Sample records for abasic sites induced

  1. Kinetic analysis of bypass of abasic site by the catalytic core of yeast DNA polymerase eta.

    PubMed

    Yang, Juntang; Wang, Rong; Liu, Binyan; Xue, Qizhen; Zhong, Mengyu; Zeng, Hao; Zhang, Huidong

    2015-09-01

    Abasic sites (Apurinic/apyrimidinic (AP) sites), produced ∼ 50,000 times/cell/day, are very blocking and miscoding. To better understand miscoding mechanisms of abasic site for yeast DNA polymerase η, pre-steady-state nucleotide incorporation and LC-MS/MS sequence analysis of extension product were studied using pol η(core) (catalytic core, residues 1-513), which can completely eliminate the potential effects of the C-terminal C2H2 motif of pol η on dNTP incorporation. The extension beyond the abasic site was very inefficient. Compared with incorporation of dCTP opposite G, the incorporation efficiencies opposite abasic site were greatly reduced according to the order of dGTP > dATP > dCTP and dTTP. Pol η(core) showed no fast burst phase for any incorporation opposite G or abasic site, suggesting that the catalytic step is not faster than the dissociation of polymerase from DNA. LC-MS/MS sequence analysis of extension products showed that 53% products were dGTP misincorporation, 33% were dATP and 14% were -1 frameshift, indicating that Pol η(core) bypasses abasic site by a combined G-rule, A-rule and -1 frameshift deletions. Compared with full-length pol η, pol η(core) relatively reduced the efficiency of incorporation of dCTP opposite G, increased the efficiencies of dNTP incorporation opposite abasic site and the exclusive incorporation of dGTP opposite abasic site, but inhibited the extension beyond abasic site, and increased the priority in extension of A: abasic site relative to G: abasic site. This study provides further understanding in the mutation mechanism of abasic sites for yeast DNA polymerase η. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. The chemical stability of abasic RNA compared to abasic DNA

    PubMed Central

    Küpfer, Pascal A.; Leumann, Christian J.

    2007-01-01

    We describe the synthesis of an abasic RNA phosphoramidite carrying a photocleavable 1-(2-nitrophenyl)ethyl (NPE) group at the anomeric center and a triisopropylsilyloxymethyl (TOM) group as 2′-O-protecting group together with the analogous DNA and the 2′-OMe RNA abasic building blocks. These units were incorporated into RNA-, 2′-OMe-RNA- and DNA for the purpose of studying their chemical stabilities towards backbone cleavage in a comparative way. Stability measurements were performed under basic conditions (0.1 M NaOH) and in the presence of aniline (pH 4.6) at 37°C. The kinetics and mechanisms of strand cleavage were followed by High pressure liquid chromotography and ESI-MS. Under basic conditions, strand cleavage at abasic RNA sites can occur via β,δ-elimination and 2′,3′-cyclophosphate formation. We found that β,δ-elimination was 154-fold slower compared to the same mechanism in abasic DNA. Overall strand cleavage of abasic RNA (including cyclophosphate formation) was still 16.8 times slower compared to abasic DNA. In the presence of aniline at pH 4.6, where only β,δ-elimination contributes to strand cleavage, a 15-fold reduced cleavage rate at the RNA abasic site was observed. Thus abasic RNA is significantly more stable than abasic DNA. The higher stability of abasic RNA is discussed in the context of its potential biological role. PMID:17151071

  3. The Effects of Molecular Crowding on the Structure and Stability of G-Quadruplexes with an Abasic Site

    PubMed Central

    Fujimoto, Takeshi; Nakano, Shu-ichi; Miyoshi, Daisuke; Sugimoto, Naoki

    2011-01-01

    Both cellular environmental factors and chemical modifications critically affect the properties of nucleic acids. However, the structure and stability of DNA containing abasic sites under cell-mimicking molecular crowding conditions remain unclear. Here, we investigated the molecular crowding effects on the structure and stability of the G-quadruplexes including a single abasic site. Structural analysis by circular dichroism showed that molecular crowding by PEG200 did not affect the topology of the G-quadruplex structure with or without an abasic site. Thermodynamic analysis further demonstrated that the degree of stabilization of the G-quadruplex by molecular crowding decreased with substitution of an abasic site for a single guanine. Notably, we found that the molecular crowding effects on the enthalpy change for G-quadruplex formation had a linear relationship with the abasic site effects depending on its position. These results are useful for predicting the structure and stability of G-quadruplexes with abasic sites in the cell-mimicking conditions. PMID:21949901

  4. Structural and Kinetic Analysis of Nucleoside Triphosphate Incorporation Opposite an Abasic Site by Human Translesion DNA Polymerase η

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patra, Amritaj; Zhang, Qianqian; Lei, Li

    2015-02-09

    The most prevalent lesion in DNA is an abasic site resulting from glycolytic cleavage of a base. In a number of cellular studies, abasic sites preferentially code for dATP insertion (the “A rule”). In some cases frameshifts are also common. X-ray structures with abasic sites in oligonucleotides have been reported for several microbial and human DNA polymerases (pols), e.g. Dpo4, RB69, KlenTaq, yeast pol ι, human (h) pol ι, and human pol β. We reported previously that hpol η is a major pol involved in abasic site bypass (Choi, J.-Y., Lim, S., Kim, E. J., Jo, A., and Guengerich, F.more » P. (2010 J. Mol. Biol. 404, 34–44). hpol η inserted all four dNTPs in steady-state and pre-steady-state assays, preferentially inserting A and G. In LC-MS analysis of primer-template pairs, A and G were inserted but little C or T was inserted. Frameshifts were observed when an appropriate pyrimidine was positioned 5' to the abasic site in the template. In x-ray structures of hpol η with a non-hydrolyzable analog of dATP or dGTP opposite an abasic site, H-bonding was observed between the phosphate 5' to the abasic site and water H-bonded to N1 and N6 of A and N1 and O6 of G nucleoside triphosphate analogs, offering an explanation for what appears to be a “purine rule.” A structure was also obtained for an A inserted and bonded in the primer opposite the abasic site, but it did not pair with a 5' T in the template. Finally, we conclude that hpol η, a major copying enzyme with abasic sites, follows a purine rule, which can also lead to frameshifts. The phenomenon can be explained with H-bonds.« less

  5. Quadruplexes of human telomere dG{sub 3}(TTAG{sub 3}){sub 3} sequences containing guanine abasic sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skolakova, Petra; Bednarova, Klara; Vorlickova, Michaela

    Research highlights: {yields} Loss of a guanine base does not hinder the formation of G-quadruplex of human telomere sequence. {yields} Each depurination strongly destabilizes the quadruplex of dG{sub 3}(TTAG{sub 3}){sub 3} in NaCl and KCl. {yields} Conformational change of the abasic analogs of dG{sub 3}(TTAG{sub 3}){sub 3} is inhibited in KCl. {yields} The effects abasic sites may affect telomere-end structures in vivo. -- Abstract: This study was performed to evaluate how the loss of a guanine base affects the structure and stability of the three-tetrad G-quadruplex of 5'-dG{sub 3}(TTAG{sub 3}){sub 3}, the basic quadruplex-forming unit of the human telomere DNA.more » None of the 12 possible abasic sites hindered the formation of quadruplexes, but all reduced the thermodynamic stability of the parent quadruplex in both NaCl and KCl. The base loss did not change the Na{sup +}-stabilized intramolecular antiparallel architecture, based on CD spectra, but held up the conformational change induced in dG{sub 3}(TTAG{sub 3}){sub 3} in physiological concentration of KCl. The reduced stability and the inhibited conformational transitions observed here in vitro for the first time may predict that unrepaired abasic sites in G-quadruplexes could lead to changes in the chromosome's terminal protection in vivo.« less

  6. Resistance to Nucleotide Excision Repair of Bulky Guanine Adducts Opposite Abasic Sites in DNA Duplexes and Relationships between Structure and Function

    PubMed Central

    Liu, Zhi; Ding, Shuang; Kropachev, Konstantin; Lei, Jia; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E.

    2015-01-01

    The nucleotide excision repair of certain bulky DNA lesions is abrogated in some specific non-canonical DNA base sequence contexts, while the removal of the same lesions by the nucleotide excision repair mechanism is efficient in duplexes in which all base pairs are complementary. Here we show that the nucleotide excision repair activity in human cell extracts is moderate-to-high in the case of two stereoisomeric DNA lesions derived from the pro-carcinogen benzo[a]pyrene (cis- and trans-B[a]P-N 2-dG adducts) in a normal DNA duplex. By contrast, the nucleotide excision repair activity is completely abrogated when the canonical cytosine base opposite the B[a]P-dG adducts is replaced by an abasic site in duplex DNA. However, base excision repair of the abasic site persists. In order to understand the structural origins of these striking phenomena, we used NMR and molecular spectroscopy techniques to evaluate the conformational features of 11mer DNA duplexes containing these B[a]P-dG lesions opposite abasic sites. Our results show that in these duplexes containing the clustered lesions, both B[a]P-dG adducts adopt base-displaced intercalated conformations, with the B[a]P aromatic rings intercalated into the DNA helix. To explain the persistence of base excision repair in the face of the opposed bulky B[a]P ring system, molecular modeling results suggest how the APE1 base excision repair endonuclease, that excises abasic lesions, can bind productively even with the trans-B[a]P-dG positioned opposite the abasic site. We hypothesize that the nucleotide excision repair resistance is fostered by local B[a]P residue—DNA base stacking interactions at the abasic sites, that are facilitated by the absence of the cytosine partner base in the complementary strand. More broadly, this study sets the stage for elucidating the interplay between base excision and nucleotide excision repair in processing different types of clustered DNA lesions that are substrates of nucleotide

  7. DNA Polymerase λ Inactivation by Oxidized Abasic Sites&

    PubMed Central

    Stevens, Adam J.; Guan, Lirui; Bebenek, Katarzyna; Kunkel, Thomas A.; Greenberg, Marc M.

    2013-01-01

    Base excision repair plays a vital role in maintaining genomic integrity in mammalian cells. DNA polymerase λ is believed to play a backup role to DNA polymerase β in base excision repair. Two oxidized abasic lesions that are produced by a variety of DNA damaging agents, including several antitumor antibiotics, the C4′-oxidized abasic site following Ape1 incision (pC4-AP) and 5′-(2-phosphoryl-1,4-dioxobutane) (DOB), irreversibly inactivate Pol β and Pol λ. The interactions of DOB and pC4-AP with Pol λ are examined in detail using DNA substrates containing these lesions at defined sites. Single turnover kinetic experiments show that Pol λ excises DOB almost 13-times more slowly than a 5′-phosphorylated 2-deoxyribose (dRP). pC4-AP is excised approximately twice as fast as DOB. The absolute rate constants are considerably slower than those reported for Pol β at the respective reactions, suggesting that Pol λ may be an inefficient backup in BER. DOB inactivates Pol λ approximately 3-fold less efficiently than it does Pol β and the difference is attributable to a higher KI (33 ± 7 nM). Inactivation of Pol λ’s lyase activity by DOB also prevents the enzyme from carrying out polymerization following preincubation of the protein and DNA. Mass spectral analysis of GluC digested Pol λ inactivated by DOB shows that Lys324 is modified. There is inferential support that Lys312 may also be modified. Both residues are within the Pol λ lyase active site. Protein modification involves reaction with released but-2-ene-1,4-dial. When acting on pC4-AP, Pol λ achieves approximately 4 turnovers on average before being inactivated. Lyase inactivation by pC4-AP is also accompanied by loss of polymerase activity and mass spectrometry indicates that Lys312 and Lys324 are modified by the lesion. The ability of DOB and pC4-AP to inactivate Pol λ provides additional evidence that these lesions are significant sources of the cytotoxicity of DNA damaging agents that

  8. Shape-selective recognition of DNA abasic sites by metallohelices: inhibition of human AP endonuclease 1

    PubMed Central

    Malina, Jaroslav; Scott, Peter; Brabec, Viktor

    2015-01-01

    Loss of a base in DNA leading to creation of an abasic (AP) site leaving a deoxyribose residue in the strand, is a frequent lesion that may occur spontaneously or under the action of various physical and chemical agents. Progress in the understanding of the chemistry and enzymology of abasic DNA largely relies upon the study of AP sites in synthetic duplexes. We report here on interactions of diastereomerically pure metallo–helical ‘flexicate’ complexes, bimetallic triple-stranded ferro-helicates [Fe2(NN-NN)3]4+ incorporating the common NN–NN bis(bidentate) helicand, with short DNA duplexes containing AP sites in different sequence contexts. The results show that the flexicates bind to AP sites in DNA duplexes in a shape-selective manner. They preferentially bind to AP sites flanked by purines on both sides and their binding is enhanced when a pyrimidine is placed in opposite orientation to the lesion. Notably, the Λ-enantiomer binds to all tested AP sites with higher affinity than the Δ-enantiomer. In addition, the binding of the flexicates to AP sites inhibits the activity of human AP endonuclease 1, which is as a valid anticancer drug target. Hence, this finding indicates the potential of utilizing well-defined metallo–helical complexes for cancer chemotherapy. PMID:25940617

  9. Thermodynamic impact of abasic sites on simulated translesion DNA synthesis.

    PubMed

    Malina, Jaroslav; Brabec, Viktor

    2014-06-16

    Loss of a base in DNA and the creation of an abasic (apurinic/apyrimidinic, AP) site is a frequent lesion that may occur spontaneously, or as a consequence of the action of DNA-damaging agents. The AP lesion is mutagenic or lethal if not repaired. We report a systematic thermodynamic investigation by differential scanning calorimetry on the evolution, during primer extension, of a model AP site in chemically simulated DNA translesion synthesis. Incorporation of dAMP (deoxyadenosine monophosphate), as well as dTMP (deoxythymidine monophosphate), opposite an AP site is enthalpically unfavorable, although incorporation of dTMP is more enthalpically unfavorable than that of dAMP. This finding is in a good agreement with experimental data showing that AP sites block various DNA polymerases of eukaryotic and prokaryotic origin and that, if bypassed, dAMP is preferentially inserted, whereas insertion of dTMP is less likely. The results emphasize the importance of thermodynamic contributions to the insertion of nucleotides opposite an AP site by DNA polymerases. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Shape-selective recognition of DNA abasic sites by metallohelices: inhibition of human AP endonuclease 1.

    PubMed

    Malina, Jaroslav; Scott, Peter; Brabec, Viktor

    2015-06-23

    Loss of a base in DNA leading to creation of an abasic (AP) site leaving a deoxyribose residue in the strand, is a frequent lesion that may occur spontaneously or under the action of various physical and chemical agents. Progress in the understanding of the chemistry and enzymology of abasic DNA largely relies upon the study of AP sites in synthetic duplexes. We report here on interactions of diastereomerically pure metallo-helical 'flexicate' complexes, bimetallic triple-stranded ferro-helicates [Fe2(NN-NN)3](4+) incorporating the common NN-NN bis(bidentate) helicand, with short DNA duplexes containing AP sites in different sequence contexts. The results show that the flexicates bind to AP sites in DNA duplexes in a shape-selective manner. They preferentially bind to AP sites flanked by purines on both sides and their binding is enhanced when a pyrimidine is placed in opposite orientation to the lesion. Notably, the Λ-enantiomer binds to all tested AP sites with higher affinity than the Δ-enantiomer. In addition, the binding of the flexicates to AP sites inhibits the activity of human AP endonuclease 1, which is as a valid anticancer drug target. Hence, this finding indicates the potential of utilizing well-defined metallo-helical complexes for cancer chemotherapy. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Miscoding and mutagenic properties of 8-oxoguanine and abasic sites: Ubiquitous lesions in damaged DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grollman, A.P.; Takeshita, Masaru

    1995-12-31

    More than twenty oxidatively-damaged bases, including 8-oxoguanine, have been found to occur in genomic DNA. Some of these lesions block DNA replication and are potentially lethal; others generate mutations which can initiate carcinogenesis and promote cellular aging. In this report, the authors focus attention on the mutagenicity and repair of 8-oxoguanine. Kasai and Nishimura`s discovery that hydroxyl radicals react with guanine residues in DNA to form 8-oxoguanine and the development of sensitive methods for the detection and quantitation of this modified base led to the observation that approximately 1 in 10{sup 5} guanine residues in mammalian DNA are oxidized atmore » the C-8 position. DNA containing 8-oxoguanine and synthetic analogs of the abasic site have been used to investigate the miscoding and mutagenic potential of these ubiquitous lesions. Studies in the laboratory were facilitated by the development of solid state synthetic methods by which these lesions could be introduced at defined positions in DNA. In this paper, the authors review studies in which 8-oxoguanine and abasic sites have been used in model systems to explore various early events in the replication of selectively damaged DNA.« less

  12. Preparation and Analysis of Oligonucleotides Containing the C4′-Oxidized Abasic Site and Related Mechanistic Probes

    PubMed Central

    Kim, Jaeseung; Kreller, Cortney R.; Greenberg, Marc M.

    2005-01-01

    The C4′-oxidized abasic site (C4-AP) is produced by a variety of DNA damaging agents. This alkali labile lesion can exist in up to four diastereomeric cyclic forms, in addition to the acyclic keto-aldehyde. Synthetic oligonucleotides containing the lesion were prepared from a stable photochemical precursor. Chemical integrity of the lesion containing oligonucleotides was probed using phosphodiesterase lability. Analysis of the 3′,5′-phosphate diester of the monomeric lesion released from single diastereomers of photolabile precursors by 1H NMR indicates that isomerization of the hemiacetal and/or hemiketal is rapid. The syntheses and characterization of oligonucleotides containing configurationally stable analogues of C4-AP, which serve as mechanistic probes for deciphering the structural basis of the biochemical and biological effects of the C4′-oxidized abasic lesion, are also described. PMID:16277338

  13. APE1 incision activity at abasic sites in tandem repeat sequences.

    PubMed

    Li, Mengxia; Völker, Jens; Breslauer, Kenneth J; Wilson, David M

    2014-05-29

    Repetitive DNA sequences, such as those present in microsatellites and minisatellites, telomeres, and trinucleotide repeats (linked to fragile X syndrome, Huntington disease, etc.), account for nearly 30% of the human genome. These domains exhibit enhanced susceptibility to oxidative attack to yield base modifications, strand breaks, and abasic sites; have a propensity to adopt non-canonical DNA forms modulated by the positions of the lesions; and, when not properly processed, can contribute to genome instability that underlies aging and disease development. Knowledge on the repair efficiencies of DNA damage within such repetitive sequences is therefore crucial for understanding the impact of such domains on genomic integrity. In the present study, using strategically designed oligonucleotide substrates, we determined the ability of human apurinic/apyrimidinic endonuclease 1 (APE1) to cleave at apurinic/apyrimidinic (AP) sites in a collection of tandem DNA repeat landscapes involving telomeric and CAG/CTG repeat sequences. Our studies reveal the differential influence of domain sequence, conformation, and AP site location/relative positioning on the efficiency of APE1 binding and strand incision. Intriguingly, our data demonstrate that APE1 endonuclease efficiency correlates with the thermodynamic stability of the DNA substrate. We discuss how these results have both predictive and mechanistic consequences for understanding the success and failure of repair protein activity associated with such oxidatively sensitive, conformationally plastic/dynamic repetitive DNA domains. Published by Elsevier Ltd.

  14. DNA abasic site-directed formation of fluorescent silver nanoclusters for selective nucleobase recognition

    NASA Astrophysics Data System (ADS)

    Ma, Kun; Cui, Qinghua; Liu, Guiying; Wu, Fei; Xu, Shujuan; Shao, Yong

    2011-07-01

    DNA single-nucleotide polymorphism (SNP) detection has attracted much attention due to mutation related diseases. Various methods for SNP detection have been proposed and many are already in use. Here, we find that the abasic site (AP site) in the DNA duplex can be developed as a capping scaffold for the generation of fluorescent silver nanoclusters (Ag NCs). As a proof of concept, the DNA sequences from fragments near codon 177 of cancer supression gene p53 were used as a model for SNP detection by in situ formed Ag NCs. The formation of fluorescent Ag NCs in the AP site-containing DNA duplex is highly selective for cytosine facing the AP site and guanines flanking the site and can be employed in situ as readout for SNP detection. The fluorescent signal-on sensing for SNP based on this inorganic fluorophore is substantially advantageous over the previously reported signal-off responses using low-molecular-weight organic ligands. The strong dependence of fluorescent Ag NC formation on the sequences surrounding the AP site was successfully used to identify mutations in codon 177 of cancer supression gene p53. We anticipate that this approach will be employed to develop a practical SNP detection method by locating an AP site toward the midway cytosine in a target strand containing more than three consecutive cytosines.

  15. Abasic and oxidized ribonucleotides embedded in DNA are processed by human APE1 and not by RNase H2

    PubMed Central

    Malfatti, Matilde Clarissa; Balachander, Sathya; Antoniali, Giulia; Koh, Kyung Duk; Saint-Pierre, Christine; Gasparutto, Didier; Chon, Hyongi; Crouch, Robert J.

    2017-01-01

    Abstract Ribonucleoside 5′-monophosphates (rNMPs) are the most common non-standard nucleotides found in DNA of eukaryotic cells, with over 100 million rNMPs transiently incorporated in the mammalian genome per cell cycle. Human ribonuclease (RNase) H2 is the principal enzyme able to cleave rNMPs in DNA. Whether RNase H2 may process abasic or oxidized rNMPs incorporated in DNA is unknown. The base excision repair (BER) pathway is mainly responsible for repairing oxidized and abasic sites into DNA. Here we show that human RNase H2 is unable to process an abasic rNMP (rAP site) or a ribose 8oxoG (r8oxoG) site embedded in DNA. On the contrary, we found that recombinant purified human apurinic/apyrimidinic endonuclease-1 (APE1) and APE1 from human cell extracts efficiently process an rAP site in DNA and have weak endoribonuclease and 3′-exonuclease activities on r8oxoG substrate. Using biochemical assays, our results provide evidence of a human enzyme able to recognize and process abasic and oxidized ribonucleotides embedded in DNA. PMID:28977421

  16. Abasic and oxidized ribonucleotides embedded in DNA are processed by human APE1 and not by RNase H2.

    PubMed

    Malfatti, Matilde Clarissa; Balachander, Sathya; Antoniali, Giulia; Koh, Kyung Duk; Saint-Pierre, Christine; Gasparutto, Didier; Chon, Hyongi; Crouch, Robert J; Storici, Francesca; Tell, Gianluca

    2017-11-02

    Ribonucleoside 5'-monophosphates (rNMPs) are the most common non-standard nucleotides found in DNA of eukaryotic cells, with over 100 million rNMPs transiently incorporated in the mammalian genome per cell cycle. Human ribonuclease (RNase) H2 is the principal enzyme able to cleave rNMPs in DNA. Whether RNase H2 may process abasic or oxidized rNMPs incorporated in DNA is unknown. The base excision repair (BER) pathway is mainly responsible for repairing oxidized and abasic sites into DNA. Here we show that human RNase H2 is unable to process an abasic rNMP (rAP site) or a ribose 8oxoG (r8oxoG) site embedded in DNA. On the contrary, we found that recombinant purified human apurinic/apyrimidinic endonuclease-1 (APE1) and APE1 from human cell extracts efficiently process an rAP site in DNA and have weak endoribonuclease and 3'-exonuclease activities on r8oxoG substrate. Using biochemical assays, our results provide evidence of a human enzyme able to recognize and process abasic and oxidized ribonucleotides embedded in DNA. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Structural basis for the recognition and cleavage of abasic DNA in Neisseria meningitidis

    PubMed Central

    Lu, Duo; Silhan, Jan; MacDonald, James T.; Carpenter, Elisabeth P.; Jensen, Kirsten; Tang, Christoph M.; Baldwin, Geoff S.; Freemont, Paul S.

    2012-01-01

    Base excision repair (BER) is a highly conserved DNA repair pathway throughout all kingdoms from bacteria to humans. Whereas several enzymes are required to complete the multistep repair process of damaged bases, apurinic-apyrimidic (AP) endonucleases play an essential role in enabling the repair process by recognizing intermediary abasic sites cleaving the phosphodiester backbone 5′ to the abasic site. Despite extensive study, there is no structure of a bacterial AP endonuclease bound to substrate DNA. Furthermore, the structural mechanism for AP-site cleavage is incomplete. Here we report a detailed structural and biochemical study of the AP endonuclease from Neisseria meningitidis that has allowed us to capture structural intermediates providing more complete snapshots of the catalytic mechanism. Our data reveal subtle differences in AP-site recognition and kinetics between the human and bacterial enzymes that may reflect different evolutionary pressures. PMID:23035246

  18. Lesion-induced DNA weak structural changes detected by pulsed EPR spectroscopy combined with site-directed spin labelling.

    PubMed

    Sicoli, Giuseppe; Mathis, Gérald; Aci-Sèche, Samia; Saint-Pierre, Christine; Boulard, Yves; Gasparutto, Didier; Gambarelli, Serge

    2009-06-01

    Double electron-electron resonance (DEER) was applied to determine nanometre spin-spin distances on DNA duplexes that contain selected structural alterations. The present approach to evaluate the structural features of DNA damages is thus related to the interspin distance changes, as well as to the flexibility of the overall structure deduced from the distance distribution. A set of site-directed nitroxide-labelled double-stranded DNA fragments containing defined lesions, namely an 8-oxoguanine, an abasic site or abasic site analogues, a nick, a gap and a bulge structure were prepared and then analysed by the DEER spectroscopic technique. New insights into the application of 4-pulse DEER sequence are also provided, in particular with respect to the spin probes' positions and the rigidity of selected systems. The lesion-induced conformational changes observed, which were supported by molecular dynamics studies, confirm the results obtained by other, more conventional, spectroscopic techniques. Thus, the experimental approaches described herein provide an efficient method for probing lesion-induced structural changes of nucleic acids.

  19. The role of His-83 of yeast apurinic/apyrimidinic endonuclease Apn1 in catalytic incision of abasic sites in DNA.

    PubMed

    Dyakonova, Elena S; Koval, Vladimir V; Lomzov, Alexander A; Ishchenko, Alexander A; Fedorova, Olga S

    2015-06-01

    The apurinic/apyrimidinic (AP) endonuclease Apn1 from Saccharomyces cerevisiae is a key enzyme involved in the base excision repair (BER) at the cleavage stage of abasic sites (AP sites) in DNA. The crystal structure of Apn1 from S. cerevisiae is unresolved. Based on its high amino acid homology to Escherichia coli Endo IV, His-83 is believed to coordinate one of three Zn2+ ions in Apn1's active site similar to His-69 in Endo IV. Substituting His-83 with Ala is proposed to decrease the AP endonuclease activity of Apn1 owing to weak coordination of Zn2+ ions involved in enzymatic catalysis. The kinetics of recognition, binding, and incision of DNA substrates with the H83A Apn1 mutant was investigated. The stopped-flow method detecting fluorescence intensity changes of 2-aminopurine (2-aPu) was used to monitor the conformational dynamics of DNA at pre-steady-state conditions. We found substituting His-83 with Ala influenced catalytic complex formation and further incision of the damaged DNA strand. The H83A Apn1 catalysis depends not only on the location of the mismatch relative to the abasic site in DNA, but also on the nature of damage. We consider His-83 properly coordinates the active site Zn2+ ion playing a crucial role in catalytic incision stage. Our data prove suppressed enzymatic activity of H83A Apn1 results from the reduced number of active site Zn2+ ions. Our study provides insights into mechanistic specialty of AP site repair by yeast AP endonuclease Apn1 of Endo IV family, which members are not found in mammals, but are present in many microorganisms. The results will provide useful guidelines for design of new anti-fungal and anti-malarial agents. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The exonuclease activity of hPMC2 is required for transcriptional regulation of the QR gene and repair of estrogen-induced abasic sites.

    PubMed

    Krishnamurthy, N; Ngam, C R; Berdis, A J; Montano, M M

    2011-11-24

    We have previously reported that the expression of antioxidative stress enzymes is upregulated by trans-hydroxytamoxifen (TOT) in breast epithelial cell lines providing protection against estrogen-induced DNA damage. This regulation involves Estrogen Receptor β (ERβ) recruitment to the Electrophile Response Element (EpRE) and a novel protein, human homolog of Xenopus gene which Prevents Mitotic Catastrophe (hPMC2). We have also demonstrated that ERβ and hPMC2 are required for TOT-dependent recruitment of poly (ADP-ribose) polymerase 1 (PARP-1) and Topoisomerase IIβ (Topo IIβ) to the EpRE. Sequence analysis reveals that the C-terminus of hPMC2 encodes a putative exonuclease domain. Using in vitro kinetic assays, we found that hPMC2 is a 3'-5' non-processive exonuclease that degrades both single-stranded and double-stranded substrates. Mutation of two conserved carboxylate residues drastically reduced the exonuclease activity of hPMC2, indicating the relative importance of the catalytic residues. Western blot analysis of breast cancer cell lines for Quinone Reductase (QR) levels revealed that the intrinsic exonuclease activity of hPMC2 was required for TOT-induced QR upregulation. Chromatin immunoprecipitation (ChIP) assays also indicated that hPMC2 was involved in the formation of strand breaks observed with TOT treatment and is specific for the EpRE-containing region of the QR gene. We also determined that the transcription factor NF-E2-related factor-2 (Nrf2) is involved in the specificity of hPMC2 for the EpRE. In addition, we determined that the catalytic activity of hPMC2 is required for repair of abasic sites that result from estrogen-induced DNA damage. Thus, our study provides a mechanistic basis for transcriptional regulation by hPMC2 and provides novel insights into its role in cancer prevention.

  1. The exonuclease activity of hPMC2 is required for transcriptional regulation of the QR gene and repair of estrogen-induced abasic sites

    PubMed Central

    Krishnamurthy, Nirmala; Ngam, Caitlyn R.; Berdis, Anthony J.; Montano, Monica M.

    2011-01-01

    We have previously reported that the expression of antioxidative stress enzymes are upregulated by trans-hydroxytamoxifen (TOT) in breast epithelial cell lines providing protection against estrogen-induced DNA damage. This regulation involves Estrogen Receptor beta (ERβ) recruitment to the Electrophile Response Element (EpRE) and a novel protein, human homolog of Xenopus gene which Prevents Mitotic Catastrophe (hPMC2). We have also demonstrated that ERβ and hPMC2 are required for TOT-dependent recruitment of poly (ADP-ribose) polymerase 1 (PARP-1) and Topoisomerase IIβ (Topo IIβ) to the EpRE. Sequence analysis reveals that the C-terminus of hPMC2 encodes a putative exonuclease domain. Using in vitro kinetic assays, we found that hPMC2 is a 3'–5' non-processive exonuclease that degrades both single stranded and double stranded substrates. Mutation of two conserved carboxylate residues drastically reduced the exonuclease activity of hPMC2 indicating the relative importance of the catalytic residues. Western blot analysis of breast cancer cell lines for Quinone Reductase (QR) levels revealed that the intrinsic exonuclease activity of hPMC2 was required for TOT-induced QR upregulation. Chromatin immunoprecipitation assays (ChIP) also indicated that hPMC2 was involved in the formation of strand breaks observed with TOT-treatment and is specific for the EpRE-containing region of the QR gene. We also determined that the transcription factor NF-E2-related factor-2 (Nrf2) is involved in the specificity of hPMC2 for the EpRE. In addition, we determined that the catalytic activity of hPMC2 is required for repair of abasic sites that result from estrogen-induced DNA damage. Thus our study provides a mechanistic basis for transcriptional regulation by hPMC2 and provides novel insights into its role in cancer prevention. PMID:21602889

  2. Mechanisms by which herpes simplex virus DNA polymerase limits translesion synthesis through abasic sites.

    PubMed

    Zhu, Yali; Song, Liping; Stroud, Jason; Parris, Deborah S

    2008-01-01

    Results suggest a high probability that abasic (AP) sites occur at least once per herpes simplex virus type 1 (HSV-1) genome. The parameters that control the ability of HSV-1 DNA polymerase (pol) to engage in AP translesion synthesis (TLS) were examined because AP lesions could influence the completion and fidelity of viral DNA synthesis. Pre-steady-state kinetic experiments demonstrated that wildtype (WT) and exonuclease-deficient (exo-) pol could incorporate opposite an AP lesion, but full TLS required absence of exo function. Virtually all of the WT pol was bound at the exo site to AP-containing primer-templates (P/Ts) at equilibrium, and the pre-steady-state rate of excision by WT pol was higher on AP-containing than on matched DNA. However, several factors influencing polymerization work synergistically with exo activity to prevent HSV-1 pol from engaging in TLS. Although the pre-steady-state catalytic rate constant for insertion of dATP opposite a T or AP site was similar, ground-state-binding affinity of dATP for insertion opposite an AP site was reduced 3-9-fold. Single-turnover running-start experiments demonstrated a reduced proportion of P/Ts extended to the AP site compared to the preceding site during processive synthesis by WT or exo- pol. Only the exo- pol engaged in TLS, though inefficiently and without burst kinetics, suggesting a much slower rate-limiting step for extension beyond the AP site.

  3. Structural insights into abasic site for Fpg specific binding and catalysis: comparative high-resolution crystallographic studies of Fpg bound to various models of abasic site analogues-containing DNA

    PubMed Central

    de Jésus, Karine Pereira; Serre, Laurence; Zelwer, Charles; Castaing, Bertrand

    2005-01-01

    Fpg is a DNA glycosylase that recognizes and excises the mutagenic 8-oxoguanine (8-oxoG) and the potentially lethal formamidopyrimidic residues (Fapy). Fpg is also associated with an AP lyase activity which successively cleaves the abasic (AP) site at the 3′ and 5′ sides by βδ-elimination. Here, we present the high-resolution crystal structures of the wild-type and the P1G defective mutant of Fpg from Lactococcus lactis bound to 14mer DNA duplexes containing either a tetrahydrofuran (THF) or 1,3-propanediol (Pr) AP site analogues. Structures show that THF is less extrahelical than Pr and its backbone C5′–C4′–C3′ diverges significantly from those of Pr, rAP, 8-oxodG and FapydG. Clearly, the heterocyclic oxygen of THF is pushed back by the carboxylate of the strictly conserved E2 residue. We can propose that the ring-opened form of the damaged deoxyribose is the structure active form of the sugar for Fpg catalysis process. Both structural and functional data suggest that the first step of catalysis mediated by Fpg involves the expulsion of the O4′ leaving group facilitated by general acid catalysis (involving E2), rather than the immediate cleavage of the N-glycosic bond of the damaged nucleoside. PMID:16243784

  4. Recognition of DNA abasic site nanocavity by fluorophore-switched probe: Suitable for all sequence environments

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Hu, Yuehua; Wu, Tao; Zhang, Lihua; Liu, Hua; Zhou, Xiaoshun; Shao, Yong

    2016-01-01

    Removal of a damaged base in DNA produces an abasic site (AP site) nanocavity. If left un-repaired in vivo by the specific enzyme, this nanocavity will result in nucleotide mutation in the following DNA replication. Therefore, selective recognition of AP site nanocavity by small molecules is important for identification of such DNA damage and development of genetic drugs. In this work, we investigate the fluorescence behavior of isoquinoline alkaloids including palmatine (PAL), berberine (BER), epiberberine (EPI), jatrorrhizine (JAT), coptisine (COP), coralyne (COR), worenine (WOR), berberrubine (BEU), sanguinarine (SAN), chelerythrine (CHE), and nitidine (NIT) upon binding with the AP nanocavity. PAL is screened out as the most efficient fluorophore-switched probe to recognize the AP nanocavity over the fully matched DNA. Its fluorescence enhancement occurs for all of the AP nanocavity sequence environments, which has not been achieved by the previously used probes. The bridged π conjugation effect should partially contribute to the AP nanocavity-specific fluorescence, as opposed to the solvent effect. Due to the strong binding with the AP nanocavity, PAL will find wide applications in the DNA damage recognition and sensor development.

  5. Interstrand cross-links arising from strand breaks at true abasic sites in duplex DNA

    PubMed Central

    Yang, Zhiyu; Price, Nathan E.; Johnson, Kevin M.

    2017-01-01

    Abstract Interstrand cross-links are exceptionally bioactive DNA lesions. Endogenous generation of interstrand cross-links in genomic DNA may contribute to aging, neurodegeneration, and cancer. Abasic (Ap) sites are common lesions in genomic DNA that readily undergo spontaneous and amine-catalyzed strand cleavage reactions that generate a 2,3-didehydro-2,3-dideoxyribose sugar remnant (3’ddR5p) at the 3’-terminus of the strand break. Interestingly, this strand scission process leaves an electrophilic α,β-unsaturated aldehyde residue embedded within the resulting nicked duplex. Here we present evidence that 3’ddR5p derivatives generated by spermine-catalyzed strand cleavage at Ap sites in duplex DNA can react with adenine residues on the opposing strand to generate a complex lesion consisting of an interstrand cross-link adjacent to a strand break. The cross-link blocks DNA replication by ϕ29 DNA polymerase, a highly processive polymerase enzyme that couples synthesis with strand displacement. This suggests that 3’ddR5p-derived cross-links have the potential to block critical cellular DNA transactions that require strand separation. LC-MS/MS methods developed herein provide powerful tools for studying the occurrence and properties of these cross-links in biochemical and biological systems. PMID:28531327

  6. Roles of Rev1, Pol ζ, Pol32 and Pol η in the bypass of chromosomal abasic sites in Saccharomyces cerevisiae

    PubMed Central

    Auerbach, Paul A.; Demple, Bruce

    2010-01-01

    Translesion synthesis (TLS) on DNA is a process by which potentially cytotoxic replication-blocking lesions are bypassed, but at the risk of increased mutagenesis. The exact in vivo role of the individual TLS enzymes in Saccharomyces cerevisiae has been difficult to determine from previous studies due to differing results from the variety of systems used. We have generated a series of S.cerevisiae strains in which each of the TLS-related genes REV1, REV3, REV7, RAD30 and POL32 was deleted, and in which chromosomal apyrimidinic sites were generated during normal cell growth by the activity of altered forms of human uracil-DNA glycosylase that remove undamaged cytosines or thymines. Deletion of REV1, REV3 or REV7 resulted in slower growth dependent on (rev3Δ and rev7Δ) or enhanced by (rev1Δ) expression of the mutator glycosylases and a nearly complete abolition of glycosylase-induced mutagenesis. Deletion of POL32 resulted in cell death when the mutator glycosylases were expressed and, in their absence, diminished spontaneous mutagenesis. RAD30 appeared to be unnecessary for mutagenesis in response to abasic sites, as deleting this gene caused no significant change in either the mutation rates or the mutational spectra due to glycosylase expression. PMID:19901007

  7. Selective amyloid β oligomer assay based on abasic site-containing molecular beacon and enzyme-free amplification.

    PubMed

    Zhu, Linling; Zhang, Junying; Wang, Fengyang; Wang, Ya; Lu, Linlin; Feng, Chongchong; Xu, Zhiai; Zhang, Wen

    2016-04-15

    Amyloid-beta (Aβ) oligomers are highly toxic species in the process of Aβ aggregation and are regarded as potent therapeutic targets and diagnostic markers for Alzheimer's disease (AD). Herein, a label-free molecular beacon (MB) system integrated with enzyme-free amplification strategy was developed for simple and highly selective assay of Aβ oligomers. The MB system was constructed with abasic site (AP site)-containing stem-loop DNA and a fluorescent ligand 2-amino-5,6,7-trimethyl-1,8-naphyridine (ATMND), of which the fluorescence was quenched upon binding to the AP site in DNA stem. Enzyme-free amplification was realized by target-triggered continuous opening of two delicately designed MBs (MB1 and MB2). Target DNA hybridization with MB1 and then MB2 resulted in the release of two ATMND molecules in one binding event. Subsequent target recycling could greatly amplify the detection sensitivity due to the greatly enhanced turn-on emission of ATMND fluorescence. Combining with Aβ oligomers aptamers, the strategy was applied to analyze Aβ oligomers and the results showed that it could quantify Aβ oligomers with high selectivity and monitor the Aβ aggregation process. This novel method may be conducive to improve the diagnosis and pathogenic study of Alzheimer's disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Interstrand cross-links arising from strand breaks at true abasic sites in duplex DNA.

    PubMed

    Yang, Zhiyu; Price, Nathan E; Johnson, Kevin M; Wang, Yinsheng; Gates, Kent S

    2017-06-20

    Interstrand cross-links are exceptionally bioactive DNA lesions. Endogenous generation of interstrand cross-links in genomic DNA may contribute to aging, neurodegeneration, and cancer. Abasic (Ap) sites are common lesions in genomic DNA that readily undergo spontaneous and amine-catalyzed strand cleavage reactions that generate a 2,3-didehydro-2,3-dideoxyribose sugar remnant (3'ddR5p) at the 3'-terminus of the strand break. Interestingly, this strand scission process leaves an electrophilic α,β-unsaturated aldehyde residue embedded within the resulting nicked duplex. Here we present evidence that 3'ddR5p derivatives generated by spermine-catalyzed strand cleavage at Ap sites in duplex DNA can react with adenine residues on the opposing strand to generate a complex lesion consisting of an interstrand cross-link adjacent to a strand break. The cross-link blocks DNA replication by ϕ29 DNA polymerase, a highly processive polymerase enzyme that couples synthesis with strand displacement. This suggests that 3'ddR5p-derived cross-links have the potential to block critical cellular DNA transactions that require strand separation. LC-MS/MS methods developed herein provide powerful tools for studying the occurrence and properties of these cross-links in biochemical and biological systems. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Repair Rate of Clustered Abasic DNA Lesions by Human Endonuclease: Molecular Bases of Sequence Specificity.

    PubMed

    Gattuso, Hugo; Durand, Elodie; Bignon, Emmanuelle; Morell, Christophe; Georgakilas, Alexandros G; Dumont, Elise; Chipot, Christophe; Dehez, François; Monari, Antonio

    2016-10-06

    In the present contribution, the interaction between damaged DNA and repair enzymes is examined by means of molecular dynamics simulations. More specifically, we consider clustered abasic DNA lesions processed by the primary human apurinic/apyrimidinic (AP) endonuclease, APE1. Our results show that, in stark contrast with the corresponding bacterial endonucleases, human APE1 imposes strong geometrical constraints on the DNA duplex. As a consequence, the level of recognition and, hence, the repair rate is higher. Important features that guide the DNA/protein interactions are the presence of an extended positively charged region and of a molecular tweezers that strongly constrains DNA. Our results are on very good agreement with the experimentally determined repair rate of clustered abasic lesions. The lack of repair for one particular arrangement of the two abasic sites is also explained considering the peculiar destabilizing interaction between the recognition region and the second lesion, resulting in a partial opening of the molecular tweezers and, thus, a less stable complex. This contribution cogently establishes the molecular bases for the recognition and repair of clustered DNA lesions by means of human endonucleases.

  10. Conformational dynamics of abasic DNA upon interactions with AP endonuclease 1 revealed by stopped-flow fluorescence analysis.

    PubMed

    Kanazhevskaya, Lyubov Yu; Koval, Vladimir V; Vorobjev, Yury N; Fedorova, Olga S

    2012-02-14

    Apurinic/apyrimidinic (AP) sites are abundant DNA lesions arising from exposure to UV light, ionizing radiation, alkylating agents, and oxygen radicals. In human cells, AP endonuclease 1 (APE1) recognizes this mutagenic lesion and initiates its repair via a specific incision of the phosphodiester backbone 5' to the AP site. We have investigated a detailed mechanism of APE1 functioning using fluorescently labeled DNA substrates. A fluorescent adenine analogue, 2-aminopurine, was introduced into DNA substrates adjacent to the abasic site to serve as an on-site reporter of conformational transitions in DNA during the catalytic cycle. Application of a pre-steady-state stopped-flow technique allows us to observe changes in the fluorescence intensity corresponding to different stages of the process in real time. We also detected an intrinsic Trp fluorescence of the enzyme during interactions with 2-aPu-containing substrates. Our data have revealed a conformational flexibility of the abasic DNA being processed by APE1. Quantitative analysis of fluorescent traces has yielded a minimal kinetic scheme and appropriate rate constants consisting of four steps. The results obtained from stopped-flow data have shown a substantial influence of the 2-aPu base location on completion of certain reaction steps. Using detailed molecular dynamics simulations of the DNA substrates, we have attributed structural distortions of AP-DNA to realization of specific binding, effective locking, and incision of the damaged DNA. The findings allowed us to accurately discern the step that corresponds to insertion of specific APE1 amino acid residues into the abasic DNA void in the course of stabilization of the precatalytic complex.

  11. Correlation of bistranded clustered abasic DNA lesion processing with structural and dynamic DNA helix distortion

    PubMed Central

    Bignon, Emmanuelle; Gattuso, Hugo; Morell, Christophe; Dehez, François; Georgakilas, Alexandros G.; Monari, Antonio; Dumont, Elise

    2016-01-01

    Clustered apurinic/apyrimidinic (AP; abasic) DNA lesions produced by ionizing radiation are by far more cytotoxic than isolated AP lesion entities. The structure and dynamics of a series of seven 23-bp oligonucleotides featuring simple bistranded clustered damage sites, comprising of two AP sites, zero, one, three or five bases 3′ or 5′ apart from each other, were investigated through 400 ns explicit solvent molecular dynamics simulations. They provide representative structures of synthetically engineered multiply damage sites-containing oligonucleotides whose repair was investigated experimentally (Nucl. Acids Res. 2004, 32:5609-5620; Nucl. Acids Res. 2002, 30: 2800–2808). The inspection of extrahelical positioning of the AP sites, bulge and non Watson–Crick hydrogen bonding corroborates the experimental measurements of repair efficiencies by bacterial or human AP endonucleases Nfo and APE1, respectively. This study provides unprecedented knowledge into the structure and dynamics of clustered abasic DNA lesions, notably rationalizing the non-symmetry with respect to 3′ to 5′ position. In addition, it provides strong mechanistic insights and basis for future studies on the effects of clustered DNA damage on the recognition and processing of these lesions by bacterial or human DNA repair enzymes specialized in the processing of such lesions. PMID:27587587

  12. Correlation of Thermal Stability and Structural Distortion of DNA Interstrand Cross-Links Produced from Oxidized Abasic Sites with Their Selective Formation and Repair.

    PubMed

    Ghosh, Souradyuti; Greenberg, Marc M

    2015-10-13

    C4'-oxidized (C4-AP) and C5'-oxidized abasic sites (DOB) that are produced following abstraction of a hydrogen atom from the DNA backbone reversibly form cross-links selectively with dA opposite a 3'-adjacent nucleotide, despite the comparable proximity of an opposing dA. A previous report on UvrABC incision of DNA substrates containing stabilized analogues of the ICLs derived from C4-AP and DOB also indicated that the latter is repaired more readily by nucleotide excision repair [Ghosh, S., and Greenberg, M. M. (2014) Biochemistry 53, 5958-5965]. The source for selective cross-link formation was probed by comparing the reactivity of ICL analogues of C4-AP and DOB that mimic the preferred and disfavored cross-links with that of reagents that indirectly detect distortion by reacting with the nucleobases. The disfavored C4-AP and DOB analogues were each more reactive than the corresponding preferred cross-link substrates, suggesting that the latter are more stable, which is consistent with selective ICL formation. In addition, the preferred DOB analogue is more reactive than the respective C4-AP ICL, which is consistent with its more efficient incision by UvrABC. The conclusions drawn from the chemical probing experiments are corroborated by UV melting studies. The preferred ICLs exhibit melting temperatures higher than those of the corresponding disfavored isomers. These studies suggest that oxidized abasic sites form reversible interstrand cross-links with dA opposite the 3'-adjacent thymidine because these products are more stable and the thermodynamic preference is reflected in the transition states for their formation.

  13. Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation

    NASA Technical Reports Server (NTRS)

    Sutherland, B. M.; Bennett, P. V.; Sidorkina, O.; Laval, J.; Lowenstein, D. I. (Principal Investigator)

    2000-01-01

    Clustered DNA damages-two or more closely spaced damages (strand breaks, abasic sites, or oxidized bases) on opposing strands-are suspects as critical lesions producing lethal and mutagenic effects of ionizing radiation. However, as a result of the lack of methods for measuring damage clusters induced by ionizing radiation in genomic DNA, neither the frequencies of their production by physiological doses of radiation, nor their repairability, nor their biological effects are known. On the basis of methods that we developed for quantitating damages in large DNAs, we have devised and validated a way of measuring ionizing radiation-induced clustered lesions in genomic DNA, including DNA from human cells. DNA is treated with an endonuclease that induces a single-strand cleavage at an oxidized base or abasic site. If there are two closely spaced damages on opposing strands, such cleavage will reduce the size of the DNA on a nondenaturing gel. We show that ionizing radiation does induce clustered DNA damages containing abasic sites, oxidized purines, or oxidized pyrimidines. Further, the frequency of each of these cluster classes is comparable to that of frank double-strand breaks; among all complex damages induced by ionizing radiation, double-strand breaks are only about 20%, with other clustered damage constituting some 80%. We also show that even low doses (0.1-1 Gy) of high linear energy transfer ionizing radiation induce clustered damages in human cells.

  14. Simultaneous fluorescence light-up and selective multicolor nucleobase recognition based on sequence-dependent strong binding of berberine to DNA abasic site.

    PubMed

    Wu, Fei; Shao, Yong; Ma, Kun; Cui, Qinghua; Liu, Guiying; Xu, Shujuan

    2012-04-28

    Label-free DNA nucleobase recognition by fluorescent small molecules has received much attention due to its simplicity in mutation identification and drug screening. However, sequence-dependent fluorescence light-up nucleobase recognition and multicolor emission with individual emission energy for individual nucleobases have been seldom realized. Herein, an abasic site (AP site) in a DNA duplex was employed as a binding field for berberine, one of isoquinoline alkaloids. Unlike weak binding of berberine to the fully matched DNAs without the AP site, strong binding of berberine to the AP site occurs and the berberine's fluorescence light-up behaviors are highly dependent on the target nucleobases opposite the AP site in which the targets thymine and cytosine produce dual emission bands, while the targets guanine and adenine only give a single emission band. Furthermore, more intense emissions are observed for the target pyrimidines than purines. The flanking bases of the AP site also produce some modifications of the berberine's emission behavior. The binding selectivity of berberine at the AP site is also confirmed by measurements of fluorescence resonance energy transfer, excited-state lifetime, DNA melting and fluorescence quenching by ferrocyanide and sodium chloride. It is expected that the target pyrimidines cause berberine to be stacked well within DNA base pairs near the AP site, which results in a strong resonance coupling of the electronic transitions to the particular vibration mode to produce the dual emissions. The fluorescent signal-on and emission energy-modulated sensing for nucleobases based on this fluorophore is substantially advantageous over the previously used fluorophores. We expect that this approach will be developed as a practical device for differentiating pyrimidines from purines by positioning an AP site toward a target that is available for readout by this alkaloid probe. This journal is © The Royal Society of Chemistry 2012

  15. Abasic pivot substitution harnesses target specificity of RNA interference

    PubMed Central

    Lee, Hye-Sook; Seok, Heeyoung; Lee, Dong Ha; Ham, Juyoung; Lee, Wooje; Youm, Emilia Moonkyung; Yoo, Jin Seon; Lee, Yong-Seung; Jang, Eun-Sook; Chi, Sung Wook

    2015-01-01

    Gene silencing via RNA interference inadvertently represses hundreds of off-target transcripts. Because small interfering RNAs (siRNAs) can function as microRNAs, avoiding miRNA-like off-target repression is a major challenge. Functional miRNA–target interactions are known to pre-require transitional nucleation, base pairs from position 2 to the pivot (position 6). Here, by substituting nucleotide in pivot with abasic spacers, which prevent base pairing and alleviate steric hindrance, we eliminate miRNA-like off-target repression while preserving on-target activity at ∼80–100%. Specifically, miR-124 containing dSpacer pivot substitution (6pi) loses seed-mediated transcriptome-wide target interactions, repression activity and biological function, whereas other conventional modifications are ineffective. Application of 6pi allows PCSK9 siRNA to efficiently lower plasma cholesterol concentration in vivo, and abolish potentially deleterious off-target phenotypes. The smallest spacer, C3, also shows the same improvement in target specificity. Abasic pivot substitution serves as a general means to harness the specificity of siRNA experiments and therapeutic applications. PMID:26679372

  16. Detecting single-abasic residues within a DNA strand immobilized in a biological nanopore using an integrated CMOS sensor.

    PubMed

    Kim, Jungsuk; Maitra, Raj D; Pedrotti, Ken; Dunbar, William B

    2013-02-01

    In this paper, we demonstrate the application of a novel current-measuring sensor (CMS) customized for nanopore applications. The low-noise CMS is fabricated in a 0.35μm CMOS process and is implemented in experiments involving DNA captured in an α-hemolysin (α-HL) nanopore. Specifically, the CMS is used to build a current amplitude map as a function of varying positions of a single-abasic residue within a homopolymer cytosine single-stranded DNA (ssDNA) that is captured and held in the pore. Each ssDNA is immobilized using a biotin-streptavidin linkage. Five different DNA templates are measured and compared: one all-cytosine ssDNA, and four with a single-abasic residue substitution that resides in or near the ~1.5nm aperture of the α-HL channel when the strand is immobilized. The CMOS CMS is shown to resolves the ~5Å displacements of the abasic residue within the varying templates. The demonstration represents an advance in application-specific circuitry that is optimized for small-footprint nanopore applications, including genomic sequencing.

  17. Clustered DNA damages induced by high and low LET radiation, including heavy ions

    NASA Technical Reports Server (NTRS)

    Sutherland, B. M.; Bennett, P. V.; Schenk, H.; Sidorkina, O.; Laval, J.; Trunk, J.; Monteleone, D.; Sutherland, J.; Lowenstein, D. I. (Principal Investigator)

    2001-01-01

    Clustered DNA damages--here defined as two or more lesions (strand breaks, oxidized purines, oxidized pyrimidines or abasic sites) within a few helical turns--have been postulated as difficult to repair accurately, and thus highly significant biological lesions. Further, attempted repair of clusters may produce double strand breaks (DSBs). However, until recently, there was no way to measure ionizing radiation-induced clustered damages, except DSB. We recently described an approach for measuring classes of clustered damages (oxidized purine clusters, oxidized pyrimidine clusters, abasic clusters, along with DSB). We showed that ionizing radiation (gamma rays and Fe ions, 1 GeV/amu) does induce such clusters in genomic DNA in solution and in human cells. These studies also showed that each damage cluster results from one radiation hit (and its track), thus indicating that they can be induced by very low doses of radiation, i.e. two independent hits are not required for cluster induction. Further, among all complex damages, double strand breaks comprise--at most-- 20%, with the other clustered damages being at least 80%.

  18. DNA damage in cells exhibiting radiation-induced genomic instability

    DOE PAGES

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesismore » that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.« less

  19. Evidence that a burst of DNA depurination in SENCAR mouse skin induces error-prone repair and forms mutations in the H-ras gene.

    PubMed

    Chakravarti, D; Mailander, P C; Li, K M; Higginbotham, S; Zhang, H L; Gross, M L; Meza, J L; Cavalieri, E L; Rogan, E G

    2001-11-29

    Treatment of SENCAR mouse skin with dibenzo[a,l]pyrene results in abundant formation of abasic sites that undergo error-prone excision repair, forming oncogenic H-ras mutations in the early preneoplastic period. To examine whether the abundance of abasic sites causes repair infidelity, we treated SENCAR mouse skin with estradiol-3,4-quinone (E(2)-3,4-Q) and determined adduct levels 1 h after treatment, as well as mutation spectra in the H-ras gene between 6 h and 3 days after treatment. E(2)-3,4-Q formed predominantly (> or =99%) the rapidly-depurinating 4-hydroxy estradiol (4-OHE(2))-1-N3Ade adduct and the slower-depurinating 4-OHE(2)-1-N7Gua adduct. Between 6 h and 3 days, E(2)-3,4-Q induced abundant A to G mutations in H-ras DNA, frequently in the context of a 3'-G residue. Using a T.G-DNA glycosylase (TDG)-PCR assay, we determined that the early A to G mutations (6 and 12 h) were in the form of G.T heteroduplexes, suggesting misrepair at A-specific depurination sites. Since G-specific mutations were infrequent in the spectra, it appears that the slow rate of depurination of the N7Gua adducts during active repair may not generate a threshold level of G-specific abasic sites to affect repair fidelity. These results also suggest that E(2)-3,4-Q, a suspected endogenous carcinogen, is a genotoxic compound and could cause mutations.

  20. The Human DNA glycosylases NEIL1 and NEIL3 Excise Psoralen-Induced DNA-DNA Cross-Links in a Four-Stranded DNA Structure.

    PubMed

    Martin, Peter R; Couvé, Sophie; Zutterling, Caroline; Albelazi, Mustafa S; Groisman, Regina; Matkarimov, Bakhyt T; Parsons, Jason L; Elder, Rhoderick H; Saparbaev, Murat K

    2017-12-12

    Interstrand cross-links (ICLs) are highly cytotoxic DNA lesions that block DNA replication and transcription by preventing strand separation. Previously, we demonstrated that the bacterial and human DNA glycosylases Nei and NEIL1 excise unhooked psoralen-derived ICLs in three-stranded DNA via hydrolysis of the glycosidic bond between the crosslinked base and deoxyribose sugar. Furthermore, NEIL3 from Xenopus laevis has been shown to cleave psoralen- and abasic site-induced ICLs in Xenopus egg extracts. Here we report that human NEIL3 cleaves psoralen-induced DNA-DNA cross-links in three-stranded and four-stranded DNA substrates to generate unhooked DNA fragments containing either an abasic site or a psoralen-thymine monoadduct. Furthermore, while Nei and NEIL1 also cleave a psoralen-induced four-stranded DNA substrate to generate two unhooked DNA duplexes with a nick, NEIL3 targets both DNA strands in the ICL without generating single-strand breaks. The DNA substrate specificities of these Nei-like enzymes imply the occurrence of long uninterrupted three- and four-stranded crosslinked DNA-DNA structures that may originate in vivo from DNA replication fork bypass of an ICL. In conclusion, the Nei-like DNA glycosylases unhook psoralen-derived ICLs in various DNA structures via a genuine repair mechanism in which complex DNA lesions can be removed without generation of highly toxic double-strand breaks.

  1. Chemical repair of base lesions, AP-sites, and strand breaks on plasmid DNA in dilute aqueous solution by ascorbic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hata, Kuniki; Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 319-1195; Urushibara, Ayumi

    Highlights: •We report a novel mechanism of radiation protection of DNA by chemical activity of ascorbic acid. •The “chemical repair” of DNA damage was revealed using biochemical assay and chemical kinetics analysis. •We found that ascorbic acid significantly repairs precursors of nucleobase lesions and abasic sites. •However, ascorbic acid seldom repairs precursors of DNA-strand breaks. -- Abstract: We quantified the damage yields produced in plasmid DNA by γ-irradiation in the presence of low concentrations (10–100 μM) of ascorbic acid, which is a major antioxidant in living systems, to clarify whether it chemically repairs radiation damage in DNA. The yield ofmore » DNA single strand breaks induced by irradiation was analyzed with agarose gel electrophoresis as conformational changes in closed circular plasmids. Base lesions and abasic sites were also observed as additional conformational changes by treating irradiated samples with glycosylase proteins. By comparing the suppression efficiencies to the induction of each DNA lesion, in addition to scavenging of the OH radicals derived from water radiolysis, it was found that ascorbic acid promotes the chemical repair of precursors of AP-sites and base lesions more effectively than those of single strand breaks. We estimated the efficiency of the chemical repair of each lesion using a kinetic model. Approximately 50–60% of base lesions and AP-sites were repaired by 10 μM ascorbic acid, although strand breaks were largely unrepaired by ascorbic acid at low concentrations. The methods in this study will provide a route to understanding the mechanistic aspects of antioxidant activity in living systems.« less

  2. On the Formation and Properties of Interstrand DNA-DNA Cross-links Forged by Reaction of an Abasic Site With the Opposing Guanine Residue of 5′-CAp Sequences in Duplex DNA

    PubMed Central

    Johnson, Kevin M.; Price, Nathan E.; Wang, Jin; Fekry, Mostafa I.; Dutta, Sanjay; Seiner, Derrick R.; Wang, Yinsheng; Gates, Kent S.

    2014-01-01

    We recently reported that the aldehyde residue of an abasic (Ap) site in duplex DNA can generate an interstrand cross-link via reaction with a guanine residue on the opposing strand. This finding is intriguing because the highly deleterious nature of interstrand cross-links suggests that even small amounts of Ap-derived cross-links could make a significant contribution to the biological consequences stemming from the generation of Ap sites in cellular DNA. Incubation of 21-bp duplexes containing a central 5′-CAp sequence under conditions of reductive amination (NaCNBH3, pH 5.2) generated much higher yields of cross-linked DNA than reported previously. At pH 7, in the absence of reducing agents, these Ap-containing duplexes also produced cross-linked duplexes that were readily detected on denaturing polyacrylamide gels. Cross-link formation was not highly sensitive to reaction conditions and, once formed, the cross-link was stable to a variety of work-up conditions. Results of multiple experiments including MALDI-TOF mass spectrometry, gel mobility, methoxyamine capping of the Ap aldehyde, inosine-for-guanine replacement, hydroxyl radical footprinting, and LCMS/MS were consistent with a cross-linking mechanism involving reversible reaction of the Ap aldehyde residue with the N2-amino group of the opposing guanine residue in 5′-CAp sequences to generate hemiaminal, imine, or cyclic hemiaminal cross-links (7-10) that were irreversibly converted under conditions of reductive amination (NaCNBH3/pH 5.2) to a stable amine linkage. Further support for the importance of the exocyclic N2-amino group in this reaction was provided by an experiment showing that installation of a 2-aminopurine-thymine base pair at the cross-linking site produced high yields (15-30%) of a cross-linked duplex at neutral pH, in the absence of NaCNBH3. PMID:23215239

  3. Chemical repair activity of free radical scavenger edaravone: reduction reactions with dGMP hydroxyl radical adducts and suppression of base lesions and AP sites on irradiated plasmid DNA

    PubMed Central

    Hata, Kuniki; Urushibara, Ayumi; Yamashita, Shinichi; Lin, Mingzhang; Muroya, Yusa; Shikazono, Naoya; Yokoya, Akinari; Fu, Haiying; Katsumura, Yosuke

    2015-01-01

    Reactions of edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) with deoxyguanosine monophosphate (dGMP) hydroxyl radical adducts were investigated by pulse radiolysis technique. Edaravone was found to reduce the dGMP hydroxyl radical adducts through electron transfer reactions. The rate constants of the reactions were greater than 4 × 108 dm3 mol−1 s−1 and similar to those of the reactions of ascorbic acid, which is a representative antioxidant. Yields of single-strand breaks, base lesions, and abasic sites produced in pUC18 plasmid DNA by gamma ray irradiation in the presence of low concentrations (10–1000 μmol dm−3) of edaravone were also quantified, and the chemical repair activity of edaravone was estimated by a method recently developed by the authors. By comparing suppression efficiencies to the induction of each DNA lesion, it was found that base lesions and abasic sites were suppressed by the chemical repair activity of edaravone, although the suppression of single-strand breaks was not very effective. This phenomenon was attributed to the chemical repair activity of edaravone toward base lesions and abasic sites. However, the chemical repair activity of edaravone for base lesions was lower than that of ascorbic acid. PMID:25212600

  4. Adenomatous Polyposis Coli-Mediated Accumulation of Abasic DNA Lesions Lead to Cigarette Smoke Condensate-Induced Neoplastic Transformation of Normal Breast Epithelial Cells1

    PubMed Central

    Jaiswal, Aruna S; Panda, Harekrushna; Pampo, Christine A; Siemann, Dietmar W; Gairola, C Gary; Hromas, Robert; Narayan, Satya

    2013-01-01

    Adenomatous polyposis coli (APC) is a multifunctional protein having diverse cellular functions including cell migration, cell-cell adhesion, cell cycle control, chromosomal segregation, and apoptosis. Recently, we found a new role of APC in base excision repair (BER) and showed that it interacts with DNA polymerase β and 5′-flap endonuclease 1 and interferes in BER. Previously, we have also reported that cigarette smoke condensate (CSC) increases expression of APC and enhances the growth of normal human breast epithelial (MCF10A) cells in vitro. In the present study, using APC overexpression and knockdown systems, we have examined the molecular mechanisms by which CSC and its major component, Benzo[α]pyrene, enhances APC-mediated accumulation of abasic DNA lesions, which is cytotoxic and mutagenic in nature, leading to enhanced neoplastic transformation of MCF10A cells in an orthotopic xenograft model. PMID:23555190

  5. Chemical repair activity of free radical scavenger edaravone: reduction reactions with dGMP hydroxyl radical adducts and suppression of base lesions and AP sites on irradiated plasmid DNA.

    PubMed

    Hata, Kuniki; Urushibara, Ayumi; Yamashita, Shinichi; Lin, Mingzhang; Muroya, Yusa; Shikazono, Naoya; Yokoya, Akinari; Fu, Haiying; Katsumura, Yosuke

    2015-01-01

    Reactions of edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) with deoxyguanosine monophosphate (dGMP) hydroxyl radical adducts were investigated by pulse radiolysis technique. Edaravone was found to reduce the dGMP hydroxyl radical adducts through electron transfer reactions. The rate constants of the reactions were greater than 4 × 10(8) dm(3) mol(-1) s(-1) and similar to those of the reactions of ascorbic acid, which is a representative antioxidant. Yields of single-strand breaks, base lesions, and abasic sites produced in pUC18 plasmid DNA by gamma ray irradiation in the presence of low concentrations (10-1000 μmol dm(-3)) of edaravone were also quantified, and the chemical repair activity of edaravone was estimated by a method recently developed by the authors. By comparing suppression efficiencies to the induction of each DNA lesion, it was found that base lesions and abasic sites were suppressed by the chemical repair activity of edaravone, although the suppression of single-strand breaks was not very effective. This phenomenon was attributed to the chemical repair activity of edaravone toward base lesions and abasic sites. However, the chemical repair activity of edaravone for base lesions was lower than that of ascorbic acid. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  6. The POLD3 subunit of DNA polymerase δ can promote translesion synthesis independently of DNA polymerase ζ

    PubMed Central

    Hirota, Kouji; Yoshikiyo, Kazunori; Guilbaud, Guillaume; Tsurimoto, Toshiki; Murai, Junko; Tsuda, Masataka; Phillips, Lara G.; Narita, Takeo; Nishihara, Kana; Kobayashi, Kaori; Yamada, Kouich; Nakamura, Jun; Pommier, Yves; Lehmann, Alan; Sale, Julian E.; Takeda, Shunichi

    2015-01-01

    The replicative DNA polymerase Polδ consists of a catalytic subunit POLD1/p125 and three regulatory subunits POLD2/p50, POLD3/p66 and POLD4/p12. The ortholog of POLD3 in Saccharomyces cerevisiae, Pol32, is required for a significant proportion of spontaneous and UV-induced mutagenesis through its additional role in translesion synthesis (TLS) as a subunit of DNA polymerase ζ. Remarkably, chicken DT40 B lymphocytes deficient in POLD3 are viable and able to replicate undamaged genomic DNA with normal kinetics. Like its counterpart in yeast, POLD3 is required for fully effective TLS, its loss resulting in hypersensitivity to a variety of DNA damaging agents, a diminished ability to maintain replication fork progression after UV irradiation and a significant decrease in abasic site-induced mutagenesis in the immunoglobulin loci. However, these defects appear to be largely independent of Polζ, suggesting that POLD3 makes a significant contribution to TLS independently of Polζ in DT40 cells. Indeed, combining polη, polζ and pold3 mutations results in synthetic lethality. Additionally, we show in vitro that POLD3 promotes extension beyond an abasic by the Polδ holoenzyme suggesting that while POLD3 is not required for normal replication, it may help Polδ to complete abasic site bypass independently of canonical TLS polymerases. PMID:25628356

  7. Clustered DNA damages induced in human hematopoietic cells by low doses of ionizing radiation

    NASA Technical Reports Server (NTRS)

    Sutherland, Betsy M.; Bennett, Paula V.; Cintron-Torres, Nela; Hada, Megumi; Trunk, John; Monteleone, Denise; Sutherland, John C.; Laval, Jacques; Stanislaus, Marisha; Gewirtz, Alan

    2002-01-01

    Ionizing radiation induces clusters of DNA damages--oxidized bases, abasic sites and strand breaks--on opposing strands within a few helical turns. Such damages have been postulated to be difficult to repair, as are double strand breaks (one type of cluster). We have shown that low doses of low and high linear energy transfer (LET) radiation induce such damage clusters in human cells. In human cells, DSB are about 30% of the total of complex damages, and the levels of DSBs and oxidized pyrimidine clusters are similar. The dose responses for cluster induction in cells can be described by a linear relationship, implying that even low doses of ionizing radiation can produce clustered damages. Studies are in progress to determine whether clusters can be produced by mechanisms other than ionizing radiation, as well as the levels of various cluster types formed by low and high LET radiation.

  8. Carbinolamine Formation and Dehydration in a DNA Repair Enzyme Active Site

    PubMed Central

    Dodson, M. L.; Walker, Ross C.; Lloyd, R. Stephen

    2012-01-01

    In order to suggest detailed mechanistic hypotheses for the formation and dehydration of a key carbinolamine intermediate in the T4 pyrimidine dimer glycosylase (T4PDG) reaction, we have investigated these reactions using steered molecular dynamics with a coupled quantum mechanics–molecular mechanics potential (QM/MM). We carried out simulations of DNA abasic site carbinolamine formation with and without a water molecule restrained to remain within the active site quantum region. We recovered potentials of mean force (PMF) from thirty replicate reaction trajectories using Jarzynski averaging. We demonstrated feasible pathways involving water, as well as those independent of water participation. The water–independent enzyme–catalyzed reaction had a bias–corrected Jarzynski–average barrier height of approximately for the carbinolamine formation reaction and ) for the reverse reaction at this level of representation. When the proton transfer was facilitated with an intrinsic quantum water, the barrier height was approximately in the forward (formation) reaction and for the reverse. In addition, two modes of unsteered (free dynamics) carbinolamine dehydration were observed: in one, the quantum water participated as an intermediate proton transfer species, and in the other, the active site protonated glutamate hydrogen was directly transferred to the carbinolamine oxygen. Water–independent unforced proton transfer from the protonated active site glutamate carboxyl to the unprotonated N–terminal amine was also observed. In summary, complex proton transfer events, some involving water intermediates, were studied in QM/MM simulations of T4PDG bound to a DNA abasic site. Imine carbinolamine formation was characterized using steered QM/MM molecular dynamics. Dehydration of the carbinolamine intermediate to form the final imine product was observed in free, unsteered, QM/MM dynamics simulations, as was unforced acid-base transfer between the active site

  9. A commercial PCV2a-based vaccine is effective in protection from experimental challenge of PCV2 mutant with two amino acids elongation in capsid protein.

    PubMed

    Guo, Long-Jun; Fu, Yu-Jie; Huang, Li-Ping; Wang, Yi-Ping; Wei, Yan-Wu; Wu, Hong-Li; Liu, Chang-Ming

    2015-07-17

    Current commercial PCV2 vaccines are almost based on PCV2a and have been shown to be effective in reducing PCV2a and PCV2b viremia and PCV2-associated lesions and diseases. The recent emergence of novel mutant PCV2 (mPCV2) strains and linkage of mPCV2 with cases of porcine circovirus associated disease (PCVAD) in pig herds have raised concerns over emergence of vaccine-escape mutants and reduced efficacy of PCV2a-based vaccines. The aim of this study was to determine the ability of a commercial PCV2a-based vaccine developed by our laboratory to protect conventional pigs against experimental challenge with mPCV2 at 9 weeks of age. Twenty 4-week-old pigs free of PCV2 infection were randomly divided into four treatment groups with 5 pigs each. Two groups were unvaccinated as positive and negative controls. Another two groups were vaccinated with the commercial PCV2a-based vaccine (PCV2-LG strain, China) at 4 weeks of age and identical booster immunization was conducted 3 weeks post primary immunization. At 9 weeks of age, all pigs except the negative control were challenged with a mutant PCV2b/YJ (mPCV2b/YJ) with two amino acids elongation in capsid protein. The experiment was terminated 28 days after challenge. Under the conditions of this study, vaccinated pigs were protected against PCV2 viremia and lesions whereas unvaccinated pigs were not. Moreover, mPCV2b/YJ infection was demonstrated in positive control and almost all had macroscopic or microscopic lesions consistent with PCVAD while negative control did not develop PCVAD. This study indicates that mPCV2b/YJ infection alone can trigger PCVAD development and that the commercial vaccine (PCV2-LG) is still effective in protecting conventional pigs against the emerging mPCV2b/YJ strain in China. Copyright © 2015. Published by Elsevier Ltd.

  10. Delayed repair of radiation induced clustered DNA damage: Friend or foe?

    PubMed Central

    Eccles, Laura J.; O’Neill, Peter; Lomax, Martine E.

    2011-01-01

    A signature of ionizing radiation exposure is the induction of DNA clustered damaged sites, defined as two or more lesions within one to two helical turns of DNA by passage of a single radiation track. Clustered damage is made up of double strand breaks (DSB) with associated base lesions or abasic (AP) sites, and non-DSB clusters comprised of base lesions, AP sites and single strand breaks. This review will concentrate on the experimental findings of the processing of non-DSB clustered damaged sites. It has been shown that non-DSB clustered damaged sites compromise the base excision repair pathway leading to the lifetime extension of the lesions within the cluster, compared to isolated lesions, thus the likelihood that the lesions persist to replication and induce mutation is increased. In addition certain non-DSB clustered damaged sites are processed within the cell to form additional DSB. The use of E. coli to demonstrate that clustering of DNA lesions is the major cause of the detrimental consequences of ionizing radiation is also discussed. The delayed repair of non-DSB clustered damaged sites in humans can be seen as a “friend”, leading to cell killing in tumour cells or as a “foe”, resulting in the formation of mutations and genetic instability in normal tissue. PMID:21130102

  11. Covalent trapping of human DNA polymerase beta by the oxidative DNA lesion 2-deoxyribonolactone.

    PubMed

    DeMott, Michael S; Beyret, Ergin; Wong, Donny; Bales, Brian C; Hwang, Jae-Taeg; Greenberg, Marc M; Demple, Bruce

    2002-03-08

    Oxidized abasic residues in DNA constitute a major class of radiation and oxidative damage. Free radical attack on the nucleotidyl C-1' carbon yields 2-deoxyribonolactone (dL) as a significant lesion. Although dL residues are efficiently incised by the main human abasic endonuclease enzyme Ape1, we show here that subsequent excision by human DNA polymerase beta is impaired at dL compared with unmodified abasic sites. This inhibition is accompanied by accumulation of a protein-DNA cross-link not observed in reactions of polymerase beta with unmodified abasic sites, although a similar form can be trapped by reduction with sodium borohydride. The formation of the stably cross-linked species with dL depends on the polymerase lysine 72 residue, which forms a Schiff base with the C-1 aldehyde during excision of an unmodified abasic site. In the case of a dL residue, attack on the lactone C-1 by lysine 72 proceeds more slowly and evidently produces an amide linkage, which resists further processing. Consequently dL residues may not be readily repaired by "short-patch" base excision repair but instead function as suicide substrates in the formation of protein-DNA cross-links that may require alternative modes of repair.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Shuangluo; Vashishtha, Ashwani; Bulkley, David

    During DNA synthesis, base stacking and Watson-Crick (WC) hydrogen bonding increase the stability of nascent base pairs when they are in a ternary complex. To evaluate the contribution of base stacking to the incorporation efficiency of dNTPs when a DNA polymerase encounters an abasic site, we varied the penultimate base pairs (PBs) adjacent to the abasic site using all 16 possible combinations. We then determined pre-steady-state kinetic parameters with an RB69 DNA polymerase variant and solved nine structures of the corresponding ternary complexes. The efficiency of incorporation for incoming dNTPs opposite an abasic site varied between 2- and 210-fold dependingmore » on the identity of the PB. We propose that the A rule can be extended to encompass the fact that DNA polymerase can bypass dA/abasic sites more efficiently than other dN/abasic sites. Crystal structures of the ternary complexes show that the surface of the incoming base was stacked against the PB's interface and that the kinetic parameters for dNMP incorporation were consistent with specific features of base stacking, such as surface area and partial charge-charge interactions between the incoming base and the PB. Without a templating nucleotide residue, an incoming dNTP has no base with which it can hydrogen bond and cannot be desolvated, so that these surrounding water molecules become ordered and remain on the PB's surface in the ternary complex. When these water molecules are on top of a hydrophobic patch on the PB, they destabilize the ternary complex, and the incorporation efficiency of incoming dNTPs is reduced.« less

  13. Thunder-induced ground motions: 2. Site characterization

    NASA Astrophysics Data System (ADS)

    Lin, Ting-L.; Langston, Charles A.

    2009-04-01

    Thunder-induced ground motion, near-surface refraction, and Rayleigh wave dispersion measurements were used to constrain near-surface velocity structure at an unconsolidated sediment site. We employed near-surface seismic refraction measurements to first define ranges for site structure parameters. Air-coupled and hammer-generated Rayleigh wave dispersion curves were used to further constrain the site structure by a grid search technique. The acoustic-to-seismic coupling is modeled as an incident plane P wave in a fluid half-space impinging into a solid layered half-space. We found that the infrasound-induced ground motions constrained substrate velocities and the average thickness and velocities of the near-surface layer. The addition of higher-frequency near-surface Rayleigh waves produced tighter constraints on the near-surface velocities. This suggests that natural or controlled airborne pressure sources can be used to investigate the near-surface site structures for earthquake shaking hazard studies.

  14. Bioconjugation of Oligodeoxynucleotides Carrying 1,4-Dicarbonyl Groups via Reductive Amination with Lysine Residues.

    PubMed

    Yang, Bo; Jinnouchi, Akiko; Usui, Kazuteru; Katayama, Tsutomu; Fujii, Masayuki; Suemune, Hiroshi; Aso, Mariko

    2015-08-19

    We evaluated the efficacy of bioconjugation of oligodeoxynucleotides (ODNs) containing 1,4-dicarbonyl groups, a C4'-oxidized abasic site (OAS), and a newly designed 2'-methoxy analogue, via reductive amination with lysine residues. Dicarbonyls, aldehyde and ketone at C1- and C4-positions of deoxyribose in the ring-opened form of OAS allowed efficient reaction with amines. Kinetic studies indicated that reductive amination of OAS-containing ODNs with a proximal amine on the complementary strand proceeded 10 times faster than the corresponding reaction of an ODN containing an abasic site with C1-aldehyde. Efficient reductive amination between the DNA-binding domain of Escherichia coli DnaA protein and ODNs carrying OAS in the DnaA-binding sequence proceeded at the lysine residue in proximity to the phosphate group at the 5'-position of the OAS, in contrast to unsuccessful conjugation with abasic site ODNs, even though they have similar aldehydes. Theoretical calculation indicated that the C1-aldehyde of OAS was more accessible to the target lysine than that of the abasic site. These results demonstrate the potential utility of cross-linking strategies that use dicarbonyl-containing ODNs for the study of protein-nucleic acid interactions. Conjugation with a lysine-containing peptide that lacked specific affinity for ODN was also successful, further highlighting the advantages of 1,4-dicarbonyls.

  15. Oxidized Base Damage and Single-Strand Break Repair in Mammalian Genomes: Role of Disordered Regions and Posttranslational Modifications in Early Enzymes

    PubMed Central

    Hegde, Muralidhar L.; Izumi, Tadahide; Mitra, Sankar

    2012-01-01

    Oxidative genome damage induced by reactive oxygen species includes oxidized bases, abasic (AP) sites, and single-strand breaks, all of which are repaired via the evolutionarily conserved base excision repair/single-strand break repair (BER/SSBR) pathway. BER/SSBR in mammalian cells is complex, with preferred and backup sub-pathways, and is linked to genome replication and transcription. The early BER/SSBR enzymes, namely, DNA glycosylases (DGs) and the end-processing proteins such as abasic endonuclease 1 (APE1), form complexes with downstream repair (and other noncanonical) proteins via pairwise interactions. Furthermore, a unique feature of mammalian early BER/ SSBR enzymes is the presence of a disordered terminal extension that is absent in their Escherichia coli prototypes. These nonconserved segments usually contain organelle-targeting signals, common interaction interfaces, and sites of posttranslational modifications that may be involved in regulating their repair function including lesion scanning. Finally, the linkage of BER/SSBR deficiency to cancer, aging, and human neurodegenerative diseases, and therapeutic targeting of BER/SSBR are discussed. PMID:22749145

  16. In vitro selection of shape-changing DNA nanostructures capable of binding-induced cargo release.

    PubMed

    Oh, Seung Soo; Plakos, Kory; Xiao, Yi; Eisenstein, Michael; Soh, H Tom

    2013-11-26

    Many biological systems employ allosteric regulatory mechanisms, which offer a powerful means of directly linking a specific binding event to a wide spectrum of molecular functionalities. There is considerable interest in generating synthetic allosteric regulators that can perform useful molecular functions for applications in diagnostics, imaging and targeted therapies, but generating such molecules through either rational design or directed evolution has proven exceptionally challenging. To address this need, we present an in vitro selection strategy for generating conformation-switching DNA nanostructures that selectively release a small-molecule payload in response to binding of a specific trigger molecule. As an exemplar, we have generated a DNA nanostructure that hybridizes with a separate 'cargo strand' containing an abasic site. This abasic site stably sequesters a fluorescent cargo molecule in an inactive state until the DNA nanostructure encounters an ATP trigger molecule. This ATP trigger causes the nanostructure to release the cargo strand, thereby liberating the fluorescent payload and generating a detectable fluorescent readout. Our DNA nanostructure is highly sensitive, with an EC50 of 30 μM, and highly specific, releasing its payload in response to ATP but not to other chemically similar nucleotide triphosphates. We believe that this selection approach could be generalized to generate synthetic nanostructures capable of selective and controlled release of other small-molecule cargos in response to a variety of triggers, for both research and clinical applications.

  17. Avoidance of APOBEC3B-induced mutation by error-free lesion bypass

    PubMed Central

    Hoopes, James I.; Hughes, Amber L.; Hobson, Lauren A.; Cortez, Luis M.; Brown, Alexander J.

    2017-01-01

    Abstract APOBEC cytidine deaminases mutate cancer genomes by converting cytidines into uridines within ssDNA during replication. Although uracil DNA glycosylases limit APOBEC-induced mutation, it is unknown if subsequent base excision repair (BER) steps function on replication-associated ssDNA. Hence, we measured APOBEC3B-induced CAN1 mutation frequencies in yeast deficient in BER endonucleases or DNA damage tolerance proteins. Strains lacking Apn1, Apn2, Ntg1, Ntg2 or Rev3 displayed wild-type frequencies of APOBEC3B-induced canavanine resistance (CanR). However, strains without error-free lesion bypass proteins Ubc13, Mms2 and Mph1 displayed respective 4.9-, 2.8- and 7.8-fold higher frequency of APOBEC3B-induced CanR. These results indicate that mutations resulting from APOBEC activity are avoided by deoxyuridine conversion to abasic sites ahead of nascent lagging strand DNA synthesis and subsequent bypass by error-free template switching. We found this mechanism also functions during telomere re-synthesis, but with a diminished requirement for Ubc13. Interestingly, reduction of G to C substitutions in Ubc13-deficient strains uncovered a previously unknown role of Ubc13 in controlling the activity of the translesion synthesis polymerase, Rev1. Our results highlight a novel mechanism for error-free bypass of deoxyuridines generated within ssDNA and suggest that the APOBEC mutation signature observed in cancer genomes may under-represent the genomic damage these enzymes induce. PMID:28334887

  18. Recruitment of TRF2 to laser-induced DNA damage sites.

    PubMed

    Huda, Nazmul; Abe, Satoshi; Gu, Ling; Mendonca, Marc S; Mohanty, Samarendra; Gilley, David

    2012-09-01

    Several lines of evidence suggest that the telomere-associated protein TRF2 plays critical roles in the DNA damage response. TRF2 is rapidly and transiently phosphorylated by an ATM-dependent pathway in response to DNA damage and this DNA damage-induced phosphoryation is essential for the DNA-PK-dependent pathway of DNA double-strand break repair (DSB). However, the type of DNA damage that induces TRF2 localization to the damage sites, the requirement for DNA damage-induced phosphorylation of TRF2 for its recruitment, as well as the detailed kinetics of TRF2 accumulation at DNA damage sites have not been fully investigated. In order to address these questions, we used an ultrafast femtosecond multiphoton laser and a continuous wave 405-nm single photon laser to induce DNA damage at defined nuclear locations. Our results showed that DNA damage produced by a femtosecond multiphoton laser was sufficient for localization of TRF2 to these DNA damage sites. We also demonstrate that ectopically expressed TRF2 was recruited to DNA lesions created by a 405-nm laser. Our data suggest that ATM and DNA-PKcs kinases are not required for TRF2 localization to DNA damage sites. Furthermore, we found that phosphorylation of TRF2 at residue T188 was not essential for its recruitment to laser-induced DNA damage sites. Thus, we provide further evidence that a protein known to function in telomere maintenance, TRF2, is recruited to sites of DNA damage and plays critical roles in the DNA damage response. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Association between mutation spectra and stable and unstable DNA adduct profiles in Salmonella for benzo[a]pyrene and dibenzo[a,l]pyrene.

    PubMed

    DeMarini, David M; Hanley, Nancy M; Warren, Sarah H; Adams, Linda D; King, Leon C

    2011-09-01

    Benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) are two polycyclic aromatic hydrocarbons (PAHs) that exhibit distinctly different mutagenicity and carcinogenicity profiles. Although some studies show that these PAHs produce unstable DNA adducts, conflicting data and arguments have been presented regarding the relative roles of these unstable adducts versus stable adducts, as well as oxidative damage, in the mutagenesis and tumor-mutation spectra of these PAHs. However, no study has determined the mutation spectra along with the stable and unstable DNA adducts in the same system with both PAHs. Thus, we determined the mutagenic potencies and mutation spectra of BP and DBP in strains TA98, TA100 and TA104 of Salmonella, and we also measured the levels of abasic sites (aldehydic-site assay) and characterized the stable DNA adducts ((32)P-postlabeling/HPLC) induced by these PAHs in TA104. Our results for the mutation spectra and site specificity of stable adducts were consistent with those from other systems, showing that DBP was more mutagenic than BP in TA98 and TA100. The mutation spectra of DBP and BP were significantly different in TA98 and TA104, with 24% of the mutations induced by BP in TA98 being complex frameshifts, whereas DBP produced hardly any of these mutations. In TA104, BP produced primarily GC to TA transversions, whereas DBP produced primarily AT to TA transversions. The majority (96%) of stable adducts induced by BP were at guanine, whereas the majority (80%) induced by DBP were at adenine. Although BP induced abasic sites, DBP did not. Most importantly, the proportion of mutations induced by DBP at adenine and guanine paralleled the proportion of stable DNA adducts induced by DBP at adenine and guanine; however, this was not the case for BP. Our results leave open a possible role for unstable DNA adducts in the mutational specificity of BP but not for DBP. Published by Elsevier B.V.

  20. Lesion bypass activity of DNA polymerase θ (POLQ) is an intrinsic property of the pol domain and depends on unique sequence inserts.

    PubMed

    Hogg, Matthew; Seki, Mineaki; Wood, Richard D; Doublié, Sylvie; Wallace, Susan S

    2011-01-21

    DNA polymerase θ (POLQ, polθ) is a large, multidomain DNA polymerase encoded in higher eukaryotic genomes. It is important for maintaining genetic stability in cells and helping protect cells from DNA damage caused by ionizing radiation. POLQ contains an N-terminal helicase-like domain, a large central domain of indeterminate function, and a C-terminal polymerase domain with sequence similarity to the A-family of DNA polymerases. The enzyme has several unique properties, including low fidelity and the ability to insert and extend past abasic sites and thymine glycol lesions. It is not known whether the abasic site bypass activity is an intrinsic property of the polymerase domain or whether helicase activity is also required. Three "insertion" sequence elements present in POLQ are not found in any other A-family DNA polymerase, and it has been proposed that they may lend some unique properties to POLQ. Here, we analyzed the activity of the DNA polymerase in the absence of each sequence insertion. We found that the pol domain is capable of highly efficient bypass of abasic sites in the absence of the helicase-like or central domains. Insertion 1 increases the processivity of the polymerase but has little, if any, bearing on the translesion synthesis properties of the enzyme. However, removal of insertions 2 and 3 reduces activity on undamaged DNA and completely abrogates the ability of the enzyme to bypass abasic sites or thymine glycol lesions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Non-Covalent Fluorescent Labeling of Hairpin DNA Probe Coupled with Hybridization Chain Reaction for Sensitive DNA Detection.

    PubMed

    Song, Luna; Zhang, Yonghua; Li, Junling; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao

    2016-04-01

    An enzyme-free signal amplification-based assay for DNA detection was developed using fluorescent hairpin DNA probes coupled with hybridization chain reaction (HCR). The hairpin DNAs were designed to contain abasic sites in the stem moiety. Non-covalent labeling of the hairpin DNAs was achieved when a fluorescent ligand was bound to the abasic sites through hydrogen bonding with the orphan cytosine present on the complementary strand, accompanied by quench of ligand fluorescence. As a result, the resultant probes, the complex formed between the hairpin DNA and ligand, showed almost no fluorescence. Upon hybridization with target DNA, the probe underwent a dehybridization of the stem moiety containing an abasic site. The release of ligand from the abasic site to the solution resulted in an effective fluorescent enhancement, which can be used as a signal. Compared with a sensing system without HCR, a 20-fold increase in the sensitivity was achieved using the sensing system with HCR. The fluorescent intensity of the sensing system increased with the increase in target DNA concentration from 0.5 nM to 100 nM. A single mismatched target ss-DNA could be effectively discriminated from complementary target DNA. Genotyping of a G/C single-nucleotide polymorphism of polymerase chain reaction (PCR) products was successfully demonstrated with the sensing system. Therefore, integrating HCR strategy with non-covalent labeling of fluorescent hairpin DNA probes provides a sensitive and cost-effective DNA assay. © The Author(s) 2016.

  2. Pharmaceutical analysis of synthetic lipid A-based vaccine adjuvants in poly (D,L-lactic-co-glycolic acid) nanoparticle formulations.

    PubMed

    Hamdy, Samar; Haddadi, Azita; Somayaji, Vishwa; Ruan, David; Samuel, John

    2007-08-15

    The present study had two main objectives. First, was to compare the immune stimulatory effect of two synthetic lipid A analogues (7-acyl lipid A and pentaerythritol-based lipid A (PET lipid A)) on maturation/stimulation of bone marrow derived dendritic cells (DCs). Our second objective was to develop a liquid chromatography/mass spectrometry (LC-MS) method for the quantitative analysis of lipid A-based vaccine adjuvants. Treatment of immature DCs with 7-acyl lipid A and PET lipid A up regulated the surface expression of CD86 and CD40 molecules, and also induced similar profile of pro-inflammatory cytokine secretion. LC-MS analyses were performed using a Waters Micromass ZQ 4000 spectrometer, coupled to a Waters 2795 separations module with an autosampler. Calibration curves with R(2)>0.999 were constructed over the concentration range of 1.25-20 microg/ml for the solution of 7-acyl lipid A and PET lipid A. The method was tested in a 3 day validation protocol. The accuracy of the assay at different concentrations tested ranged from 89 to 108% and from 92 to 107% for 7-acyl lipid A and PET lipid A, respectively. The limit of quantification for both 7-acyl lipid A and PET lipid A was 1.25 microg/ml (signal/noise (S/N)) ratio >15:1. The sensitivity of the method (the limit of detection) was 0.35 and 0.15 ng for 7-acyl lipid A and PET lipid A, respectively (S/N ratio between 4:1 or 3:1). As a preliminary application, this method has been successfully applied to the determination of 7-acyl lipid A and PET lipid A content in poly (D,L-lactic-co-glycolic acid) nanoparticles (PLGA-NP).

  3. Functional Sites Induce Long-Range Evolutionary Constraints in Enzymes

    PubMed Central

    Jack, Benjamin R.; Meyer, Austin G.; Echave, Julian; Wilke, Claus O.

    2016-01-01

    Functional residues in proteins tend to be highly conserved over evolutionary time. However, to what extent functional sites impose evolutionary constraints on nearby or even more distant residues is not known. Here, we report pervasive conservation gradients toward catalytic residues in a dataset of 524 distinct enzymes: evolutionary conservation decreases approximately linearly with increasing distance to the nearest catalytic residue in the protein structure. This trend encompasses, on average, 80% of the residues in any enzyme, and it is independent of known structural constraints on protein evolution such as residue packing or solvent accessibility. Further, the trend exists in both monomeric and multimeric enzymes and irrespective of enzyme size and/or location of the active site in the enzyme structure. By contrast, sites in protein–protein interfaces, unlike catalytic residues, are only weakly conserved and induce only minor rate gradients. In aggregate, these observations show that functional sites, and in particular catalytic residues, induce long-range evolutionary constraints in enzymes. PMID:27138088

  4. UVA-induced DNA double-strand breaks result from the repair of clustered oxidative DNA damages

    PubMed Central

    Greinert, R.; Volkmer, B.; Henning, S.; Breitbart, E. W.; Greulich, K. O.; Cardoso, M. C.; Rapp, Alexander

    2012-01-01

    UVA (320–400 nm) represents the main spectral component of solar UV radiation, induces pre-mutagenic DNA lesions and is classified as Class I carcinogen. Recently, discussion arose whether UVA induces DNA double-strand breaks (dsbs). Only few reports link the induction of dsbs to UVA exposure and the underlying mechanisms are poorly understood. Using the Comet-assay and γH2AX as markers for dsb formation, we demonstrate the dose-dependent dsb induction by UVA in G1-synchronized human keratinocytes (HaCaT) and primary human skin fibroblasts. The number of γH2AX foci increases when a UVA dose is applied in fractions (split dose), with a 2-h recovery period between fractions. The presence of the anti-oxidant Naringin reduces dsb formation significantly. Using an FPG-modified Comet-assay as well as warm and cold repair incubation, we show that dsbs arise partially during repair of bi-stranded, oxidative, clustered DNA lesions. We also demonstrate that on stretched chromatin fibres, 8-oxo-G and abasic sites occur in clusters. This suggests a replication-independent formation of UVA-induced dsbs through clustered single-strand breaks via locally generated reactive oxygen species. Since UVA is the main component of solar UV exposure and is used for artificial UV exposure, our results shine new light on the aetiology of skin cancer. PMID:22941639

  5. Commercial PCV2a-based vaccines are effective in protecting naturally PCV2b-infected finisher pigs against experimental challenge with a 2012 mutant PCV2.

    PubMed

    Opriessnig, Tanja; Gerber, Priscilla F; Xiao, Chao-Ting; Halbur, Patrick G; Matzinger, Shannon R; Meng, Xiang-Jin

    2014-07-23

    Current commercial PCV2 vaccines are all based on PCV2a and have been shown to be effective in reducing PCV2a and PCV2b viremia and PCV2-associated lesions and disease. The recent emergence of novel mutant PCV2 (mPCV2) strains and linkage of mPCV2 with cases of porcine circovirus associated disease (PCVAD) in vaccinated herds have raised concerns over emergence of vaccine-escape mutants and reduced efficacy of PCV2a-based vaccines. The aim of this study was to determine the ability of three commercial PCV2a-based vaccines administered in the presence of an ongoing PCV2b infection and passively-acquired anti-PCV2 antibodies to protect conventional pigs against experimental challenge with mPCV2 at 11 weeks of age. Fifty naturally PCV2b-infected 2-week-old pigs were divided into five treatment groups with 10 pigs each. Pigs were unvaccinated (positive and negative controls) or vaccinated at 3 (VAC-A, VAC-B, VAC-C) and at 5 weeks of age (VAC-C). At 11 weeks of age, all pigs except the negative controls were challenged with a 2012 U.S. strain of mPCV2. The experiment was terminated 21 days after challenge. Under the conditions of this study, vaccinated pigs were protected against PCV2 viremia and lesions whereas non-vaccinated pigs were not. Moreover, concurrent PCV2b and mPCV2 infection was demonstrated in all positive controls and 3/10 had microscopic lesions consistent with PCVAD while negative controls infected with PCV2b alone did not develop PCVAD. The results indicate that concurrent PCV2b/mPCV2 infection can trigger PCVAD development and that commercial vaccines are effective in protecting conventional pigs against emerging mPCV2 strains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Neighboring base damage induced by permanganate oxidation of 8-oxoguanine in DNA.

    PubMed Central

    Koizume, S; Inoue, H; Kamiya, H; Ohtsuka, E

    1998-01-01

    We found that single-stranded DNA oligomers containing a 7, 8-dihydro-8-oxoguanine (8-oxo-G) residue have high reactivity toward KMnO4; the oxidation of 8-oxo-G induces damage to the neighboring nucleotide residues. This paper describes the novel reaction in detail, including experiments that demonstrate the mechanism involved in the induction of DNA damage. The results using DNAs of various base compositions indicated that damaged G, T and C (but not A) sites caused strand scissions after hot piperidine treatment and that the damage around the 8-oxo-G occurred at G sites in both single and double strands with high frequency. The latter substrates were less sensitive to damage. Further, kinetic studies of the KMnO4reaction of single-stranded oligomers suggested that thereactivity of the DNA bases at the site 5'-adjacent to the 8-oxo-G was in the order G >A >T, C. This preference correlates with the electron donating abilities of the bases. In addition, we found that the DNA damage at the G site, which was connected with the 8-oxo-G by a long abasic chain, was inhibited in the above order by the addition of dG, dA or dC. On the other hand, the damage reactions proceeded even after the addition of scavengers for active oxygen species. This study suggests the involvement of a redox process in the unique DNA damage initiated by the oxidation of the 8-oxo-G. PMID:9671825

  7. Space environment induced mutations prefer to occur at polymorphic sites of rice genomes

    NASA Astrophysics Data System (ADS)

    Li, Y.; Liu, M.; Cheng, Z.; Sun, Y.

    To explore the genomic characteristics of rice mutants induced by space environment, space-induced mutants 971-5, 972-4, and R955, which acquired new traits after space flight such as increased yield, reduced resistance to rice blast, and semi-dwarfism compared with their on-ground controls, 971ck, 972ck, and Bing95-503, respectively, together with other 8 japonica and 3 indica rice varieties, 17 in total, were analyzed by amplified fragment length polymorphism (AFLP) method. We chose 16 AFLP primer-pairs which generated a total of 1251 sites, of which 745 (59.6%) were polymorphic over all the genotypes. With the 16 pairs of primer combinations, 54 space-induced mutation sites were observed in 971-5, 86 in 972-4, and 5 in R955 compared to their controls, and the mutation rates were 4.3%, 6.9% and 0.4%, respectively. Interestingly, 75.9%, 84.9% and 100% of the mutation sites identified in 971-5, 972-4, and R955 occurred in polymorphic sites. This result suggests that the space environment preferentially induced mutations at polymorphic sites in rice genomes and might share a common mechanism with other types of mutagens. It also implies that polymorphic sites in genomes are potential "hotspots" for mutations induced by the space environment.

  8. Dosimetric Comparison between Three-Dimensional Magnetic Resonance Imaging-Guided and Conventional Two-Dimensional Point A-Based Intracavitary Brachytherapy Planning for Cervical Cancer

    PubMed Central

    Ren, Juan; Yuan, Wei; Wang, Ruihua; Wang, Qiuping; Li, Yi; Xue, Chaofan; Yan, Yanli; Ma, Xiaowei; Tan, Li; Liu, Zi

    2016-01-01

    Objective The purpose of this study was to comprehensively compare the 3-dimensional (3D) magnetic resonance imaging (MRI)-guided and conventional 2-dimensional (2D) point A-based intracavitary brachytherapy (BT) planning for cervical cancer with regard to target dose coverage and dosages to adjacent organs-at risk (OARs). Methods A total of 79 patients with cervical cancer were enrolled to receive 2D point A-based BT planning and then immediately to receive 3D planning between October 2011 and April 2013 at the First Hospital Affiliated to Xi’an Jiao Tong University (Xi’an, China). The dose-volume histogram (DVH) parameters for gross tumor volume (GTV), high-risk clinical target volume (HR-CTV), intermediate-risk clinical target volume (IR-CTV) and OARs were compared between the 2D and 3D planning. Results In small tumors, there was no significant difference in most of the DVHs between 2D and 3D planning (all p>0.05). While in big tumors, 3D BT planning significantly increased the DVHs for most of the GTV, HR-CTV and IR-CTV, and some OARs compared with 2D planning (all P<0.05). In 3D planning, DVHs for GTV, HR-CTV, IR-CTV and some OARs were significantly higher in big tumors than in small tumors (all p<0.05). In contrast, in 2D planning, DVHs for almost all of the HR-CTV and IR-CTV were significantly lower in big tumors (all p<0.05). In eccentric tumors, 3D planning significantly increased dose coverage but decreased dosages to OARs compared with 2D planning (p<0.05). In tumors invading adjacent tissues, the target dose coverage in 3D planning was generally significantly higher than in 2D planning (P<0.05); the dosages to the adjacent rectum and bladder were significantly higher but those to sigmoid colon were lower in 3D planning (all P<0.05). Conclusions 3D MRI image-guided BT planning exhibits advantages over 2D planning in a complex way, generally showing advantages for the treatment of cervical cancer except small tumors. PMID:27611853

  9. Spectrum of complex DNA damages depends on the incident radiation

    NASA Astrophysics Data System (ADS)

    Hada, M.; Sutherland, B.

    Ionizing radiation induces clustered DNA damages in DNA-two or more abasic sites oxidized bases and strand breaks on opposite DNA strands within a few helical turns Clustered damages are considered to be difficult to repair and therefore potentially lethal and mutagenic damages Although induction of single strand breaks and isolated lesions has been studied extensively little is known of factors affecting induction of clusters other than double strand breaks DSB The aim of the present study was to determine whether the type of incident radiation could affect yield or spectra of specific clusters Genomic T7 DNA a simple 40 kbp linear blunt-ended molecule was irradiated in non-scavenging buffer conditions with Fe 970 MeV n Ti 980 MeV n C 293 MeV n Si 586 MeV n ions or protons 1 GeV n at the NASA Space Radiation Laboratory or with 100 kVp X-rays Irradiated DNA was treated with homogeneous Fpg or Nfo proteins or without enzyme treatment for DSB quantitation then electrophoresed in neutral agarose gels DSB Fpg-OxyPurine clusters and Nfo-Abasic clusters were quantified by number average length analysis The results show that the yields of all these complex damages depend on the incident radiation Although LETs are similar protons induced twice as many DSBs than did X-rays Further the spectrum of damage also depends on the radiation The yield damage Mbp Gy of all damages decreased with increasing linear energy transfer LET of the radiation The relative frequencies of DSBs to Abasic- and OxyBase clusters were higher

  10. Unusual interaction of human apurinic/apyrimidinic endonuclease 1 (APE1) with abasic sites via the Schiff-base-dependent mechanism.

    PubMed

    Ilina, Ekaterina S; Khodyreva, Svetlana N; Lavrik, Olga I

    2018-05-03

    Clustered apurinic/apyrimidinic (AP) sites are more cytotoxic than isolated AP lesions because double strand breaks (DSB) can be formed during repair of closely positioned bistranded AP sites. Formation of DSB due to simultaneous cleavage of bistranded AP sites may be regulated by proteins specifically interacting with this complex lesion. A set of AP DNA duplexes containing AP sites in both strands in different mutual orientation (BS-AP DNAs) was used for search in the extracts of human cells proteins specifically recognizing clustered AP sites. A protein, which formed the Schiff-base-dependent covalent products having an apparent molecular mass of 50 kDa with the subset of BS-AP DNAs, was identified by mass spectrometry as apurinic/apyrimidinic endonuclease 1 (APE1). The identity of trapped protein was confirmed by Western blot analysis with anti-APE1 antibodies. Purified recombinant human APE1 is also capable of forming the 50 kDa-adducts with efficiency of BS-AP DNAs cross-linking to APE1 being dependent on the mutual orientation of AP sites. In spite of formation of the Schiff-base-dependent intermediate, which is prerequisite for the β-elimination mechanism, APE1 is unable to cleave AP sites. APE1 lacking the first 34 amino acids at the N-terminus, unlike wild type enzyme, is unable to form cross-links with BS-AP DNAs that testifies to the involvement of disordered N-terminal extension, which is enriched in lysine residues, in the interaction with AP sites. The yield of APE1-AP DNA cross-links was found to correlate with the enzyme amount in the extracts estimated by the immunochemical approach; therefore the BS-AP DNA-probes can be useful for comparative analysis of APE1 content in cell extracts. Copyright © 2018. Published by Elsevier B.V.

  11. Evaluation of Different Oligonucleotide Base Substitutions at CpG Binding sites in Multiplex Bisulfite-PCR sequencing.

    PubMed

    Lu, Jennifer; Ru, Kelin; Candiloro, Ida; Dobrovic, Alexander; Korbie, Darren; Trau, Matt

    2017-03-22

    Multiplex bisulfite-PCR sequencing is a convenient and scalable method for the quantitative determination of the methylation state of target DNA regions. A challenge of this application is the presence of CpGs in the same region where primers are being placed. A common solution to the presence of CpGs within a primer-binding region is to substitute a base degeneracy at the cytosine position. However, the efficacy of different substitutions and the extent to which bias towards methylated or unmethylated templates may occur has never been evaluated in bisulfite multiplex sequencing applications. In response, we examined the performance of four different primer substitutions at the cytosine position of CpG's contained within the PCR primers. In this study, deoxyinosine-, 5-nitroindole-, mixed-base primers and primers with an abasic site were evaluated across a series of methylated controls. Primers that contained mixed- or deoxyinosine- base modifications performed most robustly. Mixed-base primers were further selected to determine the conditions that induce bias towards methylated templates. This identified an optimized set of conditions where the methylated state of bisulfite DNA templates can be accurately assessed using mixed-base primers, and expands the scope of bisulfite resequencing assays when working with challenging templates.

  12. Label-free functional nucleic acid sensors for detecting target agents

    DOEpatents

    Lu, Yi; Xiang, Yu

    2015-01-13

    A general methodology to design label-free fluorescent functional nucleic acid sensors using a vacant site approach and an abasic site approach is described. In one example, a method for designing label-free fluorescent functional nucleic acid sensors (e.g., those that include a DNAzyme, aptamer or aptazyme) that have a tunable dynamic range through the introduction of an abasic site (e.g., dSpacer) or a vacant site into the functional nucleic acids. Also provided is a general method for designing label-free fluorescent aptamer sensors based on the regulation of malachite green (MG) fluorescence. A general method for designing label-free fluorescent catalytic and molecular beacons (CAMBs) is also provided. The methods demonstrated here can be used to design many other label-free fluorescent sensors to detect a wide range of analytes. Sensors and methods of using the disclosed sensors are also provided.

  13. Apurinic/Apyrimidinic Endonuclease 1 Is the Essential Nuclease during Immunoglobulin Class Switch Recombination

    PubMed Central

    Masani, Shahnaz; Han, Li

    2013-01-01

    Immunoglobulin (Ig) class switch recombination (CSR) is initiated by activation-induced cytidine deaminase (AID) that catalyzes numerous DNA cytosine deaminations within switch regions. The resulting uracils are processed by uracil base excision and/or mismatch repair enzymes that ultimately generate switch region DNA double-strand breaks (DSBs). Uracil glycosylase 2 (UNG2) is required for CSR, most likely by removing uracils to generate abasic sites. Although it is presumed that the apurinic/apyrimidinic endonuclease 1 (APE1) generates DNA strand incisions (a prerequisite for CSR) at these abasic sites, a direct test of the requirement for APE1 in CSR has been difficult because of the embryonic lethality of APE1 ablation in mice. Here, we report the successful deletion of the APE1 gene in a mouse B cell line (CH12F3) capable of robust CSR in vitro. In contrast to the general assumption that APE1 is essential for cellular viability, deletion of APE1 in CH12F3 cells has no apparent effect on cell viability or growth. Moreover, CSR in APE1-null CH12F3 cells is drastically reduced, providing direct evidence for an essential role for APE1 in switch region cleavage and CSR. Finally, deletion of AP endonuclease 2 (APE2) has no effect on CSR in either APE1-proficient or -deficient cells. PMID:23382073

  14. Analysis of Structural Flexibility of Damaged DNA Using Thiol-Tethered Oligonucleotide Duplexes

    PubMed Central

    Fujita, Masashi; Watanabe, Shun; Yoshizawa, Mariko; Yamamoto, Junpei; Iwai, Shigenori

    2015-01-01

    Bent structures are formed in DNA by the binding of small molecules or proteins. We developed a chemical method to detect bent DNA structures. Oligonucleotide duplexes in which two mercaptoalkyl groups were attached to the positions facing each other across the major groove were prepared. When the duplex contained the cisplatin adduct, which was proved to induce static helix bending, interstrand disulfide bond formation under an oxygen atmosphere was detected by HPLC analyses, but not in the non-adducted duplex, when the two thiol-tethered nucleosides were separated by six base pairs. When the insert was five and seven base pairs, the disulfide bond was formed and was not formed, respectively, regardless of the cisplatin adduct formation. The same reaction was observed in the duplexes containing an abasic site analog and the (6–4) photoproduct. Compared with the cisplatin case, the disulfide bond formation was slower in these duplexes, but the reaction rate was nearly independent of the linker length. These results indicate that dynamic structural changes of the abasic site- and (6–4) photoproduct-containing duplexes could be detected by our method. It is strongly suggested that the UV-damaged DNA-binding protein, which specifically binds these duplexes and functions at the first step of global-genome nucleotide excision repair, recognizes the easily bendable nature of damaged DNA. PMID:25679955

  15. DNA polymerase θ contributes to the generation of C/G mutations during somatic hypermutation of Ig genes

    PubMed Central

    Masuda, Keiji; Ouchida, Rika; Takeuchi, Arata; Saito, Takashi; Koseki, Haruhiko; Kawamura, Kiyoko; Tagawa, Masatoshi; Tokuhisa, Takeshi; Azuma, Takachika; O-Wang, Jiyang

    2005-01-01

    Somatic hypermutation of Ig variable region genes is initiated by activation-induced cytidine deaminase; however, the activity of multiple DNA polymerases is required to ultimately introduce mutations. DNA polymerase η (Polη) has been implicated in mutations at A/T, but polymerases involved in C/G mutations have not been identified. We have generated mutant mice expressing DNA polymerase (Polθ) specifically devoid of polymerase activity. Compared with WT mice, Polq-inactive (Polq, the gene encoding Polθ) mice exhibited a reduced level of serum IgM and IgG1. The mutant mice mounted relatively normal primary and secondary immune responses to a T-dependent antigen, but the production of high-affinity specific antibodies was partially impaired. Analysis of the JH4 intronic sequences revealed a slight reduction in the overall mutation frequency in Polq-inactive mice. Remarkably, although mutations at A/T were unaffected, mutations at C/G were significantly decreased, indicating an important, albeit not exclusive, role for Polθ activity. The reduction of C/G mutations was particularly focused on the intrinsic somatic hypermutation hotspots and both transitions and transversions were similarly reduced. These findings, together with the recent observation that Polθ efficiently catalyzes the bypass of abasic sites, lead us to propose that Polθ introduces mutations at C/G by replicating over abasic sites generated via uracil-DNA glycosylase. PMID:16172387

  16. Melatonin Protects Human Cells from Clustered DNA Damages, Killing and Acquisition of Soft Agar Growth Induced by X-rays or 970 MeV/n Fe ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, B.; Sutherland, B.; Bennett, P. V.

    We tested the ability of melatonin (N-acetyl-5 methoxytryptamine), a highly effective radical scavenger and human hormone, to protect DNA in solution and in human cells against induction of complex DNA clusters and biological damage induced by low or high linear energy transfer radiation (100 kVp X-rays, 970 MeV/nucleon Fe ions). Plasmid DNA in solution was treated with increasing concentrations of melatonin (0.0-3.5 mM) and were irradiated with X-rays. Human cells (28SC monocytes) were also irradiated with X-rays and Fe ions with and without 2 mM melatonin. Agarose plugs containing genomic DNA were subjected to Contour Clamped Homogeneous Electrophoretic Field (CHEF)more » followed by imaging and clustered DNA damages were measured by using Number Average length analysis. Transformation experiments on human primary fibroblast cells using soft agar colony assay were carried out which were irradiated with Fe ions with or without 2 mM melatonin. In plasmid DNA in solution, melatonin reduced the induction of single- and double-strand breaks. Pretreatment of human 28SC cells for 24 h before irradiation with 2 mM melatonin reduced the level of X-ray induced double-strand breaks by {approx}50%, of abasic clustered damages about 40%, and of Fe ion-induced double-strand breaks (41% reduction) and abasic clusters (34% reduction). It decreased transformation to soft agar growth of human primary cells by a factor of 10, but reduced killing by Fe ions only by 20-40%. Melatonin's effective reduction of radiation-induced critical DNA damages, cell killing, and striking decrease of transformation suggest that it is an excellent candidate as a countermeasure against radiation exposure, including radiation exposure to astronaut crews in space travel.« less

  17. Common Viral Integration Sites Identified in Avian Leukosis Virus-Induced B-Cell Lymphomas

    PubMed Central

    Justice, James F.; Morgan, Robin W.

    2015-01-01

    ABSTRACT Avian leukosis virus (ALV) induces B-cell lymphoma and other neoplasms in chickens by integrating within or near cancer genes and perturbing their expression. Four genes—MYC, MYB, Mir-155, and TERT—have previously been identified as common integration sites in these virus-induced lymphomas and are thought to play a causal role in tumorigenesis. In this study, we employ high-throughput sequencing to identify additional genes driving tumorigenesis in ALV-induced B-cell lymphomas. In addition to the four genes implicated previously, we identify other genes as common integration sites, including TNFRSF1A, MEF2C, CTDSPL, TAB2, RUNX1, MLL5, CXorf57, and BACH2. We also analyze the genome-wide ALV integration landscape in vivo and find increased frequency of ALV integration near transcriptional start sites and within transcripts. Previous work has shown ALV prefers a weak consensus sequence for integration in cultured human cells. We confirm this consensus sequence for ALV integration in vivo in the chicken genome. PMID:26670384

  18. Abasic Phosphorothioate Oligomers Inhibit HIV-1 Reverse Transcription and Block Virus Transmission across Polarized Ectocervical Organ Cultures

    PubMed Central

    Fraietta, Joseph A.; Mueller, Yvonne M.; Lozenski, Karissa L.; Ratner, Deena; Boesteanu, Alina C.; Hancock, Aidan S.; Lackman-Smith, Carol; Zentner, Isaac J.; Chaiken, Irwin M.; Chung, Suhman; LeGrice, Stuart F. J.; Snyder, Beth A.; Mankowski, Marie K.; Jones, Natalie M.; Hope, Jennifer L.; Gupta, Phalguni; Anderson, Sharon H.; Wigdahl, Brian

    2014-01-01

    In the absence of universally available antiretroviral (ARV) drugs or a vaccine against HIV-1, microbicides may offer the most immediate hope for controlling the AIDS pandemic. The most advanced and clinically effective microbicides are based on ARV agents that interfere with the earliest stages of HIV-1 replication. Our objective was to identify and characterize novel ARV-like inhibitors, as well as demonstrate their efficacy at blocking HIV-1 transmission. Abasic phosphorothioate 2′ deoxyribose backbone (PDB) oligomers were evaluated in a variety of mechanistic assays and for their ability to inhibit HIV-1 infection and virus transmission through primary human cervical mucosa. Cellular and biochemical assays were used to elucidate the antiviral mechanisms of action of PDB oligomers against both lab-adapted and primary CCR5- and CXCR4-utilizing HIV-1 strains, including a multidrug-resistant isolate. A polarized cervical organ culture was used to test the ability of PDB compounds to block HIV-1 transmission to primary immune cell populations across ectocervical tissue. The antiviral activity and mechanisms of action of PDB-based compounds were dependent on oligomer size, with smaller molecules preventing reverse transcription and larger oligomers blocking viral entry. Importantly, irrespective of molecular size, PDBs potently inhibited virus infection and transmission within genital tissue samples. Furthermore, the PDB inhibitors exhibited excellent toxicity and stability profiles and were found to be safe for vaginal application in vivo. These results, coupled with the previously reported intrinsic anti-inflammatory properties of PDBs, support further investigations in the development of PDB-based topical microbicides for preventing the global spread of HIV-1. PMID:25224013

  19. Accumulation of True Single Strand Breaks and AP sites in Base Excision Repair Deficient Cells

    PubMed Central

    Luke, April M.; Chastain, Paul D.; Pachkowski, Brian F.; Afonin, Valeriy; Takeda, Shunichi; Kaufman, David G.; Swenberg, James A.; Nakamura, Jun

    2010-01-01

    Single strand breaks (SSBs) are one of the most frequent DNA lesions caused by endogenous and exogenous agents. The most utilized alkaline-based assays for SSB detection frequently give false positive results due to the presence of alkali-labile sites that are converted to SSBs. Methoxyamine, an acidic O-hydroxylamine, has been utilized to measure DNA damage in cells. However, the neutralization of methoxyamine is required prior to usage. Here we developed a convenient, specific SSB assay using alkaline gel electrophoresis (AGE) coupled with a neutral O-hydroxylamine, O-(tetrahydro-2H-pyran-2-yl)hydroxylamine (OTX). OTX stabilizes abasic sites (AP sites) to prevent their alkaline incision while still allowing for strong alkaline DNA denaturation. DNA from DT40 and isogenic polymerase β null cells exposed to methyl methanesulfonate were applied to the OTX-coupled AGE (OTX-AGE) assay. Time-dependent increases in SSBs were detected in each cell line with more extensive SSB formation in the null cells. These findings were supported by an assay that indirectly detects SSBs through measuring NAD(P)H depletion. An ARP-slot blot assay demonstrated a significant time-dependent increase in AP sites in both cell lines by 1 mM MMS compared to control. Furthermore, the Pol β-null cells displayed greater AP site formation than the parental DT40 cells. OTX use represents a facile approach for assessing SSB formation, whose benefits can also be applied to other established SSB assays. PMID:20851134

  20. Structure-based design, synthesis, and biological evaluation of withaferin A-analogues as potent apoptotic inducers.

    PubMed

    Llanos, Gabriel G; Araujo, Liliana M; Jiménez, Ignacio A; Moujir, Laila M; Rodríguez, Jaime; Jiménez, Carlos; Bazzocchi, Isabel L

    2017-11-10

    Apoptosis inducers represent an attractive approach for the discovery and development of anticancer agents. Herein, we report on the development by molecular fine tuning of a withaferin A-based library of 63 compounds (2-64), 53 of them reported for the first time. Their antiproliferative evaluation on HeLa, A-549 and MCF-7 human tumor cell lines identified fifteen analogues displaying higher activity (IC 50 values ranging 0.3-4.8 μM) than the lead (IC 50 values ranging 1.3-10.1 μM) either in lag or log growth phases. SAR analysis revealed that acylation enhances cytotoxicity, suggesting the hydrophobic moiety contributes to the activity, presumably by increasing affinity and/or cell membrane permeability. Further investigation clearly indicated that compounds 3, 11, 12, and 18 induce apoptosis evidenced by chromatin condensation, phosphatidylserine externalization, and caspase-3 activation effects on HeLa cells. The potent capacity to induce apoptosis with concomitant cell loss in G2/M highlights the potential of 27-benzyl analogue (18) as an apoptotic inducer drug candidate. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. N-terminal domains of human DNA polymerase lambda promote primer realignment during translesion DNA synthesis

    PubMed Central

    Taggart, David J.; Dayeh, Daniel M.; Fredrickson, Saul W.; Suo, Zucai

    2014-01-01

    The X-family DNA polymerases λ (Polλ) and β (Polβ) possess similar 5′-2-deoxyribose-5-phosphatelyase (dRPase) and polymerase domains. Besides these domains, Polλ also possesses a BRCA1 C-terminal (BRCT) domain and a proline-rich domain at its N terminus. However, it is unclear how these non-enzymatic domains contribute to the unique biological functions of Polλ. Here, we used primer extension assays and a newly developed high-throughput short oligonucleotide sequencing assay (HT-SOSA) to compare the efficiency of lesion bypass and fidelity of human Polβ, Polλ and two N-terminal deletion constructs of Polλ during the bypass of either an abasic site or a 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) lesion. We demonstrate that the BRCT domain of Polλ enhances the efficiency of abasic site bypass by approximately 1.6-fold. In contrast, deletion of the N-terminal domains of Polλ did not affect the efficiency of 8-oxodG bypass relative to nucleotide incorporations opposite undamaged dG. HT-SOSA analysis demonstrated that Polλ and Polβ preferentially generated −1 or −2 frameshift mutations when bypassing an abasic site and the single or double base deletion frequency was highly sequence dependent. Interestingly, the BRCT and proline-rich domains of Polλ cooperatively promoted the generation of −2 frameshift mutations when the abasic site was situated within a sequence context that was susceptible to homology-driven primer realignment. Furthermore, both N-terminal domains of Polλ increased the generation of −1 frameshift mutations during 8-oxodG bypass and influenced the frequency of substitution mutations produced by Polλ opposite the 8-oxodG lesion. Overall, our data support a model wherein the BRCT and proline-rich domains of Polλ act cooperatively to promote primer/template realignment between DNA strands of limited sequence homology. This function of the N-terminal domains may facilitate the role of Polλ as a gap-filling polymerase

  2. Earthquake-induced burial of archaeological sites along the southern Washington coast about A.D. 1700

    USGS Publications Warehouse

    Cole, S.C.; Atwater, B.F.; McCutcheon, P.T.; Stein, J.K.; Hemphill-Haley, E.

    1996-01-01

    Although inhabited by thousands of people when first reached by Europeans, the Pacific coast of southern Washington has little recognized evidence of prehistoric human occupation. This apparent contradiction may be explained partly by geologic evidence for coastal submergence during prehistoric earthquakes on the Cascadia subduction zone. Recently discovered archaeological sites, exposed in the banks of two tidal streams, show evidence for earthquake-induced submergence and consequent burial by intertidal mud about A.D. 1700. We surmise that, because of prehistoric earthquakes, other archaeological sites may now lie hidden beneath the surfaces of modern tidelands. Such burial of archaeological sites raises questions about the estimation of prehistoric human population densities along coasts subject to earthquake-induced submergence. ?? 1996 John Wiley & Sons, Inc.

  3. Stress-induced enhancement of leukocyte trafficking into sites of surgery or immune activation

    NASA Astrophysics Data System (ADS)

    Viswanathan, Kavitha; Dhabhar, Firdaus S.

    2005-04-01

    Effective immunoprotection requires rapid recruitment of leukocytes into sites of surgery, wounding, infection, or vaccination. In contrast to immunosuppressive chronic stressors, short-term acute stressors have immunoenhancing effects. Here, we quantify leukocyte infiltration within a surgical sponge to elucidate the kinetics, magnitude, subpopulation, and chemoattractant specificity of an acute stress-induced increase in leukocyte trafficking to a site of immune activation. Mice acutely stressed before sponge implantation showed 200-300% higher neutrophil, macrophage, natural killer cell, and T cell infiltration than did nonstressed animals. We also quantified the effects of acute stress on lymphotactin- (LTN; a predominantly lymphocyte-specific chemokine), and TNF-- (a proinflammatory cytokine) stimulated leukocyte infiltration. An additional stress-induced increase in infiltration was observed for neutrophils, in response to TNF-, macrophages, in response to TNF- and LTN, and natural killer cells and T cells in response to LTN. These results show that acute stress initially increases trafficking of all major leukocyte subpopulations to a site of immune activation. Tissue damage-, antigen-, or pathogen-driven chemoattractants subsequently determine which subpopulations are recruited more vigorously. Such stress-induced increases in leukocyte trafficking may enhance immunoprotection during surgery, vaccination, or infection, but may also exacerbate immunopathology during inflammatory (cardiovascular disease or gingivitis) or autoimmune (psoriasis, arthritis, or multiple sclerosis) diseases. chemokine | psychophysiological stress | surgical sponge | wound healing | lymphotactin

  4. Seismic site characterization of an urban dedimentary basin, Livermore Valley, California: Site tesponse, basin-edge-induced surface waves, and 3D simulations

    USGS Publications Warehouse

    Hartzell, Stephen; Leeds, Alena L.; Ramirez-Guzman, Leonardo; Allen, James P.; Schmitt, Robert G.

    2016-01-01

    Thirty‐two accelerometers were deployed in the Livermore Valley, California, for approximately one year to study sedimentary basin effects. Many local and near‐regional earthquakes were recorded, including the 24 August 2014 Mw 6.0 Napa, California, earthquake. The resulting ground‐motion data set is used to quantify the seismic response of the Livermore basin, a major structural depression in the California Coast Range Province bounded by active faults. Site response is calculated by two methods: the reference‐site spectral ratio method and a source‐site spectral inversion method. Longer‐period (≥1  s) amplification factors follow the same general pattern as Bouguer gravity anomaly contours. Site response spectra are inverted for shallow shear‐wave velocity profiles, which are consistent with independent information. Frequency–wavenumber analysis is used to analyze plane‐wave propagation across the Livermore Valley and to identify basin‐edge‐induced surface waves with back azimuths different from the source back azimuth. Finite‐element simulations in a 3D velocity model of the region illustrate the generation of basin‐edge‐induced surface waves and point out strips of elevated ground velocities along the margins of the basin.

  5. Activity-based assay for ricin-like toxins

    DOEpatents

    Keener, William K.; Ward, Thomas E.

    2007-02-06

    A method of detecting N-glycosylase activity in a sample involves incubating an oligodeoxyribonucleotide substrate containing a deoxyadenosine or deoxyuridine residue with the sample to be tested such that the N-glycosylase, if present, hydrolyzes the deoxyadenosine or deoxyuridine residue to result in an N-glycosylase product having an abasic site. A primer is annealed to the N-glycosylase product, and the primer is extended with a DNA polymerase, such as Taq DNA polymerase, that pauses at abasic sites. The resulting extension products are melted from the N-glycosylase product, allowed to form hairpins due to self-complementarity, and further extended in the presence of labeled precursors to result in labeled products. Extension products synthesized from undigested substrate as template do not result in labeled products. Thus, detection of labeled products results in detection of N-glycosylase activity. Oligodeoxyribonucleotide substrates, primer, and positive controls and a kit for N-glycosylase assay are also disclosed.

  6. Heat- and light-induced transformations of Yb trapping sites in an Ar matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, L.-G.; Lambo, R., E-mail: lambo@mail.ustc.edu.cn; Zhou, X.-G.

    2015-11-07

    The low-lying electronic states of Yb isolated in a solid Ar matrix grown at 4.2 K are characterized through absorption and emission spectroscopy. Yb atoms are found to occupy three distinct thermally stable trapping sites labeled “red,” “blue,” and “violet” according to the relative positions of the absorption features they produce. Classical simulations of the site structure and relative stability broadly reproduced the experimentally observed matrix-induced frequency shifts and thus identified the red, blue, and violet sites as due to respective single substitutional (SS), tetravacancy (TV), and hexavacancy (HV) occupation. Prolonged excitation of the {sup 1}S → {sup 1}P transitionmore » was found to transfer the Yb population from HV sites into TV and SS sites. The process showed reversibility in that annealing to 24 K predominantly transferred the TV population back into HV sites. Population kinetics were used to deduce the effective rate parameters for the site transformation processes. Experimental observations indicate that the blue and violet sites lie close in energy, whereas the red one is much less stable. Classical simulations identify the blue site as the most stable one.« less

  7. Drug-Sensing by the Ribosome Induces Translational Arrest via Active Site Perturbation

    PubMed Central

    Arenz, Stefan; Meydan, Sezen; Starosta, Agata L.; Berninghausen, Otto; Beckmann, Roland; Vázquez-Laslop, Nora; Wilson, Daniel N.

    2014-01-01

    SUMMARY During protein synthesis, nascent polypeptide chains within the ribosomal tunnel can act in cis to induce ribosome stalling and regulate expression of downstream genes. The Staphylococcus aureus ErmCL leader peptide induces stalling in the presence of clinically important macrolide antibiotics, such as erythromycin, leading to the induction of the downstream macrolide resistance methyltransferase ErmC. Here, we present a cryo-electron microscopy (EM) structure of the erythromycin-dependent ErmCL-stalled ribosome at 3.9 Å resolution. The structure reveals how the ErmCL nascent chain directly senses the presence of the tunnel-bound drug and thereby induces allosteric conformational rearrangements at the peptidyltransferase center (PTC) of the ribosome. ErmCL-induced perturbations of the PTC prevent stable binding and accommodation of the aminoacyl-tRNA at the A-site leading to inhibition of peptide bond formation and translation arrest. PMID:25306253

  8. The adjuvant PCEP induces recruitment of myeloid and lymphoid cells at the injection site and draining lymph node.

    PubMed

    Awate, Sunita; Wilson, Heather L; Singh, Baljit; Babiuk, Lorne A; Mutwiri, George

    2014-05-01

    Poly[di(sodiumcarboxylatoethylphenoxy)phosphazene] (PCEP) has shown great potential as a vaccine adjuvant, but the mechanisms that mediate its adjuvant activity have not been investigated. Previously, we had reported the potential of PCEP to induce cytokines and chemokines at the site of injection. Hence, we hypothesized that PCEP creates strong immuno-competent environment leading to recruitment of immune cells at the injection site. Intramuscular injection of mice with PCEP induced significant recruitment of neutrophils, macrophages, monocytes, dendritic cells (DCs), and lymphocytes at the site of injection as well as in the draining lymph nodes. Flow cytometric analysis showed that the majority of the recruited immune cells took up and/or were associated with PCEP at the injection site, with lymphocytes taking up PCEP in lesser quantity. Further, confocal analysis revealed intracytoplasmic lysosomal localization of PCEP in recruited immune cells. These observations suggest that recruitment of distinct immune cells to the site of injection site may be an important mechanism by which PCEP potentiates immune responses to antigens. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Uniaxial stress induced symmetry breaking for muon sites in Fe

    NASA Technical Reports Server (NTRS)

    Kossler, W. J.; Namkung, M.; Hitti, B.; Li, Y.; Kempton, J.; Stronach, C. E.; Goode, L. R., Jr.; Lankford, W. F.; Patterson, B. D.; Kuendig, W.

    1984-01-01

    Uniaxial stress was used on Fe single crystals to induce muon precession frequency shifts. The frequency shift for a nominally pure Fe sample at 302K was -0.34 + or - .023 MHz per 100 microstrain along the 100 magnetization axis. This corresponds to a change of magnetic field at the muon of 25.1 + to 1.6G/100 magnetic moment. For an Fe (3wt%Si) single crystal the shifts were -0.348 + or - .008 MHz/100 magnetic moment. The agreement between the shifts for Fe and Fe(3wt%Si) shows the effect to be intrinsic to iron and not strongly impurity sensitive. These shifts and their temperature dependence (1/T) are dominated by the effect of strain inducted population shifts between crystallographically equivalent, but mgnetically inequivalent sites. Their magnitudes are in good agreement ith previous theoretical predictions and by previous extrapolation from calculations on Nb and V especially if both 4T(0) and 1T sites contribute comparably.

  10. Enantioselective Reduction of Citral Isomers in NCR Ene Reductase: Analysis of an Active-Site Mutant Library.

    PubMed

    Kress, Nico; Rapp, Johanna; Hauer, Bernhard

    2017-04-18

    A deeper understanding of the >99 % S-selective reduction of both isomers of citral catalyzed by NCR ene reductase was achieved by active-site mutational studies and docking simulation. Though structurally similar, the E/Z isomers of citral showed a significantly varying selectivity response to introduced mutations. Although it was possible to invert (E)-citral reduction enantioselectivity to ee 46 % (R) by introducing mutation W66A, for (Z)-citral it remained ≥88 % (S) for all single-residue variants. Residue 66 seems to act as a lever for opposite binding modes. This was underlined by a W66A-based double-mutant library that enhanced the (E)-citral derived enantioselectivity to 63 % (R) and significantly lowered the S selectivity for (Z)-citral to 44 % (S). Formation of (R)-citronellal from an (E/Z)-citral mixture is a desire in industrial (-)-menthol synthesis. Our findings pave the way for a rational enzyme engineering solution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Multi-Site N-glycan mapping study 1: Capillary electrophoresis – laser induced fluorescence

    PubMed Central

    Szekrényes, Ákos; Park, SungAe Suhr; Santos, Marcia; Lew, Clarence; Jones, Aled; Haxo, Ted; Kimzey, Michael; Pourkaveh, Shiva; Szabó, Zoltán; Sosic, Zoran; Feng, Peng; Váradi, Csaba; de l'Escaille, François; Falmagne, Jean-Bernard; Sejwal, Preeti; Niedringhaus, Thomas; Michels, David; Freckleton, Gordon; Hamm, Melissa; Manuilov, Anastasiya; Schwartz, Melissa; Luo, Jiann-Kae; van Dyck, Jonathan; Leung, Pui-King; Olajos, Marcell; Gu, Yingmei; Gao, Kai; Wang, Wenbo; Wegstein, Jo; Tep, Samnang; Guttman, András

    2016-01-01

    An international team that included 20 independent laboratories from biopharmaceutical companies, universities, analytical contract laboratories and national authorities in the United States, Europe and Asia was formed to evaluate the reproducibility of sample preparation and analysis of N-glycans using capillary electrophoresis of 8-aminopyrene-1,3,6-trisulfonic acid (APTS)-labeled glycans with laser induced fluorescence (CE-LIF) detection (16 sites) and ultra high-performance liquid chromatography (UHPLC, 12 sites; results to be reported in a subsequent publication). All participants used the same lot of chemicals, samples, reagents, and columns/capillaries to run their assays. Migration time, peak area and peak area percent values were determined for all peaks with >0.1% peak area. Our results demonstrated low variability and high reproducibility, both, within any given site as well across all sites, which indicates that a standard N-glycan analysis platform appropriate for general use (clone selection, process development, lot release, etc.) within the industry can be established. PMID:26466659

  12. Detection of DNA Sequences Refractory to PCR Amplification Using a Biophysical SERRS Assay (Surface Enhanced Resonant Raman Spectroscopy)

    PubMed Central

    Feuillie, Cécile; Merheb, Maxime M.; Gillet, Benjamin; Montagnac, Gilles; Daniel, Isabelle; Hänni, Catherine

    2014-01-01

    The analysis of ancient or processed DNA samples is often a great challenge, because traditional Polymerase Chain Reaction – based amplification is impeded by DNA damage. Blocking lesions such as abasic sites are known to block the bypass of DNA polymerases, thus stopping primer elongation. In the present work, we applied the SERRS-hybridization assay, a fully non-enzymatic method, to the detection of DNA refractory to PCR amplification. This method combines specific hybridization with detection by Surface Enhanced Resonant Raman Scattering (SERRS). It allows the detection of a series of double-stranded DNA molecules containing a varying number of abasic sites on both strands, when PCR failed to detect the most degraded sequences. Our SERRS approach can quickly detect DNA molecules without any need for DNA repair. This assay could be applied as a pre-requisite analysis prior to enzymatic reparation or amplification. A whole new set of samples, both forensic and archaeological, could then deliver information that was not yet available due to a high degree of DNA damage. PMID:25502338

  13. Detection of DNA sequences refractory to PCR amplification using a biophysical SERRS assay (Surface Enhanced Resonant Raman Spectroscopy).

    PubMed

    Feuillie, Cécile; Merheb, Maxime M; Gillet, Benjamin; Montagnac, Gilles; Daniel, Isabelle; Hänni, Catherine

    2014-01-01

    The analysis of ancient or processed DNA samples is often a great challenge, because traditional Polymerase Chain Reaction - based amplification is impeded by DNA damage. Blocking lesions such as abasic sites are known to block the bypass of DNA polymerases, thus stopping primer elongation. In the present work, we applied the SERRS-hybridization assay, a fully non-enzymatic method, to the detection of DNA refractory to PCR amplification. This method combines specific hybridization with detection by Surface Enhanced Resonant Raman Scattering (SERRS). It allows the detection of a series of double-stranded DNA molecules containing a varying number of abasic sites on both strands, when PCR failed to detect the most degraded sequences. Our SERRS approach can quickly detect DNA molecules without any need for DNA repair. This assay could be applied as a pre-requisite analysis prior to enzymatic reparation or amplification. A whole new set of samples, both forensic and archaeological, could then deliver information that was not yet available due to a high degree of DNA damage.

  14. Site-Specific Pyrolysis Induced Cleavage at Aspartic Acid Residue in Peptides and Proteins

    PubMed Central

    Zhang, Shaofeng; Basile, Franco

    2011-01-01

    A simple and site-specific non-enzymatic method based on pyrolysis has been developed to cleave peptides and proteins. Pyrolytic cleavage was found to be specific and rapid as it induced a cleavage at the C-terminal side of aspartic acid in the temperature range of 220–250 °C in 10 seconds. Electrospray Ionization (ESI) mass spectrometry (MS) and tandem-MS (MS/MS) were used to characterize and identify pyrolysis cleavage products, confirming that sequence information is conserved after the pyrolysis process in both peptides and protein tested. This suggests that pyrolysis-induced cleavage at aspartyl residues can be used as a rapid protein digestion procedure for the generation of sequence specific protein biomarkers. PMID:17388620

  15. Incision of trivalent chromium [Cr(III)]-induced DNA damage by Bacillus caldotenax UvrABC endonuclease.

    PubMed

    O'Brien, Travis J; Jiang, Guohui; Chun, Gina; Mandel, H George; Westphal, Craig S; Kahen, Kaveh; Montaser, Akbar; States, J Christopher; Patierno, Steven R

    2006-11-07

    Some hexavalent chromium [Cr(VI)]-containing compounds are lung carcinogens. Once within cells, Cr(VI) is reduced to trivalent chromium [Cr(III)] which displays an affinity for both DNA bases and the phosphate backbone. A diverse array of genetic lesions is produced by Cr including Cr-DNA monoadducts, DNA interstrand crosslinks (ICLs), DNA-Cr-protein crosslinks (DPCs), abasic sites, DNA strand breaks and oxidized bases. Despite the large amount of information available on the genotoxicity of Cr, little is known regarding the molecular mechanisms involved in the removal of these lesions from damaged DNA. Recent work indicates that nucleotide excision repair (NER) is involved in the processing of Cr-DNA adducts in human and rodent cells. In order to better understand this process at the molecular level and begin to identify the Cr-DNA adducts processed by NER, the incision of CrCl(3) [Cr(III)]-damaged plasmid DNA was studied using a thermal-resistant UvrABC NER endonuclease from Bacillus caldotenax (Bca). Treatment of plasmid DNA with Cr(III) (as CrCl(3)) increased DNA binding as a function of dose. For example, at a Cr(III) concentration of 1 microM we observed approximately 2 Cr(III)-DNA adducts per plasmid. At this same concentration of Cr(III) we found that approximately 17% of the plasmid DNA contained ICLs ( approximately 0.2 ICLs/plasmid). When plasmid DNA treated with Cr(III) (1 microM) was incubated with Bca UvrABC we observed approximately 0.8 incisions/plasmid. The formation of endonuclease IV-sensitive abasic lesions or Fpg-sensitive oxidized DNA bases was not detected suggesting that the incision of Cr(III)-damaged plasmid DNA by UvrABC was not related to the generation of oxidized DNA damage. Taken together, our data suggest that a sub-fraction of Cr(III)-DNA adducts is recognized and processed by the prokaryotic NER machinery and that ICLs are not necessarily the sole lesions generated by Cr(III) that are substrates for NER.

  16. Characterizing multiple metal ion binding sites within a ribozyme by cadmium-induced EPR silencing

    PubMed Central

    Kisseleva, Natalia; Kraut, Stefanie; Jäschke, Andres; Schiemann, Olav

    2007-01-01

    In ribozyme catalysis, metal ions are generally known to make structural and∕or mechanistic contributions. The catalytic activity of a previously described Diels-Alderase ribozyme was found to depend on the concentration of divalent metal ions, and crystallographic data revealed multiple binding sites. Here, we elucidate the interactions of this ribozyme with divalent metal ions in solution using electron paramagnetic resonance (EPR) spectroscopy. Manganese ion titrations revealed five high-affinity Mn2+ binding sites with an upper Kd of 0.6±0.2 μM. In order to characterize each binding site individually, EPR-silent Cd2+ ions were used to saturate the other binding sites. This cadmium-induced EPR silencing showed that the Mn2+ binding sites possess different affinities. In addition, these binding sites could be assigned to three different types, including innersphere, outersphere, and a Mn2+ dimer. Based on simulations, the Mn2+-Mn2+ distance within the dimer was found to be ∼6 Å, which is in good agreement with crystallographic data. The EPR-spectroscopic characterization reveals no structural changes upon addition of a Diels-Alder product, supporting the concept of a preorganized catalytic pocket in the Diels-Alder ribozyme and the structural role of these ions. PMID:19404418

  17. In vivo evidence for translesion synthesis by the replicative DNA polymerase δ

    PubMed Central

    Hirota, Kouji; Tsuda, Masataka; Mohiuddin; Tsurimoto, Toshiki; Cohen, Isadora S.; Livneh, Zvi; Kobayashi, Kaori; Narita, Takeo; Nishihara, Kana; Murai, Junko; Iwai, Shigenori; Guilbaud, Guillaume; Sale, Julian E.; Takeda, Shunichi

    2016-01-01

    The intolerance of DNA polymerase δ (Polδ) to incorrect base pairing contributes to its extremely high accuracy during replication, but is believed to inhibit translesion synthesis (TLS). However, chicken DT40 cells lacking the POLD3 subunit of Polδ are deficient in TLS. Previous genetic and biochemical analysis showed that POLD3 may promote lesion bypass by Polδ itself independently of the translesion polymerase Polζ of which POLD3 is also a subunit. To test this hypothesis, we have inactivated Polδ proofreading in pold3 cells. This significantly restored TLS in pold3 mutants, enhancing dA incorporation opposite abasic sites. Purified proofreading-deficient human Polδ holoenzyme performs TLS of abasic sites in vitro much more efficiently than the wild type enzyme, with over 90% of TLS events resulting in dA incorporation. Furthermore, proofreading deficiency enhances the capability of Polδ to continue DNA synthesis over UV lesions both in vivo and in vitro. These data support Polδ contributing to TLS in vivo and suggest that the mutagenesis resulting from loss of Polδ proofreading activity may in part be explained by enhanced lesion bypass. PMID:27185888

  18. MultiSite Gateway-Compatible Cell Type-Specific Gene-Inducible System for Plants1[OPEN

    PubMed Central

    Siligato, Riccardo; Wang, Xin; Yadav, Shri Ram; Lehesranta, Satu; Ma, Guojie; Ursache, Robertas; Sevilem, Iris; Zhang, Jing; Gorte, Maartje; Prasad, Kalika; Heidstra, Renze

    2016-01-01

    A powerful method to study gene function is expression or overexpression in an inducible, cell type-specific system followed by observation of consequent phenotypic changes and visualization of linked reporters in the target tissue. Multiple inducible gene overexpression systems have been developed for plants, but very few of these combine plant selection markers, control of expression domains, access to multiple promoters and protein fusion reporters, chemical induction, and high-throughput cloning capabilities. Here, we introduce a MultiSite Gateway-compatible inducible system for Arabidopsis (Arabidopsis thaliana) plants that provides the capability to generate such constructs in a single cloning step. The system is based on the tightly controlled, estrogen-inducible XVE system. We demonstrate that the transformants generated with this system exhibit the expected cell type-specific expression, similar to what is observed with constitutively expressed native promoters. With this new system, cloning of inducible constructs is no longer limited to a few special cases but can be used as a standard approach when gene function is studied. In addition, we present a set of entry clones consisting of histochemical and fluorescent reporter variants designed for gene and promoter expression studies. PMID:26644504

  19. Inducible model for β-six-mediated site-specific recombination in mammalian cells

    PubMed Central

    Servert, Pilar; Garcia-Castro, Javier; Díaz, Vicente; Lucas, Daniel; Gonzalez, Manuel A.; Martínez-A, Carlos; Bernad, Antonio

    2006-01-01

    The prokaryotic β recombinase catalyzes site-specific recombination between two directly oriented minimal six sites in chromatin-integrated substrates. Here, we demonstrate that an enhanced green fluorescent protein (EGFP)-fused version of β recombinase (β-EGFP) is fully active, retaining most specific activity. It is used to develop a recombination-dependent activatable gene expression (RAGE) system based on the androgen receptor (AR) ligand-binding domain (LBD). Two hybrid molecules, a direct fusion of the LBD-AR to the C-terminus of β recombinase (β-AR) and a triple fusion of β-EGFP to the same ligand-binding domain (β-EGFP-AR), were engineered and their subcellular behavior, stability and catalytic activity were evaluated. Both chimeric β recombinase proteins showed in vivo inducible recombinogenic activity dependent on addition of an androgen receptor agonist, although the β-AR fusion protein demonstrated more accurate ligand-dependent translocation from cytoplasm to nucleus. PMID:16394020

  20. Anti-site-induced diverse diluted magnetism in LiMgPdSb-type CoMnTiSi alloy

    NASA Astrophysics Data System (ADS)

    Lin, T. T.; Dai, X. F.; Guo, R. K.; Cheng, Z. X.; Wang, L. Y.; Wang, X. T.; Liu, G. D.

    2017-02-01

    The effect of three kinds of anti-site disorder to electronic structure and magnetic properties of the LiMgPdSb-type CoMnTiSi alloy are investigated. It was found the Mn-Ti anti-site disorder can induce the diluted magnetism in CoMnTiSi matrix. The magnetic structure has an oscillation between the ferromagnetic and antiferromagnetic states with the different degree of Mn-Ti anti-site disorder. Two novel characteristics: the diluted antiferromagnetic half-metallicity and the diluted zero-gap half-metallity are found in the different degree range of the Mn-Ti anti-site disorder. The Co-Mn and Co-Ti anti-site disorder have little effect on the magnetic properties. The width of energy gap and the intensity of DOS at the Fermi level can be adjusted by the degree of Co-Mn or Co-Ti anti-site disorder. The independent control to the carrier concentration and magnetization can be realized by introducing the different anti-site disorder.

  1. Pathways of Metabolite-related Damage to A Synthetic p53 Gene Exon 7 Oligonucleotide using Magnetic Enzyme Bioreactor Beads and LC-MS/MS Sequencing.

    PubMed

    Malla, Spundana; Kadimisetty, Karteek; Jiang, Di; Choudhary, Dharamainder; Rusling, James F

    2018-05-11

    Reactive metabolites of environmental chemicals and drugs can cause site-specific damage to p53 tumor suppressor gene in a major pathway for genotoxicity. We report here a high throughput, cell-free, 96-well plate magnetic bead-enzyme system interfaced with LC-MS/MS sequencing to bioactivate test chemicals and identify resulting adduction sites on genes. Bioactivated aflatoxin B1 was reacted with a 32 bp exon 7 fragment of the p53 gene using 8 microsomal cyt P450 enzymes from different organs coated on magnetic beads. All cyt P450s converted aflatoxin B1 to aflatoxin B1-8,9-epoxide that adducts guanine (G) in codon 249, with subsequent depurination to give abasic sites, then strand breaks. This is the first demonstration in a cell-free medium that aflatoxin B1 metabolite selectively causes abasic site formation and strand breaks at codon 249 of the p53 probe, corresponding to the chemical pathway and mutations of p53 in human liver cells and tumors. Molecular modeling supports the view that binding of aflatoxin B1-8,9-epoxide to G in codon 249 precedes the SN2 adduction reaction. Among a range of metabolic enzymes characteristic of different organs, human liver microsomes and cyt P450 3A5 supersomes showed the highest bioactivation rate for p53 exon 7 damage. This method to identify metabolite-related gene damage sites may facilitate predictions of organ-specific cancers for test chemicals via correlations with mutation sites.

  2. Heat shock protein 70 enhanced deoxyribonucleic acid base excision repair in human leukemic cells after ionizing radiation

    PubMed Central

    Bases, Robert

    2006-01-01

    Base excision repair (BER) of DNA damage in irradiated THP1 human leukemic cells was stimulated by pretreating the cells with exogenous recombinant Hsp70. The treatment of THP1 cells with recombinant Hsp70 in cell culture promoted repair by reducing the frequency of apurinic, apyrimidinic (AP) sites in DNA before and after 1.3 Gy of radiation. However, by 30 minutes after 2.6 Gy, accelerated repair of abasic sites supervened, which may contribute to the loss of the very-low-dose cell hypersensitivity seen in clonogenic studies of other laboratories. After irradiation with 2.6 Gy, the crucial initial glycosylase step was markedly incomplete when cells had been transfected 24 hours before with a small interfering RNA (siRNA) designed to inhibit synthesis of Hsp70. In confirmation, lysates from irradiated siRNA-treated cells after 2.6 Gy were deficient in uracil glycosylase activity (UDG). Transfection with a scrambled RNA of the same size did not interfere with the glycosylase step, ie, the prompt conversion of damaged pyrimidine sites to abasic sites as well as the subsequent repair of those sites. BER measured by reduction of DNA AP sites before and after low-dose radiation was also deficient in THP1 cells that had been transfected with the siRNA designed to inhibit synthesis of Hsp70. These results implicate BER and the participation of Hsp70 in the repair of DNA in human leukemic cells with the doses of ionizing radiation used in clinical regimens. PMID:17009597

  3. Increased /sup 3/H-spiperone binding sites in mesolimbic area related to methamphetamine-induced behavioral hypersensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akiyama, K.; Sato, M.; Otsuki, S.

    1982-02-01

    The specific /sup 3/H-spiperone binding to membrane homogenates of the striatum, mesolimbic area, and frontal cortex was examined in two groups of rats pretreated once daily with saline or 4 mg/kg of methamphetamine (MAP) for 14 days. At 7 days following cessation of chronic pretreatment, all rats received an injection of 4 mg/kg of MAP and were decapitated 1 hr after the injection. In the chronic saline-pretreatment group, the single administration of MAP induced significant changes in the number (Bmax) of specific /sup 3/H-spiperone binding sites (a decrease in the striatum and an increase in the mesolimbic area and frontalmore » cortex), but no significant changes in the affinity (KD) in any brain area. The chronic MAP pretreatment markedly augmented the changes in Bmax in the striatum and mesolimbic area. The increase in specific /sup 3/H-spiperone binding sites in the mesolimbic area is discussed in relation to MAP-induced behavioral hypersensitivity.« less

  4. The formation of double-strand breaks at multiply damaged sites is driven by the kinetics of excision/incision at base damage in eukaryotic cells

    PubMed Central

    Kozmin, Stanislav G.; Sedletska, Yuliya; Reynaud-Angelin, Anne; Gasparutto, Didier; Sage, Evelyne

    2009-01-01

    It has been stipulated that repair of clustered DNA lesions may be compromised, possibly leading to the formation of double-strand breaks (DSB) and, thus, to deleterious events. Using a variety of model multiply damaged sites (MDS), we investigated parameters that govern the formation of DSB during the processing of MDS. Duplexes carrying MDS were inserted into replicative or integrative vectors, and used to transform yeast Saccharomyces cerevisiae. Formation of DSB was assessed by a relevant plasmid survival assay. Kinetics of excision/incision and DSB formation at MDS was explored using yeast cell extracts. We show that MDS composed of two uracils or abasic sites, were rapidly incised and readily converted into DSB in yeast cells. In marked contrast, none of the MDS carrying opposed oG and hU separated by 3–8 bp gave rise to DSB, despite the fact that some of them contained preexisting single-strand break (a 1-nt gap). Interestingly, the absence of DSB formation in this case correlated with slow excision/incision rates of lesions. We propose that the kinetics of the initial repair steps at MDS is a major parameter that direct towards the conversion of MDS into DSB. Data provides clues to the biological consequences of MDS in eukaryotic cells. PMID:19174565

  5. N-methylpurine DNA glycosylase and DNA polymerase β modulate BER inhibitor potentiation of glioma cells to temozolomide

    PubMed Central

    Tang, Jiang-bo; Svilar, David; Trivedi, Ram N.; Wang, Xiao-hong; Goellner, Eva M.; Moore, Briana; Hamilton, Ronald L.; Banze, Lauren A.; Brown, Ashley R.; Sobol, Robert W.

    2011-01-01

    Temozolomide (TMZ) is the preferred chemotherapeutic agent in the treatment of glioma following surgical resection and/or radiation. Resistance to TMZ is attributed to efficient repair and/or tolerance of TMZ-induced DNA lesions. The majority of the TMZ-induced DNA base adducts are repaired by the base excision repair (BER) pathway and therefore modulation of this pathway can enhance drug sensitivity. N-methylpurine DNA glycosylase (MPG) initiates BER by removing TMZ-induced N3-methyladenine and N7-methylguanine base lesions, leaving abasic sites (AP sites) in DNA for further processing by BER. Using the human glioma cell lines LN428 and T98G, we report here that potentiation of TMZ via BER inhibition [methoxyamine (MX), the PARP inhibitors PJ34 and ABT-888 or depletion (knockdown) of PARG] is greatly enhanced by over-expression of the BER initiating enzyme MPG. We also show that methoxyamine-induced potentiation of TMZ in MPG expressing glioma cells is abrogated by elevated-expression of the rate-limiting BER enzyme DNA polymerase β (Polβ), suggesting that cells proficient for BER readily repair AP sites in the presence of MX. Further, depletion of Polβ increases PARP inhibitor-induced potentiation in the MPG over-expressing glioma cells, suggesting that expression of Polβ modulates the cytotoxic effect of combining increased repair initiation and BER inhibition. This study demonstrates that MPG overexpression, together with inhibition of BER, sensitizes glioma cells to the alkylating agent TMZ in a Polβ-dependent manner, suggesting that the expression level of both MPG and Polβ might be used to predict the effectiveness of MX and PARP-mediated potentiation of TMZ in cancer treatment. PMID:21377995

  6. Combining H/D exchange mass spectroscopy and computational docking reveals extended DNA-binding surface on uracil-DNA glycosylase

    PubMed Central

    Roberts, Victoria A.; Pique, Michael E.; Hsu, Simon; Li, Sheng; Slupphaug, Geir; Rambo, Robert P.; Jamison, Jonathan W.; Liu, Tong; Lee, Jun H.; Tainer, John A.; Ten Eyck, Lynn F.; Woods, Virgil L.

    2012-01-01

    X-ray crystallography provides excellent structural data on protein–DNA interfaces, but crystallographic complexes typically contain only small fragments of large DNA molecules. We present a new approach that can use longer DNA substrates and reveal new protein–DNA interactions even in extensively studied systems. Our approach combines rigid-body computational docking with hydrogen/deuterium exchange mass spectrometry (DXMS). DXMS identifies solvent-exposed protein surfaces; docking is used to create a 3-dimensional model of the protein–DNA interaction. We investigated the enzyme uracil-DNA glycosylase (UNG), which detects and cleaves uracil from DNA. UNG was incubated with a 30 bp DNA fragment containing a single uracil, giving the complex with the abasic DNA product. Compared with free UNG, the UNG–DNA complex showed increased solvent protection at the UNG active site and at two regions outside the active site: residues 210–220 and 251–264. Computational docking also identified these two DNA-binding surfaces, but neither shows DNA contact in UNG–DNA crystallographic structures. Our results can be explained by separation of the two DNA strands on one side of the active site. These non-sequence-specific DNA-binding surfaces may aid local uracil search, contribute to binding the abasic DNA product and help present the DNA product to APE-1, the next enzyme on the DNA-repair pathway. PMID:22492624

  7. Neuroglian-mediated cell adhesion induces assembly of the membrane skeleton at cell contact sites.

    PubMed

    Dubreuil, R R; MacVicar, G; Dissanayake, S; Liu, C; Homer, D; Hortsch, M

    1996-05-01

    The protein ankyrin links integral membrane proteins to the spectrin-based membrane skeleton. Ankyrin is often concentrated within restricted membrane domains of polarized epithelia and neurons, but the mechanisms responsible for membrane targeting and its segregation within a continuous lipid bilayer remain unexplained. We provide evidence that neuroglian, a cell adhesion molecule related to L1 and neurofascin, can transmit positional information directly to ankyrin and thereby polarize its distribution in Drosophila S2 tissue culture cells. Ankyrin was not normally associated with the plasma membrane of these cells. Upon expression of an inducible neuroglian minigene, however, cells aggregated into large clusters and ankyrin became concentrated at sites of cell-cell contact. Spectrin was also recruited to sites of cell contact in response to neuroglian expression. The accumulation of ankyrin at cell contacts required the presence of the cytoplasmic domain of neuroglian since a glycosyl phosphatidylinositol-linked form of neuroglian failed to recruit ankyrin to sites of cell-cell contact. Double-labeling experiments revealed that, whereas ankyrin was strictly associated with sites of cell-cell contact, neuroglian was more broadly distributed over the cell surface. A direct interaction between neuroglian and ankyrin was demonstrated using yeast two-hybrid analysis. Thus, neuroglian appears to be activated by extracellular adhesion so that ankyrin and the membrane skeleton selectively associate with sites of cell contact and not with other regions of the plasma membrane.

  8. Neuroglian-mediated cell adhesion induces assembly of the membrane skeleton at cell contact sites

    PubMed Central

    1996-01-01

    The protein ankyrin links integral membrane proteins to the spectrin- based membrane skeleton. Ankyrin is often concentrated within restricted membrane domains of polarized epithelia and neurons, but the mechanisms responsible for membrane targeting and its segregation within a continuous lipid bilayer remain unexplained. We provide evidence that neuroglian, a cell adhesion molecule related to L1 and neurofascin, can transmit positional information directly to ankyrin and thereby polarize its distribution in Drosophila S2 tissue culture cells. Ankyrin was not normally associated with the plasma membrane of these cells. Upon expression of an inducible neuroglian minigene, however, cells aggregated into large clusters and ankyrin became concentrated at sites of cell-cell contact. Spectrin was also recruited to sites of cell contact in response to neuroglian expression. The accumulation of ankyrin at cell contacts required the presence of the cytoplasmic domain of neuroglian since a glycosyl phosphatidylinositol- linked form of neuroglian failed to recruit ankyrin to sites of cell- cell contact. Double-labeling experiments revealed that, whereas ankyrin was strictly associated with sites of cell-cell contact, neuroglian was more broadly distributed over the cell surface. A direct interaction between neuroglian and ankyrin was demonstrated using yeast two-hybrid analysis. Thus, neuroglian appears to be activated by extracellular adhesion so that ankyrin and the membrane skeleton selectively associate with sites of cell contact and not with other regions of the plasma membrane. PMID:8636238

  9. Chromatin Folding, Fragile Sites, and Chromosome Aberrations Induced by Low- and High- LET Radiation

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Cox, Bradley; Asaithamby, Aroumougame; Chen, David J.; Wu, Honglu

    2013-01-01

    We previously demonstrated non-random distributions of breaks involved in chromosome aberrations induced by low- and high-LET radiation. To investigate the factors contributing to the break point distribution in radiation-induced chromosome aberrations, human epithelial cells were fixed in G1 phase. Interphase chromosomes were hybridized with a multicolor banding in situ hybridization (mBAND) probe for chromosome 3 which distinguishes six regions of the chromosome in separate colors. After the images were captured with a laser scanning confocal microscope, the 3-dimensional structure of interphase chromosome 3 was reconstructed at multimega base pair scale. Specific locations of the chromosome, in interphase, were also analyzed with bacterial artificial chromosome (BAC) probes. Both mBAND and BAC studies revealed non-random folding of chromatin in interphase, and suggested association of interphase chromatin folding to the radiation-induced chromosome aberration hotspots. We further investigated the distribution of genes, as well as the distribution of breaks found in tumor cells. Comparisons of these distributions to the radiation hotspots showed that some of the radiation hotspots coincide with the frequent breaks found in solid tumors and with the fragile sites for other environmental toxins. Our results suggest that multiple factors, including the chromatin structure and the gene distribution, can contribute to radiation-induced chromosome aberrations.

  10. Long-range electrostatics-induced two-proton transfer captured by neutron crystallography in an enzyme catalytic site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerlits, Oksana; Wymore, Troy; Das, Amit

    Neutron crystallography was used to directly locate two protons before and after a pH-induced two-proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV-1 protease. The two-proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low-pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other asparticmore » proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level.« less

  11. Long-range electrostatics-induced two-proton transfer captured by neutron crystallography in an enzyme catalytic site

    DOE PAGES

    Gerlits, Oksana; Wymore, Troy; Das, Amit; ...

    2016-03-09

    Neutron crystallography was used to directly locate two protons before and after a pH-induced two-proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV-1 protease. The two-proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low-pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other asparticmore » proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level.« less

  12. Overlapping striatal sites mediate scopolamine-induced feeding suppression and mu-opioid-mediated hyperphagia in the rat.

    PubMed

    Perry, Michelle L; Pratt, Wayne E; Baldo, Brian A

    2014-03-01

    Intra-striatal infusions of the muscarinic antagonist, scopolamine, markedly suppress feeding; however, the underlying mechanisms are unclear. Recent findings suggest that scopolamine influences opioid-dependent mechanisms of feeding modulation. Robust mu-opioid-mediated feeding responses are obtained in anterior, ventral sectors of the striatum with progressively weaker effects posteriorly and dorsally. One might therefore expect the effects of scopolamine to conform to similar boundaries, but a systematic mapping of scopolamine-induced feeding suppression has not yet been undertaken. This study aimed to assess the overlap between the striatal sites mediating scopolamine-induced feeding suppression and mu-opioid-induced hyperphagia. Dose-effect functions for scopolamine (0, 1, 5, and 10 μg) were obtained in the nucleus accumbens (Acb), anterior dorsal striatum (ADS), and posterior dorsal striatum (PDS) in three different groups of rats. In the same subjects, the mu-opioid receptor agonist (D-Ala2-N-MePhe4, Glyol)-enkephalin (DAMGO; 0.25 μg) was infused on a separate test day. The dependent variables were food and water intake, ambulation, and rearing. The greatest dose sensitivity for scopolamine-induced feeding suppression was observed in the Acb. Only the highest dose was effective in the ADS, and no effects were seen in the PDS. Water intake and general motor activity were not altered by scopolamine in any site. DAMGO infusions produced hyperphagia only in the Acb. These results support a model in which the behavioral effects of muscarinic blockade are limited by the same anatomical constraints that govern mu-opioid receptor-mediated control of feeding. These constraints are likely imposed by the topographic arrangement of feeding-related afferent inputs and efferent projections of the striatum.

  13. Wave propagation modelling of induced earthquakes at the Groningen gas production site

    NASA Astrophysics Data System (ADS)

    Paap, Bob; Kraaijpoel, Dirk; Bakker, Marcel; Gharti, Hom Nath

    2018-06-01

    Gas extraction from the Groningen natural gas field, situated in the Netherlands, frequently induces earthquakes in the reservoir that cause damage to buildings and pose a safety hazard and a nuisance to the local population. Due to the dependence of the national heating infrastructure on Groningen gas, the short-term mitigation measures are mostly limited to a combination of spatiotemporal redistribution of gas production and strengthening measures for buildings. All options become more effective with a better understanding of both source processes and seismic wave propagation. Detailed wave propagation simulations improve both the inference of source processes from observed ground motions and the forecast of ground motions as input for hazard studies and seismic network design. The velocity structure at the Groningen site is relatively complex, including both deep high-velocity and shallow low-velocity deposits showing significant thickness variations over relatively small spatial extents. We performed a detailed three-dimensional wave propagation modelling study for an induced earthquake in the Groningen natural gas field using the spectral-element method. We considered an earthquake that nucleated along a normal fault with local magnitude of {{{M}}_{{L}}} = 3. We created a dense mesh with element size varying from 12 to 96 m, and used a source frequency of 7 Hz, such that frequencies generated during the simulation were accurately sampled up to 10 Hz. The velocity/density model is constructed using a three-dimensional geological model of the area, including both deep high-velocity salt deposits overlying the source region and shallow low-velocity sediments present in a deep but narrow tunnel valley. The results show that the three-dimensional density/velocity model in the Groningen area clearly play a large role in the wave propagation and resulting surface ground motions. The 3d structure results in significant lateral variations in site response. The high

  14. IR signature of the photoionization-induced hydrophobic-->hydrophilic site switching in phenol-Arn clusters

    NASA Astrophysics Data System (ADS)

    Ishiuchi, Shun-ichi; Sakai, Makoto; Tsuchida, Yuji; Takeda, Akihiro; Kawashima, Yasutake; Dopfer, Otto; Müller-Dethlefs, Klaus; Fujii, Masaaki

    2007-09-01

    IR spectra of phenol-Arn (PhOH-Arn) clusters with n =1 and 2 were measured in the neutral and cationic electronic ground states in order to determine the preferential intermolecular ligand binding motifs, hydrogen bonding (hydrophilic interaction) versus π bonding (hydrophobic interaction). Analysis of the vibrational frequencies of the OH stretching motion, νOH, observed in nanosecond IR spectra demonstrates that neutral PhOH-Ar and PhOH -Ar2 as well as cationic PhOH +-Ar have a π-bound structure, in which the Ar atoms bind to the aromatic ring. In contrast, the PhOH +-Ar2 cluster cation is concluded to have a H-bound structure, in which one Ar atom is hydrogen-bonded to the OH group. This π →H binding site switching induced by ionization was directly monitored in real time by picosecond time-resolved IR spectroscopy. The π-bound νOH band is observed just after the ionization and disappears simultaneously with the appearance of the H-bound νOH band. The analysis of the picosecond IR spectra demonstrates that (i) the π →H site switching is an elementary reaction with a time constant of ˜7ps, which is roughly independent of the available internal vibrational energy, (ii) the barrier for the isomerization reaction is rather low(<100cm-1), (iii) both the position and the width of the H-bound νOH band change with the delay time, and the time evolution of these spectral changes can be rationalized by intracluster vibrational energy redistribution occurring after the site switching. The observation of the ionization-induced switch from π bonding to H bonding in the PhOH +-Ar2 cation corresponds to the first manifestation of an intermolecular isomerization reaction in a charged aggregate.

  15. Tolerance to LSD and DOB induced shaking behaviour: differential adaptations of frontocortical 5-HT(2A) and glutamate receptor binding sites.

    PubMed

    Buchborn, Tobias; Schröder, Helmut; Dieterich, Daniela C; Grecksch, Gisela; Höllt, Volker

    2015-03-15

    Serotonergic hallucinogens, such as lysergic acid diethylamide (LSD) and dimethoxy-bromoamphetamine (DOB), provoke stereotype-like shaking behaviour in rodents, which is hypothesised to engage frontocortical glutamate receptor activation secondary to serotonin2A (5-HT2A) related glutamate release. Challenging this hypothesis, we here investigate whether tolerance to LSD and DOB correlates with frontocortical adaptations of 5-HT2A and/or overall-glutamate binding sites. LSD and DOB (0.025 and 0.25 mg/kg, i.p.) induce a ketanserin-sensitive (0.5 mg/kg, i.p., 30-min pretreatment) increase in shaking behaviour (including head twitches and wet dog shakes), which with repeated application (7× in 4 ds) is undermined by tolerance. Tolerance to DOB, as indexed by DOB-sensitive [(3)H]spiroperidol and DOB induced [(35)S]GTP-gamma-S binding, is accompanied by a frontocortical decrease in 5-HT2A binding sites and 5-HT2 signalling, respectively; glutamate-sensitive [(3)H]glutamate binding sites, in contrast, remain unchanged. As to LSD, 5-HT2 signalling and 5-HT2A binding, respectively, are not or only marginally affected, yet [(3)H]glutamate binding is significantly decreased. Correlation analysis interrelates tolerance to DOB to the reduced 5-HT2A (r=.80) as well as the unchanged [(3)H]glutamate binding sites (r=.84); tolerance to LSD, as opposed, shares variance with the reduction in [(3)H]glutamate binding sites only (r=.86). Given that DOB and LSD both induce tolerance, one correlating with 5-HT2A, the other with glutamate receptor adaptations, it might be inferred that tolerance can arise at either level. That is, if a hallucinogen (like LSD in our study) fails to induce 5-HT2A (down-)regulation, glutamate receptors (activated postsynaptic to 5-HT2A related glutamate release) might instead adapt and thus prevent further overstimulation of the cortex. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Long-Range Electrostatics-Induced Two-Proton Transfer Captured by Neutron Crystallography in an Enzyme Catalytic Site.

    PubMed

    Gerlits, Oksana; Wymore, Troy; Das, Amit; Shen, Chen-Hsiang; Parks, Jerry M; Smith, Jeremy C; Weiss, Kevin L; Keen, David A; Blakeley, Matthew P; Louis, John M; Langan, Paul; Weber, Irene T; Kovalevsky, Andrey

    2016-04-11

    Neutron crystallography was used to directly locate two protons before and after a pH-induced two-proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV-1 protease. The two-proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low-pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other aspartic proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Overlapping striatal sites mediate scopolamine-induced feeding suppression and mu-opioid-mediated hyperphagia in the rat

    PubMed Central

    Perry, Michelle L.; Pratt, Wayne E.; Baldo, Brian A.

    2013-01-01

    Rationale Intra-striatal infusions of the muscarinic antagonist, scopolamine, markedly suppress feeding; however, the underlying mechanisms are unclear. Recent findings suggest that scopolamine influences opioid-dependent mechanisms of feeding modulation. Robust mu-opioid-mediated feeding responses are obtained in anterior, ventral sectors of the striatum with progressively weaker effects posteriorly and dorsally. One might therefore expect the effects of scopolamine to conform to similar boundaries, but a systematic mapping of scopolamine-induced feeding suppression has not yet been undertaken. Objective This study aimed to assess the overlap between the striatal sites mediating scopolamine-induced feeding suppression and mu-opioid-induced hyperphagia. Methods Dose–effect functions for scopolamine (0, 1, 5, and 10 μg) were obtained in the nucleus accumbens (Acb), anterior dorsal striatum (ADS), and posterior dorsal striatum (PDS) in three different groups of rats. In the same subjects, the mu-opioid receptor agonist (d-Ala2-N-MePhe4, Glyol)-enkephalin (DAMGO; 0.25 μg) was infused on a separate test day. The dependent variables were food and water intake, ambulation, and rearing. Results The greatest dose sensitivity for scopolamine-induced feeding suppression was observed in the Acb. Only the highest dose was effective in the ADS, and no effects were seen in the PDS. Water intake and general motor activity were not altered by scopolamine in any site. DAMGO infusions produced hyperphagia only in the Acb. Conclusions These results support a model in which the behavioral effects of muscarinic blockade are limited by the same anatomical constraints that govern mu-opioid receptor-mediated control of feeding. These constraints are likely imposed by the topographic arrangement of feeding-related afferent inputs and efferent projections of the striatum. PMID:24190586

  18. Zinc induces exposure of hydrophobic sites in the C-terminal domain of gC1q-R/p33.

    PubMed

    Kumar, Rajeev; Peerschke, Ellinor I B; Ghebrehiwet, Berhane

    2002-09-01

    Endothelial cells and platelets are known to express gC1q-R on their surface. In addition to C1q, endothelial cell gC1q-R has been shown to bind high molecular weight kininogen (HK) and factor XII (FXII). However, unlike C1q, whose interaction with gC1q-R does not require divalent ions, the binding of HK to gC1q-R is absolutely dependent on the presence of zinc. However, the mechanism by which zinc modulates this interaction is not fully understood. To investigate the role of zinc, binding studies were done using the hydrophobic dye, bis-ANS. The fluorescence intensity of bis-ANS, greatly increases and the emission maximum is blue-shifted from 525 to 485nm upon binding to hydrophobic sites on proteins. In this report, we show that a blue-shift in emission maximum is also observed when bis-ANS binds to gC1q-R in the presence but not in the absence of zinc suggesting that zinc induces exposure of hydrophobic sites in the molecule. The binding of bis-ANS to gC1q-R is specific, dose-dependent, and reversible. In the presence of zinc, this binding is abrogated by monoclonal antibody 74.5.2 directed against gC1q-R residues 204-218. This segment of gC1q-R, which corresponds to the beta6 strand in the crystal structure, has been shown previously to be the binding site for HK. A similar trend in zinc-induced gC1q-R binding was also observed using the hydrophobic matrix octyl-Sepharose. Taken together, our data suggest that zinc can induce the exposure of hydrophobic sites in the C-terminal domain of gC1q-R involved in binding to HK/FXII.

  19. A case of laryngeal cancer induced by exposure to asbestos in a construction site supervisor.

    PubMed

    Roh, Sooyong; Park, Soyong; Tae, Gyeong; Song, Jaechul

    2016-01-01

    Construction site supervisors are exposed to many chemicals, dusts, and metals including asbestos. Asbestos is a hazardous chemical that is carcinogenic. Laryngeal cancer is not a rare disease in Korea. The most common causes of this disease are tobacco and alcohol, and representative occupational cause is asbestos. However, up to now, no case of laryngeal cancer induced by asbestos has been reported in Korea. In this study, we report such a case in a construction site supervisor. A 60-year-old man who had been experiencing hoarseness for 2 months was diagnosed with laryngeal cancer. The pathologic diagnosis was squamous cell carcinoma in situ, based on examination of a biopsy specimen obtained by resection of the lesion. The patient had been exposed to asbestos for 38 years at construction sites where he worked until diagnosed with laryngeal cancer. He had been exposed to asbestos when demolishing buildings and inspecting materials. The patient in this case worked with construction materials including asbestos and supervised construction for 38 years, and was thus exposed to asbestos at construction sites. Much of the asbestos was highly concentrated especially during demolition processes. We therefore consider the laryngeal cancer of this patient to be a work-related disease.

  20. Attenuation of cadmium-induced necrotic cell death by necrostatin-1: Potential necrostatin-1 acting sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, T.-S.; Yang, P.-M.; Tsai, J.-S.

    2009-03-01

    Cadmium (Cd) induces necrotic death in Chinese hamster ovary (CHO) K1 cells and we have established the responsible signaling pathway. Reportedly, necrostatin-1 (Nec-1) rescues cells from necrotic death by mediating through the death domain receptor (DR) signaling pathway. We show here that Nec-1 also effectively attenuates necrotic death triggered by Cd. Two other treatments that cause necrotic cell death, one can (z-VAD-fmk/TNF-{alpha} on U937 cells) and the other cannot (etherynic acid (EA) on DLD-1 cells) be rescued by Nec-1, were also studied in parallel for comparison. Results show that Nec-1 is ineffectual in modulating intracellular calcium contents, calpain activity (amore » downstream protease), or reactive oxygen species production. It can counteract the reduction in mitochondrial membrane potential (MMP) caused by treating CHO K1 or U937 cells with necrosis-inducing agent. However, this effect was not found in EA-treated DLD-1 cells. Notably, Nec-1 elevates NF-{kappa}B activity in the presence or absence of necrosis-inducing agents. Our study shows that, in addition to DR-mediated necrosis, Nec-1 is effective in attenuating Cd-induced necrosis. It rescues cells with reduced MMP implying that mitochondrion is its major acting site.« less

  1. Hydrolysis of N3-methyl-2'-deoxycytidine: model compound for reactivity of protonated cytosine residues in DNA.

    PubMed

    Sowers, L C; Sedwick, W D; Shaw, B R

    1989-11-01

    Protonation of cytosine residues at physiological pH may occur in DNA as a consequence of both alkylation and aberrant base-pair formation. When cytosine derivatives are protonated, they undergo hydrolysis reactions at elevated rates and can either deaminate to form the corresponding uracil derivatives or depyrimidinate generating abasic sites. The kinetic parameters for reaction of protonated cytosine are derived by studying the hydrolysis of N3-methyl-2'-deoxycytidine (m3dC), a cytosine analogue which is predominantly protonated at physiological pH. Both deamination and depyrimidimation reaction rates are shown to be linearly dependent upon the fraction of protonated molecules. We present here thermodynamic parameters which allow determination of hydrolysis rates of m3dC as functions of pH and temperature. Protonation of cytosine residues in DNA, as induced by aberrant base-pair formation or base modification, may accelerate the rate of both deamination and depyrimidation up to several thousand-fold under physiological conditions.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahn, Karl E.; Averill, April M.; Aller, Pierre

    DNA polymerase θ protects against genomic instability via an alternative end-joining repair pathway for DNA double-strand breaks. Polymerase θ is overexpressed in breast, lung and oral cancers, and reduction of its activity in mammalian cells increases sensitivity to double-strand break–inducing agents, including ionizing radiation. Reported in this paper are crystal structures of the C-terminal polymerase domain from human polymerase θ, illustrating two potential modes of dimerization. One structure depicts insertion of ddATP opposite an abasic-site analog during translesion DNA synthesis. The second structure describes a cognate ddGTP complex. Polymerase θ uses a specialized thumb subdomain to establish unique upstream contactsmore » to the primer DNA strand, including an interaction with the 3'-terminal phosphate from one of five distinctive insertion loops. Finally, these observations demonstrate how polymerase θ grasps the primer to bypass DNA lesions or extend poorly annealed DNA termini to mediate end-joining.« less

  3. Human DNA polymerase θ grasps the primer terminus to mediate DNA repair

    DOE PAGES

    Zahn, Karl E.; Averill, April M.; Aller, Pierre; ...

    2015-03-16

    DNA polymerase θ protects against genomic instability via an alternative end-joining repair pathway for DNA double-strand breaks. Polymerase θ is overexpressed in breast, lung and oral cancers, and reduction of its activity in mammalian cells increases sensitivity to double-strand break–inducing agents, including ionizing radiation. Reported in this paper are crystal structures of the C-terminal polymerase domain from human polymerase θ, illustrating two potential modes of dimerization. One structure depicts insertion of ddATP opposite an abasic-site analog during translesion DNA synthesis. The second structure describes a cognate ddGTP complex. Polymerase θ uses a specialized thumb subdomain to establish unique upstream contactsmore » to the primer DNA strand, including an interaction with the 3'-terminal phosphate from one of five distinctive insertion loops. Finally, these observations demonstrate how polymerase θ grasps the primer to bypass DNA lesions or extend poorly annealed DNA termini to mediate end-joining.« less

  4. The homing of bone marrow MSCs to non-osseous sites for ectopic bone formation induced by osteoinductive calcium phosphate

    PubMed Central

    Song, Guodong; Habibovic, Pamela; Bao, Chongyun; Hu, Jing; van Blitterswijk, Clemens A.; Yuan, Huipin; Chen, Wenchuan; Xu, Hockin H.K.

    2013-01-01

    Osteoinductive biomaterials are promising for bone repair. There is no direct proof that bone marrow mesenchymal stem cells (BMSCs) home to non-osseous sites and participate in ectopic bone formation induced by osteoinductive bioceramics. The objective of this study was to use a sex-mismatched beagle dog model to investigate BMSC homing via blood circulation to participate in ectopic bone formation via osteoinductive biomaterial. BMSCs of male dogs were injected into female femoral marrow cavity. The survival and stable chimerism of donor BMSCs in recipients were confirmed with polymerase chain reaction (PCR) and fluorescence in situ hybridization (FISH). Biphasic calcium phosphate (BCP) granules were implanted in dorsal muscles of female dogs. Y chromosomes were detected in samples harvested from female dogs which had received male BMSCs. At 4 weeks, cells with Y-chromosomes were distributed in the new bone matrix throughout the BCP granule implant. At 6 weeks, cells with Y chromosomes were present in newly mineralized woven bone. TRAP positive osteoclast-like cells were observed in 4-week implants, and the number of such cells decreased from 4 to 6 weeks. These results show that osteoprogenitors were recruited from bone marrow and homed to ectopic site to serve as a cell source for calcium phosphate-induced bone formation. In conclusion, BMSCs were demonstrated to migrate from bone marrow through blood circulation to non-osseous bioceramic implant site to contribute to ectopic bone formation in a canine model. BCP induced new bone in muscles without growth factor delivery, showing excellent osteoinductivity that could be useful for bone tissue engineering. PMID:23298780

  5. Assessing the induced seismicity by hydraulic fracturing at the Wysin site (Poland)

    NASA Astrophysics Data System (ADS)

    Ángel López Comino, José; Cesca, Simone; Kriegerowski, Marius; Heimann, Sebastian; Dahm, Torsten; Mirek, Janusz; Lasocky, Stanislaw

    2017-04-01

    Induced seismicity related to industrial processes including shale gas and oil exploitation is a current issues that implies enough reasons to be concerned. Hydraulic fracturing usually induces weak events. However, scenarios with larger earthquakes are possible, e.g. if the injected fluids alter friction conditions and trigger the failure of neighbouring faults. This work is focused on a hydrofracking experiment monitored in the framework of the SHEER (SHale gas Exploration and Exploitation induced Risks) EU project at the Wysin site, located in the central-western part of the Peribaltic synclise of Pomerania, Poland. A specific network setup has been installed combining surface installation with three small-scale arrays and a shallow borehole installation. The fracking operations were carried out in June and July 2016 at a depth 4000 m. The monitoring has been operational before, during and after the termination of hydraulic fracturing operations. We apply a recently developed automated full waveform detection algorithm based on the stacking of smooth characteristic function and the identification of high coherence in the signals recorded at different stations. The method was tested with synthetic data and different detector levels yielding values of magnitude of completeness around 0.1. An unsupervised detection catalogue is generated with real data for a time period May-September 2016. We identify strong temporal changes (day/night) of the detection performance. A manual revision of the detected signals reveals that most detections are associated to local and regional seismic signals. Only two events could be assigned to the volume potentially affected by the fracking operations.

  6. The Spleen Is an Ideal Site for Inducing Transplanted Islet Graft Expansion in Mice

    PubMed Central

    Takahashi, Hiroyuki; Kodama, Shohta

    2017-01-01

    Alternative islet transplantation sites have the potential to reduce the marginal number of islets required to ameliorate hyperglycemia in recipients with diabetes. Previously, we reported that T cell leukemia homeobox 1 (Tlx1)+ stem cells in the spleen effectively regenerated into insulin-producing cells in the pancreas of non-obese diabetic mice with end-stage disease. Thus, we investigated the spleen as a potential alternative islet transplantation site. Streptozotocin-induced diabetic C57BL/6 mice received syngeneic islets into the portal vein (PV), beneath the kidney capsule (KC), or into the spleen (SP). The marginal number of islets by PV, KC, or SP was 200, 100, and 50, respectively. Some plasma inflammatory cytokine levels in the SP group were significantly lower than those of the PV group after receiving a marginal number of islets, indicating reduced inflammation in the SP group. Insulin contents were increased 280 days after islet transplantation compared with those immediately following transplantation (p<0.05). Additionally, Tlx1-related genes, including Rrm2b and Pla2g2d, were up-regulated, which indicates that islet grafts expanded in the spleen. The spleen is an ideal candidate for an alternative islet transplantation site because of the resulting reduced inflammation and expansion of the islet graft. PMID:28135283

  7. Induction of Abasic Sites by the Drinking-Water Mutagen MX in Salmonella TA100

    EPA Science Inventory

    Mutagen X (MX) is a chlorinated furanone that accounts for more of the mutagenic activity of drinking water than any other disinfection by-product. It is one of the most potent base-substitution mutagens in the Salmonella (Ames) mutagenicity assay, producing primarily GC to TA mu...

  8. Reduced repair capacity of a DNA clustered damage site comprised of 8-oxo-7,8-dihydro-2'-deoxyguanosine and 2-deoxyribonolactone results in an increased mutagenic potential of these lesions

    DOE PAGES

    Cunniffe, Siobhan; O’Neill, Peter; Greenberg, Marc M.; ...

    2014-04-01

    A signature of ionizing radiation is the induction of DNA clustered damaged sites. Non-double strand break (DSB) clustered damage has been shown to compromise the base excision repair pathway, extending the lifetimes of the lesions within the cluster, compared to isolated lesions. This increases the likelihood the lesions persist to replication and thus increasing the mutagenic potential of the lesions within the cluster. Lesions formed by ionizing radiation include 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and 2-deoxyribonolactone (dL). dL poses an additional challenge to the cell as it is not repaired by the short-patch base excision repair pathway. Here we show recalcitrant dL repairmore » is reflected in mutations observed when DNA containing it and a proximal 8-oxodGuo is replicated in Escherichia coli. 8-oxodGuo in close proximity to dL on the opposing DNA strand results in an enhanced frequency of mutation of the lesions within the cluster and a 20 base sequence flanking the clustered damage site in an E. coli based plasmid assay. In vitro repair of a dL lesion is reduced when compared to the repair of an abasic (AP) site and a tetrahydrofuran (THF), and this is due mainly to a reduction in the activity of polymerase β, leading to retarded FEN1 and ligase 1 activities. This study has given insights in to the biological effects of clusters containing dL.« less

  9. Conformational Dynamics of DNA Repair by Escherichia coli Endonuclease III*

    PubMed Central

    Kuznetsov, Nikita A.; Kladova, Olga A.; Kuznetsova, Alexandra A.; Ishchenko, Alexander A.; Saparbaev, Murat K.; Zharkov, Dmitry O.; Fedorova, Olga S.

    2015-01-01

    Escherichia coli endonuclease III (Endo III or Nth) is a DNA glycosylase with a broad substrate specificity for oxidized or reduced pyrimidine bases. Endo III possesses two types of activities: N-glycosylase (hydrolysis of the N-glycosidic bond) and AP lyase (elimination of the 3′-phosphate of the AP-site). We report a pre-steady-state kinetic analysis of structural rearrangements of the DNA substrates and uncleavable ligands during their interaction with Endo III. Oligonucleotide duplexes containing 5,6-dihydrouracil, a natural abasic site, its tetrahydrofuran analog, and undamaged duplexes carried fluorescent DNA base analogs 2-aminopurine and 1,3-diaza-2-oxophenoxazine as environment-sensitive reporter groups. The results suggest that Endo III induces several fast sequential conformational changes in DNA during binding, lesion recognition, and adjustment to a catalytically competent conformation. A comparison of two fluorophores allowed us to distinguish between the events occurring in the damaged and undamaged DNA strand. Combining our data with the available structures of Endo III, we conclude that this glycosylase uses a multistep mechanism of damage recognition, which likely involves Gln41 and Leu81 as DNA lesion sensors. PMID:25869130

  10. Lesion bypass by S. cerevisiae Pol ζ alone

    PubMed Central

    Stone, Jana E.; Kumar, Dinesh; Binz, Sara K.; Inase, Aki; Iwai, Shigenori; Chabes, Andrei; Burgers, Peter M.; Kunkel, Thomas A.

    2011-01-01

    DNA polymerase zeta (Pol ζ) participates in translesion synthesis (TLS) of DNA adducts that stall replication fork progression. Previous studies have led to the suggestion that the primary role of Pol ζ in TLS is to extend primers created when another DNA polymerase inserts nucleotides opposite lesions. Here we test the non-exclusive possibility that Pol ζ can sometimes perform TLS in the absence of any other polymerase. To do so, we quantified the efficiency with which S. cerevisiae Pol ζ bypasses abasic sites, cis-syn cyclobutane pyrimidine dimers and (6-4) photoproducts. In reactions containing dNTP concentrations that mimic those induced by DNA damage, a Pol ζ derivative with phenylalanine substituted for leucine 979 at the polymerase active site bypasses all three lesions at efficiencies between 27–73%. Wild-type Pol ζ also bypasses these lesions, with efficiencies that are lower and depend on the sequence context in which the lesion resides. The results are consistent with the hypothesis that, in addition to extending aberrant termini created by other DNA polymerases, Pol ζ has the potential to be the sole DNA polymerase involved in TLS. PMID:21622032

  11. Thermodynamics-hydration relationships within loops that affect G-quadruplexes under molecular crowding conditions.

    PubMed

    Fujimoto, Takeshi; Nakano, Shu-ichi; Sugimoto, Naoki; Miyoshi, Daisuke

    2013-01-31

    We systematically investigated the effects of loop length on the conformation, thermodynamic stability, and hydration of DNA G-quadruplexes under dilute and molecular crowding conditions in the presence of Na(+). Structural analysis showed that molecular crowding induced conformational switches of oligonucleotides with the longer guanine stretch and the shorter thymine loop. Thermodynamic parameters further demonstrated that the thermodynamic stability of G-quadruplexes increased by increasing the loop length from two to four, whereas it decreased by increasing the loop length from four to six. Interestingly, we found by osmotic pressure analysis that the number of water molecules released from the G-quadruplex decreased with increasing thermodynamic stability. We assumed that base-stacking interactions within the loops not only stabilized the whole G-quadruplex structure but also created hydration sites by accumulating nucleotide functional groups. The molecular crowding effects on the stability of G-quadruplexes composed of abasic sites, which reduce the stacking interactions at the loops, further demonstrated that G-quadruplexes with fewer stacking interactions within the loops released a larger number of water molecules upon folding. These results showed that the stacking interactions within the loops determined the thermodynamic stability and hydration of the whole G-quadruplex.

  12. Enzymes with lid-gated active sites must operate by an induced fit mechanism instead of conformational selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Sarah M.; Holyoak, Todd

    2008-09-17

    The induced fit and conformational selection/population shift models are two extreme cases of a continuum aimed at understanding the mechanism by which the final key-lock or active enzyme conformation is achieved upon formation of the correctly ligated enzyme. Structures of complexes representing the Michaelis and enolate intermediate complexes of the reaction catalyzed by phosphoenolpyruvate carboxykinase provide direct structural evidence for the encounter complex that is intrinsic to the induced fit model and not required by the conformational selection model. In addition, the structural data demonstrate that the conformational selection model is not sufficient to explain the correlation between dynamics andmore » catalysis in phosphoenolpyruvate carboxykinase and other enzymes in which the transition between the uninduced and the induced conformations occludes the active site from the solvent. The structural data are consistent with a model in that the energy input from substrate association results in changes in the free energy landscape for the protein, allowing for structural transitions along an induced fit pathway.« less

  13. Enzymes With Lid-Gated Active Sites Must Operate By An Induced Fit Mechanism Instead of Conformational Selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, S.M.; Holyoak, T.

    2009-05-26

    The induced fit and conformational selection/population shift models are two extreme cases of a continuum aimed at understanding the mechanism by which the final key-lock or active enzyme conformation is achieved upon formation of the correctly ligated enzyme. Structures of complexes representing the Michaelis and enolate intermediate complexes of the reaction catalyzed by phosphoenolpyruvate carboxykinase provide direct structural evidence for the encounter complex that is intrinsic to the induced fit model and not required by the conformational selection model. In addition, the structural data demonstrate that the conformational selection model is not sufficient to explain the correlation between dynamics andmore » catalysis in phosphoenolpyruvate carboxykinase and other enzymes in which the transition between the uninduced and the induced conformations occludes the active site from the solvent. The structural data are consistent with a model in that the energy input from substrate association results in changes in the free energy landscape for the protein, allowing for structural transitions along an induced fit pathway.« less

  14. Analysis of obstruction site in obstructive sleep apnea syndrome patients by drug induced sleep endoscopy.

    PubMed

    Koo, Soo Kweon; Choi, Jang Won; Myung, Nam Suk; Lee, Hyoung Ju; Kim, Yang Jae; Kim, Young Joong

    2013-01-01

    We analyzed site, pattern and degree of obstruction in Korean male obstructive sleep apnea syndrome (OSAS) patients by drug-induced sleep endoscopy (DISE). We also investigated possible links between BMI, AHI and DISE findings. Sixty-nine male patients underwent DISE. DISE findings were reported using our classification system in which modified 'VOTE classification' - obstruction type, site of obstruction, degree of obstruction and anatomical site contributing obstruction - was reported. Associations were analyzed among the results of the polysomnography, patients' characteristics and DISE finding. Multilevel airway obstruction was found in 84.06% of patients and 15.94% had a unilevel obstruction. Among those with unilevel obstruction, 90.90% had retropalatal level obstruction and 9.10% had retrolingual level obstruction. Palate with lateral pharyngeal wall obstruction (49.28%) is the most common obstruction type of the retropalatal level and tongue with lateral pharyngeal wall (37.68%) is the most common obstruction type of the retrolingual level. Examining the relation between obstruction site according to body mass index (BMI) and severity of OSAS (apnea hypopnea index, AHI), the lateral pharyngeal wall had an increasing tendency associated with higher BMI and higher AHI. But the lateral pharyngeal wall of both levels was statistically significant associated with higher AHI. The majority of the Korean male OSAS patients have multilevel obstruction and according to BMI and AHI, the DISE findings indicate that the lateral pharyngeal wall is the most important anatomical site contributing to obstruction regardless of the level at which the obstruction lies. © 2013 Elsevier Inc. All rights reserved.

  15. Mechanism of RNA polymerase II bypass of oxidative cyclopurine DNA lesions

    DOE PAGES

    Walmacq, Celine; Wang, Lanfeng; Chong, Jenny; ...

    2015-01-20

    In human cells, the oxidative DNA lesion 8,5'-cyclo-2'-deoxyadenosine (CydA) induces prolonged stalling of RNA polymerase II (Pol II) followed by transcriptional bypass, generating both error-free and mutant transcripts with AMP misincorporated immediately downstream from the lesion. Here, we present biochemical and crystallographic evidence for the mechanism of CydA recognition. Pol II stalling results from impaired loading of the template base (5') next to CydA into the active site, leading to preferential AMP misincorporation. Such predominant AMP insertion, which also occurs at an abasic site, is unaffected by the identity of the 5´-templating base, indicating that it derives from nontemplated synthesismore » according to an A rule known for DNA polymerases and recently identified for Pol II bypass of pyrimidine dimers. Subsequent to AMP misincorporation, Pol II encounters a major translocation block that is slowly overcome. The translocation block combined with the poor extension of the dA.rA mispair reduce transcriptional mutagenesis. Moreover, increasing the active-site flexibility by mutation in the trigger loop, which increases the ability of Pol II to accommodate the bulky lesion, and addition of transacting factor TFIIF facilitate CydA bypass. Thus, blocking lesion entry to the active site, trans-lesion A rule synthesis, and translocation block are common features of transcription across different bulky DNA lesions.« less

  16. Induced Seismicity at the UK "Hot Dry Rock" Test Site for Geothermal Energy Production

    NASA Astrophysics Data System (ADS)

    Li, Xun; Main, Ian; Jupe, Andrew

    2018-03-01

    In enhanced geothermal systems (EGS), fluid is injected at high pressure in order to stimulate fracturing and/or fluid flow through otherwise relatively impermeable underlying hot rocks to generate power and/or heat. The stimulation induces micro-earthquakes whose precise triggering mechanism and relationship to new and pre-existing fracture networks are still the subject of some debate. Here we analyse the dataset for induced micro-earthquakes at the UK "hot dry rock" experimental geothermal site (Rosemanowes, Cornwall). We quantify the evolution of several metrics used to characterise induced seismicity, including the seismic strain partition factor and the "seismogenic index". The results show a low strain partition factor of 0.01% and a low seismogenenic index indicating that aseismic processes dominate. We also analyse the spatio-temporal distribution of hypocentres, using simple models for the evolution of hydraulic diffusivity by (a) isotropic and (b) anisotropic pore-pressure relaxation. The principal axes of the diffusivity or permeability tensor inferred from the spatial distribution of earthquake foci are aligned parallel to the present-day stress field, although the maximum permeability is vertical, whereas the maximum principal stress is horizontal. Our results are consistent with a triggering mechanism that involves (a) seismic shear slip along optimally-oriented pre-existing fractures, (b) a large component of aseismic slip with creep (c) activation of tensile fractures as hydraulic conduits created by both the present-day stress field and by the induced shear slip, both exploiting pre-existing joint sets exposed in borehole data.

  17. Induced seismicity at the UK `hot dry rock' test site for geothermal energy production

    NASA Astrophysics Data System (ADS)

    Li, Xun; Main, Ian; Jupe, Andrew

    2018-07-01

    In enhanced geothermal systems (EGS), fluid is injected at high pressure in order to stimulate fracturing and/or fluid flow through otherwise relatively impermeable underlying hot rocks to generate power and/or heat. The stimulation induces microearthquakes whose precise triggering mechanism and relationship to new and pre-existing fracture networks are still the subject of some debate. Here, we analyse the data set for induced microearthquakes at the UK `hot dry rock' experimental geothermal site (Rosemanowes, Cornwall). We quantify the evolution of several metrics used to characterise induced seismicity, including the seismic strain partition factor and the `seismogenic index'. The results show a low strain partition factor of 0.01 per cent and a low seismogenic index indicating that aseismic processes dominate. We also analyse the spatio-temporal distribution of hypocentres, using simple models for the evolution of hydraulic diffusivity by (1) isotropic and (2) anisotropic pore-pressure relaxation. The principal axes of the diffusivity or permeability tensor inferred from the spatial distribution of earthquake foci are aligned parallel to the present-day stress field, although the maximum permeability is vertical, whereas the maximum principal stress is horizontal. Our results are consistent with a triggering mechanism that involves (1) seismic shear slip along optimally oriented pre-existing fractures, (2) a large component of aseismic slip with creep and (3) activation of tensile fractures as hydraulic conduits created by both the present-day stress field and by the induced shear slip, both exploiting pre-existing joint sets exposed in borehole data.

  18. A test of the hypothesis that impact-induced fractures are preferred sites for later tectonic activity

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.; Duxbury, Elizabeth D.

    1987-01-01

    Impact cratering has been an important process in the solar system. The cratering event is generally accompanied by faulting in adjacent terrain. Impact-induced faults are nearly ubiquitous over large areas on the terrestrial planets. The suggestion is made that these fault systems, particularly those associated with the largest impact features are preferred sites for later deformation in response to lithospheric stresses generated by other processes. The evidence is a perceived clustering of orientations of tectonic features either radial or concentric to the crater or basin in question. An opportunity exists to test this suggestion more directly on Earth. The terrestrial continents contain more than 100 known or probable impact craters, with associated geological structures mapped to varying levels of detail. Prime facie evidence for reactivation of crater-induced faults would be the occurrence of earthquakes on these faults in response to the intraplate stress field. Either an alignment of epicenters with mapped fault traces or fault plane solutions indicating slip on a plane approximately coincident with that inferred for a crater-induced fault would be sufficient to demonstrate such an association.

  19. Tiron Inhibits UVB-Induced AP-1 Binding Sites Transcriptional Activation on MMP-1 and MMP-3 Promoters by MAPK Signaling Pathway in Human Dermal Fibroblasts

    PubMed Central

    Zhang, Chao; Zhao, Mei; Zhang, Quan-Wu; Gao, Feng-Hou

    2016-01-01

    Recent research found that Tiron was an effective antioxidant that could act as the intracellular reactive oxygen species (ROS) scavenger or alleviate the acute toxic metal overload in vivo. In this study, we investigated the inhibitory effect of Tiron on matrix metalloproteinase (MMP)-1 and MMP-3 expression in human dermal fibroblast cells. Western blot and ELISA analysis revealed that Tiron inhibited ultraviolet B (UVB)-induced protein expression of MMP-1 and MMP-3. Real-time quantitative PCR confirmed that Tiron could inhibit UVB-induced mRNA expression of MMP-1 and MMP-3. Furthermore, Tiron significantly blocked UVB-induced activation of the MAPK signaling pathway and activator protein (AP)-1 in the downstream of this transduction pathway in fibroblasts. Through the AP-1 binding site mutation, it was found that Tiron could inhibit AP-1-induced upregulation of MMP-1 and MMP-3 expression through blocking AP-1 binding to the AP-1 binding sites in the MMP-1 and MMP-3 promoter region. In conclusion, Tiron may be a novel antioxidant for preventing and treating skin photoaging UV-induced. PMID:27486852

  20. Divergent expression of cytokinin biosynthesis, signaling and catabolism genes underlying differences in feeding sites induced by cyst and root-knot nematodes.

    PubMed

    Dowd, Carola D; Chronis, Demosthenis; Radakovic, Zoran S; Siddique, Shahid; Schmülling, Thomas; Werner, Tomáš; Kakimoto, Tatsuo; Grundler, Florian M W; Mitchum, Melissa G

    2017-10-01

    Cyst and root-knot nematodes are obligate parasites of economic importance with a remarkable ability to reprogram root cells into unique metabolically active feeding sites. Previous studies have suggested a role for cytokinin in feeding site formation induced by these two types of nematodes, but the mechanistic details have not yet been described. Using Arabidopsis as a host plant species, we conducted a comparative analysis of cytokinin genes in response to the beet cyst nematode (BCN), Heterodera schachtii, and the root-knot nematode (RKN), Meloidogyne incognita. We identified distinct differences in the expression of cytokinin biosynthesis, catabolism and signaling genes in response to infection by BCN and RKN, suggesting differential manipulation of the cytokinin pathway by these two nematode species. Furthermore, we evaluated Arabidopsis histidine kinase receptor mutant lines ahk2/3, ahk2/4 and ahk3/4 in response to RKN infection. Similar to our previous studies with BCN, these lines were significantly less susceptible to RKN without compromising nematode penetration, suggesting a requirement of cytokinin signaling in RKN feeding site formation. Moreover, an analysis of ahk double mutants using CycB1;1:GUS/ahk introgressed lines revealed contrasting differences in the cytokinin receptors mediating cell cycle activation in feeding sites induced by BCN and RKN. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  1. Multiple sites and actions of gabapentin-induced relief of ongoing experimental neuropathic pain.

    PubMed

    Bannister, Kirsty; Qu, Chaoling; Navratilova, Edita; Oyarzo, Janice; Xie, Jennifer Yanhua; King, Tamara; Dickenson, Anthony H; Porreca, Frank

    2017-12-01

    Gabapentin (GBP) is a first-line therapy for neuropathic pain, but its mechanisms and sites of action remain uncertain. We investigated GBP-induced modulation of neuropathic pain following spinal nerve ligation (SNL) in rats. Intravenous or intrathecal GBP reversed evoked mechanical hypersensitivity and produced conditioned place preference (CPP) and dopamine (DA) release in the nucleus accumbens (NAc) selectively in SNL rats. Spinal GBP also significantly inhibited dorsal horn wide-dynamic-range neuronal responses to a range of evoked stimuli in SNL rats. By contrast, GBP microinjected bilaterally into the rostral anterior cingulate cortex (rACC), produced CPP, and elicited NAc DA release selectively in SNL rats but did not reverse tactile allodynia and had marginal effects on wide-dynamic-range neuronal activity. Moreover, blockade of endogenous opioid signaling in the rACC prevented intravenous GBP-induced CPP and NAc DA release but failed to block its inhibition of tactile allodynia. Gabapentin, therefore, can potentially act to produce its pain relieving effects by (a) inhibition of injury-induced spinal neuronal excitability, evoked hypersensitivity, and ongoing pain and (b) selective supraspinal modulation of affective qualities of pain, without alteration of reflexive behaviors. Consistent with previous findings of pain relief from nonopioid analgesics, GBP requires engagement of rACC endogenous opioid circuits and downstream activation of mesolimbic reward circuits reflected in learned pain-motivated behaviors. These findings support the partial separation of sensory and affective dimensions of pain in this experimental model and suggest that modulation of affective-motivational qualities of pain may be the preferential mechanism of GBP's analgesic effects in patients.

  2. Multiple sites and actions of gabapentin-induced relief of ongoing experimental neuropathic pain

    PubMed Central

    Bannister, Kirsty; Qu, Chaoling; Navratilova, Edita; Oyarzo, Janice; Xie, Jennifer Yanhua; King, Tamara; Dickenson, Anthony H.; Porreca, Frank

    2017-01-01

    Gabapentin is a first-line therapy for neuropathic pain but its mechanisms and sites of action remain uncertain. We investigated gabapentin-induced modulation of neuropathic pain following spinal nerve ligation (SNL) in rats. Intravenous or intrathecal gabapentin reversed evoked mechanical hypersensitivity, produced conditioned place preference (CPP) and dopamine release in the nucleus accumbens (NAc) selectively in SNL rats. Spinal gabapentin also significantly inhibited dorsal horn wide dynamic range (WDR) neuronal responses to a range of evoked stimuli in SNL rats. In contrast, gabapentin microinjected bilaterally into the rostral anterior cingulate cortex (rACC), produced CPP and elicited NAc dopamine release selectively in SNL rats but did not reverse tactile allodynia and had marginal effects on WDR neuronal activity. Moreover, blockade of endogenous opioid signaling in the rACC prevented intravenous gabapentin-induced CPP and NAc dopamine release but failed to block its inhibition of tactile allodynia. Gabapentin therefore can potentially act to produce its pain relieving effects by (a) inhibition of injury-induced spinal neuronal excitability, evoked hypersensitivity and ongoing pain and (b) selective supraspinal modulation of affective qualities of pain, without alteration of reflexive behaviors. Consistent with previous findings of pain relief from non-opioid analgesics, gabapentin requires engagement of rACC endogenous opioid circuits and downstream activation of mesolimbic reward circuits reflected in learned pain motivated behaviors. These findings support the partial separation of sensory and affective dimensions of pain in this experimental model and suggest that modulation of affective-motivational qualities of pain may be the preferential mechanism of gabapentin’s analgesic effects in patients. PMID:28832395

  3. Mesh Oriented datABase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tautges, Timothy J.

    MOAB is a component for representing and evaluating mesh data. MOAB can store stuctured and unstructured mesh, consisting of elements in the finite element "zoo". The functional interface to MOAB is simple yet powerful, allowing the representation of many types of metadata commonly found on the mesh. MOAB is optimized for efficiency in space and time, based on access to mesh in chunks rather than through individual entities, while also versatile enough to support individual entity access. The MOAB data model consists of a mesh interface instance, mesh entities (vertices and elements), sets, and tags. Entities are addressed through handlesmore » rather than pointers, to allow the underlying representation of an entity to change without changing the handle to that entity. Sets are arbitrary groupings of mesh entities and other sets. Sets also support parent/child relationships as a relation distinct from sets containing other sets. The directed-graph provided by set parent/child relationships is useful for modeling topological relations from a geometric model or other metadata. Tags are named data which can be assigned to the mesh as a whole, individual entities, or sets. Tags are a mechanism for attaching data to individual entities and sets are a mechanism for describing relations between entities; the combination of these two mechanisms isa powerful yet simple interface for representing metadata or application-specific data. For example, sets and tags can be used together to describe geometric topology, boundary condition, and inter-processor interface groupings in a mesh. MOAB is used in several ways in various applications. MOAB serves as the underlying mesh data representation in the VERDE mesh verification code. MOAB can also be used as a mesh input mechanism, using mesh readers induded with MOAB, or as a t’anslator between mesh formats, using readers and writers included with MOAB.« less

  4. Temperature and electrolyte optimization of the α-hemolysin latch sensing zone for detection of base modification in double-stranded DNA.

    PubMed

    Johnson, Robert P; Fleming, Aaron M; Jin, Qian; Burrows, Cynthia J; White, Henry S

    2014-08-19

    The latch region of the wild-type protein pore α-hemolysin (α-HL) constitutes a sensing zone for individual abasic sites (and furan analogs) in double-stranded DNA (dsDNA). The presence of an abasic site or furan within a DNA duplex, electrophoretically captured in the α-HL vestibule and positioned at the latch region, can be detected based on the current blockage prior to duplex unzipping. We investigated variations in blockage current as a function of temperature (12-35°C) and KCl concentration (0.15-1.0 M) to understand the origin of the current signature and to optimize conditions for identifying the base modification. In 1 M KCl solution, substitution of a furan for a cytosine base in the latch region results in an ∼ 8 kJ mol(-1) decrease in the activation energy for ion transport through the protein pore. This corresponds to a readily measured ∼ 2 pA increase in current at room temperature. Optimal resolution for detecting the presence of a furan in the latch region is achieved at lower KCl concentrations, where the noise in the measured blockage current is significantly lower. The noise associated with the blockage current also depends on the stability of the duplex (as measured from the melting temperature), where a greater noise in the measured blockage current is observed for less stable duplexes. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Alpha-tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II.

    PubMed

    Dong, L-F; Low, P; Dyason, J C; Wang, X-F; Prochazka, L; Witting, P K; Freeman, R; Swettenham, E; Valis, K; Liu, J; Zobalova, R; Turanek, J; Spitz, D R; Domann, F E; Scheffler, I E; Ralph, S J; Neuzil, J

    2008-07-17

    Alpha-tocopheryl succinate (alpha-TOS) is a selective inducer of apoptosis in cancer cells, which involves the accumulation of reactive oxygen species (ROS). The molecular target of alpha-TOS has not been identified. Here, we show that alpha-TOS inhibits succinate dehydrogenase (SDH) activity of complex II (CII) by interacting with the proximal and distal ubiquinone (UbQ)-binding site (Q(P) and Q(D), respectively). This is based on biochemical analyses and molecular modelling, revealing similar or stronger interaction energy of alpha-TOS compared to that of UbQ for the Q(P) and Q(D) sites, respectively. CybL-mutant cells with dysfunctional CII failed to accumulate ROS and underwent apoptosis in the presence of alpha-TOS. Similar resistance was observed when CybL was knocked down with siRNA. Reconstitution of functional CII rendered CybL-mutant cells susceptible to alpha-TOS. We propose that alpha-TOS displaces UbQ in CII causing electrons generated by SDH to recombine with molecular oxygen to yield ROS. Our data highlight CII, a known tumour suppressor, as a novel target for cancer therapy.

  6. α-Tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II

    PubMed Central

    Dong, Lan-Feng; Low, Pauline; Dyason, Jeffrey C.; Wang, Xiu-Fang; Prochazka, Lubomir; Witting, Paul K.; Freeman, Ruth; Swettenham, Emma; Valis, Karel; Liu, Ji; Zobalova, Renata; Turanek, Jaroslav; Spitz, Doug R.; Domann, Frederick E.; Scheffler, Immo E.; Ralph, Stephen J.; Neuzil, Jiri

    2009-01-01

    α-Tocopheryl succinate (α-TOS) is a selective inducer of apoptosis in cancer cells, which involves the accumulation of reactive oxygen species (ROS). The molecular target of α-TOS has not been identified. Here we show that α-TOS inhibits succinate dehydrogenase (SDH) activity of complex II (CII) by interacting with the proximal and distal ubiquinone (UbQ) binding site (QP and QD, respectively). This is based on biochemical analyses and molecular modelling, revealing similar or stronger interaction energy of α-TOS compared to that of UbQ for the QP and QD sites, respectively. CybL-mutant cells with dysfunctional CII failed to accumulate ROS and undergo apoptosis in the presence of α-TOS. Similar resistance was observed when CybL was knocked down with siRNA. Reconstitution of functional CII rendered CybL-mutant cells susceptible to α-TOS. We propose that α-TOS displaces UbQ in CII causing electrons generated by SDH to recombine with molecular oxygen to yield ROS. Our data highlight CII, a known tumour suppressor, as a novel target for cancer therapy. PMID:18372923

  7. Sm@C2v(3)-C80: site-hopping motion of endohedral Sm atom and metal-induced effect on redox profile

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Niu, Ben; Shi, Zujin; Lian, Yongfu; Feng, Lai

    2012-10-01

    A new metallofullerene Sm@C2v(3)-C80 was synthesized and characterized. X-Ray analysis showed that the endohedral Sm atom undergoes a hopping motion between several off-center sites, even at low temperature. In addition, a comparative electrochemical study between Sm@C2v(3)-C80 and Yb@C2v(3)-C80 revealed their different redox potentials, suggesting a metal-induced effect on their redox profiles.A new metallofullerene Sm@C2v(3)-C80 was synthesized and characterized. X-Ray analysis showed that the endohedral Sm atom undergoes a hopping motion between several off-center sites, even at low temperature. In addition, a comparative electrochemical study between Sm@C2v(3)-C80 and Yb@C2v(3)-C80 revealed their different redox potentials, suggesting a metal-induced effect on their redox profiles. CCDC reference number 894168. For crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr32193a

  8. Drug-induced sleep endoscopy in the identification of obstruction sites in patients with obstructive sleep apnea: a systematic review.

    PubMed

    Viana, Alonço da Cunha; Thuler, Luiz Claudio Santos; Araújo-Melo, Maria Helena de

    2015-01-01

    Obstructive sleep apnea syndrome has multifactorial causes. Although indications for surgery are evaluated by well-known diagnostic tests in the awake state, these do not always correlate with satisfactory surgical results. To undertake a systematic review on endoscopy during sleep, as one element of the diagnosis routine, aiming to identify upper airway obstruction sites in adult patients with OSAS. By means of electronic databases, a systematic review was performed of studies using drug-induced sleep endoscopy to identify obstruction sites in patients with OSAS. Ten articles were selected that demonstrated the importance of identifying multilevel obstruction, especially in relation to retrolingual and laryngeal collapse in OSAS. DISE is an additional method to reveal obstruction sites that have not been detected in awake patients. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  9. Phosphorylation of α3 Glycine Receptors Induces a Conformational Change in the Glycine-Binding Site

    PubMed Central

    2013-01-01

    Inflammatory pain sensitization is initiated by prostaglandin-induced phosphorylation of α3 glycine receptors (GlyRs) that are specifically located in inhibitory synapses on spinal pain sensory neurons. Phosphorylation reduces the magnitude of glycinergic synaptic currents, thereby disinhibiting nociceptive neurons. Although α1 and α3 subunits are both expressed on spinal nociceptive neurons, α3 is a more promising therapeutic target as its sparse expression elsewhere implies a reduced risk of side-effects. Here we compared glycine-mediated conformational changes in α1 and α3 GlyRs to identify structural differences that might be exploited in designing α3-specific analgesics. Using voltage-clamp fluorometry, we show that glycine-mediated conformational changes in the extracellular M2-M3 domain were significantly different between the two GlyR isoforms. Using a chimeric approach, we found that structural variations in the intracellular M3-M4 domain were responsible for this difference. This prompted us to test the hypothesis that phosphorylation of S346 in α3 GlyR might also induce extracellular conformation changes. We show using both voltage-clamp fluorometry and pharmacology that Ser346 phosphorylation elicits structural changes in the α3 glycine-binding site. These results provide the first direct evidence for phosphorylation-mediated extracellular conformational changes in pentameric ligand-gated ion channels, and thus suggest new loci for investigating how phosphorylation modulates structure and function in this receptor family. More importantly, by demonstrating that phosphorylation alters α3 GlyR glycine-binding site structure, they raise the possibility of developing analgesics that selectively target inflammation-modulated GlyRs. PMID:23834509

  10. Site specificity of adrenalectomy-induced brain growth.

    PubMed

    Thomas, T L; Devenport, L D

    1988-12-01

    Infant, juvenile, and adult brain growth is modulated by corticosterone. This study was designed to determine whether such modulation is confined to certain specific brain areas, and if the pattern of growth revealed is consistent across strains of rats. Young female Sprague-Dawley-derived rats were either adrenalectomized (ADX) or sham-operated (Sham) and allowed to mature 45 days before they were sacrificed for histological analysis. Fore brain sections were taken at several planes for display by projection microscope. Of the 21 sites examined, ADX exerted its greatest effect upon neocortical tissue and myelinated fiber tracts. The only other brain region affected was thalamus, which exhibited a significant widening as a result of ADX. In contrast, archicortical structures were notably unaffected by ADX. Neither the hippocampus, measured from a variety of planes, nor nuclei in the septal area were subject to increased growth by ADX. This general portrayal of ADX's site specificity held across strains of rats. However, there were local differences. Within the neopallium, the frontal region underwent the greatest thickening in one strain, while the occipital area was most strongly affected in the other. Parietal cortex was equally responsive in both strains. The pattern of sensitive vs insensitive sites bore a resemblance to the pattern of increased growth brought about by environmental enrichment as well as the fore brain distribution of Type 2 corticosterone receptors.

  11. Downregulation of hPMC2 imparts chemotherapeutic sensitivity to alkylating agents in breast cancer cells.

    PubMed

    Krishnamurthy, Nirmala; Liu, Lili; Xiong, Xiahui; Zhang, Junran; Montano, Monica M

    2015-01-01

    Triple negative breast cancer cell lines have been reported to be resistant to the cyotoxic effects of temozolomide (TMZ). We have shown previously that a novel protein, human homolog of Xenopus gene which Prevents Mitotic Catastrophe (hPMC2) has a role in the repair of estrogen-induced abasic sites. Our present study provides evidence that downregulation of hPMC2 in MDA-MB-231 and MDA-MB-468 breast cancer cells treated with temozolomide (TMZ) decreases cell survival. This increased sensitivity to TMZ is associated with an increase in number of apurinic/apyrimidinic (AP) sites in the DNA. We also show that treatment with another alkylating agent, BCNU, results in an increase in AP sites and decrease in cell survival. Quantification of western blot analyses and immunofluorescence experiments reveal that treatment of hPMC2 downregulated cells with TMZ results in an increase in γ-H2AX levels, suggesting an increase in double strand DNA breaks. The enhancement of DNA double strand breaks in TMZ treated cells upon downregulation of hPCM2 is also revealed by the comet assay. Overall, we provide evidence that downregulation of hPMC2 in breast cancer cells increases cytotoxicity of alkylating agents, representing a novel mechanism of treatment for breast cancer. Our data thus has important clinical implications in the management of breast cancer and brings forth potentially new therapeutic strategies.

  12. Study case - Induced Polarization response from a BTEX contaminated site in Brazil

    NASA Astrophysics Data System (ADS)

    Ustra, A.; Elis, V.; Minozzo, M.

    2011-12-01

    A hydrocarbon contaminated site in Brazil was investigated using DC-resistivity and Induced Polarization (IP) methods. The study area is a chemical industry facility that manufactures paint for automobiles. The industrial process involves the use of many hydrocarbon derivative products, including BTEX (benzene, toluene, ethyl benzene and xylene) and organic chlorides. The area was contaminated by some (not documented) accidental spills of BTEX throughout many years. Monitoring wells revealed concentrations from a few ppm to hundreds ppm of BTEX around the area, as well as other compounds. Two soil samples were collected from an area where some spills where known to have happened. Soil analyses of these samples found the presence of microbes, and therefore biodegradation is believed to be occurring at the site. The objective of this study is to relate the IP response distribution to the presence of contamination and/or microbial activity. The geophysical survey consisted in a rectangular mesh composed of 15 parallel lines with 60 meters of extension, using dipole-dipole array. Lines were spaced by 3 meters. Metallic electrodes were used for current injection, and non-polarizing electrodes (Cu/CuSO4) for potential measurement. Current was injected in cycles of 2 seconds. IP measurements were recorded after 160 milliseconds delay of current shut off, and integration time windows were 120, 220, 420, and 820 milliseconds. All data were concatenated into a single data set and submitted to 3D inversion routine. A conductive zone (resistivity less than 100 ohm.m and chargeability less than 2mV/V) was observed where microbes were found. This feature was interpreted as possibly due to natural biodegradation process, that increases total dissolved salts as a result of mineral weathering by organic acids produced in the degradation process. Normalized chargeability (chargeability divided by resistivity) showed an enhanced polarization zone where microbes were detected. This

  13. Heat shock protein 70 stimulation of the deoxyribonucleic acid base excision repair enzyme polymerase β

    PubMed Central

    Mendez, Frances; Kozin, Elliott; Bases, Robert

    2003-01-01

    Base excision repair (BER) of damaged deoxyribonucleic acid (DNA) is a multistep process during which potentially lethal abasic sites temporarily exist. Repair of these lesions is greatly stimulated by heat shock protein 70 (Hsp70), which enhances strand incision and removal of the abasic sites by human apurinic-apyrimidinic endonuclease (HAP1). The resulting single-strand gaps must then be filled in. Here, we show that Hsp70 and its 48- and 43-kDa N-terminal domains greatly stimulated filling in the single-strand gaps by DNA polymerase β, a novel finding that extends the role of Hsps in DNA repair. Incorporation of deoxyguanosine monophosphate (dGMP) to fill in single-strand gaps in DNA phagemid pBKS by DNA polymerase β was stimulated by Hsp70. Truncated proteins derived from the C-terminus of Hsp70 as well as unrelated proteins were less effective, but proteins derived from the N-terminus of Hsp70 remained efficient stimulators of DNA polymerase β repair of DNA single-strand gaps. In agreement with these results, repair of a gap in a 30-bp oligonucleotide by polymerase β also was strongly stimulated by Hsp70 although not by a truncated protein from the C-terminus of Hsp70. Sealing of the repaired site in the oligonucleotide by human DNA ligase 1 was not specifically stimulated by Hsp-related proteins. Results presented here now implicate and extend the role of Hsp70 as a partner in the enzymatic repair of damaged DNA. The participation of Hsp70 jointly with base excision enzymes improves repair efficiency by mechanisms that are not yet understood. PMID:14627201

  14. DNA translocation by human uracil DNA glycosylase: the case of single-stranded DNA and clustered uracils.

    PubMed

    Schonhoft, Joseph D; Stivers, James T

    2013-04-16

    Human uracil DNA glycosylase (hUNG) plays a central role in DNA repair and programmed mutagenesis of Ig genes, requiring it to act on sparsely or densely spaced uracil bases located in a variety of contexts, including U/A and U/G base pairs, and potentially uracils within single-stranded DNA (ssDNA). An interesting question is whether the facilitated search mode of hUNG, which includes both DNA sliding and hopping, changes in these different contexts. Here we find that hUNG uses an enhanced local search mode when it acts on uracils in ssDNA, and also, in a context where uracils are densely clustered in duplex DNA. In the context of ssDNA, hUNG performs an enhanced local search by sliding with a mean sliding length larger than that of double-stranded DNA (dsDNA). In the context of duplex DNA, insertion of high-affinity abasic product sites between two uracil lesions serves to significantly extend the apparent sliding length on dsDNA from 4 to 20 bp and, in some cases, leads to directionally biased 3' → 5' sliding. The presence of intervening abasic product sites mimics the situation where hUNG acts iteratively on densely spaced uracils. The findings suggest that intervening product sites serve to increase the amount of time the enzyme remains associated with DNA as compared to nonspecific DNA, which in turn increases the likelihood of sliding as opposed to falling off the DNA. These findings illustrate how the search mechanism of hUNG is not predetermined but, instead, depends on the context in which the uracils are located.

  15. Site specific oxidation of amino acid residues in rat lens γ-crystallin induced by low-dose γ-irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ingu; Saito, Takeshi; Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494

    Although cataracts are a well-known age-related disease, the mechanism of their formation is not well understood. It is currently thought that eye lens proteins become abnormally aggregated, initially causing clumping that scatters the light and interferes with focusing on the retina, and ultimately resulting in a cataract. The abnormal aggregation of lens proteins is considered to be triggered by various post-translational modifications, such as oxidation, deamidation, truncation and isomerization, that occur during the aging process. Such modifications, which are also generated by free radical and reactive oxygen species derived from γ-irradiation, decrease crystallin solubility and lens transparency, and ultimately leadmore » to the development of a cataract. In this study, we irradiated young rat lenses with low-dose γ-rays and extracted the water-soluble and insoluble protein fractions. The water-soluble and water-insoluble lens proteins were digested with trypsin, and the resulting peptides were analyzed by LC-MS. Specific oxidation sites of methionine, cysteine and tryptophan in rat water-soluble and -insoluble γE and γF-crystallin were determined by one-shot analysis. The oxidation sites in rat γE and γF-crystallin resemble those previously identified in γC and γD-crystallin from human age-related cataracts. Our study on modifications of crystallins induced by ionizing irradiation may provide useful information relevant to human senile cataract formation. - Highlights: • Low-dose γ-rays induced oxidation at specific residues in γE- and γF-crystallin. • The number of oxidation sites was higher in insoluble than soluble crystallins. • γ-Irradiation closely mimics the oxidation that occur in senile human cataracts.« less

  16. Background estimation of cosmic-ray induced neutrons in Chooz site water veto tank for possible future Ricochet Deployment

    NASA Astrophysics Data System (ADS)

    Silva, James

    2017-09-01

    The Ricochet experiment seeks to measure Coherent (neutral-current) Elastic Neutrino-Nucleus Scattering (CE νNS) using metallic superconducting and germanium semi-conducting detectors with sub-keV thresholds placed near a neutrino source such as the Chooz Nuclear Reactor Complex. In this poster, we present an estimate of the flux of cosmic-ray induced neutrons, which represent an important background in any (CE νNS) search, based on reconstructed cosmic ray data from the Chooz Site. We have simulated a possible Ricochet deployment at the Chooz site in GEANT4 focusing on the spallation neutrons generated when cosmic rays interact with the water tank veto that would surround our detector. We further simulate and discuss the effectiveness of various shielding configurations for optimizing the background levels for a future Ricochet deployment.

  17. DNA bending and a flip-out mechanism for base excision by the helix–hairpin–helix DNA glycosylase, Escherichia coli AlkA

    PubMed Central

    Hollis, Thomas; Ichikawa, Yoshitaka; Ellenberger, Tom

    2000-01-01

    The Escherichia coli AlkA protein is a base excision repair glycosylase that removes a variety of alkylated bases from DNA. The 2.5 Å crystal structure of AlkA complexed to DNA shows a large distortion in the bound DNA. The enzyme flips a 1–azaribose abasic nucleotide out of DNA and induces a 66° bend in the DNA with a marked widening of the minor groove. The position of the 1–azaribose in the enzyme active site suggests an SN1-type mechanism for the glycosylase reaction, in which the essential catalytic Asp238 provides direct assistance for base removal. Catalytic selectivity might result from the enhanced stacking of positively charged, alkylated bases against the aromatic side chain of Trp272 in conjunction with the relative ease of cleaving the weakened glycosylic bond of these modified nucleotides. The structure of the AlkA–DNA complex offers the first glimpse of a helix–hairpin–helix (HhH) glycosylase complexed to DNA. Modeling studies suggest that other HhH glycosylases can bind to DNA in a similar manner. PMID:10675345

  18. Hydrophobic motif site-phosphorylated protein kinase CβII between mTORC2 and Akt regulates high glucose-induced mesangial cell hypertrophy.

    PubMed

    Das, Falguni; Ghosh-Choudhury, Nandini; Mariappan, Meenalakshmi M; Kasinath, Balakuntalam S; Choudhury, Goutam Ghosh

    2016-04-01

    PKCβII controls the pathologic features of diabetic nephropathy, including glomerular mesangial cell hypertrophy. PKCβII contains the COOH-terminal hydrophobic motif site Ser-660. Whether this hydrophobic motif phosphorylation contributes to high glucose-induced mesangial cell hypertrophy has not been determined. Here we show that, in mesangial cells, high glucose increased phosphorylation of PKCβII at Ser-660 in a phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. Using siRNAs to downregulate PKCβII, dominant negative PKCβII, and PKCβII hydrophobic motif phosphorylation-deficient mutant, we found that PKCβII regulates activation of mechanistic target of rapamycin complex 1 (mTORC1) and mesangial cell hypertrophy by high glucose. PKCβII via its phosphorylation at Ser-660 regulated phosphorylation of Akt at both catalytic loop and hydrophobic motif sites, resulting in phosphorylation and inactivation of its substrate PRAS40. Specific inhibition of mTORC2 increased mTORC1 activity and induced mesangial cell hypertrophy. In contrast, inhibition of mTORC2 decreased the phosphorylation of PKCβII and Akt, leading to inhibition of PRAS40 phosphorylation and mTORC1 activity and prevented mesangial cell hypertrophy in response to high glucose; expression of constitutively active Akt or mTORC1 restored mesangial cell hypertrophy. Moreover, constitutively active PKCβII reversed the inhibition of high glucose-stimulated Akt phosphorylation and mesangial cell hypertrophy induced by suppression of mTORC2. Finally, using renal cortexes from type 1 diabetic mice, we found that increased phosphorylation of PKCβII at Ser-660 was associated with enhanced Akt phosphorylation and mTORC1 activation. Collectively, our findings identify a signaling route connecting PI3-kinase to mTORC2 to phosphorylate PKCβII at the hydrophobic motif site necessary for Akt phosphorylation and mTORC1 activation, leading to mesangial cell hypertrophy.

  19. Hydrophobic motif site-phosphorylated protein kinase CβII between mTORC2 and Akt regulates high glucose-induced mesangial cell hypertrophy

    PubMed Central

    Das, Falguni; Mariappan, Meenalakshmi M.; Kasinath, Balakuntalam S.; Choudhury, Goutam Ghosh

    2016-01-01

    PKCβII controls the pathologic features of diabetic nephropathy, including glomerular mesangial cell hypertrophy. PKCβII contains the COOH-terminal hydrophobic motif site Ser-660. Whether this hydrophobic motif phosphorylation contributes to high glucose-induced mesangial cell hypertrophy has not been determined. Here we show that, in mesangial cells, high glucose increased phosphorylation of PKCβII at Ser-660 in a phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. Using siRNAs to downregulate PKCβII, dominant negative PKCβII, and PKCβII hydrophobic motif phosphorylation-deficient mutant, we found that PKCβII regulates activation of mechanistic target of rapamycin complex 1 (mTORC1) and mesangial cell hypertrophy by high glucose. PKCβII via its phosphorylation at Ser-660 regulated phosphorylation of Akt at both catalytic loop and hydrophobic motif sites, resulting in phosphorylation and inactivation of its substrate PRAS40. Specific inhibition of mTORC2 increased mTORC1 activity and induced mesangial cell hypertrophy. In contrast, inhibition of mTORC2 decreased the phosphorylation of PKCβII and Akt, leading to inhibition of PRAS40 phosphorylation and mTORC1 activity and prevented mesangial cell hypertrophy in response to high glucose; expression of constitutively active Akt or mTORC1 restored mesangial cell hypertrophy. Moreover, constitutively active PKCβII reversed the inhibition of high glucose-stimulated Akt phosphorylation and mesangial cell hypertrophy induced by suppression of mTORC2. Finally, using renal cortexes from type 1 diabetic mice, we found that increased phosphorylation of PKCβII at Ser-660 was associated with enhanced Akt phosphorylation and mTORC1 activation. Collectively, our findings identify a signaling route connecting PI3-kinase to mTORC2 to phosphorylate PKCβII at the hydrophobic motif site necessary for Akt phosphorylation and mTORC1 activation, leading to mesangial cell hypertrophy. PMID:26739493

  20. Methoxyflurane acts at the substrate binding site of cytochrome P450 LM2 to induce a dependence on cytochrome b5.

    PubMed

    Lipka, J J; Waskell, L A

    1989-01-01

    Rabbit cytochrome P450 isozyme 2 requires cytochrome b5 to metabolize the volatile anesthetic methoxyflurane but not the substrate benzphetamine [E. Canova-Davis and L. Waskell (1984) J. Biol. Chem. 259, 2541-2546]. To determine whether the requirement for cytochrome b5 for methoxyflurane oxidation is mediated by an allosteric effect on cytochrome P450 LM2 or cytochrome P450 reductase, we have investigated whether this anesthetic can induce a role for cytochrome b5 in benzphetamine metabolism. Using rabbit liver microsomes and antibodies raised in guinea pigs against rabbit cytochrome b5, we found that methoxyflurane did not create a cytochrome b5 requirement for benzphetamine metabolism. Methoxyflurane also failed to induce a role for cytochrome b5 in benzphetamine metabolism in the purified, reconstituted mixed function oxidase system. Studies of the reaction kinetics established that in the absence of cytochrome b5, methoxyflurane and benzphetamine are competitive inhibitors, and that in the presence of cytochrome b5, benzphetamine and methoxyflurane are two alternate substrates in competition for a single site on the same enzyme. These results all indicate that the methoxyflurane-induced cytochrome b5 dependence of the mixed function oxidase cytochrome P450 LM2 system is a direct result of the interaction between methoxyflurane and the substrate binding site of cytochrome P450 LM2 and suggest the focus of future studies of this question.

  1. Pre-steady-state fluorescence analysis of damaged DNA transfer from human DNA glycosylases to AP endonuclease APE1.

    PubMed

    Kuznetsova, Alexandra A; Kuznetsov, Nikita A; Ishchenko, Alexander A; Saparbaev, Murat K; Fedorova, Olga S

    2014-10-01

    DNA glycosylases remove the modified, damaged or mismatched bases from the DNA by hydrolyzing the N-glycosidic bonds. Some enzymes can further catalyze the incision of a resulting abasic (apurinic/apyrimidinic, AP) site through β- or β,δ-elimination mechanisms. In most cases, the incision reaction of the AP-site is catalyzed by special enzymes called AP-endonucleases. Here, we report the kinetic analysis of the mechanisms of modified DNA transfer from some DNA glycosylases to the AP endonuclease, APE1. The modified DNA contained the tetrahydrofurane residue (F), the analogue of the AP-site. DNA glycosylases AAG, OGG1, NEIL1, MBD4(cat) and UNG from different structural superfamilies were used. We found that all DNA glycosylases may utilise direct protein-protein interactions in the transient ternary complex for the transfer of the AP-containing DNA strand to APE1. We hypothesize a fast "flip-flop" exchange mechanism of damaged and undamaged DNA strands within this complex for monofunctional DNA glycosylases like MBD4(cat), AAG and UNG. Bifunctional DNA glycosylase NEIL1 creates tightly specific complex with DNA containing F-site thereby efficiently competing with APE1. Whereas APE1 fast displaces other bifunctional DNA glycosylase OGG1 on F-site thereby induces its shifts to undamaged DNA regions. Kinetic analysis of the transfer of DNA between human DNA glycosylases and APE1 allows us to elucidate the critical step in the base excision repair pathway. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. cGAS-Mediated Innate Immunity Spreads Intercellularly through HIV-1 Env-Induced Membrane Fusion Sites.

    PubMed

    Xu, Shuting; Ducroux, Aurélie; Ponnurangam, Aparna; Vieyres, Gabrielle; Franz, Sergej; Müsken, Mathias; Zillinger, Thomas; Malassa, Angelina; Ewald, Ellen; Hornung, Veit; Barchet, Winfried; Häussler, Susanne; Pietschmann, Thomas; Goffinet, Christine

    2016-10-12

    Upon sensing cytoplasmic retroviral DNA in infected cells, cyclic GMP-AMP (cGAMP) synthase (cGAS) produces the cyclic dinucleotide cGAMP, which activates STING to trigger a type I interferon (IFN) response. We find that membrane fusion-inducing contact between donor cells expressing the HIV envelope (Env) and primary macrophages endogenously expressing the HIV receptor CD4 and coreceptor enable intercellular transfer of cGAMP. This cGAMP exchange results in STING-dependent antiviral IFN responses in target macrophages and protection from HIV infection. Furthermore, under conditions allowing cell-to-cell transmission of HIV-1, infected primary T cells, but not cell-free virions, deliver cGAMP to autologous macrophages through HIV-1 Env and CD4/coreceptor-mediated membrane fusion sites and induce a STING-dependent, but cGAS-independent, IFN response in target cells. Collectively, these findings identify an infection-specific mode of horizontal transfer of cGAMP between primary immune cells that may boost antiviral responses, particularly in infected tissues in which cell-to-cell transmission of virions exceeds cell-free infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Electron attachment-induced DNA single-strand breaks at the pyrimidine sites

    PubMed Central

    Gu, Jiande; Wang, Jing; Leszczynski, Jerzy

    2010-01-01

    . This consistency between the theoretical predictions and the experimental observations provides strong supportive evidences for the base-centered radical anion mechanism of the LEE-induced single-strand bond breaking around the pyrimidine sites of the DNA single strands. PMID:20430827

  4. Seismically induced liquefaction structures in La Magdalena archaeological site, the 4th century AD Roman Complutum (Madrid, Spain)

    NASA Astrophysics Data System (ADS)

    Rodríguez-Pascua, M. A.; Silva, P. G.; Perucha, M. A.; Giner-Robles, J. L.; Heras, C.; Bastida, A. B.; Carrasco, P.; Roquero, E.; Lario, J.; Bardaji, T.; Pérez-López, R.; Elez, J.

    2016-10-01

    The ancient Roman city of Complutum (Alcalá de Henares, Madrid), founded in the 1st century AD, was one of the most important cities of Hispania. The old Roman city was destroyed, abruptly abandoned, relocated close by and rebuilt during the late 4th century AD. Destruction of the city and its relocation has not yet been explained by archaeologists. In this paper, with our multidisciplinary approach, we identify and characterize earthquake archaeological effects (EAEs) affecting the archaeological site, the La Magdalena, an agricultural holding 4 km from the core of Complutum. The most important EAEs in the site are liquefactions (sand dikes and explosive sand-gravel craters) affecting Roman structures, such as water tanks (cisterns), houses and graves. Ground liquefaction generated significant ground cracks, explosive craters and folds in foundations of buildings. Several other Roman sites throughout the valley were also abandoned abruptly during the 4th century AD, in some cases with EAEs of similar origin. This suggests the occurrence of a 5.0-6.6 Mw seismic event in the zone, in accordance with the minimum empirical limit of seismically-induced liquefaction and the maximum surface rupture length of the Henares fault.

  5. Subsurface imaging of water electrical conductivity, hydraulic permeability and lithology at contaminated sites by induced polarization

    NASA Astrophysics Data System (ADS)

    Maurya, P. K.; Balbarini, N.; Møller, I.; Rønde, V.; Christiansen, A. V.; Bjerg, P. L.; Auken, E.; Fiandaca, G.

    2018-05-01

    At contaminated sites, knowledge about geology and hydraulic properties of the subsurface and extent of the contamination is needed for assessing the risk and for designing potential site remediation. In this study, we have developed a new approach for characterizing contaminated sites through time-domain spectral induced polarization. The new approach is based on: (1) spectral inversion of the induced polarization data through a reparametrization of the Cole-Cole model, which disentangles the electrolytic bulk conductivity from the surface conductivity for delineating the contamination plume; (2) estimation of hydraulic permeability directly from the inverted parameters using a laboratory-derived empirical equation without any calibration; (3) the use of the geophysical imaging results for supporting the geological modelling and planning of drilling campaigns. The new approach was tested on a data set from the Grindsted stream (Denmark), where contaminated groundwater from a factory site discharges to the stream. Two overlapping areas were covered with seven parallel 2-D profiles each, one large area of 410 m × 90 m (5 m electrode spacing) and one detailed area of 126 m × 42 m (2 m electrode spacing). The geophysical results were complemented and validated by an extensive set of hydrologic and geologic information, including 94 estimates of hydraulic permeability obtained from slug tests and grain size analyses, 89 measurements of water electrical conductivity in groundwater, and four geological logs. On average the IP-derived and measured permeability values agreed within one order of magnitude, except for those close to boundaries between lithological layers (e.g. between sand and clay), where mismatches occurred due to the lack of vertical resolution in the geophysical imaging. An average formation factor was estimated from the correlation between the imaged bulk conductivity values and the water conductivity values measured in groundwater, in order to

  6. Exterior Site Occupancy Infers Chloride-Induced Proton Gating in a Prokaryotic Homolog of the ClC Chloride Channel

    PubMed Central

    Bostick, David L.; Berkowitz, Max L.

    2004-01-01

    The ClC family of anion channels mediates the efficient, selective permeation of Cl− across the biological membranes of living cells under the driving force of an electrochemical gradient. In some eukaryotes, these channels are known to exhibit a unique gating mechanism, which appears to be triggered by the permeant Cl− anion. We infer details of this gating mechanism by studying the free energetics of Cl− occupancy in the pore of a prokaryotic ClC homolog. These free energetics were gleaned from 30 ns of molecular dynamics simulation on an ∼133,000-atom system consisting of a hydrated membrane embedded StClC transporter. The binding sites for Cl− in the transporter were determined for the cases where the putative gating residue, Glu148, was protonated and unprotonated. When the glutamate gate is protonated, Cl− favorably occupies an exterior site, Sext, to form a queue of anions in the pore. However, when the glutamate gate is unprotonated, Cl− cannot occupy this site nor, consequently, pass through the pore. An additional, previously undetected, site was found in the pore near the outer membrane that exists regardless of the protonation state of Glu148. Although this suggests that, for the prokaryotic homolog, protonation of Glu148 may be the first step in transporting Cl− at the expense of H+ transport in the opposite direction, an evolutionary argument might suggest that Cl− opens the ClC gate in eukaryotic channels by inducing the conserved glutamate's protonation. During an additional 20 ns free dynamics simulation, the newly discovered outermost site, Sout, and the innermost site, Sint, were seen to allow spontaneous exchange of Cl− ions with the bulk electrolyte while under depolarization conditions. PMID:15345547

  7. Pembrolizumab-induced sarcoidal infusion site reaction.

    PubMed

    Smith, Robert J; Mitchell, Tara C; Chu, Emily Y

    2018-06-25

    Immune checkpoint inhibition is currently a hallmark of therapy in the treatment of metastatic melanoma and other malignancies. 1 Due to their distinct mechanisms of action, these checkpoint inhibitors have yielded a breadth of immune-related adverse events (irAEs), many of which are cutaneous. 2 Herein, we describe a case of a patient with metastatic melanoma treated with pembrolizumab, complicated by likely pulmonary sarcoidosis as well as a recurrent cutaneous sarcoidal granulomatous reaction at the infusion sites of his biologic therapy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Evolution of Metal(Loid) Binding Sites in Transcriptional Regulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ordonez, E.; Thiyagarajan, S.; Cook, J.D.

    2009-05-22

    Expression of the genes for resistance to heavy metals and metalloids is transcriptionally regulated by the toxic ions themselves. Members of the ArsR/SmtB family of small metalloregulatory proteins respond to transition metals, heavy metals, and metalloids, including As(III), Sb(III), Cd(II), Pb(II), Zn(II), Co(II), and Ni(II). These homodimeric repressors bind to DNA in the absence of inducing metal(loid) ion and dissociate from the DNA when inducer is bound. The regulatory sites are often three- or four-coordinate metal binding sites composed of cysteine thiolates. Surprisingly, in two different As(III)-responsive regulators, the metalloid binding sites were in different locations in the repressor, andmore » the Cd(II) binding sites were in two different locations in two Cd(II)-responsive regulators. We hypothesize that ArsR/SmtB repressors have a common backbone structure, that of a winged helix DNA-binding protein, but have considerable plasticity in the location of inducer binding sites. Here we show that an As(III)-responsive member of the family, CgArsR1 from Corynebacterium glutamicum, binds As(III) to a cysteine triad composed of Cys{sup 15}, Cys{sup 16}, and Cys{sup 55}. This binding site is clearly unrelated to the binding sites of other characterized ArsR/SmtB family members. This is consistent with our hypothesis that metal(loid) binding sites in DNA binding proteins evolve convergently in response to persistent environmental pressures.« less

  9. RDX Binds to the GABAA Receptor–Convulsant Site and Blocks GABAA Receptor–Mediated Currents in the Amygdala: A Mechanism for RDX-Induced Seizures

    PubMed Central

    Williams, Larry R.; Aroniadou-Anderjaska, Vassiliki; Qashu, Felicia; Finne, Huckelberry; Pidoplichko, Volodymyr; Bannon, Desmond I.; Braga, Maria F. M.

    2011-01-01

    Background Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a high-energy, trinitrated cyclic compound that has been used worldwide since World War II as an explosive in both military and civilian applications. RDX can be released in the environment by way of waste streams generated during the manufacture, use, and disposal of RDX-containing munitions and can leach into groundwater from unexploded munitions found on training ranges. For > 60 years, it has been known that exposure to high doses of RDX causes generalized seizures, but the mechanism has remained unknown. Objective We investigated the mechanism by which RDX induces seizures. Methods and results By screening the affinity of RDX for a number of neurotransmitter receptors, we found that RDX binds exclusively to the picrotoxin convulsant site of the γ-aminobutyric acid type A (GABAA) ionophore. Whole-cell in vitro recordings in the rat basolateral amygdala (BLA) showed that RDX reduces the frequency and amplitude of spontaneous GABAA receptor–mediated inhibitory postsynaptic currents and the amplitude of GABA-evoked postsynaptic currents. In extracellular field recordings from the BLA, RDX induced prolonged, seizure-like neuronal discharges. Conclusions These results suggest that binding to the GABAA receptor convulsant site is the primary mechanism of seizure induction by RDX and that reduction of GABAergic inhibitory transmission in the amygdala is involved in the generation of RDX-induced seizures. Knowledge of the molecular site and the mechanism of RDX action with respect to seizure induction can guide therapeutic strategies, allow more accurate development of safe thresholds for exposures, and help prevent the development of new explosives or other munitions that could pose similar health risks. PMID:21362589

  10. PGV04, an HIV-1 gp120 CD4 Binding Site Antibody, Is Broad and Potent in Neutralization but Does Not Induce Conformational Changes Characteristic of CD4

    PubMed Central

    Falkowska, Emilia; Ramos, Alejandra; Feng, Yu; Zhou, Tongqing; Moquin, Stephanie; Walker, Laura M.; Wu, Xueling; Seaman, Michael S.; Wrin, Terri; Kwong, Peter D.; Wyatt, Richard T.; Mascola, John R.; Poignard, Pascal

    2012-01-01

    Recently, several broadly neutralizing monoclonal antibodies (bnMAbs) directed to the CD4-binding site (CD4bs) of gp120 have been isolated from HIV-1-positive donors. These include VRC01, 3BNC117, and NIH45-46, all of which are capable of neutralizing about 90% of circulating HIV-1 isolates and all of which induce conformational changes in the HIV-1 gp120 monomer similar to those induced by the CD4 receptor. In this study, we characterize PGV04 (also known as VRC-PG04), a MAb with potency and breadth that rivals those of the prototypic VRC01 and 3BNC117. When screened on a large panel of viruses, the neutralizing profile of PGV04 was distinct from those of CD4, b12, and VRC01. Furthermore, the ability of PGV04 to neutralize pseudovirus containing single alanine substitutions exhibited a pattern distinct from those of the other CD4bs MAbs. In particular, substitutions D279A, I420A, and I423A were found to abrogate PGV04 neutralization. In contrast to VRC01, PGV04 did not enhance the binding of 17b or X5 to their epitopes (the CD4-induced [CD4i] site) in the coreceptor region on the gp120 monomer. Furthermore, in contrast to CD4, none of the anti-CD4bs MAbs induced the expression of the 17b epitope on cell surface-expressed cleaved Env trimers. We conclude that potent CD4bs bnMAbs can display differences in the way they recognize and access the CD4bs and that mimicry of CD4, as assessed by inducing conformational changes in monomeric gp120 that lead to enhanced exposure of the CD4i site, is not uniquely correlated with effective neutralization at the site of CD4 binding on HIV-1. PMID:22345481

  11. Small RNAs Targeting Transcription Start Site Induce Heparanase Silencing through Interference with Transcription Initiation in Human Cancer Cells

    PubMed Central

    Pu, Jiarui; Mei, Hong; Zhao, Jun; Huang, Kai; Zeng, Fuqing; Tong, Qiangsong

    2012-01-01

    Heparanase (HPA), an endo-h-D-glucuronidase that cleaves the heparan sulfate chain of heparan sulfate proteoglycans, is overexpressed in majority of human cancers. Recent evidence suggests that small interfering RNA (siRNA) induces transcriptional gene silencing (TGS) in human cells. In this study, transfection of siRNA against −9/+10 bp (siH3), but not −174/−155 bp (siH1) or −134/−115 bp (siH2) region relative to transcription start site (TSS) locating at 101 bp upstream of the translation start site, resulted in TGS of heparanase in human prostate cancer, bladder cancer, and gastric cancer cells in a sequence-specific manner. Methylation-specific PCR and bisulfite sequencing revealed no DNA methylation of CpG islands within heparanase promoter in siH3-transfected cells. The TGS of heparanase did not involve changes of epigenetic markers histone H3 lysine 9 dimethylation (H3K9me2), histone H3 lysine 27 trimethylation (H3K27me3) or active chromatin marker acetylated histone H3 (AcH3). The regulation of alternative splicing was not involved in siH3-mediated TGS. Instead, siH3 interfered with transcription initiation via decreasing the binding of both RNA polymerase II and transcription factor II B (TFIIB), but not the binding of transcription factors Sp1 or early growth response 1, on the heparanase promoter. Moreover, Argonaute 1 and Argonaute 2 facilitated the decreased binding of RNA polymerase II and TFIIB on heparanase promoter, and were necessary in siH3-induced TGS of heparanase. Stable transfection of the short hairpin RNA construct targeting heparanase TSS (−9/+10 bp) into cancer cells, resulted in decreased proliferation, invasion, metastasis and angiogenesis of cancer cells in vitro and in athymic mice models. These results suggest that small RNAs targeting TSS can induce TGS of heparanase via interference with transcription initiation, and significantly suppress the tumor growth, invasion, metastasis and angiogenesis of cancer cells. PMID

  12. Tracking the Chemical Transformations at the Brønsted Acid Site upon Water-Induced Deprotonation in a Zeolite Pore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vjunov, Aleksei; Wang, Meng; Govind, Niranjan

    We report the structural changes induced by Brønsted acidic site deprotonation in a zeolite with MFI structure as a function of temperature up to 430°C using in situ Al K-edge X-ray absorption fine structure spectroscopy (XAFS). At ambient conditions, the protons are present as hydrated hydronium ions (H3O+(H2O)n) that are ion-paired to the anionic, Al tetrahedral (T) site. At elevated temperatures, loss of water molecules hydrating the hydronium ions leads to an unstable free hydronium ion that disso-ciates to form the hydroxylated T-site. The formation of this (-O3)-Al-(OH-) species leads to the elongation of one of the four Al-O bondsmore » and causes significant distortion of the tetrahedral symmetry about the Al atom. This distortion leads to the appearance of new pre-edge features in the Al K-edge X-ray absorption near edge structure (XANES) spectra. The pre-edge peak assignment is confirmed by time-dependent density functional theory calculation of the XANES spectrum. The XANES spectra are also sensitive to solutes or solvent that are in proximity to the T-site. A second structural transition occurs at about the same temperature, namely the conversion of a minor fraction of extra-framework octahedral Al present in the sample at ambient conditions to a tetrahedral species through the de-coordination of H2O-ligands. Both IR spectroscopy and thermogravimetric analysis (TGA) are further used to confirm the overall chemical transformation of the T-site.« less

  13. Cogestion and recreation site demand: a model of demand-induced quality effects

    USGS Publications Warehouse

    Douglas, Aaron J.; Johnson, Richard L.

    1993-01-01

    This analysis focuses on problems of estimating site-specific dollar benefits conferred by outdoor recreation sites in the face of congestion costs. Encounters, crowding effects and congestion costs have often been treated by natural resource economists in a piecemeal fashion. In the current paper, encounters and crowding effects are treated systematically. We emphasize the quantitative impact of congestion costs on site-specific estimates of benefits conferred by improvements in outdoor recreation sites. The principal analytic conclusion is that techniques that streamline on data requirements produce biased estimates of benefits conferred by site improvements at facilities with significant crowding effects. The principal policy recommendation is that the Federal and state agencies should collect and store information on visitation rates, encounter levels and congestion costs at various outdoor recreation sites.

  14. Tannic acid and chromic chloride-induced binding of protein to red cells: a preliminary study of possible binding sites and reaction mechanisms.

    PubMed

    Hunt, A F; Reed, M I

    1990-07-01

    The binding mechanisms and binding sites involved in the tannic acid and chromic chloride-induced binding of protein to red cells were investigated using the binding of IgA paraprotein to red cells as model systems. Inhibition studies of these model systems using amino acid homopolymers and compounds (common as red cell membrane constituents) suggest that the mechanisms involved are similar to those proposed for the conversion of hide or skin collagen to leather, as in commercial tanning. These studies also suggest that tannic acid-induced binding of IgA paraprotein to red cells involves the amino acid residues of L-arginine, L-lysine, L-histidine, and L-proline analogous to tanning with phenolic plant extracts. The amino acid residues of L-aspartate, L-glutamate and L-asparagine are involved in a similar manner in chronic chloride-induced binding of protein to red cells.

  15. Antiferromagnetic interaction between A'-site Mn spins in A-site-ordered perovskite YMn3Al4O12.

    PubMed

    Tohyama, Takenori; Saito, Takashi; Mizumaki, Masaichiro; Agui, Akane; Shimakawa, Yuichi

    2010-03-01

    The A-site-ordered perovskite YMn(3)Al(4)O(12) was prepared by high-pressure synthesis. Structural analysis with synchrotron powder X-ray diffraction data and the Mn L-edges X-ray absorption spectrum revealed that the compound has a chemical composition Y(3+)Mn(3+)(3)Al(3+)(4)O(2-)(12) with magnetic Mn(3+) at the A' site and non-magnetic Al(3+) at the B site. An antiferromagnetic interaction between the A'-site Mn(3+) spins is induced by the nearest neighboring Mn-Mn direct exchange interaction and causes an antiferromagnetic transition at 34.3 K.

  16. Interstitial telomeric sequences in human chromosomes cluster with common fragile sites, mutagen sensitive sites, viral integration sites, cancer breakpoints, proto-oncogenes and breakpoints involved in primate evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adekunle, S.S.A.; Wyandt, H.; Mark, H.F.L.

    1994-09-01

    Recently we mapped the telomeric repeat sequences to 111 interstitial sites in the human genome and to sites of gaps and breaks induced by aphidicolin and sister chromatid exchange sites detected by BrdU. Many of these sites correspond to conserved fragile sites in man, gorilla and chimpazee, to sites of conserved sister chromatid exchange in the mammalian X chromosome, to mutagenic sensitive sites, mapped locations of proto-oncogenes, breakpoints implicated in primate evolution and to breakpoints indicated as the sole anomaly in neoplasia. This observation prompted us to investigate if the interstitial telomeric sites cluster with these sites. An extensive literaturemore » search was carried out to find all the available published sites mentioned above. For comparison, we also carried out a statistical analysis of the clustering of the sites of the telomeric repeats with the gene locations where only nucleotide mutations have been observed as the only chromosomal abnormality. Our results indicate that the telomeric repeats cluster most with fragile sites, mutagenic sensitive sites and breakpoints implicated in primate evolution and least with cancer breakpoints, mapped locations of proto-oncogenes and other genes with nucleotide mutations.« less

  17. The 9-1-1 DNA Clamp Is Required for Immunoglobulin Gene Conversion▿

    PubMed Central

    Saberi, Alihossein; Nakahara, Makoto; Sale, Julian E.; Kikuchi, Koji; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Yamamoto, Kenichi; Takeda, Shunichi; Sonoda, Eiichiro

    2008-01-01

    Chicken DT40 cells deficient in the 9-1-1 checkpoint clamp exhibit hypersensitivity to a variety of DNA-damaging agents. Although recent work suggests that, in addition to its role in checkpoint activation, this complex may play a role in homologous recombination and translesion synthesis, the cause of this hypersensitivity has not been studied thoroughly. The immunoglobulin locus of DT40 cells allows monitoring of homologous recombination and translesion synthesis initiated by activation-induced deaminase (AID)-dependent abasic sites. We show that both the RAD9−/− and RAD17−/− mutants exhibit substantially reduced immunoglobulin gene conversion. However, the level of nontemplated immunoglobulin point mutation increased in these mutants, a finding that is reminiscent of the phenotype resulting from the loss of RAD51 paralogs or Brca2. This suggests that the 9-1-1 complex does not play a central role in translesion synthesis in this context. Despite reduced immunoglobulin gene conversion, the RAD9−/− and RAD17−/− cells do not exhibit a prominent defect in double-strand break-induced gene conversion or a sensitivity to camptothecin. This suggests that the roles of Rad9 and Rad17 may be confined to a subset of homologous recombination reactions initiated by replication-stalling lesions rather than those associated with double-strand break repair. PMID:18662998

  18. Antibody induced CD4 down-modulation of T cells is site-specifically mediated by CD64+ cells

    PubMed Central

    Vogel, Stephanie; Grabski, Elena; Buschjäger, Daniela; Klawonn, Frank; Döring, Marius; Wang, Junxi; Fletcher, Erika; Bechmann, Ingo; Witte, Torsten; Durisin, Martin; Schraven, Burkhart; Mangsbo, Sara M.; Schönfeld, Kurt; Czeloth, Niklas; Kalinke, Ulrich

    2015-01-01

    Treatment of PBMC with the CD4-specific mAb BT-061 induces CD4 down-modulation of T cells. Here we report that addition of BT-061 to purified T cells did not confer this effect, whereas incubation of T cells in BT-061 coated wells restored CD4 down-modulation. These results implied that Fcγ receptor mediated cell-cell interactions played a role. In consistence with this hypothesis PBMC depleted of CD64+ monocytes did not confer CD4 down-modulation of BT-061 decorated T cells. Strikingly, CD4 down-modulation was observed in BT-061 treated synovial fluid punctuated from patients’ inflamed joints that comprised enhanced numbers of CD64+ cells. In contrast, in a circulating whole blood system injection of BT-061 did not induce CD4 down-modulation, due to CD64 saturation by serum IgG. Similarly, tonsil derived mononuclear cells devoid of CD64+ cells did not show CD4 down-modulation, whereas addition of blood derived monocytes restored the effect. Thus, the interaction of BT-061 decorated T cells with CD64+ cells is needed for CD4 down-modulation, implying that in patients BT-061 would primarily induce CD4 down-modulation at inflammatory sites. These results highlight the need not only to examine the interaction of a given mAb with single FcγR, but also the immunological environment that is appropriate to support such interactions. PMID:26670584

  19. ZnO nanopowder induced light scattering for improved visualization of emission sites in carbon nanotube films and arrays

    NASA Astrophysics Data System (ADS)

    Meško, Marcel; Ou, Qiongrong; Matsuda, Takafumi; Ishikawa, Tomokazu; Veis, Martin; Antoš, Roman; Ogino, Akihisa; Nagatsu, Masaaki

    2009-06-01

    We report on ZnO nanopowder induced light scattering for improved visualization of emission sites in carbon nanotube films and arrays. We observed a significant reduction of the internal multiple light scattering phenomena, which are characteristic for ZnO micropowders. The microsized grains of the commercially available ZnO:Zn (P 15) were reduced to the nanometre scale by pulsed laser ablation at an oxygen ambient pressure of 10 kPa. Our investigations show no crystalline change and no shift of the broad green emission peak at 500 nm for the ZnO nanopowder. For the application in field emission displays, we demonstrate the possibility of achieving cathodoluminescence with a fine pitch size of 100 µm of the patterned pixels without requiring additional electron beam focusing and without a black matrix. Moreover, the presented results show the feasibility of employing ZnO nanopowder as a detection material for the phosphorus screen method, which is able to localize emission sites of carbon nanotube films and arrays with an accuracy comparable to scanning anode field emission microscopy.

  20. Drought-induced legacy effects in wood growth across the Eastern and Midwestern U.S. are mediated by site climate, tree age, and drought sensitivity

    NASA Astrophysics Data System (ADS)

    Kannenberg, S.; Maxwell, J. T.; Pederson, N.; D'Orangeville, L.; Phillips, R.

    2017-12-01

    While it is widely known that drought reduces carbon (C) uptake in temperate forests, tree growth can also remain stagnant post-drought despite favorable climatic conditions. While such "legacy effects" are well established, the degree to which these effects depend on species identity or variability in site conditions is poorly quantified. We sought to uncover how site, species, climate, and tree age interact to affect the presence and magnitude of legacy effects in temperate trees following drought. To do this, we assembled dendrochronological records of 18 common species across 94 sites in Eastern and Midwestern U.S. forests and quantified drought-induced changes in wood growth in the year of the drought (hereafter "drought sensitivity") and the years after the drought (i.e., legacy effects). We predicted that species particularly prone to hydraulic damage (e.g., oaks) would have the least drought sensitivity yet experience larger legacy effects, and that this effect would be exacerbated at arid sites. Across all species and sites, wood growth was reduced by 14% in the year of the drought and by 7% post-drought. Surprisingly, legacy effects were smaller for oak species and larger across species known to be more drought sensitive (e.g. tulip poplar, maple, birch). As a result, we observed a positive relationship between a species' drought sensitivity and that species' legacy effect. These legacy effects were similar in size across a range of drought severities. Surprisingly, legacy effects were smaller in more arid sites - contrary to previous investigations in dryland ecosystems - perhaps indicating the role of adaptation in mediating a tree's recovery from drought. In addition, many species actually decreased the size of their legacy effects as they aged, despite no change in drought responses. Our results run contrary to our predictions, as species with the greatest drought sensitivity had the least ability to recover, and that younger mesic forests- not arid

  1. Selective TNF-α inhibitor-induced injection site reactions.

    PubMed

    Murdaca, Giuseppe; Spanò, Francesca; Puppo, Francesco

    2013-03-01

    During the last decade, many new biological immune modulators entered the market as new therapeutic principles. TNF-α is a pro-inflammatory cytokine known to a have a key role in the pathogenic mechanisms of various immune-mediated or inflammatory diseases. TNF-α blockers have demonstrated efficacy in large, randomized controlled clinical trials either as monotherapy or in combination with other anti-inflammatory or disease-modifying anti-rheumatic drugs. Although generally well tolerated and safe, potential adverse events may be associated with TNF-α inhibitor treatment. The authors will briefly review the potential adverse drug reactions and the immunological mechanisms of injection site reactions (ISRs) in patients treated with etanercept and adalimumab. Patients treated with TNF-α inhibitors can develop ISR around the sites of injections. 'Type IV delayed type reaction' or 'recall ISRs'. Eosinophilic cellulitis or 'Wells syndrome', 'type III' and 'type I' reactions are reported. Long-term studies are necessary to determine the durability of response and the real risk of ISRs with golimumab and certolizumab pegol. Further studies are also necessary to evaluate the immunogenicity of these drugs.

  2. The Role of Fragile Sites in Sporadic Papillary Thyroid Carcinoma

    PubMed Central

    Dillon, Laura W.; Lehman, Christine E.; Wang, Yuh-Hwa

    2012-01-01

    The incidence of thyroid cancer is increasing, especially papillary thyroid carcinoma (PTC), making it currently the fastest-growing cancer among women. Reasons for this increase remain unclear, but several risk factors including radiation exposure and improved detection techniques have been suggested. Recently, the induction of chromosomal fragile site breakage was found to result in the formation of RET/PTC1 rearrangements, a common cause of PTC. Chromosomal fragile sites are regions of the genome with a high susceptibility to forming DNA breaks and are often associated with cancer. Exposure to a variety of external agents can induce fragile site breakage, which may account for some of the observed increase in PTC. This paper discusses the role of fragile site breakage in PTC development, external fragile site-inducing agents that may be potential risk factors for PTC, and how these factors are especially targeting women. PMID:22762011

  3. Cold-Induced Thermogenesis and Inflammation-Associated Cold-Seeking Behavior Are Represented by Different Dorsomedial Hypothalamic Sites: A Three-Dimensional Functional Topography Study in Conscious Rats

    PubMed Central

    Shimansky, Yury P.; Oliveira, Daniela L.; Eales, Justin R.; Coimbra, Cândido C.

    2017-01-01

    In the past, we showed that large electrolytic lesions of the dorsomedial hypothalamus (DMH) promoted hypothermia in cold-exposed restrained rats, but attenuated hypothermia in rats challenged with a high dose of bacterial lipopolysaccharide (LPS) in a thermogradient apparatus. The goal of this study was to identify the thermoeffector mechanisms and DMH representation of the two phenomena and thus to understand how the same lesion could produce two opposite effects on body temperature. We found that the permissive effect of large electrolytic DMH lesions on cold-induced hypothermia was due to suppressed thermogenesis. DMH-lesioned rats also could not develop fever autonomically: they did not increase thermogenesis in response to a low, pyrogenic dose of LPS (10 μg/kg, i.v.). In contrast, changes in thermogenesis were uninvolved in the attenuation of the hypothermic response to a high, shock-inducing dose of LPS (5000 μg/kg, i.v.); this attenuation was due to a blockade of cold-seeking behavior. To compile DMH maps for the autonomic cold defense and for the cold-seeking response to LPS, we studied rats with small thermal lesions in different parts of the DMH. Cold thermogenesis had the highest representation in the dorsal hypothalamic area. Cold seeking was represented by a site at the ventral border of the dorsomedial nucleus. Because LPS causes both fever and hypothermia, we originally thought that the DMH contained a single thermoregulatory site that worked as a fever–hypothermia switch. Instead, we have found two separate sites: one that drives thermogenesis and the other, previously unknown, that drives inflammation-associated cold seeking. SIGNIFICANCE STATEMENT Cold-seeking behavior is a life-saving response that occurs in severe systemic inflammation. We studied this behavior in rats with lesions in the dorsomedial hypothalamus (DMH) challenged with a shock-inducing dose of bacterial endotoxin. We built functional maps of the DMH and found the strongest

  4. Cold-Induced Thermogenesis and Inflammation-Associated Cold-Seeking Behavior Are Represented by Different Dorsomedial Hypothalamic Sites: A Three-Dimensional Functional Topography Study in Conscious Rats.

    PubMed

    Wanner, Samuel P; Almeida, M Camila; Shimansky, Yury P; Oliveira, Daniela L; Eales, Justin R; Coimbra, Cândido C; Romanovsky, Andrej A

    2017-07-19

    In the past, we showed that large electrolytic lesions of the dorsomedial hypothalamus (DMH) promoted hypothermia in cold-exposed restrained rats, but attenuated hypothermia in rats challenged with a high dose of bacterial lipopolysaccharide (LPS) in a thermogradient apparatus. The goal of this study was to identify the thermoeffector mechanisms and DMH representation of the two phenomena and thus to understand how the same lesion could produce two opposite effects on body temperature. We found that the permissive effect of large electrolytic DMH lesions on cold-induced hypothermia was due to suppressed thermogenesis. DMH-lesioned rats also could not develop fever autonomically: they did not increase thermogenesis in response to a low, pyrogenic dose of LPS (10 μg/kg, i.v.). In contrast, changes in thermogenesis were uninvolved in the attenuation of the hypothermic response to a high, shock-inducing dose of LPS (5000 μg/kg, i.v.); this attenuation was due to a blockade of cold-seeking behavior. To compile DMH maps for the autonomic cold defense and for the cold-seeking response to LPS, we studied rats with small thermal lesions in different parts of the DMH. Cold thermogenesis had the highest representation in the dorsal hypothalamic area. Cold seeking was represented by a site at the ventral border of the dorsomedial nucleus. Because LPS causes both fever and hypothermia, we originally thought that the DMH contained a single thermoregulatory site that worked as a fever-hypothermia switch. Instead, we have found two separate sites: one that drives thermogenesis and the other, previously unknown, that drives inflammation-associated cold seeking. SIGNIFICANCE STATEMENT Cold-seeking behavior is a life-saving response that occurs in severe systemic inflammation. We studied this behavior in rats with lesions in the dorsomedial hypothalamus (DMH) challenged with a shock-inducing dose of bacterial endotoxin. We built functional maps of the DMH and found the strongest

  5. Inacessible Andean sites reveal land-use induced stabilisation of soil organic carbon

    NASA Astrophysics Data System (ADS)

    Heitkamp, Felix; Maqsood, Shafique; Sylvester, Steven; Kessler, Michael; Jungkunst, Hermann

    2015-04-01

    Human activity affects properties and development of ecosystems across the globe to such a degree that it is challenging to get baseline values for undisturbed ecosystems. This is especially true for soils, which are affected by land-use history and hold a legacy of past human interventions. Therefore, it is still largely unknown how soil would have developed "naturally" and if processes of organic matter stabilisation would be different in comparison to managed soils. Here, we show undisturbed soil development, i.e., the processes of weathering and accumulation of soil organic carbon (SOC), by comparing pristine with grazed sites in the high Andes (4500 m) of southern Peru. We located study plots on a large ledge (0.2 km²) that is only accessible with mountaineering equipment. Plots with pristine vegetation were compared to rangeland plots that were constantly under grazing management for at least four millennia. All "state factors"; climate, potential biota, topography, parent material and time; besides "land-use" were, therefore, identical. Vegetation change, induced by grazing management, led to lower vegetation cover of the soil, thereby increasing soil surface temperatures and soil acidification. Both factors increased weathering in rangeland soils, as indicated by the presence of pedogenic oxides, especially amorphous Al-(oxy)hydroxides (oxalate-extractable Al). Higher losses of base cations (K, Na, Ca) and lower pH-values were related to a low base saturation of exchange sites in rangelands. Therefore, rangeland soils were classified as Umbrisol, whereas soils under pristine vegetation were classified as Phaeozeme. All profiles were rich in SOC (100 to 126 g kg-1) with no significant differences in concentrations or stocks. SOC of rangeland soils was, however, less available for microorganisms (proportion of microbial C on SOC: 1.8 vs. 0.6% in pristine and rangeland soils, respectively) and showed higher stability against thermal degradation. Reasons for

  6. Sites of electron transfer to membrane-bound copper and hydroperoxide-induced damage in the respiratory chain of Escherichia coli.

    PubMed

    Rodríguez-Montelongo, L; Farías, R N; Massa, E M

    1995-10-20

    Previous studies in Escherichia coli as a model system for peroxide toxicity (L. Rodríguez-Montelongo, L. C. De la Cruz-Rodríguez, R. N. Farías, and E. M. Massa, 1993, Biochim. Biophys. Acta 1144, 77-84) have shown that electron flow through the respiratory chain supports a membrane-associated Cu(II)/Cu(I) redox cycle involved in irreversible impairment of the respiratory system by tert-butyl hydroperoxide (t-BOOH). In this paper, E. coli mutants deficient in specific respiratory chain components have been used to determine the sites of copper reduction and the targets inactivated by t-BOOH. Two sites of electron transfer to membrane-bound copper were identified: one in the region between NADH and ubiquinone supported by NADH as electron donor and another localized between ubiquinone and the cytochromes supported by electrons coming from NADH, succinate, or D-lactate. Electron flow through the former site in the presence of t-BOOH led to inactivation of NADH dehydrogenase II, whereas electron flow through the latter site in the presence of the hydroperoxide led to damage of ubiquinone. In agreement with the above in vitro results with isolated membranes, copper-dependent inactivation of NADH dehydrogenase and ubiquinone was demonstrated in E. coli cells exposed to t-BOOH. It is proposed that the t-BOOH-induced damage is a consequence of t-butylalkoxy radical generation through a Fenton-type reaction mediated by redox cycling of membrane-bound copper at those two loci of the respiratory chain.

  7. 10 CFR 100.23 - Geologic and seismic siting criteria.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Earthquake Ground Motion, and to permit adequate engineering solutions to actual or potential geologic and..., earthquake recurrence rates, fault geometry and slip rates, site foundation material, and seismically induced... Earthquake Ground Motion for the site, the potential for surface tectonic and nontectonic deformations, the...

  8. 10 CFR 100.23 - Geologic and seismic siting criteria.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Earthquake Ground Motion, and to permit adequate engineering solutions to actual or potential geologic and..., earthquake recurrence rates, fault geometry and slip rates, site foundation material, and seismically induced... Earthquake Ground Motion for the site, the potential for surface tectonic and nontectonic deformations, the...

  9. 10 CFR 100.23 - Geologic and seismic siting criteria.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Earthquake Ground Motion, and to permit adequate engineering solutions to actual or potential geologic and..., earthquake recurrence rates, fault geometry and slip rates, site foundation material, and seismically induced... Earthquake Ground Motion for the site, the potential for surface tectonic and nontectonic deformations, the...

  10. Radiation-induced heat-labile sites that convert into DNA double-strand breaks

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Chatterjee, A. (Principal Investigator)

    2000-01-01

    The yield of DNA double-strand breaks (DSBs) in SV40 DNA irradiated in aqueous solution was found to increase by more than a factor of two as a result of postirradiation incubation of the DNA at 50 degrees C and pH 8.0 for 24 h. This is in agreement with data from studies performed at 37 degrees C that were published previously. Importantly, similar results were also obtained from irradiation of mammalian DNA in agarose plugs. These results suggest that heat-labile sites within locally multiply damaged sites are produced by radiation and are subsequently transformed into DSBs. Since incubation at 50 degrees C is typically employed for lysis of cells in commonly used pulsed-field gel assays for detection of DSBs in mammalian cells, the possibility that heat-labile sites are present in irradiated cells was also studied. An increase in the apparent number of DSBs as a function of lysis time at 50 degrees C was found with kinetics that was similar to that for irradiated DNA, although the magnitude of the increase was smaller. This suggests that heat-labile sites are also formed in the cell. If this is the case, a proportion of DSBs measured by the pulsed-field gel assays may occur during the lysis step and may not be present in the cell as breaks but as heat-labile sites. It is suggested that such sites consist mainly of heat-labile sugar lesions within locally multiply damaged sites. Comparing rejoining of DSBs measured with short and long lysis procedure indicates that the heat-labile sites are repaired with fast kinetics in comparison with repair of the bulk of DSBs.

  11. Faculty Development. [SITE 2002 Section].

    ERIC Educational Resources Information Center

    Gillan, Bob, Ed.; McFerrin, Karen, Ed.

    This document contains the papers on faculty development from the SITE (Society for Information Technology & Teacher Education) 2002 conference. Topics covered include: integration for ESL (English as a Second Language) success; changing roles of college faculty; inducing reflection on educational practice; a joint instructional technology and…

  12. Evaluation of ground deformations induced by the 1999 Kocaeli earthquake (Turkey) at selected sites on shorelines

    NASA Astrophysics Data System (ADS)

    Aydan, Ömer; Ulusay, Reşat; Atak, Veysel Okan

    2008-03-01

    The Kocaeli earthquake ( M w = 7.4) of 17 August 1999 occurred in the Eastern Marmara Region of Turkey along the North Anadolu Fault and resulted in a very serious loss of life and property. One of the most important geotechnical issues of this event was the permanent ground deformations because of both liquefaction and faulting. These deformations occurred particularly along the southern shores of İzmit Bay and Sapanca Lake between the cities of Yalova and Adapazarı in the west and east, respectively. In this study, three sites founded on delta fans, namely Değirmendere Nose, Yeniköy tea garden at Seymen on the coast of İzmit Bay, and Vakıf Hotel site on the coast of Sapanca Lake were selected as typical cases. The main causes of the ground deformations at these sites were then investigated. Geotechnical characterization of the ground, derivation of displacement vectors from the pre- and post-earthquake aerial photographs, liquefaction assessments based on field performance data, and analyses carried out using the sliding body method have been fundamental in this study. The displacement vectors determined from photogrammetric evaluations conducted at Değirmendere and Seymen showed a combined movement of faulting and liquefaction. But except the movements in the close vicinity of shorelines, the dominant factor in this movement was faulting. The results obtained from the analyses suggested that the ground failure at Değirmendere was a submarine landslide mainly because of earthquake shaking rather than liquefaction. On the other hand, the ground failures at the Yeniköy tea garden on the coast of Seymen and the hotel area in Sapanca town resulted from liquefaction-induced lateral spreading. It was also obtained that the ground deformations estimated from the sliding body method were quite close to those measured by aerial photogrammetry technique.

  13. The proximal gastric corpus is the most responsive site of motilin-induced contractions in the stomach of the Asian house shrew.

    PubMed

    Dudani, Amrita; Aizawa, Sayaka; Zhi, Gong; Tanaka, Toru; Jogahara, Takamichi; Sakata, Ichiro; Sakai, Takafumi

    2016-07-01

    The migrating motor complex (MMC) is responsible for emptying the stomach during the interdigestive period, in preparation for the next meal. It is known that gastric phase III of MMC starts from the proximal stomach and propagates the contraction downwards. We hypothesized that a certain region of the stomach must be more responsive to motilin than others, and that motilin-induced strong gastric contractions propagate from that site. Stomachs of the Suncus or Asian house shrew, a small insectivorous mammal, were dissected and the fundus, proximal corpus, distal corpus, and antrum were examined to study the effect of motilin using an organ bath experiment. Motilin-induced contractions differed in different parts of the stomach. Only the proximal corpus induced gastric contraction even at motilin 10(-10) M, and strong contraction was induced by motilin 10(-9) M in all parts of the stomach. The GPR38 mRNA expression was also higher in the proximal corpus than in the other sections, and the lowest expression was observed in the antrum. GPR38 mRNA expression varied with low expression in the mucosal layer and high expression in the muscle layer. Additionally, motilin-induced contractions in each dissected part of the stomach were inhibited by tetrodotoxin and atropine pretreatment. These results suggest that motilin reactivity is not consistent throughout the stomach, and an area of the proximal corpus including the cardia is the most sensitive to motilin.

  14. Topic I: Induced changes in hydrology at low-level radioactive waste repository sites: A section in Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings (Circular 1036)

    USGS Publications Warehouse

    Prudic, David E.; Dennehy, Kevin F.; Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    Engineering practices, including the excavation of trenches, placement of waste, nature of waste forms, backfilling procedures and materials, and trench-cover construction and materials at low-level radioactive-waste repository sites greatly affect the geohydrology of the sites. Engineering practices are dominant factors in eventual stability and isolation of the waste. The papers presented relating to Topic I were discussions of the hydrogeologic setting at existing low-level radioactive-waste repository sites and changes in the hydrology induced by site operations. Papers summarizing detailed studies presented at this workshop include those at sites near Sheffield, Ill.; Oak Ridge National Laboratory, Tenn.; West Valley, N.Y.; Maxey Flats, Ky.; Barnwell, S.C.; and Beatty, Nev. 

  15. Mutation of the inhibitory ethanol site in GABAA ρ1 receptors promotes tolerance to ethanol-induced motor incoordination.

    PubMed

    Blednov, Yuri A; Borghese, Cecilia M; Ruiz, Carlos I; Cullins, Madeline A; Da Costa, Adriana; Osterndorff-Kahanek, Elizabeth A; Homanics, Gregg E; Harris, R Adron

    2017-09-01

    Genes encoding the ρ1/2 subunits of GABA A receptors have been associated with alcohol (ethanol) dependence in humans, and ρ1 was also shown to regulate some of the behavioral effects of ethanol in animal models. Ethanol inhibits GABA-mediated responses in wild-type (WT) ρ1, but not ρ1(T6'Y) mutant receptors expressed in Xenopus laevis oocytes, indicating the presence of an inhibitory site for ethanol in the second transmembrane helix. In this study, we found that ρ1(T6'Y) receptors expressed in oocytes display overall normal responses to GABA, the endogenous GABA modulator (zinc), and partial agonists (β-alanine and taurine). We generated ρ1 (T6'Y) knockin (KI) mice using CRISPR/Cas9 to test the behavioral importance of the inhibitory actions of ethanol on this receptor. Both ρ1 KI and knockout (KO) mice showed faster recovery from acute ethanol-induced motor incoordination compared to WT mice. Both KI and KO mutant strains also showed increased tolerance to motor impairment produced by ethanol. The KI mice did not differ from WT mice in other behavioral actions, including ethanol intake and preference, conditioned taste aversion to ethanol, and duration of ethanol-induced loss of righting reflex. WT and KI mice did not differ in levels of ρ1 or ρ2 mRNA in cerebellum or in ethanol clearance. Our findings indicate that the inhibitory site for ethanol in GABA A ρ1 receptors regulates acute functional tolerance to moderate ethanol intoxication. We note that low sensitivity to alcohol intoxication has been linked to risk for development of alcohol dependence in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Site characterization and analysis penetrometer system

    NASA Astrophysics Data System (ADS)

    Heath, Jeff

    1995-04-01

    The site characterization and analysis penetrometer system (SCAPS) with laser induced fluorescence (LIF) sensors is being demonstrated as a quick field screening technique to determine the physical and chemical characteristics of subsurface soil and contaminants at hazardous waste sites SCAPS is a collaborative development effort of the Navy, Army, and Air Force under the Tri-Service SCAPS Program. The current SCAPS configuration is designed to quickly and cost-effectively distinguish areas contaminated with petroleum products (hydrocarbons) from unaffected areas.

  17. Bloom DNA Helicase Facilitates Homologous Recombination between Diverged Homologous Sequences*

    PubMed Central

    Kikuchi, Koji; Abdel-Aziz, H. Ismail; Taniguchi, Yoshihito; Yamazoe, Mitsuyoshi; Takeda, Shunichi; Hirota, Kouji

    2009-01-01

    Bloom syndrome caused by inactivation of the Bloom DNA helicase (Blm) is characterized by increases in the level of sister chromatid exchange, homologous recombination (HR) associated with cross-over. It is therefore believed that Blm works as an anti-recombinase. Meanwhile, in Drosophila, DmBlm is required specifically to promote the synthesis-dependent strand anneal (SDSA), a type of HR not associating with cross-over. However, conservation of Blm function in SDSA through higher eukaryotes has been a matter of debate. Here, we demonstrate the function of Blm in SDSA type HR in chicken DT40 B lymphocyte line, where Ig gene conversion diversifies the immunoglobulin V gene through intragenic HR between diverged homologous segments. This reaction is initiated by the activation-induced cytidine deaminase enzyme-mediated uracil formation at the V gene, which in turn converts into abasic site, presumably leading to a single strand gap. Ig gene conversion frequency was drastically reduced in BLM−/− cells. In addition, BLM−/− cells used limited donor segments harboring higher identity compared with other segments in Ig gene conversion event, suggesting that Blm can promote HR between diverged sequences. To further understand the role of Blm in HR between diverged homologous sequences, we measured the frequency of gene targeting induced by an I-SceI-endonuclease-mediated double-strand break. BLM−/− cells showed a severer defect in the gene targeting frequency as the number of heterologous sequences increased at the double-strand break site. Conversely, the overexpression of Blm, even an ATPase-defective mutant, strongly stimulated gene targeting. In summary, Blm promotes HR between diverged sequences through a novel ATPase-independent mechanism. PMID:19661064

  18. Site-specific genome editing for correction of induced pluripotent stem cells derived from dominant dystrophic epidermolysis bullosa.

    PubMed

    Shinkuma, Satoru; Guo, Zongyou; Christiano, Angela M

    2016-05-17

    Genome editing with engineered site-specific endonucleases involves nonhomologous end-joining, leading to reading frame disruption. The approach is applicable to dominant negative disorders, which can be treated simply by knocking out the mutant allele, while leaving the normal allele intact. We applied this strategy to dominant dystrophic epidermolysis bullosa (DDEB), which is caused by a dominant negative mutation in the COL7A1 gene encoding type VII collagen (COL7). We performed genome editing with TALENs and CRISPR/Cas9 targeting the mutation, c.8068_8084delinsGA. We then cotransfected Cas9 and guide RNA expression vectors expressed with GFP and DsRed, respectively, into induced pluripotent stem cells (iPSCs) generated from DDEB fibroblasts. After sorting, 90% of the iPSCs were edited, and we selected four gene-edited iPSC lines for further study. These iPSCs were differentiated into keratinocytes and fibroblasts secreting COL7. RT-PCR and Western blot analyses revealed gene-edited COL7 with frameshift mutations degraded at the protein level. In addition, we confirmed that the gene-edited truncated COL7 could neither associate with normal COL7 nor undergo triple helix formation. Our data establish the feasibility of mutation site-specific genome editing in dominant negative disorders.

  19. An Lnc RNA (GAS5)/SnoRNA-derived piRNA induces activation of TRAIL gene by site-specifically recruiting MLL/COMPASS-like complexes

    PubMed Central

    He, Xin; Chen, Xinxin; Zhang, Xue; Duan, Xiaobing; Pan, Ting; Hu, Qifei; Zhang, Yijun; Zhong, Fudi; Liu, Jun; Zhang, Hong; Luo, Juan; Wu, Kang; Peng, Gao; Luo, Haihua; Zhang, Lehong; Li, Xiaoxi; Zhang, Hui

    2015-01-01

    PIWI-interacting RNA (piRNA) silences the transposons in germlines or induces epigenetic modifications in the invertebrates. However, its function in the mammalian somatic cells remains unknown. Here we demonstrate that a piRNA derived from Growth Arrest Specific 5, a tumor-suppressive long non-coding RNA, potently upregulates the transcription of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a proapoptotic protein, by inducing H3K4 methylation/H3K27 demethylation. Interestingly, the PIWIL1/4 proteins, which bind with this piRNA, directly interact with WDR5, resulting in a site-specific recruitment of the hCOMPASS-like complexes containing at least MLL3 and UTX (KDM6A). We have indicated a novel pathway for piRNAs to specially activate gene expression. Given that MLL3 or UTX are frequently mutated in various tumors, the piRNA/MLL3/UTX complex mediates the induction of TRAIL, and consequently leads to the inhibition of tumor growth. PMID:25779046

  20. Quantifying clustered DNA damage induction and repair by gel electrophoresis, electronic imaging and number average length analysis

    NASA Technical Reports Server (NTRS)

    Sutherland, Betsy M.; Georgakilas, Alexandros G.; Bennett, Paula V.; Laval, Jacques; Sutherland, John C.; Gewirtz, A. M. (Principal Investigator)

    2003-01-01

    Assessing DNA damage induction, repair and consequences of such damages requires measurement of specific DNA lesions by methods that are independent of biological responses to such lesions. Lesions affecting one DNA strand (altered bases, abasic sites, single strand breaks (SSB)) as well as damages affecting both strands (clustered damages, double strand breaks) can be quantified by direct measurement of DNA using gel electrophoresis, gel imaging and number average length analysis. Damage frequencies as low as a few sites per gigabase pair (10(9)bp) can be quantified by this approach in about 50ng of non-radioactive DNA, and single molecule methods may allow such measurements in DNA from single cells. This review presents the theoretical basis, biochemical requirements and practical aspects of this approach, and shows examples of their applications in identification and quantitation of complex clustered damages.

  1. Specific ganglioside binding to receptor sites on T lymphocytes that couple to ganglioside-induced decrease of CD4 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, W.J.; Offner, H.; Vandenbark, A.A.

    1989-01-01

    The binding of different gangliosides to rat T-helper lymphocytes was characterized under conditions that decrease CD4 expression on different mammalian T-helper lymphoctyes. Saturation binding by monosialylated ({sub 3}H)-GM{sub 1} to rat T-lymphocytes was time- and temperature-dependent, had a dissociation constant (K{sub D}) of 2.2 {plus minus} 1.4 {mu}M and a binding capacity near 2 fmoles/cell. Competitive inhibition of ({sup 3}H)- GM{sub 1} binding demonstrated a structural-activity related to the number of unconstrained sialic acid moieties on GM{sub 1}-congeneric gangliosides. A comparison between the results of these binding studies and gangliosides-induced decrease of CD4 expression demonstrated that every aspect of ({supmore » 3}H)-GM{sub 1} binding concurs with ganglioside modulation of CD4 expression. It is concluded that the specific decrease of CD4 expression induced by pretreatment with gangliosides involves the initial process of gangliosides binding to specific sites on CD4{sup {double dagger}} T-helper lymphocytes.« less

  2. A Ubiquitin-Proteasome Pathway for the Repair of Topoisomerase I-DNA Covalent Complexes*S⃞

    PubMed Central

    Lin, Chao-Po; Ban, Yi; Lyu, Yi Lisa; Desai, Shyamal D.; Liu, Leroy F.

    2008-01-01

    Reversible topoisomerase I (Top1)-DNA cleavage complexes are the key DNA lesion induced by anticancer camptothecins (e.g. topotecan and irinotecan) as well as structurally perturbed DNAs (e.g. oxidatively damaged DNA, UV-irradiated DNA, alkylated DNA, uracil-substituted DNA, mismatched DNA, gapped and nicked DNA, and DNA with abasic sites). Top1 cleavage complexes arrest transcription and trigger transcription-dependent degradation of Top1, a phenomenon termed Top1 down-regulation. In the current study, we have investigated the role of Top1 down-regulation in the repair of Top1 cleavage complexes. Using quiescent (serum-starved) human WI-38 cells, camptothecin (CPT) was shown to induce Top1 down-regulation, which paralleled the induction of DNA single-strand breaks (SSBs) (assayed by comet assays) and ATM autophosphorylation (at Ser-1981). Interestingly, Top1 down-regulation, induction of DNA SSBs and ATM autophosphorylation were all abolished by the proteasome inhibitor MG132. Furthermore, studies using immunoprecipitation and dominant-negative ubiquitin mutants have suggested a specific requirement for the assembly of Lys-48-linked polyubiquitin chains for CPT-induced Top1 down-regulation. In contrast to the effect of proteasome inhibition, inactivation of PARP1 was shown to increase the amount of CPT-induced SSBs and the level of ATM autophosphorylation. Together, these results support a model in which Top1 cleavage complexes arrest transcription and activate a ubiquitin-proteasome pathway leading to the degradation of Top1 cleavage complexes. Degradation of Top1 cleavage complexes results in the exposure of Top1-concealed SSBs for repair through a PARP1-dependent process. PMID:18515798

  3. Hetero-site-specific X-ray pump-probe spectroscopy for femtosecond intramolecular dynamics

    PubMed Central

    Picón, A.; Lehmann, C. S.; Bostedt, C.; Rudenko, A.; Marinelli, A.; Osipov, T.; Rolles, D.; Berrah, N.; Bomme, C.; Bucher, M.; Doumy, G.; Erk, B.; Ferguson, K. R.; Gorkhover, T.; Ho, P. J.; Kanter, E. P.; Krässig, B.; Krzywinski, J.; Lutman, A. A.; March, A. M.; Moonshiram, D.; Ray, D.; Young, L.; Pratt, S. T.; Southworth, S. H.

    2016-01-01

    New capabilities at X-ray free-electron laser facilities allow the generation of two-colour femtosecond X-ray pulses, opening the possibility of performing ultrafast studies of X-ray-induced phenomena. Particularly, the experimental realization of hetero-site-specific X-ray-pump/X-ray-probe spectroscopy is of special interest, in which an X-ray pump pulse is absorbed at one site within a molecule and an X-ray probe pulse follows the X-ray-induced dynamics at another site within the same molecule. Here we show experimental evidence of a hetero-site pump-probe signal. By using two-colour 10-fs X-ray pulses, we are able to observe the femtosecond time dependence for the formation of F ions during the fragmentation of XeF2 molecules following X-ray absorption at the Xe site. PMID:27212390

  4. Hetero-site-specific X-ray pump-probe spectroscopy for femtosecond intramolecular dynamics

    DOE PAGES

    Picón, A.; Lehmann, C. S.; Bostedt, C.; ...

    2016-05-23

    New capabilities at X-ray free-electron laser facilities allow the generation of two-colour femtosecond X-ray pulses, opening the possibility of performing ultrafast studies of X-ray-induced phenomena. Specifically, the experimental realization of hetero-site-specific X-ray-pump/X-ray-probe spectroscopy is of special interest, in which an X-ray pump pulse is absorbed at one site within a molecule and an X-ray probe pulse follows the X-ray-induced dynamics at another site within the same molecule. In this paper, we show experimental evidence of a hetero-site pump-probe signal. By using two-colour 10-fs X-ray pulses, we are able to observe the femtosecond time dependence for the formation of F ionsmore » during the fragmentation of XeF 2 molecules following X-ray absorption at the Xe site.« less

  5. Hetero-site-specific X-ray pump-probe spectroscopy for femtosecond intramolecular dynamics.

    PubMed

    Picón, A; Lehmann, C S; Bostedt, C; Rudenko, A; Marinelli, A; Osipov, T; Rolles, D; Berrah, N; Bomme, C; Bucher, M; Doumy, G; Erk, B; Ferguson, K R; Gorkhover, T; Ho, P J; Kanter, E P; Krässig, B; Krzywinski, J; Lutman, A A; March, A M; Moonshiram, D; Ray, D; Young, L; Pratt, S T; Southworth, S H

    2016-05-23

    New capabilities at X-ray free-electron laser facilities allow the generation of two-colour femtosecond X-ray pulses, opening the possibility of performing ultrafast studies of X-ray-induced phenomena. Particularly, the experimental realization of hetero-site-specific X-ray-pump/X-ray-probe spectroscopy is of special interest, in which an X-ray pump pulse is absorbed at one site within a molecule and an X-ray probe pulse follows the X-ray-induced dynamics at another site within the same molecule. Here we show experimental evidence of a hetero-site pump-probe signal. By using two-colour 10-fs X-ray pulses, we are able to observe the femtosecond time dependence for the formation of F ions during the fragmentation of XeF2 molecules following X-ray absorption at the Xe site.

  6. Tourism-Induced Livelihood Changes at Mount Sanqingshan World Heritage Site, China

    NASA Astrophysics Data System (ADS)

    Su, Ming Ming; Wall, Geoffrey; Xu, Kejian

    2016-05-01

    Although tourism has the potential to improve the wellbeing of residents, it may also disrupt livelihood systems, social processes, and cultural traditions. The livelihood changes at three rural villages at Mount Sanqingshan World Heritage Site, China, are assessed to determine the extent to which tourism strategies are contributing to local livelihoods. A sustainable livelihood framework is adopted to guide the analysis. The three villages exhibit different development patterns due to institutional, organizational, and location factors. New strategies involving tourism were constructed and incorporated into the traditional livelihood systems and they resulted in different outcomes for residents of different villages. Village location, including the relationship to the site tourism plan, affected the implications for rural livelihoods. High dependence on tourism as the single livelihood option can reduce sustainability. Practical implications are suggested to enhance livelihood sustainability at such rural heritage tourism sites.

  7. Tourism-Induced Livelihood Changes at Mount Sanqingshan World Heritage Site, China.

    PubMed

    Su, Ming Ming; Wall, Geoffrey; Xu, Kejian

    2016-05-01

    Although tourism has the potential to improve the wellbeing of residents, it may also disrupt livelihood systems, social processes, and cultural traditions. The livelihood changes at three rural villages at Mount Sanqingshan World Heritage Site, China, are assessed to determine the extent to which tourism strategies are contributing to local livelihoods. A sustainable livelihood framework is adopted to guide the analysis. The three villages exhibit different development patterns due to institutional, organizational, and location factors. New strategies involving tourism were constructed and incorporated into the traditional livelihood systems and they resulted in different outcomes for residents of different villages. Village location, including the relationship to the site tourism plan, affected the implications for rural livelihoods. High dependence on tourism as the single livelihood option can reduce sustainability. Practical implications are suggested to enhance livelihood sustainability at such rural heritage tourism sites.

  8. Mutagenicity, Stable DNA Adducts, and Abasic Sites Induced in Salmonella by Phananthro[3,4-b]- and Phenanthro[4,3-b]thiophenes, Sulfur Analogs of Benzo[c]phenanthrene

    EPA Science Inventory

    Sulfur-containing polycyclic aromatic hydrocarbons (thia-PAHs or thiaarenes) are common constituents of air pollution and cigarette smoke, yet little is known of the biological significance of exposure to these compounds. Some are mutagenic and carcinogenic, but only a few have ...

  9. Lipopolysaccharide-induced inhibition of transcription of tlr4 in vitro is reversed by dexamethasone and correlates with presence of conserved NFκB binding sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonin, Camila P., E-mail: mila_bonin@yahoo.com.br; Baccarin, Raquel Y.A., E-mail: baccarin@usp.br; Nostell, Katarina, E-mail: katarina.nostell@slu.se

    2013-03-08

    Highlights: ► Chimpanzees, horses and humans have regions of similarity on TLR4 and MD2 promoters. ► Rodents have few regions of similarity on TLR4 promoter when compared to primates. ► Conserved NFkB binding sites were found in the promoters of TLR4 and MD2. ► LPS-induced inhibition of TLR4 transcription is reversed by dexamethasone. ► LPS-induced transcription of MD2 is inhibited by dexamethasone. -- Abstract: Engagement of Toll-like receptor 4 (TLR4) by lipopolysaccharide (LPS) is a master trigger of the deleterious effects of septic shock. Horses and humans are considered the most sensitive species to septic shock, but the mechanisms explainingmore » these phenomena remain elusive. Analysis of tlr4 promoters revealed high similarity among LPS-sensitive species (human, chimpanzee, and horse) and low similarity with LPS-resistant species (mouse and rat). Four conserved nuclear factor kappa B (NFκB) binding sites were found in the tlr4 promoter and two in the md2 promoter sequences that are likely to be targets for dexamethasone regulation. In vitro treatment of equine peripheral blood mononuclear cells (eqPBMC) with LPS decreased transcripts of tlr4 and increased transcription of md2 (myeloid differentiation factor 2) and cd14 (cluster of differentiation 14). Treatment with dexamethasone rescued transcription of tlr4 after LPS inhibition. LPS-induced transcription of md2 was inhibited in the presence of dexamethasone. Dexamethasone alone did not affect transcription of tlr4 and md2.« less

  10. SEM-induced shrinkage and site-selective modification of single-crystal silicon nanopores

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Wang, Yifan; Deng, Tao; Liu, Zewen

    2017-07-01

    Solid-state nanopores with feature sizes around 5 nm play a critical role in bio-sensing fields, especially in single molecule detection and sequencing of DNA, RNA and proteins. In this paper we present a systematic study on shrinkage and site-selective modification of single-crystal silicon nanopores with a conventional scanning electron microscope (SEM). Square nanopores with measurable sizes as small as 8 nm × 8 nm and rectangle nanopores with feature sizes (the smaller one between length and width) down to 5 nm have been obtained, using the SEM-induced shrinkage technique. The analysis of energy dispersive x-ray spectroscopy and the recovery of the pore size and morphology reveal that the grown material along with the edge of the nanopore is the result of deposition of hydrocarbon compounds, without structural damage during the shrinking process. A simplified model for pore shrinkage has been developed based on observation of the cross-sectional morphology of the shrunk nanopore. The main factors impacting on the task of controllably shrinking the nanopores, such as the accelerating voltage, spot size, scanned area of e-beam, and the initial pore size have been discussed. It is found that single-crystal silicon nanopores shrink linearly with time under localized irradiation by SEM e-beam in all cases, and the pore shrinkage rate is inversely proportional to the initial equivalent diameter of the pore under the same e-beam conditions.

  11. Altered binding of thioflavin t to the peripheral anionic site of acetylcholinesterase after phosphorylation of the active site by chlorpyrifos oxon or dichlorvos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sultatos, L.G.; Kaushik, R.

    2008-08-01

    The peripheral anionic site of acetylcholinesterase, when occupied by a ligand, is known to modulate reaction rates at the active site of this important enzyme. The current report utilized the peripheral anionic site specific fluorogenic probe thioflavin t to determine if the organophosphates chlorpyrifos oxon and dichlorvos bind to the peripheral anionic site of human recombinant acetylcholinesterase, since certain organophosphates display concentration-dependent kinetics when inhibiting this enzyme. Incubation of 3 nM acetylcholinesterase active sites with 50 nM or 2000 nM inhibitor altered both the B{sub max} and K{sub d} for thioflavin t binding to the peripheral anionic site. However, thesemore » changes resulted from phosphorylation of Ser203 since increasing either inhibitor from 50 nM to 2000 nM did not alter further thioflavin t binding kinetics. Moreover, the organophosphate-induced decrease in B{sub max} did not represent an actual reduction in binding sites, but instead likely resulted from conformational interactions between the acylation and peripheral anionic sites that led to a decrease in the rigidity of bound thioflavin t. A drop in fluorescence quantum yield, leading to an apparent decrease in B{sub max}, would accompany the decreased rigidity of bound thioflavin t molecules. The organophosphate-induced alterations in K{sub d} represented changes in binding affinity of thioflavin t, with diethylphosphorylation of Ser203 increasing K{sub d}, and dimethylphosphorylation of Ser203 decreasing K{sub d}. These results indicate that chlorpyrifos oxon and dichlorvos do not bind directly to the peripheral anionic site of acetylcholinesterase, but can affect binding to that site through phosphorylation of Ser203.« less

  12. Determination and analysis of site-specific 125I decay-induced DNA double-strand break end-group structures.

    PubMed

    Datta, Kamal; Weinfeld, Michael; Neumann, Ronald D; Winters, Thomas A

    2007-02-01

    End groups contribute to the structural complexity of radiation-induced DNA double-strand breaks (DSBs). As such, end-group structures may affect a cell's ability to repair DSBs. The 3'-end groups of strand breaks caused by gamma radiation, or oxidative processes, under oxygenated aqueous conditions have been shown to be distributed primarily between 3'-phosphoglycolate and 3'-phosphate, with 5'-phosphate ends in both cases. In this study, end groups of the high-LET-like DSBs caused by 125I decay were investigated. Site-specific DNA double-strand breaks were produced in plasmid pTC27 in the presence or absence of 2 M DMSO by 125I-labeled triplex-forming oligonucleotide targeting. End-group structure was assessed enzymatically as a function of the DSB end to serve as a substrate for ligation and various forms of end labeling. Using this approach, we have demonstrated 3'-hydroxyl (3'-OH) and 3'-phosphate (3'-P) end groups and 5'-ends (> or = 42%) terminated by phosphate. A 32P postlabeling assay failed to detect 3'-phosphoglycolate in a restriction fragment terminated by the 125I-induced DNA double-strand break, and this is likely due to restricted oxygen diffusion during irradiation as a frozen aqueous solution. Even so, end-group structure and relative distribution varied as a function of the free radical scavenging capacity of the irradiation buffer.

  13. Microwave-induced activation of additional active edge sites on the MoS2 surface for enhanced Hg0 capture

    NASA Astrophysics Data System (ADS)

    Zhao, Haitao; Mu, Xueliang; Yang, Gang; Zheng, Chengheng; Sun, Chenggong; Gao, Xiang; Wu, Tao

    2017-10-01

    In recent years, significant effort has been made in the development of novel materials for the removal of mercury from coal-derived flue gas. In this research, microwave irradiation was adopted to induce the creation of additional active sites on the MoS2 surface. The results showed that Hg0 capture efficiency of the adsorbent containing MoS2 nanosheets being microwave treated was as high as 97%, while the sample prepared via conventional method only showed an efficiency of 94% in its first 180 min testing. After the adsorbent was treated by microwave irradiation for 3 more times, its mercury removal efficiency was still noticeably higher than that of the sample prepared via conventional method. Characterization of surface structure of the MoS2 containing material together with DFT study further revealed that the (001) basal planes of MoS2 crystal structure were cracked into (100) edge planes (with an angle of approximately 75°) under microwave treatment, which subsequently resulted in the formation of additional active edge sites on the MoS2 surface and led to the improved performance on Hg0 capture.

  14. Substrate-Induced Facilitated Dissociation of the Competitive Inhibitor from the Active Site of O-Acetyl Serine Sulfhydrylase Reveals a Competitive-Allostery Mechanism.

    PubMed

    Singh, Appu Kumar; Ekka, Mary Krishna; Kaushik, Abhishek; Pandya, Vaibhav; Singh, Ravi P; Banerjee, Shrijita; Mittal, Monica; Singh, Vijay; Kumaran, S

    2017-09-19

    By classical competitive antagonism, a substrate and competitive inhibitor must bind mutually exclusively to the active site. The competitive inhibition of O-acetyl serine sulfhydrylase (OASS) by the C-terminus of serine acetyltransferase (SAT) presents a paradox, because the C-terminus of SAT binds to the active site of OASS with an affinity that is 4-6 log-fold (10 4 -10 6 ) greater than that of the substrate. Therefore, we employed multiple approaches to understand how the substrate gains access to the OASS active site under physiological conditions. Single-molecule and ensemble approaches showed that the active site-bound high-affinity competitive inhibitor is actively dissociated by the substrate, which is not consistent with classical views of competitive antagonism. We employed fast-flow kinetic approaches to demonstrate that substrate-mediated dissociation of full length SAT-OASS (cysteine regulatory complex) follows a noncanonical "facilitated dissociation" mechanism. To understand the mechanism by which the substrate induces inhibitor dissociation, we resolved the crystal structures of enzyme·inhibitor·substrate ternary complexes. Crystal structures reveal a competitive allosteric binding mechanism in which the substrate intrudes into the inhibitor-bound active site and disengages the inhibitor before occupying the site vacated by the inhibitor. In summary, here we reveal a new type of competitive allosteric binding mechanism by which one of the competitive antagonists facilitates the dissociation of the other. Together, our results indicate that "competitive allostery" is the general feature of noncanonical "facilitated/accelerated dissociation" mechanisms. Further understanding of the mechanistic framework of "competitive allosteric" mechanism may allow us to design a new family of "competitive allosteric drugs/small molecules" that will have improved selectivity and specificity as compared to their competitive and allosteric counterparts.

  15. Berberine Induces Toxicity in HeLa Cells through Perturbation of Microtubule Polymerization by Binding to Tubulin at a Unique Site.

    PubMed

    Raghav, Darpan; Ashraf, Shabeeba M; Mohan, Lakshmi; Rathinasamy, Krishnan

    2017-05-23

    Berberine has been used traditionally for its diverse pharmacological actions. It exhibits remarkable anticancer activities and is currently under clinical trials. In this study, we report that the anticancer activity of berberine could be partly due to its inhibitory actions on tubulin and microtubule assembly. Berberine inhibited the proliferation of HeLa cells with an IC 50 of 18 μM and induced significant depolymerization of interphase and mitotic microtubules. At its IC 50 , berberine exerted a moderate G2/M arrest and mitotic block as detected by fluorescence-activated cell sorting analysis and fluorescence microscopy, respectively. In a wound closure assay, berberine inhibited the migration of HeLa cells at concentrations lower than its IC 50 , indicating its excellent potential as an anticancer agent. In vitro studies with tubulin isolated from goat brain indicated that berberine binds to tubulin at a single site with a K d of 11 μM. Berberine inhibited the assembly of tubulin into microtubules and also disrupted the preformed microtubules polymerized in the presence of glutamate and paclitaxel. Competition experiments indicated that berberine could partially displace colchicine from its binding site. Results from fluorescence resonance energy transfer, computational docking, and molecular dynamics simulations suggest that berberine forms a stable complex with tubulin and binds at a novel site 24 Å from the colchicine site on the β-tubulin. Data obtained from synchronous fluorescence analysis of the tryptophan residues of tubulin and from the Fourier transform infrared spectroscopy studies revealed that binding of berberine alters the conformation of the tubulin heterodimer, which could be the molecular mechanism behind the depolymerizing effects on tubulin assembly.

  16. Epigenetic Transgenerational Inheritance of Altered Sperm Histone Retention Sites.

    PubMed

    Ben Maamar, Millissia; Sadler-Riggleman, Ingrid; Beck, Daniel; Skinner, Michael K

    2018-03-28

    A variety of environmental toxicants and factors have been shown to induce the epigenetic transgenerational inheritance of disease and phenotypic variation. Epigenetic alterations in the germline (sperm or egg) are required to transmit transgenerational phenotypes. The current study was designed to investigate the potential role of histones in sperm to help mediate the epigenetic transgenerational inheritance. The agricultural fungicide vinclozolin and the pesticide DDT (dichlorodiphenyltrichloroethane) were independently used to promote the epigenetic transgenerational inheritance of disease. Purified cauda epididymal sperm were collected from the transgenerational F3 generation control and exposure lineage male rats for histone analysis. A reproducible core of histone H3 retention sites was observed using an H3 chromatin immunoprecipitation (ChIP-Seq) analysis in control lineage sperm. Interestingly, the same core group of H3 retention sites plus additional differential histone retention sites (DHRs) were observed in the F3 generation exposure lineage sperm. Although new histone H3 retention sites were observed, negligible change in histone modification (methylation of H3K27me3) was observed between the control and exposure lineages. Observations demonstrate that in addition to alterations in sperm DNA methylation and ncRNA previously identified, the induction of differential histone retention sites (DHRs) also appear to be involved in environmentally induced epigenetic transgenerational inheritance.

  17. Designing of Protein Kinase C β-II Inhibitors against Diabetic complications: Structure Based Drug Design, Induced Fit docking and analysis of active site conformational changes

    PubMed Central

    Vijayakumar, Balakrishnan; Velmurugan, Devadasan

    2012-01-01

    Protein Kinase C β-II (PKC β-II) is an important enzyme in the development of diabetic complications like cardiomyopathy, retinopathy, neuropathy, nephropathy and angiopathy. PKC β-II is activated in vascular tissues during diabetic vascular abnormalities. Thus, PKC β-II is considered as a potent drug target and the crystal structure of the kinase domain of PKC β-II (PDB id: 2I0E) was used to design inhibitors using Structure-Based Drug Design (SBDD) approach. Sixty inhibitors structurally similar to Staurosporine were retrieved from PubChem Compound database and High Throughput Virtual screening (HTVs) was carried out with PKC β-II. Based on the HTVs results and the nature of active site residues of PKC β-II, Staurosporine inhibitors were designed using SBDD. Induced Fit Docking (IFD) studies were carried out between kinase domain of PKC β-II and the designed inhibitors. These IFD complexes showed favorable docking score, glide energy, glide emodel and hydrogen bond and hydrophobic interactions with the active site of PKC β-II. Binding free energy was calculated for IFD complexes using Prime MM-GBSA method. The conformational changes induced by the inhibitor at the active site of PKC β-II were observed for the back bone Cα atoms and side-chain chi angles. PASS prediction tool was used to analyze the biological activities for the designed inhibitors. The various physicochemical properties were calculated for the compounds. One of the designed inhibitors successively satisfied all the in silico parameters among the others and seems to be a potent inhibitor against PKC β-II. PMID:22829732

  18. Lack of spontaneous and radiation-induced chromosome breakage at interstitial telomeric sites in murine scid cells.

    PubMed

    Wong, H-P; Mozdarani, H; Finnegan, C; McIlrath, J; Bryant, P E; Slijepcevic, P

    2004-01-01

    Interstitial telomeric sites (ITSs) in chromosomes from DNA repair-proficient mammalian cells are sensitive to both spontaneous and radiation-induced chromosome breakage. Exact mechanisms of this chromosome breakage sensitivity are not known. To investigate factors that predispose ITSs to chromosome breakage we used murine scid cells. These cells lack functional DNA-PKcs, an enzyme involved in the repair of DNA double-strand breaks. Interestingly, our results revealed lack of both spontaneous and radiation-induced chromosome breakage at ITSs found in scid chromosomes. Therefore, it is possible that increased sensitivity of ITSs to chromosome breakage is associated with the functional DNA double-strand break repair machinery. To investigate if this is the case we used scid cells in which DNA-PKcs deficiency was corrected. Our results revealed complete disappearance of ITSs in scid cells with functional DNA-PKcs, presumably through chromosome breakage at ITSs, but their unchanged frequency in positive and negative control cells. Therefore, our results indicate that the functional DNA double-strand break machinery is required for elevated sensitivity of ITSs to chromosome breakage. Interestingly, we observed significant differences in mitotic chromosome condensation between scid cells and their counterparts with restored DNA-PKcs activity suggesting that lack of functional DNA-PKcs may cause a defect in chromatin organization. Increased condensation of mitotic chromosomes in the scid background was also confirmed in vivo. Therefore, our results indicate a previously unanticipated role of DNA-PKcs in chromatin organisation, which could contribute to the lack of ITS sensitivity to chromosome breakage in murine scid cells. Copyright 2003 S. Karger AG, Basel

  19. Induced seismicity and implications for CO2 storage risk

    NASA Astrophysics Data System (ADS)

    Gerstenberger, M. C.; Nicol, A.; Bromley, C.; Carne, R.; Chardot, L.; Ellis, S. M.; Jenkins, C.; Siggins, T.; Viskovic, P.

    2012-12-01

    We provide an overview of a recently completed report for the IEA GHG that represents a comprehensive review of current research and observations in induced seismicity, its risk to successful completion of Carbon Capture and Storage (CCS) projects and potential mitigation measures. We focus on two topics: a meta-analysis of related data from multiple injection projects around the globe and the implications of these data for CCS induced seismicity risk management. Published data have been compiled from injection and extraction projects around the globe to examine statistical relationships between possible controlling factors and induced seismicity. Quality control of such observational earthquake data sets is crucial to ensure robust results and issues with bias and completeness of the data set will be discussed. Analyses of the available data support previous suggestions that the locations, numbers and magnitudes of induced earthquakes are dependent on a range of factors, including the injection rate, total injected fluid volume, the reservoir permeability and the proximity of pre-existing faults. Increases in the injection rates and total volume of fluid injected, for example, typically raise reservoir pressures and increase the likelihood of elevated seismicity rates and maximum magnitudes of induced earthquakes. The risks associated with induced seismicity at CCS sites can be reduced and mitigated using a systematic and structured risk management programme. While precise forecasts of the expected induced seismicity may never be possible, a thorough risk management procedure should include some level of knowledge of the possible behaviour of induced seismicity. Risk management requires estimates of the expected magnitude, number, location and timing of potential induced earthquakes. Such forecasts should utilise site specific observations together with physical and statistical models that are optimised for the site. Statistical models presently show the most

  20. Relations between rainfall–runoff-induced erosion and aeolian deposition at archaeological sites in a semi-arid dam-controlled river corridor

    USGS Publications Warehouse

    Collins, Brian D.; Bedford, David; Corbett, Skye C.; Fairley, Helen C.; Cronkite-Ratcliff, Collin

    2016-01-01

    Process dynamics in fluvial-based dryland environments are highly complex with fluvial, aeolian, and alluvial processes all contributing to landscape change. When anthropogenic activities such as dam-building affect fluvial processes, the complexity in local response can be further increased by flood- and sediment-limiting flows. Understanding these complexities is key to predicting landscape behavior in drylands and has important scientific and management implications, including for studies related to paleoclimatology, landscape ecology evolution, and archaeological site context and preservation. Here we use multi-temporal LiDAR surveys, local weather data, and geomorphological observations to identify trends in site change throughout the 446-km-long semi-arid Colorado River corridor in Grand Canyon, Arizona, USA, where archaeological site degradation related to the effects of upstream dam operation is a concern. Using several site case studies, we show the range of landscape responses that might be expected from concomitant occurrence of dam-controlled fluvial sand bar deposition, aeolian sand transport, and rainfall-induced erosion. Empirical rainfall-erosion threshold analyses coupled with a numerical rainfall–runoff–soil erosion model indicate that infiltration-excess overland flow and gullying govern large-scale (centimeter- to decimeter-scale) landscape changes, but that aeolian deposition can in some cases mitigate gully erosion. Whereas threshold analyses identify the normalized rainfall intensity (defined as the ratio of rainfall intensity to hydraulic conductivity) as the primary factor governing hydrologic-driven erosion, assessment of false positives and false negatives in the dataset highlight topographic slope as the next most important parameter governing site response. Analysis of 4+ years of high resolution (four-minute) weather data and 75+ years of low resolution (daily) climate records indicates that dryland erosion is dependent on short

  1. Hydrogen atom distribution and hydrogen induced site depopulation for the La{sub 2-x}Mg{sub x}Ni{sub 7}-H system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzik, Matylda N., E-mail: Matylda.Guzik@ife.no; Physics Department, Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller; Hauback, Bjorn C.

    2012-02-15

    La{sub 2-x}Mg{sub x}Ni{sub 7} and its hydrides/deuterides were investigated by high resolution synchrotron powder X-ray and neutron diffraction. Upon deuteration the single phase sample of the intermetallic compound with the refined composition La{sub 1.63}Mg{sub 0.37}Ni{sub 7} (space group: P6{sub 3}/mmc) expands isotropically, in contrast to the Mg free phase. The hydrogen uptake, {approx}9 D/f.u., is higher than in La{sub 2}Ni{sub 7}D{sub 6.5}. The refined composition accounts for La{sub 1.63}Mg{sub 0.37}Ni{sub 7}D{sub 8.8} (beta-phase). Rietveld refinements using the neutron and synchrotron diffraction data suggest that deuterium atoms occupy 5 different interstitial sites within both AB{sub 2} and AB{sub 5} slabs, eithermore » in an ordered or a disordered way. All determined D sites have an occupancy >50% and the shortest D-D contact is 1.96(3) A. It is supposed that a competition between the tendency to form directional bonds and repulsive D-D (H-H) interactions is the most important factor that influences the distribution of deuterium atoms in this structure. A hitherto unknown second, alpha-phase with composition La{sub 1.63}Mg{sub 0.37}Ni{sub 7}D{sub 0.56}, crystallizing with the same hexagonal symmetry as La{sub 1.63}Mg{sub 0.37}Ni{sub 7}D{sub 8.8}, has been discovered. The unit cell parameters for this D-poor phase differ slightly from those of the intermetallic. Alpha-phase displays only one D site (4f, space group: P6{sub 3}/mmc) occupied >50%, which is not populated in the D-rich beta-phase. This hydrogen/deuterium induced site depopulation can be explained by repulsive D-D (H-H) interactions that are likely to influence non-occupancy of certain interstices in metal lattice when absorbing hydrogen. - Graphical abstract: The detailed D atoms arrangement in La{sub 1.63}Mg{sub 0.37}Ni{sub 7}D{sub 8.8} differs significantly from the previously reported La{sub 1.5}Mg{sub 0.5}Ni{sub 7}D{sub 8.9(9.1)}. The present model consists of only five deuterium

  2. SERS-activating effect of chlorides on borate-stabilized silver nanoparticles: formation of new reduced adsorption sites and induced nanoparticle fusion.

    PubMed

    Sloufová, Ivana; Sisková, Karolína; Vlcková, Blanka; Stepánek, Josef

    2008-04-28

    Changes in morphology, surface reactivity and surface-enhancement of Raman scattering induced by modification of borate-stabilized Ag nanoparticles by adsorbed chlorides have been explored using TEM, EDX analysis and SERS spectra of probing adsorbate 2,2'-bipyridine (bpy) excited at 514.5 nm and evaluated by factor analysis. At fractional coverages of the parent Ag nanoparticles by adsorbed chlorides <0.6, the Ag colloid/Cl(-)/bpy systems were found to be constituted by fractal aggregates of Ag nanoparticles fairly uniform in size (10 +/- 2 nm) and SERS spectra of Ag(+)-bpy surface species were detected. The latter result was interpreted in terms of the presence of oxidized Ag(+) and/or Ag(n)(+) adsorption sites, which have been encountered also in systems with the chemically untreated Ag nanoparticles. At chloride coverages >0.6, a fusion of fractal aggregates into the compact aggregates of touching and/or interpenetrating Ag nanoparticles has been observed and found to be accompanied by the formation of another surface species, Ag-bpy, as well as by the increase of the overall SERS enhancement of bpy by factor of 40. The same Ag-bpy surface species has been detected under the strongly reducing conditions of reduction of silver nitrate by sodium borohydride in the presence of bpy. The formation of Ag-bpy is thus interpreted in terms of the stabilization of reduced Ag(0) adsorption sites by adsorbed bpy. The formation of reduced adsorption sites on Ag nanoparticle surfaces at chloride coverages >0.6 is discussed in terms of local changes in the work function of Ag. Finally, the SERS spectral detection of Ag-bpy species is proposed as a tool for probing the presence of reduced Ag(0) adsorption sites in systems with chemically modified Ag nanoparticles.

  3. Selectivity of externally facing ion-binding sites in the Na/K pump to alkali metals and organic cations

    PubMed Central

    Ratheal, Ian M.; Virgin, Gail K.; Yu, Haibo; Roux, Benoît; Gatto, Craig; Artigas, Pablo

    2010-01-01

    The Na/K pump is a P-type ATPase that exchanges three intracellular Na+ ions for two extracellular K+ ions through the plasmalemma of nearly all animal cells. The mechanisms involved in cation selection by the pump's ion-binding sites (site I and site II bind either Na+ or K+; site III binds only Na+) are poorly understood. We studied cation selectivity by outward-facing sites (high K+ affinity) of Na/K pumps expressed in Xenopus oocytes, under voltage clamp. Guanidinium+, methylguanidinium+, and aminoguanidinium+ produced two phenomena possibly reflecting actions at site III: (i) voltage-dependent inhibition (VDI) of outwardly directed pump current at saturating K+, and (ii) induction of pump-mediated, guanidinium-derivative–carried inward current at negative potentials without Na+ and K+. In contrast, formamidinium+ and acetamidinium+ induced K+-like outward currents. Measurement of ouabain-sensitive ATPase activity and radiolabeled cation uptake confirmed that these cations are external K+ congeners. Molecular dynamics simulations indicate that bound organic cations induce minor distortion of the binding sites. Among tested metals, only Li+ induced Na+-like VDI, whereas all metals tested except Na+ induced K+-like outward currents. Pump-mediated K+-like organic cation transport challenges the concept of rigid structural models in which ion specificity at site I and site II arises from a precise and unique arrangement of coordinating ligands. Furthermore, actions by guanidinium+ derivatives suggest that Na+ binds to site III in a hydrated form and that the inward current observed without external Na+ and K+ represents cation transport when normal occlusion at sites I and II is impaired. These results provide insights on external ion selectivity at the three binding sites. PMID:20937860

  4. Metal Ion Binding at the Catalytic Site Induces Widely Distributed Changes in a Sequence Specific Protein–DNA Complex

    PubMed Central

    2016-01-01

    Metal ion cofactors can alter the energetics and specificity of sequence specific protein–DNA interactions, but it is unknown if the underlying effects on structure and dynamics are local or dispersed throughout the protein–DNA complex. This work uses EcoRV endonuclease as a model, and catalytically inactive lanthanide ions, which replace the Mg2+ cofactor. Nuclear magnetic resonance (NMR) titrations indicate that four Lu3+ or two La3+ cations bind, and two new crystal structures confirm that Lu3+ binding is confined to the active sites. NMR spectra show that the metal-free EcoRV complex with cognate (GATATC) DNA is structurally distinct from the nonspecific complex, and that metal ion binding sites are not assembled in the nonspecific complex. NMR chemical shift perturbations were determined for 1H–15N amide resonances, for 1H–13C Ile-δ-CH3 resonances, and for stereospecifically assigned Leu-δ-CH3 and Val-γ-CH3 resonances. Many chemical shifts throughout the cognate complex are unperturbed, so metal binding does not induce major conformational changes. However, some large perturbations of amide and side chain methyl resonances occur as far as 34 Å from the metal ions. Concerted changes in specific residues imply that local effects of metal binding are propagated via a β-sheet and an α-helix. Both amide and methyl resonance perturbations indicate changes in the interface between subunits of the EcoRV homodimer. Bound metal ions also affect amide hydrogen exchange rates for distant residues, including a distant subdomain that contacts DNA phosphates and promotes DNA bending, showing that metal ions in the active sites, which relieve electrostatic repulsion between protein and DNA, cause changes in slow dynamics throughout the complex. PMID:27786446

  5. Site-specific genetic recombination: hops, flips, and flops.

    PubMed

    Sadowski, P D

    1993-06-01

    Genetic recombination plays a key role in the life of organisms as diverse as bacteriophages and humans. Contrary to our idea that chromosomes are stable structures, studies of recombination over the past few decades have shown that in fact DNA replicons are remarkably plastic, undergoing frequent recombination-induced rearrangements. This review summarizes our recent knowledge of the biochemistry of the two major classes of site-specific recombination: 1) transpositional recombination, and 2) conservative site-specific recombination.

  6. DNA polymerase β variant Ile260Met generates global gene expression changes related to cellular transformation

    PubMed Central

    Sweasy, Joann B.

    2012-01-01

    Maintenance of genomic stability is essential for cellular survival. The base excision repair (BER) pathway is critical for resolution of abasic sites and damaged bases, estimated to occur 20,000 times in cells daily. DNA polymerase β (Pol β) participates in BER by filling DNA gaps that result from excision of damaged bases. Approximately 30% of human tumours express Pol β variants, many of which have altered fidelity and activity in vitro and when expressed, induce cellular transformation. The prostate tumour variant Ile260Met transforms cells and is a sequence-context-dependent mutator. To test the hypothesis that mutations induced in vivo by Ile260Met lead to cellular transformation, we characterized the genome-wide expression profile of a clone expressing Ile260Met as compared with its non-induced counterpart. Using a 1.5-fold minimum cut-off with a false discovery rate (FDR) of <0.05, 912 genes exhibit altered expression. Microarray results were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and revealed unique expression profiles in other clones. Gene Ontology (GO) clusters were analyzed using Ingenuity Pathways Analysis to identify altered gene networks and associated nodes. We determined three nodes of interest that exhibited dysfunctional regulation of downstream gene products without themselves having altered expression. One node, peroxisome proliferator-activated protein γ (PPARG), was sequenced and found to contain a coding region mutation in PPARG2 only in transformed cells. Further analysis suggests that this mutation leads to dominant negative activity of PPARG2. PPARG is a transcription factor implicated to have tumour suppressor function. This suggests that the PPARG2 mutant may have played a role in driving cellular transformation. We conclude that PPARG induces cellular transformation by a mutational mechanism. PMID:22914675

  7. Chromium genotoxicity: a double-edged sword

    PubMed Central

    Nickens, Kristen P.; Patierno, Steven R.; Ceryak, Susan

    2010-01-01

    Certain forms of hexavalent chromium [Cr(VI)] are known respiratory carcinogens that induce a broad spectrum of DNA damage. Cr(VI)-carcinogenesis may be initiated or promoted through several mechanistic processes including, the intracellular metabolic reduction of Cr(VI) producing chromium species capable of interacting with DNA to yield genotoxic and mutagenic effects, Cr(VI)-induced inflammatory/immunological responses, and alteration of survival signaling pathways. Cr(VI) enters the cell through nonspecific anion channels, and is metabolically reduced by agents including ascorbate, glutathione, and cysteine to Cr(V), Cr(IV), and Cr(III). Cr(III) has a weak membrane permeability capacity and is unable to cross the cell membrane, thereby trapping it within the cell where it can bind to DNA and produce genetic damage leading to genomic instability. Structural genetic lesions produced by the intracellular reduction of Cr(VI) include DNA adducts, DNA strand breaks, DNA-protein crosslinks, oxidized bases, abasic sites, and DNA inter- and intrastrand crosslinks. The damage induced by Cr(VI) can lead to dysfunctional DNA replication and transcription, aberrant cell cycle checkpoints, dysregulated DNA repair mechanisms, microsatelite instability, inflammatory responses, and the disruption of key regulatory gene networks responsible for the balance of cell survival and cell death, which may all play an important role in Cr(VI) carcinogenesis. Several lines of evidence have indicated that neoplastic progression is a result of consecutive genetic/epigenetic changes that provide cellular survival advantages, and ultimately lead to the conversion of normal human cells to malignant cancer cells. This review is based on studies that provide a glimpse into Cr(VI) carcinogenicity via mechanisms including Cr(VI)-induced death-resistance, the involvement of DNA repair mechanisms in survival after chromium exposure, and the activation of survival signaling cascades in response to Cr

  8. Site-Specific Phosphorylation of Ikaros Induced by Low-Dose Ionizing Radiation Regulates Cell Cycle Progression of B Lymphoblast Through CK2 and AKT Activation.

    PubMed

    Cho, Seong-Jun; Kang, Hana; Kim, Min Young; Lee, Jung Eun; Kim, Sung Jin; Nam, Seon Young; Kim, Ji Young; Kim, Hee Sun; Pyo, Suhkneung; Yang, Kwang Hee

    2016-04-01

    To determine how low-dose ionizing radiation (LDIR) regulates B lympho-proliferation and its molecular mechanism related with Ikaros, transcription factor. Splenocytes and IM-9 cells were uniformly irradiated with various doses of a (137)Cs γ-source, and cell proliferation was analyzed. To determine the LDIR-specific phosphorylation of Ikaros, immunoprecipitation and Western blot analysis were performed. To investigate the physiologic function of LDIR-mediatied Ikaros phosphorylation, Ikaros mutants at phosphorylation sites were generated, and cell cycle analysis was performed. First, we found that LDIR enhances B lymphoblast proliferation in an Ikaros-dependent manner. Moreover, we found that LDIR elevates the phosphorylation level of Ikaros protein. Interestingly, we showed that CK2 and AKT are involved in LDIR-induced Ikaros phosphorylation and capable of regulating DNA binding activity of Ikaros via specific phosphorylation. Finally, we identified LDIR-specific Ikaros phosphorylation sites at S391/S393 and showed that the Ikaros phosphorylations at these sites control Ikaros's ability to regulate G1/S cell cycle progression. Low-dose ionizing radiation specifically phosphorylates Ikaros protein at Ser 391/393 residues to regulate cell cycle progression in B lymphoblast. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Site specific oxidation of amino acid residues in rat lens γ-crystallin induced by low-dose γ-irradiation.

    PubMed

    Kim, Ingu; Saito, Takeshi; Fujii, Norihiko; Kanamoto, Takashi; Chatake, Toshiyuki; Fujii, Noriko

    2015-10-30

    Although cataracts are a well-known age-related disease, the mechanism of their formation is not well understood. It is currently thought that eye lens proteins become abnormally aggregated, initially causing clumping that scatters the light and interferes with focusing on the retina, and ultimately resulting in a cataract. The abnormal aggregation of lens proteins is considered to be triggered by various post-translational modifications, such as oxidation, deamidation, truncation and isomerization, that occur during the aging process. Such modifications, which are also generated by free radical and reactive oxygen species derived from γ-irradiation, decrease crystallin solubility and lens transparency, and ultimately lead to the development of a cataract. In this study, we irradiated young rat lenses with low-dose γ-rays and extracted the water-soluble and insoluble protein fractions. The water-soluble and water-insoluble lens proteins were digested with trypsin, and the resulting peptides were analyzed by LC-MS. Specific oxidation sites of methionine, cysteine and tryptophan in rat water-soluble and -insoluble γE and γF-crystallin were determined by one-shot analysis. The oxidation sites in rat γE and γF-crystallin resemble those previously identified in γC and γD-crystallin from human age-related cataracts. Our study on modifications of crystallins induced by ionizing irradiation may provide useful information relevant to human senile cataract formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Thermodynamic Signature of DNA Damage: Characterization of DNA with a 5-Hydroxy-2'-deoxycytidine•2'-Deoxyguanosine Base Pair

    PubMed Central

    Ganguly, Manjori; Szulik, Marta W.; Donahue, Patrick S.; Clancy, Kate; Stone, Michael P.; Gold, Barry

    2012-01-01

    Oxidation of DNA due to exposure to reactive oxygen species is a major source of DNA damage. One of the oxidation lesions formed, 5-hydroxy-2'-deoxycytidine, has been shown to miscode by some replicative DNA polymerases but not by error prone polymerases capable of translesion synthesis. The 5-hydroxy-2'-deoxycytidine lesion is repaired by DNA glycosylases that require the 5-hydroxycytidine base to be extrahelical so it can enter into the enzyme's active site where it is excised off the DNA backbone to afford an abasic site. The thermodynamic and NMR results presented herein, describe the effect of a 5-hydroxy-2'-deoxycytidine•2'-deoxyguanosine base pair on the stability of two different DNA duplexes. The results demonstrate that the lesion is highly destabilizing and that the energy barrier for the unstacking of 5-hydroxy-2'-deoxycytidine from the DNA duplex may be low. This could provide a thermodynamic mode of adduct identification by DNA glycosylases that require the lesion to be extrahelical. PMID:22332945

  11. Nb K-edge x-ray absorption investigation of the pressure induced amorphization in A-site deficient double perovskite La1/3NbO3.

    PubMed

    Marini, C; Noked, O; Kantor, I; Joseph, B; Mathon, O; Shuker, R; Kennedy, B J; Pascarelli, S; Sterer, E

    2016-02-03

    Nb K-edge x-ray absorption spectroscopy is utilized to investigate the changes in the local structure of the A-site deficient double perovskite La1/3NbO3 which undergoes a pressure induced irreversible amorphization. EXAFS results show that with increasing pressure up to 7.5 GPa, the average Nb-O bond distance decreases in agreement with the expected compression and tilting of the NbO6 octahedra. On the contrary, above 7.5 GPa, the average Nb-O bond distance show a tendency to increase. Significant changes in the Nb K-edge XANES spectrum with evident low energy shift of the pre-peak and the absorption edge is found to happen in La1/3NbO3 above 6.3 GPa. These changes evidence a gradual reduction of the Nb cations from Nb(5+) towards Nb(4+) above 6.3 GPa. Such a valence change accompanied by the elongation of the average Nb-O bond distances in the octahedra, introduces repulsion forces between non-bonding adjacent oxygen anions in the unoccupied A-sites. Above a critical pressure, the Nb reduction mechanism can no longer be sustained by the changing local structure and amorphization occurs, apparently due to the build-up of local strain. EXAFS and XANES results indicate two distinct pressure regimes having different local and electronic response in the La1/3NbO3 system before the occurence of the pressure induced amorphization at  ∼14.5 GPa.

  12. Tension-induced binding of semiflexible biopolymers

    NASA Astrophysics Data System (ADS)

    Benetatos, Panayotis; von der Heydt, Alice; Zippelius, Annette

    2015-03-01

    We investigate theoretically the effect of polymer tension on the collective behaviour of reversible cross-links. We use a model of two parallel-aligned, weakly-bending wormlike chains with a regularly spaced sequence of binding sites subjected to a tensile force. Reversible cross-links attach and detach at the binding sites with an affinity controlled by a chemical potential. In a mean-field approach, we calculate the free energy of the system and we show the emergence of a free energy barrier which controls the reversible (un)binding. The tension affects the conformational entropy of the chains which competes with the binding energy of the cross-links. This competition gives rise to a sudden increase in the fraction of bound sites as the polymer tension increases. The force-induced first-order transition in the number of cross-links implies a sudden force-induced stiffening of the effective stretching modulus of the polymers. This mechanism may be relevant to the formation and stress-induced strengthening of stress fibers in the cytoskeleton. We acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) via grant SFB-937/A1.

  13. Significant differences in genotoxicity induced by retrovirus integration in human T cells and induced pluripotent stem cells.

    PubMed

    Zheng, Weiyan; Wang, Yingjia; Chang, Tammy; Huang, He; Yee, Jiing-Kuan

    2013-04-25

    Retrovirus is frequently used in the genetic modification of mammalian cells and the establishment of induced pluripotent stem cells (iPSCs) via cell reprogramming. Vector-induced genotoxicity could induce profound effect on the physiology and function of these stem cells and their differentiated progeny. We analyzed retrovirus-induced genotoxicity in somatic cell Jurkat and two iPSC lines. In Jurkat cells, retrovirus frequently activated host gene expression and gene activation was not dependent on the distance between the integration site and the transcription start site of the host gene. In contrast, retrovirus frequently down-regulated host gene expression in iPSCs, possibly due to the action of chromatin silencing that spreads from the provirus to the nearby host gene promoter. Our data raises the issue that some of the phenotypic variability observed among iPSC clones derived from the same parental cell line may be caused by retrovirus-induced gene expression changes rather than by the reprogramming process itself. It also underscores the importance of characterizing retrovirus integration and carrying out risk assessment of iPSCs before they can be applied in basic research and clinics. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Growth-induced anisotropy in bismuth - Rare-earth iron garnets

    NASA Technical Reports Server (NTRS)

    Fratello, V. J.; Slusky, S. E. G.; Brandle, C. D.; Norelli, M. P.

    1986-01-01

    The bismuth-doped rare-earth iron garnets, (R3-x-yBixPby)Fe5O12 (Bi:RIG, R = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y), were prepared under constant growth conditions to investigate the influence of ionic species on the bismuth-based growth-induced uniaxial anisotropy K(u) exp g. The effect of ionic species on growth-induced anisotropy in Bi:RIG was not consistent with the ionic size model of site ordering. In particular, Bi:SmIG, Bi:EuIG, and Bi:TbIG displayed high growth-induced anisotropies, up to 331,000 erg/cu cm at room temperature for x of about 0.5. The temperature dependence of these K(u) exp gs was somewhat higher than that of the well studied Bi:YIG. The site ordering of Bi can be modeled by assuming that small, low-oxygen-coordination BiOw exp +3-2 w melt complexes have a strong site selectivity for small, high-oxygen coordination sites at the growth interface.

  15. Site-specific recoil-induced effects on inner-shell photoionization of linear triatomic molecules: N 1 s photoelectron spectra of N2 O

    NASA Astrophysics Data System (ADS)

    Krivosenko, Yu. S.; Pavlychev, A. A.

    2016-11-01

    We investigate hard X-ray ionization of linear triatomic molecules accenting recoil-induced effects on the dynamics of molecular frame. This dynamics is studied within the two-springs and harmonic approximations. The mode-channel relationship connecting the excitations of vibrational, rotational and translational degrees of freedom with the Σ → Σ and Σ → Π photoionization channels is applied to compute the N 1s-1 photoelectron spectra of molecular N2 O for various photon energies. The distinct ionized-site- and molecular-orientation-specific changes in the vibration structure of the 1 s photoelectron lines of terminal and central nitrogen atoms are revealed and discussed.

  16. Fusion proteins of HIV-1 envelope glycoprotein gp120 with CD4-induced antibodies showed enhanced binding to CD4 and CD4 binding site antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Weizao, E-mail: chenw3@mail.nih.gov; Feng, Yang; Wang, Yanping

    Highlights: Black-Right-Pointing-Pointer Some recombinant HIV-1 gp120s do not preserve their conformations on gp140s. Black-Right-Pointing-Pointer We hypothesize that CD4i antibodies could induce conformational changes in gp120. Black-Right-Pointing-Pointer CD4i antibodies enhance binding of CD4 and CD4bs antibodies to gp120. Black-Right-Pointing-Pointer CD4i antibody-gp120 fusion proteins could have potential as vaccine immunogens. -- Abstract: Development of successful AIDS vaccine immunogens continues to be a major challenge. One of the mechanisms by which HIV-1 evades antibody-mediated neutralizing responses is the remarkable conformational flexibility of its envelope glycoprotein (Env) gp120. Some recombinant gp120s do not preserve their conformations on gp140s and functional viral spikes, and exhibitmore » decreased recognition by CD4 and neutralizing antibodies. CD4 binding induces conformational changes in gp120 leading to exposure of the coreceptor-binding site (CoRbs). In this study, we test our hypothesis that CD4-induced (CD4i) antibodies, which target the CoRbs, could also induce conformational changes in gp120 leading to better exposed conserved neutralizing antibody epitopes including the CD4-binding site (CD4bs). We found that a mixture of CD4i antibodies with gp120 only weakly enhanced CD4 binding. However, such interactions in single-chain fusion proteins resulted in gp120 conformations which bound to CD4 and CD4bs antibodies better than the original or mutagenically stabilized gp120s. Moreover, the two molecules in the fusion proteins synergized with each other in neutralizing HIV-1. Therefore, fusion proteins of gp120 with CD4i antibodies could have potential as components of HIV-1 vaccines and inhibitors of HIV-1 entry, and could be used as reagents to explore the conformational flexibility of gp120 and mechanisms of entry and immune evasion.« less

  17. Effect of flood-induced chemical load on filtrate quality at bank filtration sites

    USGS Publications Warehouse

    Ray, C.; Soong, T.W.; Lian, Y.Q.; Roadcap, G.S.

    2002-01-01

    Riparian municipal wells, that are located on riverbanks, are specifically designed to capture a portion of the river water through induced infiltration. Runoff from agricultural watersheds is found to carry enormous amounts of pesticides and nitrate. While the risk of contamination for a vast majority of sites with small-capacity vertical wells is low, potential exists for medium to large capacity collector wells to capture a fraction of the surface water contaminants during flood. Prior monitoring and current modeling results indicate that a small-capacity (peak pumpage 0.0315 m3/s) vertical bank filtration well may not be affected by river water nitrate and atrazine even during flood periods. For a medium capacity (0.0875-0.175 m3/s) hypothetical collector well at the same site, potential exists for a portion of the river water nitrate and atrazine to enter the well during flood periods. Various combinations of hydraulic conductivity of the riverbed or bank material were used. For nitrate, it was assumed either no denitrification occurred during the period of simulation or a half-life of 2 years. Equilibrium controlled sorption (organic carbon partition coefficient of 52 ml/g) and a half-life of between 7.5 and 15 weeks were considered for atrazine. Combinations of these parameters were used in various simulations. Peak concentrations of atrazine or nitrate in pumped water could vary from less than 1% to as high as 90% of that in the river. It was found that a combination of river stage, pumping rates, hydraulic properties of the riverbed and bank, and soil/pesticide properties could affect contaminant entry from river water to any of these wells. If the hydraulic conductivity of the bed and bank material were low, atrazine would not reach the pumping well with or without sorption and degradation. However, for moderately low permeable bank and bed materials, some atrazine from river water could enter a hypothetical collector well while pumping at 0.0875 m3/s. It

  18. Peroxynitrite modified DNA presents better epitopes for anti-DNA autoantibodies in diabetes type 1 patients.

    PubMed

    Tripathi, Prashant; Moinuddin; Dixit, Kiran; Mir, Abdul Rouf; Habib, Safia; Alam, Khursheed; Ali, Asif

    2014-07-01

    Peroxynitrite (ONOO(-)), formed by the reaction between nitric oxide (NO) and superoxide (O2(-)), has been implicated in the etiology of numerous disease processes. Peroxynitrite interacts with DNA via direct oxidative reactions or via indirect radical-mediated mechanism. It can inflict both oxidative and nitrosative damages on DNA bases, generating abasic sites, resulting in the single strand breaks. Plasmid pUC 18 isolated from Escherichiacoli was modified with peroxynitrite, generated by quenched flow process. Modifications incurred in plasmid DNA were characterized by ultraviolet and fluorescence spectroscopy, circular dichroism, HPLC and melting temperature studies. Binding characteristics and specificity of antibodies from diabetes patients were analyzed by direct binding and inhibition ELISA. Peroxynitrite modification of pUC 18 plasmid resulted in the formation of strand breaks and base modification. The major compound formed when peroxynitrite reacted with DNA was 8-nitroguanine, a specific marker for peroxynitrite induced DNA damage in inflamed tissues. The concentration of 8-nitroguanine was found to be 3.8 μM. Sera from diabetes type 1 patients from different age groups were studied for their binding to native and peroxynitrite modified plasmid. Direct binding and competitive-inhibition ELISA results showed higher recognition of peroxynitrite modified plasmid, as compared to the native form, by auto-antibodies present in diabetes patients. The preferential recognition of modified plasmid by diabetes autoantibodies was further reiterated by gel shift assay. Experimentally induced anti-peroxynitrite-modified plasmid IgG was used as a probe to detect nitrosative lesions in the DNA isolated from diabetes patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Comparison of snoring sounds between natural and drug-induced sleep recorded using a smartphone.

    PubMed

    Koo, Soo Kweon; Kwon, Soon Bok; Moon, Ji Seung; Lee, Sang Hoon; Lee, Ho Byung; Lee, Sang Jun

    2018-08-01

    Snoring is an important clinical feature of obstructive sleep apnea (OSA), and recent studies suggest that the acoustic quality of snoring sounds is markedly different in drug-induced sleep compared with natural sleep. However, considering differences in sound recording methods and analysis parameters, further studies are required. This study explored whether acoustic analysis of drug-induced sleep is useful as a screening test that reflects the characteristics of natural sleep in snoring patients. The snoring sounds of 30 male subjects (mean age=41.8years) were recorded using a smartphone during natural and induced sleep, with the site of vibration noted during drug-induced sleep endoscopy (DISE); then, we compared the sound intensity (dB), formant frequencies, and spectrograms of snoring sounds. Regarding the intensity of snoring sounds, there were minor differences within the retrolingual level obstruction group, but there was no significant difference between natural and induced sleep at either obstruction site. There was no significant difference in the F 1 and F 2 formant frequencies of snoring sounds between natural sleep and induced sleep at either obstruction site. Compared with natural sleep, induced sleep was slightly more irregular, with a stronger intensity on the spectrogram, but the spectrograms showed the same pattern at both obstruction sites. Although further studies are required, the spectrograms and formant frequencies of the snoring sounds of induced sleep did not differ significantly from those of natural sleep, and may be used as a screening test that reflects the characteristics of natural sleep according to the obstruction site. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. HIV integration sites and implications for maintenance of the reservoir.

    PubMed

    Symons, Jori; Cameron, Paul U; Lewin, Sharon R

    2018-03-01

    To provide an overview of recent research of how HIV integration relates to productive and latent infection and implications for cure strategies. How and where HIV integrates provides new insights into how HIV persists on antiretroviral therapy (ART). Clonal expansion of infected cells with the same integration site demonstrates that T-cell proliferation is an important factor in HIV persistence, however, the driver of proliferation remains unclear. Clones with identical integration sites harbouring defective provirus can accumulate in HIV-infected individuals on ART and defective proviruses can express RNA and produce protein. HIV integration sites differ in clonally expanded and nonexpanded cells and in latently and productively infected cells and this influences basal and inducible transcription. There is a growing number of cellular proteins that can alter the pattern of integration to favour latency. Understanding these pathways may identify new interventions to eliminate latently infected cells. Using advances in analysing HIV integration sites, T-cell proliferation of latently infected cells is thought to play a major role in HIV persistence. Clonal expansion has been demonstrated with both defective and intact viruses. Production of viral RNA and protein from defective viruses may play a role in driving chronic immune activation. The site of integration may determine the likelihood of proliferation and the degree of basal and induced transcription. Finally, host factors and gene expression at the time of infection may determine the integration site. Together these new insights may lead to novel approaches to elimination of latently infected cells.

  1. α-Adrenoceptor blockade modifies neurally induced atrial arrhythmias

    PubMed Central

    Richer, Louis-Philippe; Vinet, Alain; Kus, Teresa; Cardinal, René; Ardell, Jeffrey L.; Armour, John Andrew

    2008-01-01

    Our objective was to determine whether neuronally induced atrial arrhythmias can be modified by α-adrenergic receptor blockade. In 30 anesthetized dogs, trains of five electrical stimuli (1 mA; 1 ms) were delivered immediately after the P wave of the ECG to mediastinal nerves associated with the superior vena cava. Regional atrial electrical events were monitored with 191 atrial unipolar electrodes. Mediastinal nerve sites were identified that reproducibly initiated atrial arrhythmias. These sites were then restimulated following 1 h (time control, n = 6), or the intravenous administration of naftopidil (α1-adrenergic blocker: 0.2 mg/kg, n = 6), yohimbine (α2-adrenergic blocker: 1 mg/kg, n = 6) or both (n = 8). A ganglionic blocker (hexamethonium: 1 mg/kg) was tested in four dogs. Stimulation of mediastinal nerves sites consistently elicited atrial tachyarrhythmias. Repeat stimulation after 1 h in the time-control group exerted a 19% decrease of the sites still able to induce atrial tachyarrhythmias. Hexamethonium inactivated 78% of the previously active sites. Combined α-adrenoceptor blockade inactivated 72% of the previously active sites. Bradycardia responses induced by mediastinal nerve stimulation were blunted by hexamethonium, but not by α1,2-adrenergic blockade. Naftopidil or yohimbine alone eliminated atrial arrhythmia induction from 31% and 34% of the sites (similar to time control). We conclude that heterogeneous activation of the intrinsic cardiac nervous system results in atrial arrhythmias that involve intrinsic cardiac neuronal α-adrenoceptors. In contrast to the global suppression exerted by hexamethonium, we conclude that α-adrenoceptor blockade targets intrinsic cardiac local circuit neurons involved in arrhythmia formation and not the flow-through efferent projections of the cardiac nervous system. PMID:18716036

  2. Alpha-adrenoceptor blockade modifies neurally induced atrial arrhythmias.

    PubMed

    Richer, Louis-Philippe; Vinet, Alain; Kus, Teresa; Cardinal, René; Ardell, Jeffrey L; Armour, John Andrew

    2008-10-01

    Our objective was to determine whether neuronally induced atrial arrhythmias can be modified by alpha-adrenergic receptor blockade. In 30 anesthetized dogs, trains of five electrical stimuli (1 mA; 1 ms) were delivered immediately after the P wave of the ECG to mediastinal nerves associated with the superior vena cava. Regional atrial electrical events were monitored with 191 atrial unipolar electrodes. Mediastinal nerve sites were identified that reproducibly initiated atrial arrhythmias. These sites were then restimulated following 1 h (time control, n = 6), or the intravenous administration of naftopidil (alpha(1)-adrenergic blocker: 0.2 mg/kg, n = 6), yohimbine (alpha(2)-adrenergic blocker: 1 mg/kg, n = 6) or both (n = 8). A ganglionic blocker (hexamethonium: 1 mg/kg) was tested in four dogs. Stimulation of mediastinal nerves sites consistently elicited atrial tachyarrhythmias. Repeat stimulation after 1 h in the time-control group exerted a 19% decrease of the sites still able to induce atrial tachyarrhythmias. Hexamethonium inactivated 78% of the previously active sites. Combined alpha-adrenoceptor blockade inactivated 72% of the previously active sites. Bradycardia responses induced by mediastinal nerve stimulation were blunted by hexamethonium, but not by alpha(1,2)-adrenergic blockade. Naftopidil or yohimbine alone eliminated atrial arrhythmia induction from 31% and 34% of the sites (similar to time control). We conclude that heterogeneous activation of the intrinsic cardiac nervous system results in atrial arrhythmias that involve intrinsic cardiac neuronal alpha-adrenoceptors. In contrast to the global suppression exerted by hexamethonium, we conclude that alpha-adrenoceptor blockade targets intrinsic cardiac local circuit neurons involved in arrhythmia formation and not the flow-through efferent projections of the cardiac nervous system.

  3. Galactic Cosmic Radiation Induces Persistent Epigenome Alterations Relevant to Human Lung Cancer.

    PubMed

    Kennedy, E M; Powell, D R; Li, Z; Bell, J S K; Barwick, B G; Feng, H; McCrary, M R; Dwivedi, B; Kowalski, J; Dynan, W S; Conneely, K N; Vertino, P M

    2018-04-30

    Human deep space and planetary travel is limited by uncertainties regarding the health risks associated with exposure to galactic cosmic radiation (GCR), and in particular the high linear energy transfer (LET), heavy ion component. Here we assessed the impact of two high-LET ions 56 Fe and 28 Si, and low-LET X rays on genome-wide methylation patterns in human bronchial epithelial cells. We found that all three radiation types induced rapid and stable changes in DNA methylation but at distinct subsets of CpG sites affecting different chromatin compartments. The 56 Fe ions induced mostly hypermethylation, and primarily affected sites in open chromatin regions including enhancers, promoters and the edges ("shores") of CpG islands. The 28 Si ion-exposure had mixed effects, inducing both hyper and hypomethylation and affecting sites in more repressed heterochromatic environments, whereas X rays induced mostly hypomethylation, primarily at sites in gene bodies and intergenic regions. Significantly, the methylation status of 56 Fe ion sensitive sites, but not those affected by X ray or 28 Si ions, discriminated tumor from normal tissue for human lung adenocarcinomas and squamous cell carcinomas. Thus, high-LET radiation exposure leaves a lasting imprint on the epigenome, and affects sites relevant to human lung cancer. These methylation signatures may prove useful in monitoring the cumulative biological impact and associated cancer risks encountered by astronauts in deep space.

  4. Soil biological attributes in arsenic-contaminated gold mining sites after revegetation.

    PubMed

    Dos Santos, Jessé Valentim; de Melo Rangel, Wesley; Azarias Guimarães, Amanda; Duque Jaramillo, Paula Marcela; Rufini, Márcia; Marra, Leandro Marciano; Varón López, Maryeimy; Pereira da Silva, Michele Aparecida; Fonsêca Sousa Soares, Cláudio Roberto; de Souza Moreira, Fatima Maria

    2013-12-01

    Recovery of arsenic contaminated areas is a challenge society faces throughout the world. Revegetation associated with microbial activity can play an essential role in this process. This work investigated biological attributes in a gold mining area with different arsenic contents at different sites under two types of extant revegetation associated with cover layers of the soil: BS, Brachiaria sp. and Stizolobium sp., and LEGS, Acacia crassicarpa, A. holosericea, A. mangium, Sesbania virgata, Albizia lebbeck and Pseudosamanea guachapele. References were also evaluated, comprising the following three sites: B1, weathered sulfide substrate without revegetation; BM, barren material after gold extraction and PRNH (private reserve of natural heritage), an uncontaminated forest site near the mining area. The organic and microbial biomass carbon contents and substrate-induced respiration rates for these sites from highest to lowest were: PRNH > LEGS > BS > B1 and BM. These attributes were negatively correlated with soluble and total arsenic concentration in the soil. The sites that have undergone revegetation (LEGS and BS) had higher densities of bacteria, fungi, phosphate solubilizers and ammonium oxidizers than the sites without vegetation. Principal component analysis showed that the LEGS site grouped with PRNH, indicating that the use of leguminous species associated with an uncontaminated soil cover layer contributed to the improvement of the biological attributes. With the exception of acid phosphatase, all the biological attributes were indicators of soil recovery, particularly the following: microbial carbon, substrate-induced respiration, density of culturable bacteria, fungi and actinobacteria, phosphate solubilizers and metabolic quotient.

  5. Transforming growth factor-{beta}-inducible phosphorylation of Smad3.

    PubMed

    Wang, Guannan; Matsuura, Isao; He, Dongming; Liu, Fang

    2009-04-10

    Smad proteins transduce the transforming growth factor-beta (TGF-beta) signal at the cell surface into gene regulation in the nucleus. Upon TGF-beta treatment, the highly homologous Smad2 and Smad3 are phosphorylated by the TGF-beta receptor at the SSXS motif in the C-terminal tail. Here we show that in addition to the C-tail, three (S/T)-P sites in the Smad3 linker region, Ser(208), Ser(204), and Thr(179) are phosphorylated in response to TGF-beta. The linker phosphorylation peaks at 1 h after TGF-beta treatment, behind the peak of the C-tail phosphorylation. We provide evidence suggesting that the C-tail phosphorylation by the TGF-beta receptor is necessary for the TGF-beta-induced linker phosphorylation. Although the TGF-beta receptor is necessary for the linker phosphorylation, the receptor itself does not phosphorylate these sites. We further show that ERK is not responsible for TGF-beta-dependent phosphorylation of these three sites. We show that GSK3 accounts for TGF-beta-inducible Ser(204) phosphorylation. Flavopiridol, a pan-CDK inhibitor, abolishes TGF-beta-induced phosphorylation of Thr(179) and Ser(208), suggesting that the CDK family is responsible for phosphorylation of Thr(179) and Ser(208) in response to TGF-beta. Mutation of the linker phosphorylation sites to nonphosphorylatable residues increases the ability of Smad3 to activate a TGF-beta/Smad-target gene as well as the growth-inhibitory function of Smad3. Thus, these observations suggest that TGF-beta-induced phosphorylation of Smad3 linker sites inhibits its antiproliferative activity.

  6. Pseudomonas aeruginosa AmrZ Binds to Four Sites in the algD Promoter, Inducing DNA-AmrZ Complex Formation and Transcriptional Activation.

    PubMed

    Xu, Binjie; Soukup, Randal J; Jones, Christopher J; Fishel, Richard; Wozniak, Daniel J

    2016-10-01

    During late stages of cystic fibrosis pulmonary infections, Pseudomonas aeruginosa often overproduces the exopolysaccharide alginate, protecting the bacterial community from host immunity and antimicrobials. The transcription of the alginate biosynthesis operon is under tight control by a number of factors, including AmrZ, the focus of this study. Interestingly, multiple transcription factors interact with the far-upstream region of this promoter (PalgD), in which one AmrZ binding site has been identified previously. The mechanisms of AmrZ binding and subsequent activation remain unclear and require more-detailed investigation. In this study, in-depth examinations elucidated four AmrZ binding sites, and their disruption eliminated AmrZ binding and promoter activation. Furthermore, our in vitro fluorescence resonance energy transfer experiments suggest that AmrZ holds together multiple binding sites in PalgD and thereafter induces the formation of higher-order DNA-AmrZ complexes. To determine the importance of interactions between those AmrZ oligomers in the cell, a DNA phasing experiment was performed. PalgD transcription was significantly impaired when the relative phase between AmrZ binding sites was reversed (5 bp), while a full-DNA-turn insertion (10 bp) restored promoter activity. Taken together, the investigations presented here provide a deeper mechanistic understanding of AmrZ-mediated binding to PalgD IMPORTANCE: Overproduction of the exopolysaccharide alginate provides protection to Pseudomonas aeruginosa against antimicrobial treatments and is associated with chronic P. aeruginosa infections in the lungs of cystic fibrosis patients. In this study, we combined a variety of microbiological, genetic, biochemical, and biophysical approaches to investigate the activation of the alginate biosynthesis operon promoter by a key transcription factor named AmrZ. This study has provided important new information on the mechanism of activation of this extremely

  7. Single-Stranded γPNAs for In Vivo Site-Specific Genome Editing via Watson-Crick Recognition

    PubMed Central

    Bahal, Raman; Quijano, Elias; McNeer, Nicole Ali; Liu, Yanfeng; Bhunia, Dinesh C.; López-Giráldez, Francesco; Fields, Rachel J.; Saltzman, W. Mark; Ly, Danith H.; Glazer, Peter M.

    2014-01-01

    Triplex-forming peptide nucleic acids (PNAs) facilitate gene editing by stimulating recombination of donor DNAs within genomic DNA via site-specific formation of altered helical structures that further stimulate DNA repair. However, PNAs designed for triplex formation are sequence restricted to homopurine sites. Herein we describe a novel strategy where next generation single-stranded gamma PNAs (γPNAs) containing miniPEG substitutions at the gamma position can target genomic DNA in mouse bone marrow at mixed-sequence sites to induce targeted gene editing. In addition to enhanced binding, γPNAs confer increased solubility and improved formulation into poly(lactic-co-glycolic acid) (PLGA) nanoparticles for efficient intracellular delivery. Single-stranded γPNAs induce targeted gene editing at frequencies of 0.8% in mouse bone marrow cells treated ex vivo and 0.1% in vivo via IV injection, without detectable toxicity. These results suggest that γPNAs may provide a new tool for induced gene editing based on Watson-Crick recognition without sequence restriction. PMID:25174576

  8. Single-stranded γPNAs for in vivo site-specific genome editing via Watson-Crick recognition.

    PubMed

    Bahal, Raman; Quijano, Elias; McNeer, Nicole A; Liu, Yanfeng; Bhunia, Dinesh C; Lopez-Giraldez, Francesco; Fields, Rachel J; Saltzman, William M; Ly, Danith H; Glazer, Peter M

    2014-01-01

    Triplex-forming peptide nucleic acids (PNAs) facilitate gene editing by stimulating recombination of donor DNAs within genomic DNA via site-specific formation of altered helical structures that further stimulate DNA repair. However, PNAs designed for triplex formation are sequence restricted to homopurine sites. Herein we describe a novel strategy where next generation single-stranded gamma PNAs (γPNAs) containing miniPEG substitutions at the gamma position can target genomic DNA in mouse bone marrow at mixed-sequence sites to induce targeted gene editing. In addition to enhanced binding, γPNAs confer increased solubility and improved formulation into poly(lactic-co-glycolic acid) (PLGA) nanoparticles for efficient intracellular delivery. Single-stranded γPNAs induce targeted gene editing at frequencies of 0.8% in mouse bone marrow cells treated ex vivo and 0.1% in vivo via IV injection, without detectable toxicity. These results suggest that γPNAs may provide a new tool for induced gene editing based on Watson-Crick recognition without sequence restriction.

  9. Development of SH2 probes and pull-down assays to detect pathogen-induced, site-specific tyrosine phosphorylation of the TLR adaptor SCIMP.

    PubMed

    Luo, Lin; Tong, Samuel J; Wall, Adam A; Khromykh, Tatiana; Sweet, Matthew J; Stow, Jennifer L

    2017-07-01

    Protein tyrosine phosphorylation guides many molecular interactions for cellular functions. SCIMP is a transmembrane adaptor protein (TRAP) family member that mediates selective proinflammatory cytokine responses generated by pathogen-activated Toll-like receptor (TLR) pathways in macrophages. TLR activation triggers SCIMP phosphorylation and selective phosphorylation of distinct tyrosine residues on this adaptor offers the potential for regulating or biasing inflammatory responses. To analyze site-specific phosphorylation events, we developed three probes based on the SH2 domains of known SCIMP effectors, and used them for pull-downs from macrophage extracts. CRISPR-mediated SCIMP-deficient RAW264.7 macrophage-like cells were reconstituted with various phosphorylation-deficient (Y58F, Y96F, Y120F) SCIMPs, and used to demonstrate the specificity of LPS/TLR4-induced, site-specific phosphorylation of SCIMP for the temporal recruitment of the effectors Grb2, Csk and SLP65. Our findings reveal potential for differential SCIMP phosphorylation and specific effectors to influence TLR signaling and inflammatory programs. Furthermore, the use of Csk-SH2 pull-downs to identify additional known and new Csk targets in LPS-activated macrophages reveals the wider utility of our SH2 probes.

  10. Multiple binding sites for transcriptional repressors can produce regular bursting and enhance noise suppression

    NASA Astrophysics Data System (ADS)

    Lengyel, Iván M.; Morelli, Luis G.

    2017-04-01

    Cells may control fluctuations in protein levels by means of negative autoregulation, where transcription factors bind DNA sites to repress their own production. Theoretical studies have assumed a single binding site for the repressor, while in most species it is found that multiple binding sites are arranged in clusters. We study a stochastic description of negative autoregulation with multiple binding sites for the repressor. We find that increasing the number of binding sites induces regular bursting of gene products. By tuning the threshold for repression, we show that multiple binding sites can also suppress fluctuations. Our results highlight possible roles for the presence of multiple binding sites of negative autoregulators.

  11. Lack of photoprotection against UVB-induced erythema by immediate pigmentation induced by 382 nm radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, G.; Matzinger, E.; Gange, R.W.

    Immediate pigment darkening (IPD) was induced on the backs of 11 human volunteers of skin types III and IV by exposing the skin to UVA radiation (382 nm). The minimum erythema dose (MED) of UVB radiation was also determined by exposing sites to graduated doses of 304 nm radiation. The order of exposure of distinct anatomic areas was as follow: UVB followed by IPD induction; IPD induction followed by UVB; IPD induction followed 3 h later by UVB; and UVB only. Erythema responses induced by UVB were graded by inspection 24 h later and the MEDs in the 4 areasmore » were compared. The induction of IPD before UVB exposure caused no significant change in the MED compared to sites receiving UVB only, or receiving UVA radiation after UVB, confirming that the IPD reaction does not protect against UVB-induced erythema. There was also no evidence of photorecovery, i.e., an increase in the MED of UVB resulting from exposure to longer wavelength, UV or visible radiation following UVB exposure.« less

  12. Site-selective local fluorination of graphene induced by focused ion beam irradiation.

    PubMed

    Li, Hu; Daukiya, Lakshya; Haldar, Soumyajyoti; Lindblad, Andreas; Sanyal, Biplab; Eriksson, Olle; Aubel, Dominique; Hajjar-Garreau, Samar; Simon, Laurent; Leifer, Klaus

    2016-01-29

    The functionalization of graphene remains an important challenge for numerous applications expected by this fascinating material. To keep advantageous properties of graphene after modification or functionalization of its structure, local approaches are a promising road. A novel technique is reported here that allows precise site-selective fluorination of graphene. The basic idea of this approach consists in the local radicalization of graphene by focused ion beam (FIB) irradiation and simultaneous introduction of XeF2 gas. A systematic series of experiments were carried out to outline the relation between inserted defect creation and the fluorination process. Based on a subsequent X-ray photoelectron spectroscopy (XPS) analysis, a 6-fold increase of the fluorine concentration on graphene under simultaneous irradiation was observed when compared to fluorination under normal conditions. The fluorine atoms are predominately localized at the defects as indicated from scanning tunneling microscopy (STM). The experimental findings are confirmed by density functional theory which predicts a strong increase of the binding energy of fluorine atoms when bound to the defect sites. The developed technique allows for local fluorination of graphene without using resists and has potential to be a general enabler of site-selective functionalization of graphene using a wide range of gases.

  13. Site-selective local fluorination of graphene induced by focused ion beam irradiation

    PubMed Central

    Li, Hu; Daukiya, Lakshya; Haldar, Soumyajyoti; Lindblad, Andreas; Sanyal, Biplab; Eriksson, Olle; Aubel, Dominique; Hajjar-Garreau, Samar; Simon, Laurent; Leifer, Klaus

    2016-01-01

    The functionalization of graphene remains an important challenge for numerous applications expected by this fascinating material. To keep advantageous properties of graphene after modification or functionalization of its structure, local approaches are a promising road. A novel technique is reported here that allows precise site-selective fluorination of graphene. The basic idea of this approach consists in the local radicalization of graphene by focused ion beam (FIB) irradiation and simultaneous introduction of XeF2 gas. A systematic series of experiments were carried out to outline the relation between inserted defect creation and the fluorination process. Based on a subsequent X-ray photoelectron spectroscopy (XPS) analysis, a 6-fold increase of the fluorine concentration on graphene under simultaneous irradiation was observed when compared to fluorination under normal conditions. The fluorine atoms are predominately localized at the defects as indicated from scanning tunneling microscopy (STM). The experimental findings are confirmed by density functional theory which predicts a strong increase of the binding energy of fluorine atoms when bound to the defect sites. The developed technique allows for local fluorination of graphene without using resists and has potential to be a general enabler of site-selective functionalization of graphene using a wide range of gases. PMID:26822900

  14. Site-selective local fluorination of graphene induced by focused ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Li, Hu; Daukiya, Lakshya; Haldar, Soumyajyoti; Lindblad, Andreas; Sanyal, Biplab; Eriksson, Olle; Aubel, Dominique; Hajjar-Garreau, Samar; Simon, Laurent; Leifer, Klaus

    2016-01-01

    The functionalization of graphene remains an important challenge for numerous applications expected by this fascinating material. To keep advantageous properties of graphene after modification or functionalization of its structure, local approaches are a promising road. A novel technique is reported here that allows precise site-selective fluorination of graphene. The basic idea of this approach consists in the local radicalization of graphene by focused ion beam (FIB) irradiation and simultaneous introduction of XeF2 gas. A systematic series of experiments were carried out to outline the relation between inserted defect creation and the fluorination process. Based on a subsequent X-ray photoelectron spectroscopy (XPS) analysis, a 6-fold increase of the fluorine concentration on graphene under simultaneous irradiation was observed when compared to fluorination under normal conditions. The fluorine atoms are predominately localized at the defects as indicated from scanning tunneling microscopy (STM). The experimental findings are confirmed by density functional theory which predicts a strong increase of the binding energy of fluorine atoms when bound to the defect sites. The developed technique allows for local fluorination of graphene without using resists and has potential to be a general enabler of site-selective functionalization of graphene using a wide range of gases.

  15. Chemical-induced Vitiligo

    PubMed Central

    Harris, John E.

    2016-01-01

    Synopsis Chemical-induced depigmentation of the skin has been recognized for over 75 years, first as an occupational hazard but then extending to those using household commercial products as common as hair dyes. Since their discovery, these chemicals have been used therapeutically in patients with severe vitiligo to depigment their remaining skin and improve their appearance. The importance of recognizing this phenomenon was highlighted during an outbreak of vitiligo in Japan during the summer of 2013, when over 16,000 users of a new skin lightening cosmetic cream developed skin depigmentation at the site of contact with the cream and many in remote areas as well. Depigmenting chemicals appear to be analogs of the amino acid tyrosine that disrupt melanogenesis and result in autoimmunity and melanocyte destruction. Because chemical-induced depigmentation is clinically and histologically indistinguishable from non-chemically induced vitiligo, and because these chemicals appear to induce melanocyte autoimmunity, this phenomenon should be known as “chemical-induced vitiligo”, rather than less accurate terms that have been previously used. PMID:28317525

  16. Mechanism of RDX-Induced Seizures in Rats

    DTIC Science & Technology

    2009-09-01

    acetylcholine receptors , the glycine receptor , the site 2 sodium channel, and the family of GABAA ligand sites, as well as several others. A complete list...acetylchohnesterase was also measured. Also. RDX was screened for affinity to a library of brain receptors to determine if RDX affected any seizure-related...site on the GABAa receptor with an IC 50 of 22 uM. The mechanism of RDX-induced seizure is likely due to dis-inhibition of excitatory neuioas by

  17. Electrical studies at the proposed Wahmonie and Calico Hills nuclear waste sites, Nevada Test Site, Nye County, Nevada

    USGS Publications Warehouse

    Hoover, D.B.; Chornack, Michael P.; Nervick, K.H.; Broker, M.M.

    1982-01-01

    Two sites in the southwest quadrant of the Nevada Test Site (NTS) were investigated as potential repositories for high-level nuclear waste. These are designated the Wahmonie and Calico Hills sites. The emplacement medium at both sites was to be an inferred intrusive body at shallow depth; the inference of the presence of the body was based on aeromagnetic and regional gravity data. This report summarizes results of Schlumberger VES, induced polarization dipole-dipole traverses and magnetotelluric soundings made in the vicinity of the sites in order to characterize the geoelectric section. At the Wahmonie site VES work identified a low resistivity unit at depth surrounding the inferred intrusive body. The low resistivity unit is believed to be either the argillite (Mississippian Eleana Formation) or a thick unit of altered volcanic rock (Tertiary). Good electrical contrast is provided between the low resistivity unit and a large volume of intermediate resistivity rock correlative with the aeromagnetic and gravity data. The intermediate resistivity unit (100-200 ohm-m) is believed to be the intrusive body. The resistivity values are very low for a fresh, tight intrusive and suggest significant fracturing, alteration and possible mineralization have occurred within the upper kilometer of rock. Induced polarization data supports the VES work, identifies a major fault on the northwest side of the inferred intrusive and significant potential for disseminated mineralization within the body. The mineralization potential is particularly significant because as late as 1928, a strike of high grade silver-gold ore was made at the site. The shallow electrical data at Calico Hills revealed no large volume high resistivity body that could be associated with a tight intrusive mass in the upper kilometer of section. A drill hole UE 25A-3 sunk to 762 m (2500 ft) at the site revealed only units of the Eleana argillite thermally metamorphosed below 396 m (1300 ft) and in part highly

  18. What Hinders Electron Transfer Dissociation (ETD) of DNA Cations?

    NASA Astrophysics Data System (ADS)

    Hari, Yvonne; Leumann, Christian J.; Schürch, Stefan

    2017-12-01

    Radical activation methods, such as electron transfer dissociation (ETD), produce structural information complementary to collision-induced dissociation. Herein, electron transfer dissociation of 3-fold protonated DNA hexamers was studied to gain insight into the fragmentation mechanism. The fragmentation patterns of a large set of DNA hexamers confirm cytosine as the primary target of electron transfer. The reported data reveal backbone cleavage by internal electron transfer from the nucleobase to the phosphate linker leading either to a•/ w or d/ z• ion pairs. This reaction pathway contrasts with previous findings on the dissociation processes after electron capture by DNA cations, suggesting multiple, parallel dissociation channels. However, all these channels merely result in partial fragmentation of the precursor ion because the charge-reduced DNA radical cations are quite stable. Two hypotheses are put forward to explain the low dissociation yield of DNA radical cations: it is either attributed to non-covalent interactions between complementary fragments or to the stabilization of the unpaired electron in stacked nucleobases. MS3 experiments suggest that the charge-reduced species is the intact oligonucleotide. Moreover, introducing abasic sites significantly increases the dissociation yield of DNA cations. Consequently, the stabilization of the unpaired electron by π-π-stacking provides an appropriate rationale for the high intensity of DNA radical cations after electron transfer. [Figure not available: see fulltext.

  19. Repair of radiation-induced heat-labile sites is independent of DNA-PKcs, XRCC1 or PARP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenerlöw, Bo; Karlsson, Karin H.; Radulescu, Irina

    2008-04-29

    Ionizing radiation induces a variety of different DNA lesions: in addition to the most critical DNA damage, the DSB, numerous base alterations, SSBs and other modifications of the DNA double-helix are formed. When several non-DSB lesions are clustered within a short distance along DNA, or close to a DSB, they may interfere with the repair of DSBs and affect the measurement of DSB induction and repair. We have previously shown that a substantial fraction of DSBs measured by pulsed-field gel electrophoresis (PFGE) are in fact due to heat-labile sites (HLS) within clustered lesions, thus reflecting an artifact of preparation ofmore » genomic DNA at elevated temperature. To further characterize the influence of HLS on DSB induction and repair, four human cell lines (GM5758, GM7166, M059K, U-1810) with apparently normal DSB rejoining were tested for bi-phasic rejoining after gamma irradiation. When heat-released DSBs were excluded from the measurements the fraction of fast rejoining decreased to less than 50% of the total. However, neither the half-times of the fast (t{sub 1/2} = 7-8 min) or slow (t{sub 1/2} = 2.5 h) DSB rejoining were changed significantly. At t=0 the heat-released DSBs accounted for almost 40% of the DSBs, corresponding to 10 extra DSB/cell/Gy in the initial DSB yield. These heat-released DSBs were repaired within 60-90 min in all tested cells, including M059K cells treated with wortmannin or DNA-PKcs defect M059J cells. Furthermore, cells lacking XRCC1 or Poly(ADP-ribose) polymerase-1 (PARP-1) rejoined both total DSBs and heat-released DSBs similar to normal cells. In summary, the presence of heat-labile sites have a substantial impact on DSB induction yields and DSB rejoining rates measured by pulsed-field gel electrophoresis, and HLS repair is independent of DNA-PKcs, XRCC1 and PARP.« less

  20. The binding sites of inhibitory monoclonal antibodies on acetylcholinesterase. Identification of a novel regulatory site at the putative "back door".

    PubMed

    Simon, S; Le Goff, A; Frobert, Y; Grassi, J; Massoulié, J

    1999-09-24

    We investigated the target sites of three inhibitory monoclonal antibodies on Electrophorus acetylcholinesterase (AChE). Previous studies showed that Elec-403 and Elec-410 are directed to overlapping but distinct epitopes in the peripheral site, at the entrance of the catalytic gorge, whereas Elec-408 binds to a different region. Using Electrophorus/rat AChE chimeras, we identified surface residues that differed between sensitive and insensitive AChEs: the replacement of a single Electrophorus residue by its rat homolog was able to abolish binding and inhibition, for each antibody. Reciprocally, binding and inhibition by Elec-403 and by Elec-410 could be conferred to rat AChE by the reverse mutation. Elec-410 appears to bind to one side of the active gorge, whereas Elec-403 covers its opening, explaining why the AChE-Elec-410 complex reacts faster than the AChE-Elec-403 or AChE-fasciculin complexes with two active site inhibitors, m-(N,N, N-trimethyltammonio)trifluoro-acetophenone and echothiophate. Elec-408 binds to the region of the putative "back door," distant from the peripheral site, and does not interfere with the access of inhibitors to the active site. The binding of an antibody to this novel regulatory site may inhibit the enzyme by blocking the back door or by inducing a conformational distortion within the active site.

  1. Zoledronic Acid Induces Site-Specific Structural Changes and Decreases Vascular Area in the Alveolar Bone.

    PubMed

    Soares, Mariana Quirino Silveira; Van Dessel, Jeroen; Jacobs, Reinhilde; da Silva Santos, Paulo Sérgio; Cestari, Tania Mary; Garlet, Gustavo Pompermaier; Duarte, Marco Antonio Hungaro; Imada, Thaís Sumie Nozu; Lambrichts, Ivo; Rubira-Bullen, Izabel Regina Fischer

    2018-03-15

    The aim was to assess the effect of a relevant regimen of zoledronic acid (ZA) treatment for the study of bisphosphonate-related osteonecrosis of the jaw on alveolar bone microstructure and vasculature. A sub-objective was to use 3-dimensional imaging to describe site-specific changes induced by ZA in the alveolar bone. Five Wistar rats received ZA (0.6 mg/kg) and five (controls) received saline solution in the same volume. The compounds were administered intraperitoneally in 5 doses every 28 days. The rats were euthanized 150 days after therapy onset. The mandibles were scanned using high-resolution (14-μm) micro-computed tomography (micro-CT), decalcified, cut into slices for histologic analysis (5 μm), and stained with hematoxylin-eosin. Bone quality parameters were calculated using CT-Analyser software (Bruker, Kontich, Belgium) in 2 different volumes of interest (VOIs): the region between the first molar roots (VOI-1) and the periapical region under the first and second molars' apex (VOI-2). Blood vessel density and bone histomorphometric parameters were calculated only for the region between the roots of the first molar using AxioVision Imaging software (version 4.8; Carl Zeiss, Gottingen, Germany). ZA-treated rats showed a significant increase in percentage of bone volume and density (P < .05), with thicker and more connected trabeculae. Furthermore, the ZA group showed a significant decrease in the size of the marrow spaces and nutritive canals and in blood vessel density (P < .05). In the micro-CT evaluation, VOI-2 showed better outcomes in measuring the effect of ZA on alveolar bone. ZA treatment induced bone corticalization and decreased alveolar bone vascularization. VOI-2 should be preferred for micro-CT evaluation of the effect of bisphosphonates on alveolar bone. This analysis allowed the effect of ZA on alveolar bone and its vascularization to be characterized. The results of this analysis may add further knowledge to the understanding of

  2. Computational Tools for Allosteric Drug Discovery: Site Identification and Focus Library Design.

    PubMed

    Huang, Wenkang; Nussinov, Ruth; Zhang, Jian

    2017-01-01

    Allostery is an intrinsic phenomenon of biological macromolecules involving regulation and/or signal transduction induced by a ligand binding to an allosteric site distinct from a molecule's active site. Allosteric drugs are currently receiving increased attention in drug discovery because drugs that target allosteric sites can provide important advantages over the corresponding orthosteric drugs including specific subtype selectivity within receptor families. Consequently, targeting allosteric sites, instead of orthosteric sites, can reduce drug-related side effects and toxicity. On the down side, allosteric drug discovery can be more challenging than traditional orthosteric drug discovery due to difficulties associated with determining the locations of allosteric sites and designing drugs based on these sites and the need for the allosteric effects to propagate through the structure, reach the ligand binding site and elicit a conformational change. In this study, we present computational tools ranging from the identification of potential allosteric sites to the design of "allosteric-like" modulator libraries. These tools may be particularly useful for allosteric drug discovery.

  3. Curcumin-induced histone acetylation inhibition improves stress-induced gastric ulcer disease in rats.

    PubMed

    He, Ping; Zhou, Renmin; Hu, Guorui; Liu, Zhifeng; Jin, Yu; Yang, Guang; Li, Mei; Lin, Qian

    2015-03-01

    Curcumin is known to possess anti‑inflammatory properties. Despite the fact that curcumin is known to be a strong inhibitor of H+, K+‑ATPase activity, the mechanism underlying the curcumin‑induced inhibition of the transcription of the H+, K+‑ATPase α subunit in gastric mucosal parietal cells remains unclear. The present study investigated the possible mechanism by which curcumin inhibits stomach H+, K+‑ATPase activity during the acute phase of gastric ulcer disease. A rat model of stress‑induced gastric ulcers was produced, in which the anti‑ulcer effects of curcumin were examined. Curcumin‑induced inhibition of the H+, K+‑ATPase promoter via histone acetylation, was verified using a chromatin immunoprecipitation assay. The results showed that curcumin improved stress‑induced gastric ulcer disease in rats, as demonstrated by increased pH values and reduced gastric mucosal hemorrhage and ulcer index. These effects were accompanied by a significant reduction in the level of histone H3 acetylation at the site of the H+, K+‑ATPase promoter and in the expression of the gastric H+,K+‑ATPase α subunit gene and protein. In conclusion, curcumin downregulated the acetylation of histone H3 at the site of the H+, K+‑ATPase promoter gene, thereby inhibiting the transcription and expression of the H+, K+‑ATPase gene. Curcumin was shown to have a preventive and therapeutic effect in gastric ulcer disease.

  4. SITE CHARACTERIZATION AND ANALYSIS PENETROMETER SYSTEM(SCAPS) LAZER-INDUCED FLUORESCENCE (LIF) SENSOR AND SUPPORT SYSTEM

    EPA Science Inventory

    The Consortium for Site Characterization Technology (CSCT) has established a formal program to accelerate acceptance and application of innovative monitoring and site characterization technologies that improve the way the nation manages its environmental problems. In 1995 the CS...

  5. Mechanism of synergistic DNA damage induced by the hydroquinone metabolite of brominated phenolic environmental pollutants and Cu(II): Formation of DNA-Cu complex and site-specific production of hydroxyl radicals.

    PubMed

    Shao, Bo; Mao, Li; Qu, Na; Wang, Ya-Fen; Gao, Hui-Ying; Li, Feng; Qin, Li; Shao, Jie; Huang, Chun-Hua; Xu, Dan; Xie, Lin-Na; Shen, Chen; Zhou, Xiang; Zhu, Ben-Zhan

    2017-03-01

    2,6-Dibromohydroquinone (2,6-DBrHQ) has been identified as an reactive metabolite of many brominated phenolic environmental pollutants such as tetrabromobisphenol-A (TBBPA), bromoxynil and 2,4,6-tribromophenol, and was also found as one of disinfection byproducts in drinking water. In this study, we found that the combination of 2,6-DBrHQ and Cu(II) together could induce synergistic DNA damage as measured by double strand breakage in plasmid DNA and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation, while either of them alone has no effect. 2,6-DBrHQ/Cu(II)-induced DNA damage could be inhibited by the Cu(I)-specific chelating agent bathocuproine disulfonate and catalase, but not by superoxide dismutase, nor by the typical hydroxyl radical (•OH) scavengers such as DMSO and mannitol. Interestingly, we found that Cu(II)/Cu(I) could be combined with DNA to form DNA-Cu(II)/Cu(I) complex by complementary application of low temperature direct ESR, circular dichroism, cyclic voltammetry and oxygen consumption methods; and the highly reactive •OH were produced synergistically by DNA-bound-Cu(I) with H 2 O 2 produced by the redox reactions between 2,6-DBrHQ and Cu(II), which then immediately attack DNA in a site-specific manner as demonstrated by both fluorescent method and by ESR spin-trapping studies. Further DNA sequencing investigations provided more direct evidence that 2,6-DBrHQ/Cu(II) caused preferential cleavage at guanine, thymine and cytosine residues. Based on these data, we proposed that the synergistic DNA damage induced by 2,6-DBrHQ/Cu(II) might be due to the synergistic and site-specific production of •OH near the binding site of copper and DNA. Our findings may have broad biological and environmental implications for future research on the carcinogenic polyhalogenated phenolic compounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Mitochondrial DNA maintenance is regulated in human hepatoma cells by glycogen synthase kinase 3β and p53 in response to tumor necrosis factor α.

    PubMed

    Vadrot, Nathalie; Ghanem, Sarita; Braut, Françoise; Gavrilescu, Laura; Pilard, Nathalie; Mansouri, Abdellah; Moreau, Richard; Reyl-Desmars, Florence

    2012-01-01

    During chronic liver inflammation, up-regulated Tumor Necrosis Factor alpha (TNF-α) targets hepatocytes and induces abnormal reactive oxygen species (ROS) production responsible for mitochondrial DNA (mtDNA) alterations. The serine/threonine Glycogen Synthase Kinase 3 beta (GSK3β) plays a pivotal role during inflammation but its involvement in the maintenance of mtDNA remains unknown. The aim of this study was to investigate its involvement in TNF-α induced mtDNA depletion and its interrelationship with p53 a protein known to maintain mtDNA copy numbers. Using quantitative polymerase chain reaction (qPCR) we found that at 30 min in human hepatoma HepG2 cells TNF-α induced 0.55±0.10 mtDNA lesions per 10 Kb and a 52.4±2.8% decrease in mtDNA content dependent on TNF-R1 receptor and ROS production. Both lesions and depletion returned to baseline from 1 to 6 h after TNF-α exposure. Luminol-amplified chemiluminescence (LAC) was used to measure the rapid (10 min) and transient TNF-α induced increase in ROS production (168±15%). A transient 8-oxo-dG level of 1.4±0.3 ng/mg DNA and repair of abasic sites were also measured by ELISA assays. Translocation of p53 to mitochondria was observed by Western Blot and co-immunoprecipitations showed that TNF-α induced p53 binding to GSK3β and mitochondrial transcription factor A (TFAM). In addition, mitochondrial D-loop immunoprecipitation (mtDIP) revealed that TNF-α induced p53 binding to the regulatory D-loop region of mtDNA. The knockdown of p53 by siRNAs, inhibition by the phosphoSer(15)p53 antibody or transfection of human mutant active GSK3βS9A pcDNA3 plasmid inhibited recovery of mtDNA content while blockade of GSK3β activity by SB216763 inhibitor or knockdown by siRNAs suppressed mtDNA depletion. This study is the first to report the involvement of GSK3β in TNF-α induced mtDNA depletion. We suggest that p53 binding to GSK3β, TFAM and D-loop could induce recovery of mtDNA content through mtDNA repair.

  7. Identification of serine 348 on the apelin receptor as a novel regulatory phosphorylation site in apelin-13-induced G protein-independent biased signaling.

    PubMed

    Chen, Xiaoyu; Bai, Bo; Tian, Yanjun; Du, Hui; Chen, Jing

    2014-11-07

    Phosphorylation plays vital roles in the regulation of G protein-coupled receptor (GPCR) functions. The apelin and apelin receptor (APJ) system is involved in the regulation of cardiovascular function and central control of body homeostasis. Here, using tandem mass spectrometry, we first identified phosphorylated serine residues in the C terminus of APJ. To determine the role of phosphorylation sites in APJ-mediated G protein-dependent and -independent signaling and function, we induced a mutation in the C-terminal serine residues and examined their effects on the interaction between APJ with G protein or GRK/β-arrestin and their downstream signaling. Mutation of serine 348 led to an elimination of both GRK and β-arrestin recruitment to APJ induced by apelin-13. Moreover, APJ internalization and G protein-independent ERK signaling were also abolished by point mutation at serine 348. In contrast, this mutant at serine residues had no demonstrable impact on apelin-13-induced G protein activation and its intracellular signaling. These findings suggest that mutation of serine 348 resulted in inactive GRK/β-arrestin. However, there was no change in the active G protein thus, APJ conformation was biased. These results provide important information on the molecular interplay and impact of the APJ function, which may be extrapolated to design novel drugs for cardiac hypertrophy based on this biased signal pathway. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Physiologic pacing: new modalities and pacing sites.

    PubMed

    Padeletti, Luigi; Lieberman, Randy; Valsecchi, Sergio; Hettrick, Douglas A

    2006-12-01

    Right ventricular (RV) apical pacing impairs left ventricular function by inducing dys-synchronous contraction and relaxation. Chronic RV apical pacing is associated with an increased risk of atrial fibrillation, morbidity, and even mortality. These observations have raised questions regarding the appropriate pacing mode and site, leading to the introduction of algorithms and new pacing modes to reduce the ventricular pacing burden in dual chamber devices, and a shift of the pacing site away from the RV apex. However, further investigations are required to assess the long-term results of pacing from alternative sites in the right ventricle, because long-term results so far are equivocal. The potential benefit of prophylactic biventricular, mono-chamber left ventricular, and bifocal RV pacing should be explored in selected patients with a narrow QRS complex, especially those with impaired left ventricular function. His bundle pacing is a promising and evolving technique that requires improvements in lead technology.

  9. Stress induces pain transition by potentiation of AMPA receptor phosphorylation.

    PubMed

    Li, Changsheng; Yang, Ya; Liu, Sufang; Fang, Huaqiang; Zhang, Yong; Furmanski, Orion; Skinner, John; Xing, Ying; Johns, Roger A; Huganir, Richard L; Tao, Feng

    2014-10-08

    Chronic postsurgical pain is a serious issue in clinical practice. After surgery, patients experience ongoing pain or become sensitive to incident, normally nonpainful stimulation. The intensity and duration of postsurgical pain vary. However, it is unclear how the transition from acute to chronic pain occurs. Here we showed that social defeat stress enhanced plantar incision-induced AMPA receptor GluA1 phosphorylation at the Ser831 site in the spinal cord and greatly prolonged plantar incision-induced pain. Interestingly, targeted mutation of the GluA1 phosphorylation site Ser831 significantly inhibited stress-induced prolongation of incisional pain. In addition, stress hormones enhanced GluA1 phosphorylation and AMPA receptor-mediated electrical activity in the spinal cord. Subthreshold stimulation induced spinal long-term potentiation in GluA1 phosphomimetic mutant mice, but not in wild-type mice. Therefore, spinal AMPA receptor phosphorylation contributes to the mechanisms underlying stress-induced pain transition. Copyright © 2014 the authors 0270-6474/14/3413737-10$15.00/0.

  10. The N253F mutant structure of trehalose synthase from Deinococcus radiodurans reveals an open active-site topology.

    PubMed

    Chow, Sih Yao; Wang, Yung Lin; Hsieh, Yu Chiao; Lee, Guan Chiun; Liaw, Shwu Huey

    2017-11-01

    Trehalose synthase (TS) catalyzes the reversible conversion of maltose to trehalose and belongs to glycoside hydrolase family 13 (GH13). Previous mechanistic analysis suggested a rate-limiting protein conformational change, which is probably the opening and closing of the active site. Consistently, crystal structures of Deinococcus radiodurans TS (DrTS) in complex with the inhibitor Tris displayed an enclosed active site for catalysis of the intramoleular isomerization. In this study, the apo structure of the DrTS N253F mutant displays a new open conformation with an empty active site. Analysis of these structures suggests that substrate binding induces a domain rotation to close the active site. Such a substrate-induced domain rotation has also been observed in some other GH13 enzymes.

  11. The long term trend of carbon dioxide and solar-induced chlorophyll fluorescence over selected sites using GOSAT target observation data

    NASA Astrophysics Data System (ADS)

    Kataoka, F.; Higuchi, R.; Kuze, A.; Shiomi, K.

    2017-12-01

    The Greenhouse gases Observing SATellite (GOSAT) is designed to measure the concentration of major greenhouse gases from space. GOSAT carry the Fourier-Transform Spectrometer, which have three shortwave infrared (SWIR) bands and one thermal infrared (TIR) band. The SWIR bands correspond to the O2A band (0.76 mm), weak-CO2 (1.6 mm) and strong-CO2 (2.0 mm). The SWIR bands observe the backscattered sunlight from surface and retrieve the column-averaged dry air mole fraction of carbon dioxide and methane. The 0.76 mm band can also detect the solar-induced chlorophyll fluorescence (SIF) using high spectral-resolution spectra in O2A band and solar absorption feature (Fraunhofer lines). GOSAT have operated more than 8 years and targeted various kinds of land-cover area (forest, grass, desert, etc.). The long term CO2 and SIF data set potential to address the rate of CO2 uptake through plant photosynthesis. In this work, we evaluated a trend and seasonal fluctuation components of CO2 and SIF using the liner and trigonometric functions fitting. We analyzed the amplitude and phase of the CO2 and SIF seasonal variation and anomalies over selected sites. Spatial distribution from target observation dataset which consist of 16 point per site using an agile pointing system over megacity is presented together with wind data. The data is available from the GOSAT trend viewer at http://www.eorc.jaxa.jp/GOSAT/CO2_monitor/.

  12. Discovery of the ammonium substrate site on glutamine synthetase, a third cation binding site.

    PubMed Central

    Liaw, S. H.; Kuo, I.; Eisenberg, D.

    1995-01-01

    because ADP binding induces movement of Asp 50' toward this monovalent cation site, essentially forming the site. This observation supports a two-step mechanism with ordered substrate binding: ATP first binds to GS, then Glu binds and attacks ATP to form gamma-glutamyl phosphate and ADP, which complete the ammonium binding site. The third substrate, an ammonium ion, then binds to GS, and then loses a proton to form the more active species ammonia, which attacks the gamma-glutamyl phosphate to yield Gln. (5) Because the products (Glu or Gln) of the reactions catalyzed by GS are determined by the molecule (water or ammonium) attacking the intermediate gamma-glutamyl phosphate, this negatively charged ammonium binding pocket has been designed naturally for high affinity of ammonium to GS, permitting glutamine synthesis to proceed in aqueous solution. PMID:8563633

  13. Effect of environmental conditions on the relationship between solar-induced fluorescence and gross primary productivity at an OzFlux grassland site

    NASA Astrophysics Data System (ADS)

    Verma, Manish; Schimel, David; Evans, Bradley; Frankenberg, Christian; Beringer, Jason; Drewry, Darren T.; Magney, Troy; Marang, Ian; Hutley, Lindsay; Moore, Caitlin; Eldering, Annmarie

    2017-03-01

    Recent studies have utilized coarse spatial and temporal resolution remotely sensed solar-induced fluorescence (SIF) for modeling terrestrial gross primary productivity (GPP) at regional scales. Although these studies have demonstrated the potential of SIF, there have been concerns about the ecophysiological basis of the relationship between SIF and GPP in different environmental conditions. Launched in 2014, the Orbiting Carbon Observatory-2 (OCO-2) has enabled fine-scale (1.3 by 2.5 km) retrievals of SIF that are comparable with measurements recorded at eddy covariance towers. In this study, we examine the effect of environmental conditions on the relationship of OCO-2 SIF with tower GPP over the course of a growing season at a well-characterized natural grassland site. Combining OCO-2 SIF and eddy covariance tower data with a canopy radiative transfer and an ecosystem model, we also assess the potential of OCO-2 SIF to constrain the estimates of Vcmax, one of the most important parameters in ecosystem models. Based on the results, we suggest that although environmental conditions play a role in determining the nature of relationship between SIF and GPP, overall, the linear relationship is more robust at ecosystem scale than the theory based on leaf-level processes might suggest. Our study also shows that the ability of SIF to constrain Vcmax is weak at the selected site.

  14. Ground Handling of Batteries at Test and Launch-site Facilities

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Hohl, Alan R.

    2008-01-01

    Ground handling of flight as well as engineering batteries at test facilities and launch-site facilities is a safety critical process. Test equipment interfacing with the batteries should have the required controls to prevent a hazardous failure of the batteries. Test equipment failures should not induce catastrophic failures on the batteries. Transportation requirements for batteries should also be taken into consideration for safe transportation. This viewgraph presentation includes information on the safe handling of batteries for ground processing at test facilities as well as launch-site facilities.

  15. A phased approach to induced seismicity risk management

    DOE PAGES

    White, Joshua A.; Foxall, William

    2014-01-01

    This work describes strategies for assessing and managing induced seismicity risk during each phase of a carbon storage project. We consider both nuisance and damage potential from induced earthquakes, as well as the indirect risk of enhancing fault leakage pathways. A phased approach to seismicity management is proposed, in which operations are continuously adapted based on available information and an on-going estimate of risk. At each project stage, specific recommendations are made for (a) monitoring and characterization, (b) modeling and analysis, and (c) site operations. The resulting methodology can help lower seismic risk while ensuring site operations remain practical andmore » cost-effective.« less

  16. Site occupancy models with heterogeneous detection probabilities

    USGS Publications Warehouse

    Royle, J. Andrew

    2006-01-01

    Models for estimating the probability of occurrence of a species in the presence of imperfect detection are important in many ecological disciplines. In these ?site occupancy? models, the possibility of heterogeneity in detection probabilities among sites must be considered because variation in abundance (and other factors) among sampled sites induces variation in detection probability (p). In this article, I develop occurrence probability models that allow for heterogeneous detection probabilities by considering several common classes of mixture distributions for p. For any mixing distribution, the likelihood has the general form of a zero-inflated binomial mixture for which inference based upon integrated likelihood is straightforward. A recent paper by Link (2003, Biometrics 59, 1123?1130) demonstrates that in closed population models used for estimating population size, different classes of mixture distributions are indistinguishable from data, yet can produce very different inferences about population size. I demonstrate that this problem can also arise in models for estimating site occupancy in the presence of heterogeneous detection probabilities. The implications of this are discussed in the context of an application to avian survey data and the development of animal monitoring programs.

  17. Cold-induced vasoconstriction at forearm and hand skin sites: the effect of age.

    PubMed

    Kingma, B R M; Frijns, A J H; Saris, W H M; van Steenhoven, A A; van Marken Lichtenbelt, W D

    2010-07-01

    During mild cold exposure, elderly are at risk of hypothermia. In humans, glabrous skin at the hands is well adapted as a heat exchanger. Evidence exists that elderly show equal vasoconstriction due to local cooling at the ventral forearm, yet no age effects on vasoconstriction at hand skin have been studied. Here, we tested the hypotheses that at hand sites (a) elderly show equal vasoconstriction due to local cooling and (b) elderly show reduced response to noradrenergic stimuli. Skin perfusion and mean arterial pressure were measured in 16 young adults (Y: 18-28 years) and 16 elderly (E: 68-78 years). To study the effect of local vasoconstriction mechanisms local sympathetic nerve terminals were blocked by bretylium (BR). Baseline local skin temperature was clamped at 33 degrees C. Next, local temperature was reduced to 24 degrees C. After 15 min of local cooling, noradrenaline (NA) was administered to study the effect of neural vasoconstriction mechanisms. No significant age effect was observed in vasoconstriction due to local cooling at BR sites. After NA, vasoconstriction at the forearm showed a significant age effect; however, no significant age effect was found at the hand sites. [Change in CVC (% from baseline): Forearm Y: -76 +/- 3 vs. E: -60 +/- 5 (P < 0.01), dorsal hand Y: -74 +/- 4 vs. E: -72 +/- 4 (n.s.), ventral hand Y: -80 +/- 7 vs. E: -70 +/- 11 (n.s.)]. In conclusion, in contrast to results from the ventral forearm, elderly did not show a blunted response to local cooling and noradrenaline at hand skin sites. This indicates that at hand skin the noradrenergic mechanism of vasoconstriction is maintained with age.

  18. Robust statistical methods for impulse noise suppressing of spread spectrum induced polarization data, with application to a mine site, Gansu province, China

    NASA Astrophysics Data System (ADS)

    Liu, Weiqiang; Chen, Rujun; Cai, Hongzhu; Luo, Weibin

    2016-12-01

    In this paper, we investigated the robust processing of noisy spread spectrum induced polarization (SSIP) data. SSIP is a new frequency domain induced polarization method that transmits pseudo-random m-sequence as source current where m-sequence is a broadband signal. The potential information at multiple frequencies can be obtained through measurement. Removing the noise is a crucial problem for SSIP data processing. Considering that if the ordinary mean stack and digital filter are not capable of reducing the impulse noise effectively in SSIP data processing, the impact of impulse noise will remain in the complex resistivity spectrum that will affect the interpretation of profile anomalies. We implemented a robust statistical method to SSIP data processing. The robust least-squares regression is used to fit and remove the linear trend from the original data before stacking. The robust M estimate is used to stack the data of all periods. The robust smooth filter is used to suppress the residual noise for data after stacking. For robust statistical scheme, the most appropriate influence function and iterative algorithm are chosen by testing the simulated data to suppress the outliers' influence. We tested the benefits of the robust SSIP data processing using examples of SSIP data recorded in a test site beside a mine in Gansu province, China.

  19. Risk Factors of Suicidal Ideations and Attempts in Talented, At-Risk Girls

    ERIC Educational Resources Information Center

    Hull-Blanks, Elva E.; Kerr, Barbara A.; Robinson Kurpius, Sharon E.

    2004-01-01

    The purpose of the present study was to investigate the relationships among suicidality, substance use, self-esteem, family structure, and eight personality characteristics (harm avoidance, impulsivity, aggression, social recognition, cognitive structure, succorance, abasement, and achievement) with 337 talented, at-risk, adolescent girls. Results…

  20. Endogenously Generated Plasmin at the Vascular Wall Injury Site Amplifies Lysine Binding Site-Dependent Plasminogen Accumulation in Microthrombi

    PubMed Central

    Brzoska, Tomasz; Tanaka-Murakami, Aki; Suzuki, Yuko; Sano, Hideto; Kanayama, Naohiro; Urano, Tetsumei

    2015-01-01

    The fibrinolytic system plays a pivotal role in the regulation of hemostasis; however, it remains unclear how and when the system is triggered to induce thrombolysis. Using intra-vital confocal fluorescence microscopy, we investigated the process of plasminogen binding to laser-induced platelet-rich microthrombi generated in the mesenteric vein of transgenic mice expressing green fluorescent protein (GFP). The accumulation of GFP-expressing platelets as well as exogenously infused Alexa Fluor 568-labeled Glu-plasminogen (Glu-plg) on the injured vessel wall was assessed by measuring the increase in the corresponding fluorescence intensities. Glu-plg accumulated in a time-dependent manner in the center of the microthrombus, where phosphatidylserine is exposed on platelet surfaces and fibrin formation takes place. The rates of binding of Glu-plg in the presence of ε-aminocaproic acid and carboxypeptidase B, as well as the rates of binding of mini-plasminogen lacking kringle domains 1-4 and lysine binding sites, were significantly lower than that of Glu-plg alone, suggesting that the binding was dependent on lysine binding sites. Furthermore, aprotinin significantly suppressed the accumulation of Glu-plg, suggesting that endogenously generated plasmin activity is a prerequisite for the accumulation. In spite of the endogenous generation of plasmin and accumulation of Glu-plg in the center of microthrombi, the microthrombi did not change in size during the 2-hour observation period. When human tissue plasminogen activator was administered intravenously, Glu-plg further accumulated and the microthrombi were lysed. Glu-plg appeared to accumulate in the center of microthrombi in the early phase of microthrombus formation, and plasmin activity and lysine binding sites were required for this accumulation. PMID:25806939

  1. Probing the modulation of acute ethanol intoxication by pharmacological manipulation of the NMDAR glycine coagonist site

    PubMed Central

    Debrouse, Lauren; Hurd, Benita; Kiselycznyk, Carly; Plitt, Aaron; Todaro, Alyssa; Mishina, Masayoshi; Grant, Seth; Camp, Marguerite; Gunduz-Cinar, Ozge; Holmes, Andrew

    2012-01-01

    BACKGROUND Stimulating the glycineB binding site on the N-methyl-D-aspartate receptor (NMDAR) has been proposed as a novel mechanism for modulating behavioral effects of ethanol (EtOH) that are mediated via the NMDAR, including acute intoxication. Here, we pharmacologically interrogated this hypothesis in mice. METHODS Effects of systemic injection of the glycineB agonist, D-serine, the GlyT-1 glycine transporter inhibitor, ALX-5407, and the glycineB antagonist, L-701,324, were tested for effects on EtOH-induced ataxia, hypothermia, loss of righting reflex duration (LORR) in C57BL/6J (B6) and 129S1/SvImJ (S1) inbred mice. Effects of the glycineB partial agonist, D-cycloserine, the GlyT-1 inhibitor, NFPS, and the glycineB antagonist, DCKA, on EtOH-induced LORR duration were also tested. Interaction effects on EtOH-induced LORR duration were examined via combined treatment with D-serine and ALX-5407, D-serine and MK-801, D-serine and L-701,324, as well as L-701,324 and ALX-5407, in B6 mice, as D-serine in GluN2A and PSD-95 KO mice. The effect of dietary depletion of Magnesium (Mg), an element which interacts the glycineB site, was also tested. RESULTS Neither D-serine, D-cycloserine, ALX-5407, nor NFPS significantly affected EtOH intoxication on any of the measures or strains studied. L-701,324, but not DCKA, dose-dependently potentiated the ataxia-inducing effects of EtOH and increased EtOH-induced (but not pentobarbital-induced) LORR duration. D-serine did not have interactive effects on EtOH-induced LORR duration when combined with ALX-5407. The EtOH-potentiating effects of L-701,324, but not MK-801, on LORR duration were prevented by D-serine, but not ALX-5407. Mg depletion potentiated LORR duration in B6 mice and was lethal in a large proportion of S1 mice. CONCLUSIONS GlycineB site activation failed to produce the hypothesized reduction in EtOH intoxication across a range of measures and genetic strains, but blockade of the glycineB site potentiated Et

  2. Effects of Edge on-Site Potential in a Honeycomb Topological Magnon Insulator

    NASA Astrophysics Data System (ADS)

    Pantaleón, Pierre A.; Xian, Yang

    2018-06-01

    While the deviation of the edge on-site potential from the bulk values in a magnonic topological honeycomb lattice leads to the formation of edge states in a bearded boundary, this is not the case for a zigzag termination, where no edge state is found. In a semi-infinite lattice, the intrinsic on-site interactions along the boundary sites generate an effective defect and this gives rise to Tamm-like edge states. If a nontrivial gap is induced, both Tamm-like and topologically protected edge states appear in the band structure. The effective defect can be strengthened by an external on-site potential, and the dispersion relation, velocity and magnon density of the edge states all become tunable.

  3. Protective effects of buckwheat honey on DNA damage induced by hydroxyl radicals.

    PubMed

    Zhou, Juan; Li, Peng; Cheng, Ni; Gao, Hui; Wang, Bini; Wei, Yahui; Cao, Wei

    2012-08-01

    To understand the antioxidant properties of buckwheat honeys, we investigated their antioxidant effects on hydroxyl radical-induced DNA breaks in the non-site-specific and site-specific systems, the physicochemical properties, antioxidant activities (1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical scavenging activity, chelating, and reducing power assays), total phenolic content and individual phenolic acids were also determined. Total phenolic content of buckwheat honeys ranged from 774 to 1694 mg PA/kg, and p-hydroxybenzoic and p-coumaric acids proved to be the main components in buckwheat honeys. All the buckwheat honey samples possess stronger capability to protect DNA in the non-site-specific systems than in the site-specific systems from being damaged by hydroxyl radicals. In the non-site-specific and site-specific system, buckwheat honeys samples prevented ()OH-induced DNA breaks by 21-78% and 5-31% over control value, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Effectiveness of Natural Field Induced Polarization for Detecting Polymetallic Deposits

    NASA Astrophysics Data System (ADS)

    YANG, Jin; LIU, Zhaoping; WANG, Long

    To validate the effect of Natural Field Induced Polarization (NFIP), a certain polymetallic deposit was chosen as the test site, where Induced Polarization (IP) using gradient array and the Magnetotelluric (MT) sounding were conducted simultaneously. Analysis and comparison of the data indicated that the anomaly of the Relative Percent Frequency Effect (RPFE) from the MT data and the anomaly of IP coincided well with each other in the extents of the anomalous site and anomaly magnitudes. The results showed that NFIP was effective in the exploration of polymetallic deposits, under certain conditions.

  5. Spinal cord stimulation suppresses bradycardias and atrial tachyarrhythmias induced by mediastinal nerve stimulation in dogs.

    PubMed

    Cardinal, René; Pagé, Pierre; Vermeulen, Michel; Bouchard, Caroline; Ardell, Jeffrey L; Foreman, Robert D; Armour, J Andrew

    2006-11-01

    Spinal cord stimulation (SCS) applied to the dorsal aspect of the cranial thoracic cord imparts cardioprotection under conditions of neuronally dependent cardiac stress. This study investigated whether neuronally induced atrial arrhythmias can be modulated by SCS. In 16 anesthetized dogs with intact stellate ganglia and in five with bilateral stellectomy, trains of five electrical stimuli were delivered during the atrial refractory period to right- or left-sided mediastinal nerves for up to 20 s before and after SCS (20 min). Recordings were obtained from 191 biatrial epicardial sites. Before SCS (11 animals), mediastinal nerve stimulation initiated bradycardia alone (12 nerve sites), bradycardia followed by tachyarrhythmia/fibrillation (50 sites), as well as tachyarrhythmia/fibrillation without a preceding bradycardia (21 sites). After SCS, the number of responsive sites inducing bradycardia was reduced by 25% (62 to 47 sites), and the cycle length prolongation in residual bradycardias was reduced. The number of responsive sites inducing tachyarrhythmia was reduced by 60% (71 to 29 sites). Once elicited, residual tachyarrhythmias arose from similar epicardial foci, displaying similar dynamics (cycle length) as in control states. In the absence of SCS, bradycardias and tachyarrhythmias induced by repeat nerve stimulation were reproducible (five additional animals). After bilateral stellectomy, SCS no longer influenced neuronal induction of bradycardia and atrial tachyarrhythmias. These data indicate that SCS obtunds the induction of atrial arrhythmias resulting from excessive activation of intrinsic cardiac neurons and that such protective effects depend on the integrity of nerves coursing via the subclavian ansae and stellate ganglia.

  6. Cold-induced vasoconstriction at forearm and hand skin sites: the effect of age

    PubMed Central

    Frijns, A. J. H.; Saris, W. H. M.; van Steenhoven, A. A.; van Marken Lichtenbelt, W. D.

    2010-01-01

    During mild cold exposure, elderly are at risk of hypothermia. In humans, glabrous skin at the hands is well adapted as a heat exchanger. Evidence exists that elderly show equal vasoconstriction due to local cooling at the ventral forearm, yet no age effects on vasoconstriction at hand skin have been studied. Here, we tested the hypotheses that at hand sites (a) elderly show equal vasoconstriction due to local cooling and (b) elderly show reduced response to noradrenergic stimuli. Skin perfusion and mean arterial pressure were measured in 16 young adults (Y: 18–28 years) and 16 elderly (E: 68–78 years). To study the effect of local vasoconstriction mechanisms local sympathetic nerve terminals were blocked by bretylium (BR). Baseline local skin temperature was clamped at 33°C. Next, local temperature was reduced to 24°C. After 15 min of local cooling, noradrenalin (NA) was administered to study the effect of neural vasoconstriction mechanisms. No significant age effect was observed in vasoconstriction due to local cooling at BR sites. After NA, vasoconstriction at the forearm showed a significant age effect; however, no significant age effect was found at the hand sites. [Change in CVC (% from baseline): Forearm Y: −76 ± 3 vs. E: −60 ± 5 (P < 0.01), dorsal hand Y: −74 ± 4 vs. E: −72 ± 4 (n.s.), ventral hand Y: −80 ± 7 vs. E: −70 ± 11 (n.s.)]. In conclusion, in contrast to results from the ventral forearm, elderly did not show a blunted response to local cooling and noradrenalin at hand skin sites. This indicates that at hand skin the noradrenergic mechanism of vasoconstriction is maintained with age. PMID:20300768

  7. Glomerular anionic site distribution in nonproteinuric rats. A computer-assisted morphometric analysis.

    PubMed

    Pilia, P A; Swain, R P; Williams, A V; Loadholt, C B; Ainsworth, S K

    1985-12-01

    The cationic ultrastructural tracer polyethyleneimine (PEI: pI approximately equal to 11.0), binds electrophysically to uniformly spaced discrete electron-dense anionic sites present in the laminae rarae of the rat glomerular basement membrane (GBM), mesangial reflections of the GBM, Bowman's capsule, and tubular basement membranes when administered intravenously. Computer-assisted morphometric analysis of glomerular anionic sites reveals that the maximum concentration of stainable lamina rara externa (lre) sites (21/10,000 A GBM) occurs 60 minutes after PEI injection with a site-site interspacing of 460 A. Lamina rara interna (lri) sites similarly demonstrate a maximum concentration (20/10,000 A GBM) at 60 minutes with a periodicity of 497 A. The concentration and distribution of anionic sites within the lri was irregular in pattern and markedly decreased in number, while the lre possesses an electrical field that is highly regular at all time intervals analyzed (15, 30, 60, 120, 180, 240, and 300 minutes). Immersion and perfusion of renal tissue with PEI reveals additional heavy staining of the epithelial and endothelial cell sialoprotein coatings. PEI appears to bind to glomerular anionic sites reversibly: ie, between 60 and 180 minutes the concentration of stained sites decreases. At 300 minutes, the interspacing once again approaches the 60-minute concentration. This suggests a dynamic turnover or dissociation followed by a reassociation of glomerular negatively charged PEI binding sites. In contrast, morphometric analysis of anionic sites stained with lysozyme and protamine sulfate reveals interspacings of 642 A and 585 A, respectively; in addition, these tracers produce major glomerular ultrastructural alterations and induce transient proteinuria. PEI does not induce proteinuria in rats, nor does it produce glomerular morphologic alterations when ten times the tracer dosage is administered intravenously. These findings indicate that the choice of

  8. Site-specific covalent modifications of human insulin by catechol estrogens: Reactivity and induced structural and functional changes

    NASA Astrophysics Data System (ADS)

    Ku, Ming-Chun; Fang, Chieh-Ming; Cheng, Juei-Tang; Liang, Huei-Chen; Wang, Tzu-Fan; Wu, Chih-Hsing; Chen, Chiao-Chen; Tai, Jung-Hsiang; Chen, Shu-Hui

    2016-06-01

    Proteins, covalently modified by catechol estrogens (CEs), were identified recently from the blood serum of diabetic patients and referred to as estrogenized proteins. Estrogenization of circulating insulin may occur and affect its molecular functioning. Here, the chemical reactivity of CEs towards specific amino acid residues of proteins and the structural and functional changes induced by the estrogenization of insulin were studied using cyclic voltammetry, liquid chromatography-mass spectrometry, circular dichroism spectroscopy, molecular modeling, and bioassays. Our results indicate that CEs, namely, 2- and 4-hydroxyl estrogens, were thermodynamically and kinetically more reactive than the catechol moiety. Upon co-incubation, intact insulin formed a substantial number of adducts with one or multiple CEs via covalent conjugation at its Cys 7 in the A or B chain, as well as at His10 or Lys29 in the B chain. Such conjugation was coupled with the cleavage of inter-chain disulfide linkages. Estrogenization on these sites may block the receptor-binding pockets of insulin. Insulin signaling and glucose uptake levels were lower in MCF-7 cells treated with modified insulin than in cells treated with native insulin. Taken together, our findings demonstrate that insulin molecules are susceptible to active estrogenization, and that such modification may alter the action of insulin.

  9. Local site effect of soil slope based on microtremor measurement in Samigaluh, Kulon Progo Yogyakarta

    NASA Astrophysics Data System (ADS)

    Prabowo, U. N.; Amalia, A. F.; Wiranata, F. E.

    2018-03-01

    This paper investigated soil slope-local site effect of earthquake inducing landslide by using microtremor Horizontal to Vertical Spectral Ratio (HVSR) method. Microtremor measurements of 15 sites which were recorded for 45 minutes at each site were carried out in Ngargosari village, Samigaluh, Kulon Progo-Indonesia. Microtremor analysis using HVSR method was performed using Geopsy software. HVSR method resulted in predominant frequency values that ranges between 2,77 to 13,82 Hz and amplification factors varied from 0,46 to 5,70. The predominant frequency is associated with the depth of bedrock and the amplification factor reflects the geological condition of soil (sedimentary layer). The soil vulnerability index (Kg) varied from 0,08 to 5,77 and the higher value (Kg>3,4) in the south of the research area was identified as the weak zone of earthquake inducing landslide.

  10. A novel Rieske-type protein derived from an apoptosis-inducing factor-like (AIFL) transcript with a retained intron 4 induces change in mitochondrial morphology and growth arrest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murata, Yasuhiko, E-mail: 97318@ib.k.u-tokyo.ac.jp; Furuyama, Isao; Oda, Shoji

    2011-04-01

    Highlights: {yields} A novel major transcript, AIFL-I4, is found. {yields} Nuclear localization of AIFL-I4 induces mitochondrial morphology change and suppression of cell proliferation. {yields} AIFL-I4 mutant with a lesion in [2Fe-2S] cluster binding site does not induce these phenotypes. {yields} [2Fe-2S] cluster binding site is essential for these phenotypes. -- Abstract: Apoptosis-inducing factor-like (AIFL) protein contains a Rieske domain and pyridine nucleotide-disulfide oxidoreductase (Pyr{sub r}edox) domain that shows 35% homology to that of apoptosis-inducing factor (AIF) protein. We identified a novel major transcript of the medaka (Oryzias latipes) AIFL gene that retained intron 4 (AIFL-I4) in embryos and tissues frommore » adult fish. The product of this transcript, AIFL-I4 protein, lacked the Pyr{sub r}edox domain because of a nonsense codon in intron 4. Both AIFL-I4 and full-length AIFL (fAIFL) transcripts were highly expressed in the brain and late embryos, and relative fAIFL and AIFL-I4 expression levels differed among tissues. Transient expression of AIFL-I4 and fAIFL tagged with GFP showed that AIFL-I4 localized in the nucleus, while fAIFL localized throughout the cytoplasm. We also found that overexpression of AIFL-I4 induced a change in mitochondrial morphology and suppression of cell proliferation. AIFL-I4 mutant with a lesion in [2Fe-2S] cluster binding site of the Rieske domain did not induce these phenotypes. This report is the first to demonstrate nuclear localization of a Rieske-type protein translated from the AIFL gene. Our data suggested that the [2Fe-2S] cluster binding site was essential for the nuclear localization and involved in mitochondrial morphology and suppression of cell proliferation.« less

  11. Counselor Effectiveness: A Changing Emphasis

    ERIC Educational Resources Information Center

    Doyle, W. L.; Conklin, R. C.

    1970-01-01

    It is suggested that emphasis be changed from trait factor personality studies such as tolerance for ambiguity, nurturance, and abasement, to researching the area of cognitive style, flexibility, perception and psychological openness as perhaps being more fruitful in advancing knowledge of the criterion variable. (Author)

  12. Alkaline Phosphatase Protects Lipopolysaccharide-Induced Early Pregnancy Defects in Mice

    PubMed Central

    Lei, Wei; Ni, Hua; Herington, Jennifer; Reese, Jeff; Paria, Bibhash C.

    2015-01-01

    Excessive cytokine inflammatory response due to chronic or superphysiological level of microbial infection during pregnancy leads to pregnancy complications such as early pregnancy defects/loss and preterm birth. Bacterial toxin lipopolysaccharide (LPS), long recognized as a potent proinflammatory mediator, has been identified as a risk factor for pregnancy complications. Alkaline phosphatase (AP) isozymes have been shown to detoxify LPS by dephosphorylation. In this study, we examined the role of alkaline phosphatase (AP) in mitigating LPS-induced early pregnancy complications in mice. We found that 1) the uterus prior to implantation and implantation sites following embryo implantation produce LPS recognition and dephosphorylation molecules TLR4 and tissue non-specific AP (TNAP) isozyme, respectively; 2) uterine TNAP isozyme dephosphorylates LPS at its sites of production; 3) while LPS administration following embryo implantation elicits proinflammatory cytokine mRNA levels at the embryo implantation sites (EISs) and causes early pregnancy loss, dephosphorylated LPS neither triggers proinflammatory cytokine mRNA levels at the EISs nor induces pregnancy complications; 4) AP isozyme supplementation to accelerate LPS detoxification attenuates LPS-induced pregnancy complications following embryo implantation. These findings suggest that a LPS dephosphorylation strategy using AP isozyme may have a unique therapeutic potential to mitigate LPS- or Gram-negative bacteria-induced pregnancy complications in at-risk women. PMID:25910276

  13. Alkaline phosphatase protects lipopolysaccharide-induced early pregnancy defects in mice.

    PubMed

    Lei, Wei; Ni, Hua; Herington, Jennifer; Reese, Jeff; Paria, Bibhash C

    2015-01-01

    Excessive cytokine inflammatory response due to chronic or superphysiological level of microbial infection during pregnancy leads to pregnancy complications such as early pregnancy defects/loss and preterm birth. Bacterial toxin lipopolysaccharide (LPS), long recognized as a potent proinflammatory mediator, has been identified as a risk factor for pregnancy complications. Alkaline phosphatase (AP) isozymes have been shown to detoxify LPS by dephosphorylation. In this study, we examined the role of alkaline phosphatase (AP) in mitigating LPS-induced early pregnancy complications in mice. We found that 1) the uterus prior to implantation and implantation sites following embryo implantation produce LPS recognition and dephosphorylation molecules TLR4 and tissue non-specific AP (TNAP) isozyme, respectively; 2) uterine TNAP isozyme dephosphorylates LPS at its sites of production; 3) while LPS administration following embryo implantation elicits proinflammatory cytokine mRNA levels at the embryo implantation sites (EISs) and causes early pregnancy loss, dephosphorylated LPS neither triggers proinflammatory cytokine mRNA levels at the EISs nor induces pregnancy complications; 4) AP isozyme supplementation to accelerate LPS detoxification attenuates LPS-induced pregnancy complications following embryo implantation. These findings suggest that a LPS dephosphorylation strategy using AP isozyme may have a unique therapeutic potential to mitigate LPS- or Gram-negative bacteria-induced pregnancy complications in at-risk women.

  14. Tamoxifen-induced non-alcoholic steatohepatitis in patients with breast cancer: determination of a suitable biopsy site for diagnosis.

    PubMed

    Murata, Yoriko; Ogawa, Yasuhiro; Saibara, Toshiji; Nishioka, Akihito; Takeuchi, Naoko; Kariya, Shinji; Onishi, Saburo; Yoshida, Shoji

    2003-01-01

    We have evaluated the distribution of fatty infiltration in the liver for determination of a suitable biopsy site for diagnosis of tamoxifen-induced non-alcoholic steatohepatitis (NASH) in patients with breast cancer. Thirty-eight consecutive breast cancer patients undergoing tamoxifen treatment were analyzed by CT to identify hepatic steatosis (HS) via calculation of the liver/spleen CT ratio in Couinaud's 8 areas. We defined hepatic fatty infiltration as a liver/spleen ratio of less than 0.9. The extent and distribution of the fatty infiltration was assessed using the liver/spleen ratio of the patients who had the lowest CT ratio below 0.9 in the 8 areas. Thirteen (34.2%) of the 38 patients had hepatic fatty infiltration. The liver/spleen ratios of each area differed significantly in all patients (p<0.0001). The CT ratio of these 13 patients was significantly lower in the right lobe than the left lobe (p<0.0001), although the ratios did not differ significantly among the 4 areas of the right lobe (p=0.52). Needle biopsy for diagnosis of NASH should be performed at the right lobe, which contains significantly more infiltrated fat than the left lobe in the liver.

  15. Catalytic zinc site and mechanism of the metalloenzyme PR-AMP cyclohydrolase.

    PubMed

    D'Ordine, Robert L; Linger, Rebecca S; Thai, Carolyn J; Davisson, V Jo

    2012-07-24

    The enzyme N(1)-(5'-phosphoribosyl) adenosine-5'-monophosphate cyclohydrolase (PR-AMP cyclohydrolase) is a Zn(2+) metalloprotein encoded by the hisI gene. It catalyzes the third step of histidine biosynthesis, an uncommon ring-opening of a purine heterocycle for use in primary metabolism. A three-dimensional structure of the enzyme from Methanobacterium thermoautotrophicum has revealed that three conserved cysteine residues occur at the dimer interface and likely form the catalytic site. To investigate the functions of these cysteines in the enzyme from Methanococcus vannielii, a series of biochemical studies were pursued to test the basic hypothesis regarding their roles in catalysis. Inactivation of the enzyme activity by methyl methane thiosulfonate (MMTS) or 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) also compromised the Zn(2+) binding properties of the protein inducing loss of up to 90% of the metal. Overall reaction stoichiometry and the potassium cyanide (KCN) induced cleavage of the protein suggested that all three cysteines were modified in the process. The enzyme was protected from DTNB-induced inactivation by inclusion of the substrate N(1)-(5'-phosphoribosyl)adenosine 5'-monophosphate; (PR-AMP), while Mg(2+), a metal required for catalytic activity, enhanced the rate of inactivation. Site-directed mutations of the conserved C93, C109, C116 and the double mutant C109/C116 were prepared and analyzed for catalytic activity, Zn(2+) content, and reactivity with DTNB. Substitution of alanine for each of the conserved cysteines showed no measurable catalytic activity, and only the C116A was still capable of binding Zn(2+). Reactions of DTNB with the C109A/C116A double mutant showed that C93 is completely modified within 0.5 s. A model consistent with these data involves a DTNB-induced mixed disulfide linkage between C93 and C109 or C116, followed by ejection of the active site Zn(2+) and provides further evidence that the Zn(2+) coordination site involves the

  16. Controllable Magnetization Processes Induced by Nucleation Sites in Permalloy Rings

    NASA Astrophysics Data System (ADS)

    Chen, Ying-Jiun; Hsu, Chia-Jung; Liao, Chun-Neng; Huang, Hao-Ting; Lee, Chiun-Peng; Chiu, Yi-Hsun; Tung, Tzu-Yun; Lai, Mei-Feng

    2010-02-01

    Different arrangements of notches as nucleation sites are demonstrated experimentally and numerically to effectively control the magnetization processes of permalloy rings. In the ring with notches at the same side with respect to field direction, two same-helicity vortex domain walls in the onion state lead to two-step switching going through flux-closure state; in the ring with diagonal notches two opposite-helicity vortex domain walls lead to one-step switching skipping flux-closure state. The switching processes are repeatable in contrast to rings without notches where helicites of two vortex domain walls are random so the switching processes can not be controlled.

  17. Alternative right ventricular pacing sites.

    PubMed

    Łuciuk, Dariusz; Łuciuk, Marek; Gajek, Jacek

    2015-01-01

    The main adverse effect of chronic stimulation is stimulation-induced heart failure in case of ventricular contraction dyssynchrony. Because of this fact, new techniques of stimulation should be considered to optimize electrotherapy. One of these methods is pacing from alternative right ventricular sites. The purpose of this article is to review currently accumulated data about alternative sites of cardiac pacing. Medline and PubMed bases were used to search English and Polish reports published recently. Recent studies report a deleterious effect of long term apical pacing. It is suggested that permanent apical stimulation, by omitting physiological conduction pattern with His-Purkinie network, may lead to electrical and mechanical dyssynchrony of heart muscle contraction. In the long term this pathological situation can lead to severe heart failure and death. Because of this, scientists began to search for some alternative sites of cardiac pacing to reduce the deleterious effect of stimulation. Based on current accumulated data, it is suggested that the right ventricular outflow tract, right ventricular septum, direct His-bundle or biventricular pacing are better alternatives due to more physiological electrical impulse propagation within the heart and the reduction of the dyssynchrony effect. These methods should preserve a better left ventricular function and prevent the development of heart failure in permanent paced patients. As there is still not enough, long-term, randomized, prospective, cross-over and multicenter studies, further research is required to validate the benefits of using this kind of therapy. The article should pay attention to new sites of cardiac stimulation as a better and safer method of treatment.

  18. APOBEC3B cytidine deaminase targets the non-transcribed strand of tRNA genes in yeast.

    PubMed

    Saini, Natalie; Roberts, Steven A; Sterling, Joan F; Malc, Ewa P; Mieczkowski, Piotr A; Gordenin, Dmitry A

    2017-05-01

    Variations in mutation rates across the genome have been demonstrated both in model organisms and in cancers. This phenomenon is largely driven by the damage specificity of diverse mutagens and the differences in DNA repair efficiency in given genomic contexts. Here, we demonstrate that the single-strand DNA-specific cytidine deaminase APOBEC3B (A3B) damages tRNA genes at a 1000-fold higher efficiency than other non-tRNA genomic regions in budding yeast. We found that A3B-induced lesions in tRNA genes were predominantly located on the non-transcribed strand, while no transcriptional strand bias was observed in protein coding genes. Furthermore, tRNA gene mutations were exacerbated in cells where RNaseH expression was completely abolished (Δrnh1Δrnh35). These data suggest a transcription-dependent mechanism for A3B-induced tRNA gene hypermutation. Interestingly, in strains proficient in DNA repair, only 1% of the abasic sites formed upon excision of A3B-deaminated cytosines were not repaired leading to mutations in tRNA genes, while 18% of these lesions failed to be repaired in the remainder of the genome. A3B-induced mutagenesis in tRNA genes was found to be efficiently suppressed by the redundant activities of both base excision repair (BER) and the error-free DNA damage bypass pathway. On the other hand, deficiencies in BER did not have a profound effect on A3B-induced mutations in CAN1, the reporter for protein coding genes. We hypothesize that differences in the mechanisms underlying ssDNA formation at tRNA genes and other genomic loci are the key determinants of the choice of the repair pathways and consequently the efficiency of DNA damage repair in these regions. Overall, our results indicate that tRNA genes are highly susceptible to ssDNA-specific DNA damaging agents. However, increased DNA repair efficacy in tRNA genes can prevent their hypermutation and maintain both genome and proteome homeostasis. Published by Elsevier B.V.

  19. The sequence specificity of UV-induced DNA damage in a systematically altered DNA sequence.

    PubMed

    Khoe, Clairine V; Chung, Long H; Murray, Vincent

    2018-06-01

    The sequence specificity of UV-induced DNA damage was investigated in a specifically designed DNA plasmid using two procedures: end-labelling and linear amplification. Absorption of UV photons by DNA leads to dimerisation of pyrimidine bases and produces two major photoproducts, cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (6-4PPs). A previous study had determined that two hexanucleotide sequences, 5'-GCTC*AC and 5'-TATT*AA, were high intensity UV-induced DNA damage sites. The UV clone plasmid was constructed by systematically altering each nucleotide of these two hexanucleotide sequences. One of the main goals of this study was to determine the influence of single nucleotide alterations on the intensity of UV-induced DNA damage. The sequence 5'-GCTC*AC was designed to examine the sequence specificity of 6-4PPs and the highest intensity 6-4PP damage sites were found at 5'-GTTC*CC nucleotides. The sequence 5'-TATT*AA was devised to investigate the sequence specificity of CPDs and the highest intensity CPD damage sites were found at 5'-TTTT*CG nucleotides. It was proposed that the tetranucleotide DNA sequence, 5'-YTC*Y (where Y is T or C), was the consensus sequence for the highest intensity UV-induced 6-4PP adduct sites; while it was 5'-YTT*C for the highest intensity UV-induced CPD damage sites. These consensus tetranucleotides are composed entirely of consecutive pyrimidines and must have a DNA conformation that is highly productive for the absorption of UV photons. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  20. Interaction of U-69,593 with. mu. -, delta- and k-opioid binding sites and its analgesic and intestinal effects in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Regina, A.; Petrillo, P.; Sbacchi, M.

    1988-01-01

    The k-opioid compound U-69,593 was studied in rats in vitro in binding assays to assess its selectivity at the single types of opioid sites and in vivo to assess its analgesic activity and effect on intestinal propulsion. In vitro the U-69,593 inhibition curve of (/sup 3/H)-(-)-bremazocine binding suppressed at ..mu..- and delta-sites was biphasic and the inhibition constant (K/sub l/) at the high-affinity site (10-18nM) was two orders of magnitude smaller the K/sub l/ at the low-affinity site. The K/sub l/ at ..mu..- and delta-sites were respectively 3.3 and 8.5 ..mu..M. Thus (/sup 3/H)-(-)-bremazocine, suppressed at ..mu..- and delta-sites, maymore » still bind more than one site, which U-69,593 might distinguish. In vivo U-69,593 i.p. prolonged the reaction time of rats on a 55/sup 0/C hot-plate and the dose of naloxone required to antagonize this effect was 40 times the dose that antagonized morphine-induced antinociception, suggesting the involvement of the k-receptor. In the intestinal transit test U-69,593 at doses between 0.5 and 15 mg/kg i.p. only slightly slowed intestinal transit of a charcoal meal in rats with no dose-relation; it partly but significantly antagonized morphine-induced constipation. These results suggest that the k-type of opioid receptor, with which U-69,593 interacts may induce analgesia, but has no appreciable role in the mechanisms of opioid-induced inhibition of intestinal transit in rats.« less

  1. Induced-fit Mechanism for Prolyl Endopeptidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Min; Chen, Changqing; Davies, David R.

    2010-11-15

    Prolyl peptidases cleave proteins at proline residues and are of importance for cancer, neurological function, and type II diabetes. Prolyl endopeptidase (PEP) cleaves neuropeptides and is a drug target for neuropsychiatric diseases such as post-traumatic stress disorder, depression, and schizophrenia. Previous structural analyses showing little differences between native and substrate-bound structures have suggested a lock-and-key catalytic mechanism. We now directly demonstrate from seven structures of Aeromonus punctata PEP that the mechanism is instead induced fit: the native enzyme exists in a conformationally flexible opened state with a large interdomain opening between the {beta}-propeller and {alpha}/{beta}-hydrolase domains; addition of substrate tomore » preformed native crystals induces a large scale conformational change into a closed state with induced-fit adjustments of the active site, and inhibition of this conformational change prevents substrate binding. Absolute sequence conservation among 28 orthologs of residues at the active site and critical residues at the interdomain interface indicates that this mechanism is conserved in all PEPs. This finding has immediate implications for the use of conformationally targeted drug design to improve specificity of inhibition against this family of proline-specific serine proteases.« less

  2. Depressive-like behavior induced by tumor necrosis factor-α in mice.

    PubMed

    Kaster, Manuella P; Gadotti, Vinícius M; Calixto, João B; Santos, Adair R S; Rodrigues, Ana Lúcia S

    2012-01-01

    Pro-inflammatory cytokines are implicated in the pathogenesis of depression. However, few animal models of cytokine-induced depression well characterized regarding its response to antidepressants are available. Hence, the aim of this study was to propose a model of depressive-like behavior induced by the administration of tumor necrosis factor-α (TNF-α) responsive to antidepressant treatments. TNF-α administered by i.c.v. route produced a depressive-like behavior in the forced swimming test (FST) and tail suspension test (TST) (0.1-1 fg/site and 0.001 fg/site, respectively), without altering the locomotor activity in the open-field test. In addition, anti-TNF-α antibody (0.1-1 pg/site, i.c.v.), but not the inhibitor of TNF-α synthesis thalidomide (3-30 mg/kg, s.c.) produced an antidepressant-like response in the FST. Moreover, either anti-TNF-α antibody (0.01 pg/site, i.c.v) or thalidomide (30 mg/kg, s.c.) reversed the depressive-like behavior induced by TNF- (0.1 fg/site, i.c.v.) in the FST. TNF-α receptor 1 (TNFR1) knockout mice exhibited an antidepressant-like behavior in the FST and in the TST as compared with the wild type mice. Treatment with fluoxetine (32 mg/kg, i.p), imipramine (15 mg/kg, i.p.) and desipramine (16 mg/kg, i.p) prevented the depressant-like effect induced by TNF-α (0.1 fg/site, i.c.v.) in the FST. In addition, TNF-α (0.1 fg/site, i.c.v.) administration produced an anhedonic response in a sucrose intake test, which was prevented by anti-TNF-α antibody (0.01 pg/site, i.c.v) or fluoxetine (32 mg/kg, i.p). Taken together, these results indicate that TNF-α produces a depressive-like state in mice, reinforcing the notion that an inflammatory component may play an important role in the pathophysiology of depression and suggesting that the central administration of TNF-α may be a novel approach to study the inflammatory component of depressive disorder. This article is part of a Special Issue entitled 'Anxiety and Depression'. Copyright

  3. Distinct tissue site-specific requirements of mast cells and complement components C3/C5a receptor in IgG immune complex-induced injury of skin and lung.

    PubMed

    Baumann, U; Chouchakova, N; Gewecke, B; Köhl, J; Carroll, M C; Schmidt, R E; Gessner, J E

    2001-07-15

    We induced the passive reverse Arthus reaction to IgG immune complexes (IC) at different tissue sites in mice lacking C3 treated or not with a C5aR-specific antagonist, or in mice lacking mast cells (Kit(W)/Kit(W-v) mice), and compared the inflammatory responses with those in the corresponding wild-type mice. We confirmed that IC inflammation of skin can be mediated largely by mast cells expressing C5aR and FcgammaRIII. In addition, we provided evidence for C3-independent C5aR triggering, which may explain why the cutaneous Arthus reaction develops normally in C3(-/-) mice. Furthermore, some, but not all, of the acute changes associated with the Arthus response in the lung were significantly more intense in normal mice than in C3(-/-) or Kit(W)/Kit(W-v) mice, indicating for C3- and mast cell-dependent and -independent components. Finally, we demonstrated that C3 contributed to the elicitation of neutrophils to alveoli, which corresponded to an increased synthesis of TNF-alpha, macrophage-inflammatory protein-2, and cytokine-induced neutrophil chemoattractant. While mast cells similarly influenced alveolar polymorphonuclear leukocyte influx, the levels of these cytokines remained largely unaffected in mast cell deficiency. Together, the phenotypes of C3(-/-) mice and Kit(W)/Kit(W-v) mice suggest that complement and mast cells have distinct tissue site-specific requirements acting by apparently distinct mechanisms in the initiation of IC inflammation.

  4. Hydrogen-induced structural changes at the nickel site of the regulatory [NiFe] hydrogenase from Ralstonia eutropha detected by X-ray absorption spectroscopy.

    PubMed

    Haumann, Michael; Porthun, Antje; Buhrke, Thorsten; Liebisch, Peter; Meyer-Klaucke, Wolfram; Friedrich, Bärbel; Dau, Holger

    2003-09-23

    For the first time, the nickel site of the hydrogen sensor of Ralstonia eutropha, the regulatory [NiFe] hydrogenase (RH), was investigated by X-ray absorption spectroscopy (XAS) at the nickel K-edge. The oxidation state and the atomic structure of the Ni site were investigated in the RH in the absence (air-oxidized, RH(ox)) and presence of hydrogen (RH(+H2)). Incubation with hydrogen is found to cause remarkable changes in the spectroscopic properties. The Ni-C EPR signal, indicative of Ni(III), is detectable only in the RH(+H2) state. XANES and EXAFS spectra indicate a coordination of the Ni in the RH(ox) and RH(+H2) that pronouncedly differs from the one in standard [NiFe] hydrogenases. Also, the changes induced by exposure to H(2) are unique. A drastic modification in the XANES spectra and an upshift of the K-edge energy from 8339.8 (RH(ox)) to 8341.1 eV (RH(+H2)) is observed. The EXAFS spectra indicate a change in the Ni coordination in the RH upon exposure to H(2). One likely interpretation of the data is the detachment of one sulfur ligand in RH(+H2) and the binding of additional (O,N) or H ligands. The following Ni oxidation states and coordinations are proposed: five-coordinated Ni(II)(O,N)(2)S(3) for RH(ox) and six-coordinated Ni((III))(O,N)(3)X(1)S(2) [X being either an (O,N) or H ligand] for RH(+H2). Implications of the structural features of the Ni site of the RH in relation to its function, hydrogen sensing, are discussed.

  5. Observation of Infrasonic/Acoustic/Seismic Waves Induced by Hypersonic Reentry of Hayabusa

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.-Y.; Ishihara, Y.; Hiramatsu, Y.; Furumoto, M.; Fujita, K.

    2012-05-01

    Observation of infrasonic/acoustic/seismic waves induced by hypersonic reentry of HAYABUSA was carried out on June 13, 2010. Results by 3-sites arrayed observation will be shown in detail by comparison with multiple-sites optical observation.

  6. Analysis of LexA binding sites and transcriptomics in response to genotoxic stress in Leptospira interrogans.

    PubMed

    Schons-Fonseca, Luciane; da Silva, Josefa B; Milanez, Juliana S; Domingos, Renan H; Smith, Janet L; Nakaya, Helder I; Grossman, Alan D; Ho, Paulo L; da Costa, Renata M A

    2016-02-18

    We determined the effects of DNA damage caused by ultraviolet radiation on gene expression in Leptospira interrogans using DNA microarrays. These data were integrated with DNA binding in vivo of LexA1, a regulator of the DNA damage response, assessed by chromatin immunoprecipitation and massively parallel DNA sequencing (ChIP-seq). In response to DNA damage, Leptospira induced expression of genes involved in DNA metabolism, in mobile genetic elements and defective prophages. The DNA repair genes involved in removal of photo-damage (e.g. nucleotide excision repair uvrABC, recombinases recBCD and resolvases ruvABC) were not induced. Genes involved in various metabolic pathways were down regulated, including genes involved in cell growth, RNA metabolism and the tricarboxylic acid cycle. From ChIP-seq data, we observed 24 LexA1 binding sites located throughout chromosome 1 and one binding site in chromosome 2. Expression of many, but not all, genes near those sites was increased following DNA damage. Binding sites were found as far as 550 bp upstream from the start codon, or 1 kb into the coding sequence. Our findings indicate that there is a shift in gene expression following DNA damage that represses genes involved in cell growth and virulence, and induces genes involved in mutagenesis and recombination. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Dimerization-induced corepressor binding and relaxed DNA-binding specificity are critical for PML/RARA-induced immortalization

    PubMed Central

    Zhou, Jun; Pérès, Laurent; Honoré, Nicole; Nasr, Rihab; Zhu, Jun; de Thé, Hugues

    2006-01-01

    The pathogenesis of acute promyelocytic leukemia involves the transcriptional repression of master genes of myeloid differentiation by the promyelocytic leukemia–retinoic acid receptor α (PML/RARA) oncogene. PML-enforced RARA homodimerization allows the tighter binding of corepressors, silencing RARA target genes. In addition, homodimerization dramatically extends the spectrum of DNA-binding sites of the fusion protein compared with those of normal RARA. Yet, any contribution of these two properties of PML/RARA to differentiation arrest and immortalization of primary mouse hematopoietic progenitors was unknown. We demonstrate that dimerization-induced silencing mediator of retinoid and thyroid receptors (SMRT)-enhanced binding and relaxed DNA-binding site specificity are both required for efficient immortalization. Thus, enforced RARA dimerization is critical not only for triggering transcriptional repression but also for extending the repertoire of target genes. Our studies exemplify how dimerization-induced gain of functions converts an unessential transcription factor into a dominant oncogenic protein. PMID:16757557

  8. Interpreting sperm DNA damage in a diverse range of mammalian sperm by means of the two-tailed comet assay

    PubMed Central

    Cortés-Gutiérrez, Elva I.; López-Fernández, Carmen; Fernández, José Luis; Dávila-Rodríguez, Martha I.; Johnston, Stephen D.; Gosálvez, Jaime

    2014-01-01

    Key Concepts The two-dimensional Two-Tailed Comet assay (TT-comet) protocol is a valuable technique to differentiate between single-stranded (SSBs) and double-stranded DNA breaks (DSBs) on the same sperm cell.Protein lysis inherent with the TT-comet protocol accounts for differences in sperm protamine composition at a species-specific level to produce reliable visualization of sperm DNA damage.Alkaline treatment may break the sugar–phosphate backbone in abasic sites or at sites with deoxyribose damage, transforming these lesions into DNA breaks that are also converted into ssDNA. These lesions are known as Alkali Labile Sites “ALSs.”DBD–FISH permits the in situ visualization of DNA breaks, abasic sites or alkaline-sensitive DNA regions.The alkaline comet single assay reveals that all mammalian species display constitutive ALS related with the requirement of the sperm to undergo transient changes in DNA structure linked with chromatin packing.Sperm DNA damage is associated with fertilization failure, impaired pre-and post- embryo implantation and poor pregnancy outcome.The TT is a valuable tool for identifying SSBs or DSBs in sperm cells with DNA fragmentation and can be therefore used for the purposes of fertility assessment. Sperm DNA damage is associated with fertilization failure, impaired pre-and post- embryo implantation and poor pregnancy outcome. A series of methodologies to assess DNA damage in spermatozoa have been developed but most are unable to differentiate between single-stranded DNA breaks (SSBs) and double-stranded DNA breaks (DSBs) on the same sperm cell. The two-dimensional Two-Tailed Comet assay (TT-comet) protocol highlighted in this review overcomes this limitation and emphasizes the importance in accounting for the difference in sperm protamine composition at a species-specific level for the appropriate preparation of the assay. The TT-comet is a modification of the original comet assay that uses a two dimensional electrophoresis to

  9. The dosimetry of brachytherapy-induced erectile dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merrick, Gregory S.; Butler, Wayne M

    2003-12-31

    There is emerging evidence that brachytherapy-induced erectile dysfunction (ED) is technique-related and may be minimized by careful attention to source placement. Herein, we review the relationship between radiation doses to the prostate gland/surrounding structures and the development of brachytherapy-induced ED. The permanent prostate brachytherapy literature was reviewed using MEDLINE searches to ensure completeness. Although the site-specific structure associated with brachytherapy-induced ED remains unknown, there is an increasing body of data implicating the proximal penis. With day 0 CT-based dosimetry, the dose to 50% (D{sub 50}) and 25% (D{sub 25}) of the bulb of the penis should be maintained below 40%more » and 60% mPD, respectively, while the crura D{sub 50} should be maintained below 28% mPD to maximize post-brachytherapy potency. To date, there is no data to suggest that either radiation doses to the neurovascular bundles or choice of isotope is associated with brachytherapy-induced ED, while conflicting data has been reported regarding radiation dose to the prostate and the use of supplemental external beam radiation therapy. Although the etiology of brachytherapy-induced ED is likely multifactorial, the available data supports the proximal penis as an important site-specific structure. Refinements in implant technique, including preplanning and intraoperative seed placement, will result in lower radiation doses to the proximal penis with potential improvement in potency preservation.« less

  10. The role of nicotinic acetylcholine and opioid systems of the ventral orbital cortex in modulation of formalin-induced orofacial pain in rats.

    PubMed

    Yousofizadeh, Shahnaz; Tamaddonfard, Esmaeal; Farshid, Amir Abbas

    2015-07-05

    Nicotinic acetylcholine and opioid receptors are involved in modulation of pain. In the present study, we investigated the effects of microinjection of nicotinic acetylcholine and opioid compounds into the ventral orbital cortex (VOC) on the formalin-induced orofacial pain in rats. For this purpose, two guide cannulas were placed into the left and right sides of the VOC of the brain. Orofacial pain was induced by subcutaneous injection of a diluted formalin solution (50μl, 1.5%) into the right vibrissa pad and face rubbing durations were recorded at 3-min blocks for 45min. Formalin produced a marked biphasic pain response (first phase: 0-3min and second phase: 15-33min). Epibatidine (a nicotinic receptor agonist) at doses of 0.05, 0.1 and 0.2μg/site, morphine (an opioid receptor agonist) at doses of 0.5, 1 and 2μg/site and their sub-analgesic doses (0.025μg/site epibatidine with 0.25μg/site morphine) combination treatment suppressed the second phase of pain. The antinociceptive effect induced by 0.2μg/site of epibatidine, but not morphine (2μg/site), was prevented by 2μg/site of mecamylamine (a nicotinic receptor antagonist). Naloxone (an opioid receptor antagonist) at a dose of 2μg/site prevented the antinociceptive effects induced by 2μg/site of morphine and 0.2μg/site of epibatidine. No above-mentioned chemical compounds affected locomotor activity. These results showed that at the VOC level, epibatidine and morphine produced antinociception. In addition, opioid receptor might be involved in epibatidine-induced antinociception, but the antinociception induced by morphine was not mediated through nicotinic acetylcholine receptor. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Locally induced neuronal synchrony precisely propagates to specific cortical areas without rhythm distortion.

    PubMed

    Toda, Haruo; Kawasaki, Keisuke; Sato, Sho; Horie, Masao; Nakahara, Kiyoshi; Bepari, Asim K; Sawahata, Hirohito; Suzuki, Takafumi; Okado, Haruo; Takebayashi, Hirohide; Hasegawa, Isao

    2018-05-16

    Propagation of oscillatory spike firing activity at specific frequencies plays an important role in distributed cortical networks. However, there is limited evidence for how such frequency-specific signals are induced or how the signal spectra of the propagating signals are modulated during across-layer (radial) and inter-areal (tangential) neuronal interactions. To directly evaluate the direction specificity of spectral changes in a spiking cortical network, we selectively photostimulated infragranular excitatory neurons in the rat primary visual cortex (V1) at a supra-threshold level with various frequencies, and recorded local field potentials (LFPs) at the infragranular stimulation site, the cortical surface site immediately above the stimulation site in V1, and cortical surface sites outside V1. We found a significant reduction of LFP powers during radial propagation, especially at high-frequency stimulation conditions. Moreover, low-gamma-band dominant rhythms were transiently induced during radial propagation. Contrastingly, inter-areal LFP propagation, directed to specific cortical sites, accompanied no significant signal reduction nor gamma-band power induction. We propose an anisotropic mechanism for signal processing in the spiking cortical network, in which the neuronal rhythms are locally induced/modulated along the radial direction, and then propagate without distortion via intrinsic horizontal connections for spatiotemporally precise, inter-areal communication.

  12. Induced earthquake magnitudes are as large as (statistically) expected

    USGS Publications Warehouse

    Van Der Elst, Nicholas; Page, Morgan T.; Weiser, Deborah A.; Goebel, Thomas; Hosseini, S. Mehran

    2016-01-01

    A major question for the hazard posed by injection-induced seismicity is how large induced earthquakes can be. Are their maximum magnitudes determined by injection parameters or by tectonics? Deterministic limits on induced earthquake magnitudes have been proposed based on the size of the reservoir or the volume of fluid injected. However, if induced earthquakes occur on tectonic faults oriented favorably with respect to the tectonic stress field, then they may be limited only by the regional tectonics and connectivity of the fault network. In this study, we show that the largest magnitudes observed at fluid injection sites are consistent with the sampling statistics of the Gutenberg-Richter distribution for tectonic earthquakes, assuming no upper magnitude bound. The data pass three specific tests: (1) the largest observed earthquake at each site scales with the log of the total number of induced earthquakes, (2) the order of occurrence of the largest event is random within the induced sequence, and (3) the injected volume controls the total number of earthquakes rather than the total seismic moment. All three tests point to an injection control on earthquake nucleation but a tectonic control on earthquake magnitude. Given that the largest observed earthquakes are exactly as large as expected from the sampling statistics, we should not conclude that these are the largest earthquakes possible. Instead, the results imply that induced earthquake magnitudes should be treated with the same maximum magnitude bound that is currently used to treat seismic hazard from tectonic earthquakes.

  13. First-principles study on ferromagnetism in double perovskite Sr2AlTaO6 doped with Cu or Zn at B sites

    NASA Astrophysics Data System (ADS)

    Li, Y. D.; Wang, C. C.; Guo, Y. M.; Yu, Y.; Lu, Q. L.; Huang, S. G.; Li, Q. J.; Wang, H.; Cheng, R. L.; Liu, C. S.

    2018-05-01

    The possibilities of ferromagnetism induced by nonmagnetic dopants (Cu, Zn) in double perovskite Sr2AlTaO6 at B sites are investigated by density functional theory. Calculations reveal that substitutions at Ta-site tend to form high spin electronic configurations and could induce ferromagnetism which can be attributed to the hole-mediated p- d hybridization between Cu (or Zn) eg states and the neighboring O 2p states. The dopants preferably substitute at Al-site and adopt low spin electronic structures. Due to the smaller hole concentration and weaker covalent intensity, Sr2AlTaO6 with dopants at Al-site exhibits p-type metallic semiconductors without spin polarization.

  14. Neurogenic plasma exudation mediates grain dust-induced tissue injury in vivo.

    PubMed

    Gao, X P; Von Essen, S; Rubinstein, I

    1997-02-01

    The purpose of this study was to determine whether an aqueous extract of grain sorghum dust (GDE) elicits neurogenic plasma exudation in the oral mucosa in vivo. Using intravital microscopy, we found that GDE elicited significant, concentration-dependent leaky site formation and an increase in clearance of fluorescein isothiocyanate-labeled dextran (FITC-dextran; mol mass 70 kDa) from the hamster cheek pouch (P < 0.05). The selective, nonpeptide neurokinin(1) (substance P) receptor antagonists, CP-96,345 and RP-67580, but not the 2R,3R enantiomer CP-96,344, significantly attenuated GDE-induced leaky site formation and increase in clearance of FITC-dextran (P < 0.05). Indomethacin had no significant effects on GDE-induced responses. CP-96,345 had no significant effects of adenosine-induced leaky site formation and increase in clearance of FITC-dextran from the cheek pouch. We conclude that GDE elicits neurogenic plasma exudation from the oral mucosa in vivo. We suggest that this process is one mechanism whereby grain sorghum dust elicits immediate oral mucosa inflammation in vivo.

  15. GLYX-13, a NMDA Receptor Glycine-Site Functional Partial Agonist, Induces Antidepressant-Like Effects Without Ketamine-Like Side Effects

    PubMed Central

    Burgdorf, Jeffrey; Zhang, Xiao-lei; Nicholson, Katherine L; Balster, Robert L; David Leander, J; Stanton, Patric K; Gross, Amanda L; Kroes, Roger A; Moskal, Joseph R

    2013-01-01

    Recent human clinical studies with the NMDA receptor (NMDAR) antagonist ketamine have revealed profound and long-lasting antidepressant effects with rapid onset in several clinical trials, but antidepressant effects were preceded by dissociative side effects. Here we show that GLYX-13, a novel NMDAR glycine-site functional partial agonist, produces an antidepressant-like effect in the Porsolt, novelty induced hypophagia, and learned helplessness tests in rats without exhibiting substance abuse-related, gating, and sedative side effects of ketamine in the drug discrimination, conditioned place preference, pre-pulse inhibition and open-field tests. Like ketamine, the GLYX-13-induced antidepressant-like effects required AMPA/kainate receptor activation, as evidenced by the ability of NBQX to abolish the antidepressant-like effect. Both GLYX-13 and ketamine persistently (24 h) enhanced the induction of long-term potentiation of synaptic transmission and the magnitude of NMDAR-NR2B conductance at rat Schaffer collateral-CA1 synapses in vitro. Cell surface biotinylation studies showed that both GLYX-13 and ketamine led to increases in both NR2B and GluR1 protein levels, as measured by Western analysis, whereas no changes were seen in mRNA expression (microarray and qRT-PCR). GLYX-13, unlike ketamine, produced its antidepressant-like effect when injected directly into the medial prefrontal cortex (MPFC). These results suggest that GLYX-13 produces an antidepressant-like effect without the side effects seen with ketamine at least in part by directly modulating NR2B-containing NMDARs in the MPFC. Furthermore, the enhancement of ‘metaplasticity' by both GLYX-13 and ketamine may help explain the long-lasting antidepressant effects of these NMDAR modulators. GLYX-13 is currently in a Phase II clinical development program for treatment-resistant depression. PMID:23303054

  16. Unusual splice site mutations disrupt FANCA exon 8 definition.

    PubMed

    Mattioli, Chiara; Pianigiani, Giulia; De Rocco, Daniela; Bianco, Anna Monica Rosaria; Cappelli, Enrico; Savoia, Anna; Pagani, Franco

    2014-07-01

    The pathological role of mutations that affect not conserved splicing regulatory sequences can be difficult to determine. In a patient with Fanconi anemia, we identified two unpredictable splicing mutations that act on either sides of FANCA exon 8. In patients-derived cells and in minigene splicing assay, we showed that both an apparently benign intronic c.710-5T>C transition and the nonsense c.790C>T substitution induce almost complete exon 8 skipping. Site-directed mutagenesis experiments indicated that the c.710-5T>C transition affects a polypyrimidine tract where most of the thymidines cannot be compensated by cytidines. The c.790C>T mutation located in position -3 relative to the donor site induce exon 8 skipping in an NMD-independent manner and complementation experiments with modified U1 snRNAs showed that U1 snRNP is only partially involved in the splicing defect. Our results highlight the importance of performing splicing functional assay for correct identification of disease-causing mechanism of genomic variants and provide mechanistic insights on how these two FANCA mutations affect exon 8 definition. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Hydrazine and hydroxylamine as probes for O2-reduction site of mitochondrial cytochrome c oxidase.

    PubMed Central

    Kubota, T; Yoshikawa, S

    1993-01-01

    Reactions of hydrazine and hydroxylamine with bovine heart cytochrome c oxidase in the fully reduced state were investigated under anaerobic conditions following the visible-Soret spectral change. Hydrazine gave a sharp band at 575 nm with 20% decrease in the alpha band at 603 nm, and hydroxylamine induced a 2 nm blue-shift for the alpha band without any clear splitting. The Soret band at 443 nm was decreased significantly in intensity, with the concomitant appearance of a shoulder with hydrazine or a peak with hydroxylamine, both near 430 nm. The dependence on pH of the affinity of these reagents for the enzyme indicates that only the deprotonated forms of these reagents bind to the enzyme, suggesting a highly hydrophobic environment of the haem ligand-biding site. These spectral changes were largely removed by addition of cyanide or CO. However, detailed analysis of these spectral changes indicates that hydrazine perturbs the shape of the spectral change induced by cyanide and hydroxylamine perturbs that induced by CO. These results suggest that these aldehyde reagents bind to haem a3 iron as well as to a second site which is most likely to be the formyl group on the haem periphery, and that these two sites bind these reagents anti-cooperatively with each other. PMID:8389138

  18. Provocative Endoscopy to Identify Bleeding Site in Upper Gastrointestinal Bleeding: A Novel Approach in Transarterial Embolization.

    PubMed

    Kamo, Minobu; Fuwa, Sokun; Fukuda, Katsuyuki; Fujita, Yoshiyuki; Kurihara, Yasuyuki

    2016-07-01

    This report describes a novel approach to endoscopically induce bleeding by removing a clot from the bleeding site during angiography for upper gastrointestinal (UGI) hemorrhage. This procedure enabled accurate identification of the bleeding site, allowing for successful targeted embolization despite a negative initial angiogram. Provocative endoscopy may be a feasible and useful option for angiography of obscure bleeding sites in patients with UGI arterial hemorrhage. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  19. Triplex DNA formation-mediated strand displacement reaction for highly sensitive fluorescent detection of melamine.

    PubMed

    Liu, Xiaojuan; Xu, Ningning; Gai, Panpan; Li, Feng

    2018-08-01

    Since melamine is a strong hazard to human health, the development of new methods for highly sensitive detection of melamine is highly desirable. Herein, a novel fluorescent biosensing strategy was designed for sensitive and selective melamine assay based on the recognition ability of abasic (AP) site in triplex towards melamine and signal amplification by Mg 2+ -dependent DNAzyme. In this strategy, the melamine-induced formation of triplex DNA was employed to trigger the strand displacement reaction (SDR). The SDR process converted the specific target recognition into the release and activation of Mg 2+ -dependent DNAzyme, which could catalyze the cleavage of fluorophore/quencher labeled DNA substrate (FQ), resulting in a significantly increased fluorescent signal. Under the optimal conditions, the fluorescent signal has a linear relationship with the logarithm of the melamine concentration in a wide range of 0.005-50 μM. The detection limit was estimated to be 0.9 nM (0.1ppb), which is sufficiently sensitive for practical application. Furthermore, this strategy exhibits high selectivity against other potential interfering substances, and the practical application of this strategy for milk samples reveals that the proposed strategy works well for melamine assay in real samples. Therefore, this strategy presents a new method for the sensitive melamine assay and holds great promise for sensing applications in the environment and the food safety field. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Influence of C-5 substituted cytosine and related nucleoside analogs on the formation of benzo[a]pyrene diol epoxide-dG adducts at CG base pairs of DNA

    PubMed Central

    Guza, Rebecca; Kotandeniya, Delshanee; Murphy, Kristopher; Dissanayake, Thakshila; Lin, Chen; Giambasu, George Madalin; Lad, Rahul R.; Wojciechowski, Filip; Amin, Shantu; Sturla, Shana J.; Hudson, Robert H.E.; York, Darrin M.; Jankowiak, Ryszard; Jones, Roger; Tretyakova, Natalia Y.

    2011-01-01

    Endogenous 5-methylcytosine (MeC) residues are found at all CG dinucleotides of the p53 tumor suppressor gene, including the mutational ‘hotspots’ for smoking induced lung cancer. MeC enhances the reactivity of its base paired guanine towards carcinogenic diolepoxide metabolites of polycyclic aromatic hydrocarbons (PAH) present in cigarette smoke. In the present study, the structural basis for these effects was investigated using a series of unnatural nucleoside analogs and a representative PAH diolepoxide, benzo[a]pyrene diolepoxide (BPDE). Synthetic DNA duplexes derived from a frequently mutated region of the p53 gene (5′-CCCGGCACCC GC[15N3,13C1-G]TCCGCG-3′, + strand) were prepared containing [15N3, 13C1]-guanine opposite unsubstituted cytosine, MeC, abasic site, or unnatural nucleobase analogs. Following BPDE treatment and hydrolysis of the modified DNA to 2′-deoxynucleosides, N2-BPDE-dG adducts formed at the [15N3, 13C1]-labeled guanine and elsewhere in the sequence were quantified by mass spectrometry. We found that C-5 alkylcytosines and related structural analogs specifically enhance the reactivity of the base paired guanine towards BPDE and modify the diastereomeric composition of N2-BPDE-dG adducts. Fluorescence and molecular docking studies revealed that 5-alkylcytosines and unnatural nucleobase analogs with extended aromatic systems facilitate the formation of intercalative BPDE–DNA complexes, placing BPDE in a favorable orientation for nucleophilic attack by the N2 position of guanine. PMID:21245046

  1. Longterm effects of cardiac mediastinal nerve cryoablation on neural inducibility of atrial fibrillation in canines.

    PubMed

    Leiria, Tiago Luiz Luz; Glavinovic, Tamara; Armour, J Andrew; Cardinal, René; de Lima, Gustavo Glotz; Kus, Teresa

    2011-04-26

    In canines, excessive activation of select mediastinal nerve inputs to the intrinsic cardiac nervous system induces atrial fibrillation (AF). Since ablation of neural elements is proposed as an adjunct to circumferential pulmonary vein ablation for AF, we investigated the short and long-term effects of mediastinal nerve ablation on AF inducibility. Under general anesthesia, in 11 dogs several mediastinal nerve sites were identified on the superior vena cava that, when stimulated electrically during the atrial refractory period, reproducibly initiated AF. Cryoablation of one nerve site was then performed and inducibility retested early (1-2 months post Cryo; n=7) or late (4 months post Cryo; n=4). Four additional dogs that underwent a sham procedure were retested 1 to 2 months post-surgery. Stimulation induced AF at 91% of nerve sites tested in control versus 21% nerve sites early and 54% late post-ablation (both P<0.05). Fewer stimuli were required to induce AF in controls versus the Early Cryo group; this capacity returned to normal values in the Late Cryo group. AF episodes were longer in control versus the Early or Late Cryo groups. Heart rate responses to vagal or stellate ganglion stimulation, as well as to local nicotine infusion into the right coronary artery, were similar in all groups. In conclusion, focal damage to intrinsic cardiac neuronal inputs causes short-term stunning of neuronal inducibility of AF without major loss of overall adrenergic or cholinergic efferent neuronal control. That recovery of AF inducibility occurs rapidly post-surgery indicates the plasticity of intrathoracic neuronal elements to focal injury. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Variability of site response in Seattle, Washington

    USGS Publications Warehouse

    Hartzell, S.; Carver, D.; Cranswick, E.; Frankel, A.

    2000-01-01

    Ground motion from local earthquakes and the SHIPS (Seismic Hazards Investigation in Puget Sound) experiment is used to estimate site amplification factors in Seattle. Earthquake and SHIPS records are analyzed by two methods: (1) spectral ratios relative to a nearby site on Tertiary sandstone, and (2) a source/site spectral inversion technique. Our results show site amplifications between 3 and 4 below 5 Hz for West Seattle relative to Tertiary rock. These values are approximately 30% lower than amplification in the Duwamish Valley on artificial fill, but significantly higher than the calculated range of 2 to 2.5 below 5 Hz for the till-covered hills east of downtown Seattle. Although spectral amplitudes are only 30% higher in the Duwamish Valley compared to West Seattle, the duration of long-period ground motion is significantly greater on the artificial fill sites. Using a three-dimensional displacement response spectrum measure that includes the effects of ground-motion duration, values in the Duwamish Valley are 2 to 3 times greater than West Seattle. These calculations and estimates of site response as a function of receiver azimuth point out the importance of trapped surface-wave energy within the shallow, low-velocity, sedimentary layers of the Duwamish Valley. One-dimensional velocity models yield spectral amplification factors close to the observations for till sites east of downtown Seattle and the Duwamish Valley, but underpredict amplifications by a factor of 2 in West Seattle. A two-dimensional finite-difference model does equally well for the till sites and the Duwamish Valley and also yields duration estimates consistent with the observations for the Duwamish Valley. The two-dimensional model, however, still underpredicts amplification in West Seattle by up to a factor of 2. This discrepancy is attributed to 3D effects, including basin-edge-induced surface waves and basin-geometry-focusing effects, caused by the proximity of the Seattle thrust fault

  3. Site of potential operating microscope light-induced phototoxicity on the human retina during temporal approach eye surgery.

    PubMed

    Pavilack, M A; Brod, R D

    2001-02-01

    To determine the site of focal illumination on the retina of phakic human cadaver eyes from an operating microscope positioned for temporal approach eye surgery. Experimental study. A Zeiss OPMI-6SFR operating microscope (Zeiss Humphrey Systems, Dublin, CA) was positioned over two phakic human cadaver eyes to measure the site of the focal illumination on the retina by directly observing the illumination on the posterior scleral surface of the globe. External localization of the foveola was made by direct observation using scleral indentation and indirect ophthalmoscopy. Various combinations of microscope angulation and field of view were analyzed. Distance of focal illumination from the operating room microscope relative to the foveola was measured. The diameter of the "hot spot" of focal illumination on the retina was 4.0 mm. With the eye positioned straight ahead and the level operating room microscope positioned for temporal approach eye surgery, the center of retinal illumination was 0.9 and 1.4 mm nasal relative to the foveola when the microscope field of view was centered over the cornea and temporal limbus, respectively. With the microscope angled 5, 10, 15, and 20 degrees temporally (oculars tilted toward surgeon), the center of the illumination was displaced nasal to the foveola by 1.1, 1.5, 3.8, and 5.1 mm, respectively, when the field of view was centered over the cornea and 1.5, 2.6, 4.7, and 6.0 mm, respectively, nasal to the foveola when centered over the temporal limbus. Retinal illumination from an operating microscope positioned for temporal approach eye surgery has the potential for light-induced injury to the fovea. Angulation of the operating microscope by up to 10 degrees temporally when the microscope field of view was centered over the cornea and up to 5 degrees temporally when centered over the temporal limbus was not adequate to displace the focal illumination off the foveola when the eye was in the straight-ahead position. Tilting the

  4. 10 CFR 72.94 - Design basis external man-induced events.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Design basis external man-induced events. 72.94 Section 72... WASTE Siting Evaluation Factors § 72.94 Design basis external man-induced events. (a) The region must be examined for both past and present man-made facilities and activities that might endanger the proposed...

  5. 10 CFR 72.94 - Design basis external man-induced events.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Design basis external man-induced events. 72.94 Section 72... WASTE Siting Evaluation Factors § 72.94 Design basis external man-induced events. (a) The region must be examined for both past and present man-made facilities and activities that might endanger the proposed...

  6. 10 CFR 72.94 - Design basis external man-induced events.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Design basis external man-induced events. 72.94 Section 72... WASTE Siting Evaluation Factors § 72.94 Design basis external man-induced events. (a) The region must be examined for both past and present man-made facilities and activities that might endanger the proposed...

  7. 10 CFR 72.94 - Design basis external man-induced events.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Design basis external man-induced events. 72.94 Section 72... WASTE Siting Evaluation Factors § 72.94 Design basis external man-induced events. (a) The region must be examined for both past and present man-made facilities and activities that might endanger the proposed...

  8. ALA-induced fluorescence in the canine oral cavity.

    PubMed

    Vaidyanathan, Vijay; Wiggs, Robert; Stohl, Josh; Baxi, Mehul

    2006-06-01

    We examined whether 5-aminolevulinic acid (ALA) could enhance the spectroscopic contrast between normal and diseased oral tissues, without prolonged photosensitivity. ALA is a promising photosensitizing agent. Adose of 25 mg/kg of ALA was administered intravenously to five dogs with gingivitis and three dogs with oral cancer, respectively. Fluorescence was recorded from the diseased sites in the oral cavity in addition to normal sites. ALA-induced proto-porphyrin IX fluorescence at all gingivitis sites reached a peak in 2-3 h and returned to baseline in 24 h. Fluorescence from the gingivitis site was observed earlier and was higher than the fluorescence from the normal site. For dogs with cancer, fluorescence from the cancerous sites occurred earlier in time compared to gingivitis sites and was comparatively higher in intensity. The fluorescence from the diseased sites was found to be higher than the normal site. Clinical and fluorescence data suggest that a dose of 25 mg/kg may be satisfactory for diagnostic purposes and would have minimal side effects.

  9. The Earliest Chinese Proto-Porcelain Excavated from Kiln Sites: An Elemental Analysis

    PubMed Central

    Li, Yu; Zhang, Bin; Cheng, Huansheng; Zheng, Jianming

    2015-01-01

    In June 2012, the Piaoshan kiln site was excavated in Huzhou, Zhejiang Province, which hitherto proved to be the earliest known Chinese proto-porcelain kiln. Judging from the decorative patterns of unearthed impressed stoneware and proto-porcelain sherds, the site was determined to date to the late Xia (c. 2070–c. 1600 BC), the first dynasty of China. Here, we report on proton-induced X-ray emission analyses of 118 proto-porcelain and 35 impressed stoneware sherds from Piaoshan and five subsequent kiln sites in the vicinity. Using principal components analysis on the major chemical compositions, we reveal the relationships between impressed stoneware and proto-porcelain samples from the six kiln sites. The sherds from different sites have distinctive chemical profiles. The results indicate that the raw materials were procured locally. We find a developmental tendency for early glazes towards mature calcium-based glaze. It is most likely that woody plant ashes with increased calcia-potash ratios were applied to the formula. PMID:26535583

  10. The Earliest Chinese Proto-Porcelain Excavated from Kiln Sites: An Elemental Analysis.

    PubMed

    Li, Yu; Zhang, Bin; Cheng, Huansheng; Zheng, Jianming

    2015-01-01

    In June 2012, the Piaoshan kiln site was excavated in Huzhou, Zhejiang Province, which hitherto proved to be the earliest known Chinese proto-porcelain kiln. Judging from the decorative patterns of unearthed impressed stoneware and proto-porcelain sherds, the site was determined to date to the late Xia (c. 2070-c. 1600 BC), the first dynasty of China. Here, we report on proton-induced X-ray emission analyses of 118 proto-porcelain and 35 impressed stoneware sherds from Piaoshan and five subsequent kiln sites in the vicinity. Using principal components analysis on the major chemical compositions, we reveal the relationships between impressed stoneware and proto-porcelain samples from the six kiln sites. The sherds from different sites have distinctive chemical profiles. The results indicate that the raw materials were procured locally. We find a developmental tendency for early glazes towards mature calcium-based glaze. It is most likely that woody plant ashes with increased calcia-potash ratios were applied to the formula.

  11. Crystal structure and DNA repair activities of the AP endonuclease from Leishmania major.

    PubMed

    Vidal, Antonio E; Harkiolaki, Maria; Gallego, Claribel; Castillo-Acosta, Victor M; Ruiz-Pérez, Luis M; Wilson, Keith; González-Pacanowska, Dolores

    2007-11-02

    Apurinic/apyrimidinic endonucleases initiate the repair of abasic sites produced either spontaneously, from attack of bases by reactive oxygen species or as intermediates during base excision repair. The catalytic properties and crystal structure of Leishmania major apurinic/apyrimidinic endonuclease are described and compared with those of human APE1 and bacterial exonuclease III. The purified enzyme is shown to possess apurinic/apyrimidinic endonuclease activity of the same order as eukaryotic and prokaryotic counterparts and an equally robust 3'-phosphodiesterase activity. Consistent with this, expression of the L. major endonuclease confers resistance to both methyl methane sulphonate and H2O2 in Escherichia coli repair-deficient mutants while expression of the human homologue only reverts methyl methane sulphonate sensitivity. Structural analyses and modelling of the enzyme-DNA complex demonstrates a high degree of conservation to previously characterized homologues, although subtle differences in the active site geometry might account for the high 3'-phosphodiesterase activity. Our results confirm that the L. major's enzyme is a key element in mediating repair of apurinic/apyrimidinic sites and 3'-blocked termini and therefore must play an important role in the survival of kinetoplastid parasites after exposure to the highly oxidative environment within the host macrophage.

  12. Base Excision Repair

    PubMed Central

    Krokan, Hans E.; Bjørås, Magnar

    2013-01-01

    Base excision repair (BER) corrects DNA damage from oxidation, deamination and alkylation. Such base lesions cause little distortion to the DNA helix structure. BER is initiated by a DNA glycosylase that recognizes and removes the damaged base, leaving an abasic site that is further processed by short-patch repair or long-patch repair that largely uses different proteins to complete BER. At least 11 distinct mammalian DNA glycosylases are known, each recognizing a few related lesions, frequently with some overlap in specificities. Impressively, the damaged bases are rapidly identified in a vast excess of normal bases, without a supply of energy. BER protects against cancer, aging, and neurodegeneration and takes place both in nuclei and mitochondria. More recently, an important role of uracil-DNA glycosylase UNG2 in adaptive immunity was revealed. Furthermore, other DNA glycosylases may have important roles in epigenetics, thus expanding the repertoire of BER proteins. PMID:23545420

  13. A PCV2 vaccine based on genotype 2b is more effective than a 2a-based vaccine to protect against PCV2b or combined PCV2a/2b viremia in pigs with concurrent PCV2, PRRSV and PPV infection.

    PubMed

    Opriessnig, Tanja; O'Neill, Kevin; Gerber, Priscilla F; de Castro, Alessandra M M G; Gimenéz-Lirola, Luis G; Beach, Nathan M; Zhou, Lei; Meng, Xiang-Jin; Wang, Chong; Halbur, Patrick G

    2013-01-07

    The predominant genotype of porcine circovirus (PCV) in the pig population today is PCV2b yet PCV2a-based commercial vaccines are considered effective in protecting against porcine circovirus associated disease. The objective of this study was to compare the ability of PCV2a- and PCV2b-based vaccines to control PCV2b viremia in a challenge model that mimics the U.S. field situation. Sixty-three pigs were randomly assigned to one of eight groups. Sixteen pigs were vaccinated with an experimental live-attenuated chimeric PCV1-2a vaccine based on genotype 2a and another 16 pigs with a chimeric PCV1-2b vaccine based on genotype 2b. Challenge was done 28 days post vaccination (dpv) using PCV2b (or a combination of PCV2a and PCV2b), porcine reproductive and respiratory syndrome virus (PRRSV), and porcine parvovirus (PPV) to mimic what commonly occurs in the field. The experiment was terminated 21 days post challenge (dpc) or 49dpv. Pigs vaccinated with the chimeric PCV1-2b vaccine had significantly higher levels of PCV1-2b viremia and shedding of the PCV1-2b vaccine virus in feces and nasal secretions but also a more robust humoral immune response as evidenced by significantly higher ELISA S/P ratios compared to the PCV1-2a vaccination. Regardless of challenge, the PCV1-2b vaccination significantly reduced the prevalence and amount of PCV2 viremia compared to the PCV1-2a vaccination. Interestingly, in the non-vaccinated pigs concurrent PCV2a infection resulted in clinical disease and increased macroscopic lung lesions compared to pigs challenged with PCV2b alone, further supporting the idea that concurrent PCV2a/PCV2b infection is necessary for optimal PCV2 replication. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Photoluminescence imaging of solitary dopant sites in covalently doped single-wall carbon nanotubes

    DOE PAGES

    Hartmann, Nicolai F.; Yalcin, Sibel Ebru; Adamska, Lyudmyla; ...

    2015-11-11

    Covalent dopants in semiconducting single wall carbon nanotubes (SWCNTs) are becoming important as routes for introducing new photoluminescent emitting states with potential for enhanced quantum yields, new functionality, and as species capable of near-IR room-temperature single photon emission. The origin and behavior of the dopant-induced emission is thus important to understand as a key requirement for successful room-T photonics and optoelectronics applications. Here, we use direct correlated two-color photoluminescence imaging to probe how the interplay between the SWCNT bright E 11 exciton and solitary dopant sites yields the dopant-induced emission for three different dopant species: oxygen, 4-methoxybenzene, and 4-bromobenzene. Wemore » introduce a route to control dopant functionalization to a low level as a means for introducing spatially well-separated solitary dopant sites. Resolution of emission from solitary dopant sites and correlation to their impact on E 11 emission allows confirmation of dopants as trapping sites for localization of E 11 excitons following their diffusive transport to the dopant site. Imaging of the dopant emission also reveals photoluminescence intermittency (blinking), with blinking dynamics being dependent on the specific dopant. Density functional theory calculations were performed to evaluate the stability of dopants and delineate the possible mechanisms of blinking. Furthermore, theoretical modeling suggests that the trapping of free charges in the potential well created by permanent dipoles introduced by dopant atoms/groups is likely responsible for the blinking, with the strongest effects being predicted and observed for oxygen-doped SWCNTs.« less

  15. Down-regulation of sup 3 H-imipramine binding sites in rat cerebral cortex prenatal exposure to antidepressants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montero, D.; de Ceballos, M.L.; Del Rio, J.

    1990-01-01

    Several antidepressant drugs were given to pregnant rats in the last 15 days of gestation and {sup 3}H-imipramine binding ({sup 3}H-IMI) was subsequently measured in the cerebral cortex of the offspring. The selective serotonin (5-HT) uptake blockers chlorimipramine and fluoxetine as well as the selective monoamine oxidase (MAO) inhibitors clorgyline and deprenyl induced, after prenatal exposure, a down-regulation of {sup 3}H-IMI binding sites at postnatal day 25. The density of these binding sites was still reduced at postnatal day 90 in rats exposed in utero to the MAO inhibitors. The antidepressants desipramine and nomifensine were ineffective in this respect. Aftermore » chronic treatment of adult animals, only chlorimipramine was able to down-regulate the {sup 3}H-IMI binding sites. Consequently, prenatal exposure of rats to different antidepressant drugs affecting predominantly the 5-HT systems induces more marked and long-lasting effects on cortical {sup 3}H-IMI binding sites. The results suggest that the developing brain is more susceptible to the actions of antidepressants.« less

  16. Investigation of anatomical anomalies in Hanford Site mule deer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiller, B.L.; Cadwell, L.L.; Poston, T.M.

    Rocky Mountain mule deer (Odocoileus hemionus hemionus), common residents of the Hanford Site, are an important part of the shrub-steppe ecosystem as well as being valued for aesthetics and hunting. Because mule deer have been protected from hunting on the Site for 50 years, the herd has developed unique population characteristics, including a large number of old animals and males with either large or atypically developed antlers, in contrast to other herds in the semi-arid regions of the Northwest. Hanford Site mule deer have been studied since 1991 because of the herd`s unique nature and high degree of public interest.more » A special study of the mule deer herd was initiated in 1993 after observations were made of a relatively large number of male deer with atypical, velvet-covered antlers. This report specifically describes our analyses of adult male deer found on the Site with atypical antlers. The report includes estimates of population densities and composition; home ranges, habitat uses, and dietary habits; natural and human-induced causes of mortality; and the herd`s overall health and reproductive status.« less

  17. Heating-induced phase transformation in zeolite brewsterite: new 4- and 5-coordinated (Si,Al) sites

    NASA Astrophysics Data System (ADS)

    Alberti, A.; Sacerdoti, M.; Quartieri, S.; Vezzalini, G.

    The dehydration-rehydration processes and phase transformations of brewsterite (space group P21/m, ideal formula (Sr,Ba)Al2Si6O16.5H2O) were studied by single crystal X-ray diffraction on two samples heated in an evacuated capillary for 24 h at 280°C and 330°C, respectively, and then cooled to room temperature. After the data collection, the capillary of the crystal heated at 280°C was broken, the sample was kept at room conditions for one month, and diffraction data were recollected. Brewsterite heated in vacuum at 280°C shows a strong decrease of the unit cell volume (about 10%) and the statistical breaking of the T1-O7-T2 bridge of the 4-ring of the 4254 PBU. T1 cation, in 31% of cases, migrates to a new tetrahedral site, which shares three vertices with the previously occupied one; the fourth vertex is on the mirror plane, and joins two adjacent layers. T2 cation, in 20% of cases, migrates to a new site, which is characterized by a 5-fold coordination. This coordination polyhedron shares three vertices with the previously occupied tetrahedron; the fourth vertex is on the mirror plane, and joins two adjacent layers; the fifth one is unshared. The formation of these new T-O-T bridges prevents the re-expansion and rehydration of the heated brewsterite; as a consequence, the crystal brought back to room conditions does not show any noticeable structural difference with respect to that heated at 280°C. The exchangeable cations, which occupy only one extraframework site in the untreated brewsterite, spread over several sites. The sample heated at 330°C shows a further decrease in the unit cell volume of about 2% with respect to the sample heated at 280°C, and an increase in the migration percentage of T1 and T2 cations to the new sites.

  18. Impairments in Site-Specific AS160 Phosphorylation and Effects of Exercise Training

    PubMed Central

    Consitt, Leslie A.; Van Meter, Jessica; Newton, Christopher A.; Collier, David N.; Dar, Moahad S.; Wojtaszewski, Jørgen F.P.; Treebak, Jonas T.; Tanner, Charles J.; Houmard, Joseph A.

    2013-01-01

    The purpose of this study was to determine if site-specific phosphorylation at the level of Akt substrate of 160 kDa (AS160) is altered in skeletal muscle from sedentary humans across a wide range of the adult life span (18–84 years of age) and if endurance- and/or strength-oriented exercise training could rescue decrements in insulin action and skeletal muscle AS160 phosphorylation. A euglycemic-hyperinsulinemic clamp and skeletal muscle biopsies were performed in 73 individuals encompassing a wide age range (18–84 years of age), and insulin-stimulated AS160 phosphorylation was determined. Decrements in whole-body insulin action were associated with impairments in insulin-induced phosphorylation of skeletal muscle AS160 on sites Ser-588, Thr-642, Ser-666, and phospho-Akt substrate, but not Ser-318 or Ser-751. Twelve weeks of endurance- or strength-oriented exercise training increased whole-body insulin action and reversed impairments in AS160 phosphorylation evident in insulin-resistant aged individuals. These findings suggest that a dampening of insulin-induced phosphorylation of AS160 on specific sites in skeletal muscle contributes to the insulin resistance evident in a sedentary aging population and that exercise training is an effective intervention for treating these impairments. PMID:23801578

  19. A quantum mechanics-based approach to model incident-induced dynamic driver behavior

    NASA Astrophysics Data System (ADS)

    Sheu, Jiuh-Biing

    2008-08-01

    A better understanding of the psychological factors influencing drivers, and the resulting driving behavior responding to incident-induced lane traffic phenomena while passing by an incident site is vital to the improvement of road safety. This paper presents a microscopic driver behavior model to explain the dynamics of the instantaneous driver decision process under lane-blocking incidents on adjacent lanes. The proposed conceptual framework decomposes the corresponding driver decision process into three sequential phases: (1) initial stimulus, (2) glancing-around car-following, and (3) incident-induced driving behavior. The theorem of quantum mechanics in optical flows is applied in the first phase to explain the motion-related perceptual phenomena while vehicles approach the incident site in adjacent lanes, followed by the incorporation of the effect of quantum optical flows in modeling the induced glancing-around car-following behavior in the second phase. Then, an incident-induced driving behavior model is formulated to reproduce the dynamics of driver behavior conducted in the process of passing by an incident site in the adjacent lanes. Numerical results of model tests using video-based incident data indicate the validity of the proposed traffic behavior model in analyzing the incident-induced lane traffic phenomena. It is also expected that such a proposed quantum-mechanics based methodology can throw more light if applied to driver psychology and response in anomalous traffic environments in order to improve road safety.

  20. High-throughput screening platform for engineered nanoparticle-mediated genotoxicity using CometChip technology.

    PubMed

    Watson, Christa; Ge, Jing; Cohen, Joel; Pyrgiotakis, Georgios; Engelward, Bevin P; Demokritou, Philip

    2014-03-25

    The likelihood of intentional and unintentional engineered nanoparticle (ENP) exposure has dramatically increased due to the use of nanoenabled products. Indeed, ENPs have been incorporated in many useful products and have enhanced our way of life. However, there are many unanswered questions about the consequences of nanoparticle exposures, in particular, with regard to their potential to damage the genome and thus potentially promote cancer. In this study, we present a high-throughput screening assay based upon the recently developed CometChip technology, which enables evaluation of single-stranded DNA breaks, abasic sites, and alkali-sensitive sites in cells exposed to ENPs. The strategic microfabricated, 96-well design and automated processing improves efficiency, reduces processing time, and suppresses user bias in comparison to the standard comet assay. We evaluated the versatility of this assay by screening five industrially relevant ENP exposures (SiO2, ZnO, Fe2O3, Ag, and CeO2) on both suspension human lymphoblastoid (TK6) and adherent Chinese hamster ovary (H9T3) cell lines. MTT and CyQuant NF assays were employed to assess cellular viability and proliferation after ENP exposure. Exposure to ENPs at a dose range of 5, 10, and 20 μg/mL induced dose-dependent increases in DNA damage and cytotoxicity. Genotoxicity profiles of ZnO>Ag>Fe2O3>CeO2>SiO2 in TK6 cells at 4 h and Ag>Fe2O3>ZnO>CeO2>SiO2 in H9T3 cells at 24 h were observed. The presented CometChip platform enabled efficient and reliable measurement of ENP-mediated DNA damage, therefore demonstrating the efficacy of this powerful tool in nanogenotoxicity studies.

  1. Modulation of the conformational state of the SV2A protein by an allosteric mechanism as evidenced by ligand binding assays

    PubMed Central

    Daniels, V; Wood, M; Leclercq, K; Kaminski, R M; Gillard, M

    2013-01-01

    Background and Purpose Synaptic vesicle protein 2A (SV2A) is the specific binding site of the anti-epileptic drug levetiracetam (LEV) and its higher affinity analogue UCB30889. Moreover, the protein has been well validated as a target for anticonvulsant therapy. Here, we report the identification of UCB1244283 acting as a SV2A positive allosteric modulator of UCB30889. Experimental Approach UCB1244283 was characterized in vitro using radioligand binding assays with [3H]UCB30889 on recombinant SV2A expressed in HEK cells and on rat cortex. In vivo, the compound was tested in sound-sensitive mice. Key Results Saturation binding experiments in the presence of UCB1244283 demonstrated a fivefold increase in the affinity of [3H]UCB30889 for human recombinant SV2A, combined with a twofold increase of the total number of binding sites. Similar results were obtained on rat cortex. In competition binding experiments, UCB1244283 potentiated the affinity of UCB30889 while the affinity of LEV remained unchanged. UCB1244283 significantly slowed down both the association and dissociation kinetics of [3H]UCB30889. Following i.c.v. administration in sound-sensitive mice, UCB1244283 showed a clear protective effect against both tonic and clonic convulsions. Conclusions and Implications These results indicate that UCB1244283 can modulate the conformation of SV2A, thereby inducing a higher affinity state for UCB30889. Our results also suggest that the conformation of SV2A per se might be an important determinant of its functioning, especially during epileptic seizures. Therefore, agents that act on the conformation of SV2A might hold great potential in the search for new SV2A-based anticonvulsant therapies. PMID:23530581

  2. Variation in the Composition and In Vitro Proinflammatory Effect of Urban Particulate Matter from Different Sites

    PubMed Central

    Manzano-León, Natalia; Quintana, Raúl; Sánchez, Brisa; Serrano, Jesús; Vega, Elizabeth; Vázquez-López, Inés; Rojas-Bracho, Leonora; López-Villegas, Tania; O’Neill, Marie S.; Vadillo-Ortega, Felipe; De Vizcaya-Ruiz, Andrea; Rosas, Irma

    2015-01-01

    Spatial variation in particulate matter–related health and toxicological outcomes is partly due to its composition. We studied spatial variability in particle composition and induced cellular responses in Mexico City to complement an ongoing epidemiologic study. We measured elements, endotoxins, and polycyclic aromatic hydrocarbons in two particle size fractions collected in five sites. We compared the in vitro proinflammatory response of J774A.1 and THP-1 cells after exposure to particles, measuring subsequent TNFα and IL-6 secretion. Particle composition varied by site and size. Particle constituents were subjected to principal component analysis, identifying three components: C1 (Si, Sr, Mg, Ca, Al, Fe, Mn, endotoxin), C2 (polycyclic aromatic hydrocarbons), and C3 (Zn, S, Sb, Ni, Cu, Pb). Induced TNFα levels were higher and more heterogeneous than IL-6 levels. Cytokines produced by both cell lines only correlated with C1, suggesting that constituents associated with soil induced the inflammatory response and explain observed spatial differences. PMID:23335408

  3. Optodynamic characterization of shock waves after laser-induced breakdown in water.

    PubMed

    Petkovsek, Rok; Mozina, Janez; Mocnik, Grisa

    2005-05-30

    Plasma and a cavitation bubble develop at the site of laser-induced breakdown in water. Their formation and the propagation of the shock wave were monitored by a beam-deflection probe and an arm-compensated interferometer. The interferometer part of the setup was used to determine the relative position of the laser-induced breakdown. The time-of-flight data from the breakdown site to the probe beam yielded the velocity, and from the velocity the shock-wave pressure amplitudes were calculated. Two regions were found where the pressure decays with different exponents, pointing to a strong attenuation mechanism in the initial phase of the shock-wave propagation.

  4. Deciphering Cryptic Binding Sites on Proteins by Mixed-Solvent Molecular Dynamics.

    PubMed

    Kimura, S Roy; Hu, Hai Peng; Ruvinsky, Anatoly M; Sherman, Woody; Favia, Angelo D

    2017-06-26

    In recent years, molecular dynamics simulations of proteins in explicit mixed solvents have been applied to various problems in protein biophysics and drug discovery, including protein folding, protein surface characterization, fragment screening, allostery, and druggability assessment. In this study, we perform a systematic study on how mixtures of organic solvent probes in water can reveal cryptic ligand binding pockets that are not evident in crystal structures of apo proteins. We examine a diverse set of eight PDB proteins that show pocket opening induced by ligand binding and investigate whether solvent MD simulations on the apo structures can induce the binding site observed in the holo structures. The cosolvent simulations were found to induce conformational changes on the protein surface, which were characterized and compared with the holo structures. Analyses of the biological systems, choice of probes and concentrations, druggability of the resulting induced pockets, and application to drug discovery are discussed here.

  5. Silver-Coated Nylon Dressing Plus Active DC Microcurrent for Healing of Autogenous Skin Donor Sites

    DTIC Science & Technology

    2013-08-01

    of contact dermatitis induced by 1,2-dinitrochlorobenzene, Nadworny et al demonstrated that Acticoat induced apoptosis of inf lammatory cells in the...activity of nanocrys- talline silver in a porcine contact dermatitis model. Nanomedicine. 2008;4:241Y251. 14. Atiyeh BS, Costagliola M, Hayek SN, et...good skin contact , and these electrodes were replaced when necessary. The edges of the donor site were inspected for evidence of healing or infection

  6. A dermal HOX transcriptional program regulates site-specific epidermal fate

    PubMed Central

    Rinn, John L.; Wang, Jordon K.; Allen, Nancy; Brugmann, Samantha A.; Mikels, Amanda J.; Liu, Helen; Ridky, Todd W.; Stadler, H. Scott; Nusse, Roel; Helms, Jill A.; Chang, Howard Y.

    2008-01-01

    Reciprocal epithelial–mesenchymal interactions shape site-specific development of skin. Here we show that site-specific HOX expression in fibroblasts is cell-autonomous and epigenetically maintained. The distal-specific gene HOXA13 is continually required to maintain the distal-specific transcriptional program in adult fibroblasts, including expression of WNT5A, a morphogen required for distal development. The ability of distal fibroblasts to induce epidermal keratin 9, a distal-specific gene, is abrogated by depletion of HOXA13, but rescued by addition of WNT5A. Thus, maintenance of appropriate HOX transcriptional program in adult fibroblasts may serve as a source of positional memory to differentially pattern the epithelia during homeostasis and regeneration. PMID:18245445

  7. A dermal HOX transcriptional program regulates site-specific epidermal fate.

    PubMed

    Rinn, John L; Wang, Jordon K; Allen, Nancy; Brugmann, Samantha A; Mikels, Amanda J; Liu, Helen; Ridky, Todd W; Stadler, H Scott; Nusse, Roel; Helms, Jill A; Chang, Howard Y

    2008-02-01

    Reciprocal epithelial-mesenchymal interactions shape site-specific development of skin. Here we show that site-specific HOX expression in fibroblasts is cell-autonomous and epigenetically maintained. The distal-specific gene HOXA13 is continually required to maintain the distal-specific transcriptional program in adult fibroblasts, including expression of WNT5A, a morphogen required for distal development. The ability of distal fibroblasts to induce epidermal keratin 9, a distal-specific gene, is abrogated by depletion of HOXA13, but rescued by addition of WNT5A. Thus, maintenance of appropriate HOX transcriptional program in adult fibroblasts may serve as a source of positional memory to differentially pattern the epithelia during homeostasis and regeneration.

  8. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, K.M.; Doyle, B.L.

    1996-08-20

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue. 25 figs.

  9. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, Kevin M.; Doyle, Barney L.

    1996-01-01

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue.

  10. ADP binding to TF1 and its subunits induces ultraviolet spectral changes.

    PubMed

    Hisabori, T; Yoshida, M; Sakurai, H

    1986-09-01

    Adenine nucleotide binding sites on the coupling factor ATPase of thermophilic bacterium PS3 (TF1) were investigated by UV spectroscopy and by equilibrium dialysis. When ADP was mixed with TF1 in the presence and in the absence of Mg2+, an UV absorbance change was induced (t1/2 approximately 1 min) with a peak at about 278 nm and a trough at about 250 nm. Similar spectral changes were induced by ADP with the isolated beta subunits in the presence and in the absence of Mg2+, and with the isolated alpha subunits in the presence of Mg2+ although the magnitudes of the changes were different. From equilibrium dialysis measurement we identified two classes of nucleotide binding sites in TF1 in the presence of Mg2+, three high-affinity sites (Kd = 61 nM) and three low-affinity sites (Kd = 87 microM). In the absence of Mg2+, TF1 has one high-affinity site (Kd less than 10 nM) and five low-affinity sites (Kd = 100 microM). Moreover, we found a single Mg2+-dependent ADP binding site on the isolated alpha subunit and a single Mg2+-independent ADP binding site on the isolated beta subunit. From the above observations, we concluded that the three Mg2+-dependent high-affinity sites for ADP are located on the alpha subunit in TF1 and that the single high-affinity site is located on one of the beta subunits in TF1 in the absence of Mg2+.

  11. Temporally-Controlled Site-Specific Recombination in Zebrafish

    PubMed Central

    Hans, Stefan; Kaslin, Jan; Freudenreich, Dorian; Brand, Michael

    2009-01-01

    Conventional use of the site-specific recombinase Cre is a powerful technology in mouse, but almost absent in other vertebrate model organisms. In zebrafish, Cre-mediated recombination efficiency was previously very low. Here we show that using transposon-mediated transgenesis, Cre is in fact highly efficient in this organism. Furthermore, temporal control of recombination can be achieved by using the ligand-inducible CreERT2. Site-specific recombination only occurs upon administration of the drug tamoxifen (TAM) or its active metabolite, 4-hydroxy-tamoxifen (4-OHT). Cre-mediated recombination is detectable already 4 or 2 hours after administration of TAM or 4-OHT, demonstrating fast recombination kinetics. In addition, low doses of TAM allow mosaic labeling of single cells. Combined, our results show that conditional Cre/lox will be a valuable tool for both, embryonic and adult zebrafish studies. Furthermore, single copy insertion transgenesis of Cre/lox constructs suggest a strategy suitable also for other organisms. PMID:19247481

  12. Effects of Anticholinesterases on Catalysis and Induced Conformational Change of the Peripheral Anionic Site of Murine Acetylcholinesterase

    PubMed Central

    Tong, Fan; Islam, Rafique M.; Carlier, Paul R.; Ma, Ming; Ekström, Fredrik; Bloomquist, Jeffrey R.

    2013-01-01

    Conventional insecticides targeting acetylcholinesterase (AChE) typically show high mammalian toxicities and because there is resistance to these compounds in many insect species, alternatives to established AChE inhibitors used for pest control are needed. Here we used a fluorescence method to monitor interactions between various AChE inhibitors and the AChE peripheral anionic site, which is a novel target for new insecticides acting on this enzyme. The assay uses thioflavin-T as a probe, which binds to the peripheral anionic site of AChE and yields an increase in fluorescent signal. Three types of AChE inhibitors were studied: catalytic site inhibitors (carbamate insecticides, edrophonium, and benzylpiperidine), peripheral site inhibitors (tubocurarine, ethidium bromide, and propidium iodide), and bivalent inhibitors (donepezil, BW284C51, and a series of bis(n)-tacrines). All were screened on murine AChE to compare and contrast changes of peripheral site conformation in the TFT assay with catalytic inhibition. All the inhibitors reduced thioflavin-T fluorescence in a concentration-dependent manner with potencies (IC50) ranging from 8 nM for bis(6)-tacrine to 159 μM for benzylpiperidine. Potencies in the fluorescence assay were correlated well with their potencies for enzyme inhibition (R2 = 0.884). Efficacies for reducing thioflavin-T fluorescence ranged from 23–36% for catalytic site inhibitors and tubocurarine to near 100% for ethidium bromide and propidium iodide. Maximal efficacies could be reconciled with known mechanisms of interaction of the inhibitors with AChE. When extended to pest species, we anticipate these findings will assist in the discovery and development of novel, selective bivalent insecticides acting on AChE. PMID:24003261

  13. Spectrum of cisplatin-induced mutations in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnouf, D.; Duane, M.; Fuchs, R.P.

    1987-06-01

    Using a forward-mutation assay based on the inactivation of the tetracycline-resistance gene located on plasmid pBR322, we have determined the mutation spectrum induced in Escherichia coli by cisplatin (cis-diamminedichloroplatinum(II)), a widely used antitumor drug. Cisplatin is known to form mainly intrastrand diadducts at ApG and GpG sites. We found that cisplatin efficiently induces mutations in an SOS-dependent way (i.e., dependent upon UV irradiation of the host bacteria). More than 90% of the mutations are single-base-pair substitutions occurring at the potential sites of cisplatin adducts (ApG and GpG). Taking into account the relative proportions of ApG and GpG adducts, we foundmore » that the ApG adducts are at least 5 times more mutagenic than the GpG adducts. Moreover, a strong mutation specificity was seen at the 5' side of the ApG adducts (A X T----T X A transversions). The observation that most mutations occur at the 5' end of the adduct at both ApG and GpG sites is discussed in relation to recent structural data.« less

  14. The effects of metal ions on the DNA damage induced by hydrogen peroxide.

    PubMed

    Kobayashi, S; Ueda, K; Komano, T

    1990-01-01

    The effects of metal ions on DNA damage induced by hydrogen peroxide were investigated using two methods, agarose-gel electrophoretic analysis of supercoiled DNA and sequencing-gel analysis of single end-labeled DNA fragments of defined sequences. Hydrogen peroxide induced DNA damage when iron or copper ion was present. At least two classes of DNA damage were induced, one being direct DNA-strand cleavage, and the other being base modification labile to hot piperidine. The investigation of the damaged sites and the inhibitory effects of radical scavengers revealed that hydroxyl radical was the species which attacked DNA in the reaction of H2O2/Fe(II). On the other hand, two types of DNA damage were induced by H2O2/Cu(II). Type I damage was predominant and inhibited by potassium iodide, but type II was not. The sites of the base-modification induced by type I damage were similar to those by lipid peroxidation products and by ascorbate in the presence of Cu(II), suggesting the involvement of radical species other than free hydroxyl radical in the damaging reactions.

  15. 77 FR 58058 - Approval and Promulgation of Implementation Plans; Texas; Beaumont/Port Arthur Ozone Maintenance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    .... SUMMARY: EPA is proposing to approve Texas' request to revise its Beaumont/Port Arthur (BPA) 1997 8-hour... (MOVES) 2010a emissions model. The BPA 1997 8-hour ozone maintenance area consists of Hardin, Jefferson... proposing? EPA is proposing to approve new MOVES2010a-based budgets for the Beaumont/Port Arthur (BPA) 1997...

  16. Focal brain lesions induced with ultraviolet irradiation.

    PubMed

    Nakata, Mariko; Nagasaka, Kazuaki; Shimoda, Masayuki; Takashima, Ichiro; Yamamoto, Shinya

    2018-05-22

    Lesion and inactivation methods have played important roles in neuroscience studies. However, traditional techniques for creating a brain lesion are highly invasive, and control of lesion size and shape using these techniques is not easy. Here, we developed a novel method for creating a lesion on the cortical surface via 365 nm ultraviolet (UV) irradiation without breaking the dura mater. We demonstrated that 2.0 mWh UV irradiation, but not the same amount of non-UV light irradiation, induced an inverted bell-shaped lesion with neuronal loss and accumulation of glial cells. Moreover, the volume of the UV irradiation-induced lesion depended on the UV light exposure amount. We further succeeded in visualizing the lesioned site in a living animal using magnetic resonance imaging (MRI). Importantly, we also observed using an optical imaging technique that the spread of neural activation evoked by adjacent cortical stimulation disappeared only at the UV-irradiated site. In summary, UV irradiation can induce a focal brain lesion with a stable shape and size in a less invasive manner than traditional lesioning methods. This method is applicable to not only neuroscientific lesion experiments but also studies of the focal brain injury recovery process.

  17. A gratuitous β-Lactamase inducer uncovers hidden active site dynamics of the Staphylococcus aureus BlaR1 sensor domain.

    PubMed

    Frederick, Thomas E; Peng, Jeffrey W

    2018-01-01

    Increasing evidence shows that active sites of proteins have non-trivial conformational dynamics. These dynamics include active site residues sampling different local conformations that allow for multiple, and possibly novel, inhibitor binding poses. Yet, active site dynamics garner only marginal attention in most inhibitor design efforts and exert little influence on synthesis strategies. This is partly because synthesis requires a level of atomic structural detail that is frequently missing in current characterizations of conformational dynamics. In particular, while the identity of the mobile protein residues may be clear, the specific conformations they sample remain obscure. Here, we show how an appropriate choice of ligand can significantly sharpen our abilities to describe the interconverting binding poses (conformations) of protein active sites. Specifically, we show how 2-(2'-carboxyphenyl)-benzoyl-6-aminopenicillanic acid (CBAP) exposes otherwise hidden dynamics of a protein active site that binds β-lactam antibiotics. When CBAP acylates (binds) the active site serine of the β-lactam sensor domain of BlaR1 (BlaRS), it shifts the time scale of the active site dynamics to the slow exchange regime. Slow exchange enables direct characterization of inter-converting protein and bound ligand conformations using NMR methods. These methods include chemical shift analysis, 2-d exchange spectroscopy, off-resonance ROESY of the bound ligand, and reduced spectral density mapping. The active site architecture of BlaRS is shared by many β-lactamases of therapeutic interest, suggesting CBAP could expose functional motions in other β-lactam binding proteins. More broadly, CBAP highlights the utility of identifying chemical probes common to structurally homologous proteins to better expose functional motions of active sites.

  18. Vasomotor response to cold stimulation in human capsaicin-induced hyperalgesic area.

    PubMed

    Pud, Dorit; Andersen, Ole Kaeseler; Arendt-Nielsen, Lars; Eisenberg, Elon; Yarnitsky, David

    2005-07-01

    Cooling the skin induces sympathetically driven vasoconstriction, with some vasoparalytic dilatation at the lowest temperatures. Neurogenic inflammation, on the other hand, entails vasodilatation. In this study we investigated the balance between vasoconstriction and vasodilatation in an area of experimentally induced secondary hyperalgesia (2 degrees HA), in response to low-temperature stimulations. Fourteen healthy volunteers were exposed to three 30-s long cold stimuli (20, 10, and 0 degrees C) applied, at three adjacent sites, before (baseline) and 8 min after intradermal injection of 50 microg capsaicin to the volar forearm. The cold stimuli were applied distally to the injection site within the 2 degrees HA. Blood flux (BF) and skin temperatures were measured at four different regions (proximally, and distally to the capsaicin injection and at the 0, 10, and 20 degrees C thermode sites) all within the 2 degrees HA. The vascular measurements were conducted five times. Results showed a marked increase in BF after baseline cold stimulation (P<0.001) at the 0 degrees C compared with the three other sites. In addition, vasodilatory effect (elevated BF) was found following the capsaicin injection compared with baseline for all regions (P<0.001): the non-cooled area was dilated by 450+/-5.1%; The vasoconstrictive effect for the 10 and 20 degrees C did not overcome the capsaicin vasodilatation, but did reduce it, with dilatation of 364+/-7.0% and 329+/-7.3%, respectively. For 0 degrees C, a dilatation of 407+/-6.5% was seen. It is concluded that in this experimental model, and potentially in the equivalent clinical syndromes, vasodilatation induced by the inflammation is only slightly reduced by cold stimulation such that it is still dominant, despite some cold-induced vasoconstriction.

  19. Effect of melatonin on methamphetamine- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity and methamphetamine-induced behavioral sensitization.

    PubMed

    Itzhak, Y; Martin, J L; Black, M D; Ali, S F

    1998-06-01

    Methamphetamine (METH)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity is thought to be associated with the formation of free radicals. Since evidence suggests that melatonin may act as a free radical scavenger and antioxidant, the present study was undertaken to investigate the effect of melatonin on METH- and MPTP-induced neurotoxicity. In addition, the effect of melatonin on METH-induced locomotor sensitization was investigated. The administration of METH (5 mg kg(-1) x 3) or MPTP (20 mg kg(-1) x 3) to Swiss Webster mice resulted in 45-57% depletion in the content of striatal dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, and 57-59% depletion in dopamine transporter binding sites. The administration of melatonin (10 mg kg(-1)) before each of the three injections of the neurotoxic agents (on day 1), and thereafter for two additional days, afforded a full protection against METH-induced depletion of dopamine and its metabolites and dopamine transporter binding sites. In addition, melatonin significantly diminished METH-induced hyperthermia. However, the treatment with melatonin had no significant effect on MPTP-induced depletion of the dopaminergic markers tested. In the set of behavioral experiments, we found that the administration of 1 mg kg(-1) METH to Swiss Webster mice for 5 days resulted in marked locomotor sensitization to a subsequent challenge injection of METH, as well as context-dependent sensitization (conditioning). The pretreatment with melatonin (10 mg kg(-1)) prevented neither the sensitized response to METH nor the development of conditioned locomotion. Results of the present study indicate that melatonin has a differential effect on the dopaminergic neurotoxicity produced by METH and MPTP. Since it is postulated that METH-induced hyperthermia is related to its neurotoxic effect, while regulation of body temperature is unrelated to MPTP-induced neurotoxicity or METH-induced

  20. Systematic Analysis of Splice-Site-Creating Mutations in Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayasinghe, Reyka G.; Cao, Song; Gao, Qingsong

    For the past decade, cancer genomic studies have focused on mutations leading to splice-site disruption, overlooking those having splice-creating potential. Here, we applied a bioinformatic tool, MiSplice, for the large-scale discovery of splice-site-creating mutations (SCMs) across 8,656 TCGA tumors. We report 1,964 originally mis-annotated mutations having clear evidence of creating alternative splice junctions. TP53 and GATA3 have 26 and 18 SCMs, respectively, and ATRX has 5 from lower-grade gliomas. Mutations in 11 genes, including PARP1, BRCA1, and BAP1, were experimentally validated for splice-site-creating function. Notably, we found that neoantigens induced by SCMs are likely several folds more immunogenic compared tomore » missense mutations, exemplified by the recurrent GATA3 SCM. Further, high expression of PD-1 and PD-L1 was observed in tumors with SCMs, suggesting candidates for immune blockade therapy. Finally, our work highlights the importance of integrating DNA and RNA data for understanding the functional and the clinical implications of mutations in human diseases.« less

  1. Systematic Analysis of Splice-Site-Creating Mutations in Cancer

    DOE PAGES

    Jayasinghe, Reyka G.; Cao, Song; Gao, Qingsong; ...

    2018-04-05

    For the past decade, cancer genomic studies have focused on mutations leading to splice-site disruption, overlooking those having splice-creating potential. Here, we applied a bioinformatic tool, MiSplice, for the large-scale discovery of splice-site-creating mutations (SCMs) across 8,656 TCGA tumors. We report 1,964 originally mis-annotated mutations having clear evidence of creating alternative splice junctions. TP53 and GATA3 have 26 and 18 SCMs, respectively, and ATRX has 5 from lower-grade gliomas. Mutations in 11 genes, including PARP1, BRCA1, and BAP1, were experimentally validated for splice-site-creating function. Notably, we found that neoantigens induced by SCMs are likely several folds more immunogenic compared tomore » missense mutations, exemplified by the recurrent GATA3 SCM. Further, high expression of PD-1 and PD-L1 was observed in tumors with SCMs, suggesting candidates for immune blockade therapy. Finally, our work highlights the importance of integrating DNA and RNA data for understanding the functional and the clinical implications of mutations in human diseases.« less

  2. [Protein interaction site of Toxoplasma gondii microneme protein 6 and aldolase determined by site-directed mutagenesis].

    PubMed

    Zheng, Bin; Yin, Zhi-Kui; Zhan, Xi-Mei

    2014-06-01

    To identify the protein interaction site of Toxoplasma gondii microneme protein 6 (MIC6) and aldolase by using site-directed mutagenesis. Based on Toxoplasma gondii MIC6 gene sequence (GenBank Accession No. AF110270), the specific primers were designed. Tryptophan (W)-348 of MIC6 C terminus (MIC6C) was mutated to valine (V) via site-directed mutagenesis. MIC6C W/V gene was obtained from cDNA library by PCR amplification and subcloned into pGEX-4T-1. The mutant protein GST-MIC6C W/V was expressed in E. coli, induced by 0.8 mmol/L IPTG, and purified by affinity chromatography. Glutathione sepharose beads were incubated with GST-MIC6C W/V and GST-MIC6C, respectively, and then incubated with T. gondii tachyzoites lysate, and bound proteins were eluted using sample buffer. Bound products were resolved by SDS-PAGE and Western blotting. Glutathione sepharose beads were incubated with GST-MIC6C W/V and GST-MIC6C, respectively, and then incubated with aldolase-His6. After incubation, the resin was washed and subjected to SDS-PAGE. The MIC6C W/N gene was obtained, and the recombinant plasmid MIC6C W/V/pGEX-4T-1 was successfully constructed. The mutant protein GST-MIC6C W/V was expressed and purified in vitro. SDS-PAGE analysis indicated that GST-MIC6C was co-precipitated with aldolase from T. gondii tachyzoites lysate or aldolase-His6, whereas GST-MIC6C W/V failed to precipitate aldolase from T. gondii tachyzoites lysate or aldolase-His6. Western blotting analysis using anti-aldolase antibody indicated that GST-MIC6C could pull-down aldolase from T. gondii tachyzoites lysate. Tryptophan (W348) was the interaction site of MIC6 and aldolase in T. gondii.

  3. Dexamethasone attenuates grain sorghum dust extract-induced increase in macromolecular efflux in vivo.

    PubMed

    Akhter, S R; Ikezaki, H; Gao, X P; Rubinstein, I

    1999-05-01

    The purpose of this study was to determine whether dexamethasone attenuates grain sorghum dust extract-induced increase in macromolecular efflux from the in situ hamster cheek pouch and, if so, whether this response is specific. By using intravital microscopy, we found that an aqueous extract of grain sorghum dust elicited significant, concentration-dependent leaky site formation and increase in clearance of FITC-labeled dextran (FITC-dextran; mol mass, 70 kDa) from the in situ hamster cheek pouch (P < 0.05). This response was significantly attenuated by dexamethasone (10 mg/kg iv). Dexamethasone also attenuated substance P-induced leaky site formation and increase in clearance of FITC-dextran from the cheek pouch but had no significant effects on adenosine-induced responses. Dexamethasone had no significant effects on arteriolar diameter in the cheek pouch. On balance, these data indicate that dexamethasone attenuates grain sorghum dust extract- and substance P-induced increases in macromolecular efflux from the in situ hamster cheek pouch in a specific fashion.

  4. Photoacoustic imaging of angiogenesis in subdermal islet transplant sites

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Pawlick, Rena; Bruni, Antonio; Rafiei, Yasmin; Pepper, Andrew R.; Gala-Lopez, Boris; Choi, Min; Malcolm, Andrew; Zemp, Roger J.; Shapiro, A. M. James

    2016-03-01

    Exogenous insulin administration is the mainstay treatment therapy for patients with Type-1 diabetes mellitus (T1DM). However, for select patients, clinical islet transplantation is an alternative therapeutic treatment. In this procedure, islets are transplanted into the hepatic portal vein, and despite improved success within the last decade, obstacles are still associated with this approach. It has been discovered that the subcutaneous space may be an effective alternative site for islet transplantation, and may provide advantages of easy access and potential for simple monitoring. The ability to monitor islet viability and the transplant microenvironment may be key to future success in islet transplantation. A subcutaneous device-less technique has been developed to facilitate angiogenesis in the islet transplant site, however, a method for monitoring the potential engraftment site have yet to be explored fully. Here we demonstrate the ability to track angiogenesis in mice with 1, 2, 3 and 4 weeks post-catheter implant on both sides of the abdomen using a FujiFilm VisualSonics Vevo-LAZR system. Quantitative analysis on vessel densities exhibited gradual vessel growth successfully induced by catheter implantation. Our study demonstrates the ability of employing photoacoustic and micro-ultrasound imaging to track angiogenesis around the catheter site prior to islet transplantation.

  5. Cyclooxygenase inhibition does not alter methacholine-induced sweating

    PubMed Central

    Fujii, Naoto; McGinn, Ryan; Paull, Gabrielle; Stapleton, Jill M.; Meade, Robert D.

    2014-01-01

    Cholinergic agents (e.g., methacholine) induce cutaneous vasodilation and sweating. Reports indicate that either nitric oxide (NO), cyclooxygenase (COX), or both can contribute to cholinergic cutaneous vasodilation. Also, NO is reportedly involved in cholinergic sweating; however, whether COX contributes to cholinergic sweating is unclear. Forearm sweat rate (ventilated capsule) and cutaneous vascular conductance (CVC, laser-Doppler perfusion units/mean arterial pressure) were evaluated in 10 healthy young (24 ± 4 yr) adults (7 men, 3 women) at four skin sites that were continuously perfused via intradermal microdialysis with 1) lactated Ringer (control), 2) 10 mM ketorolac (a nonselective COX inhibitor), 3) 10 mM NG-nitro-l-arginine methyl ester (l-NAME, a nonselective NO synthase inhibitor), or 4) a combination of 10 mM ketorolac + 10 mM l-NAME. At the four skin sites, methacholine was simultaneously infused in a dose-dependent manner (1, 10, 100, 1,000, 2,000 mM). Relative to the control site, forearm CVC was not influenced by ketorolac throughout the protocol (all P > 0.05), whereas l-NAME and ketorolac + l-NAME reduced forearm CVC at and above 10 mM methacholine (all P < 0.05). Conversely, there was no main effect of treatment site (P = 0.488) and no interaction of methacholine dose and treatment site (P = 0.711) on forearm sweating. Thus forearm sweating (in mg·min−1·cm−2) from baseline up to the maximal dose of methacholine was not different between the four sites (at 2,000 mM, control 0.50 ± 0.23, ketorolac 0.44 ± 0.23, l-NAME 0.51 ± 0.22, and ketorolac + l-NAME 0.51 ± 0.23). We show that both NO synthase and COX inhibition do not influence cholinergic sweating induced by 1–2,000 mM methacholine. PMID:25213633

  6. Electroencephalographic response following midazolam-induced general anesthesia: relationship to plasma and effect-site midazolam concentrations.

    PubMed

    Miyake, Wakako; Oda, Yutaka; Ikeda, Yuko; Hagihira, Satoshi; Iwaki, Hiroyoshi; Asada, Akira

    2010-06-01

    To examine the relationships between effect-site concentrations and electroencephalographic parameters after the induction of general anesthesia with midazolam. Twenty-four patients with American Society of Anesthesiologists status I or II were randomly allocated to receive either an intravenous (i.v.) bolus of midazolam 0.2 mg kg(-1) (small-dose group, n = 12) or 0.3 mg kg(-1) (large-dose group, n = 12) for induction of general anesthesia in a double-blind experimental design. The bispectral index (BIS), 95% spectral edge frequency (SEF95), spectral power density, and plasma concentrations of midazolam were measured for 60 min following the induction of general anesthesia. Plasma and simulated effect-site concentrations of midazolam were significantly higher in the large-dose group than in the small-dose group (P = 0.005 and <0.001, respectively). There was a correlation between the relative beta ratio and BIS (r (2) = 0.30, P < 0.001; n = 168); however, effect-site concentrations of midazolam showed no association with BIS, relative beta ratio, or SEF95 (r (2) = 0.07, 0.11 and 0.01, respectively; n = 168). The electroencephalographic spectral power density in the beta-band (>/=13 and <30 Hz) was significantly increased after induction and was significantly larger in the large-dose group than in the small-dose group (P = 0.009). Following the induction of general anesthesia with i.v. midazolam 0.2 or 0.3 mg kg(-1), the BIS was positively correlated with the relative beta ratio. Despite a rapid decrease in the plasma and effect-site concentrations of midazolam, the average BIS remained >60 for 60 min after induction, reflecting an increased power of the electroencephalographic high-frequency band.

  7. RelB-induced expression of Cot, an MAP3K family member, rescues RANKL-induced osteoclastogenesis in alymphoplasia mice by promoting NF-κB2 processing by IKKα.

    PubMed

    Taniguchi, Rei; Fukushima, Hidefumi; Osawa, Kenji; Maruyama, Toshimasa; Yasuda, Hisataka; Weih, Falk; Doi, Takahiro; Maki, Kenshi; Jimi, Eijiro

    2014-03-14

    The alternative nuclear factor-κB (NF-κB) pathway, mainly the RelB-p52 heterodimer, plays important roles in bone metabolism through an unknown mechanism. We have previously reported that alymphoplasia (aly/aly) mice, which lack active NF-κB-inducing kinase (NIK), show mild osteopetrosis due to the inhibition of osteoclastogenesis. p100 retains RelB in the cytoplasm and inhibits RANKL-induced osteoclastogenesis in aly/aly cells. Furthermore, the overexpression of RelB in aly/aly cells rescues RANKL-induced osteoclastogenesis by inducing p100 processing. In contrast, the overexpression of p65 in aly/aly cells has no effect. However, the overexpression of RelB fails to rescue RANKL-induced osteoclastogenesis in the presence of p100ΔGRR, which cannot be processed to p52, suggesting that p100 processing is a key step in RelB-rescued, RANKL-induced osteoclastogenesis in aly/aly cells. In this study, Cot (cancer Osaka thyroid), an MAP3K, was up-regulated by RelB overexpression. Analysis of the Cot promoter demonstrated that p65 and RelB bound to the distal NF-κB-binding site and that RelB but not p65 bound to the proximal NF-κB-binding site in the Cot promoter. The knocking down of Cot expression significantly reduced the RANKL-induced osteoclastogenesis induced by RelB overexpression. The phosphorylation of IKKα at threonine 23 and its kinase activity were indispensable for the processing of p100 and osteoclastogenesis by RelB-induced Cot. Finally, constitutively activated Akt enhanced osteoclastogenesis by RelB-induced Cot, and a dominant-negative form of Akt significantly inhibited it. Taken together, these results indicate that the overexpression of RelB restores RANKL-induced osteoclastogenesis by activation of Akt/Cot/IKKα-induced p100 processing.

  8. RelB-induced Expression of Cot, an MAP3K Family Member, Rescues RANKL-induced Osteoclastogenesis in Alymphoplasia Mice by Promoting NF-κB2 Processing by IKKα*

    PubMed Central

    Taniguchi, Rei; Fukushima, Hidefumi; Osawa, Kenji; Maruyama, Toshimasa; Yasuda, Hisataka; Weih, Falk; Doi, Takahiro; Maki, Kenshi; Jimi, Eijiro

    2014-01-01

    The alternative nuclear factor-κB (NF-κB) pathway, mainly the RelB-p52 heterodimer, plays important roles in bone metabolism through an unknown mechanism. We have previously reported that alymphoplasia (aly/aly) mice, which lack active NF-κB-inducing kinase (NIK), show mild osteopetrosis due to the inhibition of osteoclastogenesis. p100 retains RelB in the cytoplasm and inhibits RANKL-induced osteoclastogenesis in aly/aly cells. Furthermore, the overexpression of RelB in aly/aly cells rescues RANKL-induced osteoclastogenesis by inducing p100 processing. In contrast, the overexpression of p65 in aly/aly cells has no effect. However, the overexpression of RelB fails to rescue RANKL-induced osteoclastogenesis in the presence of p100ΔGRR, which cannot be processed to p52, suggesting that p100 processing is a key step in RelB-rescued, RANKL-induced osteoclastogenesis in aly/aly cells. In this study, Cot (cancer Osaka thyroid), an MAP3K, was up-regulated by RelB overexpression. Analysis of the Cot promoter demonstrated that p65 and RelB bound to the distal NF-κB-binding site and that RelB but not p65 bound to the proximal NF-κB-binding site in the Cot promoter. The knocking down of Cot expression significantly reduced the RANKL-induced osteoclastogenesis induced by RelB overexpression. The phosphorylation of IKKα at threonine 23 and its kinase activity were indispensable for the processing of p100 and osteoclastogenesis by RelB-induced Cot. Finally, constitutively activated Akt enhanced osteoclastogenesis by RelB-induced Cot, and a dominant-negative form of Akt significantly inhibited it. Taken together, these results indicate that the overexpression of RelB restores RANKL-induced osteoclastogenesis by activation of Akt/Cot/IKKα-induced p100 processing. PMID:24488495

  9. Photoactivable antibody binding protein: site-selective and covalent coupling of antibody.

    PubMed

    Jung, Yongwon; Lee, Jeong Min; Kim, Jung-won; Yoon, Jeongwon; Cho, Hyunmin; Chung, Bong Hyun

    2009-02-01

    Here we report new photoactivable antibody binding proteins, which site-selectively capture antibodies and form covalent conjugates with captured antibodies upon irradiation. The proteins allow the site-selective tagging and/or immobilization of antibodies with a highly preferred orientation and omit the need for prior antibody modifications. The minimal Fc-binding domain of protein G, a widely used antibody binding protein, was genetically and chemically engineered to contain a site-specific photo cross-linker, benzophenone. In addition, the domain was further mutated to have an enhanced Fc-targeting ability. This small engineered protein was successfully cross-linked only to the Fc region of the antibody without any nonspecific reactivity. SPR analysis indicated that antibodies can be site-selectively biotinylated through the present photoactivable protein. Furthermore, the system enabled light-induced covalent immobilization of antibodies directly on various solid surfaces, such as those of glass slides, gold chips, and small particles. Antibody coupling via photoactivable antibody binding proteins overcomes several limitations of conventional approaches, such as random chemical reactions or reversible protein binding, and offers a versatile tool for the field of immunosensors.

  10. A-site cationic disorder induced significantly large magnetoresistance in polycrystalline La0.2Gd0.5Ba0.3MnO3 compound

    NASA Astrophysics Data System (ADS)

    Saha, Suvayan; Das, Kalipada; Bandyopadhyay, Sudipta; Das, I.

    2017-11-01

    The observation of significantly large magnetoresistance at the liquid nitrogen temperature range in the polycrystalline La0.2Gd0.5Ba0.3MnO3 (LGBMO) compound has been addressed in the present manuscript. The motivation of considering LGBMO sample is the average 'A' site ionic radius 〈rA 〉 and tolerance factor (t), almost same as that of La0.7Sr0.3MnO3 (LSMO), which is a well studied colossal magnetoresistive material. Magnetoresistance of the LGBMO compound has been compared with the LSMO as well as parent compound La0.7Ba0.3MnO3(LBMO) to show the enhancement of magnetoresistance in LGBMO compound. This observed nature has been elucidated considering the disorder induced short range magnetic interaction due to the enhance size disorder parameter (σ2). Our study revels that, size disorder parameter plays the crucial role for enhancing the colossal magnetoresistance.

  11. Testicular regulation of neuronal glucose and monocarboxylate transporter gene expression profiles in CNS metabolic sensing sites during acute and recurrent insulin-induced hypoglycemia.

    PubMed

    Vavaiya, Kamlesh V; Paranjape, Sachin A; Briski, Karen P

    2007-01-01

    Recurrent insulin-induced hypoglycemia (RIIH) impairs glucose counter-regulatory function in male humans and rodents and, in the latter, diminishes neuronal activation in CNS structures that monitor metabolic homeostasis, including the lateral hypothalamic area (LHA) and dorsal vagal complex (DVC). We investigated whether habituated neuronal reactivity in CNS sensing sites to hypoglycemia is correlated with modified monocarboxylate and/or glucose uptake by using quantitative real-time RT-PCR to analyze neuronal monocarboxylate transporter (MCT2) and glucose transporter variant (GLUT and GLUT4) gene expression profiles in the microdissected LHA, ventromedial nucleus hypothalamus (VMH), and DVC after one or multiple insulin injections. Because orchidectomy (ORDX) maintains uniform glycemic responses to RIIH in male rats, we also examined whether regional gene response patterns are testes dependent. In the intact male rat DVC, MCT2, GLUT3, and GLUT4 gene expression was not altered by acute hypoglycemia but was enhanced by RIIH. MCT2 and GLUT3 mRNA levels in the ORDX rat DVC did not differ among groups, but GLUT4 transcripts were progressively increased by acute and recurrent hypoglycemia. Precedent hypoglycemia decreased or increased basal MCT2 and GLUT4 gene expression, respectively, in the intact rat LHA; LHA GLUT3 transcription was augmented by RIIH in intact rats only. Acute hypoglycemia suppressed MCT2, GLUT3, and GLUT4 gene expression in the intact rat VMH, a response that was abolished by RIIH. In ORDX rats, VMH gene transcript levels were unchanged in response to one dose of insulin but were selectively diminished during RIIH. These data demonstrate site-specific, testes-dependent effects of acute and recurrent hypoglycemia on neuronal metabolic substrate transporter gene expression in characterized rat brain metabolic sensing loci and emphasize the need to assess the impact of potential alterations in glucose and lactate uptake during RIIH on general and

  12. Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced event

    NASA Astrophysics Data System (ADS)

    Kim, Kwang-Hee; Ree, Jin-Han; Kim, YoungHee; Kim, Sungshil; Kang, Su Young; Seo, Wooseok

    2018-06-01

    The moment magnitude (Mw) 5.4 Pohang earthquake, the most damaging event in South Korea since instrumental seismic observation began in 1905, occurred beneath the Pohang geothermal power plant in 2017. Geological and geophysical data suggest that the Pohang earthquake was induced by fluid from an enhanced geothermal system (EGS) site, which was injected directly into a near-critically stressed subsurface fault zone. The magnitude of the mainshock makes it the largest known induced earthquake at an EGS site.

  13. The allosteric site regulates the voltage sensitivity of muscarinic receptors.

    PubMed

    Hoppe, Anika; Marti-Solano, Maria; Drabek, Matthäus; Bünemann, Moritz; Kolb, Peter; Rinne, Andreas

    2018-01-01

    Muscarinic receptors (M-Rs) for acetylcholine (ACh) belong to the class A of G protein-coupled receptors. M-Rs are activated by orthosteric agonists that bind to a specific site buried in the M-R transmembrane helix bundle. In the active conformation, receptor function can be modulated either by allosteric modulators, which bind to the extracellular receptor surface or by the membrane potential via an unknown mechanism. Here, we compared the modulation of M 1 -Rs and M 3 -Rs induced by changes in voltage to their allosteric modulation by chemical compounds. We quantified changes in receptor signaling in single HEK 293 cells with a FRET biosensor for the G q protein cycle. In the presence of ACh, M 1 -R signaling was potentiated by voltage, similarly to positive allosteric modulation by benzyl quinolone carboxylic acid. Conversely, signaling of M 3 -R was attenuated by voltage or the negative allosteric modulator gallamine. Because the orthosteric site is highly conserved among M-Rs, but allosteric sites vary, we constructed "allosteric site" M 3 /M 1 -R chimeras and analyzed their voltage dependencies. Exchanging the entire allosteric sites eliminated the voltage sensitivity of ACh responses for both receptors, but did not affect their modulation by allosteric compounds. Furthermore, a point mutation in M 3 -Rs caused functional uncoupling of the allosteric and orthosteric sites and abolished voltage dependence. Molecular dynamics simulations of the receptor variants indicated a subtype-specific crosstalk between both sites, involving the conserved tyrosine lid structure of the orthosteric site. This molecular crosstalk leads to receptor subtype-specific voltage effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Regulation of BRCA1 Function by DNA Damage-Induced Site-Specific Phosphorylation

    DTIC Science & Technology

    2007-06-01

    3. Hamaguchi, M., Meth, J.L., von Klitzing, C., Wei, W., Esposito, D., Rodgers, L., Walsh, T., Welcsh, P., King, M.- C., and Wigler, M.H. (2002...Jongmans, W., Vuillaume, M., Chrzanowska, K., Smeets, D., Sperling , K., and Hall, J. (1997). Nijmegen breakage syndrome cells fail to induce the p53-mediated...target for overcoming endocrine resistance. Clin Cancer Res 10:331S–336S 18. Hamaguchi M, Meth JL, von Klitzing C, Wei W, Esposito D, Rodgers L, Walsh T

  15. Definition of neutralizing sites on African horse sickness virus serotype 4 VP2 at the level of peptides.

    PubMed

    Martínez-Torrecuadrada, J L; Langeveld, J P; Meloen, R H; Casal, J I

    2001-10-01

    The antigenic structure of African horse sickness virus (AHSV) serotype 4 capsid protein VP2 has been determined at the peptide level by PEPSCAN analysis in combination with a large collection of polyclonal antisera and monoclonal antibodies. VP2, the determinant for the virus serotype and an important target in virus neutralization, was found to contain 15 antigenic sites. A major antigenic region containing 12 of the 15 sites was identified in the region between residues 223 and 400. A second domain between residues 568 and 681 contained the three remaining sites. These sites were used for the synthesis of peptides, which were later tested in rabbits. Of the 15 synthetic peptides, three were able to induce neutralizing antibodies for AHSV-4, defining two neutralizing epitopes, 'a' and 'b', between residues 321 and 339, and 377 and 400, respectively. A combination of peptides representing both sites induced a more effective neutralizing response. Still, the relatively low neutralization titres make the possibility of producing a synthetic vaccine for AHSV unlikely. The complex protein-protein interaction of the outer shell of the viral capsid would probably require the presence of either synthetic peptides in the correct conformation or peptide segments from the different proteins VP2, VP5 and VP7.

  16. A TNF receptor loop peptide mimic blocks RANK ligand–induced signaling, bone resorption, and bone loss

    PubMed Central

    Aoki, Kazuhiro; Saito, Hiroaki; Itzstein, Cecile; Ishiguro, Masaji; Shibata, Tatsuya; Blanque, Roland; Mian, Anower Hussain; Takahashi, Mariko; Suzuki, Yoshifumi; Yoshimatsu, Masako; Yamaguchi, Akira; Deprez, Pierre; Mollat, Patrick; Murali, Ramachandran; Ohya, Keiichi; Horne, William C.; Baron, Roland

    2006-01-01

    Activating receptor activator of NF-κB (RANK) and TNF receptor (TNFR) promote osteoclast differentiation. A critical ligand contact site on the TNFR is partly conserved in RANK. Surface plasmon resonance studies showed that a peptide (WP9QY) that mimics this TNFR contact site and inhibits TNF-α–induced activity bound to RANK ligand (RANKL). Changing a single residue predicted to play an important role in the interaction reduced the binding significantly. WP9QY, but not the altered control peptide, inhibited the RANKL-induced activation of RANK-dependent signaling in RAW 264.7 cells but had no effect on M-CSF–induced activation of some of the same signaling events. WP9QY but not the control peptide also prevented RANKL-induced bone resorption and osteoclastogenesis, even when TNFRs were absent or blocked. In vivo, where both RANKL and TNF-α promote osteoclastogenesis, osteoclast activity, and bone loss, WP9QY prevented the increased osteoclastogenesis and bone loss induced in mice by ovariectomy or low dietary calcium, in the latter case in both wild-type and TNFR double-knockout mice. These results suggest that a peptide that mimics a TNFR ligand contact site blocks bone resorption by interfering with recruitment and activation of osteoclasts by both RANKL and TNF. PMID:16680194

  17. The Analysis of the Relationship between Well Being and the Levels of Emotional Abuse of the Teacher Candidates Perceive

    ERIC Educational Resources Information Center

    Sakar, Zuleyha; Akca, Figen; Bozkurt, Aysegul

    2017-01-01

    Emotional abuse can be defined as a large behavior pattern which the individual is exposed to and can be compiled as, the abasement, violent attitude, exclusion, continuous criticism, unfulfilled need for love and making someone feel worthless. From this point of view the effect on the well being is a key concern about the individuals exposed to…

  18. The Stability and Oxidation Resistance of Iron- and Cobalt-Based Magnetic Nanoparticle Fluids Fabricated by Inert-Gas Condensation

    DTIC Science & Technology

    2005-01-01

    imaging, drug delivery, and hyperthermia treatment for cancer . Ideal magnetic nanoparticle fluids have well-separated, biocompatible nanoparticles with a...Based Magnetic Nanoparticle Fluids Fabricated by Inert-Gas Condensation DISTRIBUTION: Approved for public release, distribution unlimited This paper...Oxidation Resistance of Iron- and Cobalt-Based Magnetic Nanoparticle Fluids Fabricated by Inert-Gas Condensation Nguyen H. Hail, Raymond Lemoine’, Shaina

  19. Two Years of Site Diversity Measurements in Guam, USA

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Morse, J.; Zemba, M.; Nessel, J.

    2012-01-01

    As NASA communication networks upgrade to higher frequencies, such as Ka-Band, atmospherically induced attenuation can become significant. This attenuation is caused by rain, clouds and atmospheric gases (oxygen and water vapor), with rain having the most noticeable effects. One technique to circumvent the increase in attenuation is to operate two terminals separated by a distance that exceeds the average rain cell size. The fact that rain cells are of finite size can then be exploited by rerouting the signal to the terminal with the strongest link. This technique, known as site diversity, is best suited for climates that have compact (less than 2km) and intense rain cells such as in Guam. In order to study the potential diversity gain at the Tracking and Data Relay Satellite (TDRS) Remote Ground Terminal (GRGT) complex in Guam a site test interferometer (STI) was installed in May of 2010. The STI is composed of two terminals with a 900m baseline that observe the same unmodulated beacon signal broadcast from a geostationary satellite (e.g., UFO 8). The potential site diversity gain is calculated by measuring the difference in signal attenuation seen at each terminal. Over the two years of data collection the cumulative distribution function (CDF) of the site diversity gain shows a better than 3 dB improvement for 90% of the time over standard operation. These results show that the use of site diversity in Guam can be very effective in combating rain fades.

  20. Degradation pattern of photosystem II reaction center protein D1 in intact leaves. The major photoinhibition-induced cleavage site in D1 polypeptide is located amino terminally of the DE loop.

    PubMed

    Kettunen, R; Tyystjärvi, E; Aro, E M

    1996-08-01

    Photoinhibition-induced degradation of the D1 protein of the photosystem II reaction center was studied in intact pumpkin (Cucurbita pepo L.) leaves. Photoinhibition was observed to cause the cleavage of the D1 protein at two distinct sites. The main cleavage generated an 18-kD N-terminal and a 20-kD C-terminal degradation fragment of the D1 protein. this cleavage site was mapped to be located clearly N terminally of the DE loop. The other, less-frequent cleavage occurred at the DE loop and produced the well-documented 23-kD, N-terminal D1 degradation product. Furthermore, the 23-kD, N-terminal D1 fragment appears to be phosphorylated and can be detected only under severe photoinhibition in vivo. Comparison of the D1 degradation pattern after in vivo photoinhibition to that after in vitro acceptor-side and donor-side photoinhibition, performed with isolated photosystem II core particles, gives indirect evidence in support of donor-side photoinhibition in intact leaves.

  1. XRCC1 suppresses somatic hypermutation and promotes alternative nonhomologous end joining in Igh genes.

    PubMed

    Saribasak, Huseyin; Maul, Robert W; Cao, Zheng; McClure, Rhonda L; Yang, William; McNeill, Daniel R; Wilson, David M; Gearhart, Patricia J

    2011-10-24

    Activation-induced deaminase (AID) deaminates cytosine to uracil in immunoglobulin genes. Uracils in DNA can be recognized by uracil DNA glycosylase and abasic endonuclease to produce single-strand breaks. The breaks are repaired either faithfully by DNA base excision repair (BER) or mutagenically to produce somatic hypermutation (SHM) and class switch recombination (CSR). To unravel the interplay between repair and mutagenesis, we decreased the level of x-ray cross-complementing 1 (XRCC1), a scaffold protein involved in BER. Mice heterozygous for XRCC1 showed a significant increase in the frequencies of SHM in Igh variable regions in Peyer's patch cells, and of double-strand breaks in the switch regions during CSR. Although the frequency of CSR was normal in Xrcc1(+/-) splenic B cells, the length of microhomology at the switch junctions decreased, suggesting that XRCC1 also participates in alternative nonhomologous end joining. Furthermore, Xrcc1(+/-) B cells had reduced Igh/c-myc translocations during CSR, supporting a role for XRCC1 in microhomology-mediated joining. Our results imply that AID-induced single-strand breaks in Igh variable and switch regions become substrates simultaneously for BER and mutagenesis pathways.

  2. Enhanced magnetoelectric effect in M-type hexaferrites by Co substitution into trigonal bi-pyramidal sites

    NASA Astrophysics Data System (ADS)

    Beevers, J. E.; Love, C. J.; Lazarov, V. K.; Cavill, S. A.; Izadkhah, H.; Vittoria, C.; Fan, R.; van der Laan, G.; Dhesi, S. S.

    2018-02-01

    The magnetoelectric effect in M-type Ti-Co doped strontium hexaferrite has been studied using a combination of magnetometry and element specific soft X-ray spectroscopies. A large increase (>×30) in the magnetoelectric coefficient is found when Co2+ enters the trigonal bi-pyramidal site. The 5-fold trigonal bi-pyramidal site has been shown to provide an unusual mechanism for electric polarization based on the displacement of magnetic transition metal (TM) ions. For Co entering this site, an off-centre displacement of the cation may induce a large local electric dipole as well as providing an increased magnetostriction enhancing the magnetoelectric effect.

  3. Surveying the repair of ancient DNA from bones via high-throughput sequencing.

    PubMed

    Mouttham, Nathalie; Klunk, Jennifer; Kuch, Melanie; Fourney, Ron; Poinar, Hendrik

    2015-07-01

    DNA damage in the form of abasic sites, chemically altered nucleotides, and strand fragmentation is the foremost limitation in obtaining genetic information from many ancient samples. Upon cell death, DNA continues to endure various chemical attacks such as hydrolysis and oxidation, but repair pathways found in vivo no longer operate. By incubating degraded DNA with specific enzyme combinations adopted from these pathways, it is possible to reverse some of the post-mortem nucleic acid damage prior to downstream analyses such as library preparation, targeted enrichment, and high-throughput sequencing. Here, we evaluate the performance of two available repair protocols on previously characterized DNA extracts from four mammoths. Both methods use endonucleases and glycosylases along with a DNA polymerase-ligase combination. PreCR Repair Mix increases the number of molecules converted to sequencing libraries, leading to an increase in endogenous content and a decrease in cytosine-to-thymine transitions due to cytosine deamination. However, the effects of Nelson Repair Mix on repair of DNA damage remain inconclusive.

  4. The allosteric citalopram binding site differentially interferes with neuronal firing rate and SERT trafficking in serotonergic neurons.

    PubMed

    Matthäus, Friederike; Haddjeri, Nasser; Sánchez, Connie; Martí, Yasmina; Bahri, Senda; Rovera, Renaud; Schloss, Patrick; Lau, Thorsten

    2016-11-01

    Citalopram is a clinically applied selective serotonin re-uptake inhibitor for antidepressant pharmacotherapy. It consists of two enantiomers, S-citalopram (escitalopram) and R-citalopram, of which escitalopram exerts the antidepressant therapeutic effect and has been shown to be one of the most efficient antidepressants, while R-citalopram antagonizes escitalopram via an unknown molecular mechanism that may depend on binding to a low-affinity allosteric binding site of the serotonin transporter. However, the precise mechanism of antidepressant regulation of the serotonin transporter by citalopram enantiomers still remains elusive. Here we investigate escitalopram׳s acute effect on (1) serotonergic neuronal firing in transgenic mice that express the human serotonin transporter without and with a mutation that disables the allosteric binding site, and (2) regulation of the serotonin transporter׳s cell surface localization in stem cell-derived serotonergic neurons. Our results demonstrate that escitalopram inhibited neuronal firing less potently in the mouse line featuring a mutation that abolishes the function of the allosteric binding site and induced serotonin transporter internalization independently of the allosteric binding site mechanism. Furthermore, citalopram enantiomers dose-dependently induced serotonin transporter internalization. In conclusion, this study provides new insight into antidepressant effects exerted by citalopram enantiomers in presence and absence of a functional allosteric binding site. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  5. A novel subcutaneous site of islet transplantation superior to the liver.

    PubMed

    Yasunami, Yohichi; Nakafusa, Yuki; Nitta, Naoyoshi; Nakamura, Masafumi; Goto, Masafumi; Ono, Junko; Taniguchi, Masaru

    2018-03-08

    Islet transplantation is an attractive treatment for patients with insulin-dependent diabetes mellitus, and currently the liver is the favored transplantation site. However, an alternative site is desirable because of the low efficiency of hepatic transplantation, requiring 2-3 donors for a single recipient, and because the transplanted islets cannot be accessed or retrieved. We developed a novel procedure of islet transplantation to the inguinal subcutaneous white adipose tissue (ISWAT) of mice and described functional and morphological characteristics of transplanted syngeneic islets. Also, it was determined whether islet allograft rejection in the ISWAT can be prevented by immunosuppressive agents. Furthermore, it was examined whether human islets function when grafted in this particular site of immune-deficient mice. In this site, transplanted islets are engrafted as clusters and function to reverse STZ-induced diabetes in mice. Importantly, transplanted islets can be visualized by CT and are easily retrievable, and allograft rejection is preventable by blockade of co-stimulatory signals. Of much importance, the efficiency of islet transplantation in this site is superior to the liver, in which hyperglycemia of diabetic recipient mice is ameliorated after transplantation of 200 syngeneic islets (the islet number yielded from 1 mouse pancreas) to the ISWAT but not to the liver. Furthermore, human islets transplanted in this particular site function to reverse diabetes in immune-deficient mice. Thus, the ISWAT is superior to the liver as the site of islet transplantation, which may lead to improved outcome of clinical islet transplantation.

  6. Mouse papillomavirus infections spread to cutaneous sites with progression to malignancy

    PubMed Central

    Cladel, Nancy M.; Budgeon, Lynn R.; Cooper, Timothy K.; Balogh, Karla K.; Christensen, Neil D.; Myers, Roland; Majerciak, Vladimir; Gotte, Deanna; Zheng, Zhi-Ming; Hu, Jiafen

    2017-01-01

    We report secondary cutaneous infections in the mouse papillomavirus (MmuPV1)/mouse model. Our previous study demonstrated that cutaneous MmuPV1 infection could spread to mucosal sites. Recently, we observed that mucosal infections could also spread to various cutaneous sites including the back, tail, muzzle and mammary tissues. The secondary site lesions were positive for viral DNA, viral capsid protein and viral particles as determined by in situ hybridization, immunohistochemistry and transmission electron microscopy analyses, respectively. We also demonstrated differential viral production and tumour growth at different secondarily infected skin sites. For example, fewer viral particles were detected in the least susceptible back tissues when compared with those in the infected muzzle and tail, although similar amounts of viral DNA were detected. Follow-up studies demonstrated that significantly lower amounts of viral DNA were packaged in the back lesions. Lavages harvested from the oral cavity and lower genital tracts were equally infectious at both cutaneous and mucosal sites, supporting the broad tissue tropism of this papillomavirus. Importantly, two secondary skin lesions on the forearms of two mice displayed a malignant phenotype at about 9.5 months post-primary infection. Therefore, MmuPV1 induces not only dysplasia at mucosal sites such as the vagina, anus and oral cavity but also skin carcinoma at cutaneous sites. These findings demonstrate that MmuPV1 mucosal infection can be spread to cutaneous sites and suggest that the model could serve a useful role in the study of the viral life cycle and pathogenesis of papillomavirus. PMID:28942760

  7. Mouse papillomavirus infections spread to cutaneous sites with progression to malignancy.

    PubMed

    Cladel, Nancy M; Budgeon, Lynn R; Cooper, Timothy K; Balogh, Karla K; Christensen, Neil D; Myers, Roland; Majerciak, Vladimir; Gotte, Deanna; Zheng, Zhi-Ming; Hu, Jiafen

    2017-09-25

    We report secondary cutaneous infections in the mouse papillomavirus (MmuPV1)/mouse model. Our previous study demonstrated that cutaneous MmuPV1 infection could spread to mucosal sites. Recently, we observed that mucosal infections could also spread to various cutaneous sites including the back, tail, muzzle and mammary tissues. The secondary site lesions were positive for viral DNA, viral capsid protein and viral particles as determined by in situ hybridization, immunohistochemistry and transmission electron microscopy analyses, respectively. We also demonstrated differential viral production and tumour growth at different secondarily infected skin sites. For example, fewer viral particles were detected in the least susceptible back tissues when compared with those in the infected muzzle and tail, although similar amounts of viral DNA were detected. Follow-up studies demonstrated that significantly lower amounts of viral DNA were packaged in the back lesions. Lavages harvested from the oral cavity and lower genital tracts were equally infectious at both cutaneous and mucosal sites, supporting the broad tissue tropism of this papillomavirus. Importantly, two secondary skin lesions on the forearms of two mice displayed a malignant phenotype at about 9.5 months post-primary infection. Therefore, MmuPV1 induces not only dysplasia at mucosal sites such as the vagina, anus and oral cavity but also skin carcinoma at cutaneous sites. These findings demonstrate that MmuPV1 mucosal infection can be spread to cutaneous sites and suggest that the model could serve a useful role in the study of the viral life cycle and pathogenesis of papillomavirus.

  8. Intra-hippocampal microinjection of oxytocin produced antiepileptic effect on the pentylenetetrazol-induced epilepsy in rats.

    PubMed

    Erfanparast, Amir; Tamaddonfard, Esmaeal; Henareh-Chareh, Farzin

    2017-08-01

    In addition to its role as a circulating hormone, oxytocin can also act as a neurotransmitter and a neuromodulator within the brain. In this study, we investigated the intra-hippocampal effect of oxytocin on an experimental seizure model induced by pentylenetetrazole (PTZ) in rats. We also used atosiban (oxytocin antagonist), diazepam and flumazenil (gamma-aminobutyric acid or GABA-benzodiazepine receptor agonist and antagonist, respectively) to clarify the involved mechanism. In ketamine-xylazine anesthetized rats, the right and left sides of the dorsal hippocampus (CA1) were implanted with two guide cannulas. Epileptic behaviors were induced by intraperitoneal (ip) injection of PTZ (60mg/kg), and the latency time to onset of first myoclonic jerk, and the duration of epileptic seizures were determined for 30min. Intra-hippocampal microinjections of oxytocin at doses of 10 and 20ng/site, diazepam (100 and 200ng/site) and co-administration of their ineffective doses significantly (p<0.01) increased the onset of first myoclonic jerk and decreased duration of epileptic seizure. Antiepileptic effects of oxytocin (20ng/site) were inhibited by atosiban (20 and 40ng/site) and flumazenil (100 and 200ng/site) pretreatments. On the other hand, prior administration of flumazenil (100 and 200ng/site) and atosiban (20 and 40ng/site) prevented the antiepileptic effects induced by diazepam (100 and 200ng/site). The results of the present study showed that at the level of the hippocampus oxytocin suppressed the severity of epileptic behaviors. A hippocampal GABA-benzodiazepine receptor mechanism may be involved in antiepileptic effect of oxytocin. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  9. Region 9 NPL Sites (Superfund Sites 2013)

    EPA Pesticide Factsheets

    NPL site POINT locations for the US EPA Region 9. NPL (National Priorities List) sites are hazardous waste sites that are eligible for extensive long-term cleanup under the Superfund program. Eligibility is determined by a scoring method called Hazard Ranking System. Sites with high scores are listed on the NPL. The majority of the locations are derived from polygon centroids of digitized site boundaries. The remaining locations were generated from address geocoding and digitizing. Area covered by this data set include Arizona, California, Nevada, Hawaii, Guam, American Samoa, Northern Marianas and Trust Territories. Attributes include NPL status codes, NPL industry type codes and environmental indicators. Related table, NPL_Contaminants contains information about contaminated media types and chemicals. This is a one-to-many relate and can be related to the feature class using the relationship classes under the Feature Data Set ENVIRO_CONTAMINANT.

  10. A Plant Gene Up-Regulated at Rust Infection Sites

    PubMed Central

    Ayliffe, Michael A.; Roberts, James K.; Mitchell, Heidi J.; Zhang, Ren; Lawrence, Gregory J.; Ellis, Jeffrey G.; Pryor, Tony J.

    2002-01-01

    Expression of the fis1 gene from flax (Linum usitatissimum) is induced by a compatible rust (Melampsora lini) infection. Infection of transgenic plants containing a β-glucuronidase (GUS) reporter gene under the control of the fis1 promoter showed that induction is highly localized to those leaf mesophyll cells within and immediately surrounding rust infection sites. The level of induction reflects the extent of fungal growth. In a strong resistance reaction, such as the hypersensitive fleck mediated by the L6 resistance gene, there is very little fungal growth and a microscopic level of GUS expression. Partially resistant flax leaves show levels of GUS expression that were intermediate to the level observed in the fully susceptible infection. Sequence and deletion analysis using both transient Agrobacterium tumefaciens expression and stable transformation assays have shown that the rust-inducible fis1 promoter is contained within a 580-bp fragment. Homologs of fis1 were identified in expressed sequence tag databases of a range of plant species including dicots, monocots, and a gymnosperm. Homologous genes isolated from maize (Zea mays; mis1), barley (Hordeum vulgare; bis1), wheat (Triticum aestivum; wis1), and Arabidopsis encode proteins that are highly similar (76%–82%) to the FIS1 protein. The Arabidopsis homologue has been reported to encode a Δ1-pyrroline-5-carboxylate dehydrogenase that is involved in the catabolism of proline to glutamate. RNA-blot analysis showed that mis1 in maize and the bis1 homolog in barley are both up-regulated by a compatible infection with the corresponding species-specific rust. The rust-induced genes homologous to fis1 are present in many plants. The promoters of these genes have potential roles for the engineering of synthetic rust resistance genes by targeting transgene expression to the sites of rust infection. PMID:12011348

  11. Nevada National Security Site Industrial Sites Project Closeout - 12498

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabble, Kevin; Krauss, Mark; Matthews, Pat

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office is responsible for environmental restoration (ER) at the Nevada National Security Site (NNSS). This includes remediation at Industrial Sites where past nuclear testing activities and activities that supported nuclear testing may have or are known to have resulted in the release of contaminants into the environment. Industrial Sites at the NNSS have included nuclear facilities that supported the nuclear rocket/missile development programs, gas stations, landfills, spill sites, ordnance sites, and numerous other waste disposal and release sites. The NNSS Industrial Sites activities neared completion at the endmore » of fiscal year 2011 while other activities required under the Federal Facility Agreement and Consent Order (FFACO) and part of the same NNSS ER Project are forecasted to extend to 2027 or beyond. With the majority of Industrial Sites corrective action units (CAUs) completed (more than 250 CAUs and over 1,800 corrective action sites), it was determined that an activity closeout process should be implemented to ensure that the work completed over the past 15 years is well documented in a comprehensive and concise summary. While the process used to close each individual CAU is described in approved documents, no single document describes in summary fashion the work completed to close the many individual Industrial Sites. The activity closeout process will be used to develop an Industrial Sites closeout document that describes these years of work. This document will summarize the number of Industrial Sites closed under the FFACO and provide general descriptions of projects, contaminants removed, and sites closed in place with corresponding Use Restrictions. Other pertinent information related to Industrial Sites work such as the project history, closure decisions, historical declarations, remediation strategies, and final CAU status will be included in the

  12. Repeated seizures induce long-term increase in hippocampal benzodiazepine receptors.

    PubMed Central

    McNamara, J O; Peper, A M; Patrone, V

    1980-01-01

    Repeated seizures, whether induced by kindling or electroshock, caused a long-lasting (at least 24 hr) increase of [3H]diazepam binding in hippocampal membranes of Sprague-Dawley rats. Scatchard analyses demonstrated that increased numbers of binding sites accounted for the increase. Neither repeated hypoxia nor repeated administration of electrical current without inducing seizures caused an increase of [3H]diazepam binding. Regardless of the method used for seizure induction, the response was graded in that large numbers of seizures were required to induce significant increases, whereas fewer seizures induced only slight increases. We suggest that the receptor increases imply a heightened response to benzodiazepines and more powerful hippocampal recurrent inhibition. PMID:6930682

  13. PLCε1 regulates SDF-1α–induced lymphocyte adhesion and migration to sites of inflammation

    PubMed Central

    Strazza, Marianne; Azoulay-Alfaguter, Inbar; Peled, Michael; Smrcka, Alan V.; Skolnik, Edward Y.; Srivastava, Shekhar; Mor, Adam

    2017-01-01

    Regulation of integrins is critical for lymphocyte adhesion to endothelium and migration throughout the body. Inside-out signaling to integrins is mediated by the small GTPase Ras-proximate-1 (Rap1). Using an RNA-mediated interference screen, we identified phospholipase Cε 1 (PLCε1) as a crucial regulator of stromal cell-derived factor 1 alpha (SDF-1α)-induced Rap1 activation. We have shown that SDF-1α-induced activation of Rap1 is transient in comparison with the sustained level following cross-linking of the antigen receptor. We identified that PLCε1 was necessary for SDF-1α-induced adhesion using shear stress, cell morphology alterations, and crawling on intercellular adhesion molecule 1 (ICAM-1)–expressing cells. Structure–function experiments to separate the dual-enzymatic function of PLCε1 uncover necessary contributions of the CDC25, Pleckstrin homology, and Ras-associating domains, but not phospholipase activity, to this pathway. In the mouse model of delayed type hypersensitivity, we have shown an essential role for PLCε1 in T-cell migration to inflamed skin, but not for cytokine secretion and proliferation in regional lymph nodes. Our results reveal a signaling pathway where SDF-1α induces T-cell adhesion through activation of PLCε1, suggesting that PLCε1 is a specific potential target in treating conditions involving migration of T cells to inflamed organs. PMID:28213494

  14. [Difference in action sites between mecamylamine and hexamethonium on nicotinic receptors of sympathetic neurons].

    PubMed

    Liu, Wei; Zheng, Jian-Quan; Liu, Zhen-Wei; Li, Li-Jun; Wan, Qin; Liu, Chuan-Gui

    2002-12-25

    To compare the difference in action sites between mecamylamine (MEC) and hexamethonium (HEX) on nicotinic receptors of sympathetic neurons, we investigated the effects of MEC and HEX on the nicotine-induced currents in cultured superior cervical ganglion neurons by whole-cell patch clamp technique. The IC(50) of MEC and HEX for antagonizing the effect of 0.08 mmol/L nicotine was 0.0012 and 0.0095 mmol/L, respectively. Both MEC and HEX accelerated the desensitization of nicotinic receptors. Furthermore, by comparing their effects at holding potentials 30, 70 and 110 mV, it was indicated that their suppressing effect on the nicotine-induced currents was voltage-dependent. However, different from that of HEX, the inhibitory effect of MEC increased with administering the mixture of MEC and nicotine at intervals of 3 min, indicating a use-dependent effect of MEC. It is concluded that the action site of MEC on nicotinic receptors of sympathetic neurons is different from that of HEX.

  15. First results from the NEMO Test Site

    NASA Astrophysics Data System (ADS)

    Riccobene, Giorgio; NEMO Collaboration

    2007-03-01

    The NEMO (NEutrino Mediterranean Observatory) Collaboration is constructing, 25 km E from Catania (Sicily) at 2000 m depth, an underwater test site to perform long-term tests of prototypes and new technologies for an underwater high energy neutrino detector in the Mediterranean Sea. In this framework the collaboration deployed and operated an experimental apparatus for on-line monitoring of deep-sea noise. The station is equipped with 4 hydrophones operational in the range 30 Hz - 40 kHz. This interval of frequencies matches the range suitable for acoustic detection of high energy neutrino-induced showers in water. Hydrophone signals are digitized underwater at 96 kHz sampling frequency and 24 bits resolution. A custom software was developed to record data on high resolution 4-channels PCM .le. Data are used to model underwater acoustic noise as a function of frequency and time, a mandatory parametre for future acoustic neutrino detectors. Results indicate that the average noise in the site is compatible with noise produced in condition of sea surface agitation (sea state.)

  16. Earthquakes induced by fluid injection: Implications for secure CO2 storage

    NASA Astrophysics Data System (ADS)

    Verdon, J.; Kendall, J. M.

    2013-12-01

    It is well understood that the injection of fluids into the subsurface can trigger seismic activity. Recently, the US unconventional gas boom has lead to an increase in the volumes of produced water being disposed in geological formations and a concomitant increase in triggered seismic events. This issue is especially pertinent for geologic carbon sequestration, where the injection volumes necessary to store the CO2 emissions from a typical coal-fired power station far exceed the volumes known to have triggered seismic activity. Moreover, unlike water disposal operations, where there is no strong buoyancy drive to return injected fluids to the surface, CO2 sequestration requires a sealing caprock to prevent upward CO2 migration. Induced seismic events may create or reactivate faults and fracture networks, compromising the hydraulic integrity of the caprock. Therefore, induced seismic activity at future CCS sites is of doubly significant, given both the direct seismic hazard and the risk to secure CO2 storage. With this in mind, we re-examine case histories of seismic activity induced by waste water disposal into sedimentary formations with the intention of learning lessons that can be applied to future CCS sites. In particular, we examine the spatial and temporal distributions of events to determine whether there are any rules-of-thumb that might be usefully applied when appraising and monitoring operations. We find that in all cases, at least some seismicity occurs at the depth of the injection interval, but the majority (~80% of events) occur at least 500m below the injection depth. Less than 2% of events occur more than 500m above the shallowest injection interval. This observation must be considered encouraging from a CCS perspective, where seismicity in sealing caprocks will be of greatest concern. However, without a phenomenological explanation for the relative lack of seismicity above injection depths, it cannot be guaranteed that such observations would be

  17. Linking physics with physiology in TMS: a sphere field model to determine the cortical stimulation site in TMS.

    PubMed

    Thielscher, Axel; Kammer, Thomas

    2002-11-01

    A fundamental problem of transcranial magnetic stimulation (TMS) is determining the site and size of the stimulated cortical area. In the motor system, the most common procedure for this is motor mapping. The obtained two-dimensional distribution of coil positions with associated muscle responses is used to calculate a center of gravity on the skull. However, even in motor mapping the exact stimulation site on the cortex is not known and only rough estimates of its size are possible. We report a new method which combines physiological measurements with a physical model used to predict the electric field induced by the TMS coil. In four subjects motor responses in a small hand muscle were mapped with 9-13 stimulation sites at the head perpendicular to the central sulcus in order to keep the induced current direction constant in a given cortical region of interest. Input-output functions from these head locations were used to determine stimulator intensities that elicit half-maximal muscle responses. Based on these stimulator intensities the field distribution on the individual cortical surface was calculated as rendered from anatomical MR data. The region on the cortical surface in which the different stimulation sites produced the same electric field strength (minimal variance, 4.2 +/- 0.8%.) was determined as the most likely stimulation site on the cortex. In all subjects, it was located at the lateral part of the hand knob in the motor cortex. Comparisons of model calculations with the solutions obtained in this manner reveal that the stimulated cortex area innervating the target muscle is substantially smaller than the size of the electric field induced by the coil. Our results help to resolve fundamental questions raised by motor mapping studies as well as motor threshold measurements.

  18. Effect of Fe-site Substitution on Pressure-induced Spin Transition in SrFeO2

    NASA Astrophysics Data System (ADS)

    Kawakami, Takateru; Yamamoto, Takafumi; Yata, Kanami; Ishii, Minoru; Watanabe, Yoshitaka; Mizumaki, Masaichiro; Kawamura, Naomi; Ishimatsu, Naoki; Takahashi, Hiroki; Okada, Taku; Yagi, Takehiko; Kageyama, Hiroshi

    2017-12-01

    The effect of Fe-site substitution on structural and physical properties of the infinite layer iron oxide SrFeO2 was investigated under high pressure by 57Fe Mössbauer spectroscopy, X-ray diffraction, X-ray absorption spectroscopy, X-ray magnetic circular dichroism, and electrical resistance measurements using a diamond-anvil cell. Both 20% Mn- and Co-substituted samples exhibit spin transitions from a high-spin (S = 2) to an intermediate-spin (S = 1) state at Pc ˜ 32 GPa, which is much the same pressure 33 GPa observed in SrFeO2. This result indicates that the spin transition pressure is insensitive to the d-orbital electron counts [Mn2+ (d5), Fe2+ (d6), Co2+ (d7)], but is governed by the local structure around the Fe site.

  19. Intracellular calcium dynamics and acetylcholine-induced triggered activity in the pulmonary veins of dogs with pacing-induced heart failure

    PubMed Central

    Chou, Chung-Chuan; Nguyen, Bich Lien; Tan, Alex Y.; Chang, Po-Cheng; Lee, Hui-Ling; Lin, Fun-Chung; Yeh, San-Jou; Fishbein, Michael C.; Lin, Shien-Fong; Wu, Delon; Wen, Ming-Shien; Chen, Peng-Sheng

    2009-01-01

    BACKGROUND Heart failure increases autonomic nerve activities and changes intracellular calcium (Cai) dynamics. OBJECTIVE The purpose of this study was to investigate the hypothesis that abnormal Cai dynamics are responsible for triggered activity in the pulmonary veins (PVs) during acetylcholine infusion in a canine model of heart failure. METHODS Simultaneous optical mapping of and membrane Cai potential was performed in isolated Langendorff-perfused PV–left atrial (LA) preparations from nine dogs with ventricular pacing-induced heart failure. Mapping was performed at baseline, during acetylcholine (1 μmol/L) infusion (N = 9), and during thapsigargin and ryanodine infusion (N = 6). RESULTS Acetylcholine abbreviated the action potential. In four tissues, long pauses were followed by elevated diastolic Cai, late phase 3 early afterdepolarizations, and atrial fibrillation (AF). The incidence of PV focal discharges during AF was increased by acetylcholine from 2.4 ± 0.6 beats/s (N = 4) to 6.5 ± 2.2 beats/s (N = 8; P = .003). PV focal discharge and PV–LA microreentry coexisted in 6 of 9 preparations. The spatial distribution of dominant frequency demonstrated a focal source pattern, with the highest dominant frequency areas colocalized with PV focal discharge sites in 35 (95%) of 37 cholinergic AF episodes (N = 8). Thapsigargin and ryanodine infusion eliminated focal discharges in 6 of 6 preparations and suppressed the inducibility of AF in 4 of 6 preparations. PVs with focal discharge have higher densities of parasympathetic nerves than do PVs without focal discharges (P = .01), and periodic acid–Schiff (PAS)-positive cells were present at the focal discharge sites. CONCLUSION Cai dynamics are important in promoting triggered activity during acetylcholine infusion in PVs from pacing-induced heart failure. PV focal discharge sites have PAS-positive cells and high densities of parasympathetic nerves. PMID:18554987

  20. Rivastigmine Alleviates Experimentally Induced Colitis in Mice and Rats by Acting at Central and Peripheral Sites to Modulate Immune Responses

    PubMed Central

    Shifrin, Helena; Nadler-Milbauer, Mirela; Shoham, Shai; Weinstock, Marta

    2013-01-01

    The cholinergic anti-inflammatory system and α7 nicotinic receptors in macrophages have been proposed to play a role in neuroimmunomodulation and in the etiology of ulcerative colitis. We investigated the ability of a cholinesterase (ChE) inhibitor rivastigmine, to improve the pathology of ulcerative colitis by increasing the concentration of extracellular acetylcholine in the brain and periphery. In combination with carbachol (10 µM), rivastigmine (1 µM) significantly decreased the release of nitric oxide, TNF-α, IL-1β and IL-6 from lipopolysaccharide-activated RAW 264.7 macrophages and this effect was abolished by α7 nicotinic receptor blockade by bungarotoxin. Rivastigmine (1 mg/kg) but not (0.5 mg/kg), injected subcutaneously once daily in BALB/c mice with colitis induced by 4% dextran sodium sulphate (DSS), reduced the disease activity index (DAI) by 60% and damage to colon structure. Rivastigmine (1 mg/kg) also reduced myeloperoxidase activity and IL-6 by >60%, and the infiltration of CD11b expressing cells by 80%. These effects were accompanied by significantly greater ChE inhibition in cortex, brain stem, plasma and colon than that after 0.5 mg/kg. Co-administration of rivastigmine (1 mg/kg) with the muscarinic antagonist scopolamine significantly increased the number of CD11b expressing cells in the colon but did not change DAI compared to those treated with rivastigmine alone. Rivastigmine 1 and 2 mg given rectally to rats with colitis induced by rectal administration of 30 mg dintrobezene sulfonic acid (DNBS) also caused a dose related reduction in ChE activity in blood and colon, the number of ulcers and area of ulceration, levels of TNF-α and in MPO activity. The study revealed that the ChE inhibitor rivastigmine is able to reduce gastro-intestinal inflammation by actions at various sites at which it preserves ACh. These include ACh released from vagal nerve endings that activates alpha7 nicotinic receptors on circulating macrophages and in

  1. Rivastigmine alleviates experimentally induced colitis in mice and rats by acting at central and peripheral sites to modulate immune responses.

    PubMed

    Shifrin, Helena; Nadler-Milbauer, Mirela; Shoham, Shai; Weinstock, Marta

    2013-01-01

    The cholinergic anti-inflammatory system and α7 nicotinic receptors in macrophages have been proposed to play a role in neuroimmunomodulation and in the etiology of ulcerative colitis. We investigated the ability of a cholinesterase (ChE) inhibitor rivastigmine, to improve the pathology of ulcerative colitis by increasing the concentration of extracellular acetylcholine in the brain and periphery. In combination with carbachol (10 µM), rivastigmine (1 µM) significantly decreased the release of nitric oxide, TNF-α, IL-1β and IL-6 from lipopolysaccharide-activated RAW 264.7 macrophages and this effect was abolished by α7 nicotinic receptor blockade by bungarotoxin. Rivastigmine (1 mg/kg) but not (0.5 mg/kg), injected subcutaneously once daily in BALB/c mice with colitis induced by 4% dextran sodium sulphate (DSS), reduced the disease activity index (DAI) by 60% and damage to colon structure. Rivastigmine (1 mg/kg) also reduced myeloperoxidase activity and IL-6 by >60%, and the infiltration of CD11b expressing cells by 80%. These effects were accompanied by significantly greater ChE inhibition in cortex, brain stem, plasma and colon than that after 0.5 mg/kg. Co-administration of rivastigmine (1 mg/kg) with the muscarinic antagonist scopolamine significantly increased the number of CD11b expressing cells in the colon but did not change DAI compared to those treated with rivastigmine alone. Rivastigmine 1 and 2 mg given rectally to rats with colitis induced by rectal administration of 30 mg dintrobezene sulfonic acid (DNBS) also caused a dose related reduction in ChE activity in blood and colon, the number of ulcers and area of ulceration, levels of TNF-α and in MPO activity. The study revealed that the ChE inhibitor rivastigmine is able to reduce gastro-intestinal inflammation by actions at various sites at which it preserves ACh. These include ACh released from vagal nerve endings that activates alpha7 nicotinic receptors on circulating macrophages and in

  2. A novel functional site of extracellular matrix metalloproteinase inducer (EMMPRIN) that limits the migration of human uterine cervical carcinoma cells.

    PubMed

    Sato, Takashi; Watanabe, Mami; Hashimoto, Kei; Ota, Tomoko; Akimoto, Noriko; Imada, Keisuke; Nomizu, Motoyoshi; Ito, Akira

    2012-01-01

    EMMPRIN (extracellular matrix metalloproteinase inducer)/CD147, a membrane-bound glycoprotein with two extracellular loop domains (termed loops I and II), progresses tumor invasion and metastasis by increasing the production of matrix metalloproteinase (MMP) in peritumoral stoma cells. EMMPRIN has also been associated with the control of migration activity in some tumor cells, but little is known about how EMMPRIN regulates tumor cell migration. In the present study, EMMPRIN siRNA suppressed the gene expression and production of EMMPRIN in human uterine cervical carcinoma SKG-II cells. An in vitro scratch wound assay showed enhancement of migration of EMMPRIN-knockdown SKG-II cells. In addition, the SKG-II cell migration was augmented by adding an E. coli-expressed human EMMPRIN mutant with two extracellular loop domains (eEMP-I/II), which bound to the cell surface of SKG-II cells. However, eEMP-I/II suppressed the native EMMPRIN-mediated augmentation of proMMP-1/procollagenase-1 production in a co-culture of the SKG-II cells and human uterine cervical fibroblasts, indicating that the augmentation of SKG-II cell migration resulted from the interference of native EMMPRIN functions by eEMP-I/II on the cell surface. Furthermore, a systematic peptide screening method using nine synthetic EMMPRIN peptides coding the loop I and II domains (termed EM1-9) revealed that EM9 (170HIENLNMEADPGQYR184) facilitated SKG-II cell migration. Moreover, SKG-II cell migration was enhanced by administration of an antibody against EM9, but not EM1 which is a crucial site for the MMP inducible activity of EMMPRIN. Therefore, these results provide novel evidence that EMMPRIN on the cell surface limits the cell migration of human uterine cervical carcinoma cells through 170HIENLNMEADPGQYR184 in the loop II domain. Finally, these results should provide an increased understanding of the functions of EMMPRIN in malignant cervical carcinoma cells, and could contribute to the development of

  3. 13 CFR 109.510 - On-site and off-site reviews.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false On-site and off-site reviews. 109.510 Section 109.510 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION INTERMEDIARY LENDING PILOT PROGRAM Oversight § 109.510 On-site and off-site reviews. (a) General. SBA may conduct off-site...

  4. Influence of C-5 substituted cytosine and related nucleoside analogs on the formation of benzo[a]pyrene diol epoxide-dG adducts at CG base pairs of DNA.

    PubMed

    Guza, Rebecca; Kotandeniya, Delshanee; Murphy, Kristopher; Dissanayake, Thakshila; Lin, Chen; Giambasu, George Madalin; Lad, Rahul R; Wojciechowski, Filip; Amin, Shantu; Sturla, Shana J; Hudson, Robert H E; York, Darrin M; Jankowiak, Ryszard; Jones, Roger; Tretyakova, Natalia Y

    2011-05-01

    Endogenous 5-methylcytosine ((Me)C) residues are found at all CG dinucleotides of the p53 tumor suppressor gene, including the mutational 'hotspots' for smoking induced lung cancer. (Me)C enhances the reactivity of its base paired guanine towards carcinogenic diolepoxide metabolites of polycyclic aromatic hydrocarbons (PAH) present in cigarette smoke. In the present study, the structural basis for these effects was investigated using a series of unnatural nucleoside analogs and a representative PAH diolepoxide, benzo[a]pyrene diolepoxide (BPDE). Synthetic DNA duplexes derived from a frequently mutated region of the p53 gene (5'-CCCGGCACCC GC[(15)N(3),(13)C(1)-G]TCCGCG-3', + strand) were prepared containing [(15)N(3), (13)C(1)]-guanine opposite unsubstituted cytosine, (Me)C, abasic site, or unnatural nucleobase analogs. Following BPDE treatment and hydrolysis of the modified DNA to 2'-deoxynucleosides, N(2)-BPDE-dG adducts formed at the [(15)N(3), (13)C(1)]-labeled guanine and elsewhere in the sequence were quantified by mass spectrometry. We found that C-5 alkylcytosines and related structural analogs specifically enhance the reactivity of the base paired guanine towards BPDE and modify the diastereomeric composition of N(2)-BPDE-dG adducts. Fluorescence and molecular docking studies revealed that 5-alkylcytosines and unnatural nucleobase analogs with extended aromatic systems facilitate the formation of intercalative BPDE-DNA complexes, placing BPDE in a favorable orientation for nucleophilic attack by the N(2) position of guanine. © The Author(s) 2011. Published by Oxford University Press.

  5. Site of Allergic Airway Narrowing and the Influence of Exogenous Surfactant in the Brown Norway Rat

    PubMed Central

    Risse, Paul-André; Bullimore, Sharon R.; Benedetti, Andrea; Martin, James G.

    2012-01-01

    Background The parameters RN (Newtonian resistance), G (tissue damping), and H (tissue elastance) of the constant phase model of respiratory mechanics provide information concerning the site of altered mechanical properties of the lung. The aims of this study were to compare the site of allergic airway narrowing implied from respiratory mechanics to a direct assessment by morphometry and to evaluate the effects of exogenous surfactant administration on the site and magnitude of airway narrowing. Methods We induced airway narrowing by ovalbumin sensitization and challenge and we tested the effects of a natural surfactant lacking surfactant proteins A and D (Infasurf®) on airway responses. Sensitized, mechanically ventilated Brown Norway rats underwent an aerosol challenge with 5% ovalbumin or vehicle. Other animals received nebulized surfactant prior to challenge. Three or 20 minutes after ovalbumin challenge, airway luminal areas were assessed on snap-frozen lungs by morphometry. Results At 3 minutes, RN and G detected large airway narrowing whereas at 20 minutes G and H detected small airway narrowing. Surfactant inhibited RN at the peak of the early allergic response and ovalbumin-induced increase in bronchoalveolar lavage fluid cysteinyl leukotrienes and amphiregulin but not IgE-induced mast cell activation in vitro. Conclusion Allergen challenge triggers the rapid onset of large airway narrowing, detected by RN and G, and subsequent peripheral airway narrowing detected by G and H. Surfactant inhibits airway narrowing and reduces mast cell-derived mediators. PMID:22276110

  6. Replication of a carcinogenic nitropyrene DNA lesion by human Y-family DNA polymerase

    PubMed Central

    Kirouac, Kevin N.; Basu, Ashis K.; Ling, Hong

    2013-01-01

    Nitrated polycyclic aromatic hydrocarbons are common environmental pollutants, of which many are mutagenic and carcinogenic. 1-Nitropyrene is the most abundant nitrated polycyclic aromatic hydrocarbon, which causes DNA damage and is carcinogenic in experimental animals. Error-prone translesion synthesis of 1-nitropyrene–derived DNA lesions generates mutations that likely play a role in the etiology of cancer. Here, we report two crystal structures of the human Y-family DNA polymerase iota complexed with the major 1-nitropyrene DNA lesion at the insertion stage, incorporating either dCTP or dATP nucleotide opposite the lesion. Polι maintains the adduct in its active site in two distinct conformations. dCTP forms a Watson–Crick base pair with the adducted guanine and excludes the pyrene ring from the helical DNA, which inhibits replication beyond the lesion. By contrast, the mismatched dATP stacks above the pyrene ring that is intercalated in the helix and achieves a productive conformation for misincorporation. The intra-helical bulky pyrene mimics a base pair in the active site and facilitates adenine misincorporation. By structure-based mutagenesis, we show that the restrictive active site of human polη prevents the intra-helical conformation and A-base misinsertions. This work provides one of the molecular mechanisms for G to T transversions, a signature mutation in human lung cancer. PMID:23268450

  7. Characterization of skin reactions and pain reported by patients receiving radiation therapy for cancer at different sites.

    PubMed

    Gewandter, Jennifer S; Walker, Joanna; Heckler, Charles E; Morrow, Gary R; Ryan, Julie L

    2013-12-01

    Skin reactions and pain are commonly reported side effects of radiation therapy (RT). To characterize RT-induced symptoms according to treatment site subgroups and identify skin symptoms that correlate with pain. A self-report survey-adapted from the MD Anderson Symptom Inventory and the McGill Pain Questionnaire--assessed RT-induced skin problems, pain, and specific skin symptoms. Wilcoxon Sign Ranked tests compared mean severity or pre- and post-RT pain and skin problems within each RT-site subgroup. Multiple linear regression (MLR) investigated associations between skin symptoms and pain. Survey respondents (N = 106) were 58% female and on average 64 years old. RT sites included lung, breast, lower abdomen, head/neck/brain, and upper abdomen. Only patients receiving breast RT reported significant increases in treatment site pain and skin problems (P < or = .007). Patients receiving head/neck/brain RT reported increased skin problems (P < .0009). MLR showed that post-RT skin tenderness and tightness were most strongly associated with post-RT pain (P = .066 and P = .122, respectively). Small sample size, exploratory analyses, and nonvalidated measure. Only patients receiving breast RT reported significant increases in pain and skin problems at the RT site while patients receiving head/neck/brain RT had increased skin problems but not pain. These findings suggest that the severity of skin problems is not the only factor that contributes to pain and that interventions should be tailored to specifically target pain at the RT site, possibly by targeting tenderness and tightness. These findings should be confirmed in a larger sampling of RT patients.

  8. Identification of ATM Protein Kinase Phosphorylation Sites by Mass Spectrometry.

    PubMed

    Graham, Mark E; Lavin, Martin F; Kozlov, Sergei V

    2017-01-01

    ATM (ataxia-telangiectasia mutated) protein kinase is a key regulator of cellular responses to DNA damage and oxidative stress. DNA damage triggers complex cascade of signaling events leading to numerous posttranslational modification on multitude of proteins. Understanding the regulation of ATM kinase is therefore critical not only for understanding the human genetic disorder ataxia-telangiectasia and potential treatment strategies, but essential for deciphering physiological responses of cells to stress. These responses play an important role in carcinogenesis, neurodegeneration, and aging. We focus here on the identification of DNA damage inducible ATM phosphorylation sites to understand the importance of autophosphorylation in the mechanism of ATM kinase activation. We demonstrate the utility of using immunoprecipitated ATM in quantitative LC-MS/MS workflow with stable isotope dimethyl labeling of ATM peptides for identification of phosphorylation sites.

  9. Reduction of GABA/sub B/ receptor binding induced by climbing fiber degeneration in the rat cerebellum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, K.; Fukuda, H.

    1985-07-22

    When the rat cerebellar climbing fibers degenerated, as induced by lesioning the inferior olive with 3-acetylpyridine (3-AP), GABA/sub B/ receptor binding determined with /sup 3/H-(+/-)baclofen was reduced in the cerebellum but not in the cerebral cortex of rats. Computer analysis of saturation data revealed two components of the binding sites, and indicated that decrease of the binding in the cerebellum was due to reduction in receptor density, mainly of the high-affinity sites, the B/sub max/ of which was reduced to one-third that in the control animals. In vitro treatment with 3-AP, of the membranes prepared from either the cerebellum ormore » the cerebral cortex, induced no alteration in the binding sites, thereby indicating that the alteration of GABA/sub B/ sites induced by in vivo treatment with 3-AP is not due to a direct action of 3-AP on the receptor. GABA/sub A/ and benzodiazepine receptor binding labelled with /sup 3/H-muscimol and /sup 3/H-diazepam, respectively, in both of brain regions was not affected by destruction of the inferior olive. These results provide evidence that some of the GABA/sub B/ sites but neither GABA/sub A/ nor benzodiazepine receptors in the cerebellum are located at the climbing fiber terminals. 28 references, 4 figures, 2 tables.« less

  10. Inducing autophagy

    PubMed Central

    Harder, Lea M; Bunkenborg, Jakob; Andersen, Jens S

    2014-01-01

    Autophagy is a lysosomal-mediated catabolic process, which through degradation of different cytoplasmic components aids in maintaining cellular homeostasis and survival during exposure to extra- or intracellular stresses. Ammonia is a potential toxic and stress-inducing byproduct of glutamine catabolism, which has recently been found to induce autophagy in an MTOR independent way and support cancer cell survival. In this study, quantitative phosphoproteomics was applied to investigate the initial signaling events linking ammonia to the induction of autophagy. The MTOR inhibitor rapamycin was used as a reference treatment to emphasize the differences between an MTOR-dependent and -independent autophagy-induction. By this means 5901 phosphosites were identified of which 626 were treatment-specific regulated and 175 were coregulated. Investigation of the ammonia-specific regulated sites supported that MTOR activity was not affected, but indicated increased MAPK3 activity, regulation of proteins involved in Rho signal transduction, and a novel phosphorylation motif, serine-proline-threonine (SPT), which could be linked to cytoskeleton-associated proteins. MAPK3 could not be identified as the primary driver of ammonia-induced autophagy but instead the data suggested an upregulation of AMPK and the unfolded protein response (UPR), which might link ammonia to autophagy induction. Support of UPR induction was further obtained from the finding of increased protein levels of the ER stress markers DDIT3/CHOP and HSPA5 during ammonia treatment. The large-scale data set presented here comprises extensive high-quality quantitative information on phosphoprotein regulation in response to 2 very different autophagy inducers and should therefore be considered a general resource for the community. PMID:24300666

  11. Motility and Chemotaxis Mediate the Preferential Colonization of Gastric Injury Sites by Helicobacter pylori

    PubMed Central

    Aihara, Eitaro; Closson, Chet; Matthis, Andrea L.; Schumacher, Michael A.; Engevik, Amy C.; Zavros, Yana; Ottemann, Karen M.; Montrose, Marshall H.

    2014-01-01

    Helicobacter pylori (H. pylori) is a pathogen contributing to peptic inflammation, ulceration, and cancer. A crucial step in the pathogenic sequence is when the bacterium first interacts with gastric tissue, an event that is poorly understood in vivo. We have shown that the luminal space adjacent to gastric epithelial damage is a microenvironment, and we hypothesized that this microenvironment might enhance H. pylori colonization. Inoculation with 106 H. pylori (wild-type Sydney Strain 1, SS1) significantly delayed healing of acetic-acid induced ulcers at Day 1, 7 and 30 post-inoculation, and wild-type SS1 preferentially colonized the ulcerated area compared to uninjured gastric tissue in the same animal at all time points. Gastric resident Lactobacillus spp. did not preferentially colonize ulcerated tissue. To determine whether bacterial motility and chemotaxis are important to ulcer healing and colonization, we analyzed isogenic H. pylori mutants defective in motility (ΔmotB) or chemotaxis (ΔcheY). ΔmotB (106) failed to colonize ulcerated or healthy stomach tissue. ΔcheY (106) colonized both tissues, but without preferential colonization of ulcerated tissue. However, ΔcheY did modestly delay ulcer healing, suggesting that chemotaxis is not required for this process. We used two-photon microscopy to induce microscopic epithelial lesions in vivo, and evaluated accumulation of fluorescently labeled H. pylori at gastric damage sites in the time frame of minutes instead of days. By 5 min after inducing damage, H. pylori SS1 preferentially accumulated at the site of damage and inhibited gastric epithelial restitution. H. pylori ΔcheY modestly accumulated at the gastric surface and inhibited restitution, but did not preferentially accumulate at the injury site. H. pylori ΔmotB neither accumulated at the surface nor inhibited restitution. We conclude that bacterial chemosensing and motility rapidly promote H. pylori colonization of injury sites, and thereby biases

  12. Motility and chemotaxis mediate the preferential colonization of gastric injury sites by Helicobacter pylori.

    PubMed

    Aihara, Eitaro; Closson, Chet; Matthis, Andrea L; Schumacher, Michael A; Engevik, Amy C; Zavros, Yana; Ottemann, Karen M; Montrose, Marshall H

    2014-07-01

    Helicobacter pylori (H. pylori) is a pathogen contributing to peptic inflammation, ulceration, and cancer. A crucial step in the pathogenic sequence is when the bacterium first interacts with gastric tissue, an event that is poorly understood in vivo. We have shown that the luminal space adjacent to gastric epithelial damage is a microenvironment, and we hypothesized that this microenvironment might enhance H. pylori colonization. Inoculation with 106 H. pylori (wild-type Sydney Strain 1, SS1) significantly delayed healing of acetic-acid induced ulcers at Day 1, 7 and 30 post-inoculation, and wild-type SS1 preferentially colonized the ulcerated area compared to uninjured gastric tissue in the same animal at all time points. Gastric resident Lactobacillus spp. did not preferentially colonize ulcerated tissue. To determine whether bacterial motility and chemotaxis are important to ulcer healing and colonization, we analyzed isogenic H. pylori mutants defective in motility (ΔmotB) or chemotaxis (ΔcheY). ΔmotB (10(6)) failed to colonize ulcerated or healthy stomach tissue. ΔcheY (10(6)) colonized both tissues, but without preferential colonization of ulcerated tissue. However, ΔcheY did modestly delay ulcer healing, suggesting that chemotaxis is not required for this process. We used two-photon microscopy to induce microscopic epithelial lesions in vivo, and evaluated accumulation of fluorescently labeled H. pylori at gastric damage sites in the time frame of minutes instead of days. By 5 min after inducing damage, H. pylori SS1 preferentially accumulated at the site of damage and inhibited gastric epithelial restitution. H. pylori ΔcheY modestly accumulated at the gastric surface and inhibited restitution, but did not preferentially accumulate at the injury site. H. pylori ΔmotB neither accumulated at the surface nor inhibited restitution. We conclude that bacterial chemosensing and motility rapidly promote H. pylori colonization of injury sites, and thereby

  13. Noise-induced hearing loss in small-scale metal industry in Nepal.

    PubMed

    Whittaker, J D; Robinson, T; Acharya, A; Singh, D; Smith, M

    2014-10-01

    There has been no previous research to demonstrate the risk of noise-induced hearing loss in industry in Nepal. Limited research on occupational noise-induced hearing loss has been conducted within small-scale industry worldwide, despite it being a substantial and growing cause of deafness in the developing world. The study involved a cross-sectional audiometric assessment, with questionnaire-based examinations of noise and occupational history, and workplace noise level assessment. A total of 115 metal workers and 123 hotel workers (control subjects) were recruited. Noise-induced hearing loss prevalence was 30.4 per cent in metal workers and 4.1 per cent in hotel workers, with a significant odds ratio of 10.3. Except for age and time in occupation, none of the demographic factors were significant in predicting outcomes in regression analyses. When adjusted for this finding, and previous noise-exposed occupations, the odds ratio was 13.8. Workplace noise was significantly different between the groups, ranging from 65.3 to 84.7 dBA in metal worker sites, and from 51.4 to 68.6 dBA in the control sites. Metal workers appear to have a greater risk of noise-induced hearing loss than controls. Additional research on occupational noise-induced hearing loss in Nepal and small-scale industry globally is needed.

  14. Substance P-induced inflammatory responses in guinea-pig skin: the effect of specific NK1 receptor antagonists and the role of endogenous mediators.

    PubMed Central

    Walsh, D T; Weg, V B; Williams, T J; Nourshargh, S

    1995-01-01

    1. The sensory neuropeptide substance P (SP), when released from sensory nerves, has been implicated in the development of neurogenic inflammation. In the present study, using an in vivo model system, we have characterized and investigated the mechanisms underlying SP-induced leukocyte accumulation and oedema formation in the guinea-pig. 2. Intradermally injected SP (i.d., 10(-13) - 10(-9) mol per site), induced a dose- and time-dependent accumulation of 111In-neutrophils, 111In-eosinophils and oedema formation as measured by the local accumulation of i.v. injected 125I-albumin. The leukocyte accumulation evoked by SP was significant at 10(-10) and 10(-9) mol per site, whereas oedema formation was significant at the lowest dose tested (10(-13) mol per site). 3. The NK1 receptor antagonists, CP-96,345 (1 mg kg-1, i.v.) and RP-67,580 (10 micrograms per site, i.d.), significantly attenuated the oedema formation induced by the lower doses of SP. Oedema formation and leukocyte accumulation induced by 10(-9) mol per site SP were unaffected by either antagonist. 4. SP-elicited responses were not significantly affected by the platelet activating factor (PAF) receptor antagonist, UK-74,505 (2.5 mg kg-1, i.v.) or the H1 histamine receptor antagonist, chlorpheniramine (10(-8) mol per site, i.d.). However, the 111In-eosinophil accumulation, but not the 111In-neutrophil accumulation or oedema formation, induced by SP was significantly inhibited by the specific 5-lipoxygenase (5-LO) inhibitor, ZM-230,487 (10(-8) mol per site, i.d.).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7541689

  15. Drug-Path: a database for drug-induced pathways

    PubMed Central

    Zeng, Hui; Cui, Qinghua

    2015-01-01

    Some databases for drug-associated pathways have been built and are publicly available. However, the pathways curated in most of these databases are drug-action or drug-metabolism pathways. In recent years, high-throughput technologies such as microarray and RNA-sequencing have produced lots of drug-induced gene expression profiles. Interestingly, drug-induced gene expression profile frequently show distinct patterns, indicating that drugs normally induce the activation or repression of distinct pathways. Therefore, these pathways contribute to study the mechanisms of drugs and drug-repurposing. Here, we present Drug-Path, a database of drug-induced pathways, which was generated by KEGG pathway enrichment analysis for drug-induced upregulated genes and downregulated genes based on drug-induced gene expression datasets in Connectivity Map. Drug-Path provides user-friendly interfaces to retrieve, visualize and download the drug-induced pathway data in the database. In addition, the genes deregulated by a given drug are highlighted in the pathways. All data were organized using SQLite. The web site was implemented using Django, a Python web framework. Finally, we believe that this database will be useful for related researches. Database URL: http://www.cuilab.cn/drugpath PMID:26130661

  16. Drug-Path: a database for drug-induced pathways.

    PubMed

    Zeng, Hui; Qiu, Chengxiang; Cui, Qinghua

    2015-01-01

    Some databases for drug-associated pathways have been built and are publicly available. However, the pathways curated in most of these databases are drug-action or drug-metabolism pathways. In recent years, high-throughput technologies such as microarray and RNA-sequencing have produced lots of drug-induced gene expression profiles. Interestingly, drug-induced gene expression profile frequently show distinct patterns, indicating that drugs normally induce the activation or repression of distinct pathways. Therefore, these pathways contribute to study the mechanisms of drugs and drug-repurposing. Here, we present Drug-Path, a database of drug-induced pathways, which was generated by KEGG pathway enrichment analysis for drug-induced upregulated genes and downregulated genes based on drug-induced gene expression datasets in Connectivity Map. Drug-Path provides user-friendly interfaces to retrieve, visualize and download the drug-induced pathway data in the database. In addition, the genes deregulated by a given drug are highlighted in the pathways. All data were organized using SQLite. The web site was implemented using Django, a Python web framework. Finally, we believe that this database will be useful for related researches. © The Author(s) 2015. Published by Oxford University Press.

  17. Systematic Analysis of Splice-Site-Creating Mutations in Cancer.

    PubMed

    Jayasinghe, Reyka G; Cao, Song; Gao, Qingsong; Wendl, Michael C; Vo, Nam Sy; Reynolds, Sheila M; Zhao, Yanyan; Climente-González, Héctor; Chai, Shengjie; Wang, Fang; Varghese, Rajees; Huang, Mo; Liang, Wen-Wei; Wyczalkowski, Matthew A; Sengupta, Sohini; Li, Zhi; Payne, Samuel H; Fenyö, David; Miner, Jeffrey H; Walter, Matthew J; Vincent, Benjamin; Eyras, Eduardo; Chen, Ken; Shmulevich, Ilya; Chen, Feng; Ding, Li

    2018-04-03

    For the past decade, cancer genomic studies have focused on mutations leading to splice-site disruption, overlooking those having splice-creating potential. Here, we applied a bioinformatic tool, MiSplice, for the large-scale discovery of splice-site-creating mutations (SCMs) across 8,656 TCGA tumors. We report 1,964 originally mis-annotated mutations having clear evidence of creating alternative splice junctions. TP53 and GATA3 have 26 and 18 SCMs, respectively, and ATRX has 5 from lower-grade gliomas. Mutations in 11 genes, including PARP1, BRCA1, and BAP1, were experimentally validated for splice-site-creating function. Notably, we found that neoantigens induced by SCMs are likely several folds more immunogenic compared to missense mutations, exemplified by the recurrent GATA3 SCM. Further, high expression of PD-1 and PD-L1 was observed in tumors with SCMs, suggesting candidates for immune blockade therapy. Our work highlights the importance of integrating DNA and RNA data for understanding the functional and the clinical implications of mutations in human diseases. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Mechanism of covalent modification of glyceraldehyde-3-phosphate dehydrogenase at its active site thiol by nitric oxide, peroxynitrite and related nitrosating agents.

    PubMed

    Mohr, S; Stamler, J S; Brüne, B

    1994-07-18

    Previous studies have suggested that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) undergoes covalent modification of an active site thiol by a NO.-induced [32P]NAD(+)-dependent mechanism. However, the efficacy of GAPDH modification induced by various NO donors was found to be independent of spontaneous rates of NO. release. To further test the validity of this mechanism, we studied the effects of nitrosonium tertrafluoroborate (BF4NO), a strong NO+ donor. BF4NO potently induces GAPDH labeling by the radioactive nucleotide. In this case, the addition of thiol significantly attenuates enzyme modification by competing for the NO moiety in the formation of RS-NO. Peroxynitrite (ONOO-) also induces GAPDH modification in the presence of thiol, consistent with the notion that this species can transfer NO+ (or NO2+) through the intermediacy of RS-NO. However, the efficiency of this reaction is limited by ONOO- -induced oxidation of protein SH groups at the active site. ONOO- generation appears to account for the modification of GAPDH by SIN-1. Thus, S-nitrosylation of the active site thiol is a prequisite for subsequent post-translational modification with NAD+, and emphasizes the role of NO+ transfer in the initial step of this pathway. Our findings thus provide a uniform mechanism by which nitric oxide and related NO donors initiate non-enzymatic ADP-ribosylation (like) reactions. In biological systems, endogenous RS-NO are likely to support the NO group transfer to thiol-containing proteins.

  19. Repeated exposure to Lutzomyia intermedia sand fly saliva induces local expression of interferon-inducible genes both at the site of injection in mice and in human blood.

    PubMed

    Weinkopff, Tiffany; de Oliveira, Camila I; de Carvalho, Augusto M; Hauyon-La Torre, Yazmin; Muniz, Aline C; Miranda, Jose Carlos; Barral, Aldina; Tacchini-Cottier, Fabienne

    2014-01-01

    During a blood meal, Lutzomyia intermedia sand flies transmit Leishmania braziliensis, a parasite causing tegumentary leishmaniasis. In experimental leishmaniasis, pre-exposure to saliva of most blood-feeding sand flies results in parasite establishment in absence of any skin damages in mice challenged with dermotropic Leishmania species together with saliva. In contrast, pre-immunization with Lu. intermedia salivary gland sonicate (SGS) results in enhanced skin inflammatory exacerbation upon co-inoculation of Lu. intermedia SGS and L. braziliensis. These data highlight potential unique features of both L. braziliensis and Lu. intermedia. In this study, we investigated the genes modulated by Lu. intermedia SGS immunization to understand their potential impact on the subsequent cutaneous immune response following inoculation of both SGS and L. braziliensis. The cellular recruitment and global gene expression profile was analyzed in mice repeatedly inoculated or not with Lu. intermedia. Microarray gene analysis revealed the upregulation of a distinct set of IFN-inducible genes, an immune signature not seen to the same extent in control animals. Of note this INF-inducible gene set was not induced in SGS pre-immunized mice subsequently co-inoculated with SGS and L. braziliensis. These data suggest the parasite prevented the upregulation of this Lu. intermedia saliva-related immune signature. The presence of these IFN-inducible genes was further analyzed in peripheral blood mononuclear cells (PBMCs) sampled from uninfected human individuals living in a L. braziliensis-endemic region of Brazil thus regularly exposed to Lu. intermedia bites. PBMCs were cultured in presence or absence of Lu. intermedia SGS. Using qRT-PCR we established that the IFN-inducible genes induced in the skin of SGS pre-immunized mice, were also upregulated by SGS in PBMCs from human individuals regularly exposed to Lu. intermedia bites, but not in PBMCs of control subjects. These data demonstrate

  20. Repeated Exposure to Lutzomyia intermedia Sand Fly Saliva Induces Local Expression of Interferon-Inducible Genes Both at the Site of Injection in Mice and in Human Blood

    PubMed Central

    Weinkopff, Tiffany; de Oliveira, Camila I.; de Carvalho, Augusto M.; Hauyon-La Torre, Yazmin; Muniz, Aline C.; Miranda, Jose Carlos; Barral, Aldina; Tacchini-Cottier, Fabienne

    2014-01-01

    During a blood meal, Lutzomyia intermedia sand flies transmit Leishmania braziliensis, a parasite causing tegumentary leishmaniasis. In experimental leishmaniasis, pre-exposure to saliva of most blood-feeding sand flies results in parasite establishment in absence of any skin damages in mice challenged with dermotropic Leishmania species together with saliva. In contrast, pre-immunization with Lu. intermedia salivary gland sonicate (SGS) results in enhanced skin inflammatory exacerbation upon co-inoculation of Lu. intermedia SGS and L. braziliensis. These data highlight potential unique features of both L. braziliensis and Lu. intermedia. In this study, we investigated the genes modulated by Lu. intermedia SGS immunization to understand their potential impact on the subsequent cutaneous immune response following inoculation of both SGS and L. braziliensis. The cellular recruitment and global gene expression profile was analyzed in mice repeatedly inoculated or not with Lu. intermedia. Microarray gene analysis revealed the upregulation of a distinct set of IFN-inducible genes, an immune signature not seen to the same extent in control animals. Of note this INF-inducible gene set was not induced in SGS pre-immunized mice subsequently co-inoculated with SGS and L. braziliensis. These data suggest the parasite prevented the upregulation of this Lu. intermedia saliva-related immune signature. The presence of these IFN-inducible genes was further analyzed in peripheral blood mononuclear cells (PBMCs) sampled from uninfected human individuals living in a L. braziliensis-endemic region of Brazil thus regularly exposed to Lu. intermedia bites. PBMCs were cultured in presence or absence of Lu. intermedia SGS. Using qRT-PCR we established that the IFN-inducible genes induced in the skin of SGS pre-immunized mice, were also upregulated by SGS in PBMCs from human individuals regularly exposed to Lu. intermedia bites, but not in PBMCs of control subjects. These data demonstrate

  1. Trichloroethylene-induced alterations in DNA methylation were enriched in polycomb protein binding sites in effector/memory CD4+ T cells

    PubMed Central

    Gilbert, Kathleen M.; Blossom, Sarah J.; Reisfeld, Brad; Erickson, Stephen W.; Vyas, Kanan; Maher, Mary; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Cooney, Craig A.; Bhattacharyya, Sudeepa

    2017-01-01

    Abstract Exposure to industrial solvent and water pollutant trichloroethylene (TCE) can promote autoimmunity, and expand effector/memory (CD62L) CD4+ T cells. In order to better understand etiology reduced representation bisulfite sequencing was used to study how a 40-week exposure to TCE in drinking water altered methylation of ∼337 770 CpG sites across the entire genome of effector/memory CD4+ T cells from MRL+/+ mice. Regardless of TCE exposure, 62% of CpG sites in autosomal chromosomes were hypomethylated (0–15% methylation), and 25% were hypermethylated (85–100% methylation). In contrast, only 6% of the CpGs on the X chromosome were hypomethylated, and 51% had mid-range methylation levels. In terms of TCE impact, TCE altered (≥ 10%) the methylation of 233 CpG sites in effector/memory CD4+ T cells. Approximately 31.7% of these differentially methylated sites occurred in regions known to bind one or more Polycomb group (PcG) proteins, namely Ezh2, Suz12, Mtf2 or Jarid2. In comparison, only 23.3% of CpG sites not differentially methylated by TCE were found in PcG protein binding regions. Transcriptomics revealed that TCE altered the expression of ∼560 genes in the same effector/memory CD4+ T cells. At least 80% of the immune genes altered by TCE had binding sites for PcG proteins flanking their transcription start site, or were regulated by other transcription factors that were in turn ordered by PcG proteins at their own transcription start site. Thus, PcG proteins, and the differential methylation of their binding sites, may represent a new mechanism by which TCE could alter the function of effector/memory CD4+ T cells. PMID:29129997

  2. Parameter-induced uncertainty quantification of crop yields, soil N2O and CO2 emission for 8 arable sites across Europe using the LandscapeDNDC model

    NASA Astrophysics Data System (ADS)

    Santabarbara, Ignacio; Haas, Edwin; Kraus, David; Herrera, Saul; Klatt, Steffen; Kiese, Ralf

    2014-05-01

    When using biogeochemical models to estimate greenhouse gas emissions at site to regional/national levels, the assessment and quantification of the uncertainties of simulation results are of significant importance. The uncertainties in simulation results of process-based ecosystem models may result from uncertainties of the process parameters that describe the processes of the model, model structure inadequacy as well as uncertainties in the observations. Data for development and testing of uncertainty analisys were corp yield observations, measurements of soil fluxes of nitrous oxide (N2O) and carbon dioxide (CO2) from 8 arable sites across Europe. Using the process-based biogeochemical model LandscapeDNDC for simulating crop yields, N2O and CO2 emissions, our aim is to assess the simulation uncertainty by setting up a Bayesian framework based on Metropolis-Hastings algorithm. Using Gelman statistics convergence criteria and parallel computing techniques, enable multi Markov Chains to run independently in parallel and create a random walk to estimate the joint model parameter distribution. Through means distribution we limit the parameter space, get probabilities of parameter values and find the complex dependencies among them. With this parameter distribution that determines soil-atmosphere C and N exchange, we are able to obtain the parameter-induced uncertainty of simulation results and compare them with the measurements data.

  3. Substrate binding interferes with active site conformational dynamics in endoglucanase Cel5A from Thermobifida fusca.

    PubMed

    Jiang, Xukai; Wang, Yuying; Xu, Limei; Chen, Guanjun; Wang, Lushan

    2017-09-09

    The role of protein dynamics in enzyme catalysis is one of the most active areas in current enzymological research. Here, using endoglucanase Cel5A from Thermobifida fusca (TfCel5A) as a model, we applied molecular dynamics simulations to explore the dynamic behavior of the enzyme upon substrate binding. The collective motions of the active site revealed that the mechanism of TfCel5A substrate binding can likely be described by the conformational-selection model; however, we observed that the conformations of active site residues changed differently along with substrate binding. Although most active site residues retained their native conformational ensemble, some (Tyr163 and Glu355) generated newly induced conformations, whereas others (Phe162 and Tyr189) exhibited shifts in the equilibration of their conformational distributions. These results showed that TfCel5A substrate binding relied on a hybrid mechanism involving induced fit and conformational selection. Interestingly, we found that TfCel5A active site could only partly rebalance its conformational dynamics upon substrate dissociation within the same simulation time, which implies that the conformational rebalance upon substrate dissociation is likely more difficult than the conformational selection upon substrate binding at least in the view of the time required. Our findings offer new insight into enzyme catalysis and potential applications for future protein engineering. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Quantum Correlation in the XY Spin Model with Anisotropic Three-Site Interaction

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Chai, Bing-Bing; Guo, Jin-Liang

    2018-05-01

    We investigate pairwise entanglement and quantum discord (QD) in the XY spin model with anisotropic three-site interaction at zero and finite temperatures. For both the nearest-neighbor spins and the next nearest-neighbor spins, special attention is paid to the dependence of entanglement and QD on the anisotropic parameter δ induced by the next nearest-neighbor spins. We show that the behavior of QD differs in many ways from entanglement under the influences of the anisotropic three-site interaction at finite temperatures. More important, comparing the effects of δ on the entanglement and QD, we find the anisotropic three-site interaction plays an important role in the quantum correlations at zero and finite temperatures. It is found that δ can strengthen the quantum correlation for both the nearest-neighbor spins and the next nearest-neighbor spins, especially for the nearest-neighbor spins at low temperature.

  5. New ultracool subdwarfs identified in large-scale surveys using Virtual Observatory tools (Corrigendum). I. UKIDSS LAS DR5 vs. SDSS DR7

    NASA Astrophysics Data System (ADS)

    Lodieu, N.; Espinoza Contreras, M.; Zapatero Osorio, M. R.; Solano, E.; Aberasturi, M.; Martín, E. L.

    2017-01-01

    Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 084.C-0928A.Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  6. Effect of membrane hyperpolarization induced by a K+ channel opener on histamine-induced Ca2+ mobilization in rabbit arterial smooth muscle.

    PubMed

    Watanabe, Y; Suzuki, A; Suzuki, H; Itoh, T

    1996-03-01

    1. The role of membrane hyperpolarization on agonist-induced contraction was investigated in intact and alpha-toxin-skinned smooth muscles of rabbit mesenteric artery by use of the ATP-sensitive K+ channel opener, (-)-(3S,4R)-4-(N-acetyl-N-hydroxyamino)-6-cyano-3,4-dihydro-2,2- dimethyl-2H-1-benzopyran-3-ol (Y-26763), and either histamine (Hist) or noradrenaline (NA). 2. Hist (3 microM) and NA (10 microM) both produced a phasic, followed by a tonic increase in intracellular Ca2+ concentration ([Ca2+]i) and force. Y-26763 (10 microM) potently inhibited the NA-induced phasic and tonic increase in [Ca2+]i and force. In contrast, Y-26763 attenuated the Hist-induced phasic increase in [Ca2+]i and force but had almost no effect on the tonic response. However, ryanodine-treatment of muscles in order to inhibit the function of intracellular Ca2+ storage sites altered the action of Y-26763 which now attenuated the Hist-induced tonic increase in [Ca2+]i and force in a concentration-dependent manner (at concentrations > 1 microM). Glibenclamide (10 microM) attenuated the inhibitory action of Y-26763. 3. Hist (3 microM) depolarized the smooth muscle cells to the same extent as NA (10 microM). In the absence of either agonist, Y-26763 (over 30 nM) hyperpolarized the membrane and glibenclamide inhibited this hyperpolarization. Y-26763 (10 microM) almost abolished the NA-induced membrane depolarization, but only slightly attenuated the Hist-induced membrane depolarization in which the delta (delta) value (the difference before and after application of Hist) was not modified by any concentration of Y-26763. In ryanodine-treated smooth muscle cells, Y-26763 hyperpolarized the membrane and potently inhibited the membrane depolarization induced by Hist. 4. In ryanodine-treated muscle, Y-26763 had no measurable effect on the Hist-induced [Ca2+]i-force relationship. Y-26763 also had no apparent effect on the myofilament Ca(2+)-sensitivity in the presence of Hist in alpha

  7. On-site or off-site treatment of medical waste: a challenge

    PubMed Central

    2014-01-01

    Treating hazardous-infectious medical waste can be carried out on-site or off-site of health-care establishments. Nevertheless, the selection between on-site and off-site locations for treating medical waste sometimes is a controversial subject. Currently in Iran, due to policies of Health Ministry, the hospitals have selected on-site-treating method as the preferred treatment. The objectives of this study were to assess the current condition of on-site medical waste treatment facilities, compare on-site medical waste treatment facilities with off-site systems and find the best location of medical waste treatment. To assess the current on-site facilities, four provinces (and 40 active hospitals) were selected to participate in the survey. For comparison of on-site and off-site facilities (due to non availability of an installed off-site facility) Analytical Hierarchy Process (AHP) was employed. The result indicated that most on-site medical waste treating systems have problems in financing, planning, determining capacity of installations, operation and maintenance. AHP synthesis (with inconsistency ratio of 0.01 < 0.1) revealed that, in total, the off-site treatment of medical waste was in much higher priority than the on-site treatment (64.1% versus 35.9%). According to the results of study it was concluded that the off-site central treatment can be considered as an alternative. An amendment could be made to Iran’s current medical waste regulations to have infectious-hazardous waste sent to a central off-site installation for treatment. To begin and test this plan and also receive the official approval, a central off-site can be put into practice, at least as a pilot in one province. Next, if it was practically successful, it could be expanded to other provinces and cities. PMID:24739145

  8. Role of individual phosphorylation sites in inactivation of pyruvate dehydrogenase complex in rat heart mitochondria

    PubMed Central

    Sale, Graham J.; Randle, Philip J.

    1982-01-01

    1. A method is described using trypsin/formic acid cleavage for unambiguously measuring occupancies of phosphorylation sites in rat heart pyruvate dehydrogenase [32P]phosphate complexes. 2. In mitochondria oxidizing 2-oxoglutarate+l-malate relative initial rates of phosphorylation were site 1>site 2>site 3. 3. Dephosphorylation and reactivation of fully phosphorylated complex was initiated in mitochondria by inhibiting the kinase reaction. Using dichloroacetate relative rates of dephosphorylation were site 2>(1=3). Using sodium dithionite or sodium pyruvate or uncouplers+sodium arsenite or steady state turnover (31P replacing 32P in inactive complex) relative rates were site 2>site 1>site 3. With dithionite reactivation was faster than site 3 dephosphorylation, i.e. site 3 is apparently not inactivating. 4. The steady state proportion of inactive complex was varied (92–48%) in mitochondria oxidizing 2-oxoglutarate/l-malate by increasing extramitochondrial Ca2+ (0–2.6μm). This action of Ca2+ induced dephosphorylation (site 3>site 2>site 1). These experiments enable prediction of site occupancies in vivo for given steady state proportions of inactive complexes. 5. The proportion of inactive complex was related linearly to occupancy of site 1. 6. Sodium dithionite (10mm) and Ca2+ (0.5μm) together resulted in faster dephosphorylations of each site than either agent alone; relative rates were site 2>(1=3). 7. Dephosphorylation and possibly phosphorylation of sites 1 and 2 was not purely sequential as shown by detection of complexes phosphorylated in site 2 but not in site 1. Estimates of the contribution of site 2 phosphorylation to inactivation ranged from 0.7 to 6.4%. 8. It is concluded that the primary function of site 1 phosphorylation is inactivation, phosphorylation of site 2 is not primarily concerned with inactivation and that phosphorylation of site 3 is non-inactivating. PMID:7103952

  9. Site preference and compensation behavior in Co(Cr, Mn){sub 2}O{sub 4} system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, H. G.; College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124; Wang, Z.

    Site preference of doped Mn ions in CoCr{sub 2−x}Mn{sub x}O{sub 4} (x = 0–2) series has been derived separately from structure and magnetic measurement. It shows that parts of the doped Mn ions occupy the A (Co) sites when x < 0.5. And then, it takes the two B (Cr) sites in turn before and after x = 1.3. This site preference behavior results in a role conversion of the magnetic contributors and, thus, leads to the composition dependent magnetic compensation. Temperature induced compensation and negative magnetization have also been found in several samples, which is attributed to the large energy barrier between the ferromagnetic andmore » antiferromagnetic spin arrangement. A structure transition from cubic to tetragonal symmetry has been detected.« less

  10. 40 CFR 146.93 - Post-injection site care and site closure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Post-injection site care and site... Applicable to Class VI Wells § 146.93 Post-injection site care and site closure. (a) The owner or operator of a Class VI well must prepare, maintain, and comply with a plan for post-injection site care and site...

  11. Selection for avian leukosis virus integration sites determines the clonal progression of B-cell lymphomas

    PubMed Central

    Malhotra, Sanandan; Justice, James; Morgan, Robin

    2017-01-01

    Avian leukosis virus (ALV) is a simple retrovirus that causes a wide range of tumors in chickens, the most common of which are B-cell lymphomas. The viral genome integrates into the host genome and uses its strong promoter and enhancer sequences to alter the expression of nearby genes, frequently inducing tumors. In this study, we compare the preferences for ALV integration sites in cultured cells and in tumors, by analysis of over 87,000 unique integration sites. In tissue culture we observed integration was relatively random with slight preferences for genes, transcription start sites and CpG islands. We also observed a preference for integrations in or near expressed and spliced genes. The integration pattern in cultured cells changed over the course of selection for oncogenic characteristics in tumors. In comparison to tissue culture, ALV integrations are more highly selected for proximity to transcription start sites in tumors. There is also a significant selection of ALV integrations away from CpG islands in the highly clonally expanded cells in tumors. Additionally, we utilized a high throughput method to quantify the magnitude of clonality in different stages of tumorigenesis. An ALV-induced tumor carries between 700 and 3000 unique integrations, with an average of 2.3 to 4 copies of proviral DNA per infected cell. We observed increasing tumor clonality during progression of B-cell lymphomas and identified gene players (especially TERT and MYB) and biological processes involved in tumor progression. PMID:29099869

  12. Downregulation of a tumor suppressor RECK by hypoxia through recruitment of HDAC1 and HIF-1alpha to reverse HRE site in the promoter.

    PubMed

    Lee, Kyung Ju; Lee, Kwang Youl; Lee, You Mie

    2010-05-01

    Reversion-inducing cysteine-rich protein with Kazal motifs (RECK) is a tumor suppressor and the suppression of RECK is induced by Ras or Her-2/neu oncogenes. However, regulation of RECK under hypoxic microenvironment is largely unknown. Here, we identified that hypoxia significantly downregulates RECK mRNA and protein expression using semiquantitative RT-PCR, real-time RT-PCR and western blot analysis. This repression was reversed by the HDAC inhibitor, trichostatin A (TSA) and HIF-1 inhibitor, YC-1. Hypoxia-induced downregulation of RECK was abolished by knockdown of HDAC1 and HIF-1alpha with respective small interfering RNAs (siRNAs), whereas overexpression of HDAC1 and HIF-1alpha suppressed RECK expression similar to the level under hypoxic conditions. Transfection of a deletion mutant of the second reverse HRE (rHRE2, -2345 to -2333) site of RECK promoter completely removed RECK suppression under hypoxia, indicating that the rHRE2 site is responsible for the inhibition of RECK. Chromatin immunoprecipitation and DNA affinity precipitation assays demonstrated that HDAC1 and HIF-1alpha were recruited to the rHRE2 region of RECK promoter under hypoxic conditions, but the treatment of TSA or YC-1 inhibited their binding to the rHRE2 site. Moreover, TSA and YC-1 inhibited hypoxia-induced cancer cell migration, invasion and MMPs secretion. Taken together, we can conclude that hypoxia induces RECK downregulation through the recruitment of HDAC1 and HIF-1alpha to the rHRE2 site in the promoter and the inhibition of hypoxic RECK silencing would be a therapeutic and preventive target for early tumorigenesis. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Simultaneous site-directed mutagenesis of duplicated loci in soybean using a single guide RNA.

    PubMed

    Kanazashi, Yuhei; Hirose, Aya; Takahashi, Ippei; Mikami, Masafumi; Endo, Masaki; Hirose, Sakiko; Toki, Seiichi; Kaga, Akito; Naito, Ken; Ishimoto, Masao; Abe, Jun; Yamada, Tetsuya

    2018-03-01

    Using a gRNA and Agrobacterium-mediated transformation, we performed simultaneous site-directed mutagenesis of two GmPPD loci in soybean. Mutations in GmPPD loci were confirmed in at least 33% of T 2 seeds. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated endonuclease 9 (Cas9) system is a powerful tool for site-directed mutagenesis in crops. Using a single guide RNA (gRNA) and Agrobacterium-mediated transformation, we performed simultaneous site-directed mutagenesis of two homoeologous loci in soybean (Glycine max), GmPPD1 and GmPPD2, which encode the orthologs of Arabidopsis thaliana PEAPOD (PPD). Most of the T 1 plants had heterozygous and/or chimeric mutations for the targeted loci. The sequencing analysis of T 1 and T 2 generations indicates that putative mutation induced in the T 0 plant is transmitted to the T 1 generation. The inheritable mutation induced in the T 1 plant was also detected. This result indicates that continuous induction of mutations during T 1 plant development increases the occurrence of mutations in germ cells, which ensures the transmission of mutations to the next generation. Simultaneous site-directed mutagenesis in both GmPPD loci was confirmed in at least 33% of T 2 seeds examined. Approximately 19% of double mutants did not contain the Cas9/gRNA expression construct. Double mutants with frameshift mutations in both GmPPD1 and GmPPD2 had dome-shaped trifoliate leaves, extremely twisted pods, and produced few seeds. Taken together, our data indicate that continuous induction of mutations in the whole plant and advancing generations of transgenic plants enable efficient simultaneous site-directed mutagenesis in duplicated loci in soybean.

  14. Mutation Induced Conformational Change In CaMKII Peptide Alters Binding Affinity to CaM Through Alternate Binding Site

    NASA Astrophysics Data System (ADS)

    Ezerski, Jacob; Cheung, Margaret

    CaM forms distinct conformation states through modifications in its charge distribution upon binding to Ca2+ ions. The occurrence of protein structural change resulting from an altered charge distribution is paramount in the scheme of cellular signaling. Not only is charge induced structural change observed in CaM, it is also seen in an essential binding target: calmodulin-depended protein kinase II (CaMKII). In order to investigate the mechanism of selectivity in relation to changes in secondary structure, the CaM binding domain of CaMKII is isolated. Experimentally, charged residues of the CaMKII peptide are systematically mutated to alanine, resulting in altered binding kinetics between the peptide and the Ca2+ saturated state of CaM. We perform an all atom simulation of the wildtype (RRK) and mutated (AAA) CaMKII peptides and generate structures from the trajectory. We analyze RRK and AAA using DSSP and find significant structural differences due to the mutation. Structures from the RRK and AAA ensembles are then selected and docked onto the crystal structure of Ca2+ saturated CaM. We observe that RRK binds to CaM at the C-terminus, whereas the 3-residue mutation, AAA, shows increased patterns of binding to the N-terminus and linker regions of CaM. Due to the conformational change of the peptide ensemble from charged residue mutation, a distinct change in the binding site can be seen, which offers an explanation to experimentally observed changes in kinetic binding rates

  15. Factors affecting the persistence of drug-induced reprogramming of the cancer methylome

    PubMed Central

    Bell, Joshua S. K.; Kagey, Jacob D.; Barwick, Benjamin G.; Dwivedi, Bhakti; McCabe, Michael T.; Kowalski, Jeanne; Vertino, Paula M.

    2016-01-01

    ABSTRACT Aberrant DNA methylation is a critical feature of cancer. Epigenetic therapy seeks to reverse these changes to restore normal gene expression. DNA demethylating agents, including 5-aza-2′-deoxycytidine (DAC), are currently used to treat certain leukemias, and can sensitize solid tumors to chemotherapy and immunotherapy. However, it has been difficult to pin the clinical efficacy of these agents to specific demethylation events, and the factors that contribute to the durability of response remain largely unknown. Here we examined the genome-wide kinetics of DAC-induced DNA demethylation and subsequent remethylation after drug withdrawal in breast cancer cells. We find that CpGs differ in both their susceptibility to demethylation and propensity for remethylation after drug removal. DAC-induced demethylation was most apparent at CpGs with higher initial methylation levels and further from CpG islands. Once demethylated, such sites exhibited varied remethylation potentials. The most rapidly remethylating CpGs regained >75% of their starting methylation within a month of drug withdrawal. These sites had higher pretreatment methylation levels, were enriched in gene bodies, marked by H3K36me3, and tended to be methylated in normal breast cells. In contrast, a more resistant class of CpG sites failed to regain even 20% of their initial methylation after 3 months. These sites had lower pretreatment methylation levels, were within or near CpG islands, marked by H3K79me2 or H3K4me2/3, and were overrepresented in sites that become aberrantly hypermethylated in breast cancers. Thus, whereas DAC-induced demethylation affects both endogenous and aberrantly methylated sites, tumor-specific hypermethylation is more slowly regained, even as normal methylation promptly recovers. Taken together, these data suggest that the durability of DAC response is linked to its selective ability to stably reset at least a portion of the cancer methylome. PMID:27082926

  16. Cocaine self-administration in mice is inversely related to phosphorylation at Thr34 (protein kinase A site) and Ser130 (kinase CK1 site) of DARPP-32.

    PubMed

    Zhang, Y; Svenningsson, P; Picetti, R; Schlussman, S D; Nairn, A C; Ho, A; Greengard, P; Kreek, M J

    2006-03-08

    The reinforcing effect of cocaine is associated with increases in dopamine in the striatum. The phosphoprotein DARPP-32 (dopamine- and cAMP-regulated phosphoprotein) has been shown to mediate the intracellular events after activation of dopamine receptors. DARPP-32 is phosphorylated at multiple sites by different protein kinases, but little is known about the functional role of these different sites. Cocaine self-administration and striatal levels of dopamine after acute "binge" cocaine administration were measured in separate lines of mice with alanine mutations introduced into DARPP-32 at either Thr34 (protein kinase A site, Thr34A), Thr75, (cyclin-dependent kinase 5 site, Thr75A), Ser97 (kinase CK2 site, Ser97A), or Ser130 (kinase CK1 site, Ser130A). Acquisition of stable cocaine self-administration required significantly more time in Thr34A-/- mice. Both Thr34A- and Ser130A-DARPP-32 mutant mice self-administered more cocaine than their respective wild-type controls. Also, cocaine-induced increases of dopamine in dorsal striatum were attenuated in the Thr34A- and Ser130A-DARPP-32 phosphomutant mice compared with wild-type mice. Notably, levels of P-Thr34- and P-Ser130-DARPP-32 were reduced after self-administration of cocaine in wild-type mice. Thus, phosphorylation states of Thr34- and Ser130-DARPP-32 play important roles in modulating the reinforcing effects of cocaine.

  17. DNA lability induced by nimustine and ramustine in rat glioma cells.

    PubMed Central

    Mineura, K; Fushimi, S; Itoh, Y; Kowada, M

    1988-01-01

    The DNA labile sites induced by two nitrosoureas, nimustine (ACNU) and ramustine (MCNU) synthesised in Japan, have been examined in highly reiterated DNA sequences of rat glioma cells. Reiterated fragments of 167 and 203 base pairs (bp), obtained after Hind III and Hae III restriction endonuclease digestion of rat glioma cells DNA, were used as target DNA sequences to determine the labile sites. In vitro reaction with ACNU and MCNU resulted in scission products corresponding to the locations of guanine. Subsequent piperidine hydrolysis produced more frequent breaks of the phosphodiester bonds at guanine positions, thus forming alkali-labile sites. Images PMID:3236017

  18. Spatial and seasonal heterogeneity of atmospheric particles induced reactive oxygen species in urban areas and the role of water-soluble metals.

    PubMed

    Gali, Nirmal Kumar; Yang, Fenhuan; Jiang, Sabrina Yanan; Chan, Ka Lok; Sun, Li; Ho, Kin-fai; Ning, Zhi

    2015-03-01

    Adverse health effects are associated with exposure to atmospheric particulate matter (PM), which carry various chemical constituents and induce both exogenous and endogenous oxidative stress. This study investigated the spatial and seasonal variability of PM-induced ROS at four sites with different characteristics in Hong Kong. Cytotoxicity, exogenous and endogenous ROS was determined on a dose and time dependent analysis. Large spatial variation of ROS was observed with fine PM at urban site showing highest ROS levels while coarse PM at traffic site ranks the top. No consistent seasonal difference was observed for ROS levels among all sites. The highly heterogeneous distribution of PM-induced ROS demonstrates the differential capability of PM to produce oxidative stress, and the need to use appropriate metrics as surrogates of exposure instead of PM mass in epidemiologic studies. Several transition metals were found associated with ROS by different degree illustrating the complexity of mechanisms involved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Induced seismicity and the potential for liability under U.S. law

    NASA Astrophysics Data System (ADS)

    Cypser, Darlene A.; Davis, Scott D.

    1998-04-01

    Research by seismologists over the past 30+ years has firmly established that some human activities induce seismicity. Sometimes induced seismicity causes injuries to people or property. The activities which induce seismicity generally involve extraction of energy, or natural resources, or the disposal of wastes. As the human population increases these extraction and disposal activities will increase in number of sites and intensity of effort as the demands become greater and the resources scarcer. With these increases the number and severity of damaging induced earthquakes is likely to increase. Induced seismicity may cause injuries by vibrations or by seismically induced ground failure. In either case compensation for injuries caused by induced seismicity should be paid for by the inducer. In the United States the inducer of damaging seismicity can be made to pay for the harm caused. Liability for damage caused by vibrations can be based on several legal theories: trespass, strict liability, negligence and nuisance. Our research revealed no cases in which an appellate court has upheld or rejected the application of tort liability to an induced earthquake situation. However, there are numerous analogous cases that support the application of these legal theories to induced seismicity. Vibrations or concussions due to blasting or heavy machinery are sometimes viewed as a `trespass' analogous to a physical invasion. In some states activities which induce earthquakes might be considered `abnormally dangerous' activities that require companies engaged in them to pay for injuries the quakes cause regardless of how careful the inducers were. In some circumstances, a court may find that an inducer was negligent in its site selection or in maintenance of the project. If induced seismicity interferes with the use or enjoyment of another's land, then the inducing activity may be a legal nuisance, even if the seismicity causes little physical damage. In most states of the

  20. Empirical Ground Motion Characterization of Induced Seismicity in Alberta and Oklahoma

    NASA Astrophysics Data System (ADS)

    Novakovic, M.; Atkinson, G. M.; Assatourians, K.

    2017-12-01

    We develop empirical ground-motion prediction equations (GMPEs) for ground motions from induced earthquakes in Alberta and Oklahoma following the stochastic-model-based method of Atkinson et al. (2015 BSSA). The Oklahoma ground-motion database is compiled from over 13,000 small to moderate seismic events (M 1 to 5.8) recorded at 1600 seismic stations, at distances from 1 to 750 km. The Alberta database is compiled from over 200 small to moderate seismic events (M 1 to 4.2) recorded at 50 regional stations, at distances from 30 to 500 km. A generalized inversion is used to solve for regional source, attenuation and site parameters. The obtained parameters describe the regional attenuation, stress parameter and site amplification. Resolving these parameters allows for the derivation of regionally-calibrated GMPEs that can be used to compare ground motion observations between waste water injection (Oklahoma) and hydraulic fracture induced events (Alberta), and further compare induced observations with ground motions resulting from natural sources (California, NGAWest2). The derived GMPEs have applications for the evaluation of hazards from induced seismicity and can be used to track amplitudes across the regions in real time, which is useful for ground-motion-based alerting systems and traffic light protocols.

  1. Generation of induced pluripotent stem cells from the pig

    USDA-ARS?s Scientific Manuscript database

    The value of stem cells has become increasingly evident in recent years with the advent of genetic engineering tools that allow site-specific modifications to the genome. The use of stem cells to induce modifications has several potential benefits for the livestock industry including improving anim...

  2. Biochemical analysis of six genetic variants of error-prone human DNA polymerase ι involved in translesion DNA synthesis.

    PubMed

    Kim, Jinsook; Song, Insil; Jo, Ara; Shin, Joo-Ho; Cho, Hana; Eoff, Robert L; Guengerich, F Peter; Choi, Jeong-Yun

    2014-10-20

    DNA polymerase (pol) ι is the most error-prone among the Y-family polymerases that participate in translesion synthesis (TLS). Pol ι can bypass various DNA lesions, e.g., N(2)-ethyl(Et)G, O(6)-methyl(Me)G, 8-oxo-7,8-dihydroguanine (8-oxoG), and an abasic site, though frequently with low fidelity. We assessed the biochemical effects of six reported genetic variations of human pol ι on its TLS properties, using the recombinant pol ι (residues 1-445) proteins and DNA templates containing a G, N(2)-EtG, O(6)-MeG, 8-oxoG, or abasic site. The Δ1-25 variant, which is the N-terminal truncation of 25 residues resulting from an initiation codon variant (c.3G > A) and also is the formerly misassigned wild-type, exhibited considerably higher polymerase activity than wild-type with Mg(2+) (but not with Mn(2+)), coinciding with its steady-state kinetic data showing a ∼10-fold increase in kcat/Km for nucleotide incorporation opposite templates (only with Mg(2+)). The R96G variant, which lacks a R96 residue known to interact with the incoming nucleotide, lost much of its polymerase activity, consistent with the kinetic data displaying 5- to 72-fold decreases in kcat/Km for nucleotide incorporation opposite templates either with Mg(2+) or Mn(2+), except for that opposite N(2)-EtG with Mn(2+) (showing a 9-fold increase for dCTP incorporation). The Δ1-25 variant bound DNA 20- to 29-fold more tightly than wild-type (with Mg(2+)), but the R96G variant bound DNA 2-fold less tightly than wild-type. The DNA-binding affinity of wild-type, but not of the Δ1-25 variant, was ∼7-fold stronger with 0.15 mM Mn(2+) than with Mg(2+). The results indicate that the R96G variation severely impairs most of the Mg(2+)- and Mn(2+)-dependent TLS abilities of pol ι, whereas the Δ1-25 variation selectively and substantially enhances the Mg(2+)-dependent TLS capability of pol ι, emphasizing the potential translational importance of these pol ι genetic variations, e.g., individual differences

  3. Biochemical Analysis of Six Genetic Variants of Error-Prone Human DNA Polymerase ι Involved in Translesion DNA Synthesis

    PubMed Central

    2015-01-01

    DNA polymerase (pol) ι is the most error-prone among the Y-family polymerases that participate in translesion synthesis (TLS). Pol ι can bypass various DNA lesions, e.g., N2-ethyl(Et)G, O6-methyl(Me)G, 8-oxo-7,8-dihydroguanine (8-oxoG), and an abasic site, though frequently with low fidelity. We assessed the biochemical effects of six reported genetic variations of human pol ι on its TLS properties, using the recombinant pol ι (residues 1–445) proteins and DNA templates containing a G, N2-EtG, O6-MeG, 8-oxoG, or abasic site. The Δ1–25 variant, which is the N-terminal truncation of 25 residues resulting from an initiation codon variant (c.3G > A) and also is the formerly misassigned wild-type, exhibited considerably higher polymerase activity than wild-type with Mg2+ (but not with Mn2+), coinciding with its steady-state kinetic data showing a ∼10-fold increase in kcat/Km for nucleotide incorporation opposite templates (only with Mg2+). The R96G variant, which lacks a R96 residue known to interact with the incoming nucleotide, lost much of its polymerase activity, consistent with the kinetic data displaying 5- to 72-fold decreases in kcat/Km for nucleotide incorporation opposite templates either with Mg2+ or Mn2+, except for that opposite N2-EtG with Mn2+ (showing a 9-fold increase for dCTP incorporation). The Δ1–25 variant bound DNA 20- to 29-fold more tightly than wild-type (with Mg2+), but the R96G variant bound DNA 2-fold less tightly than wild-type. The DNA-binding affinity of wild-type, but not of the Δ1–25 variant, was ∼7-fold stronger with 0.15 mM Mn2+ than with Mg2+. The results indicate that the R96G variation severely impairs most of the Mg2+- and Mn2+-dependent TLS abilities of pol ι, whereas the Δ1–25 variation selectively and substantially enhances the Mg2+-dependent TLS capability of pol ι, emphasizing the potential translational importance of these pol ι genetic variations, e.g., individual differences in TLS, mutation, and

  4. The abdominal skin of female Sprague-Dawley rats is more sensitive than the back skin to drug-induced phototoxicity.

    PubMed

    Kuga, Kazuhiro; Yasuno, Hironobu; Sakai, Yumi; Harada, Yumiko; Shimizu, Fumi; Miyamoto, Yumiko; Takamatsu, Yuki; Miyamoto, Makoto; Sato, Keiichiro

    2017-11-01

    In vivo phototoxicity studies are important to predict drug-induced phototoxicity in humans; however, a standard methodology has not established. To determine differences in sensitivity to drug-induced phototoxicity among various skin sites, we evaluated phototoxic reactions in the back and abdominal skin of female Sprague-Dawley rats orally dosed with phototoxic drugs (pirfenidone, 8-methoxysoraren, doxycycline, and lomefloxacin) or a non-phototoxic drug (gatifloxacin) followed by solar-simulated light irradiation comprising 18J/cm 2 ultraviolet A. Tissue reactions were evaluated by macroscopic and microscopic examination and immunohistochemistry for γ-H2AX, and tissue concentrations of pirfenidone, doxycycline, and lomefloxacin were measured by tandem mass spectrometry. In addition, the thicknesses of the skin layers at both sites were measured in drug-naïve rats. The abdominal skin showed more severe reactions to all phototoxic drugs than the back skin, whereas the minimal erythema dose in drug-naïve rats and skin concentrations of each drug were comparable between the sites. Furthermore, histopathological lesions and γ-H2AX-positive cells in the abdominal skin were detected in deeper layers than in the back skin. The stratum corneum and dermis in the abdominal skin were significantly thinner than in the back skin, indicating a difference in the depth of light penetration and potentially contributing to the site differences observed in sensitivity to phototoxicity. Gatifloxacin did not induce any phototoxic reactions at either site. In conclusion, the abdominal skin is more sensitive to drug-induced phototoxicity than the back skin and may represent a preferable site for irradiation in this rat phototoxicity model. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Sulfur mustard-induced apoptosis in hairless guinea pig skin.

    PubMed

    Kan, Robert K; Pleva, Christina M; Hamilton, Tracey A; Anderson, Dana R; Petrali, John P

    2003-01-01

    The present study was aimed to examine whether apoptosis is involved in the pathogenesis of sulfur mustard (SM)-induced basal cell death. Skin sites of the hairless guinea pig exposed to SM vapor for 8 minutes were harvested at 3, 6, 12, 24, and 48 hours postexposure. Immunohistochemical detection of basal cell apoptosis was performed using the ApopTag in situ apoptosis labeling kit. Only occasional apoptotic basal cells (BC)were observed in nonexposed and perilesional control sites. At lesional sites, apoptosis of BC was not detected at 3 hours postexposure. However, at 6 hours and 12 hours postexposure, 18% and 59% of BC were apoptotic, respectively. At 24 and 48 hours postexposure, individual apoptotic basal cells were not clearly recognizable due to necrosis. At the ultrastructural level, degenerating BC exhibited typical apoptotic morphology including nuclear condensation and chromatin margination. The results suggest that apoptotic cell death is a cytotoxic mechanism with the number of BC undergoing apoptosis significantly increasing from 6 to 12 hours postexposure. In addition, because necrosis is preferential at 24 hours postexposure, we believe that SM-induced cell death involves early apoptosis and late necrosis, which temporally overlap to produce a single cell death pathway along an apoptotic-necrotic continuum.

  6. Characterization of skin reactions and pain reported by patients receiving radiation therapy for cancer at different sites

    PubMed Central

    Gewandter, Jennifer S.; Walker, Joanna; Heckler, Charles E.; Morrow, Gary R.; Ryan, Julie L.

    2015-01-01

    Background Skin reactions and pain are commonly reported side effects of radiation therapy (RT). Objective To characterize RT-induced symptoms according to treatment site subgroups and identify skin symptoms that correlate with pain. Methods A self-report survey, adapted from the MD Anderson Symptom Inventory and the McGill Pain Questionnaire, assessed RT-induced skin problems, pain, and specific skin symptoms. Wilcoxon Sign Ranked tests compared mean severity of pre- and post-RT pain and skin problems within each RT-site subgroup. Multiple linear regression (MLR) investigated associations between skin symptoms and pain. Results Survey respondents (n=106) were 58% female and on average 64 years old. RT sites included lung, breast, lower abdomen, head/neck/brain, and upper abdomen. Only patients receiving breast RT reported significant increases in treatment site pain and skin problems (p≤0.007). Patients receiving head/neck/brain RT reported increased skin problems (p<0.0009). MLR showed that post-RT skin tenderness and tightness were most strongly associated with post-RT pain (p=0.066 and p=0.122, respectively). Limitations Small sample size, exploratory analyses, and non-validated measure. Conclusions Only patients receiving breast RT reported significant increases in pain and skin problems at the RT site, while patients receiving head/neck/brain RT had increased skin problems, but not pain. These findings suggest that the severity of skin problems is not the only factor that contributes to pain, and interventions should be tailored to specifically target pain at the RT site, possibly by targeting tenderness and tightness. These findings should be confirmed in a larger sampling of RT patients. PMID:24645338

  7. Applying the Brakes to Multi-Site SR Protein Phosphorylation: Substrate-Induced Effects on the Splicing Kinase SRPK1†

    PubMed Central

    Aubol, Brandon E.; Adams, Joseph A.

    2011-01-01

    To investigate how a protein kinase interacts with its protein substrate during extended, multi-site phosphorylation, the kinetic mechanism of a protein kinase involved in mRNA splicing control was investigated using rapid quench flow techniques. The protein kinase SRPK1 phosphorylates approximately 10 serines in the arginine-serine-rich domain (RS domain) of the SR protein SRSF1 in a C-to-N-terminal direction, a modification that directs this essential splicing factor from the cytoplasm to the nucleus. Transient-state kinetic experiments illustrate that the first phosphate is added rapidly onto the RS domain of SRSF1 (t1/2 = 0.1 sec) followed by slower, multi-site phosphorylation at the remaining serines (t1/2 = 15 sec). Mutagenesis experiments suggest that efficient phosphorylation rates are maintained by an extensive hydrogen bonding and electrostatic network between the RS domain of the SR protein and the active site and docking groove of the kinase. Catalytic trapping and viscosometric experiments demonstrate that while the phosphoryl transfer step is fast, ADP release limits multi-site phosphorylation. By studying phosphate incorporation into selectively pre-phosphorylated forms of the enzyme-substrate complex, the kinetic mechanism for site-specific phosphorylation along the reaction coordinate was assessed. The binding affinity of the SR protein, the phosphoryl transfer rate and ADP exchange rate were found to decline significantly as a function of progressive phosphorylation in the RS domain. These findings indicate that the protein substrate actively modulates initiation, extension and termination events associated with prolonged, multi-site phosphorylation. PMID:21728354

  8. Prediction of allosteric sites on protein surfaces with an elastic-network-model-based thermodynamic method.

    PubMed

    Su, Ji Guo; Qi, Li Sheng; Li, Chun Hua; Zhu, Yan Ying; Du, Hui Jing; Hou, Yan Xue; Hao, Rui; Wang, Ji Hua

    2014-08-01

    Allostery is a rapid and efficient way in many biological processes to regulate protein functions, where binding of an effector at the allosteric site alters the activity and function at a distant active site. Allosteric regulation of protein biological functions provides a promising strategy for novel drug design. However, how to effectively identify the allosteric sites remains one of the major challenges for allosteric drug design. In the present work, a thermodynamic method based on the elastic network model was proposed to predict the allosteric sites on the protein surface. In our method, the thermodynamic coupling between the allosteric and active sites was considered, and then the allosteric sites were identified as those where the binding of an effector molecule induces a large change in the binding free energy of the protein with its ligand. Using the proposed method, two proteins, i.e., the 70 kD heat shock protein (Hsp70) and GluA2 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor, were studied and the allosteric sites on the protein surface were successfully identified. The predicted results are consistent with the available experimental data, which indicates that our method is a simple yet effective approach for the identification of allosteric sites on proteins.

  9. Prediction of allosteric sites on protein surfaces with an elastic-network-model-based thermodynamic method

    NASA Astrophysics Data System (ADS)

    Su, Ji Guo; Qi, Li Sheng; Li, Chun Hua; Zhu, Yan Ying; Du, Hui Jing; Hou, Yan Xue; Hao, Rui; Wang, Ji Hua

    2014-08-01

    Allostery is a rapid and efficient way in many biological processes to regulate protein functions, where binding of an effector at the allosteric site alters the activity and function at a distant active site. Allosteric regulation of protein biological functions provides a promising strategy for novel drug design. However, how to effectively identify the allosteric sites remains one of the major challenges for allosteric drug design. In the present work, a thermodynamic method based on the elastic network model was proposed to predict the allosteric sites on the protein surface. In our method, the thermodynamic coupling between the allosteric and active sites was considered, and then the allosteric sites were identified as those where the binding of an effector molecule induces a large change in the binding free energy of the protein with its ligand. Using the proposed method, two proteins, i.e., the 70 kD heat shock protein (Hsp70) and GluA2 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor, were studied and the allosteric sites on the protein surface were successfully identified. The predicted results are consistent with the available experimental data, which indicates that our method is a simple yet effective approach for the identification of allosteric sites on proteins.

  10. Field site selection

    NASA Technical Reports Server (NTRS)

    Schwarz, D. E.; Ellefsen, R. E.

    1981-01-01

    Several general guidelines should be kept in mind when considering the selection of field sites for teaching remote sensing fundamentals. Proximity and vantage point are two very practical considerations. Only through viewing a broad enough area to place the site in context can one make efficient use of a site. The effects of inclement weather when selecting sites should be considered. If field work is to be an effective tool to illustrate remote sensing principles, the following criteria are critical: (1) the site must represent the range of class interest; (2) the site must have a theme or add something no other site offers; (3) there should be intrasite variation within the theme; (4) ground resolution and spectral signature distinction should be illustrated; and (5) the sites should not be ordered sequentially.

  11. Demethylase Inhibitor Fungicide Resistance in Pyrenophora teres f. sp. teres Associated with Target Site Modification and Inducible Overexpression of Cyp51

    PubMed Central

    Mair, Wesley J.; Deng, Weiwei; Mullins, Jonathan G. L.; West, Samuel; Wang, Penghao; Besharat, Naghmeh; Ellwood, Simon R.; Oliver, Richard P.; Lopez-Ruiz, Francisco J.

    2016-01-01

    Pyrenophora teres f. sp. teres is the cause of net form of net blotch (NFNB), an economically important foliar disease in barley (Hordeum vulgare). Net and spot forms of net blotch are widely controlled using site-specific systemic fungicides. Although resistance to succinate dehydrogenase inhibitors and quinone outside inhibitors has been addressed before in net blotches, mechanisms controlling demethylation inhibitor resistance have not yet been reported at the molecular level. Here we report the isolation of strains of NFNB in Australia since 2013 resistant to a range of demethylase inhibitor fungicides. Cyp51A:KO103-A1, an allele with the mutation F489L, corresponding to the archetype F495I in Aspergillus fumigatus, was only present in resistant strains and was correlated with resistance factors to various demethylase inhibitors ranging from 1.1 for epoxiconazole to 31.7 for prochloraz. Structural in silico modeling of the sensitive and resistant CYP51A proteins docked with different demethylase inhibitor fungicides showed how the interaction of F489L within the heme cavity produced a localized constriction of the region adjacent to the docking site that is predicted to result in lower binding affinities. Resistant strains also displayed enhanced induced expression of the two Cyp51A paralogs and of Cyp51B genes. While Cyp51B was found to be constitutively expressed in the absence of fungicide, Cyp51A was only detected at extremely low levels. Under fungicide induction, expression of Cyp51B, Cyp51A2, and Cyp51A1 was shown to be 1.6-, 3,- and 5.3-fold higher, respectively in the resistant isolate compared to the wild type. These increased levels of expression were not supported by changes in the promoters of any of the three genes. The implications of these findings on demethylase inhibitor activity will require current net blotch management strategies to be reconsidered in order to avoid the development of further resistance and preserve the lifespan of

  12. Reservoir High's TE Site Wins Web Site of the Month

    ERIC Educational Resources Information Center

    Tech Directions, 2008

    2008-01-01

    This article features "Mr. Rhine's Technology Education Web Site," a winner of the Web Site of the Month. This Web site was designed by Luke Rhine, a teacher at the Reservoir High School in Fulton, Maryland. Rhine's Web site offers course descriptions and syllabuses, class calendars, lectures and presentations, design briefs and other course…

  13. Topological Anderson insulator induced by inter-cell hopping disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Shu-Hui; College of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018; Song, Juntao, E-mail: jtsong@mail.hebtu.edu.cn

    We have studied in detail the influence of same-orbit and different-orbit hopping disorders in HgTe/CdTe quantum wells. Intriguingly, similar to the behavior of the on-site Anderson disorder, a phase transition from a topologically trivial phase to a topological phase is induced at a proper strength of the same-orbit hopping disorder. For different-orbit hopping disorder, however, the phase transition does not occur. The results have been analytically verified by using effective medium theory. A consistent conclusion can be obtained by comparing phase diagrams, conductance, and conductance fluctuations. In addition, the influence of Rashba spin-orbit interaction (RSOI) on the system has beenmore » studied for different types of disorder, and the RSOI shows different influence on topological phase at different disorders. The topological phase induced by same-orbit hopping disorder is more robust against the RSOI than that induced by on-site Anderson disorder. For different-orbit hopping disorder, no matter whether the RSOI is included or not, the phase transition does not occur. The results indicate, whether or not the topological Anderson insulator can be observed depends on a competition between the different types of the disorder as well as the strength of the RSOI in a system.« less

  14. Modeling Shear Induced Von Willebrand Factor Binding to Collagen

    NASA Astrophysics Data System (ADS)

    Dong, Chuqiao; Wei, Wei; Morabito, Michael; Webb, Edmund; Oztekin, Alparslan; Zhang, Xiaohui; Cheng, Xuanhong

    2017-11-01

    Von Willebrand factor (vWF) is a blood glycoprotein that binds with platelets and collagen on injured vessel surfaces to form clots. VWF bioactivity is shear flow induced: at low shear, binding between VWF and other biological entities is suppressed; for high shear rate conditions - as are found near arterial injury sites - VWF elongates, activating its binding with platelets and collagen. Based on parameters derived from single molecule force spectroscopy experiments, we developed a coarse-grain molecular model to simulate bond formation probability as a function of shear rate. By introducing a binding criterion that depends on the conformation of a sub-monomer molecular feature of our model, the model predicts shear-induced binding, even for conditions where binding is highly energetically favorable. We further investigate the influence of various model parameters on the ability to predict shear-induced binding (vWF length, collagen site density and distribution, binding energy landscape, and slip/catch bond length) and demonstrate parameter ranges where the model provides good agreement with existing experimental data. Our results may be important for understanding vWF activity and also for achieving targeted drug therapy via biomimetic synthetic molecules. National Science Foundation (NSF),Division of Mathematical Sciences (DMS).

  15. Space-radiation-induced Photon Luminescence of the Moon

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas; Lee, Kerry

    2008-01-01

    We report on the results of a study of the photon luminescence of the Moon induced by Galactic Cosmic Rays (GCRs) and space radiation from the Sun, using the Monte Carlo program FLUKA. The model of the lunar surface is taken to be the chemical composition of soils found at various landing sites during the Apollo and Luna programs, averaged over all such sites to define a generic regolith for the present analysis. This then becomes the target that is bombarded by Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs) above 1 keV in FLUKA to determine the photon fluence albedo produced by the Moon's surface when there is no sunlight and Earthshine. This is to be distinguished from the gamma-ray spectrum produced by the radioactive decay of radiogenic constituents lying in the surface and interior of the Moon. From the photon fluence we derive the spectrum which can be utilized to examine existing lunar spectral data and to design orbiting instrumentation for measuring various components of the space-radiation-induced photon luminescence present on the Moon.

  16. Development of a dendritic cell-targeting lipopeptide as an immunoadjuvant that inhibits tumor growth without inducing local inflammation.

    PubMed

    Akazawa, Takashi; Ohashi, Toshimitsu; Nakajima, Hiroko; Nishizawa, Yasuko; Kodama, Ken; Sugiura, Kikuya; Inaba, Toshio; Inoue, Norimitsu

    2014-12-15

    Materials used for the past 30 years as immunoadjuvants induce suboptimal antitumor immune responses and often cause undesirable local inflammation. Some bacterial lipopeptides that act as Toll-like receptor (TLR) 2 ligands activate immune cells as immunoadjuvants and induce antitumor effects. Here, we developed a new dendritic cell (DC)-targeting lipopeptide, h11c (P2C-ATPEDNGRSFS), which uses the CD11c-binding sequence of intracellular adhesion molecule-1 to selectively and efficiently activate DCs but not other immune cells. Although the h11c lipopeptide activated DCs similarly to an artificial lipopeptide, P2C-SKKKK (P2CSK4), via TLR2 in vitro, h11c induced more effective tumor inhibition than P2CSK4 at low doses in vivo with tumor antigens. Even without tumor antigens, h11c lipopeptide significantly inhibited tumor growth and induced tumor-specific cytotoxic T cells. P2CSK4 was retained subcutaneously at the vaccination site and induced severe local inflammation in in vivo experiments. In contrast, h11c was not retained at the vaccination site and was transported into the tumor within 24 hr. The recruitment of DCs into the tumor was induced by h11c more effectively, while P2CSK4 induced the accumulation of neutrophils leading to severe inflammation at the vaccination site. Because CD11b+ cells, but not CD11c+ cells, produced neutrophil chemotactic factors such as macrophage inflammatory protein (MIP)-2 in response to stimulation with TLR2 ligands, the DC-targeting lipopeptide h11c induced less MIP-2 production by splenocytes than P2CSK4. In this study, we succeeded in developing a novel immunoadjuvant, h11c, which effectively induces antitumor activity without adverse effects such as local inflammation via the selective activation of DCs. © 2014 UICC.

  17. Cooperativity in Monomeric Enzymes with Single Ligand-Binding Sites

    PubMed Central

    Porter, Carol M.

    2011-01-01

    Cooperativity is widespread in biology. It empowers a variety of regulatory mechanisms and impacts both the kinetic and thermodynamic properties of macromolecular systems. Traditionally, cooperativity is viewed as requiring the participation of multiple, spatially distinct binding sites that communicate via ligand-induced structural rearrangements; however, cooperativity requires neither multiple ligand binding events nor multimeric assemblies. An underappreciated manifestation of cooperativity has been observed in the non-Michaelis-Menten kinetic response of certain monomeric enzymes that possess only a single ligand-binding site. In this review, we present an overview of kinetic cooperativity in monomeric enzymes. We discuss the primary mechanisms postulated to give rise to monomeric cooperativity and highlight modern experimental methods that could offer new insights into the nature of this phenomenon. We conclude with an updated list of single subunit enzymes that are suspected of displaying cooperativity, and a discussion of the biological significance of this unique kinetic response. PMID:22137502

  18. Absence of opioid stress-induced analgesia in mice lacking beta-endorphin by site-directed mutagenesis.

    PubMed

    Rubinstein, M; Mogil, J S; Japón, M; Chan, E C; Allen, R G; Low, M J

    1996-04-30

    A physiological role for beta-endorphin in endogenous pain inhibition was investigated by targeted mutagenesis of the proopiomelanocortin gene in mouse embryonic stem cells. The tyrosine codon at position 179 of the proopiomelanocortin gene was converted to a premature translational stop codon. The resulting transgenic mice display no overt developmental or behavioral alterations and have a normally functioning hypothalamic-pituitary-adrenal axis. Homozygous transgenic mice with a selective deficiency of beta-endorphin exhibit normal analgesia in response to morphine, indicating the presence of functional mu-opiate receptors. However, these mice lack the opioid (naloxone reversible) analgesia induced by mild swim stress. Mutant mice also display significantly greater nonopioid analgesia in response to cold water swim stress compared with controls and display paradoxical naloxone-induced analgesia. These changes may reflect compensatory upregulation of alternative pain inhibitory mechanisms.

  19. Absence of opioid stress-induced analgesia in mice lacking beta-endorphin by site-directed mutagenesis.

    PubMed Central

    Rubinstein, M; Mogil, J S; Japón, M; Chan, E C; Allen, R G; Low, M J

    1996-01-01

    A physiological role for beta-endorphin in endogenous pain inhibition was investigated by targeted mutagenesis of the proopiomelanocortin gene in mouse embryonic stem cells. The tyrosine codon at position 179 of the proopiomelanocortin gene was converted to a premature translational stop codon. The resulting transgenic mice display no overt developmental or behavioral alterations and have a normally functioning hypothalamic-pituitary-adrenal axis. Homozygous transgenic mice with a selective deficiency of beta-endorphin exhibit normal analgesia in response to morphine, indicating the presence of functional mu-opiate receptors. However, these mice lack the opioid (naloxone reversible) analgesia induced by mild swim stress. Mutant mice also display significantly greater nonopioid analgesia in response to cold water swim stress compared with controls and display paradoxical naloxone-induced analgesia. These changes may reflect compensatory upregulation of alternative pain inhibitory mechanisms. Images Fig. 1 Fig. 2 PMID:8633004

  20. Fault activation and induced seismicity in geological carbon storage – Lessons learned from recent modeling studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frederic

    In the light of current concerns related to induced seismicity associated with geological carbon sequestration (GCS), this paper summarizes lessons learned from recent modeling studies on fault activation, induced seismicity, and potential for leakage associated with deep underground carbon dioxide (CO 2) injection. Model simulations demonstrate that seismic events large enough to be felt by humans require brittle fault properties and continuous fault permeability allowing pressure to be distributed over a large fault patch to be ruptured at once. Heterogeneous fault properties, which are commonly encountered in faults intersecting multilayered shale/sandstone sequences, effectively reduce the likelihood of inducing felt seismicitymore » and also effectively impede upward CO 2 leakage. A number of simulations show that even a sizable seismic event that could be felt may not be capable of opening a new flow path across the entire thickness of an overlying caprock and it is very unlikely to cross a system of multiple overlying caprock units. Site-specific model simulations of the In Salah CO 2 storage demonstration site showed that deep fractured zone responses and associated microseismicity occurred in the brittle fractured sandstone reservoir, but at a very substantial reservoir overpressure close to the magnitude of the least principal stress. We conclude by emphasizing the importance of site investigation to characterize rock properties and if at all possible to avoid brittle rock such as proximity of crystalline basement or sites in hard and brittle sedimentary sequences that are more prone to injection-induced seismicity and permanent damage.« less

  1. Fault activation and induced seismicity in geological carbon storage – Lessons learned from recent modeling studies

    DOE PAGES

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frederic; ...

    2016-09-20

    In the light of current concerns related to induced seismicity associated with geological carbon sequestration (GCS), this paper summarizes lessons learned from recent modeling studies on fault activation, induced seismicity, and potential for leakage associated with deep underground carbon dioxide (CO 2) injection. Model simulations demonstrate that seismic events large enough to be felt by humans require brittle fault properties and continuous fault permeability allowing pressure to be distributed over a large fault patch to be ruptured at once. Heterogeneous fault properties, which are commonly encountered in faults intersecting multilayered shale/sandstone sequences, effectively reduce the likelihood of inducing felt seismicitymore » and also effectively impede upward CO 2 leakage. A number of simulations show that even a sizable seismic event that could be felt may not be capable of opening a new flow path across the entire thickness of an overlying caprock and it is very unlikely to cross a system of multiple overlying caprock units. Site-specific model simulations of the In Salah CO 2 storage demonstration site showed that deep fractured zone responses and associated microseismicity occurred in the brittle fractured sandstone reservoir, but at a very substantial reservoir overpressure close to the magnitude of the least principal stress. We conclude by emphasizing the importance of site investigation to characterize rock properties and if at all possible to avoid brittle rock such as proximity of crystalline basement or sites in hard and brittle sedimentary sequences that are more prone to injection-induced seismicity and permanent damage.« less

  2. Site-Selective Regulation of Platelet-Derived Growth Factor β Receptor Tyrosine Phosphorylation by T-Cell Protein Tyrosine Phosphatase

    PubMed Central

    Persson, Camilla; Sävenhed, Catrine; Bourdeau, Annie; Tremblay, Michel L.; Markova, Boyka; Böhmer, Frank D.; Haj, Fawaz G.; Neel, Benjamin G.; Elson, Ari; Heldin, Carl-Henrik; Rönnstrand, Lars; Östman, Arne; Hellberg, Carina

    2004-01-01

    The platelet-derived growth factor (PDGF) β receptor mediates mitogenic and chemotactic signals. Like other tyrosine kinase receptors, the PDGF β receptor is negatively regulated by protein tyrosine phosphatases (PTPs). To explore whether T-cell PTP (TC-PTP) negatively regulates the PDGF β receptor, we compared PDGF β receptor tyrosine phosphorylation in wild-type and TC-PTP knockout (ko) mouse embryos. PDGF β receptors were hyperphosphorylated in TC-PTP ko embryos. Fivefold-higher ligand-induced receptor phosphorylation was observed in TC-PTP ko mouse embryo fibroblasts (MEFs) as well. Reexpression of TC-PTP partly abolished this difference. As determined with site-specific phosphotyrosine antibodies, the extent of hyperphosphorylation varied among different autophosphorylation sites. The phospholipase Cγ1 binding site Y1021, previously implicated in chemotaxis, displayed the largest increase in phosphorylation. The increase in Y1021 phosphorylation was accompanied by increased phospholipase Cγ1 activity and migratory hyperresponsiveness to PDGF. PDGF β receptor tyrosine phosphorylation in PTP-1B ko MEFs but not in PTPɛ ko MEFs was also higher than that in control cells. This increase occurred with a site distribution different from that seen after TC-PTP depletion. PDGF-induced migration was not increased in PTP-1B ko cells. In summary, our findings identify TC-PTP as a previously unrecognized negative regulator of PDGF β receptor signaling and support the general notion that PTPs display site selectivity in their action on tyrosine kinase receptors. PMID:14966296

  3. XenoSite server: a web-available site of metabolism prediction tool.

    PubMed

    Matlock, Matthew K; Hughes, Tyler B; Swamidass, S Joshua

    2015-04-01

    Cytochrome P450 enzymes (P450s) are metabolic enzymes that process the majority of FDA-approved, small-molecule drugs. Understanding how these enzymes modify molecule structure is key to the development of safe, effective drugs. XenoSite server is an online implementation of the XenoSite, a recently published computational model for P450 metabolism. XenoSite predicts which atomic sites of a molecule--sites of metabolism (SOMs)--are modified by P450s. XenoSite server accepts input in common chemical file formats including SDF and SMILES and provides tools for visualizing the likelihood that each atomic site is a site of metabolism for a variety of important P450s, as well as a flat file download of SOM predictions. XenoSite server is available at http://swami.wustl.edu/xenosite. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Effect of morphine-induced antinociception is altered by AF64A-induced lesions on cholinergic neurons in rat nucleus raphe magnus.

    PubMed

    Abe, Kenji; Ishida, Kota; Kato, Masatoshi; Shigenaga, Toshiro; Taguchi, Kyoji; Miyatake, Tadashi

    2002-11-01

    To examine the role of cholinergic neurons in the nucleus raphe magnus (NRM) in noxious heat stimulation and in the effects of morphine-induced antinociception by rats. After the cholinergic neuron selective toxin, AF64A, was microinjected into the NRM, we examined changes in the antinociceptive threshold and effects of morphine (5 mg/kg, ip) using the hot-plate (HP) and tail-flick (TF) tests. Systemic administration of morphine inhibited HP and TF responses in control rats. Microinjection of AF64A (2 nmol/site) into the NRM significantly decreased the threshold of HP response after 14 d, whereas the TF response was not affected. Morphine-induced antinociception was significantly attenuated in rats administered AF64A. Extracellular acetylcholine was attenuated after 14 d to below detectable levels in rats given AF64A. Naloxone (1 microg/site) microinjected into control rat NRM also antagonized the antinociceptive effect of systemic morphine. These findings suggest that cholinergic neuron activation in the NRM modulates the antinociceptive effect of morphine simultaneously with the opiate system.

  5. Intragenic Mapping of Chemically Induced ad-7 Mutants of Schizosaccharomyces pombe

    PubMed Central

    Loprieno, Nicola

    1967-01-01

    Thirty adenine-requiring ad-7 mutants of Schizosaccharomyces pombe, induced by ethylmethanesulfonate, methyl-methanesulfonate, and hydroxylamine and exhibiting low spontaneous reversion frequencies, were located by intragenic recombination analysis. Their identification as ad-7 mutants was assessed in relation to two previously mapped ad-7 mutants. Each mutant was found to occupy a distinct mutational site; the smallest recombination fraction observed between the two closest mutational sites was of the order of 0.5 × 10−6. PMID:6051345

  6. Identification and characterization of a novel high affinity metal-binding site in the hammerhead ribozyme.

    PubMed Central

    Hansen, M R; Simorre, J P; Hanson, P; Mokler, V; Bellon, L; Beigelman, L; Pardi, A

    1999-01-01

    A novel metal-binding site has been identified in the hammerhead ribozyme by 31P NMR. The metal-binding site is associated with the A13 phosphate in the catalytic core of the hammerhead ribozyme and is distinct from any previously identified metal-binding sites. 31P NMR spectroscopy was used to measure the metal-binding affinity for this site and leads to an apparent dissociation constant of 250-570 microM at 25 degrees C for binding of a single Mg2+ ion. The NMR data also show evidence of a structural change at this site upon metal binding and these results are compared with previous data on metal-induced structural changes in the core of the hammerhead ribozyme. These NMR data were combined with the X-ray structure of the hammerhead ribozyme (Pley HW, Flaherty KM, McKay DB. 1994. Nature 372:68-74) to model RNA ligands involved in binding the metal at this A13 site. In this model, the A13 metal-binding site is structurally similar to the previously identified A(g) metal-binding site and illustrates the symmetrical nature of the tandem G x A base pairs in domain 2 of the hammerhead ribozyme. These results demonstrate that 31P NMR represents an important method for both identification and characterization of metal-binding sites in nucleic acids. PMID:10445883

  7. New site characterization and monitoring technology

    NASA Astrophysics Data System (ADS)

    Nielsen, Bruce J.; Gillispie, Gregory D.; Bohne, David A.; Lindstrom, David R.

    1995-10-01

    The cost of characterizing and monitoring U.S. government hazardous waste sites could exceed $500 billion utilizing traditional methods and technology. New sensor technologies are being developed to meet the nation's environmental remediation and compliance programs. In 1993, the U.S. Air Force Armstrong Laboratory and Loral Defense System, Eagan (formerly a division of Unisys Corporation) signed a Cooperative Research and Development Agreement (CRDA) to commercialize fiber optic laser-induced fluorescence technology that had been developed with U.S. Air Force funding a North Dakota State University (NDSU). A consortium consisting of the CRDA partners (USAF and Loral), Dakota Technologies Inc., and NDSU submitted a proposal to the advanced Research Projects Agency, Technology Reinvestment Project and won an award to fund the commercialization. The result, the Rapid Optical Screening Tool or ROST is a state-of-the-art laser spectroscopy system for analysis of aromatic hydrocarbon-contaminated soil and groundwater. With ROST, environmental investigators are able to find, classify, and map the distribution of many hazardous chemicals in the field instead of waiting for reports to come back from the analytical laboratory. The research and development program leading to prototype laser spectrometers is summarized along with results from laboratory and field demonstrations illustrating system performance and benefits for site characterization. The technology has recently been demonstrated in Europe in Germany, the Netherlands, France an several sites in the United Kingdom having light, medium, and heavy aromatic hydrocarbon contamination from fuel spills and refinery or chemical plant operations. The use of the ROST system to find hydrocarbon contamination is now being offered as a service by Loral Corporation.

  8. Productivity benefits of warming at regional scale could be offset by detrimental impacts on site level hydrology.

    PubMed

    Zeng, Qing; Zhang, Yamian; Wen, Li; Li, Zhaxijie; Duo, Hairui; Lei, Guangchun

    2017-11-09

    Climate change affects the distribution and persistence of wildlife. Broad scale studies have demonstrated that climate change shifts the geographic ranges and phenology of species. These findings are influential for making high level strategies but not practical enough to guide site specific management. In this study, we explored the environment factors affecting the population of Bar-headed Goose in the key breeding site of Qinghai using generalized additive mixed model (GAMM). Our results showed that 1) there were significant increasing trends in climate variables and river flows to the Qinghai Lake; 2) NDVI in the sites decreased significantly despite the regional positive trend induced by the warmer and wetter climate; 3) NDVI at site scale was negatively correlated to lake water level; and 4) the abundance of Bar-headed Goose decreased significantly at all sites. While the abundance was positively related to NDVI at breeding sites, the GAMM revealed an opposite relationship at foraging areas. Our findings demonstrated the multi-facet effects of climate change on population dynamics; and the effect at global/regional scale could be complicated by site level factors.

  9. Umbilical hernia--a potential donor-site complication of fat injection laryngoplasty.

    PubMed

    Chiu, Feng-Shiang; Lin, Yaoh-Shiang; Chang, Ying-Nan; Lee, Jih-Chin

    2012-11-01

    Injection laryngoplasty with autologous fat appears to be an effective and simple technique for the treatment of patients with glottic insufficiency in comparison with other surgical techniques. Despite of its advantages, associated complications have also been reported, including immediate donor-site morbidity (eg, hematoma and abscess), fat extrusion of the injection site, and delayed manifestation of vocal granuloma or overinjected vocal folds. In this article, a patient suffering from accidental injury to the deep abdominal fascia without peritoneal penetration in the fat harvest procedure is presented. Three months after the fat injection laryngoplasty, an umbilical hernia was proved to occur via the clinical imaging. Several etiologies are supposed to induce the herniation of intraabdominal structures, including surgeon's incaution, abdominal obesity, intense wound inflammation and fibrosis, and the native weak point of the abdominal wall around the umbilicus. This case provides information that overdepth and negligence in fat harvest may injure the deep abdominal fascia, then possibly causing the umbilical hernia as a delayed donor-site complication. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  10. Substrate-induced fit of the ATP binding site of cytidine monophosphate kinase from Escherichia coli: time-resolved fluorescence of 3'-anthraniloyl-2'-deoxy-ADP and molecular modeling.

    PubMed

    Li de La Sierra, I M; Gallay, J; Vincent, M; Bertrand, T; Briozzo, P; Bârzu, O; Gilles, A M

    2000-12-26

    The conformation and dynamics of the ATP binding site of cytidine monophosphate kinase from Escherichia coli (CMPK(coli)), which catalyzes specifically the phosphate exchange between ATP and CMP, was studied using the fluorescence properties of 3'-anthraniloyl-2'-deoxy-ADP, a specific ligand of the enzyme. The spectroscopic properties of the bound fluorescent nucleotide change strongly with respect to those in aqueous solution. These changes (red shift of the absorption and excitation spectra, large increase of the excited state lifetime) are compared to those observed in different solvents. These data, as well as acrylamide quenching experiments, suggest that the anthraniloyl moiety is protected from the aqueous solvent upon binding to the ATP binding site, irrespective of the presence of CMP or CDP. The protein-bound ADP analogue exhibits a restricted fast subnanosecond rotational motion, completely blocked by CMP binding. The energy-minimized models of CMPK(coli) complexed with 3'-anthraniloyl-2'-deoxy-ADP using the crystal structures of the ligand-free protein and of its complex with CDP (PDB codes and, respectively) were compared to the crystal structure of UMP/CMP kinase from Dictyostelium discoideum complexed with substrates (PDB code ). The key residues for ATP/ADP binding to CMPK(coli) were identified as R157 and I209, their side chains sandwiching the adenine ring. Moreover, the residues involved in the fixation of the phosphate groups are conserved in both proteins. In the model, the accessibility of the fluorescent ring to the solvent should be substantial if the LID conformation remained unchanged, by contrast to the fluorescence data. These results provide the first experimental arguments about an ATP-mediated induced-fit of the LID in CMPK(coli) modulated by CMP, leading to a closed conformation of the active site, protected from water.

  11. PARP-1 dependent recruitment of the amyotrophic lateral sclerosis-associated protein FUS/TLS to sites of oxidative DNA damage

    PubMed Central

    Rulten, Stuart L.; Rotheray, Amy; Green, Ryan L.; Grundy, Gabrielle J.; Moore, Duncan A. Q.; Gómez-Herreros, Fernando; Hafezparast, Majid; Caldecott, Keith W

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is associated with progressive degeneration of motor neurons. Several of the genes associated with this disease encode proteins involved in RNA processing, including fused-in-sarcoma/translocated-in-sarcoma (FUS/TLS). FUS is a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family of proteins that bind thousands of pre-mRNAs and can regulate their splicing. Here, we have examined the possibility that FUS is also a component of the cellular response to DNA damage. We show that both GFP-tagged and endogenous FUS re-localize to sites of oxidative DNA damage induced by UVA laser, and that FUS recruitment is greatly reduced or ablated by an inhibitor of poly (ADP-ribose) polymerase activity. Consistent with this, we show that recombinant FUS binds directly to poly (ADP-ribose) in vitro, and that both GFP-tagged and endogenous FUS fail to accumulate at sites of UVA laser induced damage in cells lacking poly (ADP-ribose) polymerase-1. Finally, we show that GFP-FUSR521G, harbouring a mutation that is associated with ALS, exhibits reduced ability to accumulate at sites of UVA laser-induced DNA damage. Together, these data suggest that FUS is a component of the cellular response to DNA damage, and that defects in this response may contribute to ALS. PMID:24049082

  12. Kinetics of Mismatch Formation opposite Lesions by the Replicative DNA Polymerase from Bacteriophage RB69

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogg, Matthew; Rudnicki, Jean; Midkiff, John

    2010-04-12

    The fidelity of DNA replication is under constant threat from the formation of lesions within the genome. Oxidation of DNA bases leads to the formation of altered DNA bases such as 8-oxo-7,8-dihydroguanine, commonly called 8-oxoG, and 2-hydroxyadenenine, or 2-OHA. In this work we have examined the incorporation kinetics opposite these two oxidatively derived lesions as well as an abasic site analogue by the replicative DNA polymerase from bacteriophage RB69. We compared the kinetic parameters for both wild type and the low fidelity L561A variant. While nucleotide incorporation rates (k{sub pol}) were generally higher for the variant, the presence of amore » lesion in the templating position reduced the ability of both the wild-type and variant DNA polymerases to form ternary enzyme-DNA-dNTP complexes. Thus, the L561A substitution does not significantly affect the ability of the RB69 DNA polymerase to recognize damaged DNA; instead, the mutation increases the probability that nucleotide incorporation will occur. We have also solved the crystal structure of the L561A variant forming an 8-oxoG {center_dot} dATP mispair and show that the propensity for forming this mispair depends on an enlarged polymerase active site.« less

  13. Crystal structures of 3-methyladenine DNA glycosylase MagIII and the recognition of alkylated bases

    PubMed Central

    Eichman, Brandt F.; O’Rourke, Eyleen J.; Radicella, J.Pablo; Ellenberger, Tom

    2003-01-01

    DNA glycosylases catalyze the excision of chemically modified bases from DNA. Although most glycosylases are specific to a particular base, the 3-methyladenine (m3A) DNA glycosylases include both highly specific enzymes acting on a single modified base, and enzymes with broader specificity for alkylation-damaged DNA. Our structural understanding of these different enzymatic specificities is currently limited to crystal and NMR structures of the unliganded enzymes and complexes with abasic DNA inhibitors. Presented here are high-resolution crystal structures of the m3A DNA glycosylase from Helicobacter pylori (MagIII) in the unliganded form and bound to alkylated bases 3,9-dimethyladenine and 1,N6-ethenoadenine. These are the first structures of a nucleobase bound in the active site of a m3A glycosylase belonging to the helix–hairpin–helix superfamily. MagIII achieves its specificity for positively-charged m3A not by direct interactions with purine or methyl substituent atoms, but rather by stacking the base between two aromatic side chains in a pocket that excludes 7-methylguanine. We report base excision and DNA binding activities of MagIII active site mutants, together with a structural comparison of the HhH glycosylases. PMID:14517230

  14. Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner

    PubMed Central

    Gertz, Jason; Reddy, Timothy E.; Varley, Katherine E.; Garabedian, Michael J.; Myers, Richard M.

    2012-01-01

    Endogenous estrogens that are synthesized in the body impact gene regulation by activating estrogen receptors in diverse cell types. Exogenous compounds that have estrogenic properties can also be found circulating in the blood in both children and adults. The genome-wide impact of these environmental estrogens on gene regulation is unclear. To obtain an integrated view of gene regulation in response to environmental and endogenous estrogens on a genome-wide scale, we performed ChIP-seq to identify estrogen receptor 1 (ESR1; previously estrogen receptor α) binding sites, and RNA-seq in endometrial cancer cells exposed to bisphenol A (BPA; found in plastics), genistein (GEN; found in soybean), or 17β-estradiol (E2; an endogenous estrogen). GEN and BPA treatment induces thousands of ESR1 binding sites and >50 gene expression changes, representing a subset of E2-induced gene regulation changes. Genes affected by E2 were highly enriched for ribosome-associated proteins; however, GEN and BPA failed to regulate most ribosome-associated proteins and instead enriched for transporters of carboxylic acids. Treatment-dependent changes in gene expression were associated with treatment-dependent ESR1 binding sites, with the exception that many genes up-regulated by E2 harbored a BPA-induced ESR1 binding site but failed to show any expression change after BPA treatment. GEN and BPA exhibited a similar relationship to E2 in the breast cancer line T-47D, where cell type specificity played a much larger role than treatment specificity. Overall, both environmental estrogens clearly regulate gene expression through ESR1 on a genome-wide scale, although with lower potency resulting in less ESR1 binding sites and less gene expression changes compared to the endogenous estrogen, E2. PMID:23019147

  15. Evaluating three trace metal contaminated sites: a field and laboratory investigation.

    PubMed

    Murray, P; Ge, Y; Hendershot, W H

    2000-01-01

    Selecting guidelines to evaluate elevated metals in urban brownfields is hindered by the lack of information for these sites on ecosystem structure and function. A study was performed to compare three trace metal-contaminated sites in the metropolitan Montreal area. The goal was to obtain an idea of the organisms that may be present on urban brownfields and to measure if elevated metals alter the presence and activity of the indigenous biota. Field and laboratory studies were conducted using simple methodologies to determine the extent to which microbial activity affected by trace metal content, to assess diversity of plant and soil invertebrate communities and to measure phytoaccumulation of trace metals. It was found that microbial activity, as measured by substrate-induced respiration (SIR) and nitrification, was not affected by the levels of soil Cd, Cu, Ni, Pb and Zn recorded on the sites. Seven of the 12 invertebrate groups collected were sampled on soils with similar Cd, Cu, Ni, Pb and Zn concentrations. Diversity of plant species increased as a function of the length of time the sites had been inactive. Levels of metals in plant tissue were influenced by soil characteristics and not by total soil Cd, Cu, Ni, Pb and Zn.

  16. The School Site Planner. Land for Learning. Site Selection, Site Planning, Playgrounds, Recreation, and Athletic Fields.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of School Support.

    The selection and planning of sites for school facilities can be critical and difficult due to the varied and complex demands schools must satisfy. This publication addresses the many factors that need consideration during the process of site selection, planning, development, and use. The report examines not only the site selection and planning…

  17. NDE Research At Nondestructive Measurement Science At NASA Langley

    DTIC Science & Technology

    1989-06-01

    our staff include: ultrasonics, nonlinear acoustics , thermal acoustics and diffusion, magnetics , fiber optics, and x-ray tomography . We have a...based on the simple assumption that acoustic waves interact with the sample and reveal "important" properties . In practice, such assumptions have...between the acoustic wave and the media. The most useful models can generally be inverted to determine the physical properties or geometry of the

  18. Mn-Site Doped CaMnO 3: Creation of the CMR Effect

    NASA Astrophysics Data System (ADS)

    Raveau, B.; Zhao, Y. M.; Martin, C.; Hervieu, M.; Maignan, A.

    2000-01-01

    The doping of CaMnO3-δ at Mn sites with pentavalent and hexavalent d0 elements - Nb, Ta, W, Mo - modifies the resistivity behavior of this phase, extending the insulating domain and increasing significantly the resistivity at low temperature as the doping element content increases. The higher valency of the doping element introduces electrons; i.e., Mn3+ species are formed in the Mn4+ matrix. Double exchange phenomena then allow ferromagnetic interactions, by application of external magnetic fields which are similar to those observed for electron-doped manganites Ca1-xLnxMnO3 (x≤0.15), but with smaller magnetic moments. Consequently, this Mn site doping induces CMR properties with resistivity ratios considerably larger than those for CaMnO3-δ.

  19. Analysis of elemental composition of porcelains unearthed from Waguantan kiln site by PIXE-RBS

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Zhang, K.; Xia, C. D.; Liu, M. T.; Zhu, J. J.; An, Z.; Bai, B.

    2015-03-01

    A method combining proton-induced X-ray emission spectrometry (PIXE) and Rutherford backscattering spectrometry (RBS) was used to determine the composition of 61 porcelain shards from the Yuan Dynasty (1271-1368 A.D.) unearthed from the Waguantan kiln site at Tianzhu County in Guizhou Province, China. Based on our previous experimental setup, an electron gun device with a LaB6 crystal cathode was installed to solve the problem created when the incident proton beams generated electric charge accumulations on the surfaces of the insulating porcelain samples, which induced a large bremsstrahlung background. The use of the electron gun has largely eliminated the large bremsstrahlung background and has therefore improved the detection limits for elements, especially for trace elements, and made it possible to determine the origin of the porcelains based on the trace elements. Major and trace elemental compositions of the porcelain bodies and glazes measured by PIXE and RBS were analyzed by the factor analysis method. The factor analysis showed that a few pieces of porcelain with a style similar to the porcelain of the Longquan kiln among the unearthed porcelains from the Waguantan kiln site did not have obvious differences in elemental compositions from other remaining porcelains unearthed from the Waguantan kiln site, indicating that the pieces of unearthed porcelain with the Longquan kiln style did in fact belong to the product fired locally by imitating the model of the Longquan celadon with local raw materials. This result therefore indicated that the Longquan kiln technology that originated from the Five Dynasties (907-960 A.D.) had been propagated to the Waguantan kiln site of Guizhou Province in the Yuan Dynasty.

  20. Modelling induced seismicity due to fluid injection

    NASA Astrophysics Data System (ADS)

    Murphy, S.; O'Brien, G. S.; Bean, C. J.; McCloskey, J.; Nalbant, S. S.

    2011-12-01

    Injection of fluid into the subsurface alters the stress in the crust and can induce earthquakes. The science of assessing the risk of induced seismicity from such ventures is still in its infancy despite public concern. We plan to use a fault network model in which stress perturbations due to fluid injection induce earthquakes. We will use this model to investigate the role different operational and geological factors play in increasing seismicity in a fault system due to fluid injection. The model is based on a quasi-dynamic relationship between stress and slip coupled with a rate and state fiction law. This allows us to model slip on fault interfaces over long periods of time (i.e. years to 100's years). With the use of the rate and state friction law the nature of stress release during slipping can be altered through variation of the frictional parameters. Both seismic and aseismic slip can therefore be simulated. In order to add heterogeneity along the fault plane a fractal variation in the frictional parameters is used. Fluid injection is simulated using the lattice Boltzmann method whereby pore pressure diffuses throughout a permeable layer from the point of injection. The stress perturbation this causes on the surrounding fault system is calculated using a quasi-static solution for slip dislocation in an elastic half space. From this model we can generate slip histories and seismicity catalogues covering 100's of years for predefined fault networks near fluid injection sites. Given that rupture is a highly non-linear process, comparison between models with different input parameters (e.g. fault network statistics and injection rates) will be based on system wide features (such as the Gutenberg-Richter b-values), rather than specific seismic events. Our ultimate aim is that our model produces seismic catalogues similar to those observed over real injection sites. Such validation would pave the way to probabilistic estimation of reactivation risk for

  1. Application of the freeze-dried bioluminescent bioreporter Pseudomonas putida mt-2 KG1206 to the biomonitoring of groundwater samples from monitoring wells near gasoline leakage sites.

    PubMed

    Ko, Kyung-Seok; Kong, In Chul

    2017-02-01

    This study examined the applicability of a freeze-dried bioluminescent bioreporter, Pseudomonas putida mt-2 KG1206 (called KG1206), to the biomonitoring of groundwater samples. Samples were collected from the monitoring wells of gas station tanks or old pipeline leakage sites in Korea. In general, the freeze-dried strain in the presence of pure inducer chemicals showed low bioluminescence activity and a different activity order compared with that of the subcultured strain. The effects of KNO 3 as a bioluminescence stimulant were observed on the pure inducers and groundwater samples. The stimulation rates varied according to the type of inducers and samples, ranging from 2.2 to 20.5 times (for pure inducers) and from 1.1 to 11 times (for groundwater samples) the total bioluminescence of the control. No considerable correlations were observed between the bioluminescence intensity of the freeze-dried strain and the inducer concentrations in the samples (R 2  < 0.1344). However, samples without a high methyl tertiary butyl ether (MTBE) level and those from the gas station leakage site showed reasonable correlations with the bioluminescence activity with R 2 values of 0.3551 and 0.4131, respectively. These results highlight the potential of using freeze-dried bioluminescent bacteria as a rapid, simple, and portable tool for the preliminary biomonitoring of specific pollutants at contaminated sites.

  2. Mapping alpha-helical induced folding within the intrinsically disordered C-terminal domain of the measles virus nucleoprotein by site-directed spin-labeling EPR spectroscopy.

    PubMed

    Belle, Valérie; Rouger, Sabrina; Costanzo, Stéphanie; Liquière, Elodie; Strancar, Janez; Guigliarelli, Bruno; Fournel, André; Longhi, Sonia

    2008-12-01

    Using site-directed spin-labeling EPR spectroscopy, we mapped the region of the intrinsically disordered C-terminal domain of measles virus nucleoprotein (N(TAIL)) that undergoes induced folding. In addition to four spin-labeled N(TAIL) variants (S407C, S488C, L496C, and V517C) (Morin et al. (2006), J Phys Chem 110: 20596-20608), 10 new single-site cysteine variants were designed, purified from E. coli, and spin-labeled. These 14 spin-labeled variants enabled us to map in detail the gain of rigidity of N(TAIL) in the presence of either the secondary structure stabilizer 2,2,2-trifluoroethanol or the C-terminal domain X (XD) of the viral phosphoprotein. Different regions of N(TAIL) were shown to contribute to a different extent to the binding to XD, while the mobility of the spin labels grafted at positions 407 and 460 was unaffected upon addition of XD; that of the spin labels grafted within the 488-502 and the 505-522 regions was severely and moderately reduced, respectively. Furthermore, EPR experiments in the presence of 30% sucrose allowed us to precisely map to residues 488-502, the N(TAIL) region undergoing alpha-helical folding. The mobility of the 488-502 region was found to be restrained even in the absence of the partner, a behavior that could be accounted for by the existence of a transiently populated folded state. Finally, we show that the restrained motion of the 505-522 region upon binding to XD is due to the alpha-helical transition occurring within the 488-502 region and not to a direct interaction with XD.

  3. Building vibrations induced by noise from rotorcraft and propeller aircraft flyovers

    NASA Technical Reports Server (NTRS)

    Shepherd, Kevin P.; Hubbard, Harvey H.

    1992-01-01

    Noise and building vibrations were measured for a series of helicopter and propeller-driven aircraft flyovers at WFF during May 1978. The building response data are compared with similar data acquired earlier at sites near Dulles and Kennedy Airports for operation of commercial jet transports, including the Concorde supersonic transport. Results show that noise-induced vibration levels in windows and walls are directly proportional to sound pressure level and that for a given noise level, the acceleration levels induced by a helicopter or a propeller-driven aircraft flyover cannot be distinguished from the acceleration levels induced by a commercial jet transport flyover. Noise-induced building acceleration levels were found to be lower than those levels which might be expected to cause structural damage and were also lower than some acceleration levels induced by such common domestic events as closing windows and doors.

  4. The K+/site and H+/site stoichiometry of mitochondrial electron transport.

    PubMed

    Reynafarje, B; Lehninger, A L

    1978-09-25

    Electrode measurements of the average number of H+ ejected and K+ taken up (in the presence of valinomycin) per pair of electrons passing the energy-conserving sites of the respiratory chain of rat liver and rat heart mitochondria have given identical values of the H+/site and 5+/site ratios very close to 4 in the presence of N-ethylmaleimide, an inhibitor of interfering respiration-coupled uptake of H+ + H2PO4-. The K+/site uptake ratio of 4 not only shows that inward movement of K+ provides quantitative charge-compensation for the 4 H+ ejected, but also confirms that 4 charges are separated per pair of electrons per site. When N-ethylmaleimide is omitted, the H+/site ejection ratio is depressed, because of the interfering secondary uptake of H/+ with H2PO4- on the phosphate carrier, but the K+/site uptake ratio remains at 4.0. Addition of phosphate or acetate, which can carry H+ into respiring mitochondria, further depresses the H+/site ratio, but does not affect the K+/site ratio, which remains at 4.0. These and other considerations thus confirm our earlier stoichiometric measurements that the average H+/site ratio is 4.0 and also show that the K+/site uptake ratio can be used as a measure of the intrinsic H+/site ratio, regardless of the presence of phosphate in the medium and without the necessity of adding N-ethylmaleimide or other inhibitors of H+ + H2PO4- transport.

  5. On multi-site damage identification using single-site training data

    NASA Astrophysics Data System (ADS)

    Barthorpe, R. J.; Manson, G.; Worden, K.

    2017-11-01

    This paper proposes a methodology for developing multi-site damage location systems for engineering structures that can be trained using single-site damaged state data only. The methodology involves training a sequence of binary classifiers based upon single-site damage data and combining the developed classifiers into a robust multi-class damage locator. In this way, the multi-site damage identification problem may be decomposed into a sequence of binary decisions. In this paper Support Vector Classifiers are adopted as the means of making these binary decisions. The proposed methodology represents an advancement on the state of the art in the field of multi-site damage identification which require either: (1) full damaged state data from single- and multi-site damage cases or (2) the development of a physics-based model to make multi-site model predictions. The potential benefit of the proposed methodology is that a significantly reduced number of recorded damage states may be required in order to train a multi-site damage locator without recourse to physics-based model predictions. In this paper it is first demonstrated that Support Vector Classification represents an appropriate approach to the multi-site damage location problem, with methods for combining binary classifiers discussed. Next, the proposed methodology is demonstrated and evaluated through application to a real engineering structure - a Piper Tomahawk trainer aircraft wing - with its performance compared to classifiers trained using the full damaged-state dataset.

  6. MX Siting Investigation. Prime Characterization Sites Central High Plains Candidate Siting Province.

    DTIC Science & Technology

    1979-02-15

    information obtained from these studies , in combination with data obtained in the Screen- ing studies , has been used for geotechnical ranking (FN-TR-25). I...Plains Candi- date Siting Province (CSP), one of six provinces included in the geotechnical Characterization studies . The location of the sites within...remaining after Intermediate Screening were divided into CSPs based on similar geotechnical characteristics. Intermediate Screening studies (FN-TR-17

  7. Different critical perinatal periods and hypothalamic sites of oestradiol action in the defeminisation of luteinising hormone surge and lordosis capacity in the rat.

    PubMed

    Sakakibara, M; Deura, C; Minabe, S; Iwata, Y; Uenoyama, Y; Maeda, K-I; Tsukamura, H

    2013-03-01

    Female rats show a gonadotrophin-releasing hormone (GnRH)/luteinising hormone (LH) surge in the presence of a preovulatory level of oestrogen, whereas males do not because of brain defeminisation during the developmental period by perinatal oestrogen converted from androgen. The present study aimed to identify the site(s) of oestrogen action and the critical period for defeminising the mechanism regulating the GnRH/LH surge. Animals given perinatal treatments, such as steroidal manipulations, brain local implantation of oestradiol (E(2) ) or administration of an NMDA antagonist, were examined for their ability to show an E(2) -induced LH surge at adulthood. Lordosis behaviour was examined to compare the mechanisms defeminising the GnRH/LH surge and sexual behaviour. A single s.c. oestradiol-benzoate administration on either the day before birth (E21), the day of birth (D0) or day 5 (D5) postpartum completely abolished the E(2) -induced LH surge at adulthood in female rats, although the same treatment did not inhibit lordosis. Perinatal castration on E21 or D0 partially rescued the E2-induced LH surge in genetically male rats, whereas castration from E21 to D5 totally rescued lordosis. Neonatal E(2) implantation in the anterior hypothalamus including the anteroventral periventricular nucleus (AVPV)/preoptic area (POA) abolished the E(2) -induced LH surge in female rats, whereas E(2) implantation in the mid and posterior hypothalamic regions had no inhibitory effect on the LH surge. Lordosis was not affected by neonatal E(2) implantation in any hypothalamic regions. In male rats, neonatal NMDA antagonist treatment rescued lordosis but not the LH surge. Taken together, these results suggest that an anterior hypothalamic region such as the AVPV/POA region is a perinatal site of oestrogen action where the GnRH/LH regulating system is defeminised to abolish the oestrogen-induced surge. The mechanism for defeminisation of the GnRH/LH surge system might be different from

  8. Ultrastructure of the replication sites of positive-strand RNA viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harak, Christian; Lohmann, Volker, E-mail: volker_lohmann@med.uni-heidelberg.de

    2015-05-15

    Positive strand RNA viruses replicate in the cytoplasm of infected cells and induce intracellular membranous compartments harboring the sites of viral RNA synthesis. These replication factories are supposed to concentrate the components of the replicase and to shield replication intermediates from the host cell innate immune defense. Virus induced membrane alterations are often generated in coordination with host factors and can be grouped into different morphotypes. Recent advances in conventional and electron microscopy have contributed greatly to our understanding of their biogenesis, but still many questions remain how viral proteins capture membranes and subvert host factors for their need. Inmore » this review, we will discuss different representatives of positive strand RNA viruses and their ways of hijacking cellular membranes to establish replication complexes. We will further focus on host cell factors that are critically involved in formation of these membranes and how they contribute to viral replication. - Highlights: • Positive strand RNA viruses induce massive membrane alterations. • Despite the great diversity, replication complexes share many similarities. • Host factors play a pivotal role in replication complex biogenesis. • Use of the same host factors by several viruses hints to similar functions.« less

  9. Chronic pain induces generalized enhancement of aversion

    PubMed Central

    Zhang, Qiaosheng; Manders, Toby; Tong, Ai Phuong; Yang, Runtao; Garg, Arpan; Martinez, Erik; Zhou, Haocheng; Dale, Jahrane; Goyal, Abhinav; Urien, Louise; Yang, Guang; Chen, Zhe; Wang, Jing

    2017-01-01

    A hallmark feature of chronic pain is its ability to impact other sensory and affective experiences. It is notably associated with hypersensitivity at the site of tissue injury. It is less clear, however, if chronic pain can also induce a generalized site-nonspecific enhancement in the aversive response to nociceptive inputs. Here, we showed that chronic pain in one limb in rats increased the aversive response to acute pain stimuli in the opposite limb, as assessed by conditioned place aversion. Interestingly, neural activities in the anterior cingulate cortex (ACC) correlated with noxious intensities, and optogenetic modulation of ACC neurons showed bidirectional control of the aversive response to acute pain. Chronic pain, however, altered acute pain intensity representation in the ACC to increase the aversive response to noxious stimuli at anatomically unrelated sites. Thus, chronic pain can disrupt cortical circuitry to enhance the aversive experience in a generalized anatomically nonspecific manner. DOI: http://dx.doi.org/10.7554/eLife.25302.001 PMID:28524819

  10. Kinetic modeling predicts a stimulatory role for ribosome collisions at elongation stall sites in bacteria

    PubMed Central

    Ferrin, Michael A; Subramaniam, Arvind R

    2017-01-01

    Ribosome stalling on mRNAs can decrease protein expression. To decipher ribosome kinetics at stall sites, we induced ribosome stalling at specific codons by starving the bacterium Escherichia coli for the cognate amino acid. We measured protein synthesis rates from a reporter library of over 100 variants that encoded systematic perturbations of translation initiation rate, the number of stall sites, and the distance between stall sites. Our measurements are quantitatively inconsistent with two widely-used kinetic models for stalled ribosomes: ribosome traffic jams that block initiation, and abortive (premature) termination of stalled ribosomes. Rather, our measurements support a model in which collision with a trailing ribosome causes abortive termination of the stalled ribosome. In our computational analysis, ribosome collisions selectively stimulate abortive termination without fine-tuning of kinetic rate parameters at ribosome stall sites. We propose that ribosome collisions serve as a robust timer for translational quality control pathways to recognize stalled ribosomes. DOI: http://dx.doi.org/10.7554/eLife.23629.001 PMID:28498106

  11. Remediation management of complex sites using an adaptive site management approach.

    PubMed

    Price, John; Spreng, Carl; Hawley, Elisabeth L; Deeb, Rula

    2017-12-15

    Complex sites require a disproportionate amount of resources for environmental remediation and long timeframes to achieve remediation objectives, due to their complex geologic conditions, hydrogeologic conditions, geochemical conditions, contaminant-related conditions, large scale of contamination, and/or non-technical challenges. A recent team of state and federal environmental regulators, federal agency representatives, industry experts, community stakeholders, and academia worked together as an Interstate Technology & Regulatory Council (ITRC) team to compile resources and create new guidance on the remediation management of complex sites. This article summarizes the ITRC team's recommended process for addressing complex sites through an adaptive site management approach. The team provided guidance for site managers and other stakeholders to evaluate site complexities and determine site remediation potential, i.e., whether an adaptive site management approach is warranted. Adaptive site management was described as a comprehensive, flexible approach to iteratively evaluate and adjust the remedial strategy in response to remedy performance. Key aspects of adaptive site management were described, including tools for revising and updating the conceptual site model (CSM), the importance of setting interim objectives to define short-term milestones on the journey to achieving site objectives, establishing a performance model and metrics to evaluate progress towards meeting interim objectives, and comparing actual with predicted progress during scheduled periodic evaluations, and establishing decision criteria for when and how to adapt/modify/revise the remedial strategy in response to remedy performance. Key findings will be published in an ITRC Technical and Regulatory guidance document in 2017 and free training webinars will be conducted. More information is available at www.itrc-web.org. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A description of phases with induced hybridisation at finite temperatures

    NASA Astrophysics Data System (ADS)

    Golosov, D. I.

    2018-05-01

    In an extended Falicov-Kimball model, an excitonic insulator phase can be stabilised at zero temperature. With increasing temperature, the excitonic order parameter (interaction-induced hybridisation on-site, characterised by the absolute value and phase) eventually becomes disordered, which involves fluctuations of both its phase and (at higher T) its absolute value. In order to build an adequate mean field description, it is important to clarify the nature of degrees of freedom associated with the phase and absolute value of the induced hybridisation, and the corresponding phase space volume. We show that a possible description is provided by the SU(4) parametrisation on-site. In principle, this allows to describe both the lower-temperature regime where phase fluctuations destroy the long-range order, and the higher temperature crossover corresponding to a decrease of absolute value of the hybridisation relative to the fluctuations level. This picture is also expected to be relevant in other contexts, including the Kondo lattice model.

  13. SITE - EMERGING TECHNOLOGIES: LASER INDUCED PHOTO- CHEMICAL OXIDATIVE DESTRUCTION OF TOXIC ORGANICS IN LEACHATES AND GROUNDWATERS

    EPA Science Inventory

    The technology described in this report has been developed under the Emerging Technology Program of the Superfund Innovative Technology Evaluation (SITE) Program to photochemically oxidize organic compounds in wastewater by applying ultraviolet radiation using an excimer laser. T...

  14. Dioxin effects on wood duck (Aix sponsa) embryos from sites near paper mills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beeman, D.K.; Melancon, M.J.; Fleming, W.J.

    Biological and biochemical variables were studied in wood duck embryos from four dioxin-contaminated sites near paper mills in the Southeastern United States and three reference sites. Sites were selected based on a history of dioxin contamination in both sediments and fish. In addition, wood duck embryos collected downstream from an Arkansas Superfund site with demonstrated dioxin-induced reproductive impairment served as positive controls. Whole clutches of eggs were collected from the wild after fifteen days of incubation and mechanically incubated. Two embryos per clutch were sacrificed at pipping and liver monooxygenase activities (BROD, EROD and MROD) were quantified. Hatching success wasmore » determined for the remainder of the nest. Preliminary results indicate no difference in monooxygenase activities across sites even though the authors have previously demonstrated induction of monooxygenase activity in wood duck embryos in laboratory studies. In addition, there were no differences in weight at pipping, liver weight and liver weight to body weight ratios. No differences were seen in hatching success or weight at hatch nor were there any gross morphological abnormalities. This may indicate that exposure of wood ducks nesting near these pulp paper mills is below those which cause elevated monooxygenase activities and reproductive impairment.« less

  15. Hair loss at injection sites of mesotherapy for alopecia.

    PubMed

    El-Komy, Mohamed; Hassan, Akmal; Tawdy, Amira; Solimon, Mohamed; Hady, Mohamed Abdel

    2017-12-01

    The side effects of mesotherapy for treatment of various forms of alopecia are often underreported, while scientific data for its efficacy are severely lacking. To demonstrate the late onset side effects of mesotherapy for alopecia. Three patients with androgenetic alopecia showed hair loss after previously uneventful mesotherapy sessions up to 1 year. Clinical, dermoscopic, and histopathological findings suggested an inflammatory scaring process at sites of mesotherapy injections. Mesotherapy for androgenetic alopecia may paradoxically induce hair loss and scarring. Proper regulation and monitoring of the use of mesotherapy products for treating hair loss in women, needs to be addressed. © 2017 Wiley Periodicals, Inc.

  16. Characterization of Oxygen-Induced Retinopathy in Mice Carrying an Inactivating Point Mutation in the Catalytic Site of ADAM15

    PubMed Central

    Maretzky, Thorsten; Blobel, Carl P.; Guaiquil, Victor

    2014-01-01

    Purpose. Retinal neovascularization is found in diseases such as macular degeneration, diabetic retinopathy, or retinopathy of prematurity and is usually caused by alterations in oxygen supply. We have previously described that mice lacking the membrane-anchored metalloproteinase ADAM15 (a Disintegrin and Metalloprotease 15) have decreased pathological neovascularization of the retina in the oxygen-induced retinopathy (OIR) model. The main purpose of the present study was to determine the contribution of the catalytic activity of ADAM15 to OIR. Methods. To address this question, we generated knock-in mice carrying an inactivating Glutamate to Alanine (E>A) point mutation in the catalytic site of ADAM15 (Adam15E>A mice) and subjected these animals to the OIR model and a heterotopic tumor model. Moreover, we used cell-based assays to determine whether ADAM15 can process cell surface receptors involved in angiogenesis. Results. We found that pathological neovascularization in the OIR model in Adam15E>A mice was comparable to that observed in wild type mice, but tumor implantation by heterotopically injected melanoma cells was reduced. In cell-based assays, overexpressed ADAM15 could process the FGFR2iiib, but was unable to process several receptors with roles in angiogenesis. Conclusions. Collectively, these results suggest that the catalytic activity of ADAM15 is not crucial for its function in promoting pathological neovascularization in the mouse OIR model, most likely because of the very limited substrate repertoire of ADAM15. Instead, other noncatalytic functions of ADAM15 must be important for its role in the OIR model. PMID:25249606

  17. Interactions of divalent cations with calcium binding sites of BK channels reveal independent motions within the gating ring.

    PubMed

    Miranda, Pablo; Giraldez, Teresa; Holmgren, Miguel

    2016-12-06

    Large-conductance voltage- and calcium-activated K + (BK) channels are key physiological players in muscle, nerve, and endocrine function by integrating intracellular Ca 2+ and membrane voltage signals. The open probability of BK channels is regulated by the intracellular concentration of divalent cations sensed by a large structure in the BK channel called the "gating ring," which is formed by four tandems of regulator of conductance for K + (RCK1 and RCK2) domains. In contrast to Ca 2+ that binds to both RCK domains, Mg 2+ , Cd 2+ , or Ba 2+ interact preferentially with either one or the other. Interaction of cations with their binding sites causes molecular rearrangements of the gating ring, but how these motions occur remains elusive. We have assessed the separate contributions of each RCK domain to the cation-induced gating-ring structural rearrangements, using patch-clamp fluorometry. Here we show that Mg 2+ and Ba 2+ selectively induce structural movement of the RCK2 domain, whereas Cd 2+ causes motions of RCK1, in all cases substantially smaller than those elicited by Ca 2+ By combining divalent species interacting with unique sites, we demonstrate that RCK1 and RCK2 domains move independently when their specific binding sites are occupied. Moreover, binding of chemically distinct cations to both RCK domains is additive, emulating the effect of fully occupied Ca 2+ binding sites.

  18. 40 CFR 146.93 - Post-injection site care and site closure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) The pressure differential between pre-injection and predicted post-injection pressures in the... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Post-injection site care and site... Applicable to Class VI Wells § 146.93 Post-injection site care and site closure. (a) The owner or operator of...

  19. 40 CFR 146.93 - Post-injection site care and site closure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) The pressure differential between pre-injection and predicted post-injection pressures in the... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Post-injection site care and site... Applicable to Class VI Wells § 146.93 Post-injection site care and site closure. (a) The owner or operator of...

  20. 40 CFR 146.93 - Post-injection site care and site closure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) The pressure differential between pre-injection and predicted post-injection pressures in the... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Post-injection site care and site... Applicable to Class VI Wells § 146.93 Post-injection site care and site closure. (a) The owner or operator of...