, Stephen

    2013-07-01

    Increased purity in uranium ore concentrate not only raises the question as to whether Safeguards should be applied to the entirety of uranium conversion facilities, but also as to whether some degree of coverage should be moved back to uranium ore concentrate production at uranium mining and milling facilities. This paper looks at uranium ore concentrate production across the globe and explores the extent to which increased purity is evident and the underlying reasons. Potential issues this increase in purity raises for IAEA's strategy on the Starting Point of Safeguards are also discussed.

  15. From rum jungle to Wismut-reducing the environmental impact of uranium mining and milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuk, W.M.; Jeffree, R.A.; Levins, D.M.

    1994-12-31

    Australia has a long history of uranium mining. In the early days, little attention was given to environmental matters and considerable pollution occurred. Ansto has been involved in rehabilitation of a number of the early uranium mining sites, from Rum Jungle in Australia`s Northern Territory to Wismut in Germany, and is working with current producers to minimise the environmental impact of their operations. Ansto`s expertise is extensive and includes, inter alia, amelioration of acid mine drainage, radon measurement and control, treatment of mill wastes, management of tailings, monitoring of seepage plumes, mathematical modelling of pollutant transport and biological impacts inmore » a tropical environment.« less

  16. Uranium decay daughters from isolated mines: Accumulation and sources.

    PubMed

    Cuvier, A; Panza, F; Pourcelot, L; Foissard, B; Cagnat, X; Prunier, J; van Beek, P; Souhaut, M; Le Roux, G

    2015-11-01

    This study combines in situ gamma spectrometry performed at different scales, in order to accurately locate the contamination pools, to identify the concerned radionuclides and to determine the distribution of the contaminants from soil to bearing phase scale. The potential mobility of several radionuclides is also evaluated using sequential extraction. Using this procedure, an accumulation area located downstream of a former French uranium mine and concentrating a significant fraction of radioactivity is highlighted. We report disequilibria in the U-decay chains, which are likely related to the processes implemented on the mining area. Coupling of mineralogical analyzes with sequential extraction allow us to highlight the presence of barium sulfate, which may be the carrier of the Ra-226 activities found in the residual phase (Ba(Ra)SO4). In contrast, uranium is essentially in the reducible fraction and potentially trapped in clay-iron coatings located on the surface of minerals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Observational studies as human experimentation: the uranium mining experience in the Navajo Nation (1947-66).

    PubMed

    Moure-Eraso, R

    1999-01-01

    This article evaluates how an observational epidemiologic study of federal agencies in uranium miners became an experiment of opportunity for radiation effects. Navajo miners and communities suffered environmental exposures caused by the practices of uranium mining and milling in the Navajo reservation during the 1947 to 1966 period. A historical review of the state-of-the-art knowledge of the health effects of uranium mining and milling during the years prior to 1947 was conducted. Contemporary prevention and remediation practices also were assessed. An appraisal of the summary of findings of a comprehensive evaluation of radiation human experimentation conducted by the U.S. federal government in 1995-96 (ACHRE) demonstrates that uranium miners, including Navajo miners, were the single group that was put more seriously at risk of harm from radiation exposures, with inadequate disclosure and often with fatal consequences. Uranium miners were unwilling and unaware victims of human experimentation to evaluate the health effects of radiation. The failure of the State and U.S. Governments to issue regulations or demand installation of known mine-dust exposure control measures caused widespread environmental damage in the Navajo Nation.

  18. Alpha emitting radionuclides in drainage from Quinta do Bispo and Cunha Baixa uranium mines (Portugal) and associated radiotoxicological risk.

    PubMed

    Carvalho, Fernando P; Oliveira, João M; Faria, Isabel

    2009-11-01

    Two large uranium mines, Quinta do Bispo and Cunha Baixa, district of Viseu, North of Portugal, were exploited until 1991. Sulfuric acid was used for in situ uranium leaching in Cunha Baixa mine and for heap leaching of low grade ores at both mines. Large amounts of mining and milling residues were accumulated nearby. Since closure of mines, the treatment of acid mine waters has been maintained and treated water is released into surface water lines. Analysis of radionuclides in the soluble phase and in the suspended matter of water samples from the uranium mines, from the creeks receiving the discharges of mine effluents, from the rivers and from wells in this area, show an enhancement of radioactivity levels. For example, downstream the discharge of mine effluents into Castelo Stream, the concentrations of dissolved uranium isotopes and uranium daughters were up to 14 times the concentrations measured upstream; (238)U concentration in suspended particulate matter of Castelo Stream reached 72 kBq kg(-1), which is about 170 times higher than background concentrations in Mondego River. Nevertheless, radionuclide concentrations decreased rapidly to near background values within a distance of about 7 kilometers from the discharge point. Enhancement of radioactivity in underground waters was positively correlated with a decrease in water pH and with an increase of sulfate ion concentration, pointing out to Cunha Baixa mine as the source of groundwater contamination. The radiotoxic exposure risk arising from using these well waters as drinking water and as irrigation water is discussed and implementation of environmental remediation measures is advised.

  19. Effect of biochar produced at different pyrolysis temperature on the soil respiration of abandoned mine soil

    NASA Astrophysics Data System (ADS)

    Kim, Yong Seong; Kim, Juhee; Hwang, Wonjae; Hyun, Seunghun

    2015-04-01

    Contaminated soils near an abandoned mine site included the high acidic mine tailing have received great interest due to potential risk to human health, because leachable elements in low pH continuously release from mine site soil with ground water and precipitation event. Biochar, which is the obtained pyrolysis process of biomass, is used as a soil amendments and carbon storage. Especially, many researchers report that the biochar application to soil show increasing soil pH, CEC, adsorption capacity of various elements, as well as, enhanced microbial activity. Therefore, biochar application to contaminated soil near abandoned mine site is expected to have a positive effects on management of these site and soils through the decreased leachability of contaminants. However, effects of biochar application to these site on the soil respiration, as a common measure of soil health, are poorly understood. The objective of this study is to evaluate the effects of biochar application to abandoned mine site soil on the microbial activity with soil respiration test. Biochar was obtained from giant Miscanthus in a slow pyrolysis process (heating rate of 10° C min-1 and N2 gas flow rate of 1.2 L min-1) at the temperature of 400° C (BC4) and 700° C (BC7), respectively. All biochar samples were prepared with grinding and sieving for particle size control (150~500μm). Soil sample was collected from abandoned mine site at Korea (36° 58'N, 128° 10'E). Main contaminants of this soil were As (12.5 g kg-1), Pb (7.3 g kg-1), and Zn (1.1 g kg-1). Biochars were applied (5% by dry weight) to the soil (final mixture weight were 800g), and then moisture contents were adjusted to 100% field capacity (-0.33 bar) in the respirometer with vacuum pump. CO2 efflux of each samples was continuously assessed using continuous aeration system (air flow rate 25 cc min-1) using air cylinder during 130hr (at 20° C and darkness condition). The CO2 emitted from the samples were carried to the

  20. MINING METHODS AND COSTS, CALYX NOS. 3 AND 8 URANIUM MINES, TEMPLE MOUNTAIN DISTRICT, EMERY COUNTY, UTAH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dare, W.L.

    1957-04-01

    Descriptions are given of the Calyx No. 3 mine operated by American Reduc Uranium Corp. and Calyx No. 8 operated by Cline Co. The deposits are composed of numerous small, irregular bodies and are worked through 36 inch Calyx drill holes. The U--V ores are concentrated chiefly in the lower 30 feet of the Moss Back sandstone. In general it follows the strnta. The mine is worked by open stoping with random pillar support. The operations and mining practices of these two mines are very similar and typify the mining methods and practioes used by many small U producers onmore » the Colorado Plateau. (R.V.J.)« less

  1. Aerial Radiological Survey of Abandoned Uranium Mines (AUM) Map Service, Navajo Nation, 1994-1999, US EPA Region 9

    EPA Pesticide Factsheets

    This map service contains data from aerial radiological surveys of 41 potential uranium mining areas (1,144 square miles) within the Navajo Nation that were conducted during the period from October 1994 through October 1999. The US Environmental Protection Agency (USEPA) Region 9 funded the surveys and the US Department of Energy (USDOE) Remote Sensing Laboratory (RSL) in Las Vegas, Nevada conducted the aerial surveys. The aerial survey data were used to characterize the overall radioactivity and excess Bismuth 214 levels within the surveyed areas.This US EPA Region 9 web service contains the following map layers: Total Terrestrial Gamma Activity Polygons, Total Terrestrial Gamma Activity Contours, Excess Bismuth 214 Contours, Excess Bismuth 214 Polygons, Flight AreasFull FGDC metadata records for each layer can be found by clicking the layer name at the web service endpoint and viewing the layer description.Security Classification: Public. Access Constraints: None. Use Constraints: None. Please check sources, scale, accuracy, currentness and other available information. Please confirm that you are using the most recent copy of both data and metadata. Acknowledgement of the EPA would be appreciated.

  2. An evaluation of health risk to the public as a consequence of in situ uranium mining in Wyoming, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruedig, Elizabeth; Johnson, Thomas E.

    In the United States there is considerable public concern regarding the health effects of in situ recovery uranium mining. These concerns focus principally on exposure to contaminants mobilized in groundwater by the mining process. However, the risk arising as a result of mining must be viewed in light of the presence of naturally occurring uranium ore and other constituents which comprise a latent hazard. The United States Environmental Protection Agency recently proposed new guidelines for successful restoration of an in situ uranium mine by limiting concentrations of thirteen groundwater constituents: arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, nitrate (asmore » nitrogen), molybdenum, radium, total uranium, and gross α activity. We investigated the changes occurring to these constituents at an ISR uranium mine in Wyoming, USA by comparing groundwater quality at baseline measurement to that at stability (post-restoration) testing. Of the groundwater constituents considered, only uranium and radium-226 showed significant (p < 0.05) deviation from site-wide baseline conditions in matched-wells. Uranium concentrations increased by a factor of 5.6 (95% CI 3.6–8.9 times greater) while radium-226 decreased by a factor of about one half (95% CI 0.42–0.75 times less). Change in risk was calculated using the RESRAD (onsite) code for an individual exposed as a resident-farmer; total radiation dose to a resident farmer decreased from pre-to post-mining by about 5.2 mSv y –1. As a result, higher concentrations of uranium correspond to increased biomarkers of nephrotoxicity, however the clinical significance of this increase is unclear.« less

  3. An evaluation of health risk to the public as a consequence of in situ uranium mining in Wyoming, USA

    DOE PAGES

    Ruedig, Elizabeth; Johnson, Thomas E.

    2015-08-30

    In the United States there is considerable public concern regarding the health effects of in situ recovery uranium mining. These concerns focus principally on exposure to contaminants mobilized in groundwater by the mining process. However, the risk arising as a result of mining must be viewed in light of the presence of naturally occurring uranium ore and other constituents which comprise a latent hazard. The United States Environmental Protection Agency recently proposed new guidelines for successful restoration of an in situ uranium mine by limiting concentrations of thirteen groundwater constituents: arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, nitrate (asmore » nitrogen), molybdenum, radium, total uranium, and gross α activity. We investigated the changes occurring to these constituents at an ISR uranium mine in Wyoming, USA by comparing groundwater quality at baseline measurement to that at stability (post-restoration) testing. Of the groundwater constituents considered, only uranium and radium-226 showed significant (p < 0.05) deviation from site-wide baseline conditions in matched-wells. Uranium concentrations increased by a factor of 5.6 (95% CI 3.6–8.9 times greater) while radium-226 decreased by a factor of about one half (95% CI 0.42–0.75 times less). Change in risk was calculated using the RESRAD (onsite) code for an individual exposed as a resident-farmer; total radiation dose to a resident farmer decreased from pre-to post-mining by about 5.2 mSv y –1. As a result, higher concentrations of uranium correspond to increased biomarkers of nephrotoxicity, however the clinical significance of this increase is unclear.« less

  4. An evaluation of health risk to the public as a consequence of in situ uranium mining in Wyoming, USA.

    PubMed

    Ruedig, Elizabeth; Johnson, Thomas E

    2015-12-01

    In the United States there is considerable public concern regarding the health effects of in situ recovery uranium mining. These concerns focus principally on exposure to contaminants mobilized in groundwater by the mining process. However, the risk arising as a result of mining must be viewed in light of the presence of naturally occurring uranium ore and other constituents which comprise a latent hazard. The United States Environmental Protection Agency recently proposed new guidelines for successful restoration of an in situ uranium mine by limiting concentrations of thirteen groundwater constituents: arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, nitrate (as nitrogen), molybdenum, radium, total uranium, and gross α activity. We investigated the changes occurring to these constituents at an ISR uranium mine in Wyoming, USA by comparing groundwater quality at baseline measurement to that at stability (post-restoration) testing. Of the groundwater constituents considered, only uranium and radium-226 showed significant (p < 0.05) deviation from site-wide baseline conditions in matched-wells. Uranium concentrations increased by a factor of 5.6 (95% CI 3.6-8.9 times greater) while radium-226 decreased by a factor of about one half (95% CI 0.42-0.75 times less). Change in risk was calculated using the RESRAD (onsite) code for an individual exposed as a resident-farmer; total radiation dose to a resident farmer decreased from pre-to post-mining by about 5.2 mSv y(-1). Higher concentrations of uranium correspond to increased biomarkers of nephrotoxicity, however the clinical significance of this increase is unclear. Published by Elsevier Ltd.

  5. Mine Waste at The Kherzet Youcef Mine : Environmental Characterization

    NASA Astrophysics Data System (ADS)

    Issaad, Mouloud; Boutaleb, Abdelhak; Kolli, Omar

    2017-04-01

    Mining activity in Algeria has existed since antiquity. But it was very important since the 20th century. This activity has virtually ceased since the beginning of the 1990s, leaving many mine sites abandoned (so-called orphan mines). The abandonment of mining today poses many environmental problems (soil pollution, contamination of surface water, mining collapses...). The mining wastes often occupy large volumes that can be hazardous to the environment and human health, often neglected in the past: Faulting geotechnical implementation, acid mine drainage (AMD), alkalinity, presence of pollutants and toxic substances (heavy metals, cyanide...). The study started already six years ago and it covers all mines located in NE Algeria, almost are stopped for more than thirty years. So the most important is to have an overview of all the study area. After the inventory job of the abandoned mines, the rock drainage prediction will help us to classify sites according to their acid generating potential.

  6. High contamination in the areas surrounding abandoned mines and mining activities: An impact assessment of the Dilala, Luilu and Mpingiri Rivers, Democratic Republic of the Congo.

    PubMed

    Atibu, Emmanuel K; Lacroix, Pierre; Sivalingam, Periyasamy; Ray, Nicolas; Giuliani, Gregory; Mulaji, Crispin K; Otamonga, Jean-Paul; Mpiana, Pius T; Slaveykova, Vera I; Poté, John

    2018-01-01

    Abandoned mines and mining activities constitute important sources of toxic metals and Rare Earth Elements (REEs) affecting surrounding environmental compartments and biota. This study investigates the contamination degree and distribution of toxic metals and REEs in contrasting sediment, soil and plant samples surrounding rivers in the African copperbelt area characterized by the presence of numerous abandoned mines, artisanal and industrial mining activities. ICP-MS results highlighted the highest concentration of Cu, Co and Pb in sediments reaching values of 146,801, 18,434 and 899 mg kg -1 , respectively. In soil, the values of 175,859, 21,134 and 1164 mg kg -1 were found for Cu, Co and Pb, respectively. These values are much higher than the sediment guidelines for the protection of aquatic life and international soil clean-up standards. Enrichment factor and geoaccumulation index results indicated important contribution of mining activities to the study sites pollution in addition to natural background. Highest metal accumulation in leaves of Phalaris arundinacea L., was observed, reaching values of 34,061, 5050 and 230 mg kg -1 for Cu, Co, and Pb, respectively. The ∑REE concentration reached values of 2306, 733, 2796 mg kg -1 in sediment, soil and plant samples, respectively. The above results were combined with geographical information including satellite imagery, hydrography and mining concessions. Maps were produced to present the results in a comprehensive and compelling visual format. The results will be disseminated through an innovative mapping online platform to simplify access to data and to facilitate dialogue between stakeholders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Evaluation of residual uranium contamination in the dirt floor of an abandoned metal rolling mill.

    PubMed

    Glassford, Eric; Spitz, Henry; Lobaugh, Megan; Spitler, Grant; Succop, Paul; Rice, Carol

    2013-02-01

    A single, large, bulk sample of uranium-contaminated material from the dirt floor of an abandoned metal rolling mill was separated into different types and sizes of aliquots to simulate samples that would be collected during site remediation. The facility rolled approximately 11,000 tons of hot-forged ingots of uranium metal approximately 60 y ago, and it has not been used since that time. Thirty small mass (≈ 0.7 g) and 15 large mass (≈ 70 g) samples were prepared from the heterogeneously contaminated bulk material to determine how measurements of the uranium contamination vary with sample size. Aliquots of bulk material were also resuspended in an exposure chamber to produce six samples of respirable particles that were obtained using a cascade impactor. Samples of removable surface contamination were collected by wiping 100 cm of the interior surfaces of the exposure chamber with 47-mm-diameter fiber filters. Uranium contamination in each of the samples was measured directly using high-resolution gamma ray spectrometry. As expected, results for isotopic uranium (i.e., U and U) measured with the large-mass and small-mass samples are significantly different (p < 0.001), and the coefficient of variation (COV) for the small-mass samples was greater than for the large-mass samples. The uranium isotopic concentrations measured in the air and on the wipe samples were not significantly different and were also not significantly different (p > 0.05) from results for the large- or small-mass samples. Large-mass samples are more reliable for characterizing heterogeneously distributed radiological contamination than small-mass samples since they exhibit the least variation compared to the mean. Thus, samples should be sufficiently large in mass to insure that the results are truly representative of the heterogeneously distributed uranium contamination present at the facility. Monitoring exposure of workers and the public as a result of uranium contamination resuspended

  8. 13 CFR 121.510 - What is the size standard for leasing of Government land for uranium mining?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false What is the size standard for leasing of Government land for uranium mining? 121.510 Section 121.510 Business Credit and Assistance... standard for leasing of Government land for uranium mining? A concern is small for this purpose if it...

  9. 13 CFR 121.510 - What is the size standard for leasing of Government land for uranium mining?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false What is the size standard for leasing of Government land for uranium mining? 121.510 Section 121.510 Business Credit and Assistance... standard for leasing of Government land for uranium mining? A concern is small for this purpose if it...

  10. 13 CFR 121.510 - What is the size standard for leasing of Government land for uranium mining?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false What is the size standard for leasing of Government land for uranium mining? 121.510 Section 121.510 Business Credit and Assistance... standard for leasing of Government land for uranium mining? A concern is small for this purpose if it...

  11. 13 CFR 121.510 - What is the size standard for leasing of Government land for uranium mining?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false What is the size standard for leasing of Government land for uranium mining? 121.510 Section 121.510 Business Credit and Assistance... standard for leasing of Government land for uranium mining? A concern is small for this purpose if it...

  12. Biota dose assessment of small mammals sampled near uranium mines in northern Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jannik, T.; Minter, K.; Kuhne, W.

    In 2015, the U. S. Geological Survey (USGS) collected approximately 50 small mammal carcasses from Northern Arizona uranium mines and other background locations. Based on the highest gross alpha results, 11 small mammal samples were selected for radioisotopic analyses. None of the background samples had significant gross alpha results. The 11 small mammals were identified relative to the three ‘indicator’ mines located south of Fredonia, AZ on the Kanab Plateau (Kanab North Mine, Pinenut Mine, and Arizona 1 Mine) (Figure 1-1) and are operated by Energy Fuels Resources Inc. (EFRI). EFRI annually reports soil analysis for uranium and radium-226 usingmore » Arizona Department of Environmental Quality (ADEQ)-approved Standard Operating Procedures for Soil Sampling (EFRI 2016a, 2016b, 2017). In combination with the USGS small mammal radioiosotopic tissue analyses, a biota dose assessment was completed by Savannah River National Laboratory (SRNL) using the RESidual RADioactivity-BIOTA (RESRAD-BIOTA, V. 1.8) dose assessment tool provided by the Argonne National Laboratory (ANL 2017).« less

  13. Assessment of nonpoint source chemical loading potential to watersheds containing uranium waste dumps and human health hazards associated with uranium exploration and mining, Red, White, and Fry Canyons, southeastern Utah, 2007

    USGS Publications Warehouse

    Beisner, Kimberly R.; Marston, Thomas M.; Naftz, David L.; Snyder, Terry; Freeman, Michael L.

    2010-01-01

    During May, June, and July 2007, 58 solid-phase samples were collected from abandoned uranium mine waste dumps, background sites, and adjacent streambeds in Red, White, and Fry Canyons in southeastern Utah. The objectives of this sampling program were to (1) assess the nonpoint-source chemical loading potential to ephemeral and perennial drainage basins from uranium waste dumps and (2) assess potential effects on human health due to recreational activities on and around uranium waste dumps on Bureau of Land Management property. Uranium waste-dump samples were collected using solid-phase sampling protocols. After collection, solid-phase samples were homogenized and extracted in the laboratory using a leaching procedure. Filtered (0.45 micron) water samples were obtained from the field leaching procedure and were analyzed for major and trace elements at the Inductively Coupled Plasma-Mass Spectrometry Metals Analysis Laboratory at the University of Utah. A subset of the solid-phase samples also were digested with strong acids and analyzed for major ions and trace elements at the U.S. Geological Survey Geologic Division Laboratory in Denver, Colorado. For the initial ranking of chemical loading potential for uranium waste dumps, results of leachate analyses were compared with existing aquatic-life and drinking-water-quality standards. To assess potential effects on human health, solid-phase digestion values for uranium were compared to soil screening levels (SSL) computed using the computer model RESRAD 6.5 for a probable concentration of radium. One or more chemical constituents exceeded aquatic life and drinking-water-quality standards in approximately 64 percent (29/45) of the leachate samples extracted from uranium waste dumps. Most of the uranium waste dump sites with elevated trace-element concentrations in leachates were located in Red Canyon. Approximately 69 percent (31/45) of the strong acid digestible soil concentration values were greater than a calculated

  14. A top-down assessment of energy, water and land use in uranium mining, milling, and refining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Schneider; B. Carlsen; E. Tavrides

    2013-11-01

    Land, water and energy use are key measures of the sustainability of uranium production into the future. As the most attractive, accessible deposits are mined out, future discoveries may prove to be significantly, perhaps unsustainably, more intensive consumers of environmental resources. A number of previous attempts have been made to provide empirical relationships connecting these environmental impact metrics to process variables such as stripping ratio and ore grade. These earlier attempts were often constrained by a lack of real world data and perform poorly when compared against data from modern operations. This paper conditions new empirical models of energy, watermore » and land use in uranium mining, milling, and refining on contemporary data reported by operating mines. It shows that, at present, direct energy use from uranium production represents less than 1% of the electrical energy produced by the once-through fuel cycle. Projections of future energy intensity from uranium production are also possible by coupling the empirical models with estimates of uranium crustal abundance, characteristics of new discoveries, and demand. The projections show that even for the most pessimistic of scenarios considered, by 2100, the direct energy use from uranium production represents less than 3% of the electrical energy produced by the contemporary once-through fuel cycle.« less

  15. Application of multispectral scanner data to the study of an abandoned surface coal mine

    NASA Technical Reports Server (NTRS)

    Spisz, E. W.

    1978-01-01

    The utility of aircraft multispectral scanner data for describing the land cover features of an abandoned contour-mined coal mine is considered. The data were obtained with an 11 band multispectral scanner at an altitude of 1.2 kilometers. Supervised, maximum-likelihood statistical classifications of the data were made to establish land-cover classes and also to describe in more detail the barren surface features as they may pertain to the reclamation or restoration of the area. The scanner data for the surface-water areas were studied to establish the variability and range of the spectral signatures. Both day and night thermal images of the area are presented. The results of the study show that a high degree of statistical separation can be obtained from the multispectral scanner data for the various land-cover features.

  16. Ohio's Abandoned Mine Lands Reclamation Program: a Study of Data Collection and Evaluation Techniques

    NASA Technical Reports Server (NTRS)

    Sperry, S. L.

    1982-01-01

    The planning process for a statewide reclamation plan of Ohio abandoned minelands in response to the Federal Surface Mining Control and Reclamation Act of 1977 included: (1) the development of a screening and ranking methodology; (2) the establishment of a statewide review of major watersheds affected by mining; (3) the development of an immediate action process; and (4) a prototypical study of a priority watershed demonstrating the data collection, analysis, display and evaluation to be used for the remaining state watersheds. Historical methods for satisfying map information analysis and evaluation, as well as current methodologies being used were discussed. Various computer mapping and analysis programs were examined for their usability in evaluating the priority reclamation sites. Hand methods were chosen over automated procedures; intuitive evaluation was the primary reason.

  17. Mercury contamination in agricultural soils from abandoned metal mines classified by geology and mineralization.

    PubMed

    Kim, Han Sik; Jung, Myung Chae

    2012-01-01

    This survey aimed to compare mercury concentrations in soils related to geology and mineralization types of mines. A total of 16,386 surface soils (0~15 cm in depth) were taken from agricultural lands near 343 abandoned mines (within 2 km from each mine) and analyzed for Hg by AAS with a hydride-generation device. To meaningfully compare mercury levels in soils with geology and mineralization types, three subclassification criteria were adapted: (1) five mineralization types, (2) four valuable ore mineral types, and (3) four parent rock types. The average concentration of Hg in all soils was 0.204 mg kg(-1) with a range of 0.002-24.07 mg kg(-1). Based on the mineralization types, average Hg concentrations (mg kg(-1)) in the soils decreased in the order of pegmatite (0.250) > hydrothermal vein (0.208) > hydrothermal replacement (0.166) > skarn (0.121) > sedimentary deposits (0.045). In terms of the valuable ore mineral types, the concentrations decreased in the order of Au-Ag-base metal mines ≈ base metal mines > Au-Ag mines > Sn-W-Mo-Fe-Mn mines. For parent rock types, similar concentrations were found in the soils derived from sedimentary rocks and metamorphic rocks followed by heterogeneous rocks with igneous and metamorphic processes. Furthermore, farmland soils contained relatively higher Hg levels than paddy soils. Therefore, it can be concluded that soils in Au, Ag, and base metal mines derived from a hydrothermal vein type of metamorphic rocks and pegmatite deposits contained relatively higher concentrations of mercury in the surface environment.

  18. A survey of uranium levels in urine and hair of people living in a coal mining area in Yili, Xinjiang, China.

    PubMed

    Wufuer, Rehemanjiang; Song, Wenjuan; Zhang, Daoyong; Pan, Xiangliang; Gadd, Geoffrey Michael

    2018-09-01

    Recent reports have drawn attention to the uranium contamination arising from coal mining activities in the Yili region of Xinjiang, China due to the mixed distribution of uranium and coal mines, and some of the coal mines being associated with a high uranium content. In this study, we have collected water samples, solid samples such as soil, mud, coal, and coal ash, and hair and urine samples from local populations in order to evaluate the uranium level in this environment and its implications for humans in this high uranium coal mining area. Our results showed that uranium concentrations were 8.71-10.91 μg L -1 in underground water, whereas lower levels of uranium occurred in river water. Among the solid samples, coal ash contained fairly high concentrations of uranium (33.1 μg g -1 ) due to enrichment from coal burning. In addition, uranium levels in the other solid samples were around 2.8 μg g -1 (the Earth's average background value). Uranium concentrations in hair and urine samples were 22.2-634.5 ng g -1 (mean: 156.2 ng g -1 ) and 8.44-761.6 ng L -1 (mean: 202.6 ng L -1 ), respectively, which are significantly higher than reference values reported for unexposed subjects in other areas. Therefore, these results indicate that people living in this coal mining area have been subjected to uranium exposure for long periods of time. Copyright © 2018. Published by Elsevier Ltd.

  19. Risk Assessment of Heavy Metals in Abandoned Mine Lands as Signifcant Contamination Problem in Romania

    NASA Astrophysics Data System (ADS)

    Horvath, E.; Jordan, G.; Fugedi, U.; Bartha, A.; Kuti, L.; Heltai, G.; Kalmar, J.; Waldmann, I.; Napradean, I.; Damian, G.

    2009-04-01

    INTRODUCTION Wide-spread environmental contamination associated with historic mining in Europe has triggered social responses to improve related environmental legislation, the environmental assessment and management methods for the mining industry. Pollution by acid mine drainage (AMD) from ore and coal mining is the outstanding and most important source of mining-induced environmental pollution. Younger et al. (2002) estimates that watercourses polluted by coal mine drainage could be in the order of 2,000 to 3,000 km, and 1,000 to 1,500 km polluted by metal mine discharges for the EU 15 Member States (Younger et al. 2002). Significance of contamination risk posed by mining is also highlighted by mine accidents such as those in Baia Mare, Romania in 2002 and in Aznalcollar, Spain in 1999 (Jordan and D'Alessandro 2004). The new EU Mine Waste Directive (Directive 2006/21/EC) requires the risk-based inventory of abandoned mines in the EU. The cost-effective implementation of the inventory is especially demanding in countries with extensive historic mining and great number of abandoned mine sites, like Romania. The problem is further complicated in areas with trans-boundary effects. The objective of this investigation to carry out the risk-based contamination assessment of a mine site with possible trans-boundary effects in Romania. Assessment follows the source-pathway-receptor chain with a special attention to heavy metal leaching from waste dumps as sources and to transport modelling along surface water pathways. STUDY AREA In this paper the Baiut mine catchment located in the Gutai Mts., Romania, close to the Hungarian border is studied. The polymetallic deposites in the Tertiary Inner-Carpathian Volcanic Arc are exposed by a series of abandoned Zn and Pb mines first operated in the 14th century. Elevation in the high relief catchment ranges from 449m to 1044m. Geology is characterised by andesites hosting the ore deposits and paleogene sediments dominating at the

  20. Exposure assessment of heavy metals on abandoned metal mine areas by ingestion of soil, crop plant and groundwater

    NASA Astrophysics Data System (ADS)

    Lee, J.-S.; Chon, H.-T.

    2003-05-01

    In order to assess the risk of adverse health effects on human exposure to arsenic and heavy metals influence by past mining activities, environmental geochemical survey was undertaken in the abandoned metal mine areas (Dongil Au-Ag-Cu-Zn mine, Okdong Cu-Pb-Zn mine, Myungbong Au-Ag mine). Arsenic and other heavy metals were highly elevated in the tailings from the Dongil mine (8,720 As mg/kg, 5.9 Cd mg/kg, 3,610 Cu mg/kg, 5,850 Pb mg/kg, 630 Zn mg/kg). Heavy metals except As from the Okdong mine (53.6 Cd mg/kg, 910 Cu mg/kg, 1,590 Pb mg/kg, 5,720 Zn mg/kg) and As from the Myungbong mine (5,810 As mg/kg) were also elevated. Elevated levels of As, Cd and Zn were also found in agricultural soils from these mine areas. The H.I. (hazard index) values of As and Cd from the Dongil, the Okdong and Myungbong mine areas are higher than 1.0. Therefore, toxic risk for As and Cd exist via exposure (ingestion) of contaminated soil, groundwater and rice grain in these mine areas.

  1. Exposure pathways and biological receptors: baseline data for the canyon uranium mine, Coconino County, Arizona

    USGS Publications Warehouse

    Hinck, Jo E.; Linder, Greg L.; Darrah, Abigail J.; Drost, Charles A.; Duniway, Michael C.; Johnson, Matthew J.; Méndez-Harclerode, Francisca M.; Nowak, Erika M.; Valdez, Ernest W.; van Riper, Charles; Wolff, S.W.

    2014-01-01

    Recent restrictions on uranium mining within the Grand Canyon watershed have drawn attention to scientific data gaps in evaluating the possible effects of ore extraction to human populations as well as wildlife communities in the area. Tissue contaminant concentrations, one of the most basic data requirements to determine exposure, are not available for biota from any historical or active uranium mines in the region. The Canyon Uranium Mine is under development, providing a unique opportunity to characterize concentrations of uranium and other trace elements, as well as radiation levels in biota, found in the vicinity of the mine before ore extraction begins. Our study objectives were to identify contaminants of potential concern and critical contaminant exposure pathways for ecological receptors; conduct biological surveys to understand the local food web and refine the list of target species (ecological receptors) for contaminant analysis; and collect target species for contaminant analysis prior to the initiation of active mining. Contaminants of potential concern were identified as arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, thallium, uranium, and zinc for chemical toxicity and uranium and associated radionuclides for radiation. The conceptual exposure model identified ingestion, inhalation, absorption, and dietary transfer (bioaccumulation or bioconcentration) as critical contaminant exposure pathways. The biological survey of plants, invertebrates, amphibians, reptiles, birds, and small mammals is the first to document and provide ecological information on .200 species in and around the mine site; this study also provides critical baseline information about the local food web. Most of the species documented at the mine are common to ponderosa pine Pinus ponderosa and pinyon–juniper Pinus–Juniperus spp. forests in northern Arizona and are not considered to have special conservation status by state or federal agencies; exceptions

  2. 30 CFR 57.4011 - Abandoned electric circuits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Abandoned electric circuits. 57.4011 Section 57.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention...

  3. Effects of acid mine drainage from an abandoned copper mine, Britannia Mines, Howe Sound, British Columbia, Canada, on transplanted blue mussels (Mytilus edulis).

    PubMed

    Grout, J A; Levings, C D

    2001-04-01

    Juvenile mussels (Mytilus edulis) were transplanted to Howe Sound, British Columbia, Canada, along an apparent pollution gradient of acid mine drainage (AMD) from an abandoned copper (Cu) mine. Cages containing 75 mussels each were placed at a total of 15 stations and were exposed to concentrations of dissolved Cu in surface waters ranging from 5 to 1009 micrograms/l for a period of 41 days. Mussels located at stations closer to the source of AMD at the mouth of Britannia Creek bioaccumulated higher concentrations of Cu and zinc (Zn) in their tissues. Mussel growth was adversely affected by Cu tissue concentrations above 20 micrograms/g dry wt., while declines in survival and condition index occurred in mussels that bioaccumulated greater than 40 micrograms/g dry wt. Cu. Tissue Zn concentrations (117-192 micrograms/g dry wt.) were likely not high enough to have a direct impact on mussel health. Reduced survival of transplanted mussels was supported by an absence of natural mussels in contaminated areas. Phytoplankton was also severely reduced in areas contaminated by mine waters. Based on the weight of evidence, AMD from the Britannia mine had a deleterious impact on mussel survival in a zone extending at least 2.1 km to the north and 1.7 km to the south of Britannia Creek on the east shore of Howe Sound.

  4. Biogeochemical aspects of uranium mineralization, mining, milling, and remediation

    USGS Publications Warehouse

    Campbell, Kate M.; Gallegos, Tanya J.; Landa, Edward R.

    2015-01-01

    Natural uranium (U) occurs as a mixture of three radioactive isotopes: 238U, 235U, and 234U. Only 235U is fissionable and makes up about 0.7% of natural U, while 238U is overwhelmingly the most abundant at greater than 99% of the total mass of U. Prior to the 1940s, U was predominantly used as a coloring agent, and U-bearing ores were mined mainly for their radium (Ra) and/or vanadium (V) content; the bulk of the U was discarded with the tailings (Finch et al., 1972). Once nuclear fission was discovered, the economic importance of U increased greatly. The mining and milling of U-bearing ores is the first step in the nuclear fuel cycle, and the contact of residual waste with natural water is a potential source of contamination of U and associated elements to the environment. Uranium is mined by three basic methods: surface (open pit), underground, and solution mining (in situ leaching or in situ recovery), depending on the deposit grade, size, location, geology and economic considerations (Abdelouas, 2006). Solid wastes at U mill tailings (UMT) sites can include both standard tailings (i.e., leached ore rock residues) and solids generated on site by waste treatment processes. The latter can include sludge or “mud” from neutralization of acidic mine/mill effluents, containing Fe and a range of coprecipitated constituents, or barium sulfate precipitates that selectively remove Ra (e.g., Carvalho et al., 2007). In this chapter, we review the hydrometallurgical processes by which U is extracted from ore, the biogeochemical processes that can affect the fate and transport of U and associated elements in the environment, and possible remediation strategies for site closure and aquifer restoration.This paper represents the fourth in a series of review papers from the U.S. Geological Survey (USGS) on geochemical aspects of UMT management that span more than three decades. The first paper (Landa, 1980) in this series is a primer on the nature of tailings and radionuclide

  5. 2010 Five-Year Plan: Assessment of Health and Environmental Impacts of Uranium Mining and Milling

    EPA Pesticide Factsheets

    The five-year plan is intended to compile all activities contributing to the identification and cleanup of legacy uranium milling and mining activities in the Grants Mining District in the State of New Mexico.

  6. Blasting for abandoned-mine land reclamation (closure of individual subsidence features and erratic, undocumented underground coal-mine workings). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Workman, J.L.; Thompson, J.

    1991-01-01

    The study has examined the feasibility of blasting for mitigating various abandoned mine land features on AML sites. The investigation included extensive field trial blasts at sites in North Dakota and Montana. A blasting technique was used that was based on spherical cratering concepts. At the Beulah, North Dakota site thirteen individual vertical openings (sinkholes) were blasted with the intent to fill the voids. The blasts were designed to displace material laterally into the void. Good success was had in filling the sinkholes. At the White site in Montana erratic underground rooms with no available documentation were collapsed. An aditmore » leading into the mine was also blasted. Both individual room blasting and area pattern blasting were studied. A total of eight blasts were fired on the one acre area. Exploration requirements and costs were found to be extensive.« less

  7. Restructuring the Uranium Mining Industry in Romania: Actual Situation and Prospects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Georgescu, P.D.; Petrescu, S.T.; Iuhas, T.F.

    2002-07-01

    Uranium prospecting in Romania has started some 50 years ago, when a bilateral agreement between Romania and the former Soviet Union had been concluded and a joint Romanian-Soviet enterprise was created. The production started in 1952 by the opening of some deposits from western Transylvania (Bihor and Ciudanovita). From 1962 the production has continued only with Romanian participation on the ore deposit Avram Iancu and from 1985 on the deposits from Eastern Carpathians (Crucea and Botusana). Starting with 1978 the extracted ores have been completely processed in the Uranium Ore Processing Plant from Feldioara, Brasov. Complying with the initial stipulationsmore » of the Nuclear National Program launched at the beginning of the 1980's, the construction of a nuclear power station in Cernavoda has started in Romania, using natural uranium and heavy water (CANDU type), having five units of 650 MW installed capacity. After 1989 this initial Nuclear National Program was revised and the construction of the first unit (number 1) was finalized and put in operation in 1996. In 2001 the works at the unit number 2 were resumed, having the year 2005 as the scheduled activating date. The future of the other 3 units, being in different construction phases, hasn't been clearly decided. Taking into consideration the exhaustion degree of some ore deposits and from the prospect of exploiting other ore deposits, the uranium industry will be subject of an ample restructuring process. This process includes workings of modernization of the mines in operation and of the processing plant, increasing the profitableness, lowering of the production costs by closing out and ecological rehabilitation of some areas affected by mining works and even new openings of some uraniferous exploitations. This paper presents the actual situation and the prospects of uranium mining industry on the base of some new technical and economical strategic concepts in accordance with the actual Romanian

  8. 30 CFR 56.4011 - Abandoned electric circuits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Abandoned electric circuits. 56.4011 Section 56.4011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and...

  9. Glionitrin A, an antibiotic-antitumor metabolite derived from competitive interaction between abandoned mine microbes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, H.B.; Kown, H.C.; Lee, C.H.

    The nutrient conditions present in abandoned coal mine drainages create an extreme environment where defensive and offensive microbial interactions could be critical for survival and fitness. Coculture of a mine drainage-derived Sphingomonas bacterial strain, KMK-001, and a mine drainage-derived Aspergillus fumigatus fungal strain, KMC-901, resulted in isolation of a new diketopiperazine disulfide, glionitrin A (1). Compound 1 was not detected in monoculture broths of KMK-001 or KMC-901. The structure of 1, a (3S,10aS) diketopiperazine disulfide containing a nitro aromatic ring, was based on analysis of MS, NMR, and circular dichroism spectra and confirmed by X-ray crystal data. Glionitrin A displayedmore » significant antibiotic activity against a series of microbes including methicillin-resistant Staphylococcus aureus. An in vitro MTT cytotoxicity assay revealed that 1 had potent submicromolar cytotoxic activity against four human cancer cell lines: HCT-116, A549, AGS, and DU145. The results provide further evidence that microbial coculture can produce novel biologically relevant molecules.« less

  10. Uranium aqueous speciation in the vicinity of the former uranium mining sites using the diffusive gradients in thin films and ultrafiltration techniques.

    PubMed

    Drozdzak, Jagoda; Leermakers, Martine; Gao, Yue; Elskens, Marc; Phrommavanh, Vannapha; Descostes, Michael

    2016-03-24

    The performance of the Diffusive Gradients in Thin films (DGT) technique with Chelex(®)-100, Metsorb™ and Diphonix(®) as binding phases was evaluated in the vicinity of the former uranium mining sites of Chardon and L'Ecarpière (Loire-Atlantique department in western France). This is the first time that the DGT technique with three different binding agents was employed for the aqueous U determination in the context of uranium mining environments. The fractionation and speciation of uranium were investigated using a multi-methodological approach using filtration (0.45 μm, 0.2 μm), ultrafiltration (500 kDa, 100 kDa and 10 kDa) coupled to geochemical speciation modelling (PhreeQC) and the DGT technique. The ultrafiltration data showed that at each sampling point uranium was present mostly in the 10 kDa truly dissolved fraction and the geochemical modelling speciation calculations indicated that U speciation was markedly predominated by CaUO2(CO3)3(2-). In natural waters, no significant difference was observed in terms of U uptake between Chelex(®)-100 and Metsorb™, while similar or inferior U uptake was observed on Diphonix(®) resin. In turn, at mining influenced sampling spots, the U accumulation on DGT-Diphonix(®) was higher than on DGT-Chelex(®)-100 and DGT-Metsorb™, probably because their performance was disturbed by the extreme composition of the mining waters. The use of Diphonix(®) resin leads to a significant advance in the application and development of the DGT technique for determination of U in mining influenced environments. This investigation demonstrated that such multi-technique approach provides a better picture of U speciation and enables to assess more accurately the potentially bioavailable U pool. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Abandoned Mine Lands: Site Information

    EPA Pesticide Factsheets

    A catalogue of mining sites proposed for and listed on the NPL as well as mining sites being cleaned up using the Superfund Alternative Approach. Also mine sites not on the NPL but that have had removal or emergency response cleanup actions.

  12. Metals other than uranium affected microbial community composition in a historical uranium-mining site.

    PubMed

    Sitte, Jana; Löffler, Sylvia; Burkhardt, Eva-Maria; Goldfarb, Katherine C; Büchel, Georg; Hazen, Terry C; Küsel, Kirsten

    2015-12-01

    To understand the links between the long-term impact of uranium and other metals on microbial community composition, ground- and surface water-influenced soils varying greatly in uranium and metal concentrations were investigated at the former uranium-mining district in Ronneburg, Germany. A soil-based 16S PhyloChip approach revealed 2358 bacterial and 35 archaeal operational taxonomic units (OTU) within diverse phylogenetic groups with higher OTU numbers than at other uranium-contaminated sites, e.g., at Oak Ridge. Iron- and sulfate-reducing bacteria (FeRB and SRB), which have the potential to attenuate uranium and other metals by the enzymatic and/or abiotic reduction of metal ions, were found at all sites. Although soil concentrations of solid-phase uranium were high, ranging from 5 to 1569 μg·g (dry weight) soil(-1), redundancy analysis (RDA) and forward selection indicated that neither total nor bio-available uranium concentrations contributed significantly to the observed OTU distribution. Instead, microbial community composition appeared to be influenced more by redox potential. Bacterial communities were also influenced by bio-available manganese and total cobalt and cadmium concentrations. Bio-available cadmium impacted FeRB distribution while bio-available manganese and copper as well as solid-phase zinc concentrations in the soil affected SRB composition. Archaeal communities were influenced by the bio-available lead as well as total zinc and cobalt concentrations. These results suggest that (i) microbial richness was not impacted by heavy metals and radionuclides and that (ii) redox potential and secondary metal contaminants had the strongest effect on microbial community composition, as opposed to uranium, the primary source of contamination.

  13. Gamma-ray spectroscopy measurements and simulations for uranium mining

    NASA Astrophysics Data System (ADS)

    Marchais, T.; Pérot, B.; Carasco, C.; Allinei, P.-G.; Chaussonnet, P.; Ma, J.-L.; Toubon, H.

    2018-01-01

    AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration evaluation by means of gamma measurements. This paper reports gamma-ray spectra, recorded with a high-purity coaxial germanium detector, on standard cement blocks with increasing uranium content, and the corresponding MCNP simulations. The detailed MCNP model of the detector and experimental setup has been validated by calculation vs. experiment comparisons. An optimization of the detector MCNP model is presented in this paper, as well as a comparison of different nuclear data libraries to explain missing or exceeding peaks in the simulation. Energy shifts observed between the fluorescence X-rays produced by MCNP and atomic data are also investigated. The qualified numerical model will be used in further studies to develop new gamma spectroscopy approaches aiming at reducing acquisition times, especially for ore samples with low uranium content.

  14. Bacterial diversity and composition of an alkaline uranium mine tailings-water interface.

    PubMed

    Khan, Nurul H; Bondici, Viorica F; Medihala, Prabhakara G; Lawrence, John R; Wolfaardt, Gideon M; Warner, Jeff; Korber, Darren R

    2013-10-01

    The microbial diversity and biogeochemical potential associated with a northern Saskatchewan uranium mine water-tailings interface was examined using culture-dependent and -independent techniques. Morphologically-distinct colonies from uranium mine water-tailings and a reference lake (MC) obtained using selective and non-selective media were selected for 16S rRNA gene sequencing and identification, revealing that culturable organisms from the uranium tailings interface were dominated by Firmicutes and Betaproteobacteria; whereas, MC organisms mainly consisted of Bacteroidetes and Gammaproteobacteria. Ion Torrent (IT) 16S rRNA metagenomic analysis carried out on extracted DNA from tailings and MC interfaces demonstrated the dominance of Firmicutes in both of the systems. Overall, the tailings-water interface environment harbored a distinct bacterial community relative to the MC, reflective of the ambient conditions (i.e., total dissolved solids, pH, salinity, conductivity, heavy metals) dominating the uranium tailings system. Significant correlations among the physicochemical data and the major bacterial groups present in the tailings and MC were also observed. Presence of sulfate reducing bacteria demonstrated by culture-dependent analyses and the dominance of Desulfosporosinus spp. indicated by Ion Torrent analyses within the tailings-water interface suggests the existence of anaerobic microenvironments along with the potential for reductive metabolic processes.

  15. Risk evaluation of uranium mining: A geochemical inverse modelling approach

    NASA Astrophysics Data System (ADS)

    Rillard, J.; Zuddas, P.; Scislewski, A.

    2011-12-01

    It is well known that uranium extraction operations can increase risks linked to radiation exposure. The toxicity of uranium and associated heavy metals is the main environmental concern regarding exploitation and processing of U-ore. In areas where U mining is planned, a careful assessment of toxic and radioactive element concentrations is recommended before the start of mining activities. A background evaluation of harmful elements is important in order to prevent and/or quantify future water contamination resulting from possible migration of toxic metals coming from ore and waste water interaction. Controlled leaching experiments were carried out to investigate processes of ore and waste (leached ore) degradation, using samples from the uranium exploitation site located in Caetité-Bahia, Brazil. In experiments in which the reaction of waste with water was tested, we found that the water had low pH and high levels of sulphates and aluminium. On the other hand, in experiments in which ore was tested, the water had a chemical composition comparable to natural water found in the region of Caetité. On the basis of our experiments, we suggest that waste resulting from sulphuric acid treatment can induce acidification and salinization of surface and ground water. For this reason proper storage of waste is imperative. As a tool to evaluate the risks, a geochemical inverse modelling approach was developed to estimate the water-mineral interaction involving the presence of toxic elements. We used a method earlier described by Scislewski and Zuddas 2010 (Geochim. Cosmochim. Acta 74, 6996-7007) in which the reactive surface area of mineral dissolution can be estimated. We found that the reactive surface area of rock parent minerals is not constant during time but varies according to several orders of magnitude in only two months of interaction. We propose that parent mineral heterogeneity and particularly, neogenic phase formation may explain the observed variation of the

  16. Fluid placement of fixated scrubber sludge to reduce surface subsidence and to abate acid mine drainage in abandoned underground coal mines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meiers, R.J.; Golden, D.; Gray, R.

    1995-12-31

    Indianapolis Power and Light Company (IPL) began researching the use of fluid placement techniques of the fixated scrubber sludge (FSS) to reduce surface subsidence from underground coal mines to develop an economic alternative to low strength concrete grout. Abandoned underground coal mines surround property adjacent to IPL`s coal combustion by-product (CCBP) landfill at the Petersburg Generating Station. Landfill expansion into these areas is in question because of the high potential for sinkhole subsidence to develop. Sinkholes manifesting at the surface would put the integrity of a liner or runoff pond containment structure for a CCBP disposal facility at risk. Themore » fluid placement techniques of the FSS as a subsidence abatement technology was demonstrated during an eight week period in September, October, and November 1994 at the Petersburg Generating Station. The success of this technology will be determined by the percentage of the mine void filled, strength of the FSS placed, and the overall effects on the hydrogeologic environment. The complete report for this project will be finalized in early 1996.« less

  17. Plants from the abandoned Nacozari mine tailings: evaluation of their phytostabilization potential.

    PubMed

    Santos, Alina E; Cruz-Ortega, Rocio; Meza-Figueroa, Diana; Romero, Francisco M; Sanchez-Escalante, Jose Jesus; Maier, Raina M; Neilson, Julia W; Alcaraz, Luis David; Molina Freaner, Francisco E

    2017-01-01

    Phytostabilization is a remediation technology that uses plants for in-situ stabilization of contamination in soils and mine tailings. The objective of this study was to identify native plant species with potential for phytostabilization of the abandoned mine tailings in Nacozari, Sonora in northern Mexico. A flora of 42 species in 16 families of angiosperms was recorded on the tailings site and the abundance of the most common perennial species was estimated. Four of the five abundant perennial species showed evidence of regeneration: the ability to reproduce and establish new seedlings. A comparison of selected physicochemical properties of the tailings in vegetated patches with adjacent barren areas suggests that pH, electrical conductivity, texture, and concentration of potentially toxic elements do not limit plant distribution. For the most abundant species, the accumulation factor for most metals was <1, with the exception of Zn in two species. A short-term experiment on adaptation revealed limited evidence for the formation of local ecotypes in Prosopis velutina and Amaranthus watsonii . Overall, the results of this study indicate that five native plant species might have potential for phytostabilization of the Nacozari tailings and that seed could be collected locally to revegetate the site. More broadly, this study provides a methodology that can be used to identify native plants and evaluate their phytostabilization potential for similar mine tailings.

  18. Plants from the abandoned Nacozari mine tailings: evaluation of their phytostabilization potential

    PubMed Central

    Santos, Alina E.; Cruz-Ortega, Rocio; Meza-Figueroa, Diana; Romero, Francisco M.; Sanchez-Escalante, Jose Jesus; Maier, Raina M.; Neilson, Julia W.; Alcaraz, Luis David

    2017-01-01

    Phytostabilization is a remediation technology that uses plants for in-situ stabilization of contamination in soils and mine tailings. The objective of this study was to identify native plant species with potential for phytostabilization of the abandoned mine tailings in Nacozari, Sonora in northern Mexico. A flora of 42 species in 16 families of angiosperms was recorded on the tailings site and the abundance of the most common perennial species was estimated. Four of the five abundant perennial species showed evidence of regeneration: the ability to reproduce and establish new seedlings. A comparison of selected physicochemical properties of the tailings in vegetated patches with adjacent barren areas suggests that pH, electrical conductivity, texture, and concentration of potentially toxic elements do not limit plant distribution. For the most abundant species, the accumulation factor for most metals was <1, with the exception of Zn in two species. A short-term experiment on adaptation revealed limited evidence for the formation of local ecotypes in Prosopis velutina and Amaranthus watsonii. Overall, the results of this study indicate that five native plant species might have potential for phytostabilization of the Nacozari tailings and that seed could be collected locally to revegetate the site. More broadly, this study provides a methodology that can be used to identify native plants and evaluate their phytostabilization potential for similar mine tailings. PMID:28484675

  19. Stormflow hydrochemistry of a river draining an abandoned metal mine: the Afon Twymyn, central Wales.

    PubMed

    Byrne, Patrick; Reid, Ian; Wood, Paul J

    2013-03-01

    Contaminated drainage from metal mines is a serious water-quality problem facing nations that exploit metal mineral resources. Measurements of river hydrochemistry during baseflow are common at mine sites, whilst detailed hydrochemical information regarding stormflow is limited and often confined to a single event. This study investigates the seasonal evolution of stormflow hydrochemistry at an abandoned metal mine in central Wales, UK, and the possible sources and mechanisms of metal release. Significant flushing of metals was observed during stormflow events, resulting in concentrations that severely exceeded water-quality guidelines. The relationship between metal concentrations and river discharge suggests dissolution of efflorescent metal sulphates on the surface of the mine spoil as the principal source of the contamination. High fluxes of Pb during stormflows are linked to extended periods of dry weather prior to storm events that produced water table drawdown and encouraged oxidation of Pb sulphide in the mine spoil. However, some Pb flushing also occurred following wet antecedent conditions. It is suggested that Fe oxide reduction in mine spoil and translatory flows involving metal-rich pore waters results in flushing during wetter periods. Detailed measurements of stormflow hydrochemistry at mine sites are essential for accurate forecasting of long-term trends in metals flux to understand metal sources and mechanisms of release, to assess potential risks to water quality and instream ecology, and to gauge the potential effectiveness of remediation. In order to protect riverine and riparian ecosystems, it is suggested that routine monitoring of stormflows becomes part of catchment management in mining-impacted regions.

  20. Improving gross count gamma-ray logging in uranium mining with the NGRS probe

    NASA Astrophysics Data System (ADS)

    Carasco, C.; Pérot, B.; Ma, J.-L.; Toubon, H.; Dubille-Auchère, A.

    2018-01-01

    AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration measurement by means of gamma ray logging. The determination of uranium concentration in boreholes is performed with the Natural Gamma Ray Sonde (NGRS) based on a NaI(Tl) scintillation detector. The total gamma count rate is converted into uranium concentration using a calibration coefficient measured in concrete blocks with known uranium concentration in the AREVA Mines calibration facility located in Bessines, France. Until now, to take into account gamma attenuation in a variety of boreholes diameters, tubing materials, diameters and thicknesses, filling fluid densities and compositions, a semi-empirical formula was used to correct the calibration coefficient measured in Bessines facility. In this work, we propose to use Monte Carlo simulations to improve gamma attenuation corrections. To this purpose, the NGRS probe and the calibration measurements in the standard concrete blocks have been modeled with MCNP computer code. The calibration coefficient determined by simulation, 5.3 s-1.ppmU-1 ± 10%, is in good agreement with the one measured in Bessines, 5.2 s-1.ppmU-1. Based on the validated MCNP model, several parametric studies have been performed. For instance, the rock density and chemical composition proved to have a limited impact on the calibration coefficient. However, gamma self-absorption in uranium leads to a nonlinear relationship between count rate and uranium concentration beyond approximately 1% of uranium weight fraction, the underestimation of the uranium content reaching more than a factor 2.5 for a 50 % uranium weight fraction. Next steps will concern parametric studies with different tubing materials, diameters and thicknesses, as well as different borehole filling fluids representative of real measurement conditions.

  1. Extremely high radon activity concentration in two adits of the abandoned uranium mine 'Podgórze' in Kowary (Sudety Mts., Poland).

    PubMed

    Fijałkowska-Lichwa, Lidia

    2016-12-01

    Measurements of radon activity concentration were conducted for a period of 6 months, from April to September 2011, in the air of two adits constituting part of the disused uranium mine 'Podgórze' in Kowary. Adits no. 19 and 19a in Kowary had been chosen owing to the occurrence within them of the highest documented radon concentrations in Poland, With levels higher than a million Bq m -3 . The main goal of this study was to characterize the level of 222 Rn activity concentration registered in selected workings of this underground space, investigate 222 Rn changes and their characteristics over selected periods of time (an hour, a day, a month, six months) and determine the effective doses, which provided the basis for estimating the risk of exposure to increased ionizing radiation for employees and visitors to the mine. The highest values of 222 Rn activity concentration inside the adits occurred at the time when visitors, guides and other members of the staff were present there. The recorded values of radon activity concentration, regardless of the time and the month when the measurement was performed, remained at an average level of 350-400 kBq m -3 . These values were far above the limit of 1.5 kBq·m -3 recommended by international guidelines. The maximum values ranged from 800 to more than 1000 kBq·m -3 . Radon activity concentration changes occurred only in periods determined by 7-h cycles of connecting and disconnecting the mechanical ventilation. For about 7 h after activating the ventilation system, between 7 a. m. and 2 p. m., and after closing the adit, between 7 p. m. and 2 a. m., 222 Rn activity concentrations decreased to levels even as low as 100 kBq·m-3. However, as early as 3-4 h after disconnecting the ventilation system, there was a sharp rise in the values of 222 Rn activity concentration, to the level higher than 800 kBq·m-3. The risk of receiving a radiation dose higher than the national standard of 1 mSv/year by members of the

  2. Field Evaluation of the Restorative Capacity of the Aquifer Downgradient of a Uranium In-Situ Recovery Mining Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimus, Paul William

    A two-part field study was conducted in Smith Ranch-Highland in-situ recovery (ISR) near Douglas, Wyoming, to evaluate the restorative capacity of the aquifer downgradient (i.e., hydrologically downstream) of a Uranium ISR mining site with respect to the transport of uranium and other potential contaminants in groundwater after mining has ceased. The study was partially conducted by checking the Uranium content and the alkalinity of separate wells, some wells had been restored and others had not. A map and in-depth procedures of the study are included.

  3. Spatial Variation and Assessment of Heavy Metal and Radioactive Risk in Farmland around a Retired Uranium Mine

    NASA Astrophysics Data System (ADS)

    Liang, Jie; Shi, Chen-hao; Zeng, Guang-ming; Zhong, Min-zhou; Yuan, Yu-jie

    2017-07-01

    In recent years, heavy metal contamination in the environment has been attracted worldwide attention due to their toxicity, persistence,extensive sources and non-biodegradable properties. We herein investigate variation trend and risk of heavy metal and radiation distribution in the former mine stope, former mineral ore stockyard, and mine road with surface soils of a retired uranium mine in the mid-south of China. The mean concentrations (mg/kg) of Pb,Cd,Cu,Zn,As,Hg,Cr,Mn,Ni,U, and 232Th were analyzed according to the corresponding background values in Hunan, China. The Geo-accumulation index (Igeo ) were used for the assessment of pollution level of heavy metals and the radioactive elements of U and 232Th. Then, Pollution load index (PLI) and GIS techniquewere integrated to assess spatial distribution of heavy metal contamination and radioactive contamination. Results confirmed that three areas in the retired uranium mine was a primary source of pollution, which showed anthropogenic origin mainly from agricultural runoff, hydrometallurgy from chemical industries, radioactive tailings, and electroplating industriesfinally drained into Zishui River and Xiangjiang River. Based on the actual situation, some suggestions were put forward for the treatment of the retired uranium mine in conclusion.

  4. Extensive rill erosion and gullying on abandoned pit mining sites in Lusatia, Germany

    NASA Astrophysics Data System (ADS)

    Kunth, Franziska; Kaiser, Andreas; Vláčilová, Markéta; Schindewolf, Marcus; Schmidt, Jürgen

    2015-04-01

    As the major economic driver in the province of Lusatia, Eastern Germany, the large open-cast lignite mining sites characterize the landscape and leave vast areas of irreversible changed post-mining landscapes behind. Cost-intensive renaturation projects have been implemented in order to restructure former mine sites into stabile self-sustaining ecosystems and local recreation areas. With considerable expenditure the pits are stabilized, flooded and surrounding areas are restructured. Nevertheless, heavy soil erosion, extensive gullying and slope instability are challenges for the restructuring and renaturation of the abandoned open-cast mining sites. The majority of the sites remain inaccessible to the public due to instable conditions resulting in uncontrolled slides and large gullies. In this study a combined approach of UAV-based aerial imagery, 3D multi-vision surface reconstruction and physically-based soil erosion modelling is carried out in order to document, quantify and better understand the causes of erosion processes on mining sites. Rainfall simulations have been carried out in lausatian post mining areas to reproduce soil detachment processes and observe the responsible mechanisms for the considerable erosion rates. Water repellency and soil sealing by biological crusts were hindering infiltration and consequently increasing runoff rates despite the mainly sandy soil texture. On non-vegetated experimental plots runoff coefficients up to 87 % were measured. In a modelling routine for a major gully catchment regarding a 50 years rainfall event, simulation results reveal runoff coefficients of up to 84% and erosion rates of 118 Mg*ha^-1. At the sediment pass over point 450Mg of sediments enter the surface water bodies. A system response of this order of magnitude were unexpected by the authorities. By applying 3D multi-vision surface reconstruction a model validation is now possible and further may illustrate the great importance of soil conservation

  5. Geochemistry and hydrology of perched groundwater springs: assessing elevated uranium concentrations at Pigeon Spring relative to nearby Pigeon Mine, Arizona (USA)

    USGS Publications Warehouse

    Beisner, Kimberly R.; Paretti, Nicholas; Tillman, Fred; Naftz, David L.; Bills, Donald; Walton-Day, Katie; Gallegos, Tanya J.

    2017-01-01

    The processes that affect water chemistry as the water flows from recharge areas through breccia-pipe uranium deposits in the Grand Canyon region of the southwestern United States are not well understood. Pigeon Spring had elevated uranium in 1982 (44 μg/L), compared to other perched springs (2.7–18 μg/L), prior to mining operations at the nearby Pigeon Mine. Perched groundwater springs in an area around the Pigeon Mine were sampled between 2009 and 2015 and compared with material from the Pigeon Mine to better understand the geochemistry and hydrology of the area. Two general groups of perched groundwater springs were identified from this study; one group is characterized by calcium sulfate type water, low uranium activity ratio 234U/238U (UAR) values, and a mixture of water with some component of modern water, and the other group by calcium-magnesium sulfate type water, higher UAR values, and radiocarbon ages indicating recharge on the order of several thousand years ago. Multivariate statistical principal components analysis of Pigeon Mine and spring samples indicate Cu, Pb, As, Mn, and Cd concentrations distinguished mining-related leachates from perched groundwater springs. The groundwater potentiometric surface indicates that perched groundwater at Pigeon Mine would likely flow toward the northwest away from Pigeon Spring. The geochemical analysis of the water, sediment and rock samples collected from the Snake Gulch area indicate that the elevated uranium at Pigeon Spring is likely related to a natural source of uranium upgradient from the spring and not likely related to the Pigeon Mine.

  6. Subpart B: National Emission Standards for Radon Emissions From Underground Uranium Mines

    EPA Pesticide Factsheets

    Subpart B sets a limit on the emission of radon-222 that ensures that no member of the public in any year receives an effective dose equivalent of more than 10 mrem/year from an underground uranium mine.

  7. Application of electromagnetic techniques in survey of contaminated groundwater at an abandoned mine complex in southwestern Indiana, U.S.A.

    USGS Publications Warehouse

    Brooks, G.A.; Olyphant, G.A.; Harper, D.

    1991-01-01

    In part of a large abandoned mining complex, electromagnetic geophysical surveys were used along with data derived from cores and monitoring wells to infer sources of contamination and subsurface hydrologic connections between acidic refuse deposits and adjacent undisturbed geologic materials. Electrical resistivity increases sharply along the boundary of an elevated deposit of pyritic coarse refuse, which is highly contaminated and electrically conductive, indicating poor subsurface hydrologic connections with surrounding deposits of fine refuse and undisturbed glacial material. Groundwater chemistry, as reflected in values of specific conductance, also differs markedly across the deposit's boundary, indicating that a widespread contaminant plume has not developed around the coarse refuse in more than 40 yr since the deposit was created. Most acidic drainage from the coarse refuse is by surface runoff and is concentrated around stream channels. Although most of the contaminated groundwater within the study area is concentrated within the surficial refuse deposits, transects of apparent resistivity and phase angle indicate the existence of an anomalous conductive layer at depth (>4 m) in thick alluvial sediments along the northern boundary of the mining complex. Based on knowledge of local geology, the anomaly is interpreted to represent a subsurface connection between the alluvium and a flooded abandoned underground mine. ?? 1991 Springer-Verlag New York Inc.

  8. Application of electromagnetic techniques in survey of contaminated groundwater at an abandoned mine complex in southwestern Indiana, U.S.A.

    NASA Astrophysics Data System (ADS)

    Brooks, Glenn A.; Olyphant, Greg A.; Harper, Denver

    1991-07-01

    In part of a large abandoned mining complex, electromagnetic geophysical surveys were used along with data derived from cores and monitoring wells to infer sources of contamination and subsurface hydrologic connections between acidic refuse deposits and adjacent undisturbed geologic materials. Electrical resistivity increases sharply along the boundary of an elevated deposit of pyritic coarse refuse, which is highly contaminated and electrically conductive, indicating poor subsurface hydrologic connections with surrounding deposits of fine refuse and undisturbed glacial material. Groundwater chemistry, as reflected in values of specific conductance, also differs markedly across the deposit's boundary, indicating that a widespread contaminant plume has not developed around the coarse refuse in more than 40 yr since the deposit was created. Most acidic drainage from the coarse refuse is by surface runoff and is concentrated around stream channels. Although most of the contaminated groundwater within the study area is concentrated within the surficial refuse deposits, transects of apparent resistivity and phase angle indicate the existence of an anomalous conductive layer at depth (>4 m) in thick alluvial sediments along the northern boundary of the mining complex. Based on knowledge of local geology, the anomaly is interpreted to represent a subsurface connection between the alluvium and a flooded abandoned underground mine.

  9. Biogeochemical prospecting for uranium with conifers: results from the Midnite Mine area, Washington

    USGS Publications Warehouse

    Nash, J. Thomas; Ward, Frederick Norville

    1977-01-01

    The ash of needles, cones, and duff from Ponderosa pine (Pinus ponderosa Laws) growing near uranium deposits of the Midnite mine, Stevens County, Wash., contain as much as 200 parts per million (ppm) uranium. Needle samples containing more than 10 ppm uranium define zones that correlate well with known uranium deposits or dumps. Dispersion is as much as 300 m but generally is less. Background is about 1 ppm. Tree roots are judged to be sampling ore, low-grade uranium halo, or ground water to a depth of about 15 m. Uptake of uranium by Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) needles appears to be about the same as by Ponderosa pine needles. Cones and duff are generally enriched in uranium relate to needles. Needles, cones, and duff are recommended as easily collected, uncomplicated sample media for geochemical surveys. Samples can be analyzed by standard methods and total cost per sample kept to about $6.

  10. Environmental geochemistry of a Kuroko-type massive sulfide deposit at the abandoned Valzinco mine, Virginia, USA

    USGS Publications Warehouse

    Seal, R.R.; Hammarstrom, J.M.; Johnson, A.N.; Piatak, N.M.; Wandless, G.A.

    2008-01-01

    The abandoned Valzinco mine, which worked a steeply dipping Kuroko-type massive sulfide deposit in the Virginia Au-pyrite belt, contributed significant metal-laden acid-mine drainage to the Knight's Branch watershed. The host rocks were dominated by metamorphosed felsic volcanic rocks, which offered limited acid-neutralizing potential. The ores were dominated by pyrite, sphalerite, galena, and chalcopyrite, which represented significant acid-generating potential. Acid-base accounting and leaching studies of flotation tailings - the dominant mine waste at the site - indicated that they were acid generating and therefore, should have liberated significant quantities of metals to solution. Field studies of mine drainage from the site confirmed that mine drainage and the impacted stream waters had pH values from 1.1 to 6.4 and exceeded aquatic ecosystem toxicity limits for Fe, Al, Cd, Cu, Pb and Zn. Stable isotope studies of water, dissolved SO42 -, and primary and secondary sulfate and sulfide minerals indicated that two distinct sulfide oxidation pathways were operative at the site: one dominated by Fe(III) as the oxidant, and another by molecular O2 as the oxidant. Reaction-path modeling suggested that geochemical interactions between tailings and waters approached a steady state within about a year. Both leaching studies and geochemical reaction-path modeling provided reasonable predictions of the mine-drainage chemistry.

  11. SIMPL: A Simplified Model-Based Program for the Analysis and Visualization of Groundwater Rebound in Abandoned Mines to Prevent Contamination of Water and Soils by Acid Mine Drainage

    PubMed Central

    Kim, Sung-Min

    2018-01-01

    Cessation of dewatering following underground mine closure typically results in groundwater rebound, because mine voids and surrounding strata undergo flooding up to the levels of the decant points, such as shafts and drifts. SIMPL (Simplified groundwater program In Mine workings using the Pipe equation and Lumped parameter model), a simplified lumped parameter model-based program for predicting groundwater levels in abandoned mines, is presented herein. The program comprises a simulation engine module, 3D visualization module, and graphical user interface, which aids data processing, analysis, and visualization of results. The 3D viewer facilitates effective visualization of the predicted groundwater level rebound phenomenon together with a topographic map, mine drift, goaf, and geological properties from borehole data. SIMPL is applied to data from the Dongwon coal mine and Dalsung copper mine in Korea, with strong similarities in simulated and observed results. By considering mine workings and interpond connections, SIMPL can thus be used to effectively analyze and visualize groundwater rebound. In addition, the predictions by SIMPL can be utilized to prevent the surrounding environment (water and soil) from being polluted by acid mine drainage. PMID:29747480

  12. Radon exposure in uranium mining industry vs. exposure in tourist caves.

    PubMed

    Quindós Poncela, L; Fernández Navarro, P; Sainz Fernández, C; Gómez Arozamena, J; Bordonoba Perez, M

    2004-01-01

    There is a fairly general consensus among health physicists and radiation professionals that exposure to radon progeny is the largest and most variable contribution to the population's exposure to natural sources of radiation. However, this exposure is the subject of continuing debate concerning the validity of risk assessment and recommendations on how to act in radon-prone areas. The purpose of this contribution is to situate the radon issue in Spain in two very different settings. The first is a uranium mining industry located in Saelices el Chico (Salamanca), which is under strict control of the Spanish Nuclear Safety Council (CSN). We have measured radon concentrations in different workplaces in this mine over a five-year period. The second setting comprises four tourist caves, three of which are located in the province of Cantabria and the fourth on the Canary Island of Lanzarote. These caves are not subject to any administrative control of radiation exposure. Measured air 222Rn concentrations were used to estimate annual effective doses due to radon inhalation in the two settings, and dose values were found to be from 2 to 10 times lower in the uranium mine than in the tourist caves. These results were analysed in the context of the new European Basic Safety Standards Directive (EU-BSS, 1996).

  13. The dendroanalysis of oak trees as a method of biomonitoring past and recent contamination in an area influenced by uranium mining.

    PubMed

    Märten, Arno; Berger, Dietrich; Köhler, Mirko; Merten, Dirk

    2015-12-01

    We reconstructed the contamination history of an area influenced by 40 years of uranium mining and subsequent remediation actions using dendroanalysis (i.e., the determination of the elemental content of tree rings). The uranium content in the tree rings of four individual oak trees (Quercus sp.) was determined by laser ablation with inductively coupled plasma mass spectrometry (LA-ICP-MS). This technique allows the investigation of trace metals in solid samples with a spatial resolution of 250 μm and a detection limit below 0.01 μg/g for uranium. The investigations show that in three of the four oaks sampled, there were temporally similar uranium concentrations. These were approximately 2 orders of magnitude higher (0.15 to 0.4 μg/g) than those from before the period of active mining (concentrations below 0.01 μg/g). After the mining was terminated and the area was restored, the uranium contents in the wood decreased by approximately 1 order of magnitude. The similar radial uranium distribution patterns of the three trees were confirmed by correlation analysis. In combination with the results of soil analyses, it was determined that there was a heterogeneous contamination in the forest investigated. This could be confirmed by pre-remediation soil uranium contents from literature. The uranium contents in the tree rings of the oaks investigated reflect the contamination history of the study area. This study demonstrates that the dendrochemical analysis of oak tree rings is a suitable technique for investigating past and recent uranium contamination in mining areas.

  14. Paleontological analysis of a lacustrine carbonaceous uranium deposit at the Anderson mine, Date Creek basin, west-central Arizona (U.S.A.)

    USGS Publications Warehouse

    Otton, J.K.; Bradbury, J.P.; Forester, R.M.; Hanley, J.H.

    1990-01-01

    The Tertiary sedimentary sequence of the Date Creek basin area of Arizona is composed principally of intertonguing alluvial-fan and lacustrine deposits. The lacustrine rocks contain large intermediate- to, locally, high-grade uranium deposits that form one of the largest uranium resources in the United States (an estimated 670,000 tons of U3O8 at an average grade of 0.023% is indicated by drilling to date). At the Anderson mine, about 50,000 tons of U3O8 occurs in lacustrine carbonaceous siltstones and mudstones (using a cutoff grade of 0.01%). The Anderson mine constitutes a new class of ore deposit, a lacustrine carbonaceous uranium deposit. Floral and faunal remains at the Anderson mine played a critical role in creating and documenting conditions necessary for uranium mineralization. Organic-rich, uraniferous rocks at the Anderson mine contain plant remains and ostracodes having remarkably detailed preservation of internal features because of infilling by opaline silica. This preservation suggests that the alkaline lake waters in the mine area contained high concentrations of dissolved silica and that silicification occurred rapidly, before compaction or cementation of the enclosing sediment. Uranium coprecipitated with the silica. Thinly laminated, dark-colored, siliceous beds contain centric diatoms preserved with carbonaceous material suggesting that lake waters at the mine were locally deep and anoxic. These alkaline, silica-charged waters and a stagnant, anoxic environment in parts of the lake were necessary conditions for the precipitation of large amounts of uranium in the lake-bottom sediments. Sediments at the Anderson mine contain plant remains and pollen that were derived from diverse vegetative zones suggesting about 1500 m of relief in the area at the time of deposition. The pollen suggests that the valley floor was semiarid and subtropical, whereas nearby mountains supported temperate deciduous forests. ?? 1990.

  15. Assessing Statistically Significant Heavy-Metal Concentrations in Abandoned Mine Areas via Hot Spot Analysis of Portable XRF Data

    PubMed Central

    Kim, Sung-Min; Choi, Yosoon

    2017-01-01

    To develop appropriate measures to prevent soil contamination in abandoned mining areas, an understanding of the spatial variation of the potentially toxic trace elements (PTEs) in the soil is necessary. For the purpose of effective soil sampling, this study uses hot spot analysis, which calculates a z-score based on the Getis-Ord Gi* statistic to identify a statistically significant hot spot sample. To constitute a statistically significant hot spot, a feature with a high value should also be surrounded by other features with high values. Using relatively cost- and time-effective portable X-ray fluorescence (PXRF) analysis, sufficient input data are acquired from the Busan abandoned mine and used for hot spot analysis. To calibrate the PXRF data, which have a relatively low accuracy, the PXRF analysis data are transformed using the inductively coupled plasma atomic emission spectrometry (ICP-AES) data. The transformed PXRF data of the Busan abandoned mine are classified into four groups according to their normalized content and z-scores: high content with a high z-score (HH), high content with a low z-score (HL), low content with a high z-score (LH), and low content with a low z-score (LL). The HL and LH cases may be due to measurement errors. Additional or complementary surveys are required for the areas surrounding these suspect samples or for significant hot spot areas. The soil sampling is conducted according to a four-phase procedure in which the hot spot analysis and proposed group classification method are employed to support the development of a sampling plan for the following phase. Overall, 30, 50, 80, and 100 samples are investigated and analyzed in phases 1–4, respectively. The method implemented in this case study may be utilized in the field for the assessment of statistically significant soil contamination and the identification of areas for which an additional survey is required. PMID:28629168

  16. Assessing Statistically Significant Heavy-Metal Concentrations in Abandoned Mine Areas via Hot Spot Analysis of Portable XRF Data.

    PubMed

    Kim, Sung-Min; Choi, Yosoon

    2017-06-18

    To develop appropriate measures to prevent soil contamination in abandoned mining areas, an understanding of the spatial variation of the potentially toxic trace elements (PTEs) in the soil is necessary. For the purpose of effective soil sampling, this study uses hot spot analysis, which calculates a z -score based on the Getis-Ord Gi* statistic to identify a statistically significant hot spot sample. To constitute a statistically significant hot spot, a feature with a high value should also be surrounded by other features with high values. Using relatively cost- and time-effective portable X-ray fluorescence (PXRF) analysis, sufficient input data are acquired from the Busan abandoned mine and used for hot spot analysis. To calibrate the PXRF data, which have a relatively low accuracy, the PXRF analysis data are transformed using the inductively coupled plasma atomic emission spectrometry (ICP-AES) data. The transformed PXRF data of the Busan abandoned mine are classified into four groups according to their normalized content and z -scores: high content with a high z -score (HH), high content with a low z -score (HL), low content with a high z -score (LH), and low content with a low z -score (LL). The HL and LH cases may be due to measurement errors. Additional or complementary surveys are required for the areas surrounding these suspect samples or for significant hot spot areas. The soil sampling is conducted according to a four-phase procedure in which the hot spot analysis and proposed group classification method are employed to support the development of a sampling plan for the following phase. Overall, 30, 50, 80, and 100 samples are investigated and analyzed in phases 1-4, respectively. The method implemented in this case study may be utilized in the field for the assessment of statistically significant soil contamination and the identification of areas for which an additional survey is required.

  17. Environmental and human exposure assessment monitoring of communities near an abandoned mercury mine in the Philippines: a toxic legacy.

    PubMed

    Maramba, Nelia P C; Reyes, Jose Paciano; Francisco-Rivera, Ana Trinidad; Panganiban, Lynn Crisanta R; Dioquino, Carissa; Dando, Nerissa; Timbang, Rene; Akagi, Hirokatsu; Castillo, Ma Teresa; Quitoriano, Carmela; Afuang, Maredith; Matsuyama, Akito; Eguchi, Tomomi; Fuchigami, Youko

    2006-10-01

    Abandoned mines are an important global concern and continue to pose real or potential threats to human safety and health including environmental damage/s. Very few countries had government mine regulation and reclamation policies until the latter part of the century where legal, financial and technical procedures were required for existing mining operations. Major reasons for mine closure may be mainly due to poor economies of the commodity making mining unprofitable, technical difficulties and national security. If the mine is abandoned, more often than not it is the government that shoulders the burden of clean-up, monitoring and remediation. The topic of abandoned mines is complex because of the associated financial and legal liability implications. Abandoned mercury mines have been identified as one of the major concerns because of their significant long-term environmental problems. Primary mercury production is still ongoing in Spain, Kyrgzystan, China, Algeria, Russia and Slovakia while world production declined substantially in the late 1980s. In the Philippines, the mercury mine located southeast of Manila was in operation from 1955 to 1976, before ceasing operation because of the decline in world market price for the commodity. During this time, annual production of mercury was estimated to be about 140,000 kg of mercury yearly. Approximately 2,000,000 t of mine-waste calcines (retorted ore) were produced during mining and roughly 1,000,000 t of these calcines were dumped into nearby Honda Bay to construct a jetty to facilitate mine operations where about 2000 people reside in the nearby three barangays. In October, 1994 the Department of Health received a request from the Provincial Health Office for technical assistance relative to the investigation of increasing complaints of unusual symptoms (e.g. miscarriages, tooth loss, muscle weakness, paralysis, anemia, tremors, etc.) among residents of three barangays. Initial health reports revealed significant

  18. What are the health costs of uranium mining? A case study of miners in Grants, New Mexico

    PubMed Central

    Jones, Benjamin A

    2014-01-01

    Background: Uranium mining is associated with lung cancer and other health problems among miners. Health impacts are related with miner exposure to radon gas progeny. Objectives: This study estimates the health costs of excess lung cancer mortality among uranium miners in the largest uranium-producing district in the USA, centered in Grants, New Mexico. Methods: Lung cancer mortality rates on miners were used to estimate excess mortality and years of life lost (YLL) among the miner population in Grants from 1955 to 2005. A cost analysis was performed to estimate direct (medical) and indirect (premature mortality) health costs. Results: Total health costs ranged from $2.2 million to $7.7 million per excess death. This amounts to between $22.4 million and $165.8 million in annual health costs over the 1955–1990 mining period. Annual exposure-related lung cancer mortality was estimated at 2185.4 miners per 100 000, with a range of 1419.8–2974.3 per 100 000. Conclusions: Given renewed interest in uranium worldwide, results suggest a re-evaluation of radon exposure standards and inclusion of miner long-term health into mining planning decisions. PMID:25224806

  19. What are the health costs of uranium mining? A case study of miners in Grants, New Mexico.

    PubMed

    Jones, Benjamin A

    2014-10-01

    Uranium mining is associated with lung cancer and other health problems among miners. Health impacts are related with miner exposure to radon gas progeny. This study estimates the health costs of excess lung cancer mortality among uranium miners in the largest uranium-producing district in the USA, centered in Grants, New Mexico. Lung cancer mortality rates on miners were used to estimate excess mortality and years of life lost (YLL) among the miner population in Grants from 1955 to 2005. A cost analysis was performed to estimate direct (medical) and indirect (premature mortality) health costs. Total health costs ranged from $2·2 million to $7·7 million per excess death. This amounts to between $22·4 million and $165·8 million in annual health costs over the 1955-1990 mining period. Annual exposure-related lung cancer mortality was estimated at 2185·4 miners per 100 000, with a range of 1419·8-2974·3 per 100 000. Given renewed interest in uranium worldwide, results suggest a re-evaluation of radon exposure standards and inclusion of miner long-term health into mining planning decisions.

  20. Geostatistical conditional simulation for the assessment of contaminated land by abandoned heavy metal mining.

    PubMed

    Ersoy, Adem; Yunsel, Tayfun Yusuf; Atici, Umit

    2008-02-01

    Abandoned mine workings can undoubtedly cause varying degrees of contamination of soil with heavy metals such as lead and zinc has occurred on a global scale. Exposure to these elements may cause to harm human health and environment. In the study, a total of 269 soil samples were collected at 1, 5, and 10 m regular grid intervals of 100 x 100 m area of Carsington Pasture in the UK. Cell declustering technique was applied to the data set due to no statistical representativity. Directional experimental semivariograms of the elements for the transformed data showed that both geometric and zonal anisotropy exists in the data. The most evident spatial dependence structure of the continuity for the directional experimental semivariogram, characterized by spherical and exponential models of Pb and Zn were obtained. This study reports the spatial distribution and uncertainty of Pb and Zn concentrations in soil at the study site using a probabilistic approach. The approach was based on geostatistical sequential Gaussian simulation (SGS), which is used to yield a series of conditional images characterized by equally probable spatial distributions of the heavy elements concentrations across the area. Postprocessing of many simulations allowed the mapping of contaminated and uncontaminated areas, and provided a model for the uncertainty in the spatial distribution of element concentrations. Maps of the simulated Pb and Zn concentrations revealed the extent and severity of contamination. SGS was validated by statistics, histogram, variogram reproduction, and simulation errors. The maps of the elements might be used in the remediation studies, help decision-makers and others involved in the abandoned heavy metal mining site in the world.

  1. Abandoned metal mines and their impact on receiving waters: A case study from Southwest England.

    PubMed

    Beane, Steven J; Comber, Sean D W; Rieuwerts, John; Long, Peter

    2016-06-01

    Historic mine sites are a major source of contamination to terrestrial and river environments. To demonstrate the importance of determining the significance of point and diffuse metal contamination and the related bioavailability of the metals present from abandoned mines a case study has been carried out. The study provides a quantitative assessment of a historic mine site, Wheal Betsy, southwest England, and its contribution to non-compliance with Water Framework Directive (WFD) Environmental Quality Standards (EQS) for Cd, Cu, Pb and Zn. Surface water and sediment samples showed significant negative environmental impacts even taking account of the bioavailability of the metal present, with lead concentration in the stream sediment up to 76 times higher than the Canadian sediment guidelines 'Probable Effect Level'. Benthic invertebrates showed a decline in species richness adjacent to the mine site with lead and cadmium the main cause. The main mine drainage adit was the single most significant source of metal (typically 50% of metal load from the area, but 88% for Ni) but the mine spoil tips north and south of the adit input added together discharged roughly an equivalent loading of metal with the exception of Ni. The bioavailability of metal in the spoil tips exhibited differing spatial patterns owing to varying ambient soil physico-chemistry. The data collected is essential to provide a clear understanding of the contamination present as well as its mobility and bioavailability, in order to direct the decision making process regarding remediation options and their likely effectiveness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Restoration of contaminated soils in abandoned mine areas (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Wahsha, Mohammad

    2016-04-01

    In Italy ore research and exploitation have been nearly exhausted since the end of the last century, and have left on the land a huge amount of mine waste, therefore provoking evident environmental damage including surface and groundwater, soils, vegetation and the food chain, and a potential threat to human health. The main processes occurring at these sites are: rock disgregation, fragments migration, dust dispersion, oxidation (Eh>250mV), acidification (pH<7), hydrolisis and metal leaching, precipitation of oxides and sulphates. The restoration of these sites, therefore, is a primary objective, in order to reduce/eliminate the risk associated to the contamination sources of past activities, and the consequent environmental and human health hazard. The increasing environmental consciousness of general population compelled Public Administrators to set down effective legislation acts on this subject (e.g. D.L. 152/2006), and more generally on environmental contamination. In this work we present the results of a survey carried out at several mixed sulphides mine sites in Tuscany, exploited for at least a millennium, and closed in the last century. Biogeochemical analyses carried out on representative soil profiles (Spolic Technosols) and vegetation in the proximal and distal areas of ore exploitation show heavy metal concentrations (Cd, Cu, Fe, Pb, Zn) overcoming legislation limits on average. Ni, Cr and Mn concentrations, instead, are generally below the reference levels. The results obtained suggest that the abandoned mine sites represent actual natural laboratories where to experiment new opportunities for restoration of anthropogenically contaminated areas, and to study new pedogenetic trends from these peculiar parent materials. Moreover, plants growing on these substrates are genetically adapted to metal-enriched soils, and therefore may be utilized in phytoremediation of contaminated sites. Furthermore, the institution of natural parks in these areas could

  3. Geology of the Midnite uranium mine, Stevens County, Washington; a preliminary report

    USGS Publications Warehouse

    Nash, J. Thomas; Lehrman, Norman J.

    1975-01-01

    The Midnite mine is one of only two mines in the United States currently producing uranium from discordant deposits in crystalline host rocks. Ore bodies are in metamorphosed steeply dipping Precambrian pelitic and calcareous rocks of a roof pendant adjacent to a Cretaceous(?) porphyritic quartz monzonite pluton. Production during 14 years, of operation has been about 8 million pounds of U3O8 from oxidized and reduced ores averaging 0.23 percent U3O8. Uranium deposits are generally tabular in form and dimensions range up to 380 m long, 210 m wide, and 50 m thick. Deposits are bounded on at least one side by unmineralized intrusive ribs of granitic rock, and thickest mineralized zones invariably occur at depressions in the intrusive contact. Upper limits of some deposits are nearly horizontal, and upper elevations of adjacent mineralized zones separated by ribs of granite are similar. Near surface ore is predominantly autunite, but ore at depth consists of pitchblende and coffinite with abundant pyrite and marcasite. Uranium minerals occur as .disseminations along foliation, replacements, and stockwork fracture-fillings. No stratigraphic controls on ore deposition are recognized. Rather, mineralized zones cut across lithologic boundaries if permeability is adequate. Most ore is in muscovite schist and mica phyllite, but important deposits occur in calc-silicate hornfels. Amphibolite sills and mid-Tertiary dacite dikes locally, carry ore where intensely fractured. High content of iron and sulfur, contained chiefly in FeS2, appear to be an important feature of favorable host rocks. Geometry of deposits, structural, and geochemical features suggest that uranium minerals were deposited over a span of time from late Cretaceous to late Tertiary. Ore occurs in but is not offset by a shear zone that displaces mid-Tertiary rocks.. Economic zones of uranium are interpreted to have been secondarily enriched in late Tertiary time by downward and lateral migration of uranium

  4. A Study on regeneration cases with industrial Heritage in mining areas of Korea

    NASA Astrophysics Data System (ADS)

    Cho, Seungyeoun; Ji, Sangwoo; Yim, Giljae

    2017-04-01

    The mining areas have to face urban decline problem in population and aging after its closing. Many mines were shut down due to changes in industrial structure through 20 century. Central and local governments has been trying to solve urban decline of abandoned mine areas by enacting special acts or introducing support programs for decades. In the year of 1995, South Korean government also enacted "Special act on the assistance to the development of abandoned mine areas" to promote the economy of abandoned mine areas that is depressed following the decline of the coal industry and to help balanced regional development and to improve the living standard of the residents in such abandoned mine areas. Local authorities has been trying to revitalize the regional economy by attracting tourism industry under the financial support and deregulation by this special law. With this background, this study analysis 13 regeneration cases which are utilizing the industrial heritage of the abandoned area in S. Korea. Despite the importance of mining, negative images of abandon mine have been engraved due to environmental destruction. Most of abandoned mines were left without any action since its closing. Early stage of abandoned mine area regeneration, such as Sabuk, Munkyong, are focusing on adjacent land not on abandoned mine. Abandoned mines were restored its original state and theme park including hotels, casinos and other tourist facilities were developed on adjacent land. Eco-trails on some granite caves such as Jungsun were opened to the public as natural resources not industrial heritage. The industrial heritage was very restricted to making museums about history of mining industry. However, there has been a significant change in perception toward reusing industrial heritage for urban regeneration in recent years. From the viewpoint of urban regeneration, abandon mine areas and its facilities are receiving attention as important regional assets as industrial heritage to

  5. Long term monitoring of water basin of an abandoned copper open pit mine

    NASA Astrophysics Data System (ADS)

    Nikolov, H.; Borisova, D.

    2012-04-01

    Nonoperating open pit mines, very often as a matter of fact abandoned, create serious ecological risk for the region of their location especially for the quality of the water since the rainfall fills the bottom of the pit forming water body having different depth. This water as a rule has very high concentration of the metals in it and is highly toxic. One example for such opencast, idle copper mine is Medet located in the central part of Bulgaria who was started for exploitation in 1964 and at that moment being the largest in Europe for production of copper concentrate. In the vicinity of it after autumn and spring rains there are many cases reported for water contamination by heavy metals such as arsenic, copper, cadmium in the rivers running close to this open pit mine. This justifies the need for long term and sustainable monitoring of the area of the water basin of this idle mine in order to estimate its acid drainage and imaging spectroscopy combined with is-situ investigations is proved to provide reliable results about the area of the water table. In the course of this study we have investigated historical data gathered by remote sensing which allowed us to make conclusions about the year behavior of this area. Our expectations are that the results of this research will help in the rehabilitation process of this idle mine and will provide the local authorities engaged in water quality monitoring with a tool to estimate the possible damage caused to the local rivers and springs. With this research we also would like to contribute to the fulfillment of the following EU Directives: Directive 2006/21/°C on the Management of Waste from the Extractive Industries and Directive 2004/35/ °C on Environmental Liability with regard to the Prevention and Remedying of Environmental Damage.

  6. Groundwater assessment and environmental impact in the abandoned mine of Kettara (Morocco).

    PubMed

    Moyé, Julien; Picard-Lesteven, Tanguy; Zouhri, Lahcen; El Amari, Khalid; Hibti, Mohamed; Benkaddour, Abdelfattah

    2017-12-01

    Many questions about the soil pollution due to mining activities have been analyzed by numerous methods which help to evaluate the dispersion of the Metallic Trace Elements (MTE) in the soil and stream sediments of the abandoned mine of Kettara (Morocco). The transport of these MTE could have an important role in the degradation of groundwater and the health of people who are living in the vicinity. The present paper aims to evaluate the groundwater samples from 15 hydrogeological wells. This evaluation concerns the hydrogeological parameters, pH, Electrical conductivity, temperature and the groundwater level, and the geochemical assessment of Mg, Ca, Ti, Cr, Mn, Fe, Co, Ni, Zn, Cu, As, Se, Cd, Sb, Tl and Pb. Furthermore, the Metallic Trace Elements are transported in the saturated zone via the fractures network. The groundwater flow is from the north-east to south-west. The spatial distribution of As, Fe, Zn and Mn is very heterogeneous, with high values observed in the north, upstream, of the mine site. This distribution is maybe related to: i) the existence of hydrogeological structures (dividing and drainage axes); ii) the individualization of the fractures network that affects the shaly lithostratigraphical formation; iii) the transport of the contaminants from the soil towards groundwater; and iv) interaction water/rocks. Some MTE anomalies are linked to the lithology and the fracturation system of the area. Therefore, the groundwater contamination by Arsenic is detected in the hydrogeological wells (E1 and E2). This pollution which is higher than guideline standards of Moroccan drinking water could affect the public health. The hydrogeological and geochemical investigations favor the geological origin (mafic rocks) of this contamination rather than mining activities. Copyright © 2017. Published by Elsevier Ltd.

  7. Geochemical characteristics of Au in the water systemfrom abandoned gold mines area

    NASA Astrophysics Data System (ADS)

    Cho, Kanghee; Kim, Bongju; Kim, Byungjoo; Park, Cheonyoung; Choi, Nagchoul

    2013-04-01

    The AMD (acid mine drainage) poses a threat not only to the aquatic life in mountain streams and rivers, but can also contaminate groundwater and downstream water bodies. Besides pyrite, sulfides of copper, zinc, cadmium, lead and arsenic in the drainage tunnels and tailings piles also undergo similar geochemical reactions, releasing toxic metals and more H+ into the mine drainage. The fate of gold in the AMD system is reduced and precipitated with iron oxides by oxidation-reduction reaction between ferrous/ferric iron and Au3+/Au0. The objective of this study was to investigate the influence of the transport characteristic on the distance through distribution of heavy metals and gold on the interrelation between acid mine drainage and sediments in the abandoned Gwang-yang gold mine, Korea. We conducted to confirm the chemical (chemical analysis and sequential extraction) and mineralogical property (XRD, SEM-EDS and polarization microscope) from AMD, sediments and tailing samples. The result of chemical analysis showed that Fe contents in the AMD and sediments from the upstream to the downstream ranged of 10.99 to 18.60 mg/L and 478.74 to 542.98 mg/kg, respectively. Also the contents of Au and As in the sediment were respectively ranged from 14.06 to 22.85 g/t and 0.245 to 0.612 mg/kg. In XRD analysis of the sediments, x-ray diffracted d-value belong to quartz, geothite was observed. The results of SEM-EDS analysis revealed that iron hydroxide were observed in the sediment and tailing. The result of sequential extraction for Au from the sediment showed that Au predominated in 26 to 27% of Organic matter fraction(STEP 4), and 24 to 25% of Residual fraction(STEP 5).

  8. Risk assessment of an abandoned pyrite mine in Spain based on direct toxicity assays.

    PubMed

    García-Gómez, Concepción; Sánchez-Pardo, Beatriz; Esteban, Elvira; Peñalosa, Jesús Manuel; Fernández, María Dolores

    2014-02-01

    This research reports the risk assessment of an abandoned pyrite mine using direct toxicity assays of soil and groundwater samples taken at the site. The toxicity of As and heavy metals from mining soils to soil and aquatic organisms was studied using the Multispecies Soil System (MS-3) in soil columns. Ecotoxicological assessment was performed with soil samples diluted with a control soil at concentrations of 12.5, 25, 50 and 100% test soil/soil (w/w). In this way, changes in the mobility and bioavailability of soil contaminants due to changes in geochemical soil properties via soil dilution were studied. The toxicity of water samples was tested on algae and Daphnia magna. The assessment of the mining area indicated that the current presence of As and heavy metals at the site may cause injuries to soil and aquatic organisms in the entire research area. Moreover, this investigation demonstrated that changes in geochemical conditions can increase the availability of arsenic and, consequently, the environmental risk of these soils. A good correlation was not found between toxicity parameters and the concentrations of soil contaminants based on total and extracted element concentrations. This finding reinforces the usefulness of direct toxicity assays for evaluating environmental risk. © 2013.

  9. Natural decrease of dissolved arsenic in a small stream receiving drainages of abandoned silver mines in Guanajuato, Mexico.

    PubMed

    Arroyo, Yann Rene Ramos; Muñoz, Alma Hortensia Serafín; Barrientos, Eunice Yanez; Huerta, Irais Rodriguez; Wrobel, Kazimierz; Wrobel, Katarzyna

    2013-11-01

    Arsenic release from the abandoned mines and its fate in a local stream were studied. Physicochemical parameters, metals/metalloids and arsenic species were determined. One of the mine drainages was found as a point source of contamination with 309 μg L(-1) of dissolved arsenic; this concentration declined rapidly to 10.5 μg L(-1) about 2 km downstream. Data analysis confirmed that oxidation of As(III) released from the primary sulfide minerals was favored by the increase of pH and oxidation reduction potential; the results obtained in multivariate approach indicated that self-purification of water was due to association of As(V) with secondary solid phase containing Fe, Mn, Ca.

  10. Land application of mine water causes minimal uranium loss offsite in the wet-dry tropics: Ranger Uranium Mine, Northern Territory, Australia.

    PubMed

    Mumtaz, Saqib; Streten, Claire; Parry, David L; McGuinness, Keith A; Lu, Ping; Gibb, Karen S

    2015-11-01

    Ranger Uranium Mine (RUM) is situated in the wet-dry tropics of Northern Australia. Land application (irrigation) of stockpile (ore and waste) runoff water to natural woodland on the mine lease is a key part of water management at the mine. Consequently, the soil in these Land Application Areas (LAAs) presents a range of uranium (U) and other metals concentrations. Knowledge of seasonal and temporal changes in soil U and physicochemical parameters at RUM LAAs is important to develop suitable management and rehabilitation strategies. Therefore, soil samples were collected from low, medium, high and very high U sites at RUM LAAs for two consecutive years and the effect of time and season on soil physicochemical parameters particularly U and other major solutes applied in irrigation water was measured. Concentrations of some of the solutes applied in the irrigation water such as sulphur (S), iron (Fe) and calcium (Ca) showed significant seasonal and temporal changes. Soil S, Fe and Ca concentration decreased from year 1 to year 2 and from dry to wet seasons during both years. Soil U followed the same pattern except that we recorded an increase in soil U concentrations at most of the RUM LAAs after year 2 wet season compared to year 2 dry season. Thus, these sites did not show a considerable decrease in soil U concentration from year 1 to year 2. Sites which contained elevated U after wet season 2 also had higher moisture content which suggests that pooling of U containing rainwater at these sites may be responsible for elevated U. Thus, U may be redistributed within RUM LAAs due to surface water movement. The study also suggested that a decrease in U concentrations in LAA soils at very high U (>900 mg kg(-1)) sites is most likely due to transport of particulate matter bound U by surface runoff and U may not be lost from the surface soil due to vertical movement through the soil profile. Uranium attached to particulate matter may reduce its potential for environmental

  11. Factors controlling localization of uranium deposits in the Dakota Sandstone, Gallup and Ambrosia Lake mining districts, McKinley County, New Mexico

    USGS Publications Warehouse

    Pierson, Charles Thomas; Green, Morris W.

    1977-01-01

    Geologic studies were made at all of the uranium mines and prospects in the Dakota Sandstone of Early(?) and Late Cretaceous age in the Gallup mining district, McKinley County, New Mexico. Dakota mines in the adjacent Ambrosia Lake mining district were visited briefly for comparative purposes. Mines in the eastern part of the Gallup district, and in the Ambrosia Lake district, are on the Chaco slope of the southern San Juan Basin in strata which dip gently northward toward the central part of the basin. Mines in the western part of the Gallup district are along the Gallup hogback (Nutria monocline) in strata which dip steeply westward into the Gallup sag. Geologic factors which controlled formation of the uranium deposits in the Dakota Sandstone are: (1) a source of uranium, believed to be uranium deposits of the underlying Morrison Formation of Late Jurassic age; (2) the accessibility to the Dakota of uranium-bearing solutions from the Morrison; (3) the presence in the Dakota of permeable sandstone beds overlain by impermeable carbonaceous shale beds; and (4) the occurrence within the permeable Dakota sandstone beds of carbonaceous reducing material as bedding-plane laminae, or as pockets of carbonaceous trash. Most of the Dakota uranium deposits are found in the lower part of the formation in marginal-marine distributary-channel sandstones which were deposited in the backshore environment. However, the Hogback no. 4 (Hyde) Mine (Gallup district) occurs in sandy paludal shale of the backshore environment, and another deposit, the Silver Spur (Ambrosia Lake district), is found in what is interpreted to be a massive beach or barrier-bar sandstone of the foreshore environment in the upper part of the Dakota. The sedimentary depositional environment most favorable for the accumulation of uranium is that of backshore areas lateral to main distributary channels, where levee, splay, and some distributary-channel sandstones intertongue with gray carbonaceous shales and

  12. In situ effects of metal contamination from former uranium mining sites on the health of the three-spined stickleback (Gasterosteus aculeatus, L.).

    PubMed

    Le Guernic, Antoine; Sanchez, Wilfried; Bado-Nilles, Anne; Palluel, Olivier; Turies, Cyril; Chadili, Edith; Cavalié, Isabelle; Delahaut, Laurence; Adam-Guillermin, Christelle; Porcher, Jean-Marc; Geffard, Alain; Betoulle, Stéphane; Gagnaire, Béatrice

    2016-08-01

    Human activities have led to increased levels of various pollutants including metals in aquatic ecosystems. Increase of metallic concentrations in aquatic environments represents a potential risk to exposed organisms, including fish. The aim of this study was to characterize the environmental risk to fish health linked to a polymetallic contamination from former uranium mines in France. This contamination is characterized by metals naturally present in the areas (manganese and iron), uranium, and metals (aluminum and barium) added to precipitate uranium and its decay products. Effects from mine releases in two contaminated ponds (Pontabrier for Haute-Vienne Department and Saint-Pierre for Cantal Department) were compared to those assessed at four other ponds outside the influence of mine tailings (two reference ponds/department). In this way, 360 adult three-spined sticklebacks (Gasterosteus aculeatus) were caged for 28 days in these six ponds before biomarker analyses (immune system, antioxidant system, biometry, histology, DNA integrity, etc.). Ponds receiving uranium mine tailings presented higher concentrations of uranium, manganese and aluminum, especially for the Haute-Vienne Department. This uranium contamination could explain the higher bioaccumulation of this metal in fish caged in Pontabrier and Saint-Pierre Ponds. In the same way, many fish biomarkers (antioxidant and immune systems, acetylcholinesterase activity and biometric parameters) were impacted by this environmental exposure to mine tailings. This study shows the interest of caging and the use of a multi-biomarker approach in the study of a complex metallic contamination.

  13. Uranium Mining and Norm in North America-Some Perspectives on Occupational Radiation Exposure.

    PubMed

    Brown, Steven H; Chambers, Douglas B

    2017-07-01

    All soils and rocks contain naturally occurring radioactive materials (NORM). Many ores and raw materials contain relatively elevated levels of natural radionuclides, and processing such materials can further increase the concentrations of naturally occurring radionuclides. In the U.S., these materials are sometimes referred to as technologically-enhanced naturally occurring radioactive materials (TENORM). Examples of NORM minerals include uranium ores, monazite (a source of rare earth minerals), and phosphate rock used to produce phosphate fertilizer. The processing of these materials has the potential to result in above-background radiation exposure to workers. Following a brief review of the sources and potential for worker exposure from NORM in these varied industries, this paper will then present an overview of uranium mining and recovery in North America, including discussion on the mining methods currently being used for both conventional (underground, open pit) and in situ leach (ISL), also referred to as In Situ Recovery (ISR), and the production of NORM materials and wastes associated with these uranium recovery methods. The radiological composition of the NORM products and wastes produced and recent data on radiological exposures received by workers in the North American uranium recovery industry are then described. The paper also identifies the responsible government agencies in the U.S. and Canada assigned the authority to regulate and control occupational exposure from these NORM materials.

  14. 30 CFR 77.1712 - Reopening mines; notification; inspection prior to mining.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to mining. 77.1712 Section 77.1712 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... prior to mining. Prior to reopening any surface coal mine after it has been abandoned or declared... an authorized representative of the Secretary before any mining operations in such mine are...

  15. 30 CFR 77.1712 - Reopening mines; notification; inspection prior to mining.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to mining. 77.1712 Section 77.1712 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... prior to mining. Prior to reopening any surface coal mine after it has been abandoned or declared... an authorized representative of the Secretary before any mining operations in such mine are...

  16. Risk assessment of toxic heavy metals in the abandoned metal mine areas, Korea

    NASA Astrophysics Data System (ADS)

    Lee, J. S.; Chon, H. T.

    2003-04-01

    The purpose of this study is to assess the risk of adverse health effects on human exposure to toxic heavy metals influenced by past mining activities. Environmental geochemical survey was undertaken in the abandoned metal mine areas (Dongil Au-Ag-Cu-Zn mine, Okdong Cu-Pb-Zn mine, Myungbong Au-Ag mine). After appropriate sample preparation, tailings, soils, crop plants and groundwaters were analyzed for As, Cd, Cu, Pb and Zn by ICP-AES and ICP-MS. Health risk assessment of toxic heavy metals has been performed with chemical analytical data for environmental media. Arsenic and other heavy metals are highly elevated in the tailings from the Dongil mine (8,720 As mg/kg, 5.9 Cd mg/kg, 3,610 Cu mg/kg, 5,850 Pb mg/kg, 630 Zn mg/kg), but heavy metals except As from the Okdong mine (72 As mg/kg, 53.6 Cd mg/kg, 910 Cu mg/kg, 1,590 Pb mg/kg, 5,720 Zn mg/kg) and only As from the Myungbong mine (5,810 As mg/kg). These significant concentrations can impact on soils and waters around the tailing files. Also, elevated levels of As, Cd, Cu, Pb and Zn are found in agricultural soils from these mine areas. Risk assessment modeling is subdivided into main four stages, i.e. hazard identification, exposure assessment, toxicity (dose-response) assessment and risk characterization. In order to assess exposure it is necessary to calculate the average daily dose (ADD) of contaminant via the three identified pathways (soil, groundwater and food (rice grain) pathways). In dose-response assessment for non-carcinogens, reference doses (RfD) are calculated and that for carcinogens, slope factors (SF) are obtained by US-EPA IRIS database. In risk characterization, the results of toxicity assessment and exposure assessment are integrated to arrive at quantitative estimates of cancer risks and hazard quotients. Toxic (non-cancer) risks are indicated in terms of a hazard quotient (H.Q.) and this risk exists for H.Q.>1. The H.Q. values for only As from the Dongil and Myungbong mine areas are 2.1 and

  17. Evaluation of external and internal irradiation on uranium mining enterprise staff by tooth enamel EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhumadilov, Kassym; Ivannikov, Alexander; Khailov, Artem; Orlenko, Sergei; Skvortsov, Valeriy; Stepanenko, Valeriy; Kuterbekov, Kairat; Toyoda, Shin; Kazymbet, Polat; Hoshi, Masaharu

    2017-11-01

    In order to estimate radiation effects on uranium enterprise staff and population teeth samples were collected for EPR tooth enamel dosimetry from population of Stepnogorsk city and staff of uranium mining enterprise in Shantobe settlment (Akmola region, North of Kazakhstan). By measurements of tooth enamel EPR spectra, the total absorbed dose in the enamel samples and added doses after subtraction of the contribution of natural background radiation are determined. For the population of Stepnogorsk city average added dose value of 4 +/- 11 mGy with variation of 51 mGy was obtained. For the staff of uranium mining enterprise in Shantobe settlment average value of added dose 95 +/- 20 mGy, with 85 mGy variation was obtained. Higher doses and the average value and a large variation for the staff, probably is due to the contribution of occupational exposure.

  18. Uranium deposits at the Jomac mine, White Canyon area, San Juan County, Utah

    USGS Publications Warehouse

    Trites, A.F.; Hadd, G.A.

    1955-01-01

    azurite, and chalcanthite occur locally with the uranium minerals. Principal ore guides at the Jomac mine are channels, and scours at the bottom of these channels coal-bearing sandstone or conglomerate at the base of the Shinarump conglomerate, coal, and jarosite.

  19. Natural radioactivity in commercial granites extracted near old uranium mines: scientific, economic and social impact of disinformation.

    NASA Astrophysics Data System (ADS)

    Pereira, Dolores; Pereira, Alcides; Neves, Luis

    2015-04-01

    The study of radioactivity in natural stones is a subject of great interest from different points of view: scientific, social and economic. Several previous studies have demonstrated that the radioactivity is dependent, not only on the uranium content, but also on the structures, textures, minerals containing the uranium and degree of weathering of the natural stone. Villavieja granite is extracted in a village where uranium mining was an important activity during the 20th century. Today the mine is closed but the granite is still extracted. Incorrect information about natural radioactivity given to natural stone users, policy makers, construction managers and the general public has caused turmoil in the media for many years. This paper considers problems associated with the communication of reliable information, as well as uncertainties, on natural radioactivity to these audiences.

  20. Geology of the Shinarump No. 1 uranium mine, Seven Mile Canyon area, Grand County, Utah

    USGS Publications Warehouse

    Finch, Warren Irvin

    1953-01-01

    The Shinarump No. 1 uranium mine is located about 12 miles northwest of Moab, Utah, in the Seven Mile Canyon area, Grand County, Utah. A study was made of the geology of the Shinarump No. 1 mine in order to determine the habits, ore controls, and possible origin of the deposit. Rocks of Permain, Triassic, and Jurassic age crop out in the area mapped. Uranium deposits are found in three zones in the lower 25 feet of the Upper Triassic Chinle formation. The Shinarump No. 1 mine, which is in the lowermost zone, is located on the west flank of the Moab anticline near the Moab fault. The Shinarump No. 1 uranium deposit consists of discontinuous lenticular layers of mineralized rock, irregular in outline, that, in general, follow the bedding. Ore minerals, mainly uranite, impregnate the rock. High-grade seams of uranite and chalcocite occur along bedding planes. Formation of unraninite is later than or simultaneous with most sulfides. Chalcocite may be of two ages, with some being later than uraninite. Uraninite and chalcocite are concentrated in the poorer sorted parts of siltstones. Guides to ore in the Seven Mile Canyon area inferred from the study of the Shinarump No. 1 deposit are the presence of bleached siltstone, copper sulfides, and carbonaceous matter. Results of spectrographic analysis indicated that the mineralizing solutions contained important amounts of barium, vanadium, uranium, and copper as well as lesser amounts of strontium, chromium, boron, yttrium, lead, and zinc. The origin of the Shinarump No. 1 deposit is thought to be hydrothermal, dated as later or early.

  1. Are plants growing at abandoned mine sites suitable for phytoremediation of contaminated soils?

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Buffa, Gabriella; Fontana, Silvia; Wahsha, Mohammad

    2013-04-01

    Plants growing on abandoned mine sites are of particular interest in the perspective to remediate contaminated soils by phytoremediation, a low cost and environmental friendly technique which uses metal-accumulator plants to clean up moderately contaminated areas. The choice of plants is a crucial aspect for the practical use of this technique, given the ability to accumulate metals in their tissues, being genetically tolerant to high metal concentrations. Up today, more than 400 native plants that hyperaccumulate metals are reported, Brassicaceae being the family with the largest number of hyperaccumulator species. For example, Alyssum bertoloni is well known as Ni accumulator, as well as Thlaspi caerulescens for Zn and Brassica napus for Pb. However, metal hyperaccumulation is not a common phenomenon in terrestrial higher plants, and many of the European hyperaccumulator plants are of small biomass, and have a slow growth rate. Therefore, there is an urgent need for surveying and screening of plants with ability to accumulate metals in their tissues and a relatively high biomass. In recent years, a survey of soils and plants growing on contaminated areas at several abandoned sulphide mines in Italy was carried out by working groups of the Universities of Florence, Siena, Cagliari, Bologna, Udine and Venice, in order to evaluate the ability of these plants to colonize mine waste and to accumulate metals, in the perspective of an ecological restoration of contaminated sites. We investigated the heavy metal concentration of the waste material, and the soils developed from, in order to determine the extent of heavy metal dispersion, and the uptake by plants, and deserved attention to wild plants growing at that sites, to find out new metal-tolerant species to utilize in soil remediation. Current results of these investigations, with particular emphasis on the Tuscan areas, are reported here. All the studied profiles are strongly enriched in metals; their

  2. Health effects of uranium: new research findings.

    PubMed

    Brugge, Doug; Buchner, Virginia

    2011-01-01

    Recent plans for a nuclear renaissance in both established and emerging economies have prompted increased interest in uranium mining. With the potential for more uranium mining worldwide and a growth in the literature on the toxicology and epidemiology of uranium and uranium mining, we found it timely to review the current state of knowledge. Here, we present a review of the health effects of uranium mining, with an emphasis on newer findings (2005-2011). Uranium mining can contaminate air, water, and soil. The chemical toxicity of the metal constitutes the primary environmental health hazard, with the radioactivity of uranium a secondary concern. The update of the toxicologic evidence on uranium adds to the established findings regarding nephrotoxicity, genotoxicity, and developmental defects. Additional novel toxicologic findings, including some at the molecular level, are now emerging that raise the biological plausibility of adverse effects on the brain, on reproduction, including estrogenic effects, on gene expression, and on uranium metabolism. Historically, most epidemiology on uranium mining has focused on mine workers and radon exposure. Although that situation is still overwhelmingly true, a smaller emerging literature has begun to form around environmental exposure in residential areas near uranium mining and processing facilities. We present and critique such studies. Clearly, more epidemiologic research is needed to contribute to causal inference. As much damage is irreversible, and possibly cumulative, present efforts must be vigorous to limit environmental uranium contamination and exposure.

  3. Resistance to and Accumulation of Heavy Metals by Actinobacteria Isolated from Abandoned Mining Areas

    PubMed Central

    El Baz, Soraia; Baz, Mohamed; El Gharmali, Abdelhay; Imziln, Boujamâa

    2015-01-01

    Accumulation of high concentrations of heavy metals in environments can cause many human health risks and serious ecological problems. Nowadays, bioremediation using microorganisms is receiving much attention due to their good performance. The aim of this work is to investigate heavy metals resistance and bioaccumulation potential of actinobacteria strains isolated from some abandoned mining areas. Analysis of mining residues revealed that high concentration of zinc “Zn” was recorded in Sidi Bouatman, Arbar, and Bir Nhass mining residues. The highest concentration of lead “Pb” was found in Sidi Bouatman. Copper “Cu,” cadmium “Cd,” and chromium “Cr” were found with moderate and low concentrations. The resistance of 59 isolated actinobacteria to the five heavy metals was also determined. Using molecular identification 16S rRNA, these 27 isolates were found to belong to Streptomyces and Amycolatopsis genera. The results showed different levels of heavy metal resistance; the minimum inhibitory concentration (MIC) recorded was 0.55 for Pb, 0.15 for Cr, and 0.10 mg·mL−1 for both Zn and Cu. Chemical precipitation assay of heavy metals using hydrogen sulfide technic (H2S) revealed that only 27 isolates have a strong ability to accumulate Pb (up to 600 mg of Pb per g of biomass for Streptomyces sp. BN3). PMID:25763383

  4. Distribution and Multivariate Pollution Risks Assessment of Heavy Metals and Natural Radionuclides Around Abandoned Iron-Ore Mines in North Central Nigeria

    NASA Astrophysics Data System (ADS)

    Isinkaye, Omoniyi Matthew

    2018-02-01

    The Itakpe abandoned iron-ore mines constitute the largest iron-ore deposits in Nigeria with an estimated reserve of about three million metric tons of ore. The present effort is a part of a comprehensive study to estimate the environmental and radiological health hazards associated with previous mining operations in the study area. In this regard, heavy metals (Fe, Zn, Cu, Cd, Cr, Mn, Pb, Ni, Co and As) and natural radionuclides (U, Th and K) were measured in rock, soil and water samples collected at different locations within the mining sites. Atomic absorption and gamma-ray spectrometry were utilized for the measurements. Fe, Mn, Zn, Cu, Ni, Cd, Cr, Co Pb and As were detected at varying concentrations in rock and soil samples. Cd, Cr, Pb and As were not detected in water samples. The concentrations of heavy metals vary according to the following pattern; rock ˃ soil ˃ water. The mean elemental concentrations of K, U and Th are 2.9%, 0.8 and 1.2 ppm and 1.3%, 0.7 and 1.7 ppm, respectively, for rock and soil samples. Pearson correlation analyses of the results indicate that the heavy metals are mostly negatively correlated with natural radionuclides in the study area. Cancer and non-cancer risks due to heavy metals and radiological hazards due to natural radionuclides to the population living within the vicinity of the abandoned mines are lower than acceptable limits. It can, therefore, be concluded that no significant environmental or radiological health hazard is envisaged.

  5. Land contamination and soil evolution in abandoned mine areas (Italy)

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Wahsha, Mohammad; Spiandorello, Massimo

    2014-05-01

    In Italy ore research and exploitation are nearly exhausted since the end of the last century, leaving on the land a huge amount of mine waste, therefore provoking evident environmental damage including landscape, vegetation and the food chain, and a potential threat to human health. The increasing environmental consciousness of general population compelled Public Administrators to set down effective legislation acts on this subject (e.g. D.L. 152/2006), and more generally on environmental contamination. In this work we present the results of a survey carried out at several mixed sulphides mine sites in Italy, exploited for at least a millennium, and closed in the '60s of the last century. Biogeochemical analyses carried out on 50 soil profiles (mostly Entisols and Inceptisols) and vegetation in the proximal and distal areas of ore exploitation show metal concentrations overcoming legislation limits on average (Cu up to 3160 mg kg-1 , Pb up to 23600 mg kg-1, Zn up to 1588 mg kg-1, Fe up to 52,30 %). Ni, Cr and Mn concentrations, instead, are generally below the reference levels. Metal concentrations in native vegetation of the examined areas are moderately to highly elevated. Significant amounts of Cu, Pb, Zn in roots of Plantago major and Silene dioica, in leaves of Taraxacum officinale, and Salix spp, have been recorded. Essential elements, in particular, present Translocation Coefficients (TC) >1, with Mn>Zn>Cu>Fe. Toxic elements (Cd, Cr, Pb), instead, present TC<1, suggesting a synergic/antagonist effect to occur among metals and plants, according to their role in mineral nutrition. The results obtained suggest the abandoned mine sites to represent actual natural aboratories where to experiment new opportunities for restoration of anthropogenically contaminated areas, and to study new pedogenetic trends from these peculiar parent materials. Moreover, the examined plants are genetically adapted to naturally metal-enriched soils, and therefore may be utilized in

  6. Impact of uranium mining activity on cave deposit (stalagmite) and pine trees (S-Hungary)

    NASA Astrophysics Data System (ADS)

    Siklosy, Z.; Kern, Z.; Demeny, A.; Pilet, S.; Leel-Ossy, Sz.; Lin, K.; Shen, C.-C.; Szeles, E.

    2009-04-01

    Speleothems are well known paleoclimate archives but their potential for monitoring environmental pollution has not been fully explored. This study deals with an actively growing stalagmite whose trace-element concentration suggests anthropogenic contamination, rather then natural forcing. Paralell, as a potential independent chemo-enviromental archive, living pine (Pinus sylvestis) trees were also involved into investigation. U production in S-Hungary started in 1957 and was expanded closer to the cave site in 1965, covering a mining plot area of ca. 65 km2. The deep-level ore production ended in 1997 and remediation of the mine site has since been completed. Our objective was to determine the possible effect of the four-decade-long uranium (U) ore mining activity on the environment, as recorded by a cave deposit and the pine trees. The Trio Cave is located in the Mecsek Mts (S-Hungary), ca. 1.5-3 km east from the nearest air-shaft and entrance of the uranium mine. A stalagmite located about 150 m away from the cave entrance was drilled and the core investigated for stable isotope and trace element compositions. Pine trees were sampled by increment borer. Continuous flow mass spectrometry was applied on carbonate samples and laser ablation ICP-MS was applied for trace element analysis of both stalagmite (Siklosy et al., 2009) and pine samples. The youngest 1 cm of the drill core was selected for this study that may represent the last cca. 100 years (based on MC-ICP-MS age dating of older parts of the core) that covers the uranium mining period. The pre-mining period is characterized by systematic co-variations of trace elements (U, P, Si, Al, Ba, Mg, etc.) that can be related to soil activity and precipitation amount. The youngest 1.3 mm, however, records a sudden change in U content uncorrelated with any other variables. Starting from a background value of 0.2-0.3 ppm, the concentration gradually increases to about 2 ppm (within about 1 mm), remains constant for

  7. Colour and toxic characteristics of metakaolinite–hematite pigment for integrally coloured concrete, prepared from iron oxide recovered from a water treatment plant of an abandoned coal mine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadasivam, Sivachidambaram, E-mail: sadasivams@cardiff.ac.uk; Thomas, Hywel Rhys

    A metakaolinite-hematite (KH) red pigment was prepared using an ocherous iron oxide sludge recovered from a water treatment plant of an abandoned coal mine. The KH pigment was prepared by heating the kaolinite and the iron oxide sludge at kaolinite's dehydroxylation temperature. Both the raw sludge and the KH specimen were characterised for their colour properties and toxic characteristics. The KH specimen could serve as a pigment for integrally coloured concrete and offers a potential use for the large volumes of the iron oxide sludge collected from mine water treatment plants. - Graphical abstract: A kaolinite based red pigment wasmore » prepared using an ocherous iron oxide sludge recovered from an abandoned coal mine water treatment plant. Display Omitted - Highlights: • A red pigment was prepared by heating a kaolinite and an iron oxide sludge. • The iron oxide and the pigment were characterised for their colour properties. • The red pigment can be a potential element for integrally coloured concrete.« less

  8. Vertical accumulation of potential toxic elements in a semiarid system that is influenced by an abandoned gold mine

    NASA Astrophysics Data System (ADS)

    Sánchez-Martínez, Martha A.; Marmolejo-Rodríguez, Ana J.; Magallanes-Ordóñez, Víctor R.; Sánchez-González, Alberto

    2013-09-01

    The mining zone at El Triunfo, Baja California Sur, Mexico, was exploited for gold extraction for 200 years. This area includes more than 100 abandoned mining sites. These sites contain mine tailings that are highly contaminated with potential toxic elements (PTE), such as As, Cd, Pb, Sb, Zn, and other associated elements. Over time, these wastes have contaminated the sediments in the adjacent fluvial systems. Our aim was to assess the vertical PTE variations in the abandoned mining zone and in the discharge of the main arroyo into a small lagoon at the Pacific Ocean. Sediments were collected from the two following locations in the mining zone near the arroyo basin tailings: 1) an old alluvial terrace (Overbank) and a test pit (TP) and 2) two sediment cores locations at the arroyo discharge into a hypersaline small lagoon. Samples were analyzed by ICP-MS, ICP-OES, and INAA and the methods were validated. The overbank was the most contaminated and had As, Cd, Pb, Sb, and Zn concentrations of 8690, 226, 84,700, 17,400, and 42,600 mg kg-1, respectively, which decreased with depth. In addition, the TP contained elevated As, Cd, Pb, Sb, and Zn concentrations of 694, 18.8, 5001, 39.2, and 4170 mg kg-1, respectively. The sediment cores were less contaminated. However, the As, Cd, Pb, Sb, and Zn concentrations were greater than the concentrations that are generally found in the Earth's crust. The normalized enrichment factors (NEFs), which were calculated from the background concentrations of these elements in the system, showed that extremely severe As, Cd, Pb, Sb, and Zn (NEF > 50) enrichment occurred at the overbank. The TP was severe to very severely enriched with As, Cd, Pb, Sb, and Zn (NEF = 10-50). The sediment cores had a severe enrichment of As, Pb, and Zn (NEF = 10-25). Their vertical profiles showed that anthropogenic influences occurred in the historic sediment deposition at the overbank and TP and in the sediment cores. In addition, the As, Pb, and Zn

  9. A case study of methane gas migration through sealed mine GOB into active mine workings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, F.; McCall, F.E.; Trevits, M.A.

    1995-12-31

    The U.S. Bureau of Mines investigated the influence of atmospheric pressure changes on methane gas migration through mine seals at a mine site located in the Pittsburgh Coalbed. The mine gained access to a coal reserve through part of an abandoned mine and constructed nine seals to isolate the extensive old workings from the active mine area. Underground problems were experienced when atmospheric pressure fell, causing methane gas to migrate around the seals and into the active workings. During mining operations, methane gas levels exceeded legal limits and coal production was halted until the ventilation system could be improved. Whenmore » mining resumed with increased air flow, methane gas concentrations occasionally exceeded the legal limits and production had to be halted until the methane level fell within the mandated limit. To assist the ventilation system, a pressure relief borehole located in the abandoned workings near the mine seals was proposed. Preliminary estimates by a gob gas simulator (computer model) suggested that a 0.76 m (2.5 ft) diameter pressure relief borehole with an exhaust fan would be necessary to remove enough methane from the abandoned area so that the ventilation system could dilute the gas in the active workings. However, by monitoring methane gas emissions and seal pressure, during periods of low atmospheric pressure, the amount of methane gas that migrated into the active mine workings was calculated. Researchers then determined that a relief borehole, 20.3 cm (8-in) with an exhaust fan could remove at least twice the maximum measured volume of migrating methane gas. Because gas concentrations in the abandoned workings could potentially reach explosive limits, it was proposed that the mine eliminate the exhaust fan. Installation of the recommended borehole and enlarging two other ventilation boreholes located In the abandoned area reduced methane gas leakage through the seals by at least 63%.« less

  10. Uptake and speciation of uranium in synthetic gypsum (CaSO4•2H2O): Applications to radioactive mine tailings.

    PubMed

    Lin, Jinru; Sun, Wei; Desmarais, Jacques; Chen, Ning; Feng, Renfei; Zhang, Patrick; Li, Dien; Lieu, Arthur; Tse, John S; Pan, Yuanming

    2018-01-01

    Phosphogypsum formed from the production of phosphoric acid represents by far the biggest accumulation of gypsum-rich wastes in the world and commonly contains elevated radionuclides, including uranium, as well as other heavy metals and metalloids. Therefore, billions-of-tons of phosphogypsum stockpiled worldwide not only possess serious environmental problems but also represent a potential uranium resource. Gypsum is also a major solid constituent in many other types of radioactive mine tailings, which stems from the common usage of sulfuric acid in extraction processes. Therefore, management and remediation of radioactive mine tailings as well as future beneficiation of uranium from phosphogysum all require detailed knowledge about the nature and behavior of uranium in gypsum. However, little is known about the uptake mechanism or speciation of uranium in gypsum. In this study, synthesis experiments suggest an apparent pH control on the uptake of uranium in gypsum at ambient conditions: increase in U from 16 μg/g at pH = 6.5 to 339 μg/g at pH = 9.5. Uranium L 3 -edge synchrotron X-ray absorption spectroscopic analyses of synthetic gypsum show that uranyl (UO 2 ) 2+ at the Ca site is the dominant species. The EXAFS fitting results also indicate that uranyl in synthetic gypsum occurs most likely as carbonate complexes and yields an average U-O distance ∼0.25 Å shorter than the average Ca-O distance, signifying a marked local structural distortion. Applications to phosphogypsum from the New Wales phosphoric acid plant (Florida, USA) and uranium mine tailings from the Key Lake mill (Saskatchewan, Canada) show that gypsum is an important carrier of uranium over a wide range of pH and controls the fate of this radionuclide in mine tailings. Also, development of new technologies for recovering U from phosphogypsum in the future must consider lattice-bound uranyl in gypsum. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Uranium in mining water of kaolin open pit in Zarów (Lower Silesia); methodology of determination and genetic remarks.

    PubMed

    Chau, N D; Wyszomirski, P; Chruściel, E; Ochoński, A

    1999-11-01

    In this paper, a method of determination of uranium 238 and 234 in mining waters of Andrzej kaolin open pit in Zarów (Lower Silesia) is presented. The method is based on independent measurements of alpha and beta radiation intensities by means of a liquid scintillation spectrometer alpha/beta. The initial volume of water sample was 3 dm3, then it was diminished by chemical preparation to 6 cm3, and then 12 cm3 of scintillator was added. The lower limit of detection (for the measurement time of 8 h) for both 234U and 238U amounted to 0.02 Bq/dm3. For determination of the uranium content in ferruginous sediments precipitating from mining waters of the above-mentioned open pit, gamma ray spectrometry was used. The obtained results may be viewed as a contribution to studies on anomalous uranium concentration within this kaolin deposit. The elevated uranium content, in comparison with its average concentration in the Earth crust, is characteristic for parent rocks of Andrzej kaolin deposit, which are granitoids of Strzegom-Sobótka massif. In connection with it, the high uranium content can be observed not only in kaolin and weakly kaolinised granitoids from the deposit in question, but also in mining waters genetically related with them.

  12. Novel speciation method based on Diffusive Gradients in Thin Films for in situ measurement of uranium in the vicinity of the former uranium mining sites.

    PubMed

    Drozdzak, Jagoda; Leermakers, Martine; Gao, Yue; Phrommavanh, Vannapha; Descostes, Michael

    2016-07-01

    The Diffusive Gradients in Thin Films (DGT) technique using PIWBA resin (The Dow Chemical Company) was developed and validated for the measurement of uranium (U) concentration in natural and uranium mining influenced waters. The U uptake on the PIWBA resin gel was 97.3 ± 0.4% (batch method; Vsol = 5 mL; [U] = 20 μg L(-1); 0.01 M NaNO3; pH = 7.0 ± 0.2). The optimal eluent was found to be HNO3conc/70 °C with an elution efficiency of 88.9 ± 1.4%. The laboratory DGT investigation demonstrated that the PIWBA resin gel exhibits a very good performance across a wide range of pH (3-9) and ionic strength (0.001-0.7 M NaNO3) at different time intervals. Neither effect of PO4(3-) (up to 1.72 × 10(-4) M), nor of HCO3(-) (up to 8.20 × 10(-3) M) on the quantitative measurement of uranium by DGT-PIWBA method were observed. Only at very high Ca(2+) (2.66 × 10(-4) M), and SO4(2-) (5.55 × 10(-4) M) concentration, the U uptake on DGT-PIWBA was appreciably lessened. In-situ DGT field evaluation was carried out in the vicinity of three former uranium mining sites in France (Loire-Atlantique and Herault departments), which employ different water treatment technologies and have different natural geochemical characteristics. There was a similar or inferior U uptake on DGT-Chelex(®)-100 in comparison with the U accumulation on a DGT-PIWBA sampler. Most likely, the performance of Chelex(®)-100 was negatively affected by a highly complex matrix of mining waters. The high concentration and identity of co-accumulating analytes, typical for the mining environment, did not have a substantial impact on the quantitative uptake of labile U species on DGT- PIWBA. The use of the polyphenol impregnated anion exchange resin leads to a significant advancement in the application and development of the DGT technique for determination of U in the vicinity of the former uranium mining sites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Radionuclides and trace metals in Canadian moose near uranium mines: comparison of radiation doses and food chain transfer with cattle and caribou.

    PubMed

    Thomas, Patricia; Irvine, James; Lyster, Jane; Beaulieu, Rhys

    2005-05-01

    Tissues from 45 moose and 4 cattle were collected to assess the health of country foods near uranium mines in northern Saskatchewan. Bone, liver, kidney, muscle and rumen contents were analyzed for uranium, radium-226 (226Ra), lead-210 (210Pb), and polonium-210 (210Po). Cesium-137 (137Cs), potassium-40 (40K), and 27 trace metals were also measured in some tissues. Within the most active mining area, Po in liver and muscle declined significantly with distance from tailings, possibly influenced by nearby natural uranium outcrops. Moose from this area had significantly higher 226Ra, 210Pb, 210Po, and 137Cs in some edible soft tissues vs. one control area. However, soil type and diet may influence concentrations as much as uranium mining activities, given that a) liver levels of uranium, 226Ra, and 210Po were similar to a second positive control area with mineral-rich shale hills and b) 210Po was higher in cattle kidneys than in all moose. Enhanced food chain transfer from rumen contents to liver was found for selenium in the main mining area and for copper, molybdenum and cadmium in moose vs. cattle. Although radiological doses to moose in the main mining area were 2.6 times higher than doses to control moose or cattle, low moose intakes yielded low human doses (0.0068 mSv y(-1)), a mere 0.3% of the dose from intake of caribou (2.4 mSv y(-1)), the dietary staple in the area.

  14. Arsenic concentrations and speciation in wild birds from an abandoned realgar mine in China.

    PubMed

    Yang, Fen; Xie, Shaowen; Liu, Jinxin; Wei, Chaoyang; Zhang, Hongzhi; Chen, Tao; Zhang, Jing

    2018-02-01

    Birds are at a higher level in the food chain; however, the potential bioaccumulation and biotransformation of arsenic (As) in birds in As mines has rarely been studied. In this study, four passerine bird species (tree sparrow [Passer montanus], light-vented bulbul [Pycnonotus sinensis], Garrulax canorus [Leucodioptron canorus], and magpie [Pica pica]) were collected from an abandoned As mine in China. The highest recorded As concentrations were 4.95 mg/kg and 51.65 mg/kg in muscles and feathers, respectively. Detection using high-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC-ICP-MS) revealed six As species, including arsenite (As(III)), arsenate (As(V)), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), arsenobetaine (AsB) and arsenocholine (AsC), with the former three species as the dominant (>92%) and the latter three as the minor As species (<6.17%). Further analysis of the selected bird samples using the X-ray absorption near edge structure (XANES) technique revealed the existence of As(III)-tris-glutathione (As(III)-GSH), which can be regarded as equivalent to the non-extractable and unidentified As form in the HPLC-ICP-MS data. Both methods revealed similar patterns of As species in the birds from the As mine, with muscles containing mainly inorganic As and DMA and feathers containing mainly inorganic As. The results of this study contribute to the knowledge regarding As accumulation and speciation in terrestrial organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilpatrick, Laura E.; Cotter, Ed

    The U.S. Department of Energy (DOE) Office of Legacy Management is responsible for administering the DOE Uranium Leasing Program (ULP) and its 31 uranium lease tracts located in the Uravan Mineral Belt of southwestern Colorado (see Figure 1). In addition to administering the ULP for the last six decades, DOE has also undertaken the significant task of reclaiming a large number of abandoned uranium (legacy) mine sites and associated features located throughout the Uravan Mineral Belt. In 1995, DOE initiated a 3-year reconnaissance program to locate and delineate (through extensive on-the-ground mapping) the legacy mine sites and associated features containedmore » within the historically defined boundaries of its uranium lease tracts. During that same time frame, DOE recognized the lack of regulations pertaining to the reclamation of legacy mine sites and contacted the U.S. Bureau of Land Management (BLM) concerning the reclamation of legacy mine sites. In November 1995, The BLM Colorado State Office formally issued the United States Department of the Interior, Colorado Bureau of Land Management, Closure/Reclamation Guidelines, Abandoned Uranium Mine Sites as a supplement to its Solid Minerals Reclamation Handbook (H-3042-1). Over the next five-and-one-half years, DOE reclaimed the 161 legacy mine sites that had been identified on DOE withdrawn lands. By the late 1990's, the various BLM field offices in southwestern Colorado began to recognize DOE's experience and expertise in reclaiming legacy mine sites. During the ensuing 8 years, BLM funded DOE (through a series of task orders) to perform reclamation activities at 182 BLM mine sites. To date, DOE has reclaimed 372 separate and distinct legacy mine sites. During this process, DOE has learned many lessons and is willing to share those lessons with others in the reclamation industry because there are still many legacy mine sites not yet reclaimed. DOE currently administers 31 lease tracts (11,017 ha) that

  16. Capacity of Lemna gibba L. (duckweed) for uranium and arsenic phytoremediation in mine tailing waters.

    PubMed

    Mkandawire, Martin; Taubert, Barbara; Dudel, E Gert

    2004-01-01

    The potential of Lemna gibba L. to clean uranium and arsenic contamination from mine surface waters was investigated in wetlands of two former uranium mines in eastern Germany and in laboratory hydroponic culture. Water and plants were sampled and L gibba growth and yield were monitored in tailing ponds from the field study sites. Contaminant accumulation, growth and yield experiments were conducted in the laboratory using synthetic tailing water. Mean background concentrations of the surface waters were 186.0+/-81.2 microg l(-1) uranium and 47.0+/-21.3 microg l(-1) arsenic in Site one and 293.7+/-121.3 microg l(-1) uranium and 41.37+/-24.7 microg l(-1) arsenic in Site two. The initial concentration of both uranium and arsenic in the culture solutions was 100 microg l(-1). The plant samples were either not leached, leached with deionized H2O or ethylenediaminetetracetic (EDTA). The results revealed high bioaccumulation coefficients for both uranium and arsenic. Uranium and arsenic content of L gibba dry biomass of the field samples were as follows: nonleached samples > deionized H2O leached (insignificant ANOVA p = 0.05) > EDTA leached. The difference in both arsenic and uranium enrichment were significantly high between the nonleached and the other two lead samples tested at ANOVA p > 0.001. Estimated mean L gibba density in surface water was 85,344.8+/-1843.4 fronds m(-2) (approximately 1319.7 g m(-2)). The maximum specific growth rate was 0.47+/-0.2 d(-1), which exceeded reported specific growth rates for L gibba in the literature. Average yield was estimated at 20.2+/-6.7 g m(-2) d(-1), giving approximately 73.6+/-21.4 t ha(-1) y(-1) as the annual yield. The highest accumulations observed were 896.9+/-203.8 mg kg(-1) uranium and 1021.7+/-250.8 mg kg(-1) arsenic dry biomass for a 21-d test period in the laboratory steady-state experiments. The potential extractions from surface waters with L gibba L. were estimated to be 662.7 kg uranium ha(-1) yr(-1) and 751

  17. Effects of historical coal mining and drainage from abandoned mines on streamflow and water quality in Bear Creek, Dauphin County, Pennsylvania-March 1999-December 2002

    USGS Publications Warehouse

    Chaplin, Jeffrey J.

    2005-01-01

    More than 100 years of anthracite coal mining has changed surface- and ground-water hydrology and contaminated streams draining the Southern Anthracite Coal Field in east-central Pennsylvania. Bear Creek drains the western prong of the Southern Anthracite Coal Field and is affected by metals in drainage from abandoned mines and streamwater losses. Total Maximum Daily Loads (TMDL) developed for dissolved iron of about 5 lb/d (pounds per day) commonly are exceeded in the reach downstream of mine discharges. Restoration of Bear Creek using aerobic ponds to passively remove iron in abandoned mine drainage is under consideration (2004) by the Dauphin County Conservation District. This report, prepared in cooperation with the Dauphin County Conservation District, evaluates chemical and hydrologic data collected in Bear Creek and its receiving waters prior to implementation of mine-drainage treatment. The data collected represent the type of baseline information needed for documentation of water-quality changes following passive treatment of mine drainage in Pennsylvania and in other similar hydrogeologic settings. Seven surface-water sites on Bear Creek and two mine discharges were monitored for nearly three years to characterize the chemistry and hydrology of the following: (1) Bear Creek upstream of the mine discharges (BC-UMD), (2) water draining from the Lykens-Williamstown Mine Pool at the Lykens Water-Level Tunnel (LWLT) and Lykens Drift (LD) discharges, (3) Bear Creek after mixing with the mine discharges (BC-DMD), and (4) Bear Creek prior to mixing with Wiconisco Creek (BCM). Two sites on Wiconisco Creek, upstream and downstream of Bear Creek (WC-UBC and WC-DBC, respectively), were selected to evaluate changes in streamflow and water quality upon mixing with Bear Creek. During periods of below-normal precipitation, streamwater loss was commonly 100 percent upstream of site BC-UMD (streamflow range = 0 to 9.7 ft3/s (cubic feet per second)) but no loss was detected

  18. Mapping Copper and Lead Concentrations at Abandoned Mine Areas Using Element Analysis Data from ICP–AES and Portable XRF Instruments: A Comparative Study

    PubMed Central

    Lee, Hyeongyu; Choi, Yosoon; Suh, Jangwon; Lee, Seung-Ho

    2016-01-01

    Understanding spatial variation of potentially toxic trace elements (PTEs) in soil is necessary to identify the proper measures for preventing soil contamination at both operating and abandoned mining areas. Many studies have been conducted worldwide to explore the spatial variation of PTEs and to create soil contamination maps using geostatistical methods. However, they generally depend only on inductively coupled plasma atomic emission spectrometry (ICP–AES) analysis data, therefore such studies are limited by insufficient input data owing to the disadvantages of ICP–AES analysis such as its costly operation and lengthy period required for analysis. To overcome this limitation, this study used both ICP–AES and portable X-ray fluorescence (PXRF) analysis data, with relatively low accuracy, for mapping copper and lead concentrations at a section of the Busan abandoned mine in Korea and compared the prediction performances of four different approaches: the application of ordinary kriging to ICP–AES analysis data, PXRF analysis data, both ICP–AES and transformed PXRF analysis data by considering the correlation between the ICP–AES and PXRF analysis data, and co-kriging to both the ICP–AES (primary variable) and PXRF analysis data (secondary variable). Their results were compared using an independent validation data set. The results obtained in this case study showed that the application of ordinary kriging to both ICP–AES and transformed PXRF analysis data is the most accurate approach when considers the spatial distribution of copper and lead contaminants in the soil and the estimation errors at 11 sampling points for validation. Therefore, when generating soil contamination maps for an abandoned mine, it is beneficial to use the proposed approach that incorporates the advantageous aspects of both ICP–AES and PXRF analysis data. PMID:27043594

  19. Mapping Copper and Lead Concentrations at Abandoned Mine Areas Using Element Analysis Data from ICP-AES and Portable XRF Instruments: A Comparative Study.

    PubMed

    Lee, Hyeongyu; Choi, Yosoon; Suh, Jangwon; Lee, Seung-Ho

    2016-03-30

    Understanding spatial variation of potentially toxic trace elements (PTEs) in soil is necessary to identify the proper measures for preventing soil contamination at both operating and abandoned mining areas. Many studies have been conducted worldwide to explore the spatial variation of PTEs and to create soil contamination maps using geostatistical methods. However, they generally depend only on inductively coupled plasma atomic emission spectrometry (ICP-AES) analysis data, therefore such studies are limited by insufficient input data owing to the disadvantages of ICP-AES analysis such as its costly operation and lengthy period required for analysis. To overcome this limitation, this study used both ICP-AES and portable X-ray fluorescence (PXRF) analysis data, with relatively low accuracy, for mapping copper and lead concentrations at a section of the Busan abandoned mine in Korea and compared the prediction performances of four different approaches: the application of ordinary kriging to ICP-AES analysis data, PXRF analysis data, both ICP-AES and transformed PXRF analysis data by considering the correlation between the ICP-AES and PXRF analysis data, and co-kriging to both the ICP-AES (primary variable) and PXRF analysis data (secondary variable). Their results were compared using an independent validation data set. The results obtained in this case study showed that the application of ordinary kriging to both ICP-AES and transformed PXRF analysis data is the most accurate approach when considers the spatial distribution of copper and lead contaminants in the soil and the estimation errors at 11 sampling points for validation. Therefore, when generating soil contamination maps for an abandoned mine, it is beneficial to use the proposed approach that incorporates the advantageous aspects of both ICP-AES and PXRF analysis data.

  20. Impact of fresh tailing deposition on the evolution of groundwater hydrogeochemistry at the abandoned Manitou mine site, Quebec, Canada.

    PubMed

    Maqsoud, Abdelkabir; Neculita, Carmen Mihaela; Bussière, Bruno; Benzaazoua, Mostafa; Dionne, Jean

    2016-05-01

    The abandoned Manitou mine site has produced acid mine drainage (AMD) for several decades. In order to limit the detrimental environmental impacts of AMD, different rehabilitation scenarios were proposed and analyzed. The selected rehabilitation scenario was to use fresh tailings from the neighboring Goldex gold mine as monolayer cover and to maintain an elevated water table. In order to assess the impact of the Goldex tailing deposition on the hydrogeochemistry of the Manitou mine site, a network of 30 piezometers was installed. These piezometers were used for continuous measurement of the groundwater level, as well as for water sampling campaigns for chemical quality monitoring, over a 3-year period. Hydrochemical data were analyzed using principal component analysis. Results clearly showed the benefic impact of fresh tailing deposition on the groundwater quality around the contaminated area. These findings were also confirmed by the evolution of electrical conductivity. In addition to the improvement of the physicochemical quality of water on the Manitou mine site, new tailing deposition induced an increase of water table level. However, at this time, the Manitou reactive tailings are not completely submerged and possible oxidation might still occur, especially after ceasing of the fresh tailing deposition. Therefore, complementary rehabilitation scenarios should still be considered.

  1. Ecotoxicological risks of the abandoned F-Ba-Pb-Zn mining area of Osor (Spain).

    PubMed

    Bori, Jaume; Vallès, Bettina; Navarro, Andrés; Riva, Maria Carme

    2017-06-01

    Due to its potential toxic properties, metal mobilization is of major concern in areas surrounding Pb-Zn mines. In the present study, metal contents and toxicity of soils, aqueous extracts from soils and mine drainage waters from an abandoned F-Ba-Pb-Zn mining area in Osor (Girona, NE Spain) were evaluated through chemical extractions and ecotoxicity bioassays. Toxicity assessment in the terrestrial compartment included lethal and sublethal endpoints on earthworms Eisenia fetida, arthropods Folsomia candida and several plant species, whereas aquatic tests involved bacteria Vibrio fischeri, microalgae Raphidocelis subcapitata and crustaceans Daphnia magna. Total concentrations of Ba (250-5110 mg kg -1 ), Pb (940 to >5000 mg kg -1 ) and Zn (2370-11,300 mg kg -1 ) in soils exceeded intervention values to protect human health. Risks for the aquatic compartment were identified in the release of drainage waters and in the potential leaching and runoff of metals from contaminated soils, with Cd (1.98-9.15 µg L -1 ), Pb (2.11-326 µg L -1 ) and Zn (280-2900 µg L -1 ) concentrations in filtered water samples surpassing US EPA Water Quality Criteria (2016a, b). Terrestrial ecotoxicity tests were in accordance with metal quantifications and identified the most polluted soil as the most toxic. Avoidance and reproduction tests with earthworms showed the highest sensitivity to metal contamination. Aquatic bioassays performed in aqueous extracts from soils confirmed the results from terrestrial tests and also detected toxic effects caused by the mine drainage waters. Algal growth inhibition was the most sensitive aquatic endpoint. In view of the results, the application of a containment or remediative procedure in the area is encouraged.

  2. Remediation strategy, capping construction and ongoing monitoring for the mill tailings pond, Ningyo-Toge uranium mine, Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiroshi Saito; Tomihiro Taki

    2013-07-01

    Ningyo-toge Uranium Mine is subject to the environmental remediation. The main purposes are to take measures to ensure the radiation protection from the exposure pathways to humans in future, and to prevent the occurrence of mining pollution. The Yotsugi Mill Tailings Pond in the Ningyo-toge Uranium Mine has deposited mining waste and impounded water as a buffer reservoir before it is transferred to the Water Treatment Facility. It is located at the upstream of the water-source river and as the impact on its environment in case of earthquake is estimated significant, the highest priority has been put to it amongmore » mine-related facilities in the Mine. So far, basic concept has been examined and a great number of data has been acquired, and using the data, some remediation activities have already done, including capping construction for the upstream part of the Mill Tailings Pond. The capping is to reduce rainwater penetration to lower the burden of water treatment, and to reduce radon exhalation and dose rates. Only natural materials are used to alleviate the future maintenance. Data, including settlement amount and underground temperature is now being acquired and accumulated to verify the effectiveness of the capping, and used for the future remediation of the Downstream with revision of its specifications if necessary. (authors)« less

  3. Derivation of soil screening thresholds to protect chisel-toothed kangaroo rat from uranium mine waste in northern Arizona

    USGS Publications Warehouse

    Hinck, Jo E.; Linder, Greg L.; Otton, James K.; Finger, Susan E.; Little, Edward E.; Tillitt, Donald E.

    2013-01-01

    Chemical data from soil and weathered waste material samples collected from five uranium mines north of the Grand Canyon (three reclaimed, one mined but not reclaimed, and one never mined) were used in a screening-level risk analysis for the Arizona chisel-toothed kangaroo rat (Dipodomys microps leucotis); risks from radiation exposure were not evaluated. Dietary toxicity reference values were used to estimate soil-screening thresholds presenting risk to kangaroo rats. Sensitivity analyses indicated that body weight critically affected outcomes of exposed-dose calculations; juvenile kangaroo rats were more sensitive to the inorganic constituent toxicities than adult kangaroo rats. Species-specific soil-screening thresholds were derived for arsenic (137 mg/kg), cadmium (16 mg/kg), copper (1,461 mg/kg), lead (1,143 mg/kg), nickel (771 mg/kg), thallium (1.3 mg/kg), uranium (1,513 mg/kg), and zinc (731 mg/kg) using toxicity reference values that incorporate expected chronic field exposures. Inorganic contaminants in soils within and near the mine areas generally posed minimal risk to kangaroo rats. Most exceedances of soil thresholds were for arsenic and thallium and were associated with weathered mine wastes.

  4. RIBE at an inter-organismic level: A study on genotoxic effects in Daphnia magna exposed to waterborne uranium and a uranium mine effluent.

    PubMed

    Reis, P; Lourenço, J; Carvalho, F P; Oliveira, J; Malta, M; Mendo, S; Pereira, R

    2018-05-01

    The induction of RIBE (Radiation Induced Bystander Effect) is a non-target effect of low radiation doses that has already been verified at an inter-organismic level in fish and small mammals. Although the theoretical impact in the field of environmental risk assessment (ERA) is possible, there is a gap of knowledge regarding this phenomenon in invertebrate groups and following environmentally relevant exposures. To understand if RIBE should be considered for ERA of radionuclide-rich wastewaters, we exposed Daphnia magna (<24 h and 5d old) to a 2% diluted uranium mine effluent for 48 h, and to a matching dose of waterborne uranium (55.3 μg L -1 ). Then the exposed organisms were placed (24 and 48 h) in a clean medium together with non-exposed neonates. The DNA damage observed for the non-exposed organisms was statistically significant after the 24 h cohabitation for both uranium (neonates p = 0.002; 5 d-old daphnids p = <0.001) and uranium mine effluent exposure (only for neonates p = 0.042). After 48 h cohabitation significant results were obtained only for uranium exposure (neonates p = 0.017; 5 d-old daphnids p = 0.013). Although there may be some variability associated to age and exposure duration, the significant DNA damage detected in non-exposed organisms clearly reveals the occurrence of RIBE in D. magna. The data obtained and here presented are a valuable contribution for the discussion about the relevance of RIBE for environmental risk assessment. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Hydrology and water-quality monitoring considerations, Jackpile uranium mine, northwestern New Mexico

    USGS Publications Warehouse

    Zehner, H.H.

    1985-01-01

    The Jackpile Uranium Mine, which is on the Pueblo of Laguna in northwestern New Mexico, was operated from 1953 to 1980. The mine and facilities have affected 3,141 acres of land, and about 2,656 acres were yet to be reclaimed by late 1980. The intended use of the restored land is stock grazing. Fractured Dakota Sandstone and Mancos Shale of Cretaceous age overlie the Jackpile sandstone and a 200-ft-thick tight mudstone unit of the Brushy Basin Member underlies the Jackpile. The hydraulic conductivity of the Jackpile sandstone probably is about 0.3 ft/day. The small storage coefficients determined from three aquifer tests indicate that the Jackpile sandstone is a confined hydrologic system throughout much of the mine area. Sediment from the Rio Paguate has nearly filled the Paguate Reservoir near Laguna since its construction in 1940. The mean concentrations of uranium, Ra-226, and other trace elements generally were less than permissible limits established in national drinking water regulations or New Mexico State groundwater regulations. No individual surface water samples collected upstream from the mine contained concentrations of Ra-226 in excess of the permissible limits. Ra-226 concentrations in many individual samples collected from the Rio Paguate from near the mouth of the Rio Moquino to the sampling sites along the downstream reach of the Rio Paguate, however, exceeded the recommended permissible concentration of Ra-226 for public drinking water supplies. Concentrations in surface water apparently are changed by groundwater inflow near the confluence of the two streams. The altitude of the water tables in the backfill of the pits will be controlled partly by the water level in the Rio Paguate. Other factors controlling the altitudes of the water tables are the recharge rate to the backfill and the hydraulic conductivities of the backfill, alluvium, Jackpile sandstone, and mudstone unit of the Brushy Basin Member. After reclamation, most of the shallow

  6. Heavy metals contamination and their risk assessment around the abandoned base metals and Au-Ag mines in Korea

    NASA Astrophysics Data System (ADS)

    Chon, Hyo-Taek

    2017-04-01

    Heavy metals contamination in the areas of abandoned Au-Ag and base metal mines in Korea was investigated in order to assess the level of metal pollution, and to draw general summaries about the fate of toxic heavy metals in different environments. Efforts have been made to compare the level of heavy metals, chemical forms, and plant uptake of heavy metals in each mine site. In the base-metals mine areas, significant levels of Cd, Cu, Pb and Zn were found in mine dump soils developed over mine waste materials and tailings. Leafy vegetables tend to accumulate heavy metals(in particular, Cd and Zn) higher than other crop plants, and high metal concentrations in rice crops may affect the local residents' health. In the Au-Ag mining areas, arsenic would be the most characteristic contaminant in the nearby environment. Arsenic and heavy metals were found to be mainly associated with sulfide gangue minerals, and the mobility of these metals would be enhanced by the effect of continuing weathering and oxidation. According to the sequential extraction of metals in soils, most heavy metals were identified as non-residual chemical forms, and those are very susceptible to the change of ambient conditions of a nearby environment. The concept of pollution index(PI) of soils gives important information on the extent and degree of multi-element contamination, and can be applied to the evaluation of mine soils before their agricultural use and remediation. The risk assessment process comprising exposure assessment, dose-response assessment, and risk characterization was discussed, and the results of non-cancer risk of As, Cd, and Zn, and those of cancer risk of As were suggested.

  7. Radionuclides in the lichen-caribou-human food chain near uranium mining operations in northern Saskatchewan, Canada.

    PubMed Central

    Thomas, P A; Gates, T E

    1999-01-01

    The richest uranium ore bodies ever discovered (Cigar Lake and McArthur River) are presently under development in northeastern Saskatchewan. This subarctic region is also home to several operating uranium mines and aboriginal communities, partly dependent upon caribou for subsistence. Because of concerns over mining impacts and the efficient transfer of airborne radionuclides through the lichen-caribou-human food chain, radionuclides were analyzed in tissues from 18 barren-ground caribou (Rangifer tarandus groenlandicus). Radionuclides included uranium (U), radium (226Ra), lead (210Pb), and polonium (210Po) from the uranium decay series; the fission product (137Cs) from fallout; and naturally occurring potassium (40K). Natural background radiation doses average 2-4 mSv/year from cosmic rays, external gamma rays, radon inhalation, and ingestion of food items. The ingestion of 210Po and 137Cs when caribou are consumed adds to these background doses. The dose increment was 0.85 mSv/year for adults who consumed 100 g of caribou meat per day and up to 1.7 mSv/year if one liver and 10 kidneys per year were also consumed. We discuss the cancer risk from these doses. Concentration ratios (CRs), relating caribou tissues to lichens or rumen (stomach) contents, were calculated to estimate food chain transfer. The CRs for caribou muscle ranged from 1 to 16% for U, 6 to 25% for 226Ra, 1 to 2% for 210Pb, 6 to 26% for 210Po, 260 to 370% for 137Cs, and 76 to 130% for 40K, with 137Cs biomagnifying by a factor of 3-4. These CRs are useful in predicting caribou meat concentrations from the lichens, measured in monitoring programs, for the future evaluation of uranium mining impacts on this critical food chain. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:10378999

  8. Strontium isotope quantification of siderite, brine and acid mine drainage contributions to abandoned gas well discharges in the Appalachian Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Elizabeth C.; Capo, Rosemary C.; Stewart, Brian W.

    2013-04-01

    Unplugged abandoned oil and gas wells in the Appalachian region can serve as conduits for the movement of waters impacted by fossil fuel extraction. Strontium isotope and geochemical analysis indicate that artesian discharges of water with high total dissolved solids (TDS) from a series of gas wells in western Pennsylvania result from the infiltration of acidic, low Fe (Fe < 10 mg/L) coal mine drainage (AMD) into shallow, siderite (iron carbonate)-cemented sandstone aquifers. The acidity from the AMD promotes dissolution of the carbonate, and metal- and sulfate-contaminated waters rise to the surface through compromised abandoned gas well casings. Strontium isotopemore » mixing models suggest that neither upward migration of oil and gas brines from Devonian reservoirs associated with the wells nor dissolution of abundant nodular siderite present in the mine spoil through which recharge water percolates contribute significantly to the artesian gas well discharges. Natural Sr isotope composition can be a sensitive tool in the characterization of complex groundwater interactions and can be used to distinguish between inputs from deep and shallow contamination sources, as well as between groundwater and mineralogically similar but stratigraphically distinct rock units. This is of particular relevance to regions such as the Appalachian Basin, where a legacy of coal, oil and gas exploration is coupled with ongoing and future natural gas drilling into deep reservoirs.« less

  9. Abandoned Mine Lands Program - Division of Mining, Land, and Water

    Science.gov Websites

    , safety, general welfare and property from extreme danger resulting from the adverse effects of past coal mining practices. 2. Protection of public health, safety and general welfare from adverse effects of past lands and waters and the environment previously degraded by adverse effects of past coal mining

  10. Model for detection and assessment of abiotic stress caused by uranium mining in European Black Pine landscapes

    NASA Astrophysics Data System (ADS)

    Filchev, Lachezar; Roumenina, Eugenia

    2013-10-01

    The article presents the results obtained from a study for detection and assessment of abiotic stress through pollution with heavy metals, metalloids, and natural radionuclides in European Black Pine (Pinus nigra L.) forests caused by uranium mining using ground-based biogeochemical, biophysical, and field spectrometry data. The forests are located on a territory subject to underground and open uranium mining. An operational model of the study is proposed. The areas subject to technogeochemical load are outlined based on the aggregate pollution index Zc. Laboratory and field spectrometry data were used to detect the signals of abiotic stress at pixel level. The methods used for determination of stressed and unstressed black pine forests are: four vegetation indices (TCARI, MCARI, MTVI 2, and PRI 1) for stress detection, and the position, depth, asymmetry, and shift of the red-edge. Based on the "blue shift" and the depth and position of the red-edge, registered by the laboratory analysis and field spectral reflectance, it is established that coniferous forests subject to abiotic stress show an increase in total chlorophyll content and carotene. It has been found that the vegetation indices MTVI 2 and PRI 1, as well as the combination of vegetation indices and pigments may be used as a direct indicator of abiotic stress in coniferous forests caused by uranium mining.

  11. Source and fate of inorganic soil contamination around the abandoned Phillips sulfide mine, hudson Highlands, New York

    USGS Publications Warehouse

    Gilchrist, S.; Gates, A.; Elzinga, E.; Gorring, M.; Szabo, Z.

    2011-01-01

    The abandoned Phillips sulfide mine in the critical Highlands watershed in New York has been shown to produce strongly acidic mine drainage (AMD) with anomalous metal contaminants in first-order streams that exceeded local water standards by up to several orders of magnitude (Gilchrist et al., 2009). The metal-sulfide-rich tailings also produce contaminated soils with pH < 4, organic matter < 2.5% and trace metals sequestered in soil oxides. A geochemical transect to test worst-case soil contamination showed that Cr, Co and Ni correlated positively with Mn, (r = 0.72, r= 0.89, r = 0.80, respectively), suggesting Mn-oxide sequestration and that Cu and Pb correlated with Fe (r = 0.76, r = 0.83, respectively), suggesting sequestration in goethite. Ubiquitous, yellow coating on the mine wastes, including jarosite and goethite, is a carrier of the metals. Geochemical and μ-SXRF analyses determined Cu to be the major soil contaminant. μ-SXRF also demonstrated that the heterogeneous nature of the soil chemistry at the micro-meter scale is self-similar to those in the bulk soil samples. Generally metals decreased, with some fluctuations, rapidly downslope through suspension of fines and dissolution in AMD leaving the area of substantial contamination << 0.5 km from the source.

  12. Water budgets and groundwater volumes for abandoned underground mines in the Western Middle Anthracite Coalfield, Schuylkill, Columbia, and Northumberland Counties, Pennsylvania-Preliminary estimates with identification of data needs

    USGS Publications Warehouse

    Goode, Daniel J.; Cravotta, Charles A.; Hornberger, Roger J.; Hewitt, Michael A.; Hughes, Robert E.; Koury, Daniel J.; Eicholtz, Lee W.

    2011-01-01

    This report, prepared in cooperation with the Pennsylvania Department of Environmental Protection (PaDEP), the Eastern Pennsylvania Coalition for Abandoned Mine Reclamation, and the Dauphin County Conservation District, provides estimates of water budgets and groundwater volumes stored in abandoned underground mines in the Western Middle Anthracite Coalfield, which encompasses an area of 120 square miles in eastern Pennsylvania. The estimates are based on preliminary simulations using a groundwater-flow model and an associated geographic information system that integrates data on the mining features, hydrogeology, and streamflow in the study area. The Mahanoy and Shamokin Creek Basins were the focus of the study because these basins exhibit extensive hydrologic effects and water-quality degradation from the abandoned mines in their headwaters in the Western Middle Anthracite Coalfield. Proposed groundwater withdrawals from the flooded parts of the mines and stream-channel modifications in selected areas have the potential for altering the distribution of groundwater and the interaction between the groundwater and streams in the area. Preliminary three-dimensional, steady-state simulations of groundwater flow by the use of MODFLOW are presented to summarize information on the exchange of groundwater among adjacent mines and to help guide the management of ongoing data collection, reclamation activities, and water-use planning. The conceptual model includes high-permeability mine voids that are connected vertically and horizontally within multicolliery units (MCUs). MCUs were identified on the basis of mine maps, locations of mine discharges, and groundwater levels in the mines measured by PaDEP. The locations and integrity of mine barriers were determined from mine maps and groundwater levels. The permeability of intact barriers is low, reflecting the hydraulic characteristics of unmined host rock and coal. A steady-state model was calibrated to measured groundwater

  13. The use of unmanned aerial systems for the mapping of legacy uranium mines.

    PubMed

    Martin, P G; Payton, O D; Fardoulis, J S; Richards, D A; Scott, T B

    2015-05-01

    Historical mining of uranium mineral veins within Cornwall, England, has resulted in a significant amount of legacy radiological contamination spread across numerous long disused mining sites. Factors including the poorly documented and aged condition of these sites as well as the highly localised nature of radioactivity limit the success of traditional survey methods. A newly developed terrain-independent unmanned aerial system [UAS] carrying an integrated gamma radiation mapping unit was used for the radiological characterisation of a single legacy mining site. Using this instrument to produce high-spatial-resolution maps, it was possible to determine the radiologically contaminated land areas and to rapidly identify and quantify the degree of contamination and its isotopic nature. The instrument was demonstrated to be a viable tool for the characterisation of similar sites worldwide. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Mining (except Oil and Gas) Sector (NAICS 212)

    EPA Pesticide Factsheets

    EPA Regulatory and enforcement information for the mining sector, including metal mining & nonmetallic mineral mining and quarrying. Includes information about asbestos, coal mining, mountaintop mining, Clean Water Act section 404, and abandoned mine lands

  15. Evolution of uranium distribution and speciation in mill tailings, COMINAK Mine, Niger.

    PubMed

    Déjeant, Adrien; Galoisy, Laurence; Roy, Régis; Calas, Georges; Boekhout, Flora; Phrommavanh, Vannapha; Descostes, Michael

    2016-03-01

    This study investigated the evolution of uranium distribution and speciation in mill tailings from the COMINAK mine (Niger), in production since 1978. A multi-scale approach was used, which combined high resolution remote sensing imagery, ICP-MS bulk rock analyses, powder X-ray diffraction, Scanning Electron Microscopy, Focused Ion Beam--Transmission Electron Microscopy and X-ray Absorption Near Edge Spectroscopy. Mineralogical analyses showed that some ore minerals, including residual uraninite and coffinite, undergo alteration and dissolution during tailings storage. The migration of uranium and other contaminants depends on (i) the chemical stability of secondary phases and sorbed species (dissolution and desorption processes), and (ii) the mechanical transport of fine particles bearing these elements. Uranium is stabilized after formation of secondary uranyl sulfates and phosphates, and adsorbed complexes on mineral surfaces (e.g. clay minerals). In particular, the stock of insoluble uranyl phosphates increases with time, thus contributing to the long-term stabilization of uranium. At the surface, a sulfate-cemented duricrust is formed after evaporation of pore water. This duricrust limits water infiltration and dust aerial dispersion, though it is enriched in uranium and many other elements, because of pore water rising from underlying levels by capillary action. Satellite images provided a detailed description of the tailings pile over time and allow monitoring of the chronology of successive tailings deposits. Satellite images suggest that uranium anomalies that occur at deep levels in the pile are most likely former surface duricrusts that have been buried under more recent tailings. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. 25 CFR 215.11 - New leases where prior leases have been forfeited or abandoned.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... MINERALS LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.11 New leases where prior leases... zinc ores have been discovered but the mines and mining operations have been abandoned and the leases... to the highest bidder. If the lead and zinc mining lease on said land be offered for sale at public...

  17. Geology of the area adjacent to the Free Enterprise uranium-silver Mine, Boulder District, Jefferson County, Montana

    USGS Publications Warehouse

    Roberts, W.A.; Gude, A.J.

    1952-01-01

    Uranium minerals.occur in pods associated with cryptocrystalline silica, silver minerals, and scattered sulfide mineral grains in a hydrothermal vein that cuts quartz monzonite and alaskite at the Free Enterprise mine, 2 miles west of Boulder, Mont. The Free Enterprise vein is one of many silicified reef-like structures in this area, most of which trend about N. 60° E. The cryptocrystalline silica zones of the area are lenticular and are bordered by an altered zone where quartz monzonite is the wall rock. No alteration was noticed where alaskite is adjacent to silica zones. No uranium minerals were observed at the surface, but radioactivity anomalies were noted at 57 outcrops. Underground mining has shown that leaching by downward percolating waters has removed most of the uranium from the near-surface part of the Free Enterprise vein and probably has enriched slightly, parts of the vein and the adjacent wall rock from the bottom of the leached zone to the ground-water level. It is possible that other veins that show low to moderate radioactivity at the surface may contain significant concentrations of uranium minerals at relatively shallow depth. The quartz monzonite appears to be a more favorable host rock for the cryptocrystalline silica and associated uranium minerals than the alaskite. The alaskite occurs as vertical_dikes plug-like masses, and as irregularly shaped, gently dipping masses that are believed to have been intruded into open fractures formed during the cooling of the quartz monzonite.

  18. Pesticide mobility and leachate toxicity in two abandoned mine soils. Effect of organic amendments.

    PubMed

    Rodríguez-Liébana, José Antonio; Mingorance, M Dolores; Peña, Aránzazu

    2014-11-01

    Abandoned mine areas, used in the past for the extraction of minerals, constitute a degraded landscape which needs to be reintegrated to productive or leisure activities. However these soils, mainly composed by silt or sand and with low organic matter content, are vulnerable to organic and inorganic pollutants posing a risk to the surrounding ecosystems and groundwater. Soils from two mining areas from Andalusia were evaluated: one from Nerva (NCL) in the Iberian Pyrite Belt (SW Andalusia) and another one from the iron Alquife mine (ALQ) (SE Andalusia). To improve soil properties and fertility two amendments, stabilised sewage sludge (SSL) and composted sewage sludge (CSL), were selected. The effect of amendment addition on the mobility of two model pesticides, thiacloprid and fenarimol, was assessed using soil columns under non-equilibrium conditions. Fenarimol, more hydrophobic than thiacloprid, only leached from native ALQ, a soil with lower organic carbon (OC) content than NCL (0.21 and 1.4%, respectively). Addition of amendments affected differently pesticide mobility: thiacloprid in the leachates was reduced by 14% in NCL-SSL and by 4% in ALQ-CSL. Soil OC and dissolved OC were the parameters which explained pesticide residues in soil. Chemical analysis revealed that leachates from the different soil columns did not contain toxic element levels, except As in NCL soil. Finally ecotoxicological data showed moderate toxicity in the initial leachates, with an increase coinciding with pesticide maximum concentration. The addition of SSL slightly reduced the toxicity towards Vibrio fischeri, likely due to enhanced retention of pesticides by amended soils. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. 30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Return of coal processing waste to abandoned... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL... RECLAMATION AND OPERATION PLAN § 784.25 Return of coal processing waste to abandoned underground workings. (a...

  20. 30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Return of coal processing waste to abandoned... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL... RECLAMATION AND OPERATION PLAN § 784.25 Return of coal processing waste to abandoned underground workings. (a...

  1. 30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Return of coal processing waste to abandoned... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL... RECLAMATION AND OPERATION PLAN § 784.25 Return of coal processing waste to abandoned underground workings. (a...

  2. The effect of abandoned mining ponds on trace elements dynamics in the soil-plant system

    NASA Astrophysics Data System (ADS)

    Gabarrón, María; Faz, Ángel; Zornoza, Raúl; Acosta, Jose A.

    2017-04-01

    In semiarid climate regions lack of vegetation and dryer climate contribute to erosion of abandoned mining surface areas making them up important potential sources of metal pollution into the environment. The objectives of this study were to determine the influence of mine ponds in agriculture and forest soils, and identify the dynamic of metals in the soil-plant system for native plant species (Ballota hirsuta) and crop species (Hordeum vulgare) in two ancient mining districts: La Unión and Mazarrón. To achieve these objectives, wastes samples from mine ponds and soil samples (rhizosphere and non-rhizosphere soils) from natural and agricultural lands were collected. In addition, six plants (Ballota hirsuta) from natural area and 3 plants (Hordeum vulgare) from crops were collected. Physicochemical properties and total, water soluble and bioavailable metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) and arsenic were measured in waste/soil samples. The chemical speciation of metals in soil was estimated by a sequential extraction procedure. For plants analyses, each plant were divided in roots, stem and leaves and metal content measured by ICP-MS. Results indicated that mine, natural and agricultural soils were contaminated by As, Cd, Cu, Pb, and Zn. Chemical partitioning revealed higher mobility of metals in mine ponds than natural and agriculture soils while only Fe and As are completely bound to the soil matrix due to the mineralogical compositions of soils. The accumulation of metals in Ballota hirsuta in La Union decrease as Fe>As>Cr>Ni>Cu>Zn>Cd>Mn>Co>Pb while in Mazarrón did as As>Fe>Cr>Pb>Cu>Ni>Co>Mn>Zn>Cd. Ballota hirsuta showed high ability to bio-accumulate Cu, Cr, Fe, Ni, and As, transferring a large amount to edible parts without exceeding the toxicity limits for animals. Results for barley plants (Hordeum vulgare) showed the ability to absorb and accumulate As, Fe, Mn, Pb and Zn, although the transfer ability of As, Cd and Pb was lower. Although the

  3. Study of arsenopyrite weathering products in mine wastes from abandoned tungsten and tin exploitations.

    PubMed

    Murciego, A; Alvarez-Ayuso, E; Pellitero, E; Rodríguez, Ma A; García-Sánchez, A; Tamayo, A; Rubio, J; Rubio, F; Rubin, J

    2011-02-15

    Arsenopyrite-rich wastes from abandoned tungsten and tin exploitations were studied to determine the composition and characteristics of the secondary phases formed under natural weathering conditions so as to assess their potential environmental risk. Representative weathered arsenopyrite-bearing rock wastes collected from the mine dumps were analysed using the following techniques: X-ray powder diffraction (XRD) analysis, polarizing microscopy analysis, electron microprobe analysis (EMPA) and microRaman and Mössbauer spectroscopies. Scorodite, pharmacosiderite and amorphous ferric arsenates (AFA) with Fe/As molar ratios in the range 1.2-2.5 were identified as secondary arsenic products. The former showed to be the most abundant and present in the different studied mining areas. Its chemical composition showed to vary in function of the original surrounding rock mineralogy in such a way that phosphoscorodite was found as the mineral variety present in apatite-containing geoenvirons. Other ever-present weathering phases were goethite and hydrous ferric oxides (HFO), displaying, respectively, As retained amounts about 1 and 20% (expressed as As(2)O(5)). The low solubility of scorodite, the relatively low content of AFA and the formation of compounds of variable charge, mostly of amorphous nature, with high capacity to adsorb As attenuate importantly the dispersion of this element into the environment from these arsenopyrite-bearing wastes. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Geology of the Shinarump No. 1 uranium mine, Seven Mile Canyon area, Grand County, Utah

    USGS Publications Warehouse

    Finch, Warren Irvin

    1954-01-01

    The geology of the Shinarump No. 1 uranium mine, located about 12 miles northwest of Moab, Utah, in the Seven Mile Canyon area, Grand County, Utah, was studied to determine the habits, ore controls, and possible origin of the deposit. Rocks of Permian, Triassic, and Jurassic age crop out in the area mapped, and uranium deposits are found in three zones in the lower 25 feet of the Chinle formation of Late Triassic age. The Shinarump No. 1 mine, which is in the lowermost zone, is located on the west flank of the Moab anticline near the Moab fault. The Shinarump No. 1 uranium deposit consists of discontinuous lenticular layers of mineralized rock, irregular in outline, that, in general, follow the bedding. Ore minerals, mainly uraninite, impregnate the rock. High-grade ore seams of uraninite and chalcocite occur along bedding planes. Uraninite formed later than, or simultaneous with, most sulfides, and the chalcocite may be of two ages, with some being later than uraninite. Uraninite and chalcocite are concentrated in the more poorly sorted parts of siltstones. In the Seven Mile Canyon area guides to ore inferred from the study of the Shinarump No. 1 deposit are the presence of bleached siltstone, carbonaceous matter, and copper sulfides. Results of spectrographic analysis indicate that the mineralizing solutions contained important amounts of barium, vanadium, uranium, and copper, as well as lesser amounts of strontium, chromium, boron, yttrium, lead, and zinc. The origin of the Shinarump No. 1 deposit is thought to be hydrothermal.

  5. U-Pb isotope systematics and age of uranium mineralization, Midnite mine, Washington.

    USGS Publications Warehouse

    Ludwig, K. R.; Nash, J.T.; Naeser, C.W.

    1981-01-01

    Uranium ores at the Midnite mine, near Spokane, Washington, occur in phyllites and calcsilicates of the Proterozoic Togo Formation, near the margins of an anomalously uraniferous, porphyritic quartz monzonite of Late Cretaceous age. The present geometry of the ore zones is tabular, with the thickest zones above depressions in the pluton-country rock contact. Analyses of high-grade ores from the mine define a 207 Pb/ 204 Pb- 235 U/ 204 Pb isochron indicating an age of mineralization of 51.0 + or - 0.5 m.y. This age coincides with a time of regional volcanic activity (Sanpoil Volcanics), shallow intrusive activity, erosion, and faulting. U-Th-Pb isotopic ages of zircons from the porphyritic quartz monzonite in the mine indicate an age of about 75 m.y., hence the present orebodies were formed about 24 m.y. after its intrusion. The 51-m.y. time of mineralization probably represents a period of mobilization and redeposition of uranium by supergene ground waters, perhaps aided by mild heating and ground preparation and preserved by a capping of newly accumulated, impermeable volcanic rocks. It seems most likely that the initial concentration of uranium occurred about 75 m.y. ago, probably from relatively mild hydrothermal fluids in the contact-metamorphic aureole of the U-rich porphyritic quartz monzonite.Pitchblende, coffinitc, pyrite, marcasite, and hisingerite are the most common minerals in the uranium-bearing veinlets, with minor sphalerite and chalcopyrite. Coffinitc with associated marcasite is paragenetically later than pitchblende, though textural and isotopic evidence suggests no large difference in the times of pitchblende and colfinite formation.The U-Pb isotope systematics of total ores and of pitchblende-coffinite and pyrite-marcasite separates show that whereas open system behavior for U and Pb is essentially negligible for large (200-500 g) ore samples, Pb migration has occurred on a scale of 1 to 10 mm (out of pitchblende and coffinite and into pyrite

  6. Evolution of vegetation and soil nutrients after uranium mining in Los Ratones mine (Cáceres, Spain).

    PubMed

    Pérez-Fernández, María A; Vera-Tomé, Feliciano; Blanco-Rodríguez, María P; Lozano, Juan C

    2014-06-01

    The evolution of vegetation structure following mine rehabilitation is rather scarce in the literature. The concentration of long-lived radionuclides of the (238)U series might have harmful effects on living organisms. We studied soil properties and the natural vegetation occurring along a gradient in Los Ratones, an area rehabilitated after uranium mining located in Cáceres, Spain. Soil and vegetation were sampled seasonally and physical and chemical properties of soil were analysed, including natural isotopes of (238)U, (230)Th, (226)Ra and (210)Pb. Species richness, diversity, evenness and plant cover were estimated and correlated in relation to soil physical and chemical variables. The location of the sampling sites along a gradient had a strong explanatory effect on the herbaceous species, as well as the presence of shrubs and trees. Seasonal effects of the four natural isotopes were observed in species richness, species diversity and plant cover; these effects were directly related to the pH values in the soil, this being the soil property that most influences the plant distribution. Vegetation in the studied area resembles that of the surroundings, thus proving that the rehabilitation carried out in Los Ratones mine was successful in terms of understorey cover recovery.

  7. A study of contaminated soils near Crucea-Botus, ana uranium mine (East Carpathians, Romania): metal distribution and partitioning of natural actinides with implications for vegetation uptake

    NASA Astrophysics Data System (ADS)

    Petrescu, L.; Bilal, E.

    2012-04-01

    Between 1962 and 2009, National Company of Uranium - CNU, the former Romanian Rare Metals Mining Company, mined over 1,200,000 tones of pitchblende ore in the East Carpathians (Crucea-Botušana area, Bistrita Mountains). The exploration and mining facilities include 32 adits, situated between 780 and 1040 m above sea level. Radioactive waste resulted from mining are disposed next to the mining facilities. Mine dumps (32) cover an area of 364,000 square meters and consist of waste rock (rocks with sub-economic mineralization) and gangue minerals. Older dumps (18) have been already naturally reclaimed by forest vegetation, which played an important role in stabilizing the waste dump cover and in slowing down the uranium migration processes. The soils samples have been collected from different mine dumps in the Crucea-Botušana uranium deposit, mainly from 1, 4, 5, 6, 8, 9, 1/30 and 950 mine waste galleries. Soil samples were collected from the upper part and slope at each mine dump, from the vegetation root zones. Total uranium concentration in soils collected from Crucea-Botušana site ranged from 6.10 to 680.70 ppm, with a mean of 52.48 ppm (dry wt.). Total thorium varies between 7.70 and 115.30 ppm (dry wt.). This indicates that the adsorption of the radioactive elements by the soils is high and variable, influenced by the ore dump - sample relationship. The sequential extraction has emphasized the fact that the uranium is associated with all the mineral fractions present in the soil samples. A great percentage of U can be found in the carbonate (21.77%), organic (15.04%) and oxides fractions (15.88%) - in accordance with the high absorbed/adsorbed properties of this element. The percentage of uranium detected in the exchangeable fraction is rather small - 2.16%. It is also to be expected that the uranium should be irreversible adsorbed by the organic matter and by the clay minerals due to its ionic radius and to its positive charge. The fact that 21.77% of the

  8. Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines.

    PubMed

    Lee, Saro; Park, Inhye

    2013-09-30

    Subsidence of ground caused by underground mines poses hazards to human life and property. This study analyzed the hazard to ground subsidence using factors that can affect ground subsidence and a decision tree approach in a geographic information system (GIS). The study area was Taebaek, Gangwon-do, Korea, where many abandoned underground coal mines exist. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 50/50 for training and validation of the models. A data-mining classification technique was applied to the GSH mapping, and decision trees were constructed using the chi-squared automatic interaction detector (CHAID) and the quick, unbiased, and efficient statistical tree (QUEST) algorithms. The frequency ratio model was also applied to the GSH mapping for comparing with probabilistic model. The resulting GSH maps were validated using area-under-the-curve (AUC) analysis with the subsidence area data that had not been used for training the model. The highest accuracy was achieved by the decision tree model using CHAID algorithm (94.01%) comparing with QUEST algorithms (90.37%) and frequency ratio model (86.70%). These accuracies are higher than previously reported results for decision tree. Decision tree methods can therefore be used efficiently for GSH analysis and might be widely used for prediction of various spatial events. Copyright © 2013. Published by Elsevier Ltd.

  9. Numerical Simulation of Abandoned Gob Methane Drainage through Surface Vertical Wells

    PubMed Central

    Hu, Guozhong

    2015-01-01

    The influence of the ventilation system on the abandoned gob weakens, so the gas seepage characteristics in the abandoned gob are significantly different from those in a normal mining gob. In connection with this, this study physically simulated the movement of overlying rock strata. A spatial distribution function for gob permeability was derived. A numerical model using FLUENT for abandoned gob methane drainage through surface wells was established, and the derived spatial distribution function for gob permeability was imported into the numerical model. The control range of surface wells, flow patterns and distribution rules for static pressure in the abandoned gob under different well locations were determined using the calculated results from the numerical model. PMID:25955438

  10. Effects of Historical Coal Mining and Drainage from Abandoned Mines on Streamflow and Water Quality in Newport and Nanticoke Creeks, Luzerne County, Pennsylvania, 1999-2000

    USGS Publications Warehouse

    Chaplin, Jeffrey J.; Cravotta,, Charles A.; Weitzel, Jeffrey B.; Klemow, Kenneth M.

    2007-01-01

    This report characterizes the effects of historical mining and abandoned mine drainage (AMD) on streamflow and water quality and evaluates potential strategies for AMD abatement in the 14-square-mile Newport Creek Basin and 7.6-square-mile Nanticoke Creek Basin. Both basins are mostly within the Northern Anthracite Coal Field and drain to the Susquehanna River in central Luzerne County, Pa. The U.S. Geological Survey (USGS), in cooperation with the Earth Conservancy, conducted an assessment from April 1999 to September 2000 that included (1) continuous stage measurement at 7 sites; (2) synoptic water-quality and flow sampling at 21 sites on June 2-4, 1999, and at 24 sites on October 7-8, 1999; and (3) periodic measurement of flow and water quality at 26 additional sites not included in the synoptic sampling effort. Stream water and surface runoff from the unmined uplands drain northward to the valley, where most of the water is intercepted and diverted into abandoned underground mines. Water that infiltrates into the mine workings becomes loaded with acidity, metals, and sulfate and later discharges as AMD at topographically low points along lower reaches of Newport Creek, Nanticoke Creek, and their tributaries. Differences among streamflows in unmined and mined areas of the watersheds indicated that (1) intermediate stream reaches within the mined area but upgradient of AMD sites generally were either dry or losing reaches, (2) ground water flowing to AMD sites could cross beneath surface-drainage divides, and (3) AMD discharging to the lower stream reaches restored volumes lost in the upstream reaches. The synoptic data for June and October 1999, along with continuous stage data during the study period, indicated flows during synoptic surveys were comparable to average values. The headwaters upstream of the mined area generally were oxygenated (dissolved oxygen range was 4.7 to 11.0 mg/L [milligrams per liter]), near-neutral (pH range was 5.8 to 7.6), and net

  11. Critical analysis of world uranium resources

    USGS Publications Warehouse

    Hall, Susan; Coleman, Margaret

    2013-01-01

    The U.S. Department of Energy, Energy Information Administration (EIA) joined with the U.S. Department of the Interior, U.S. Geological Survey (USGS) to analyze the world uranium supply and demand balance. To evaluate short-term primary supply (0–15 years), the analysis focused on Reasonably Assured Resources (RAR), which are resources projected with a high degree of geologic assurance and considered to be economically feasible to mine. Such resources include uranium resources from mines currently in production as well as resources that are in the stages of feasibility or of being permitted. Sources of secondary supply for uranium, such as stockpiles and reprocessed fuel, were also examined. To evaluate long-term primary supply, estimates of uranium from unconventional and from undiscovered resources were analyzed. At 2010 rates of consumption, uranium resources identified in operating or developing mines would fuel the world nuclear fleet for about 30 years. However, projections currently predict an increase in uranium requirements tied to expansion of nuclear energy worldwide. Under a low-demand scenario, requirements through the period ending in 2035 are about 2.1 million tU. In the low demand case, uranium identified in existing and developing mines is adequate to supply requirements. However, whether or not these identified resources will be developed rapidly enough to provide an uninterrupted fuel supply to expanded nuclear facilities could not be determined. On the basis of a scenario of high demand through 2035, 2.6 million tU is required and identified resources in operating or developing mines is inadequate. Beyond 2035, when requirements could exceed resources in these developing properties, other sources will need to be developed from less well-assured resources, deposits not yet at the prefeasibility stage, resources that are currently subeconomic, secondary sources, undiscovered conventional resources, and unconventional uranium supplies. This

  12. Assessment of nonpoint source chemical loading potential to watersheds containing uranium waste dumps associated with uranium exploration and mining, San Rafael Swell, Utah

    USGS Publications Warehouse

    Freeman, Michael L.; Naftz, David L.; Snyder, Terry; Johnson, Greg

    2008-01-01

    During July and August of 2006, 117 solid-phase samples were collected from abandoned uranium waste dumps, geologic background sites, and adjacent streambeds in the San Rafael Swell, in southeastern Utah. The objective of this sampling program was to assess the nonpoint source chemical loading potential to ephemeral and perennial watersheds from uranium waste dumps on Bureau of Land Management property. Uranium waste dump samples were collected using solid-phase sampling protocols. After collection, solid-phase samples were homogenized and extracted in the laboratory using a field leaching procedure. Filtered (0.45 micron) water samples were obtained from the field leaching procedure and were analyzed for Ag, As, Ba, Be, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Se, U, V, and Zn at the Inductively Coupled Plasma-Mass Spectrometry Metals Analysis Laboratory at the University of Utah, Salt Lake City, Utah and for Hg at the U.S. Geological Survey National Water Quality Laboratory, Denver, Colorado. For the initial ranking of chemical loading potential of suspect uranium waste dumps, leachate analyses were compared with existing aquatic life and drinking-water-quality standards and the ratio of samples that exceeded standards to the total number of samples was determined for each element having a water-quality standard for aquatic life and drinking-water. Approximately 56 percent (48/85) of the leachate samples extracted from uranium waste dumps had one or more chemical constituents that exceeded aquatic life and drinking-water-quality standards. Most of the uranium waste dump sites with elevated trace-element concentrations in leachates were along Reds Canyon Road between Tomsich Butte and Family Butte. Twelve of the uranium waste dump sites with elevated trace-element concentrations in leachates contained three or more constituents that exceeded drinking-water-quality standards. Eighteen of the uranium waste dump sites had three or more constituents that exceeded trace

  13. Spectral masking of goethite in abandoned mine drainage systems: implications for Mars

    USGS Publications Warehouse

    Cull, Selby; Cravotta, Charles A.; Klinges, Julia Grace; Weeks, Chloe

    2014-01-01

    Remote sensing studies of the surface of Mars use visible- to near-infrared (VNIR) spectroscopy to identify hydrated and hydroxylated minerals, which can be used to constrain past environmental conditions on the surface of Mars. However, due to differences in optical properties, some hydrated phases can mask others in VNIR spectra, complicating environmental interpretations. Here, we examine the role of masking in VNIR spectra of natural precipitates of ferrihydrite, schwertmannite, and goethite from abandoned mine drainage (AMD) systems in southeastern Pennsylvania. Mixtures of ferrihydrite, schwertmannite, and goethite were identified in four AMD sites by using X-ray diffractometry (XRD), and their XRD patterns compared to their VNIR spectra. We find that both ferrihydrite and schwertmannite can mask goethite in VNIR spectra of natural AMD precipitates. These findings suggest that care should be taken in interpreting environments on Mars where ferrihydrite, schwertmannite, or goethite are found, as the former two may be masking the latter. Additionally, our findings suggest that outcrops on Mars with both goethite and ferrihydrite/schwertmannite VNIR signatures may have high relative abundances of goethite, or the goethite may exist in a coarsely crystalline phase.

  14. Microbial communities in low permeability, high pH uranium mine tailings: characterization and potential effects.

    PubMed

    Bondici, V F; Lawrence, J R; Khan, N H; Hill, J E; Yergeau, E; Wolfaardt, G M; Warner, J; Korber, D R

    2013-06-01

    To describe the diversity and metabolic potential of microbial communities in uranium mine tailings characterized by high pH, high metal concentration and low permeability. To assess microbial diversity and their potential to influence the geochemistry of uranium mine tailings using aerobic and anaerobic culture-based methods, in conjunction with next generation sequencing and clone library sequencing targeting two universal bacterial markers (the 16S rRNA and cpn60 genes). Growth assays revealed that 69% of the 59 distinct culturable isolates evaluated were multiple-metal resistant, with 15% exhibiting dual-metal hypertolerance. There was a moderately positive correlation coefficient (R = 0·43, P < 0·05) between multiple-metal resistance of the isolates and their enzyme expression profile. Of the isolates tested, 17 reduced amorphous iron, 22 reduced molybdate and seven oxidized arsenite. Based on next generation sequencing, tailings depth was shown to influence bacterial community composition, with the difference in the microbial diversity of the upper (0-20 m) and middle (20-40 m) tailings zones being highly significant (P < 0·01) from the lower zone (40-60 m) and the difference in diversity of the upper and middle tailings zone being significant (P < 0·05). Phylotypes closely related to well-known sulfate-reducing and iron-reducing bacteria were identified with low abundance, yet relatively high diversity. The presence of a population of metabolically-diverse, metal-resistant micro-organisms within the tailings environment, along with their demonstrated capacity for transforming metal elements, suggests that these organisms have the potential to influence the long-term geochemistry of the tailings. This study is the first investigation of the diversity and functional potential of micro-organisms present in low permeability, high pH uranium mine tailings. © 2013 The Society for Applied Microbiology.

  15. Radio-Ecological Conditions of Groundwater in the Area of Uranium Mining and Milling Facility - 13525

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titov, A.V.; Semenova, M.P.; Seregin, V.A.

    2013-07-01

    Manmade chemical and radioactive contamination of groundwater is one of damaging effects of the uranium mining and milling facilities. Groundwater contamination is of special importance for the area of Priargun Production Mining and Chemical Association, JSC 'PPMCA', because groundwater is the only source of drinking water. The paper describes natural conditions of the site, provides information on changes of near-surface area since the beginning of the company, illustrates the main trends of contaminators migration and assesses manmade impact on the quality and mode of near-surface and ground waters. The paper also provides the results of chemical and radioactive measurements inmore » groundwater at various distances from the sources of manmade contamination to the drinking water supply areas. We show that development of deposits, mine water discharge, leakages from tailing dams and cinder storage facility changed general hydro-chemical balance of the area, contributed to new (overlaid) aureoles and flows of scattering paragenetic uranium elements, which are much smaller in comparison with natural ones. However, increasing flow of groundwater stream at the mouth of Sukhoi Urulyungui due to technological water infiltration, mixing of natural water with filtration streams from industrial reservoirs and sites, containing elevated (relative to natural background) levels of sulfate-, hydro-carbonate and carbonate- ions, led to the development and moving of the uranium contamination aureole from the undeveloped field 'Polevoye' to the water inlet area. The aureole front crossed the southern border of water inlet of drinking purpose. The qualitative composition of groundwater, especially in the southern part of water inlet, steadily changes for the worse. The current Russian intervention levels of gross alpha activity and of some natural radionuclides including {sup 222}Rn are in excess in drinking water; regulations for fluorine and manganese concentrations are also

  16. VALUING ACID MINE DRAINAGE REMEDIATION OF IMPAIRED WATERWAYS IN WEST VIRGINIA: A HEDONIC MODELING APPROACH

    EPA Science Inventory

    States with active and abandoned mines face large private and public costs to remediate damage to streams and rivers from acid mine drainage (AMD), the metal rich runoff flowing primarily from abandoned mines and surface deposits of mine waste. AMD can lower stream and river pH ...

  17. Uranium from Africa - An overview on past and current mining activities: Re-appraising associated risks and chances in a global context

    NASA Astrophysics Data System (ADS)

    Winde, Frank; Brugge, Doug; Nidecker, Andreas; Ruegg, Urs

    2017-05-01

    In 2003, nuclear power received renewed interest as a perceived climate-neutral way to meet high energy demands of large industrialized countries, such as China, India, Russia and the USA. It triggered a growing demand for uranium (U) as nuclear fuel. Dubbed the 'nuclear renaissance', the U-price rose over tenfold before the global credit crisis dampend the rush. Many efforts to capitalise on the renewed demand focused on Africa. This paper provides an overview on the type and extent of uranium mining, production and exploration on the African continent and discusses the economic benefits as well as the potential environmental and health risks and the long-term needs for remediation of legacy sites. The actual historical results of uranium mining activities in more than thirty African countries provide data against which to assess the existing risks of uranium development. The already existing uraniferous waste in several African countries threatens scarce water resources and the health of adjacent residents. Responsibility should rest with the governments and the companies to ensure that these threats are not realized.

  18. THE EPA/DOE MINE WASTE TECHNOLOGY PROGRAM

    EPA Science Inventory

    Mining activities in the US (not counting coal) produce between 1-2B tons of mine waste annually. Since many of the ore mines involve sulfide minerals, the production of acid mine drainage (AMD) is a common problem from these abandoned mine sites. The combination of acidity, heav...

  19. Hydrological and geophysical investigation of streamflow losses and restoration strategies in an abandoned mine lands setting

    USGS Publications Warehouse

    Cravotta, Charles A.; Sherrod, Laura; Galeone, Daniel G.; Lehman, Wayne G.; Ackman, Terry E.; Kramer, Alexa

    2017-01-01

    Longitudinal discharge and water-quality campaigns (seepage runs) were combined with surface-geophysical surveys, hyporheic-temperature profiling, and watershed-scale hydrological monitoring to evaluate the locations, magnitude, and impact of streamwater losses from the West Creek subbasin of the West West Branch Schuylkill River into the underground Oak Hill Mine complex that extends beneath the watershed divide. Abandoned mine drainage (AMD), containing iron and other contaminants, from the Oak Hill Boreholes to the West Branch Schuylkill River was sustained during low-flow conditions and correlated to streamflow lost through the West Creek streambed. During high-flow conditions, streamflow was transmitted throughout West Creek; however, during low-flow conditions, all streamflow from the perennial headwaters was lost within the 300-to-600-m "upper reach" where an 1889 mine map indicated steeply dipping coalbeds underlie the channel. During low-flow conditions, the channel within the "intermediate reach" 700-to-1650-m downstream gained groundwater seepage with higher pH and specific conductance than upstream; however, all streamflow 1650-to-2050-m downstream was lost to underlying mines. Electrical resistivity and electromagnetic conductivity surveys indicated conductive zones beneath the upper reach, where flow loss occurred, and through the intermediate reach, where gains and losses occurred. Temperature probes at 0.06-to-0.10-m depth within the hyporheic zone of the intermediate reach indicated potential downward fluxes as high as 2.1x10-5 m/s. Cumulative streamflow lost from West Creek during seepage runs averaged 53.4 L/s, which equates to 19.3 percent of the daily average discharge of AMD from the Oak Hill Boreholes and a downward flux of 1.70x10-5 m/s across the 2.1-km-by-1.5-m West Creek stream-channel area.

  20. Exposure of insects and insectivorous birds to metals and other elements from abandoned mine tailings in three Summit County drainages, Colorado

    USGS Publications Warehouse

    Custer, Christine M.; Yang, C.; Crock, J.G.; Shearn-Bochsler, V.; Smith, K.S.; Hageman, P.L.

    2009-01-01

    Concentrations of 31 metals, metalloids, and other elements were measured in insects and insectivorous bird tissues from three drainages with different geochemistry and mining histories in Summit Co., Colorado, in 2003, 2004, and 2005. In insect samples, all 25 elements that were analyzed in all years increased in both Snake and Deer Creeks in the mining impacted areas compared to areas above and below the mining impacted areas. This distribution of elements was predicted from known or expected sediment contamination resulting from abandoned mine tailings in those drainages. Element concentrations in avian liver tissues were in concordance with levels in insects, that is with concentrations higher in mid-drainage areas where mine tailings were present compared to both upstream and downstream locations; these differences were not always statistically different, however. The lack of statistically significant differences in liver tissues, except for a few elements, was due to relatively small sample sizes and because many of these elements are essential and therefore well regulated by the bird's homeostatic processes. Most elements were at background concentrations in avian liver tissue except for Pb which was elevated at mid-drainage sites to levels where ??-aminolevulinic acid dehydratase activity was inhibited at other mining sites in Colorado. Lead exposure, however, was not at toxic levels. Fecal samples were not a good indication of what elements birds ingested and were potentially exposed to. ?? Springer Science+Business Media B.V. 2008.

  1. OCCUPATIONAL EXPOSURE TO RADON IN DIFFERENT KINDS OF NON-URANIUM MINES.

    PubMed

    Fan, D; Zhuo, W; Zhang, Y

    2016-09-01

    For more accurate assessments of the occupational exposure to radon for miners, the individual monitoring was conducted by using an improved passive integrating (222)Rn monitor. A total of 120 miners in 3 different kinds of mines were monitored throughout a year. The results showed that the individual exposure to radon significantly varied with types of mines and work. Compared with the exposure to coal miners, the exposure to copper miners was much higher. Furthermore, it was found that the exposure might be overestimated if the environmental (222)Rn monitored by the passive integrating monitors was used for assessment. The results indicate that the individual monitoring of radon is necessary for an accurate assessment of radon exposure to miners, and radon exposure to non-uranium miners should also be assessed from the viewpoint of radiation protection. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Uranium-Loaded Water Treatment Resins: 'Equivalent Feed' at NRC and Agreement State-Licensed Uranium Recovery Facilities - 12094

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camper, Larry W.; Michalak, Paul; Cohen, Stephen

    Community Water Systems (CWSs) are required to remove uranium from drinking water to meet EPA standards. Similarly, mining operations are required to remove uranium from their dewatering discharges to meet permitted surface water discharge limits. Ion exchange (IX) is the primary treatment strategy used by these operations, which loads uranium onto resin beads. Presently, uranium-loaded resin from CWSs and mining operations can be disposed as a waste product or processed by NRC- or Agreement State-licensed uranium recovery facilities if that licensed facility has applied for and received permission to process 'alternate feed'. The disposal of uranium-loaded resin is costly andmore » the cost to amend a uranium recovery license to accept alternate feed can be a strong disincentive to commercial uranium recovery facilities. In response to this issue, the NRC issued a Regulatory Issue Summary (RIS) to clarify the agency's policy that uranium-loaded resin from CWSs and mining operations can be processed by NRC- or Agreement State-licensed uranium recovery facilities without the need for an alternate feed license amendment when these resins are essentially the same, chemically and physically, to resins that licensed uranium recovery facilities currently use (i.e., equivalent feed). NRC staff is clarifying its current alternate feed policy to declare IX resins as equivalent feed. This clarification is necessary to alleviate a regulatory and financial burden on facilities that filter uranium using IX resin, such as CWSs and mine dewatering operations. Disposing of those resins in a licensed facility could be 40 to 50 percent of the total operations and maintenance (O and M) cost for a CWS. Allowing uranium recovery facilities to treat these resins without requiring a license amendment lowers O and M costs and captures a valuable natural resource. (authors)« less

  3. Humanitarian Consequences of Land Mines.

    ERIC Educational Resources Information Center

    Rutherford, Ken

    1997-01-01

    Investigates the human and economic consequences of the continuing use and abandonment of land mines. Discusses the reasons for the worldwide proliferation (over 85 million uncleared mines in at least 62 countries) and the legal complexities in curtailing their use. Includes a brief account by a land-mine victim. (MJP)

  4. Urinary arsenic levels influenced by abandoned mine tailings in the Southernmost Baja California Peninsula, Mexico.

    PubMed

    Colín-Torres, Carlos G; Murillo-Jiménez, Janette M; Del Razo, Luz M; Sánchez-Peña, Luz C; Becerra-Rueda, Oscar F; Marmolejo-Rodríguez, Ana J

    2014-10-01

    Gold has been mined at San Antonio-El Triunfo, (Baja California Sur, Mexico) since the 18th century. This area has approximately 5,700 inhabitants living in the San Juan de Los Planes and El Carrizal hydrographic basins, close to more than 100 abandoned mining sites containing tailings contaminated with potentially toxic elements such as arsenic. To evaluate the arsenic exposure of humans living in the surrounding areas, urinary arsenic species, such as inorganic arsenic (iAs) and the metabolites mono-methylated (MMA) and di-methylated arsenic acids (DMA), were evaluated in 275 residents (18-84 years of age). Arsenic species in urine were analyzed by hydride generation-cryotrapping-atomic absorption spectrometry, which excludes the non-toxic forms of arsenic such as those found in seafood. Urinary samples contained a total arsenic concentration (sum of arsenical species) which ranged from 1.3 to 398.7 ng mL(-1), indicating 33% of the inhabitants exceeded the biological exposition index (BEI = 35 ng mL(-1)), the permissible limit for occupational exposure. The mean relative urinary arsenic species were 9, 11 and 80% for iAs, MMA and DMA, respectively, in the Los Planes basin, and 17, 10 and 73%, respectively, in the El Carrizal basin. These data indicated that environmental intervention is required to address potential health issues in this area.

  5. Assessment of uranium release to the environment from a disabled uranium mine in Brazil.

    PubMed

    Pereira, Wagner de Souza; Kelecom, Alphonse Germaine Albert Charles; da Silva, Ademir Xavier; do Carmo, Alessander Sá; Py Júnior, Delcy de Azavedo

    2018-08-01

    The Ore Treatment Unit (in Portuguese Unidade de Tratamento de Minérios - UTM) located in Caldas, MG, Brazil is a disabled uranium mine. Environmental conditions generate acid drainage leaching metals and radionuclides from the waste rock pile. This drainage is treated to remove the heavy metals and radionuclides, before allowing the release of the effluent to the environment. To validate the treatment, samples of the released effluents were collected at the interface of the installation with the environment. Sampling was carried out from 2010 to 2015, and the activity concentration (AC, in Bq·l -1 ) of uranium in the liquid effluent was analyzed by arzenazo UV-Vis spectrophotometry of the soluble and particulate fractions, and of the sum of both fractions. Descriptive statistics, Z test and Pearson R 2 correlation among the fractions were performed. Then, the data were organized by year and both ANOVA and Tukey test were carried out to group the means by magnitude of AC. The annual mean ranged from 0.02 Bq·l -1 in 2015 to 0.11 Bq·l -1 in 2010. The soluble fraction showed a higher AC mean when compared to the mean of the particulate fraction and no correlation of the data could be observed. Concerning the magnitude of the release, the ANOVA associated with the Tukey test, identified three groups of annual means (AC 2010 > AC 2011  = AC 2012  = AC 2013  = AC 2014  > AC 2015 ). The mean values of uranium release at the interface installation-environment checking point (point 014) were within the Authorized Annual Limit (AAL) set by the regulator (0.2 Bq·l -1 ) indicating compliance of treatment with the licensing established for the unit. Finally, the data showed a decreasing tendency of U release. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Risk assessment and restoration possibilities of some abandoned mining ponds in Murcia Region, SE Spain

    NASA Astrophysics Data System (ADS)

    Faz, Angel; Acosta, Jose A.; Martinez-Martinez, Silvia; Carmona, Dora M.; Zornoza, Raul; Kabas, Sebla; Bech, Jaume

    2010-05-01

    In Murcia Region, SE Spain, there are 85 tailing ponds due to intensive mining activities that occurred during last century, especially in Sierra Minera de Cartagena-La Union. Although mining activity was abandoned several decades ago, those tailing ponds with high amounts of heavy metals still remain in the area. The ponds, due to their composition and location, may create environmental risks of geochemical pollution, negatively affecting soil, water, and plant, animal, and human populations, as well as infrastructures. The main objective of this research is to evaluate the restoration possibilities of two representative mining ponds in order to minimize the risk for human and ecosystems. To achieve this objective, two tailing ponds generated by mining activities were selected, El Lirio and El Gorguel. These ponds are representative of the rest of existent ponds in Sierra Minera de Cartagena-La Unión, with similar problems and characteristics. Several techniques and studies were applied to the tailing ponds for their characterization, including: geophysics, geotechnics, geochemical, geological, hydrological, and vegetation studies. In addition, effects of particulate size in the distribution of heavy metals will be used to assess the risk of dispersion of these metals in finest particles. Once the ponds were characterized, they were divided in several sectors in order to apply different amendments (pig slurry and marble waste) to reduce the risk of metal mobility and improve soil quality for a future phytostabilization. It is known that organic amendments promote soil development processes, microbial diversity, and finally, soil ecosystem restoration to a state of self-sustainability. By comparing the results before and after applications we will be able to evaluate the effect of the different amendments on soil quality and their effectively on risk reduction. Finally, plant metal-tolerant species are used to restore vegetation in the ponds, thereby decreasing

  7. The future of Yellowcake: a global assessment of uranium resources and mining.

    PubMed

    Mudd, Gavin M

    2014-02-15

    Uranium (U) mining remains controversial in many parts of the world, especially in a post-Fukushima context, and often in areas with significant U resources. Although nuclear proponents point to the relatively low carbon intensity of nuclear power compared to fossil fuels, opponents argue that this will be eroded in the future as ore grades decline and energy and greenhouse gas emissions (GGEs) intensity increases as a result. Invariably both sides fail to make use of the increasingly available data reported by some U mines through sustainability reporting - allowing a comprehensive assessment of recent trends in the energy and GGE intensity of U production, as well as combining this with reported mineral resources to allow more comprehensive modelling of future energy and GGEs intensity. In this study, detailed data sets are compiled on reported U resources by deposit type, as well as mine production, energy and GGE intensity. Some important aspects included are the relationship between ore grade, deposit type and recovery, which are crucial in future projections of U mining. Overall, the paper demonstrates that there are extensive U resources known to meet potential short to medium term demand, although the future of U mining remains uncertain due to the doubt about the future of nuclear power as well as a range of complex social, environmental, economic and some site-specific technical issues. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. 30 CFR 819.21 - Auger mining: Protection of underground mining.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS SPECIAL PERMANENT PROGRAM PERFORMANCE... closer than 500 feet (measured horizontally) to any abandoned or active underground mine workings, except...

  9. INITIATIVES AND TREATMENT OF MERCURY IN ABANDONED MINES

    EPA Science Inventory

    This presentation discusses EPA's research activities and mitigation activities for mercury contaminated mine sites at the International meeting on mercury and artisanal gold mining in Lima, Peru. The topics discussed included the toxicological and enviornmental tasks associated ...

  10. INNOVATIVE, IN SITU TREATMENT OF ACID MINE DRAINAGE USING SULFATE REDUCING BACTERIA

    EPA Science Inventory

    Acid generation in abandoned mines is a widespread problem. There are a numberous quantity of abandoned mines in the west which have no power source, have limited physical accessibility and have limited remediation funds available. Acid is produced chemically, through pyritic min...

  11. Bioremediation of uranium contamination with enzymatic uranium reduction

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.

    1992-01-01

    Enzymatic uranium reduction by Desulfovibrio desulfuricans readily removed uranium from solution in a batch system or when D. desulfuricans was separated from the bulk of the uranium-containing water by a semipermeable membrane. Uranium reduction continued at concentrations as high as 24 mM. Of a variety of potentially inhibiting anions and metals evaluated, only high concentrations of copper inhibited uranium reduction. Freeze-dried cells, stored aerobically, reduced uranium as fast as fresh cells. D. desulfuricans reduced uranium in pH 4 and pH 7.4 mine drainage waters and in uraniumcontaining groundwaters from a contaminated Department of Energy site. Enzymatic uranium reduction has several potential advantages over other bioprocessing techniques for uranium removal, the most important of which are as follows: the ability to precipitate uranium that is in the form of a uranyl carbonate complex; high capacity for uranium removal per cell; the formation of a compact, relatively pure, uranium precipitate.

  12. Potential toxic elements in stream sediments, soils and waters in an abandoned radium mine (central Portugal).

    PubMed

    Antunes, I M H R; Neiva, A M R; Albuquerque, M T D; Carvalho, P C S; Santos, A C T; Cunha, Pedro P

    2018-02-01

    The Alto da Várzea radium mine (AV) exploited ore and U-bearing minerals, such as autunite and torbernite. The mine was exploited underground from 1911 to 1922, closed in 1946 without restoration, and actually a commercial area is deployed. Stream sediments, soils and water samples were collected between 2008 and 2009. Stream sediments are mainly contaminated in As, Th, U and W, which is related to the AV radium mine. The PTEs, As, Co, Cr, Sr, Th, U, W, Zn, and electrical conductivity reached the highest values in soils collected inside the mine influence. Soils are contaminated with As and U and must not be used for any purpose. Most waters have pH values ranging from 4.3 to 6.8 and are poorly mineralized (EC = 41-186 µS/cm; TDS = 33-172 mg/L). Groundwater contains the highest Cu, Cr and Pb contents. Arsenic occurs predominantly as H 2 (AsO 4 ) - and H(AsO 4 ) 2- . Waters are saturated in goethite, haematite and some of them also in lepidocrocite and ferrihydrite, which adsorbs As (V). Lead is divalent in waters collected during the warm season, being mobile in these waters. Thorium occurs mainly as Th(OH) 3 (CO 3 ) - , Th(OH) 2 (CO 3 ) and Th(OH) 2 (CO 3 ) 2 2- , which increase water Th contents. Uranium occurs predominantly as UO 2 CO 3 , but CaUO 2 (CO 3 ) 3 2- and CaUO 2 (CO 3 ) 3 also occur, decreasing its mobility in water. The waters are contaminated in NO 2 - , Mn, Cu, As, Pb and U and must not be used for human consumption and in agricultural activities. The water contamination is mainly associated with the old radium mine and human activities. A restoration of the mining area with PTE monitoring is necessary to avoid a public hazard.

  13. The social costs of uranium mining in the US Colorado Plateau cohort, 1960-2005.

    PubMed

    Jones, Benjamin A

    2017-05-01

    Long-term social costs associated with underground uranium mining are largely unknown. This study estimated health costs of Native American and white (Hispanic and non-Hispanic origin) uranium miners in the US Public Health Service Colorado Plateau cohort study. Elevated uranium miner person-years of life lost (PYLL) were calculated from the most recent study of the Colorado Plateau cohort over 1960-2005. Nine causes of death categories were included. Costs to society of miner PYLL were monetized using the value of a statistical life-year approach. Costs over 1960-2005 totaled $2 billion USD [95% CI: $1.8, $2.2], or $2.9 million per elevated miner death. This corresponds to $43.1 million [95%: $38.7, $48.7] in annual costs. Lung cancer was the most costly cause of death at $1.4 billion [95%: $1.3, $1.5]. Absolute health costs were largest for white miners, but Native Americans had larger costs per elevated death. Annual excess mortality over 1960-2005 averaged 366.4 per 100,000 miners; 404.6 (white) and 201.5 per 100,000 (Native American). This research advances our understanding of uranium extraction legacy impacts, particularly among indigenous populations.

  14. 76 FR 60935 - Notice of Application from ExxonMobil Corporation, Highland Uranium Mine and Millsite, To Amend...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-30

    ... and Extend the NRC Long-Term Surveillance Boundary With Respect to Materials License SUA-1139 AGENCY... concentration limits and to extend the NRC Long-Term Surveillance Boundary at its Highland Uranium Mine and Mill... wells and at the proposed POC well. The amendment also proposes to expand the Long-Term Surveillance...

  15. The ethical issues in uranium mining research in the Navajo Nation.

    PubMed

    Panikkar, Bindu; Brugge, Doug

    2007-01-01

    We explore the experience of Navajo communities living under the shadow of nuclear age fallout who were subjects of five decades of research. In this historical analysis of public health (epidemiological) research conducted in the Navajo lands since the inception of uranium mining from the 1950s untill the end of the 20th century, we analyze the successes and failures in the research initiatives conducted on Navajo lands, the ethical breaches, and the harms and benefits that this research has brought about to the community. We discuss how scientific and moral uncertainty, lack of full stakeholder participation and community wide outreach and education can impact ethical decisions made in research.

  16. Fate of antimony and arsenic in contaminated waters at the abandoned Su Suergiu mine (Sardinia, Italy)

    USGS Publications Warehouse

    Cidu, Rosa; Dore, Elisabetta; Biddau, Riccardo; Nordstrom, D. Kirk

    2018-01-01

    We investigated the fate of Sb and As downstream of the abandoned Su Suergiu mine (Sardinia, Italy) and surrounding areas. The mined area is a priority in the Sardinian remediation plan for contaminated sites due to the high concentrations of Sb and As in the mining-related wastes, which may impact the Flumendosa River that supplies water for agriculture and domestic uses. Hydrogeochemical surveys conducted from 2005 to 2015 produced time-series data and downstream profiles of water chemistry at 46 sites. Water was sampled at: springs and streams unaffected by mining; adits and streams in the mine area; drainage from the slag heaps; stream water downstream of the slag drainages; and the Flumendosa River downstream from the confluence of the contaminated waters. At specific sites, water sampling was repeated under different flow conditions, resulting in a total of 99 samples. The water samples were neutral to slightly alkaline. Elevated Sb (up to 30 mg L−1) and As (up to 16 mg L−1) concentrations were observed in water flowing from the slag materials from where the Sb ore was processed. These slag materials were the main Sb and As source at Su Suergiu. A strong base, Na-carbonate, from the foundry wastes, had a major influence on mobilizing Sb and As. Downstream contamination can be explained by considering that: (1) the predominant aqueous species, Sb(OH)6 − and HAsO4 −2, are not favored in sorption processes at the observed pH conditions; (2) precipitation of Sb- and As-bearing solid phases was not observed, which is consistent with modeling results indicating undersaturation; and (3) the main decrease in dissolved Sb and As concentrations was by dilution. Dissolved As concentrations in the Flumendosa River did not generally exceed the EU limit of 10 µg L−1, whereas dissolved Sb in the river downstream of the contamination source always exceeded the EU limit of 5 µg L−1. Recent actions aimed at retaining runoff from the slag heaps are apparently

  17. Leaching, transport, and methylation of mercury in and around abandoned mercury mines in the Humboldt River basin and surrounding areas, Nevada. Chapter C.

    USGS Publications Warehouse

    Gray, John E.; Stillings, Lisa L.

    2003-01-01

    Mercury and methylmercury concentrations were measured in mine wastes, stream sediments, and stream waters collected both proximal and distal from abandoned mercury mines to evaluate mercury contamination and mercury methylation in the Humboldt River system. The climate in the study area is arid, and due to the lack of mine-water runoff, water-leaching laboratory experiments were used to evaluate the potential of mine wastes to release mercury. Mine-waste calcine contains mercury concentrations as high as 14,000 ?g/g. Stream-sediment samples collected within 1 km of the mercury mines studied contain mercury concentrations as high as 170 ?g/g, but sediments collected from the Humboldt River and regional baseline sites have much lower mercury contents, less than 0.44 ?g/g. Similarly, methylmercury concentrations in mine-waste calcine are locally as high as 96 ng/g, but methylmercury contents in stream sediments collected down-stream from the mines and from the Humboldt River are lower (<0.05-0.95 ng/g). Stream-water samples collected below two mines studied contain mercury concentrations ranging from 6 to 2,000 ng/L, whereas mercury contents in Humboldt River and Rye Patch Reservoir water were generally lower, ranging from 2.1 to 9.0 ng/L. Methylmercury concentrations in Humboldt River system water were the lowest in this study (<0.02- 0.27 ng/L). Although mercury and methylmercury concentrations were elevated in some mine-waste calcine and mercury concentrations were locally high in mine-waste leachate samples, data show significant dilution of mercury and lower mercury methylation down gradient from the mines, especially in the sediments and water collected from the Humboldt River, which is more than 8 km from any mercury mines. Data show only minor, local transference of mercury and methylmercury from mine-waste calcine to stream sediment, and then onto the water column, and indicate little transference of mercury from the mine sites to the Humboldt River system.

  18. Pre-mining trace element and radiation exposure to biota from a breccia pipe uranium mine in the Grand Canyon (Arizona, USA) watershed

    USGS Publications Warehouse

    Hinck, Jo E.; Cleveland, Danielle; Brumbaugh, William G.; Linder, Greg; Lankton, Julia S.

    2017-01-01

    The risks to wildlife and humans from uranium (U) mining in the Grand Canyon watershed are largely unknown. In addition to U, other co-occurring ore constituents contribute to risks to biological receptors depending on their toxicological profiles. This study characterizes the pre-mining concentrations of total arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), selenium (Se), thallium (Tl), U, and zinc (Zn); radiation levels; and histopathology in biota (vegetation, invertebrates, amphibians, birds, and mammals) at the Canyon Mine. Gross alpha levels were below the reporting limit (4 pCi/g) in all samples, and gross beta levels were indicative of background in vegetation (<10–17 pCi/g) and rodents (<10–43.5 pCi/g). Concentrations of U, Tl, Pb, Ni, Cu, and As in vegetation downwind from the mine were likely the result of aeolian transport. Chemical concentrations in rodents and terrestrial invertebrates indicate that surface disturbance during mine construction has not resulted in statistically significant spatial differences in fauna concentrations adjacent to the mine. Chemical concentrations in egg contents and nestlings of non-aquatic birds were less than method quantification limits or did not exceed toxicity thresholds. Bioaccumulation of As, Pb, Se, Tl, and U was evident in Western spadefoot (Spea multiplicata) tadpoles from the mine containment pond; concentrations of As (28.9–31.4 μg/g) and Se (5.81–7.20 μg/g) exceeded toxicity values and were significantly greater than in tadpoles from a nearby water source. Continued evaluation of As and Se in biota inhabiting and forging in the mine containment pond is warranted as mining progresses.

  19. Pre-mining trace element and radiation exposure to biota from a breccia pipe uranium mine in the Grand Canyon (Arizona, USA) watershed.

    PubMed

    Hinck, Jo Ellen; Cleveland, Danielle; Brumbaugh, William G; Linder, Greg; Lankton, Julia

    2017-02-01

    The risks to wildlife and humans from uranium (U) mining in the Grand Canyon watershed are largely unknown. In addition to U, other co-occurring ore constituents contribute to risks to biological receptors depending on their toxicological profiles. This study characterizes the pre-mining concentrations of total arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), selenium (Se), thallium (Tl), U, and zinc (Zn); radiation levels; and histopathology in biota (vegetation, invertebrates, amphibians, birds, and mammals) at the Canyon Mine. Gross alpha levels were below the reporting limit (4 pCi/g) in all samples, and gross beta levels were indicative of background in vegetation (<10-17 pCi/g) and rodents (<10-43.5 pCi/g). Concentrations of U, Tl, Pb, Ni, Cu, and As in vegetation downwind from the mine were likely the result of aeolian transport. Chemical concentrations in rodents and terrestrial invertebrates indicate that surface disturbance during mine construction has not resulted in statistically significant spatial differences in fauna concentrations adjacent to the mine. Chemical concentrations in egg contents and nestlings of non-aquatic birds were less than method quantification limits or did not exceed toxicity thresholds. Bioaccumulation of As, Pb, Se, Tl, and U was evident in Western spadefoot (Spea multiplicata) tadpoles from the mine containment pond; concentrations of As (28.9-31.4 μg/g) and Se (5.81-7.20 μg/g) exceeded toxicity values and were significantly greater than in tadpoles from a nearby water source. Continued evaluation of As and Se in biota inhabiting and forging in the mine containment pond is warranted as mining progresses.

  20. 13 CFR 121.510 - What is the size standard for leasing of Government land for uranium mining?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false What is the size standard for leasing of Government land for uranium mining? 121.510 Section 121.510 Business Credit and Assistance... Size Eligibility Requirements for Sales Or Lease of Government Property § 121.510 What is the size...

  1. VapC toxins drive cellular dormancy under uranium stress for the extreme thermoacidophile Metallosphaera prunae.

    PubMed

    Mukherjee, Arpan; Wheaton, Garrett H; Counts, James A; Ijeomah, Brenda; Desai, Jigar; Kelly, Robert M

    2017-07-01

    When abruptly exposed to toxic levels of hexavalent uranium, the extremely thermoacidophilic archaeon Metallosphaera prunae, originally isolated from an abandoned uranium mine, ceased to grow, and concomitantly exhibited heightened levels of cytosolic ribonuclease activity that corresponded to substantial degradation of cellular RNA. The M. prunae transcriptome during 'uranium-shock' implicated VapC toxins as possible causative agents of the observed RNA degradation. Identifiable VapC toxins and PIN-domain proteins encoded in the M. prunae genome were produced and characterized, three of which (VapC4, VapC7, VapC8) substantially degraded M. prunae rRNA in vitro. RNA cleavage specificity for these VapCs mapped to motifs within M. prunae rRNA. Furthermore, based on frequency of cleavage sequences, putative target mRNAs for these VapCs were identified; these were closely associated with translation, transcription, and replication. It is interesting to note that Metallosphaera sedula, a member of the same genus and which has a nearly identical genome sequence but not isolated from a uranium-rich biotope, showed no evidence of dormancy when exposed to this metal. M. prunae utilizes VapC toxins for post-transcriptional regulation under uranium stress to enter a cellular dormant state, thereby providing an adaptive response to what would otherwise be a deleterious environmental perturbation. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Study on Spatial and Seasonal Behavior of Heavy Metals in the Abandoned Mine, Geopung Watershed, Korea

    NASA Astrophysics Data System (ADS)

    Pak, G.; HAN, K.; Kim, H.; Yeum, Y.; Hong, Y.; Kim, Y.; Yoon, J.

    2016-12-01

    Abandoned mine areas have increased the pollution problem through waste tailings, rock wastes, and acid mine drainage (AMD), all of which contain high amounts of heavy metals. They have various spatial and seasonal characteristics that can significantly affect water quality in the stream so it is important to assess these characteristics of AMD. The aim of this work is to study the characteristics of the spatial and seasonal behavior of heavy metals through the sediment and dissolved metal concentrations in the Geopung Mine Watershed, Korea. Seasonal variation of metal concentration in the stream sediment was found to be elevated during the summer than during any other seasons (at GP-5: 17.5 mg/kg for As, 7.5 mg/kg for Cd, 1,313 mg/kg for Zn). Similarly, heavy metal concentration in the water was also higher during the summer season (at GP-5: 0.283 mg/L for Cd, 2.554 mg/L for Cu, 12.354 mg/L for Zn). Moreover, the metal loadings were found to be increased during the summer season at the all of the point. The loading of Cd during this season was about 150 times higher than during the other seasons. This phenomenon is correlated with the pattern of the pH and TDS concentration at the upstream during summer. Low pH and High TDS concentrations significantly affect in-stream mechanisms which contribute to the fate and transport of metals. In addition, the concentration of spatial variation in sediment and water, most of the metal concentration decrease with distance from the tailing due to a dilution effect by the mixing of uncontaminated water and sediment. These study revealed that heavy metals in the stream coming from AMD and contaminant soil loss from the mine area are affected by physical influences such as rainfall intensity and velocity, and chemical influences such as pH.

  3. Why Has It Taken So Long to Address the Problems Created by Uranium Mining in the Navajo Nation?

    PubMed

    Brugge, Doug

    2016-02-01

    Following the start of uranium mining after World War II, progress toward addressing the hazards it created for workers and nearby communities was slow, taking many decades. This essay asks why it took so long and suggests several factors that might have contributed. © The Author(s) 2016.

  4. Review and interpretation of previous work and new data on the hydrogeology of the Schwartzwalder Uranium Mine and vicinity, Jefferson County, Colorado

    USGS Publications Warehouse

    Caine, Jonathan S.; Johnson, Raymond H.; Wild, Emily C.

    2011-01-01

    The Schwartzwalder deposit is the largest known vein type uranium deposit in the United States. Located about eight miles northwest of Golden, Colorado it occurs in Proterozoic metamorphic rocks and was formed by hydrothermal fluid flow, mineralization, and deformation during the Laramide Orogeny. A complex brittle fault zone hosts the deposit comprising locally brecciated carbonate, oxide, and sulfide minerals. Mining of pitchblende, the primary ore mineral, began in 1953 and an extensive network of underground workings was developed. Mine dewatering, treatment of the effluent and its discharge into the adjacent Ralston Creek was done under State permit from about 1990 through about 2008. Mining and dewatering ceased in 2000 and natural groundwater rebound has filled the mine workings to a current elevation that is above Ralston Creek but that is still below the lowest ground level adit. Water in the 'mine pool' has concentrations of dissolved uranium in excess of 1,000 times the U.S. Environmental Protection Agency drinking-water standard of 30 milligrams per liter. Other dissolved constituents such as molybdenum, radium, and sulfate are also present in anomalously high concentrations. Ralston Creek flows in a narrow valley containing Quaternary alluvium predominantly derived from weathering of crystalline bedrock including local mineralized rock. Just upstream of the mine site, two capped and unsaturated waste rock piles with high radioactivity sit on an alluvial terrace. As Ralston Creek flows past the mine site, a host of dissolved metal concentrations increase. Ralston Creek eventually discharges into Ralston Reservoir about 2.5 miles downstream. Because of highly elevated uranium concentrations, the State of Colorado issued an enforcement action against the mine permit holder requiring renewed collection and treatment of alluvial groundwater. As part of planned mine reclamation, abundant data were collected and compiled into a report by Wyman and Effner

  5. 25 CFR 215.11 - New leases where prior leases have been forfeited or abandoned.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... to the highest bidder. If the lead and zinc mining lease on said land be offered for sale at public... MINERALS LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.11 New leases where prior leases have been forfeited or abandoned. In cases where the lands have heretofore been leased and lead and...

  6. Regulatory Oversight of the Legacy Gunner Uranium Mine and Mill Site in Northern Saskatchewan, Canada - 13434

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenson, Ron; Howard, Don

    2013-07-01

    As Canada's nuclear regulator, the Canadian Nuclear Safety Commission (CNSC) is responsible for licensing all aspects of uranium mining, including remediation activities at legacy sites. Since these sites already existed when the current legislation came into force in 2000, and the previous legislation did not apply, they present a special case. The Nuclear Safety and Control Act (NSCA), was written with cradle-to- grave oversight in mind. Applying the NSCA at the end of a 'facilities' life-cycle poses some challenges to both the regulator and the proponent. When the proponent is the public sector, even more challenges can present themselves. Althoughmore » the licensing process for legacy sites is no different than for any other CNSC license, assuring regulatory compliance can be more complicated. To demonstrate how the CNSC has approached the oversight of legacy sites the history of the Commission's involvement with the Gunnar uranium mine and mill site provides a good case study. The lessons learned from the CNSC's experience regulating the Gunnar site will benefit those in the future who will need to regulate legacy sites under existing or new legislation. (authors)« less

  7. ASSESSING AND MANAGING MERCURY FROM HISTORIC AND CURRENT MINING ACTIVITIES

    EPA Science Inventory

    Mining activities in the US (not counting coal) produce between one and two billion tons of mine waste annually. Since many of the ore mines involve sulfide minerals, the production of acid mine drainage (AMD) is a common problem from these abandoned mine sites. The combination o...

  8. Cove Area Community Involvement Plan

    EPA Pesticide Factsheets

    This Community Involvement Plan (CIP) outlines opportunities for individual participation and meaningful information sharing regarding EPA’s activities in the Cove Area Abandoned Uranium Mine Region.

  9. Australia unlocks her uranium reserves. [Will develop deposits in Northern Territories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, W.E.

    1977-11-01

    The economic implications of Australia's move to permit the development of uranium mining and to resume exporting uranium have led to forecasts that range from pessimism over unseen factors to an optimistic estimate of $A20 billion and 500,000 jobs. Direct benefits will go to those involved in road construction, mining equipment, and construction camps. The goverment plan calls for mining operations and yellowcake exports from four major uranium mines by 1985. An overview is given of the development plan, which emphasizes an orderly procedure rather than exploitation and excessive competition. The uranium industry is viewed as a stable long-term suppliermore » for international trade. Customers will be required to submit to international Atomic Energy Agency inspection and must guarantee to limit their uranium use to peaceful projects. (DCK)« less

  10. Guidelines for geophysical investigations of mines under highways mine research project-GUE 70-14.10, PID no. 18459.

    DOT National Transportation Integrated Search

    2003-06-01

    It is estimated that approximately 8,500 abandoned underground mines are present in Ohio and mine-related : subsidence has been a problem dating back to the 1920's. Many investigative methods have been utilized with : varying degrees of success in an...

  11. Bioavailability and microbial adaptation to elevated levels of uranium in an acid, organic topsoil forming on an old mine spoil.

    PubMed

    Joner, Erik Jautris; Munier-Lamy, Colette; Gouget, Barbara

    2007-08-01

    An old mine spoil at a 19th-century mining site with considerable residues of uranium (400-800 mg U/kg) was investigated with respect to U concentrations in soil and plants and tolerance to U in the soil microbial community in order to describe the bioavailability of U. Measurements of soil fractions representing water-soluble U, easily exchangeable U, and U bound to humified organic matter showed that all fractions contained elevated concentrations of U. Plant U concentrations were only 10 times higher at the mine spoil site compared to the reference site (3 mg U/kg vs 0.3 mg U/kg), while the most easily available soil fractions contained 0.18 to 0.86 mg U/kg soil at the mine spoil. An ecotoxicity bioassay using incorporation of [3H]thymidine into the indigenous microbial communities of the two soils in the presence of increasing U concentrations showed that microorganisms at the mining site were sensitive to U but also that they had acquired a substantial tolerance toward U (EC50, the effective concentration reducing activity by 50% of UO2-citrate was approximately 120 microM as compared to 30 microM in the reference soil). In the assay, more than 40% of the microbial activity was maintained in the presence of 1 mM UO2-citrate versus 3% in the reference soil. We conclude that U-enriched mining waste can contain sufficiently elevated concentrations of bioavailable U to affect indigenous microorganisms and that bioavailable U imposes a selection pressure that favors the development of a highly uranium-tolerant microbial community, while plant uptake of U remains low.

  12. 25 CFR 226.28 - Shutdown, abandonment, and plugging of wells.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... OSAGE RESERVATION LANDS FOR OIL AND GAS MINING Cessation of Operations § 226.28 Shutdown, abandonment... production of oil and/or gas has been demonstrated to the satisfaction of the Superintendent. Lessee shall... the means by which the well bore is to be protected, and the contemplated eventual disposition of the...

  13. Uranium production in Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-01

    This article reviews uranium production in Romania. Geological aspects of the country are discussed, and known uranium deposits are noted. Uranium mining and milling activities are also covered. Utilization of Romania`s uranium production industry will primarily be to supply the country`s nuclear power program, and with the present adequate supplies and the operation of their recently revamped fuel production facility, Romania should be self-reliant in the front end of the nuclear fuel cycle.

  14. BIORECOVERY OF METALS FROM ACID MINE DRAINAGE

    EPA Science Inventory

    Acid mine water is an acidic, metal-bearing wastewater generated by the oxidation of metallic sulfides by certain bacteria in both active and abandoned mining operations. The wastewaters contain substantial quantities of dissolved solids with the particular pollutants dependant u...

  15. Lithium Mining, Nevada

    NASA Image and Video Library

    2014-08-05

    This image from NASA Terra spacecraft shows the once-abandoned mining town of Silver Peak, Nevada, which began to thrive again when Foote Mineral Company began extracting lithium from brine below the floor of Clayton Valley in 1966.

  16. Measurement of natural radioactivity and radon exhalation rate from rock samples of Jaduguda uranium mines and its radiological implications

    NASA Astrophysics Data System (ADS)

    Mahur, A. K.; Kumar, Rajesh; Sonkawade, R. G.; Sengupta, D.; Prasad, Rajendra

    2008-04-01

    The Singhbhum shear zone is a 200 km long arcuate belt in Jharkhand state situated in eastern India. The central part between Jaduguda-Bhatin-Nimdih, Narwapahr-Garadih-Turamdih is rich in uranium. Presence of uranium in the host rocks and the prevalence of a confined atmosphere within mines could result in enhanced concentration of radon (222Rn) gas and its progeny. Inhalation of radon daughter products is a major contributor to the radiation dose to exposed subjects. By using high resolution γ-ray spectroscopic system various radionuclides in the rock samples, collected from different places of Jaduguda uranium mines have been identified quantitatively based on the characteristic spectral peaks. The activity concentrations of the natural radionuclides, uranium (238U), thorium (232Th) and potassium (40K) were measured in the rock samples and radiological parameters were calculated. Uranium concentration was found to vary from 123 ± 7 Bq kg-1 to 40,858 ± 174 Bq kg-1. Activity of thorium was not significant in the samples, whereas, few samples have shown potassium activity from 162 ± 11 Bq kg-1 to 9024 ± 189 Bq kg-1. Radon exhalation rates from these samples were also measured using "Sealed Can technique" and found to vary from 4.2 ± 0.05 to 13.7 ± 0.08 Bq m-2 h-1. A positive correlation was found between the radon exhalation rate and the uranium activity. The absorbed dose rates vary from 63.6 to 18876.4 nGy h-1, with an average value of 7054.2 nGy h-1. The annual external effective dose rates vary from 0.7 to 23.2 mSv y-1. Radium equivalent activities (Raeq) varied from 134.3 to 40858.0 Bq kg-1. Value of external hazard index (Hex) varied from 0.4 to 110.4 with an average value of 41.2.

  17. Pyrolusite Process® to remove acid mine drainage contaminants from Kimble Creek in Ohio: A pilot study

    Treesearch

    Shiv Hiremath; Kirsten Lehtoma; Mike Nicklow; Gary Willison

    2013-01-01

    The Kimble Creek abandoned coal mine site, located on Wayne National Forest in southeastern Ohio, is among several abandoned coal mine sites that have been responsible for the acid mine drainage (AMD) polluting ground and surface water. Materials released by AMD include iron, aluminum, manganese, other hazardous substances, and acidity that are harmful to aquatic life...

  18. Biosorption of metal and salt tolerant microbial isolates from a former uranium mining area. Their impact on changes in rare earth element patterns in acid mine drainage.

    PubMed

    Haferburg, Götz; Merten, Dirk; Büchel, Georg; Kothe, Erika

    2007-12-01

    The concentration of metals in microbial habitats influenced by mining operations can reach enormous values. Worldwide, much emphasis is placed on the research of resistance and biosorptive capacities of microorganisms suitable for bioremediation purposes. Using a collection of isolates from a former uranium mining area in Eastern Thuringia, Germany, this study presents three Gram-positive bacterial strains with distinct metal tolerances. These strains were identified as members of the genera Bacillus, Micrococcus and Streptomyces. Acid mine drainage (AMD) originating from the same mining area is characterized by high metal concentrations of a broad range of elements and a very low pH. AMD was analyzed and used as incubation solution. The sorption of rare earth elements (REE), aluminum, cobalt, copper, manganese, nickel, strontium, and uranium through selected strains was studied during a time course of four weeks. Biosorption was investigated after one hour, one week and four weeks by analyzing the concentrations of metals in supernatant and biomass. Additionally, dead biomass was investigated after four weeks of incubation. The maximum of metal removal was reached after one week. Up to 80% of both Al and Cu, and more than 60% of U was shown to be removed from the solution. High concentrations of metals could be bound to the biomass, as for example 2.2 mg/g U. The strains could survive four weeks of incubation. Distinct and different patterns of rare earth elements of the inoculated and non-inoculated AMD water were observed. Changes in REE patterns hint at different binding types of heavy metals regarding incubation time and metabolic activity of the cells. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A ground electromagnetic survey used to map sulfides and acid sulfate ground waters at the abandoned Cabin Branch Mine, Prince William Forest Park, northern Virginia gold-pyrite belt

    USGS Publications Warehouse

    Wynn, Jeffrey C.

    2000-01-01

    INTRODUCTION AND BACKGROUND: Prince William Forest Park is situated at the northeastern end of the Virginia Gold-Pyrite belt northwest of the town of Dumfries, VA. The U. S. Marine Corps Reservation at Quantico borders the park on the west and south, and occupies part of the same watershed. Two abandoned mines are found within the park: the Cabin Branch pyrite mine, a historic source of acid mine drainage, and the Greenwood gold mine, a source of mercury contamination. Both are within the watershed of Quantico Creek (Fig.1). The Cabin Branch mine (also known as the Dumfries mine) lies about 2.4 km northwest of the town of Dumfries. It exploited a 300 meter-long, lens-shaped body of massive sulfide ore hosted by metamorphosed volcanic rocks; during its history over 200,000 tons of ore were extracted and processed locally. The site became part of the National Capitol Region of the National Park Service in 1940 and is currently managed by the National Park Service. In 1995 the National Park Service, in cooperation with the Virginia Department of Mines, Minerals, and Energy reclaimed the Cabin Branch site. The Virginia Gold-Pyrite belt, also known as the central Virginia volcanic-plutonic belt, is host to numerous abandoned metal mines (Pavlides and others, 1982), including the Cabin Branch deposit. The belt itself extends from its northern terminus near Cabin Branch, about 50 km south of Washington, D.C., approximately 175 km to the southwest into central Virginia. It is underlain by metamorphosed volcanic and clastic (non-carbonate) sedimentary rocks, originally deposited approximately 460 million years ago during the Ordovician Period (Horton and others, 1998). Three kinds of deposits are found in the belt: volcanic-associated massive sulfide deposits, low-sulfide quartz-gold vein deposits, and gold placer deposits. The massive sulfide deposits such as Cabin Branch were historically mined for their sulfur, copper, zinc, and lead contents, but also yielded byproduct

  20. 43 CFR 3930.12 - Performance standards for underground mining.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... reserves. (c) Operators/lessees must adopt measures consistent with known technology to prevent or, where the mining method used requires subsidence, control subsidence, maximize mine stability, and maintain... temporarily abandon a mine or portions thereof. (e) The operator/lessee must have the BLM's prior approval to...

  1. 43 CFR 3930.12 - Performance standards for underground mining.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... reserves. (c) Operators/lessees must adopt measures consistent with known technology to prevent or, where the mining method used requires subsidence, control subsidence, maximize mine stability, and maintain... temporarily abandon a mine or portions thereof. (e) The operator/lessee must have the BLM's prior approval to...

  2. 43 CFR 3930.12 - Performance standards for underground mining.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... reserves. (c) Operators/lessees must adopt measures consistent with known technology to prevent or, where the mining method used requires subsidence, control subsidence, maximize mine stability, and maintain... temporarily abandon a mine or portions thereof. (e) The operator/lessee must have the BLM's prior approval to...

  3. 43 CFR 3930.12 - Performance standards for underground mining.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... reserves. (c) Operators/lessees must adopt measures consistent with known technology to prevent or, where the mining method used requires subsidence, control subsidence, maximize mine stability, and maintain... temporarily abandon a mine or portions thereof. (e) The operator/lessee must have the BLM's prior approval to...

  4. Geophysical Technologies to Image Old Mine Works

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanaan Hanna; Jim Pfeiffer

    2007-01-15

    ZapataEngineering, Blackhawk Division performed geophysical void detection demonstrations for the US Department of Labor Mine Safety and Health Administration (MSHA). The objective was to advance current state-of-practices of geophysical technologies for detecting underground mine voids. The presence of old mine works above, adjacent, or below an active mine presents major health and safety hazards to miners who have inadvertently cut into locations with such features. In addition, the presence of abandoned mines or voids beneath roadways and highway structures may greatly impact the performance of the transportation infrastructure in terms of cost and public safety. Roads constructed over abandoned minesmore » are subject to potential differential settlement, subsidence, sinkholes, and/or catastrophic collapse. Thus, there is a need to utilize geophysical imaging technologies to accurately locate old mine works. Several surface and borehole geophysical imaging methods and mapping techniques were employed at a known abandoned coal mine in eastern Illinois to investigate which method best map the location and extent of old works. These methods included: 1) high-resolution seismic (HRS) using compressional P-wave (HRPW) and S-wave (HRSW) reflection collected with 3-D techniques; 2) crosshole seismic tomography (XHT); 3) guided waves; 4) reverse vertical seismic profiling (RVSP); and 5) borehole sonar mapping. In addition, several exploration borings were drilled to confirm the presence of the imaged mine voids. The results indicated that the RVSP is the most viable method to accurately detect the subsurface voids with horizontal accuracy of two to five feet. This method was then applied at several other locations in Colorado with various topographic, geologic, and cultural settings for the same purpose. This paper presents the significant results obtained from the geophysical investigations in Illinois.« less

  5. Reclamation of abandoned mined lands along th Upper Illinois Waterway using dredged material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Luik, A; Harrison, W

    1982-01-01

    Sediments were sampled and characterized from 28 actual or proposed maintenance-dredging locations in the Upper Illinois Waterway, that is, the Calumet-Sag Channel, the Des Plaines River downstream of its confluence with the Calumet-Sag Channel, and the Illinois River from the confluence of the Kankakee and Des Plaines rivers to Havana, Illinois. Sufficient data on chemical constituents and physical sediments were obtained to allow the classification of these sediments by currently applicable criteria of the Illinois Environmental Protection Agency for the identification of hazardous, persistent, and potentially hazardous wastes. By these criteria, the potential dredged materials studied were not hazardous, persistent,more » or potentially hazardous; they are a suitable topsoil/ reclamation medium. A study of problem abandoned surface-mined land sites (problem lands are defined as being acidic and/or sparsely vegetated) along the Illinois River showed that three sites were particularly well suited to the needs of the Corps of Engineers (COE) for a dredged material disposal/reclamation site. Thes sites were a pair of municipally owned sites in Morris, Illinois, and a small corporately owned site east of Ottawa, Illinois, and adjacent to the Illinois River. Other sites were also ranked as to suitability for COE involvement in their reclamation. Reclamation disposal was found to be an economically competitive alternative to near-source confined disposal for Upper Illinois Waterway dredged material.« less

  6. A descriptive and quantitative approach regarding erosion and development of landforms on abandoned mine tailings: New insights and environmental implications from SE Spain

    NASA Astrophysics Data System (ADS)

    Martín Duque, J. F.; Zapico, I.; Oyarzun, R.; López García, J. A.; Cubas, P.

    2015-06-01

    The San Cristóbal-Perules mining site in Mazarrón in southeast Spain was subjected to about a hundred years of intense mining activity for lead, silver, and zinc. Metallurgical operations (smelting, calcination, gravity concentration) carried out during the late nineteenth century-early twentieth century induced significant land transformation, and the most conspicuous wastes of this period consist of a chaotic piling of 'old' tailing deposits. Later on, during the mid-twentieth century, 'modern' tailings resulting from froth flotation were accumulated filling small valleys; these latter valley-fill tailings rose sequentially according to the upstream construction method, progressively raising the level of the dam during the process. Once abandoned, both types of tailing deposits underwent severe erosion, resulting in a mosaic of erosional and sedimentary landforms developed upon (e.g., gully formation) and within them (e.g., piping). We made an inventory and classification of these landforms. Our study shows the geomorphic work to reestablish a new steady state between the tailings deposits and the local erosive conditions. This scenario implies several hazards related to the extremely high heavy metal contents of these tailings and the geomorphic instability of the deposits. We also quantified the tailings tonnage and erosion that occurred at one of the tailings dams (El Roble). As shown by an oblique aerial photograph taken in 1968, this dam had a terraced topography, whereas in 2013 this morphology had evolved into a badland-type relief with deep parallel gullies. By recognizing and surveying specific, remnant points along the benches and outslopes of the older terraced topography, we were able to build up a first digital elevation model (DEM1) reflecting the initial topography. A second DEM, this time showing the present topography, allowed quantification of erosion via Material Loss = DEM1 - DEM2. This yields an erosion rate (1968-2009) of 151.8 Mg (MT) ha

  7. INTERACTIVE ABANDONED MINE LANDS WORKSHOP SERIES - ACID MINE WATER TREATMENT TECHNOLOGIES

    EPA Science Inventory

    The purpose of this interactive workshop is to present and discuss active and passive acid mine wastes cleanup technologies and to discuss the apparent disconnect between their development and their implementation. The workshop addressed five main barriers to implementing innovat...

  8. Tellurium Distribution and Speciation in Contaminated Soils from Abandoned Mine Tailings: Comparison with Selenium.

    PubMed

    Qin, Hai-Bo; Takeichi, Yasuo; Nitani, Hiroaki; Terada, Yasuko; Takahashi, Yoshio

    2017-06-06

    The distribution and chemical species of tellurium (Te) in contaminated soil were determined by a combination of microfocused X-ray fluorescence (μ-XRF), X-ray diffraction (μ-XRD), and X-ray absorption fine structure (μ-XAFS) techniques. Results showed that Te was present as a mixture of Te(VI) and Te(IV) species, while selenium (Se) was predominantly present in the form of Se(IV) in the soil contaminated by abandoned mine tailings. In the contaminated soil, Fe(III) hydroxides were the host phases for Se(IV), Te(IV), and Te(VI), but Te(IV) could be also retained by illite. The difference in speciation and solubility of Se and Te in soil can result from different structures of surface complexes for Se and Te onto Fe(III) hydroxides. Furthermore, our results suggest that the retention of Te(IV) in soil could be relatively weaker than that of Te(VI) due to structural incorporation of Te(VI) into Fe(III) hydroxides. These findings are of geochemical and environmental significance for better understanding the solubility, mobility, and bioavailability of Te in the surface environment. To the best of our knowledge, this is the first study reporting the speciation and host phases of Te in field soil by the μ-XRF-XRD-XAFS techniques.

  9. Evolution of Microbial “Streamer” Growths in an Acidic, Metal-Contaminated Stream Draining an Abandoned Underground Copper Mine

    PubMed Central

    Kay, Catherine M.; Rowe, Owen F.; Rocchetti, Laura; Coupland, Kris; Hallberg, Kevin B.; Johnson, D. Barrie

    2013-01-01

    A nine year study was carried out on the evolution of macroscopic “acid streamer” growths in acidic, metal-rich mine water from the point of construction of a new channel to drain an abandoned underground copper mine. The new channel became rapidly colonized by acidophilic bacteria: two species of autotrophic iron-oxidizers (Acidithiobacillus ferrivorans and “Ferrovum myxofaciens”) and a heterotrophic iron-oxidizer (a novel genus/species with the proposed name “Acidithrix ferrooxidans”). The same bacteria dominated the acid streamer communities for the entire nine year period, with the autotrophic species accounting for ~80% of the micro-organisms in the streamer growths (as determined by terminal restriction enzyme fragment length polymorphism (T-RFLP) analysis). Biodiversity of the acid streamers became somewhat greater in time, and included species of heterotrophic acidophiles that reduce ferric iron (Acidiphilium, Acidobacterium, Acidocella and gammaproteobacterium WJ2) and other autotrophic iron-oxidizers (Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans). The diversity of archaea in the acid streamers was far more limited; relatively few clones were obtained, all of which were very distantly related to known species of euryarchaeotes. Some differences were apparent between the acid streamer community and planktonic-phase bacteria. This study has provided unique insights into the evolution of an extremophilic microbial community, and identified several novel species of acidophilic prokaryotes. PMID:25371339

  10. Ameliorants to immobilize Cd in rice paddy soils contaminated by abandoned metal mines in Korea.

    PubMed

    Ok, Yong Sik; Kim, Sung-Chul; Kim, Dong-Kuk; Skousen, Jeffrey G; Lee, Jin-Soo; Cheong, Young-Wook; Kim, Su-Jung; Yang, Jae E

    2011-01-01

    The cadmium (Cd) content of rice grain grown in metal-contaminated paddy soils near abandoned metal mines in South Korea was found to exceed safety guidelines (0.2 mg Cd kg⁻¹) set by the Korea Food and Drug Administration (KFDA). However, current remediation technologies for heavy metal-contaminated soils have limited application with respect to rice paddy soils. Laboratory and greenhouse experiments were conducted to assess the effects of amending contaminated rice paddy soils with zerovalent iron (ZVI), lime, humus, compost, and combinations of these compounds to immobilize Cd and inhibit Cd translocation to rice grain. Sequential extraction analysis revealed that treatment with the ameliorants induced a 50-90% decrease in the bioavailable Cd fractions when compared to the untreated control soil. When compared to the control, Cd uptake by rice was decreased in response to treatment with ZVI + humus (69%), lime (65%), ZVI + compost (61%), compost (46%), ZVI (42%), and humus (14%). In addition, ameliorants did not influence rice yield when compared to that of the control. Overall, the results of this study indicated that remediation technologies using ameliorants effectively reduce Cd bioavailability and uptake in contaminated rice paddy soils.

  11. Overview of mine drainage geochemistry at historical mines, Humboldt River basin and adjacent mining areas, Nevada. Chapter E.

    USGS Publications Warehouse

    Nash, J. Thomas; Stillings, Lisa L.

    2004-01-01

    Reconnaissance hydrogeochemical studies of the Humboldt River basin and adjacent areas of northern Nevada have identified local sources of acidic waters generated by historical mine workings and mine waste. The mine-related acidic waters are rare and generally flow less than a kilometer before being neutralized by natural processes. Where waters have a pH of less than about 3, particularly in the presence of sulfide minerals, the waters take on high to extremely high concentrations of many potentially toxic metals. The processes that create these acidic, metal-rich waters in Nevada are the same as for other parts of the world, but the scale of transport and the fate of metals are much more localized because of the ubiquitous presence of caliche soils. Acid mine drainage is rare in historical mining districts of northern Nevada, and the volume of drainage rarely exceeds about 20 gpm. My findings are in close agreement with those of Price and others (1995) who estimated that less than 0.05 percent of inactive and abandoned mines in Nevada are likely to be a concern for acid mine drainage. Most historical mining districts have no draining mines. Only in two districts (Hilltop and National) does water affected by mining flow into streams of significant size and length (more than 8 km). Water quality in even the worst cases is naturally attenuated to meet water-quality standards within about 1 km of the source. Only a few historical mines release acidic water with elevated metal concentrations to small streams that reach the Humboldt River, and these contaminants and are not detectable in the Humboldt. These reconnaissance studies offer encouraging evidence that abandoned mines in Nevada create only minimal and local water-quality problems. Natural attenuation processes are sufficient to compensate for these relatively small sources of contamination. These results may provide useful analogs for future mining in the Humboldt River basin, but attention must be given to

  12. Chemical Data for Rock, Sediment, Biological, Precipitate, and Water Samples from Abandoned Copper Mines in Prince William Sound, Alaska

    USGS Publications Warehouse

    Koski, Randolph A.; Munk, LeeAnn

    2007-01-01

    In the early 20th century, approximately 6 million metric tons of copper ore were mined from numerous deposits located along the shorelines of fjords and islands in Prince William Sound, Alaska. At the Beatson, Ellamar, and Threeman mine sites (fig. 1), rocks containing Fe, Cu, Zn, and Pb sulfide minerals are exposed to chemical weathering in abandoned mine workings and remnant waste piles that extend into the littoral zone. Field investigations in 2003 and 2005 as well as analytical data for rock, sediment, precipitate, water, and biological samples reveal that the oxidation of sulfides at these sites is resulting in the generation of acid mine drainage and the transport of metals into the marine environment (Koski and others, 2008; Stillings and others, 2008). At the Ellamar and Threeman sites, plumes of acidic and metal-enriched water are flowing through beach gravels into the shallow offshore environment. Interstitial water samples collected from beach sediment at Ellamar have low pH levels (to ~3) and high concentrations of metals including iron, copper, zinc, cobalt, lead, and mercury. The abundant precipitation of the iron sulfate mineral jarosite in the Ellamar gravels also signifies a low-pH environment. At the Beatson mine site (the largest copper mine in the region) seeps containing iron-rich microbial precipitates drain into the intertidal zone below mine dumps (Foster and others, 2008). A stream flowing down to the shoreline from underground mine workings at Beatson has near-neutral pH, but elevated levels of zinc, copper, and lead (Stillings and others, 2008). Offshore sediment samples at Beatson are enriched in these metals. Preliminary chemical data for tissue from marine mussels collected near the Ellamar, Threeman, and Beatson sites reveal elevated levels of copper, zinc, and lead compared to tissue in mussels from other locations in Prince William Sound (Koski and others, 2008). Three papers presenting results of this ongoing investigation of

  13. Chemical Data for Rock, Sediment, Biological, Precipitate, and Water Samples from Abandoned Copper Mines in Prince William Sound, Alaska

    USGS Publications Warehouse

    Koski, Randolph A.; Munk, LeeAnn

    2007-01-01

    Introduction In the early 20th century, approximately 6 million metric tons of copper ore were mined from numerous deposits located along the shorelines of fjords and islands in Prince William Sound, Alaska. At the Beatson, Ellamar, and Threeman mine sites (fig. 1), rocks containing Fe, Cu, Zn, and Pb sulfide minerals are exposed to chemical weathering in abandoned mine workings and remnant waste piles that extend into the littoral zone. Field investigations in 2003 and 2005 as well as analytical data for rock, sediment, precipitate, water, and biological samples reveal that the oxidation of sulfides at these sites is resulting in the generation of acid mine drainage and the transport of metals into the marine environment (Koski and others, 2008; Stillings and others, 2008). At the Ellamar and Threeman sites, plumes of acidic and metal-enriched water are flowing through beach gravels into the shallow offshore environment. Interstitial water samples collected from beach sediment at Ellamar have low pH levels (to ~3) and high concentrations of metals including iron, copper, zinc, cobalt, lead, and mercury. The abundant precipitation of the iron sulfate mineral jarosite in the Ellamar gravels also signifies a low-pH environment. At the Beatson mine site (the largest copper mine in the region) seeps containing iron-rich microbial precipitates drain into the intertidal zone below mine dumps (Foster and others, 2008). A stream flowing down to the shoreline from underground mine workings at Beatson has near-neutral pH, but elevated levels of zinc, copper, and lead (Stillings and others, 2008). Offshore sediment samples at Beatson are enriched in these metals. Preliminary chemical data for tissue from marine mussels collected near the Ellamar, Threeman, and Beatson sites reveal elevated levels of copper, zinc, and lead compared to tissue in mussels from other locations in Prince William Sound (Koski and others, 2008). Three papers presenting results of this ongoing

  14. Interaction of mining activities and aquatic environment: A review from Greek mine sites.

    NASA Astrophysics Data System (ADS)

    Vasileiou, Eleni; Kallioras, Andreas

    2016-04-01

    In Greece a significant amount of mineral and ore deposits have been recorded accompanied by large industrial interest and a long mining history. Today many active and/or abandoned mine sites are scattered within the country; while mining activities take place in different sites for exploiting various deposits (clay, limestone, slate, gypsum, kaolin, mixed sulphide ores (lead, zinc, olivine, pozzolan, quartz lignite, nickel, magnesite, aluminum, bauxite, gold, marbles etc). The most prominent recent ones are: (i) the lignite exploitation that is extended in the area of Ptolemais (Western Macedonia) and Megalopolis (Central Peloponnese); and (ii) the major bauxite deposits located in central Greece within the Parnassos-Ghiona geotectonic zone and on Euboea Island. In the latter area, significant ores of magnesite were exploited and mixed sulphide ores. Centuries of intensive mining exploitation and metallurgical treatment of lead-silver deposits in Greece, have also resulted in significant abandoned sites, such as the one in Lavrion. Mining activities in Lavrio, were initiated in ancient times and continued until the 1980s, resulting in the production of significant waste stockpiles deposited in the area, crucial for the local water resources. Ιn many mining sites, environmental pressures are also recorded after the mine closure to the aquatic environment, as the surface waters flow through waste dump areas and contaminated soils. This paper aims to the geospatial visualization of the mining activities in Greece, in connection to their negative (surface- and/or ground-water pollution; overpumping due to extensive dewatering practices) or positive (enhanced groundwater recharge; pit lakes, improvement of water budget in the catchment scale) impacts on local water resources.

  15. Assessment of Local Biodiversity Loss in Uranium Mining-Tales And Its Projections On Global Scale

    NASA Astrophysics Data System (ADS)

    Sharshenova, D.; Zhamangulova, N.

    2015-12-01

    In Min-Kush, northern Kyrgyzstan there are 8 mining tales with an estimate of 1 961 000 tones of industrial Uranium. Local ecosystem services have declined rapidly. We analyzed a terrestrial assemblage database of Uranium mine-tale to quantify local biodiversity responses to land use and environmental changes. In the worst-affected habitats species richness reduced by 95.7%, total abundance by 60.9% and rarefaction-based richness by 72.5%. We estimate that, regional mountain ecosystem affected by this pressure reduced average within-sample richness (by 17.01%), total abundance (16.5%) and rarefaction-based richness (14.5%). Business-as-usual scenarios are the widely practiced in the region and moreover, due to economic constraints country can not afford any mitigation scenarios. We project that biodiversity loss and ecosystem service impairment will spread in the region through ground water, soil, plants, animals and microorganisms at the rate of 1km/year. Entire Tian-Shan mountain chain will be in danger within next 5-10 years. Our preliminary data shows that local people live in this area developed various forms of cancer, and the rate of premature death is as high as 40%. Strong international scientific and socio-economic partnership is needed to develop models and predictions.

  16. Annotated bibliography of environmentally relevant investigations of uranium mining and milling in the Grants Mineral Belt, northwestern New Mexico

    USGS Publications Warehouse

    Otton, James K.

    2011-01-01

    Studies of the natural environment in the Grants Mineral Belt in northwestern New Mexico have been conducted since the 1930s; however, few such investigations predate uranium mining and milling operations, which began in the early 1950s. This report provides an annotated bibliography of reports that describe the hydrology and geochemistry of groundwaters and surface waters and the geochemistry of soils and sediments in the Grants Mineral Belt and contiguous areas. The reports referenced and discussed provide a large volume of information about the environmental conditions in the area after mining started. Data presented in many of these studies, if evaluated carefully, may provide much basic information about the baseline conditions that existed over large parts of the Grants Mineral Belt prior to mining. Other data may provide information that can direct new work in efforts to discriminate between baseline conditions and the effects of the mining and milling on the natural environment.

  17. Report of investigation on underground limestone mines in the Ohio region. [Jonathan Mine, Alpha Portland Cement Mine, and Lewisburg Mine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byerly, D.W.

    1976-06-01

    The following is a report of investigation on the geologic setting of several underground limestone mines in Ohio other than the PPG mine at Barberton, Ohio. Due to the element of available time, the writer is only able to deliver a brief synopsis of the geology of three sites visited. These three sites and the Barberton, Ohio site are the only underground limestone mines in Ohio to the best of the writer's knowledge. The sites visited include: (1) the Jonathan Mine located near Zanesville, Ohio, and currently operated by the Columbia Cement Corporation; (2) the abandoned Alpha Portland Cement Minemore » located near Ironton, Ohio; and (3) the Lewisburg Mine located at Lewisburg, Ohio, and currently being utilized as an underground storage facility. Other remaining possibilities where limestone is being mined underground are located in middle Ordovician strata near Carntown and Maysville, Kentucky. These are drift mines into a thick sequence of carbonates. The writer predicts, however, that these mines would have some problems with water due to the preponderance of carbonate rocks and the proximity of the mines to the Ohio River. None of the sites visited nor the sites in Kentucky have conditions comparable to the deep mine at Barberton, Ohio.« less

  18. Detection of coal mine workings using high-resolution earth resistivity techniques. Final technical report, September 1979-September 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, W.R.; Campbell, T.M.; Sturdivant, V.R.

    1980-09-26

    Shallow underground voids resulting from early coal mining and other resource recovery activities over the past several decades are now being recognized as a significant cause of ground subsidence problems in developing urban areas. Uncertain knowledge of abandoned coal mines also imposes potential hazards in coal excavation operations since water inundation or the release of methane gas is a principal hazard when mine excavation operations break into an abandoned mine. US Army requirements for an effective method for detecting and mapping subversive abandoned tunnels have resulted in a surface-operated automatic earth resistivity survey system with a digital computer data processingmore » system. Field tests aimed at demonstrating the system performance resulted in successful detection of tunnels having depth-to-diameter ratios up to 15 to 1. Under the sponsorship of the Bureau of Mines, a similar system was designed and constructed for use in the detection of coal mine workings. This report discusses the hardware and software aspects of the system and the application of the high-resolution earth resistivity method to the survey and mapping of abandoned coal mine workings. In the field tests reported, the targets of interest were both air- and water-filled workings.« less

  19. Development and Substantiation of Parameters of Environmentally Friendly Technology for Filling the Vertical Mine Workings with Autoclaved Slag-Concrete

    NASA Astrophysics Data System (ADS)

    Uglyanitca, Andrey; Solonin, Kirill

    2017-11-01

    The environmentally friendly technology for filling the vertical mine workings with autoclaved slag-concrete, prefabricated on the surface of the mine is presented in the article; the optimal parameters of filling technology are proposed. The developed technology for filling the abandoned vertical mine workings allows ensuring the environmental safety of the territories adjacent to the abandoned mine, utilizing slag dumps and providing the possibility of shaft recovery, if necessary, with minimal labor and material costs.

  20. 75 FR 60373 - Louisiana Regulatory Program/Abandoned Mine Land Reclamation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 918... Reclamation Plan AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule... of Surface Mining Reclamation and Enforcement (OSM), are announcing receipt of a proposed amendment...

  1. 76 FR 12852 - Louisiana Regulatory Program/Abandoned Mine Land Reclamation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 918... Reclamation Plan AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior. ACTION: Final rule; approval of amendment. SUMMARY: We, the Office of Surface Mining Reclamation and Enforcement (OSM), are...

  2. Environmental geochemistry of the abandoned Mamut Copper Mine (Sabah) Malaysia.

    PubMed

    van der Ent, Antony; Edraki, Mansour

    2018-02-01

    The Mamut Copper Mine (MCM) located in Sabah (Malaysia) on Borneo Island was the only Cu-Au mine that operated in the country. During its operation (1975-1999), the mine produced 2.47 Mt of concentrate containing approximately 600,000 t of Cu, 45 t of Au and 294 t of Ag, and generated about 250 Mt of overburden and waste rocks and over 150 Mt of tailings, which were deposited at the 397 ha Lohan tailings storage facility, 15.8 km from the mine and 980 m lower in altitude. The MCM site presents challenges for environmental rehabilitation due to the presence of large volumes of sulphidic minerals wastes, the very high rainfall and the large volume of polluted mine pit water. This indicates that rehabilitation and treatment is costly, as for example, exceedingly large quantities of lime are needed for neutralisation of the acidic mine pit discharge. The MCM site has several unusual geochemical features on account of the concomitant occurrence of acid-forming sulphide porphyry rocks and alkaline serpentinite minerals, and unique biological features because of the very high plant diversity in its immediate surroundings. The site hence provides a valuable opportunity for researching natural acid neutralisation processes and mine rehabilitation in tropical areas. Today, the MCM site is surrounded by protected nature reserves (Kinabalu Park, a World Heritage Site, and Bukit Hampuan, a Class I Forest Reserve), and the environmental legacy prevents de-gazetting and inclusion in these protected area in the foreseeable future. This article presents a preliminary geochemical investigation of waste rocks, sediments, secondary precipitates, surface water chemistry and foliar elemental uptake in ferns, and discusses these results in light of their environmental significance for rehabilitation.

  3. Preliminary examination of uranium deposits near Marysvale, Piute County, Utah

    USGS Publications Warehouse

    Granger, Harry C.; Bauer, Herman L.

    1950-01-01

    Autunite and other uranium minerals were discovered in 1948 by Pratt Seegmiller about 3 1/4 miles north of Marysvale, Piute County, Utah. Mining operations were begun in the summer of 1949 by the Vanadium Corporation of America on the Prospector and the Freedom claims, and by the Bullion Monarch Mining Company a the Bullion Monarch claims. These claims were examined briefly in December 1949 and January 1950 by the writers. The uranium deposits of the Marysvale district are in north-easterly striking fault zones in quartz monzonite that intrudes rocks of the "older" Tertiary volcanic sequence. Flows and tuffs of the "younger" Tertiary volcanic sequence uncomfortably overlie the earlier rocks. Autunite, tobernite, uranophane, schroeckingerite, and at least one unidentified secondary uranium mineral occur in the upper parts of the deposits. Pitchblende has been mined from the underground workings of the Prospector No. 1 mine. The uranium minerals are associated with dense quartz veins and intensely argillized wall rock. In the upper parts of the deposits pyrite is completely oxidized. The secondary uranium minerals probably were formed by the alteration of primary pitchblende by circulating meteoric waters.

  4. COMPARISON OF APATITE II™ TREATMENT SYSTEM AT TWO MINES FOR METALS REMOVAL

    EPA Science Inventory

    Two abandoned lead-zinc mine sites, the Nevada Stewart Mine (NSM) and Success Mine, are located within the Coeur d'Alene Mining District, in northern Idaho. An Apatite II™ Treatment System (ATS) was implemented at each site to treat metal-laden water, mainly zinc. In the ATS, f...

  5. Northeast Church Rock Mine

    EPA Pesticide Factsheets

    Northeast Church Rock Mine, a former uranium mine 17 miles northeast of Gallup, NM in the Pinedale Chapter of the Navajo Nation. EPA is working with NNEPA to oversee cleanup work by United Nuclear Corporation, a company owned by General Electric (GE).

  6. Generation of Acid Mine Lakes Associated with Abandoned Coal Mines in Northwest Turkey.

    PubMed

    Sanliyuksel Yucel, Deniz; Balci, Nurgul; Baba, Alper

    2016-05-01

    A total of five acid mine lakes (AMLs) located in northwest Turkey were investigated using combined isotope, molecular, and geochemical techniques to identify geochemical processes controlling and promoting acid formation. All of the investigated lakes showed typical characteristics of an AML with low pH (2.59-3.79) and high electrical conductivity values (1040-6430 μS/cm), in addition to high sulfate (594-5370 mg/l) and metal (aluminum [Al], iron [Fe], manganese [Mn], nickel [Ni], and zinc [Zn]) concentrations. Geochemical and isotope results showed that the acid-generation mechanism and source of sulfate in the lakes can change and depends on the age of the lakes. In the relatively older lakes (AMLs 1 through 3), biogeochemical Fe cycles seem to be the dominant process controlling metal concentration and pH of the water unlike in the younger lakes (AMLs 4 and 5). Bacterial species determined in an older lake (AML 2) indicate that biological oxidation and reduction of Fe and S are the dominant processes in the lakes. Furthermore, O and S isotopes of sulfate indicate that sulfate in the older mine lakes may be a product of much more complex oxidation/dissolution reactions. However, the major source of sulfate in the younger mine lakes is in situ pyrite oxidation catalyzed by Fe(III) produced by way of oxidation of Fe(II). Consistent with this, insignificant fractionation between δ(34) [Formula: see text] and δ(34) [Formula: see text] values indicated that the oxidation of pyrite, along with dissolution and precipitation reactions of Fe(III) minerals, is the main reason for acid formation in the region. Overall, the results showed that acid generation during early stage formation of an AML associated with pyrite-rich mine waste is primarily controlled by the oxidation of pyrite with Fe cycles becoming the dominant processes regulating pH and metal cycles in the later stages of mine lake development.

  7. Heavy metal pollution in soils of abandoned mining areas (SE, Spain)

    NASA Astrophysics Data System (ADS)

    Martínez-Sánchez, M. J.; Pérez-Sirvent, C.; Molina, J.; Tudela, M. L.; Navarro, M. C.; García-Lorenzo, M. L.

    2009-04-01

    Elevated levels of heavy metals can be found in and around disused metalliferous mines due to discharge and dispersion of mine wastes into nearby agricultural soils, food crops and stream systems. Heavy metals contained in the residues from mining and metallurgical operations are often dispersed by wind and/or water after their disposal. These areas have severe erosion problems caused by wind and water runoff in which soil and mine spoil texture, landscape topography and regional and microclimate play an important role. The present study was carried out in the Cabezo Rajao (La Uni

  8. Distribution, speciation, and transport of mercury in stream-sediment, stream-water, and fish collected near abandoned mercury mines in southwestern Alaska, USA

    USGS Publications Warehouse

    Gray, J.E.; Theodorakos, P.M.; Bailey, E.A.; Turner, R.R.

    2000-01-01

    Concentrations of total Hg, Hg (II), and methylmercury were measured in stream-sediment, stream-water, and fish collected downstream from abandoned mercury mines in south-western Alaska to evaluate environmental effects to surrounding ecosystems. These mines are found in a broad belt covering several tens of thousands of square kilometers, primarily in the Kuskokwim River basin. Mercury ore is dominantly cinnabar (HgS), but elemental mercury (Hg(o)) is present in ore at one mine and near retorts and in streams at several mine sites. Approximately 1400 t of mercury have been produced from the region, which is approximately 99% of all mercury produced from Alaska. These mines are not presently operating because of low prices and low demand for mercury. Stream-sediment samples collected downstream from the mines contain as much as 5500 ??g/g Hg. Such high Hg concentrations are related to the abundance of cinnabar, which is highly resistant to physical and chemical weathering, and is visible in streams below mine sites. Although total Hg concentrations in the stream-sediment samples collected near mines are high, Hg speciation data indicate that concentrations of Hg (II) are generally less than 5%, and methylmercury concentrations are less than 1% of the total Hg. Stream waters below the mines are neutral to slightly alkaline (pH 6.8-8.4), which is a result of the insolubility of cinnabar and the lack of acid- generating minerals such as pyrite in the deposits. Unfiltered stream-water samples collected below the mines generally contain 500-2500 ng/l Hg; whereas, corresponding stream-water samples filtered through a 0.45-??m membrane contain less than 50 ng/l Hg. These stream-water results indicate that most of the Hg transported downstream from the mines is as finely- suspended material rather than dissolved Hg. Mercury speciation data show that concentrations of Hg (II) and methylmercury in stream-water samples are typically less than 22 ng/l, and generally less than

  9. Preliminary results on variations of radon concentration associated with rock deformation in a uranium mine

    NASA Astrophysics Data System (ADS)

    Verdoya, Massimo; Bochiolo, Massimo; Chiozzi, Paolo; Pasquale, Vincenzo; Armadillo, Egidio; Rizzello, Daniele; Chiaberto, Enrico

    2013-04-01

    Time-series of radon concentration and environmental parameters were recently recorded in a uranium mine gallery, located in the Maritime Alps (NW Italy). The mine was bored in metarhyolites and porphyric schists mainly composed by quartz, feldspar, sericite and fluorite. U-bearing minerals are generally concentrated in veins heterogeneously spaced and made of crystals of metaautunite and metatorbernite. Radon air concentration monitoring was performed with an ionization chamber which was placed at the bottom of the gallery. Hourly mean values of temperature, pressure, and relative humidity were also measured. External data of atmospheric temperature, pressure and rainfall were also available from a meteorological station located nearby, at a similar altitude of the mine. The analysis of the time series recorded showed variation of radon concentration, of large amplitude, exhibiting daily and half-daily periods, which do not seem correlated with meteorological records. Searching for the origin of radon concentration changes and monitoring their amplitude as a function of time can provide important clues on the complex emanation process. During this process, radon reaches the air- and water-filled interstices by recoil and diffusion, where its migration is directed towards lower concentration regions, following the local gradient. The radon emanation from the rock matrix could also be controlled by stress changes acting on the rate of migration of radon into fissures, and fractures. This may yield emanation boosts due to rock extension and the consequent crack broadening, and emanation decrease when joints between cracks close. Thus, besides interaction and mass transfer with the external atmospheric environment, one possible explanation for the periodic changes in radon concentrations in the investigated mine, could be the variation of rock deformation related to lunar-solar tides. The large variation of concentration could be also due to the fact that the mine is

  10. Pilot Study to Evaluate Hydrogen Injection for Stimulating Reduction and Immobilization of Uranium in Groundwater at an ISR Mining Site

    NASA Astrophysics Data System (ADS)

    Clapp, L. W.; Cabezas, J.; Gamboa, Y.; Fernandez, W.

    2011-12-01

    State and federal regulations require that groundwater at in-situ recovery (ISR) uranium mining operations be restored to pre-mining conditions. Reverse osmosis (RO) filtration of several pore volumes of the post-leached groundwater and reinjection of the clean permeate is the most common technology currently used for restoring groundwater at uranium ISR sites. However, this approach does not revert the formation back to its initial reducing conditions, which can potentially impede timely groundwater restoration. In-situ biostimulation of indigenous iron- and sulfate reducing bacteria by injection of organic electron donors (e.g., ethanol, acetate, and lactate) to promote soluble uranium reduction and immobilization has been the subject of previous studies. However, injection of organic substrates has been observed to cause aquifer clogging near the injection point. In addition, U(VI) solubility may be enhanced through complexation with carbonate generated by organic carbon oxidation. An alternative approach that may overcome these problems involves the use of hydrogen as a reductant to promote microbial reduction and immobilization of U(VI) in situ. To test this approach, approximately 100,000 scf of compressed hydrogen gas was injected into a leached unconsolidated sand zone over two months at an ISR mining site. During this time groundwater was recirculated between injection and extraction wells (separated by 130 ft) at a rate of about 40 gpm and bromide was coinjected as a conservative tracer. A well monitoring program has been executed since June 2009 to evaluate the performance of the hydrogen injection. Current results show that U(VI) has been reduced from 4.2 to 0.05 ppm in the area surrounding the injection well and to 2.0 ± 0.3 ppm in the area surrounding the extraction well and two intermediate monitoring wells. Other water quality changes near the injection well include significant decreases in concentrations of Mo, sulfate, Fe, Mn, bicarbonate, Ca

  11. Geophysical investigations of near-surface materials and groundwater quality at abandoned mine land site No. 1087, Pike County, Indiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spindler, K.M.; Olyphant, G.A.; Harper, D.

    Reclamation of Abandoned Mine Land (AML) Site No. 1087 (Midwestern) includes extensive use of coal-combustion byproducts such as fly ash and fixated scrubber sludge (FSS) as fill and cover materials. Prior to reclamation, a deposit of coarse-grained pyritic refuse in the central part of the site was the primary source for acidic mine drainage. The FSS tends to have a low permeability, so it was applied over the refuse to serve as a barrier to vertical recharge and thereby inhibit generation and mobilization of additional acidity. Repeated post-reclamation measurements of soil-water content using a neutron moisture gauge provide evidence thatmore » vertical recharge is, in fact, not occurring through the FSS. However, a previously existing plume of acidic water extends beyond the area of the refuse into adjacent areas of disturbed overburden (spoil). Electrical resistivity profiles using the offset Wenner method were used to delineate the horizontal extent of the refuse and to quantify spatial variability of groundwater chemistry within the refuse and adjacent spoil. Ground penetrating radar (GPR) was used to precisely determine the thickness and extent of the FSS layer and its relation to the refuse and to the surrounding plume of acidic water. Together, these techniques provide a complete three-dimensional representation of the FSS, refuse, spoil, and plume of acidic groundwater.« less

  12. Uranophane at Silver Cliff mine, Lusk, Wyoming

    USGS Publications Warehouse

    Wilmarth, Verl R.; Johnson, D.H.

    1954-01-01

    The uranium deposit at the Silver Cliff mine near Lusk, Wyo., consists primarily of uranophane which occurs as fracture fillings and small replacement pockets in faulted and fractured calcareous sandstone of Cambrian (?) age. The country rock in the vicinity of the mine is schist of pre-Cambrian age intruded by pegmatite dikes and is unconformably overlain by almost horizontal sandstone of Cambrian(?) age. The mine is on the southern end of the Lusk Dome, a local structure probably related to the Hartville uplift. In the immediate vicinity of the mine, the dome is cut by the Silver Cliff fault, a north-trending high-angle reverse fault about 1,200 feet in length with a stratigraphic throw of 70 feet. Uranophane, metatorbernite, pitchblende, calcite, native silver, native copper, chalcocite, azurite, malachite, chrysocolla, and cuprite have been deposited in fractured sandstone. The fault was probably mineralized throughout its length, but because of erosion, the mineralized zone is discontinuous. The principal ore body is about 800 feet long. The width and depth of the mineralized zone are not accurately known but are at least 20 feet and 60 feet respectively. The uranium content of material sampled in the mine ranges from 0.001 to 0.23 percent uranium, whereas dump samples range from 0.076 to 3.39 percent uranium.

  13. Effects of coal mine subsidence in the Sheridan, Wyoming, area

    USGS Publications Warehouse

    Dunrud, C. Richard; Osterwald, Frank W.

    1980-01-01

    Analyses of the surface effects of past underground coal mining in the Sheridan, Wyoming, area suggest that underground mining of strippable coal deposits may damage the environment more over long periods of time than would modern surface mining, provided proper restoration procedures are followed after surface mining. Subsidence depressions and pits are a continuing hazard to the environment and to man's activities in the Sheridan, Wyo., area above abandoned underground mines in weak overburden less than about 60 m thick and where the overburden is less than about 10-15 times the thickness of coal mined. In addition, fires commonly start by spontaneous ignition when water and air enter the abandoned mine workings via subsidence cracks and pits. The fires can then spread to unmined coal as they create more cavities, more subsidence, and more cracks and pits through which air can circulate. In modern surface mining operations the total land surface underlain by minable coal is removed to expose the coal. The coal is removed, the overburden and topsoil are replaced, and the land is regraded and revegetated. The land, although disturbed, can be more easily restored and put back into use than can land underlain by abandoned underground mine workings in areas where the overburden is less than about 60 m thick or less than about 10-15 times the thickness of coal mined. The resource recovery of modern surface mining commonly is much greater than that of underground mining procedures. Although present-day underground mining technology is advanced as compared to that of 25-80 years ago, subsidence resulting from underground mining of thick coal beds beneath overburden less than about 60 m thick can still cause greater damage to surface drainage, ground water, and vegetation than can properly designed surface mining operations. This report discusses (11 the geology and surface and underground effects of former large-scale underground coal mining in a 50-km 2 area 5-20 km

  14. 75 FR 71668 - Cibota National Forest, Mount Taylor Ranger District, NM, Roca Honda Mine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... develop and conduct underground uranium mining operations on their mining claims on and near Jesus Mesa in... open to mineral entry under the General Mining Law of 1872. Section 16 is State of New Mexico land... statement (EIS) to assess the development of a uranium mining operation on the Mount Taylor Ranger District...

  15. Gasified grass and wood biochars facilitate plant establishment in acid mine soils

    EPA Science Inventory

    Heavy metals in exposed mine tailings threaten ecosystems that surround thousands of abandoned mines in the U.S. Biochars derived from the pyrolysis or gasification of biomass may serve as a valuable soil amendment to revegetate mine sites. We evaluated the ability of two biochar...

  16. Natural radionuclides in fish species from surface water of Bagjata and Banduhurang uranium mining areas, East Singhbhum, Jharkhand, India.

    PubMed

    Giri, Soma; Singh, Gurdeep; Jha, V N; Tripathi, R M

    2010-11-01

    To study the natural radionuclides in the freshwater fish samples around the uranium mining areas of Bagjata and Banduhurang, East Singhbhum, Jharkhand, India. The naturally occurring radioisotopes of uranium, U(nat), consisting of (234)U, (235)U and (238)U; (226)Ra, (230)Th and (210)Po were analysed in the fish samples from the surface water of Bagjata and Banduhurang mining areas after acid digestion. The ingestion dose, concentration factor and excess lifetime cancer risk of the radionuclides were estimated. The geometric mean activity of U(nat), (226)Ra, (230)Th and (210)Po in the fish samples was found to be 0.05, 0.19, 0.29 and 0.95 Bq kg(-1)(fresh) (Becquerel per kilogram fresh fish), respectively, in the Bagjata mining area, while for Banduhurang mining area it was estimated to be 0.08, 0.41, 0.22 and 2.48 Bq kg(-1)(fresh), respectively. The ingestion dose was computed to be 1.88 and 4.16 μSvY(-1), respectively, for both the areas which is much below the 1 mSv limit set in the new International Commission on Radiological Protection (ICRP) recommendations. The estimation of the Concentration Factors (CF) reveal that the CF from water is greater than 1 l/kg(-1)in most of the cases while from sediment CF is less than 1. The excess individual lifetime cancer risk due to the consumption of fish was calculated to be 2.53 × 10(-5) and 6.48 × 10(-5), respectively, for Bagjata and Banduhurang areas, which is within the acceptable excess individual lifetime cancer risk value of 1 × 10(-4). The study confirms that current levels of radioactivity do not pose a significant radiological risk to freshwater fish consumers.

  17. Contaminant dispersion at the rehabilitated Mary Kathleen uranium mine, Australia

    NASA Astrophysics Data System (ADS)

    Lottermoser, B. G.; Ashley, P. M.; Costelloe, M. T.

    2005-09-01

    This study reports on the transfer of contaminants from waste rock dumps and mineralised ground into soils, sediments, waters and plants at the rehabilitated Mary Kathleen uranium mine in semi-arid northwest Queensland. Numerous waste rock dumps were partly covered with benign soil and the open pit mine was allowed to flood. The mineralised and waste calc-silicate rock in the open pit and dumps has major (>1 wt%) Ca, Fe and Mg, minor (>1,000 ppm) Ce, La, Mn, P and S, subminor (>100 ppm) Ba, Cu, Th and U, and trace (<100 ppm) As, Ni, Pb, Y and Zn values. Consequently, chemical and physical weathering processes have acted on waste rock and on rock faces within the open pit, mobilising many elements and leading to their dispersion into soils, stream sediments, pit water and several plant species. Chemical dispersion is initiated by sulfide mineral breakdown, generation of sulfuric acid and formation of several soluble, transient sulfate minerals as evaporative efflorescent precipitates. Radiation doses associated with the open pit average 5.65 mSv year-1; waste dumps commonly have lower values, especially where soil-covered. Surface pit water is slightly acid, with high sulfate values accompanied by levels of U, Cu and Ni close to or above Australian water guideline values for livestock. Dispersion of U and related elements into soils and stream sediments occurs by physical (erosional) processes and from chemical precipitation. Plants growing in the mine void, on waste dumps and contaminated soil display evidence of biological uptake of U, LREE, Cu and Th and to a lesser degree of As, Ni, Pb, Y and Zn, with values being up to 1-2 orders of magnitude above background sites for the same species. Although rehabilitation procedures have been partly successful in reducing dispersion of U and related elements into the surrounding environment, it is apparent that 20 years after rehabilitation, there is significant physical and chemical mobility, including transfer into

  18. Uranium ores and depleted uranium in the environment, with a reference to uranium in the biosphere from the Erzgebirge/Sachsen, Germany.

    PubMed

    Meinrath, A; Schneider, P; Meinrath, G

    2003-01-01

    The Erzgebirge ('Ore Mountains') area in the eastern part of Germany was a major source of uranium for Soviet nuclear programs between 1945 and 1989. During this time, the former German Democratic Republic became the third largest uranium producer in the world. The high abundance of uranium in the geological formations of the Erzgebirge are mirrored in the discovery of uranium by M. Klaproth close to Freiberg City in 1789 and the description of the so-called 'Schneeberg' disease, lung cancer caused in miners by the accumulation of the uranium decay product, radon, in the subsurfaces of shafts. Since 1991, remediation and mitigation of uranium at production facilities, rock piles and mill tailings has taken place. In parallel, efforts were initiated to assess the likely adverse effects of uranium mining to humans. The costs of these activities amount to about 6.5 10(9) Euro. A comparison with concentrations of depleted uranium at certain sites is given.

  19. Have Metals Lost Their Luster? Environmental Effects Of MIning And Remedial Options

    EPA Science Inventory

    Many miles of streams in the U.S. (and worldwide) are contaminated by mine-drainage originating from both active and abandoned mining sites [coal and metal mining]. Depending on the host-rock, the drainage might or might not be acidic. Once the drainage mixes with oxygenated st...

  20. Geochemical investigations and interim recommendations for priority abandoned mine sites on U.S.D.A. Forest Service lands, Mineral Creek watershed, San Juan County, Colorado

    USGS Publications Warehouse

    Nash, J.T.

    1999-01-01

    estimate in ranking feasibility of reclamation is the amount of natural and mine-related contamination at each mining area. Mitigation of natural contributions at mines or unmined areas is beyond the scope of these Abandoned Mine Lands (AML) investigations, but must be considered when planning reclamation. Available information for the 25 problem sites is adequate for ranking, but at some sites additional information on groundwater conditions is needed for a more reliable ranking and evaluation of reclamation methods.

  1. Impact of acid mine drainages on surficial waters of an abandoned mining site.

    PubMed

    García-Lorenzo, M L; Marimón, J; Navarro-Hervás, M C; Pérez-Sirvent, C; Martínez-Sánchez, M J; Molina-Ruiz, José

    2016-04-01

    Weathering of sulphide minerals produces a great variety of efflorescences of soluble sulphate salts. These minerals play an important role for environmental pollution, since they can be either a sink or a source for acidity and trace elements. This paper aims to characterise surface waters affected by mining activities in the Sierra Minera of Cartagena-La Union (SE, Spain). Water samples were analysed for trace metals (Zn, Cd, Pb, Cu, As and Fe), major ions (Na(+), K(+), Ca(2+) and Mg(2+)) and anions (F(-), Cl(-), NO3 (-), CO3 (2-), SO4 (2-)) concentrations and were submitted to an "evaporation-precipitation" experiment that consisted in identifying the salts resulting from the evaporation of the water aliquots sampled onsite. Mineralogy of the salts was studied using X-ray diffraction and compared with the results of calculations using VISUAL MINTEQ. The study area is heavily polluted as a result of historical mining and processing activities that has produced large amount of wastes characterised by a high trace elements content, acidic pH and containing minerals resulting from the supergene alteration of the raw materials. The mineralogical study of the efflorescences obtained from waters shows that magnesium, zinc, iron and aluminium sulphates predominate in the acid mine drainage precipitates. Minerals of the hexahydrite group have been quantified together with minerals of the rozenite group, alunogen and other phases such as coquimbite and copiapite. Calcium sulphates correspond exclusively to gypsum. In a semiarid climate, such as that of the study area, these minerals contribute to understand the response of the system to episodic rainfall events. MINTEQ model could be used for the analysis of waters affected by mining activities but simulation of evaporation gives more realistic results considering that MINTEQ does not consider soluble hydrated salts.

  2. Distribution of chemical elements in soils and stream sediments in the area of abandoned Sb-As-Tl Allchar mine, Republic of Macedonia.

    PubMed

    Bačeva, Katerina; Stafilov, Trajče; Šajn, Robert; Tănăselia, Claudiu; Makreski, Petre

    2014-08-01

    The aim of this study was to investigate the distribution of some toxic elements in topsoil and subsoil, focusing on the identification of natural and anthropogenic element sources in the small region of rare As-Sb-Tl mineralization outcrop and abandoned mine Allchar known for the highest natural concentration of Tl in soil worldwide. The samples of soil and sediments after total digestion were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES). Factor analysis (FA) was used to identify and characterize element associations. Six associations of elements were determined by the method of multivariate statistics: Rb-Ta-K-Nb-Ga-Sn-Ba-Bi-Li-Be-(La-Eu)-Hf-Zr-Zn-In-Pd-Ag-Pt-Mg; Tl-As-Sb-Hg; Te-S-Ag-Pt-Al-Sc-(Gd-Lu)-Y; Fe-Cu-V-Ge-Co-In; Pd-Zr-Hf-W-Be and Ni-Mn-Co-Cr-Mg. The purpose of the assessment was to determine the nature and extent of potential contamination as well as to broadly assess possible impacts to human health and the environment. The results from the analysis of the collected samples in the vicinity of the mine revealed that As and Tl elements have the highest median values. Higher median values for Sb are obviously as a result of the past mining activities and as a result of area surface phenomena in the past. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Gasified grass and wood biochars facilitate plant establishment in acid mine soils

    USDA-ARS?s Scientific Manuscript database

    Thousands of abandoned mines in the Western U.S. threaten ecosystems, due to high heavy metal concentrations in exposed mine spoils and waters flowing from them. Biochars derived from the pyrolysis or gasification of organic biomass may serve as a valuable soil amendment to revegetate mine sites, du...

  4. Potential of Melastoma malabathricum as bio-accumulator for uranium and thorium from soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saat, Ahmad, E-mail: ahmad183@salam.uitm.edu.my; Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam; Kamsani, Ain Shaqina

    2015-04-29

    Uranium and Thorium are naturally occuring radionuclides. However, due to anthropogenic activities in some locations their concentrations in the soils could be elevated. This study explores the potential of Melastoma malabathricum (locally known as ‘pokok senduduk’) as bio-accumulator of uranium and thorium from soils of three different study areas, namely former tin mining, industrial and residential/commercial areas in Peninsular Malaysia. The study found elevated concentrations of uranium and thorium in former tin mining soils as compared to natural abundance. However in industral and residential/commercial areas the concentrations are within the range of natural abundance. In terms of transfer factor (TF),more » in ex-mining areas TF > 1 for uranium in the leaf, stem and roots, indicating accumulation of uranium from soil. However for thorium TF < 1, indicating the occurence of transfer from soil to root, stem and leaf, but no accumulation. For other areas only transfer of uranium and thorium were observed. The results indicated the potential of Melastoma malabathricum to be used as bio-accumulatior of uranium, especially in areas of elevated concentration.« less

  5. MINE WASTE TECHNOLOGY PROGRAM - SULFATE REDUCING BACTERIA REACTIVE WALL DEMO

    EPA Science Inventory


    Efforts reported in this document focused on the demonstration of a passive technology that could be used for remediation of
    thousands of abandoned mines existing in the Western United States that emanate acid mine drainage (AMD). This passive remedial technology takes ad...

  6. Radioactivity in Virgin Soils and Soils from Some Areas with Closed Uranium Mining Facilities in Bulgaria

    NASA Astrophysics Data System (ADS)

    Yordanova, I.; Staneva, D.; Misheva, L.; Bineva, Ts.; Banov, M.

    2012-04-01

    The soil radioecology is an important part of the environmental research in the country. Since the beginning of the 1970's regular monitoring of the content of different radionuclides in Bulgarian soils has been done. Objective of the studies were virgin soils from high mountain areas, hills and plains (the region of Kozloduy NPP and the Danube river valley). Natural and men-made radionuclides were observed. In the 25-year period after the the contamination with radionuclides due to the 1986 Chernobyl NPP accident a rich data base has been collected, recording the radiation status of the soils in Bulgaria. Special attention has been paid to the contamination with the long-lived technogenic radionuclides caesium-137 and strontium-90. This paper presents a summary of the obtained results. Caesium-137 and strontium-90 were the main men-made radionuclides detected in the examined Bulgarian soils few years after the Chernobyl NPP accident. Their content in the soils from high mountain areas (Rodopa and Rila mountains) is several times higher than that in the soils from North Bulgaria and Sofia fields. High non-homogenity in the pollution within small areas (even as small as several square meters) has been observed. Natural radioactivity was also studied. Averaged values for natural radionuclides like uranium-238, thorium-232, and radium-226 in virgin soils from different areas in the country are presented. A comparison of the dynamics of their behavior throughout the years is done. Bulgaria is a country with intensive uranium mining activities in the past years. That is why radiological monitoring of closed uranium mining facilities in different regions of the country are obligatory and of great interest. This work presents results from such investigations made in regions where remediation has been done. The results have been evaluated according to the Bulgarian radionuclide environment contamination legislation. The necessity of permanent environmental monitoring is

  7. Characterization of the biochemical-pathway of uranium (VI) reduction in facultative anaerobic bacteria.

    PubMed

    Mtimunye, Phalazane J; Chirwa, Evans M N

    2014-10-01

    Cultures of U(VI) reducing bacteria sourced from abandoned uranium mine tailing dam were evaluated for their ability to reduce U(VI) to U(IV). The species in the cultures reduced U(VI) in solutions with initial U(VI) concentration up to 400mgL(-)(1) under a near neutral pH of 6.5. The electron flow pathway and fate of reduced species was also analysed in the individual species in order to evaluate the potential for control and optimisation of the reduction potential at the biochemical level. The results showed that U(VI) reduction in live cells was completely blocked by the NADH-dehydrogenase inhibitor, rotenone (C23H22O6), and thioredoxin inhibitor, cadmium chloride (CdCl2), showing that U(VI) reduction involves the electron flow through NADH-dehydrogenase, a primary electron donor to the electron transport respiratory (ETR) system. Mass balance analysis of uranium species aided by visual and electron microscopy suggest that most U(VI) reduction occurred on the cell surface of the isolated species. This finding indicates the possibility of easy uranium recovery for beneficial use through biological remediation. Should the U(VI) be reduced inside the cell, recovery would require complete disruption of the cells and therefore would be difficult. The study contributes new knowledge on the underlying mechanisms in the U(VI) reduction in facultative anaerobes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Site investigation report mine research project GUE 70-14.10, Guernsey, Ohio.

    DOT National Transportation Integrated Search

    2003-06-01

    Geophysical investigative techniques can be a valuable supplement to standard subsurface investigations for the : evaluation of abandoned underground coal mine workings and their potential impacts at the ground surface. The GUE : 70 - 14.10 Mine Rese...

  9. MICROBIAL SULFATE REDUCTION AND METAL ATTENUATION IN PH 4 ACID MINE WATER

    EPA Science Inventory

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing...

  10. 76 FR 76104 - Arkansas Regulatory Program and Abandoned Mine Land Reclamation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-06

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 904... Reclamation Plan AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public comment period on proposed amendment. SUMMARY: We, the Office of Surface Mining Reclamation and...

  11. 77 FR 55430 - Arkansas Regulatory Program and Abandoned Mine Land Reclamation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-10

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 904... Reclamation Plan AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public comment period on proposed amendment. SUMMARY: We, the Office of Surface Mining Reclamation and...

  12. Release behavior of uranium in uranium mill tailings under environmental conditions.

    PubMed

    Liu, Bo; Peng, Tongjiang; Sun, Hongjuan; Yue, Huanjuan

    2017-05-01

    Uranium contamination is observed in sedimentary geochemical environments, but the geochemical and mineralogical processes that control uranium release from sediment are not fully appreciated. Identification of how sediments and water influence the release and migration of uranium is critical to improve the prevention of uranium contamination in soil and groundwater. To understand the process of uranium release and migration from uranium mill tailings under water chemistry conditions, uranium mill tailing samples from northwest China were investigated with batch leaching experiments. Results showed that water played an important role in uranium release from the tailing minerals. The uranium release was clearly influenced by contact time, liquid-solid ratio, particle size, and pH under water chemistry conditions. Longer contact time, higher liquid content, and extreme pH were all not conducive to the stabilization of uranium and accelerated the uranium release from the tailing mineral to the solution. The values of pH were found to significantly influence the extent and mechanisms of uranium release from minerals to water. Uranium release was monitored by a number of interactive processes, including dissolution of uranium-bearing minerals, uranium desorption from mineral surfaces, and formation of aqueous uranium complexes. Considering the impact of contact time, liquid-solid ratio, particle size, and pH on uranium release from uranium mill tailings, reducing the water content, decreasing the porosity of tailing dumps and controlling the pH of tailings were the key factors for prevention and management of environmental pollution in areas near uranium mines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. THE MARY KATHLEEN URANIUM PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, A.

    1960-02-01

    A description is given of uranium mining and milling methods at the Mary Kathleen Mine in the Cloncurry-Mt. Isa district of Queensland, Australia. The discovery of this property and its development are outlined. The deposit cecurs in highly altered meta-sediments in the corella beds of lower proterozoic age. Because of the considerable internal waste in the deposit, it was necessary to devise a selective mining method which would keep dilution to the lowest possible level. The mining, haulage and handling, premilling program, drilling, and blasting are discussed. (M.C.G.)

  14. Assessment, water-quality trends, and options for remediation of acidic drainage from abandoned coal mines near Huntsville, Missouri, 2003-2004

    USGS Publications Warehouse

    Christensen, Eric D.

    2005-01-01

    Water from abandoned underground coal mines acidifies receiving streams in the Sugar Creek Basin and Mitchell Mine Basin near Huntsville, Missouri. A 4.35-kilometer (2.7-mile) reach of Sugar Creek has been classified as impaired based on Missouri's Water Quality Standards because of small pH values [< (less than) 6.5]. Samples collected from Sugar Creek from July 2003 to June 2004 did not have pH values outside of the specified range of 6.5 to 9.0. However, large concentrations of iron [416 to 2,320 mg/L (milligrams per liter)], manganese (8.36 to 33.5 mg/L), aluminum (0.870 to 428 mg/L), and sulfate (2,990 to 13,700 mg/L) in acidic mine drainage (AMD) from two mine springs as well as small and diffuse seeps were observed to have an effect on water quality in Sugar Creek. Metal and sulfate loads increased and pH decreased immediately downstream from Sugar Creek's confluence with the Calfee Slope and Huntsville Gob drainages that discharge AMD into Sugar Creek. Similar effects were observed in the Mitchell Mine drainage that receives AMD from a large mine spring. Comparisons of water-quality samples from this study and two previous studies by the U.S. Geological Survey in 1987-1988 and the Missouri Department of Natural Resources in 2000-2002 indicate that AMD generation in the Sugar Creek Basin and Mitchell Mine Basin is declining, but the data are insufficient to quantify any trends or time frame. AMD samples from the largest mine spring in the Calfee Slope subbasin indicated a modest but significant increase in median pH from 4.8 to 5.2 using the Wilcoxan rank-sum test (p <0.05) and a decrease in median specific conductance from 5,000 to 3,540 ?S/cm (microsiemens per centimeter at 25 degrees Celsius) during a 17-year period. AMD samples from the largest mine spring in the Mitchell Mine Basin indicated an increase in median pH values from 5.6 to 6.0 and a decrease in median specific conductance from 3,050 to 2,450 ?S/cm during the same period. Remediation of AMD

  15. Radon emanation from backfilled mill tailings in underground uranium mine.

    PubMed

    Sahu, Patitapaban; Mishra, Devi Prasad; Panigrahi, Durga Charan; Jha, Vivekananda; Patnaik, R Lokeswara; Sethy, Narendra Kumar

    2014-04-01

    Coarser mill tailings used as backfill to stabilize the stoped out areas in underground uranium mines is a potential source of radon contamination. This paper presents the quantitative assessment of radon emanation from the backfilled tailings in Jaduguda mine, India using a cylindrical accumulator. Some of the important parameters such as (226)Ra activity concentration, bulk density, bulk porosity, moisture content and radon emanation factor of the tailings affecting radon emanation were determined in the laboratory. The study revealed that the radon emanation rate of the tailings varied in the range of 0.12-7.03 Bq m(-2) s(-1) with geometric mean of 1.01 Bq m(-2) s(-1) and geometric standard deviation of 3.39. An increase in radon emanation rate was noticed up to a moisture saturation of 0.09 in the tailings, after which the emanation rate gradually started declining with saturation due to low diffusion coefficient of radon in the saturated tailings. Radon emanation factor of the tailings varied in the range of 0.08-0.23 with the mean value of 0.21. The emanation factor of the tailings with moisture saturation level over 0.09 was found to be about three times higher than that of the absolutely dry tailings. The empirical relationship obtained between (222)Rn emanation rate and (226)Ra activity concentration of the tailings indicated a significant positive linear correlation (r = 0.95, p < 0.001). This relationship may be useful for quick prediction of radon emanation rate from the backfill material of similar nature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. UNEXMIN H2020 Project: an underwater explorer for flooded mines

    NASA Astrophysics Data System (ADS)

    Lopes, Luís; Zajzon, Norbert; Bodo, Balázs; Henley, Stephen; Žibret, Gorazd; Almeida, José; Vörös, Csaba; Horvath, Janos; Dizdarevič, Tatjana; Rossi, Claudio; McLoughlin, Mike

    2017-04-01

    UNEXMIN (Underwater Explorer for Flooded Mines, Grant Agreement No. 690008, www.unexmin.eu) is a project funded by the European Commission's HORIZON2020 Framework Programme. The project is developing a multi-platform robotic system for the autonomous exploration and mapping of Europe's flooded mines. The robotic system - UX-1 - will use non-invasive methods for the 3D mapping of abandoned flooded mines, bringing new important geological and mineralogical data that cannot be currently obtained by any other means. This technology will allow the development or update of geological models at local and regional levels. The data collected will then be used to consider new exploration scenarios for the possible re-opening of some of Europe's abandoned mines which may still contain valuable resources of strategic minerals. The deployment of a multi-robotic system in such a confined environment poses challenges that must be overcome so that the robots can work autonomously, without damaging the equipment and the mine itself. Key challenges are related to the i) structural design for robustness and resilience, ii) localization, navigation and 3D mapping, iii) guidance, propulsion and control, iv) autonomous operation and supervision, v) data processing, interpretation and evaluation. The scientific instrument array is currently being tested, built and tailored for the submersible: pH, electrical conductivity, pressure and temperature analyzers and a water sampler (water sampling methods), a magnetic field analyzer, a gamma-ray counter and a sub-bottom profiler (geophysical methods) and a multispectral and UV fluorescence imaging units (optical observation methods). The instruments have been selected to generate data of maximum geoscientific interest, considering the limiting factors of the submerged underground environment, the necessary robotic functions, the size for the robot and other constraints. Other crucial components for the robot's functionality (such as movement

  17. Engineering assessment and feasibility study of Chattanooga Shale as a future source of uranium. [Preliminary mining; data on soils, meteorology, water resources, and biological resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This volume contains five appendixes: Chattanooga Shale preliminary mining study, soils data, meteorologic data, water resources data, and biological resource data. The area around DeKalb County in Tennessee is the most likely site for commercial development for recovery of uranium. (DLC)

  18. Monitoring genotoxic exposure in uranium miners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sram, R.J.; Binkova, B.; Dobias, L.

    1993-03-01

    Recent data from deep uranium mines in Czechoslovakia indicated that in addition to radon daughter products, miners are also exposed to chemical mutagens. Mycotoxins were identified as a possible source of mutagenicity present in the mines. Various methods of biomonitoring were used to examine three groups of miners from different uranium mines. Cytogenetic analysis of peripheral lymphocytes, unscheduled DNA synthesis (UDS) in lymphocytes, and lipid peroxidation (LPO) in both plasma and lymphocytes were studied on 66 exposed miners and 56 controls. Throat swabs were taken from 116 miners and 78 controls. Significantly increased numbers of aberrant cells were found inmore » all groups of miners, as well as decreased UDS values in lymphocytes and increased LPO plasma levels in comparison to controls. Molds were detected in throat swabs from 27% of miners, and 58% of these molds were embryotoxic. Only 5% of the control samples contained molds and none of them was embryotoxic. The following mycotoxins were isolated from miners' throat swab samples: rugulosin, sterigmatocystin, mycophenolic acid, brevianamid A, citreoviridin, citrinin, penicilic acid, and secalonic acid. These data suggest that mycotoxins are a genotoxic factor affecting uranium miners.« less

  19. Monitoring genotoxic exposure in uranium miners.

    PubMed Central

    Srám, R J; Binková, B; Dobiás, L; Rössner, P; Topinka, J; Veselá, D; Veselý, D; Stejskalová, J; Bavorová, H; Rericha, V

    1993-01-01

    Recent data from deep uranium mines in Czechoslovakia indicated that in addition to radon daughter products, miners are also exposed to chemical mutagens. Mycotoxins were identified as a possible source of mutagenicity present in the mines. Various methods of biomonitoring were used to examine three groups of miners from different uranium mines. Cytogenetic analysis of peripheral lymphocytes, unscheduled DNA synthesis (UDS) in lymphocytes, and lipid peroxidation (LPO) in both plasma and lymphocytes were studied on 66 exposed miners and 56 controls. Throat swabs were taken from 116 miners and 78 controls. Significantly increased numbers of aberrant cells were found in all groups of miners, as well as decreased UDS values in lymphocytes and increased LPO plasma levels in comparison to controls. Molds were detected in throat swabs from 27% of miners, and 58% of these molds were embryotoxic. Only 5% of the control samples contained molds and none of them was embryotoxic. The following mycotoxins were isolated from miners' throat swab samples: rugulosin, sterigmatocystin, mycophenolic acid, brevianamid A, citreoviridin, citrinin, penicilic acid, and secalonic acid. These data suggest that mycotoxins are a genotoxic factor affecting uranium miners. PMID:8319649

  20. Uranium concentrations in groundwater, northeastern Washington

    USGS Publications Warehouse

    Kahle, Sue C.; Welch, Wendy B.; Tecca, Alison E.; Eliason, Devin M.

    2018-04-18

    A study of uranium in groundwater in northeastern Washington was conducted to make a preliminary assessment of naturally occurring uranium in groundwater relying on existing information and limited reconnaissance sampling. Naturally occurring uranium is associated with granitic and metasedimentary rocks, as well as younger sedimentary deposits, that occur in this region. The occurrence and distribution of uranium in groundwater is poorly understood. U.S. Environmental Protection Agency (EPA) regulates uranium in Group A community water systems at a maximum contaminant level (MCL) of 30 μg/L in order to reduce uranium exposure, protect from toxic kidney effects of uranium, and reduce the risk of cancer. However, most existing private wells in the study area, generally for single family use, have not been sampled for uranium. This document presents available uranium concentration data from throughout a multi-county region, identifies data gaps, and suggests further study aimed at understanding the occurrence of uranium in groundwater.The study encompasses about 13,000 square miles (mi2) in the northeastern part of Washington with a 2010 population of about 563,000. Other than the City of Spokane, most of the study area is rural with small towns interspersed throughout the region. The study area also includes three Indian Reservations with small towns and scattered population. The area has a history of uranium exploration and mining, with two inactive uranium mines on the Spokane Indian Reservation and one smaller inactive mine on the outskirts of Spokane. Historical (1977–2016) uranium in groundwater concentration data were used to describe and illustrate the general occurrence and distribution of uranium in groundwater, as well as to identify data deficiencies. Uranium concentrations were detected at greater than 1 microgram per liter (μg/L) in 60 percent of the 2,382 historical samples (from wells and springs). Uranium concentrations ranged from less than 1 to

  1. Lead distribution and its potential risk to the environment: lesson learned from environmental monitoring of abandon mine.

    PubMed

    Nobuntou, Wanida; Parkpian, Preeda; Oanh, Nguyen Thi Kim; Noomhorm, Athapol; Delaune, R D; Jugsujinda, Aroon

    2010-11-01

    There are many abandon and existing mines (tin, lead and zinc) in the mountainous areas of Thailand. Toxic elements including heavy metals such as lead (Pb), cadmium (Cd) and arsenic (As) have been released and transported from the mining sites to the adjacent landscape. In Thong Pha Phum District, Kanchanaburi Province, Thailand Pb contamination in the vicinity of the mine has occurred which could lead to potential health problems in downstream communities. To better understand current status of Pb contamination and accumulation in the surrounding environment and potential health impact, surface sediment, soil and plant samples were collected seasonally from representative monitoring sites along the aquatic track or flow regime. Potential health risk was determined using hazard quotient (HQ) as an index for local inhabitants who consume rice. Environmental monitoring illustrated that Pb concentrations in the surface sediment was as high as 869.4 mg kg(-1) dry weight and varied differently among stations sampled. Lead content in agricultural soil ranged between 137.8 to 613.5 mg kg(-1) dry weight and was inversely proportion to the distance from the point source. Moreover Pb was transported from the point source to down hill areas. At the highly polluted monitoring stations (S1, S2, and S3), concentrations of Pb exceeded the maximum allowable concentration for Pb in agricultural soil (300 mg kg(-1)) by 1.7-2 times. The Pb in soil was primarily associated with Fe/Mn oxides bound fraction (46-56%) followed by the organic bound fraction (25-30%). Lead uptake by plant varied and was species dependent. However root and tuber crops like cassava (19.92 mg Pb kg(-1) dry weight) and curcumin (3.25 mg Pb kg(-1) dry weight) could have removed Pb from the soil which suggest growing root crops in Pb contaminated soils should be avoided. However Cd, a co-contaminant at one of monitored stations (S4) yielded rice grain with Cd exceeding the maximum allowable concentration

  2. Review of Lead-Zinc Mining Impact on Landscape in the Tri-State Mining District using Small Unmanned Aerial Vehicles.

    NASA Astrophysics Data System (ADS)

    Bhakta, K. D.; Yeboah-Forson, A.

    2015-12-01

    The Tri-State lead and zinc mining district in SW Missouri, SE Kansas, and NE Oklahoma encompasses nearly 2,500 sq. miles of land and at its peak accounted for half of the US zinc (23,000,000 tons) production that surpassed one billion dollars in economic value. Once these lead and zinc rich ores were extracted, mining and milling sites were abandoned leaving behind a new landscape with numerous environmental challenges. Since 1970, most of the sites have been targeted for remediation and reclamation by federal and state agencies including the EPA. In order to capture the full extent of the impact of lead and zinc mining in the Tri-State area, numerous geoscientific approaches including data from small unmanned aerial vehicle (UAV) were employed to investigate the influence of mining in the study area. The study presented here is focused on observational assessment of the existing landscape using multiple commercial high-definitions data from UAVs to study different sites across areas of concern in the three states. Primary results (images) gathered and analyzed DEM and GIS data from abandoned mines showed the potential to provide a quick snapshot of successful or unsuccessful remediated areas. Although research and remediation of the Tri-State mining district are a continuous process, evidence from this geomorphic study suggest that UAVs can provide a quick overview of the remediated landscape or serve as a primary background tool for a more detail site-specific environmental study.

  3. SELENIUM TREATMENT/REMOVAL ALTERNATIVES DEMONSTRATION PROJECT - MINE WASTE TECHNOLOGY PROGRAM ACTIVITY III, PROJECT 20

    EPA Science Inventory

    This document is the final report for EPA's Mine WAste Technology Program (MWTP) Activity III, Project 20--Selenium Treatment/Removal Alternatives Demonstration project. Selenium contamination originates from many sources including mining operations, mineral processing, abandoned...

  4. Costs of abandoned coal mine reclamation and associated recreation benefits in Ohio.

    PubMed

    Mishra, Shruti K; Hitzhusen, Frederick J; Sohngen, Brent L; Guldmann, Jean-Michel

    2012-06-15

    Two hundred years of coal mining in Ohio have degraded land and water resources, imposing social costs on its citizens. An interdisciplinary approach employing hydrology, geographic information systems, and a recreation visitation function model, is used to estimate the damages from upstream coal mining to lakes in Ohio. The estimated recreational damages to five of the coal-mining-impacted lakes, using dissolved sulfate as coal-mining-impact indicator, amount to $21 Million per year. Post-reclamation recreational benefits from reducing sulfate concentrations by 6.5% and 15% in the five impacted lakes were estimated to range from $1.89 to $4.92 Million per year, with a net present value ranging from $14.56 Million to $37.79 Million. A benefit costs analysis (BCA) of recreational benefits and coal mine reclamation costs provides some evidence for potential Pareto improvement by investing limited resources in reclamation projects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Summary of ground-water quality impacts of uranium mining and milling in the Grants mineral belt, New Mexico. Technical note (final)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufmann, R.F.; Eadie, G.G.; Russell, C.R.

    Ground-water contamination from uranium mining and milling results from the infiltration of radium-bearing mine, mill, and ion-exchange plant effluents. Radium, selenium, and nitrate were of most value as indicators of contamination. In recent years, mining has increased radium in mine effluents from several picocuries/liter (pCi/1) or less, to 100-150 pCi/1. The shallow aquifer in use in the vicinity of one mill was grossly contaminated with selenium, attributable to the mill tailings. Seepage from two other mill tailings ponds averaged 67,400,000 liters/year and, to date, has contributed an estimated 1.1 curies of radium to ground water. At one of these, anmore » injection well was used to dispose of over 3,400,000,000 liters of waste from 1960-1973. The wastes have not been properly monitored and have apparently migrated to more shallow, potable aquifers. No adverse impacts on municipal water quality in Paguate, Bluewater, Grants, Milan, and Gallup were observed. (GRA)« less

  6. Location and stability analysis of the Michigamme Underground Mine for the US-41 re-alignment in Marquette County, Michigan.

    DOT National Transportation Integrated Search

    2008-08-01

    A proposed realignment of US-41 near Michigamme, Michigan will be located over an abandoned underground iron ore : mine. The mine, known as the Michigamme Mine, was started in 1872 and closed in 1901. Initial mining operations : were started in seven...

  7. Russian Experience in the Regulatory Supervision of the Uranium Legacy Sites - 12441

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiselev, M.F.; Romanov, V.V.; Shandala, N.K.

    2012-07-01

    Management of the uranium legacy is accompanied with environmental impact intensity of which depends on the amount of the waste generated, the extent of that waste localization and environmental spreading. The question is: how hazardous is such impact on the environment and human health? The criterion for safety assurance is adequate regulation of the uranium legacy. Since the establishment of the uranium industry, the well done regulatory system operates in the FMBA of Russia. Such system covers inter alia, the uranium legacy. This system includes the extent laboratory network of independent control and supervision, scientific researches, regulative practices. The currentmore » Russian normative and legal basis of the regulation and its application practice has a number of problems relating to the uranium legacy, connected firstly with the environmental remediation. To improve the regulatory system, the urgent tasks are: -To introduce the existing exposure situation into the national laws and standards in compliance with the ICRP system. - To develop criteria for site remediation and return, by stages, to uncontrolled uses. The similar criteria have been developed within the Russian-Norwegian cooperation for the purpose of remediation of the sites for temporary storage of SNF and RW. - To consider possibilities and methods of optimization for the remediation strategies under development. - To separate the special category - RW resulted from uranium ore mining and dressing. The current Russian RW classification is based on the waste subdivision in terms of the specific activities. Having in mind the new RW-specific law, we receive the opportunity to separate some special category - RW originated from the uranium mining and milling. Introduction of such category can simplify significantly the situation with management of waste of uranium mining and milling processes. Such approach is implemented in many countries and approved by IAEA. The category of 'RW

  8. VALUING ACID MINE DRAINAGE REMEDIATION IN WEST VIRGINIA: A HEDONIC MODELING APPROACH

    EPA Science Inventory

    States with active and abandoned mines face large private and public costs to remediate damage to streams and rivers from acid mine drainage (AMD). Appalachian states have an especially large number of contaminated streams and rivers, and the USGS places AMD as the primary source...

  9. Reconnaissance for uranium-bearing carbonaceous rocks in California and adjacent parts of Oregon and Nevada

    USGS Publications Warehouse

    Moore, George Winfred; Stephens, James G.

    1954-01-01

    During the summer of 1952 a reconnaissance was conducted in California and parts of Oregon and Nevada in search of new deposits of uranium-bearing carbonaceous rocks. The principal localities found in California where uranium occurs in coal are listed here with. the uranium content of the coal: Newhall prospect, Los Angeles County, 0.020 percent; Fireflex mine, San Benito County, 0.005 percent; American licyaite mine, Amador County, 0.004 percent; and Tesla prospect, Alameda County, 0.003 percent. An oil-saturated sandstone near Edna, San Luis Obispo County, contains 0.002 percent uranium.

  10. Microbial release of 226Ra2+ from (Ba,Ra)SO4 sludges from uranium mine wastes.

    PubMed Central

    Fedorak, P M; Westlake, D W; Anders, C; Kratochvil, B; Motkosky, N; Anderson, W B; Huck, P M

    1986-01-01

    226Ra2+ is removed from uranium mine effluents by coprecipitation with BaSO4. (Ba,Ra)SO4 sludge samples from two Canadian mine sites were found to contain active heterotrophic populations of aerobic, anaerobic, denitrifying, and sulfate-reducing bacteria. Under laboratory conditions, sulfate reduction occurred in batch cultures when carbon sources such as acetate, glucose, glycollate, lactate, or pyruvate were added to samples of (Ba,Ra)SO4 sludge. No external sources of nitrogen or phosphate were required for this activity. Further studies with lactate supplementation showed that once the soluble SO4(2-) in the overlying water was depleted, Ba2+ and 226Ra2+ were dissolved from the (Ba,Ra)SO4 sludge, with the concurrent production of S2-. Levels of dissolved 226Ra2+ reached approximately 400 Bq/liter after 10 weeks of incubation. Results suggest that the ultimate disposal of these sludges must maintain conditions to minimize the activity of the indigenous sulfate-reducing bacteria to ensure that unacceptably high levels of 226Ra2+ are not released to the environment. PMID:3752993

  11. RECLAMATION OF TOXIC MINE WASTE UTILIZING SEWAGE SLUDGE CONTRARY CREEK DEMONSTRATION PROJECT

    EPA Science Inventory

    Three abandoned pyrite mines in central Virginia that had been inactive since 1923 contained about 12 denuded ha and caused severe acid mine drainage (AMD) in a small stream known as Contrary Creek. The AMD included heavy metals and rendered the stream virtually void of aquatic l...

  12. Monitoring Metal Pollution Levels in Mine Wastes around a Coal Mine Site Using GIS

    NASA Astrophysics Data System (ADS)

    Sanliyuksel Yucel, D.; Yucel, M. A.; Ileri, B.

    2017-11-01

    In this case study, metal pollution levels in mine wastes at a coal mine site in Etili coal mine (Can coal basin, NW Turkey) are evaluated using geographical information system (GIS) tools. Etili coal mine was operated since the 1980s as an open pit. Acid mine drainage is the main environmental problem around the coal mine. The main environmental contamination source is mine wastes stored around the mine site. Mine wastes were dumped over an extensive area along the riverbeds, and are now abandoned. Mine waste samples were homogenously taken at 10 locations within the sampling area of 102.33 ha. The paste pH and electrical conductivity values of mine wastes ranged from 2.87 to 4.17 and 432 to 2430 μS/cm, respectively. Maximum Al, Fe, Mn, Pb, Zn and Ni concentrations of wastes were measured as 109300, 70600, 309.86, 115.2, 38 and 5.3 mg/kg, respectively. The Al, Fe and Pb concentrations of mine wastes are higher than world surface rock average values. The geochemical analysis results from the study area were presented in the form of maps. The GIS based environmental database will serve as a reference study for our future work.

  13. Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 1: Constituent quantities and correlations

    USGS Publications Warehouse

    Cravotta, C.A.

    2008-01-01

    Complete hydrochemical data are rarely reported for coal-mine discharges (CMD). This report summarizes major and trace-element concentrations and loadings for CMD at 140 abandoned mines in the Anthracite and Bituminous Coalfields of Pennsylvania. Clean-sampling and low-level analytical methods were used in 1999 to collect data that could be useful to determine potential environmental effects, remediation strategies, and quantities of valuable constituents. A subset of 10 sites was resampled in 2003 to analyze both the CMD and associated ochreous precipitates; the hydrochemical data were similar in 2003 and 1999. In 1999, the flow at the 140 CMD sites ranged from 0.028 to 2210 L s-1, with a median of 18.4 L s-1. The pH ranged from 2.7 to 7.3; concentrations (range in mg/L) of dissolved (0.45-??m pore-size filter) SO4 (34-2000), Fe (0.046-512), Mn (0.019-74), and Al (0.007-108) varied widely. Predominant metalloid elements were Si (2.7-31.3 mg L-1), B ( C > P = N = Se) were not elevated in the CMD samples compared to average river water or seawater. Compared to seawater, the CMD samples also were poor in halogens (Cl > Br > I > F), alkalies (Na > K > Li > Rb > Cs), most alkaline earths (Ca > Mg > Sr), and most metalloids but were enriched by two to four orders of magnitude with Fe, Al, Mn, Co, Be, Sc, Y and the lanthanide rare-earth elements, and one order of magnitude with Ni and Zn. The ochre samples collected at a subset of 10 sites in 2003 were dominantly goethite with minor ferrihydrite or lepidocrocite. None of the samples for this subset contained schwertmannite or was Al rich, but most contained minor aluminosilicate detritus. Compared to concentrations in global average shale, the ochres were rich in Fe, Ag, As and Au, but were poor in most other metals and rare earths. The ochres were not enriched compared to commercial ore deposits mined for Au or other valuable metals. Although similar to commercial Fe ores in composition, the ochres are dispersed and

  14. Compilation of data on the uranium and equivalent uranium content of samples analyzed by U.S. Geological Survey during a program of sampling mine, mill, and smelter products

    USGS Publications Warehouse

    Hall, Marlene Louise; Butler, Arthur Pierce

    1952-01-01

    In 1942 the Geological Survey began to collect, in response to a request made by the War Production Board, samples of mine, mill, and smelter products. About 1,400 such samples were collected and analyzed spectrographically for about 20 elements that were of strategic importance, in order to determine whether any of the products analyzed might be possible sources of some of the needed elements. When attention was directed to radioactive elements in 1943, most of the samples were scanned for radioactivity. Part of the work was done on behalf of the Division of Raw Materials of the Atomic Energy Commission. The sources, mine mill, smelter, or prospect, from which these samples were collected, the kind of material sampled, i.e. ores, concentrates, middlings, tailings, flue dusts, and so forth, and the radioactivity of the samples are listed in this report. Samples of the materials collected in the course of the Geological Survey’s investigations for uranium are excluded, but about 500 such samples were analyzed spectrographically for some or all of the same 20 elements sought in the samples that are the subject of this report. Most of the samples were tested only for their radioactivity, but a few were analyzed chemically for uranium. The radioactivity of many of the samples tested in the early screening was determined only qualitatively. Several samples were tested at one time, and if the count obtained did not exceed a predetermined minimum above background, the samples were not tested individually. If the count was more than this minimum, the samples were tested individually to identify the radioactive sample or samples and to obtain a quantitative value for the radioactivity. In general, the rough screening served as a basis for separating samples in which the radioactivity amount to less than 0.003 percent equivalent uranium from those in which it exceeded that amount. Some aspects of various phases of the investigation of radioactivity in these samples have

  15. Impact of Mining Waste on Airborne Respirable Particulates in Northeastern Oklahoma, United States

    EPA Science Inventory

    Atmospheric dispersion of particles from mine waste is potentially an important route of human exposure to metals in communities close to active and abandoned mining areas. In this study, we assessed sources of mass and metal concentrations in two size fractions of respirable pa...

  16. Remediation strategies for historical mining and smelting sites.

    PubMed

    Dybowska, Agnieszka; Farago, Margaret; Valsami-Jones, Eugenia; Thornton, Iain

    2006-01-01

    The environmental, social and economic problems associated with abandoned mine sites are serious and global. Environmental damage arising from polluted waters and dispersal of contaminated waste is a feature characteristic of many old mines in North America, Australia, Europe and elsewhere. Today, because of the efficiency of mining operations and legal requirements in many countries for prevention of environmental damage from mining operations, the release of metals to the environment from modern mining is low. However, many mineralized areas that were extensively worked in the 18th and 19th centuries and left abandoned after mining had ceased, have left a legacy of metal contaminated land. Unlike organic chemicals and plastics, metals cannot be degraded chemically or biologically into non-toxic and environmentally neutral constituents. Thus sites contaminated with toxic metals present a particular challenge for remediation. Soil remediation has been the subject of a significant amount of research work in the past decade; this has resulted in a number of remediation options currently available or being developed. Remediation strategies for metal/metalloid contaminated historical mining sites are reviewed and summarized in this article. It focuses on the current applications of in situ remediation with the use of soil amendments (adsorption and precipitation based methods are discussed) and phytoremediation (in situ plant based technology for environmental clean up and restoration). These are promising alternative technologies to traditional options of excavation and ex situ treatment, offering an advantage of being non-invasive and low cost. In particular, they have been shown to be effective in remediation of mining and smelting contaminated sites, although the long-term durability of these treatments cannot be predicted.

  17. Use of Sodium Dithionite as Part of a More Efficient Groundwater Restoration Method Following In-situ Recovery of Uranium at the Smith-Ranch Highland Site in Wyoming

    NASA Astrophysics Data System (ADS)

    Harris, R.; Reimus, P. W.; Ware, D.; Williams, K.; Chu, D.; Perkins, G.; Migdissov, A. A.; Bonwell, C.

    2017-12-01

    Uranium is primarily mined for nuclear power production using an aqueous extraction technique called in-situ recovery (ISR). ISR can pollute groundwater with residual uranium and other heavy metals. Reverse osmosis and groundwater sweep are currently used to restore groundwater after ISR mining, but are not permanent solutions. Sodium dithionite is being tested as part of a method to more permanently restore groundwater after ISR mining at the Smith-Ranch Highland site in Wyoming. Sodium dithionite is a chemical reductant that can reduce sediments that were oxidized during ISR. The reduced sediments can reduce soluble uranium (VI) in the groundwater to insoluble uranium (IV). Laboratory studies that use sodium dithionite to treat sediments and waters from the site may help predict how it will behave during a field deployment. An aqueous batch experiment showed that sodium dithionite reduced uranium in post-mined untreated groundwater from 38 ppm to less than 1 ppm after 1 day. A sediment reduction batch experiment showed that sodium dithionite-treated sediments were capable of reducing uranium in post-mined untreated groundwater from 38 ppm to 2 ppm after 7 days. One column experiment is showing post-mined sodium dithionite-treated sediments are capable of reducing uranium in post-mined groundwater for over 30 pore volumes past the initial injection. While these results are promising for field deployments of sodium dithionite, another column experiment with sodium dithionite-treated sediments containing uranium rich organic matter is showing net production of uranium instead of uranium uptake. Sodium dithionite appears to liberate uranium from the organic matter. Another sediment reduction experiment is being conducted to further investigate this hypothesis. These experiments are helping guide plans for field deployments of sodium dithionite at uranium ISR mining sites.

  18. Uranium deposits in Grant County, New Mexico

    USGS Publications Warehouse

    Granger, Harry C.; Bauer, Herman L.; Lovering, Tom G.; Gillerman, Elliot

    1952-01-01

    The known uranium deposits of Grant county, N. Mex., are principally in the White Signal and Black Hawk districts. Both districts are within a northwesterly-trending belt of pre-Cambrian rocks, composed chiefly of granite with included gneisses, schists, and quartzites. Younger dikes and stocks intrude the pre-Cambrian complex. The White Signal district is on the southeast flanks of the Burro Mountains; the Black Hawk district is about 18 miles northwest of the town of White Signal. In the White Signal district the seconday uranium phosphates--autunite and torbernite--occur as fracture coatings and disseminations in oxidized parts of quartz-pyrite veins, and in the adjacent mafic dikes and granites; uraniferous limonite is common locally. Most of the known uraniferous deposits are less that 50 feet in their greatest dimension. The most promising deposits in the district are on the Merry Widow and Blue Jay claims. The richest sample taken from the Merry Widow mine contained more than 2 percent uranium and a sample from the Blue Jay property contained as much as 0.11 percent; samples from the other properties were of lower grade. In the Black Hawk district pitchblende is associated with nickel, silver, and cobalt minerals in fissure veins. The most promising properties in the Black Hawk district are the Black Hawk, Alhambra, and Rose mines. No uranium analyses from this district were available in 1951. There are no known minable reserves of uranium ore in either district, although there is some vein material at the Merry Widow mine of ore grade, if a market were available in the region.

  19. Field study on the accumulation of trace elements by vegetables produced in the vicinity of abandoned pyrite mines.

    PubMed

    Alvarenga, Paula; Simões, Isabel; Palma, Patrícia; Amaral, Olga; Matos, João Xavier

    2014-02-01

    To evaluate the accumulation of trace elements (TE) by vegetables produced in the vicinity of abandoned pyrite mines, eighteen different small farms were selected near three mines from the Portuguese sector of the Iberian Pyrite Belt (São Domingos, Aljustrel and Lousal). Total and bioavailable As, Cu, Pb, and Zn concentrations were analyzed in the soils, and the same TE were analyzed in three different vegetables, lettuce (Lactuca sativa), coriander (Coriandrum sativum), and cabbage (Brassica oleracea), collected at the same locations. The soils were contaminated with As, Cu, Pb, and Zn, since their total concentrations exceeded the considered soil quality guideline values for plant production in the majority of the sampling sites. The maximum total concentrations for those TE were extremely high in some of the sampling sites (e.g. 1,851 mg As kg(-1) in São Domingos, 1,126 mg Cu kg(-1) in Aljustrel, 4,946 mg Pb kg(-1) in São Domingos, and 1,224 mg Zn kg(-1) in Aljustrel). However, the soils were mainly circumneutral, a factor that contributes to their low bioavailable fractions. As a result, generally, the plants contained levels of these elements characteristic of uncontaminated plants, and accumulation factors for all elements <1, typical of excluder plants. Furthermore, the estimated daily intake (EDI) for Cu and Zn, through the consumption of these vegetables, falls below the recommended upper limit for daily intake of these elements. The sampling site that stood out from the others was located at São João de Negrilhos (Aljustrel), where bioavailable Zn levels were higher, a consequence of the slight acidity of the soil. Therefore, the Zn content in vegetables was also higher, characteristic of contaminated plants, emphasizing the risk of Zn entering the human food chain via the consumption of crops produced on those soils. © 2013.

  20. Protein Hydrogel Microbeads for Selective Uranium Mining from Seawater.

    PubMed

    Kou, Songzi; Yang, Zhongguang; Sun, Fei

    2017-01-25

    Practical methods for oceanic uranium extraction have yet to be developed in order to tap into the vast uranium reserve in the ocean as an alternative energy. Here we present a protein hydrogel system containing a network of recently engineered super uranyl binding proteins (SUPs) that is assembled through thiol-maleimide click chemistry under mild conditions. Monodisperse SUP hydrogel microbeads fabricated by a microfluidic device further enable uranyl (UO 2 2+ ) enrichment from natural seawater with great efficiency (enrichment index, K = 2.5 × 10 3 ) and selectivity. Our results demonstrate the feasibility of using protein hydrogels to extract uranium from the ocean.

  1. Preliminary investigation of the elemental variation and diagenesis of a tabular uranium deposit, La Sal Mine, San Juan County, Utah

    USGS Publications Warehouse

    Brooks, Robert A.; Campbell, John A.

    1976-01-01

    Ore in the La Sal mine, San Juan County, Utah, occurs as a typical tabular-type uranium deposit of the-Colorado Plateau. Uranium-vanadium occurs in the Salt Wash Member of the Jurassic Morrison Formation. Chemical and petrographic analyses were used to determine elemental variation and diagenetic aspects across the orebody. Vanadium is concentrated in the dark clay matrix, which constitutes visible ore. Uranium content is greater above the vanadium zone. Calcium, carbonate carbon, and lead show greater than fifty-fold increase across the ore zone, whereas copper and organic carbon show only a several-fold increase. Large molybdenum concentrations are present in and above the tabular layer, and large selenium concentrations occur below the uranium zone within the richest vanadium zone. Iron is enriched in the vanadium horizon. Chromium is depleted from above the ore and strongly enriched below. Elements that vary directly with the vanadium content include magnesium, iron, selenium, zirconium, strontium, titanium, lead, boron, yttrium, and scandium. The diagenetic sequence is as follows: (1) formation of secondary quartz overgrowths as cement; (2) infilling and lining of remaining pores with amber opaline material; (3) formation of vanadium-rich clay matrix, which has replaced overgrowths as well as quartz grains; (4) replacement of overgrowths and detrital grains by calcite; (5) infilling of pores with barite and the introduction of pyrite and marcasite.

  2. ADVANCES IN BIOTREATMENT OF ACID MINE DRAINAGE AND BIORECOVERY OF METALS: 1. METAL PRECIPITATION FOR RECOVERY AND RECYCLE

    EPA Science Inventory

    Acid-mine drainage (AMD) is a severe pollution problem attributed to past mining activities. AMD is an acidic, metal-bearing wastewater generated by the oxidation of metal sulfides to sulfates by Thiobacillus bacteria in both active and abandoned mining operations. The wastewater...

  3. ADVANCES IN BIOTREATMENT OF ACID MINE DRAINAGE AND BIORECOVERY OF METALS: 2. MEMBRANE BIOREACTOR SYSTEM FOR SULFATE REDUCTION

    EPA Science Inventory

    Acid-mine drainage (AMD) is a severe pollution problem attributed to past mining activities. AMD is an acidic, metal-bearing wastewater generated by the oxidation of metal sulfides to sulfates by Thiobacillus bacteria in both the active and abandoned mining operations. The wastew...

  4. Heavy metals content in acid mine drainage at abandoned and active mining area

    NASA Astrophysics Data System (ADS)

    Hatar, Hazirah; Rahim, Sahibin Abd; Razi, Wan Mohd; Sahrani, Fathul Karim

    2013-11-01

    This study was conducted at former Barite Mine, Tasik Chini and former iron mine Sungai Lembing in Pahang, and also active gold mine at Lubuk Mandi, Terengganu. This study was conducted to determine heavy metals content in acid mine drainage (AMD) at the study areas. Fourteen water sampling stations within the study area were chosen for this purpose. In situ water characteristic determinations were carried out for pH, electrical conductivity (EC), redox potential (ORP) and total dissolved solid (TDS) using multi parameter YSI 556. Water samples were collected and analysed in the laboratory for sulfate, total acidity and heavy metals which follow the standard methods of APHA (1999) and HACH (2003). Heavy metals in the water samples were determined directly using Inductive Coupled Plasma Mass Spectrometry (ICP-MS). Data obtained showed a highly acidic mean of pH values with pH ranged from 2.6 ± 0.3 to 3.2 ± 0.2. Mean of electrical conductivity ranged from 0.57 ± 0.25 to 1.01 ± 0.70 mS/cm. Redox potential mean ranged from 487.40 ± 13.68 to 579.9 ± 80.46 mV. Mean of total dissolved solids (TDS) in AMD ranged from 306.50 ± 125.16 to 608.14 ± 411.64 mg/L. Mean of sulfate concentration in AMD ranged from 32.33 ± 1.41 to 207.08 ± 85.06 mg/L, whereas the mean of total acidity ranged from 69.17 ± 5.89 to 205.12 ± 170.83 mgCaCO3/L. Heavy metals content in AMD is dominated by Fe, Cu, Mn and Zn with mean concentrations range from 2.16 ± 1.61 to 36.31 ± 41.02 mg/L, 0.17 ± 0.13 to 11.06 ± 2.85 mg/L, 1.12 ± 0.65 to 7.17 ± 6.05 mg/L and 0.62 ± 0.21 to 6.56 ± 4.11 mg/L, respectively. Mean concentrations of Ni, Co, As, Cd and Pb were less than 0.21, 0.51, 0.24, 0.05 and 0.45 mg/L, respectively. Significant correlation occurred between Fe and Mn, Cu, Zn, Co and Cd. Water pH correlated negatively with all the heavy metals, whereas total acidity, sulfate, total dissolved solid, and redox potential correlated positively. The concentration of heavy metals in the AMD

  5. Rheological characteristics of waste rock materials in abandoned mine deposit and debris flow hazards

    NASA Astrophysics Data System (ADS)

    Jeong, Sueng-Won; Lee, Choonoh; Cho, Yong-Chan; Wu, Ying-Hsin

    2015-04-01

    In Korea, approximately 5,000 metal mines are spread, but 50% of them are still abandoned without any proper remediation and cleanup. Summer heavy rainfall can result in the physicochemical modification of waste rock materials in the mountainous. From the geotechnical monitoring and field investigation, there are visible traces of mass movements every year. Soil erosion is one of severe phenomena in the study area. In particular, study area is located in the upper part of the Busan Metropolitan City and near the city's water supply. With respect to the supply of drinking water and maintenance of ecological balance, proper disposal of waste rock materials is required. For this reason, we examine the rheological properties of waste rock materials as a function of solid content using a ball- and vane-penetrated rheometer. In the flow curves, which are the relationship between the shear stress and shear rate of waste rock materials, we found that the soil samples exhibited a shear thinning beahivor regardless of solid content. The Bingham, Herschel-Bulkley, Power-law, and Papanastasiou models are used to determine the rheological properties. Assuming that the soil samples behaved as the viscoplastic behavior, the yield stress and viscosity are determined for different water contents. As a result, there are clear relationships between the solid content and rheological values (i.e., Bingham yield stress and plastic viscosity). From these relationships, the maximum and minimum of Bingham yield stresses are ranged from 100 to 2000 Pa. The debris flow mobilization is analysed using a 1D BING and 2D Debris flow models. In addition, the effect of wall slip and test apparatus are discussed.

  6. Heavy metal immobilization in soil near abandoned mines using eggshell waste and rapeseed residue.

    PubMed

    Lee, Sang Soo; Lim, Jung Eun; El-Azeem, Samy A M Abd; Choi, Bongsu; Oh, Sang-Eun; Moon, Deok Hyun; Ok, Yong Sik

    2013-03-01

    Heavy metal contamination of agricultural soils has received great concern due to potential risk to human health. Cadmium and Pb are largely released from abandoned or closed mines in Korea, resulting in soil contamination. The objective of this study was to evaluate the effects of eggshell waste in combination with the conventional nitrogen, phosphorous, and potassium fertilizer (also known as NPK fertilizer) or the rapeseed residue on immobilization of Cd and Pb in the rice paddy soil. Cadmium and Pb extractabilities were tested using two methods of (1) the toxicity characteristics leaching procedure (TCLP) and (2) the 0.1 M HCl extraction. With 5 % eggshell addition, the values of soil pH were increased from 6.33 and 6.51 to 8.15 and 8.04 in combination with NPK fertilizer and rapeseed residue, respectively, compared to no eggshell addition. The increase in soil pH may contribute to heavy metal immobilization by altering heavy metals into more stable in soils. Concentrations of TCLP-extracted Cd and Pb were reduced by up to 67.9 and 93.2 % by addition of 5 % eggshell compared to control. For 0.1 M HCl extraction method, the concentration of 0.1 M HCl-Cd in soils treated with NPK fertilizer and rapeseed residue was significantly reduced by up to 34.01 and 46.1 %, respectively, with 5 % eggshell addition compared to control. A decrease in acid phosphatase activity and an increase in alkaline phosphatase activity at high soil pH were also observed. Combined application of eggshell waste and rapeseed residue can be cost-effective and beneficial way to remediate the soil contaminated with heavy metals.

  7. Rapid Evaluation of Radioactive Contamination in Rare Earth Mine Mining

    NASA Astrophysics Data System (ADS)

    Wang, N.

    2017-12-01

    In order to estimate the current levels of environmental radioactivity in Bayan Obo rare earth mine and to study the rapid evaluation methods of radioactivity contamination in the rare earth mine, the surveys of the in-situ gamma-ray spectrometry and gamma dose rate measurement were carried out around the mining area and living area. The in-situ gamma-ray spectrometer was composed of a scintillation detector of NaI(Tl) (Φ75mm×75mm) and a multichannel analyzer. Our survey results in Bayan Obo Mine display: (1) Thorium-232 is the radioactive contamination source of this region, and uranium-238 and potassium - 40 is at the background level. (2) The average content of thorium-232 in the slag of the tailings dam in Bayan Obo is as high as 276 mg/kg, which is 37 times as the global average value of thorium content. (3) We found that the thorium-232 content in the soil in the living area near the mining is higher than that in the local soil in Guyang County. The average thorium-232 concentrations in the mining areas of the Bayan Obo Mine and the living areas of the Bayan Obo Town were 18.7±7.5 and 26.2±9.1 mg/kg, respectively. (4) It was observed that thorium-232 was abnormal distributed in the contaminated area near the tailings dam. Our preliminary research results show that the in-situ gamma-ray spectrometry is an effective approach of fast evaluating rare earths radioactive pollution, not only can the scene to determine the types of radioactive contamination source, but also to measure the radioactivity concentration of thorium and uranium in soil. The environmental radioactive evaluation of rare earth ore and tailings dam in open-pit mining is also needed. The research was supported by National Natural Science Foundation of China (No. 41674111).

  8. Grants Mining District

    EPA Pesticide Factsheets

    The Grants Mineral Belt was the focus of uranium extraction and production activities from the 1950s until the late 1990s. EPA is working with state, local, and federal partners to assess and address health risks and environmental effects of the mines

  9. Deposit model for volcanogenic uranium deposits

    USGS Publications Warehouse

    Breit, George N.; Hall, Susan M.

    2011-01-01

    The International Atomic Energy Agency's tabulation of volcanogenic uranium deposits lists 100 deposits in 20 countries, with major deposits in Russia, Mongolia, and China. Collectively these deposits are estimated to contain uranium resources of approximately 500,000 tons of uranium, which amounts to 6 percent of the known global resources. Prior to the 1990s, these deposits were considered to be small (less than 10,000 tons of uranium) with relatively low to moderate grades (0.05 to 0.2 weight percent of uranium). Recent availability of information on volcanogenic uranium deposits in Asia highlighted the large resource potential of this deposit type. For example, the Streltsovskoye district in eastern Russia produced more than 100,000 tons of uranium as of 2005; with equivalent resources remaining. Known volcanogenic uranium deposits within the United States are located in Idaho, Nevada, Oregon, and Utah. These deposits produced an estimated total of 800 tons of uranium during mining from the 1950s through the 1970s and have known resources of 30,000 tons of uranium. The most recent estimate of speculative resources proposed an endowment of 200,000 tons of uranium.

  10. Lung cancer in a nonsmoking underground uranium miner.

    PubMed Central

    Mulloy, K B; James, D S; Mohs, K; Kornfeld, M

    2001-01-01

    Working in mines is associated with acute and chronic occupational disorders. Most of the uranium mining in the United States took place in the Four Corners region of the Southwest (Arizona, Colorado, New Mexico, and Utah) and on Native American lands. Although the uranium industry collapsed in the late 1980s, the industry employed several thousand individuals who continue to be at increased risk for developing lung cancers. We present the case of a 72-year-old Navajo male who worked for 17 years as an underground uranium miner and who developed lung cancer 22 years after leaving the industry. His total occupational exposure to radon progeny was estimated at 506 working level months. The miner was a life-long nonsmoker and had no other significant occupational or environmental exposures. On the chest X-ray taken at admission into the hospital, a right lower lung zone infiltrate was detected. The patient was treated for community-acquired pneumonia and developed respiratory failure requiring mechanical ventilation. Respiratory failure worsened and the patient died 19 days after presenting. On autopsy, a 2.5 cm squamous cell carcinoma of the right lung arising from the lower lobe bronchus, a right broncho-esophageal fistula, and a right lower lung abscess were found. Malignant respiratory disease in uranium miners may be from several occupational exposures; for example, radon decay products, silica, and possibly diesel exhaust are respiratory carcinogens that were commonly encountered. In response to a growing number of affected uranium miners, the Radiation Exposure Compensation Act (RECA) was passed by the U.S. Congress in 1990 to make partial restitution to individuals harmed by radiation exposure resulting from underground uranium mining and above-ground nuclear tests in Nevada. PMID:11333194

  11. Odiel River, acid mine drainage and current characterisation by means of univariate analysis.

    PubMed

    Sainz, A; Grande, J A; de la Torre, M L

    2003-04-01

    Water pollution caused by sulfide oxidation responds to two geochemical processes: a natural one of temporal patterns, and the 'acid mine drainage', an accelerated process derived from the extractive activity. The Odiel River is located in Southwestern Spain; it flows to the south and into the Atlantic Ocean after joining the Tinto River near its mouth, forming a common estuary. There are three kinds of metallic mining in the Odiel River Basin: manganese, gold and silver, and pyrite mining, the latter being the most important in this basin, which is the object of this study. The main objective of the present study is centred in the characterisation of the sources responsible for the 'acid mine drainage' processes in the Odiel River Basin, through the sampling and subsequent chemical and statistical analyses of water samples collected in three types of sources: mine dumps, active mines and abandoned mines. The main conclusion is that mean pH values in the target area are remarkably lower than those in other active and abandoned mines outside of the study zone. On the contrary, mean values for heavy metal sulfates are much higher. Regarding mine dumps, mean values for pH, sulfates and heavy metals are within a similar range to those data known for areas outside the study zone. Copyright 2003 Elsevier Science Ltd.

  12. Chemical and microbial properties in contaminated soils around a magnesite mine in northeast China

    Treesearch

    D Yang; D-H Zeng; J Zhang; L-J Li; R. Mao

    2012-01-01

    We measured soil chemical and microbial properties at a depth of 0–20 cm among mine tailings, abandoned mined land, contaminated cropland, and uncontaminated cropland around a magnesite mine near Haicheng City, Liaoning Province, China. The objective was to clarify the impact of Mg on the soils. We found that soluble Mg2+ concentration and pH...

  13. Biological pathways of exposure and ecotoxicity values for uranium and associated radionuclides: Chapter D in Hydrological, geological, and biological site characterization of breccia pipe uranium deposits in Northern Arizona

    USGS Publications Warehouse

    Hinck, Jo E.; Linder, Greg L.; Finger, Susan E.; Little, Edward E.; Tillitt, Donald E.; Kuhne, Wendy

    2010-01-01

    This chapter compiles available chemical and radiation toxicity information for plants and animals from the scientific literature on naturally occurring uranium and associated radionuclides. Specifically, chemical and radiation hazards associated with radionuclides in the uranium decay series including uranium, thallium, thorium, bismuth, radium, radon, protactinium, polonium, actinium, and francium were the focus of the literature compilation. In addition, exposure pathways and a food web specific to the segregation areas were developed. Major biological exposure pathways considered were ingestion, inhalation, absorption, and bioaccumulation, and biota categories included microbes, invertebrates, plants, fishes, amphibians, reptiles, birds, and mammals. These data were developed for incorporation into a risk assessment to be conducted as part of an environmental impact statement for the Bureau of Land Management, which would identify representative plants and animals and their relative sensitivities to exposure of uranium and associated radionuclides. This chapter provides pertinent information to aid in the development of such an ecological risk assessment but does not estimate or derive guidance thresholds for radionuclides associated with uranium. Previous studies have not attempted to quantify the risks to biota caused directly by the chemical or radiation releases at uranium mining sites, although some information is available for uranium mill tailings and uranium mine closure activities. Research into the biological impacts of uranium exposure is strongly biased towards human health and exposure related to enriched or depleted uranium associated with the nuclear energy industry rather than naturally occurring uranium associated with uranium mining. Nevertheless, studies have reported that uranium and other radionuclides can affect the survival, growth, and reproduction of plants and animals. Exposure to chemical and radiation hazards is influenced by a

  14. Distribution of heavy metals and radionuclides in sediments, water, and fish in an area of Great Bear Lake contaminated with mine wastes.

    PubMed

    Moore, J W; Sutherland, D J

    1981-01-01

    The concentrations of heavy metals and radionuclides in the sediments and water of Great Bear Lake were determined during 1978 near an operating silver mine and an abandoned uranium mine. Additional information on the level of mercury in fish tissues were also collected. The mines, situated on the same site, deposited tailings and other waste material directly into the lake. The concentrations of mercury, lead, manganese, and nickel in the sediments were highest near the tailings deposit and decreased significantly as the distance from the mine increased. Although there were also significant positive correlations between these metals and the organic content of the sediments, water depth and slope of the bottom had no impact on metal distribution. Since the concentrations of arsenic, cobalt, copper, 226radium, 210lead and 230thorium varied inconsistently throughout the study area, the distribution of these substances could not be related to any of the environmental factors that were measured. There were, however, significant negative correlations between the concentrations of 232thorium and 228thorium and distance from the mine and organic content of the sediments. Heavy metal and radionuclide levels in water were generally below detectable limits, reflecting the strong chemical bonding characteristics of the sediments. The low concentrations of mercury in the tissues of lake trout Salvelinus namaycush were probably related to low uptake rates and the ability of this species to move into uncontaminated areas of the lake.

  15. Micro-PIXE mapping of elemental distribution in arbuscular mycorrhizal roots of the grass, Cynodon dactylon, from gold and uranium mine tailings

    NASA Astrophysics Data System (ADS)

    Weiersbye, I. M.; Straker, C. J.; Przybylowicz, W. J.

    1999-10-01

    A combination of PIXE, proton back-scattering (BS) spectrometry and confocal laser scanning microscopy (CLSM) was used to determine in situ elemental concentrations in arbuscular mycorrhizal (AM) grass roots and AM fungal spores from gold and uranium mine tailings in South Africa. AM regions of roots were characterised by locally elevated P and vesicles were defined by distinctive transition metal and radionuclide distributions. Vesicles (AM structures responsible for nutrient storage), accumulated Mn, Cu, Ni and U, whereas Fe and Zn were present at lower levels than in host tissue. AM spores from mine tailings accumulated Ca, Cr, Fe, Ni, Cu, Br, Y, Th and U, but were deficient in P and K. The sequestration of excess metals and radionuclides in vesicles may limit metal availability, and thus toxicity, to the host.

  16. Whole-organism concentration ratios in wildlife inhabiting Australian uranium mining environments.

    PubMed

    Hirth, Gillian A; Johansen, Mathew P; Carpenter, Julia G; Bollhöfer, Andreas; Beresford, Nicholas A

    2017-11-01

    Wildlife concentration ratios for 226 Ra, 210 Pb, 210 Po and isotopes of Th and U from soil, water, and sediments were evaluated for a range of Australian uranium mining environments. Whole-organism concentration ratios (CR wo-media ) were developed for 271 radionuclide-organism pairs within the terrestrial and freshwater wildlife groups. Australian wildlife often has distinct physiological attributes, such as the lower metabolic rates of macropod marsupials as compared with placental mammals. In addition, the Australian CRs wo-media originate from tropical and semi-arid climates, rather than from the temperate-dominated climates of Europe and North America from which most (>90%) of internationally available CR wo-media values originate. When compared, the Australian and non-Australian CRs are significantly different for some wildlife categories (e.g. grasses, mammals) but not others (e.g. shrubs). Where differences exist, the Australian values were higher, suggesting that site-, or region-specific CRs wo-media should be used in detailed Australian assessments. However, in screening studies, use of the international mean values in the Wildlife Transfer Database (WTD) appears to be appropriate, as long as the values used encompass the Australian 95th percentile values. Gaps in the Australian datasets include a lack of marine parameters, and no CR data are available for freshwater phytoplankton, zooplankton, insects, insect larvae or amphibians; for terrestrial environments, there are no data for amphibians, annelids, ferns, fungi or lichens & bryophytes. The new Australian specific parameters will aide in evaluating remediation plans and ongoing operations at mining and waste sites within Australia. They have also substantially bolstered the body of U- and Th-series CR wo-media data for use internationally. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Uranium deposits in the Eureka Gulch area, Central City district, Gilpin County, Colorado

    USGS Publications Warehouse

    Sims, P.K.; Osterwald, F.W.; Tooker, E.W.

    1954-01-01

    The Eureka Gulch area of the Central City district, Gilpin County, Colo., was mined for ores of gold, silver, copper, lead, and zinc; but there has been little mining activity in the area since World War I. Between 1951 and 1953 nine radioactive mine dumps were discovered in the area by the U.S. Geological Survey and by prospectors. the importance of the discoveries has not been determined as all but one of the mines are inaccessible, but the distribution, quantity, and grade of the radioactive materials found on the mine dumps indicate that the area is worth of additional exploration as a possible source of uranium ore. The uranium ans other metals are in and near steeply dipping mesothermal veins of Laramide age intrusive rocks. Pitchblende is present in at least four veins, and metatorbernite, associated at places with kosolite, is found along two veins for a linear distance of about 700 feet. The pitchblends and metatorbernite appear to be mutually exclusive and seem to occur in different veins. Colloform grains of pitchblende were deposited in the vein essentially contemporaneously with pyrite. The pitchblende is earlier in the sequence of deposition than galena and sphalerite. The metatorbernite replaces altered biotite-quartz-plagioclase gneiss and altered amphibolite, and to a lesser extent forms coatings on fractures in these rocks adjacent to the veins; the kasolite fills vugs in highly altered material and in altered wall rocks. Much of the pitchblende found on the dumps has been partly leached subsequent to mining and is out of equilibrium. Selected samples of metatorbernite-bearing rock from one mine dump contain as much as 6.11 percent uranium. The pitchblende is a primary vein mineral deposited from uranium-bearing hydrothermal solutions. The metatorbernite probably formed by oxidation, solution, and transportation of uranium from primary pitchblende, but it may be a primary mineral deposited directly from fluids of different composition from these

  18. Soil and vegetation influence in plants natural radionuclides uptake at a uranium mining site

    NASA Astrophysics Data System (ADS)

    Charro, E.; Moyano, A.

    2017-12-01

    The main objective of this work is to investigate the uptake of several radionuclides by the vegetation characteristic of a dehesa ecosystem in uranium mining-impacted soils in Central-West of Spain. The activity concentration for 238U, 226Ra, 210Pb, 232Th, and 224Ra was measured in soil and vegetation samples using a Canberra n-type HPGe gamma-ray spectrometer. Transfer factors of natural radionuclides in different tissues (leaves, branches, twigs, and others) of native plants were evaluated. From these data, the influence of the mine, the physicochemical parameters of the soils and the type of vegetation were analyzed in order to explain the accumulation of radionuclides in the vegetation. A preferential uptake of 210Pb and 226Ra by plants, particularly by trees of the Quercus species (Quercus pyrenaica and Quercus ilex rotundifolia), has been observed, being the transfer factors for 226Ra and 210Pb in these tree species higher than those for other plants (like Pinus pinaster, Rubur ulmifolius and Populus sp.). The analysis of radionuclide contents and transfer factors in the vegetation showed no evidence of influence of the radionuclide concentration in soils, although it could be explained in terms of the type of plants and, in particular, of the tree's species, with special attention to the tree's rate of growth, being higher in slow growing species.

  19. Environmental geochemistry of abandoned flotation tailing reservior from the Tonglvshan Fe-Cu sulfide mine in Daye, Central China.

    PubMed

    Guo, Y; Bao, Z Y; Deng, Y M; Ma, Z Z; Yan, S

    2011-07-01

    This study investigated metals of tailings from Tonglvshan mine in Daye and assessed the effect of metal contamination in water and sediment near the tailing reservoir. The concentration of copper, lead, zinc, cadmium, chromium and nickel was measured in deposit samples taken from a profile in an abandoned flotation tailing reservoir, as well as in water and sediment samples near the reservoir. The results of this study indicate that copper concentration ranges from 780 to 4390 mg/kg, 2-10 times higher than the limit values in soil, while the contents of other metals are below the limit values. Metal levels in water and sediments are high and varied widely in different sampling sites. The mean concentrations of copper, lead, zinc, cadmium, chromium and nickel in waters are 27.76, 2.28, 8.20, 0.12, 5.30 and 3.04 mg/L, while those in sediments are 557.65, 96.95, 285.20, 0.92, 94.30 and 4.75 mg/kg, respectively. All of the results indicate that the environment near the tailing reservoir is polluted to some extent by some kinds of metals, especially by copper, lead, zinc and cadmium, which may be caused not only by some discharge sources of metals, but also by life garbage and sewage.

  20. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment reconnaissance basic data for Beeville NTMS Quadrangle, Texas. Uranium resource evaluation project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Results of a reconnaissance geochemical survey of the Beeville Quadrangle, Texas are reported. Field and laboratory data are presented for 373 groundwater and 364 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. The groundwater data indicate that the northwestern corner of the quadrangle is the most favorable for potential uranium mineralization. Favorability is indicated by high uranium concentrations; high arsenic, molybdenum, and vanadium concentrations;more » and proximity and similar geologic setting to the mines of the Karnes County mining district. Other areas that appear favorable are an area in Bee and Refugio Counties and the northeastern part of the quadrangle. Both areas have water chemistry similar to the Karnes County area, but the northeastern area does not have high concentrations of pathfinder elements. The stream sediment data indicate that the northeastern corner of the quadrangle is the most favorable for potential mineralization, but agricultural practices and mineralogy of the outcropping Beaumont Formation may indicate a false anomaly. The northwestern corner of the quadrangle is considered favorable because of its proximity to the known uranium deposits, but the data do not seem to support this.« less

  1. Underground Pumped Storage Hydropower using abandoned open pit mines: influence of groundwater seepage on the system efficiency

    NASA Astrophysics Data System (ADS)

    Pujades, Estanislao; Bodeux, Sarah; Orban, Philippe; Dassargues, Alain

    2016-04-01

    Pumped Storage Hydropower (PSH) plants can be used to manage the production of electrical energy according to the demand. These plants allow storing and generating electricity during low and high demand energy periods, respectively. Nevertheless, PSH plants require a determined topography because two reservoirs located at different heights are needed. At sites where PSH plants cannot be constructed due to topography requirements (flat regions), Underground Pumped Storage Hydropower (UPSH) plants can be used to adjust the electricity production. These plants consist in two reservoirs, the upper one is located at the surface (or at shallow depth) while the lower one is underground (or deeper). Abandoned open pit mines can be used as lower reservoirs but these are rarely isolated. As a consequence, UPSH plants will interact with surrounding aquifers exchanging groundwater. Groundwater seepage will modify hydraulic head inside the underground reservoir affecting global efficiency of the UPSH plant. The influence on the plant efficiency caused by the interaction between UPSH plants and aquifers will depend on the aquifer parameters, underground reservoir properties and pumping and injection characteristics. The alteration of the efficiency produced by the groundwater exchanges, which has not been previously considered, is now studied numerically. A set of numerical simulations are performed to establish in terms of efficiency the effects of groundwater exchanges and the optimum conditions to locate an UPSH plant.

  2. Abandoning wells working group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The primary objective of this working group is to identify major technical, regulatory, and environmental issues that are relevant to the abandonment of offshore wellbores. Once the issues have been identified, the working group also has the objective of making recommendations or providing potential solutions for consideration. Areas for process improvement will be identified and {open_quotes}best practices{close_quotes} will be discussed and compared to {open_quotes}minimum standards.{close_quotes} The working group will primarily focus on wellbore abandonment in the Gulf of Mexico. However, workshop participants are encouraged to discuss international issues which may be relevant to wellbore abandonment practices in the Gulf ofmore » Mexico. The Abandoning Wells Group has identified several major areas for discussion that have concerns related to both operators and service companies performing wellbore abandonments in the Gulf of Mexico. The following broad topics were selected for the agenda: (1) MMS minimum requirements and state regulations. (2) Co-existence of best practices, new technology, and P & A economics. (3) Liability and environmental issues relating to wellbore abandonment.« less

  3. Abandoned babies and absent policies.

    PubMed

    Mueller, Joanne; Sherr, Lorraine

    2009-12-01

    Although infant abandonment is a historical problem, we know remarkably little about the conditions or effects of abandonment to guide evidence driven policies. This paper briefly reviews the existing international evidence base with reference to potential mental health considerations before mapping current UK guidelines and procedures, and available incidence data. Limitations arising from these findings are discussed with reference to international practice, and interpreted in terms of future pathways for UK policy. A systematic approach was utilized to gather available data on policy information and statistics on abandoned babies in the UK. A review of the limited literature indicates that baby abandonment continues to occur, with potentially wide-ranging mental health ramifications for those involved. However, research into such consequences is lacking, and evidence with which to understand risk factors or motives for abandonment is scarce. International approaches to the issue remain controversial with outcomes unclear. Our systematic search identified that no specific UK policy relating to baby abandonment exists, either nationally or institutionally. This is compounded by a lack of accurate of UK abandonment statistics. Data that does exist is not comprehensive and sources are incompatible, resulting in an ambiguous picture of UK baby abandonment. Available literature indicates an absence of clear provision, policy and research on baby abandonment. Based on current understanding of maternal and child mental health issues likely to be involved in abandonment, existing UK strategy could be easily adapted to avoid the 'learning from scratch' approach. National policies on recording and handling of baby abandonments are urgently needed, and future efforts should be concentrated on establishing clear data collection frameworks to inform understanding, guide competent practice and enable successfully targeted interventions.

  4. PRELIMINARY RESULTS: RELEASE OF METALS FROM ACID-MINE DRAINAGE CONTAMINATED STREAMBED SEDIMENTS UNDER ANOXIC CONDITIONS

    EPA Science Inventory

    Many miles of streams are contaminated with acid-mine drainage (AMD) from abandoned metal mines in the western U.S. Treatment of these streams may include dredging of the existing sediments, with subsequent burial. Burial of previously toxic sediments may result in release of met...

  5. Preliminary Results: Release Of Metals From Acid-Mine Drainage Contaminated Streambed Sediments Under Anaerobic Conditions

    EPA Science Inventory

    Many miles of streams in the western U.S. are contaminated with acid-mine drainage (AMD) from abandoned metal mines. Treatment of these streams may include removal of the existing sediments, with subsequent burial (e.g., in a repository). Burial of previously aerobic sediments ma...

  6. Determining a pre-mining radiological baseline from historic airborne gamma surveys: a case study.

    PubMed

    Bollhöfer, Andreas; Beraldo, Annamarie; Pfitzner, Kirrilly; Esparon, Andrew; Doering, Che

    2014-01-15

    Knowing the baseline level of radioactivity in areas naturally enriched in radionuclides is important in the uranium mining context to assess radiation doses to humans and the environment both during and after mining. This information is particularly useful in rehabilitation planning and developing closure criteria for uranium mines as only radiation doses additional to the natural background are usually considered 'controllable' for radiation protection purposes. In this case study we have tested whether the method of contemporary groundtruthing of a historic airborne gamma survey could be used to determine the pre-mining radiological conditions at the Ranger mine in northern Australia. The airborne gamma survey was flown in 1976 before mining started and groundtruthed using ground gamma dose rate measurements made between 2007 and 2009 at an undisturbed area naturally enriched in uranium (Anomaly 2) located nearby the Ranger mine. Measurements of (226)Ra soil activity concentration and (222)Rn exhalation flux density at Anomaly 2 were made concurrent with the ground gamma dose rate measurements. Algorithms were developed to upscale the ground gamma data to the same spatial resolution as the historic airborne gamma survey data using a geographic information system, allowing comparison of the datasets. Linear correlation models were developed to estimate the pre-mining gamma dose rates, (226)Ra soil activity concentrations, and (222)Rn exhalation flux densities at selected areas in the greater Ranger region. The modelled levels agreed with measurements made at the Ranger Orebodies 1 and 3 before mining started, and at environmental sites in the region. The conclusion is that our approach can be used to determine baseline radiation levels, and provide a benchmark for rehabilitation of uranium mines or industrial sites where historical airborne gamma survey data are available and an undisturbed radiological analogue exists to groundtruth the data. © 2013.

  7. Urinary excretion of uranium in adult inhabitants of the Czech Republic.

    PubMed

    Malátová, Irena; Bečková, Věra; Kotík, Lukáš

    2016-02-01

    The main aim of this study was to determine and evaluate urinary excretion of uranium in the general public of the Czech Republic. This value should serve as a baseline for distinguishing possible increase in uranium content in population living near legacy sites of mining and processing uranium ores and also to help to distinguish the proportion of the uranium content in urine among uranium miners resulting from inhaled dust. The geometric mean of the uranium concentration in urine of 74 inhabitants of the Czech Republic was 0.091 mBq/L (7.4 ng/L) with the 95% confidence interval 0.071-0.12 mBq/L (5.7-9.6 ng/L) respectively. The geometric mean of the daily excretion was 0.15 mBq/d (12.4 ng/d) with the 95% confidence interval 0.12-0.20 mBq/d (9.5-16.1 ng/d) respectively. Despite the legacy of uranium mines and plants processing uranium ore in the Czech Republic, the levels of uranium in urine and therefore, also human body content of uranium, is similar to other countries, esp. Germany, Slovenia and USA. Significant difference in the daily urinary excretion of uranium was found between individuals using public supply and private water wells as a source of drinking water. Age dependence of daily urinary excretion of uranium was not found. Mean values and their range are comparable to other countries, esp. Germany, Slovenia and USA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Biota of uranium mill tailings near the Black Hills

    Treesearch

    Mark A. Rumble

    1982-01-01

    Reclamation" often implies the enhancement of the land as wildlife habitat or for other productive uses. However, there are situations where revegetation to stabilize erosion is the only desired goal. Uranium mining and mill sites may fall into this later category. Data pertaining to plant and animal components on revegetated uranium mill tailings was collected....

  9. Effects of underground mining and mine collapse on the hydrology of selected basins in West Virginia

    USGS Publications Warehouse

    Hobba, William A.

    1993-01-01

    The effects of underground mining and mine collapse on areal hydrology were determined at one site where the mined bed of coal lies above major streams and at two sites where the bed of coal lies below major streams. Subsidence cracks observed at land surface generally run parallel to predominant joint sets in the rocks. The mining and subsidence cracks increase hydraulic conductivity and interconnection of water-bearing rock units, which in turn cause increased infiltration of precipitation and surface water, decreased evapotranspiration, and higher base flows in some small streams. Water levels in observation wells in mined areas fluctuate as much as 100 ft annually. Both gaining and losing streams are found in mined areas. Mine pumpage and drainage can cause diversion of water underground from one basin to another. Areal and single-well aquifer tests indicated that near-surface rocks have higher transmissivity in a mine-subsided basin than in unmined basins. Increased infiltration and circulation through shallow subsurface rocks increase dissolved mineral loads in streams, as do treated and untreated contributions from mine pumpage and drainage. Abandoned and flooded underground mines make good reservoirs because of their increased transmissivity and storage. Subsidence cracks were not detectable by thermal imagery, but springs and seeps were detectable.

  10. Mountain wetlands: efficient uranium filters - potential impacts

    USGS Publications Warehouse

    Owen, D.E.; Otton, J.K.

    1995-01-01

    Sediments in 67 of 145 Colorado wetlands sampled by the US Geological Survey contain moderate (20 ppm) or greater concentrations of uranium (some as high as 3000 ppm) based on dry weight. The proposed maximum contaminant level (MCL) for uranium in drinking water is 20 ??g/l or 20 ppb. By comparison, sediments in many of these wetlands contain 3 to 5 orders of magnitude more uranium than the proposed MCL. Wetlands near the workings of old mines may be trapping any number of additional metals/elements including Cu, Pb, Zn, As and Ag. Anthropogenic disturbances and natural changes may release uranium and other loosely bound metals presently contained in wetland sediments. -from Authors

  11. Evaluation of mine seals constructed in 1967 at Elkins, Randolph County, West Virginia. Report of investigations/1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, L.M.; Lipscomb, J.R.

    1984-01-01

    In 1980, the Bureau of Mines surveyed a group of mine seals in Randolph County, WV, to evaluate their effectiveness for reducing toxic pollutants in mine water discharges. The survey focused on 11 block wet mine seals, but mine seals of several other types were also examined. The seals were designed to prevent air from entering the mine portals while allowing mine water to flow out. It was believed that by preventing air from entering inactive or abandoned mines, the formation of toxic pollutants and acid mine drainage (AMD) could be reduced.

  12. The lead isotopic composition of dust in the vicinity of a uranium mine in northern Australia and its use for radiation dose assessment.

    PubMed

    Bollhöfer, Andreas; Honeybun, Russell; Rosman, Kevin; Martin, Paul

    2006-08-01

    Airborne lead isotope ratios were measured via Thermal Ionisation Mass Spectrometry in samples from the vicinity of Ranger uranium mine in northern Australia. Dust deposited on leaves of Acacia spp. was washed off and analysed to gain a geographical snapshot of lead isotope ratios in the region. Aerosols were also collected on Teflon filters that were changed monthly over one seasonal cycle using a low volume diaphragm pump. Lead isotope ratios in dust deposited on leaves overestimate the relative amount of mine origin airborne lead, most likely due to a difference of the size distribution of particles collected on leaves and true aerosol size distribution. Seasonal measurements show that the annual average mine contribution to airborne lead concentrations in Jabiru East, approximately 2.5 km northwest of the mine, amounted to 13%, with distinct differences between the wet and dry season. The relative contribution of mine origin lead deposited on leaves in the dry season drops to less than 1% at a distance of 12.5 km from the mine along the major wind direction. An approach is outlined, in which lead isotope ratios are used to estimate the effective radiation dose received from the inhalation of mine origin radioactivity trapped in or on dust. Using the data from our study, this dose has been calculated to be approximately 2 microSv year(-1) for people living and working in the area.

  13. Metals Release From Mining-Impacted Streambed Sediments In The North Fork Of Clear Creek, Colorado

    EPA Science Inventory

    Many miles of streams in the US (and worldwide) are contaminated by metals originating from both active and abandoned mine sites. Streams affected by mine drainage are often toxic to aquatic life. Thus, it is desirable to remediate these sites through removal or treatment of th...

  14. Geochemical fractionation of metals and metalloids in tailings and appraisal of environmental pollution in the abandoned Musina Copper Mine, South Africa.

    PubMed

    Gitari, M W; Akinyemi, S A; Ramugondo, L; Matidza, M; Mhlongo, S E

    2018-04-30

    The economic benefits of mining industry have often overshadowed the serious challenges posed to the environments through huge volume of tailings generated and disposed in tailings dumps. Some of these challenges include the surface and groundwater contamination, dust, and inability to utilize the land for developmental purposes. The abandoned copper mine tailings in Musina (Limpopo province, South Africa) was investigated for particle size distribution, mineralogy, physicochemical properties using arrays of granulometric, X-ray diffraction, and X-ray fluorescence analyses. A modified Community Bureau of Reference (BCR) sequential chemical extraction method followed by inductively coupled plasma mass spectrometry/atomic emission spectrometry (ICP-MS/AES) technique was employed to assess bioavailability of metals. Principal component analysis was performed on the sequential extraction data to reveal different loadings and mobilities of metals in samples collected at various depths. The pH ranged between 7.5 and 8.5 (average ≈ 8.0) indicating alkaline medium. Samples composed mostly of poorly grated sands (i.e. 50% fine sand) with an average permeability of about 387.6 m/s. Samples have SiO 2 /Al 2 O 3 and Na 2 O/(Al 2 O 3  + SiO 2 ) ratios and low plastic index (i.e. PI ≈ 2.79) suggesting non-plastic and very low dry strength. Major minerals were comprised of quartz, epidote, and chlorite while the order of relative abundance of minerals in minor quantities is plagioclase > muscovite > hornblende > calcite > haematite. The largest percentage of elements such as As, Cd and Cr was strongly bound to less extractable fractions. Results showed high concentration and easily extractable Cu in the Musina Copper Mine tailings, which indicates bioavailability and poses environmental risk and potential health risk of human exposure. Principal component analysis revealed Fe-oxide/hydroxides, carbonate and clay components, and copper ore process

  15. Bacterial leaching of waste uranium materials.

    PubMed

    Barbic, F F; Bracilović, D M; Krajincanić, B V; Lucić, J L

    1976-01-01

    The effect of ferrobacteria and thiobacteria on the leaching of waste uranium materials from which 70-80% of uranium was previously leached by classical chemical hydrometallurgical procedure has been investigated. The bacteria used are found in the ore and the mine water of Zletovska River locality, Yugoslavia. Parameters of biological leaching were examined in the laboratory. Leaching conditions were changed with the aim of increasing the amount of uranium leached. The effect of pyrite added to the waste materials before the beginning of leaching has also been examined. Uranium leaching is directly proportional to the composition and number of ferrobacteria and thiobacteria, and increased by almost twice the value obtained from the same starting materials without using bacteria. Increased sulphuric acid concentrations stimulate considerably the rate of leaching. Uranium leaching is increased up to 20% while sulphuric acid consumption is simultaneously decreased by the addition of pyrite. Uranium concentrations in starting waste materials used for leaching were extremely low (0.0278 and 0.372% U) but about 60% recovery of uranium was obtained, with relatively low consumption of sulphuric acid.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muldoon, Joe; Yankovich, Tamara; Schramm, Laurier L.

    The Gunnar Mine and mill site was the largest of some 38 now-abandoned uranium mines that were developed and operated in Northern Saskatchewan, Canada, during the Cold War years. During their operating lifetimes these mines produced large quantities of ore and tailings. The Gunnar mine (open pit and underground) produced over 5 million tonnes of uranium ore and nearly 4.4 million tonnes of mine tailings during its operations from 1955 through 1963. An estimated 2.2 to 2.7 million m{sup 3} of waste rock that was generated during the processing of the ore abuts the shores of Lake Athabasca, the 22.more » largest lake in the world. After closure in the 1960's, the Gunnar site was abandoned with little to no decommissioning being done. The Saskatchewan Research Council has been contracted to manage the clean-up of these abandoned northern uranium mine and mill sites. The Gunnar Mine, because of the magnitude of tailings and waste rock, is subject to an environmental site assessment process regulated by both provincial and federal governments. This process requires a detailed study of the environmental impacts that have resulted from the mining activities and an analysis of projected impacts from remediation efforts. The environmental assessment process, specific site studies, and public involvement initiatives are all now well underway. Due to the many uncertainties associated with an abandoned site, an adaptive remediation approach, utilizing a decision tree, presented within the environmental assessment documents will be used as part of the site regulatory licensing. A critical early task was dealing with major public safety hazards on the site. The site originally included many buildings that were remnants of a community of approximately 800 people who once occupied the site. These buildings, many of which contained high levels of asbestos, had to be appropriately abated and demolished. Similarly, the original mine head frame and mill site buildings, many of which

  17. Changes in the substrate of rivers in historic mining districts

    USGS Publications Warehouse

    Milhous, R.T.

    2004-01-01

    The restoration of rivers in watersheds with historic mining districts has become a topic of interest during the last decade. Rivers restoration in these areas is difficult because the mines and mills can be scattered over a wide area and often small. Many have also been abandoned. This paper presents two substrate related factors that are important in the evaluation of river restoration alternatives in watersheds with significance impacts from mines and mills most of which are old and abandoned. The two factors are 1) changes in the size distribution and specific weights of the substrate, and 2) the changes in quality of the interstecial waters caused by metals associated with the tailings in the substrate. The most important impacts of tailings from mills may be on the physical characteristics of the substrate (porosity) and on the quality of the pore waters. The measurements presented in this paper do show significant variation in the porosity in gravel bed rivers and in the quality of the pore waters. Copyright ASCE 2004.

  18. Metabarcoding of environmental DNA samples to explore the use of uranium mine containment ponds as a water source for wildlife

    USGS Publications Warehouse

    Klymus, Katy E.; Richter, Cathy; Thompson, Nathan; Hinck, Jo E.

    2017-01-01

    Understanding how anthropogenic impacts on the landscape affect wildlife requires a knowledge of community assemblages. Species surveys are the first step in assessing community structure, and recent molecular applications such as metabarcoding and environmental DNA analyses have been proposed as an additional and complementary wildlife survey method. Here, we test eDNA metabarcoding as a survey tool to examine the potential use of uranium mine containment ponds as water sources by wildlife. We tested samples from surface water near mines and from one mine containment pond using two markers, 12S and 16S rRNA gene amplicons, to survey for vertebrate species. We recovered large numbers of sequence reads from taxa expected to be in the area and from less common or hard to observe taxa such as the tiger salamander and gray fox. Detection of these two species is of note because they were not observed in a previous species assessment, and tiger salamander DNA was found in the mine containment pond sample. We also found that sample concentration by centrifugation was a more efficient and more feasible method than filtration in these highly turbid surface waters. Ultimately, the use of eDNA metabarcoding could allow for a better understanding of the area’s overall biodiversity and community composition as well as aid current ecotoxicological risk assessment work.

  19. Acid mine drainage and subsidence: effects of increased coal utilization.

    PubMed Central

    Hill, R D; Bates, E R

    1979-01-01

    The increases above 1975 levels for acid mine drainage and subsidence for the years 1985 and 2000 based on projections of current mining trends and the National Energy Plan are presented. No increases are projected for acid mine drainage from surface mines or waste since enforcement under present laws should control this problem. The increase in acid mine drainage from underground mines is projected to be 16 percent by 1985 and 10 percent by 2000. The smaller increase in 2000 over 1985 reflects the impact of the PL 95-87 abandoned mine program. Mine subsidence is projected to increase by 34 and 115 percent respectively for 1985 and 2000. This estimate assumes that subsidence will parallel the rate of underground coal production and that no new subsidence control measures are adopted to mitigate subsidence occurrence. PMID:540617

  20. Preliminary Results: Release Of Metals From Acid-Mine Drainage Contaminated Streambed Sediments Under Anaerobic Conditions (Presentation)

    EPA Science Inventory

    Many miles of streams in the western U.S. are contaminated with acid-mine drainage (AMD) from abandoned metal mines. Treatment of these streams may include removal of the existing sediments, with subsequent burial (e.g., in a repository). Burial of previously aerobic sediments ma...